APPENDIX D

BACT INFORMATION

Appendix D

List of Contents

- 1) Turbine and Duct Burners NO_x Reduction and Cost Effectiveness Calculations
- 2) Combined Cycle Turbine NO_x Limit Comparison
- 3) Combined Cycle Turbine CO Limit Comparison
- 4) Combined Cycle Turbine $PM/PM_{10}/PM_{2.5}$ Limit Comparison
- 5) Auxiliary Boiler Control Cost Calculations
- 6) Emergency Fire Pump Engine Control Cost Calculations
- 7) Cooling Options Power Production
- 8) Cooling Options Emission Calculations
- 9) Cooling Options Parasitic Power Requirements
- 10) Cooling Options Water Use
- 11) Cooling Options Cost Calculations
- 12) Cooling Tower Drift Eliminator Performance Requirement Comparison

BOWIE POWER STATION TURBINES AND DUCT BURNERS NO_x REDUCTION AND COST EFFECTIVENESS

Interest Rate	7%
Equipment Life (years)	15
Capital Recovery Factor	0.11

	Uncontrolled Emissions (tons/year) ^a	Controlled Emissions (tons/year) ^a	Emission Reduction (tons/year)	Capital Investment ^b	Capital Recovery (per year)	Operating Costs ^b (per year)	Total Annual Cost (per year)	Cost Effectiveness (\$/ton)
EM _x ™	295.8	69.5	226.3	\$15,651,488	\$1,718,449	\$5,260,678	\$6,979,127	\$30,840
SCR	295.8	69.5	226.3	\$12,687,346	\$1,393,002	\$4,961,113	\$6,354,115	\$28,078
Difference				\$2,964,142		\$299,565	\$625,012	\$2,762

^aFrom spreadsheet "Bowie Power Station, Combined Turbine and Duct Burner Annual Emissions" (see Appendix B)

^bFrom presentation "EMx[™] Multi-Pollutant Control Technology", Presented at GreenTech Connect Forum, by Jeff Valmus EmeraChem Power[™], Pasadena, CA August 3, 2009.

```
Capital Recover Factor calculated in accordance with "EPA Air Pollution Control Cost Manual", equation 2.8a (page 2-21):

Capital Recover Factor = \frac{(interest rate \times (1 + interest rate)^{equipment life})}{((1 + interest rate)^{equipment life} - 1)}

Emission Reduction \frac{tons}{year} = Uncontrolled Emissions \frac{tons}{year} - Controlled Emissions \frac{tons}{year}

Capital Recovery \frac{$}{year} = Capital Investment $x Capital Recovery Factor

year year year

Total Annual Cost \frac{$}{year} = Capital Recovery \frac{$}{year} + Operating Costs \frac{$}{year}

Cost Effectiveness \frac{$}{year} = \frac{Total Annual Cost ($/year)}{Emission Reduction (tons/year)}
```

EPA/452/B-02-001

EPA AIR POLLUTION CONTROL COST MANUAL

Sixth Edition

EPA/452/B-02-001

January 2002

United States Environmental Protection Agency Office of Air Quality Planning and Standards Research Triangle Park, North Carolina 27711 Annualization is a process similar to EUAC but is not limited to constant cash flows. It involves determining the net present value of each alternative equipment investment and then determining the equal (in nominal terms) payment that would have to be made at the end of each year to attain the same level of expenditure. In essence, annualization involves establishing an annual "payment" sufficient to finance the investment for its entire life, using the formula:

$$PMT = NPV\left(\frac{i}{1-(1+i)^{-n}}\right)$$
(2.7)

where *PMT* is the equivalent uniform payment amount over the life of the control, *n*, at an interest rate, *i*. *NPV* indicates the present value of the investment as defined above in equation 2.6.

Engineering texts call this payment the capital recovery cost (*CRC*), which they calculate by multiplying the *NPV* of the investment by the capital recovery factor (*CRF*):

$$CRC = NPV \times CRF \tag{2.8}$$

where CRF is defined according to the formula:

$$CRF = \left(\frac{i(1+i)^{n}}{(1+i)^{n}-1}\right)$$
(2.8a)

The *CRF* equation is a transformation of the *PMT* form in equation 2.7 and returns the same information. Table A.2 in Appendix A lists the *CRF* for discount rates between 5.5 percent and 15 percent for annualization periods from one to 25 years.

2.4.4.5 Other Financial Analysis Tools

Many firms make investment decisions based upon the return on investment (*ROI*) of the proposed capital purchase, rather than the magnitude of its net present value. In and of itself, the ROI of an investment opportunity is of little use. For most pollution control investments, *ROI* analysis does not provide much in the way of useful information because, like a payback analysis, it must have positive cash flows to work properly. Calculated by dividing annual net income by the investment's capital cost, results in a percentage of the investment that is returned each year. The decision rule one should apply for *ROI* analysis is if the resulting percentage is at least as large as some established minimum rate of return, then the investment would be worth while. However, different rates can be found. Analysts should consult with their firm's financial officers or an industrial association to determine what percentage would apply.

EMx™ Multi-Pollutant Control Technology

EmeraChem Power_{TM}

Jeff Valmus Vice President and General Manager

> August 3, 2009 Pasadena Convention Center

Cost Effectiveness

Capital Recovery Analysis

- 10 % interest rate
- 15 year annuity
- Fixed current dollars

	Cost Effectiveness								
	LM6000				GE 7FA				
		SCR		EMx		SCR		EMx	
Total Capital Investment	\$	4,104,730	\$	7,256,357	\$	12,687,346	\$	15,651,488	
Annual Operating Cost	\$	1,663,190	\$	2,094,840	\$	4,961,113	\$	5,260,678	
Levelized Cost of Control,									
\$/ton-NOx		20,952		22,694		27,854		27,996	

Total Capital Investment costs include the system equipment, catalyst, engineering and installation, commissioning and start-up and shipping charges

CTG/HRSG BACT NO _x Comparison								
RBLC ID	Permit Date		Facility					
CA 1050	0/11/00	IDC Dellinghom						

RBLC ID	Permit Date	Facility	Control Technology	Emiss. Limit	Emiss. Limit Unit	Basis
CA-1050	9/11/00	IDC Bellingham	SCR	1.5	ppm	LAER
CA-1192	6/21/11	Avenal Power Center LLC	SCR, Dry Low NO _x Combustors	1.5	ppmvd	BACT - no duct firing
AZ-0047	12/1/2004	Dome Valley Energy Partners, LLC - Wellton Mohawk Generating Station	SCR, Dry Low NO _x Combustion	2.0	ppmv	BACT
AZ-0039	3/7/03	Salt River Project/Santan Gen. Plant	SCR	2	ppm	LAER
AZ-0043	11/12/03	Duke Energy Arlington Valley	SCR	2.0	ppm	BACT
CA-1177	7/22/09	Otay Mesa	SCR	2	ppmv	BACT -CA
CA	5/21/01	Three Mountain Power	SCR	2.0	ppm	BACT-CA
CA-0997	9/1/03	Sacramento Municipal Utility District	SCR	2.0	ppm	LAER
CA-1096	2/1/2004	Vernon City Power & Light	SCR/DLN	2	ppm	BACT-CA
CA-1144	4/25/07	Caithness Blythe II, LLC	SCR	2.0	ppm	BACT-CA
CA-1191	3/11/10	Victorville 2 Hybrid Power Project	SCR	2.0	ppmvd	BACT-CA
CA-1192	6/21/11	Avenal Power Center LLC	SCR, Dry Low NO _x Combustors	2.0	ppmvd	BACT-CA
CA-1211	3/11/11	Colusa Generating Station	Dry Low NOx Combustors, SCR	2.0	ppmvd	BACT-CA
CA-1212	10/18/11	Palmdale Hybrid Power Project	Dry Low NO _x Combustors, SCR	2.0	ppm	BACT-CA
CA	7/1/2008	Gateway Generating Station	SCR/DLN	2	ppm	BACT-CA
CA	3/1/2005	Los Esteros - Calpine	SCR, water injection	2	ppm	BACT-CA
CA	5/27/2003	Magnolia Power Project	SCR	2	ppm	BACT-CA
CA	12/1/2002	Palomar Escondido - Sempra	SCR/DLN	2	ppm	BACT-CA
CA	6/1/2007	Russell City Energy Center	SCR/DLN	2	ppm	BACT-CA
CA	8/1/2006	San Joaquin Valley Energy Center	SCR/DLN	2	ppm	BACT-CA
CA		Sunlaw Cogen Power	SCONox	2	ppm	BACT-CA
CT-0148	6/22/99	Lake Road Generating Company	SCR, Dry Low NO _x Combustion	2	ppmv	LAER
CT-0151	2/25/08	Kleen Energy Systems, LLC - with duct burner	SCR, Dry Low NO _x Combustion	2.0	ppm	LAER
СТ		PDC-El Paso, Meridan	SCR	2	ppm	
DE-0024	1/30/13	Garrison Energy Center LLC/Calpine Corporation	SCR, Low NO _x Combustors	2.0	ppm	LAER
FL-0263	2/8/05	Florida Power and Light Turkey Point Power Plant	SCR, Dry Low NO _x Combustion	2.0	ppmvd	BACT
FL-0280	5/30/06	Florida Municipal Power Agency - Treasure Coast Energy Center	SCR	2.0	ppmvd	BACT
FL-0286	1/10/07	Florida Power and Light West County Energy Center	SCR, Dry Low NO _x Combustion, Water Injection	2.0	ppmvd	BACT
FL-0303	7/30/08	Florida Power and Light West County Energy Center Unit 3	SCR, Dry Low NO _x Combustion	2.0	ppmvd	BACT

RBLC ID	Permit Date	Facility	Control Technology	Emiss. Limit	Emiss. Limit Unit	Basis
FL-0304	9/8/08	Florida Municipal Power Agency - Cane Island Power Park	SCR	2.0	ppmvd	BACT
GA	5/30/12	Effingham County Power Plant	SCR, Dry Low NO _x Combustion	2.0	ppmvd	BACT
GA		McDonough	SCR/DLN	2	ppm	
ID-0018	6/25/10	Idaho Power Company - Langley Gulch Power Plant	SCR, DLN, Good Combustion Practices	2.0	ppmvd	BACT
IN-0158	12/3/12	St. Joseph Energy Center LLC	SCR and DLN	2.0	ppmvd	BACT
MA-0024	4/16/99	ANP Blackstone	SCR, Dry Low NO _x Combustion	2	ppmv	LAER
MA-0025	8/4/99	ANP Bellingham	SCR, Dry Low NO _x Combustion	2	ppmv	LAER
MA-0029	1/25/00	Sithe Mystic Development	SCR, Dry Low NO _x Combustion	2	ppmv	LAER
MA	2/22	Cabot Power Island End Cogeneration Project	SCR	2	ppm	
MA	12/14	Fore River Station, Weymouth	SCR	2	ppm	
NC		Southern Power CO - Plant Rowan County	SCR	2	ppm	
NJ	9/13/12	Hess Newark Energy Center	SCR, Dry Low NO _x Combustion	2.0	ppmvd	BACT
NJ	5/31/12	Woodbridge Energy Center	SCR, Dry Low NO _x Combustion	2.0	ppmvd	BACT
NV-0035	8/16/05	Sierra Pacific Power Company - Tracy Substation Expansion Project	SCR	2.0	ppm	BACT
NV-0037	5/14/04	Sempra Energy Resources - Copper Mountain Power	SCR, Dry Low NO _x Combustion, Steam Injection	2.0	ppmvd	BACT
NV-0038	6/28/05	Ivanpah Energy Center, L.P.	Dry Low NOx Combustors, SCR	2.0	ppmvd	BACT
NY-0095	5/10/06	Caithness Bellport, LLC	SCR	2.0	ppmvd	BACT
NY-0098	1/19/07	New Athen Generating CO. LLC - Athens Generating Plant	SCR, Dry Low NO _x Combustion	2.0	ppmvd	LAER
NY-0100	6/23/05	Empire Generating CO. LLC - Empire Power Plant - turbine only	SCR, Dry Low NO _x Combustion	2.0	ppmvd	LAER
NY	9/27/12	Cricket Valley Energy Center LLC	SCR, Dry Low NO _x Combustion	2.0	ppmvd	LAER
OH-0352	6/18/13	Oregon Clean Energy Center	SCR, Dry Low NOx Combustors, Lean Fuel Technology	2.0	ppmvd	BACT
OK-0129	1/23/09	Associated Electric Cooperative Inc - Chouteau Power Plant	SCR, Dry Low NO _x Combustion	2.0	ppm	BACT
OR-0041	8/8/05	Diamond Wanapa I, L. P Wanapa Energy Center	SCR, Dry Low NO _x Combustion	2.0	ppm	BACT
OR-0048	12/29/10	Portland General Electric Carty Plant	SCR	2.0	ppm	BACT
OR	1/6/2005	Turner Energy Center LLC	SCR	2	ppm	
OR	1/18/02	Umatilla Generating - PG&E	SCR, Dry Low NO _x Combustion	2.0	ppmvd	

RBLC ID	Permit Date	Facility	Control Technology	Emiss. Limit	Emiss. Limit Unit	Basis
PA-0226	4/9/02	Limerick Partners, LLC	Low NOx Burners	2.0	ppm	LAER
PA-0286	1/13/13	Moxie Energy LLC/Patriot Energy Plant	SCR	2.0	ppmvd	BACT
PA-0291	4/23/13	Hickory Run Energy LLC	SCR	2.0	ppmvd	Other
RI-0019	5/3/00	Reliant Energy Hope Gen. Facility	SCR, Dry Low NO _x Combustion	2	ppmv	BACT
TX-0546	6/7/09	Pattillo Branch Power Company LLC	SCR	2.0	ppmvd	BACT
TX-0547	6/22/09	Lamar Power Partners II LLC	SCR	2.0	ppmvd	BACT
TX-0548	8/18/09	Madison Bell Partners LP	SCR	2.0	ppmvd	BACT
TX-0590	8/5/10	Pondera Capital Management GP INC - King Power Station	DLN, SCR	2.0	ppmvd	LAER
TX-0600	9/1/11	Thomas C. Ferguson Power Plant	SCR	2.0	ppmvd	BACT
TX-0618	10/15/12	Channel Energy Center LLC	SCR	2.0	ppmvd	LAER
TX-0619	9/26/12	Deer Park Energy Center	SCR	2.0	ppmvd	LAER
TX-0620	9/12/12	ES Josllin Power Plant	SCR	2.0	ppmvd	BACT
VA-0315	12/17/10	Virginia Electric and Power Company - Warren County Power Plant - Dominion	SCR, Dry Low NOx Combustion	2.0	ppmvd	BACT
VA	4/30/13	Stonewall, LLC	Dry Low NOx Combustors, SCR	2.0	ppmvd	LAER
WA	4/20/03	Plymouth Generating Facility	SCR, Dry Low NO _x Combustion	2.0	ppmvd	
WA-0299	4/17/03	Sumas Energy 2 - NESCO	SCR, Dry Low NO _x Combustion	2.0	ppmvd	BACT - Project Cancelled
UT		Calpine Corp Vineyard Energy Center LLC	SCR/DLN	2	ppm	
UT		Summit Vinyard LLC	SCR/DLN	2	ppm	
UT-0066	5/17/04	Pacificorp - Currant Creek Power Project	SCR, Dry Low NO _x Combustion	2.25	ppm	
AZ-0038	4/30/02	Gila Bend Power Generation Station	SCR, Dry Low NO _x Combustion	2.5/2.0	ppmv	BACT
AL-0185	7/12/02	Barton Shoals Energy, LLC	SCR, Dry Low NO _x Combustion	2.5	ppm	BACT
AZ-0033	3/22/01	Mesquite Generating Station	SCR, Dry Low NO _x Combustion	2.5	ppmv	BACT
AZ-0034	2/15/01	Harquahala Generating Project	SCR, Dry Low NO _x Combustion	2.5	ppmv	BACT
CA-1209	3/11/10	High Desert Power Project LLC	SCR, Dry Low NO _x Combustion	2.5	ppmv	BACT
CA-1213	3/1/01	Mountainview Power Project	SCR	2.5	ppm	BACT-CA
CA	5/30/01	Contra Costa	SCR, Dry Low NO _x Combustion	2.5	ppmv	BACT-CA
CA	12/18/01	Elk Hills Power Project	SCR, Dry Low NO _x Combustion	2.5	ppmv	BACT-CA
CA	2/1/02	Delta Energy Center	SCR	2.5	ppm	BACT-CA
CA	12/1/2004	La Paloma PG&E	SCR	2.5	ppm	BACT-CA
CA	11/9/2004	Los Medanos - Calpine	SCR	2.5	ppm	BACT-CA
CA	9/1/01	Metcalf Energy Center	SCR	2.5	ppm	BACT-CA
CA	12/1/2004	Pastoria Energy LLC	SCR/DLN or XONON	2.5	ppm	BACT-CA

RBLC ID	Permit Date	Facility	Control Technology	Emiss. Limit	Emiss. Limit Unit	Basis
CA	12/1/2000	Suter Power Project	SCR	2.5	ppm	BACT-CA
CA		Texaco Global - Sunrise Cogeneration	SCR	2.5	ppm	BACT-CA
CA	3/1/01	Western Midway Sunset Power Project	SCR	2.5	ppm	BACT-CA
CA-1142	12/23/04	Calpine Western Regional Office - Pastoria Energy Facility	XONON or SCR, Dry Low NO _x Combustion	2.5	ppmvd	BACT-CA
CA-1143	8/16/04	Calpine Corporation - Sutter Power Plant	SCR, Dry Low NO _x Combustion	2.5	ppmv	BACT-CA
FL-0225	8/17/01	El Paso Broward Energy Center	SCR, Dry Low NO _x Combustion	2.5	ppmv	BACT
FL-0226	9/11/01	El Paso Manatee Energy Center	SCR, Dry Low NO _x Combustion	2.5	ppmv	BACT
FL-0227	9/7/01	El Paso Belle Glade Energy Center	SCR, Dry Low NO _x Combustion	2.5	ppmv	BACT
FL-0241	1/17/02	CPV Cana Power Generation Facility	SCR, Dry Low NO _x Combustion, Wet Injection	2.5	ppmvd	BACT
FL-0244	4/16/03	FPL Martin	SCR, Dry Low NO _x Combustion	2.5	ppmvd	BACT
FL-0245	4/15/03	FPL Manatee - Unit 3	SCR, Dry Low NO _x Combustion	2.5	ppmvd	BACT
FL-0256	9/8/03	FPC - Hines Energy Complex	SCR, Dry Low NO _x Combustion	2.5	ppmvd	BACT
FL-0265	6/8/05	Progress Energy - Hines Power Block 4	SCR	2.5	ppm	
GA	3/24/03	GenPower Rincon	SCR	2.5	ppm	
GA	4/17/03	Savannah Electric and Power - Plant McIntosh	SCR	2.5	ppm	
GA-0105	4/17/03	McIntosh Combined Cycle Facility	SCR, Dry Low NO _x Combustion	2.5	ppm	BACT
GA-0138	4/8/10	Live Oaks Power Plant	SCR, Dry Low NO _x Burners	2.5	ppm	BACT
ME	12/4/98	Westbrook Power LLC	SCR	2.5	ppm	LAER
MI-0366	4/13/2005	Berrien Energy LLC	SCR, Dry Low NO _x Combustion	2.5	ppmvd	BACT
NC-0094	1/9/02	GenPower Earleys, LLC	SCR, Dry Low NO _x Combustion	2.5	ppmvd	BACT
NC-0095	5/28/02	Mirant Gastonia	SCR, Dry Low NO _x Combustion	2.5	ppmvd	BACT
NC-0101	9/29/05	Forsyth Energy Projects, LLC	SCR, Dry Low NO _x Combustion	2.5	ppm	BACT
NC		Progress Energy Carolinas	SCR	2.5	ppm	
NH-0011	4/26/99	AES Londonderry, LLC	SCR, Dry Low NO _x Combustion	2.5	ppmv	BACT
NH-0012	4/26/99	Newington Energy LLC	SCR, Dry Low NO _x Combustion	2.5	ppmv	BACT
NJ-0043	3/28/02	Liberty Generating Station	SCR	2.5	ppmvd	Other
NY		Trigen-Nassau Energy Corp	SCR	2.5	ppm	
OR	7/3/02	Summit Westward - Westward Energy LLC	SCR, Dry Low NO _x Combustion	2.5	ppmvd	
OR-0035	1/16/02	Port Westward - Portland General Electric	SCR, Dry Low NO _x Combustion	2.5	ppm	BACT
OR-0039	12/30/03	California Oregon Border - Peoples Energy	SCR, Dry Low NO _x Combustion	2.5	ppmvd	BACT

