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Executive summary 

The effects of elevated PM10 concentrations on childhood asthma incidents (emergency room visits 
& hospital admissions) in central Phoenix, AZ were determined. A major portion of this work 
involved the application of a deterministic, numerical air quality model to produce gridded 
concentration fields, the development of a neural-network based prediction system for PM10, and 
the interpolation of PM10 concentrations from five monitoring sites to produce census-tract specific 
concentrations for the statistical health effects analyses. Through the case-crossover method, PM10 
concentrations were shown to have statistically significant associations with asthma incidents in 
central Phoenix at the 95% confidence level. For children ages 5-17 an effect much stronger than in 
previous studies was determined, while children ages 0-4 exhibited virtually no effects. Previous 
studies have reported the risk of adverse health effects as a function of the change of daily mean 
PM10 from the 25th to 75th percentile; in this study that change was 36 µg/m3. This change in PM10 
is associated with a 13% increase in the probability of asthma incidents among children ages 5-17. 
Within this group, neither age nor gender was significant. The lack of an effect on preschool 
children was assumed to be due to the difficulty of making accurate asthma diagnoses in the 
younger ages and/or more time spent indoors. 

Chapter 1 Introduction  

Voluminous studies on the health effects of particulate matter (PM) have been carried out. 
Atmospheric scientists deal with the conditions conducive to high PM episodes; the exposure 
community delves into the duration and severity of ambient PM concentrations to which various 
populations are subject; toxicologists and biochemists study the effects of the hazardous 
constituents of PM on human and surrogate organisms and in in vitro systems; physiologists and 
physicians conduct exposure-effect studies on humans in chambers, epidemiologists relate health 
outcomes to ambient concentrations and exposures, and modelers (including risk assessors) utilize 
various data to estimate exposure-response relationships for determining safe levels of exposure. 
Integration of such disparate disciplines is difficult, given the complexity inherent in each of the 
approaches, though the U.S. Environmental Protection Agency (EPA) and the World Health 
Organization (WHO) Air Quality Criteria Documents, the EPA Staff Papers, and the EPA Office of 
Air do make such an attempt.  For issuing health warning system is sufficient to establish, if there 
be any, a reliable association between PM concentrations and health effects such as admittances due 
to respiratory (or cardiovascular) ailments to allow prediction of such events. The principal goal of 
the “Children’s Health Project” was to clarify the association of children’s health with PM10 levels 
to develop a better health warning system in Phoenix. We brought together a partnership among 
Arizona Department of Environmental Quality (ADEQ), Arizona Department of Health Services 
(ADHS), Ross & Associates, and two groups of researchers at Arizona State University:  the Center 
for Health Information and Research (CHIR), and the Center for Environmental Fluid Dynamics 
(EFD). We discussed our findings with University of Arizona medical personnel and the Asthma 
Coalition.  

Work elements of the project 

• With the central portion of Phoenix as the study area, PM10 concentrations and asthma 
records were analyzed for each day in 2005 – 2006. 

• PM10 concentrations were estimated with both deterministic and statistical models.  
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• The deterministic models were the EPA’s Community Multi-scale Air Quality Modeling 
System (CMAQ) and a meteorological model called “MM5.” This grid-based weather and 
pollution simulation system relied on the most recent Western Regional Air Partnership PM 
inventories. Design days included periods of low, intermediate, and high pollution. The 
hourly and daily simulated concentrations were compared with data from five permanent 
monitoring sites with continuous PM10 instruments.  

• The first type of statistical model employed was interpolation.  With the interpolation 
technique called “inverse distance weighting” (IDW), spatial concentration fields were built 
that provided a PM10 concentration for each of the 168 census tracts from measurements at 
the five central-city monitoring sites.  The efficacy of this scheme was verified by deploying 
four temporary monitors for four months and by using hourly PM10 concentrations from two 
Maricopa County permanent sites whose continuous PM10 monitors began operating after 
2005.  These six additional sites enabled the use of a more sophisticated interpolation 
technique called “ordinary kriging”, which produced results similar to those of the IDW.  

• The second type of statistical model was the neural network, developed by Italian scientists 
and applied to a single permanent monitoring site -- Maricopa County’s “Central Phoenix” 
site.  This model is a statistical system to predict the next day’s PM10 concentrations without 
the labor and emissions-inventory intensive alternative of CMAQ.  In the present work, 
however, its use was limited to estimating PM10 concentrations already recorded in 2006.   

• About 6,000 ADHS asthma events in children ages 0-18 – in a unified area within five 
miles of the five monitoring sites – comprised 75% of the Maricopa County total.  These 
ADHS records of emergency room treatment and hospital admissions were cross-checked 
against an independent data set at CHIR and were found to be consistent once duplicate 
records had been eliminated.  

• The census-tract-based health data were linked with the PM10 concentrations derived from 
the IDW interpolations by a statistical method called “case-crossover”. Asthma has a strong 
seasonal component and the case-crossover analysis associates a reference time period as a 
control for each case. Consequently, each patient was treated as a matched case-referent pair 
with control exposures obtained from the same patient at different times. With an 
appropriate referent period, the case-crossover analysis controlled for long-term trends, 
seasonal effects, epidemic, and other covariates that change slowly with time such as 
behavior and diet.  In addition to PM10 on the “event” day, 24-hour averages from one to 
seven days before the event were also examined (this delay is referred to as “lag time”). The 
patients were also stratified by age group, gender, and race/ethnicity, and interactions 
between air quality and these variables were explored.  

 
Chapter 2 PM monitoring networks 

Permanent PM10 network in the central city 

Considering “metropolitan Phoenix” to include the city and all of the adjoining suburbs (but 
excluding Casa Grande and environs), five governmental agencies conduct air quality monitoring: 

• Maricopa County Department of Air Quality (MCDAQ) 

• Arizona Department of Environmental Quality – Air Quality Division (ADEQ) 

• Pinal County Air Quality Control District 



 9

• Salt River Pima Maricopa Indian Community, and 

• Gila River Indian Community. 
 
Together, these agencies operate about 50 different sites with a variety of instruments and several 
different objectives.  What the U.S EPA terms “criteria pollutants”, such as particulate matter, 
ozone, carbon monoxide, and others, may be the prime focus; but many other aspects of pollution in 
the planetary boundary layer are also monitored.  For example, this monitoring includes 
meteorological parameters such as wind speed and wind direction, visibility characteristics such as 
light extinction and photographic views, and the chemical composition of particulates and gaseous 
pollutant mixtures (MCDAQ, 2007; ADEQ, 2007). 
 
The present work, based on the PM10 network and the asthma cases in central Phoenix, relies on the 
“continuous” meteorological and air pollutant data from the first two agencies in the list above.  
“Continuous” means that the instruments run round the clock with their meteorological parameters 
and air pollutant concentrations, including PM10, reported as hourly averages.  As described later in 
this chapter, Arizona State University (ASU) and ADEQ staff set up and operated temporary PM10 
continuous monitors to supplement the permanent network (Table 2.1 and Figure 2-1). 

Table 2.1 Central Phoenix continuous PM10 monitoring sites  

Symbol Name Major streets/city1 Duration Agency 
WF West 43rd Avenue 43rd Avenue & Broadway Rd. 
DC Durango Complex 27th Avenue & Durango Street 
WP West Phoenix 39th Avenue & Thomas Road 
CP Central Phoenix 16th Street & Roosevelt Street 
SS2 Supersite 15th Avenue & Camelback Rd. 
SP3 South Phoenix Central Ave & Broadway Rd. 
GR3 Greenwood 27th Avenue & I-10 

Permanent MCDAQ or 
ADEQ 

MRV Maryvale 59th Ave & Indian School Rd.  
VGC Valley Garden Center 15th Avenue & McDowell Rd. 

WVR Weaver’s Auto 
Service 

29th Street & Thomas Road 

CSA Community Service 
of AZ 

59th Ave. & Glendale Avenue, 
Glendale, AZ 

Temporary: 
Nov. 2007 – 
March 2008 

ASU/ADEQ

1. All except CSA are in Phoenix, Arizona.  
2. SS, Supersite, is ADEQ; other permanent sites are MCDAQ. 
3. Used only in the ordinary kriging interpolation, along with the other permanent and all temporary sites; not 

used in the inverse distance weighting interpolation for 2005 – 2006, because continuous PM10 monitoring did 
not begin until January 2006. 

 
Each of these sites has its unique combination of local emission sources and its own susceptibility 
to urban transport that together, along with the desert background, result in the measured 
concentrations.  Each has its own degree of representativeness:  i.e. how far away from the monitor 
do the measured concentrations actually prevail?  The permanent county sites, fully described in 
Maricopa 2007, and the ADEQ Supersite, are also characterized in Appendix A.  What follows is a 
discussion of how their average PM10 concentrations fit into the spatial distribution of PM10 
concentrations throughout metropolitan Phoenix. 
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Figure 2.1.  PM10 monitoring sites with elevations for the Children’s Health Project. The permanent 
monitors are black, the temporary – blue.  
 
The PM10 variation among all of the metropolitan sites can be seen in their 2006 annual averages, 
given in Table 2.2 and also expressed as a percentage of the lowest urban concentration site, Mesa. 
The central city sites, from WF to CP, have concentrations considerably higher than Mesa’s (from 
38 to 162% higher), varying widely among themselves.  The PM10 gradients are steepest here, 
tapering off in the more outlying portions of the central city.   
 
Shown in Figure 2.2, these concentrations have their highest values and steepest gradients in south-
central Phoenix, with almost all of the highest ones being south of I-10.  As one moves west of 75th 
Ave, north of Bethany Home Rd, east of 36th St., and south of Dobbins Rd, the prevailing 
concentrations generally fall to the mid to low 30’s, or even lower in the  case of the Phoenix 
Mountain Preserve of the South Mountains.  Because measured PM10 concentrations exhibit high 
sensitivities to localized emissions; however, elevated concentrations can occur in the vicinity of 
such sources as major earthmoving projects or intensively tilled agricultural lands. Two such 
examples of these PM10 discontinuities in metropolitan Phoenix are Higley in the southeast and 
Buckeye in the far west.  The former’s concentrations are elevated above the values expected with 
its distance from the city center by emissions from major earthmoving activities from road 
construction, commercial building, and residential housing developments, as well as from continued 
farming. The latter’s concentrations are elevated from the same source categories, with the 
agricultural activities being the most influential. The greatest uncertainty in this concentration field 
lies to the west, but even this has been diminished by including measurements from a discontinued 
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county site called “Maryvale”, at 61st Avenue and Encanto Boulevard, normalized to those of 
Central Phoenix (the former is 1.7% higher than the latter).   

 
Table 2.2.  Annual average (2006) PM10 concentrations (µg/m3) 

(bold sites used in the present work) 

Symbol Site name 
Location or type 

[PM10] 
% 

from 
Mesa 

WF West 43rd Avenue Central 79.9 162 
DC Durango Complex Central 69.2 127 
HI Higley Suburban 60.6 99 
SP South Phoenix Central 55.0 80 
BU Buckeye Urban fringe 53.2 74 
GR Greenwood Central 51.7 70 
WP West Phoenix Central 49.8 63 
MV1 Maryvale Central 42.7 40 
CP Central Phoenix Central 42.0 38 
GL Glendale Suburban 36.3 15 
SSC South Scottsdale Suburban 35.0 19 
NP North Phoenix Suburban 34.4 13 
SS2 Supersite Central 32.9 8 
DY Dysart Urban fringe 32.3 6 
ME Mesa Suburban 30.5 0 
ES3 Estrella Park (1995-2004)  Urban fringe 30.2 -1 
AJ4 Apache Junction Urban fringe 23.6 -23 
PV5 Palo Verde (1997-2004) Urban fringe 21.9 -28 
AO6 Ajo (1995 – 2003) Remote small town 20.2 -34 
OP7 Organ Pipe (1995-2004) Background 10.6 -65 

1. MV, Maryvale, a discontinued county site at 61st Avenue and Encanto Blvd.  The 2006 annual average is 
estimated by the MV/CP long-term average. 
2. SS, Supersite, 2006 average was estimated by the SS/CP long-term average. 
3. ES, Estrella Park, a discontinued ADEQ site, near Estrella Parkway and the Gila River, 18 mi (29 km) west-
southwest of downtown (Van Buren, Grand, 7th Avenue intersection) 
4. AJ, Apache Junction, a Pinal County site,  32 miles (51 km) east of downtown  
5. PV, Palo Verde, a discontinued ADEQ site, 43 mi (69 km) west of downtown  
6. AO, Ajo, Arizona, an ADEQ site, 83 mi (133 km) south-southwest (SSW) of downtown 
7. OP, Organ Pipe National Monument, a National Park Service site, 105 mi (169 km) SSW of downtown 

 
Although the two highest concentration sites, West 43rd Avenue (WF) and the Durango Complex 
(DC) garner most of the regulatory attention, the Greenwood site deserves special mention, as well. 
Unlike the top two, whose elevated concentrations can in part be attributed to the somewhat 
localized windblown and mechanically generated PM10 emissions along the Salt River, Greenwood, 
named for the cemetery across the street, is situated in a residential neighborhood with little in the 
way of fugitive dust emissions. Instead, this monitor is affected by heavy traffic on nearby paved 
roads.  (Traffic on paved roads generates PM10 emissions by resuspending soil particles from the 
road surface and by exhaust emissions, with the former having ten times the weight of the latter.)  
From the monitor inlet it is 10 meters east to the busy arterial of 27th Avenue (19,000 vehicles on an 
average weekday (ADT)), 905 m east to I-17 (112,000), and 85 m north to Interstate 10 (229,000 
ADT). PM10 concentrations from this monitor, with suitable adjustments for wind direction and 
traffic volume, could be assigned to all of the freeway corridors in the central city. 
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Figure 2.2.  Spatial distribution of annual PM10 concentrations –central Phoenix for 2006 

 
Temporary PM10 sites for this project 
Given the five permanent monitoring sites with complete records in 2005 – 2006, and considering 
that the Greenwood and South Phoenix continuous PM10 monitors began operation after 2005, 
additional continuous PM10 monitors were thought desirable for this project.  ASU and ADEQ staff 
established four temporary sites and operated them from November 2007 through March 2008.  
These additional concentrations, with the Greenwood and South Phoenix sites included as well, 
provided the 11 points required for the more sophisticated interpolation technique called “ordinary 
kriging” (the simpler technique is inverse distance weighting, or IDW).  The temporary sites were 
chosen to fill the gaps in the geographic coverage of the permanent PM10 network and to be placed 
in areas with moderate to high numbers of asthma cases.  These four temporary sites are shown as 
three-initial labels in Table 2.1 and Figure 2.1, with additional details given in Appendix A.  Even 
though the PM10 concentration fields built with the 11 monitors did not differ much from those 
based on the original five, the efforts involved were considered well worth while.  Without these six 
additional sites, the fidelity of the interpolated fields based on only the five permanent monitors 
would have remained too uncertain for comfort.  
 
