
ARCADIS

Appendix A

As-Built SVMW-1 Construction Diagram (on CD)

M:\3994003\300 Monitor Well Install\As Builts

ARCADIS

Appendix B

CMS Report, March 2012 (Excerpt) (on CD)

3.3.2. Well Installations

To further support the CMS alternatives evaluation, UPCO installed two additional groundwater monitoring wells, MW-20 and MW-21, in the C-Complex and the New Burn Area, respectively. These areas were identified in the Final RI Report (ARCADIS 2011a) as source areas and the monitoring wells were used to confirm perchlorate concentrations and to assess groundwater extraction. The wells were designed for use as potential extraction wells and were similar in design to monitoring well MW-19, located in the Waterbore Area. Well construction details for MW-20 and MW-21 are discussed in Section 3.3.2.2.

The boreholes for monitoring wells MW-20 and MW-21 were drilled using a conventional air-rotary method. The nominal 10-inch-diameter borings had a total depth objective of approximately 50 feet below the first observed occurrence of groundwater. At each location, a 20-foot section of low carbon steel conductor casing was grouted in place to provide a surface seal and prevent collapse of the borehole. The borings for MW-20 and MW-21 were drilled to total depths of 295 and 277 feet bgs, respectively. Grab samples of the borehole cuttings were collected at regular intervals and logged using the Unified Soil Classification System method. If bedrock was encountered in the borehole, it was logged using USGS descriptions. Lithologic logs for each borehole will be provided in an updated Groundwater Monitoring Plan for the Site that will incorporate the new wells into the groundwater monitoring program.

3.3.2.1. Borehole Geophysics

Geophysical surveys were performed in the MW-20 and MW-21 boreholes. The suite of geophysical techniques used included:

- E-Log-Gamma-Temp-Fl Resistivity
- Caliper
- Density
- Guard Resistivity
- Neutron
- 3 Rx Sonic
- Dual Induction
- Optical.

Based on a review of the soil cuttings and the borehole geophysics, bedrock was encountered at approximately 92 feet bgs and groundwater was encountered at approximately 229 feet bgs in the MW-20 borehole. Bedrock was encountered at approximately 87 feet bgs and groundwater was encountered at approximately 213 feet bgs in the MW-21 borehole. The geophysical data was collected by a variety of sources and receivers and will be included in the First Quarter 2012 Monitoring Report. This data will be used for remedy design.

Monitoring Well Construction 3.3.2.2.

Monitoring wells were installed in each borehole following completion of drilling and geophysical survey activities. Based on the data from soil cuttings and borehole geophysics, MW-20 and MW-21 were completed as shallow wells in the bedrock unit, which is consistent with monitoring wells previously installed on the eastern half of the Site. The wells were constructed with 5-inch-diameter Schedule 80 polyvinyl chloride (PVC) casings and 50-foot well screens. MW-20 was screened from 235 to 285 feet bgs and MW-21 was screened from 215 to 265 feet bgs. A 0.050-inch slotted screen was used for each well with a #8-12 Colorado silica sand pack to allow for potential future use as groundwater extraction wells. The sand pack extends 3 to 5 feet above the top of the screen, topped by approximately 3 to 5 feet of bentonite pellets as a seal. The bentonite pellets were hydrated with potable water and allowed to hydrate for at least 30 minutes. Neat cement grout was placed into the annular space above the bentonite to groundwater surface. The grout was pumped into place via tremie pipe. The as-built well construction figures for these wells will be included in an updated Groundwater Monitoring Plan for the Site.

Monitoring Well Development and Sampling 3.3.2.3.

Each monitoring well was developed using surging and bailing techniques, followed by continuous pumping. The following procedures were used:

- The well screen was surged in 10-foot sections from the top of the interval to the • bottom.
- A bailer was used to remove settled solids that had entered the casing during surging.
- Surging and bailing was conducted for approximately 1 hour depending on the condition of the well.
- A temporary submersible pump was used to dislodge the finer grained materials from the filter pack and to clarify the water.

• Development was considered complete when the turbidity was measured at approximately 1 Nephelometric Turbidity Unit or after a minimum of 8 hours of pumping had occurred.

At the completion of well development, each well was sampled for perchlorate, volatile organic compounds, metals, and general water quality. Monitoring well MW-20 was developed and sampled on February 3, 2012 and monitoring well MW-21 was developed and sampled on February 9, 2012. The data collected at MW-20 and MW-21 in support of the CMS activities is provided in Appendix B and discussed in Section 3.2.2.

3.3.2.4. Well Head Completion and Pump Installation

Dedicated submersible pump assemblies were installed and surface completions were added following well construction and development activities. Each dedicated stainless steel submersible pump (Grundfos Model 15SQ) was set on a Schedule 80 PVC drop pipe with the inlet approximately 3 feet above the bottom of the screen. A sounding tube for water level measurement was lowered into the well to a depth directly above the pump. The sounding tube is constructed of Schedule 40 PVC with 50 feet of 0.01-inch slotted screen at the bottom. A watertight seal was placed at the top of the well casing. The seal has capped ports for a removable dedicated sample tee and for access to the sounding tube. Twelve-inch-diameter steel monuments extending approximately 4 feet abovegrade and surrounded by 3- by 3-foot at-grade concrete pads were installed around the well casing for surface completion. Stamped steel plates with the monitoring well identification number and Arizona Department of Water Resources (ADWR) registration number were attached to the monuments.