RBLC ID	Permit Date	Facility	Control Technology	Emiss. Limit	Emiss. Limit Unit	Basis
OR-0040	3/12/03	Klamath Generation LLC - Pacific Power Energy Marketing	SCR, Dry Low NO _x Combustion	2.5	ppmvd	BACT
PA-0160	10/10/00	Calpine Construction Finance Co.	SCR, Dry Low NO _x Combustion	2.5	ppmv	LAER
PA-0188	3/28/02	Fairless Energy LLC	SCR, Dry Low NO _x Combustion	2.5	ppmv	LAER
PA-0189	1/16/02	Connectiv - Bethlehem North	SCR, Dry Low NO _x Combustion	2.5	ppmvd	LAER
PA-0223	1/30/02	Duke Energy Fayette, LLC	SCR, Dry Low NO _x Combustion	2.5	ppmvd	LAER
SC	5/28/02	Jasper County Generating Facility	SCR	2.5	ppm	
VA-0261	9/6/02	CPV Cunningham Creek	SCR, Dry Low NO _x Combustion	2.5	ppm	BACT
VA-0262	12/6/02	Mirant Airside Industrial Park	SCR, Dry Low NO _x Combustion	2.5	ppmvd	BACT
VA-0287	12/1/03	James City Energy Park	SCR, Dry Low NO _x Combustion	2.5	ppmvd	BACT
VA-0289	2/5/04	Duke Energy Wythe, LLC	SCR, Dry Low NO _x Combustion	2.5	ppmvd	BACT
WA	6/19/03	Frederickson Power II - West Coast Energy	SCR, Dry Low NO _x Combustion	CR, Dry Low NO _x Combustion 2.5		
WA	9/20/02	Cliffs Energy Project - GNA Energy	SCR, Dry Low NO _x Combustion	2.5	ppmvd	
WA-0288	9/4/01	Longview Energy Development	SCR	2.5	ppmv	BACT
WA-0291	1/3/03	Wallula Power - Newport Northwest Generation	SCR, Dry Low NO _x Combustion	2.5	ppmvd	BACT
WA-0328	1/11/05	BP West Coast Products LLC, BP Cherry Point Cogeneration Project	SCR, Dry Low NO _x Combustion	2.5	ppmvd	BACT
WY-0061	4/4/03	Black Hills Corp - Neil Simpson Two	SCR, Dry Low NO _x Combustion	2.5	ppm	BACT
AZ		Reliant Energy - Desert Basin Generating Project	SCR	3	ppm	
CO-0052	8/11/02	Rocky Mountain Energy Center	SCR, Dry Low NO _x Combustion	3.0	ppm	BACT
CO-0056	5/2/06	Calpine - Rocky Mountain Energy Center, LLC	SCR, Dry Low NO _x Combustion	3.0	ppm	BACT
DE-0016	10/17/00	Hay Road Power Complex Units 5-8	SCR, Dry Low NO _x Combustion	3	ppmv	LAER
GA	1/15/02	Oglethorpe Power Corp - Wansley	SCR	3.0	ppm	
GA-0101	10/23/02	Murray Energy Facility	SCR, Dry Low NO _x Combustion	3	ppm	BACT
GA-0102	1/15/02	Wansley Combined Cycle Energy Facility	SCR, Dry Low NO _x Combustion	3	ppm	BACT
IA	7/23/02	Hawkeye Generation, LLC	SCR, Dry Low NO _x Combustion	3	ppm	
IA	12/20/02	Interstate Power and Light - Exira Station	SCR, Dry Low NO _x Combustion	3	ppm	
IA-0058	4/10/02	MidAmerican Energy, Des Moines Power Station	SCR, Dry Low NO _x Combustion 3		ppm	BACT
IN-0085	6/7/01	PSEG Lawrenceburg Energy Facility	SCR	3	ppmv	BACT

RBLC ID	Permit Date	Facility	Control Technology	Emiss. Limit	Emiss. Limit Unit	Basis
IN-0086	5/9/01	Mirant Sugar Creek LLC	SCR	3	ppmv	BACT
IN-0114	7/24/02	Mirant Sugar Creek LLC	SCR, Dry Low NO _x Combustion	3	ppmvd	BACT
LA	6/6/2005	Crescent City Power LLC	SCR/Low Nox Burners	3	ppm	
MI-0357	2/4/03	Kalkaska Generating LLC	SCR, Dry Low NO _x Combustion	3	ppmvd	BACT
MI-0361	1/30/03	South Shore Power LLC	SCR, Dry Low NO _x Combustion	3	ppmvd	BACT
MN-0054	7/15/04	Fairbault Energy Park	SCR, Dry Low NO _x Combustion	3	ppmvd	BACT
NJ-0066	2/16/06	AES Red Oak LLC	SCR, Dry Low NO _x Combustion	3.0	ppmvd	LAER
NJ		Tosco Bayway Refinery Cogen Project	DLN	3	ppm	
NY-0100	6/23/05	Empire Generating CO. LLC - Empire Power Plant - with duct burner	SCR, Dry Low NO _x Combustion	3.0	ppmvd	LAER
OH-0252	12/28/04	Duke Energy Hanging Rock Energy Facility	SCR, Dry Low NO _x Combustion	3.0	ppm	BACT
PA		SWEC Falls Township, PA	SCR	3	ppm	
VA	4/30/02	Tenaska Bear Garden	SCR	3.0	ppm	
VA-0256	1/20/02	Tenaska Fluvanna	SCR	3.0	ppm	BACT
VA-0260	5/1/02	Henry County Power	SCR, Dry Low NO _x Combustion	3.0	ppm	BACT
AR-0035	8/24/00	Panda - Union Generating Station	SCR, Dry Low NO _x Combustion	3.5	ppmv	BACT
AR-0040	12/29/00	Duke Energy Hot Springs	SCR, Dry Low NO _x Combustion	3.5	ppmv	BACT
AR-0051	4/1/02	Duke Energy - Jackson Facility	SCR, Dry Low NO _x Combustion	3.5	ppm	BACT
AR-0070	8/23/02	Genova Arkansas I, LLC	SCR, Dry Low NO _x Combustion	3.5	ppmvd	BACT
FL-0214	2/5/01	CPV Gulfcoast Power Generating STN	SCR, Dry Low NO _x Combustion	3.5	ppmv	BACT
FL-0239	3/27/02	Jacksonville Electric Authority - Brandy Branch	SCR, Dry Low NO _x Combustion	3.5	ppmvd	BACT
GA		Live Oaks Co LLC	SCR/DLN	3.5	ppm	
IL		Holland Energy	SCR	3.5	ppm	
MI-0267	6/7/01	Renaissance Power LLC	SCR, Dry Low NO _x Combustion	3.5	ppmv	BACT
MI-0365	1/28/03	Mirant Wyandotte LLC	SCR, Dry Low NO _x Combustion	3.5	ppmv	BACT
MS	6/24/02	Crossroads Energy Center	SCR	3.5	ppm	
MS-0055	6/24/02	El Paso Merchant Energy CO.	SCR, Dry Low NO _x Combustion	3.5	ppmv	BACT
MS-0073	11/23/04	Reliant Energy Choctaw County, LLC	SCR	3.5	ppmv	BACT
MS-0059	9/24/02	Pike Generation Facility	SCR, Dry Low NO _x Combustion	3.5	ppmv	BACT
NC-0086	1/10/02	Fayetteville Generation	SCR, Dry Low NO _x Combustion	3.5	ppmvd	BACT
NE-0023	5/29/03	Nebraska Public Power District - Beatrice Power Station	SCR, Dry Low NO _x Combustion	3.5	ppm	BACT

RBLC ID	Permit Date	Facility	Control Technology	Emiss. Limit	Emiss. Limit Unit	Basis
NV-0033	8/19/04	El Dorado Energy, LLC - turbine only	SCR, Dry Low NO _x Combustion	3.5	ppm	BACT
NV	10/16/04	Nevada Power Co.	SCR	3.5	ppm	
OH		Dresden Energy	SCR	3.5	ppm	
OH		PS&G Waterford Energy	SCR	3.5	ppm	
OK-0036	12/10/01	Stephens Energy Facility	SCR, Dry Low NO _x Combustion	3.5	ppmv	BACT
OK-0043	10/22/01	Webers Falls Energy Facility	SCR, Dry Low NO _x Combustion	3.5	ppmv	BACT
OK-0070	6/13/02	Genova OK I Power Project	SCR, Dry Low NO _x Combustion	3.5	ppmvd	BACT
OK-0090	3/21/03	Duke Energy Stephens, LLC	SCR, Dry Low NO _x Combustion	3.5	ppm	BACT
OK-0096	6/6/03	Redbud Power Plant	SCR, Dry Low NO _x Combustion	3.5	ppmvd	BACT
OK-0115	12/12/06	Energetix - Lawton Energy Cogen Facility	SCR, Dry Low NO _x Combustion	3.5	ppmvd	BACT
TN-0144	2/1/02	Haywood Energy Center (Calpine)	SCR, Dry Low NO _x Combustion	3.5	ppm	BACT
ТХ	12/13/02	Steag (Brazos Valley)	SCR	3.5	ppm	
VA	6/1/02	CPV FLUVANNA	SCR	3.5	ppm	
VA-0255	11/18/02	VA Power - Possum Point	Water Injection, SCR	3.5	ppmvd	LAER
WI-0174	9/20/00	Badger Generating Co LLC	SCR, Dry Low NO _x Combustion	3.5	ppmv	BACT
WV-0014	12/18/01	Panda Culloden Generating Station	SCR, Dry Low NO _x Combustion	3.5	ppmv	BACT
NV-0033	8/19/04	El Dorado Energy, LLC - with duct burner	SCR, Dry Low NO _x Combustion	3.7	ppm	BACT
LA-0224	3/20/08	Southwest Electric Power Company - Arsenal Hill Power Plant	SCR, Dry Low NO _x Combustion	4.0	ppmvd	BACT
KS	2/7/02	Duke Energy - Leavenworth County	SCR, Dry Low NO _x Combustion	4.5	ppm	
LA-0157	3/8/02	Perryville Power Station	SCR, Dry Low NO _x Combustion	4.5	ppm	BACT
MI-0363	1/7/03	Bluewater Energy Center LLC	SCR, Dry Low NO _x Combustion	4.5	ppmv	BACT
LA-0136	7/23/08	Dow Chemical Company - Plaquemine Cogeneration Facility	SCR, Dry Low NO _x Combustion	5.0	ppmvd	BACT
ТХ	10/8/03	TX Petrochem	SCR	5.0	ppm	
ТХ	7/23/02	Duke Energy	SCR	5.0	ppm	
TX-0407	12/6/02	Steag-Stearne	SCR, Dry Low NO _x Combustion	5.0	ppm	
LA		Formosa Plastics Corp Baton Rouge	DLN	9	ppm	
OK-0117	2/9/07	Public Service Company of Oklahoma - Southwestern Power Plant	SCR, Dry Low NO _x Combustion	9.0	ppm	BACT
OK-0056	2/12/02	Horseshoe Energy Project	SCR	12.5	ppm	BACT
FL-0285	1/26/07	Progress Energy - Bartow Power Plant	Water Injection	15.0	ppmvd	BACT
TN		TVA Lagoon Creek Plant	SCR	15	ppm	
TX-0234	1/8/02	Edinburg Energy Limited Partnership		15	ppm	BACT

RBLC ID	Permit Date	Facility	Control Technology	Emiss. Limit	Emiss. Limit Unit	Basis
TX-0374	3/24/03	Chocolate Bayou Plant - BP Amoco Chemical Co	SCR, Dry Low NO _x Combustion	11.43	lb/hour	BACT
LA-0120	2/26/02	Shell Chemical LP - Geismar Plant	SCR, Dry Low NO _x Combustion	14.5	lb/hour	BACT
OH-0264	5/23/04	Norton Energy Storage, LLC	SCR, Dry Low NO _x Combustion	16	lb/hour	BACT
NM-0044	6/27/04	Clovis Energy Facility - Duke energy Curry LLC	SCR	24.6	lb/hour	BACT
MT-0019	6/7/02	Continental Energy Services Inc Silver Bow Gen	SCR	25.2	lb/hour	BACT
OH-0248	9/24/02	Lawrence Energy - Calpine Corporation	SCR, Dry Low NO _x Combustion	30.5	lb/hour	BACT
TX-0352	12/31/02	Brazos Valley Electric Generating Facility	SCR	32.4	lb/hour	BACT
MN		Pleasant Valley	DLN, WI	35	ppm	
TX-0411	3/26/02	Amelia Energy Center	SCR	36.8	lb/hour	
TX-0502	6/5/06	Nacogdoches Power LLC	DLN, SCR	45.4	lb/hour	BACT
TX-0388	2/12/02	Sand Hill Energy Center - Austin Electric Utility		46	lb/hour	BACT
TX-0350	1/31/02	Ennis Tractebel Power	SCR, Dry Low NO _x Combustion	61.8	lb/hour	BACT
TX-0391	12/20/02	Oxy Cogeneration Facility - Oxy Vinyls LP	SCR	115	lb/hour	BACT
OK-0055	2/12/02	Mustang Energy Project	SCR	48.49	tons/year	BACT

CTG/HRSG BACT NO_x Comparison

Table contains:

Entries from the EPA turbine spreadsheet with a permit issuance date in 2002 - 2012 Entries from the RBLC for new units with a permit issuance date after 2002 Information from state agency websites

RBLC ID	Permit Date	Facility	Control Technology	Emiss. Limit	Emiss. Limit Unit	Basis	Averaging Period
CT-0151	2/25/08	Kleen Energy Systems, LLC - turbine only	Oxidation Catalyst	0.9	ppmvd	BACT	1-hour block, no duct firing
CA-1192	6/21/11	Avenal Power Center LLC	Oxidation Catalyst	1.5	ppmvd	BACT	1-hour average, no duct firing, does not apply during first three years of operation
CA-1212	10/18/11	Palmdale Hybrid Power Project	Oxidation Catalyst	1.5	ppmvd	BACT	1-hour, no duct firing, does not apply during 3-year demonstration period
VA	3/12/13	Virginia Electric and Power Company - Warren County Power Plant - Brunswick - without duct burners	Oxidation Catalyst, Good Combustion Practices	1.5	ppmvd	BACT	1-hour average, no duct firing
VA-0315	12/17/10	Virginia Electric and Power Company - Warren County Power Plant - Dominion - without duct burners	Oxidation Catalyst, Good Combustion Practices	1.5	ppmvd	BACT	1-hour average, no duct firing
CT-0151	2/25/08	Kleen Energy Systems, LLC - with duct burner	Oxidation Catalyst	1.7	ppmvd	BACT	1-hour block
GA-0127	1/7/08	Southern Company/Georgia Power - Plant McDonough	Oxidation Catalyst	1.8	ppm	BACT	3-hour
CA	5/27/2003	Magnolia Power Project	Oxidation Catalyst	2	ppm		
CA		City of Victorville	Oxidation Catalyst	2	ppm	w/o duct burners	
CA	6/2/2011	Oakley Generating Station	Oxidation Catalyst	2	ppm		
CA		Sunlaw Cogen Partners		2	ppm		
CA-1050	9/11/00	IDC Bellingham	Oxidation Catalyst	2.0	ppm		
CA-1096	2/1/2004	Vernon City Power & Light	Oxidation Catalyst	2	ppm		
CA-1191	3/11/10	Victorville 2 Hybrid Power Project	Oxidation Catalyst	2.0	ppmvd	BACT	1-hour average, no duct firing
CA-1192	6/21/11	Avenal Power Center LLC	Oxidation Catalyst	2.0	ppmvd	BACT	1-hour average
CA-1212	10/18/11	Palmdale Hybrid Power Project	Oxidation Catalyst	2.0	ppmvd	BACT	1-hour
CT-0148	6/22/99	Lake Road Generating Company	Oxidation Catalyst	2	ppmv	BACT	
GA	5/30/12	Effingham County Power Plant	Oxidation Catalyst	2.0	ppmvd	BACT	
GA	4/17/03	Savannah Electric and Power - Plant McIntosh	Oxidation Catalyst	2.0	ppm		
GA	3/24/03	GenPower Rincon	Oxidation Catalyst	2.0	ppm		
GA	1/15/02	Oglethorpe Power Corp - Wansley	Oxidation Catalyst	2.0	ppm		
GA-0102	1/15/02	Wansley Combined Cycle Energy Facility	Good Combustion Practices	2	ppm	BACT	
GA-0105	4/17/03	McIntosh Combined Cycle Facility	Oxidation Catalyst	2	ppm	BACT	

RBLC ID	Permit Date	Facility	Control Technology	Emiss. Limit	Emiss. Limit Unit	Basis	Averaging Period
GA-0138	4/8/10	Live Oaks Power Plant - without duct firing	Good Combustion Practices, Catalytic Oxidation	2.0	ppm	BACT	
ID-0018	6/25/10	Idaho Power Company - Langley Gulch Power Plant	Catalytic Oxidation, DLN, Good Combustion Practices	2.0	ppmvd	BACT	
IN-0158	12/3/12	St. Joseph Energy Center LLC	Oxidation Catalyst	2.0	ppmvd	BACT	
MA	2/22/1999	Cabot Power Island Cogeneraton Project	Oxidation Catalyst	2	ppm		
MA	12/14/2006	Fore River Station Weymouth	Oxidation Catalyst	2	ppm		
MA-0029	1/25/00	Sithe Mystic Development	Oxidation Catalyst	2.0	ppm	BACT	
MI-0366	4/13/2005	Berrien Energy LLC	Oxidation Catalyst	2.0	ppm	BACT	
NJ	9/13/12	Hess Newark Energy Center	Oxidation Catalyst	2	bymqq	BACT	
NJ	5/31/12	Woodbridge Energy Center	Oxidation Catalyst	2	bymgg	BACT	
N.I-0043	3/28/02	Liberty Generating Station	Oxidation Catalyst	2	ppmvd	Other	
NY	9/27/12	Cricket Valley Energy Center LLC	Good Combustion Controls and Oxidation Catalyst	2.0	ppmvd	BACT	
NY-0095	5/10/06	Caithness Bellport, LLC	Oxidation Catalyst	2.0	ppmvd	BACT	
OH-0352	6/18/13	Oregon Clean Energy Center	Oxidation Catalyst	2.0	ppmvd	BACT	
OR	1/6/2005	Turner Energy Center LLC	Oxidation Catalyst	2	ppm	>70% load	
OR-0039	12/30/03	California Oregon Border - Peoples Energy	Oxidation Catalvst	2	bymaa	BACT	
OR-0041	8/8/05	Diamond Wanapa I, L. P Wanapa Energy Center	Oxidation Catalyst	2.0	ppmvd	BACT	
PA-0286	1/13/13	Moxie Energy LLC/Patriot Energy Plant	CO Catalyst	2.0	ppmvd	BACT	
PA-0291	4/23/13	Hickory Run Energy LLC	CO Catalyst	2.0	ppmvd	Other	
TX-0546	6/7/09	Pattillo Branch Power Company LLC	Oxidation Catalyst	2	ppmvd	BACT	
TX-0590	8/5/10	Pondera Capital Management GP INC - King Power Station	Oxidation Catalyst, Good Combustion Practices	2.0	ppmvd	BACT	
VA	4/30/13	Stonewall, LLC	Good Combustion Control and Oxidation Catalyst	2.0	ppmvd	BACT	
VA-0261	9/6/02	CPV Cunningham Creek	Oxidation Catalyst	2	ppm	BACT	
WA	6/19/03	Frederickson Power II - West Coast Energy	Oxidation Catalyst	2.0	ppmvd		
WA	4/20/03	Plymouth Generating Facility	Oxidation Catalyst	2	ppmvd		
WA-0288	9/4/01	Longview Energy Development	Oxidation Catalyst	2	ppmvd	BACT	
WA-0291	1/3/03	Wallula Power - Newport Northwest Generation	Oxidation Catalyst	2.0	ppmvd	BACT	
WA-0299	4/17/03	Sumas Energy 2 - NESCO	Oxidation Catalyst	2.0	ppmvd	BACT - Project Cancelled	
WA-0328	1/11/05	BP West Coast Products LLC, BP Cherry Point Cogeneration Project	Oxidation Catalyst	2.0	ppmvd	BACT	
WI-0114	1/13/95	LS Power	Oxidation Catalyst	2	ppmv	BACT	

RBLC ID	Permit Date	Facility	Control Technology	Emiss. Limit	Emiss. Limit Unit	Basis	Averaging Period
VA	3/12/13	Virginia Electric and Power Company - Warren County Power Plant - Brunswick - without duct burners	Oxidation Catalyst, Good Combustion Practices	2.4	ppmvd	BACT	
VA-0315	12/17/10	Virginia Electric and Power Company - Warren County Power Plant - Dominion -with duct burners	Oxidation Catalyst, Good Combustion Practices	2.4	ppmvd	BACT	
PA-0189	1/16/02	Connectiv - Bethlehem North	Good Combustion Practices	2.5	ppm	BACT	
NV	10/16/2004	Nevada Power Co.	Oxidation Catalyst	2.6	ppm		
NV-0033	8/19/04	El Dorado Energy, LLC - turbine only	Oxidation Catalyst	2.6	ppm	LAER	
AZ-0039	3/7/03	Salt River Project/Santan Gen. Plant	Oxidation Catalyst	3	ppm	LAER	
AZ-0043	11/12/03	Duke Energy Arlington Valley	Oxidation Catalyst	3	ppm	BACT	
AZ-0047	12/1/2004	Dome Valley Energy Partners, LLC - Wellton Mohawk Generating Station	Oxidation Catalyst	3.0	ppmv	BACT	
CA		City of Victorville	Oxidation Catalyst	3	ppm	w/ duct burners	
CA-1191	3/11/10	Victorville 2 Hybrid Power Project	Oxidation Catalyst	3.0	ppmvd	BACT	
CA-1211	3/11/11	Colusa Generating Station	Catalytice Oxidation System	3.0	ppmvd	BACT	
CO-0056	5/2/06	Calpine - Rocky Mountain Energy Center, LLC	Oxidation Catalyst	3.0	ppm	BACT	
LA-0254	8/16/11	Ninemile Point Electric Generating Plant Units 6A and 6B	Oxidation Catalyst, Good Combustion Practices	3.0	ppmvd	BACT	
MA	4/16/1999	ANP Blackstone	Oxidation Catalyst	3	ppm		
MA		ANP Bellingham	Oxidation Catalyst	3	ppm		
MI	2/8/99	Wyandotte Energy	Oxidation Catalyst	3.0	ppm	LAER	
MI-0267	6/7/01	Renaissance Power LLC	Oxidation Catalyst	3.0	ppmv	BACT	
NV-0037	5/14/04	Sempra Energy Resources - Copper Mountain Power	Oxidation Catalyst	3.0	ppmvd	LAER	
OR	1/6/2005	Turner Energy Center LLC	Oxidation Catalyst	3	ppm	<70% load	
PA		SWEC Falls Township		3	ppm		
PA-0188	3/28/02	Fairless Energy LLC	Oxidation Catalyst	3	ppmvd	BACT	
UT		Summit Valley	Oxidation Catalyst	3	ppm		
UT-0066	5/17/04	Pacificorp - Currant Creek Power Project	Oxidation Catalyst	3.0	ppm		
GA-0138	4/8/10	Live Oaks Power Plant - with duct firing	Good Combustion Practices, Catalytic Oxidation	3.2	ppm	BACT	
MD-0032	11/5/04	Mirant Mid-Atlantic, LLC - Dickerson Unit 5 - turbine only	Oxidation Catalyst	3.2	lb/hour	BACT	
NV-0033	8/19/04	El Dorado Energy, LLC - with duct burner	Oxidation Catalyst	3.5	ppm	LAER	
NV-0035	8/16/05	Sierra Pacific Power Company - Tracy Substation Expansion Project	Oxidation Catalyst	3.5	ppm	BACT	

