State of Arizona Air Monitoring Network Plan For the Year 2011

Arizona Department of Environmental Quality
Air Quality Division
Air Assessment Section

Final Report August 2, 2011

Table of Contents

1.0	0 INTRODUCTION	5
2.0	0 ADEQ PROGRAM AND NETWORK DESCRIPTIONS	7
	2.1 NAAQS COMPLIANCE NETWORK	7
	2.1.1 CHANGES TO THE NAAQS	7
	2.2 STATE IMPLEMENTATION PLAN (SIP) AND MAINTENANCE AREA NETWORK	8
	2.3 SOURCE ORIENTED NETWORK	8
	2.4 NCORE NETWORK	
	2.5 METEOROLOGICAL NETWORK	9
	2.6 PHOTOCHEMICAL ASSESSMENT MONITORING STATIONS (PAMS)	9
	2.7 NATIONAL AIR TOXICS TREND SITES (NATTS)	10
	2.8 CHEMICAL SPECIATION NETWORK (CSN)	
	2.9 CLASS I AREA NETWORK AND IMPROVE PROGRAM	10
	2.10 AIRNOW REPORTING	11
	2.11 URBAN HAZE NETWORK	11
	2.12 E-BAM NETWORK OF PM ₁₀ SPECIAL PURPOSE MONITORS	11
3.0	0 MONITORING NETWORK EVALUATION	12
	3.1 SITE CLOSURES	12
	3.2 NEW SITES	13
	3.3 INSTRUMENT CHANGES	13
	3.4 SUMMARY OF NETWORK CHANGES	15
4.0	0 ADEQ MONITORING NETWORKS	16
	4.1 PM _{2.5} MONITORING NETWORK REQUIREMENTS	16
	4.1.1 COMPLIANCE WITH 40CFR PART 58.10(c)	17
	4.2 PM ₁₀ MONITORING NETWORK REQUIREMENTS	18
	4.3 O ₃ MONITORING NETWORK REQUIREMENTS	19
	4.3.1 O ₃ SEASON	20
	4.4 Pb MONITORING NETWORK REQUIREMENTS	21
	4.5 SO ₂ MONITORING NETWORK REQUIREMENTS	22
	4.6 NO ₂ MONITORING NETWORK REQUIREMENTS	22

4.7 CO MO	NITORING NETWORK REQUIREMENTS	23
4.8 PAMS	MONITORING NETWORK REQUIREMENTS	23
4.9 NCORE	MONITORING NETWORK REQUIREMENTS	25
4.10 SIP M	ONITORING NETWORK REQUIREMENTS	26
4.11 SOUR	CE COMPLIANCE MONITORING NETWORK REQUIREMENTS	27
4.12 CLAS	S I VISIBILITY NETWORK	28
4.13 URBA	N HAZE MONITORING NETWORK	30
4.14 METE	OROLOGY MONITORING NETWORK	31
5.0 MONITOR	ING PLAN QUALITY ASSURANCE	32
5.1 THE Q	UALITY SYSTEM	32
5.1.1 A	DEQ QUALITY ASSURANCE STAFF	33
5.1.2 A	DEQ QUALITY DOCUMENTS	34
5.2 MEASU	JREMENT QUALITY CHECKS – PRECISION AND BIAS MEASUREMENTS	35
5.2.1 PA	ARTICULATE MONITORS – PM ₁₀	35
5.2.2 PA	ARTICULATE MONTIROS – PM _{2.5}	35
5.2.3 G	AS MONITORS – SO ₂ , O ₃ , CO, NO ₂	36
5.2.4 A	IR TOXICS MONITORS	36
5.2.5 M	ETEOROLOGICAL EQUIPMENT	37
5.3 CALCU	JLATIONS AND REPORTING	37
5.4 ADEQ	AQD AUDIT REPONSIBILITIES	37
5.4.1 IN	TERNAL TEHNICAL SYSTEMS AUDITS	37
5.4.2 A	DEQ RANKINGS IN EPA PROGRAM REPORTS	37
5.4.3 TI	ECHNICAL ASSISTANCE DOCUMENT DEVELOPMENT	38
5.5 EPA AU	JDIT REPONSIBILITIES	38
5.5.1 PI	EP AND NPAP AUDITS	38
5.5.2 TI	ECHNICAL SYSTEM AUDITS	38
APPENDIX A	DEFINITIONS AND ABBREVIATIONS	39
APPENDIX B	NETWORK MAPS	41
APPENDIX C	CURRENT MONITORS BY PROGRAMS-NETWORKS-PARAMETERS	53
APPENDIX D	SITE INFORMATION DATA TABLES	82
A DDENIDIV E	2011 EDA MONITODING SCHEDITE	12/

APPENDIX F	BETHU	NE ELEM	ENTARY	SCHOOL	SITE REM	OVAL RA	TIONALE	135
APPENDIX G	DATA Ç)UALITY	INDICAT	OR REPO	RT			137

1.0 INTRODUCTION

This document fulfills the obligation, under the Code of Federal Regulations (CFR), Title 40, Section 58.10(a), requiring Arizona Department of Environmental Quality (ADEQ) to complete and submit to the United States Environmental Protection Agency (EPA) an annual network monitoring plan for the year 2011.

This plan informs EPA (Region 9) of the monitoring activities ADEQ will undertake July 1, 2011 through December 2011. However, some changes may occur after the plan is published and approved due to unforeseen events at monitoring sites, funding changes, or changes in EPA monitoring requirements. Data from ADEQ's monitors are reported to EPA's Air Quality System(AQS) database and to AIRNow. Please refer to ADEQ's Annual Air Quality Report for summaries of these data.

In 40 CFR 51, EPA requires states to create, submit, and adopt State Implementation Plans (SIPs) to address the various issues and responsibilities involved with creating and implementing air quality programs. Subpart J of Part 51 specifies that Part 58 Subpart B contains the requirements for establishing air quality surveillance systems to monitor ambient air quality.

Air quality surveillance systems consist of networks of monitors at carefully-chosen physical locations referred to as sites or stations. Some of the networks, sites, and monitors are:

- State and Local Air Monitoring Stations (SLAMS)
- National Core multipollutant monitoring stations (NCore)
- Photochemical Assessment Monitoring Stations (PAMS)
- Chemical Speciation Network (CSN)
- National Air Toxics Trends Sites (NATTS)
- Special Purpose Monitors (SPM)
- Urban Haze monitoring sites
- Interagency Monitoring of PROtected Visual Environments (IMPROVE)
- ADEQ visibility stations located in or near mandatory Class I areas (national parks and wilderness
 areas). Class I monitoring sites are subject to specific siting and operational guidance developed by
 the IMPROVE Steering Committee.
- AIRNow information sites
- Source-oriented monitoring sites operated independently by permittees (Industry)
- Meteorological sites

This Annual Monitoring Network Plan identifies the purpose(s) of each monitor and provides evidence that both the siting and the operation of each monitor meet the requirements in 40 CFR Part 58 appendices A, C, D, and E as follows:

- Appendix A Quality Assurance Requirements for SLAMS, SPMs, and Prevention of Significant Deterioration (PSD) Air Monitoring
- Appendix C Ambient Air Quality Monitoring Methodology
- Appendix D Network Design Criteria for Ambient Air Quality Monitoring
- Appendix E Probe and Monitoring Path Siting Criteria for Ambient Air Quality Monitoring

Results of the annual network review and planning are used to determine how well the network is achieving its required air monitoring objectives, how well it meets data users' needs, and how it should be modified (through termination of existing stations, relocation of stations, establishment of new stations, monitoring of additional parameters, and/or changes to the sampling schedule) in order to continue to meet its objectives and data needs. The network review and planning are performed for the purpose of improving the network and ensuring that it provides adequate, representative, and useful air quality data.

2.0 ADEQ PROGRAM AND NETWORK DESCRIPTIONS

ADEQ operates ambient air quality equipment for a variety of Federal and State monitoring programs. Detailed descriptions of the equipment deployed for each monitoring program are presented in Appendix C. The equipment is grouped by monitoring program or parameter, to easily compare instrument specifics across the networks. Appendix D lists the information about each of ADEQ's 49 monitoring sites, including those sites which ADEQ shares with other agencies or serves as the local site operator. General information about the monitoring programs ADEQ participates in is described in the following sections.

2.1 NAAQS Compliance Network

The largest compliance network in Arizona consists of monitoring sites operated for the purpose of demonstrating compliance with the National Ambient Air Quality Standards (NAAQS) for the "criteria" pollutants: carbon monoxide (CO), nitrogen dioxide (NO₂), sulfur dioxide (SO₂), ozone (O₃), particulate matter (PM₁₀ and PM_{2.5}), and lead (Pb). The criteria pollutants are measured using instruments that have been certified by the EPA as Federal Reference Methods (FRM) or Federal Equivalent Methods (FEM). 40 CFR Part 58 specifies the minimum requirements for determining NAAQS compliance including the following network and site criteria:

- Number and types of monitors required per metropolitan statistical area (MSA) by pollutant
- Objectives and spatial scales
- Sampling frequency
- Collocation
- Special NCore-related requirements
- Meteorology
- Probe location and other restrictions within a site
- Periodic performance evaluations
- Quality Assurance
- Data reporting

2.1.1 Changes to the NAAQS

<u>Pb</u> - In November 2008, EPA revised the Pb NAAQS from 1.5 μg/m³ to 0.15 μg/m³. New requirements for the placement of monitors were added: (1) near Pb sources (by January 1, 2010) having annual ambient air Pb emissions that are expected to exceed one ton and (2) in non-source urban areas (by January 1, 2011) with populations greater than 500,000. In December 2009, EPA proposed revisions to these monitoring requirements. In December 2010, the EPA finalized the Pb monitoring requirements which required Pb monitoring near sources with Pb emissions greater than 0.5 tons. Monitors near these 0.5 to one ton sources are to be operational one year from the date of the final rule. Additionally, the final rule adjusted the non-source monitoring requirement to be limited to NCore sites, as opposed to the 500,000 population requirement mentioned in the original November, 2008 final rule. ADEQ has installed Pb monitors at the Globe Highway site as well as the Miami Golf Course site, effective October, 2010. ADEQ is currently exploring options for Pb monitoring methods at JLG Supersite and will have this monitor installed by December, 2011. The Pb monitoring final rule also clarified that Pb

monitoring will not be required in the Prescott area, despite Ernest A. Love Field Airport exceeding the 0.5 ton Pb emissions threshold.

 $\underline{\mathbf{O}_3}$ - In March 2008, EPA revised the eight-hour O_3 standard from 0.08 parts per million (ppm) to 0.075 ppm. Monitoring network revisions included the requirement for locating monitors in urban areas with populations between 50,000 and 350,000 and requiring states to operate three non-urban monitors. In January 2010, EPA proposed revisions to the level of the standard, requesting comments on lowering the standard to a level within 0.060 to 0.070 ppm. No changes were proposed for the monitoring requirements. The final O_3 NAAQS will be issued in July 2011.

<u>SO</u>₂ - In June 2010, EPA revised the primary SO₂ standard by establishing a new one-hour standard at a level of 75 parts per billion (ppb). The new form is the three-year average of the 99th percentile of the annual distribution of daily maximum one-hour concentrations. It is also revoking the two existing primary standards of 140 ppb evaluated over 24 hours and the 30 ppb evaluated over a year. Additionally, the EPA required changes to data reporting requirements to include reporting the maximum five minute concentration for each hour in addition to the hourly averaged concentrations. ADEQ began collecting and processing hourly maximum five minute SO₂ concentrations in July and August, 2010. New monitoring requirements for placement of monitors were also issued, and monitors must be operational by January, 2013. The new monitoring requirements do not result in any SO₂ network changes for ADEQ, as population oriented monitors will be covered by Maricopa and Pima County agencies and the source oriented monitors have been established for years.

 $\underline{NO_2}$ - In January 2010, EPA set a new one-hour standard for NO_2 of 100 ppb. EPA is retaining the annual standard of 53 ppb. The form of the standard is the three-year average of the 98th percentile of the annual distribution of daily maximum one-hour average concentrations. New monitoring requirements were established including near roadway monitors in urban areas, additional urban monitors in large urban areas, and monitors in areas with populations susceptible to NO_2 related health effects. The new monitoring requirements are not expected to result in any NO_2 network changes for ADEQ, as population oriented monitors and near roadway monitors will be operated by Maricopa and Pima County agencies.

2.2 State Implementation Plan (SIP) and Maintenance Area Network

ADEQ maintains several air monitoring sites for the purpose of tracking compliance in areas that are currently not attaining one or more of the NAAQS and in areas where the NAAQS has been met, but ongoing demonstration of compliance is required. Monitoring requirements for these areas are described in their associated SIPs.

2.3 Source Oriented Network

Historically, ADEQ has required several of the major point sources in the state to conduct ambient monitoring for criteria pollutants, primarily PM₁₀ and SO₂, in and around the permitted facility. These monitors constitute a subset of the compliance monitoring network described above. ADEQ activities with respect to this network have been limited to performance audits and review of ambient data summaries submitted by the individual sources. Recently, however, SIP support has required the submittal of data by some sources to the AQS, including review of quality assurance documents kept by

the sources to support their ambient monitoring programs. ADEQ continues to work with the permitted facilities to obtain all ambient air quality data that are required to be reported to AQS.

2.4 NCore Network

EPA describes the nationwide NCore network composed of approximately 70 urban and 20 rural sites as a multipollutant network that integrates several advanced measurement systems for particles, pollutant gases, and meteorology. Some of the missions of the NCore network are:

- Tracking long-term trends of criteria and non-criteria pollutants;
- Support for long-term health assessments that contribute to ongoing reviews of the NAAQS;
- Support to scientific studies ranging across technological, health, and atmospheric process disciplines; and
- Support to ecosystem assessments recognizing that national air quality networks benefit ecosystem assessments and, in turn, benefit from data specifically designed to address ecosystem analyses.

As required under 40 CFR Part 58.13, ADEQ's NCore site (JLG Supersite) was operational by January 1, 2011. All ambient monitoring data required by 40 CFR Part 58 Appendix D(3)(b) will be reported to EPA's AQS database no later than June 30th, 2011. In addition to the above missions and the NCore monitoring requirements set forth in the CFR, ADEQ will use the JLG Supersite to test new technologies that may be adopted in various ADEQ monitoring networks. Examples would include advanced communications and serial data collection, remote span checks and calibrations, high sensitivity instrumentation, and instruments that monitor pollutants that may be added to the current CFR requirements. Additional NCore information is available from the EPA website: http://www.epa.gov/ttn/amtic/ncore/index.html

2.5 Meteorological Network

ADEQ collects meteorological data at sites throughout the state to support the analysis of ambient air quality data and to provide support for exceptional event reporting. Meteorological measurements are also required for the NCore and PAMS networks. ADEQ currently meets the meteorological monitoring requirements for the NCore and PAMS networks. It is a goal of ADEQ to add meteorological instrumentation to most of ADEQ's monitoring sites that are not currently equipped. Additions will occur as time and funding permits.

2.6 Photochemical Assessment Monitoring Stations (PAMS)

Section 182(c)(1) of the 1990 Clean Air Act (CAA) Amendments requires the Administrator to promulgate rules for enhanced monitoring of O₃ that includes concurrent monitoring of oxides of nitrogen (NOx), speciated volatile organic compounds (VOC), carbonyls, CO, and meteorology to obtain comprehensive and representative O₃ data. Immediately following the promulgation of those rules, the affected states began to implement a program to improve ambient monitoring activities and the monitoring of emissions of NOx and VOCs. Each SIP for the affected areas must contain commitments to implement the appropriate ambient monitoring network for such air pollutants. The subsequent revisions to 40 CFR 58 (1993) required states to establish PAMS as part of their SIP monitoring networks in O₃ non-attainment areas classified as serious, severe, or extreme. The principal reasons for

requiring the collection of additional ambient air pollutant and meteorological data are the widespread non-attainment of the O_3 NAAQS and the need for a more comprehensive air quality database for O_3 and its precursors. ADEQ operates two PAMS sites, JLG Supersite and Queen Valley, to represent the Phoenix metropolitan area.

EPA has recently constructed a workgroup to discuss the evaluation and possible re-invention of the PAMS program. The scope of the evaluation is extensive and includes PAMS objectives, network design, methods, and quality assurance. ADEQ has been an active participant in the PAMS re-invention process and will follow this activity closely to be aware of possible future implications for the ADEQ PAMS network

2.7 National Air Toxics Trend Sites (NATTS)

The NATTS network was designed to monitor and record the concentrations of certain air toxics on a national scale. Data from EPA's national monitoring activities are used to estimate national average concentrations for these air toxics compounds and to detect trends. Using this information, EPA, states, and local agencies can estimate changes in the risks of human exposure. These changes can then be used to support changes in environmental policy. As part of the National Air Toxics Assessment (NATA) process, ambient air quality data are used to assess the national toxics inventory and long-term hazardous air pollutant (HAP) trends. ADEQ accepted federal funding and responsibility for this program in Arizona in 2003. The ADEQ JLG Supersite is the designated NATTS site for the Phoenix metropolitan area.

2.8 Chemical Speciation Network (CSN)

The CSN was established to meet the regulatory requirements for monitoring speciated PM_{2.5} to determine the chemical composition of these particles. The purpose of the CSN is to determine, over a period of several years, trends in concentration levels of selected ions, metals, carbon species, and organic compounds in PM_{2.5}. The program began in 1999 with 54 Speciation Trends Network (STN) sites across the nation located primarily in or near larger MSAs. The network has increased to 200 sites nationwide. Monitoring at JLG Supersite includes one STN speciation sampler and two IMPROVE samplers as part of the CSN network. The collocated IMPROVE samplers provide precision information for the IMPROVE network and are used for comparison of the speciation results from both programs. In 2009, a URG 3000N carbon sampler was added and data from that sampler was then used in place of the data from the Met One SASS carbon channel. This substitution was made as part of a national program designed to make the characteristics of the CSN carbon method match the IMPROVE carbon method more closely.

2.9 Class I Area Network and IMPROVE Program

Visibility monitoring networks track impairment in specified national parks and wilderness areas. These parks and wilderness areas are called Class I Wilderness Areas and were designated based on an evaluation required by Congress in the 1977 federal CAA Amendments. The evaluation, which was performed by the United States Forest Service (USFS) and National Park Service (NPS), reviewed the areas of parks and national forests which were designated as wilderness before 1977, were more than 6,000 acres, and have visual air quality as an important resource for visitors. Of the 156 Class I Areas

designated across the nation, 12 are located in Arizona. Nine sites are located in USFS areas and three in NPS areas. EPA initiated the nationally-operated IMPROVE monitoring network in 1987 whose purpose is to characterize broad regional trends and visibility conditions using monitoring data collected in or near Class I Wilderness Areas across the United States. ADEQ is involved with the operation of 6 sites with IMPROVE instrumentation. Refer to section 4.12 and Appendix B for additional details regarding ADEQ's Class I Visibility and IMPROVE networks.

2.10 AIRNow Reporting

ADEQ currently utilizes three urban nephelometers to approximate and report PM_{2.5} data to the AIRNow Web site to provide near real-time data for public use in the Phoenix metropolitan area. The PM_{2.5} value is calculated by applying a correlation developed between the nephelometer and filter-based measurements. The program is voluntary and was originally intended to fill gaps in the AIRNow network until actual continuous methods were available. Several years ago, ADEQ attempted to submit additional continuous data to AIRNow via XML format; however, despite assurances that this format would be acceptable, AIRNow was not able to process data in this format. ADEQ has recently renewed these efforts to provide data to the AIRNow system and is currently working with their contractor to modify the existing AIRNow data transfer module. ADEQ hopes to utilize AIRNow's new AQCSV file format to transfer data to AIRNow.

2.11 Urban Haze Network

Historically, ADEQ operated an urban haze network in the Phoenix and Tucson metropolitan areas. The purpose of the networks is to provide policy-makers and the public with information regarding urban haze levels, track short-term and long-term urban haze trends, assess source contributions to urban haze, and better evaluate the effectiveness of air pollution control strategies on urban haze. Equipment used to evaluate urban visibility includes transmissometers, nephelometers, particulate monitors, and digital camera systems. A wealth of urban visibility related data and information have been collected for more than a decade in both the Phoenix and Tucson area. Recently, due to budget cuts, this non-mandatory program was reduced to operate in the Phoenix Metropolitan Area only. This network includes the digital cameras and the nephelometers and transmissometer that support the AIRNow data reporting. Additional details regarding ADEQ's Urban Haze Network can be found in section 4.13.

2.12 E-BAM Network of PM₁₀ Special Purpose Monitors

The current network of E-BAM continuous particulate special purpose monitors (listed in Table 2.12-1) is composed of lightweight, portable monitors typically enclosed in self-contained, environmentally sealed containers. They can be battery or solar powered for operation at sites without fixed electrical power. E-BAMs continuously sample and report particulate concentrations. Data are sampled every second and concentrations recorded every minute. E-BAM monitors have been used by many agencies, particularly in the western United Sates, to provide continuous, real-time particulate concentration data that are useful for making informed smoke management decisions related to prescribed burns. E-BAM instruments are used for special purpose monitoring only. They are not classified as FRMs or FEMs and may not be used to demonstrate NAAQS compliance. ADEQ uses these monitors for temporary or short term monitoring of populated areas that could be impacted by smoke from controlled burns or for investigations of complaint responses. Historically, ADEQ's E-BAM monitors have been configured to

measure particles \leq 10 microns in diameter (PM₁₀). To get a better understanding of smoke impacts in these smaller communities, ADEQ is considering changing the configuration on these monitors to measure only particles \leq 2.5 microns in diameter (PM_{2.5}). Hourly data from the E-BAM monitors can be viewed at: http://www.phoenixvis.net/PPMmain.aspx.

Table 2.12-1 Location of E-BAM Monitors

Site Name	Address
Flagstaff Middle School	755 N. Bonito, Flagstaff, AZ 86001
Prescott College AQD	336 Grove Ave., Prescott, AZ 86301
Sedona Post Office	190 W. Highway 89A, Sedona, AZ 86336
Show Low	561 E. Deuce of Clubs, Show Low, AZ 85901
Springerville	323 S. Mountain Ave., Springerville, AZ 85936
Verde Ranger Station	300 E. Highway 260, Camp Verde, AZ 86322

3.0 MONITORING NETWORK EVALUATION

This section describes changes in ADEQ's current monitoring network that have taken place since the 2010 Network Plan was issued as well as changes planned for the next 18 months.

3.1 Site Closures

<u>Tucson Transmissometer Receiver and Transmitter sites</u> – Both of the sites were part of the Urban Visibility Program and were closed in 2010 due to budget constraints.

Prescott College AQD – The site may be closed following the 2012 ozone season. It does not meet siting requirements because of the close proximity to tall trees and to a nearby road with a high traffic count. These conditions make the Prescott College AQD site unsuitable for continued, long-term placement of the O₃ monitor. In addition, environmental control issues (the O₃ instrument is in a room at the college that may not be temperature-controlled in summer months) have impacted the operation of the seasonal O₃ monitor. A search for a suitable site will continue in 2011. It is ADEQ's goal to run O₃ monitors at two sites in Prescott during the 2012 O₃ season so that data from the two sites can be compared. An E-BAM monitor is also located at this site. At this time, it is not known if this E-BAM monitor will be removed along with the O₃ monitor.

<u>Bethune Elementary School</u> – The following were considerations in deciding to close this site:

- 1. Current and ongoing budgetary limitations require the redirection of non-essential resources. ADEQ no longer has the resources to conduct monitoring that is not required by regulation. The Bethune Elementary School monitor is an SPM and not required by the CFR.
- 2. The Maricopa County Air Quality Department (MCAQD) PM₁₀ network provides sufficient coverage for attainment / nonattainment determinations in Maricopa County.
- 3. The West 43rd, Durango, South Phoenix, Greenwood, and Central Phoenix sites provide data that are representative of the Bethune Elementary School monitor.

<u>Snowflake</u> – An E-BAM was added in 2010 for a period of one year for smoke management information. This was a temporary study which ended in May, 2011. This E-BAM monitor will be redeployed to its original location in Show Low, AZ.

3.2 New Sites

<u>Lake Havasu City – Kingman MSA</u> – This area (population between 50,000 and 350,000) may require an O_3 monitor to be sited to capture maximum concentration in the MSA. The location would likely be in or near Lake Havasu City. A suitable site would be selected following careful analysis of the potential sites identified by our search process and in accordance with O_3 network monitoring guidelines. While a site in the Lake Havasu area has been under consideration for the past several years, delays in the promulgation of the O_3 NAAQS and the associated monitoring rule have delayed this process.

<u>Globe Highway</u> – This location was selected for the Hayden area Pb monitor in accordance with monitoring guidance published by EPA. EPA Region 9 has concurred with the selection of this site. Collocated TSP monitors were installed at this site in October 2010 as part of ADEQ's Pb network. A meteorological tower along with instrumentation to measure wind, temperature, and relative humidity were also installed in Spring, 2011.

<u>Miami Golf Course</u> – This location was selected for the Miami area Pb monitor in accordance with monitoring guidance published by EPA. A Pb TSP monitor was installed at this site in October 2010. A meteorological tower along with instrumentation to measure wind, temperature, and relative humidity were also installed in Spring, 2011.

Replacement for Prescott College AQD – An O_3 monitor will be located at a new site in Prescott prior to the start of the 2012 O_3 season. The current site does not meet siting requirements because of the close proximity to tall trees and to a nearby road with a high traffic count. In addition, environmental control issues (the instrument is in a room at the college that may not be temperature-controlled in summer months) have impacted the operation of the seasonal O_3 monitor. A search for a suitable site will continue in 2011. It is ADEQ's goal to run O_3 monitors at two sites in Prescott during the 2012 O_3 season so that data from the two sites can be compared.

3.3 Instrument Changes

<u>Tucson Urban Visibility Monitors</u> – ADEQ discontinued the operation of all nephelometers and transmissometers in the Tucson area due to budget constraints. The affected sites include Children's Park, 22nd & Craycroft, and the Tucson Transmissometer Receiver and Transmitter sites. Supporting meteorological instruments were also closed at these sites. These instruments were shut down in May, 2010.

JLG Supersite CO and SO_2 – High-sensitivity instruments for measurements of CO and SO_2 are required as part of the NCore program. These 'trace-level' monitors were installed at JLG Supersite in the fall of 2010. These instruments were operational by January 1, 2011. The older, traditional CO and SO_2 instruments that were previously used for NAAQS compliance were removed in the spring of 2011. Data from these 'trace-level' monitors will be reported to AQS in place of the traditional monitors.

<u>JLG Supersite PM_{coarse} , PM_{10} , and $PM_{2.5}$ BAMs – Two FEM BAM instruments and an electronic connection between them provide hourly $PM_{10-2.5}$, PM_{10} , and $PM_{2.5}$ measurements to meet NCore requirements. These instruments were installed in the fall of 2010 and were operational by January 1, 2011. Data from these instruments will be reported to AQS.</u>

JLG Supersite PM₁₀, and PM_{2.5} TEOMs – The PM_{2.5} FDMS TEOM and the PM₁₀ TEOM instruments will be removed following a period of collocation with the paired BAMs system. Simultaneous TEOM and BAM monitoring is warranted for a period of time to assess the comparability between the two instrument types. After sufficient data are collected, the PM_{2.5} FDMS TEOM and PM₁₀ TEOM will be removed.

JLG Supersite PM_{2.5} – The collocated Partisol 2025 PM_{2.5} instruments will be replaced by a Partisol 2000 PM_{2.5}. With this change, all PM_{2.5} filter-based instruments in ADEQ's network will be of the same measurement method, eliminating the need for PM_{2.5} collocation at JLG Supersite since the network collocation requirement is already met. This change is scheduled to occur by July 1, 2011.

JLG Supersite Pb – Recent revisions to the Pb monitoring rule required Pb monitoring at NCore sites that are located within a combined statistical area (CBSA) with a population greater than 500,000. The Phoenix CBSA meets this population requirement, therefore, Pb monitoring will be required at ADEQ's NCore site (JLG Supersite). Currently, a PM₁₀ low volume sampler produces Pb results as part of the NATTS program. ADEQ is currently reviewing the EPA approved methods for both TSP and PM₁₀ collection and analysis methods. ADEQ will continue to review these methods as they become available and determine if Pb-PM₁₀ will be an option at JLG Supersite. ADEQ will also determine if an 'attainment' designation is preferred over an 'unclassifiable' designation, since the Pb-PM₁₀ data collection method cannot be used to show attainment.

 O_3 Analyzers – Prior to the 2011 O_3 season, all O_3 sites were upgraded with newer API Teledyne analyzers, which have remote zero and span capabilities. These API Teledyne O_3 analyzers replaced the TEI 49C analyzers that had been used in prior years.

<u>Queen Valley Meteorology</u> – During the five-year network assessment, it was discovered that the Queen Valley site was not meeting PAMS monitoring requirements as it lacked meteorological measurements of wind, temperature, and relative humidity. Meteorological instrumentation was installed at this site in the Spring, 2011.

<u>Hayden Old Jail Meteorology</u> – Pursuant to the recommendation in ADEQ's five-year network assessment to increase coverage in ADEQ's meteorological network, meteorological measurements of wind, temperature, and relative humidity were added to this site in December, 2010.

3.4 Summary of Network Changes

Table 3.4-1 Instruments Closed or to be Closed in 2011-2012

Site Name	AQS ID	Classification	Scale	Monitor Objective	Parameter(s) Measured	Report to AQS	Reason for Monitor Closure
JLG Supersite	04-013-9997	SLAMS/NCore	Neighborhood	Population	SO ₂ , CO	Yes	Replaced by NCore trace-level instruments
JLG Supersite	04-013-9997	SLAMS/NCore	Neighborhood	Population	$PM_{10}, PM_{2.5}$	Yes	PM _{2.5} FDMS TEOM and PM ₁₀ TEOM replaced by NCore BAMS monitors
JLG Supersite	04-013-9997	SLAMS/NCore	Neighborhood	Population	PM _{2.5}	Yes	Partisol 2025 replaced by Partisol 2000
Prescott College AQD	04-025-8033	SLAMS	Neighborhood	Population	O_3	Yes	Site does not meet EPA siting requirements
Bethune Elementary School	04-013-8006	SPM	Neighborhood	Population	PM_{10}	Yes	Budget constraints, not required, redundant with other Phoenix monitors
Snowflake		SPM			PM_{10}	No	Planned one-year EBAM project ended
Ozone Analyzers	Various	SLAMS	Various	Various	O_3	Yes	Thermo 49Cs replaced with API Teledynes
Tucson Transmissometer / Receiver		Urban Haze	Urban	Visibility	Bext	No	Tucson urban visibility and associated
22 nd St./Craycroft	04-019-1011	Urban Haze	Urban	Visibility	Bscat, Temp, RH	No	meteorology were discontinued due to budgetary constraints
Children's Park	04-019-1028	Urban Haze	Urban	Visibility	Bscat, Temp, RH	No	

Table 3.4-2 Instruments to be Added in 2011-2012

Site/City Name	AQS ID	Classification	Scale	Objective	Parameter(s) Measured	Report to AQS	Reason for Monitor Addition
JLG Supersite	04-013-9997	SLAMS/NCore	Neighborhood	Population	Trace SO ₂ , CO	Yes	Replaced older, less accurate instruments
JLG Supersite	04-013-9997	SLAMS/NCore	Neighborhood	Population	PM _{2.5}	Yes	Partisol 2000 PM _{2.5} replaces collocated Partisol 2025 instruments
JLG Supersite	04-013-9997	SLAMS/NCore	Neighborhood	Population	PM _{coarse} , PM ₁₀ , PM _{2.5}	Yes	PM ₁₀ and PM _{2.5} BAM instruments added to monitor PM _{coarse} , PM ₁₀ , and PM _{2.5}
JLG Supersite	04-013-9997	SLAMS/NCore	Neighborhood	Population	Pb	Yes	New Pb NAAQS / NCore requirement
Globe Highway		SLAMS	Middle	Source	Pb, Wind, TEMP, RH	Yes	Required source-oriented Pb monitoring
Miami Golf Course	04-007-8000	SLAMS	Middle	Source	Pb, Wind, TEMP, RH	Yes	Required source-oriented Pb monitoring
Prescott MSA		SLAMS	Urban or Neighborhood	Population	O_3	Yes	Replacement for Prescott College AQD
Lake Havasu City-Kingman MSA		SLAMS	Urban or Neighborhood	Population	O_3	Yes	To be added if required by new O ₃ rules
Hayden Old Jail	04-007-1001	SLAMS	Neighborhood	Population	Wind, TEMP, RH	Yes	Expanding meteorology network
Queen Valley	04-021-1001	SLAMS	Neighborhood	Population	Wind, TEMP, RH	Yes	Required for PAMS site
Ozone Analyzers	Various	SLAMS	Various	Various	O_3	Yes	API Teledynes replaces older Thermo 49C

4.0 ADEQ MONITORING NETWORKS

Minimum monitoring requirements for the number of sites in SLAMS networks (including PAMS and NCore) are described in 40 CFR Part 58 Appendix D and are based on the population of urban areas. As EPA reviews the NAAQS for each of the criteria pollutants, additional network monitoring requirements for these standards as well as for the other criteria pollutants may be added. The additional requirements may be based on population or on some other metric, such as non-urban areas, micropolitan areas, or simply at the discretion of the EPA Regional Administration to adequately assess air quality for sensitive population groups. Table 4.0-1 lists Arizona's MSA populations.

Table 4.0-1 Arizona MSAs as of the July 2009 Census Estimate

MSA Name	Area included	Population
Flagstaff	Coconino County	129,849
Lake Havasu City – Kingman	Mohave County	194,825
Phoenix – Mesa – Scottsdale	Maricopa & Pinal Counties	4,364,094
Prescott	Yavapai County	215,503
Tucson	Pima County	1,020,200
Yuma	Yuma County	196,972

4.1 PM_{2.5} Monitoring Network Requirements

The number of PM_{2.5} samplers required in urban areas is based on population (see Table 4.1-1) and design values for PM_{2.5} concentrations (see Table 4.1-2).

Table 4.1-1 Minimum Number of PM_{2.5} Monitors Required (40 CFR 58 Appendix D)

Population (MSA)	Most recent 3 yr design value ≥ 85% of any PM _{2.5} NAAQS *	Most recent 3 yr design value <85% any PM _{2.5} NAAQS *
>1,000,000	3	2
500,000 - 1,000,000	2	1
50,000 - 500,000	1	0

^{* 85%} of Annual NAAQS (15 μ g/m³) = 12.75 μ g/m³; 85% of 24-Hour NAAQS (35 μ g/m³) = 29.75 μ g/m³

The frequency of sample collection is based on the type of sampler and the design value calculated from data collected at each FRM (filter monitors) or FEM (continuous) sampler (see Table 4.1-2). 40 CFR Part 58.12 (d)(1) gives the manual PM_{2.5} sample collection frequency requirement at required SLAMS stations as every third day at sites without a collocated continuously operating PM_{2.5} monitor. For SLAMS PM_{2.5} sites with manual and continuous PM_{2.5} monitors, the agency may request approval from the EPA Regional Administrator for a reduction to every sixth day and/or seasonal sampling schedule. Sites with design values ± 10 percent of $35\mu g/m^3$ (31.5 to $38.5\mu g/m^3$) and sites where 24-hour values exceed the NAAQS for three consecutive years need an every third day frequency. Sites within $\pm 5\%$ of $35\mu g/m^3$ (33.25 to $36.75\mu g/m^3$) need to operate on a daily schedule.

Table 4.1-2 PM_{2.5} Design Values and Sampling Frequencies at ADEQ SLAMS Sites

Site Name	2008-2010 24-Hour Design Value (μg/m³)	2008-2010 Annual Design Value (μg/m³)	Current Sample Frequency	Required Frequency
Douglas Red Cross	14	7.1	1 in 6	1 in 3
Flagstaff Middle School*	13	6.1	1 in 6	1 in 3
JLG Supersite	19	8.1	1 in 3	1 in 3
Nogales Post Office	32	12.2	1 in 6	1 in 3
Prescott Valley*	11	5.0	1 in 6	1 in 3
Yuma Supersite*	14	7.4	1 in 6	1 in 3

^{*} Indicates design value calculations do not meet completeness criteria

ADEQ operates EPA approved FRM samplers at all required PM_{2.5} monitoring sites. Although the required frequency for all PM_{2.5} FRM monitors is every third day, ADEQ operates only the monitor at JLG Supersite at this frequency. Sampling frequencies at the other sites have remained on the original every sixth day schedule established when the PM_{2.5} program was started. Consideration of travel time, shipping costs, laboratory processing workload, and little change in annual values through time have discouraged changing to the more frequent monitoring schedule. Currently, ADEQ operates continuous samplers at two monitoring sites, JLG Supersite and Nogales Post Office. A continuous PM_{2.5} sampler is required at JLG Supersite as part of the NCore requirements. The continuous PM_{2.5} sampler at Nogales Post Office is not an FEM, but is used to supplement the filter-based monitoring at the site so that diurnal patterns in PM_{2.5} can be assessed. Since the PM_{2.5} design value at Nogales Post Office is within 10 percent of the NAAQS, higher frequency monitoring is warranted.