3.3.2.5. Survey

A state registered land surveyor (A-Team) established horizontal and vertical control at monitoring wells MW-20 and MW-21. The vertical coordinate of the sounding port, top of casing, and ground surface was surveyed in the Arizona State Plane Coordinate System, National Geodetic Vertical Datum of 1929 with units of international feet above mean sea level (amsl). The measuring point elevation of the PVC sounding tube port contained in the well seal was measured to the nearest 0.01 foot. The measuring point was marked on the north side of the port. The horizontal coordinate of the well was surveyed in the Arizona State Plane Coordinate System, Central Zone, North American Datum of 1983 with units of international feet.

3.3.3. Pumping Test

In February, 2012, a pumping test was performed at shallow well MW-19 using the dedicated purge/sampling pump installed at the well. The pumping test consisted of a step-drawdown test to determine the optimal pumping rate for the pump test, a 24-hour

constant-rate pumping test, and a recovery test. Summaries of the methodologies used for each phase of testing in MW-19 are presented below. Data from the constant-rate pumping test were used to evaluate aquifer hydraulic conductivity, as presented in Appendix B and summarized below.

3.3.3.1. Monitoring Network

During both the step-drawdown and constant-rate pumping tests, water levels were monitored in the pumping well and in adjacent observation wells (deep wells MW-13 and MW-14 and shallow monitoring wells MW-1, MW-2, MW-4, MW-5, MW-11, MW-15, and MW-20) through the use of manual water level meters and data-logging pressure transducers (data loggers). Monitoring well MW-1 was used to record background water levels beyond the expected influence of the pumping tests.

3.3.3.2. Step-Drawdown Test

Prior to beginning the constant-rate pumping test, an 8-hour step-drawdown test was performed to assess the optimum pumping rate for the constant-rate test. Four pumping rates (4, 6, 8, and 10 gallons per minute [gpm]) were evaluated in MW-19 for at least 2 hours each. Water levels in MW-19 and the observation wells were monitored throughout the step-drawdown test. The data logger in MW-19 collected data every minute, while the data logger in the observation well network collected data at 5-minute intervals. Manual water level measurements were collected at MW-19 every 5 minutes for the first hour of each pumping step and every 10 minutes for the second hour of each pumping step. MW-13 was measured manually at the beginning of the step-drawdown test (before the pump was started) and when it was complete (just prior to stopping the pump). The results of the step-drawdown tests are presented in Appendix B.

Based on the results of the analysis, a pumping rate of 8 gpm was selected for the constant-rate pumping test in MW-19. As shown on the water level drawdown curves in Appendix B, a rate of 10 gpm was likely not sustainable for the 24-hour period and the lower pumping rates may not have induced enough drawdown in the surrounding formation to adequately stress the aquifer.

3.3.3.3. Constant-Rate Pumping and Well Recovery Test Monitoring

The pump test was performed over a 24-hour period between February 9 and 10, 2012; water level recovery in MW-19 was monitored for an additional 24-hour period after pumping stopped. Prior to beginning the pump test, more than 48 hours of ambient water level conditions were recorded with data loggers in the pumping well and the observation wells. During the constant-rate pumping test, water level data was recorded by data loggers and supplemented by manual measurements in the event of equipment failure.

The 1-inch sounding tubes installed in the wells were used to obtain manual water level measurements and to install the data loggers.

The data loggers at the pumping well and at the closest observation well, MW-13, recorded water levels at 1-minute intervals during the tests. The data loggers in the remaining observation wells recorded water levels at 5-minute intervals. Water levels at the pumping well and at MW-13 were measured manually at varying frequencies during each test (see Appendix B), with measurements taken at a higher frequency during the beginning of each test and at a reduced frequency as the testing progressed.

Monitoring of the recovery phase was performed for 24 hours following the end of the constant-rate pumping test. Water levels in the wells were measured manually for the first 2 hours of recovery following termination of pumping.

In addition to monitoring water levels during testing, well MW-19 was sampled for perchlorate prior to the beginning of the constant-rate pumping test, during pumping, (after 2, 4, 6, 8, and 12 hours of pumping), and just prior to termination of pumping at the end of the 24-hour test period.

3.3.3.4. Pumping Test Results and Analysis

After 24 hours of pumping at 8 gpm, approximately 13 feet of drawdown was observed in the pumping well (MW-19) and approximately 0.6 foot of drawdown was observed in the closest observation well (MW-13), located 20 feet from MW-19 and screened from 440 to 490 feet bgs. Drawdown was not observed in the other observation wells during the constant-rate test (see Appendix B). Graphs of drawdown versus time after pumping started were used to evaluate the relationship between storage coefficient, transmissivity, pumping rate, and drawdown.

Two parameters, transmissivity (T), and the average hydraulic conductivity (K), were estimated based on the aquifer responses observed during this test. As shown in Appendix B, T was estimated to be approximately 110 square feet per day (ft^2/day) and K was estimated to be approximately 0.6 to 0.8 foot per day (ft/day), assuming an aquifer thickness of 50 feet (screened interval of pumping well). These values are higher than the T and K ranges estimated during RI aquifer testing at MW-14 (0.30 to 0.39 ft^2/day and 6.6 x 10⁻³ to 7.7 x 10⁻³ ft/day, respectively, based on pump and hydrogeophysical testing); however, this variability is consistent with the fractured bedrock environment and anticipated spatial variability of aquifer properties. In general, these results indicate that the UAU can sustain the modest pumping rates (i.e., several gpm) that will be associated with extraction-based groundwater remedies. However, variability in well yields is expected.