RBLC ID	Permit Date	Facility	Control Technology	Emiss. Limit	Emiss. Limit Unit	Basis	Averaging Period
MI-0365	1/28/03	Mirant Wyandotte LLC	Oxidation Catalyst	3.8	ppm	BACT	
AZ-0033	3/22/01	Mesquite Generating Station	Oxidation Catalyst	4.0	ppmv	BACT	
AZ-0038	4/30/02	Gila Bend Power Generation Station		4	ppm	BACT	
CA	12/1/2008	Russell City Energy Center	Oxidation Catalyst	4	ppm	BACT-CA	
CA	8/1/2006	San Joaquin Valley Energy Center	Oxidation Catalyst	4	ppm	BACT-CA	
CA	12/1/2002	Palomar Escondido - Sempra	Oxidation Catalyst	4	ppm	BACT-CA	
CA	12/18/01	Elk Hills Power Project	Oxidation Catalyst	4.0	ppmv	BACT-CA	
CA	5/21/01	Three Mountain Power	,	4.0	ppm	BACT-CA	
CA	12/1/2000	Sutter Power Project	Oxidation Catalyst	4	ppm	BACT-CA	
CA-0997	9/1/03	Sacramento Municipal Utility District	Good Combustion Control	4	ppm	LAER	
CA-1143	8/16/04	Calpine Corporation - Sutter Power Plant	Oxidation Catalyst	4.0	ppmvd	BACT-CA	
CA-1144	4/25/07	Caithness Blythe II, LLC	,	4.0	ppmvd	BACT-CA	
CA-1209	3/11/10	High Desert Power Project LLC	Oxidation Catalyst	4.0	ppmvd	BACT	
LA	6/6/2005	Crescent City Power LLC	Oxidation Catalyst & good combustion	4	ppm		
MI-0361	1/30/03	South Shore Power LLC	Oxidation Catalyst	4	ppmvd	BACT	
NJ		Tosco Bayway Refinery Cogen Project		4	ppm		
NJ-0066	2/16/06	AES Red Oak LLC	Oxidation Catalyst	4.0	ppmvd	BACT	
NV-0038	6/28/05	Ivanpah Energy Center, L.P.	Good Combustion Practice, Oxidation Catalyst	4.0	ppmvd	LAER	
OR	7/3/02	Summit Westward - Westward Energy LLC	Good Combustion Practices	4	ppmvd		
TX-0600	9/1/11	Thomas C. Ferguson Power Plant	Oxidation Catalyst, Good Combustion Practices	4.0	ppmvd	BACT	
TX-0618	10/24/12	Channel Energy Center LLC	Good Combustion	4.0	ppmvd	BACT	
TX-0619	9/26/12	Deer Park Energy Center	Good Combustion	4.0	ppmvd	BACT	
TX-0620	9/12/12	ES Joslin Power Plant	Good Combustion	4.0	ppmvd	BACT	
UT		Calpine - Vineyard Energy Center LLC	Oxidation Catalyst	4	ppm		
WA	9/20/02	Cliffs Energy Project - GNA Energy	Oxidation Catalyst	4	ppmvd		
WI-0174	9/20/00	Badger Generating Co LLC	Oxidation Catalyst	4	ppmv	BACT	
OR-0035	1/16/02	Port Westward - Portland General Electric	Oxidation Catalyst	4.9	ppmvd	BACT	
IA	12/20/02	Interstate Power and Light - Exira Station	Oxidation Catalyst	5	ppm		
IA	7/23/02	Hawkeye Generation, LLC	Oxidation Catalyst	5	ppm		
IA-0058	4/10/02	MidAmerican Energy, Des Moines Power Station	Oxidation Catalyst	5	ppm	BACT	
MI-0256	1/12/01	Covert Generating Co LLC	Oxidation Catalyst	5.0	ppmv	BACT	
MI-0357	2/4/03	Kalkaska Generating LLC	Oxidation Catalyst	5	ppmvd	BACT	
OR-0040	3/12/03	Klamath Generation LLC - Pacific Power Energy Marketing	Oxidation Catalyst	5.0	ppmvd	BACT	
PA-0223	1/30/02	Duke Energy Fayette, LLC	Oxidation Catalyst	5	ppm	BACT	
CA	12/1/2004	La Paloma PG&E	Oxidation Catalyst	6	ppm		
CA	11/9/2004	Los Medanos Energy Center	Oxidation Catalyst	6	ppm		

RBLC ID	Permit Date	Facility	Control Technology	Emiss. Limit	Emiss. Limit Unit	Basis	Averaging Period
CA	9/1/01	Metcalf Energy Center		6.0	ppm		
CA	5/30/01	Contra Costa	Oxidation Catalyst	6.0	ppmv	BACT-CA	
CA	3/1/01	Western Midway Sunset Power Project	Oxidation Catalyst	6.0	ppm	BACT-CA	
CA		Texaco Global - Sunrise Cogeneration		6	ppm		
CA-1142	12/23/04	Calpine Western Regional Office - Pastoria Energy Facility	Oxidation Catalyst	6.0	ppmvd	BACT-CA	
CA-1177	9/12/11	Otay Mesa	Oxidation Catalyst	6.0	ppmv	BACT -CA	
CA-1213	3/1/01	Mountainview Power Project	Oxidation Catalyst	6.0	ppm	BACT-CA	
FL-0280	5/30/06	Florida Municipal Power Agency - Treasure Coast Energy Center	Good Combustion	6.0	ppm	BACT	
FL-0304	9/8/08	Florida Municipal Power Agency - Cane Island Power Park	Good Combustion Practices	6.0	ppmvd	BACT	
IN-0085	6/7/01	PSEG Lawrenceburg Energy Facility	Good Combustion	6	ppmv	BACT	
OH-0252	12/28/04	Duke Energy Hanging Rock Energy Facility - turbine only		6.0	ppm	BACT	
OR	1/18/02	Umatilla Generating - PG&E	Oxidation Catalyst	6.0	ppmvd		
FL-0225	8/17/01	El Paso Broward Energy Center	Combustion Controls	7.4	ppmv	BACT	
FL-0226	9/11/01	El Paso Manatee Energy Center	Combustion Controls	7.4	ppmv	BACT	
FL-0227	9/7/01	El Paso Belle Glade Energy Center	Combustion Controls	7.4	ppmv	BACT	
TN-0144	2/1/02	Haywood Energy Center (Calpine)	Good Combustion Practices	7.4	ppm	BACT	
FL-0263	2/8/05	Florida Power and Light Turkey Point Power Plant	Good Combustion Practices	7.6	ppm	BACT	
MD-0032	11/5/04	Mirant Mid-Atlantic, LLC - Dickerson Unit 5 - with duct burner	Oxidation Catalyst	7.6	lb/hour	BACT	
OK	1/21/00	Oneta Generating Station	Combustion Controls	7.8	ppm	BACT	
FL-0241	1/17/02	CPV Cana Power Generation Facility	Good Combustion Practices	8	ppmvd	BACT	
FL-0265	6/8/05	Progress Energy - Hines Power Block 4	Good Combustion	8.0	ppm	BACT	
FL-0285	1/26/07	Progress Energy - Bartow Power Plant	Good Combustion	8.0	ppmvd	BACT	
FL-0286	1/10/07	Florida Power and Light West County Energy Center		8.0	ppmvd	BACT	
OK-0129	1/23/09	Associated Electric Cooperative Inc - Chouteau Power Plant	Good Combustion	8.0	ppmv	BACT	
AR-0070	8/23/02	Genova Arkansas I, LLC	Good Combustion Practices	8.2	ppmvd	BACT	
OK-0070	6/13/02	Genova OK I Power Project	Combustion Controls	8.2	ppm	BACT	
WV-0014	12/18/01	Panda Culloden Generating Station	Good Combustion	8.2	ppmv	BACT	
MD-0032	11/5/04	Mirant Mid-Atlantic, LLC - Dickerson Unit 4 - turbine only	Oxidation Catalyst	8.4	lb/hour	BACT	
CA	12/1/2002	Pastoria Energy LLC	Oxidation Catalyst	9	ppm	BACT-CA	
CO	6/19/00	Fort St. Vrain	Combustion Controls	9.0	ppm	BACT	
CO-0052	8/11/02	Rocky Mountain Energy Center	Oxidation Catalyst	9	ppmvd	BACT	
DE-0016	10/17/00	Hay Road Power Complex Units 5-8	Good Combustion	9	ppmv	BACT	

RBLC ID	Permit Date	Facility	Control Technology	Emiss. Limit	Emiss. Limit Unit	Basis	Averaging Period
FI	1/9/02	TECO Bayside Power Station (renowering)	Good Combustion Practices	9.0	nnm		
FL-0214	2/5/01	CPV Gulfcoast Power Generating STN	Compustion Controls	9.0	npmy	BACT	
FL-0223	11/4/99	Lake Worth Generating LLC	Combustion Design	9	ppmv	BACT	
IN-0086	5/9/01	Mirant Sugar Creek LLC	Good Combustion	9		BACT	
IN-0087	6/6/01	Duke Energy, Vigo II C	Good Combustion	9.0	vmqq	BACT	
IN-0114	7/24/02	Mirant Sugar Creek LLC	Good Combustion Practices	9	bymag	BACT	
ME	9/14/98	Champion Intl Corp. & Champ. Clean Energy		9.0	ppm	BACT	
MN-0071	6/5/07	Minnesota Municipal Power Agency - Fairbault Energy Park - turbine only	Good Combustion	9.0	ppmvd	BACT	
NC-0086	1/10/02	Fayetteville Generation	Good Combustion Practices	9	ppm	BACT	
NC-0094	1/9/02	GenPower Earleys, LLC	Good Combustion Practices	9	ppm	BACT	
NC-0095	5/28/02	Mirant Gastonia	Good Combustion Practices	9	ppm	BACT	
NY		Trigen Nassau Energy Corp.		9	ppm		
OH-0252	12/28/04	Duke Energy Hanging Rock Energy Facility - with duct burner		9.0	ppm	BACT	
SC	5/28/02	Jasper County Generating Facility	Good Combustion Practices	9	ppm		
VA-0287	12/1/03	James City Energy Park	Good Combustion Practices	9.0	ppm	BACT	
VA-0289	2/5/04	Duke Energy Wythe, LLC - turbine only	Good Combustion Practices	9	ppmvd	BACT	
OH-0248	9/24/02	Lawrence Energy - Calpine Corporation	Oxidation Catalyst	9.8	lb/hour	BACT	
AL-0185	7/12/02	Barton Shoals Energy, LLC	Good Combustion Practices	10.0	ppm	BACT	
CA	2/1/02	Delta Energy Center		10.0	ppm		
FL-0202	8/17/92	Orlando Cogen	Combustion Controls	10	ppmv	BACT	
FL-0244	4/16/03	FPL Martin	Good Combustion Practices	10	ppmvd	BACT	
FL-0245	4/15/03	FPL Manatee - Unit 3	Good Combustion Practices	10	ppmvd	BACT	
FL-0256	9/8/03	FPC - Hines Energy Complex	Good Combustion Practices	10	ppmvd	BACT	
LA-0224	3/20/08	Southwest Electric Power Company - Arsenal Hill Power Plant	Proper Operating Practices	10.0	ppmvd	BACT	
MN-0053	7/15/04	Fairbault Energy Park	Good Combustion Practices	10	ppmvd	BACT	
MN-0060	8/12/05	Northern States Power Co. DBA XCEL Energy - High Bridge Generating Plant - turbine only	Good Combustion Practices	10.0	ppm	BACT	
MN-0066	5/16/06	Northern States Power Co. DBA XCEL Energy - Riverside Plant	Good Combustion Practices	10.0	ppm	BACT	
MO-0049	8/19/99	Kansas City Power & Light	Oxidation Catalyst	10	ppmv	BACT	
MO-0056	3/30/99	Associated Electric Cooperative, Inc.	Good Combustion	10	ppmv	BACT	
NC		Progress Energy - Carolinas	GCP	10	ppm		
OK	3/24/99	Chouteau Power Plant	Combustion Controls	10.0	ppm	BACT	
OK-0036	12/10/01	Stephens Energy Facility		10.0	ppmv	BACT	
OK-0043	10/22/01	Webers Falls Energy Facility	Combustion Controls	10	ppmv	BACT	
OK-0090	3/21/03	Duke Energy Stephens, LLC	Combustion Controls	10	ppm	BACT	

RBLC ID	Permit Date	Facility	Control Technology	Emiss. Limit	Emiss. Limit Unit	Basis	Averaging Period
PA-0160	10/10/00	Calpine Construction Finance Co.		10.0	ppmv	BACT	
PA-0226	4/9/02	Limerick Partners, LLC		10	ppm	BACT	
VA-0262	12/6/02	Mirant Airside Industrial Park	Good Combustion Practices	10.3	ppmvd	BACT	
MS	6/24/02	Crossroads Energy Center	Good Combustion Practices	10.4	ppm		
NE-0023	5/29/03	Nebraska Public Power District - Beatrice Power Station	Oxidation Catalyst	10.8	lb/hour	BACT	
MN-0071	6/5/07	Minnesota Municipal Power Agency - Fairbault Energy Park - with duct burner	Good Combustion	11.0	ppmvd	BACT	
MD-0032	11/5/04	Mirant Mid-Atlantic, LLC - Dickerson Unit 4 - with duct burner	Oxidation Catalyst	11.5	lb/hour	BACT	
NC-0101	9/29/05	Forsyth Energy Projects, LLC - turbine only	Good Combustion Practices	11.6	ppm	BACT	
GA-0101	10/23/02	Murray Energy Facility	Good Combustion Practices	12	ppm	BACT	
FL-0239	3/27/02	Jacksonville Electric Authority - Brandy Branch	Good Combustion Practices	12.21	ppmvd	BACT	
MS-0055	6/24/02	El Paso Merchant Energy CO.	Good Combustion Practices	13.8	ppmv	BACT	1
VA-0289	2/5/04	Duke Energy Wythe, LLC - with duct burner	Good Combustion Practices	14.6	ppmvd	BACT	
ТХ	10/8/03	TX Petrochem	Good Combustion Practices	15	ppm		
TX-0547	6/22/09	Lamar Power Partners II LLC	Good Combustion Practices	15	ppmvd	BACT	
NC		Southern Power Co Plant Rowan County	GCP	16	ppm		
OK-0115	12/12/06	Energetix - Lawton Energy Cogen Facility	Good Combustion Practices	16	ppmvd	BACT	
KS	2/7/02	Duke Energy - Leavenworth County	Good Combustion Practices	16.9	ppm		
GA		Live Oak Co. LLC	GCP	17	ppm		
OK-0096	6/6/03	Redbud Power Plant	Good Combustion Practices	17.2	ppmvd	BACT	
TX-0548	8/18/09	Madison Bell Partners LP	Good Combustion Practices	17.5	ppmvd	BACT	
MN-0060	8/12/05	Northern States Power Co. DBA XCEL Energy - High Bridge Generating Plant - with duct firing	Good Combustion Practices	18.0	ppm	BACT	
MS-0073	11/23/04	Reliant Energy Choctaw County, LLC		18.36	ppmv	BACT	
TX	7/23/02	Duke Energy		20.0			
TX-0502	6/5/06	Nacogdoches Power LLC	Good Combustion Practices	20.2	ppmvd	BACT	
VA-0256	1/20/02	Tenaska Fluvanna	Good Combustion Practices	21	ppmvd	BACT	
OH-0264	5/23/04	Norton Energy Storage, LLC		23	lb/hour	BACT	
AR-0051	4/1/02	Duke Energy - Jackson Facility	Good Operating Practices	23.6	ppm	BACT	
AZ		Reliant Energy - Desert Basin Generating Project		24	ppm		
LA-0136	7/23/08	Dow Chemical Company - Plaquemine Cogeneration Facility	Good Combustion Practices	25.0	ppmvd	BACT	
LA-0157	3/8/02	Perryville Power Station	Good Operating Practices	25.0	ppm	BACT	J

RBLC ID	Permit Date	Facility	Control Technology	Emiss. Limit	Emiss. Limit Unit	Basis	Averaging Period
OK-0117	2/9/07	Public Service Company of Oklahoma - Southwestern Power Plant	Combustion Control	25.0	ppmvd	BACT	
TX	12/13/02	Steag (Brazos Valley)	Good Combustion Practices	25	ppm		
NC-0101	9/29/05	Forsyth Energy Projects, LLC - with duct burner	Good Combustion Practices	25.9	ppm	BACT	
MI-0362	4/21/03	Midland Cogeneration Venture Limited Partnership	Good Combustion Practices	26	lb/hour	BACT	
VA-0255	11/18/02	VA Power - Possum Point		32	lb/hour	BACT	
MN		Pleasant Valley	GCP	35	ppm		
AZ-0034	2/15/01	Harquahala Generating Project	Oxidation Catalyst	37	lb/hour	BACT	
WY-0061	4/4/03	Black Hills Corp - Neil Simpson Two	Good Combustion Practices	37.2	ppmvd	BACT	
NM-0044	6/27/04	Clovis Energy Facility - Duke energy Curry LLC	Good Combustor Design	37.6	lb/hour	BACT	
MS-0059	9/24/02	Pike Generation Facility	Efficient Combustion Practices	40.0	ppmv	BACT	
OK-0055	2/12/02	Mustang Energy Project	Combustion Controls	40	ppm	BACT	
VA-0260	5/1/02	Henry County Power	Good Combustion Practices	41.4	lb/hour	BACT	
MI-0363	1/7/03	Bluewater Energy Center LLC	Catalytic Afterburner	41.7	lb/hour	BACT	
TX-0234	1/8/02	Edinburg Energy Limited Partnership		43	lb/hour	BACT	
LA-0120	2/26/02	Shell Chemical LP - Geismar Plant	Good Combustion Practices	44.0	lb/hour	BACT	
СТ		PDC - El Paso Meriden	Oxidation Catalyst	52.4	lb/hr		
TX-0391	12/20/02	Oxy Cogeneration Facility - Oxy Vinyls LP	Good Combustion Practices	64.3	lb/hour	BACT	
TX-0374	3/24/03	Chocolate Bayou Plant - BP Amoco Chemical Co	Good Combustion Practices	66.81	lb/hour	BACT	
TX-0352	12/31/02	Brazos Valley Electric Generating Facility	Good Combustion Control	92.4	lb/hour	BACT	
TX-0388	2/12/02	Sand Hill Energy Center - Austin Electric Utility		98.2	lb/hour	BACT	
TX-0407	12/6/02	Steag-Stearne	Good Combustion Practices	109.4	lb/hour		
TX-0350	1/31/02	Ennis Tractebel Power	None	124	lb/hour	BACT	
MT-0019	6/7/02	Continental Energy Services Inc Silver Bow Gen		139.9	lb/hour	Other	
TX-0411	3/26/02	Amelia Energy Center	Good Combustion Practices	208.0	lb/hour		

Table contains:

Entries from the EPA turbine spreadsheet with a permit issuance date in 2002 - 2012

Entries from the RBLC for new units with a permit issuance date after 2002 Information from state agency websites

RBLC ID	Permit Date	Facility	Control Technology	Emiss. Limit	Emiss. Limit Unit	Basis
OK-0129	1/23/09	Associated Electric Cooperative Inc - Chouteau Power Plant	Natural Gas Fuel	6.59	lb/hour	No duct firing
CA	12/1/2008	Russell City - Calpine	SCR, DLN, Oxidation catalyst	7.5	lbs/hr	BACT-CA
LA-0191	10/12/04	Entergy New Orleans, Inc Michoud Electric Generating Plant - turbine only	Use of Clean Burning Fuels	7.85	lb/hour	BACT - no duct firing
CA-1144	4/25/07	Caithness Blythe II, LLC	Use Public Utility Commission Quality Natural Gas with Sulfur Content less than or Equal to 05 grains/100scf	8.0	lb/hour	BACT-CA
VA-0315	12/17/10	Virginia Electric and Power Company - Warren County Power Plant - Dominion -without duct burners	Natural Gas with Sulfur Content of 0.0003% by Weight	8.00	lb/hour	BACT - without duct burners
CA-1192	6/21/11	Avenal Power Center LLC	Pipeline Quality Natural Gas	8.91	lb/hour	BACT - no duct firing
CA		Delta Energy Center		9	lbs/hr	
CA		Duke Energy - Moss Landing	SCR, DLN	9	lbs/hr	
CA		Los Medanos - Calpine	SCR, DLN, Oxidation catalyst	9	lbs/hr	
CA	9/1/01	Metcalf - Calpine	SCR, DLN, Oxidation catalyst	9	lbs/hr	w/o duct burner
CA-0997	9/1/03	Sacramento Municipal Utility District	Good Combustion Control	9	lb/hour	LAER
ME	9/14/98	Champion Intl Corp. & Champ. Clean Energy		9.0	lb/hour	BACT
MO	6/19/00	University of Missouri - Columbia	Combustion Controls	9.0	lb/hour	BACT
NV-0033	8/19/04	El Dorado Energy, LLC - turbine only		9	lb/hour	LAER
CA	3/1/01	Western Midway Sunset Power Project		9.4	lb/hour	BACT-CA
OK	1/21/00	Oneta Generating Station	Use of Natural Gas	9.4	lb/hour	BACT
LA-0191	10/12/04	Entergy New Orleans, Inc Michoud Electric Generating Plant - with duct burner	Use of Clean Burning Fuels	9.77	lb/hour	BACT
TX-0374	3/24/03	Chocolate Bayou Plant - BP Amoco Chemical Co	Good Combustion Practices, Only Gaseous Fuels Containing No Ash	10.03	lb/hour	BACT
LA-0120	2/26/02	Shell Chemical LP - Geismar Plant	Good Combustion Practices, Natural Gas	10.8	lb/hour	BACT
NE-0023	5/29/03	Nebraska Public Power District - Beatrice Power Station		10.8	lb/hour	BACT
CA-1096		Vernon City Power & Light		11	lbs/hr	
CA	1/30/2004	Magnolia Power Project	Natural gas fuel	11	lbs/hr	