4.1.1 Compliance with 40 CFR Part 58.10 (c)

A process for relocating violating PM_{2.5} monitors is described in 40 CFR Part 58.10 (c). It requires the annual monitoring network plan to document how state and local agencies provide for the review of changes to a PM_{2.5} monitoring network that impact the location of a violating PM_{2.5} monitor or the creation/change to a community monitoring zone, including a description of the proposed use of spatial averaging for purposes of making comparisons to the annual PM_{2.5} NAAQS as set forth in Appendix N to Part 50. The affected agency must document the process for obtaining public comment and include any comments received through the public notification process within their submitted plan.

ADEQ does not intend to establish community monitoring zones as described in the rule or utilize spatial averaging for comparison to the PM_{2.5} NAAQS. A public comment procedure is required prior to relocation of a violating monitor and ADEQ will utilize the following procedure:

- 1. Evaluation of the potential replacement site will include review and comparison of available pollutant data, meteorology, climatology, terrain, and siting characteristics. This information will be documented in a brief report.
- 2. Make notice of such a change in the annual monitoring network plan.
- 3. If the change must be accomplished prior to annual monitoring network plan submittal, ADEQ will make appropriate notice via the agency Web page and invite participation from the public prior to relocation of the affected site.
- 4. Relocation of the monitor.

4.2 PM₁₀ Monitoring Network Requirements

The number of PM_{10} samplers required in urban areas is based on population (see Table 4.2-1) and design values for PM_{10} 24-hour concentrations (see Table 4.2-2). ADEQ has delegated authority for monitoring PM_{10} to Maricopa, Pinal, and Pima Counties, giving them responsibility for the monitoring network for the MSAs within their counties. ADEQ's PM_{10} monitoring network includes the MSAs in all other Arizona counties, as well as the PM_{10} non-attainment areas in those counties. ADEQ operates a PM_{coarse} monitor (difference method using BAM instruments) in the Phoenix metropolitan area at the JLG Supersite NCore site. PM_{10} concentrations are available from the PM_{10} BAM instrument to support the multipollutant measurements at that site.

Table 4.2-1 Minimum Number of PM₁₀ Monitors Required (40 CFR 58 Appendix D)

Population (MSA)	High Concentration Exceeds 24-Hour NAAQS by 20% or more (>180μg/m³)	Medium Concentration Exceeds 80% of 24- Hour NAAQS (>120µg/m³)	Low Concentration Less than 80% of 24-Hour NAAQS (<120 µg/m³)
>1,000,000	6-10	4-8	2-4
500,000 - 1,000,000	4-8	2-4	1-2
250,000 - 500,000	3-4	1-2	0-1
100,000 - 250,000	1-2	0-1	0

The monitoring rule in 40 CFR Part 58.12 (e) states that for PM₁₀ sites, "...the minimum monitoring schedule for the site in the area of expected maximum concentration shall be based on the relative level of that monitoring site concentration with respect to the 24-hour standard." In rural areas of Arizona where there is only one PM₁₀ monitor to represent the area, such as Ajo, Hayden, and Yuma, sites can be considered de facto maximum-concentration sites whose operating frequencies must be determined using the Ratio-to-Standard diagram in 40 CFR Part 58.12 (e). Due to the variability in PM₁₀ concentrations from year to year throughout Arizona, the operating frequencies of ADEQ PM₁₀ monitors will be evaluated every five years as part of the Five Year Network Assessment. Table 4.2-2 provides the design values and sampling frequencies for ADEQ's PM₁₀ monitors. Since exceptional events have a large impact on PM₁₀ design values in Arizona, two scenarios are provided.

In recent years, ADEQ has transitioned several PM_{10} monitors from filter-based methods to continuous methods. As stated in ADEQ's Five Year Network Assessment, this transition to continuous PM_{10} samplers continues to be a focus for ADEQ, but there are no plans at this time to transition additional filter-based monitors to continuous samplers. ADEQ will be removing the Bethune Elementary School PM_{10} SPM at the end of the second quarter of 2011. This monitor is not required by regulation and ADEQ does not have the resources to operate non-essential monitors. A further description of the rationale for removing this monitor can be found in Appendix F.

Table 4.2-2 PM₁₀ NAAQS Design Value and Sampling Frequencies of ADEQ PM₁₀ Monitors

Site Name	Estimated Days PM ₁₀ >150 (µg/m³) 2008-2010 Including Events	Estimated Days PM ₁₀ >150 (μg/m³) 2008-2010 Excluding Events	Current Sample Frequency	Historical Sample Frequency
Ajo ²	0	0	Continuous	1 in 6
Bullhead City	0	0	1 in 6	1 in 6
Douglas Red Cross ¹	0	0	1 in 6	1 in 6
Flagstaff Middle School	0	0	1 in 6	1 in 6
Hayden Old Jail ²	0.3	0	Continuous	1 in 6
Bethune Elementary School (SPM)	2	0	1 in 6	1 in 6
JLG Supersite	0	0	Continuous	1 in 6 and Continuous
Nogales Post Office	2.2	0	1 in 6 and Continuous	1 in 6 and Continuous
Paul Spur Chemical Lime Plant	2	0	1 in 6	1 in 6
Payson Well Site	0	0	1 in 6	1 in 6
Prescott Valley ¹	0	0	1 in 6	1 in 6
Rillito ²	0.7	0	Continuous	1 in 6
Yuma Supersite ³	3.6	0	Continuous	1 in 6 and Continuous

¹ Indicates design value calculations do not meet completeness criteria

4.3 O₃ Monitoring Network Requirements

The current EPA minimum monitoring requirements for O_3 are shown below in Table 4.3-1. EPA has proposed revisions to the O_3 monitoring requirements, but these revisions have not been finalized. If the proposed revisions go final, there will be an affect on ADEQ's O_3 network. Potential effects include:

- greater coordination with the NPS as their monitors may be used to meet the rural O₃ monitoring requirement
- an additional O₃ monitor may be needed in the Lake Havasu area to meet the population requirement
- an additional O₃ monitor may be needed in a micropolitan statistical area to meet a new population requirement.

² Filter-based and continuous records merged to calculate design value

³ Continuous records from Yuma Courthouse and Yuma Supersite merged to calculate design value

ADEQ is basing its current O₃ monitoring network off of the current regulations in 40 CFR Part 58 Appendix D. ADEQ is aware of the potential for changes to the O₃ monitoring rule. If EPA does finalize their proposed rule, ADEQ will address these changes in subsequent network plans.

Table 4.3-1 Minimum Number of O₃ Monitors Required (40 CFR 58 Appendix D)

Population (MSA)	Most recent 3 year 8- hour Design Value ≥ 85% of NAAQS (0.075 ppm) or no Design Value available	Most recent 3 year 8- hour Design Value <85% NAAQS (0.075 ppm)
>10 Million	4	2
4-10 Million	3	1
350,000 - 4 Million	2	1
50,000 - 350,000	1	0

ADEQ operates a network of seven O₃ monitors throughout Arizona (see Table 4.3-2). Authority to operate O₃ monitors has been delegated to Maricopa, Pima, and Pinal counties. ADEQ will be relocating the Prescott College AQD monitor following the 2012 O₃ season due to siting requirements. Prior to the 2011 O₃ season, ADEQ upgraded their O₃ monitoring network by replacing the Thermo 43C analyzers with newer API Teledyne analyzers. The new API Teledyne O₃ analyzers allow for remote zero, span, and precision checks which will improve the overall efficiency of ADEQ's ambient air monitoring group.

Table 4.3-2 O₃ Design Values at ADEQ Sites

Site	Operating Schedule	2008-2010 Design Value (ppm)
Alamo Lake	April - October	0.072
Flagstaff Middle School	April - October	0.069
JLG Supersite	January - December	0.075
Prescott College AQD *	April - October	0.066
Queen Valley	April - October	0.074
Tonto National Monument	April - October	0.073
Yuma Supersite	April - October	0.073

^{*} Based on incomplete data (2008)

4.3.1 O₃ Season

In accordance with 40 CFR Part 58, Appendix D, Paragraph 4.1(i), ADEQ was granted a modification to the January through December O₃ season defined in the regulation. Prior to the 2008 revision to the O₃ NAAQS, the 1998 EPA guidance document entitled, "Guideline for Selecting and Modifying the Ozone Monitoring Season Based on an Eight-Hour Ozone Standard" supported a shorter O₃ season for Arizona (April through October) based upon data collected from 1990-1995. During the Spring of 2011, this analysis was updated to include the 2008 O₃ NAAQS, as well as more recent data. To get the best representation of the entire state, data from all O₃ sites in Arizona were used in the analysis. For the

period 2006-2010, the average number of days above 85 percent of the 2008 NAAQS of 0.075 ppm continues to support the operation of seasonal monitors (see Figure 4.3-1). However, the data indicate that the O₃ season should be extended one month to include the month of March. In 2012 ADEQ plans to extend the O₃ season by starting to monitor O₃ in March instead of April. As shown in Table 4.3-2, the current seasonal sites are Alamo Lake, Flagstaff Middle School, Prescott College AQD, Queen Valley, Tonto National Monument, and Yuma Supersite. The JLG Supersite will continue to operate on a January to December schedule.



Figure 4.3-1 Average Number of Days exceeding 85% of the 2008 O₃ NAAQS

4.4 Pb Monitoring Network Requirements

In November 2008, EPA revised the Pb NAAQS from 1.5 μg/m³ to 0.15 μg/m³. New requirements for the placement of monitors were added: (1) near Pb sources (by January 1, 2010) having annual ambient air Pb emissions that are expected to exceed one ton and (2) in non-source urban areas (by January 1, 2011) with populations greater than 500,000. In December 2009, EPA proposed revisions to these monitoring requirements. In December, 2010, the EPA finalized the Pb monitoring requirements which required Pb monitoring near sources with Pb emissions greater than 0.5 tons. Monitors near these 0.5 to 1 ton sources are to be operational one year from the date of the final rule. Additionally, the final rule adjusted the non-source monitoring requirement to be limited to NCore sites with CBSA populations greater than 500,000. ADEQ has installed Pb monitors at the Globe Highway site as well as the Miami Golf Course site, effective October, 2010. ADEQ is currently exploring options for Pb monitoring methods at JLG Supersite and will have this monitor installed by December, 2011. ADEQ is hoping to use the current low volume PM₁₀ metals speciation sampler as the collection method. However, this collection method will be dependent upon EPA's approval of analysis methods for this type of sampling. ADEQ hopes to use the same PM₁₀ metals speciation sample that is used for the NATTS program for the analysis of Pb. Eastern Research Group (ERG) currently analyzes these samples. The Pb monitoring final rule also clarified that Pb monitoring will not be required in the Prescott area, despite Ernest A. Love Field Airport exceeding the 0.5 ton Pb emissions threshold.

4.5 SO₂ Monitoring Network Requirements

ADEQ operates a network of three SO₂ monitors throughout Arizona. Authority to operate SO₂ monitors has also been delegated to Maricopa and Pima counties. ASARCO LLC and Freeport MacMoRan Copper and Gold Inc. also operate SO₂ monitoring networks in Gila County for compliance purposes to support SIP requirements. The SO₂ monitoring requirements set forth in 40 CFR Part 58 Appendix D is based on a Populated Weighted Emissions Index (PWEI) that is calculated for each CBSA. CBSAs with PWEIs greater than 5,000 require at least one SO₂ monitor. CBSAs with PWEIs greater than 100,000 require a minimum of two SO₂ monitors. The Phoenix and Tucson metropolitan areas are the only areas within the state of Arizona that require ambient monitoring of SO₂. The current SO₂ monitors in place that are operated by Maricopa and Pima counties meet or exceed the current monitoring requirements set forth in 40 CFR Part 58 Appendix D. ADEQ will continue to operate at least one SO₂ monitor in the Hayden and Miami areas to support the local facility networks. ADEQ has been working with these facilities to acquire their SO₂ ambient monitoring data for reporting to EPA's AQS database. In the years to come, ADEQ will continue to work with these facilities to review and report ambient SO₂ data to the AQS database where compliance with the SO₂ standard can be easily monitored. ADEQ has and will continue to perform annual performance evaluations for these facilities' SO₂ monitors. ADEQ also operates a trace-level SO₂ monitor at its NCore site (JLG Supersite), as required in 40 CFR Part 58 Appendix D.

4.6 NO₂ Monitoring Network Requirements

ADEQ operates one NO₂ monitor throughout the state of Arizona. This NO₂ monitor is located at the JLG Supersite. Authority to operate NO₂ monitors has also been delegated to Maricopa and Pima counties. The NO₂ monitoring requirements set forth in 40 CFR Part 58 Appendix D are based on a combination of CBSA population and Annual Average Daily Traffic (AADT) counts. The first requirement to be considered is the CBSA population. CBSAs with populations greater than 500,000 are required to operate one near roadway monitor, while CBSAs with populations greater than 2.5 million are required to operate two near roadway monitors. Additionally, CBSAs with populations greater than 500,000 which also contain roadway segments with 250,000 or greater AADT also require two near roadway monitors. As can be seen in table 4.0-1, two CBSAs (Phoenix and Tucson Metro areas) within the state of Arizona contain populations greater than 500,000 and therefore require at least one NO₂ near roadway monitor. The Phoenix CBSA also exceeds the 2.5 million population requirement, therefore two near roadway monitors are needed in the Phoenix CBSA. The required near roadway monitors in Tucson and Phoenix will be operated by the local monitoring agencies in their respected areas. ADEQ has reviewed population and AADT data and has determined that no other areas in the state require near roadway NO₂ monitors.

In addition to the near roadway monitoring requirements set forth in 40 CFR Part 58 Appendix D, there is also a requirement for area-wide NO₂ monitoring. CBSAs with populations of one million or more require one NO₂ monitor to measure NO₂ concentrations that represent neighborhood or larger spatial scales. The Phoenix and Tucson metropolitan areas are the only areas within the state of Arizona that require ambient monitoring of NO₂. The current NO₂ monitors in place that are operated by Maricopa and Pima counties meet or exceed the current monitoring requirements set forth in 40 CFR Part 58

Appendix D. ADEQ will continue to monitor NO_2 at JLG Supersite as part of the NO_x measurements which are required for the PAMS program.

4.7 CO Monitoring Network Requirements

ADEQ operates one CO monitor throughout Arizona. This CO monitor is a trace level monitor that is located at the JLG Supersite to fulfill NCore monitoring requirements. Authority to operate CO monitors has also been delegated to Maricopa and Pima counties. There are no CO minimum monitoring requirements set forth in 40 CFR Part 58 Appendix D, however, continued operation of CO monitors is required until discontinuation is approved by the EPA Regional Administrator. While there are no minimum monitoring requirements for CO set for in 40 CFR Part 58 Appendix D, the EPA has recently proposed new monitoring requirements for CO. Except for those CO monitors that are required as part of the NCore network, the proposed monitoring requirements would not require any area-wide CO monitors. However, the proposed monitoring requirements would require near roadway CO monitors in CBSAs with populations of one million or greater. These near roadway CO monitors would be collocated with the NO₂ near roadway monitoring stations. Since the Tucson and Phoenix CBSAs both exceed the one million population requirement set forth in the proposed rule, the number of near roadway CO monitors would be identical to the number of near roadway NO₂ monitors. The required near roadway monitors in Tucson and Phoenix will be operated by the local monitoring agencies in their respected areas. The one CO monitor that is currently operated by ADEQ meets or exceeds the minimum monitoring requirements for both the NCore and CO network design criteria set forth in 40 CFR Part 58 Appendix D.

4.8 PAMS Monitoring Network Requirements

Network design and monitoring requirements for PAMS stations are provided in 40 CFR 58 Appendix D for areas classified as serious, severe, or extreme nonattainment for O₃. Two sites are required for each area, providing all chemical measurements are made. Measurements include speciated VOCs, carbonyls, NO_x, trace level nitrogen oxides (NO_y), CO, O₃, surface meteorology, and upper air meteorology. In 2008, EPA shortened the PAMS monitoring season to June through August.

ADEQ's PAMS network consists of two ambient air monitoring sites in the Phoenix-Mesa-Scottsdale MSA and a meteorological site for the collection of upper air meteorological data and solar radiation data.

JLG Supersite – Type 2 PAMS Site

The JLG Supersite was designated a PAMS site in 1999. To meet the revised EPA requirement for daily monitoring, ADEQ contracted with an outside vendor for the operation of an automated gas chromatograph mass spectrometer (Auto GC/MS) monitoring system for collection and analysis of PAMS VOCs data at JLG Supersite for the 2007 monitoring season. The hourly data were reviewed and submitted to AQS. A comparison with the canister samples collected for Toxics VOCs indicated the Auto GC/MS measurements were within 15 percent of the canister method results. Analysis of the 2007 results has been completed. The successful operation of the Auto GC/MS and the reliability of the results for analysis plus the additional information that continuous measurements can provide could support a decision to purchase an Auto GC/MS to be operated at JLG Supersite during PAMS season in

lieu of canister sampling. However, consultation with current users of Auto GC equipment in several different agencies confirmed that purchase and installation would cost approximately \$100,000 and successful operation would require half of a full time employee on a continuing basis. Since the required manual method of eight three-hour canisters running daily is impractical due to increased expenses for staff, shipping, and analysis, ADEQ returned to the 2006 monitoring schedule of a 24-hour canister sample every sixth day at the JLG Supersite during PAMS season for VOCs. This will be reviewed when the final results of the PAMS re-engineering program are available which may include recommendations for changes to monitoring and possibly new types of instruments. ADEQ also operates carbonyl, O₃, CO, NOx, and surface meteorological monitoring equipment at JLG Supersite (see Table 4.8-1). Carbonyl monitoring at JLG Supersite is not currently required for PAMS and could be discontinued for the 2012 PAMS season but there are no current plans at this time.

Table 4.8-1 JLG Supersite PAMS Instrumentation

Parameter	Dates of Operation	Collection Method	Frequency and Duration
VOC	6/1/11 - 8/31/11	Canister Sampler	Every 6th day, 24 Hr
Carbonyl	6/1/11 - 8/31/11	Multi-port Carbonyl Sampler	Every 6th day, 24 Hr, and 3 - 3hr samples (0500-0800, 0800-1100, 1100-1400)
CO	1/1/11 – 12/31/11	Trace CO	Hourly average
O ₃	1/1/11 - 12/31/11	O ₃ Analyzer	Hourly average
NOx	1/1/11 - 12/31/11	NOx Analyzer	Hourly average
Meteorology	1/1/11 – 12/31/11	wind speed/directiontemperature	Hourly average
		 relative humidity 	

Queen Valley – Type 3 PAMS Site

Queen Valley was designated a PAMS site in 2001. The site is located near the southeastern edge of the photochemical modeling grid domain and is considered to be downwind of the source of maximum precursor emissions in the Phoenix metropolitan area. Pollutants collected at the site include speciated PAMS VOCs, O₃, total reactive NOx, and surface meteorology measurements. ADEQ's Five-Year Network Assessment identified the Queen Valley site as not meeting PAMS monitoring requirements due to the lack of meteorological measurements. Meteorological instrumentation was added during the second quarter of 2011. Carbonyl samples are not required at Type 3 sites. Table 4.8-2 lists the instrumentation and monitoring schedule at the Queen Valley site.

Table 4.8-2 Queen Valley PAMS Instrumentation

Parameter	Dates of Operation	Collection Method	Frequency and Duration
VOC	6/1/11 - 8/31/11	Multi-port sampler	Every 6 th day, 24Hr, and 3 – 3hr samples (0500-0800, 1300-1600, 1600-1900)
O_3	4/1/11 – 10/31/11	O ₃ Analyzer	Hourly average

NOy	4/1/11 - 10/31/11	NOy Analyzer	Hourly average
Meteorology	4/19/11 – 12/31/11	wind speed/direction	Hourly average
		temperature	
		 relative humidity 	

<u>Vehicle Emissions Laboratory – Upper Air Meteorology Site</u>

A radar wind profiler collects continuous upper air meteorological data for determination of mixing heights. This site also includes a pyranometer to measure total solar radiation, UV solar radiation, wind speed, wind direction, temperature, and relative humidity. Barometric pressure and precipitation measurements are collected by the National Weather Service (NWS) site at nearby Sky Harbor Airport.

Table 4.8-3 Vehicle Emissions Laboratory PAMS Instrumentation

Parameter	Dates of Operation	Method	Duration
Meteorology	1/1/11-12/31/11	Radar Acoustic Sounding System (RASS)	Hourly average
		• pyranometer (total solar radiation)	
		• ultra-violet (UV solar)	
		wind speed/direction	
		temperature	
		relative humidity	

4.9 NCore Monitoring Network Requirements

EPA has identified JLG Supersite as the required NCore site for the Phoenix metropolitan area. JLG Supersite has a long history of multipollutant monitoring since its establishment in 1993. Currently, several monitoring programs are supported at this site, (SLAMS, PAMS, NATTS, and CSN) as well as meteorology. The required NCore parameters are listed in Table 4.9-1. All required NCore monitors were operational by January 1, 2011. EPA approved ADEQ's NCore monitoring plan submitted in 2009, but did not grant the waiver request to substitute NOx monitoring for NOy.

Table 4.9-1 JLG Supersite NCore Instrumentation

Required Measurement	Frequency/Duration	Status
PM _{2.5} FRM mass	24 hour average every	Thermo Partisol is current instrument; PM _{2.5}
	3rd day	samples collected since 1999
PM _{2.5} speciation - organic	24 hour average;	MetOne SuperSASS with URG module is current
and elemental carbon, major	every 3rd day	instrument; STN samples collected since 1999
ions, and trace metals		
Continuous PM _{coarse} mass	Hourly	MetOne BAM 1020 FEM pair beginning 1/1/2011
Continuous PM _{2.5} mass	Hourly	MetOne BAM 1020 FEM pair beginning 1/1/2011
O_3	Hourly	API Teledyne 400E beginning 4/1/2011
CO	Hourly	Ecotech EC 9830 beginning 1/1/2011
SO_2	Hourly	Ecotech EC 9850 beginning 1/1/2011
NO/NOy	Hourly	Ecotech EC 9843 beginning 1/1/2011
Surface meteorology	Hourly	RM Young anemometer, Rotronics
		temperature/relative humidity probe currently in

		operation
Pb	24 hour average;	To be determined. Currently Pb measurements are
	every 6th day	from the NATTS PM ₁₀ metals sampler.

4.10 SIP Monitoring Network Requirements

ADEQ is responsible for preparation and submittal of SIPs to EPA for the non-attainment and maintenance areas in Arizona. ADEQ is also responsible for conducting ambient air monitoring for these areas with the exception of the delegated agreements with Maricopa, Pima, and Pinal counties and tribal lands. Permitted sources are also responsible for monitoring air quality, if they are the largest source of emissions for that area. Some monitoring sites are specifically named in some SIPs; other monitoring sites are not specifically named, but are representative of the air quality in that SIP area. Table 4.10-1 lists the ADEQ and source operated monitors used to determine SIP compliance.

Table 4.10-1 SIP Network Monitoring Requirements

Note: Sites in italics are specifically required in SIP; others meet the general SIP requirement that representative

monitoring be conducted (no specific monitoring sites named in SIP).

Area and County	Pollutant	Classification	ADEQ SIP Sites	
Phoenix, Maricopa	СО	Maintenance/Attainment	JLG Supersite	
Phoenix, Maricopa	O ₃ 1-hr	Maintenance/Attainment	JLG Supersite, Tonto National Monument	
Phoenix-Apache Junction, Maricopa and Pinal	O ₃ 8-hr	"Basic" Nonattainment	Alamo Lake, JLG Supersite, Queen Valley, Tonto National Monument	
Ajo, Pima	PM_{10}	Moderate Nonattainment	Ajo	
Bullhead City, Mohave	PM_{10}	Maintenance/Attainment	Bullhead City (Post Office)	
Douglas, Cochise	PM_{10}	Moderate Nonattainment	Douglas Red Cross	
			ADEQ also operates one PM ₁₀ site at the Agua Prieta Fire Station in Mexico.	
Paul Spur, Cochise	PM_{10}	Moderate Nonattainment	Paul Spur Chemical Lime Plant	
Hayden, Gila and Pinal	PM ₁₀	Moderate Nonattainment	Hayden Old Jail	
Miami, Gila	PM ₁₀	Moderate Nonattainment	Freeport McMoRan sites: Golf Course & Miami Ridgeline	
Nogales, Santa Cruz	PM_{10}	Moderate Nonattainment	Nogales Post Office	
			ADEQ also operates one PM ₁₀ site at Nogales Fire Station in Mexico.	
Payson, Gila	PM_{10}	Maintenance/Attainment	Payson Well Site	
Phoenix, Maricopa, and Pinal (Apache Junction portion) Phoenix (Salt River Area)	PM ₁₀	Serious Nonattainment	JLG Supersite	
Rillito, Pima	PM ₁₀	Moderate Nonattainment	Rillito	
			Both ADEQ and the source, APCC, operate instruments at this site.	
Yuma, Yuma	PM ₁₀	Moderate Nonattainment	Yuma Supersite	
			ADEQ also operates one PM ₁₀ site in San Luis Rio Colorado, Mexico.	
Nogales, Santa Cruz	PM _{2.5}	Nonattainment	Nogales Post Office	
Ajo, Pima	SO_2	Maintenance/Attainment	No network or commitment	

Area and County	Pollutant	Classification	ADEQ SIP Sites
Douglas, Cochise	SO_2	Maintenance/Attainment	No network or commitment
Hayden, Gila and Pinal	SO_2	Nonattainment – Primary	ADEQ (SO ₂ , MET): Hayden Old Jail
			ASARCO (5 SO ₂ , 3 MET [no met at Jail or Garfield]): Globe Hwy, Garfield Ave., Montgomery Ranch, Hayden Old Jail, Hayden Junction
Miami, Gila	SO_2	Nonattainment – Primary	ADEQ: Miami Ridgeline
			Freeport McMoRan (SO ₂ , MET) Jones Ranch, Miami Townsite
Morenci, Greenlee	SO_2	Maintenance/Attainment	No network or commitment
San Manuel, Pima and Pinal	SO_2	Maintenance/Attainment	No network or commitment
Regional Haze, 12 Class I areas	Visibility Impairing pollutants (VOC, NOx, SO ₂ , PM ₁₀ , PM _{2.5} , PM _{2.5} species)	Statewide – IMPROVE monitors	ADEQ Protocol sites: Douglas Red Cross, Organ Pipe Natl Monument, JLG Supersite, Queen Valley, Saguaro West Natl Monument, Meadview NPS / USFS sites: Chiricahua Entrance Station, Greer Water Treatment Plant, Grand Canyon - Indian Gardens, Grand Canyon - Hance Camp, Ike's Backbone, Meadview, Petrified Forest National Park, Pleasant Valley Ranger Station, Saguaro National Park-East, Sycamore Canyon, Tonto National Monument

4.11 Source Compliance Monitoring Network Requirements

Historically, ADEQ has required several of the major point sources in the state to conduct ambient monitoring for selected pollutants in and around specific facilities. Some requirements are for prevention of significant deterioration (PSD) monitoring prior to operation of the facility. Other monitoring requirements are for the duration of the permit. ADEQ activities have been limited to regular performance audits of some equipment at these sites and review of ambient data submitted according to permit requirements. Recently, ADEQ has begun to submit a portion of these data to the EPA AQS database to support SIP compliance. Sources are required to review their data and submit quality assurance documents to ADEQ with the data. Table 4.11-1 lists the monitors operated by ADEQ permitted sources. ADEQ staff are currently working with ASARCO and Freeport McMoRan staff to acquire and report SO₂ data from Miami and Hayden to the EPA AQS database.

Table 4.11-1 Source Compliance Monitoring Network

Site Name	City	Pollutant(s)	AQS Submittal
		PM ₁₀ ,	
Rillito	Rillito	Meteorology	No
Globe Highway	Winkelman	SO_2	Yes, begin w/ 2008 data
ASARCO – Hayden – Garfield		SO_2	
Ave.	Hayden		Yes, begin w/ 2008 data
ASARCO – Montgomery Ranch	Hayden	SO_2	Yes, begin w/ 2008 data
ASARCO – Hayden Junction	Hayden Junction	SO_2	No
Hayden Old Jail	Hayden	SO_2	No

Site Name	City	Pollutant(s)	AQS Submittal
Chemical Lime Plant	Nelson	Meteorology	No
		PM ₁₀ , PM _{2.5}	
		mass and	
		ammonium	
		speciation,	
Drake Cement	Sycamore Canyon	Meteorology	No
		PM ₁₀ mass and	
		metals	
Miami Ridgeline	Miami	speciation	Yes
		PM ₁₀ mass and	
		metals	
		speciation,	
Miami Golf Course	Miami	collocated	Yes
FMMI – Miami – Jones Ranch	Miami	SO_2	Yes, begin w/ 2008 data
FMMI – Miami – Townsite	Miami	SO_2	Yes, begin w/ 2008 data
		PM ₁₀ mass and	
		metals	
		speciation,	
PCC – Clarkdale NW	Clarkdale	Meteorology	No
		PM ₁₀ mass and	
		metals	
		speciation,	
PCC – Clarkdale SE	Clarkdale	Meteorology	No
		$PM_{10}, H_2SO_4,$	
Carlota Mine – Sanctuary	Globe	Meteorology	No
		NO_2 , PM_{10} ,	
		SO_2 ,	
TEP – Springerville – Coyote Hills	Springerville	Meteorology	No
TEP – Springerville – Coal Yard	Springerville	PM ₁₀	No

4.12 Class I Visibility Network

Visibility monitoring networks track impairment in specified national parks and wilderness areas. These parks and wilderness areas are called Class I Areas and were designated based on an evaluation required by Congress in the 1977 federal CAA Amendments. The evaluation which was performed by the USFS and NPS reviewed the wilderness areas of parks and national forests which were designated as wilderness before 1977, were more than 6,000 acres in size, and have visual air quality as an important resource for visitors. Of the 156 Class I Areas designated across the nation, 12 are located in Arizona.

For the Class I Area designations, EPA initiated a nationally-operated monitoring network in 1987 called the <u>Interagency Monitoring of PROtected Visual Environments</u> (IMPROVE) program. The purpose of the network is to characterize broad regional trends and visibility conditions using monitoring data collected in or near Class I Areas across the United States. Originally, the national

IMPROVE network was made up of approximately 30 sites at Class I areas. During 1999-2000 the number of sites increased to approximately 110. ADEQ, Pima and Pinal counties, and federal land managers at Arizona's Class I areas cooperatively operate the visibility monitoring network in Arizona. The current network is described in Table 4.12-1. In addition to the Class I IMPROVE monitors listed in Table 4.12-1, ADEQ also operates one IMPROVE monitor at the Douglas Red Cross site, and collocated monitors at the JLG Supersite. These sites serve as urban IMPROVE monitors. The Douglas Red Cross site also serves as a border region IMPROVE site. See Appendix B for a spatial representation of the IMPROVE monitoring network and Class I areas within the state of Arizona.

Table 4.12-1 2010-2011 Arizona Class I Visibility Monitoring Network

Geographic Area Represented	, ,	
Geographic Area Kepresenteu	Monitoring Location	
Background	Meadview, Organ Pipe National Monument	
Chiricahua National Monument, Chiricahua	Chiricahua Entrance Station	
Wilderness Area and Galiuro USFS Wilderness		
Grand Canyon National Park	Hance Camp and Indian Gardens	
Mazatzal and Pine Mountain USFS Wilderness	Ike's Backbone	
Mount Baldy	Greer Water Treatment Plant	
Petrified Forest National Park	Petrified Forest	
Saguaro National Park	East Unit and West Unit	
Sierra Ancha USFS Wilderness	Pleasant Valley Ranger Station	
Superstition USFS Wilderness	Tonto National Monument, Queen Valley	
Sycamore Canyon USFS Wilderness	Sycamore Canyon (Camp Raymond)	

ADEQ's 1996 monitoring plan for the Arizona Class I areas proposed adding optical and meteorological monitoring equipment to existing IMPROVE sites to supplement data collected by the IMPROVE aerosol monitors with continuous measurements to better characterize the air quality in these areas. ADEQ's 2002 Class I Area Visibility monitoring plan proposed to established protocol sites (completely supported by ADEQ following IMPROVE monitoring requirements) to supplement the IMPROVE network coverage. Part of the motivation for installing integrating nephelometers at IMPROVE sites was a desire to use short term (five minutes) visibility estimates to model the visual experience of a visitor to a Class I area. A second motivation for installing nephelometers at IMPROVE sites was to provide input to mathematical algorithms that create values that can be compared with the IMPROVE measurements to test the performance of the IMPROVE algorithm. Both the original and the revised IMPROVE algorithms tend to over-estimate the lowest extinction values typical of the Arizona IMPROVE sites.

Due to budget constraints, ADEQ shut down the Class I nephelometer network in 2010. Over a decade of data were collected at several of these nephelometer sites. In early 2011, a draft summary report was written which summarizes the nephelometer data that were collected since 1997. The report provides comparisons of calculated visibility impairment between the IMPROVE aerosol monitors and collocated nephelometers. Summaries and trends in visibility data are also presented within the report, as well as meteorological data summaries in the form of wind roses. This report is meant to serve as a final data summary for the Class I Nephelometer network. Information from this report may be utilized in the future if further modifications are needed to the Arizona Class I visibility network.

4.13 Urban Haze Monitoring Network

Historically, ADEQ monitored the Phoenix and Tucson metropolitan areas with a network of instruments to characterize and quantify the extent of urban haze. There are no established federal or state standards for acceptable levels of urban haze. ADEQ began studying the nature and causes of urban hazes by conducting studies during the winter of 1989-90 in Phoenix and during the winter of 1992-93 in Tucson. These studies recommended long-term, year-round monitoring of visibility. In 1993, ADEQ began deploying visibility monitoring equipment in Phoenix and Tucson. These visibility monitoring data are needed to provide policymakers and the public with information, track short and long-term trends, assess source contributions to urban haze, and better evaluate the effectiveness of air pollution control strategies. Equipment currently used to evaluate urban visibility includes transmissometers, nephelometers, particulate monitors, and digital camera systems.

The Phoenix urban haze network consists of a transmissometer for measuring light extinction along a fixed path length of four and a half kilometers, three nephelometers for measuring light scattering, five digital camera systems to record visual characteristics of the urban area, and particulate filters for quantifying and characterizing particulate matter. Due to budget constraints, the Tucson urban haze network was shut down in September, 2010. Approximately a decade of urban haze data were collected in the Tucson area. In early 2011, a draft summary report was written which summarizes the nephelometer and transmissometer data that were collected since 1997. The report provides summaries and trends in urban visibility data, as well as meteorological data summaries in the form of wind roses. This report is meant to serve as a final data summary for the Tucson Urban Haze network. Information from this report may be utilized in the future if further modifications are needed to the Urban Haze Network. The urban haze sites (and their status) are described in Table 4.13-1.

Table 4.13-1 Urban Haze Monitoring Network

Site Name	Parameter(s) Measured					
Phoenix Network - Operational						
ADEQ Building	High Resolution Digital Camera					
Banner Mesa Medical Center	High Resolution Digital Camera					
Dysart	Light Scattering (Bscat) Nephelometer					
Estrella	Light Scattering (Bscat) Nephelometer					
Estrella Mountain Community College	2 High Resolution Digital Cameras					
JLG Supersite	IMPROVE					
North Mountain Summit	High Resolution Digital Cameras					
Phoenix Transmissometer	Transmissometer (Bext)					
(Phoenix Baptist Hospital to Holiday Inn Hotel)						
Vehicle Emissions Laboratory	Light Scattering (Bscat) Nephelometer					
Tucson Network - Closed	l September, 2010					
22nd St./Craycroft	Light Scattering (Bscat) Nephelometer					
Children's Park	Light Scattering (Bscat) Nephelometer					
Tucson Transmissometer	Transmissometer (Bext)					
(U of A Clinical Science Building to Pima						
County Health & Welfare Building)						

4.14 Meteorology Monitoring Network

ADEQ operates meteorological equipment at selected sites throughout its network (Table 4.14-1). Some sites were originally established because other meteorology networks (NWS, AZMet, etc.) were not located near ADEQ's ambient air quality sites. As recommended in ADEQ's Five-Year Network Assessment, ADEQ has begun to expand the meteorology monitoring network. ADEQ has recently added meteorological instrumentation at the following sites:

- Hayden Old Jail
- Queen Valley
- Globe Highway
- Miami Golf Course

As resources and funding permits, ADEQ may add additional meteorological equipment at existing SLAMS sites. At this time, ADEQ plans to only submit meteorological data that are required by 40 CFR Part 58.16 to EPA's AQS database. If future resources allow additional meteorological data submittals to the AQS database, ADEQ may do so on a voluntary basis. A spatial representation of ADEQ's meteorological monitoring network can be found in Appendix B.