The PM10 concentrations at these four temporary sites were generally lower than those at the 
permanent sites (Table 2-3). 
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Table 2.3.  December 2007 PM10 monthly average concentrations (µg/m3) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Chapter 3 Interpolation methods 
 
Introduction 
Interpolating air pollutant measurements to produce spatial concentration fields has a rich history on 
all scales -- urban, regional, and global. What distinguishes the present work is the nature of the 
pollutant. Instead of gaseous air pollutants or fine particles that mimic gases (particles 2.5 microns 
and smaller, “PM2.5”), this project concerns particles 10 microns and smaller, or “PM10”. In 
metropolitan Phoenix the coarse fraction of the aerosol (2.5 – 10 microns) comprises two thirds of 
the mass of PM10 and consists of particles that are 90% geological. Even the fine fraction has an 
appreciable geological component (20%), in addition to the usual secondary and combustion 
particles. Speciated aerosol measurements show that somewhat less than one fourth of the regulated 
PM10 comes from the better understood and more homogeneously distributed emission sources such 
as fuel combustion from motor vehicles, industrial combustion, and food cooking, as well as the 
secondary components of nitrate and sulfate. Most of the remaining three quarters, virtually all 
geological, comes from paved road dust, construction dust, windblown dust, and unpaved road dust. 
It is precisely this geological, or “soil”, or “crustal” component that defies efforts to build precise 
emission inventories, and, with a few notable exceptions, including the present work, makes it 
difficult to simulate with numerical models on an urban scale. Because the continuous PM2.5 
monitoring network in 2005-2006 was limited to two stations, PM10 was the choice for this project. 
 
Practical constraints make it impossible to obtain data at every desired point. Thus, interpolation is 
important and fundamental to graphing, analyzing and understanding the spatial distribution of air 
pollution throughout a metropolitan area. Interpolation methods selected in this study were inverse 
distance weighting and ordinary kriging, the former with the five permanent PM10 sites in 2005-
2006; the latter, with the expanded network from December 2007 – February 2008. Hourly 
concentrations were converted to daily 24-hour averages for the daily spatial concentration fields. In 
addition, select hours were also examined on a case by case basis.  Some consideration was given to 
using emission or traffic estimates to adjust the interpolated values, but this was rejected.   

Inverse distance weighting 
Inverse distance weighting (IDW) is one of the simplest interpolation methods. A neighborhood in 
the vicinity of the interpolated point is identified and a weighted average is taken of the observation 

Label Name Type [PM10] 
DC Durango Complex 49.6 
WF West 43rd Avenue 46.1 
GR Greenwood 42.9 
SP South Phoenix 39.6 
WP West Phoenix 

 
 
Permanent 

38.2 
CSA CSA of Glendale Temporary 33.7 
CP Central Phoenix Permanent 32.8 
VGC Valley Garden Center 31.4 
MRV Maryvale Temporary 28.5 
SS Supersite Permanent 28.3 
WVR Weaver’s Auto Service Temporary 21.8 
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values within it. The weights are a decreasing function of distance. The user has control over the 
mathematical form of the weighting function, the size of the neighborhood (expressed as a radius or 
a number of points), in addition to other options. In this project, IDW was used to interpolate the 
PM10 concentrations of 2005-2006 from the five permanent monitoring sites with an automated 
function in Geographic Information Systems (GIS). Within ArcGIS 9.2 software, the Spatial 
Analyst extension tool was used to create IDW interpolations within the study area. Within Spatial 
Analyst, a pull-down menu is found in which the user can input the specific information pertaining 
to the dataset utilized. In the pull-down menu, default input parameters were selected. This included 
selecting PM10 for the z-value, a power value of two, a variable search radius with 12 points, and 
the search radius distance value unspecified. Once the proper data files were selected in the pull-
down menu, the GIS software then automatically created a temporary interpolation raster, based on 
the PM10 value at each of the five monitor sites on the specific day or hour selected. (A “raster” is a 
scanning pattern of parallel lines that form the display of an image projected on a display screen.) 
Next, the temporary interpolation raster files were made permanent by saving each hourly file in the 
table of contents section of ArcMap, the principal graphical user interface to create maps in ArcGIS. 
Finally, the interpolated surface value tables were aggregated by census tracts in Excel. Census tract 
shapefiles, containing the new information from these interpolations, were then finalized as 
graphics in ArcMap.  

Ordinary kriging 
Ordinary kriging is a geostatistical approach to modeling. Instead of weighting nearby data points 
by some power of their inverted distance, it relies on the spatial correlation structure of the data to 
determine the weighting values. This is a more rigorous approach than IDW, as correlation between 
data points determines the estimated value at an unsampled point. Ordinary kriging makes the 
assumption of normality among the data points, as well as an unknown constant trend. This is 
unlike simple or universal kriging, which assume a known constant trend and/or model. 
 
The word “kriging”is synonymous with “optimal prediction”.  Kriging methods, including ordinary 
kriging, utilize a variogram model to express the spatial variation of data points, and then minimize 
their error.   
 
For this project, the Spatial Analyst extension in ArcGIS (the same used for IDW analysis) was 
chosen as the optimal automated method to create kriged surfaces of PM10.  After selecting an 
hourly file containing PM10 for the z-value, the spherical semivariogram model was selected in the 
pull-down menu as the best way to create a kriged surface with the least amount of error. The 
advanced parameters tab, which allows for input on the lag size, major range, partial sill, and nugget 
size, was not used. Default options, including a variable search radius with 12 neighbors, and an 
unspecified search distance, were used to create temporary interpolated raster files. As was the case 
with IDW, interpolated files were first made permanent, and were then aggregated into census tract 
shapefiles in Excel and ArcMap, to create maps of kriging values within study area census tracts. 

Comparison between IDW and ordinary kriging 
Each interpolation method has its advantages and disadvantages. Although ordinary kriging is more 
rigorous and better at predicting surfaces at a distance from known data points, IDW can be utilized 
with fewer data points. For example, ordinary kriging performs best with a large number of data 
points, ideally above 50, although as few as 10 can be used. IDW on the other hand, can create a 
prediction surface, though based mainly on nearest neighbors, with as few as 3-4 points within a 
given area. Figure 3.1 illustrates results from the two methods. Five PM10 station values were used 
in IDW on the left; 11 stations were used in ordinary kriging on the right. Figure 3.2 shows the 
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percentage differences between the two methods (PM10IDW-PM10KR)/PM10IDW. In Figures 3.3 and 
3.4, statistical comparisons between the two interpolation methods reveal better agreement close to 
the central part of the study area, in close proximity to the five permanent PM10 monitors. Greater 
disagreement between the two models occurs in the outer edges of the study area, in census tracts 
close to the temporary PM10 monitors. 

 
Figure 3.1. Comparison between IDW and Ordinary Kriging methods 

 

 
 

Figure 3.2. Percentage differences                                     between IDW and Ordinary Kriging 
methods – December 19, 2007, 8am  

100*
10PM

10PM10PM
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Figure 3.3. Mean Absolute Errors (MAE) for December between IDW and Ordinary Kriging 
methods – based on daily maps 

 
Figure 3.4. Root Mean Square Error (RMSE) for December between IDW and Ordinary Kriging 
methods – based on daily maps (see Appendix D for mathematical definitions of MAE and RMSE)      
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Chapter 4 Neural network  

Introduction 
Traditionally, the term “neural network” referred to a circuit of biological neurons. The modern 
usage of the term often refers to networks made up of artificial neurons or “nodes.” These networks 
consist of interconnecting artificial neurons such as programming constructs that mimic the 
properties of biological neurons. Neural networks have been developed and used widely in both 
applied mathematics and applied science, including predictive modeling based on a time series of 
measurements – its application in the present work. Other application areas include system 
identification and control (vehicle control, process control), game-playing and decision making 
(backgammon, chess, racing), pattern recognition (radar systems, face identification, object 
recognition), sequence recognition (gesture, speech, handwritten text recognition), medical 
diagnosis, financial applications, data mining, and e-mail spam filtering. These networks are always 
imbued with the capability of “learning” through “training,” with a variety of different methods 
employed. Although this may appear somewhat metaphysical, it really boils down to a set of data 
and predictive equations, which, exercised daily, acquires “knowledge” and an improved predictive 
ability through the simple acquisition and prediction of additional data.  In this project the neural 
network’s application was limited to the prediction of historical PM10 concentrations.  An 
operational neural network, on the other hand, would make the daily predictions of tomorrow’s air 
pollution.  This network would acquire more “skill” with time as additional daily relationships 
between PM10 concentrations and meteorological variables were encountered, processed, and 
predicted.   
 
In the present work, an artificial neural network called “EnviNNet” was developed and applied to 
the PM10 monitoring record at the Central Phoenix (CP) site, with the goal of constructing an air 
pollution predictive system that might complement the deterministic system of the grid-based air 
quality model, discussed in Chapter 5.  Four steps were necessary: 

1. Assemble hourly records of PM10 and meteorological variables from one monitoring site, 
preferably for three years or more (only one year was examined in this project).   

2. Derive and calculate statistical relationships between the PM10 concentrations and the 
meteorological measurements. 

3. Run a meteorological predictive model such as MM5 (see Chapter 5) for each day of the 
historical record examined, determining quantitatively how well its predictions matched the 
measurements. 

4. Build the artificial neural network and the meteorological modeling system such that 
predictions of PM10 are forthcoming for each day of the historical record.  Compare these 
predictions with the measurements.  

 
Should an organization wish to apply the neural network in a genuine air pollution predictive 
system, then the requisite software would need to be installed, the data gathering mechanisms built, 
the meteorological model would be set up for daily operational forecasts, and considerable staff 
training would have to take place.  The remainder of this chapter discusses some aspects of these 
artificial neural networks and describes how the EnviNNet was built.    

 
Considering its wide usage in atmospheric applications (Gardner and Dorling 1998), a type of 
neural network called “Multi Layer Perceptron (MLP)” was employed. The MLP structure consists 
of an interconnected system of nodes (neurons) within a hidden layer that employs non-linear 
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continuous transfer functions connecting input and output vectors.  (Appendix B provides more 
details.)   

Phoenix case study 
As the first step, PM10 and meteorological data from the Central Phoenix (CP) monitoring station 
were assembled. EnviNNet was trained using a selected set of appropriately pre-processed historic 
time series data at CP, whereupon it was used to predict PM10 in the hindcasting mode. The input 
vector is made of the following variables: 

1. Pollution data - These constitute the endogenous component of the NN (A component or 
variable is called endogenous if it is explained within the model in which it appears). Time 
lags are selected by optimizing the data reconstruction efficiency of the NN, so as to achieve 
the best trade-off between sensitivity and specificity. Since these are multi-step operations, the 
measured pollutant levels are used in a rolling mode to generate the reconstructed values.  

2. Meteorological measurements - These comprise the exogenous component of the NN, and 
have a modulating effect on PM10 concentrations (exogenous refers to an action or object 
coming from outside a modeling system). The time lags were selected as before, and the 
balance between data reconstruction efficacy and network efficiency was optimized.  

3. Statistical and descriptive indicators - These represent the behaviour of the “Central 
Phoenix” neighbourhood via classes of input parameters that account for aggregated 
homogeneous spatio-temporal bands of microclimatic factors and air pollutant concentrations. 
The latter are dependent on the wind velocity, wind direction, and emissions specified as either 
weekday or weekend/holidays. 

 
The meteorological and emissions characteristics of low, moderate, and elevated PM10 
concentrations at CP have to be accounted for in developing the NN, which makes the training 
strategy critical for reliable predictions. Since daily PM10 concentrations vary widely throughout the 
month and year, specific input models had to be built by combining time section data of different 
years to make the NN robust and adaptive to the local climate. The data for training came from 
selected four-to-six-month windows, as well as from time periods that show noteworthy patterns 
such as exceptional events.  
 
Input variables selected for training are:  

• Historical series of PM10 and meteorological data collected at CP during 2005-2006, prior to 
the dates selected for hindcasting;  

• A selection of days based on analysis and correlations of historical series representing PM10 
trends in the time window selected;  

• Noteworthy patterns observed outside the time window of training (e.g. significant PM10 
peaks representative of exceptional events).   

 
In this phase, the intrinsic parameters of the NN were estimated by numeric optimization until a 
satisfactory convergence was obtained. The weights and time lags so identified naturally depend on 
the site (e.g. local weather and neighbourhood emission characteristics). The most important aspect 
of this particular training is to obtain a non-linear dynamic relationship that connects input data with 
PM10 output so that the NN can be operated in the hindcasting mode.  
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Results 
The neural-network system gave dependable results for the Central Phoenix monitoring site.  These 
results, compared with those of CMAQ in Chapter 6, are illustrated in Figure 4.1.  PM10 predictions 
in arid climates are difficult and a correlation coefficient of 0.38 is better than average.  
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Figure 4.1.  24-hour average PM10 predictions from the neural network versus observations at the 
Central Phoenix site for 2006 

Chapter 5 Air Quality Modeling 

Introduction 
This chapter describes the deterministic, grid-based numerical models employed in simulating the 
central Phoenix PM10 concentrations.  The three kinds of models are meteorological, emissions, and 
air quality. In addition, near the chapter’s end, the air quality model results are discussed in light of 
the interpolated concentration fields of Chapter 3.    
 
The MM5/SMOKE/CMAQ modeling system was employed to simulate PM10 concentrations in 
central Phoenix. This widely used, sophisticated platform has been adopted as a regulatory tool. The 
predictive system consists of three integrated models: the Pennsylvania State University and 
National Center for Atmospheric Research (NCAR) Mesoscale Meteorological Model - MM5 v3.7 
(Grell and Dudia, 1994) for simulating the weather, the Sparse Matrix Operator Kernel Emissions – 
SMOKE v2.2 model for emissions processing (Carolina Environmental Program, 2005). and the 
Community Multiscale Air Quality Model – CMAQ v.4.5 (Byun and Ching, 1999) for simulating 
pollutant concentrations.  
 
MM5 is a terrain-following model that simulates mesoscale atmospheric circulation. It has been 
applied to a broad spectrum of studies, including land-sea breezes, mountain-valley circulation, and 
real-time weather forecasting. The data for model initialization and lateral boundary conditions 
were obtained from the operational NCEP/Eta model (40km grid resolution) and NCEP global 
surface and upper air observations every three and six hours, respectively.  (“NCEP” is the National 
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Weather Service’s National Center for Environmental Prediction and “Eta” is one of the global 
weather models.) Three-dimensional analysis and surface nudging with observed data were used to 
generate grid-based meteorological fields.  MM5 provided the meteorological input to CMAQ. 
Appendix C contains further modeling details. 
 