CTG/HRSG BACT Comparison for PM/PM₁₀/PM_{2.5}

RBLC ID	Permit Date	Facility	Control Technology	Emiss. Limit	Emiss. Limit Unit	Basis	
CA		Inland Empire	SCR, DLN, Oxidation catalyst	11	lbs/hr		
CA		SCE/Mountainview 3 and 4	SCR, DLN, Oxidation catalyst	11	lbs/hr		
CT-0151	2/25/08	Kleen Energy Systems, LLC - turbine only		11.0	lb/hour	BACT	
FL-0241	1/17/02	CPV Cana Power Generation Facility	Good Combustion, Clean Fuel	11	lb/hour	BACT	
MD-0032	11/5/04	Mirant Mid-Atlantic, LLC - Dickerson Unit 5 - turbine only		11.0	lb/hour	BACT	
MI-0267	6/7/01	Renaissance Power LLC	Good Combustion	11.0	lb/hour	BACT	
NJ	9/13/12	Hess Newark Energy Center		11	lb/hour	BACT	
TX-0590	8/5/10	King Power Station - Siemens Turbines	Low Ash Fuel	11.1	lb/hour	BACT	
NV-0038	6/28/05	Ivanpah Energy Center, L.P.	Good Combustion Control, Pipeline Quality Natural Gas	11.25	lb/hour	LAER	
CA-1213	3/1/01	Mountainview Power Project		11.5	lb/hour	BACT-CA	
CA-1143	8/16/04	Calpine Corporation - Sutter Power Plant		11.5	lb/hour	BACT-CA	
CA		San Joaquin Valley Energy Center		11.5	lbs/hr		
CA		Feather River - Calpine		11.5	lbs/hr		
NV-0033	8/19/04	El Dorado Energy, LLC - with duct burner		11.6	lb/hour	LAER	
CA-1192	6/21/11	Avenal Power Center LLC	Pipeline Quality Natural Gas	11.78	lb/hour	BACT	
CA-1191	3/11/10	Victorville 2 Hybrid Power Project	Pipeline Quality Natural Gas	12.0	lb/hour	BACT	No duct firing
СА		Metcalf - Calpine	SCR, DLN, Oxidation catalyst	12	lbs/hr	w/ duct burner	
CA-1191		City of Victorville		12	lbs/hr	w/o duct burner	
OH-0264	5/23/04	Norton Energy Storage, LLC		13	lb/hour	BACT	
CA		Morro Bay - Duke		13.3	lbs/hr		
CA-1211	3/11/11	Colusa Generating Station	Natural Gas	13.5	lb/hour	BACT	
CA		Palomar Energy Project		14	lbs/hr		
OR-0039	12/30/03	California Oregon Border - Peoples Energy	Good Combustion, Natural Gas	14	lb/hour	BACT	
VA-0315	12/17/10	Virginia Electric and Power Company - Warren County Power Plant - Dominion -with duct burners	Natural Gas with Sulfur Content of 0.0003% by Weight	14.0	lb/hour	BACT	
VA	4/30/13	Stonewall, LLC	Good Combustion Practices and Pipleine Quality Natural Gas	14.5	lb/hour	BACT	

CTG/HRSG BACT Comparison for PM/PM₁₀/PM_{2.5}

RBLC ID	Permit Date	Facility	Control Technology	Emiss. Limit	Emiss. Limit Unit	Basis	
MD-0032	11/5/04	Mirant Mid-Atlantic, LLC - Dickerson Unit 5 - with duct burner		15.0	lb/hour	BACT	
OH-0252	12/28/04	Duke Energy Hanging Rock Energy Facility - turbine only		15.0	lb/hour	BACT	
CT-0151	2/25/08	Kleen Energy Systems, LLC - with duct burner		15.2	lb/hour	BACT	
VA-0256	1/20/02	Tenaska Fluvanna	Use of Natural Gas	16.2	lb/hour	BACT	
NC-0095	5/28/02	Mirant Gastonia	Good Combustion Practices	16.85	lb/hour	BACT	
CA		La Paloma		17.2	lbs/hr		
TN-0144	2/1/02	Haywood Energy Center (Calpine)	Good Combustion Practices, Clean Fuel	17.5	lb/hour	BACT	
VA-0289	2/5/04	Duke Energy Wythe, LLC - turbine only	Good Combustion Practices	17.5	lb/hour	BACT	
CA-1191	3/11/10	Victorville 2 Hybrid Power Project	Pipeline Quality Natural Gas	18.0	lb/hour	BACT	with duct firing
IN-0086	5/9/01	Mirant Sugar Creek LLC	Good Combustion	18	lb/hour	BACT	
OH-0268	3/26/02	Lima Energy Company	Use of Clean Burning Fuels	18	lb/hour	BACT	
OR		Turner Energy Center		18	lbs/hr		
TX-0234	1/8/02	Edinburg Energy Limited Partnership		18	lb/hour	BACT	
TX-0351	3/11/02	Weatherford Electric Generation Facility	None	18	lb/hour	Other	
TX-0620	9/12/12	ES Joslin Power Plant		18.0	lb/hour	BACT	
VA-0262	12/6/02	Mirant Airside Industrial Park	Good Combustion Practices	18.0	lb/hour	BACT	
WV-0014	12/18/01	Panda Culloden Generating Station	Use of Natural Gas	18	lb/hour	BACT	
PA-0291	4/23/13	Hickory Run Energy LLC		18.5	lb/hour	Other	
MI	3/16/00	Southern Energy, Inc.		19.0	lb/hour	BACT	
MI-0366	4/13/05	Berrien Energy, LLC	State of the Art Combustion Techniques and Use of Natural Gas	19.0	lb/hour	BACT	
NM-0044	6/27/04	Clovis Energy Facility - Duke energy Curry LLC		19	lb/hour	BACT	
OK-0036	12/10/01	Stephens Energy Facility		19.1	lb/hour	BACT	
NJ	5/31/12	Woodbridge Energy Center	Use of Natural Gas	19.1	lb/hour	BACT	
MI-0363	1/7/03	Bluewater Energy Center LLC	Use of Natural Gas	19.6	lb/hour	BACT	
TX-0590	8/5/10	Pondera Capital Management GP INC - King Power Station	Low Ash Fuel	19.8	lb/hour	BACT	
CA-1177	7/22/09	Otay Mesa Generating Project		20.0	lb/hour		ł
FL-0225	8/17/01	El Paso Broward Energy Center	Use of Natural Gas	20.0	lb/hour	BACT	ł
FL-0227	9/7/01	El Paso Belle Glade Energy Center	Use of Natural Gas	20.0	lb/hour	BACT	ł

CTG/HRSG BACT Comparison for PM/PM10/PM2.5

RBLC ID	Permit Date	Facility	Control Technology	Emiss. Limit	Emiss. Limit Unit	Basis
LA-0164	1/31/02	Acadia Power Station, Acadia Power Partners LLC	Good Design, Good Operating and Maintenance Practices	20	lb/hour	BACT
TX-0391	12/20/02	Oxy Cogeneration Facility - Oxy Vinyls LP		20	lb/hour	BACT
CA	5/1/2008	Colussa Generating Station		20.1	lbs/hr	
IN-0114	7/24/02	Mirant Sugar Creek LLC		20.2	lb/hour	BACT
MS-0055	6/24/02	El Paso Merchant Energy CO.	Use of Low Ash Fuel	20.5	lb/hour	BACT
MS-0073	11/23/04	Reliant Energy Choctaw County, LLC		20.59	lb/hour	BACT
IN-0085	6/7/01	PSEG Lawrenceburg Energy Facility	Good Combustion	21	lb/hour	BACT
NV-0037	5/14/04	Sempra Energy Resources - Copper Mountain Power	Use of Low-Sulfur Natural Gas	21.3	lb/hour	LAER
FL-0226	9/11/01	El Paso Manatee Energy Center	Use of Natural Gas	21.8	lb/hour	BACT
MA-0024	4/16/99	ANP Blackstone	Use of Natural Gas	21.8	lb/hour	BACT
NC-0094	1/9/02	GenPower Earleys, LLC	Good Combustion Practices and Design	22	lb/hour	BACT
VA-0255	11/18/02	VA Power - Possum Point		22.2	lb/hour	BACT
WA		Goldendale Energy		22.3	lbs/hr	
MA-0025	8/4/99	ANP Bellingham	Use of Natural Gas	22.6	lb/hour	BACT
LA-0157	3/8/02	Perryville Power Station	Good Operating Practices, Natural Gas	23	lb/hour	BACT
MD-0032	11/5/04	Mirant Mid-Atlantic, LLC - Dickerson Unit 4 - turbine only		23.0	lb/hour	BACT
OH-0252	12/28/04	Duke Energy Hanging Rock Energy Facility - with duct burner		23.3	lb/hour	BACT
VA-0289	2/5/04	Duke Energy Wythe, LLC - with duct burner	Good Combustion Practices	23.7	lb/hour	BACT
MI-0361	1/30/03	South Shore Power LLC	Use of Natural Gas, State of the Art Combustion Techniques	24	lb/hour	BACT
МО	8/19/99	Kansas City Power & Light Co Hawthorn Station	Combustion Controls	24.0	lb/hour	BACT
LA-0224	3/20/08	Southwest Electric Power Company - Arsenal Hill Power Plant	Good Combustion Design, Proper Operating Practices/Pipeline Quality Natural Gas	24.23	lb/hour	BACT
VA-0287	12/1/03	James City Energy Park	Good Combustion Design, Clean Fuel	24.7	lb/hour	BACT
AZ-0043	11/12/03	Duke Energy Arlington Valley		25	lb/hour	BACT
GA-0101	10/23/02	Murray Energy Facility	Good Combustion Practices, Clean Fuel	25	lb/hour	BACT

CTG/HRSG BACT Comparison for PM/PM₁₀/PM_{2.5}

RBLC ID	Permit Date	Facility	Control Technology	Emiss. Limit	Emiss. Limit Unit	Basis
VA-0260	5/1/02	Henry County Power	Good Combustion Design, Clean Fuel	25.3	lb/hour	BACT
TX-0411	3/26/02	Amelia Energy Center	Natural Gas Combustion	25.6	lb/hour	
TX-0350	1/31/02	Ennis Tractebel Power	None	25.62	lb/hour	BACT
MD-0032	11/5/04	Mirant Mid-Atlantic, LLC - Dickerson Unit 4 - with duct burner		26.0	lb/hour	BACT
LA-0254	8/16/11	Ninemile Point Electric Generating Plant Units 6A and 6B - without duct burner	Pipeline Natural Gas, Good Combustion Practices	26.23	lb/hour	BACT
TX-0407	12/6/02	Steag-Stearne	Pipeline Natural Gas	26.9	lb/hour	
TX-0502	6/5/06	Nacogdoches Power LLC	Pipeline Natural Gas	26.9	lb/hour	BACT
TX-0618	10/15/12	Channel Energy Center LLC	Good Combustion, Use of Gaseous Fuel	27.0	lb/hour	BACT
TX-0619	9/26/12	Deer Park Energy Center	Good Combustion, Use of Gaseous Fuel	27.0	lb/hour	BACT
AZ-0034	2/15/01	Harquahala Generating Project	Combustion Controls	27.8	lb/hour	BACT
NJ-0043	3/28/02	Liberty Generating Station		28.8	lb/hour	Other
AR	12/29/00	Duke Energy Hot Springs	Combustion Controls	29.4	lb/hour	BACT
MN	11/17/00	XCEL Energy, Black Dog Electric Generating Station	Use of Natural Gas	29.4	lb/hour	BACT
NJ-0066	2/16/06	AES Red Oak LLC	Use of Natural Gas	29.43	lb/hour	BACT
AZ-0047	12/1/2004	Dome Valley Energy Partners, LLC - Wellton Mohawk Generating Station - Scenario 1	Good Combustion Practices, Natural Gas	29.8	lb/hour	BACT
AZ	2003 Dft	La Paz Generating Facility (W501F)		30.3	lb/hour	BACT
NC-0086	1/10/02	Fayetteville Generation	Combustion Controls	31.3	lb/hour	BACT
TX-0388	2/12/02	Sand Hill Energy Center - Austin Electric Utility		32	lb/hour	BACT
AR-0051	4/1/02	Duke Energy - Jackson Facility	Good Operating Control, Clean Fuel	32.2	lb/hour	BACT
MT-0019	6/7/02	Continental Energy Services Inc Silver Bow Gen		32.4	lb/hour	Other
AZ-0047	12/1/2004	Dome Valley Energy Partners, LLC - Wellton Mohawk Generating Station - Scenario 2	Good Combustion Practices, Natural Gas	33.1	lb/hour	BACT
LA-0254	8/16/11	Ninemile Point Electric Generating Plant Units 6A and 6B - with duct burner	Pipeline Natural Gas, Good Combustion Practices	33.16	lb/hour	BACT
TX-0600	9/1/11	Thomas C. Ferguson Power Plant	Pipeline Quality Natural Gas	33.43	lb/hour	BACT
LA-0136	7/23/08	Dow Chemical Company - Plaquemine Cogeneration Facility	Use of Clean Burning Fuels	33.5	lb/hour	BACT
MI-0256	1/12/01	Covert Generating Co LLC	Good Combustion	33.8	lb/hour	BACT
TX-0381	1/31/03	Ennis Tractebel Power	Pipeline Natural Gas	37.6	lb/hour	BACT

CTG/HRSG BACT Comparison for PM/PM₁₀/PM_{2.5}

RBLC ID	Permit Date	Facility	Control Technology	Emiss. Limit	Emiss. Limit Unit	Basis
TX-0352	12/31/02	Brazos Valley Electric Generating Facility	Good Combustion Control	38.6	lb/hour	BACT
MS-0059	9/24/02	Pike Generation Facility	Good Combustion Practices, Low Ash Fuel	44.2	lb/hour	BACT
AZ	2003 Dft	La Paz Generating Facility (GE 7FA)		45.5	lb/hour	BACT
WA-0299	4/17/03	Sumas Energy 2 - NESCO	Good Combustion Practices, Clean Fuel	0.0039	lb/mmBtu	BACT - Project Cancelled
OR-0040	3/12/03	Klamath Generation LLC - Pacific Power Energy Marketing	Natural Gas	0.0042	lb/mmBtu	BACT
CA-1212	10/18/11	Palmdale Hybrid Power Project	Use of Pipeline Quality Natural Gas	0.0048	lb/mmBtu	BACT - no duct firing
CA-1212	10/18/11	Palmdale Hybrid Power Project	Use of Pipeline Quality Natural Gas	0.0049	lb/mmBtu	BACT
NY-0095	5/10/06	Caithness Bellport, LLC - turbine only	Low Sulfur Fuel	0.0055	lb/mmBtu	BACT
PA-0286	1/13/13	Moxie Energy LLC/Patriot Energy Plant		0.0057	lb/mmBtu	Other
AL-0185	7/12/02	Barton Shoals Energy, LLC	Good Combustion Practices	0.0060	lb/mmBtu	BACT
NY	9/27/12	Cricket Valley Energy Center LLC	Low Sulfur Fuel	0.0060	lb/mmBtu	BACT
AR-0043	2/27/01	Pine Bluff Energy LLC	Good Combustion Practices	0.0065	lb/mmBtu	BACT
CO-0052	8/11/02	Rocky Mountain Energy Center	Good Combustion Control Practices, Pipeline Quality Natural Gas	0.0065	lb/mmBtu	BACT
NY-0095	5/10/06	Caithness Bellport, LLC - with duct burner	Low Sulfur Fuel	0.0066	lb/mmBtu	BACT
UT-0066	5/17/04	Pacificorp - Currant Creek Power Project		0.0066	lb/mmBtu	BACT
OK-0115	12/12/06	Energetix - Lawton Energy Cogen Facility	Good Combustion Practices	0.0067	lb/mmBtu	BACT
OK-0055	2/12/02	Mustang Energy Project	Use of No-Ash Fuel, Efficient Combustion	0.007	lb/mmBtu	BACT
CO-0056	5/2/06	Calpine - Rocky Mountain Energy Center, LLC	Natural Gas Quality Fuel Only, Good Combustion Control Practices	0.0074	lb/mmBtu	BACT
IN-0158	12/3/12	St. Joseph Energy Center LLC	Good Combustion Practice and Fuel Specification	0.0078	lb/mmBtu	BACT
AL-0141	4/10/2000	GPC-Goat Rock Combined Cycle Plant	Efficient Combustion	0.009	lb/mmBtu	BACT
AL-0162	1/8/2001	Autaugaville Combined Cycle Plant	Good Combustion	0.009	lb/mmBtu	BACT
GA-0105	4/17/03	McIntosh Combined Cycle Facility	Good Combustion Practices, Clean Fuel	0.009	lb/mmBtu	BACT
RI-0019	5/3/00	Reliant Energy Hope Gen. Facility		0.009	lb/mmBtu	BACT
VA-0261	9/6/02	CPV Cunningham Creek	Natural Gas	0.009	lb/mmBtu	BACT

CTG/HRSG BACT Comparison for PM/PM₁₀/PM_{2.5}

RBLC ID	Permit Date	Facility	Control Technology	Emiss. Limit	Emiss. Limit Unit	Basis
OK-0117	2/9/07	Public Service Company of Oklahoma - Southwestern Power Plant	Use of Low Ash Fuel (natural gas), Efficient Combustion	0.0093	lb/mmBtu	BACT
AL-0167	1/26/2001	Calhoun Power Company I, LLC	Good Combustion Practices	0.01	lb/mmBtu	BACT
AZ-0039	3/7/03	Salt River Project/Santan Gen. Plant		0.01	lb/mmBtu	LAER
LA		Crescent City Power LLC		0.01	lb/mmBtu	
MI-0357	2/4/03	Kalkaska Generating LLC	Good Combustion Practices, Clean Fuel	0.01	lb/mmBtu	BACT
MN-0053	7/15/04	Fairbault Energy Park	Good Combustion Practices, Clean Fuel	0.01	lb/mmBtu	BACT
MN-0071	6/5/07	Minnesota Municipal Power Agency - Fairbault Energy Park - turbine only		0.01	lb/mmBtu	BACT
MO-0053	1/1/96	Hawthorne Generating Station		0.01	lb/mmBtu	BACT
MO-0056	3/30/99	Associated Electric Cooperative, Inc.	Good Combustion	0.01	lb/mmBtu	BACT
OK-0041	1/19/00	McClain Energy Facility	Clean Fuels	0.01	lb/mmBtu	BACT
PA-0223	1/30/02	Duke Energy Fayette, LLC	Good Combustion Practices, Use of Natural Gas	0.01	lb/mmBtu	BACT
OH-0248	9/24/02	Lawrence Energy - Calpine Corporation	Burning Natural Gas	0.0101	lb/mmBtu	BACT
GA	5/30/12	Effingham County Power Plant	Pipeline Quality Natural Gas	0.0103	lb/mmBtu	BACT
IA-0058	4/10/02	MidAmerican Energy, Des Moines Power Station		0.0108	lb/mmBtu	BACT
GA-0102	1/15/02	Wansley Combined Cycle Energy Facility	Good Combustion Practices, Low Sulfur Fuel	0.011	lb/mmBtu	BACT
MS-0040	12/31/98	Mississippi Power Plant		0.011	lb/mmBtu	BACT
NV-0035	8/16/05	Sierra Pacific Power Company - Tracy Substation Expansion Project	Best Combustion Practices	0.011	lb/mmBtu	BACT
OK-0056	2/12/02	Horseshoe Energy Project	Low Ash Fuel	0.0117	lb/mmBtu	BACT
AL-0143	3/3/2000	AEC-McWilliams Plant	Good Combustion	0.012	lb/mmBtu	BACT
IN-0087	6/6/01	Duke Energy, Vigo LLC	Good Combustion	0.012	lb/mmBtu	BACT
OK-0096	6/6/03	Redbud Power Plant	Efficient Combustion, Low Ash Fuel	0.012	lb/mmBtu	BACT
AL-0169	2/5/2001	Blount Megawatt Facility	Good Combustion Practices	0.013	lb/mmBtu	BACT
AR-0035	8/24/00	Panda - Union Generating Station	Clean Fuels, Proper Operation	0.014	lb/mmBtu	BACT
AZ-0038	4/30/02	Gila Bend Power Generation Station		0.014	lb/mmBtu	BACT
PA-0188	3/28/02	Fairless Energy LLC		0.014	lb/mmBtu	BACT
PA-0226	4/9/02	Limerick Partners, LLC		0.014	lb/mmBtu	BACT
OK-0043	10/22/01	Webers Falls Energy Facility	Efficient Combustion	0.015	lb/mmBtu	BACT

CTG/HRSG BACT Comparison for PM/PM₁₀/PM_{2.5}

RBLC ID	Permit Date	Facility	Control Technology	Emiss. Limit	Emiss. Limit Unit	Basis
OK-0090	3/21/03	Duke Energy Stephens, LLC	Clean Fuel, Efficient Combustion	0.015	lb/mmBtu	BACT
MO-0058	5/9/00	Audrain Generating Station	Good Combustion	0.016	lb/mmBtu	BACT
NC-0101	9/29/05	Forsyth Energy Projects, LLC - turbine only	Good Combustion Practices, Clean Burning Low Sulfur Fuel	0.019	lb/mmBtu	BACT
OK-0070	6/13/02	Genova OK I Power Project	Low Sulfur Fuel, Efficient Combustion	0.019	lb/mmBtu	BACT
AL-0132	11/29/1999	Tenaska Alabama Generating Station	Efficient Combustion	0.02	lb/mmBtu	BACT
AR-0070	8/23/02	Genova Arkansas I, LLC	Good Combustion Practices	0.02	lb/mmBtu	BACT
DE-0016	10/17/00	Hay Road Power Complex Units 5-8	Clean Fuels	0.02	lb/mmBtu	BACT
NC-0101	9/29/05	Forsyth Energy Projects, LLC - with duct burner	Good Combustion Practices, Clean Burning Low Sulfur Fuel	0.021	lb/mmBtu	BACT
PA-0189	1/16/02	Connectiv - Bethlehem North		0.0135	ppm	BACT
MI-0365	1/28/03	Mirant Wyandotte LLC	Good Combustion Practices, Use of Pipeline Quality Natural Gas	5.6	mg/cm	BACT
WA-0291	1/3/03	Wallula Power - Newport Northwest Generation	Natural Gas	0.0029	gr/dscf	LAER
OR-0035	1/16/02	Port Westward - Portland General Electric	Use of Pipeline Quality Natural Gas	0.1	gr/dscf	BACT
OR-0048	12/29/10	Portland General Electric Carty Plant	Clean Fuel	2.5	lb/MMCF	BACT
DE-0024	1/30/2013	Garrison Energy Center, LLC/Calpine Corporation	Fuel usage restriction to natural gas and low sulfur distillate fuel	120.4	tons/year	BACT

CTG/HRSG BACT Comparison for PM/PM₁₀/PM_{2.5}

Table contains:

Entries from the EPA turbine spreadsheet with a permit issuance date after 2002

Entries from the RBLC for new units with a permit issuance date 2002 - 2013

Information from state agency websites

BOWIE POWER STATION AUXILIARY BOILER NO_x CONTROL COST EFFECTIVENESS

Boiler Size (mmBtu/hour)	50
Interest Rate	7
Equipment Life (years)	15
Capital Recovery Factor	0.11

Emission Reduction	tons/year ^a	ppmv ^b
Auxiliary Boiler NO _x Emissions	0.41	30

SNCR Capital Cost (\$/mmBtu/hour) ^c	\$4,29
SNCR Capital Cost (\$)	\$214,850
SCR Capital Cost (\$/mmBtu/hour) ^c	\$8,359
SCR Capital Cost (\$)	\$417,950

		Control Efficiency ^d	Emission Concentration (ppmv)	Controlled Emissions (tons/year)	Reduction (tons/year)	Annualized Cost ^f (\$/year)	Cost Effectiveness (\$/ton)
	SNCR	75%		0.10	0.31	\$23,589	\$76,713
:	SCR	90%		0.04	0.37	\$45,889	\$124,360
	Ultra Low NOx Burners ^e		9	0.12	0.29	\$33,560	\$116,934

^aFrom spreadsheet "Bowie Power Station Auxiliary Boiler Data and Emissions"

^bFrom manufacturer's data sheet.