Table 4.14-1 Meteorology Monitoring Networks

Site	Temp.	Temp. Lapse Rate System	Relative Humidity	Wind	Total Horizontal Solar Radiation	Ultraviolet Solar Radiation	Wind Profiler	Report to AQS	Comments
Ajo				X				No	
Globe Highway	X		X	X				No	
Hayden Old Jail	X		X	X				No	
JLG Supersite	X		X	X				Yes	For NCore / PAMS support
Miami Golf Course	X		X	X				No	
Nogales Post Office				X				No	
Paul Spur Chemical Lime Plant - South				X				No	
Payson Well Site	X		X	X				No	
Queen Valley	X		X	X				Yes	For PAMS support
Rillito	X		X	X				No	
Vehicle Emissions	X	X	X	X	X	X	X	Solar only	For PAMS support

Site	Temp.	Temp. Lapse Rate System	Relative Humidity	Wind	Total Horizontal Solar Radiation	Ultraviolet Solar Radiation	Wind Profiler	Report to AQS	Comments
Laboratory									
Yuma Supersite	X		X	X				No	

5.0 MONITORING PLAN QUALITY ASSURANCE

EPA specifies the quality assurance requirements for SLAMS, SPMs, and PSD air monitoring programs in 40 CFR 58 Appendix A. Data quality objectives, measurement quality objective and indicators, quality control (QC) checks for the monitors, calculations for data quality assessments, and data reporting requirements are part of the Air Assessment Section's (AAS) quality management system.

5.1 The Quality System

All environmental data operations (EDOs) contain some level of uncertainty, or error, associated with them. The total measure of uncertainty is the sum of measurement error, which occurs in the data collection process, and population uncertainty, which relates to the representativeness of samples. ADEQ follows EPA's quality system approach which uses data quality objectives (DQOs) which are developed prior to sampling in a program's or project's planning phase. DQOs specify the amount of tolerable error that is not to be exceeded in order to make decisions using the air assessment data collected for each program's or project's specific purpose. To help meet DQOs, measurement quality objectives (MQOs), or performance constraints applied to air monitoring instruments, are used to keep measurement uncertainty within acceptable limits. Population uncertainty is controlled by proper site selection.

ADEQ serves as the Primary Quality Assurance Organization (PQAO) for the air monitoring stations it owns and operates. Being a PQAO streamlines Quality Assurance (QA) efforts by allowing meaningful measurement assessments to take place in a shorter period of time, by allowing expensive assessments such as collocated precision sampling and EPA-required performance evaluation (PE) audits such as the Performance Evaluation Program (PEP) and the National Performance Audit Program (NPAP) to take place at less sites and for results to be aggregated at higher levels that are representative of additional ADEQ sites.

As a PQAO, ADEQ uses precision and bias data from air monitoring instruments to assess how well we are achieving our established DQOs. Precision is defined as the measure of mutual agreement among individual measurements of the same property usually under prescribed similar conditions, and it is the random component of error. Precision data are generated from collocated sites and QC checks performed by the Air Monitoring Unit (AMU). Bias is the systematic or persistent distortion of a measurement process which causes error in one direction. It is determined by estimating the positive and negative deviation from the true value as a percentage of the true value. Bias data are generated from EPA and in-house PE audits.

The measurement uncertainty among all ADEQ stations monitoring for the same pollutant is expected to be reasonably homogeneous, as a result of common factors existing between those stations. Common factors typically include:

- stations being operated by a common team of field operators and according to a common set of field procedures (standard operating procedure (SOP),
- common calibration facilities and standards,
- use of a common quality assurance project plan (QAPP),
- oversight by a common quality assurance organization, and
- support by a common management, laboratory, or headquarters.

5.1.1 ADEQ Quality Assurance Staff

The QA Team is housed in the Data Management & Quality Assurance (DM&QA) Unit and is currently composed of two full-time employees specifically dedicated to QA/QC activities. The QA/QC Lead is a member of ADEQ's agency level QA team which is chaired by the agency's QA/QC and Laboratory Services Manager. The QA/QC Lead participates in technical assistance document (TAD) development with the EPA Office of Air Quality Planning and Standards (OAQPS) when possible. Information concerning changes to TADs is communicated to the QA Auditor and AMU staff so that AAS is able to comment on pertinent QA changes that affect air monitoring quality, logistics, and resources. The QA Auditor manages the PE audit program. In addition, the QA Auditor frequently interacts with air monitoring representatives from the tribes and industrial sources for public outreach or compliance purposes.

The QA Team provides oversight and guidance on air monitoring activities to help ensure EPA's QA requirements and/or best work practices are met. The QA Team primarily interacts with staff from the AMU and Air Filter Laboratory (AFL) both of which are within the AAS.

The QA Team has numerous responsibilities that include, but are not necessarily limited to:

- coordinating the preparation of quality documents such as Quality Assurance Program Plans (QAPrP) which are required by EPA Region 9 and/or Quality Assurance Project Plans (QAPjP) and SOPs as required by EPA OAQPS for operating air monitoring equipment, sample handling, and sample processing,
- conducting Technical Systems Audits (TSAs) of ADEQ air monitoring programs and laboratory services,
- monitoring third-party laboratory performance on TSAs conducted by EPA,
- conducting PE audits on ADEQ, source, and Pinal County Air Quality Control District (PCAQCD) monitors, and
- reviewing documents such as chain-of-custody forms, data forms, and instrument performance forms that relate to DQOs.

For detailed information on the QA Team's activities, see the Annual Audit Report.

5.1.2 ADEQ Quality Documents

ADEQ has an agency-level Quality Management Plan (QMP) that is managed by the QA/QC Manager who reports to the General Services Section in the Administrative Services Division. In 2010, the QA/QC Laboratory Services Manager submitted an updated QMP to EPA Region 9. This version was approved by the Region 9 Quality Assurance Administrator in November 2010. The QMP describes the quality management processes ADEQ uses to maintain a quality management system that supports programs involving environmental data or technology. The QMP is an "Umbrella" document which details in broad terms the strategies used to carry out QA/QC in environmental data collection activities.

Per Region 9 guidance, AAS submitted a QAPrP to EPA Region 9 in November 2001, which was never approved. This document provided a broad overview of all air monitoring programs AAS operates. This document is being replaced by individual QAPrPs which provide more detail for each major air monitoring program. QAPjPs are developed for environmental data operations of limited scope and duration, such as special studies, which have known beginning and anticipated end dates. These projects may involve single or multi-pollutant monitoring, and the QAPjPs may refer to the appropriate QAPrP for the pollutant to reduce duplication of effort. In practice, a QAPrP and a QAPjP are commonly referred to as a Quality Assurance Program/Project Plan (QAPP).

In early 2010, the QA Team updated a schedule for managing new and existing QAPPs. The team's goal is to complete two QAPPs per year in addition to accomplishing other QA tasks. In early 2011, it was determined that QAPPs for criteria pollutants need to be prioritized. The QAPP schedule was revised to reflect the highest priority QAPPs. In 2010, the QA/QC Lead along with staff from AMU began revising the *National Air Toxics Trends Stations, Air Toxics Monitoring Program, & Photochemical Assessment Monitoring Stations QAPP* which was approved by EPA Region 9 in February 2008. Completion of this QAPP was delayed due to other work priorities. In 2010, the QA Team began coordinating the development of a new QAPP for the new Pb monitoring program. This QAPP is nearing completion and expected to be submitted to EPA Region 9 for approval in mid-2011. The QA Auditor audits the new Pb samplers and ADEQ participates in EPA's PEP audit program for these samplers.

Based on communication with EPA, it is not necessary to develop a specific QAPP for NCore. The instruments used in the NCore program will be addressed in several program specific QAPPs that include, but may not be limited to: the PM_{2.5}, PM₁₀, Gaseous Pollutants, and Meteorological QAPPs. The QA Auditor will manage PE audits on these instruments.

AAS follows the EPA's QAPP for the PM_{2.5} STN monitoring program. In late 2009, a new URG 3000 sampler was added for the collection of elemental and organic carbon. The QA Auditor will conduct PE audits on the SuperSASS and URG 3000 four times per year (quarterly) per instrument. An SOP for the URG 3000 from EPA is currently in-use.

SOPs for ambient air quality monitors are included in QAPPs as well as at monitoring sites for technicians and operators. AAS SOPs are being revised to follow EPA's format provided in the *Guidance for Preparing Standard Operating Procedures (SOPs) EPA QA/G-6*. The QA/QC Lead began drafting a new in-house guidance procedure for SOP management and this document is still in development. The goal is to ensure each SOP contains all pertinent procedures from each Unit within

AAS so that all procedures are transparent for staff. This change is expected to improve the usability of each SOP while streamlining review efforts.

5.2 Measurement Quality Checks – Precision and Bias Measurements

AMU QC checks and QA PE audits generate data used to assess the quality of the ambient air quality data collected by AAS. The QC checks are used to assess precision, or imprecision actually, introduced into air quality data by the monitoring system. The PE audits generate data used to assess the amount of bias introduced into air quality data by the monitor. For particulate matter monitors, collocated sampling generates precision data as well. The information gleaned from precision and bias data is important for data certification and user purposes. This QA information is provided via the AMP 255 report which is generated from the EPA's AQS database. The AMP 255 report is included in Appendix G of this plan to demonstrate QA completeness requirements as required in 40 CFR Part 58.10.

The precision and bias data are reviewed for QA purposes by AMU and DM&QA staff to determine the quality of the ambient air data collected. Following reviews, the data are uploaded to the AQS database per 40 CFR 58 requirements for criteria pollutants. To date, the national air monitoring programs not currently accepting/requiring this precision and bias data include the NATTS and PAMS programs.

5.2.1 Particulate Monitors – PM₁₀

ADEQ's current network operates both filter-based and continuous monitors for measuring PM₁₀. Currently, Partisol samplers are used for filter-based measurement and both TEOMs and BAMs are used for continuous measurements. Flow rate verifications are performed once every four weeks and instrument calibrations are performed at minimum once per year or more frequently if needed by AMU staff. The QA Auditor performs PE audits on these samplers once every six months.

Section 3.3.1 of 40 CFR Part 58 Appendix A indicates that 15 percent of the filter-based PM₁₀ sites in a network must be collocated. The collocated monitors must be within four meters of each other and at least one meter apart for flow rates less than 200 liters/min. ADEQ has seven sites and according to the rule one collocated site is required. Currently ADEQ runs two collocated filter-based samplers, at Payson Well Site and Paul Spur Chemical Lime Plant, which exceeds this requirement. All concentrations from the collocated samplers are reported to the AQS with parameter occurrence code (POC) 2. Collocated samples are collected every sixth day for precision measurements.

5.2.2 Particulate Monitors – PM_{2.5}

ADEQ's current network operates both filter-based and continuous monitors for measuring PM_{2.5}. Currently, Partisol samplers are used for filter-based measurements and TEOMs, BAMs and nephelometers are used for continuous measurements. Flow rate verifications are performed every four weeks and calibrations are performed annually or more frequently if needed by AMU. The QA Auditor performs PE audits on these monitors once every six months.

For the PM_{2.5} network, each filter-based sampling method must include collocated sampling at 15 percent of the monitoring sites operated by the reporting agency. If the area has less than four

monitoring sites at least one must have a precision measurement. ADEQ currently operates six PM_{2.5} sites which results in one collocated site being required. This requirement is met with the collocation of Partisols at the Nogales Post Office site. Previously, collocated PM_{2.5} sampling also occurred at the JLG Supersite; however, with the replacement of the Partisol 2025 instruments with a Partisol 2000 instrument, collocation will no longer be required at this site. Section 3.2.5.6 of 40 CFR Part 58 Appendix A requires that the collocated monitors must be within four meters of each other and at least one meter apart for flow rates less than 200 liters/min. Collocated samples are collected every sixth day to ensure an adequate number of precision measurements. All concentrations from the collocated monitors are reported as POC 2. PEP audits are conducted on PM_{2.5} filter-based samplers by the EPA. The PEP audit results are also used for measuring bias and are reported to AQS by the EPA. The ADEQ network has more than five filter-based sites, which requires eight PEP audits distributed evenly over four quarters. According to this schedule, all samplers will receive a PEP audit within a six year period.

ADEQ operates two air samplers, the SuperSASS and the URG 3000, for the PM_{2.5} STN as part of the CSN. Speciation filter samples are collected every third day. There is no collocation requirement for these samplers, but data generated from these samplers complement the data generated from the collocated IMPROVE samplers at JLG Supersite. Flow rate verifications are performed every four weeks and calibrations are performed annually or more frequently if needed. The QA Auditor audits each sampler quarterly. Beginning with 2010, all precision and bias measurements are reported to the AQS.

5.2.3 Gas Monitors – SO₂, O₃, CO, NO₂

One-point precision checks, along with zero and span checks are conducted biweekly and multipoint calibrations are performed quarterly by AMU for all gas monitors. Multi-point PE audits are performed annually by QA. Both measurements are reported to the AQS. NPAP audits are conducted by EPA annually for bias measurements. NPAP results are reported to AQS by the EPA. Beginning in July 2010, the frequency of these audits increased and are now conducted on a semi-annual basis.

All shelters for the gas monitors contain temperature probes. The shelter temperature is checked daily via the data collection system (DCS) to verify proper operating conditions for the monitors. Shelter temperatures are required to be between 20° and 30° C. Shelter temperature probes are audited once every six months by QA.

5.2.4 Air Toxics Monitors

ADEQ's JLG Supersite in Phoenix is a designated air monitoring station for the NATTS program. AMU conducts verifications and calibrations on the samplers used to collect PM₁₀ metals, Polycyclic Aromatic hydrocarbons (PAHs), and hexavalent chrome. Calibrations occur once every six months and verifications occur on a monthly or quarterly basis. QA conducts PE audits on the same samplers once every six months. The VOC sampler is currently calibrated annually by ATEC and certified annually by ERG. The carbonyl sampler is currently calibrated annually by ATEC and certified annually by either ATEC or ERG.

5.2.5 Meteorological Equipment

Meteorological equipment is audited by the QA Team annually. The meteorological equipment at the designated NCore site will be audited once every six months.

5.3 Calculations and Reporting

ADEQ submits the required AQS precision and bias report (AMP 255) to Region 9 in the annual Certification Letter per certification guidelines and CFR requirements. As stated above, all collocated particulate mater (PM) measurements are submitted quarterly to AQS as POC 2. AQS then calculates the precision statistics. The PM flow verification data and gaseous biweekly precision check data are submitted quarterly as precision records. Audit data for both PM monitors and gas monitors are also submitted quarterly.

5.4 ADEQ AQD Audit Responsibilities

The QA Team conducts PE audits of AAS monitors, PCAQCD monitors, and some source monitors whose measurements are used for determining NAAQS compliance.

5.4.1 Internal Technical System Audits

In 2010, the QA Team provided support and assistance to AMU in addressing the findings and recommendations from the Southern Regional Office (SRO) and Northern Regional Office (NRO) staff and operator TSAs. To date, the QA Auditor conducts TSAs on 12 IMPROVE samplers at 11 sites operating throughout the state annually. These TSAs are limited to evaluating site conditions and instrument performance with occasional operator interaction. Seven of the 12 samplers are "protocol" samplers meaning they are owned and operated by ADEQ. The other five samplers are owned and operated by EPA. Currently, AAS does not receive funds for the TSAs performed on EPA IMPROVE samplers. This schedule was reviewed in 2010 and there have been no changes to the audit services provided for IMPROVE program at this time.

In late 2009, the QA/QC Lead initiated the startup of an Air Toxics Team whose members include technicians from AMU, the QA Auditor, and the data management lead. The purpose of this team was to prepare for a TSA and to update the NATTS / ATMP / PAMS QAPP and instrument SOPs. The team meets on a regular basis to address issues related to air toxics sampling.

In mid-2010, the QA/QC Lead initiated the startup of a Pb Monitoring Team whose members include staff from Special Projects, AMU, the AFL, DM&QA as well as the manager of AAS. The purpose of the team was to ensure all pertinent staff were able to work together to develop program-related SOPs and the program QAPP.

5.4.2 ADEQ Rankings in EPA Program Reports

In early 2009, the QA Team reviewed the report of EPA's PEP audit program. DM&QA staff began investigating what changes may have occurred within the PM_{2.5} network to cause a shift in program

performance over the last nine years. Based on EPA's Three-Year Quality Assurance Reports for the SLAMS PM_{2.5} Ambient Air Monitoring Program covering years 1999 through 2007, ADEQ's PM_{2.5} network fell from a high rating to a low rating for bias results. Three areas are under review to identify and eliminate source(s) of error occurring in the network in order to reverse this trend. The program elements under review include: the sampler and impactor combination, the AFL gravimetric weighing process, operator training, and the PEP audit and data assessment process. To date, AFL has participated in three round-robins in the Gravimetric Inter-Laboratory Comparison Study conducted by the EPA's National Air and Radiation Environmental Laboratory (NAREL) and scored well on each. AMU is currently working on updating their training procedures for those responsible for operating filter-based PM₁₀ and PM_{2.5} instrumentation. Further network evaluation will continue in 2011.

5.4.3 Technical Assistance Document Development

In 2010, the process of verifying flow standards used by AMU and QA underwent some review. This review was initiated by the QA/QC Lead's involvement as a reviewer on a new flow standard TAD by OAQPS. Currently, most AMU and QA flow standards are certified, or verified, annually. The calibrators used by QA for criteria pollutant gases and the O₃ standard are checked twice per year. All gas and flow rate standards used by AMU and QA Team are traceable to the National Institute of Standards and Technology (NIST) flow standard.

5.5 EPA Audit Responsibilities

EPA Headquarters and Region 9 each have responsibilities for auditing ADEQ's ambient air monitoring program.

5.5.2 PEP and NPAP Audits

In 2011, ADEQ will continue to participate in the EPA NPAP and the PM_{2.5} PEP audits. ADEQ consented to have EPA use a portion of ADEQ's grant funds to pay for these audit programs through IFC Consultants. NPAP and PEP audits are expected to occur in 2011 as in previous years. Also, PEP audits for Pb will begin in 2011 and the cost for this will be covered by EPA this year.

5.5.2 Technical System Audits

In September 2009, EPA Region 9 conducted a comprehensive TSA on ADEQ's air monitoring program. Findings and recommendations from the TSA were reviewed by AAS staff and an official Corrective Action Plan was submitted to EPA Region 9 in February, 2011. ADEQ will continue to work with EPA Region 9 on the findings from the 2009 EPA TSA. EPA Region 9 is required to conduct TSAs on the ADEQ monitoring program every three years.

In April 2010, ADEQ underwent a TSA of the NATTS program. The TSA was conducted by RTI, a contractor for EPA. Findings and recommendations from the TSA are being addressed.

Appendix A – Definitions and Abbreviations

AAAD Air Assessment Ambient Database

AAS Air Assessment Section

AADT Annual Average Daily Traffic

ADEQ Arizona Department of Environmental Quality

AFL Air Filter Lab

AMU Air Monitoring Unit

Auto GC/MS Automated Gas Chromatograph Mass Spectrometer

AQS Air Quality System (EPA database)

BAM Beta Attenuation Monitor
Bext Total Light Extinction
Bscat Light Scattering

CAA Clean Air Act
CBSA Combined Statistic

CBSA Combined Statistical Area
CFR Code of Federal Regulations

CO Carbon Monoxide

CSN Chemical Speciation Network

DCS Data Collection System

DM&QA Data Management and Quality Assurance Unit

DQO Data Quality Objective

E-BAM Environmental Proof - Beta Attenuation Monitor

EDO Environmental Data Operation EPA Environmental Protection Agency FEM Federal Equivalent Method

FEM Federal Equivalent Method FRM Federal Reference Method HAP Hazardous Air Pollutants

IMPROVE Interagency Monitoring of PROtected Visual Environments

MCAQD Maricopa County Air Quality Department

MET Meteorological Measurements (wind, temperature, relative humidity)

MQO Measurement Quality Objective MSA Metropolitan Statistical Area μg/m³ Micrograms per Cubic Meter

NAAQS National Ambient Air Quality Standard

NAREL National Air and Radiation Environmental Laboratory

NATA National Air Toxics Assessment NATTS National Air Toxics Trends Station

NCore National Core multipollutant monitoring stations
NIST National Institute of Standards and Technology

NM National Monument NO₂ Nitrogen Dioxide

NOx Nitrogen oxides measured in two ranges; 0-1 ppm and trace level 0-0.2 ppm

NOy Trace Level Nitrogen Oxides

NPAP National Performance Audit Program

NPS National Park Service NRO Northern Regional Office NWS National Weather Service

 O_3 Ozone

OAQPS Office of Air Quality Planning and Standards

PAHs Polyaromatic Hydrocarbons

PAMS Photochemical Assessment Monitoring Station

Pb Lead

PCAQCD Pinal County Air Quality Control District

PDEQ Pima County Department of Environmental Quality

PE Performance Evaluation

PEP Performance Evaluation Program

PM Particulate Matter

PM₁₀ Particulate Matter < 10 microns

PM_{coarse} Coarse Particulate Matter 2.5 to 10 microns aerodynamic diameter

PM_{2.5} Particulate Matter < 2.5 microns POC Parameter Occurrence Code

ppb Parts Per Billion ppm Parts Per Million

PQAO Primary Quality Assurance Organization PSD Prevention of Significant Deterioration PWEI Populated Weighted Emissions Index

QA Quality Assurance

QAPP Quality Assurance Program and/or Project Plan

QAPjP Quality Assurance Program Plan QAPrP Quality Assurance Project Plan

QC Quality Control

QMP Quality Management Plan

RASS Radar Acoustic Sounding System

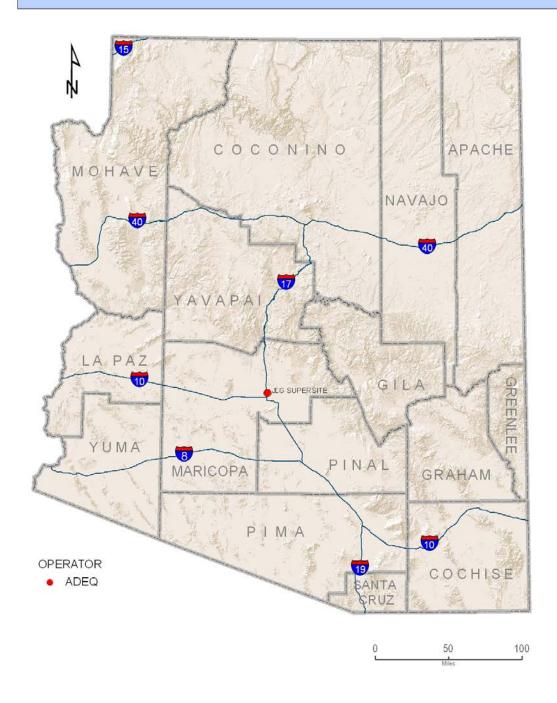
SIP State Implementation Plan

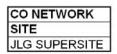
SLAMS State and Local Air Monitoring Stations

SO₂ Sulfur Dioxide

SOP Standard Operating Procedure
SPM Special Purpose Monitor
SRO Southern Regional Office
STN Speciation Trends Network
TAD Technical Assistance Document

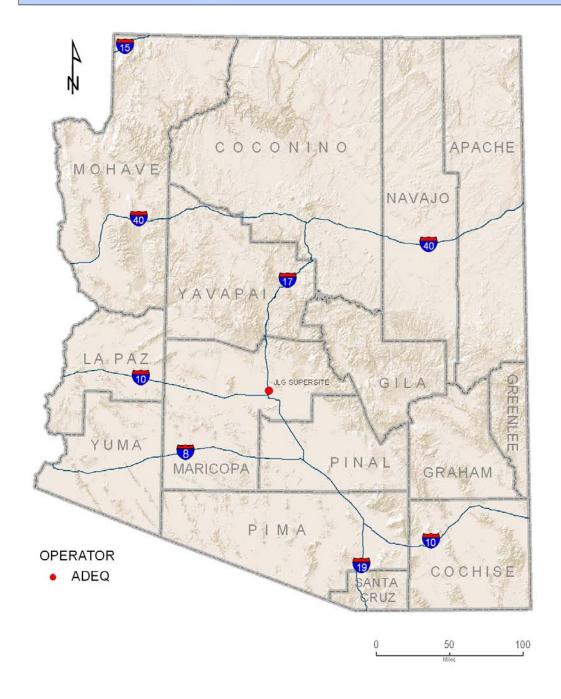
TEOM Tapered Element Oscillating Microbalance

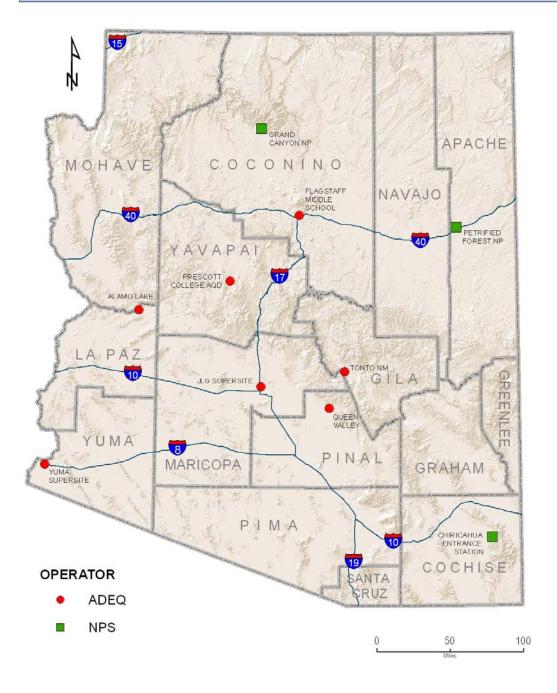

TSA Technical System Audit
USFS United States Forest Service
VOC Volatile Organic Compound


Appendix B – Network Maps

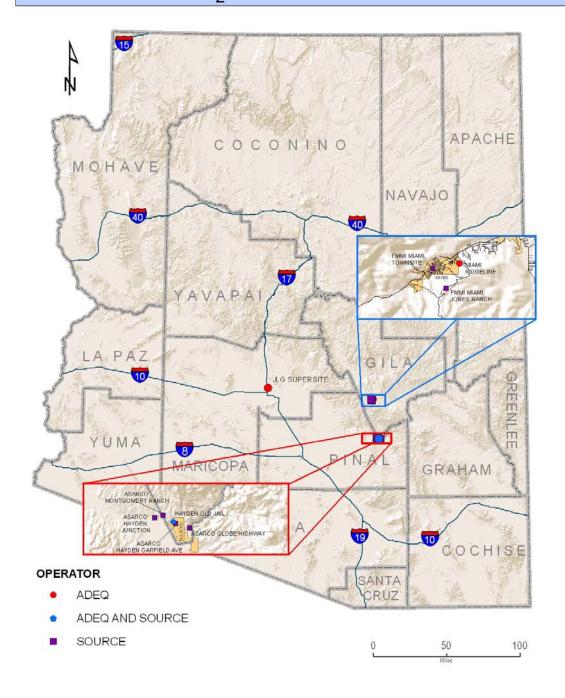
There are elevan maps in this section illustrating the location of ADEQ and Source monitors:

- CO Network
- NO₂ Network
- O₃ Network
- SO₂ Network
- Pb Network
- PM₁₀ Network
- PM_{2.5} Network
- EBAM Network
- Meteorological Network
- Urban Visibility Network
- IMPROVE Network & Class I Wilderness areas

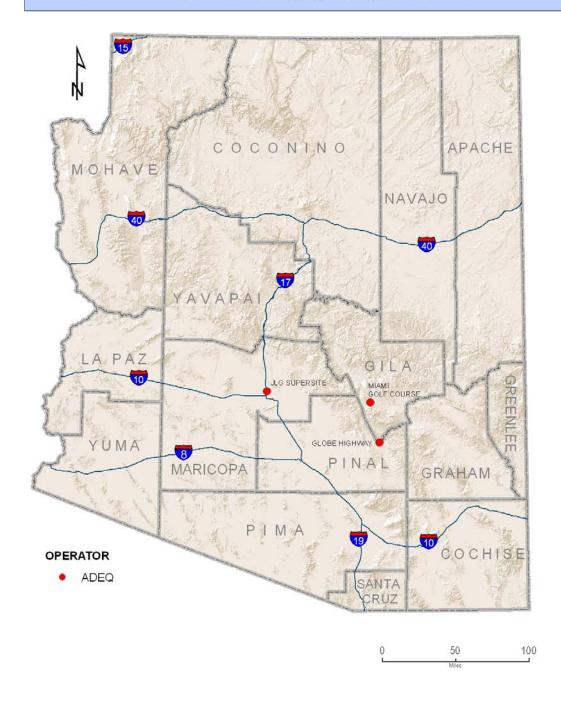

CO Network


NO₂ Network

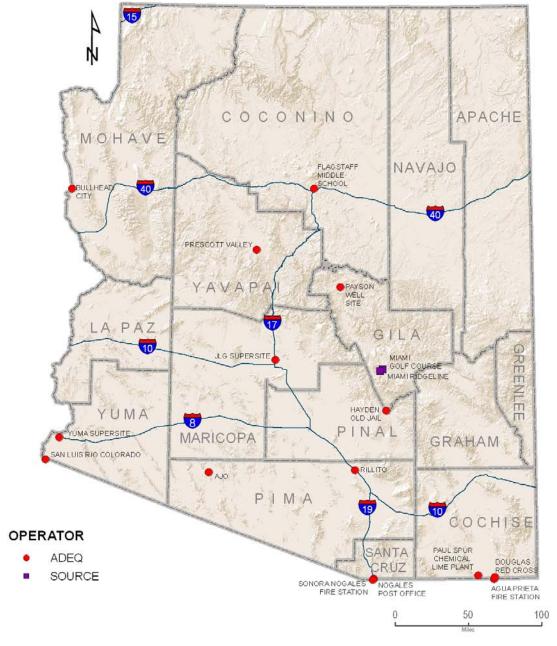
NO2	NETWORK	
SITE		
JLG SUPERSITE		


O₃ Network

O3 NETWORK				
SITE	OPERATOR	SITE	OPERATOR	
ALAMO LAKE	ADEQ	PETRIFIED FOREST NP	NPS	
CHIRICAHUA ENTRANCE STATION	NPS	PRESCOTT COLLEGE AQD	ADEQ	
FLAGSTAFF MIDDLE SCHOOL	ADEQ	QUEEN VALLEY	ADEQ	
GRAND CANYON NP	NPS	TONTO NM	ADEQ	
JLG SUPERSITE	ADEQ	YUMA SUPERSITE	ADEQ	


SO₂ Network

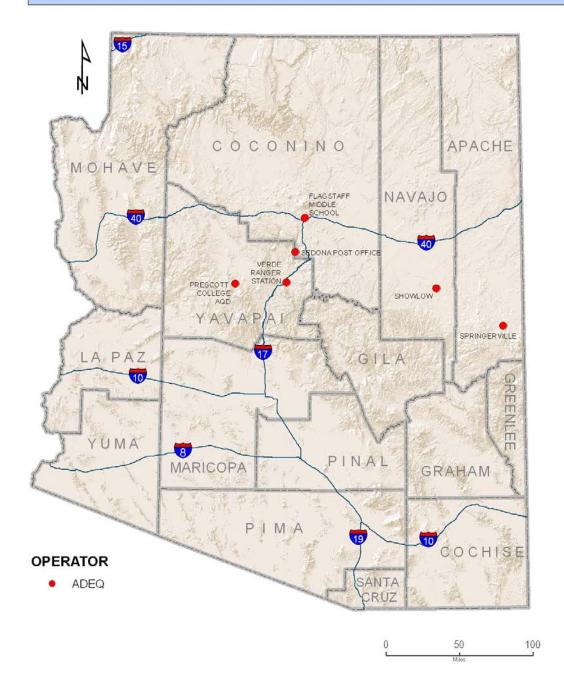
SO2 NETWORK				
SITE	OPERATOR	SITE	OPERATOR	
ASARCO HAYDEN GARFIELD AVE	SOURCE	GLOBE HIGHWAY	SOURCE	
ASARCO HAYDEN JUNCTION	SOURCE	HAYDEN OLD JAIL	ADEQ & SOURCE	
ASARCO MONTGOMERY RANCH	SOURCE	JLG SUPERSITE	ADEQ	
FMMI MIAMI JONES RANCH	SOURCE	MIAMI RIDGELINE	ADEQ	
FMMI MIAMI TOWNSITE	SOURCE			


Pb Network

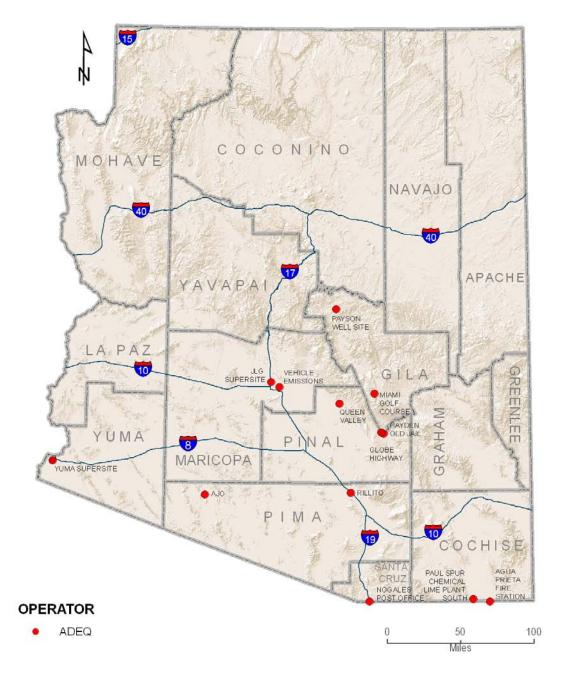
Pb NETWORK	
SITE	
GLOBE HIGHWAY, COLLOCATED	
JLG SUPERSITE	
MIAMI GOLF COURSE	

PM₁₀ Network

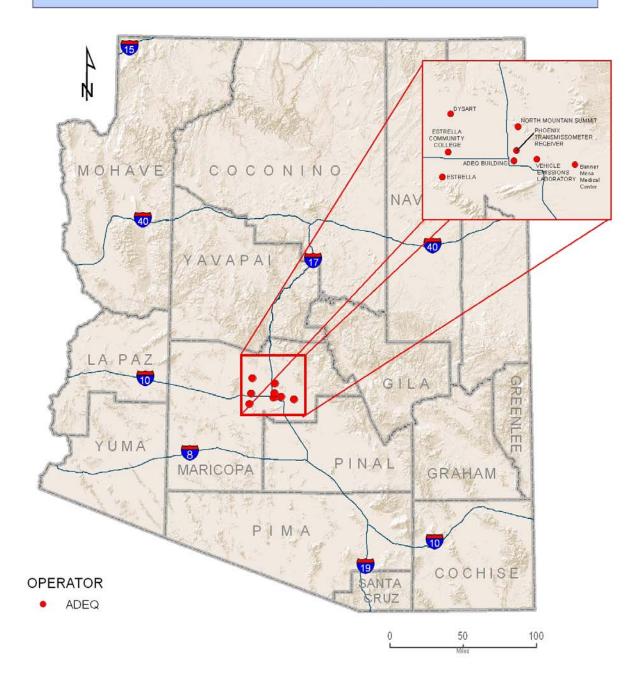
PM10 NETWORK				
SITE	PARAMETERS	SITE	PARAMETERS	
AGUA PRIETA FIRE STATION	PM10	NOGALES POST OFFICE	PM10	
AJO	PM10	PAUL SPUR CHEMICAL LIME PLANT	PM10, COLLOCATED	
BULLHEAD CITY	PM10	PAYSON WELL SITE	PM10, COLLOCATED	
DOUGLAS RED CROSS	PM10	PRESCOTT VALLEY	PM10	
FLAGSTAFF MIDDLE SCHOOL	PM10	RILLITO	PM10	
HAYDEN OLD JAIL	PM10	SAN LUIS RIO COLORADO	PM10	
JLG SUPERSITE	PM10	SONORA NOGALES FIRE STATION	PM10	
MIAMI GOLF COURSE	PM10, COLLOCATED	YUMA SUPERSITE	PM10	
MIAMI RIDGELINE	PM10			