The SMOKE model produces gridded, hourly emissions for CMAQ, using meteorological fields 
from MM5 and a host of emission estimating techniques. Temporally, spatially, and chemically 
resolved model-ready emissions were prepared using the recent Western Regional Air Partnership 
(WRAP) emissions inventory (including the BRAVO-1999 study for the Mexico emissions 
inventory). 
 
Developed by EPA in the 1990s, CMAQ is a multi-pollutant, multi-scale air quality model that 
contains techniques for simulating all atmospheric and land processes that affect the transport, 
chemical reactions, and deposition of atmospheric pollutants and/or their precursors on both 
regional and urban scales. It is designed as a science-based modeling tool for handling all the major 
pollutants such as ozone and particulate matter. This “Eulerian” or grid-based model produces 
hourly concentrations of a number of pollutants in the frame of a fixed, three-dimensional grid with 
uniformly sized horizontal grid cells and variable vertical layer thicknesses.  This model has 
undergone numerous applications and performance evaluations, in Phoenix, in Arizona (Yuma and 
Douglas), in the Western United States, and throughout the world.  

Modeling domains 

The modeling domain was based on a Lambert Projection centered at (97°W, 40°N), with three 
nested domains having 36, 12 and 4km grids to predict meteorology, emissions, and air quality, 
respectively. In the nested simulations, the results obtained from the outer domain were used as 
initial and boundary conditions for the inner domain (Figure 5.1). Vertically 29 levels were 
specified with the layer closest to the ground being seven meters thick to capture boundary-layer 
processes. The inner domain with 4x4km grids was centered in the Salt River Valley in central 
Phoenix.  
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Figure 5.1. Modeling domains for MM5/SMOKE/CMAQ simulations 
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Modeling periods  
The modeling periods selected were constrained by the available air quality and health data in 2004-
2006. As was described in Chapter 2, there are five monitors in the study area with hourly PM10 
concentrations, but only two with hourly PM2.5 concentrations.  Therefore, the study examined only 
the PM10 concentrations.  One part of the project was to develop and test different interpolation 
techniques to build spatial concentration fields.  These interpolation methods require from five to 
ten monitoring sites, another reason that the PM2.5 data could not be used.  In 2004 the sites of West 
Phoenix and West 43rd Avenue had incomplete records, restricting the analysis to 2005 and 2006. 
The 24-hour averages of PM10 are shown for the five monitors in Figure 5.2, whose names and 
designations are given below: 
CP – Central Phoenix  
DC – Durango Complex 
WF – West 43rd Avenue  
WP – West Phoenix  
SS – Supersite 
 
Different periods with high and low pollution levels were selected for analysis. 

• High pollution (above the National Ambient Air Quality Standard of  150µg/m3 for a 24-
hour average); November 2005; December 12-19, 2005; January 10-20, 2006; November 2-16, 
2006 

• Low pollution (less than 75µg/m3); September 3-15, 2005; August 2005; March 11 - April 
9, 2006; August, 2006 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.2. 24-hour averaged PM10 observations for 2005-2006 
 
The daily counts of emergency department visits and hospital admissions with an asthma diagnosis 
in Maricopa County, shown in Figure 5.3, were divided into four categories:  

• Worst: greater than the sum of the average and the standard deviation; 

• Bad: between the annual average and the sum of the average and the standard deviation; 

• Moderate: between the average and the difference between this average and the standard 
deviation;  

• Good: less than the difference between the average and the standard deviation. 
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Figure 5.3. Daily emergency department visits and admissions to hospitals of children ages 0-17 in 
Maricopa County with an asthma diagnosis for 2005 – 2006 

The average number of daily asthma visits is 9 with a range from 1 to 31.  The seasonal pattern is 
virtually identical for both years. The good category occurs almost exclusively in July; the worst 
category is mostly limited to a period from the last week of October until March 1, with a hiatus 
from December 20 to January 20, when the level of admissions stays in the moderate range.   
 
Simple statistical analyses of the 24-hour PM10 concentrations and daily asthma visits were carried 
out to help select the modeling periods. Curves in Figure 5.4 illustrate the variations throughout the 
two years, with a seasonal periodicity in both PM10 and asthma being quite evident.  The periods 
when the two data sets diverge are well displayed. The highest number of asthma incidents and 
elevated PM10 concentrations occurred together in November 2005 through January 2006. A 
decrease in asthma incidents near the end of December, while PM10 concentrations remain elevated, 
may be due to behavioral changes during the Christmas holidays. November 2005 had the highest 
number of asthma incidents; this month was selected to represent “high pollution” conditions. It was 
more difficult to select the period of low pollution because of incoherence in both data sets. The 
lowest PM10 concentrations were recorded in August, while the lowest numbers of asthma incidents 
came in July. One period with both low PM10 levels and low numbers of asthma cases was found in 
March-April 2006. This period was chosen to represent “low pollution” conditions. 
 
The modeling was conducted for the two selected periods:  

• November 2005, with high pollution, and 

• March 11 - April 9, 2006, with low pollution. 
 
Modeling runs were carried out with 31 hours of spin-up time for the weather predictions and 24 
hours for the air quality modeling. “Spin-up” time means that the model run is begun before the day 
(or period) of interest.  This allows its calculations to begin before the period of interest, reducing 
the influence of the initial conditions on the model results.  
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Figure 5.4. PM10 concentrations and asthma events (2005-2006) 

Modeling results and discussion 
Numerical simulations were carried out with the MM5/SMOKE/CMAQ modeling system for both 
high and low pollution periods and were compared with observations from the five permanent air 
monitoring stations. This model validation was necessary to estimate the model’s performance in 
the study region. Air pollutant concentrations depend on meteorological conditions such as wind 
and rainfall, as well as on the strength and patterns of air pollutant emissions.  Consequently, in any 
air quality model’s performance evaluation, one must take into account the uncertainties in both the 
emission and meteorological models.   
 
Model runs for two time periods: November 2005 and March 11 - April 9, 2006, show reasonable 
results in comparison with the observations. The scatter plots of simulated hourly PM10 
concentrations versus the observations at all five locations in central Phoenix are shown for both 
periods with their corresponding regression coefficients (Fig. 5.5).  
 
CMAQ generally overestimated the low (<50µg/m3) and underestimated the elevated (>150µg/m3) 
observed PM10 concentrations for both periods, with better correspondence between observed and 
modeled data for the high pollution period. Elevated PM10 levels were a frequent occurrence at the 
Durango Complex (DC) and West 43th Avenue (WF) sites, well above the other three sites in 
winter. For this reason the model results were also compared with the measurements in two groups:   

• CP, WP, and SS, the three lower concentration sites, and 

•  DC and WF, the two higher concentration sites (Figure 5.6).   
 

November, 2005 March 11 - April 9, 2006 
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Figure 5.5.  Simulated and observed hourly PM10 concentrations in central Phoenix for periods of 
high pollution (left) and low pollution (right) – from all five monitors  
 
The coefficients of determination, which quantify the goodness of the fit and are 1.0 for perfection, 
were less than 0.2 for all five sites within the study domain with the 4km grids. Perhaps this level of 
performance can be attributed to various inadequacies of the emissions inventory.  Even a perfect 
description of the boundary layer air flow from the meteorological model would not produce 
excellent modeled air pollutant concentrations as long as the estimated PM10 emissions were 
inaccurate in magnitude, space, and time.  As the WRAP emission inventories came in 36 and 12km 
grids, the 4km emissions for the central Phoenix model runs were obtained by setting them equal to 
one ninth of the 12km emissions (there are nine 4km grids within a 12x12km square). 
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Figure 5.6.  Predicted and observed hourly PM10 concentrations in central Phoenix for the two sets 
of monitors shown separately – high pollution period (November 2005) 
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One explanation for the elevated PM10 concentrations measured at the DC and WF monitors is that 
weekday “industrial” and roadway emissions add to the concentration loading already high from 
urban transport.  The air quality model’s inability to simulate these higher concentrations, 
demonstrated by the near-horizontal angle of the DC and WF regression lines in the right figure 
above, may lie with an insufficient emission inventory. One should keep in mind that while CMAQ 
has produced excellent simulations for ozone and chemically speciated fine particulates, whose 
atmospheric behavior mimics that of gaseous pollutants its ability to simulate PM10 has not been so 
good. The reasons for this lack-luster performance are many, and include: 

• a single, spatially uniform emission value throughout a single grid – at complete odds with 
the spatial variability of real-world emissions;  

• deposition phenomena that depend on the particle size distribution, as different emission 
sources produce particles with different distributions; The average particle size of the total 
mass of PM10 in central Phoenix is from five to seven microns, large enough to be deposited 
somewhat rapidly to the ground, in contrast to the smaller particles comprising the fine 
fraction (smaller than 2.5 microns), which remain suspended considerably longer. 

• the sporadic and unknown temporal distribution of most fugitive sources that cannot be 
captured by any emissions inventory; and 

• the heterogeneous spatial distribution of ambient PM10, exemplified by monitors influenced 
by localized emissions that vary widely in their distance from the monitor, in their timing, in 
their release height, and in their magnitude.  

 
Despite its shortcomings, a deterministic model such as MM5/CMAQ offers three advantages over 
its statistically based competitors, providing: 
 

1. nearly complete geographic coverage, albeit limited to the size of the grid, and adequate 
temporal coverage in the form of hourly averages, with simulated values of both 
meteorological variables and air pollutant concentrations calculated for each and every grid 
cell;  

 
2. air quality predictions years or decades into the future, necessarily dependent on the 

reliability of a future-year emissions inventory; and 
 

3. a way to quantify the benefits of specific air pollution control strategies, accomplished by 
modifying a future, base-case emissions inventory to reflect the anticipated emission 
reductions from the controls. 

 
While only the first advantage is of relevance to the Children’s Health project, the other two should 
be considered in any general assessment of the utility of deterministic models. 
 
A disadvantage of CMAQ is that, as a deterministic model, it has none of the interpolation 
techniques that could better fit its output to the observed data. Furthermore, the emissions data and 
meteorological data that drive CMAQ each have considerable uncertainties, the former to a far 
greater degree than the latter. These uncertainties, as well as those inherent in its embedded science, 
cause it to predict better for longer time scales (monthly, annual) than for shorter times (1-hour or 
24-hour); and to be the most error prone with smaller grid cells. The "soccer goal" plot, 
recommended by USEPA (Guidance on the Use of Models, 2007), is a convenient way to visualize 
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model performance, as both bias and errors are shown on a single plot. Two statistics -- the Mean 
Fractional Error and the Mean Fractional Bias -- for both the high and low pollution periods are 
plotted for the different sites in Figure 5.7. As bias and error approach 0, the points are plotted 
closer to or within the "goal" represented here by the dashed boxes. (See Appendix D for the 
mathematical definitions of these and other statistics.) The plot shows reasonable model 
performance, with only a single site being out of the goal area -- West 43th Avenue for the high 
pollution period. 
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Figure 5.7. The "soccer goal" plot measures both bias and error for central Phoenix 

 
In addition to this visual estimate of performance, the different statistics that were calculated to 
estimate the model performance for the study periods also show reasonable model performance 
(Table 5.1).  
 

Of all these statistics, perhaps the most telling one is the Index of Agreement (IA):  its values range 
from 0.46 to 0.72, with perfect agreement being 1.0. The best IA was achieved at WP during the 
winter and at DC during the spring. The better known Coefficients of Determination (RSQ), also 
known as the linear “correlation coefficient” abbreviated as “R2, ranges from 0.10 to 0.33, 
indicative of a slightly positive correlation. This weak correlation is often found in matching 
numerically modeled concentrations with the measured ones in air pollution studies, especially for 
PM10.  The Mean Absolute Errors (MAE) are all less than 30 except for DC and WF in November 
2005. The local emissions not taken into account with sufficient spatial and temporal accuracy in 
the emissions inventory contribute to this disagreement. CMAQ overestimated the PM10 
concentrations at CP and SS: the Modified Coefficient of Determination (RSQ*) is greater than 1; 
but it underestimated the observations at WF and DC, where RSQ* is less than 1 for both high and 
low pollution periods. At West Phoenix (WP) the model under-estimated the higher concentrations 
measured in November 2005 but over-estimated the lower ones in March-April 2006. The Root 
Mean Square Errors (RMSE) ranged from 26 to 42, except for the two problematic sites of WF and 
DC in November 2005, which had anomalously high values about 90. 
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Table 5.1. Statistical measures in comparing model-predicted hourly PM10 concentrations to 
observations for both study periods at different sites 

Monitor MAE RMSE RSQ RSQ* IA
Perfect agreement 0 na 1.00 na 1

Central Phoenix 26.12 34.39 0.21 1.45 0.68
West Phoenux 27.81 41.99 0.33 0.60 0.72
Super Site 23.48 30.06 0.25 3.30 0.62
West 43rd Avenue 62.21 89.85 0.16 0.06 0.51
Durango Cpmplex 58.49 85.80 0.21 0.68 0.55

Central Phoenix 25.00 33.06 0.10 4.28 0.46
West Phoenux 22.78 30.25 0.16 2.39 0.59
Super Site 22.19 27.15 0.12 5.01 0.47
West 43rd Avenue 25.31 26.47 0.17 0.42 0.60
Durango Cpmplex 23.94 35.86 0.25 0.54 0.68

                                       November 2005

                                    March 11- April 9, 2006

 
Abreviation: MAE - Mean Absolute Error; RMSE - Root Mean Square Error; RSQ - Coefficient of Determination (aka 
R2); RSQ* - Modified Coefficient of Determination2; IA - Index of Agreement 
2Modified Coefficient of Determination: values greater than 1 mean the model overestimated (orange); values less than 
1 mean the model underestimated (green) 
 
The health data are available only on a daily basis, and consequently, the prediction of accurate 24-
hour averages of PM10 was of greater importance than the hourly values. Figure 3 shows the 24-
hour averaged Mean Bias for both high and low pollution periods. The difference between daily 
calculated and observed concentrations can be substantial. While the average MB for 30 days was 
in the range of -15 to 15, except at WF and DC in November (see Fig. 5.7), the 24-hour averaged 
MB doubled for some days and is almost zero for the others, as can be seen from Figure 5.8.   