ARCADIS

Appendix C

Well Construction Details (on CD)

Table 1 Well Details

Universal Propulsion Company, Inc. Phoenix, Arizona

Wel	I	RW-1	RW-2	EW-1	EW-2	IW-1	IW-2	IW-3	MW-22	IN-1Ad	IN-1As	DR-01d	DR-01s
ADWR Number		55-223676	55-223677	55-222510	55-222511	55-222512	55-222513	55-222514	55-222509	555-222518	55-222517	55-222516	55-222515
Measuring Point Eleva (feet amsl)	ation	1605.41	1605.31	1594.88	1560.92	1595.52	1593.68	1568.96	1598.46	1548.1	1548.05	1547.79	1547.81
	Northing	988477.203	988671.195	988356.042	987245.445	988468.696	988583.305	987836.161	654091.455	987504.167	987506.892	987504.697	987508.302
Survey	Easting	654327.565	654020.893	654177.509	653307.216	654312.214	654022.985	653463.055	988555.437	652377.897	652381.950	652362.237	652366.218
	Datum	NGVD29	NGVD29	NGVD29	NGVD29	NGVD29	NGVD29	NGVD29	NGVD29	NGVD29	NGVD29	NGVD29	NGVD29
Approximate Bedrock bgs)	Contact (feet	10	10	250	123	111	not encountered	78	not encountered				
Total Borehole Depth	(feet bgs)	342	360	304	310	346	290	266	285	210	185	212	180
	Diameter	5-inch	5-inch	5-inch	5-inch	5-inch	5-inch	5-inch	5-inch	4-inch	4-inch	4-inch	4-inch
Screen	Туре	SS vee-Wire Wrap	SS vee-Wire Wrap	SS vee-Wire Wrap	SS vee-Wire Wrap	SS vee-Wire Wrap	SS vee-Wire Wrap	SS vee-Wire Wrap	SS vee-Wire Wrap	SS vee-Wire Wrap	SS vee-Wire Wrap	SS vee-Wire Wrap	SS vee-Wire Wrap
ocreen	Slot Size	0.05-inch	0.05-inch	0.05-inch	0.05-inch	0.05-inch	0.05-inch	0.05-inch	0.05-inch	0.02"-inch	0.02"-inch	0.02"-inch	0.02"-inch
	Interval (feet bgs)	265-340	252-332	250-300	210-305	250-335	210-285	180-255	210-280	185-205	155-175	185-205	155-175
Blank Casing	Туре	Sch 80 PVC	Sch 80 PVC	Sch 80 PVC	Sch 80 PVC	Sch 80 PVC	Sch 80 PVC	Sch 80 PVC	Sch 80 PVC	Sch 80 PVC	Sch 80 PVC	Sch 80 PVC	Sch 80 PVC
Dialik Casing	Interval	to 265	to 252	to 250	to 210	to 250	to 210	to 180	to 210	to 185	to 155	to 185	to 155
Centralizers	Screen	Every 40'	Every 40'	Every 40'	Every 40'	Every 40'	Every 40'	Every 40'	Every 40'	Every 40'	Every 40'	Every 40'	Every 40'
Centralizers	Blank	Every 40'	Every 40'	Every 40'	Every 40'	Every 40'	Every 40'	Every 40'	Every 40'	Every 40'	Every 40'	Every 40'	Every 40'
Filter Deels	Туре	#8-12	#8-12	#8-12	#8-12	#8-12	#8-12	#8-12	#8-12	#8-12	#8-12	#8-12	#8-12
Filter Pack	Interval	260-345	247-332.8	245-304	205-310	245-346	205-290	174-266	204.75-284.4	180-210	150-185	180-212	150-180
Transition Sand	Туре	#60 silica	#60 silica	#60 silica	#60 silica	#60 silica	#60 silica	#60 silica	#60 silica	#60 silica	#60 silica	#60 silica	#60 silica
I ransition Sand	Interval (feet bgs)	255-260	255-247	238-245	200-205	238-245	200-205	169-174	198.25-204.75	175-180	141-150	175-180	145-150
Dentenite Cool	Туре	3/8" Chips	3/8" Chips	3/8" Chips	3/8" Chips	none							
Bentonite Seal	Interval (feet bgs)	80-100	88-150.5	238-229	195-200	none							
Grout Seal	Туре	Cement	Cement	Cement	Cement	Cement	Cement	Cement	Cement	Cement	Cement	Cement	Cement
Grout Seal	Interval (feet bgs)	0-80; 100-255	0-88; 150.5-255	0-229	0-195	0-238	0-200	0-169	0-198.25	0-175	0-141	0-175	0-145
Conductor Casing	Туре	10" dia steel	10" dia steel	10" dia steel	10" dia steel	10" dia steel	10" dia steel	10" dia steel	10" dia steel	10" dia steel	10" dia steel	10" dia steel	10" dia steel
Conductor Casing	Interval (feet bgs)	0-20	0-20	0-20	0-20	0-20	0-20	0-20	0-20	0-20	0-20	0-20	0-20
Ountras Completion	Туре	12"-dia flush mount	12"-dia flush mount	12"-dia Monument	12"-dia Monument	12"-dia flush mount							
Surface Completion	Pad	3'-dia concrete	3'-dia concrete	3'-dia concrete	3'-dia concrete	3'-dia concrete	3'-dia concrete	3'-dia concrete	3'-dia concrete	3'-dia concrete	3'-dia concrete	3'-dia concrete	3'-dia concrete
Televiewer Logs	Optical	yes	yes	yes	yes	yes	yes	yes	yes	none	none	none	none
releviewer Logs	Acoustic	yes	yes	yes	yes	yes	yes	yes	yes	none	none	none	none
	Surge	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes
Development	Bail	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes
	Pump	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes

Notes:

ADWR = Arizona Department of Water Resources amsl = above mean sea level bgs = below ground surface

dia = diameter

NGVD29 = National Geodetic Vertical Datum of 1929

PVC = polyvinyl chloride Sch = Schedule

SS = stainless steel

Appendix D

Soil Analytical Data (on CD)

B-Complex Soil Sample Analytical Results for Inorganics

Sample ID	Sample Depth (feet bgs)	Perchlorate (mg/kg)	Nitrate (mg/kg)	Acetate (mg/L)	Arsenic (mg/kg)	Barium (mg/kg)	Cadmium (mg/kg)	Chromium (mg/kg)	Lead (mg/kg)	Mercury (mg/kg)	Selenium (mg/kg)	Silver (mg/kg)
Residential Soil Remed	liation Level	55	100,000	NE	10	15,000	39	120,000	400	23	390	390
Soil Boring BC-SB01												
BC-SS01-0	0	< 0.04	NA	NA	8.9	92	<0.5	27	9.9	<0.02	<5	<0.5
BC-SB01-1	1	<0.04	NA	NA	7.4	100	<0.5	19	10	<0.02	<5	<0.5
BC-SB01-3	3	< 0.04	NA	NA	9	110	<0.5	20	7.9	<0.02	<5	1.4
Soil Boring BC-SB02												
BC-SB02-0	0	< 0.04	NA	NA	8.9	100	<0.5	22	9	<0.02	<5	3.3
BC-SB02-1	1	< 0.04	NA	NA	7.6	110	<0.5	31	10	< 0.02	<5	4.3
Soil Boring BC-SB03												
BC-SB03-0	0	< 0.04	NA	NA	7.5	94	<0.5	19	10	< 0.02	<5	3.2
BC-SB03-1	1	< 0.04	NA	NA	8.4	110	<0.5	22	9.7	< 0.02	<5	3.2
Soil Boring BC-SB04	•			•	-		•	•		•		
BC-SB04-0	0	< 0.04	<1	NA	5.9	130	<0.5	30	8.8	< 0.02	<5	<0.5
BC-SB04-10	10	< 0.04	<1	NA	7	100	<0.5	21	8.1	< 0.02	<5	<0.5
Soil Boring BC-SB05	•			•	-		•	•		•		
BC-SB05-0	0	< 0.04	18	NA	6.5	120	<0.5	31	9.7	< 0.02	<5	<0.5
BC-SB05-10	10	< 0.04	<1	NA	5.3	96	<0.5	17	<5	< 0.02	<5	<0.5
Soil Boring BC-SB06	•			•	-		•	•		•		
BC-SB06-0	0	< 0.04	12	NA	6.1	96	<0.5	13	6.2	< 0.02	<5	<0.5
BC-SB06-10	10	< 0.04	2.7	NA	6.3	110	<0.5	9.6	5.2	< 0.02	<5	<0.5
Soil Boring BC-SB07												
BC-SB07-0	0	0.056	82	NA	5.5	160	<0.5	28	12	0.025 J	<5	<0.5
BC-SB07-10	10	< 0.04	2.6	NA	5.7	81	<0.5	19	<5	< 0.02	<5	0.62
BC-SB07-20	20	< 0.04	2.8	NA	6.8	97	<0.5	16	5.1	<0.02	<5	<0.5
BC-SB07-30	30	< 0.04	4.1	NA	6.2	220 J	<0.5	20	5.4	<0.1	<5	<0.5
BC-SB07-40	40	< 0.04	2	NA	5.3	160	<0.5	21	5.3	< 0.02	<5	1.6
BC-SB07-50	50	< 0.04	3.1	NA	5.2	170	<0.5	17	5.6	< 0.02	<5	0.59
Soil Boring BC-SB08	•			•	-		•	•		•		
BC-SB08-0	0	< 0.04	1.9	NA	7.4	130	<0.5	25	12	< 0.02	<5	<0.5
BC-SB08-10	10	< 0.04	<1	NA	7	130	<0.5	13	6.2	< 0.02	<5	<0.5
Soil Boring BC-SB09	•	· ·		•			•	· .		•	- -	
BC-SB09-0	0	< 0.04	9.9 J	NA	5.8	91	<0.5	19	7.7	< 0.02	<5	<0.5
BC-SB09-10	10	< 0.04	1.3	NA	6.3	78	<0.5	13	6	< 0.02	<5	<0.5
BC-SB09-20	20	< 0.04	6	NA	7.5	68	<0.5	14	5.8	< 0.02	<5	<0.5
BC-SB09-30	30	< 0.04	3.1	NA	<5	120	<0.5	13	5.3	< 0.02	<5	<0.5
BC-SB09-40	40	< 0.04	4.8	NA	5.9	71	<0.5	15	6.5	< 0.02	<5	<0.5
BC-SB09-50	50	< 0.04	3.4	NA	6.1	160	<0.5	11	5.6	< 0.02	<5	<0.5