PM_{2.5} Network

PM 2.5 NETWORK				
SITE	PARAMETERS	SITE	PARAMETERS	
AGUA PRIETA FIRE STATION	PM2.5	PRESCOTT VALLEY	PM2.5	
DOUGLAS RED CROSS	PM2.5	SAN LUIS RIO COLORADO	PM2.5	
FLAGSTAFF MIDDLE SCHOOL	PM2.5	SONORA NOGALES FIRE STATION	PM2.5	
JLG SUPERSITE	PM2.5	YUMA SUPERSITE	PM2.5	
NOGALES POST OFFICE	PM2.5, COLLOCATED			


EBAM Network

EBAM NETWORK			
SITE	PARAMETERS	SITE	PARAMETERS
FLAGSTAFF MIDDLE SCHOOL	EBAM-PM10	SHOWLOW	EBAM-PM10
PRESCOTT COLLEGE AQD	EBAM-PM10	SPRINGERVILLE	EBAM-PM10
SEDONA POST OFFICE	EBAM-PM10	VERDE RANGER STATION	EBAM-PM10


Meteorological Network

METEOROLOGICAL NETWORK				
SITE	PARAMETERS	SITE	PARAMETERS	
AGUA PRIETA FIRE STATION	WIND, TEMP/RH	PAUL SPUR CHEMICAL LIME PLANT SOUTH	WIND	
AJO	WIND	PAYSON WELL SITE	WIND, TEMP/RH	
GLOBE HIGHWAY	WIND, TEMP/RH	QUEEN VALLEY	WIND, TEMP/RH	
HAYDEN OLD JAIL	WIND, TEMP/RH	RILLITO	WIND, TEMP/RH	
JLG SUPERSITE	WIND, TEMP/RH	VEHICLE EMISSIONS LABORATORY	WIND, DELTA TEMP, HORIZ & UV SOLAR	
MIAMI GOLF COURSE	WIND, TEMP/RH	YUMA SUPERSITE	WIND, TEMP/RH	
NOGALES POST OFFICE	WIND			

Urban Visibility Network

URBAN VISIBILITY NETWORK				
SITE	PARAMETERS	SITE	PARAMETERS	
ADEQ BUILDING	VISIMAGE	NORTH MOUNTAIN SUMMIT	VISIMAGE	
BANNER MESA MEDICAL CENTER	VISIMAGE	PHOENIX TRANSMISSOMETER RECEIVER	BEXT	
DYSART	BSCAT	PHOENIX TRANSMISSOMETER TRANSMITTER	BEXT	
ESTRELLA	BSCAT	VEHICLE EMISSIONS LABORATORY	BSCAT	
ESTRELLA COMMUNITY COLLEGE	VISIMAGE 2			

IMPROVE Network & Class I Areas

IMPROVE NETWORK			
SITE	OPERATOR	SITE	OPERATOR
CHIRICAHUA ENTRANCE STATION	NPS	ORGAN PIPE NATIONAL MONUMENT	ADEQ/USFS
DOUGLAS RED CROSS	ADEQ	PETRIFIED FOREST NATIONAL PARK	NPS
GRAND CANYON NATIONAL PARK - HANCE CAMP	NPS	PLEASANT VALLEY RANGER STATION	USFS
GRAND CANYON NATIONAL PARK - INDIAN GARDENS	NPS	QUEEN VALLEY	ADEQ
GREER WATER TREATMENT PLANT	USFS	SAGUARO NATIONAL PARK - EAST	NPS
IKE'S BACKBONE	USFS	SAGUARO NATIONAL PARK - WEST	ADEQ/NPS
JLG SUPERSITE	ADEQ	SYCAMORE CANYON	USFS
MEADVIEW	NPS	TONTO NATIONAL MONUMENT	USFS

Appendix C – Current Monitors by Programs-Networks-Parameters

ADEQ NET WORKS	
AirNOW	54
EBAM	55
Meteorology	
Temp/RH	56
Wind	57
Special Purpose Monitors (SPM)	59
NAAQS-RELATED NETWORKS	
National Core Multi-pollutant Monitoring Stations (NCore)	60
Photochemical Assessment Monitoring Stations (PAMS)	62
State & Local Air Monitoring Stations (SLAMS)	
CO	64
NO_2	65
O_3	65
SO_2	67
Pb	68
PM_{10}	69
PM _{2.5}	71
Special Purpose Monitors (SPM)	72
SPECIATION TRENDS NETWORK (STN)	73
AIR TOXICS	
National Air Toxics Trends Sites (NATTS)	74
Urban Air Toxics Monitoring Program (UATMP)	75
VISIBILITY	
Urban Haze	
Camera	76
Nephelometer	77
Transmissometer	78
Temp/RH	79
Interagency Monitoring of Protected Visual Environments (IMPROVE)	80

ADEQ - AirNOW			
Parameter	Bscat/PM2.5	Bscat/PM2.5	Bscat/PM2.5
	Phoenix-Mesa-	Phoenix-Mesa-	Phoenix-Mesa-
CBSA	Scottsdale	Scottsdale	Scottsdale
			Mahiala Eminaiana
Cita manitan la sata d	Divisions	Fatualla	Vehicle Emissions
Site monitor located	Dysart	Estrella	Laboratory
Monitor location at site	Tower	Tower	Tower
Monitoring objective	Population	Population	Visibility
Spatial scale	Neighborhood	Neighborhood	Neighborhood
Monitor type	Nephelometer	Nephelometer	Nephelometer
	Light Scatter with	Light Scatter with	Light Scatter with
	correlation to	correlation to	correlation to
Analysis method	PM2.5	PM2.5	PM2.5
Make of monitor	Optec	Optec	Optec
Model of monitor	NGN 2	NGN 2	NGN 2
Method code			
Monitor start date	6/16/2003	2/11/2003	6/25/2003
Sampling schedule	Continuous	Continuous	Continuous
Sampling duration	Hourly	Hourly	Hourly
Sampling season	All year	All year	All year
In climate controlled shelter	N	N	N
Probe height from ground	6 m	6 m	5 m
Distance from closest obstruction	30 m	25 m	30 m
Distance from trees		5 m	50 m
Unrestricted airflow degrees	360°	360°	360°
Monitor audit frequency	Annual	Annual	Annual

	ADEQ - E-BAM - PM10									
CBSA	Flagstaff	Prescott	Flagstaff	Navajo	None	Prescott				
	Flagstaff Middle	Prescott College	Sedona Post	į		Verde Ranger				
Site monitor located	School	AQD	Office	Show Low	Springerville	Station				
Monitor location at site	Rooftop	Rooftop	Rooftop	Rooftop	Rooftop	Metal Platform				
Monitoring objective	Population	Population	Population	Population	Population	Population				
Spatial scale	Neighborhood	Neighborhood	Neighborhood	Neighborhood	Neighborhood	Neighborhood				
Monitor type	E-BAM	E-BAM	E-BAM	E-BAM	E-BAM	E-BAM				
	Beta Ray	Beta Ray	Beta Ray	Beta Ray	Beta Ray	Beta Ray				
Analysis method	Attenuation	Attenuation	Attenuation	Attenuation	Attenuation	Attenuation				
Make of monitor	Met One	Met One	Met One	Met One	Met One	Met One				
Model of monitor	E-BAM	E-BAM	E-BAM	E-BAM	E-BAM	E-BAM				
Method code										
Monitor start date	7/3/2007	12/5/2006	12/5/2006	5/25/2011	9/24/2008	1/1/2008				
Sampling schedule	Continuous	Continuous	Continuous	Continuous	Continuous	Continuous				
Sampling duration	Hourly	Hourly	Hourly	Hourly	Hourly	Hourly				
Sampling season	All year	All year	All year	All year	All year	All year				
In climate controlled shelter	N	N	N	N	N	N				
Probe height from ground	6 m	6 m	2 m		8 m	3.5 m				
Distance from closest obstruction	10 m		13 m							
Distance from trees	15 m	7 m	15 m		30 m	30 m				
Unrestricted airflow degrees	300°	250°	360°		250°	360°				
Flow rate verification frequency	Monthly	Monthly	Monthly	Monthly	Monthly	Monthly				

ADEQ - Meteorology - Temp/RH

	T		T	T				
			Phoenix-Mesa-			Phoenix-Mesa-		
CBSA	Payson	Payson	Scottsdale	Payson	Payson	Scottsdale	Pima	Yuma
		Hayden Old		Miami Golf	Payson Well			Yuma
Site monitor located	Globe Highway	Jail	JLG Supersite	Course	Site	Queen Valley	Rillito	Supersite
Monitor location at site	Tower	Tower	Tower	Tower	Tower	Tower	Tower	Tower
Monitoring objective	Population	Population	Population	Population	Population	Population	Source	Population
Spatial scale	Neighborhood	Neighborhood	Neighborhood	Neighborhood	Neighborhood	Neighborhood	Neighborhood	Neighborhood
Monitor type	Probe	Probe	Probe	Probe	Probe	Probe	Probe	Probe
Analysis method	None	None	None	None	None	None	None	None
Make of monitor	Rotronics	Rotronics	Rotronics	Rotronics	Vaisala	Rotronics	Vaisala	Vaisala
Model of monitor	MP101A	MP101A	MP101A	MP101A	HMP 45C	MP101A	HMP 45C	HMP 45C
Method code								
Monitor start date	4/14/2011	2/2/2011	1/15/2010	6/8/2011	6/19/2003	4/27/2011	3/30/2010	3/17/2010
Sampling schedule	Continuous	Continuous	Continuous	Continuous	Continuous	Continuous	Continuous	Continuous
Sampling duration	Hourly	Hourly	Hourly	Hourly	Hourly	Hourly	Hourly	Hourly
Sampling season	All year	All year	All year	All year	All year	All year	All year	All year
In climate controlled shelter	N	N	N	N	N	N	N	Ν
Probe height from ground	2 m	2 m	2 m	2 m	3 m	2 m	2 m	2 m
Probe distance from structure	1 m	1 m	1 m	1 m	1 m	1 m	1 m	1 m
Distance from closest obstruction		1 m	8 m		7 m	12 m	1 m	1 m
Distance from trees	4 m	2 m	5 m		5 m		18 m	
Unrestricted airflow degrees	300°	250°	210°		250°	360°	360°	220°
Monitor audit frequency	Annual	Annual	Annual	Annual	Annual	Annual	Annual	Annual

				Phoenix-Mesa-		
CBSA	Tucson	Payson	Payson	Scottsdale	Payson	Nogales
						Nogales Post
Site monitor located	Ajo	Globe Highway	Hayden Old Jail	JLG Supersite	Miami Golf Course	Office
Monitor location at site	Tower	Tower	Tower	Tower	Tower	Pole
Monitoring objective	Population	Population	Population	Population	Population	Population
Spatial scale	Neighborhood	Neighborhood	Neighborhood	Neighborhood	Neighborhood	Neighborhood
Monitor type	Anemometer	Anemometer	Anemometer	Anemometer	Anemometer	Anemometer
Analysis method	None	None	None	None	None	None
Make of monitor	RM Young	RM Young	RM Young	RM Young	RM Young	RM Young
Model of monitor	5103	5103	5103	5103	5103	5103
Method code	40	40	40	40	40	40
Monitor start date	6/11/2003	4/14/2011	2/2/2011	2/12/2003	6/8/2011	6/13/2003
Sampling schedule	Continuous	Continuous	Continuous	Continuous	Continuous	Continuous
Sampling duration	Hourly	Hourly	Hourly	Hourly	Hourly	Hourly
Sampling season	All year	All year	All year	All year	All year	All year
In climate controlled shelter	N	N	N	N	N	N
Probe height from ground	10 m	10 m	10 m	10 m		10 m
Distance from closest obstruction			2 m	8 m		
Distance from trees	35 m	4 m	2 m	5 m		20 m
Unrestricted airflow degrees	360°	360°	360°	360°		360°
Monitor audit frequency	Annual	Annual	Annual	Biannual	Annual	Annual

ADEQ - Meteorology -	Wind - continued
----------------------	------------------

	Sierra Vista-		Phoenix-Mesa-		Phoenix-Mesa-	
CBSA	Douglas	Payson	Scottsdale	Tucson	Scottsdale	Yuma
	Paul Spur					
	Chemical Lime				Vehicle Emissions	
Site monitor located	Plant South	Payson Well Site	Queen Valley	Rillito	Laboratory	Yuma Supersite
Monitor location at site	Tower	Tower	Tower	Tower	Tower	Tower
Monitoring objective	Source	Population	Population	Source	Population	Population
Spatial scale	Middle	Neighborhood	Neighborhood	Neighborhood	Neighborhood	Neighborhood
Monitor type	Anemometer	Anemometer	Anemometer	Anemometer	Anemometer	Anemometer
Analysis method	None	None	None	None	None	None
Make of monitor	RM Young	RM Young	RM Young	RM Young	RM Young	RM Young
Model of monitor	5103	5103	5103	5103	5103	5103
Method code	40	40	40	40	40	40
Monitor start date	12/16/1997	5/30/1991	4/27/2011	1/8/2004	5/11/1999	3/17/2010
Sampling schedule	Continuous	Continuous	Continuous	Continuous	Continuous	Continuous
Sampling duration	Hourly	Hourly	Hourly	Hourly	Hourly	Hourly
Sampling season	All year	All year	All year	All year	All year	All year
In climate controlled shelter	N	N	N	N	N	N
Probe height from ground	10 m	10 m	10 m	10 m	10 m	10 m
Distance from closest obstruction		7 m		20 m	30 m	50 m
Distance from trees		5 m		20 m	50 m	
Unrestricted airflow degrees	360°	360°	360°	360°	360°	360°
Monitor audit frequency	Annual	Annual	Annual	Annual	Annual	Annual

				ADEQ - SPM					
Parameter	PM10	PM2.5	Temp/RH	Wind	PM10	PM2.5	PM2.5	PM10	PM2.5
CBSA	None	None	None	None	None	None	Nogales	None	None
	Agua Prieta Fire	Agua Prieta Fire	Agua Prieta Fire	Agua Prieta Fire	Sonora Nogales	Sonora Nogales	Nogales Post	San Luis Rio	San Luis Rio
Site monitor located	Station	Station	Station	Station	Fire Station	Fire Station	Office	Colorado	Colorado
Monitor location at site	Rooftop	Rooftop	Rooftop	Rooftop	Metal Platform	Metal Platform	Rooftop	Platform	Platform
Monitoring objective	Population	Population	Population	Population	Population	Population	Population	Population	Population
Spatial scale	Neighborhood	Neighborhood	Neighborhood	Neighborhood	Neighborhood	Neighborhood	Neighborhood	Neighborhood	Neighborhood
Monitor type	Partisol 2000	Partisol 2000	Probe	Anemometer	Partisol 2000	Partisol 2000	BAM	Partisol Dichot	Partisol Dichot
							Beta Ray		
Analysis method	Gravimetric	Gravimetric	None	None	Gravimetric	Gravimetric	Attenuation	Gravimetric	Gravimetric
Make of monitor	Thermo	Thermo	Vaisala	RM Young	Thermo	Thermo	Met One	Thermo	Thermo
Model of monitor	2000 F	2000 F	HMP 45C	5103	2000 F	2000 F	1020	2000 D	2000 D
Method code	126	126			126	126	731		
Monitor start date	4/11/2010	4/11/2010	12/18/1998	12/18/1998	4/11/2010	4/11/2010	2/2/2004	6/15/2009	6/15/2009
Sampling schedule	1 in 6	1 in 6	Continuous	Continuous	1 in 6	1 in 6	Continuous	1 in 6	1 in 6
Sampling duration	24 hour	24 hour	Hourly	Hourly	24 hour	24 hour	Hourly	24 hour	24 hour
Sampling season	All year	All year	All year	All year	All year	All year	All year	All year	All year
In climate controlled shelter	N	N	N	N	N	N	Y	N	N
Probe height from ground	7 m	7 m	8 m	10 m	3 m	3 m	7 m	3 m	4 m
Probe distance from structure					3 m	3 m		20m	20m
Distance from closest obstruction	30 m	30 m	30 m	30 m	3 m	3 m	8 m	50 m	50 m
Distance from trees	20 m	20 m	20 m	20 m			12 m	5 m	5 m
Unrestricted airflow degrees	360°	360°	360°	360°	250°	250°	300°	360°	360°
Monitor audit frequency	Every 3 Months	Every 3 Months		-	Every 3 Months	Every 3 Months	Biannual	Every 3 Months	Every 3 Months
Flow rate verification frequency	Every 3 Months	Every 3 Months			Every 3 Months	Every 3 Months	Monthly	Every 3 Months	Every 3 Months

	NCore									
Parameter	CO	NOy	O3	SO2	PM10-2.5	PM2.5				
	Phoenix-Mesa-	Phoenix-Mesa-	Phoenix-Mesa-	Phoenix-Mesa-	Phoenix-Mesa-	Phoenix-Mesa-				
CBSA	Scottsdale	Scottsdale	Scottsdale	Scottsdale	Scottsdale	Scottsdale				
Site monitor located	JLG Supersite	JLG Supersite	JLG Supersite	JLG Supersite	JLG Supersite	JLG Supersite				
Monitor location at site	Shelter	Shelter	Shelter	Shelter	Shelter	Metal Roof				
Monitoring objective	Population	Population	Population	Population	Population	Population				
Spatial scale	Neighborhood	Neighborhood	Neighborhood	Neighborhood	Neighborhood	Neighborhood				
	CO Trace	Trace Reactive	•	SO2 Trace	, and the second	· ·				
Monitor type	Analyzer	NOx	O3 Analyzer	Analyzer	BAM	Partisol 2000				
	Gas Filter	Chemilumin-	-	Pulsed						
Analysis method	Correlation	escence	UV Photometric	Fluorescence	Difference Method	Gravimetric				
Make of monitor	Ecotech	Ecotech	API Teledyne	Ecotech	Met One	R&P				
Model of monitor	EC 9830	EC 9843	M400E	EC 9850	1020	2000 F				
Method code	588	591	087	592	185	145				
Monitor start date	6/1/2010	4/1/2011	3/15/2011	6/1/2010	11/10/2010	7/1/2011				
Sampling schedule	Continuous	Continuous	Continuous	Continuous	Continuous	1 in 3				
Sampling duration	Hourly	Hourly	Hourly	Hourly	Hourly	24 hour				
Sampling season	All year	All year	All year	All year	All year	All year				
In climate controlled shelter	Υ	Υ	Υ	Υ	N	N				
Probe height from ground	5 m	5 m	5 m	5 m		5 m				
Probe distance from structure	2 m	7 m	2 m	2 m						
Probe material	Teflon	Teflon	Teflon	Teflon						
Residence time	0.76 sec	13.08 sec	0.83 sec	0.51 sec						
Distance from closest obstruction	8 m	8 m	8 m	8 m	8 m	8 m				
Distance from trees	5 m	5 m	5 m	5 m	5 m	5 m				
Unrestricted airflow degrees	210°	210°	210°	210°	210°	210°				
Monitor audit frequency	Annual	Annual	Annual	Annual	Biannual	Biannual				
Flow rate verification frequency					Monthly	Monthly				
One-point QC check frequency	Every 2 weeks	Every 2 weeks	Every 2 weeks	Every 2 weeks						
PEP audit monitor?						Y				
NPAP audit monitor?			Υ							

		NCore continued			
Parameter	PM2.5	PM2.5 Speciation	PM2.5 Speciation	Temp/RH	Wind
	Phoenix-Mesa-	Phoenix-Mesa-	Phoenix-Mesa-	Phoenix-Mesa-	Phoenix-Mesa-
CBSA	Scottsdale	Scottsdale	Scottsdale	Scottsdale	Scottsdale
Site monitor located	JLG Supersite	JLG Supersite	JLG Supersite	JLG Supersite	JLG Supersite
Monitor location at site	Metal Roof	Metal Roof	Metal Roof	Tower	Tower
Monitoring objective	Population	Population	Population	Population	Population
Spatial scale	Neighborhood	Neighborhood	Neighborhood	Neighborhood	Neighborhood
Monitor type	BAM	Speciation FRM/SASS	Speciation FRM/URG	Probe	Anemometer
	Beta Ray				
Analysis method	Attenuation	Various	Various	None	None
Make of monitor	Met One	Met One	URG	Rotronics	RM Young
Model of monitor	1020	Super SASS	3000N	MP101A	5103
			838/839/840/841/8		
Method code	170	811/812/813	42/826	21	40
Monitor start date	11/10/2010	2/21/2000	10/1/2009	1/15/2010	2/12/2003
Sampling schedule	Continuous	1 in 3	1 in 3	Continuous	Continuous
Sampling duration	Hourly	24 hour	24 hour	Hourly	Hourly
Sampling season	All year	All year	All year	All year	All year
In climate controlled shelter	Υ	N	N	N	N
Probe height from ground	5 m	5 m	5 m	2 m	10 m
Probe distance from structure					
Probe material					
Residence time					
Distance from closest obstruction	8 m	8 m	8 m	8 m	8 m
Distance from trees	5 m	5 m	5 m	5 m	5 m
Unrestricted airflow degrees	210°	210°	210°	210°	360°
Monitor audit frequency	Biannual	Quarterly	Quarterly	Biannual	Biannual
Flow rate verification frequency	Monthly	Every 2 weeks	Every 2 weeks		
One-point QC check frequency					
PEP audit monitor?					
NPAP audit monitor?					

PAMS								
Parameter	СО	NOx	O3	Carbonyl	Carbonyl	VOC	O3	
	Phoenix-Mesa-	Phoenix-Mesa-	Phoenix-Mesa-	Phoenix-Mesa-	Phoenix-Mesa-	Phoenix-Mesa-	Phoenix-Mesa-	
CBSA	Scottsdale	Scottsdale	Scottsdale	Scottsdale	Scottsdale	Scottsdale	Scottsdale	
Site monitor located	JLG Supersite	JLG Supersite	JLG Supersite	JLG Supersite	JLG Supersite	JLG Supersite	Queen Valley	
Monitor location at site	Shelter	Shelter	Shelter	Shelter	Shelter	Shelter	Shelter	
Monitoring objective	Population	Population	Population	Population	Population	Population	Transport	
Spatial scale	Neighborhood	Neighborhood	Urban	Urban	Urban	Urban	Urban	
Monitor type	CO Trace Analyzer	NOx Analyzer	O3 Analyzer	Cartridge Sampler	Cartridge Sampler	Canister Sampler	O3 Analyzer	
Analysis method	Gas Filter Correlation	Chemilumin- escence	UV Photometric		TO-11A	Lab Analysis	UV Photometric	
Make of monitor	Thermo	Thermo	Thermo	ATEC	ATEC	Met One	Thermo	
Model of monitor	48C	42C	49C	8000	8000	8001	49C	
Method code	54	74	47	202	202		47	
Monitor start date	12/11/2002	7/1/1993	7/1/1993	5/15/1999	5/15/1999	6/1/2009	1/1/1998	
Sampling schedule	Continuous	Continuous	Continuous	1 in 6	1 in 6	1 in 6	Continuous	
Sampling duration	Hourly	Hourly	Hourly	24 hour	3 - 3 hour	24 hour	Hourly	
Sampling season	All Year	All Year	All Year	All year	All year	June - Aug.	April – Oct.	
In climate controlled shelter	Υ	Y	Y	Y	Υ	Υ	Υ	
Probe height from ground	5 m	5 m	5 m	5 m	5 m	4.5 m	5 m	
Probe distance from structure								
Probe material	Teflon	Teflon	Teflon				Teflon	
Residence time	0.76 sec	0.89 sec	0.83 sec				3.56 sec	
Distance from closest obstruction	8 m	8 m	8 m	8 m	8 m	8 m	30 m	
Distance from trees	5 m	5 m	5 m	5 m	5 m	5 m	3 m	
Unrestricted airflow degrees	210°	210°	210°	210°	210°	210°	360°	
Monitor audit frequency	Annual	Annual	Annual	Annual	Annual		Annual	
One-point QC check frequency	Every 2 weeks	Every 2 weeks	Every 2 weeks	Annual	Annual	Annual	Every 2 weeks	
NPAP audit monitor?	Υ	Υ	Υ				Υ	

PAMS continued

				Total Horizontal	Ultraviolet Solar	
Parameter	NOy	VOC	Delta Temp	Solar Radiation	Radiation	Wind Profiler
	Phoenix-Mesa-	Phoenix-Mesa-	Phoenix-Mesa-	Phoenix-Mesa-	Phoenix-Mesa-	Phoenix-Mesa-
CBSA	Scottsdale	Scottsdale	Scottsdale	Scottsdale	Scottsdale	Scottsdale
			Vehicle	Vehicle	Vehicle	Vehicle
			Emissions	Emissions	Emissions	Emissions
Site monitor located	Queen Valley	Queen Valley	Laboratory	Laboratory	Laboratory	Laboratory
Monitor location at site	Shelter	Shelter	Tower	Tower	Tower	Ground
Monitoring objective	Transport	Transport	Population	Population	Population	Population
Spatial scale	Urban	Urban	Neighborhood	Neighborhood	Neighborhood	Neighborhood
	Trace Reactive	Canister	Delta Temp		Ultraviolet	
Monitor type	NOx - Seasonal	Sampler	System	Pyranometer	Sensor	Wind Profiler
	Chemilumin-					
Analysis method	escence	Lab Analysis	None	None	None	None
Make of monitor	Thermo	Met One	RM Young	Li-Cor	Epply	Vaisala
Model of monitor	42C TL	8001	RTD 7627	LI - 200S2	TUVR	LAP-3000
Method code	574	-	810	11	11	
Monitor start date	5/9/2011	6/1/2010	8/20/2004	6/18/1999	8/20/2004	1/1/1998
Sampling schedule	Continuous	1 in 6	Continuous	Continuous	Continuous	Continuous
Sampling duration	Hourly	24 hour	Hourly	Hourly	Hourly	Hourly
Sampling season	April – Oct.	June – Aug.	All year	All year	All year	All year
In climate controlled shelter	Υ	Υ	N	N	N	N
Probe height from ground	5 m	5 m	2 m & 9 m	5 m	5 m	
Probe distance from structure		-	1 m	0.5 m	0.5 m	
Probe material		-				
Residence time		-				
Distance from closest obstruction	30 m	30 m	30 m	30 m	35 m	5 m
Distance from trees	3 m	3 m	50 m	50 m	50 m	50 m
Unrestricted airflow degrees	360°	360°	360°	360°	360°	360°
Monitor audit frequency	Annual	Every 3 Years	Annual			
One-point QC check frequency	Every 2 weeks					
NPAP audit monitor?						

NIΛΛ	2	آ ا	AMS -	0
IVAA	しょっ・	וכי	AIVIN -	

	Phoenix-Mesa-
CBSA	Scottsdale
Site monitor located	JLG Supersite
Monitor location at site	Shelter
Monitoring objective	Population
Spatial scale	Neighborhood
•	CO Trace
Monitor type	Analyzer
	Gas Filter
Analysis method	Correlation
Make of monitor	Ecotech
Model of monitor	EC 9830
Method code	588
Monitor start date	6/1/2010
Sampling schedule	Continuous
Sampling duration	Hourly
Sampling season	All Year
In climate controlled shelter	Υ
Probe height from ground	5 m
Probe material	Teflon
Residence time	0.76 sec
Distance from closest obstruction	8 m
Distance from trees	5 m
Unrestricted airflow degrees	210°
Monitor audit frequency	Annual
One-point QC check frequency	Every 2 weeks
NPAP audit monitor?	Y

NAAQS - SLAMS - NO2

	Discourt Masses
	Phoenix-Mesa-
CBSA	Scottsdale
Site monitor located	JLG Supersite
Monitor location at site	Shelter
Monitoring objective	Population
Spatial scale	Neighborhood
Monitor type	NOx Analyzer
	Chemilumin-
Analysis method	escence
Make of monitor	Thermo
Model of monitor	42C
Method code	74
Monitor start date	7/1/1993
Sampling schedule	Continuous
Sampling duration	Hourly
Sampling season	All Year
In climate controlled shelter	Υ
Probe height from ground	5 m
Probe material	Teflon
Residence time	0.89 sec
Distance from closest obstruction	8 m
Distance from trees	5 m
Unrestricted airflow degrees	210°
Monitor audit frequency	Annual
One-point QC check frequency	Every 2 weeks
NPAP audit monitor?	Y

NAAQS - SLAMS - O3

			Phoenix-Mesa-		Phoenix-Mesa-		
CBSA	None	Flagstaff	Scottsdale	Prescott	Scottsdale	Payson	Yuma
		Flagstaff Middle		Prescott College		Tonto National	
Site monitor located	Alamo Lake	School	JLG Supersite	AQD	Queen Valley	Monument	Yuma Supersite
Monitor location at site	Shelter	Shelter	Shelter	Shelter	Shelter	Shelter	Shelter
Monitoring objective	Transport	Population	Population	Population	Transport	Transport	Population
Spatial scale	Regional	Neighborhood	Urban	Neighborhood	Urban	Regional	Neighborhood
Monitor type	O3 Analyzer	O3 Analyzer	O3 Analyzer	O3 Analyzer	O3 Analyzer	O3 Analyzer	O3 Analyzer
Analysis method	UV Photometric	UV Photometric	UV Photometric	UV Photometric	UV Photometric	UV Photometric	UV Photometric
Make of monitor	Teledyne API	Teledyne API	Teledyne API	Teledyne API	Teledyne API	Teledyne API	Teledyne API
Model of monitor	400E	400E	400E	400E	400E	400E	400E
Method code	087	087	087	087	087	087	087
Monitor start date	3/1/2011	3/1/2011	3/15/2011	3/1/2011	3/1/2011	3/1/2011	3/1/2011
Sampling schedule	Continuous	Continuous	Continuous	Continuous	Continuous	Continuous	Continuous
Sampling duration	Hourly	Hourly	Hourly	Hourly	Hourly	Hourly	Hourly
Sampling season	April – Oct.	April – Oct.	All Year	April – Oct.	April – Oct.	April – Oct.	April – Oct.
In climate controlled shelter	Y	Υ	Y	Y	Y	Y	Υ
Probe height from ground	5 m	10 m	5 m	6 m	5 m	6 m	5 m
Probe distance from structure	2 m	0.5 m				2 m	2 m
Probe material	Teflon	Teflon	Teflon	Teflon	Teflon	Teflon	Teflon
Residence time	2.91 sec	8.66 sec	0.83 sec	3.60 sec	3.56 sec	3.53 sec	2.98 sec
Distance from closest obstruction	7 m		8 m		30 m		35 m
Distance from trees	12 m	15 m	5 m	12 m	3 m	4 m	
Unrestricted airflow degrees	360°	360°	210°	250°	360°	360°	360°
Monitor audit frequency	Annual	Annual	Annual	Annual	Annual	Annual	Annual
One-point QC check frequency	Every 2 weeks	Every 2 weeks	Every 2 weeks	Every 2 weeks	Every 2 weeks	Every 2 weeks	Every 2 weeks
NPAP audit monitor?			Υ		Υ	Υ	

NAAQS - SLAMS - SO2

		Phoenix-Mesa-	
CBSA	Payson	Scottsdale	Payson
Site monitor located	Hayden Old Jail	JLG Supersite	Miami Ridgeline
Monitor location at site	Shelter	Shelter	Shelter
Monitoring objective	Source	Population	Source
Spatial scale	Neighborhood	Neighborhood	Neighborhood
		SO2 Trace	
Monitor type	SO2 Analyzer	Analyzer	SO2 Analyzer
	Pulsed	Pulsed	Pulsed
Analysis method	Fluorescence	Fluorescence	Fluorescence
Make of monitor	Thermo	Ecotech	Thermo
Model of monitor	43C	EC 9850	43C
Method code	60	592	60
Monitor start date	1/1/1975	6/11/2010	10/5/1995
Sampling schedule	Continuous	Continuous	Continuous
Sampling duration	Hourly	Hourly	Hourly
Sampling season	All year	All year	All year
In climate controlled shelter	Υ	Υ	Υ
Probe height from ground	7 m	5 m	4 m
Probe distance from structure	2 m	-	2 m
Probe material	Teflon	Teflon	Teflon
Residence time	4.75 sec	0.51 sec	4.88 sec
Distance from closest obstruction	3 m	8 m	5 m
Distance from trees	15 m	5 m	5 m
Unrestricted airflow degrees	360°	210°	180°
Monitor audit frequency	Annual	Annual	Annual
One-point QC check frequency	Every 2 weeks	Every 2 weeks	Every 2 weeks
NPAP audit monitor?	Y	Y	Υ

NAAQS -	- SI AI	MC -	Ρh
NAAGO:	- OLA	WIO -	ΓD

			Phoenix-Mesa-	
CBSA	Payson	Payson	Scottsdale	Payson
CBOR	1 dyson	1 dyson	Coottodato	1 4 3 3 0 1 1
Site monitor located	Globe Highway	Globe Highway	JLG Supersite	Miami Golf Course
Monitor location at site	Platform	Platform	Metal Roof	Platform
Monitoring objective	Source	Source	Population	Source
Spatial scale	Middle	Middle	Neighborhood	Middle
Monitor type	TSP	TSP		TSP
Monitor analysis method	High-Vol	High-Vol		High-Vol
·	Inductively	Inductively		Inductively
	Coupled Argon	Coupled Argon		Coupled Argon
	Plasma-Optical	Plasma-Optical		Plasma-Optical
	Emission	Emission		Emission
Lab analysis method	Spectrometry	Spectrometry		Spectrometry
Make of monitor	Tisch	Tisch		Tisch
Model of monitor	TE-5170-BL	TE-5170-BL		TE-5170-BL
Method code	191	191		191
Monitor start date	10/1/2010	10/1/2010		10/1/2010
Sampling schedule	1 in 6	1 in 6	1 in 6	1 in 6
Sampling duration	24 hour	24 hour	24 hour	24 hour
Sampling season	All year	All year	All year	All year
In climate controlled shelter	N	N	N	N
Probe height from ground	3 m	3 m		3.5 m
Probe distance from structure				
Distance from closest obstruction				
Distance from trees	4 m	4 m		1 m
Unrestricted airflow degrees	360°	360°		180°
Dist. between collocated monitors	2 m	2 m		
Monitor audit frequency	Quarterly	Quarterly	Quarterly	Quarterly
Flow rate verification frequency	Every 12 days	Every 12 days	Every 12 days	Every 12 days

NAAQS - SLAMS - PM10

		Lake Havasu City-	Sierra Vista-			Phoenix-Mesa-	
CBSA	Tucson	Kingman	Douglas	Flagstaff	Payson	Scottsdale	Nogales
			Douglas Red	Flagstaff Middle			Nogales Post
Site monitor located	Ajo	Bullhead City	Cross	School	Hayden Old Jail	JLG Supersite	Office
Monitor location at site	Metal Platform	Rooftop	Metal Platform	Rooftop	Rooftop	Shelter	Rooftop
Monitoring objective	Population	Population	Population	Population	Source	Population	Population
Spatial scale	Neighborhood	Neighborhood	Neighborhood	Neighborhood	Neighborhood	Neighborhood	Neighborhood
Monitor type	TEOM	Partisol 2000	Partisol 2000	Partisol 2000	TEOM	BAM	Partisol 2000
	Tapered Element Oscillating Microbalance				Tapered Element Oscillating Microbalance	Beta Ray	
Analysis method	Technology	Gravimetric	Gravimetric	Gravimetric	Technology	Attenuation	Gravimetric
Make of monitor	R&P	R&P	R&P	R&P	R&P	Met One	R&P
Model of monitor	1400AB	2000 F	2000 F	2000 F	1400AB	1020	2000 F
Method code	79	126	126	126	79	185	126
Monitor start date	2/19/2009	9/2/2003	4/1/2004	4/1/2004	3/3/2009	6/1/2010	8/27/2003
Sampling schedule	Continuous	1 in 6	1 in 6	1 in 6	Continuous	Continuous	1 in 6
Sampling duration	Hourly	24 hour	24 hour	24 hour	Hourly	Hourly	24 hour
Sampling season	All Year	All year	All year	All year	All year	All year	All year
In climate controlled shelter	Υ	N	N	N	N	Υ	N
Probe height from ground	4 m	8 m	4 m	6 m	6 m		7 m
Probe distance from structure							
Distance from closest obstruction	7 m	7 m	10 m	10 m	3 m	8 m	8 m
Distance from trees	35 m		>10 m	15 m	15 m	5 m	6 m
Unrestricted airflow degrees	360°	360°	300°	300°	360°	210°	300°
Dist. between collocated monitors							
Monitor audit frequency	Biannual	Biannual	Biannual	Biannual	Biannual	Biannual	Biannual
Flow rate verification frequency	Monthly	Monthly	Monthly	Monthly	Monthly	Monthly	Monthly

NAAQS - SLAMS - PM10 continued

	Sierra Vista-	Sierra Vista-					
CBSA	Douglas	Douglas	Payson	Payson	Prescott	Tucson	Yuma
	Paul Spur	Paul Spur					
	Chemical Lime	Chemical Lime					
Site monitor located	Plant	Plant	Payson Well Site	Payson Well Site	Prescott Valley	Rillito	Yuma Supersite
Monitor location at site	Metal Platform	Metal Platform	Metal Platform	Metal Platform	Rooftop	Metal Platform	Shelter
Monitoring objective	Source	Source	Population	Population	Population	Source	Population
Spatial scale	Middle	Middle	Neighborhood	Neighborhood	Neighborhood	Neighborhood	Neighborhood
Monitor type	Partisol 2000	Partisol 2000	Partisol 2000	Partisol 2000	Partisol 2000	TEOM	TEOM
						Tapered Element	Tapered Element
						Oscillating	Oscillating
						Microbalance	Microbalance
Analysis method	Gravimetric	Gravimetric	Gravimetric	Gravimetric	Gravimetric	Technology	Technology
Make of monitor	R&P	R&P	R&P	R&P	R&P	R&P	R&P
Model of monitor	2000 F	2000 F	2000 F	2000 F	2000 F	1400 AB	1400 AB
Method code	126	126	126	126	126	79	79
Monitor start date	7/20/2005	6/28/2005	1/16/2005	5/13/2009	12/28/2007	4/1/2010	12/1/2009
Sampling schedule	1 in 6	1 in 6	1 in 6	1 in 6	1 in 6	Continuous	Continuous
Sampling duration	24 hour	24 hour	24 hour	24 hour	24 hour	Hourly	Hourly
Sampling season	All year	All year	All year	All year	All year	All year	All year
In climate controlled shelter	N	N	N	N	N	N	Υ
Probe height from ground	4 m	4 m	3 m	3 m	7 m	5 m	5 m
Probe distance from structure							2 m
Distance from closest obstruction	50 m	50 m	12 m	12 m	20 m	4 m	50 m
Distance from trees	5 m	5 m	5 m	5 m		20 m	
Unrestricted airflow degrees	320°	320°	300°	300°	360°	360°	360°
Dist. between collocated monitors	1.5 m	1.5 m	2 m	2 m			
Monitor audit frequency	Biannual	Biannual	Biannual	Biannual	Biannual	Biannual	Biannual
Flow rate verification frequency	Monthly	Monthly	Monthly	Monthly	Monthly	Monthly	Monthly

NAAQS - SLAMS - PM2.5

	Sierra Vista-		Phoenix-Mesa-	Phoenix-Mesa-				
CBSA	Douglas	Flagstaff	Scottsdale	Scottsdale	Nogales	Nogales	Prescott	Yuma
	Douglas Red	Flagstaff Middle			Nogales Post	Nogales Post		
Site monitor located	Cross	School	JLG Supersite	JLG Supersite	Office	Office	Prescott Valley	Yuma Supersite
Monitor location at site	Metal Platform	Rooftop	Metal Roof	Shelter	Rooftop	Rooftop	Rooftop	Platform
Monitoring objective	Population	Population	Population	Population	Population	Population	Population	Population
Spatial scale	Neighborhood	Neighborhood	Neighborhood	Neighborhood	Neighborhood	Neighborhood	Neighborhood	Neighborhood
Monitor type	Partisol 2000	Partisol 2000	Partisol 2000	BAM	Partisol 2000	Partisol 2000	Partisol 2000	Partisol 2000
				Beta Ray				
Analysis method	Gravimetric	Gravimetric	Gravimetric	Attenuation	Gravimetric	Gravimetric	Gravimetric	Gravimetric
Make of monitor	R&P	R&P	R&P	Met One	R&P	R&P	R&P	R&P
Model of monitor	2000 F	2000 F	2000 F	1020	2000 F	2000 F	2000 F	2000 F
Method code	143	143	143	185	143	143	143	143
Monitor start date	4/1/2004	9/16/2003	7/1/2011	6/1/2010	9/26/2003	9/26/2003	1/1/2008	1/1/2010
Sampling schedule	1 in 6	1 in 6	1 in 3	Continuous	1 in 6	1 in 6	1 in 6	1 in 6
Sampling duration	24 hour	24 hour	24 hour	Hourly	24 hour	24 hour	24 hour	24 hour
Sampling season	All year	All year	All Year	All year	All year	All year	All Year	All year
In climate controlled shelter	N	N	N	Υ	N	N	N	N
Probe height from ground	4 m	6 m	5 m		7 m	7 m	7 m	5 m
Distance from closest obstruction	8 m	10 m	8 m	8 m	8 m	8 m	20 m	50 m
Distance from trees	>10 m	15 m	5 m	5 m	10 m	10 m		
Unrestricted airflow degrees	300°	300°	210°	210°	300°	300°	360°	360°
Dist. between collocated monitors			-		2 m	2 m		
Monitor audit frequency	Biannual	Biannual	Biannual	Biannual	Biannual	Biannual	Biannual	Biannual
Flow rate verification frequency	Monthly	Monthly	Monthly	Monthly	Monthly	Monthly	Monthly	Monthly
PEP audit monitor?	Y	Υ	Υ		Υ	Υ		
Changes in next 18 months?								