   
The model underestimations (the negative MB) were most pronounced at Durango Complex and 
West 43rd Avenue, and a weekly periodicity can be found for the MB. The weekday industrial and 
roadway emissions add to already-high concentration loading from urban transport. These two 
regulatory problematic sites, which represent the worst PM10 air quality in metropolitan Phoenix, 
have relatively high frequencies of violations of the NAAQS, in part because of somewhat dense 
localized emissions from the extractive and material handling industries along the Salt River.  Some 
of these sporadic and unknown temporally distributed fugitive sources cannot be captured by an 
emissions inventory, and they contribute to the heterogeneous spatial distribution of ambient PM10 
and hence to prediction errors. The average particle size of the total mass of PM10 in central 
Phoenix is from five to seven microns, large enough to be deposited on the ground somewhat 
rapidly, in contrast to the smaller particles comprising the fine fraction (smaller than 2.5 microns) 
that remains suspended for considerably longer times. The aerosol module in CMAQ considers both 
PM2.5 and PM10, but represents the particle size distribution as the superposition of three lognormal 
sub-distributions called modes. The model takes into account only one mode of the "coarse 
particles" (2.5-10µm) and assigns the same deposition velocity. 
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Figure 5.8. Daily Mean Bias for high pollution conditions (top) and low pollution 
 
Figures 5.9 and 5.10 show the CMAQ predictions compared with 24-hour averaged observations for 
both high and low pollution periods. The calculated data were extracted from the grid cell where the 
corresponding monitor is located. A good correspondence between observed and calculated data for 
WP and CP sites can be found in November 2005 (Fig. 5.9). The model overestimates the 24-hour 
averaged observed values at SS and strongly underestimates the values at WF and DC sites. The 
same behavior can be found for the low pollution case (Fig. 5.10). CMAQ overestimates the 24-
hour averaged measured values at SS, CP, WP and underestimates the values at WF and DC sites 
for several days. Nonetheless, the model's predicted values generally follow the trends of the 
observations. In spite of MM5’s inability to simulate the higher wind speeds for several days, the 
model did predict some higher wind speeds, reflected by the low PM10 concentrations calculated by 
CMAQ for 11, 26-27 of November 2005, March 30, and 2, 5-6 of April, 2006. 
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Figure 5.9. CMAQ predictions versus 
observations of PM10 concentrations at five sites 
for the high pollution period of November 2005.  
The lines are the median values of the 24 hourly 
predictions for each day; the box plots are 25th to 
75th percentiles of the 24 predictions. 
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Figure 5.10. CMAQ predictions versus 
observations of PM10 concentrations at five sites 
for the low pollution period of March 11 – April 
9, 2006.  The lines are the median values of the 
24 hourly predictions for each day; the box plots 
are 25th to 75th percentiles of the 24 predictions. 
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The PM10 concentrations were averaged for the five sites for the entire period for every hour.  
Figure 5.11 presents the averaged concentrations from the five monitors in central Phoenix with the 
spatially-averaged PM10 concentrations from the numerical modeling. 
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Figure 5.11. Hourly variation of the five-site averages, calculated and observed PM10 concentrations 
for November 2005 
 
The model is able to produce the morning and evening maxima at the right times, in agreement with 
the observations, but it underestimates the magnitude of the peaks. There are at least two 
explanations for this lack of agreement. First, consider the weather-predicting MM5 model, which 
is in need of some modifications itself. Its predicted wind fields have speeds considerably higher 
than the measured values during the morning and evening transitions (for more details see 
Appendix C). Provided that the wind speeds remain below the dust resuspension threshold - roughly 
15 to 20 miles per hour (7 to 10 meters per second) - higher wind speeds generally lead to lower 
PM10 concentrations; hence, the underestimation. Second, consider that MM5 does not differentiate 
among the various types of urban land surface. The treatment of urban land in modeling grids 
results in too uniform a surface roughness and other properties, which are not representative of the 
local-scale variation. Sub-categories are needed for the so called "urban" land characteristics. These 
unrealistic uniformities can cause incorrect transport of pollutants, as well as too little or too much 
vertical mixing, both of which affect their resultant concentrations. Especially for stable conditions, 
which can last for several days, improvements in the application of this model to metropolitan 
Phoenix would be helpful.  
 
CMAQ contains “accurate” and “state-of-the-science” parameterizations of atmospheric processes 
affecting transport, transformation, and deposition of pollutants.  Process analysis is a useful tool for 
understanding the contributions of different physical processes to the total PM10 concentrations.  
Through process analysis the contribution that each phenomenon makes to the resultant PM10 
concentration can be quantified (Fig. 5.12). The emissions (EMIS), dry deposition (DDEP), and 
vertical diffusion (VDIF) give a joint contribution ten times greater than the combined contributions 
of advection (horizontal HADV + vertical VADV), horizontal diffusion (HDIF), atmospheric 
chemistry (CHEM), aerosol composition (AERO), and cloud chemistry (CLDS) combined. 
Inadequate parameterizations of both the diffusion and the depositional processes in the planetary 
boundary layer, combined with uncertain emission inventories, may be responsible for the model’s 
performance. 

 

µg/m3 
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Process Analysis - November 7-9, 2005 
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Process Analysis - April 1-3, 2006 
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Figure 5.12. Contributions of different processes to PM10 concentrations for 3-days periods in 
November 2005 and April 2006:  the values are averaged from several grid cells in central Phoenix, 
with EMIS, DDEP, and VDIF plotted on the left Y-axis, with all others on the right 
 
One reason for the differences between the modelled and observed PM10 concentrations is that 
measured point values cannot represent the larger grid-based volumes of 36, 12, or 4 km 
surrounding the monitoring sites, given the large spatial inhomogeneities already noted. The spatial 
distribution of the Index of Agreement (IA) between the interpolated and modeled PM10 
concentrations is shown in Figure 5.13 for November 2005. The interpolated surfaces were 
constructed from the observations and mapped into census tract concentrations, from which the 
average value for each modeling grid cell was calculated. The map shows the IA between the 
interpolated PM10 concentrations from the IDW and the CMAQ estimates for each 4 km grid cell. 
A very good correspondence can be found with the IA greater than 0.5 for the whole domain. The 
modeled data fit very well to the interpolated surfaces (IA between 0.6 - 0.7) in the northeast part 
(WP, CP, SS) and some disagreement can be seen at the south-west (less than 0.5). The CMAQ 
model overestimates the PM10 concentrations in the northeast around CP and SS, unlike in the 

EMIS, DDEP, VDIF

EMIS, DDEP, VDIF
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southwest around WF and DC, where it generally underestimates the observations, as can be seen 
from the map of Mean Bias for November 2005 (Figure 5.14). 
 

 
 

Figure 5.13. The spatial distribution of the Index of Agreement between CMAQ and Inverse 
Distance Weighting (IDW) interpolated surfaces 
 

 
Figure 5.14. The spatial distribution of Mean Bias between CMAQ and Inverse Distance Weighting 
(IDW) interpolated surfaces 
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One way to improve the numerical predictions for the central part of the study area would be to 
combine CMAQ and IDW surfaces. Application of the Daily Mean Biases to CMAQ predictions 
produces a more realistic pattern of PM10 concentrations and reduces the disagreement between 
calculated and observed data. Examples of this technique are shown in Figures 5.14-5.18 for all five 
permanent sites for November 2005.  
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Figure 5.15. Comparison of the daily, “simulated” PM10 concentrations with the observations at 
Central Phoenix: violet is straight CMAQ; blue is “CMAQ-new” - CMAQ combined with 
interpolation  
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Figure 5.16. Comparison of the daily, “simulated” PM10 concentrations with the observations at 
West Phoenix (WP): violet is straight CMAQ; blue is “CMAQ-new” - CMAQ combined with 
interpolation  
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Figure 5.17. Comparison of the daily, “simulated” PM10 concentrations with the observations at 
Supersite (SS): violet is straight CMAQ; blue is “CMAQ-new” - CMAQ combined with 
interpolation. 
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Figure 5.18. Comparison of the daily, “simulated” PM10 concentrations with the observations at 
West 43rd Avenue (WF): violet is straight CMAQ; blue is “CMAQ-new” - CMAQ combined with 
interpolation 
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Figure 5.19. Comparison of the daily, “simulated” PM10 concentrations with the observations at 
Durango Complex (DC): violet is straight CMAQ; blue is “CMAQ-new” - CMAQ combined with 
interpolation 
 
Although this "nudging" technique can be applied to historical periods, it cannot be of help in 
forecasting, as the observations that would provide the interpolated surfaces are yet to be made.   
Any improved health warning system would have to rely either on a statistical-based prediction 
such as the neural-network EnviNNet or on CMAQ or another deterministic model prediction 
driven by the meteorological model’s predicted weather for the next day.     
 
Conclusions   

For the meteorological fields: 

• MM5 fails to predict high wind speeds, perhaps due to the inconsistency in global model 
predictions used as input and boundary conditions. 

• MM5 slightly overestimates the low wind speeds during the generally stable conditions of 
the night and early morning; furthermore, it cannot faithfully simulate  rapid changes of wind 
direction. 

• MM5 does accurately simulate the temperature field, albeit with slight underestimates of 
nocturnal temperatures.  
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For the PM10 concentration fields: 

• CMAQ generally underestimates the higher observed PM10 concentrations and 
overestimates the lower ones. 

• CMAQ captures the diurnal variation of PM10 concentrations. 

• CMAQ especially underestimates the ately simulates accurate  such as the neural-network 
based EnviNNet or on a CMAQ or CMAQ-type deterministic model driven byelevated PM10 
concentrations at West 43rd Avenue and the Durango Complex in November 2005. Dust 
emissions in the vicinity of the monitors, but inadequately accounted for in the emissions 
inventory, are the likely explanation. 

• CMAQ adequately simulates the surface PM10 distribution in the central Phoenix study area 
for the needs of this project.  

 
Three difficulties plague the application of a deterministic system such as MM5/SMOKE/CMAQ to 
air quality surveillance and management:  

• First, these models need precise initial conditions, boundary conditions, and emissions to 
provide reasonable predictions;  

•  Second, they are computationally demanding and somewhat labor-intensive to operate, 
troubleshoot, update, and maintain; and 

• Third, the meteorological model MM5 is actually designed to predict larger-scale, regional 
phenomena, not the more local-scale characteristics that prevail in and around specific urban 
air pollution monitoring sites.  

As done in this project, the importance of the initial conditions can be reduced through spin-up 
times. As also done in this project, the importance of boundary conditions can be diminished 
through choosing larger modeling domains. The importance of spatially and temporally accurate 
hourly emissions, however, cannot be overlooked:  their   contribution to the performance of air 
quality model predictions is paramount.  In particular, airsheds in arid and semiarid areas, including 
most of the southwestern U.S. and much of its intermountain West, are subject to pervasive fugitive 
emissions of dust under all meteorological conditions and to windblown dust under more turbulent 
and stormy conditions. Locally suspended dust from widespread fugitive emissions is a major 
component of everyday particulate matter concentrations in this region. Production of soil dust 
aerosols depends on the nature of the mechanical disturbance, the wind energy, and the soil surface 
properties. Improvements in quantifying both human-caused, mechanically generated emissions, as 
well as windblown dust emissions, would improve deterministic model performance in the study 
area.  

The computational demands of deterministic models cannot be casually dismissed, in spite of the 
recent, substantial improvements in speed and power stemming from parallelization and other 
techniques.  Accurate weather forecasting on the synoptic scale of one to five days is now a facet of 
our daily lives; still, the computational time needed for more precise predictions on the local scale 
remains about equal to the typical real-world time of the local phenomena themselves.  These 
phenomena include thermally driven upslope and valley winds, stagnation, extremely low wind 
speeds, stratification, and canalization effects – all of which last for hours and require equal hours 
of simulation. Considering human exposure, in spite of the general lack of short-term health 
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standards (let’s say from one to six hours), the higher concentrations occurring in a few to several 
hours may be as important or even more so than the exposures of 24 hours or longer.   

Meteorology’s critical control of air pollutant concentrations is well known:  the emission and 
chemical transformation of particles, their transport and dispersion – both horizontal and vertical -- 
and their loss through dry and wet deposition are all consequences of the weather. During the 
meteorological simulations of this project, it has become evident that the MM5 model would benefit 
from a number of modifications. For example, disagreements between a measured wind vector 
(speed and direction) and the MM5 volume-averaged predictions for the 36, 12, or 4 km grids are 
commonly encountered. MM5 is not scientifically formulated to reproduce the exact wind speed 
and direction at each measurement point; rather, it has been designed to generate sub-regional and 
regional wind, temperature, and moisture fields that are internally consistent and strictly satisfy the 
laws of mass, momentum, and energy conservation. Conversely, local wind measurements are 
seldom sited in such a manner as to be representative of a large volume of space surrounding the 
observation site. In the complex terrain of metropolitan Phoenix and its surrounding mountains, 
because of terrain forcing and orographic effects, the MM5 volume-averaged meteorological 
estimates have greater uncertainties than in flat terrain.  

Chapter 6 Neutral Network versus CMAQ Predictions 

For these comparisons November 2005 was selected, considering that the late fall and winter 
months tend to have the highest PM10 concentrations and the most hospital visits for respiratory 
illnesses. EnviNNet predictions were limited to a single site, Central Phoenix.  Furthermore, this 
November has both high and low PM10 days, including two periods of elevated PM10 – November 
10 and November 22-23, for which statistics and graphics have been produced. The daily averaged 
values are presented first, given that the health data for comparison with PM10 are available on a 
daily basis and that the National Ambient Air Quality Standard is expressed as a 24-hour average, 
midnight to midnight. The data are from the Maricopa County Air Quality Department, whose staff 
has verified their accuracy through quality control procedures and has reported them to EPA’s 
AIRS system.  Figure 6.1 shows the time series of these daily predictions by EnviNNet and CMAQ 
in comparison with the daily observations; Figure 6.2 presents comparisons of the hourly 
observations from November 2005 with the two models.  
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Figure 6.1. Time series of 24-hour average PM10 concentrations predicted by CMAQ and EnviNNet 
with observations at the Central Phoenix site   
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Figure 6.2. Scatter plots of hourly PM10 concentrations predicted by CMAQ (left) and EnviNNet 
with observations:  November 2005, Central Phoenix site 
 
Predicting the higher PM10 concentrations well is more important than doing well on the low ones.  
To this end the model’s predictions for elevated PM10 concentrations were evaluated for the two 
high pollution periods of November 6-10 and November 22-26. The results are shown in Figures 
6.3 and 6.4; the performance measures for the three time periods and the two models are in Table 
6.1, are defined in Appendix D, and are discussed below.  
 