B-Complex Soil Sample Analytical Results for Inorganics

Sample ID	Sample Depth (feet bgs)	Perchlorate (mg/kg)	Nitrate (mg/kg)	Acetate (mg/L)	Arsenic (mg/kg)	Barium (mg/kg)	Cadmium (mg/kg)	Chromium (mg/kg)	Lead (mg/kg)	Mercury (mg/kg)	Selenium (mg/kg)	Silver (mg/kg)
Residential Soil Remed	liation Level	55	100,000	NE	10	15,000	39	120,000	400	23	390	390
Soil Boring BC-SB10												
BC-SB10-0	0	< 0.04	<1	NA	6.6	160	<0.5	23	8.2	< 0.02	<5	0.57
BC-SB10-10	10	< 0.04	1.3	NA	6.5	81	<0.5	14	5.2	<0.02	<5	<0.5
Soil Boring BC-SB11												
BC-SB11-0	0	< 0.04	<1	NA	7.4	110	<0.5	20	7.9	< 0.02	<5	<0.5
BC-SB11-10	10	< 0.04	<1	NA	8.2	86	<0.5	13	<5	<0.02	<5	<0.5
Soil Boring BC-SB12												
BC-SB12-0	0	< 0.04	1.7	NA	6.9	110	<0.5	18	9.8	< 0.02	<5	<0.5
BC-SB12-10	10	< 0.04	<1	NA	10	120	<0.5	17	6.3	< 0.02	<5	<0.5
Soil Boring BC-SB13												
BC-SB13-0	0	0.24	7.6	NA	5.6	130	<0.5	16	6.8	< 0.02	<5	<0.5
BC-SB13-10	10	< 0.04	<1	NA	7.1	110	<0.5	14	5.5	< 0.02	<5	<0.5
Soil Boring BC-SB14	•				-		-			•		
BC-SB14-0	0	0.089	4.3	NA	5.4	110	<0.5	20	7.7	< 0.02	<5	<0.5
BC-SB14-10	10	< 0.04	<1	NA	8.1	220	<0.5	16	5.6	< 0.02	<5	<0.5
Soil Boring BC-SB15												
BC-SB15-0	0	< 0.04	8.3	NA	6.7	110	<0.5	11	6.7	<0.02	<5	<0.5
BC-SB15-10	10	< 0.04	1.4	NA	9.3	110	<0.5	13	5.5	<0.02	<5	<0.5
BC-SB15-20	20	< 0.04	<1	NA	7.7	91	<0.5	12	6.9	<0.02	<5	<0.5
BC-SB15-30	30	< 0.04	<1	NA	8	110	<0.5	14	<5	<0.02	<5	<0.5
Soil Boring BC-SB16												
BC-SB16-0	0	< 0.04	2.6	NA	8.5	140	<0.5	20	11	<0.02	<5	<0.5
BC-SB16-10	10	<0.04	<1	NA	8.5	330	<0.5	22	8.6	<0.02	<5	<0.5
BC-SB16-20	20	<0.04	<1	NA	7.5	83	<0.5	16	6.4	<0.02	<5	<0.5
BC-SB16-30	30	<0.04	<1	NA	8.2	200	<0.5	15	12	<0.02	<5	<0.5
Soil Boring BC-SB17												
BC-SB17-0	0	0.25	11	NA	6.8	110	<0.5	17	9.1	<0.02	<5	<0.5
BC-SB17-10	10	< 0.04	2.1	NA	8.1	85	<0.5	11	<5	<0.02	<5	<0.5
BC-SB17-20	20	< 0.04	<1	NA	8.9	92	<0.5	14	6.8	<0.02	<5	<0.5
BC-SB17-30	30	<0.04	<1	NA	6.8	98	<0.5	11	6.3	<0.02	<5	<0.5
Soil Boring BC-SB18												
BC-SB18-0	0	0.39	38	NA	7.5	110	<0.5	18	9.7	<0.02	<5	<0.5
BC-SB18-10	10	< 0.04	1.1	NA	7.4	87	<0.5	9.4	6.8	<0.02	<5	<0.5
BC-SB18-20	20	< 0.04	<1	NA	7.9	76	<0.5	11	7.3	<0.02	<5	<0.5
BC-SB18-30	30	<0.04	<1	NA	8.6	110	<0.5	16	<5	<0.02	<5	<0.5