NAAQS - SPM

	1
Parameter	PM10
CBSA	Nogales
	Nogales Post
Site monitor located	Office
Monitor location at site	Rooftop
Monitoring objective	Population
Spatial scale	Neighborhood
Monitor type	BAM
	Beta Ray
Analysis method	Attenuation
Make of monitor	Met One
Model of monitor	1020
Method code	122
Monitor start date	2/2/2004
Sampling schedule	Continuous
Sampling duration	Hourly
Sampling season	All year
In climate controlled shelter	Υ
Probe height from ground	7 m
Distance from closest obstruction	8 m
Distance from trees	12 m
Unrestricted airflow degrees	300°
Monitor audit frequency	Biannual
Flow rate verification frequency	Monthly

STN						
Parameter	PM2.5 Speciated	PM2.5 Speciation				
	Phoenix-Mesa-	Phoenix-Mesa-				
CBSA	Scottsdale	Scottsdale				
Site monitor located	JLG Supersite	JLG Supersite				
Monitor location at site	Metal Roof	Metal Roof				
Monitoring objective	Population	Population				
Spatial scale	Neighborhood	Neighborhood				
	Speciation FRM/	Speciation				
Monitor type	SASS	FRM/URG				
Analysis method	Various	Various				
Make of monitor	Met One	URG				
Model of monitor	Super SASS	3000N				
		838/839/840/841/8				
Method code	811/812/813	42/826				
Monitor start date	2/21/2000	10/1/2009				
Sampling schedule	1 in 6	1 in 3				
Sampling duration	24 hour	24 hour				
Sampling season	All year	All year				
In climate controlled shelter	N	N				
Probe height from ground	5 m	5 m				
Distance from closest obstruction	8 m	8 m				
Distance from trees	5 m	5 m				
Unrestricted airflow degrees	210°	210°				
Monitor audit frequency	Biannual	Quarterly				
Flow rate verification frequency	Every 2 weeks	Every 2 weeks				

I		TOXICS - NATTS	3		
				Hexavalent	

					Hexavalent		PM10 Metal
Parameter	VOC	VOC	Carbonyl	Carbonyl	Chromium	SVOC	Speciation
	Phoenix-Mesa-	Phoenix-Mesa-	Phoenix-Mesa-	Phoenix-Mesa-	Phoenix-Mesa-	Phoenix-Mesa-	Phoenix-Mesa-
CBSA	Scottsdale	Scottsdale	Scottsdale	Scottsdale	Scottsdale	Scottsdale	Scottsdale
Site monitor located	JLG Supersite	JLG Supersite	JLG Supersite	JLG Supersite	JLG Supersite	JLG Supersite	JLG Supersite
Monitor location at site	Shelter	Shelter	Shelter	Shelter	Metal Roof	Shelter	Metal Roof
Monitoring objective	Population	Population	Population	Population	Population	Population	Population
Spatial scale	Urban	Urban	Urban	Urban	Urban	Urban	Neighborhood
	VOC Canister	VOC Canister	Carbonyl Cartridge	Carbonyl Cartridge			
Monitor type	Sampler	Sampler	Sampler	Sampler	Toxic Air Sampler	PUF	Partisol 2000
Analysis method	TO15/TO14	TO15/TO14	TO-11A	TO-11A	CARB Method	Lab Analysis	Gravimetric
	Tisch	Tisch				Tisch	
Make of monitor	Environmental	Environmental	ATEC	ATEC	Xontech	Environmental	R&P
Model of monitor	2200	2200	8000	8000	924	TE-1000BL	2000 F
Method code	101/126	101/126	202	202	921	118	126/202
Monitor start date	6/6/2001	6/6/2001	5/15/1999	5/15/1999	1/1/2006	7/8/2007	1/1/2005
Sampling schedule	1 in 6	1 in 6	1 in 6	1 in 6	1 in 6	1 in 6	1 in 6
Sampling duration	24 hour	24 hour	24 hour	24 hour	24 hour	24 hour	24 hour
Sampling season	All year	All year	All year	All year	All year	All year	All year
In climate controlled shelter	Υ	Υ	Υ	Y	N	N	N
Probe height from ground	5 m	5 m	5 m	5 m	5 m	4.5 m	5 m
Probe distance from structure							-
Distance from closest obstruction	8 m	8 m	8 m	8 m	8 m	8 m	8 m
Distance from trees	5 m	5 m	5 m	5 m	5 m	5 m	5 m
Unrestricted airflow degrees	210°	210°	210°	210°	210°	210°	210°
Monitor audit frequency	Annual	Annual	Annual	Annual	Biannual	Biannual	Biannual
Flow rate verification frequency							Monthly
One-point QC check frequency	Annual	Annual	Annual	Annual		Monthly	

TOXICS -	ΙΙΔΤΜΡ

D (Tarrian
Parameter	Toxics
	Phoenix-Mesa-
CBSA	Scottsdale
Site monitor located	South Phoenix
Monitor location at site	Shelter
Monitoring objective	Population
Spatial scale	Neighborhood
	Multiport Canister
Monitor type	Sampler
Analysis method	TO15
Make of monitor	ATEC
Model of monitor	8001
Method code	
Monitor start date	8/5/2001
Sampling schedule	1 in 12
Sampling duration	24 hour
Sampling season	May-Aug.
In climate controlled shelter	Υ
Probe height from ground	6 m
Probe distance from structure	2 m
Distance from closest obstruction	12 m
Distance from trees	10 m
Unrestricted airflow degrees	250°
Monitor audit frequency	Annual
One-point QC check frequency	

	Visibility - Urban Haze - Camera							
	Phoenix-Mesa-	Phoenix-Mesa-	Phoenix-Mesa-	Phoenix-Mesa-	Phoenix-Mesa-			
CBSA	Scottsdale	Scottsdale	Scottsdale	Scottsdale	Scottsdale			
			Estrella Mountain	Estrella Mountain				
		Banner Mesa	Community	Community				
Site monitor located	ADEQ Building	Medical Center	College	College	North Mountain			
Monitor location at site	Rooftop	Rooftop	Rooftop	Rooftop	Tower			
Monitoring objective	Visibility	Visibility	Visibility	Visibility	Visibility			
Spatial scale	Urban	Urban	Urban	Urban	Urban			
	High Res Digital	High Res Digital	High Res Digital	High Res Digital	High Res Digital			
Monitor type	Camera	Camera	Camera	Camera	Camera			
Analysis method	None	None	None	None	None			
Make of monitor	Olympus	Olympus	Olympus	Olympus	Olympus			
Model of monitor	SP500UZ	SP500UZ	SP500UZ	SP500UZ	SP500UZ			
Method code								
Monitor start date	6/9/2003	6/10/2003	3/12/2003	3/12/2003	7/1/2003			
Sampling schedule	Every 15 min.	Every 15 min.	Every 15 min.	Every 15 min.	Every 15 min.			
Sampling duration	1 min.	1 min.	1 min.	1 min.	1 min.			
Sampling season	All year	All year	All year	All year	All year			
In climate controlled shelter	N	N	N	N	N			

Visibility - Urban Haze - Nephelometer					
CBSA	Phoenix-Mesa- Scottsdale	Phoenix-Mesa- Scottsdale	Phoenix-Mesa- Scottsdale		
			Vehicle Emissions		
Site monitor located	Dysart	Estrella	Laboratory		
Monitor location at site	Tower	Tower	Tower		
Monitoring objective	Population	Population	Population		
Spatial scale	Neighborhood	Neighborhood	Neighborhood		
Monitor type	Nephelometer	Nephelometer	Nephelometer		
	Light Scatter with	Light Scatter with	Light Scatter with		
	correlation to	correlation to	correlation to		
Analysis method	PM2.5	PM2.5	PM2.5		
Make of monitor	Optec	Optec	Optec		
Model of monitor	NGN 2	NGN 2	NGN 2		
Method code					
Monitor start date	6/16/2003	2/11/2003	6/30/2003		
Sampling schedule	Continuous	Continuous	Continuous		
Sampling duration	Hourly	Hourly	Hourly		
Sampling season	All year	All year	All year		
In climate controlled shelter	N	N	N		
Probe height from ground	6 m	6 m	5 m		
Distance from closest obstruction			30 m		

360°

Annual

Distance from trees

Monitor audit frequency

Unrestricted airflow degrees

50 m

360°

Annual

5 m

360°

Annual

Visibility -	Urban Haze	- Transmissometer	

	Phoenix-Mesa-	Phoenix-Mesa-
CBSA	Scottsdale	Scottsdale
	Phoenix	Phoenix
	Transmissometer	Transmissometer
Site monitor located	Receiver	Transmitter
Monitor location at site	Rooftop	Rooftop
Monitoring objective	Urban Haze	Urban Haze
Spatial scale	Urban	Urban
	Transmissometer	Transmissometer
Monitor type	Receiver	Transmitter
Analysis method	Light Attenuation	Light Attenuation
Make of monitor	Optec	Optec
Model of monitor	LVP-2	LVP-2
Method code		
Monitor start date	12/1/1992	12/1/1992
Sampling schedule	Continuous	Continuous
Sampling season	All year	All year
In climate controlled shelter	N	Ň

Visibility - Urban Haze - Temp/RH								
CBSA	Phoenix-Mesa- Scottsdale	Phoenix-Mesa- Scottsdale	Phoenix-Mesa- Scottsdale	Phoenix-Mesa- Scottsdale				
	David	Fatalla	Phoenix Transmissometer	Vehicle Emissions				
Site monitor located	Dysart	Estrella	Receiver	Laboratory				
Monitor location at site	Tower	Tower	Rooftop	Tower				
Monitoring objective	Population	Population	Urban Haze	Population				
Spatial scale	Neighborhood	Neighborhood	Urban	Neighborhood				
Monitor type	Probe	Probe	Probe	Probe				
Analysis method	None	None	None	None				
Make of monitor	Rotronics	Rotronics	Rotronics	Rotronics				
Model of monitor	MP101A	MP101A	MP101A	MP101A				
Method code								
Monitor start date	7/16/2003	2/11/2003	6/9/2003	6/30/2003				
Sampling schedule	Continuous	Continuous	Continuous	Continuous				
Sampling duration	Hourly	Hourly	Hourly	Hourly				
Sampling season	All year	All year	All year	All year				
In climate controlled shelter	N	N	N	N				
Probe height from ground	6 m	6 m	36 m	5 m				
Probe distance from structure	1 m	1 m	1 m	1 m				
Distance from closest obstruction			5 m	30 m				
Distance from trees		5 m		50 m				
Unrestricted airflow degrees	360°	360°	360°	360°				
Monitor audit frequency	Annual	Annual	Annual	Annual				

IMPROVE									
CBSA	Sierra Vista- Douglas	Sierra Vista- Douglas	Flagstaff	Flagstaff	Apache	Flagstaff	Phoenix-Mesa- Scottsdale	Phoenix-Mesa- Scottsdale	Lake Havasu City-Kingman
	Chiricahua Entrance	Douglas Red	Grand Canyon National Park -	Grand Canyon National Park - Indian	Greer Water Treatment				
Site monitor located	Station	Cross	Hance Camp	Gardens	Plant	Ike's Backbone		<u> </u>	Meadview
Monitor location at site	Shelter	Platform	Shelter	Shelter	Shelter	Shelter	Metal Roof	Metal Roof	Shelter
Monitoring objective	Visibility	Visibility	Visibility	Visibility	Visibility	Visibility	Population	Population	Background
Spatial scale	Regional	Regional	Regional	Regional	Regional	Regional	Neighborhood		Regional
Monitor type	IMPROVE	IMPROVE	IMPROVE	IMPROVE	IMPROVE	IMPROVE	IMPROVE	IMPROVE collocated	IMPROVE
Analysis method	Various	Various	Various	Various	Various	Various	Various	Various	Various
Make of monitor	Various	Various	Various	Various	Various	Various	Various	Various	Various
Model of monitor	Various	Various	Various	Various	Various	Various	Various	Various	Various
Method code									-
Monitor start date	4/2/2000	6/2/2004	8/1/1997	10/1/1989	2/29/2000	4/2/2000	4/25/2001	4/25/2001	2/1/2003
Sampling schedule	1 in 3	1 in 3	1 in 3	1 in 3	1 in 3	1 in 3	1 in 3	1 in 3	1 in 3
Sampling duration	24 hour	24 hour	24 hour	24 hour	24 hour	24 hour	24 hour	24 hour	24 hour
Sampling season	All Year	All Year	All year	All year	All year	All year	All year	All year	All year
In climate controlled shelter	N	N	N	N	N	N	N	N	N
Probe height from ground	4 m	3 m	*	4 m	4 m	4 m	5.5 m	5.5 m	*
Probe distance from structure	1 m	2 m	*	2 m	1 m	1 m			*
Distance from closest obstruction	10 m	10 m	*		150 m	7 m	8 m	8 m	*
Distance from trees	10 m	10 m	*	6 m	50 m	18 m	5 m	5 m	*
Unrestricted airflow degrees	360°	300°	*	300°	360°	360°	210°	210°	*
Dist. between collocated monitors							2 m	2 m	
Monitor audit frequency		Annual			Annual	Annual	Annual	Annual	
Flow rate verification frequency							Annual	Annual	
Protocol site		Υ					Υ	Υ	

^{*} Information not available

IMPROVE - continued

				Phoenix-Mesa-				
CBSA	Tucson	None	Payson	Scottsdale	Tucson	Tucson	Flagstaff	Payson
	Organ Pipe		Pleasant		Saguaro	Saguaro	_	
	National	Petrified Forest	Valley Ranger		National Park	National Park	Sycamore	Tonto National
Site monitor located	Monument	National Park	Station	Queen Valley	East	West	Canyon	Monument
Monitor location at site	Shelter	Shelter	Shelter	Rooftop	Shelter	Shelter	Shelter	Shelter
Monitoring objective	Background	Visibility	Visibility	Visibility	Visibility	Visibility	Visibility	Visibility
Spatial scale	Regional	Regional	Regional	Urban	Regional	Regional	Regional	Regional
Monitor type	IMPROVE	IMPROVE	IMPROVE	IMPROVE	IMPROVE	IMPROVE	IMPROVE	IMPROVE
Analysis method	Various	Various	Various	Various	Various	Various	Various	Various
Make of monitor	Various	Various	Various	Various	Various	Various	Various	Various
Model of monitor	Various	Various	Various	Various	Various	Various	Various	Various
Method code								
Monitor start date	1/14/2003	1/1/1988	2/10/2000	4/30/2001	6/4/1988	4/18/2001	9/1/1997	1/1/2002
Sampling schedule	1 in 3	1 in 3	1 in 3	1 in 3	1 in 3	1 in 3	1 in 3	1 in 3
Sampling duration	24 hour	24 hour	24 hour	24 hour	24 hour	24 hour	24 hour	24 hour
Sampling season	All year	All year	All year	All year	All year	All year	All year	All year
In climate controlled shelter	N	N	N	N	N	N	N	Υ
Probe height from ground	5 m	*	4 m	6 m	*	4 m	4 m	5 m
Probe distance from structure	1.5 m	*	1.5 m	1 m	*	1 m	1 m	1.5 m
Distance from closest obstruction	7 m	*		30 m	*		25 m	
Distance from trees	15 m	*	10 m	4 m	*	15 m	15 m	6 m
Unrestricted airflow degrees	360°	*	360°	360°	*	360°	360°	360°
Dist. between collocated monitors								
Monitor audit frequency	Annual		Annual	Annual		Annual	Annual	Annual
Flow rate verification frequency								
Protocol site	Υ			Y		Y		

^{*} Information not available

Appendix D – Site Information Data Tables

Note: Some measurements are rounded and/or estimations

Each monitoring site where ADEQ operates ambient air instruments is described in this section. The parameters that are currently measured at the sites are listed with the start date for the parameter and not the monitor. See Appendix C for detailed information on specific monitors grouped by monitoring networks.

S0-026-1000	AQS ID	ADEQ ID	SITE NAME	PAGE
04-019-0001 16316 Ajo 87 04-012-8000 34961 Alamo Lake 88 19489 Banner Mesa Medical Center 89 04-015-1003 16365 Bullhead City 90 04-003-8001 16679 Chiricahua Entrance Station 91 04-003-1005 16503 Douglas Red Cross 92 04-013-4010 19550 Dysart 93 04-013-8005 16506 Estrella 94 21736 Estrella Mountain Community College 95 04-005-8005 16593 Globe Highway 97 04-005-1008 16707 Flagstaff Middle School 96 04-005-8102 16682 Grand Canyon National Park - Hance Camp 98 04-005-8101 16682 Grand Canyon National Park - Indian Garden 99 04-007-8001 16323 Greer Water Treatment Plant 100 04-025-8104 16421 Ike's Backbone 102 04-013-9997 16328 JLG Supersite 103 04-015-9000		21737	ADEQ Building	85
04-012-8000 34961 Alamo Lake 88 19489 Banner Mesa Medical Center 89 04-015-1003 16365 Bullhead City 90 04-003-8001 16679 Chiricahua Entrance Station 91 04-003-1005 16503 Douglas Red Cross 92 04-013-4010 19550 Dysart 93 04-013-8005 16506 Estrella 94 21736 Estrella Mountain Community College 95 04-005-1008 16707 Flagstaff Middle School 96 04-005-1008 16707 Flagstaff Middle School 96 04-005-1008 166707 Flagstaff Middle School 96 04-005-8102 16682 Grand Canyon National Park - Hance Camp 98 04-005-8101 16683 Grand Canyon National Park - Hance Camp 99 04-001-8001 16323 Greer Water Treatment Plant 100 04-007-1001 16326 Hayden Old Jail 101 04-007-1001 16326 Hayden Old Jail 101	80-026-1000	16361	Agua Prieta Fire Station	86
19489 Banner Mesa Medical Center 89	04-019-0001	16316	Ajo	87
04-015-1003 16365 Bullhead City 90 04-003-8001 16679 Chiricahua Entrance Station 91 04-003-1005 16503 Douglas Red Cross 92 04-013-4010 19550 Dysart 93 04-013-8005 16506 Estrella 94 21736 Estrella Mountain Community College 95 04-005-1008 16707 Flagstaff Middle School 96 16593 Globe Highway 97 04-005-8102 16682 Grand Canyon National Park - Hance Camp 98 04-005-8101 16683 Grand Canyon National Park - Indian Garden 99 04-005-8101 16323 Greer Water Treatment Plant 100 04-007-8001 16323 Greer Water Treatment Plant 100 04-007-1001 16326 Hayden Old Jail 101 04-025-8104 16421 Ike's Backbone 102 04-013-9997 16328 JLG Supersite 103 04-015-9000 21298 Meadview 105 04-0	04-012-8000	34961	Alamo Lake	88
04-003-8001 16679 Chiricahua Entrance Station 91 04-003-1005 16503 Douglas Red Cross 92 04-013-4010 19550 Dysart 93 04-013-8005 16506 Estrella 94 21736 Estrella Mountain Community College 95 04-005-1008 16707 Flagstaff Middle School 96 16593 Globe Highway 97 04-005-8102 16682 Grand Canyon National Park - Hance Camp 98 04-005-8101 16683 Grand Canyon National Park - Indian Garden 99 04-001-8001 16323 Greer Water Treatment Plant 100 04-007-1001 16326 Hayden Old Jail 101 04-025-8104 16421 Ike's Backbone 102 04-013-9997 16328 JLG Supersite 103 04-015-9000 21298 Meadview 105 04-007-8000 16629 Miami Golf Course 106 04-007-0009 16382 Miami Ridgeline 107 04-019-0005		19489	Banner Mesa Medical Center	89
04-003-1005 16503 Douglas Red Cross 92 04-013-4010 19550 Dysart 93 04-013-8005 16506 Estrella 94 21736 Estrella Mountain Community College 95 04-005-1008 16707 Flagstaff Middle School 96 04-005-1008 16593 Globe Highway 97 04-005-8102 16682 Grand Canyon National Park - Hance Camp 98 04-005-8101 16683 Grand Canyon National Park - Indian Garden 99 04-001-8001 16323 Greer Water Treatment Plant 100 04-007-1001 16326 Hayden Old Jail 101 04-025-8104 16421 Ike's Backbone 102 04-013-9997 16328 JLG Supersite 103 04-015-9000 21298 Meadview 105 04-007-8000 16629 Miami Golf Course 106 04-007-0009 16382 Miami Ridgeline 107 04-023-0004 16511 Nogales Post Office 108	04-015-1003	16365	Bullhead City	90
04-013-4010 19550 Dysart 93 04-013-8005 16506 Estrella 94 21736 Estrella Mountain Community College 95 04-005-1008 16707 Flagstaff Middle School 96 16593 Globe Highway 97 04-005-8102 16682 Grand Canyon National Park - Hance Camp 98 04-005-8101 16683 Grand Canyon National Park - Indian Garden 99 04-005-8101 16683 Grand Canyon National Park - Indian Garden 99 04-001-8001 16323 Greer Water Treatment Plant 100 04-007-1001 16326 Hayden Old Jail 101 04-025-8104 16421 Ike's Backbone 102 04-013-9997 16328 JLG Supersite 103 04-015-9000 21298 Meadview 105 04-07-8000 16629 Miami Golf Course 106 04-007-0009 16382 Miami Ridgeline 107 04-023-0004 16511 Nogales Post Office 108	04-003-8001	16679	Chiricahua Entrance Station	91
04-013-8005 16506 Estrella 94 21736 Estrella Mountain Community College 95 04-005-1008 16707 Flagstaff Middle School 96 16593 Globe Highway 97 04-005-8102 16682 Grand Canyon National Park - Hance Camp 98 04-005-8101 16683 Grand Canyon National Park - Indian Garden 99 04-001-8001 16323 Greer Water Treatment Plant 100 04-007-1001 16326 Hayden Old Jail 101 04-025-8104 16421 Ike's Backbone 102 04-013-9997 16328 JLG Supersite 103 04-015-9000 21298 Meadview 105 04-007-8000 16629 Miami Golf Course 106 04-007-0009 16382 Miami Ridgeline 107 04-023-0004 16511 Nogales Post Office 108 16480 North Mountain Summit 109 04-019-005 16681 Organ Pipe National Monument 110 04-007-0008	04-003-1005	16503	Douglas Red Cross	92
21736 Estrella Mountain Community College 95 04-005-1008 16707 Flagstaff Middle School 96 16593 Globe Highway 97 04-005-8102 16682 Grand Canyon National Park - Hance Camp 98 04-005-8101 16683 Grand Canyon National Park - Indian Garden 99 04-001-8001 16323 Greer Water Treatment Plant 100 04-007-1001 16326 Hayden Old Jail 101 04-025-8104 16421 Ike's Backbone 102 04-013-9997 16328 JLG Supersite 103 04-015-9000 21298 Meadview 105 04-007-8000 16629 Miami Golf Course 106 04-007-0009 16382 Miami Ridgeline 107 04-023-0004 16511 Nogales Post Office 108 16480 North Mountain Summit 109 04-019-0005 16681 Organ Pipe National Monument 110 04-02-03-0011 16391 Paul Spur Chemical Lime Plant 111	04-013-4010	19550	Dysart	93
04-005-1008 16707 Flagstaff Middle School 96 16593 Globe Highway 97 04-005-8102 16682 Grand Canyon National Park - Hance Camp 98 04-005-8101 16683 Grand Canyon National Park - Indian Garden 99 04-001-8001 16323 Greer Water Treatment Plant 100 04-007-1001 16326 Hayden Old Jail 101 04-025-8104 16421 Ike's Backbone 102 04-013-9997 16328 JLG Supersite 103 04-015-9000 21298 Meadview 105 04-007-8000 16629 Miami Golf Course 106 04-007-0009 16382 Miami Ridgeline 107 04-023-0004 16511 Nogales Post Office 108 16480 North Mountain Summit 109 04-019-0005 16681 Organ Pipe National Monument 110 04-003-0011 16391 Paul Spur Chemical Lime Plant 111 04-007-0008 16317 Payson Well Site 113 <tr< td=""><td>04-013-8005</td><td>16506</td><td>Estrella</td><td>94</td></tr<>	04-013-8005	16506	Estrella	94
16593 Globe Highway 97		21736	Estrella Mountain Community College	95
04-005-8102 16682 Grand Canyon National Park - Hance Camp 98 04-005-8101 16683 Grand Canyon National Park - Indian Garden 99 04-001-8001 16323 Greer Water Treatment Plant 100 04-007-1001 16326 Hayden Old Jail 101 04-025-8104 16421 Ike's Backbone 102 04-013-9997 16328 JLG Supersite 103 04-015-9000 21298 Meadview 105 04-007-8000 16629 Miami Golf Course 106 04-007-0009 16382 Miami Ridgeline 107 04-023-0004 16511 Nogales Post Office 108 16480 North Mountain Summit 109 04-019-0005 16681 Organ Pipe National Monument 110 04-003-0011 16391 Paul Spur Chemical Lime Plant 111 04-007-0008 16317 Payson Well Site 113 04-001-0012 16473 Petrified Forest National Park 114 16829 Phoenix Transmissometer Receiver <t< td=""><td>04-005-1008</td><td>16707</td><td>Flagstaff Middle School</td><td>96</td></t<>	04-005-1008	16707	Flagstaff Middle School	96
04-005-8101 16683 Grand Canyon National Park - Indian Garden 99 04-001-8001 16323 Greer Water Treatment Plant 100 04-007-1001 16326 Hayden Old Jail 101 04-025-8104 16421 Ike's Backbone 102 04-013-9997 16328 JLG Supersite 103 04-015-9000 21298 Meadview 105 04-007-8000 16629 Miami Golf Course 106 04-007-0009 16382 Miami Ridgeline 107 04-023-0004 16511 Nogales Post Office 108 16480 North Mountain Summit 109 04-019-0005 16681 Organ Pipe National Monument 110 04-003-0011 16391 Paul Spur Chemical Lime Plant 111 04-007-0008 16317 Payson Well Site 113 04-007-0008 16317 Payson Well Site 113 04-001-0012 16473 Petrified Forest National Park 114 16829 Phoenix Transmissometer Receiver 115		16593	Globe Highway	97
04-001-8001 16323 Greer Water Treatment Plant 100 04-007-1001 16326 Hayden Old Jail 101 04-025-8104 16421 Ike's Backbone 102 04-013-9997 16328 JLG Supersite 103 04-015-9000 21298 Meadview 105 04-007-8000 16629 Miami Golf Course 106 04-007-0009 16382 Miami Ridgeline 107 04-023-0004 16511 Nogales Post Office 108 16480 North Mountain Summit 109 04-019-0005 16681 Organ Pipe National Monument 110 04-003-0011 16391 Paul Spur Chemical Lime Plant 111 16392 Paul Spur Chemical Lime Plant South 112 04-007-0008 16317 Payson Well Site 113 04-001-0012 16473 Petrified Forest National Park 114 16829 Phoenix Transmissometer Receiver 115 16330 Phoenix Transmissometer Transmitter 116 16446 Pl	04-005-8102	16682	Grand Canyon National Park - Hance Camp	98
04-001-8001 16323 Greer Water Treatment Plant 100 04-007-1001 16326 Hayden Old Jail 101 04-025-8104 16421 Ike's Backbone 102 04-013-9997 16328 JLG Supersite 103 04-015-9000 21298 Meadview 105 04-007-8000 16629 Miami Golf Course 106 04-007-0009 16382 Miami Ridgeline 107 04-023-0004 16511 Nogales Post Office 108 16480 North Mountain Summit 109 04-019-0005 16681 Organ Pipe National Monument 110 04-003-0011 16391 Paul Spur Chemical Lime Plant 111 16392 Paul Spur Chemical Lime Plant South 112 04-007-0008 16317 Payson Well Site 113 04-001-0012 16473 Petrified Forest National Park 114 16829 Phoenix Transmissometer Receiver 115 16330 Phoenix Transmissometer Transmitter 116 16446 Pl	04-005-8101	16683		99
04-025-8104 16421 Ike's Backbone 102 04-013-9997 16328 JLG Supersite 103 04-015-9000 21298 Meadview 105 04-007-8000 16629 Miami Golf Course 106 04-007-0009 16382 Miami Ridgeline 107 04-023-0004 16511 Nogales Post Office 108 16480 North Mountain Summit 109 04-019-0005 16681 Organ Pipe National Monument 110 04-003-0011 16391 Paul Spur Chemical Lime Plant 111 16392 Paul Spur Chemical Lime Plant South 112 04-007-0008 16317 Payson Well Site 113 04-001-0012 16473 Petrified Forest National Park 114 16829 Phoenix Transmissometer Receiver 115 16330 Phoenix Transmissometer Transmitter 116 16446 Pleasant Valley Ranger Station 117 04-025-8033 133011 Prescott College AQD 118 04-021-8001 16394	04-001-8001	16323		100
04-013-9997 16328 JLG Supersite 103 04-015-9000 21298 Meadview 105 04-007-8000 16629 Miami Golf Course 106 04-007-0009 16382 Miami Ridgeline 107 04-023-0004 16511 Nogales Post Office 108 16480 North Mountain Summit 109 04-019-0005 16681 Organ Pipe National Monument 110 04-003-0011 16391 Paul Spur Chemical Lime Plant 111 16392 Paul Spur Chemical Lime Plant South 112 04-007-0008 16317 Payson Well Site 113 04-001-0012 16473 Petrified Forest National Park 114 16829 Phoenix Transmissometer Receiver 115 16330 Phoenix Transmissometer Transmitter 116 16446 Pleasant Valley Ranger Station 117 04-025-8033 133011 Prescott College AQD 118 04-021-8001 16394 Queen Valley 120	04-007-1001	16326	Hayden Old Jail	101
04-015-9000 21298 Meadview 105 04-007-8000 16629 Miami Golf Course 106 04-007-0009 16382 Miami Ridgeline 107 04-023-0004 16511 Nogales Post Office 108 16480 North Mountain Summit 109 04-019-0005 16681 Organ Pipe National Monument 110 04-003-0011 16391 Paul Spur Chemical Lime Plant 111 16392 Paul Spur Chemical Lime Plant South 112 04-007-0008 16317 Payson Well Site 113 04-001-0012 16473 Petrified Forest National Park 114 16829 Phoenix Transmissometer Receiver 115 16330 Phoenix Transmissometer Transmitter 116 16446 Pleasant Valley Ranger Station 117 04-025-8033 133011 Prescott College AQD 118 04-025-2002 18392 Prescott Valley 119 04-021-8001 16394 Queen Valley 120	04-025-8104	16421	Ike's Backbone	102
04-007-8000 16629 Miami Golf Course 106 04-007-0009 16382 Miami Ridgeline 107 04-023-0004 16511 Nogales Post Office 108 16480 North Mountain Summit 109 04-019-0005 16681 Organ Pipe National Monument 110 04-003-0011 16391 Paul Spur Chemical Lime Plant 111 16392 Paul Spur Chemical Lime Plant South 112 04-007-0008 16317 Payson Well Site 113 04-001-0012 16473 Petrified Forest National Park 114 16829 Phoenix Transmissometer Receiver 115 16330 Phoenix Transmissometer Transmitter 116 16446 Pleasant Valley Ranger Station 117 04-025-8033 133011 Prescott College AQD 118 04-025-2002 18392 Prescott Valley 119 04-021-8001 16394 Queen Valley 120	04-013-9997	16328	JLG Supersite	103
04-007-0009 16382 Miami Ridgeline 107 04-023-0004 16511 Nogales Post Office 108 16480 North Mountain Summit 109 04-019-0005 16681 Organ Pipe National Monument 110 04-003-0011 16391 Paul Spur Chemical Lime Plant 111 16392 Paul Spur Chemical Lime Plant South 112 04-007-0008 16317 Payson Well Site 113 04-001-0012 16473 Petrified Forest National Park 114 16829 Phoenix Transmissometer Receiver 115 16330 Phoenix Transmissometer Transmitter 116 16446 Pleasant Valley Ranger Station 117 04-025-8033 133011 Prescott College AQD 118 04-025-2002 18392 Prescott Valley 119 04-021-8001 16394 Queen Valley 120	04-015-9000	21298	Meadview	105
04-023-0004 16511 Nogales Post Office 108 04-019-0005 16681 Organ Pipe National Monument 110 04-003-0011 16391 Paul Spur Chemical Lime Plant 111 16392 Paul Spur Chemical Lime Plant South 112 04-007-0008 16317 Payson Well Site 113 04-001-0012 16473 Petrified Forest National Park 114 16829 Phoenix Transmissometer Receiver 115 16330 Phoenix Transmissometer Transmitter 116 16446 Pleasant Valley Ranger Station 117 04-025-8033 133011 Prescott College AQD 118 04-025-2002 18392 Prescott Valley 119 04-021-8001 16394 Queen Valley 120	04-007-8000	16629	Miami Golf Course	106
16480 North Mountain Summit 109 04-019-0005 16681 Organ Pipe National Monument 110 04-003-0011 16391 Paul Spur Chemical Lime Plant 111 16392 Paul Spur Chemical Lime Plant South 112 04-007-0008 16317 Payson Well Site 113 04-001-0012 16473 Petrified Forest National Park 114 16829 Phoenix Transmissometer Receiver 115 16330 Phoenix Transmissometer Transmitter 116 16446 Pleasant Valley Ranger Station 117 04-025-8033 133011 Prescott College AQD 118 04-025-2002 18392 Prescott Valley 119 04-021-8001 16394 Queen Valley 120	04-007-0009	16382	Miami Ridgeline	107
04-019-0005 16681 Organ Pipe National Monument 110 04-003-0011 16391 Paul Spur Chemical Lime Plant 111 16392 Paul Spur Chemical Lime Plant South 112 04-007-0008 16317 Payson Well Site 113 04-001-0012 16473 Petrified Forest National Park 114 16829 Phoenix Transmissometer Receiver 115 16330 Phoenix Transmissometer Transmitter 116 16446 Pleasant Valley Ranger Station 117 04-025-8033 133011 Prescott College AQD 118 04-025-2002 18392 Prescott Valley 119 04-021-8001 16394 Queen Valley 120	04-023-0004	16511	Nogales Post Office	108
04-003-0011 16391 Paul Spur Chemical Lime Plant 111 16392 Paul Spur Chemical Lime Plant South 112 04-007-0008 16317 Payson Well Site 113 04-001-0012 16473 Petrified Forest National Park 114 16829 Phoenix Transmissometer Receiver 115 16330 Phoenix Transmissometer Transmitter 116 16446 Pleasant Valley Ranger Station 117 04-025-8033 133011 Prescott College AQD 118 04-025-2002 18392 Prescott Valley 119 04-021-8001 16394 Queen Valley 120		16480	North Mountain Summit	109
16392 Paul Spur Chemical Lime Plant South 112 04-007-0008 16317 Payson Well Site 113 04-001-0012 16473 Petrified Forest National Park 114 16829 Phoenix Transmissometer Receiver 115 16330 Phoenix Transmissometer Transmitter 116 16446 Pleasant Valley Ranger Station 117 04-025-8033 133011 Prescott College AQD 118 04-025-2002 18392 Prescott Valley 119 04-021-8001 16394 Queen Valley 120	04-019-0005	16681	Organ Pipe National Monument	110
04-007-0008 16317 Payson Well Site 113 04-001-0012 16473 Petrified Forest National Park 114 16829 Phoenix Transmissometer Receiver 115 16330 Phoenix Transmissometer Transmitter 116 16446 Pleasant Valley Ranger Station 117 04-025-8033 133011 Prescott College AQD 118 04-025-2002 18392 Prescott Valley 119 04-021-8001 16394 Queen Valley 120	04-003-0011	16391	Paul Spur Chemical Lime Plant	111
04-001-0012 16473 Petrified Forest National Park 114 16829 Phoenix Transmissometer Receiver 115 16330 Phoenix Transmissometer Transmitter 116 16446 Pleasant Valley Ranger Station 117 04-025-8033 133011 Prescott College AQD 118 04-025-2002 18392 Prescott Valley 119 04-021-8001 16394 Queen Valley 120		16392	Paul Spur Chemical Lime Plant South	112
16829 Phoenix Transmissometer Receiver 115 16330 Phoenix Transmissometer Transmitter 116 16446 Pleasant Valley Ranger Station 117 04-025-8033 133011 Prescott College AQD 118 04-025-2002 18392 Prescott Valley 119 04-021-8001 16394 Queen Valley 120	04-007-0008	16317	Payson Well Site	113
16330 Phoenix Transmissometer Transmitter 116 16446 Pleasant Valley Ranger Station 117 04-025-8033 133011 Prescott College AQD 118 04-025-2002 18392 Prescott Valley 119 04-021-8001 16394 Queen Valley 120	04-001-0012	16473	Petrified Forest National Park	114
16446 Pleasant Valley Ranger Station 117 04-025-8033 133011 Prescott College AQD 118 04-025-2002 18392 Prescott Valley 119 04-021-8001 16394 Queen Valley 120		16829	Phoenix Transmissometer Receiver	115
04-025-8033 133011 Prescott College AQD 118 04-025-2002 18392 Prescott Valley 119 04-021-8001 16394 Queen Valley 120		16330	Phoenix Transmissometer Transmitter	116
04-025-8033 133011 Prescott College AQD 118 04-025-2002 18392 Prescott Valley 119 04-021-8001 16394 Queen Valley 120		16446	Pleasant Valley Ranger Station	117
04-025-2002 18392 Prescott Valley 119 04-021-8001 16394 Queen Valley 120	04-025-8033	133011	, <u> </u>	118
04-021-8001 16394 Queen Valley 120	04-025-2002		<u> </u>	119
	04-021-8001		· ·	120
	04-019-0020	16499	Rillito	121