The calculations were made for one month and for the two five-day periods with elevated PM10 
concentrations. The Index of Agreement (IA) is greater than 0.6, which shows good correspondence 
between the calculated and observed data. Generally, EnviNNet gives better IA in comparison with 
CMAQ for all periods considered here. The Mean Absolute Errors (MAE) are less than 32 for 
CMAQ and less than 24 for EnviNNet. The Root Mean Square Errors (RMSE) are in the range of 
25 – 40 for different periods. The statistical model EnviNnet yields smaller errors than CMAQ. 
 
Table 6.1. Statistics of CMAQ and EnviNNet predictions of hourly PM10 concentrations at the 
Central Phoenix site 

Model MAE RMSE RSQ RSQ* IA Period
CMAQ 26.12 34.40 0.21 1.45 0.68 November

EnviNNet 19.01 25.02 0.39 0.82 0.77 November
CMAQ 32.24 40.18 0.14 1.05 0.61 6-10 Nov.

EnviNNet 20.39 28.04 0.42 0.75 0.79 6-10 Nov.
CMAQ 29.33 39.17 0.10 1.19 0.60 22-26 Nov.

EnviNNet 24.26 34.01 0.13 0.78 0.61 22-26 Nov.  
Abreviation: MAE - Mean Absolute Error; RMSE - Root Mean Square Error; RSQ - Coefficient of Determination (aka 
R2); RSQ* - Modified Coefficient of Determination2; IA - Index of Agreement 
2Modified Coefficient of Determination: values greater than 1 mean the model overestimated (orange); values less than 
1 mean the model underestimated (green) 
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Figure 6.3. Comparison of hourly PM10 concentrations predicted by Models 3 and EnviNNet with 
the observations of November 6-10, 2005, Central Phoenix site 

November 22-26, 2005
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Figure 6.4. Comparison of hourly PM10 concentrations predicted by CMAQ and EnviNNet with the 
observations of November 22-26, 2005, Central Phoenix site 

 
The neural network satisfactorily predicts the PM10 peaks in contrast to CMAQ, which has problems 
capturing them satisfactorily. Although the deterministic model may have given much better 
predictions under ideal initial, boundary and pollution inventory conditions with all scales of motion 
fully resolved, the present status of the model is far from this state. In addition, CMAQ cannot 
resolve scales smaller than the size of the grid, which in this case is 4x4 km.  

Conclusions 
As a workable alternative to the deterministic MM5/CMAQ, the neural network proved to be 
somewhat better than CMAQ in predicting the moderate to high PM10 concentrations. Its principal 
advantage in an asthma warning system is that it would not require an emissions inventory or the 
daily computational and staff demands of the grid-based, deterministic modeling system. The neural 
network is much easier and quicker to use than CMAQ and could be partially automated for issuing 
health warnings.  Its shortcoming lies in its limited geographical coverage, especially for pollutants 
with steep concentration gradients such as PM10.  In addition, only one site was examined, 
suggesting that similar work at additional sites would be advisable before any claims of area-wide 
viability could be supported.  
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Chapter 7  Linking asthma with PM10 concentrations 

Introduction 
The goal of the health effects analysis is to determine whether asthma incidents (primarily 
emergency department (ER) visits and hospital admissions with a diagnosis of asthma) can be 
quantitatively linked to the air quality measurements obtained from Maricopa County, ADEQ, and 
ASU monitoring sites. The primary health data are the asthma incident reports from the Arizona 
Department of Health Services (ADHS). This data includes hospitalization admissions and 
emergency room visits from throughout the state as well as patient demographics e.g., gender, age, 
etc.  
 
The health effects analysis was conducted by the Center for Health Information & Research 
(CHIR), part of the School of Computing and Informatics in Arizona State University’s Ira A. 
Fulton School of Engineering. CHIR is a multidisciplinary team whose interests are health care, 
clinical quality, the health care workforce, occupational illness and injury, medical malpractice, 
health care economics, and disability. CHIR is home of the Arizona Health Query (AZHQ), a 
community/university database effort. More than fifty organizations voluntarily share their data 
with ASU to create this integrated database. Each partnership is governed by contracts that comply 
with the federal Health Insurance Portability and Accountability Act (HIPAA), and stringent 
security is maintained to avoid unauthorized disclosures. AZHQ contains health information on 
millions of Arizona adults and children and provides the unique capability of tracking patients 
across health care systems and over time. As the data system continues to expand to include more 
services, CHIR efforts are focused on building additional partnerships with large employers, third 
party administrators, and physician groups. The ADHS routinely reports its data to the AZHQ. 
 
AZHQ data has already been utilized to study the respiratory effects of agricultural burning in 
northern Mexico and southwest Arizona on Yuma County, AZ children study funded by the 
Southwest Center for Environmental Research and Policy (SCERP). Using AZHQ, we examined 
the frequency of health care visits, emergency department utilization’ and hospitalizations for 
respiratory illnesses for children ages 0-17 during the burning and compared this frequency with the 
prevalence of respiratory illness before and after exposure to agricultural burning. A separate study 
was conducted that linked asthma incidents to air quality in the Casa Grande area of Pinal County, 
AZ. 

Data 
In the present work, the ADHS and CHIR conducted a high-level scan of air quality monitoring data 
for PM10 and asthma incidents from hospital discharge data [and ER admission data] to determine 
the relationship, if any, between poor air quality and higher rates of asthma admissions. Preliminary 
analyses also helped researchers define the demographic groups, sample size, and data cleaning 
strategies that were subsequently applied in the final analyses of the work being reported here. 
Based on these preliminary results and discussions, research focused on ADHS asthma incident data 
occurring within the 168 census tract areas of central Phoenix from January 1, 2005 through 
December 31, 2006, a period for which complete air monitoring records were available. All asthma 
events within five miles of a continuous PM10 monitor were included.   
 
In addition to the standard cleaning applied by CHIR to correct errors, additional cleaning steps 
were taken. For example, there were cases where the same patient went to an emergency room and 
was later admitted to the hospital. This single patient had multiple records on the same day with his 
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status changing from emergency to inpatient. Such redundant records were deleted to leave but a 
single asthma incident. Also, those subsequent medical encounters occurring sufficiently long after 
the initial visit were considered to be a distinct incident. This time period is commonly referred to 
as a “washout” period. We explored several washout periods in this study. Figure 7.1 shows the 
change in the number of reported incidents for selected washout periods. As the incident changes 
are small for washout periods of seven days or greater, we selected a washout period of seven days 
in this work. If the same person had multiple records within the seven days, only the initial record 
was kept.  
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

Figure 7.1. Washout periods for asthma incidents within two and five miles of a continuous PM10 
monitor 
 
Asthma incidents were described by age group, day of the week, month, and place of service 
(emergency department and inpatient admission), resulting in a dataset containing about 2,000 
events for the two-mile radius and 6,000 events for the five-mile radius for children aged 0-17 
years. See Figures 7.2 - 7.5.  
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 (a) Asthma incidents by age group           (b) Asthma incidents by day of week 
 

        
     (c) Asthma incidents by month                                   (d) Asthma incidents by place of service 
 
 

 
     (e) Asthma incidents by age group and time 

Figure 7.2. Asthma incidents by different characteristic within two miles of PM10 monitoring sites 
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   (a) Asthma incidents by age group            (b) Asthma incidents by day of week 
 
 

   
     (c) Asthma incidents by month                      (d) Asthma incidents by place of service 
 
 
  

  
      (e) Asthma incidents by age group and time 

Figure 7.3. Asthma incidents by different characteristic within five miles of PM10 monitoring sites 
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(a) Asthma incidents by zip code 

 

             
            (b) Asthma incidents by zip code and place of service 
 

 
(c) Asthma incidents by age group and place of service 

Figure 7.4. Asthma incidents by zip code within two and five miles of PM10 monitoring sites 
 

Age         Ambulatory         Emergency         Inpatient           Missing            Other
Group AZHQ ADHS AZHQ ADHS AZHQ ADHS AZHQ ADHS AZHQ ADHS
0 - 4 810 - 184 685 95 155 1 - 4 -
5 - 9 868 - 185 580 57 117 7 - 3 -

10 - 14 574 - 107 338 29 64 3 - 5 -
15 - 17 184 - 47 115 6 11 2 - 3 -
18 - 24 173 - 110 222 25 33 - - 1 -
25 - 34 192 - 113 216 27 32 4 - 2 -
35 - 44 262 - 120 227 34 45 4 - 4 -
45 - 54 211 - 73 160 48 69 1 - 5 -
55 - 64 176 - 51 94 35 85 1 - 5 -
65 - 74 99 - 22 57 17 41 - - - -

75+ 183 - 24 23 21 31 - - 3 -
Total 3732 - 1036 2717 394 683 23 - 35 -

ZIP         Ambulatory         Emergency           Inpatient           Missing             Other
AZHQ ADHS AZHQ ADHS AZHQ ADHS AZHQ ADHS AZHQ ADHS

85003 108 - 47 93 23 25 - - 2 -
85004 54 - 15 61 13 22 - - 1 -
85006 441 - 145 428 54 86 - - 2 -
85009 938 - 257 594 79 128 3 - 4 -
85019 347 - 100 326 32 89 - - 7 -
85031 546 - 131 336 55 83 5 - 11 -
85041 753 - 218 553 79 165 12 - 2 -
85043 267 - 69 218 32 47 2 - 5 -
85339 278 - 54 108 27 38 1 - 1 -
Total 3732 - 1036 2717 394 683 23 - 35 -
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1 85003 118 180
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3 85006 514 642
4 85009 722 1281
5 85019 415 486
6 85031 419 748
7 85041 718 1064
8 85043 265 375
9 85339 146 361

Total 3400 5220
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                                                    (a) Asthma incidents by zip code 
                

 
(b) Asthma incidents by zip code and place of service 

No. ZIP ADHS AZHQ
1 85003 118 180
2 85004 83 83
3 85006 514 642
4 85007 331 461
5 85008 1049 1205
6 85009 722 1281
7 85012 102 323
8 85013 231 342
9 85014 325 423

10 85015 596 993
11 85016 421 434
12 85017 578 736
13 85018 310 389
14 85019 415 486
15 85031 419 748
16 85033 821 1213
17 85034 224 226
18 85035 633 1018
19 85040 624 1022
20 85041 718 1064
21 85043 265 375
22 85301 788 1509
23 85339 146 361

Total 10433 15514
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ZIP         Ambulatory         Emergency           Inpatient           Missing            Other
AZHQ ADHS AZHQ ADHS AZHQ ADHS AZHQ ADHS AZHQ ADHS

85003 108 - 47 93 23 25 - - 2 -
85004 54 - 15 61 13 22 - - 1 -
85006 441 - 145 428 54 86 - - 2 -
85007 302 - 112 269 41 62 1 - 5 -
85008 806 - 265 861 114 188 10 - 10 -
85009 938 - 257 594 79 128 3 - 4 -
85012 257 - 42 72 23 30 - - 1 -
85013 195 - 102 195 42 36 - - 3 -
85014 251 - 105 274 63 51 1 - 3 -
85015 647 - 246 514 86 82 2 - 12 -
85016 308 - 78 332 38 89 2 - 8 -
85017 494 - 175 473 59 105 1 - 7 -
85018 262 - 67 235 56 75 1 - 3 -
85019 347 - 100 326 32 89 - - 7 -
85031 546 - 131 336 55 83 5 - 11 -
85033 891 - 240 663 64 158 7 - 11 -
85034 161 - 49 184 13 40 - - 3 -
85035 757 - 191 534 58 99 3 - 9 -
85040 713 - 207 508 86 116 7 - 9 -
85041 753 - 218 553 79 165 12 - 2 -
85043 267 - 69 218 32 47 2 - 5 -
85301 1031 - 343 602 115 186 7 - 13 -
85339 278 - 54 108 27 38 1 - 1 -
Total 10807 - 3258 8433 1252 2000 65 - 132 -
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             (c) Asthma incidents by age group and place of service 

Figure 7.5. Comparison of AZHQ and ADHS asthma incidents within two and five miles of PM10 
monitoring sites 
 

Analysis Objectives 
The processed asthma incidence data by census tract were linked with the PM10 concentrations 
interpolated from the five continuous monitors.  In addition to the daily PM10 concentrations on the 
asthma “event” day, 24-hour averages of PM10 from one to seven days before the event were also 
examined in the statistical analysis (these variables are referred to as “lags”).  To detect the effects 
of PM10 for each asthma incident while accounting for the confounding variables of seasonality, day 
of the week, patient-level covariates (e.g., age, gender, ethnicity), and the presence of other air 
pollutants, a case-crossover analysis was conducted. This type of analysis associates a reference 
time period as a referent (or control) for each case. Consequently, each patient was treated as a 
matched case-referent pair with control exposures obtained from the same patient in different time 
periods. The time-stratified design used a 28-day period or “stratum size” with three referents 
selected from the same day of the week as the case. With an appropriate time-stratified period, the 
case-crossover analysis controlled for long-term trends, seasonal effects, and various epidemiologic 
covariates that change slowly with time by design (e.g., lifestyle behaviors, diet).  

Analysis Methods 

Background 
The case-crossover design, similar to a crossover and matched-pair case-control studies, was 
developed to study transient short-term exposure effects on the risk of rare acute events (Maclure, 
1991). The case is a person with the event of interest at a certain time called the “hazard period”, 
while the control (called the referent) is the same person at a different time called the “control 
period.” The key feature of this design is that each case serves as its own control. The exposure 
information for each subject during the hazard period is compared to the exposure information 
during the control period, defined as the referent period for that event. With an appropriate referent 

Age         Ambulatory         Emergency         Inpatient           Missing            Other
Group AZHQ ADHS AZHQ ADHS AZHQ ADHS AZHQ ADHS AZHQ ADHS
0 - 4 2456 - 533 1966 301 446 2 - 6 -
5 - 9 2387 - 479 1006 157 167 12 - 14 -

10 - 14 1572 - 320 332 90 34 7 - 16 -
15 - 17 513 - 134 663 17 78 5 - 11 -
18 - 24 496 - 308 899 64 112 4 - 5 -
25 - 34 631 - 445 815 86 165 13 - 12 -
35 - 44 794 - 414 584 129 256 10 - 28 -
45 - 54 786 - 311 1674 151 323 7 - 15 -
55 - 64 554 - 149 278 122 202 3 - 12 -
65 - 74 314 - 86 139 68 113 1 - 4 -
75+ 304 - 79 77 67 104 1 - 9 -
Total 10807 - 3258 8433 1252 2000 65 - 132 -
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period, the case-crossover analysis controls for long term trends, seasonal effects, epidemic, and 
other covariates that change slowly with time by design. 
In the bidirectional approach Bateson and Schwartz (1999, 2001) have examined methods to sample 
for the referent to reduce the bias by selecting from either side of the event Also, disjoint referent 
periods have been recommended for bias concerns (Levy et al., 2001). With a control close in time 
to the event, these methods avoid much of the confounding due to subject differences and other 
long-term effects such as seasonality. However, a balance must be maintained between a control too 
close in time that generates autocorrelation and a control too far apart which confounds the long-
term effects. Previous work considered alternatives within a few weeks of the event. Neas et al. 
(1999) studied daily mortality in Philadelphia where the case period was the 48 hour period ending 
at midnight on the day of death (Schwartz and Dockery, 1992) and the control period was the day of 
week seven, 14, or 21 days before and after the case period. Medina-Ramon et al. (2006) used a 
matching scheme from Bateson and Schwartz (1999, 2001) and a time-stratified partition by 
Lumley and Levy (2000) that chose control days only in the same month as the hospital admission 
for chronic obstructive pulmonary disease (COPD).  Lin et al. (2005) calculated a one to seven day 
exposure average ending on the admission date as the exposure in the case period with control 
periods of two weeks before and after the admission date. Peel et al. (2005) studied the hospital 
admissions associated with ambient air pollution levels and respiratory health effects. The case 
period of three-day moving averages of pollutant concentration was selected within two weeks of 
the case period.  The average was the average of pollutant concentrations on the same day as the 
visit, one day before, and two days before. 