B-Complex Soil Sample Analytical Results for Inorganics

Sample ID	Sample Depth (feet bgs)	Perchlorate (mg/kg)	Nitrate (mg/kg)	Acetate (mg/L)	Arsenic (mg/kg)	Barium (mg/kg)	Cadmium (mg/kg)	Chromium (mg/kg)	Lead (mg/kg)	Mercury (mg/kg)	Selenium (mg/kg)	Silver (mg/kg)
Residential Soil Remed	diation Level	55	100,000	NE	10	15,000	39	120,000	400	23	390	390
Soil Boring BC-SB19												
BC-SB19-0	0	< 0.04	6.7	NA	7.9	130	<0.5	22	8.1	< 0.02	<5	<0.5
BC-SB19-10	10	< 0.04	<1	NA	9.1	140	<0.5	33	<5	< 0.02	<5	<0.5
BC-SB19-20	20	< 0.04	<1	NA	8.4	88	<0.5	10	<5	< 0.02	<5	<0.5
BC-SB19-30	30	< 0.04	<1	NA	6.9	120	<0.5	18	<5	< 0.02	<5	<0.5
Soil Boring BC-SB20												
BC-SB20-0	0	< 0.04	1.2	NA	7.8	120	0.66	23	9.7	< 0.02	<5	18
BC-SB20-10	10	< 0.04	<1	NA	7.6	120	<0.5	17	7.9	< 0.02	<5	<0.5
BC-SB20-20	20	< 0.04	<1	NA	8	100	<0.5	13	7.6	< 0.02	<5	6.3
BC-SB20-30	30	< 0.04	1.1	NA	7.8	89	<0.5	10	5.9	<0.02	<5	2.5
Soil Boring BC-SB21												
BC-SB21-0	0	< 0.04	1.2	10.6	7.3	110	<0.5	16	5.7	<0.02	<5	<0.5
BC-SB21-10	10	< 0.04	<1	6.3	9.4	130	<0.5	21	11	<0.02	<5	0.51
BC-SB21-20	20	< 0.04	<1	5	9.8	98	<0.5	18	<5	< 0.02	<5	<0.5
BC-SB21-30	30	< 0.04	<1	3.8	8.3	85	<0.5	17	<5	< 0.02	<5	<0.5
BC-SB21-40	40	< 0.04	12	4.2	6.3	120	<0.5	13	<5	<0.02	<5	<0.5
BC-SB21-50	50	< 0.04	12	14.8	9.9	690	<0.5	24	11	<0.02	<5	<0.5
Soil Boring BC-SB22												
BC-SB22-0	0	0.15	9.2	NA	6.9	99	<0.5	19	14	<0.02	<5	<0.5
BC-SB22-10	10	< 0.04	1.1	NA	6.6	100	<0.5	9.9	6	<0.02	<5	<0.5
Soil Boring BC-SB23												
BC-SB23-0	0	0.071	12	NA	7.9	110	<0.5	25	10	< 0.02	<5	<0.5
BC-SB23-10	10	< 0.04	1.2	NA	6.9	130	<0.5	16	<5	<0.02	<5	<0.5
Soil Boring BC-SB24												
BC-SB24-0	0	0.09	<1	NA	5.9	130	<0.5	15	9.4	<0.02	<5	<0.5
BC-SB24-10	10	< 0.04	<1	NA	6.3	74	<0.5	17	5.8	<0.02	<5	<0.5
BC-SB24-20	20	< 0.04	2.3	NA	5.2	64	<0.5	9.9	5.4	<0.02	5.1	<0.5
BC-SB24-30	30	< 0.04	1.3	NA	<5	99	<0.5	13	6.2	<0.02	<5	<0.5
BC-SB24-40	40	< 0.04	4	NA	6.8	370	<0.5	17	7.4	<0.02	<5	<0.5
BC-SB24-50	50	< 0.04	<1	NA	9.1	330	<0.5	26	9	<0.02	<5	0.52 J
Soil Boring BC-SB25												
BC-SB25-0	0	< 0.04	NA	NA	<5	120	<0.5	15	5.5	<0.02	<5	<0.5
BC-SB25-10	10	< 0.04	NA	NA	6.1	140	<0.5	20	5.9	<0.02	<5	<0.5
Soil Boring BC-SB26												
BC-SB26-0	0	< 0.04	NA	NA	8.2	110	1.1	22	9.5	<0.02	<5	1
BC-SB26-10	10	< 0.04	NA	NA	8	150	<0.5	20	5.8	<0.02	<5	<0.5