AQS ID	ADEQ ID	SITE NAME	PAGE
04-019-0021	16474	Saguaro National Park East	122
04-019-9000	16475	Saguaro National Park West	123
80-026-8012	113221	San Luis Rio Colorado	124
04-005-1010	16512	Sedona Post Office	125
04-017-0007	16603	Show Low	126
80-026-0005	16399	Sonora Nogales Fire Station	127
04-013-4003	16377	South Phoenix	128
	135133	Springerville	129
04-005-8103	16476	Sycamore Canyon	130
04-007-0010	16447	Tonto National Monument	131
04-013-9998	16363	Vehicle Emissions Laboratory	132
	138696	Verde Ranger Station	133
04-027-8011	11319	Yuma Supersite	134

ADEQ Building

Site Purpose: monitor urban haze.

The high-resolution digital camera sits on the northeast corner of the building and points toward Camelback Mountain, which lies 13.4 kilometers to the northeast. The pictures of the local view are updated every 15 minutes and can be viewed on the internet at http://www.phoenixvis.net/came1/index.html. The area between the site and Camelback Mountain is primarily residential with some commercial areas.

	Site Information				
AQS ID	None	ADEQ ID	21737		
Address	1110 W. Washington St. Phoer	nix, AZ 85007			
County	Maricopa	Maricopa Groundcover Rooftop			
CBSA	Phoenix-Mesa-Scottsdale	Latitude	33.4483		
Surrounding Area	Residential/Commercial Longitude		-112.0878		
Distance to road	84 m – S	Elevation	329 m		
Traffic count	10,852 – Washington St.	Site Established Date	06/09/2003		

Monitoring Information				
Pollutant/Atmospheric parameter	Visibility			
Network or Program	Urban Haze			
Spatial Scale Urban				
Parameter start date at site				

Aerial view of ADEQ Building

Camera on rooftop of ADEQ Building – 4/2010

Agua Prieta Fire Station

Site Purpose: special purpose monitoring.

The site is located approximately 640 meters south of the Arizona/Mexico border. The surrounding area is primarily residential. This site is used as a comparison to the Douglas Red Cross site as part of the border studies.

	Site Information					
AQS ID	80-026-1000	ADEQ ID	16361			
Address	Calle 6 & Ave. 15 Agua Prieta	, Sonora, Mexico				
County	Sonora	Sonora Groundcover Rooftop				
CBSA	None	Latitude	31.3283			
Surrounding Area	Residential Longitude		-109.5472			
Distance to road	6 m – W	Elevation	1,200 m			
Traffic count	n/a	Site Established Date	01/01/1995			

Monitoring Information						
Pollutant/Atmospheric parameter	Pollutant/Atmospheric parameter PM ₁₀ PM _{2.5} Wind					
Network or Program	ADEQ-SPM	ADEQ-SPM	ADEQ-SPM			
Spatial Scale	Neighborhood	Neighborhood	Neighborhood			
Parameter start date at site	01/01/1995	04/11/2010	12/18/1998			

Monitoring Information				
Pollutant/Atmospheric parameter	Temp/RH			
Network or Program	ADEQ-SPM			
Spatial Scale	Neighborhood			
Parameter start date at site	12/18/1998			

Aerial view of Agua Prieta Fire Station

Roof of Aqua Prieta Fire Station – 12/2004

Ajo

Site Purpose: NAAQS compliance network.

The site is located at the Pima County Maintenance Yard, with the wind system mounted to the north of the instruments. The closest structure to the site is an east-west oriented ADOT office/trailer to the south. To the east lies the stabilized tailings pile associated with the Ajo mining operation which closed in 1985.

	Site Information				
AQS ID	04-019-0001	ADEQ ID	16316		
Address	1211 Well Rd. Ajo, AZ 85321				
County	Pima Groundcover Grave		Gravel		
CBSA	Tucson	Latitude	32.3820		
Surrounding Area	Surrounding Area Residential/Commercial		-112.8575		
Distance to road	109 m – E	Elevation	515 m		
Traffic count	500 – Ajo Well Rd. 1	Site Established Date	07/01/1969		

Monitoring Information					
Pollutant/Atmospheric parameter PM ₁₀ Wind					
Network or Program	SLAMS	ADEQ-MET			
Spatial Scale	Neighborhood	Neighborhood			
Parameter start date at site	01/01/1987	07/01/1969			

Aerial view of Ajo

Ajo fenced area and meteorological tower - 03/2009

Alamo Lake

Site Purpose: NAAQS compliance network and AQI forecasting.

The site was established to replace the Hillside site and is located in Alamo Lake State Park, which is approximately 49,000 meters north of Wenden, AZ. The surrounding area consists of mostly desert, with a lake about 1,000 meters to the northeast. A small water pump/storage tank (1,000 gallon) lies 7 meters to the east of the instruments.

Site Information				
AQS ID	04-012-8000	ADEQ ID	34961	
Address	Address Alamo Lake State Park			
County	La Paz	Groundcover	Gravel	
CBSA	None	Latitude	34.2439	
Surrounding Area	Desert	Longitude	-113.5586	
Distance to road	30 m - E	Elevation	403 m	
Traffic count	230 – Alamo Rd.	Site Established Date	05/20/2005	

Monitoring Information			
Pollutant/Atmospheric parameter	O_3		
Network or Program	SLAMS		
Spatial Scale	Regional		
Parameter start date at site	05/20/2005		

Regional view of Alamo Lake

Alamo Lake shelter with water tanks to the east -09/2008

Banner Mesa Medical Center

Site Purpose: monitor urban haze.

The high-resolution digital camera points to the Superstition Mountains, which lie 32,000 meters east of the site. The pictures of the local views are updated every 15 minutes and can be viewed on the internet at http://www.phoenixvis.net/supm1/index.html. The area between the site and the mountains is primarily residential, with some commercial areas.

	Site Information					
AQS ID	None	ADEQ ID	19489			
Address	525 W. Brown Rd. Mesa, AZ 8	35201				
County	Maricopa	Maricopa Groundcover Rooftop				
CBSA	Phoenix-Mesa-Scottsdale	Latitude	33.4335			
Surrounding Area	Residential Longitude		-111.8428			
Distance to road	20 m - N	Elevation	454 m			
Traffic count	32,760 – Country Club Dr.	Site Established Date	06/10/2003			

Monitoring Information					
Pollutant/Atmospheric parameter	Visibility				
Network or Program Urban Haze					
Spatial Scale Urban					
Parameter start date at site	Parameter start date at site 06/10/2003				

Site Photos

Aerial view of Banner Mesa Medical Center

No Photo

Bullhead City

Site Purpose: NAAQS compliance network.

The site is located on the rooftop of the U.S. Post Office Building, northeast of SR 95 and 7^{th} Street. The surrounding area is commercial and residential to the west and south. The Colorado River lies to the west less than 400 meters. To the northeast/east, about 575 meters, is the Bullhead City Airport.

Site Information			
AQS ID	04-015-1003	ADEQ ID	16365
Address	990 Highway 95 Bullhead City	, AZ 86429	
County	Mohave Groundcover Rooftop		Rooftop
CBSA	Lake Havasu City-Kingman	Latitude	35.1539
Surrounding Area	Commercial/Residential Longitude		-114.5661
Distance to road	~30 m – W Elevation		156 m
Traffic count	32,575 – SR 95	Site Established Date	11/01/1997

Monitoring Information			
Pollutant/Atmospheric parameter	PM_{10}		
Network or Program SLAMS			
Spatial Scale Neighborhood			
Parameter start date at site	11/05/1997		

Aerial view of Bullhead City

Roof of Bullhead City Post Office looking south – 09/2008

Chiricahua Entrance Station

Site Purpose: monitor regional haze and IMPROVE program.

The site is operated by the NPS. The surrounding area is wilderness and desert. The Chiricahua National Monument lies 3,800 meters to the northeast.

Site Information			
AQS ID	04-003-8001	ADEQ ID	16679
Address	13063 E. Bonita Canyon Rd. V	Vilcox, AZ 85643	
County	Cochise Groundcover Dirt/R		Dirt/Rocks
CBSA	Sierra Vista-Douglas	Latitude	32.0094
Surrounding Area	Desert Longitude		-109.3891
Distance to road	99 m – E	Elevation	1,570 m
Traffic count	216 – Bonita Canyon Rd.	Site Established Date	01/01/1988

Monitoring Information			
Pollutant/Atmospheric parameter	Aerosol		
Network or Program IMPROVE			
Spatial Scale Regional			
Parameter start date at site	03/02/1988		

Regional view of Chiricahua Entrance Station

Chiricahua Entrance Station shelter and IMPROVE-07/2008

Douglas Red Cross

Site Purpose: NAAQS compliance network.

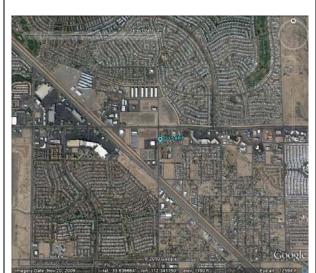
The site is located at the Red Cross building on the south side of 15th Street. The surrounding area is a mix of residential and commercial land use. The site is about 1,685 meters from the Arizona/Mexico border. Also, there is a second AQS ID 04-003-9000 for IMPROVE data.

Site Information				
AQS ID	04-003-1005	ADEQ ID	16503	
Address	1445 E. 15 th St. Douglas, AZ 8	5607		
County	Cochise Groundcover Dirt/Gras		Dirt/Grass	
CBSA	Sierra Vista-Douglas	Latitude	31.3492	
Surrounding Area	rea Commercial/Residential Longitude		-109.5396	
Distance to road	30 m – N Elevation		1,231 m	
Traffic count	$2,320-14^{th}$ St.	Site Established Date	09/01/1998	

Monitoring Information					
Pollutant/Atmospheric parameter PM ₁₀ PM _{2.5} Aerosol					
Network or Program SLAMS SLAMS IMPROVE					
Spatial Scale Neighborhood Neighborhood Regional					
Parameter start date at site	09/02/1998	11/02/2000	06/02/2004		

Aerial view of Douglas Red Cross

Douglas Red Cross fenced site – 07/20/2008


Dysart

Site Purpose: monitor urban haze and AQI forecasting/AIRNow program.

The site is located in the Maricopa County Facility Maintenance Yard at the corner of Bell Road and Dysart Road and is shared with MCAQD. The surrounding area is commercial and residential.

Site Information			
AQS ID	04-013-4010	ADEQ ID	19550
Address	16825 N. Dysart Rd. Surprise,	AZ 85374	
County	Maricopa Groundcover Gravel		Gravel
CBSA	Phoenix-Mesa-Scottsdale	Latitude	33.6370
Surrounding Area	Commercial/Residential Longitude -112.3		-112.3393
Distance to road	14 m – W Elevation		357 m
Traffic count	51,673 – Bell Rd.	Site Established Date	01/01/2003

Monitoring Information					
Pollutant/Atmospheric parameter Bscat/PM _{2.5} Temp/RH					
Network or Program	Urban Haze/ AIRNow	Urban Haze			
Spatial Scale	Neighborhood	Neighborhood			
Parameter start date at site	01/01/2003	03/25/2003			

Aerial view of Dysart

Dysart ADEQ Nephelometer tower attached to county shelter – 02/2008

Estrella

Site Purpose: monitor urban haze and AQI forecasting/AIRNow program.

The site is located in the southeast corner of the Maricopa County Maintenance Yard at Estrella Park. The surrounding area consist of the Estrella Mountains to the east, south, and west; a golf course 256 meters to the west; and a mixture of open land, agricultural lands, residential, and commercial activity to the north.

Site Information			
AQS ID	04-013-8005	ADEQ ID	16506
Address	15099 W. Casey Abbott Rd. G	oodyear, AZ 85338	
County	Maricopa Groundcover Grass/Grave		
CBSA	Phoenix-Mesa-Scottsdale	Latitude	33.3833
Surrounding Area	Desert/Recreation Area Longitude -11		-112.3728
Distance to road	258 m – N	Elevation	277 m
Traffic count	910 – W. Vineyard Ave.	Site Established Date	01/01/1995

Monitoring Information					
Pollutant/Atmospheric parameter Bscat/PM _{2.5} Temp/RH					
Network or Program	Urban Haze/ AIRNow	Urban Haze			
Spatial Scale Neighborhood Neighborhood					
Parameter start date at site	12/18/2002	12/18/2002			

Aerial view of Estrella

Estrella Nephelometer tower – 02/2008

Estrella Mountain Community College

Site Purpose: monitor urban haze.

One high-resolution digital camera points to the Estrella Mountains, which lies 11,000 meters to the southwest, and the other camera points to the White Tanks mountain range which is 20,000 meters northeast. The pictures of the local views are updated every 15 minutes and can be viewed on the internet at http://www.phoenixvis.net/esmo1/index.html. The area between the site and the mountain ranges is a mixture of residential, commercial, and agricultural uses.

Site Information				
AQS ID	None	ADEQ ID	21736	
Address	3000 N. Dysart Rd. Avondale,	AZ 85323		
County	Maricopa Groundcover Rooftop			
CBSA	Phoenix-Mesa-Scottsdale Latitude		33.4836	
Surrounding Area	Residential Longitude -11		-112.3503	
Distance to road	155 m – S Elevation		305 m	
Traffic count	7,280 – Thomas Rd.	Site Established Date	03/12/2003	

Monitoring Information				
Pollutant/Atmospheric parameter Visibility				
Network or Program	Urban Haze			
Spatial Scale	Urban			
Parameter start date at site	03/12/2003			

Site Photos

Aerial view of Estrella Mountain Community College

No photo

Flagstaff Middle School

Site Purpose: NAAQS compliance network and monitor smoke/public information.

The site is west of Bonito Road on the rooftop of a Flagstaff Middle School building. The surrounding area is generally residential, with Thorpe Park located about 800 meters to the west, and US Route 180 approximately 415 meters to the east.

Site Information				
AQS ID	04-005-1008	ADEQ ID	16707	
Address	755 N. Bonito St. Flagstaff, AZ	Z 86001		
County	Coconino Groundcover Rooftop		Rooftop	
CBSA	Flagstaff	Latitude	35.2061	
Surrounding Area	Residential	Longitude	-111.6528	
Distance to road	70 m – E	Elevation	2,120 m	
Traffic count	3,200 – N. Bonito St. Site Established Date 10/29/1996		10/29/1996	

Monitoring Information						
Pollutant/Atmospheric parameter	Pollutant/Atmospheric parameter O ₃ PM ₁₀ PM _{2.5}					
Network or Program	SLAMS	SLAMS/ADEQ- E-BAM	SLAMS			
Spatial Scale	Neighborhood	Neighborhood	Neighborhood			
Parameter start date at site	03/13/2008	10/30/1996	09/09/1999			

Aerial view of Flagstaff Middle School

Particulate monitors on roof of Flagstaff Middle School – 04/2008

Globe Highway

Site Purpose: NAAQS compliance network and a source permit requirement.

This site is the location for the Pb monitoring in Hayden. ASARCO mine also maintains a sulfur dioxide analyzer at the site. This site is used to meet the Pb collocation requirement.

	Site Information			
AQS ID	None ADEQ ID 16593		16593	
Address	SR 77 Winkelman, AZ 85292			
County	Gila	Groundcover	Gravel	
CBSA	Payson	Latitude	33.002	
Surrounding Area	Residential	Longitude	-110.765	
Distance to road	5 m – W	Elevation	602 m	
Traffic count	n/a	Site Established Date	01/01/1975	

Monitoring Information				
Pollutant/Atmospheric parameter Pb Wind Temp/RH				
Network or Program SLAMS ADEQ-MET ADEQ-ME				
Spatial Scale Middle Middle Middle				
Parameter start date at site	10/01/2010	04/14/2011	04/14/2011	

Aerial view of Globe Highway

Shelter, towers, and TSP monitors at Globe Highway – 5/10/2011

Grand Canyon National Park - Hance Camp

Site Purpose: monitor regional haze and IMPROVE program.

The site is operated by the NPS. The site is 183 meters south of East Rim Drive, 1,931 meters south of Grandview Point turnoff. The site is in a clearing surrounded by forest.

Site Information			
AQS ID	04-005-8102	ADEQ ID	16682
Address	West of SR 64 - Grand Canyor	n, AZ 86023	
County	Coconino	Coconino Groundcover Dirt	
CBSA	Flagstaff	Latitude	35.9731
Surrounding Area	Desert	Longitude	-111.9841
Distance to road	200 m – E Elevation		2,235 m
Traffic count	6,579 – SR 64	·	

Monitoring Information			
Pollutant/Atmospheric parameter Aerosol			
Network or Program	IMPROVE		
Spatial Scale Regional			
Parameter start date at site	09/24/1997		

Regional view of Grand Canyon NP - Hance Camp

Grand Canyon NP - Hance Camp shelter – date unknown

Grand Canyon National Park - Indian Gardens

Site Purpose: monitor regional haze and IMPROVE program.

The site is owned by the NPS. The site is located in the Indian Gardens picnic area in the Grand Canyon, near the ranger station on the south side of the canyon along the Bright Angel Trail.

AQS ID	04-005-8101	ADEQ ID	16683
Address	Bright Angel Trail Grand Cany	on, AZ 86023	
County	Coconino	Groundcover	Dirt/Rocks
CBSA	Flagstaff	Latitude	36.0778
Surrounding Area	Desert	Longitude	-112.1289
Distance to road	8,047 m – S	Elevation	1,183 m
Traffic count	1,250 – Entrance Road	Site Established Date	10/01/1989

Monitoring Information			
Pollutant/Atmospheric parameter Aerosol			
Network or Program	IMPROVE		
Spatial Scale	Regional		
Parameter start date at site	10/04/1989		

Regional view of Grand Canyon NP - Indian Gardens

Grand Canyon NP - Indian Gardens IMPROVE monitor – 04/2008

Greer Water Treatment Plant

Site Purpose: monitor regional haze and IMPROVE program.

The site is located in the Apache National Forest and is operated by ADEQ and the USFS. The surrounding area is forest with the town of Greer approximately 4,000 meters to the south/southwest.

Site Information				
AQS ID	04-001-8001	ADEQ ID	16323	
Address	SR 260 & SR 373 Greer, AZ 8	5927		
County	Apache Groundcover Grass		Grass	
CBSA	None	Latitude	34.0583	
Surrounding Area	Forest	Longitude	-109.4400	
Distance to road	1,600 m – N	Elevation	2,503 m	
Traffic count	1,044 – SR 373 Site Established Date 01/01/2000		01/01/2000	

Monitoring Information		
Pollutant/Atmospheric parameter	Aerosol	
Network or Program	IMPROVE	
Spatial Scale	Regional	
Parameter start date at site	02/29/2000	

Aerial view of Greer Water Treatment Plant

Shelter at Greer Water Treatment Plant – 09/2008

Hayden Old Jail

Site Purpose: NAAQS compliance network and a source permit requirement.

The site is located in a shelter next to the old Hayden Jail building near the center of town. The instruments were previously located in the jail building and were moved due to safety concerns in 2010. The surrounding area consists mainly of residential and commercial. ASARCO mine also maintains a sulfur dioxide analyzer at the site in the old jail building.

Site Information			
AQS ID	04-007-1001	ADEQ ID	16326
Address	Canyon Dr. & Kennecott Ave.	Hayden, AZ 85235	
County	Gila Groundcover Shelter		Shelter
CBSA	Payson	Latitude	33.0062
Surrounding Area	Residential	Longitude	-110.7864
Distance to road	5 m – E	Elevation	625 m
Traffic count	1,790 – Velasco Ave.	Site Established Date	01/01/1969

Monitoring Information				
Pollutant/Atmospheric parameter SO ₂ PM ₁₀ Wind				
Network or Program	SLAMS	SLAMS	ADEQ-MET	
Spatial Scale Neighborhood Neighborhood Neighborhood				
Parameter start date at site	01/01/1975	01/06/1986	02/02/2011	

Monitoring Information			
Pollutant/Atmospheric parameter	Temp/RH		
Network or Program	ADEQ-MET		
Spatial Scale	Neighborhood		
Parameter start date at site	02/02/2011		

Aerial view of Hayden Old Jail

Hayden Old Jail – 05/2011

Ike's Backbone

Site Purpose: monitor regional haze and IMPROVE program.

The site is operated by ADEQ and the USFS. The surrounding area is Tonto National Forest, which includes Mazatzal and Pine Mountain Wilderness areas with the Verde River and mountains nearby.

Site Information				
AQS ID	04-025-8104	ADEQ ID	16421	
Address	Fossil Creek Rd. and Childs Rd	d. Strawberry, AZ 85544		
County	Coconino	Coconino Groundcover		
CBSA	Flagstaff	Latitude	34.3406	
Surrounding Area	Forest	Longitude	-111.6825	
Distance to road	n/a	Elevation	1,303 m	
Traffic count	475 – Fossil Creek Rd.	Site Established Date	04/02/2000	

Monitoring Information			
Pollutant/Atmospheric parameter	Aerosol		
Network or Program	IMPROVE		
Spatial Scale	Regional		
Parameter start date at site	04/02/2000		

Regional view of Ike's Backbone

Shelters and tower at Ike's Backbone – 12/2008

JLG Supersite

<u>Site Purpose</u>: NAAQS compliance network, PAMS, NATTS, STN, NCore, AIRNow, AQI forecasting, monitor urban haze, and meteorological support.

The site was established to represent air quality in the central core of the Phoenix metropolitan area. The surrounding area is primarily residential neighborhoods, with I-17 roughly 1,609 meters west.

Site Information				
AQS ID	04-013-9997	ADEQ ID	16328	
Address	4530 N. 17 th Ave. Phoenix, AZ	Z 85015		
County	Maricopa	Maricopa Groundcover Gr		
CBSA	Phoenix-Mesa-Scottsdale	Latitude	33.5038	
Surrounding Area	Residential Longitude		-112.0957	
Distance to road	8.5 m – E Elevation		354 m	
Traffic count	20,214 – Campbell Ave.	Site Established Date	07/01/1993	

Monitoring Information			
Pollutant/Atmospheric parameter	CO	CO Trace	NOy
Network or Program	SLAMS	NCore	NCore
Spatial Scale	Neighborhood	Neighborhood	Neighborhood
Parameter start date at site	07/01/1993	01/01/2011	01/01/2011

Monitoring Information				
Pollutant/Atmospheric parameter	NO_2	O_3	SO_2	
Network or Program	SLAMS/PAMS	SLAMS/PAMS/ NCore	SLAMS	
Spatial Scale	Neighborhood	Neighborhood/ Urban	Neighborhood	
Parameter start date at site	07/01/1993	07/01/1993	03/03/2005	

Monitoring Information			
Pollutant/Atmospheric parameter	SO ₂ Trace	VOC	Carbonyls
		TOXICS -	TOXICS -
Network or Program	NCore	NATTS/	NATTS/
		PAMS	PAMS
Spatial Scale	Neighborhood	Urban	Urban
Parameter start date at site	01/01/2011	05/15/1999	05/15/1999

Monitoring Information			
Pollutant/Atmospheric parameter	Hexavalent Chromium	SVOC	Pb PM ₁₀
Network or Program	TOXIC - NATTS	TOXICS - NATTS	NCore
Spatial Scale	Urban	Urban	Neighborhood
Parameter start date at site	01/01/2006	07/08/2007	

Monitoring Information				
Pollutant/Atmospheric parameter	PM _{10-2.5}	PM_{10}	PM ₁₀ /Metal Speciation	
Network or Program	NCore	SLAMS	TOXICS – NATTS	
Spatial Scale	Neighborhood	Neighborhood	Neighborhood	
Parameter start date at site		07/01/1993	01/01/2005	

Monitoring Information			
Pollutant/Atmospheric parameter	PM _{2.5}	PM _{2.5} Speciated	Wind
Network or Program	SLAMS/NCore	STN	ADEQ- Met/NCore
Spatial Scale	Neighborhood	Neighborhood	Neighborhood
Parameter start date at site	01/01/1999	01/01/1999	07/01/1993

Monitoring Information			
Pollutant/Atmospheric parameter	Temp/RH	Aerosol	
Network or Program	NCore	IMPROVE	
Spatial Scale	Neighborhood	Neighborhood	
Parameter start date at site	01/15/2010	04/25/2001	

Aerial view of JLG Supersite

Eastern side of JLG Supersite – 09/2008

Meadview

Site Purpose: monitor regional haze and IMPROVE program.

The site is located on the north end of Meadview, AZ, which is a small town near the Nevada/Arizona border, where the Grand Canyon meets Lake Mead. The surrounding area is primarily desert. To the southwest 64,400 meters is US 93, which is the closest highway to the site and about 96,560 meters to the southeast is downtown Kingman.

Site Information			
AQS ID	04-015-9000 ADEQ ID 21298		21298
Address	Pierce Ferry Rd. Meadview, AZ 86444		
County	Mohave Groundcover Gravel		
CBSA	Lake Havasu City-Kingman Latitude 36.0193		36.0193
Surrounding Area	Desert/Residential Longitude -114.0684		-114.0684
Distance to road	100 m – E Elevation 902 m		902 m
Traffic count	0 – Pierce Ferry Rd.	Site Established Date	09/04/1991

Monitoring Information			
Pollutant/Atmospheric parameter Aerosol			
Network or Program	IMPROVE		
Spatial Scale	Regional		
Parameter start date at site	09/04/1991		

Regional view of Meadview

Photo of Meadview taken from IMPROVE website – date unknown

Miami Golf Course

Site Purpose: NAAQS compliance network and a source permit requirement.

This site is the location for the Pb monitoring in Miami. Freeport McMoRan also maintains two particulate matter monitors at the site.

Site Information				
AQS ID	04-007-8000	04-007-8000 ADEQ ID 166		
Address	SR 188 and US 60 Miami, AZ 85539			
County	Gila Groundcover Gravel		Gravel	
CBSA	Payson Latitude 33		33.4190	
Surrounding Area	Residential Longitude -110.829		-110.8296	
Distance to road	230 – E Elevation 1000 n		1000 m	
Traffic count	n/a	Site Established Date	01/01/1997	

Monitoring Information				
Pollutant/Atmospheric parameter Pb Wind Temp/RH				
Network or Program	SLAMS	ADEQ-MET	ADEQ-MET	
Spatial Scale	Middle	Middle	Middle	
Parameter start date at site	10/01/2010	06/08/2011	06/08/2011	

Aerial view of Miami Golf Course

Fenced Miami Golf Course site – 05/2011

Miami Ridgeline

Site Purpose: NAAQS compliance network and a source permit requirement.

The site is located inside the fence line on private property off of Linden Road and sits on the side of a north-south oriented ridge, which slopes in a northerly direction toward the town of Miami. The surrounding area is desert. Freeport McMoRan Copper and Gold Inc. also maintains a PM_{10} monitor at the site. The Freeport McMoRan smelter is 1,609 meters to the north of the site.

Site Information				
AQS ID	04-007-0009 ADEQ ID 1638		16382	
Address	4030 Linden St. Miami, AZ 85	539		
County	Gila Groundcover Dirt		Dirt	
CBSA	Payson Latitude		33.3992	
Surrounding Area	Residential Longitude		-110.8589	
Distance to road	40 m – N Elevation		1,085 m	
Traffic count	510 – Loomis Ave.	Site Established Date	0/01/1991	

Monitoring Information			
Pollutant/Atmospheric parameter	SO_2		
Network or Program	SLAMS		
Spatial Scale	Neighborhood		
Parameter start date at site	10/05/1995		

Aerial view of Miami Ridgeline

Fenced Miami Ridgeline site – 04/2008

Nogales Post Office

Site Purpose: NAAQS compliance network.

The site is located on the rooftop of the U.S. Post Office building, which lies approximately 670 meters north from the Arizona/Mexico Border. The surrounding area is a mixture of commercial and residential land use. This site is used to meet the $PM_{2.5}$ collocation requirement.

Site Information				
AQS ID	04-023-0004	04-023-0004 ADEQ ID		
Address	300 N. Morley Ave. Nogales, A	300 N. Morley Ave. Nogales, AZ 85621		
County	Santa Cruz Groundcover Rooftop		Rooftop	
CBSA	Nogales Latitude 31.3372		31.3372	
Surrounding Area	Residential/Commercial Longitude -110.936		-110.9367	
Distance to road	14 m – NW Elevation 1,176		1,176 m	
Traffic count	7,199 – Morley Ave.	Site Established Date	01/01/1980	

Monitoring Information				
Pollutant/Atmospheric parameter PM ₁₀ PM _{2.5} Wind				
Network or Program	SLAMS/NAAQS- SPM	SLAMS/ADEQ- SPM	ADEQ-MET	
Spatial Scale	Neighborhood	Neighborhood	Neighborhood	
Parameter start date at site	01/01/1980	04/01/1999	01/01/1980	

Aerial view of Nogales Post Office

Particulate monitors on roof of Nogales Post Office – 09/2008

North Mountain Summit

Site Purpose: monitor urban haze.

The site is located on a mountain top in the North Mountain Recreation Area of Phoenix. The high-resolution digital camera points toward South Mountain, which lies 27,000 meters south. The pictures of the local views are updated every 15 minutes and can be viewed on the internet at http://www.phoenixvis.net/somt1/index.html. The surrounding area is desert recreation area to the north and west and residential with some commercial activity to the south and east.

Site Information			
AQS ID	None	None ADEQ ID 16480	
Address	west side of 7 th St. in North Mo	ountain Recreation Area	Phoenix, AZ
County	Maricopa Groundcover Dirt/Desert		Dirt/Desert
CBSA	Phoenix-Mesa-Scottsdale	Latitude	33.5855
Surrounding Area	Residential/Desert Longitude -112.0722		-112.0722
Distance to road	850 m – E	Elevation	625 m
Traffic count	$28,210 - 7^{\text{th}}$ St.	Site Established Date	07/01/2003

Monitoring Information			
Pollutant/Atmospheric parameter	Visibility		
Network or Program	Urban Haze		
Spatial Scale	Urban		
Parameter start date at site	07/01/2003		

Aerial view of North Mountain Summit

Camera located on tower at North Mountain Summit – 2008

Organ Pipe National Monument

Site Purpose: monitor regional haze and IMPROVE program.

The site is owned by the NPS, who operates the monitor at the site. The site is located 1,000 meters south/southwest of the national monument visitor center, which is about 35,400 meter south of Why, AZ. The site is about 7 meters from a water pump house and lies about 540 meters east of a small mountain range. The surrounding area is predominately desert.

Site Information				
AQS ID	04-019-0005	ADEQ ID	16681	
Address	SR 85 & Puerto Blanco Rd. Ajo, AZ 85321			
County	Pima Groundcover Grave		Gravel	
CBSA	Tucson	Latitude	31.9499	
Surrounding Area	Desert Longit		-112.8010	
Distance to road	400 m – E	Elevation	505 m	
Traffic count	1,525 – SR 85	Site Established Date	01/01/1971	

Monitoring Information			
Pollutant/Atmospheric parameter	Aerosol		
Network or Program	IMPROVE		
Spatial Scale	Regional		
Parameter start date at site	01/15/2003		

Regional view of Organ Pipe NM

Shelter at Organ Pipe NM – 03/2008

Paul Spur Chemical Lime Plant

Site Purpose: NAAQS compliance network.