Method of the present work 
We chose to select the reference period based on a time-stratified scheme because it can control 
confounding effects from seasonality and time trends. The referents are also selected within a 28-
day stratum at seven, 14, and 21 days before or after the case, provided they occur in the same 
stratum shown in Figure 7.6. Each case has three controls. 
 
Table 7.1. Referent selection based on time-stratified scheme within a 28-day stratum 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 Day 
Stratum S M T W TH F SA S M T W TH F SA S M T W TH F SA S M T W TH F SA

1                             
2                             
3                             

                          

 
While the case-crossover method has been widely used to examine a transient effect of an 
intermittent exposure on an infrequent acute disease, the same problem can be analyzed by other 
methods. Szyszkowicz (2006) applied a generalized linear mixed models (GLMM) and used days of 
the week to construct clusters to study the effects of air pollution on daily emergency department 
(ED) visits in Vancouver, Canada. Each cluster contained four or five days of the same day of the 
week. We conducted preliminary analyses with this approach but did not find it as effective as the 
case-crossover method.  Mathematical details of the case-crossover method employed in the present 
work can be found in Appendix B.  

Results 
In the analysis, we considered many potential effects. The first primary effect was the 24-hour 
average PM10 concentration from the Inverse Distance Weighting (IDW) interpolation of the 
observations on the day of the asthma event.  The second primary effect, called the “lag”, was the 
PM10 concentration two to six days before the event, the “lag” being the delay in days between the 

Event Day = Case Referent Day = Control 
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exposure and the health effect. For example, a two-day lag is the average PM10 of the previous two 
days, abbreviated as “lag2”.  
 
Secondary effects were the covariates of age, gender, ethnicity, and place of service.  Place of 
service is a categorical variable with two values: emergency and inpatient. Age is encoded into four 
categories: 0 - 4, 5 - 9, 10 - 14, and 15 -17 years. Ethnicity followed U. S. Census Bureau 
definitions.  Preliminary analysis detected no differences between places of service; therefore, this 
variable was not considered further. Even though the case-crossover design does control for the 
main effects of these patient-level covariates, we nonetheless also considered the interactions of 
these covariates with the event-day PM10 concentration and its various lags. For example, we 
considered interactions such as:  
age*event day PM10,    
age*meanlag2,  
age*meanlag3,  
age*meanlag4,  
age*meanlag5,  
age*meanlag6,  
gender*event day PM10,  
gender *meanlag2,  
gender *meanlag3,  
gender *meanlag4,  
gender *meanlag5,  
and gender*meanlag6.  
 
The analysis considered all subsets of these covariates through conditional logistic regression.  The 
event day PM10, also called “Dailymean”, and all lag variables were highly correlated as shown in 
the scatter plots of Figure 7.7 and the statistics of Table 7.1. These and the other statistics that 
appear in the remainder of this chapter are explained below, as the relationships between an 
increased probability of an asthma incident and PM10 :  

• Variable 

• Coefficient 

• Chi Square 

• p-value 

• Standard Error (SE) 

• Adjusted Odds Ratio (Adjusted OR*) 

• 95% Confidence Interval (95% CI) 

• Interquartile Range (IQR) 
 
Variable:   
The mean PM10 concentration on the day of the asthma incident, or the average concentration of the 
“lag” days before the incident. 
 
Coefficient: 
The slope of a line obtained using linear least squares fitting is called the regression coefficient, or, 
for short, just “Coefficient”.  In Table 7.1 the first five coefficients are similar, indicative of 
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generally similar relationships between the “Dailymean PM10“ and the lagged PM10.  The last 
variable, “Lag6”, has a coefficient different from the others, suggesting a different least squares 
relationship.  In Tables 7.2 – 7.5 the “Coefficient” has a similar meaning, although it comes from 
the more complex “conditional logistic regressions” of the case-crossover method.  These 
coefficients do vary considerably – from 0.0016 to 0.0055 – indicating somewhat different 
relationships between the increased probability of an asthma event and the event-day PM10 
concentrations among the four different cases.   
 
Chi Square: 
Generally speaking, the chi-square test examines whether two variables are independent: in the case 
of Table 7.1, the two variables are:  

1. the PM10 concentration on the day of the asthma incident, and 

2. the average concentration of the “lag” days before the incident.  

The “Chi Square” values of Table 7.1 exceed the five percent significance level of 3.84, meaning 
that with an uncertainty of five percent, the effects of the lags differ insignificantly from the effects 
of the PM10 concentration on the day of the asthma incident (called “Dailymean” in the table).    

p-value:   
In statistical hypothesis testing, the p-value is the probability of obtaining a result at least as 
extreme as the one that was actually observed, given that the null hypothesis is true.  Generally, one 
rejects the null hypothesis if the p-value is smaller than or equal to the significance level. If the level 
is 0.05, then the results are only 5% likely to be as extraordinary as just seen, given that the null 
hypothesis is true.  In Table 7.1 the p-values are all less than the significance level of 0.05; thus, the 
null hypothesis that the lagged concentrations differ from the event-day concentrations is rejected.  
In Tables 7.2 – 7.5, all p-values are also less than the significance level of 0.05, indicating that the 
PM10 concentration on the day of the asthma incident was significantly associated with it. 
 
Standard Error (SE): 
The standard error of a statistical analysis is the estimated standard deviation of the error in that 
analysis. Specifically, it estimates the standard deviation of the difference between the measured or 
estimated values and the true values. Notice that the true value of the standard deviation is usually 
unknown and the use of the term standard error carries with it the idea that an estimate of this 
unknown quantity is being used. It also carries with it the idea that it measures not the standard 
deviation of the estimate itself but the standard deviation of the error in the estimate, and these can 
be very different.  Standard errors of the first three cases in Tables 7.2 – 7.4 are similar, but the one 
for the fourth case – the ambulatory events excluding preschoolers – is roughly twice that of the 
first three, indicating more uncertainty for this case. 
 
Adjusted Odds Ratio (Adjusted OR*):   
While its mathematical form is in Appendix E, this odds ratio can be readily interpreted as a 
measure of how likely or unlikely it is for an asthma incident to be associated with a Dailymean 
PM10 concentration.  Odds ratios greater than 1.0 mean that the asthma event is more likely to be 
associated with the PM10 concentration; less than 1.0, less likely; and 1.0, equally likely.   
 
95% Confidence Interval (95% CI): 
In statistics, a confidence interval (CI) is an interval estimate of a population parameter. Instead of 
estimating the parameter by a single value, an interval likely to include the parameter is given. 
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Thus, confidence intervals, such as the 95% confidence interval from the case-crossover statistical 
analysis of the present work,  indicate the reliability of a estimate:  the wider the interval, the lower 
the confidence.  
 
Interquartile Range (IQR):   
The difference between the 75th and 25th percentiles of the daily mean PM10 concentrations in 
µg/m3. 
 

 
Figure 7.6. Correlation matrix among Dailymean PM10 and lag variables 

 
Table 7.2. Model statistics for each main effect (preschool age group omitted) 

 
 
 
 
 
 
 
 
 

Case-crossover:  final results 
The case-crossover statistics are now presented and discussed for four different samples of the 
childhood asthma population: 

1. all events, ages 0 -17, 

2. events excluding ages 0-4, the preschool group, 

Variable Coefficient Chi Square P-Value 
Dailymean 0.00331 11.7859 0.0006 

Lag2 0.00350 9.3428 0.0022 
Lag3 0.00303 5.7093 0.0169 
Lag4 0.00312 5.0621 0.0245 
Lag5 0.00380 6.4476 0.0111 
Lag6 0.00465 8.4119 0.0037 
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3. all ambulatory events, ages 0 – 17, and 

4. ambulatory events excluding ages 0-4, the preschool group. 
 
All events, ages 0 -17 
Because of the high positive correlations between the Dailymean and its lags, further analysis was 
restricted to the Dailymean as the principal covariate of PM10. All subsets regression indicated that 
the Dailymean alone was a sufficient covariate for asthma incidents. A statistically significant 
relationship was detected between Dailymean and asthma incidents. The adjusted odds ratio and 
95% confidence interval are shown in Table 7.2 
 
Table 7.3. Results for all asthma incidents 

Variable Coefficient Standard 
Error 

p-value Adjusted OR* 95% CI 

Dailymean PM10 0.00248 0.0007507 0.0010 1.093 (1.061, 1.153) 
*Adjusted OR* is the odds ratio adjusted by the approximate interquartile range of 36:  (Q3 - Q1) ≈ (71-35) ≈ 36 µg/m3 
 
The change in daily average PM10 from the 25th to 75th percentile is the interquartile range (IQR). 
For the data analyzed here the IQR = 36 µg/m3. Every additional 36 µg/m3 of daily mean PM10 
increases the odds ratio of an asthma incident for a person under 18 years old by 9. The 95% 
confidence interval suggests that there could be as little as 6% or as high as 15% increased risk of 
an asthma incident. 
 
There was also evidence of an interaction between age and Dailymean. The research group 
considered an analysis to compare the 0-4 age group to the others because asthma is more difficult 
to detect in the youngest age group. Further analysis detected a stronger relationship between 
Dailymean and asthma incidents when the 0-4 age group “preschoolers”) was excluded.  
 
Events excluding ages 0-4, the preschool group 
The preschool (0-4 years old) group was excluded and the analysis was repeated. All subsets 
regression again indicated that Dailymean alone was a sufficient covariate for asthma incidents. The 
adjusted odds ratio and 95% confidence interval are shown in Table 7.3 
 
Table 7.4. Results for asthma incidents excluding the preschool group 

Variable Coefficient SE p-value Adjusted OR* 95% CI 
Dailymean PM10 0.00331 0.0009629 0.0006 1.127 (1.053, 1.206) 

*Adjusted OR* is the odds ratio adjusted by approximate interquartile range of 36:  (Q3 - Q1) ≈ (71-35) ≈ 36 µg/m3 
 
Every additional 36 µg/m3 of daily mean PM10 increases the odds ratio of an asthma incident for a 
person between 5 to 17 years old by 13%. The 95% confidence interval suggests that there could be 
as little as 5% or as high as 21% increased risk of an asthma incident. 
 
All ambulatory events, ages 0 – 17 
The ADHS data base contains emergency and inpatient records. There are also a large number of 
asthma incidents by ambulatory place of service in the AZHQ database. We conducted an analysis 
from the AZHQ database with only ambulatory data to compare to the previous ADHS results. The 
adjusted odds ratio and 95% confidence interval are shown in Table 7.4 
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Table 7.5. Results for ambulatory events only 

Variable Coefficient SE p-value Adjusted OR* 95% CI 
Dailymean PM10 0.00163 0.0008124 0.0448 1.060 (1.001, 1.123) 

*Adjusted OR* is the odds ratio adjusted by the approximate interquartile range of 36:  (Q3 - Q1) ≈ (71-35) ≈ 36 µg/m3 

 
The adjusted odds ratio is 1.060. The confidence interval suggests that there could be as little as 
0.1% or as high as 12% increased risk of an asthma incident. The results from AZHQ and ADHS 
showed similar effects. 
 
Ambulatory events excluding ages 0-4, the preschool group 
The analysis of the AZHQ ambulatory events was repeated excluding the preschool (0-4 years old) 
group. The odds ratio and 95% confidence interval are shown in Table 7.5 
 
Table 7.6. Results for ambulatory events without the preschool group 

 
 

 
*Adjusted OR* is the odds ratio adjusted by the approximate interquartile range of 36:  (Q3 - Q1) ≈ (71-35) ≈ 36 µg/m3 
 
The adjusted odds ratio is 1.219. The confidence interval suggests that there could be as little as 8% 
or as high as 38% increased risk of an asthma incident. The results from AZHQ and ADHS data 
were similar. 

Case-crossover summary 
Assembled in Table 7.6, the results from the four childhood asthma populations exhibit certain 
differences. That the coefficients vary considerably indicate four somewhat different relationships 
between asthma and event-day PM10 concentration. As the standard errors are all similar except for 
the fourth case, this case is considered the most uncertain by this criterion.  Among the p-values, 
however, it is the third case that is the most uncertain, although still statistically significant at the 
five percent confidence level.  The adjusted odd ratios show that in all four cases the risk of asthma 
increases with an increase in PM10 concentration of 36 µg/m3.  The increased risk is highest for the 
case of ambulatory events excluding preschoolers and lowest for all ambulatory events, but these 
are the two cases of greatest uncertainty, based on the standard error of the former and p-value of 
the latter.  Of greater importance in this work, the adjusted odd ratios of the first two cases --  all 
events with and without preschoolers – are accompanied by low standard errors and by p-values far 
less than the significance level of 0.05.  The increased risk of asthma from an incremental gain of 
36 µg/m3 of daily-averaged PM10 is 9% for all children 0-17 years of age and 13% for children 5-17 
years of age.     