^cFrom "Applicability and Feasibility of NO_x, SO₂ and PM Emissions Control Technologies for Industrial, Commercial, and Institutional (ICI) Boilers", Northeast States for Coordinated Air Use Management in Parnership with the Mid-Atlantic/Northeast Visibility Union, November 2008, pages 2-16 and 2-18.

^dFrom "NOx Controls Technologies", Institute of Clean Air Companies (ICAC), http://www.icac.com/?Nox_Controls

^eEmission concentration is from "Final Draft Staff Report for Rules 4306, 4307, and 4320", San Joaquin Valley Unified Air Pollution Control District, September 18, 2008, page 2.

¹Ultra Low NO_x burner values are from "Final Draft Staff Report for Rules 4306, 4307, and 4320", San Joaquin Valley Unified Air Pollution Control District, September 18, 2008, Table C-8, page C-10 for a 44 mmBtu/hour boiler with a 50% capacity factor.

Capital Recover Factor calculated in accordance with "EPA Air Pollution Control Cost Manual", equation 2.8a (page 2-21):					
Capital Recover Factor = (interest rate x (1 + interest rate) ^{equipment life}) ((1 + interest rate) ^{equipment life} - 1)					
SNCR and SCR Capital Cost \$ = Capital Cost\$ x Boiler Size mmBtu/hour mmBtu/hour					
Controlled Emissions <u>tons</u> = Boiler Emissions <u>tons</u> x (1 - Control Efficiency) year year					
Ultra Low NO _x Burner Emission tons = <u>Ultra Low NO_x Burner Emission Concentration ppmv</u> x Low NO _x Burner Emissions tons year Auxiliary Boiler NO _x Emission Concentration ppmv year					
Emission Reduction tons = Boiler Emissions tons - Controlled Emissions tons					
year year year					
Annualized SNCR and SCR Cost <u>\$</u> = Capital Cost \$ x Capital Recovery Factor year					
Cost Effectiveness <u>\$</u> = <u>Total Annual Cost (\$/year)</u> year Emission Reduction (tons/year)					

EPA/452/B-02-001

EPA AIR POLLUTION CONTROL COST MANUAL

Sixth Edition

EPA/452/B-02-001

January 2002

United States Environmental Protection Agency Office of Air Quality Planning and Standards Research Triangle Park, North Carolina 27711 Annualization is a process similar to EUAC but is not limited to constant cash flows. It involves determining the net present value of each alternative equipment investment and then determining the equal (in nominal terms) payment that would have to be made at the end of each year to attain the same level of expenditure. In essence, annualization involves establishing an annual "payment" sufficient to finance the investment for its entire life, using the formula:

$$PMT = NPV\left(\frac{i}{1-(1+i)^{-n}}\right)$$
(2.7)

where *PMT* is the equivalent uniform payment amount over the life of the control, *n*, at an interest rate, *i*. *NPV* indicates the present value of the investment as defined above in equation 2.6.

Engineering texts call this payment the capital recovery cost (*CRC*), which they calculate by multiplying the *NPV* of the investment by the capital recovery factor (*CRF*):

$$CRC = NPV \times CRF \tag{2.8}$$

where CRF is defined according to the formula:

$$CRF = \left(\frac{i(1+i)^{n}}{(1+i)^{n}-1}\right)$$
(2.8a)

The *CRF* equation is a transformation of the *PMT* form in equation 2.7 and returns the same information. Table A.2 in Appendix A lists the *CRF* for discount rates between 5.5 percent and 15 percent for annualization periods from one to 25 years.

2.4.4.5 Other Financial Analysis Tools

Many firms make investment decisions based upon the return on investment (*ROI*) of the proposed capital purchase, rather than the magnitude of its net present value. In and of itself, the ROI of an investment opportunity is of little use. For most pollution control investments, *ROI* analysis does not provide much in the way of useful information because, like a payback analysis, it must have positive cash flows to work properly. Calculated by dividing annual net income by the investment's capital cost, results in a percentage of the investment that is returned each year. The decision rule one should apply for *ROI* analysis is if the resulting percentage is at least as large as some established minimum rate of return, then the investment would be worth while. However, different rates can be found. Analysts should consult with their firm's financial officers or an industrial association to determine what percentage would apply.

Applicability and Feasibility of NOx, SO₂, and PM Emissions Control Technologies for Industrial, Commercial, and Institutional (ICI) Boilers

Northeast States for Coordinated Air Use Management (NESCAUM)

November 2008

(revised January 2009)

Tashnalagu	NOx Reduction	Fuel Type	Size of Boiler	Capital Costs @2006\$ (\$ AMB tu (br)	Base yr. for	Cost (\$/ton NOx @ base	Dof
SNCD	Range	ruei Type	(WIWIDtu/III')	(\$/1 v11v1Dtu/11r)	or Kei. yr	year)	Kel.
SINCK	50%-70%		100	\$2,044 ¢6,717	1990		1
SNCR	40%	Coal	100	\$6,717	1999		6
SNCR	40%	Coal	250	\$5,102	1999		6
SNCR	40%	Coal	1000	\$3,366	1999		6
SNCR	30%-70%	Resid. Oil	50	\$4,297	1996		1
SNCR	30%-70%	Resid. Oil	150	\$4,297	1996		1
SNCR	35%		350	\$2,862	1999		2
SNCR			21	\$17,101	2006	\$3,718	4
SNCR			120	\$6,377	2006	\$2,231	4
SNCR			240	\$4,493	2006	\$1,821	4
SNCR			387	\$2,899	2006	\$1,564	4
SNCR			543	\$2,319	2006	\$1,538	4
SNCR			844	\$1,449	2006	\$1,346	4
SNCR	40%	Oil	100	\$5,205	1999		6
SNCR	40%	Oil	250	\$3,954	1999		6
SNCR	40%	Oil	1000	\$2,608	1999		6
SNCR	30%-70%	Dist. Oil	50	\$4,297	1996		1
SNCR	30%-60%	Natural Gas	<mark>50</mark> (<mark>\$4,297</mark>	1996		1
SNCR	40%	Gas	100	\$5,372	1999		6
SNCR	40%	Gas	250	\$4,082	1999		6
SNCR	40%	Gas	1000	\$2,693	1999		6
LNB+SNCR	50%-89%	Pulv. Coal	250	\$2,064-6,829	2005	\$1,409-\$4,473	3
LNB+SNCR	50%-89%	Resid. Oil	250	\$2,064-6,829	2005	\$2,229-\$7,909	3

Table 2-5. NOx control costs for SNCR applied to ICI boilers

References:

US EPA, OTAG Technical Supporting Document, Chapter 5, Appendix C, 1996. http://www.epa.gov/ttn/naaqs/ozone/rto/otag/finalrpt/
 NESCAUM, Status Report on NOx Controls for Gas Turbines, Cement Kilns, Industrial Boilers, and I.C. Engines - Technologies & Cost

Effectiveness, (Praveen Amar, Project Director), December 2000.

3. MACTEC, Boiler Best Available Retrofit Technology (BART) Engineering Analysis; Lake Michigan Air Directors Consortium (LADCO): March 30, 2005.

4. Whiteman, C., ICAC, "Selective Non-Catalytic Reduction Technology Costs for Industrial Sources," memo to Christopher Recchia, Executive Director, Ozone Transport Commission, October 6, 2006.

5. US EPA Air Pollution Control Technology Fact Sheet: Selective Catalytic Reduction (SCR); EPA-452/F-03-032, July 15, 2003. http://www.epa.gov/ttn/catc/dir1/fscr.pdf

6. Khan, S. Methodology, Assumptions, and References Preliminary NOx Controls Cost Estimates for Industrial Boilers; US EPA: 2003.
ductwork required, significant variation in installed capital cost can occur for a given boiler size. Upgrades like rebuilding the air preheater also affect the installed capital cost. MACTEC [2005] gave the cost effectiveness (in dollars per ton of NOx removed) for SCR for coal and residual oil; these costs showed a wide range, because of the wide range in assumed capital costs.

	NOx			Capital Costs		~	
	Reduction	- 1-	Size of Boiler	@2006\$	Base yr. for	Cost (\$/ton NOx	D (
Technology	Range	Fuel Type	(MMBtu/hr)	(\$/MMBtu/hr)	or Ref. yr	@ base year)	Ref.
SCR	80%	Coal	350	\$12,755-19,133	1999		2
SCR	80%-90%	Coal	500	\$15,365-16,145	1996		1
SCR	70%-90%	Pulv. Coal	250	\$1,666-13,881	2005	\$2,233-\$7,280	3
SCR	80%	Coal	100	\$18,574	1999		6
SCR	80%	Coal	250	\$14,110	1999		6
SCR	80%	Coal	1000	\$9,309	1999		6
SCR	80%	Oil	100	\$14,116	1999		6
SCR	80%	Oil	250	\$10,723	1999		6
SCR	80%	Oil	1000	\$7,075	1999		6
SCR		Oil		\$5,102-7,653	1999		5
SCR	70%-90%	Resid. Oil	250	\$1,666-13,881	2005	\$4,363-\$14,431	3
SCR	80%-90%	Resid. Oil	50	\$8,359	1996		1
SCR	80%-90%	Resid. Oil	150	\$4,909	1996		1
SCR	80%-90%	Dist.	50	\$8,359	1996		1
SCR	80%-90%	Dist.	150	\$4,909	1996		1
SCR	80%	Gas	100	\$10,216	1999		6
SCR	80%	Gas	250	\$7,760	1999		6
SCR	80%	Gas	1000	\$5,120	1999		6
SCR	80%	Gas	100	\$9,566	1999		2
SCR	80%	Gas	350	\$7,015	1999		2
SCR	80%-90%	Natural Gas	<mark>50</mark> (<mark>\$8,359</mark>	1996		1
SCR	80%-90%	Natural Gas	150	\$4,909	1996		1
SCR	80%	Wood	350	\$6,378-7,653	1999		2
SCR	74%	Wood	321	\$1,978	2006	\$4,514	7

Table 2-6. NOx control costs for SCR applied to ICI boilers

References:

1. US EPA, OTAG Technical Supporting Document, Chapter 5, Appendix C, 1996. http://www.epa.gov/ttn/naaqs/ozone/rto/otag/finalrpt/

2. NESCAUM, Status Report on NOx Controls for Gas Turbines, Cement Kilns, Industrial Boilers, and I.C. Engines - Technologies & Cost Effectiveness, (Praveen Amar, Project Director), December 2000.

3. MACTEC, Boiler Best Available Retrofit Technology (BART) Engineering Analysis; Lake Michigan Air Directors Consortium (LADCO): March 30, 2005.

4. Whiteman, C., ICAC, "Selective Non-Catalytic Reduction Technology Costs for Industrial Sources," memo to Christopher Recchia, Executive Director, Ozone Transport Commission, October 6, 2006.

5. US EPA Air Pollution Control Technology Fact Sheet: Selective Catalytic Reduction (SCR); EPA-452/F-03-032, July 15, 2003. http://www.epa.gov/ttn/catc/dir1/fscr.pdf

6. Khan, S. Methodology, Assumptions, and References Preliminary NOx Controls Cost Estimates for Industrial Boilers; US EPA: 2003.

7. BPEI. (2008, February). RSCR Cost Effective Analysis.

About ICAC Membership Members Only Buyers Guide ICAC Library Resource	s Jobs ICAC Meetings
	Foresh
Nox Controls	Enter search criteria
More in this Section	
Selective Catalytic Reduction (SCR)	Calendar more
Selective Catalytic Reduction (SCR) SCR is a process for controlling emissions of nitrogen oxides from stationary sources. The basic principle of SCR is the reduction of NOx to N2 and H2O by the reaction of NOx and ammonia (NH3) within a catalyst bed. The primary reactions occurring in SCR require oxygen, so that catalyst performance is best at oxygen levels above 2-3%. Several different catalysts are available for use at different exhaust gas temperatures. In use the longest and most common are base metal catalysts, which typically contain titanium and vanadium oxides, and which also may contain molybdenum, tungsten, and other elements. Base metal catalysts are useful between 450 °F and 800 °F. For high temperature operation (675 °F to over 1100 °F), zeolite catalysts may be used. In clean, low temperature (350-550 °F) applications, catalysts containing precious metals such as platinum and palladium are useful. (Note that these compositions refer to the catalytically active phase only; additional ingredients may be present to give thermal and structural stability, to increase surface area, or for other purposes.) The mechanical operation of an SCR system is quite simple. It consists of a reactor chamber with a catalyst injected into the flue gas upstream of the catalyst. (In some cases, a fluidized bed of catalyst pellets is used.) There are no moving parts. Other than spent catalyst, the SCR process produces no waste products. In principle, SCR can provide reductions in NOx emissions approaching 100%. (Simple thermodynamic calculations indicate that a reduction of well over 99% is possible at 650 °F.) In practice, commercial SCR system shave met control targets of over 90% in many cases.	9/17/2013 Emissions Measurement Division Meeting 9/17/2013 » 9/18/2013 AWMA - Boiler MACT 9/17/2013 » 9/18/2013 ICAC/ EPA 2013 Roundtables 9/18/2013 Industrial Source Control Division Meeting 10/21/2013 » 10/23/2013 Air Quality IX ICAC News more 9/12/2013 ICAC Releases 2014 Air Pollution Control and Measurement Equipment Market Forecasts
 Selective Non-Catalytic Reduction (SNCR) SNCR is a chemical process that changes oxides of nitrogen (NOx) into molecular nitrogen (N2). A reducing agent, typically ammonia or urea, is injected into the combustion/process gases. At suitably high temperatures (1,600 - 2,100 °F), the desired chemical reactions occur. Other chemicals can also be added to improve performance, reduce equipment maintenance, and expand the temperature window within which SNCR is effective. Conceptually, the SNCR process is quite simple. A gaseous or aqueous reagent of a selected nitrogenous compound is injected into, and mixed with, the hot flue gas in the proper temperature range. The reagent then, without a catalyst, reacts with the NOx in the gas stream, converting it to harmless nitrogen gas and water vapor. SNCR is "selective" in that the reagent reacts primarily with NOx, and not with oxygen or other major components of the flue gas. No solid or liquid wastes are created in the SNCR process. In almost all commercial SNCR systems, either ammonia or urea is used as the reagent. Other reagents such as cyanuric acid and hydrazine have also been used. Ammonia may be injected in either anhydrous or aqueous form, and urea, as an aqueous solution. The principal components of an SNCR system are a reagent storage and injection system, which includes tanks, pumps, injectors, and associated controls, and often NOx continuous emissions monitors. Given the simplicity of these components, installation of SNCR is easy relative to the installation of other NOx control technologies. SNCR retrofits typically do not require extended source shutdowns. 	9/6/2013 Executive Update 8/16/2013 Executive Update 7/10/2013 Installed Base Forum 6/3/2013 ICAC releases "Guidelines for Specification and Selection of DAHS for CEM Applications"
While SNCR performance is specific to each unique application, NOx reduction levels ranging from 30% to over 75% have been reported.	
Temperature, residence time, reagent injection rate, reagent-flue gas mixing, and uncontrolled NOx level are important in determining the effectiveness of SNCR. In general, if NOx and reagent are in contact at the proper temperature for a long enough time, then SNCR will be successful at reducing the NOx level.	
SNCR will remove the most NOx within a specified temperature range or window. At temperatures below the window, reaction rates are extremely low, so that little or no NOx reduction occurs. On the left side of the curve, the extent of NOx removal increases with increasing temperature because reaction rates increase with temperature. Residence time typically limits the NOx reduction in this range. At the plateau, reaction rates are optimal for NOx reduction. A temperature variation in this range will have only a small effect on NOx reduction.	
A further increase in temperature beyond the plateau decreases NOx reduction. On the right side of the curve, the oxidation of reagent becomes a significant path and competes with the NOx reduction reactions for the reagent. A further increase in temperature beyond the right side can actually increase the level of NOx. Although the reduction is less than the optimum, operation on the right side is practiced and recommended to minimize reaction times and byproduct emissions.	
The temperature window becomes wider as the residence time increases, thus improving the removal characteristics of the process. Long residence times (>0.5 second) at optimum temperatures promote relatively high NOx reduction performance even with less than optimum mixing or temperatures.	
Normal stoichiometric ratio (NSR) is the term used to describe the N/NO molar ratio of the reagent injected to uncontrolled NOx concentrations. If one mole of anhydrous ammonia is injected for each mole of NOx in the flue gas, the NSR is one, as one mole of ammonia will react with one mole of NOx. If one mole of ure a sinjected into the flue gas for each mole of NOx, the NSR is two. This is because one mole of urea will react with two moles of NOx. For both reagents, the higher the NSR, the greater the level of NOx reduction. Increasing NSR beyond a certain point, however, will have a diminishing effect on NOx reduction, with reagent utilization decreasing beyond this point.	
Membership Management Software Powered	by YourMembership.com® :: Legal/Privacy

Institute of Clean Air Companies 2025 M Street NW · Suite 800 Anti-Trust & Privacy

SAN JOAQUIN VALLEY UNIFIED AIR POLLUTION CONTROL DISTRICT

FINAL DRAFT STAFF REPORT

September 18, 2008

Proposed Amendments to Rule 4306 (Boilers, Steam Generators, and Process Heaters – Phase 3) Proposed Amendments to Rule 4307 (Boilers, Steam Generators, and Process Heaters – 2.0 MMBtu/hr to 5.0 MMBtu/hr) Proposed New Rule 4320 (Advanced Emission Reduction Options For Boilers, Steam Generators, and Process Heaters Greater Than 5.0 MMBtu/hr)

- Prepared by: Manuel Salinas, Air Quality Engineer
- Reviewed by: Errol Villegas, Planning Manager George Heinen, P.E., Supervising Air Quality Engineer Joven R. Nazareno, Senior Air Quality Engineer Rich Karrs, Senior Air Quality Engineer John Copp, Air Quality Inspector Lucinda Roth, Senior Air Quality Specialist

I. SUMMARY

A. Reasons for Rule Development and Implementation

The San Joaquin Valley Air Basin (SJVAB) is a continuous inter-mountain valley comprised of eight counties in the southern portion of the San Joaquin Valley of California: Fresno, Kings, Madera, Merced, San Joaquin, Stanislaus, Tulare, and the Valley portion of Kern. The SJVAB is approximately 250 miles long, averages 80 miles wide, and is partially enclosed by the Coast Mountain range on the west, the Tehachapi Mountains on the south, and the Sierra Nevada range on the east. These surrounding mountains trap pollution. Low wind speeds combined with low-lying inversion layers in the winter create a climate conducive to the formation of high particulate matter (PM) concentrations. The region's hot, dry summers are conducive to ozone formation.