The site is located about 3,500 meters north of the Arizona/Mexico border and is just south of SR 80 between Bisbee and Douglas. The surrounding area is predominately desert. The chemical lime plant is to the west/southwest. This site is used to meet the PM_{10} collocation requirement.

Site Information				
AQS ID	04-003-0011	ADEQ ID	16391	
Address	SR 80 & Paul Spur Rd. Paul Sp	our, AZ 85603		
County	Cochise	Cochise Groundcover Di		
CBSA	Sierra Vista-Douglas	Latitude	31.3658	
Surrounding Area	Desert Longitud		-109.7309	
Distance to road	50 m – S	Elevation	1,278 m	
Traffic count	4,920 – SR 80	Site Established Date	02/21/1985	

Monitoring Information			
Pollutant/Atmospheric parameter	PM_{10}		
Network or Program	SLAMS		
Spatial Scale	Neighborhood		
Parameter start date at site	03/01/1985		

Aerial view of Paul Spur CLP

Particulate monitors on platform at Paul Spur CLP – 07/2008

Paul Spur Chemical Lime Plant South

Site Purpose: meteorological support.

The site is located about 3,500 meters north of the Arizona/Mexico border and is just south of SR 80 between Bisbee and Douglas. The surrounding area is predominately desert. The chemical lime plant is to the north/northwest.

Site Information				
AQS ID	None	ADEQ ID	16392	
Address	South of Stonridge Rd. Paul Sp	our, AZ 85603		
County	Cochise Groundcover Dirt/Gra		Dirt/Grass	
CBSA	Sierra Vista-Douglas	Latitude	31.3543	
Surrounding Area	Desert Longitude		-109.7376	
Distance to road	20 m – N Eleva		1,287 m	
Traffic count	4,920 – SR 80	Site Established Date	12/21/1995	

Monitoring Information			
Pollutant/Atmospheric parameter	Wind		
Network or Program	ADEQ-MET		
Spatial Scale	Middle		
Parameter start date at site	12/21/1995		

Aerial view of Paul Spur CLP South

Meteorological tower at Paul Spur CLP South - 07/2008

Payson Well Site

Site Purpose: NAAQS compliance network.

The site is located in the southern area of Payson, at a water well site. To the southeast of the site are two tanks. In general, the surrounding area is commercial with some residential land use. Directly to the west, on the other side of a metal fence, is an auto repair shop and 290 meters to the east is SR 87. This site is used to meet the PM_{10} collocation requirement.

Site Information				
AQS ID	04-007-0008	ADEQ ID	16317	
Address	204 W. Aero Dr. Payson, AZ 85541			
County	Gila Groundcover Grave		Gravel	
CBSA	Payson	Latitude	34.2294	
Surrounding Area	Residential/Commercial	Longitude	-111.3297	
Distance to road	80 m - S	Elevation	1,501 m	
Traffic count	1,724 – Aero Dr.	Site Established Date	01/01/1991	

Monitoring Information				
Pollutant/Atmospheric parameter	PM_{10}	Wind	Temp/RH	
Network or Program	SLAMS	ADEQ-MET	ADEQ-MET	
Spatial Scale	Neighborhood	Neighborhood	Neighborhood	
Parameter start date at site	01/01/1991	05/30/1991	05/30/1991	

Aerial view of Payson Well Site

Payson Well Site meteorological tower and particulate monitor on platform – 04/2008

Petrified Forest National Park

Site Purpose: monitor regional haze and IMPROVE program.

The site is operated by the NPS and is located 1,609 meters north of park headquarters. The park sits along I-40 and the surrounding area is desert.

Site Information				
AQS ID	04-001-0012	ADEQ ID	16473	
Address	I-40 & Petrified Forest Rd. Petrified Forest National Park, AZ			
County	Apache	Apache Groundcover Dirt		
CBSA	None	Latitude	35.0770	
Surrounding Area	Desert Longitu		-109.7690	
Distance to road	1,050 m – SW	Elevation	1,766 m	
Traffic count	15,246 – I-40	Site Established Date	03/02/1988	

Monitoring Information			
Pollutant/Atmospheric parameter	Aerosol		
Network or Program	IMPROVE		
Spatial Scale	Regional		
Parameter start date at site	03/02/1988		

Regional view of Petrified Forest NP

Photo of Petrified Forest NP taken from IMPROVE website – date unknown

Phoenix Transmissometer Receiver

Site Purpose: monitor urban haze.

The site is located in downtown Phoenix on the rooftop of the Holiday Inn Hotel near 2nd Avenue and Osborn Road. The transmitter is located on top of the Phoenix Baptist Hospital 4,500 meters to the northwest. The area between the two sites is a mix of residential and commercial.

Site Information				
AQS ID	None	ADEQ ID	16829	
Address	3600 N. 2 nd Ave. Phoenix, AZ 85013			
County	Maricopa	Maricopa Groundcover Rooft		
CBSA	Phoenix-Mesa-Scottsdale	Latitude	33.4901	
Surrounding Area	Commercial/Residential Long		-112.0767	
Distance to road	25 m – E	Elevation	337 m	
Traffic count	1,5470 – Central Ave.	Site Established Date	12/01/1992	

Monitoring Information					
Pollutant/Atmospheric parameter Bext Temp/RH					
Network or Program	Urban Haze	Urban Haze			
Spatial Scale	Urban	Urban			
Parameter start date at site	12/01/1992	12/01/1992			

Aerial view of Phoenix Transmissometer Receiver

Phoenix Transmissometer Receiver on hotel rooftop – 11/2008

Phoenix Transmissometer Transmitter

Site Purpose: monitor urban haze.

The transmitter is located on the rooftop of Phoenix Baptist Hospital at 19th Avenue and Bethany Home Road. The receiver is located on Holiday Inn Hotel 4,500 meters to the southeast. The area between the two sites is a mix of residential and commercial.

Site Information			
AQS ID	None	ADEQ ID	16330
Address	2000 W. Bethany Home Rd. Pl	noenix, AZ 85015	
County	Maricopa Groundcover Roofto		Rooftop
CBSA	Phoenix-Mesa-Scottsdale	Latitude	33.5253
Surrounding Area	Commercial/Residential Longitude		-112.1019
Distance to road	120 m – S	Elevation	340 m
Traffic count	40,950 – Bethany Home Rd.	Site Established Date	12/01/1992

Monitoring Information			
Pollutant/Atmospheric parameter	Bext		
Network or Program	Urban Haze		
Spatial Scale	Urban		
Parameter start date at site	12/01/1992		

Site Photos

Aerial view of Phoenix Transmissometer Transmitter

No photo

Pleasant Valley Ranger Station

Site Purpose: monitor regional haze and IMPROVE program.

The site is operated by ADEQ and the USFS. The site is located on a hilltop south of Young, AZ. The surrounding area is wilderness and desert. The site lies 1,160 meters to the south of SR 288.

Site Information				
AQS ID	04-007-8100	ADEQ ID	16446	
Address	SR 288 & Old Cherry Rd. You	ng, AZ 85541		
County	Gila Groundcover Dirt		Dirt	
CBSA	Payson	Latitude	34.0908	
Surrounding Area	Desert/Forest Longitude		-110.9419	
Distance to road	250 m – N	Elevation	1,587 m	
Traffic count	143 – SR 288	Site Established Date	01/01/2000	

Monitoring Information				
Pollutant/Atmospheric parameter Aerosol				
Network or Program	IMPROVE			
Spatial Scale Regional				
Parameter start date at site	02/10/2000			

Regional view of Pleasant Valley Ranger Station

Shelter at Pleasant Valley Ranger Station – 08/2008

Prescott College AQD

Site Purpose: NAAQS compliance network and monitor smoke/public information.

The site is located at Prescott College on the rooftop of the Mogollon Building (#307). The surrounding area is residential and commercial, with a high traffic street approximately 20 meters to the east and large trees to the west.

Site Information				
AQS ID	04-025-8033	ADEQ ID	133011	
Address	330 Grove Ave., Prescott, AZ	330 Grove Ave., Prescott, AZ 86301		
County	Yavapai Groundcover Rooftop		Rooftop	
CBSA	Prescott	Latitude	34.5467	
Surrounding Area	Residential/Commercial Longitude		-112.4761	
Distance to road	8 m – E Elevation		1,591 m	
Traffic count	21,945 – Grove Ave.	Site Established Date	06/04/2007	

Monitoring Information					
Pollutant/Atmospheric parameter O ₃ PM ₁₀					
Network or Program	SLAMS	ADEQ-E-BAM			
Spatial Scale	Neighborhood	Neighborhood			
Parameter start date at site	03/25/2008	06/04/2007			

Aerial view of Prescott College AQD

E-BAM on roof of Prescott College AQD – date unknown

Prescott Valley

Site Purpose: NAAQS compliance network.

The site is located on the Prescott Police Department building about 1,100 meters to the north of SR 69. The surrounding area is mostly residential with some areas of open desert.

Site Information				
AQS ID	04-025-2002	ADEQ ID	18392	
Address	7601 E. Civic Cir. Prescott Val	lley, AZ 86314		
County	Yavapai	Yavapai Groundcover		
CBSA	Prescott	Latitude	34.5950	
Surrounding Area	Residential	Longitude	-112.3310	
Distance to road	25 m – S	Elevation	1,556 m	
Traffic count	2,400 – Civic Circle N.	Site Established Date	11/08/1999	

Monitoring Information			
Pollutant/Atmospheric parameter	PM_{10}	PM _{2.5}	
Network or Program	SLAMS	SLAMS	
Spatial Scale	Neighborhood	Neighborhood	
Parameter start date at site	11/08/1999	12/28/2007	

Aerial view of Prescott Valley

Particulate monitors on rooftop of Prescott Police Department – 10/2008

Queen Valley

<u>Site Purpose</u>: NAAQS compliance network, PAMS network, monitor regional haze, AQI forecasting, and IMPROVE program.

The site is operated by ADEQ and PCAQCD. The site is located 635 meters southeast of Queen Valley, AZ and the surrounding area is primarily desert on the far eastern outskirts of the Phoenix metropolitan area. This is a downwind PAMS type 3 site.

Site Information			
AQS ID	04-021-8001	ADEQ ID	16394
Address	10 S. Queen Anne Dr. Queen V	Valley, AZ 85219	
County	Pinal Groundcover Gravel		Gravel
CBSA	Phoenix-Mesa-Scottsdale	Latitude	33.2938
Surrounding Area	Desert Longitude		-111.2857
Distance to road	87 m – W	Elevation	668 m
Traffic count	1,284 – Queen Anne Dr.	Site Established Date	04/30/2001

Monitoring Information				
Pollutant/Atmospheric parameter O ₃ NOy VOC				
Network or Program	SLAMS/PAMS	PAMS	PAMS	
Spatial Scale	Urban	Urban	Urban	
Parameter start date at site	05/20/2001	06/24/2002	05/20/2001	

Monitoring Information					
Pollutant/Atmospheric parameter Wind Temp/RH Aerosol					
Network or Program	ADEQ-MET	ADEQ-MET	IMPROVE		
Spatial Scale	Urban	Urban	Urban		
Parameter start date at site	04/20/2011	04/20/2011	04/30/2001		

Regional view of Queen Valley

Shelter at Queen Valley site – 5/10/2011

Rillito

Site Purpose: NAAQS compliance network and a source permit requirement.

In February of 2007 the site was moved from the Water St. location 91 meters southwest to its current location at a city water pumping station. The surrounding area is primarily residential and industrial, with I-10 approximately 250 meters to the east. Arizona Portland Cement Company also maintains PM_{10} monitors at the site.

Site Information			
AQS ID	04-019-0020	ADEQ ID	16499
Address	8840 W. Robinson St. Rillito, AZ 85653		
County	Pima Groundcover Dirt		Dirt
CBSA	Tucson	Latitude	32.4143
Surrounding Area	Residential Longitude		-111.1545
Distance to road	7 m – S	Elevation	626 m
Traffic count	2,634 – I-10 Frontage Rd.	Site Established Date	01/01/1974

Monitoring Information					
Pollutant/Atmospheric parameter PM ₁₀ Wind Temp/RH					
Network or Program	SLAMS	ADEQ-MET	ADEQ-MET		
Spatial Scale	Neighborhood	Neighborhood	Neighborhood		
Parameter start date at site	01/01/1974	01/08/2004	3/30/2010		

Aerial view of Rillito

Rillito meteorological tower and particulate monitors on platform – 05/2010

Saguaro National Park East

Site Purpose: monitor regional haze and IMPROVE program.

The site is located within the Saguaro National Park East, 805 meters south of park headquarters and is operated jointly by PDEQ and NPS. The area surrounding the site is scattered residential to the west and desert to the east.

Site Information				
AQS ID	04-019-0021	ADEQ ID	16474	
Address	3905 S. Old Spanish Trail Tucs	son, AZ 85730		
County	Pima Groundcover Dirt		Dirt	
CBSA	Tucson	Latitude	32.1740	
Surrounding Area	Residential/Desert	Longitude	-110.7360	
Distance to road	82 m – W	Elevation	938 m	
Traffic count	6,198 – Old Spanish Tail	Site Established Date	06/04/1988	

Monitoring Information			
Pollutant/Atmospheric parameter	Aerosol		
Network or Program	IMPROVE		
Spatial Scale	Regional		
Parameter start date at site	06/04/1988		

Regional view of Saguaro NP East

Photo of Saguaro NP East taken from IMPROVE website – date unknown

Saguaro National Park West

Site Purpose: monitor regional haze and IMPROVE program.

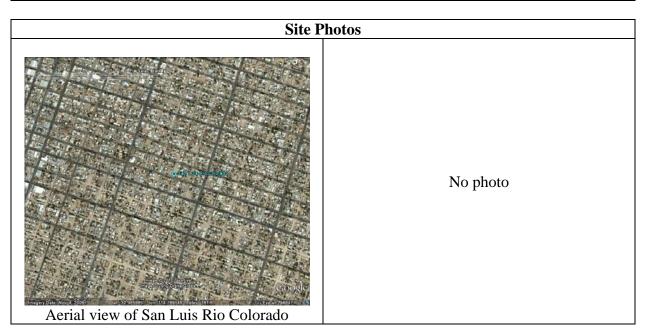
The site is located within the Saguaro National Park West. The site is operated by PDEQ and NPS and PDEQ takes care of the ADEQ monitors. The area surrounding the site is residential to the northwest and south/southeast and desert to the northeast. The site lies approximately 17 kilometers southwest of I-10.

Site Information				
AQS ID	04-019-9000	ADEQ ID	16475	
Address	N. Sandario Rd. and W. Mile V	Vide Rd. Tucson, AZ		
County	Pima Groundcover Gravel		Gravel	
CBSA	Tucson	Latitude	32.2485	
Surrounding Area	Desert Long		-111.2175	
Distance to road	27 m – W	Elevation	718 m	
Traffic count	1,889 – Mile Wide Rd.	Site Established Date	04/19/2001	

Monitoring Information			
Pollutant/Atmospheric parameter	Aerosol		
Network or Program	IMPROVE		
Spatial Scale	Regional		
Parameter start date at site	04/19/2001		

Regional view of Saguaro NP West

Shelters and towers at Saguaro NP West site – 03/2003


San Luis Rio Colorado

Site Purpose: special purpose monitoring.

The site is located at the Oomapas Well # 10 site at the corner of Av. Venustiano Carranza and C. 15 in San Luis Rio Colorado, Sonora, Mexico. The site is approximately 1,600 meters south of the Arizona-Mexico border. The surrounding area is mixed commercial and residential use. *Note this site was previously used the in WASBAQS study.

Site Information				
AQS ID	80-026-8012	ADEQ ID	113221	
Address	Av. Venustiano Carranza and C	C. 15 in San Luis Rio Co	lorado, Sonora,	
Address	Mexico			
County	Sonora	Groundcover	Dirt	
CBSA	None	Latitude	32.4664	
Surrounding Area	Commercial/Residential	Longitude	-114.7688	
Distance to road	5 m – S & E	Elevation	41 m	
Traffic count	n/a	Site Established Date	07/05/2009	

Monitoring Information					
Pollutant/Atmospheric parameter PM ₁₀ PM _{2.5}					
Network or Program	ADEQ-SPM	ADEQ-SPM			
Spatial Scale	Neighborhood	Neighborhood			
Parameter start date at site	07/05/2009	7/05/2009			

Sedona Post Office

Site Purpose: monitor smoke/public information.

The site is located on the U.S. Post Office building and was established to assess particulate concentrations in the Sedona area. Currently the site is used for neighborhood monitoring of smoke. The surrounding area is commercial and residential to the south and mainly hills to the north, east, and west. The site is located northeast of the intersection of SR 179 and SR 89A.

Site Information				
AQS ID	04-005-1010	ADEQ ID	16512	
Address	190 W. Highway 89A Sedona,	190 W. Highway 89A Sedona, AZ 86336		
County	Coconino	Coconino Groundcover Rooftop		
CBSA	Flagstaff	Latitude	34.8667	
Surrounding Area	Commercial/Residential Longitude		-111.765	
Distance to road	45 m – S	Elevation	1,279 m	
Traffic count	25,193 – SR 89A	Site Established Date	01/01/1992	

Monitoring Information			
Pollutant/Atmospheric parameter	PM_{10}		
Network or Program	ADEQ-E-BAM		
Spatial Scale	Neighborhood		
Parameter start date at site	01/01/1992		

Aerial view of Sedona Post Office

E-BAM on roof of Sedona Post Office – date unkown

Show Low

Site Purpose: monitor smoke/public information.

The site located on the Historical Museum building and was established to demonstrate NAAQS compliance. Currently the site is used for neighborhood monitoring of smoke. The surrounding area is residential and commercial. Show Low is the commercial and tourism hub of the western White Mountains and sees a seasonally increase in population by 5,000 people.

Site Information			
AQS ID	04-017-0007	ADEQ ID	16603
Address	561 E. Deuce of Clubs Show L	ow, AZ 85901	
County	Navajo Groundcover Roofto		Rooftop
CBSA	None	Latitude	34.2525
Surrounding Area	Commercial/Residential Longit		-110.0364
Distance to road	36 m – NW	Elevation	1,924 m
Traffic count	9,500 – Deuce of Clubs	Site Established Date	

Monitoring Information			
Pollutant/Atmospheric parameter	PM_{10}		
Network or Program	ADEQ-E-BAM		
Spatial Scale Neighborhood			
Parameter start date at site	05/25/2011		

Site Photos

Aerial view of Show Low

No Photo

Sonora Nogales Fire Station

Site Purpose: special purpose monitoring.

The site is located on the rooftop of the Fire Station. Nogales, Sonora, Mexico is located just south, approximately 600 meters of the Arizona/Mexico border. The surrounding area is dense urban commercial and residential use.

	Site Information			
AQS ID	80-026-0005	ADEQ ID	16399	
Address	Diaz and Avenue Adolfo Lope	Diaz and Avenue Adolfo Lopez Mateos Nogales, Sonora, Mexico		
County	Sonora Groundcover Rooftop		Rooftop	
CBSA	None	Latitude	31.3258	
Surrounding Area	Commercial/Residential	Longitude	-110.9447	
Distance to road	3 m – NE	Elevation	1,202 m	
Traffic count	n/a	Site Established Date	11/01/1993	

Monitoring Information			
Pollutant/Atmospheric parameter	PM_{10}	$PM_{2.5}$	
Network or Program	ADEQ-SPM	ADEQ-SPM	
Spatial Scale	Neighborhood	Neighborhood	
Parameter start date at site	11/01/1993	04/11/2010	

Aerial view of Sonora Nogales Fire Station

No photo

South Phoenix

Site Purpose: toxics network.

The site is owned by MCAQD. ADEQ operates the toxics sampler at the site. The site is situated in South Phoenix, at the edge of a high population area, bordering a mixture of residential and commercial properties. Two high population areas are located north and west of the site.

Site Information				
AQS ID	04-013-4003	ADEQ ID	16377	
Address	33 W. Tamarisk St. Phoenix, A	AZ 85041		
County	Maricopa Groundcover Aspha		Asphalt	
CBSA	Phoenix-Mesa-Scottsdale	Latitude	33.4030	
Surrounding Area	Residential/Commercial Longitude		-112.0750	
Distance to road	83 m – W	Elevation	330 m	
Traffic count	19,110 – Central Ave.	Site Established Date	01/01/1997	

Monitoring Information			
Pollutant/Atmospheric parameter	Toxics		
Network or Program	TOXICS-		
	UATMP		
Spatial Scale	Neighborhood		
Parameter start date at site	08/05/2001		

Aerial view of South Phoenix

Shelter and meteorological tower at South Phoenix site – 04/2005

Springerville

Site Purpose: monitor smoke/public information.

The site is located on the roof of the Apache County Public Health Services District building. There is an open field to the south and west of the site, with SR 180/SR 260 to the east, and buildings to the north.

Site Information				
AQS ID	None	ADEQ ID	135133	
Address	323 S. Mountain Ave., Springe	erville, AZ 85936		
County	Apache Groundcover Rooftop		Rooftop	
CBSA	None	Latitude	34.1284	
Surrounding Area	Residential/Commercial	Longitude	-109.2891	
Distance to road	8 m – SW	Elevation	2,125 m	
Traffic count	10,616 – S. Mountain Ave.	Site Established Date	09/24/2008	

Monitoring Information			
Pollutant/Atmospheric parameter	PM_{10}		
Network or Program	ADEQ-E-BAM		
Spatial Scale	Neighborhood		
Parameter start date at site	09/24/2008		

Aerial view of Springerville

Springerville E-BAM on roof of county building – 09/2008

Sycamore Canyon

Site Purpose: monitor regional haze and IMPROVE program.

The site is located near the entrance to Camp Raymond Boy Scout Camp. Minimal obstructions exist in the area surrounding the site and no routine human activity occurs in the area surrounding the site. Sycamore Canyon Wilderness Area is 800 meters south of the site.

Site Information				
AQS ID	04-005-8103	ADEQ ID	16476	
Address	Camp Kimball Rd. Flagstaff, A	AZ (Camp Raymond)		
County	Coconino Groundcover Dirt/Gra		Dirt/Grass	
CBSA	Flagstaff	Latitude	35.1406	
Surrounding Area	Forest	Longitude	-111.9692	
Distance to road	33 m – NW	Elevation	2,046 m	
Traffic count	15,048 – I-40	Site Established Date	09/11/1991	

Monitoring Information			
Pollutant/Atmospheric parameter	Aerosol		
Network or Program	IMPROVE		
Spatial Scale	Regional		
Parameter start date at site	09/11/1991		

Regional view of Sycamore Canyon

Shelter at Sycamore Canyon site – 09/2008

Tonto National Monument

<u>Site Purpose</u>: NAAQS compliance network, monitor regional haze, AQI forecasting, downwind transport from Phoenix area, and IMPROVE program.

The site is jointly operated by ADEQ and USFS. The site is located at the base of Tonto National Monument, about 40 meters south of SR 188. The area surrounding the site is desert with Roosevelt Lake about 1,000 meters to the north in Tonto National Forest.

Site Information				
AQS ID	04-007-0010	ADEQ ID	16447	
Address	South of SR 188 Roosevelt, AZ	South of SR 188 Roosevelt, AZ 85545		
County	Gila Groundcover Dirt/Roc		Dirt/Rock	
CBSA	Payson	Latitude	33.6547	
Surrounding Area	Desert Longitude		-111.1074	
Distance to road	17 m – NE	Elevation	786 m	
Traffic count	1,073 – SR 188	Site Established Date	04/23/1988	

Monitoring Information			
Pollutant/Atmospheric parameter	O_3	Aerosol	
Network or Program	SLAMS	IMPROVE	
Spatial Scale	Urban	Urban	
Parameter start date at site	05/22/2002	04/23/1988	

Regional view of Tonto NM

Shelter at Tonto NM site – 03/2008

Vehicle Emissions Laboratory

<u>Site Purpose</u>: AIR Now, AQI forecasting, PAMS, special study, monitor urban haze, and meteorological support.

The site is located in the northwest corner of the Vehicle Emissions Laboratory property. The surrounding area is a both residential and commercial, with an open field directly to the north/northwest. The site is about 415 meters south of Red Mountain Freeway (Loop 202).

Site Information				
AQS ID	04-013-9998	ADEQ ID	16363	
Address	Address 600 N. 40 th St. Phoenix, AZ 85008			
County	Maricopa Groundcover G		Gravel	
CBSA	Phoenix-Mesa-Scottsdale	Latitude	33.4553	
Surrounding Area	Residential/Commercial	Longitude	-111.9961	
Distance to road	66 m – E	Elevation	356 m	
Traffic count	$12,740 - 40^{th}$ St.	Site Established Date	04/01/1987	

Monitoring Information					
Pollutant/Atmospheric parameter Bscat/PM _{2.5} Wind Temp/RH					
Network or Program	SPM/AIRNow	ADEQ-MET	ADEQ-MET		
Spatial Scale Neighborhood Neighborhood Neighborhood					
Parameter start date at site	06/25/2003	05/11/1999	05/11/1999		

Monitoring Information				
Pollutant/Atmographeria nerometer	Delta Temp	Ultraviolet Solar	Total Horizontal	
Pollutant/Atmospheric parameter		Radiation	Solar Radiation	
Network or Program	PAMS	PAMS	PAMS	
Spatial Scale	Neighborhood	Neighborhood	Neighborhood	
Parameter start date at site	05/11/1999	08/20/2004	06/18/1999	

Monitoring Information							
Pollutant/Atmospheric parameter	Wind Profiler						
Network or Program	PAMS						
Spatial Scale	Neighborhood						
Parameter start date at site	01/01/1998						

Aerial view of Vehicle Emissions Laboratory

Wind profiler, meteorological tower, and shelter at VEL - 04/12/2005

Verde Ranger Station

Site Purpose: monitor smoke/public information

The site is located at the Verde Ranger Station in Camp Verde. The monitor is located on a metal platform that is on a concrete slab surrounded by dirt and rocks. Ranger Station buildings are to the northeast and northwest and there are solar panels to the east of the monitor.

Site Information								
AQS ID	None	ADEQ ID	138696					
Address	300 E. Highway 260 Camp Verde, AZ 86322							
County	Yavapai	Groundcover	Dirt					
CBSA	CBSA Prescott		34.5489					
Surrounding Area	Residential/Desert	Longitude	-111.8472					
Distance to road	70 m - S	Elevation	945 m					
Traffic count	6,075 – SR 260	Site Established Date	01/01/2008					

Monitoring Information									
Pollutant/Atmospheric parameter	PM_{10}								
Network or Program	ADEQ-E-BAM								
Spatial Scale	Neighborhood								
Parameter start date at site	01/01/2008								

Aerial view of Verde Ranger Station

E-BAM on platform at Verde Ranger Station – 2/2010

Yuma Supersite

Site Purpose: NAAQS compliance network and AQI forecasting.

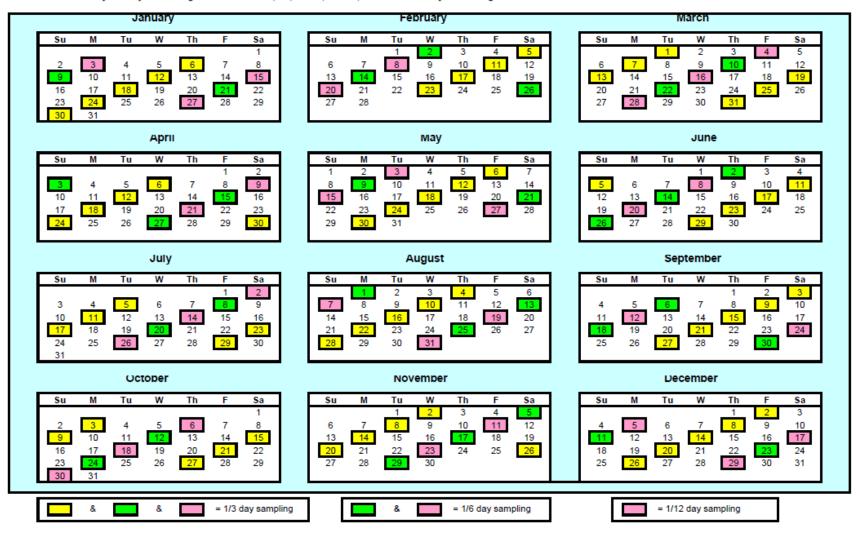
The site was reopened in 2008 to take the place of the Yuma Game & Fish site and is used to indicate ozone transport into the Phoenix metropolitan area from the Arizona/Mexico border. The particulate and the meteorological monitors have also been moved to this site to create one Yuma monitoring site. The site is located on the southeast corner of the Rural Metro Administration Facility property. The surrounding area is commercial and industrial, with a dirt lot adjacent to the south and I-8 1 kilometer to the northeast.

Site Information								
AQS ID	04-027-8011	ADEQ ID	113219					
Address	2323 S. Arizona Ave. Yuma, AZ 85364							
County	Yuma	Groundcover	Rooftop					
CBSA Yuma		Latitude	32.6903					
Surrounding Area	Commercial/Industrial	Longitude	-114.6144					
Distance to road	91 m – W	Elevation	60 m					
Traffic count	12,302 – Arizona Ave.	Site Established Date	02/01/2006					

Monitoring Information								
Pollutant/Atmospheric parameter	O_3	PM_{10}	PM _{2.5}					
Network or Program	SLAMS	SLAMS	SLAMS					
Spatial Scale	Neighborhood	Neighborhood	Neighborhood					
Parameter start date at site	05/06/2008	01/01/2010	01/01/2010					

Monitoring Information									
Pollutant/Atmospheric parameter	Wind	Temp/RH							
Network or Program	ADEQ-MET	ADEQ-MET							
Spatial Scale	Neighborhood	Neighborhood							
Parameter start date at site	03/17/2010	03/17/2010							

Aerial view of Yuma Supersite

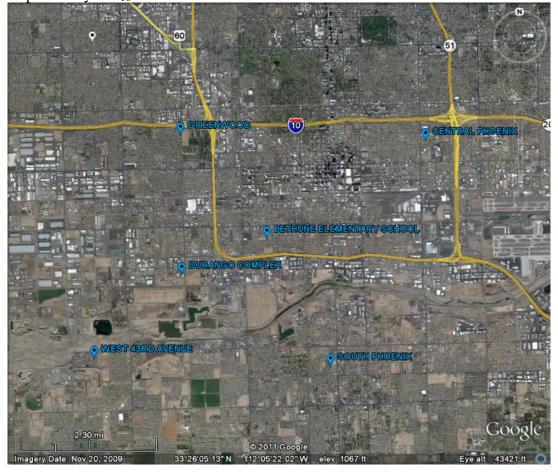


Shelter and Met Tower at Yuma Supersite – 5/19/2011

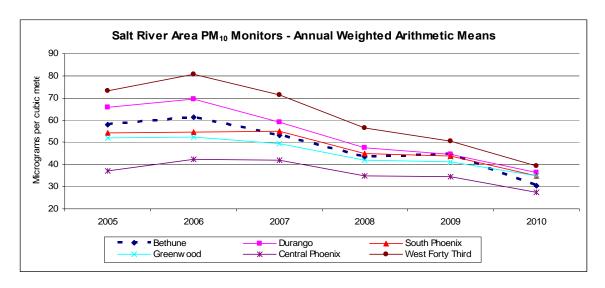
Appendix E – 2011 EPA Monitoring Schedule

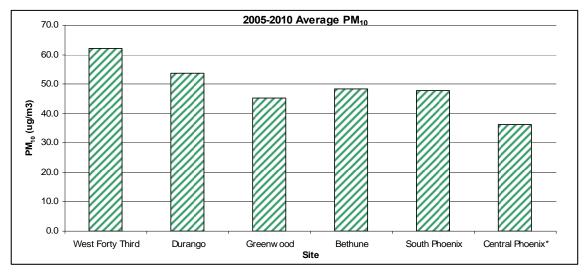
2011 Monitoring Schedule

3-day & 6-day Monitoring Schedule for TSP, Pb, PM-10, PM-2.5, and VOC. 12-day Monitoring Schedule for PM-2.5 Collocation.



Appendix F – Bethune Elementary School Site Removal Rationale


This document explains the Arizona Department of Environmental Quality's rationale for removing the PM_{10} special purpose monitor (SPM) from the Bethune Elementary School at the end of the second quarter 2011. This rationale includes the following issues:


- 1. Current and ongoing budgetary limitations require the redirection of non-essential (non-regulatory) resources. ADEQ no longer has the resources to conduct monitoring that is not required by regulation. The Bethune Elementary School monitor is an SPM and not required by the CFR.
- 2. The Maricopa County Air Quality Department's PM₁₀ network provides sufficient coverage for attainment / nonattainment determinations in Maricopa County.
- 3. The West 43rd, Durango, South Phoenix, Greenwood, and Central Phoenix sites provide data that are representative of the Bethune Elementary School monitor.

The first two issues are straightforward and likely well understood by Region 9. The third issue is examined in more detail below. It is evident from the figure, table, and graphs below that the Bethune Elementary School monitor, and the data from this monitor, is closely bracketed by the five Maricopa County monitors. The Bethune Elementary School PM_{10} monitor is located within 3.5 miles of five other Maricopa County PM_{10} monitors.

Site	Α	Annual Weighted Arithmetic Mean (μg/m³)								
	2005	2006	2007	2008	2009	2010	Average			
West Forty Third	73.4	80.8	71.3	56.5	50.6	39.4	62.0			
Durango	65.9	69.7	59	47.7	44.4	36.2	53.8			
Greenwood	51.9	52.4	49.5	42.1	41.2	34.9	45.3			
Bethune	58	61.2	53	43.6	44.6	30.3	48.5			
South Phoenix	54.1	54.5	55	44.8	44	35	47.9			
Central Phoenix	37.3	42.3	41.9	34.8	34.4	27.4	36.4			

Appendix G – Data Quality Indicator Report

This Appendix contains the required Quality Assurance documentation for all SLAMS monitors in ADEQs SLAMS network. The Data Quality Indicator Report is for the calendar year of 2010.

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY

User ID: BNE DATA QUALITY INDICATOR REPORT

Report Request ID: 862423 Report Code: AMP255 Apr. 19, 2011

GEOGRAPHIC SELECTIONS

Tribal

State County Site Parameter POC City AQCR UAR CBSA CSA Region Method Duration Begin Date End Date

04

80

PROTOCOL SELECTIONS

PQAO SELECTIONS

Parameter

Classification Parameter Method Duration

Arizona Department Of Environmental

n | Quality

APP_A_PARAMETERS

SELECTED OPTIONS

Option Type Option Value

INCLUDE ONLY APPENDIX A NO

MONITORS

RESTRICT TO MONITORING YES

SEASONS

MERGE PDF FILES YES

GLOBAL DATES

Start Date End Date

2010 01 01 2010 12 31

Notes About this Report

Apr. 19, 2011

For specific information about the fields appearing within this report, please refer to the README.txt file that is included with the WORKFILE output for this report.

M

If you see this value for a column in a summarized row, this means that more than one occurence exist in the summary. For example, if you have a PQAO summary that spans multiple States, you would see this value in the States column.

Code Listing

The following codes may be seen in the "MT" column throughout this report. Please be advised that not all of the codes may appear in the report. They are provided for completeness.