B-Complex Soil Sample Analytical Results for Inorganics

Sample ID	Sample Depth (feet bgs)	Perchlorate (mg/kg)	Nitrate (mg/kg)	Acetate (mg/L)	Arsenic (mg/kg)	Barium (mg/kg)	Cadmium (mg/kg)	Chromium (mg/kg)	Lead (mg/kg)	Mercury (mg/kg)	Selenium (mg/kg)	Silver (mg/kg)
Residential Soil Remed	liation Level	55	100,000	NE	10	15,000	39	120,000	400	23	390	390
Soil Boring BC-SB27												
BC-SB27-0	0	0.043	NA	NA	8.6	110	<0.5	21	11	< 0.02	<5	<0.5
BC-SB27-10	10	< 0.04	NA	NA	6.6	110	<0.5	14	5.8	<0.02	<5	<0.5
Soil Boring BC-SB28												
BC-SB28-0	0	< 0.04	NA	NA	8.6	180	<0.5	21	9.3	< 0.02	<5	<0.5
BC-SB28-10	10	< 0.04	NA	NA	7.9	180	<0.5	17	<5	0.52	<5	<0.5
Soil Boring BC-SB29												
BC-SB29-0	0	< 0.04	3.1	NA	6.5	87	<0.5	26	14	< 0.02	<5	<0.5
BC-SB29-10	10	< 0.04	<1	NA	6.2	130	<0.5	15	5.4	< 0.02	<5	<0.5
Soil Boring BC-SB30												
BC-SB30-0	0	0.16	47	NA	<5	120	<0.5	19	7.6	<0.1	<5	<0.5
BC-SB30-10	10	< 0.04	<1	NA	5.5	90	<0.5	18	<5	<0.1	<5	<0.5
BC-SB30-20	20	< 0.04	5.5	NA	5.2	110	<0.5	14	<5	<0.1	<5	<0.5
BC-SB30-30	30	< 0.04	7.4	NA	<5	530	<0.5	16	<5	< 0.02	<5	<0.5
BC-SB30-40	40	< 0.04	4.8	NA	6.1	200	<0.5	26	6.5	< 0.02	<5	<0.5
BC-SB30-50	50	< 0.04	4.5	NA	6.7	170	<0.5	20	6.4	< 0.02	<5	<0.5
Soil Boring BC-SB31	•				•	•				•		
BC-SB31-0	0	< 0.04	<1	NA	5	110	<0.5	30	<5	< 0.02	<5	<0.5
BC-SB31-10	10	< 0.04	<1	NA	<5	78	<0.5	15	<5	< 0.02	<5	<0.5
BC-SB31-20	20	< 0.04	<1	NA	5.7	81	<0.5	15	<5	< 0.02	<5	<0.5
BC-SB31-30	30	< 0.04	<1	NA	6.6	110	<0.5	20	<5	< 0.02	<5	<0.5
BC-SB31-40	40	< 0.04	<1	NA	<5	91	<0.5	9.7	<5	<0.1	<5	<0.5
BC-SB31-50	50	< 0.04	<1	NA	<5	150	<0.5	12	<5	< 0.02	<5	0.67
Soil Boring BC-SB32	•				•	•				•		
BC-SB32-0	0	< 0.04	<1	NA	12	120	<0.5	32	14	< 0.02	<5	<0.5
BC-SB32-1	1	< 0.04	<1	NA	11	130	<0.5	27	17	< 0.02	<5	<0.5
Soil Boring BC-SB33												
BC-SB33-0	0	< 0.04	7.2	NA	6.3	130	<0.5	23	8.8	< 0.02	<5	<0.5
BC-SB33-10	10	< 0.04	<1	NA	5.2	120	<0.5	13	5	< 0.02	<5	<0.5
Soil Boring BC-SB34		-									-	
BC-SB34-0	0	< 0.04	21	NA	5.7	100	<0.5	21	7.3	< 0.02	<5	<0.5
BC-SB34-10	10	< 0.04	<1	NA	5.8	140	<0.5	18	5.8	< 0.02	<5	<0.5
Soil Boring BC-SB45												
BC-SB45-0	0	NA	NA	NA	6.2	NA	NA	NA	NA	NA	NA	NA
BC-SB45-1	1	NA	NA	NA	<5.0	NA	NA	NA	NA	NA	NA	NA

B-Complex Soil Sample Analytical Results for Inorganics

Former Universal Propulsion Company, Inc. Phoenix, Arizona

Sample ID	Sample Depth (feet bgs)	Perchlorate (mg/kg)	Nitrate (mg/kg)	Acetate (mg/L)	Arsenic (mg/kg)	Barium (mg/kg)	Cadmium (mg/kg)	Chromium (mg/kg)	Lead (mg/kg)	Mercury (mg/kg)	Selenium (mg/kg)	Silver (mg/kg)
Residential Soil Remed	liation Level	55	100,000	NE	10	15,000	39	120,000	400	23	390	390
Soil Boring BC-SB46												
BC-SB46-0	0	NA	NA	NA	7.2	NA	NA	NA	NA	NA	NA	NA
BC-SB46-1	1	NA	NA	NA	5.9	NA	NA	NA	NA	NA	NA	NA
Soil Boring BC-SB47												
BC-SB47-0	0	<0.020	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BC-SB47-1	1	<0.020	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BC-SB47-2	2	<0.020	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Soil Boring BC-SB48												
BC-SB48-0	0	<0.020	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BC-SB48-1	1	<0.020	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BC-SB48-2	2	<0.020	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Soil Boring BC-SB49												
BC-SB49-0	0	<0.020	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BC-SB49-1	1	<0.020	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

Notes:

< = Analyte not reported above listed laboratory detection limit.

bgs = below ground surface

J = The analyte was positively identified; however, the result should be considered an estimated value.