The SJVAB is currently designated as nonattainment for the national ambient air quality standard (NAAQS) for particulate matter 2.5 microns in diameter or less (PM2.5) and serious nonattainment for the eight-hour ozone NAAQS. Prior to the United States Environmental Protection Agency's (EPA's) implementation of the eight-hour ozone standard, the SJVAB was also classified as an extreme nonattainment area for the one-hour ozone NAAQS. Although EPA revoked the one-hour ozone NAAQS, the San

Final Draft Staff Report with Appendices For Proposed Amendments to Rule 4306 and Rule 4307 and Proposed New Rule 4320

Appendix C: Cost Effectiveness Analysis

Table C-7 reflects the costs for installing ULNB on refinery units, which have a 30 ppmv NOx limit under Rule 4306, and achieving a 9 ppmv level for initial Rule 4320 compliance. These units typically operate at a 75% capacity factor and the average cost effective level of \$8,600/ton is considered representative for the typical unit, although the \$10,000 to \$12,000/ton values for the smaller units is also considered to be very cost effective. Table C-8 has costs for lower-use refinery units.

Actual Size	Capital Cost	Installation Cost	Annualized	Incremental Elec.	Incremental O&M	Annualized Cost	NOx reduced	CE		
MMBtu/hr	\$	\$	Capital Cost	\$/yr	\$/yr	\$/yr	tons/yr	\$/ton NOx		
150	\$214,411	\$40,000	\$41,469	\$34,995	\$4,950	\$81,414	12.32	\$6,609		
130	\$194,560	\$40,000	\$38,233	\$30,329	\$4,275	\$72,837	10.68	\$6,823		
115	\$179,672	\$40,000	\$35,807	\$26,829	\$3,825	\$66,461	9.44	\$7,037		
92	\$151,766	\$30,000	\$29,628	\$21,463	\$3,075	\$54,166	7.56	\$7,170		
68	\$127,200	\$30,000	\$25,624	\$15,864	\$2,250	\$43,738	5.58	\$7,833		
44	\$114,172	\$20,000	\$21,870	\$10,265	\$1,425	\$33,560	3.613	\$9,289		
33.8	\$94,762	\$20,000	\$18,706	\$7,885	\$1,125	\$27,716	2.78	\$9,988		
14.7	\$37,750	\$15,000	\$8,598	\$3,429	\$450	\$12,477	1.21	\$10,337		
8.4	\$28,550	\$10,000	\$6,284	\$1,960	\$300	\$8,544	0.69	\$12,400		
						Avera	age Cost			
						Effec	ctiveness	\$8 609.56		

Table C-7 ULNB Cost Effectiveness Calculation for Units at 75% Capacity Factor 30 ppmv to 9 ppmv Cost Effectiveness

Table C-8 – ULNB Cost Effectiveness Calculation for Units at 50% Capacity Factor 30 ppmv to 9 ppmv Cost Effectiveness

Actual	Capital	Installation		Incremental	Incremental	Annualized	NOx	
Size	Cost	Cost	Annualized	Elec.	O&M	Cost	reduced	CE
MMBtu/hr	\$	\$	Capital Cost	\$/yr	\$/yr	\$/yr	tons/yr	\$/ton NOx
150	\$214,411	\$40,000	\$41,469	\$34,995	\$4,950	\$81,414	8.212	\$9,914
130	\$194,560	\$40,000	\$38,233	\$30,329	\$4,275	\$72,837	7.117	\$10,234
115	\$179,672	\$40,000	\$35,807	\$26,829	\$3,825	\$66,461	6.296	\$10,556
92	\$151,766	\$30,000	\$29,628	\$21,463	\$3,075	\$54,166	5.037	\$10,754
68	\$127,200	\$30,000	\$25,624	\$15,864	\$2,250	\$43,738	3.723	\$11,748
<mark>44</mark>	\$114,172	\$20,000	\$21,870	\$10,265	\$1,425	<mark>\$33,560</mark>	2.409	\$13,931
33.8	\$94,762	\$20,000	\$18,706	\$7,885	\$1'125	\$27,716	1.85	\$14,982
14.7	\$37,750	\$15,000	\$8,598	\$3,429	\$450	\$12,477	0.804	\$15,519
8.4	\$28,550	\$10,000	\$6,284	\$1,960	\$300	\$8,544	0.459	\$18,614
						Average	Cost	
						Effective	eness	\$12,916.89

C - 10 Final Draft Staff Report with Appendices for Proposed Amendments to Rule 4306 and Rule 4307 and Proposed New Rule 4320

BOWIE POWER STATION EMERGENCY FIRE PUMP ENGINE POST COMBUSTION CONTROL OPTIONS COST EFFECTIVENESS

Interest Rate	7
Equipment Life (years)	15
Capital Recovery Factor	0.11

Fire Pump Size (hp)

NO_x

Fire Pump Engine NO _x Emissions (tons/year) ^a	0.063
NOxTech Capital Cost (\$/hp) ^b	50
NOxTech Cost (\$)	\$13,000

Control Option	Control Efficiency ^c	Emissions with Control (tons/year)	Reduction (tons/year)	Capital Cost (\$)	Total Annual Cost (\$/year) ^d	Cost Effectiveness (\$/ton)
SCR	95%	0.00315	0.060		\$ 9,520	\$ 159,064
NOxTech	95%	0.00315	0.060	\$ 13,000	\$ 1,427	\$ 23,848

Fire Pump Engine CO Emissions (tons/year) ^a	0.041

Control Option	Control Efficiency ^e	Emissions with Control (tons/year)	Reduction (tons/year)	Total Annual Cost (\$/year) ^f	Cost Effectiveness (\$/ton)
Oxidation Catalyst	90%	0.0041	0.037	\$ 1,777	\$ 48,168
Catalyzed Diesel Particulate Filter	90%	0.0041	0.037	\$ 4,430	\$ 120,054
Flow through Filters	90%	0.0041	0.037	\$ 1,523	\$ 41,285

260

PM/PM₁₀/PM_{2.5}

со

Fire Pump Engine PM/PM ₁₀ /PM _{2.5} Emissions (tons/year) ^a	0.0034

Diesel Particulate Filter Capital Cost (\$/hp) ⁹	\$38
Diesel Particulate Filter Capital Cost (\$)	\$9,880

Control Option	Control Efficiency ^h	Emissions with Control (tons/year)	Reduction (tons/year)	Total Annual Cost (\$/year) ⁱ	Cost Effectiveness (\$/ton)
Diesel Particulate Filter	90%	0.00034	0.0031	\$ 1,085	\$ 354,500
Catalyzed Diesel Particulate Filter	90%	0.00034	0.0031	\$ 4,430	\$ 1,447,712
Flow through Filters	75%	0.00085	0.0026	\$ 1,523	\$ 597,412

^aFrom spreadsheet "Bowie Power Station Emergency Fire Pump Data and Emissions"

^bFrom memorandum "NOx Control Technologies for Stationary Diesel ICE", from Tanya Parise, Alpha-Gamma Technologies, Inc., to Sims Roy, EPA OAQPS ESD Combustion Group, dated June 20, 2005, page 6.

^cControl efficiencies are assumed

^dSCR annual cost is from "Alternative Control Techniques Document: Stationary Diesel Engines", U.S. EPA, March 5, 2010, page 58, entry for engines 175 - 300 hp.

^eFrom "Alternative Control Techniques Document: Stationary Diesel Engines", U.S. EPA, March 5, 2010, pages 34, 41, and 43.

^fCost equations are from "Alternative Control Techniques Document: Stationary Diesel Engines", U.S. EPA, March 5, 2010, pages 59, 64, and 68.

⁹From presentation "Public Hearing to Consider the Adoption of the Airborne Toxic Control Measure to Reduce Diesel Particulate Matter Emissions from Stationary Engines", by the California Environmental Protection Agency, Air Resources Board, February 26, 2004, slide 5.

^hFrom "Alternative Control Techniques Document: Stationary Diesel Engines", U.S. EPA, March 5, 2010, pages 34 and 43.

ⁱFor catalyzed diesel particulate filter and flow through filters equations are from "Alternative Control Techniques Document: Stationary Diesel Engines", U.S. EPA, March 5, 2010, pages 59 and 68.

```
Capital Recover Factor calculated in accordance with "EPA Air Pollution Control Cost Manual", equation 2.8a (page 2-21):
Capital Recover Factor = (interest rate x (1 + interest rate)<sup>equipment life</sup>)
                           ((1 + interest rate)<sup>equipment life</sup> - 1)
NOxTech Capital Cost \$ = Capital Cost \frac{$}{$} x Fire Pump Size hp
                                      hp
Controlled Emissions tons = Fire Pump Emissions tons x (1 - Control Efficiency)
                     year
                                              year
Emission Reduction tons = Boiler Emissions tons - Controlled Emissions tons
                            year
                    year
                                                                     year
Annualized Cost <u>$</u> = Capital Cost $ x Capital Recovery Factor
                 year
Cost Effectiveness _$ = _____ Total Annual Cost ($/year)
                  year Emission Reduction (tons/year)
Oxidation Catalyst Annual Cost Equation from "Alternative Control Techniques Document: Stationary Diesel Engines", U.S. EPA, March 5, 2010, pages 64:
Total Annualized Cost _____ = (4.99 x engine size in hp) + 480
                      year
Catalyzed Diesel Particulate Filter Annual Cost Equation from "Alternative Control Techniques Document: Stationary Diesel Engines", U.S. EPA, March 5, 2010,
pages 59:
Total Annualized Cost ____ = (11.6 x engine size in hp) + 1,414
                     year
Diesel Particulate Filter Capital Cost  =   x hp 
                                        hp
Flow Through Filter Annual Cost Equation from "Alternative Control Techniques Document: Stationary Diesel Engines", U.S. EPA, March 5, 2010, pages 68:
Total Annualized Cost <u>$</u> = (2.89 x engine size in hp) + 772
                      year
```


MEMORANDUM

DATE:	June 20, 2005
SUBJECT:	NO _X Control Technologies for Stationary Diesel ICE
FROM:	Tanya Parise, Alpha-Gamma Technologies, Inc.
TO:	Sims Roy, EPA OAQPS ESD Combustion Group

The purpose of this memorandum is to present information on different types of nitrogen oxides (NOx) controls that can be applied to stationary internal combustion engines (ICE) operating on diesel fuel.

Introduction

Several control technologies capable of reducing NOx emissions from stationary ICE are discussed within this memorandum. Add-on or post-combustion controls (also referred to as secondary methods of control) for NOx are control methods designed to treat the exhaust emissions from stationary ICE once NOx emissions have formed. Onengine or in-cylinder controls (also referred to as primary methods of control) for NOx are control for NOx are control methods designed to minimize the amount of NOx formed. Control methods that are commercially available and control technologies that are under development are discussed. Table 1 presents a summary of the NOx emissions reductions that can be achieved for the control methods discussed in this paper.

Commercially Available

Add-On Control

Selective Catalytic Reduction

Selective catalytic reduction (SCR) has been on the market and proven reliable for over 15 years. However, it has not been widely used for engines. Miratech, Johnson Matthey, Engelhard, RJM, Wartsila and Catalyst Products are some manufacturers that make SCR. Selective catalytic reduction is often used in combination with an oxidation catalyst and is the only commercially proven secondary NOx reduction method for lean burn gas and diesel engines. The following requirements and difficulties are associated with applying SCR:

Costs

According to literature available from NOxTech Inc. website, NOxTech[®] system capital costs are about \$50-150/bhp-hr for diesel engines. The company also states on their website that NOxTech[®] treatment costs are not expected to exceed about \$1,000/ton of NO₂ equivalent NOx reduction. The company claims that the NOxTech[®] system can provide the end use a 50 percent cost reduction in comparison with SCR systems.

Experience

According to EC/R's report, the NOxTech[®] system is operating on several diesel generators owned by Southern California Edison. At its Catalina Island facility, NOxTech[®] is used on 2.5 MW (3,350 hp) and 3.8 MW (5,092 hp) diesel electric generators. At its Pebbly Beach generating station, NOxTech[®] is used on 1.5 MW (2,010 hp) and 2.8 MW (3,752 hp) diesel generators.

On-Engine Control Methods

Ceramic Coating

Ceramic engine coatings have been used for several years in stationary and mobile diesel engines to reduce PM emissions. Ceramic engine coatings improve combustion by reflecting heat away from coated components back into the combustion gas path.

Emissions Reductions

According to the Manufacturers of Emission Controls Association (MECA), testing indicated that ceramic engine coating combined with an oxidation catalyst may reduce NOx emissions from a diesel engine, by allowing the engine timing to be retarded, by 40 percent. According to MECA, reductions of 60 and 80 percent for non-methane hydrocarbons (NMHC) and CO, respectively, are possible with an oxidation catalyst and engine coatings. One manufacturer of ceramic coatings for diesel engines stated that significant HC and CO reductions can be achieved, however, an estimate of the percent reductions are not available. More tests are underway to better determine the effect of ceramic engine coatings on diesel as well as gas fired engines.

Experience

According to MECA's report regarding emission control technology for stationary internal combustion engines from 1997, ceramic engine coatings have been used for almost 5 years in well over 200 stationary and mobile diesel engines.

Ignition/Injection Timing Retard

Alternative Control Techniques Document: Stationary Diesel Engines

FINAL REPORT

EPA Contract No. EP-D-07-019 Work Assignment No. 2-07 EC/R Project No. MME-207

Prepared For: Energy

Strategies Group U.S. Environmental Protection Agency (EPA) Office of Air Quality Planning and Standards Sector Policies and Programs Division Research Triangle Park, NC 27711

Prepared By:

Bradley Nelson EC/R Incorporated 501 Eastowne Drive, Suite 250 Chapel Hill, North Carolina 27514

March 5, 2010

Size Range	Average HP in Size	Average HP in Size Range	Uncontrolled NO _X Emission Factor (lb/HP-	Uncontrolled NO _X Emissions	Average Capital Cost	Average Annualized	Cost/Ton of NO _x Removed
(HP)	Range (HP)	(HP)	$hr)^{b}$	(Ton/year) ^c	(\$)	Cost (\$/year) ^d	(\$/Ton) ^e
50 - 100	Tier 0 (pre- 1998)		1.52E-02	0.570			\$5,848
	Tier 1 (1998-2003)	75	1.23E-02	0.463	\$7,350	\$3,000	\$7,199
	Tier 2 (2004-2007)		1.04E-02	0.389			\$8,569
	Tier 3 (2008-2011)		6.61E-03	0.248			\$13,441
<mark>175 - 300</mark>	Tier 0 (pre- 1996)		1.85E-02	2.20			\$4,808
	Tier 1 (1996-2002)	238	1.23E-02	1.46	\$23,324	<mark>\$9,520</mark>	\$7,245
	Tier 2 (2003-2005)		8.82E-03	1.05			\$10,074
	Tier 3 (2006-2010)		5.51E-03	0.656			\$16,125
600 - 750	Tier 0 (pre- 1996)		1.85E-02	6.24			\$4,808
	Tier 1 (1996-2001)	675	1.28E-02	4.33	\$66,150	\$27,000	\$6,928
	Tier 2 (2002-2005)		9.04E-03	3.05			\$9,836
	Tier 3 (2006-2010)		5.51E-03	1.86			\$16,129
>750	Tier 0 (pre- 1996)		1.85E-02	9.25			\$4,805
	Tier 1 (1996-2001)	1,000	1.28E-02	6.40	\$98,000	\$40,000	\$6,944
	Tier 2 (2002-2005)		9.04E-03	4.52			\$9,833
	Tier 3 (2006-2010)		5.51E-03	2.76			\$16,103

Table 5-2. SCR Cost per Ton Summary for NO_x^a

^a Costs are expressed in 2005 dollars.
 ^b Table A2 of Exhaust and Crankcase Emission Factors for Nonroad Engine Modeling – Compression Ignition (EPA420-P-04-009), April 2004.
 ^c Uncontrolled emissions were calculated using the average HP in the range and assuming 1,000 hours of operation.
 ^d The annualized cost is calculated assuming a 15 year equipment life and 7% interest.

^e The cost/ton was calculated assuming 90 percent NO_X reduction by the SCR.

4.3.2 Potential Pollutant Reductions

The CARB found that approximately 30 percent of the total PM mass of diesel exhaust are liquid hydrocarbons, or SOF.¹⁰ Under certain operating conditions, DOCs have achieved SOF removal efficiencies of 80 to 90 percent. Therefore, the overall PM emission reduction is often cited at 20 to 50 percent.¹¹ Actual emission reductions vary however, as a result of engine type, size, age, duty cycle, condition, maintenance procedures, baseline emissions, test procedure, product manufacturer and the fuel sulfur level. In addition, DOCs have been verified to reduce emissions of CO and THC by as much as 90 percent.

4.3.3 Potential Issues/Problems with DOCs

The DOC is designed as a flow-through device with the catalytic reaction occurring on the surface of the honeycomb structure. Therefore, DOC devices are not as easily affected by the higher PM emissions rates from older engines. However, these devices should be monitored to ensure that the catalyst does not become blocked.

High sulfur concentrations in diesel fuel may affect the performance of the DOC control device. At high temperatures, SO_2 can oxidize to form sulfates. The sulfates contribute to increasing the PM emissions from the engine exhaust. As a result, some manufacturers recommend a maximum sulfur content of 500 parts per million or less to maintain the durability and performance of the DOC.¹²

Several chemical elements, such as phosphorous, lead and heavy metals, may also damage the catalyst in the DOC. Some of these elements can be found in engine lube oils. Therefore, some manufacturers recommend the use of low-phosphorous oils that contain less of these elements when using a DOC.

4.4 Flow-Through Filter

Flow-through filters (FTF) or partial filters is another technology that reduces the emission of PM from the diesel exhaust stream. This technology can be retrofit on most

41

4.1.2 Potential Pollutant Reductions

Verifications by CARB have shown that a number of diesel particulate filter systems are able to achieve at least 85 percent reduction of PM from on-road, off-road and stationary diesel engines. CARB reports PM emission reductions of 85 to 97 percent for various types of verified DPF or CDPFs.⁶ The EPA has verified DPF and CDPF systems that achieve up to 90 percent reduction. In addition to the PM reductions, the CDPF filter also reduces emissions of CO and THC by 90 percent but requires sufficient exhaust temperatures to facilitate regeneration by the catalyst. These reductions have been verified by both the CARB and EPA diesel control technology verification programs.

4.1.3 Potential Problems/Issues with DPF/CDPF

Some potential issues that can affect the performance of DPFs and CDPFs include: PM loading, exhaust temperature, amount of sulfur in the fuel, and maintenance. Each of these parameters should be taken into account when purchasing the DPF or CDPF. There may be a slight fuel penalty with the installation of a DPF or CDPF.

The PM emission rates from older model year engines may overload the DPF storage capability, causing the unit to plug. This may be especially true for engines built prior to the Tier 1 nonroad emission standards. Special designs of the DPF with additional heating elements may be incorporated into the unit to ensure complete oxidation of the PM. In other active system designs, manufacturers use a diesel fuel burner upstream of the DPF to heat up the exhaust to sufficient temperatures to oxidize the PM.

Exhaust gas temperature also has an effect on the performance of the CDPF and DPF. For DPF systems, the exhaust gas temperature needs to be approximately 500°C to regenerate the filter substrate. At lower temperatures, the potential for the DPF to plug increases due to the inability of all of the collected PM to oxidize. Installing an active DPF, which includes a secondary heating source, will alleviate problems with exhaust temperatures below 500°C. For CDPF systems, the exhaust temperature needs to be in the range of 250°C to 300°C. At exhaust

34

4.4.2 Potential Pollutant Reductions for FTF

A manufacturer of this technology has been verified by CARB to provide Level 2 PM reductions of 50 percent on 1991-2002 on-road diesel engines. Recently, a manufacturer of an FTF has been conditionally verified by EPA. Several manufacturer also market verified FTF technology for use with stationary engines. The Manufacturers of Emissions Control Association (MECA) stated that flow-through systems are capable of achieving PM reductions of about 30 to 75 percent.¹⁵ A catalyzed FTF can offer similar co-benefits of PM reduction as well as THC and CO reduction as discussed for CDPFs. At least one manufacturer has demonstrated a 90 percent reduction in THC and CO in conjunction with a 50 percent reduction in PM emissions that combines a DOC with a metal flow-through filter.

4.4.3 Potential Issues/Problems with FTF

There is limited experience with the use of FTF technology on stationary diesel engines. The FTF technology is less susceptible than other filtration systems to plugging or blockage of the exhaust gas channels when used on engines with high PM emissions. Manufacturers of FTF systems noted that visible smoke is normal from the FTF during periods when the stationary diesel engine shifts from low- to high-speed operation or high- to low-speed operation. If black smoke is visible during steady speed operation, the injectors need to be serviced or replaced.

4.5 Exhaust Gas Recirculation

Exhaust gas recirculation (EGR) is a NO_X emissions reduction technique that works by lowering the combustion temperature and reducing the oxygen content of the combustion air. This technology has been applied by manufacturers to new engines to meet the diesel engine NSPS standards. It has also been used on new mobile source engines. Further, there are some verified EGR technologies that can be retrofitted to older engines. The verified technologies also include the incorporation of a DPF to remove PM from the recirculated exhaust gas. Lowpressure and high-pressure EGR systems have been applied to diesel engines, however the lowpressure EGR is most suitable for retrofit applications because it does not require engine modifications.¹⁶

43

5.2.2 Control Costs for CDPF

5.2.2.1 Capital Costs

Control costs developed for the RICE NESHAP⁹ were used to provide capital cost estimates for stationary diesel engine CDPF applications. These capital cost estimates were calculated using from a study that provided average equipment cost data from stationary diesel engine retrofits ranging from 40 HP to 1,400 HP. A linear regression of the cost data and horsepower size of the stationary engines provided the following capital cost formula:

y = 63.4(x) + 5,699

where;

x = engine size in HP, and

y = total capital cost for CDPF in 2008 dollars.