Variable Coefficient SE p-value Adjusted OR* 95% CI 
Dailymean PM10 0.00551 0.00172 0.0013 1.219 (1.080, 1.377 
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Table 7.7.  Case-crossover statistics relating asthma incidents to PM10 concentrations in central 
Phoenix 

Case Variable Coefficient Standard 
Error 

p-value Adjusted 
 OR* 

95% CI 

All events Dailymean 
PM10 

0.0025 0.00075 0.0010 1.093 (1.061, 1.153) 

All events 
w/o ages 0-4 

Dailymean 
PM10 

0.0033 0.00096 0.0006 1.127 (1.053, 1.206) 

Ambulatory 
events 

Dailymean 
PM10 

0.0016 0.00081 0.0448 1.060 (1.001 1.123) 

Ambulatory 
events w/o 
ages 0-4 

Dailymean 
PM10 

0.0055 0.00172 0.0013 1.219 (1.080, 1.377) 
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Figure 7.7. Adjusted odd ratios expressed as percentages with 95% lower and upper bound 
confidence limits for the four asthma populations 
 
Model Validation 

The regression analysis is based on a linear relationship between the Dailymean exposure and 
response. A model without any linear or monotonic assumptions determined the relationship 
between asthma incidents and Dailymean PM10. Divided into quartiles, the PM10 concentrations 
were linked to asthma events by the indicator variables in the regression models with the first 
quartile as the baseline. The natural logarithm of the adjusted odds ratio of an asthma incident, “log 
odds” of the y-axis, plotted against the exposure quartile in Figure 7.8, illustrates the monotonic, 
nearly linear relationship of the log odds versus the quartiles of the Dailymean PM10.     
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Log Odds VS Grouped PM10
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Figure 7.8.    Natural logarithm of the adjusted odds ratio (Log Odds) of asthma incidents versus    

quartiles of mean PM10 concentrations 

Chapter 8 Asthma warning systems 
Predicting air pollutant concentrations has been one of the mainstays of the Air Quality Division of 
the Arizona Department of Environmental Quality since the early 1990s.  These predictions have 
been for ozone in Phoenix and for particulate matter in Phoenix and Yuma, with more specialized 
predictions for various towns and cities during the forest fire and prescribed burning seasons.  In 
general, predictions of this kind can be done in three ways, presented here in hypothetically 
decreasing degrees of rigor, reliability, and labor: 
 

1. Apply deterministic grid-based meteorological and air quality models, coupled with a 
complete, model-ready emissions inventory, to predict concentrations of several different 
pollutants throughout a particular urban area or region.  One example of this is a predictive 
system for the eastern United States for both ozone and fine particulates.  Another example 
is in Seattle, Washington, where predictions of gaseous, particulate, and air toxic pollutants 
are made throughout the Seattle-Portland region.  Predictions for both of these progressive 
systems are distributed to the news media and are made available through the internet.  The 
predictions are a result of first, having an adequate emissions inventory that is ready for the 
air quality model; second, running a prognostic meteorological model such as MM5 to 
predict tomorrow’s meteorological fields of temperature, winds, and so forth; and third, 
running an air quality model such as the Community Multiscale Air Quality system 
(CMAQ) to provide the grid-based concentrations of pollutants. Among the products of the 
Seattle system are color-coded concentration maps for the next day’s pollutants that can be 
viewed through the internet on home (and business) computers.   

 
2. Apply a statistical model that relates historical pollutant levels to measured meteorological 

variables at a specific air pollutant monitoring site to predict tomorrow’s air quality.  
Though neither computationally nor labor intensive as the first method, this system still 
requires full-scale meteorological modeling with a grid-based prognostic model.  This 
meteorological modeling is first done for the historical period to derive quantitative 
relationships between the measured and simulated variables such as mixing height, wind 
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speed, and temperature.  In constructing the system as a whole, the next step is to determine 
from the historical record the statistical relationship between measured meteorological 
variables and pollutant concentrations at a specific monitoring site.  With this relationship, 
and with the link between the meteorological model’s predictive performance and the 
measured variables, a daily operational system can then be put into place.  It works as 
follows and entails considerable automation.  First, the prognostic meteorological model is 
run for the next day, producing tomorrow’s meteorological fields of importance in air 
pollution.  Second, these predicted fields are aligned with those from the historical record 
and their corresponding air pollutant concentrations.  Third, tomorrow’s air pollution is 
predicted statistically from the predicted weather and the correspondence between the 
historical weather and measured air pollution.  Into this system an additional component can 
be incorporated that adds the daily pollutant-weather measurements and simulated weather 
to the historical records in such a way that the system en toto effectively improves it 
performance with each additional day’s prediction.  This last wrinkle is subsumed into a 
mathematical-statistical construct called a “neural network.”  As described in chapters 4 and 
6 of this report, the historical portion of this work has already been done for PM10 for 
Maricopa County’s Central Phoenix monitoring site. Based on one year of measurements, 
the system’s performance for November 2005 PM10 concentrations was slightly better than 
the deterministic CMAQ model’s.   

 
3. The third kind of predictive system, and the one employed by Air Quality Division 

meteorologists for over ten years, can be characterized as “manual forecasting.” In this 
method the meteorologist scrutinizes different National Weather Service and other 
numerical models that predict a host of variables influencing pollutant concentrations. This 
scrutiny extends to regional and national weather maps and charts that are of help in 
predicting long-distance transport. This staff person synthesizes the various predictions, in 
part based on how well they have performed.  The next step is to relate the most recent two 
or three days’ pollutant concentrations to the measured weather variables, and, in many 
cases, to consult the historical records to understand how these relationships have led to 
specific levels of an air pollutant. Often pollutant concentrations are assembled from broad 
swaths of Arizona and southern California, as well as from greater Phoenix.  Because the 
prediction does not have to be made until noon, the staff person will usually examine the 
morning’s hourly concentrations to determine how quickly (or slowly) the present day’s air 
pollution is developing.  Finally, with all this information and with genuine seat-of-the-pants 
knowledge and intuition, the forecaster issues tomorrow’s predictions for ozone or 
particulates.  

 
Since asthma has been clearly linked with PM10 concentrations, not only in the present work but 
also in numerous studies worldwide, an effective asthma warning system would consist of two 
parts:   
 

• one (or more than one) of the three predictive systems just described, and 

• an automated, or semi-automated communication network that would not only advise the 
news media on tomorrow’s PM10 outlook but would also send this prediction directly to 
interested citizens by phone, fax, text, and/or e-mail.  These citizens would include parents of 
asthmatic children, school nurses and other school officials, public health nurses, and, anyone 
of any age or occupation who wished to receive the notices because of respiratory sensitivity 
in themselves, their immediate families, relatives, friends, or neighbors.  
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Chapter 9 Conclusions 
 
Major findings on asthma and PM10 

• PM10 concentrations have a statistically significant association with asthma incidents in 
central Phoenix at the 95% confidence level.  

• For children ages 5-17 an increase in the daily mean PM10 from the 25th to the 75th percentile 
- 36 µg/m3 in this study - is associated with a 13% increase in the probability of asthma 
incidents, an effect much stronger than in previous studies. 

• The effects of age and gender were insignificant. 
 

Additional findings  

•     CMAQ generally underestimated the higher PM10 concentrations and overestimated the 
lower, with the better correlations for the higher concentrations.   

•     The better correlations in the higher concentration regimes, despite their under predictions, 
still bode well for the viability of the predictive tool to warn asthma populations in central 
Phoenix for these reasons: 

o  The under predictions were most pronounced at the two maximum concentration 
sites of Durango Complex and West 43rd Avenue, which represent the worst  PM10 air 
quality in metropolitan Phoenix.  

o Any predictive system that comes close to predicting these peak concentrations 
provides adequate protection for asthmatic children in the rest of greater Phoenix. 

•     Despite some shortcomings, the meteorological model MM5 performed adequately for the 
needs of this project, even though it 

o failed to simulate the higher wind speeds; 
o overestimated the low wind speeds during stable conditions at night and in the early 

morning; 
o could not capture the rapid changes of wind direction during the morning and 

evening transitions. 

• Because the uncertainty in emissions far exceeds that of the meteorological fields or of the 
dynamics and chemistry inherent in the model, the construction, maintenance, and periodic 
updating of an adequate model-ready PM10 emissions inventory ought to receive a higher 
priority and more resources.  

 

• The Neural Network, which proved to be somewhat better than CMAQ in predicting PM10 
concentrations, might be a complementary system for the “manual forecasting” now in place. 

• Because the PM10 concentration fields from inverse distance weighting (IDW) and the more 
sophisticated ordinary kriging were similar, only the former were used to produce the census-
tract-specific concentrations for the health analysis. 
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Appendix A   

PM monitoring sites 
Table A-1.  Characteristics and images of continuous PM10 monitoring sites 

Symbol  Name Objective1 Scale2 Height3 Cover4 

Permanent sites (all MC, except SS, which is ADEQ) 
Gravel 
Paved WF West 43rd 

Avenue 
#1 
#3 

Middle/ 
Neighborhood 5 

Desert, bare dirt 
Paved 
Bare dirt DC Durango 

Complex 
#1 
#3 

Middle/ 
Neighborhood 3.9 

Paved, bare dirt, 
homes, offices 
Gravel 
Paved WP West Phoenix #2 Neighborhood 3.6 
Lawns/Houses 
Paved 
Paved CP Central Phoenix #2 Neighborhood 11.3 
Commercial & 
residential 
Gravel 
Lawns SS Supersite #2 Neighborhood 4.4 
Homes, apartments 
Paved 
Paved, lawns GR Greenwood #2 Micro/Middle 4.4 
Freeways 
Paved parking lot 
Pavement, dirt lot SP South Phoenix #2 

#3 Neighborhood 4.0 
Commercial & 
residential 

Temporary sites (ASU), November 2007 – March 2008 
Lawn 
Golf Coarse MRV Maryvale #2 Neighborhood 4.4 
Homes 
Lawns 
Homes VGC Valley Garden 

Center #2 Neighborhood 2.0 
Garden Area 
Paved 
Lawns, homes WVR Weaver’s Auto 

Service #2 Neighborhood 2.0 
Lawns, apartments 
Gravel 
Paved CSA Community 

Service AZ #2 Neighborhood 4.4 
Homes 

1. Objectives  
1. Determine highest concentrations expected to occur in the area covered by the network. 
2. Determine representative concentrations in areas of high population density. 
3. Determine the impact on ambient pollution levels of significant sources or source categories. 

2. Choices of spatial measurement scales (radius from site) 
Micro Scale 0 to 100 meters 
Middle Scale 100 to 500 meters 
Neighborhood Scale 0.5 to 4 kilometers 
Urban Scale 4 to 50 kilometers 
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Regional Scale 10 to 100s of kilometers 
Note:  In addition to the scales specified in the table, all sites have PM10 concentrations with some (unknown) 
degree of urban contributions from transport and with 10 ug/m3 of desert background on an annual basis. 

3.  Height of instrument inlet above ground in meters 
4. Predominant ground surface in  

(1) immediate vicinity of the monitor (0 – 25 meters); 
(2) 25 – 100 meters; and 
(3) 100 – 500 meters. 

 

Table A-2.  Traffic near PM monitoring sites 

Symbol  Name Streets Distance1/ 
Direction 

Traffic2 

WF West 43rd Ave. Broadway Road 37, S 8,000 
27th Avenue 78, E 9,000 DC Durango 

Complex Durango Street 325, N 9,000 
39th Avenue 30, W 2,000 
Earll Drive 25, N <1,000 WP 

West Phoenix 

Thomas Road 360, S 32,000 
16th Street 91, W 24,000 
Roosevelt Street 75, N 12,000 
I-10 – E-W portion 450, N 276,000 

CP 

Central Phoenix 

I-10 – N-S portion 865, E 297,000 
17th Avenue 11, E <1,000 
15th Avenue 425, E 17,000 
Camelback Road 635, N 40,000 
19th Avenue 370, W 17,000 

SS Supersite 

I-17 1525, W 208,000 
27th Avenue 10, E  19,000 
I-10 85, N 229,000 GR 

Greenwood 

I-17 850, E 101,000 
Broadway Road 360, N 25,000 
Central Avenue 200, E 16,000 SP 

South Phoenix 

7th Avenue 680, W 22,000 
51st Avenue 115, E 30,000 MRV Maryvale 
Indian School Road 300, S 34,000 
15th Avenue 30, W 13,000 VGC Valley Garden 

Center McDowell Road 267, S 21,000 
29th Street 33, W <500 WVR Weaver’s Auto 

Service Thomas Road 75, S 38,000 
59th Avenue 36, E 31,000 

CSA 
Community 
Service AZ Glendale Ave./Grand 

Ave/59th Ave Intersection 
375, NNE 73,000 

1  Distance in meters and direction towards the roadway 
2  Average daily traffic for weekdays:  vehicles per day
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Figure A1.1. West 43rd Avenue PM10 monitoring site 

 
Figure A1.2. Greenwood PM10 monitoring site 
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Figure A1.3. Durango Complex PM10 monitoring site 

 
Figure A1.4. Central Phoenix PM10 monitoring site 
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Figure A1.5. West Phoenix PM10 monitoring site 

 
Figure A1.6. Supersite PM10 monitoring site 
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Figure A1.7. South Phoenix monitoring site 
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Appendix B 

Neural Network 
This appendix goes with Chapter 4 and explains some of the details of the network’s construction. 
 
Bearing in mind that the main purpose of EnviNNet is the prediction of PM10, the following design 
choices were made: 
  
• architecture: three-layer MLP network, with the number of hidden nodes selected to reliably 

rebuild data from a test data-set; 
  
• topology: full connection between layers and no connection between neurons in the same layer;  
 
• transfer function: exponential, to ensure positive functions at the output node, and  hyperbolic 

tangent for hidden nodes, with the latter an excellent compromise for a non-linear function both 
globally and locally; 

 
• information flow: feed-forward; 
 
• representation of input variables: standardization of inputs to eliminate problems due to 

different measurement scales for different  predictors; 
 
• reconstruction of the output signal: through linear combination and exponentialization of the 

outputs of hidden nodes; and 
 
• training method: parameters are learned or estimated through the conjugate-gradient method. It 

is preferred over the back-propagation method as it exploits both first-order (gradient) and 
second-order (curvature) data during optimization of the objective function.  

Mathematically, the three-layer neural network has the following form: 

( ))w,x(fy ϕ=                                    
 
where x represents input data, w the coefficients (parameters estimated by learning), f the activation 
functions from layers 2 to 3 and ϕ  the activation functions from layers 1 to 2. The choice of f and 
ϕ  determines the output; for example, if  ϕ   is hyperbolic tangent and f linear, an input of 
meteorological and pollution variables are transformed to an output with both negative and positive 
values, but if f is exponential the output can have only positive values.  As such, an exponential 
function for the output and a hyperbolic tangent activation function for the hidden neurons were 
selected. 
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Appendix C 

MM5 - modeling results and discussion  
This appendix goes with Chapter 5 and explains some of the more detailed aspects of the 
meteorological modeling. 
 