<u>Code</u>	Description	<u>Code</u>	<u>Description</u>
NR	NON-REGULATORY	S	SLAMS
Р	PAMS	Т	TRIBAL MONITORS
SP	SPECIAL PURPOSE	I	IMPROVE
NC	NCORE	IX	INDEX SITE
ID	INDUSTRIAL	N	NAMS
NA	NATTS	CN	CASTNET
F	NON-EPA FEDERAL	0	OTHER
PN	PROPOSED NCORE	ST	SCHOOL AIR TOXICS
VS	VOL SCHOOL AT	QA	QA COLLOCATED
Χ	SECURED	SS	SLAMS SPECIATION
SU	SUPLMNTL SPECIATION	SU	SUPPLMNTL SPECIATION
TS	TRENDS SPECIATION	U	UNKNOWN
UP	UNOFFICIAL PAMS	W	WHO
M	WMO		

DATA QUALITY INDICATOR REPORT

Apr. 19, 2011

1-Point Quality Control

Pollutant:	CO		PQAO:	0053 (Ari	zona Departme	ent Of Environ	mental Q	uality)				App A?:	Yes
					Begin	End			%				
<u>Year</u>	Region	State Site ID	POC	MT	<u>Date</u>	<u>Date</u>	# Req	# Obs	<u>Complete</u>	CV	<u>Bias</u>		
2010	09	AZ 04-013-99	97 1	S	01-JAN-10	31-DEC-10	26	24	92	4.43	+/- 3.65		
<mark>2010</mark>	09	AZ SUMMA F	RY				26	24	92	4.43	+/- 3.65		
SUMMARY	09	AZ					26	24	92	4.43	+/- 3.65		
Pollutant:	NO2		PQAO:	0053 (Ari	zona Departme	ent Of Environ	mental Q	uality)				App A?:	Yes
					Begin	End			%				
<u>Year</u>	Region	State Site ID	POC	<u>MT</u>	<u>Date</u>	<u>Date</u>	# Req	# Obs	<u>Complete</u>	<u>CV</u>	<u>Bias</u>		
2010	09	AZ 04-013-99		S	01-JAN-10	31-DEC-10	26	19	73	3.55	- 3.45		
<mark>2010</mark>	09	AZ SUMMA F	RY				26	19	73	3.55	- 3.45		
SUMMARY	09	AZ					26	19	73	3.55	- 3.45		
Pollutant:	O3		PQAO:	0053 (Ari	zona Departme	ent Of Environ	mental Qı	uality)				App A?:	Yes
					Begin	End			%				
<u>Year</u>	Region	State Site ID	POC	<u>MT</u>	<u>Date</u>	<u>Date</u>	# Req	<u># Obs</u>	<u>Complete</u>	<u>CV</u>	<u>Bias</u>		
2010	09	AZ 04-005-10	08 1	S	01-APR-10	31-OCT-10	15	15	100	0.75	+ 1.69		
2010	09	AZ 04-007-00	10 1	S	01-APR-10	31-OCT-10	15	13	87	1.30	+ 1.24		
2010	09	AZ 04-012-80	00 1	S	01-APR-10	31-OCT-10	15	15	100	1.69	+ 3.34		
2010	09	AZ 04-013-99	97 1	S-NC	01-JAN-10	31-DEC-10	26	24	92	2.12	+ 1.72		
2010	09	AZ 04-021-80	01 1	S	01-APR-10	31-OCT-10	15	13	87	1.24	+ 1.03		
2010	09	AZ 04-025-80	33 1	S	01-APR-10	31-OCT-10	15	15	100	0.99	+ 2.35		
2010	09	AZ 04-027-80	11 1	S	01-APR-10	31-OCT-10	15	15	100	1.07	+/- 0.65		
<mark>2010</mark>	09	AZ SUMMA F	RY				116	110	95	1.51	+ 1.53		
SUMMARY	09	AZ					116	110	95	1.51	+ 1.53		
Pollutant:	SO2		PQAO:	0053 (Ari	zona Departme	ent Of Environ	mental Q	uality)				App A?:	Yes
					Begin	End			%				
<u>Year</u>	Region	State Site ID	POC	<u>MT</u>	<u>Date</u>	<u>Date</u>	# Req	# Obs	<u>Complete</u>	CV	<u>Bias</u>		
2010	09	AZ 04-007-00	09 1	S	01-JAN-10	31-DEC-10	26	22	85	3.92	+/- 3.16		
2010	09	AZ 04-007-10	01 3	S	01-JAN-10	31-DEC-10	26	27	100	3.55	- 3.20		
2010	09	AZ 04-013-99	97 1	S	01-JAN-10	31-DEC-10	26	25	96	4.09	+/- 3.24		

DATA QUALITY INDICATOR REPORT

1-Point Quality Control

Pollutant: SO2 **PQAO:** 0053 (Arizona Department Of Environmental Quality)

App) A?	: Y	е
-----	------	-----	---

Apr. 19, 2011

						Begin	⊨nd			%			
<u>Year</u>	Region	<u>State</u>	Site ID	<u>POC</u>	MT	<u>Date</u>	<u>Date</u>	# Req	# Obs	<u>Complete</u>	CV	<u>Bias</u>	
<mark>2010</mark>	09	ΑZ	SUMMAR	Υ				78	74	94	3.61	+/- 2.89	
SUMMARY	09	ΑZ						78	74	94	3.61	+/- 2.89	

DATA QUALITY INDICATOR REPORT

Apr. 19, 2011

Annual Performance Evaluations

Pollutant: CO App A?: Yes **PQAO:** 0053 (Arizona Department Of Environmental Quality) 1-Point % Btwn Avg %D / Level Begin End Criteria Conf. Limits Obs / Q Conf. Year Region State Site ID POC ΜT Date Date L1 L2 L3 L4 L5 Q1 Q2 Q3 Q4 Met? Lower Upper 0.95 -0.98 -0.82 2010 09 AZ 04-013-9997 S 01-JAN-10 31-DEC-10 4 4 4 AZ **SUMMARY** 0.95 -0.98-0.82 09 2010 4 4 4 100 -6.59 7.35 88 0.95 -0.98 -0.82 SUMMARY 09 ΑZ 100 -6.59 7.35 88 4 App A?: Yes Pollutant: NO2 **PQAO:** 0053 (Arizona Department Of Environmental Quality) 1-Point % Btwn Begin End Obs / Q Criteria Conf. Limits Avg %D / Level Conf. Year Region State Site ID POC MT Date Date L1 L2 L3 L4 Q1 Q2 Q3 Q4 Met? Lower Upper 5.93 2.81 S 2.05 0 4 4 0 Υ 2010 AZ 04-013-9997 01-JAN-10 31-DEC-10 AZ **SUMMARY** 5.93 2.81 2.05 2010 09 0 4 4 0 100 3.53 63 SUMMARY 5.93 2.81 2.05 0 09 ΑZ 4 0 100 -7.27 3.53 63 Pollutant: O3 **PQAO:** 0053 (Arizona Department Of Environmental Quality) App A?: Yes 1-Point % Btwn Begin End Avg %D / Level Obs / Q Criteria Conf. Limits Conf. Year Region State Site ID POC MT Date Date L1 L2 L3 L4 L5 Q1 Q2 Q3 Q4 Met? Lower Upper S 0.00 -1.25 -2.00 -1.99 -2.60 0 5 0 0 AZ 04-005-1008 Υ 2010 09 01-APR-10 31-OCT-10 -2.63 AZ 04-007-0010 S -1.28 -0.68-0.81-0.71 0 5 Υ 2010 09 01-APR-10 31-OCT-10 0 0 2.63 0.00 0.00 0.00 2010 09 AZ 04-012-8000 S 01-APR-10 31-OCT-10 -1.18 5 0 Υ 2010 09 AZ 04-013-9997 S-NC 01-JAN-10 31-DEC-10 -7.32 -4.94-2.65-1.99-1.17 0 0 5 0 Υ 0.00 0.66 0.40 2010 09 AZ 04-021-8001 S 01-APR-10 31-OCT-10 2.38 0.47 0 0 5 0 Υ -1.33 0.00 -1.60 09 AZ 04-025-8033 S 01-APR-10 31-OCT-10 0.00 -1.89 0 5 0 0 Υ 2010 2.44 0.00 0.00 -0.400.00 AZ 04-027-8011 S 01-APR-10 31-OCT-10 0 5 0 0 Υ 2010 09 -0.91 -0.36 -1.07 -0.862010 09 AZ **SUMMARY** -1.01 0 15 20 0 100 -1.52 3.88 71 SUMMARY ΑZ -0.36 -1.07 -0.86-0.91 -1.01 15 20 0 3.88 09 100 -1.52 71 PQAO: 0053 (Arizona Department Of Environmental Quality) Pollutant: SO2 App A?: Yes 1-Point % Btwn Begin End Avg %D / Level Obs / Q Criteria Conf. Limits Conf. Year Region State Site ID POC MT L4 Date Date L1 L2 L3 L5 Q1 Q2 Q3 Q4 Met? Lower Upper 5.00 5.76 5.92 S 0 2010 09 AZ 04-007-0009 01-JAN-10 31-DEC-10 0 4 0 Υ 1 S 1.66 0.05 -0.313 Υ 2010 09 AZ 04-007-1001 01-JAN-10 31-DEC-10 0 4 4

2010

09

AZ 04-013-9997

S

01-JAN-10 31-DEC-10

-4.00

-4.80

-4.82

0 3 0 0

Υ

DATA QUALITY INDICATOR REPORT

Apr. 19, 2011

App A?: Yes

Annual Performance Evaluations

Pollutant: SO2 PQAO: 0053 (Arizona Department Of Environmental Quality)

	002		-		,,,	(Tillzona Dopartinont of Environmental adamy)													100		
Voor Denier Chate Cite ID DOC MT						Begin		Avg %	6D / Le	evel			Ob	s/C) (Criteri	1-Po a Conf.		% Btwn Conf.		
<u>Year</u>	Region	State	Site ID	POC	MT	Date	<u>Date</u>	<u>L1</u>	<u>LŽ</u>	<u>L3</u>	<u>L4</u>	L5	Q1	Q2	Q3				Upper		
2010	09	ΑZ	SUMMARY							0.89	0.34	0.26	3	3	8	4	100	-6.44	6.18	100	
SUMMARY	09	A7								0.89	0.34	0.26	3	3	8	4	100	-6 44	6 18	100	

DATA QUALITY INDICATOR REPORT

Flow Rate Verifications

Pollutant: PM10 PQAO: 0053 (Arizona Department Of Environmental Quality) App A?: Yes

						Begin	End			Average	%	
<u>Year</u>	Region	State	Site ID	<u>POC</u>	MT	<u>Date</u>	<u>Date</u>	# Req	# Obs	<u>% D</u>	Complete	<u>Bias</u>
2010	09	AZ 0	4-003-0011	1	S	01-JAN-10	31-DEC-10	12	14	0.09	100	+/- 1.74
2010	09	AZ 0	4-003-0011	2	QA	01-JAN-10	31-DEC-10	12	13	-0.68	100	+/- 1.88
2010	09	AZ 0	4-003-1005	1	S	01-JAN-10	31-DEC-10	12	13	-2.40	100	- 5.98
2010	09	AZ 0	4-005-1008	1	S	01-JAN-10	31-DEC-10	12	12	-0.94	100	- 1.48
2010	09	AZ 0	4-007-0008	1	S	01-JAN-10	31-DEC-10	12	13	0.11	100	+/- 1.54
2010	09	AZ 0	4-007-0008	2	QA	01-JAN-10	31-DEC-10	12	13	-0.29	100	+/- 1.07
2010	09	AZ 0	4-007-1001	3	S	01-JAN-10	31-DEC-10	12	15	-1.65	100	- 2.55
2010	09	AZ 0	4-013-8006	1	SP	01-JAN-10	31-DEC-10	12	13	-0.28	100	+/- 1.04
2010	09	AZ 0	4-013-9997	3	S	01-JAN-10	31-DEC-10	12	14	-0.97	100	- 1.86
2010	09	AZ 0	4-015-1003	1	S	01-JAN-10	31-DEC-10	12	12	0.37	100	+ 0.95
2010	09	AZ 0	4-019-0001	3	S	01-JAN-10	31-DEC-10	12	14	-0.23	100	+/- 1.03
2010	09	AZ 0	4-019-0020	1	S	01-JAN-10	30-MAR-10	2	5	0.41	100	+ 0.71
2010	09	AZ 0	4-019-0020	3	S	01-APR-10	31-DEC-10	9	11	-0.06	100	+/- 2.83
2010	09	AZ 0	4-023-0004	1	S	01-JAN-10	31-DEC-10	12	13	-0.15	100	+/- 1.47
2010	09	AZ 0	4-023-0004	3	SP	01-JAN-10	31-DEC-10	12	15	-0.21	100	+/- 0.92
2010	09	AZ 0	4-025-2002	1	S	01-JAN-10	31-DEC-10	12	12	-0.04	100	+/- 0.77
2010	09		4-027-8011	3	S	01-JAN-10	31-DEC-10	12	13	-1.42	100	- 1.73
2010	09	AZ S	SUMMARY					191	215	-0.54	100	+/- 1.38
SUMMARY	09	AZ						191	215	-0.54	100	+/- 1.38

Pollutant: PM2.5 PQAO: 0053 (Arizona Department Of Environmental Quality)

Regin End Average

App A?: Yes

Apr. 19, 2011

						Begin	End			Average	%	
<u>Year</u>	Region	State	Site ID	POC	MT	<u>Date</u>	<u>Date</u>	# Req	# Obs	<u>% D</u>	Complete	<u>Bias</u>
2010	09	ΑZ	04-003-1005	1	S	01-JAN-10	31-DEC-10	12	13	-0.27	100	+/- 1.14
2010	09	ΑZ	04-005-1008	1	S	01-JAN-10	31-DEC-10	12	12	-0.75	100	- 1.53
2010	09	ΑZ	04-013-9997	1	S-NC	01-JAN-10	31-DEC-10	12	13	1.03	100	+ 1.63
2010	09	ΑZ	04-013-9997	2	QA	01-JAN-10	31-DEC-10	12	13	-0.28	100	+/- 1.60
2010	09	ΑZ	04-023-0004	1	S	01-JAN-10	31-DEC-10	12	13	-0.34	100	+/- 1.21
2010	09	ΑZ	04-023-0004	2	QA	01-JAN-10	31-DEC-10	12	13	0.16	100	+ 1.21
2010	09	ΑZ	04-025-2002	1	S	01-JAN-10	31-DEC-10	12	12	0.18	100	+/- 0.42
2010	09	ΑZ	04-027-8011	1	S	01-JAN-10	31-DEC-10	12	13	-0.16	100	+/- 0.92
2010	09	ΑZ	SUMMARY					96	102	-0.05	100	+/- 1.01
SUMMARY	09	ΑZ						96	102	-0.05	100	+/- 1.01

DATA QUALITY INDICATOR REPORT

Apr. 19, 2011

Semi-Annual Flow Rate Audits

Pollutant: PM10 **PQAO:** 0053 (Arizona Department Of Environmental Quality)

App A?: No

						Begin	End		#Q	%	Criteria	Obs / Q	Avg	Flow Rate Conf. Limits % Between
<u>Year</u>	Region	State	Site ID	POC	MT	Date	<u>Date</u>	# Req	w/ Data	Complete	Met?	Q1 Q2 Q3 Q		
2010	25	MX	80-026-0005	1	NR-SP	01-JAN-10	31-DEC-10	2	0	0	N			
2010	25	MX	80-026-1000	1	NR-SP	01-JAN-10	31-DEC-10	2	0	0	Ν			
<mark>2010</mark>	25	MX	SUMMARY					4	0	0	0			
SUMMARY	/ 25	MX						4	0	0	0			

Pollutant: PM10 PQAO: 0053 (Arizona Department Of Environmental Quality)

App A?: Yes

										_,							Flow			
						Begin	End		#Q		Criteria	l		s / C		Avg	Conf.		Betwee	
<u>Year</u>	Region			<u>POC</u>	MT	<u>Date</u>	<u>Date</u>	# Req v	v/ Data	Complete	Met?	Q1	Q2	<u>Q3</u>	<u>Q4</u>	<u>%d</u>	Lower	<u>Upper Co</u>	onf. Limit	ts
2010	09	AZ (04-003-0011	1	S	01-JAN-10	31-DEC-10	2	2	100	Υ	1	0	1	0	-0.1				
2010	09	AZ (04-003-0011	2	QA	01-JAN-10	31-DEC-10	2	2	100	Υ	1	0	1	0	1.0				
2010	09	AZ (04-003-1005	1	S	01-JAN-10	31-DEC-10	2	2	100	Υ	1	0	1	0	-1.7				
2010	09	AZ (04-005-1008	1	S	01-JAN-10	31-DEC-10	2	2	100	Ν	0	1	0	1	-1.6				
2010	09	AZ (04-007-0008	1	S	01-JAN-10	31-DEC-10	2	2	100	Ν	0	1	0	1	-2.0				
2010	09	AZ (04-007-0008	2	QA	01-JAN-10	31-DEC-10	2	2	100	Ν	0	1	0	1	-0.8				
2010	09	AZ (04-007-1001	3	S	01-JAN-10	31-DEC-10	2	2	100	Υ	1	0	1	0	-0.6				
2010	09	AZ (04-013-8006	1	SP	01-JAN-10	31-DEC-10	2	2	100	Υ	1	0	1	0	-1.3				
2010	09	AZ (04-013-9997	3	S	01-JAN-10	31-DEC-10	2	2	100	Υ	0	1	0	1	-1.5				
2010	09	AZ (04-015-1003	1	S	01-JAN-10	31-DEC-10	2	2	100	Υ	1	0	1	0	0.6				
2010	09	AZ (04-019-0001	3	S	01-JAN-10	31-DEC-10	2	2	100	Υ	0	1	0	1	-1.4				
2010	09	AZ (04-019-0020	1	S	01-JAN-10	30-MAR-10	0	0		Υ									
2010	09	AZ (04-019-0020	3	S	01-APR-10	31-DEC-10	2	2	100	Υ	0	2	0	1	-3.4				
2010	09	AZ (04-023-0004	1	S	01-JAN-10	31-DEC-10	2	2	100	Υ	1	0	1	0	-0.6				
2010	09	AZ (04-023-0004	3	SP	01-JAN-10	31-DEC-10	2	2	100	Υ	1	0	1	0	-1.3				
2010	09	AZ (04-025-2002	1	S	01-JAN-10	31-DEC-10	2	2	100	Υ	0	1	0	1	-1.0				
2010	09	AZ (04-027-8011	3	S	01-JAN-10	31-DEC-10	2	2	100	Υ	0	1	0	1	-3.2				
2010	09	ΑZ	SUMMARY					32	32	100	82	8	9	8	8	-1.3	-4.72	3.64	97	
SUMMARY	09	ΑZ						32	32	100	82	8	9	8	8	-1.3	-4.72	3.64	97	

Pollutant: PM2.5 **PQAO:** 0053 (Arizona Department Of Environmental Quality)

App A?: Yes

Flow Rate
Criteria Obs / Q Conf. Limits % Between

DATA QUALITY INDICATOR REPORT

Semi-Annual Flow Rate Audits

Pollutant: PM2.5 **PQAO:** 0053 (Arizona Department Of Environmental Quality)

App A?: Yes

Apr. 19, 2011

					Begin	End		#Q	%	Criteria		Ob	os / C	Ç	Avg	Conf.	Limits ⁹	6 Betweer	1
Regio	n State	Site ID	POC	MT	<u>Date</u>	<u>Date</u>	# Req	w/ Data	Complete	Met?	Q1	Q2	Q3	Q4	<u>%d</u>				
09	ΑZ	04-003-1005	1	S	01-JAN-10	31-DEC-10	2	2	100	Υ	1	0	1	0	-1.0				
09	ΑZ	04-005-1008	1	S	01-JAN-10	31-DEC-10	2	2	100	Ν	0	1	0	1	-1.6				
09	ΑZ	04-013-9997	1	S-NC	01-JAN-10	31-DEC-10	2	3	100	Υ	1	1	1	0	0.5				
09	ΑZ	04-013-9997	2	QA	01-JAN-10	31-DEC-10	2	2	100	Υ	0	1	0	1	-1.0				
09	ΑZ	04-023-0004	1	S	01-JAN-10	31-DEC-10	2	2	100	Υ	1	0	1	0	-0.8				
09	ΑZ	04-023-0004	2	QA	01-JAN-10	31-DEC-10	2	2	100	Υ	1	0	1	0	-0.7				
09	ΑZ	04-025-2002	1	S	01-JAN-10	31-DEC-10	2	2	100	Υ	0	1	0	1	-1.4				
09	ΑZ	04-027-8011	1	S	01-JAN-10	31-DEC-10	2	2	100	Υ	0	1	0	1	-2.1				
09	ΑZ	SUMMARY					16	17	100	88	4	5	4	4	-0.9	-2.29	2.19	76	
Y 09	ΑZ						16	17	100	88	4	5	4	4	-0.9	-2.29	2.19	76	
	09 09 09 09 09 09 09	09 AZ	09 AZ 04-003-1005 09 AZ 04-005-1008 09 AZ 04-013-9997 09 AZ 04-013-9997 09 AZ 04-023-0004 09 AZ 04-023-0004 09 AZ 04-025-2002 09 AZ 04-027-8011 09 AZ SUMMARY	09 AZ 04-003-1005 1 09 AZ 04-005-1008 1 09 AZ 04-013-9997 1 09 AZ 04-013-9997 2 09 AZ 04-023-0004 1 09 AZ 04-023-0004 2 09 AZ 04-025-2002 1 09 AZ 04-027-8011 1 09 AZ SUMMARY	09 AZ 04-003-1005 1 S 09 AZ 04-005-1008 1 S 09 AZ 04-013-9997 1 S-NC 09 AZ 04-013-9997 2 QA 09 AZ 04-023-0004 1 S 09 AZ 04-023-0004 2 QA 09 AZ 04-025-2002 1 S 09 AZ 04-027-8011 1 S 09 AZ SUMMARY SUMMARY	Region State Site ID POC MT Date 09 AZ 04-003-1005 1 S 01-JAN-10 09 AZ 04-005-1008 1 S 01-JAN-10 09 AZ 04-013-9997 1 S-NC 01-JAN-10 09 AZ 04-023-0004 1 S 01-JAN-10 09 AZ 04-023-0004 2 QA 01-JAN-10 09 AZ 04-025-2002 1 S 01-JAN-10 09 AZ 04-027-8011 1 S 01-JAN-10 09 AZ SUMMARY S 01-JAN-10	Region State Site ID POC MT Date Date 09 AZ 04-003-1005 1 S 01-JAN-10 31-DEC-10 09 AZ 04-005-1008 1 S 01-JAN-10 31-DEC-10 09 AZ 04-013-9997 1 S-NC 01-JAN-10 31-DEC-10 09 AZ 04-023-0004 1 S 01-JAN-10 31-DEC-10 09 AZ 04-023-0004 2 QA 01-JAN-10 31-DEC-10 09 AZ 04-025-2002 1 S 01-JAN-10 31-DEC-10 09 AZ 04-027-8011 1 S 01-JAN-10 31-DEC-10 09 AZ SUMMARY S 01-JAN-10 31-DEC-10	Region State Site ID POC MT Date Date # Req 09 AZ 04-003-1005 1 S 01-JAN-10 31-DEC-10 2 09 AZ 04-005-1008 1 S 01-JAN-10 31-DEC-10 2 09 AZ 04-013-9997 1 S-NC 01-JAN-10 31-DEC-10 2 09 AZ 04-013-9997 2 QA 01-JAN-10 31-DEC-10 2 09 AZ 04-023-0004 1 S 01-JAN-10 31-DEC-10 2 09 AZ 04-023-0004 2 QA 01-JAN-10 31-DEC-10 2 09 AZ 04-025-2002 1 S 01-JAN-10 31-DEC-10 2 09 AZ 04-027-8011 1 S 01-JAN-10 31-DEC-10 2 09 AZ SUMMARY S 01-JAN-10 31-DEC-10 2	Region State Site ID POC MT Date Date # Req w/ Data 09 AZ 04-003-1005 1 S 01-JAN-10 31-DEC-10 2 2 09 AZ 04-005-1008 1 S 01-JAN-10 31-DEC-10 2 2 09 AZ 04-013-9997 1 S-NC 01-JAN-10 31-DEC-10 2 2 09 AZ 04-023-0004 1 S 01-JAN-10 31-DEC-10 2 2 09 AZ 04-023-0004 2 QA 01-JAN-10 31-DEC-10 2 2 09 AZ 04-025-2002 1 S 01-JAN-10 31-DEC-10 2 2 09 AZ 04-027-8011 1 S 01-JAN-10 31-DEC-10 2 2 09 AZ SUMMARY 01-JAN-10 31-DEC-10 2 2	Region State Site ID POC MT Date Date # Req w/ Data Complete 09 AZ 04-003-1005 1 S 01-JAN-10 31-DEC-10 2 2 100 09 AZ 04-005-1008 1 S 01-JAN-10 31-DEC-10 2 2 100 09 AZ 04-013-9997 1 S-NC 01-JAN-10 31-DEC-10 2 2 100 09 AZ 04-013-9997 2 QA 01-JAN-10 31-DEC-10 2 2 100 09 AZ 04-023-0004 1 S 01-JAN-10 31-DEC-10 2 2 100 09 AZ 04-023-0004 2 QA 01-JAN-10 31-DEC-10 2 2 100 09 AZ 04-025-2002 1 S 01-JAN-10 31-DEC-10 2 2 100 09 AZ 04-027-8011 1 S	Region State Site ID POC MT Date Date # Req w/ Data Complete Met? 09 AZ 04-003-1005 1 S 01-JAN-10 31-DEC-10 2 2 100 Y 09 AZ 04-005-1008 1 S 01-JAN-10 31-DEC-10 2 2 100 N 09 AZ 04-013-9997 1 S-NC 01-JAN-10 31-DEC-10 2 2 100 Y 09 AZ 04-023-0004 1 S 01-JAN-10 31-DEC-10 2 2 100 Y 09 AZ 04-023-0004 2 QA 01-JAN-10 31-DEC-10 2 2 100 Y 09 AZ 04-023-0004 2 QA 01-JAN-10 31-DEC-10 2 2 100 Y 09 AZ 04-025-2002 1 S 01-JAN-10 31-DEC-10 2 2 <td< td=""><td>Region State Site ID POC MT Date Date # Req w/ Data Complete Met? Q1 09 AZ 04-003-1005 1 S 01-JAN-10 31-DEC-10 2 2 100 Y 1 09 AZ 04-005-1008 1 S 01-JAN-10 31-DEC-10 2 2 100 N 0 09 AZ 04-013-9997 1 S-NC 01-JAN-10 31-DEC-10 2 2 100 Y 1 09 AZ 04-013-9997 2 QA 01-JAN-10 31-DEC-10 2 2 100 Y 0 09 AZ 04-023-0004 1 S 01-JAN-10 31-DEC-10 2 2 100 Y 1 09 AZ 04-023-0004 2 QA 01-JAN-10 31-DEC-10 2 2 100 Y 1 09 AZ 04-025-2002</td><td>Region State Site ID POC MT Date Date # Req w/ Data Complete Met? Q1 Q2 09 AZ 04-003-1005 1 S 01-JAN-10 31-DEC-10 2 2 100 Y 1 0 09 AZ 04-005-1008 1 S 01-JAN-10 31-DEC-10 2 2 100 N 0 1 09 AZ 04-013-9997 1 S-NC 01-JAN-10 31-DEC-10 2 3 100 Y 1 1 09 AZ 04-013-9997 2 QA 01-JAN-10 31-DEC-10 2 2 100 Y 0 1 09 AZ 04-023-0004 1 S 01-JAN-10 31-DEC-10 2 2 100 Y 1 0 09 AZ 04-023-0004 2 QA 01-JAN-10 31-DEC-10 2 2 100 Y 1 0 09 AZ 04-025-2002 <</td><td>Region State Site ID POC MT Date Date # Req w/ Data Complete Met? Q1 Q2 Q3 09 AZ 04-003-1005 1 S 01-JAN-10 31-DEC-10 2 2 100 Y 1 0 1 09 AZ 04-005-1008 1 S 01-JAN-10 31-DEC-10 2 2 100 N 0 1 0 09 AZ 04-013-9997 1 S-NC 01-JAN-10 31-DEC-10 2 3 100 Y 1</td><td>Region State Site ID POC MT Date Date # Req w/ Data Complete Met? Q1 Q2 Q3 Q4 09 AZ 04-003-1005 1 S 01-JAN-10 31-DEC-10 2 2 100 Y 1 0 1 0 09 AZ 04-005-1008 1 S 01-JAN-10 31-DEC-10 2 2 100 N 0 1 0 1 09 AZ 04-013-9997 1 S-NC 01-JAN-10 31-DEC-10 2 3 100 Y 1 1 1 0 09 AZ 04-013-9997 2 QA 01-JAN-10 31-DEC-10 2 2 100 Y 0 1 0 1 09 AZ 04-023-0004 1 S 01-JAN-10 31-DEC-10 2 2 100 Y 1 0 1 0 1 <</td><td>Region State Site ID POC MT Date Date # Req w/ Data Complete Met? Q1 Q2 Q3 Q4 9% Q4 9% Q4 9% Q4 003-1005 Q4 9% Q4</td><td>Region State Og Site ID Og POC MT State Og MT State Og Date Og End MT State Og #Req w/ Data Og Criteria Og Obs / Q Og Avg Lower Og Conf. Image: Conf.</td><td>Region State Site ID POC MT Date Date # Req w/ Data Complete Met? Q1 Q2 Q3 Q4 %d Lower Upper Of Date 09 AZ 04-003-1005 1 S 01-JAN-10 31-DEC-10 2 2 100 N 0 1 0 -1.0 09 AZ 04-005-1008 1 S 01-JAN-10 31-DEC-10 2 2 100 N 0 1 0 1.6 -1.6 09 AZ 04-013-9997 1 S-NC 01-JAN-10 31-DEC-10 2 2 100 Y 1 1 1 0 0.5 09 AZ 04-023-0004 1 S 01-JAN-10 31-DEC-10 2 2 100 Y 1 0 1 -0.8 09 AZ 04-023-0004 2 QA 01-JAN-10 31-DEC-10 2 2 100 Y<!--</td--><td> Region State Site ID POC MT Date Date POC Date Req W Data Complete Met? Q1 Q2 Q3 Q4 Met? Q4 Q4 Q4 Q4 Q4 Q4 Q4 Q</td></td></td<>	Region State Site ID POC MT Date Date # Req w/ Data Complete Met? Q1 09 AZ 04-003-1005 1 S 01-JAN-10 31-DEC-10 2 2 100 Y 1 09 AZ 04-005-1008 1 S 01-JAN-10 31-DEC-10 2 2 100 N 0 09 AZ 04-013-9997 1 S-NC 01-JAN-10 31-DEC-10 2 2 100 Y 1 09 AZ 04-013-9997 2 QA 01-JAN-10 31-DEC-10 2 2 100 Y 0 09 AZ 04-023-0004 1 S 01-JAN-10 31-DEC-10 2 2 100 Y 1 09 AZ 04-023-0004 2 QA 01-JAN-10 31-DEC-10 2 2 100 Y 1 09 AZ 04-025-2002	Region State Site ID POC MT Date Date # Req w/ Data Complete Met? Q1 Q2 09 AZ 04-003-1005 1 S 01-JAN-10 31-DEC-10 2 2 100 Y 1 0 09 AZ 04-005-1008 1 S 01-JAN-10 31-DEC-10 2 2 100 N 0 1 09 AZ 04-013-9997 1 S-NC 01-JAN-10 31-DEC-10 2 3 100 Y 1 1 09 AZ 04-013-9997 2 QA 01-JAN-10 31-DEC-10 2 2 100 Y 0 1 09 AZ 04-023-0004 1 S 01-JAN-10 31-DEC-10 2 2 100 Y 1 0 09 AZ 04-023-0004 2 QA 01-JAN-10 31-DEC-10 2 2 100 Y 1 0 09 AZ 04-025-2002 <	Region State Site ID POC MT Date Date # Req w/ Data Complete Met? Q1 Q2 Q3 09 AZ 04-003-1005 1 S 01-JAN-10 31-DEC-10 2 2 100 Y 1 0 1 09 AZ 04-005-1008 1 S 01-JAN-10 31-DEC-10 2 2 100 N 0 1 0 09 AZ 04-013-9997 1 S-NC 01-JAN-10 31-DEC-10 2 3 100 Y 1	Region State Site ID POC MT Date Date # Req w/ Data Complete Met? Q1 Q2 Q3 Q4 09 AZ 04-003-1005 1 S 01-JAN-10 31-DEC-10 2 2 100 Y 1 0 1 0 09 AZ 04-005-1008 1 S 01-JAN-10 31-DEC-10 2 2 100 N 0 1 0 1 09 AZ 04-013-9997 1 S-NC 01-JAN-10 31-DEC-10 2 3 100 Y 1 1 1 0 09 AZ 04-013-9997 2 QA 01-JAN-10 31-DEC-10 2 2 100 Y 0 1 0 1 09 AZ 04-023-0004 1 S 01-JAN-10 31-DEC-10 2 2 100 Y 1 0 1 0 1 <	Region State Site ID POC MT Date Date # Req w/ Data Complete Met? Q1 Q2 Q3 Q4 9% Q4 9% Q4 9% Q4 003-1005 Q4 9% Q4	Region State Og Site ID Og POC MT State Og MT State Og Date Og End MT State Og #Req w/ Data Og Criteria Og Obs / Q Og Avg Lower Og Conf. Image: Conf.	Region State Site ID POC MT Date Date # Req w/ Data Complete Met? Q1 Q2 Q3 Q4 %d Lower Upper Of Date 09 AZ 04-003-1005 1 S 01-JAN-10 31-DEC-10 2 2 100 N 0 1 0 -1.0 09 AZ 04-005-1008 1 S 01-JAN-10 31-DEC-10 2 2 100 N 0 1 0 1.6 -1.6 09 AZ 04-013-9997 1 S-NC 01-JAN-10 31-DEC-10 2 2 100 Y 1 1 1 0 0.5 09 AZ 04-023-0004 1 S 01-JAN-10 31-DEC-10 2 2 100 Y 1 0 1 -0.8 09 AZ 04-023-0004 2 QA 01-JAN-10 31-DEC-10 2 2 100 Y </td <td> Region State Site ID POC MT Date Date POC Date Req W Data Complete Met? Q1 Q2 Q3 Q4 Met? Q4 Q4 Q4 Q4 Q4 Q4 Q4 Q</td>	Region State Site ID POC MT Date Date POC Date Req W Data Complete Met? Q1 Q2 Q3 Q4 Met? Q4 Q4 Q4 Q4 Q4 Q4 Q4 Q

DATA QUALITY INDICATOR REPORT

Apr. 19, 2011

Collocation Detail

Pollutant:	PM10			PQAO: 00:		App A	?: Yes							
					Parameter			Begin	End			# Valid	%	
<u>Year</u>	Method F	Region	State	Site ID	<u>Code</u>	POC	MT	Date	<u>Date</u>	# Req	# Obs		<u>Complete</u>	CV
2010		09	ΑZ	04-003-0011	81102	1	S	01-JAN-10	31-DEC-10	30	55	54	100	9.40
2010		09	ΑZ	04-007-0008	81102	1	S	01-JAN-10	31-DEC-10	30	58	58	100	7.67
Pollutant:	PM2.5			PQAO: 00	53 (Arizona D	epartmer	nt Of Env	ironmental Qua	ılity)				App A	? : Yes
Pollutant:	PM2.5			PQAO: 00	53 (Arizona D Parameter	epartmer	nt Of Env	ironmental Qua Begin	ality) End			# Valid	App A	?: Yes
Pollutant: Year	PM2.5 Method F	Region	State		•	epartmer <u>POC</u>	nt Of Env		• /	# Req	<u># Obs</u>	# Valid		?: Yes
		Region 09			Parameter	•		Begin	End	# Req 30	<u># Obs</u> 57	# Valid 56	%	

DATA QUALITY INDICATOR REPORT

Collocation Summary

Apr. 19, 2011

Pollutant:	PM10		PC	QAO : 005	53 (Arizona I	Department (Of Environmenta	ıl Quality)					App A?:	No
				#	[‡] Collocated	# Actually	% Req. Sites_			# Valid	%			
<u>Year</u>	Method	Region	<u>State</u>	# Sites	Required	Collocated	Collocated	# Req	# Obs	<u>Obs</u>	<u>Complete</u>	CV		
2010		25	MX	2	1	0	0	30	0	0	0			
SUMMARY		25	MX				0			0	0			
Pollutant:	PM10		PC	QAO : 005	53 (Arizona I	Department (Of Environmenta	ıl Quality)					App A?:	Yes
				#	Collocated	# Actually	% Req. Sites_			# Valid	%			
<u>Year</u>	Method	Region	<u>State</u>	# Sites	Required	Collocated	Collocated	# Req	# Obs	<u>Obs</u>	<u>Complete</u>	CV		
2010		09	ΑZ	13	2	2	100	60	113	112	100	8.15		
SUMMARY	1	09	ΑZ				100			112	100	8.15		
Pollutant:	PM2.5		PC	QAO : 005	53 (Arizona I	Department (Of Environmenta	l Quality)					App A?:	Yes
				#	Collocated	# Actually	% Req. Sites_			# Valid	%			
<u>Year</u>	Method	Region	<u>State</u>	# Sites	Required	Collocated	Collocated	# Req	# Obs	<u>Obs</u>	<u>Complete</u>	CV		
2010	143	09	ΑZ	5	1	1	100	30	57	56	100	11.94		
2010	145	09	ΑZ	1	1	1	100	30	111	107	100	8.08		
2010	SUMMARY	09	ΑZ				100			163	100	9.48		
SUMMARY		09	ΑZ				100			163	100	9.48		

DATA QUALITY INDICATOR REPORT

Apr. 19, 2011

Performance Evaluation Program (PEP)

Pollutant: PM2.5 PQAO: 0053 (Arizona Department Of Environmental Quality) App A?: Yes

Voor	Degion	Ctoto	# Citoo	#PEP		# Collocated			D:		Limits
<u>Year</u>	Region	<u>State</u>	# Sites	Required	Collected	PEP Req	PEP Coll.	<u>Complete</u>	<u>Bias</u>	Lower	<u>Upper</u>
2010	09	ΑZ	6	8	2	0	0	25			
SUMMARY	09	ΑZ						25			