5.2.2.2 Annual Costs

The RICE NESHAP control cost memorandum also provided the annual cost for retrofitting a CDPF on a stationary diesel engine. The annual cost was calculated using operating and maintenance costs provided in a control cost study for stationary diesel engines ranging from 40 HP to 1,400 HP. Using these data, and assuming a 10-year equipment life, the linear regression of the annual cost data provided the following annual cost formula:

y = 11.6(x) + 1,414

where;

5.2.2.3 CDPF Cost per Ton of PM and THC Removed

Most vendors of the CDPF technology guarantee a 90 percent reduction efficiency in both PM and THC for diesel engines; this reduction was used to calculate the cost per ton reduced in this section. The cost per ton estimations for PM, CO, and THC are presented in

 $[\]mathbf{x} =$ engine size in HP, and

y = total annualized cost for CDPF in 2008 dollars.

5.2.3.2 Annual Costs

The annual cost for retrofitting a stationary diesel engine with a DOC was provided in the RICE NESHAP control cost memorandum. In the memorandum, the annual cost was calculated using operation and maintenance cost data collected in the control technology study. Using this cost data and assuming a 10-year equipment life, the linear regression formula was calculated to be;

y = 4.99(x) + 480

where;

y = total annualized cost for DOC in 2008 dollars.

5.2.3.3 DOC Cost per Ton of PM, CO, and THC Removed

Most vendors of the DOC technology guarantee 90 percent emission reduction efficiency for both CO and THC, and a 30 percent emission reduction in PM. These reductions were applied to the uncontrolled emission factors for each of these pollutants to calculate the cost per ton based on 1,000 hours per year engine operation; this information is presented in Tables 5-6, 5-7, and 5-8. The pollutant cost per ton values ranged from \$14,394 to \$85,354 per ton of PM reduced, \$713 to \$4,280 per ton of CO reduced, and \$2,834 to \$37,061 per ton of THC reduced. Using the data from the tables, the cost per ton for controlling all three pollutants is \$1,442 for a 75 HP diesel engine (Tier 0) and \$548 for a 1,000 HP diesel engine (Tier 0).

5.2.4 Control Costs for FTF

5.2.4.1 Capital Costs

Capital cost estimates for diesel engine FTF applications were provided by a vendor of FTF control technologies.¹⁰ The vendor provided cost data for three different sized engines, 75 HP, 238 HP, and 675 HP. These data and the EPA cost methodology were used to calculate an

 $[\]mathbf{x} =$ engine size in HP, and

equation to be applied to all engines in the range. Based on the data the capital cost was estimated using the following linear regression formula;

$$y = 22.7(x) + 6,057$$

where;

x = engine size in HP, and y = total capital cost for FTF.

5.2.4.2 Annual Costs

The annual cost for retrofitting a stationary diesel engine with a FTF was calculated using the equipment information provided by the vendor and the EPA control cost methodology. For purposes of this document, it was assumed that there are no direct annual cost (i.e., no maintenance or operating costs), and the indirect annual cost was calculated assuming a 5-year equipment life for the FTF. Using these assumptions, the annual cost was calculated to be;

y = 2.89(x) + 772

where;

x = engine size in HP, andy = total annualized cost for FTF.

5.2.4.3 FTF Cost per Ton of PM Removed

Most vendors of the FTF technology guarantee 50 percent emission reduction efficiency in PM. This reduction was applied to the uncontrolled emission factor for PM to calculate the cost per ton based on 1,000 hours per year engine operation; this information is presented in Table 5-8. The PM cost per ton values range from \$16,533 to \$99,899. One manufacturer of the FTF system has included an oxidation catalyst to their design which reduces CO and THC

BOWIE POWER STATION COOLING OPTIONS POWER PRODUCTION

Kiewit Power Engineers -- MMR Bowie

		Wet Cooling		Hybrid Cooling			Dry Cooling			
		10 °F	59 °F	102 °F	10 °F	59 °F	102 °F	10 °F	59 °F	102 °F
Net Plant Output w/ Step-Up Xfmr Losses	kW	600,340	567,713	531,890	601,441	564,482	505,655	603,569	567,838	506,959
Net Plant Heat Rate (HHV) w/ Step-Up Xfmr Losses	Btu/kWh	7,178	7,172	7,264	7,164	7,213	7,641	7,139	7,171	7,622

		10°F	59°F	102°F	Differential with Wet Cooling 102 °F
	Dry	603,569	567,838	506,959	-4.7%
Net Plant Output (kW)	Hybrid	601,441	564,482	505,655	-4.9%
	Wet	600,340	567,713	531,890	

		10°F	59°F	102°F	Differential with Wet Cooling 102 °F
	Dry	7,139	7,171	7,622	4.9%
Net Plant Heat Rate (HHV) Btu/kWh	Hybrid	7,164	7,213	7,641	5.2%
	Wet	7,178	7,172	7,264	

BOWIE POWER STATION HYBRID COOLING TOWER PM/PM₁₀/PM_{2.5} EMISSIONS

Drift	0.0005%		same as Bowie 9 cell tower
Flowrate	61,822	gallons/minute	provided by Kiewit
TDS in Blowdown (ppm _w)	4,039	ppm _w	same as Bowie 9 cell tower
TDS in blowdown (mg/l) [ppm _w approximately = mg/l]	4,039	mg/l	
Flow of dissolved solids (lbs/gallon)	0.03	lbs/gallon	1
Peak Drift (gallons/minute)	0.31	gallons/minute	

Pollutant	% of PM ^a	Hourly Emissions	Annual
PM		0.63	2.74
PM ₁₀	67.47	0.42	1.85
PM _{2.5}	32.15	0.20	0.88

^aThe % of PM is calculated based on the TDS in blowdown and the droplet size diameter associated with the drift eliminators. It is assumed that the wet portion of the hybrid cooling system would have the same blowdown TDS and drift eliminators as the wet cooling system. As a result, the % of PM would be the same and the values shown in this column are from the spreadsheet "Bowie Power Station, Cooling Tower PM/PM₁₀/PM_{2.5} Emissions".

```
For water ppm = mg/liter
lb/gallon is calculated as follows:
<u>lb = mg x 3.79 liters x grams x</u>
                                                     lb
                      gallons 1000 mg 453.69 grams
gallon liter
Peak drift in gallons/minute is calculated as follows:
drift gallons = tower flowrate gallons x % drift
                                               100
    minute
                                   minute
Emissions from Tower in lbs/hour is calculated as follows:
<u>lbs</u> = dissolved solids <u>lbs</u> x drift <u>gallons</u> x <u>60 minutes</u>
hour
                         gallon
                                      minute hour
Particulate Emissions from Tower in tons/year is calculated as follows:
tons = <u>lb</u> x <u>8760 hours</u> x tons
year hour
                  year
                              2000 lb
PM<sub>10</sub> and PM<sub>2.5</sub> Emissions are Calculated as follows:
PM<sub>10</sub> Emissions = PM Emissions x <u>% PM<sub>10</sub></u>
                                      100
PM<sub>2.5</sub> Emissions = PM Emissions x <u>% PM<sub>2.5</sub></u>
                                       100
```

BOWIE POWER STATION COOLING OPTIONS PM/PM10/PM2.5 EMISSIONS - LB/MW HOUR

Note that emissions are for the entire plant - 2 turbines and duct burners plus the cooling system

РМ

	Wet Cooling				Hybrid Coolin	g	Dry Cooling		
	10°F	59°F	102°F	10°F	59°F	102°F	10°F	59°F	102°F
Maximum Net Electricity Production (kW)	600,340	567,713	531,890	601,441	564,482	505,655	603,569	567,838	506,959
Turbines and Duct Burners- PM Emissions (lb/hour)	8.50	8.50	8.50	8.50	8.50	8.50	8.50	8.50	8.50
Cooling Tower - PM Emissions (lb/hour)	1.29	1.29	1.29	0.63	0.63	0.63	0.00	0.00	0.00
Total - PM Emissions (lb/hour)	9.79	9.79	9.79	9.13	9.13	9.13	8.50	8.50	8.50
Emission Rate (lb/MW*hour)	0.016	0.017	0.018	0.015	0.016	0.018	0.014	0.015	0.017

PM₁₀

	Wet Cooling				Hybrid Cooli	ng	Dry Cooling		
	10°F	59°F	102°F	10°F	59°F	102°F	10°F	59°F	102°F
Maximum Net Electricity Production (kW)	600,340	567,713	531,890	601,441	564,482	505,655	603,569	567,838	506,959
Turbines and Duct Burners- PM Emissions (lb/hour)	8.50	8.50	8.50	8.50	8.50	8.50	8.50	8.50	8.50
Cooling Tower - PM ₁₀ Emissions (lb/hour)	0.87	0.87	0.87	0.42	0.42	0.42	0.00	0.00	0.00
Total - PM ₁₀ Emissions (lb/hour)	9.37	9.37	9.37	8.92	8.92	8.92	8.50	8.50	8.50
Emission Rate (lb/MW*hour)	0.016	0.017	0.018	0.015	0.016	0.018	0.014	0.015	0.017

PM_{2.5}

	Wet Cooling		Hybrid Cooling			Dry Cooling			
	10°F	59°F	102°F	10°F	59°F	102°F	10°F	59°F	102°F
Maximum Net Electricity Production (kW)	600,340	567,713	531,890	601,441	564,482	505,655	603,569	567,838	506,959
Turbines and Duct Burners- PM Emissions (lb/hour)	8.50	8.50	8.50	8.50	8.50	8.50	8.50	8.50	8.50
Cooling Tower - PM _{2.5} Emissions (lb/hour)	0.42	0.42	0.42	0.20	0.20	0.20	0.00	0.00	0.00
Total - PM2.5 Emissions (lb/hour)	8.92	8.92	8.92	8.70	8.70	8.70	8.50	8.50	8.50
Emission Rate (lb/MW*hour)	0.015	0.016	0.017	0.014	0.015	0.017	0.014	0.015	0.017

Turbine and duct burner emission rates are from "Bowie Power Station Turbine and Duct Burner Hourly Emission Rates" spreadsheet

Wet cooling tower emission rates are from "Bowie Power Station Cooling Tower PM/PM10/PM2.5 Emissions" spreadsheet

Hybrid cooling emission rates are from "Bowie Power Station Hybrid Cooling Tower PM/PM10/PM2.5 Emissions" spreadsheet

 $\frac{lb}{MW^*hour} = \frac{lb}{hour} \times \frac{1}{kW} \times \frac{1,000 \ kW}{1 \ MW}$

BOWIE POWER STATION COOLING OPTIONS PM/PM10/PM2.5 EMISSIONS - TONS/YEAR

PM/PM₁₀/PM_{2.5} Emissions Per Turbine Duct Burner Pair

	tons/year
Startup Emissions	1.06
Turbine + Duct Firing	17.95
Turbine	11.97
Shutdown	0.30
Total	31.27

	PM	PM ₁₀	PM _{2.5}
		tons/year	
Wet Cooling Tower	5.6	7 3.83	1.82
		lb/hour	
	0.6	3 0.42	0.20
Hybrid Cooling Tower		tons/year	
	2.7	4 1.85	0.88

	DM	DM	DM
	PIVI	F IVI ₁₀	F IVI _{2.5}
Total Dry Cooling	62.54	62.54	62.54
Total Hybrid Cooling	65.28	64.39	63.42
Total Wet Cooling	68.21	66.37	64.36
Difference between Wet and Dry	5.67	3.83	1.82
Difference between Wet and Hybrid	2.93	1.98	0.94

Turbine emissions are from spreadsheet "Bowie Power Station Turbine and Duct	Burner Annual Emissions"			
Wet cooling tower emission rates are from "Bowie Power Station Cooling Tower PM/PM ₁₀ /PM _{2.5} Emissions" spreadsheet				
Hybrid cooling tower emission rates are from "Bowie Power Station Hybrid Cooling Tower PM/PM ₁₀ /PM _{2.5} Emissions" spreadsheet				
Hybrid Cooling Tower Emissions <u>tons</u> = Hybrid Cooling Tower Emissions <u>lb</u> × year	8760 <u>hours x tons</u> year 2000 lb			
Note cooling tower emissions for the project have been calculated assuming a 1	00% capacity factor			
Wet and Hybrid Cooling Emissions tons = (Turbine and Duct Burner Pair Emission year	ns <u>tons</u> x 2 turbine and duct burners) + Cooling Tower Emissions <u>tons</u> year year			
Dry Cooling Emissions $tons =$ Turbine and Duct Burner Pair Emissions $tons x 2$ year year	turbine and duct burners			

BOWIE POWER STATION COOLING OPTIONS NO_x, CO, VOC, SO₂ AND GREENHOUSE GAS LB/MW* HOUR EMISSIONS

	Wet Cooling			Hybrid Cooling			Dry Cooling		
	10°F	59°F	102°F	10°F	59°F	102°F	10°F	59°F	102°F
Maximum Net Electricity Production (kW)	600,340	567,713	531,890	601,441	564,482	505,655	603,569	567,838	506,959
Net Plant Heat Rate (HHV) (Btu/kWh)	7,178	7,172	7,264	7,164	7,213	7,641	7,139	7,171	7,622
Turbine and Duct Burner- NO _x Emissions (lb/hour)	31.20	29.40	28.00	31.20	29.40	28.00	31.20	29.40	28.00
NO _x Emission Rate (lb/MW*hour)	0.052	0.052	0.053	0.052	0.052	0.055	0.052	0.052	0.055
		10.00	(= 0.0]	(0.00	10.00	17.00	(0.00	(0.00	17.00
Turbine and Duct Burner- CO Emissions (lb/hour)	19.00	18.00	17.00	19.00	18.00	17.00	19.00	18.00	17.00
CO Emission Rate (lb/MW*hour)	0.032	0.032	0.032	0.032	0.032	0.034	0.031	0.032	0.034
Turking and Duct Durgen (100 Enginetians (16 (hour))	0.00	0.00	7.00	0.00	0.00	7.00	0.00	0.00	7.00
Turbine and Duct Burner- VOC Emissions (ib/nour)	8.20	8.00	7.60	8.20	8.00	7.60	8.20	8.00	7.60
VOC Emission Rate (lb/MW*hour)	0.014	0.014	0.014	0.014	0.014	0.015	0.014	0.014	0.015
Turbing and Duct Burner, SO, Emissions (Ib/bour)	e 20	7.60	7.20	8 20	7.60	7.20	8 2 0	7.60	7 20
Tubine and Duct Burner- 302 Emissions (ib/nour)	8.20	7.60	7.20	8.20	7.60	7.20	8.20	7.60	7.20
SO ₂ Emission Rate (lb/MW*hour)	0.014	0.013	0.014	0.014	0.013	0.014	0.014	0.013	0.014

	CO₂ ^a (kg/mmBtu)	CO ₂ ^a CH ₄ ^b (kg/mmBtu) (kg/mmBtu)	
Emission Factor	53.06	1.00E-03	1.00E-04
Global Warming Potential ^c	1	21	310

^aFrom 40 Code of Federal Regulations 98, Table C-1, "Default CO2 Emission Factors and High Heat Values for Various Types of Fuel".

bFrom 40 Code of Federal Regulations 98, Table C-2, "Default CH4 and N2O Emission Factors for Various Types of Fuel".

^cFrom 40 CFR 98, Table A-1 "Global Warming Potentials"

	Wet Cooling			Hybrid Cooling			Dry Cooling		
	10°F	59°F	102°F	10°F	59°F	102°F	10°F	59°F	102°F
Turbine and Duct Burner - CO ₂ Emissions (lb/MW*hour)	837.90	837.20	847.94	836.30	842.01	891.98	833.33	837.09	889.68
Turbine and Duct Burner - CH ₄ Emissions (lb/MW*hour)	0.016	0.016	0.016	0.016	0.016	0.017	0.016	0.016	0.017
Turbine and Duct Burner - N ₂ O Emissions (lb/MW*hour)	0.0016	0.0016	0.0016	0.0016	0.0016	0.0017	0.0016	0.0016	0.0017
Turbine and Duct Burner - CO ₂ Equivalents (lb/MW*hour)	838.72	838.02	848.77	837.12	842.83	892.85	834.15	837.91	890.56

Maximum Net Electricity Production and Net Plant Heat Rate provided by Kiewit Power Engineers Ib/hour emissions are from spreadsheet "Bowie Power Station Combined Turbine and Duct Burner Hourly Emission Rates" Emissions are for turbine operation with duct firing. For NO_x, CO, VOC and SO₂ emissions: $\frac{|b|}{MW^*hour} = \frac{|b|}{hour} \times \frac{1}{kW} \times \frac{1,000 \, kW}{1 \, MW}$ For CO₂, CH₄, and N₂O $\frac{|b|}{MW^*hour} = \frac{kg}{mmBtu} \times \frac{1,000 \, kW}{1,000,000 \, Btu} \times \frac{Btu}{kW \, hour} \times \frac{1000 \, kW}{kW} \times \frac{2.20 \, lb}{kg}$ CO₂ Equivalents $\frac{|b|}{MW^*hour} = (CO_2 \frac{|b|}{MW^*hour} \times Global \, Warming \, Potential) + (CH_4 \frac{|b|}{MW^*hour} \times Global \, Warming \, Potential) + (N_2O \frac{|b|}{MW^*hour} \times Global \, Warming \, Potential)$

BOWIE POWER STATION COOLING OPTIONS PARASITIC POWER REQUIREMENTS

Data Provided by Kiewit Power Engineers

			Wet		Hybrid			Dry		
		10	59	102	10	59	102	10	59	102
Boiler Feed Pumps	kW	4,344	4,325	4,299	4,344	4,325	4,299	4,344	4,325	4,299
HRSG Recirculation Pumps	kW	73	43	25	43	26	0	43	41	0
Condensate Pumps	kW	732	734	730	734	736	735	739	734	744
Circulating Water Pumps	kW	2,622	2,623	2,623	1,420	1,420	1,420	0	0	0
Cooling Tower Fans	kW	2,625	2,598	2,607	957	1,609	1,549	0	0	0
ACC Fans	kW	0	0	0	1,599	2,890	2,681	1,993	4,843	4,492
CTG Auxiliaries	kW	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000
STG Auxiliaries	kW	100	100	100	100	100	100	100	100	100
Miscellaneous	kW	1,000	1,000	1,000	1,250	1,250	1,250	1,250	1,250	1,250
Subtotal Auxiliary Power	kW	12,497	12,423	12,385	11,447	13,356	13,033	9,469	12,293	11,885
Generator Step-up Transformer Losses	kW	2,351	2,232	2,116	2,351	2,223	2,016	2,351	2,232	2,017
Auxiliary Transformer Losses	kW	250	248	248	229	267	261	189	246	238
Subtotal Transformer Losses	kW	2,601	2,480	2,363	2,580	2,490	2,277	2,540	2,477	2,254
Total Auxiliary Power and Transformer Losses	kW	15,097	14,903	14,749	14,027	15,846	15,310	12,009	14,770	14,140

			10°F	59°F	102°F
Subtotal Auxiliary Power	kW	Dry	9,469	12,293	11,885
		hybrid	11,447	13,356	13,033
		Wet	12,497	12,423	12,385

BOWIE POWER STATION COOLING OPTIONS WATER USE

Cooling Option	Annual Average Water Use 5094 hours/year (gpm)	Annual Average Water Use 8760 hours/year (gpm)	% Difference from Wet Cooling
Wet Cooling	2,750	4,729	
Hybrid Cooling	1,050	1,806	38.18%
Dry Cooling	100	172	3.64%

Annual average water use in gallons per minute was provided for operation 5094 hours/year. Cooling tower is being permitted with a 100% capacity factor. Calculate annual average water use for 8760 hours/year as follows:

gallons for 8760 hours/year = gallons for 5094 hours/year x 8760 hours/year minute minute 5094 hours/year

BOWIE POWER STATION COOLING OPTIONS COST EFFECTIVENESS

Interest Rate	7
Equipment Life (years)	20
Capital Recovery Factor	0.094

Annual Costs

	Construction Cost	Capital Recovery (\$/year)	Operating Cost (\$/year)	Total Annual Cost (\$/year)
Dry Cooling	\$ 46,603,355	\$ 4,399,027	\$ 354,285	\$ 4,753,312
Hybrid Cooling	\$ 47,296,974	\$ 4,464,500	\$ 1,000,979	\$ 5,465,479
Wet Cooling	\$ 28,694,667	\$ 2,708,574	\$ 1,531,838	\$ 4,240,411

	Operating Cost Provided by Kiewit for 5094 hours per year (\$/year)
Dry Cooling	\$206,019
Hybrid Cooling	\$582,076
Wet Cooling	\$890,774

г

Emission Reductions

	tons/year					
	РМ	PM ₁₀	PM _{2.5}			
Difference between Wet and Dry	5.67	3.83	1.82			
Difference between Wet and Hybrid	2.93	1.98	0.94			

Cost Effectiveness

	\$/ton					
	PM	PM ₁₀	PM _{2.5}			
Dry Cooling	\$838,327	\$1,241,074	\$2,611,710			
Hybrid Cooling	\$1,866,302	\$2,759,785	\$5,823,327			

Incremental Costs - Compared to Wet Cooling

-		\$/ton	
	РМ	PM ₁₀	PM _{2.5}
Dry Cooling	\$90,459	\$133,917	\$281,814
Hybrid Cooling	\$418,325	\$618,596	\$1,305,278

Capital Recover Factor calculated in accordance with "EPA Air Pollution Control Cost Manual", equation 2.8a (page 2-21):

Capital Recover Factor = <u>(interest rate x (1 + interest rate)^{equipment life}</u>) ((1 + interest rate)^{equipment life} - 1)

Cooling Options Costs provided by Kiewit Power

Capital Recovery <u>\$</u> = Capital Investment \$ x Capital Recovery Factor year

Total Annual Cost \$ = Capital Recovery\$ + Operating Costs \$
yearyearyear

Operating and Maintenance Costs provided for operation 5094 hours/year. Cooling tower is being permitted with a 100% capacity factor. Assume costs are proportional to hours of operation and adjust as follows:

\$ for 8760 hours/year =\$ for 5094 hours/year x8760 hours/yearyearyear5094 hours/year

Emission Reductions are from spreadsheet "Bowie Power Station, Cooling Options, PM/PM₁₀/PM_{2.5} Emissions - Tons per Year"

Cost Effectiveness <u>\$</u> = <u>Total Annual Cost (\$/year)</u> ton Emission Reduction (tons/year)

Incremental Cost <u>\$</u> = <u>Total Annual Cost Cooling Option</u> <u>\$/year - Total Annual Cost Cooling Base Option</u> <u>\$/year</u> ton Emission Difference Between Options ton/year

EPA/452/B-02-001

EPA AIR POLLUTION CONTROL COST MANUAL

Sixth Edition

EPA/452/B-02-001

January 2002

United States Environmental Protection Agency Office of Air Quality Planning and Standards Research Triangle Park, North Carolina 27711 Annualization is a process similar to EUAC but is not limited to constant cash flows. It involves determining the net present value of each alternative equipment investment and then determining the equal (in nominal terms) payment that would have to be made at the end of each year to attain the same level of expenditure. In essence, annualization involves establishing an annual "payment" sufficient to finance the investment for its entire life, using the formula:

$$PMT = NPV\left(\frac{i}{1-(1+i)^{-n}}\right)$$
(2.7)

where *PMT* is the equivalent uniform payment amount over the life of the control, *n*, at an interest rate, *i*. *NPV* indicates the present value of the investment as defined above in equation 2.6.