The modeling domain was based on a Lambert Projection, centered at (97°W, 40°N), and three 
nested domains with 36, 12 and 4km grids were utilized. In the nested simulations, the results 
obtained for the outer domain were used as initial and boundary conditions for the inner domain. 
Vertically 29 levels were applied with the layer closest to the ground being seven meters to capture 
the surface-layer processes. The parent domain for MM5 covered the entire North American 
continent with 36km grids, the inner domain with 4x4km grids, was centered in Phoenix and its 
surrounding mountains (Figure C-1).  

 
Figure C-1. Modeling domains used with weather predicting model MM5 

 
The number of rows (running west-east), columns (running south-north) and the definition of the x-
y origin (i.e. the southwest corner) are listed in Table C-1. For each domain the values indicated as 
the x-y origin are the distances in meters of the domain's southwest corner from the center of the 
parent domain (97°W, 40°N).  
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        Table C-1. Grid definitions for MM5 model 
South-west corner (in m) Model Columns 

Dot (Cross)1 
Rows 
Dot (Cross)1 x Origin Y Origin 

MM5 – 36km 130 (129) 94 (93) -2304000 -1656000 
MM5 – 12km 77 (76) 77 (76) -1836000 -972000 
MM5 – 4km 83 (82) 83 (82) -1648000 -908000 

1Dot nodes are defined at grid cell vertices; cross nodes – at grid cell centers; 

 
A model validation was necessary to estimate the model performance in the study region. Without a 
doubt concentration fields depend on the meteorological conditions (wind, temperature, rainfall, 
humidity, and so forth). So it is very important to have good performance for the meteorological 
flow field. Several tests were made for different physical components to achieve better model 
predictions. The sensitivity tests (three days were performed for each case - November 2005 and 
April 2006) were carried out specifically to solve temperature and humidity problems in the 
southwestern US. It was found in earlier studies (WGA, 2006; Morris et al., 2004; Kemball-Cook et 
al., 2004) that the model underestimates the amplitude of the diurnal temperature cycle and greatly 
overestimates the humidity during the summer. The difficulties associated with the parameterization 
of turbulence in the stable nocturnal planetary boundary layer (PBL) have been overcome by the use 
of a modified Medium Range Forecast (MRF) scheme (Lee et al., 2005). MRF is high resolution 
PBL based on non-local K-theory with an additional counter gradient term that incorporates the 
contribution of large-scale eddies to the total flux. A unique aspect of this parameterization is its 
stability-dependant turbulent Prandtl number that allows momentum to be transported by the 
internal waves, while heat diffusion is impeded by the stratification. The new schemes showed an 
improvement in predictions, particularly for nocturnal near-surface temperatures. Surface wind 
predictions also improved slightly, but not to the extent of the temperature predictions. The physical 
options ultimately chosen are shown into the Table C-2. 

Table C-2. MM5 configuration for different domains * 
Analysis FDDA Grid 

resolution Radiation LSM PBL Cumulus Microphysics 3D Surface 
D1 – 36km RRTM 5 Layers  MRF mod. Betts-Miller Mixed Phase W/T/H W/T/H 
D2 – 12km RRTM 5 Layers MRF mod. Grell Mixed Phase W/T/H W/T/H 
D3 – 4km RRTM 5 Layers MRF mod. None Mixed Phase W/T/H W/T/H 

* Abbreviations: LSM – land surface model; PBL – planetary boundary layer; FDDA – four dimensional data 
assimilation; RRTM – rapid radiative  transfer model; MRF mod. – Medium Range Forecast scheme - modified; W/T/H 
– wind/temperature/humidity. 
 
Numerical calculations were completed for both 30-day periods – November 2005 and March 11--
April 9, 2006. The model evaluations have been made for all three domains, but outcomes only for 
the innermost one are presented in this report. The scatter plots based on hourly wind speeds and 
temperature are shown for two different cases with high and low pollution (Figures C-2 and C-3) 
with their corresponding regression coefficients. The conclusion for both cases is that we achieve 
excellent model performance for temperature but only average predictions for wind fields. The 
model was not able to capture events with high synoptic wind speeds (Figure C-4), because of the 
inconsistency of the input data from the operational NCEP/ETA global model. The model predicted 
wind speeds considerably higher than the measured values during the night and early morning 
periods (Figure C-5), when stagnation with low wind speeds occurs, especially in the northeast 
valley. The model was able to predict the wind direction for a strong synoptic wind (Figure C-4), 
but the disagreement between predicted and observed directions is quite pronounced for the case 
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with low synoptic wind conditions (Figure C-5). The change in the wind direction with 12 hours 
periodicity is well displayed within the model predictions (Figure C-5). Mesoscale thermal 
circulation induced by the diurnal heating-cooling cycle of valley and slope flows, with down-
slope/down-valley flows occurring at night and up-valley/up-slope flows during the day, was well 
simulated by the model, especially under low synoptic wind conditions (Figure C-6).  
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Figure C-2. Scatter plots of wind speed and temperature for all stations for high pollution episode 
November 2005 
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Figure C-3. Scatter plots of wind speed and temperature for all stations for the low pollution period 
of March 11 – April 9, 2006 
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Figure C-4. Comparison between predicted and observed wind speeds and directions at different 
locations – with strong synoptic winds 
 
 



 70

November 21-24, 2005
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Figure C-5. Comparison between predicted and observed wind speeds and directions at different 
locations – with calm synoptic conditions 
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Figure C-6. Simulated horizontal winds at 10m and surface temperature fields during nocturnal 
(left) and daytime conditions, November 24, 2005 
 
The Root Mean Squared Error (RMSE) is given at different locations within the study domain in 
Table C-3. The model gives better predictions for wind speeds less than 6m/s but the errors double 
for the higher wind speeds. The model provides wind flow better in the southern part (DC, SP) than 
the northern and central parts (CP, WP, GR) of the study domain. The worst model performance is 
for WF, where the influence of local effects from the Salt River channel and the South Mountains 
appears to be beyond the model’s grasp. The MM5 model gives better performance for the winter 
period (November 2005) than the spring period (March-April 2006), as the RMSE for the CP and 
DC sites in the former are twice that of the latter.  

Table C-3. RMSE for wind speed at different sites* 

Range (m/s) CP WP GR WF DC SP 
November, 2005 
All 2.56 3.25 3.1 4.0 1.95 3.32 
<6 1.6 1.52 1.56 1.5 1.33 1.34 
>6 6.17 4.52 3.87 6.37 4.96 5.13 
March 11 – April 9, 2006 
All 5.19 5.18 - 5.21 4.28 - 
<6 1.9 1.76 - 1.92 1.78 - 
>6 6.1 4.63 - 6.06 5.72 - 

* Abbreviations: CP – Central Phoenix; WP – West Phoenix; GR – Greenwood; WF – West 43rd Avenue; DC – 
Durango complex; SP – South Phoenix. 
 
Additional statistics are shown in Table C-4, giving the model's performance at different locations 
in central Phoenix for both high and low pollution periods. The following indicators were used for 
performance evaluation (see Appendix 1 for details).  
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Table C-4. Summary of statistical measures, in comparing observations to model predictions of 
wind speed at different sites* 

Site MAE RMSE RSQ IA MFB [%] 
November 2005 

CP 1.02 2.56 0.36 0.55 -25.65 
WP 0.12 3.25 0.36 0.67 7.74 
GR 0.01 3.09 0.37 0.68 23.17 
WF 0.35 3.98 0.38 0.60 -36.36 
DC 0.20 1.95 0.34 0.70 -8.81 
SP 0.25 3.32 0.33 0.70 5.03 

March 11- April 9, 2006 
CP 2.02 2.56 0.62 0.60 -52.82 
WP 1.87 3.25 0.58 0.64 -47.39 
WF 1.92 3.98 0.63 0.64 -53.63 
DC 1.10 1.95 0.46 0.68 -2.42 

* Abbreviations: CP – Central Phoenix; WP – West Phoenix; GR – Greenwood; WF – West 43rd Avenue; DC – 
Durango complex; SP – South Phoenix; MAE - Mean Absolute Error, RMSE - Root Mean Square Error, RSQ - 
Coefficient of Determination (aka R2), IA – Index of Agreement, MFB - Mean Fractional Bias 
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Appendix D 
 
Definitions of statistics: 
 
The following indicators were used for performance evaluation. Here P is the predicted value, O the 
measured value, and P and O  the mean values. 
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Appendix E 

Mathematics of the case-crossover method 
This appendix begins with a general discussion of the “odds ratio”, the typical statistic employed in 
reporting the results from the case-crossover method.  The appendix continues with a discussion of 
conditional logistic regression, and it concludes with the specific mathematical formulation of the 
odds ratio used in the present work. 

The odds ratio is a measure of effect size particularly important in logistic regression. 

It is defined as the ratio of the odds of an event occurring in one group to the odds of it occurring in 
another group, or to a sample-based estimate of that ratio. These groups might be men and women, 
an experimental group and a control group, or any other dichotomous classification. If the 
probabilities of the event in each of the groups are p (first group) and q (second group), then the 
odds ratio is: 

 

An odds ratio of 1 indicates that the condition or event under study is equally likely in both groups. 
An odds ratio greater than 1 indicates that the condition or event is more likely in the first group. 
And an odds ratio less than 1 indicates that the condition or event is less likely in the first group. 
The odds ratio must be greater than or equal to zero. As the odds of the first group approaches zero, 
the odds ratio approaches zero. As the odds of the second group approaches zero, the odds ratio 
approaches positive infinity. 

For example, suppose that in a sample of 100 men, 90 have drunk wine in the previous week, while 
in a sample of 100 women only 20 have drunk wine in the same period. The odds of a man drinking 
wine are 90 to 10, or 9:1, while the odds of a woman drinking wine are only 20 to 80, or 1:4 = 
0.25:1. The odds ratio is thus 9/0.25, or 36, showing that men are much more likely to drink wine 
than women. Using the above formula for the calculation yields the same result: 

 

The above example also shows how odds ratios are sometimes sensitive in stating relative positions: 
in this sample men are 90/20 = 4.5 times more likely to have drunk wine than women, but have 36 
times the odds. The logarithm of the odds ratio, the difference of the logits of the probabilities, 
tempers this effect, and also makes the measure symmetric with respect to the ordering of groups. 
For example, using natural logarithms, an odds ratio of 36/1 maps to 3.584, and an odds ratio of 
1/36 maps to −3.584. 

The increased use of logistic regression in medical and social science research means that the odds 
ratio is commonly used as a means of expressing the results in some forms of clinical trials, in 
survey research, and in epidemiology, such as in case-control studies. It is often abbreviated "OR" 
in reports. When data from multiple surveys is combined, it will often be expressed as "pooled OR". 
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Conditional logistic regression has been widely applied to model stratified data, such as case-
crossover analysis and case-control analysis (Lin et al. 2005, Neas et al. 1999, Figuerias et al. 2005, 
and Redelmeier and Tibishirani 1997). Logistic regression is a form of regression used when the 
response is binary. Let x be a vector of k predictor variables (or covariates). Let Y be a binary 
response (y = 0 or y = 1). The conditional probability that Y = 1 is P(Y = 1|x) = p(x). The logit of the 
logistic regression model is 
 

pp xxf βββ +++= ...)( 110x  
 
so the logistic regression model is 
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Let consider the system that has a binary response y and a two-level covariate x, x = 0 or x = 1. The 
logit transformation is defined in terms of p(x) as 
 

( )[ ] xxpxpxf 10)(1)(ln)( ββ +=−= . 
 

The conditional logistic regression works in similar fashion as regular logistic regression. It 
considers the stratification structure in the data specifying which individuals belong to which strata. 
Suppose there are K strata with kn subjects in the thk stratum, where k = 1, 2, 3,…, K There are 

kn1 case subjects, kn0 control subjects, and kkk nnn 01 +=  (Hosmer and Lemeshow 2000). The 
logistic regression model can be shown as 
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where is a nuisance parameter with the contribution of all terms constant within the thk  stratum, 

),...,,( 21 kβββ=′β are the vector of coefficients of covariates, x.  
 
To analyze case-crossover design using conditional logistic regression, the PROC PHREG from 
SAS® statistical software package was used. Conditional logistic regression can be performed by 
the PHREG procedure by using the discrete logistic model and forming a stratum for each matched 
set. The dummy survival times are needed to be created so that all the cases in a matched set have 
the same event time value, and the corresponding controls are censored at later times.  
 
From the logistic regression model defined earlier. The odds of y = 1 when the covariates have 
values x1 is defined as p(1)/(1-p(1)) and the odds of y = 0 when the covariates have values x0 is 
defined as p(0)/(1- p(0)). The odds ratio (OR) is defined as the odds for x1 to the odds for x0, odds 
ratios (OR) can be shown to be 
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The odds ratio is an associate measure of how much more likely (an odds ratio > 1), unlikely (an 
odds ratio < 1), or equally likely (an odds ratio = 1) it is for the response to present under x1 than 
under conditions x0. 
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GLOSSARY 
 
ADEQ Arizona Department of Environmental Quality 

 
ADHS Arizona Department of Health Services 

 
ADT Average Daily Traffic (vehicles per day) 

 
AQS Air Quality System, EPA's archive of ambient air pollution data  

 
AZHQ Arizona Health Query 

 
CEFD Center for Environmental Fluid Dynamics at ASU 

 
CHIR Center for Health Information and Research at ASU 

 
CMAQ Community Multi-scale Air Quality modeling system 

 
COPD Chronic Obstructive Pulmonary Disease   

 
EPA US Environmental Protection Agency 

 
Eta The global weather model of the National Weather Service  

 
GIS Geographic Information System 

 
HC Hospital Counts 

 
HIPAA Health Insurance Portability and Accountability Act 

 
IDW Inverse Distance Weighting (a numerical interpolation technique) 

 
IQR Interquartile Range 

 
LST Local Standard Time 

 
MAE Mean Absolute Error 

 
MM5 Mesoscale Meteorological Model, version 5 

 
MCDAQ Maricopa County Department of Air Quality 

 
µg/m3 Micrograms per cubic meter, the units of concentration for PM 

 
MLP Multi-Layer Perceptron  

 
NCAR National Center for Atmospheric Research 

 
NCEP National Center for Environmental Prediction 
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NN  Neural Network 

 
PM Airborne Particulate Matter 

 
PM10 Particulate Matter 10 microns and smaller, aka “inhalable” 

 
PM2.5 Particulate Matter 2.5 microns and smaller, aka “fine particulates” 

 
PM2.5-10 Particulate Matter 2.5 to 10 micros, aka “coarse particulates” 

 
[PM10] Airborne concentration of PM10  

 
RMSE Root Mean Square Error 

 
SCERP The Southwest Consortium for Environmental Research and Policy 

 
SMOKE Sparse Matrix Operator Kernal Emissions, software to build model-

ready air pollutant emission fields 
 
 