Engineering texts call this payment the capital recovery cost (*CRC*), which they calculate by multiplying the *NPV* of the investment by the capital recovery factor (*CRF*):

$$CRC = NPV \times CRF \tag{2.8}$$

where CRF is defined according to the formula:

$$CRF = \left(\frac{i(1+i)^{n}}{(1+i)^{n}-1}\right)$$
 (2.8a)

The *CRF* equation is a transformation of the *PMT* form in equation 2.7 and returns the same information. Table A.2 in Appendix A lists the *CRF* for discount rates between 5.5 percent and 15 percent for annualization periods from one to 25 years.

2.4.4.5 Other Financial Analysis Tools

Many firms make investment decisions based upon the return on investment (*ROI*) of the proposed capital purchase, rather than the magnitude of its net present value. In and of itself, the ROI of an investment opportunity is of little use. For most pollution control investments, *ROI* analysis does not provide much in the way of useful information because, like a payback analysis, it must have positive cash flows to work properly. Calculated by dividing annual net income by the investment's capital cost, results in a percentage of the investment that is returned each year. The decision rule one should apply for *ROI* analysis is if the resulting percentage is at least as large as some established minimum rate of return, then the investment would be worth while. However, different rates can be found. Analysts should consult with their firm's financial officers or an industrial association to determine what percentage would apply.

Bowie Cooling Options Estimated Operations and Maintenance Costs

Cooling Configura	Cooling Tower Chemicals (S/yr)	Water Treatment Chemicals (\$/yr)	Average Water Usage (gpm)	Water Costs (\$/yr)	Equipment Maintenance Costs (\$/yr)	Ad ditional Operator Costs (\$/yr)	Total Yearly Operations and Maintenance Costs (S/yr)	Auxiliary Power (kW)
	Notes 1,2,3	Notes 1,2,3	Notes 1,2,3	Note 4	Note 5	Note 6		Notes 7,8
Conventional Cod	\$225,000	\$387,758	2,750	\$28,016	\$50,000	\$200,000	\$890,774	19,437
Hybrid Cooling Sy	\$112,500	\$193,879	1,050	\$10,697	\$65,000	\$200,000	\$582,076	19,763
Air Cooled Conde	\$0	\$125,000	100	\$1,019	\$80,000	<u>1</u>	\$206,019	20,088

Notes:

1. All yearly figures assume 5094 hours of operation at the conditions described below. Estimated hours were from the conditions given in the air permit.

2. Assumes average of worst case and normal water flowrates from 3/2/10 email from Steve Garrett to Gary Crane.

3. Design water from 4/30/08 used in determining system chemistry.

4. Assumes a groundwater cost of \$0.002 / gallon.

5. Equipment maintenance costs are estimated at 5% of the approximate cooling equipimnt capital costs divided by an assumed plant life of 20 years.

6. Additional operator costs are associated with the chemistry and operation of water pretreatment equipment.

7. Auxiliary power is calculated from previous projects and does not include any component or plant margin. The detailed calculation is shown on the follo

8. Estimated auxiliary power assumes one (1) boiler feed pump per unit running during all operating scenarios.

Prepared by BMC M:\2008022\ENG\MECH\Bowle OM Cost Approximation - 070110.xlsx

7/1/2010 2:43 PM

RBLC ID	Company	Facility	Drift Eliminator Performance	Emission Limits	Comments
AR-0094	SOUTHWEST ELECTRIC POWER COMPANY	JOHN W. TURK JR. POWER PLANT	0.0005%		
AZ-0047	DOME VALLEY ENERGY PARTNERS	WELLTON MOHAWK GENERATING STATION	0.0005%		
AZ-0049	ALLEGHENY ENERGY SUPPLY LLC	LA PAZ GENERATING FACILITY	0.0005%		
AZ-0053	TUCSON ELECTRIC POWER	SPRNGERVILLE GENERATING STATION	0.0005%		
CA-1101	CITY OF VICTORVILLE	VICTORIVLLE 2 HYBRID POWER PROJECT	0.0005%		
CA-1212	CITY OF PALMDALE	PALMDALE HYBRID POWER PROJECT	0.0005%		
CA	DELTA ENERGY CENTER, LLC	DELTA ENERG CENTER	0.0005%		
CA	METCALF ENERGY CENTER, LLC	METCALF ENERGY CENTER	0.0005%		
CA	RUSSELL CITY ENERGY COMPANY, LLC	RUSSELL CITY ENERGY CENTER	0.0005%		
CO-0057	PUBLIC SERVICE COMPANY OF COLORADO	COMANCHE STATION	0.0005%		
FL-0299	PROGRESS ENERGY FLORIDA. INC	CRYSTAL RIVER POWER PLANT	0.0005%		
FL-0303	FLORIDA POWER AND LIGHT COMPANY	FPL WEST COUNTY ENERGY CENTER UNIT	0.0005%		
FL-0304	FLORIDA MUNICIPAL POWER AGENCY	CANE ISLAND POWER PARK	0.0005%		
FL-0316	PROGRESS ENERGY FLORIDA	LEVY NUCLEAR PLANT	0.0005%		
FL-0317	FLORIDA POWER AND LIGHT COMPANY	FPL TURKEY POINT NUCLEAR PLANT	0.0005%		
FL-0323	GAINESVILLE REGIONAL UTILITY (GRU) DEERHAVEN	GAINESVILLE RENEWABLE ENERGY CENTER	0.0005%		
GA-0141	OGETHORPE POWER CORPORATION	WARREN COUNTY BIOMASS ENERGY FACILITY	0.0005%		
GA-0142	OSCEOLA STEEL CO.	OSCEOLA STEEL CO.	0.0005%		
GA	EFFINGHAM COUNTY POWER, LLC	EFFINGHAM COUNTY POWER PLANT	0.0005%		
IA-0088	ARCHER DANIELS MIDLAND	ADM CORN PROCESSING - CEDAR RAPIDS	0.0005%		
IA-0089	HOMELAND ENERGY SOLUTIONS, LLC, PN 06-672		0.0005%		
IA-0095	TATE & LYLE INDGREDIENTS AMERICAS, INC.		0.0005%		
IA-0105	IOWA FERTILIZER COMPANY	IOWA FERTILIZER COMPANY	0.0005%		
IA-0106	CF INDUSTRIES NITROGEN, LLC	CF INDUSTRIES NITROGEN, LLC - PORT NEAL NITROGEN COMPLEX	0.0005%		
ID-0017	SOUTHEAST IDAHO ENERGY, LLC	POWER COUNTY ADVANCED ENERGY CENTER	0.0005%		
IN-0158	ST. JOSEPH ENERGY CENTER, LLC	ST. JOSEPH ENERGY CENTER, LLC	0.0005%		
IN-0167	MAGNETATION LLC	MAGNETATION LLC	0.0005%		

Cooling Power Drift Eliminator Performance Comparisons

Cooling Powe	r Drift	Fliminator	Performance	Comparisons
Cooling 1 Owe			renormance	Compansons

RBLC ID	Company	Facility	Drift Eliminator Performance	Emission Limits	Comments
LA-0231	LAKE CHARLES COGENERATION, LLC	LAKE CHARLES GASIFICATION FACILITY	0.0005%		
LA-0254	ENTERGY LOUISIANA LLC	NINEMILE POINT ELECTRIC GENERATING PLANT	0.0005%		
MD-0040	COMPETITIVE POWER VENTURES, INC./CPV MARYLAND, LLC	CPV ST CHARLES	0.0005%		
MI-0400	WOLVERINE POWER SUPPLY	WOLVERINE POWER	0.0005%		
MI-0401	VC ENERGY LLC MIDLAND POWER	MIDLAND POWER STATION	0.0005%		
MT-0030	CONOCOPHILLIPS COMPANY	BILLINGS REFINERY	0.0005%		
ND-0024	GREAT RIVER ENERGY	SPIRITWOOD STATION	0.0005%		
NE-0031	OMAHA PUBLIC POWER DISTRICT	OPPD - NEBRASKA CITY STATION	0.0005%		
NE-0046	AVENTINE RENEWABLE ENERGY - AURORA WEST, LLC		0.0005%		
NH-0018	LAIDLAW BERLIN BIOPOWER, LLC	BERLIN BIOPOWER	0.0005%		
NJ	CPV SHORE LLC	WOODBRIDGE ENERGY CENTER	0.0005%		
NV-0036	NEWMONT NEVADA ENERGY INVESTMENT, LLC	TS POWER PLANT	0.0005%		
NY-0093	TRIGEN-NASSAU ENERGY CORPORATION		0.0005%		
OH-0328	V & M STAR	V & M STAR	0.0005%		
OH-0352	OREGON CLEAN ENERGY CENTER	OREGON CLEAN ENERGY CENTER	0.0005%		
OR-0041	DIAMOND WANAPA I, L.P.	WANAPA ENERGY CENTER	0.0005%		
TX-0295	SOUTH TEXAS ELECTRIC COOPERATIVE	SAM RAYBURN GENERATION STATION	0.0005%		
TX-0551	PANDA SHERMAN POWER LLC	PANDA SHERMAN POWER STATION	0.0005%		
TX-0552	STARK POWER GENERATION II HOLDINGS, LLC	WOLF HOLLOW POWER PLANT NO. 2	0.0005%		
TX-0553	LINDALE RENEWABLE ENERGY LLC		0.0005%		
VA	BRUNSWICK COUNTY POWER STATION	VIRGINIA ELECTRIC AND POWER COMPANY	0.0005%		
VA	GREEN ENERGY PARTNERS/STONEWALL, LLC	GREEN ENERGY PARTNERS/STONEWALL, LLC	0.0005%		
WA-0291	WALLULA GENERATION, LLC	WALLULA POWER PLANT	0.0005%		
WI-0252	SPECIALTY MINERALS INC. (SMI)	SPECIALTY MINERALS INC SUPERIOR	0.0005%		
WV-0024	WESTERN GREENBRIER CO-GENERATION, LLC		0.0005%		
WY-0072	FMC WYOMING CORPORATION	GRANGER FACILITY	0.0005%		
CA	CAITHNESS BLYTHE II, LLC	BLYTHE II	0.0006%		
AR-0070	GENOVA ARKANSAS I, LLC		0.001%		
CA-1223	PIO PICO ENERGY CENTER, LLC	PIO PICO ENERGY CENTER	0.001%		

	_				-	
Cooling	Dowor	Drift	Eliminator	Dorformonoo	Com	norioono
Coolina	Power	DIIII	EIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	Periornance	COLL	Dansons

RBLC ID	Company	Facility	Drift Eliminator Performance	Emission Limits	Comments
FL-0284	DEPARTMENT OF SOLID WASTE MANAGEMENT	HILLSBOROUGH COUNTY RESOURCE RECOVERY FACILITY	0.001%		
ID-0017	SOUTHEAST IDAHO ENERGY, LLC	POWER COUNTY ADVANCED ENERGY CENTER	0.001%		
IN-0156	STEEL DYNAMICS, INC STRUCTURAL AND RAIL DIVISION	STEEL DYNAMICS, INC STRUCTURAL AND RAIL DIVISION	0.001%		
MD-0032	MIRANT MID-ATLANTIC, LLC	DICKERSON	0.001%		
MO-0081	AMERICAN ENERGY PRODUCERS, INC.	AMERICAN ENERGY PRODUCERS, INC.	0.001%		
NV-0050	MGM MIRAGE		0.001%		
OK-0056	MUSTANG POWER LLC	HORSESHOE ENERGY PROJECT	0.001%		
WA-0328	BP WEST COAST PRODUCTS, LLC	BP CHERRY POINT COGENERATION PROJECT	0.001%		
WA-0329	DARRINGTON ENERGY LLC	COGENERATION POWER PLANT	0.001%		
VA-0319	GATEWAY GREEN ENERGY	GATEWAY COGENERATION 1 LLC - SMART WATER PROJECT	0.001%		
FL-0293	PROGRESS ENERGY FLORIDA	CRYSTAL RIVER POWER PLANT	0.002%		
IN-0110	COGENTRIX LAWRENCE CO., LLC		0.002%		
TX-0549	INEOS LLC	CHOCOLATE BAYOU FACILITY	0.002%		
WI-0228	WISCONSIN PUBLIC SERVICE	WPS - WESTON PLANT	0.002%		
WV-0023	LONGVIEW POWER, LLC	MAIDSVILLE	0.002%		Incorrectly list in RBLC. Operating Permit shows 0.0020%
LA-0206	EXXONMOBIL REFINING & SUPPLY CO	BATON ROUGE REFINERY	0.003%		
OK-0055	MUSTANG POWER LLC	MUSTANG ENERGY PROJECT	0.004%		
IA-0092	SOUTHWEST IOWA RENEWABLE ENERGY		0.005%		
IL-0102	AVENTINE RENEWABLE ENERGY, INC.		0.005%		
LA-0136	THE DOW CHEMICAL COMPANY	PLAQUEMINE COGENERATION FACILITY	0.005%		
LA-0192	CRESENT CITY POWER, LLC		0.005%		
LA-0211	MARATHON PETROLEUM CO LLC	GARYVILLE REFINERY	0.005%		
MN-0070	MINNESOTA STEEL INDUSTRIES, LLC		0.005%		
NE-0029	ABENGOA BIOENERGY CORPORATION	YORK	0.005%		
NV-0047	99 CIVIL ENGINEER SQUADRON OF USAF	NELLIS AIR FORCE BASE	0.005%		
NV-0049	HARRAH'S OPERATING COMPANY, INC.		0.005%		
OH-0303	ASALLIANCE BIOFUELS, LLC	ASALLIANCE BIOFUELS, LLC	0.005%		
OH-0341	NUCOR STEEL	NUCOR STEEL MARION, INC.	0.005%		
WI-0207	ACE ETHANOL, LLC	STANLEY	0.005%		
WY-0064	BASIN ELECTRIC POWER COOPERATIVE	DRY FORK STATION	0.005%		

	_				-	
Cooling	Dowor	Drift	Eliminator	Dorformonoo	Com	norioono
Coolina	Power	DIIII	EIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	Periornance	COLL	Dansons

RBLC ID	Company	Facility	Drift Eliminator Performance	Emission Limits	Comments
NC-0112	NUCOR STEEL		0.008%		
MN-0078	SAPPI FINE PAPER PLC	SAPPI CLOQUET LLC	0.02%		
LA-0213	VALERO REFINING - NEW ORLEANS, LLC	ST. CHARLES REFINERY			No emission limit
AL-0246	HUNT REFINERY CO.	TUSCALOOSA		0.4 T/yr	
LA-0204	SHINTECH LOUISIANA LLC	PLAQUEMINE PVC PLANT			listed in LB/MM gal
OH-0308	SUNOCO, INC.	SUN COMPANY, INC., TOLEDO REFINERY		0.12lb/h	
OK-0135	PRYOR PLANT CHEMICAL COMPANY			1.12lb/h	
OK-0129	ASSOCIATED ELECTRIC COOPERATIVE INC	CHOUTEAU POWER PLANT		0.4000lb/h/ cell	
OH-0317	OHIO RIVER CLEAN FUELS, LLC			2.4lb/h	
LA-0148	RED RIVER ENVIRONMENTAL PRODUCTS	ACTIVATED CARBON FACILITY		0.41lb/h	
AL-0242	HUNT REFINING COMPANY	TUSCALOOSA REFINERY			No emission limits listed
OK-0124	KOCH NITROGEN COMPANY	ENID NITROGEN PLANT			No emission limits listed
LA-0224	SOUTHWEST ELECTRIC POWER COMPANY	ARSENAL HILL POWER PLANT		1.4lb/hr	listed in lb/h
LA-0221	ENTERGY LOUISIANA LLC	LITTLE GYPSY GENERATING PLANT		0.05lb/hr	Drift eliminator with 99.9% control
FL-0294	PROGRESS ENERGY FLORIDA	ANCLOTE POWER PLANT		108t/yr	
IA-0082	GOLDEN GRAIN ENERGY			1.33lb/h	
TX-0507	NRG TEXAS	NRG COAL HANDLING PLANT		5.78lb/h	
				0.002lb/h	
NC-0101	FORSYTH ENERGY PROJECTS. LLC			PM10,	
				0.007lb/h	
47.0046					
AZ-0040	ARIZONA CLEAN FUELS FUMA LLC			1.000/11	
TX-0487	ROHM AND HAAS TEXAS INCORPORATION	LONE STAR PLANT		2.04lb/h	
OH-0252	DUKE ENERGY HANGING ROCK, LLC	DUKE ENERGY HANGING ROCK ENERGY FACILITY		2.6lb/hr	listed in lb/h
LA-0191	ENTERGY NEW ORLEANS, INC.	MICHOUD ELECTRIC GENERATING PLANT		0.052lb/h	Permit limits of 0.005% but eliminators designed to achieve 0.001%
Cooling Dowor	Drift	Eliminator	Dorformonoo	Comporioona	
---------------	-------	------------	-------------	-------------	
Cooling Power	שווונ	EIIMINATOL	Periormance	Companyons	

RBLC ID	Company	Facility	Drift Eliminator Performance	Emission Limits	Comments
TX-0451	DIAMOND SHAMROCK REFINING COMPANY LP			69.2lb/h	
OH-0254	DUKE ENERGY NORTH AMERICA	DUKE ENERGY WASHINGTON COUNTY LLC		2.08lb/h	
TX-0458	DUKE ENERGY LP	JACK COUNTY POWER PLANT		0.4lb/h PM10, 3.0lb/h PM	
TX-0374	BP AMOCO CHEMICAL CO	CHOCOLATE BAYOU PLANT		0.54lb/h	
OK-0090	DUKE ENERGY	DUKE ENERGY STEPHENS, LLC STEPHENS ENERGY		1.2lb/h	
TX-0352	BRAZOS VALLEY ENERGY LP	BRAZOS VALLEY ELECTRIC GENERATING FACILITY		1.58lb/h	
IA-0062	INTERSTATE POWER & LIGHT (IPL)	EMERY GENERATING STATION		1.224lb/h	
TX-0407	STEAG POWER LLC	STERNE ELECTRIC GENERATING FACILITY		1.01lb/h	
OH-0248	CALPINE CORPORATION	LAWRENCE ENERGY		1.69lb/h	
CO-0052	ROCKY MOUNTAIN ENERGY CENTER, LLC.			0.42lb/MM gal	
IN-0114	MIRANT SUGAR CREEK LLC			1.41lb/hr	
NM-0044	DUKE ENERGY CURRY LLC	CLOVIS ENERGY FACILITY		0.7lb/h	
MS-0055	EL PASO MERCHANT ENERGY CO.				
OK-0070	GENOVA OKLAHOMA LLC	GENOVA OK I POWER PROJECT		0.307lb/h per cell	
OH-0264	NORTON ENERGY STORAGE, LLC			5.63lb/h	
OK-0072	REDBUD ENERGY LP	REDBUD POWER PLT		3.17lb/h	
AR-0051	DUKE ENERGY	JACKSON FACILITY		0.7lb/h	
NJ-0043	LIBERTY GENERATING STATION			1.81lb/h	
OH-0268	Global Energy, Inc.	LIMA ENERGY COMPANY		1.88lb/h	
TX-0351	SEI TEXAS LLC	WEATHERFORD ELECTRIC GENERATION FACILITY		1.45lb/h	
LA-0157	PERRYVILLE ENERGY PARTNERS, LLC	PERRYVILLE POWER STATION		3.3lb/h	
AR-0052	ARKANSAS ELECTRIC CO-OP	THOMAS B. FITZHUGH GENERATING STATION		0.4lb/h	
LA-0164	ACADIA POWER PARTNERS	ACADIA POWER STATION		0.76lb/h	
TX-0350	ENNIS-TRACTEBEL II LP	ENNIS TRACTEBEL POWER		0.5lb/h	
NC-0094	GENPOWER EARLEYS, LLC			2.01lb/h	
OH-0257	JACKSON COUNTY POWER, LLC			3.43lb/h	
MS-0058	CHOCTAW GAS GENERATION, LLC				
AR-0047	HOT SPRINGS POWER PROJECT			0.9lb/h	

Cooling Power Drift Eliminator Performance Comparisons

RBLC ID	Company	Facility	Drift Eliminator Performance	Emission Limits	Comments
TX-0233	RELIANT ENERGY CHANNELVIEW LP	CHANNELVIEW COGENERATION FACILITY		0.18lb/h	

Entries from the RBLC for new units with a permit issuance date 2002 - 2013

Information from state agency websites