mg/kg = milligrams per kilogram

mg/L = milligrams per liter

NA = not analyzed

NE = not established

C-Complex Soil Sample Analytical Results for Inorganics

Sample ID	Sample Depth (feet bgs)	Perchlorate (mg/kg)	Nitrate-N (mg/kg)	Arsenic (mg/kg)	Barium (mg/kg)	Cadmium (mg/kg)	Chromium (mg/kg)	Lead (mg/kg)	Mercury (mg/kg)	Selenium (mg/kg)	Silver (mg/kg)
Residential Soil R	emediation Level	55	100,000	10	15,000	39	120,000	400	23	390	390
Soil Boring CC-SE	301										
CC-SB01-0	0	0.52	9.6	5.6	120	<0.5	25	15	< 0.02	<5	<0.5
CC-SB01-10	10	< 0.04	2	6.4	96	<0.5	12	<5	< 0.02	<5	<0.5
CC-SB01-20	20	< 0.04	3.4	<5	320	<0.5	16	5.3	< 0.02	<5	<0.5
CC-SB01-30	30	0.057	1.2	6.8	250	<0.5	26	7.2	< 0.02	<5	<0.5
CC-SB01-40	40	< 0.04	<1	5.8	240	<0.5	20	6.5	<0.02	<5	<0.5
CC-SB01-50	50	<0.04	<1	6.5	240	<0.5	15	6.7	<0.02	<5	<0.5
CC-SB01-60	60	<0.04	<1	6.1	240	<0.5	17	6.9	< 0.02	<5	<0.5
CC-SB01-70	70	<0.04	<1	6.2	260	<0.5	17	7.1	< 0.02	<5	<0.5
CC-SB01-80	80	<0.04	<1	5.9	260	<0.5	17	6.8	< 0.02	<5	11
CC-SB01-90	90	<0.04	<1	5.5	210	<0.5	15	7.5	< 0.02	<5	<0.5
CC-SB01-100	100	<0.04	<1	<5	210	0.84	20	5.9	< 0.04	<10	52
Soil Boring CC-SE	302				-	-			-		
CC-SB02-0	0	0.14	43	6	120	1.5	32	16	< 0.02	<10	<0.5
CC-SB02-10	10	< 0.04	<1.1	<5	90 J	<0.5	8.9	<5	< 0.02	<5	<0.5
CC-SB02-20	20	0.052	<1.1	<5	360	0.58	20	8.1	< 0.02	<5	<0.5
CC-SB02-30	30	< 0.04	<1.1	<5	220	<0.5	16	8.3	< 0.02	<5	<0.5
CC-SB02-40	40	< 0.04	<1.1	5.2	260	0.5	17	8.4	< 0.02	<5	3.6
CC-SB02-50	50	< 0.04	<1.1	5.2	230	0.57	15	7	< 0.02	<5	<0.5
Soil Boring CC-SE	303				-	-			-		
CC-SB03-0	0	0.042	<1	7.2	120	1.2	22	24	< 0.02	<5	<0.5
CC-SB03-10	10	0.062	1.7	<5	71 J	<0.5	7.3	<5	< 0.02	<5	<0.5
CC-SB03-20	20	0.11	NA	NA	NA	NA	NA	NA	NA	NA	NA
CC-SB03-30	30	< 0.04	NA	NA	NA	NA	NA	NA	NA	NA	NA
Soil Boring CC-SE					-	•			•	-	
CC-SB04-0	0	< 0.04	<1	<5	110	1.2	16	16	< 0.02	<5	<0.5
CC-SB04-10	10	< 0.04	<1	<5	680	<0.5	19	<5	< 0.02	<5	<0.5
CC-SB04-16	16	< 0.04	<1	6	770	<0.5	17	8.2	<0.02	<5	0.53
Soil Boring CC-SE											
CC-SB05-0	0	<0.04	<1	7.2	130	1.3	22	21	<0.02	<10	<0.5
CC-SB05-10	10	0.16	<1	6.3	130	0.72	23	<5	<0.02	<10	<0.5
CC-SB05-20	20	<0.04	1.4	<5	680	<0.5	28	6.2	<0.02	<5	<0.5
CC-SB05-30	30	<0.04	1.4	5.9	300	<0.5	31	7.3	<0.02	<5	<0.5
CC-SB05-36	36	<0.04	1.2	<5	190 J	<0.5	15	6.1	<0.02	<5	<0.5

C-Complex Soil Sample Analytical Results for Inorganics

Sample ID	Sample Depth (feet bgs)	Perchlorate (mg/kg)	Nitrate-N (mg/kg)	Arsenic (mg/kg)	Barium (mg/kg)	Cadmium (mg/kg)	Chromium (mg/kg)	Lead (mg/kg)	Mercury (mg/kg)	Selenium (mg/kg)	Silver (mg/kg)
Residential Soil R	emediation Level	55	100,000	10	15,000	39	120,000	400	23	390	390
Soil Boring CC-SE	306										
CC-SB06-0	0	< 0.04	<1	<5	120	0.76	21	17	< 0.02	<10	<0.5
CC-SB06-10	10	0.16	30	<5	140	<0.5	8.5	<5	< 0.02	<5	<0.5
CC-SB06-20	20	0.34	2.7	6.5	1100	<0.5	23	12	<0.02	<5	<0.5
CC-SB06-30	30	0.16	<1	<5	280	0.5	15	5.6	<0.02	<5	3.4
Soil Boring CC-SI	307										
CC-SB07-0	0	< 0.04	<1	7	150	0.95	21	12	0.02	<5	<0.5
CC-SB07-10	10	0.045	<1	7	130	<0.5	7.4	6	<0.02	<5	0.71
CC-SB07-20	20	< 0.04	NA	NA	NA	NA	NA	NA	NA	NA	NA
CC-SB07-25	25	< 0.04	NA	NA	NA	NA	NA	NA	NA	NA	NA
Soil Boring CC-SE	308										
CC-SB08-0	0	330	140	8.3	110	<0.5	24	8.8	0.022	<5	<0.5
CC-SB08-10	10	5.3	<1.1	<5	82	0.96	13	<5	<0.02	<5	<0.5
CC-SB08-20	20	7.6	1.4	6.2	100	0.66	15	<5	<0.02	<5	<0.5
CC-SB08-30	30	0.19	<1.1	7.3	200	0.52	7.7	5.8	<0.02	<5	1.7
Soil Boring CC-SI	309										
CC-SB09-0	0	0.26	1.1	7.7	140	0.52	20	7.3	0.02	<5	<0.5
CC-SB09-10	10	0.16	<1.1	<5	110	0.55	9.2	<5	<0.02	<5	<0.5
CC-SB09-20	20	3.6	1.5	<5	120	0.87	13	<5	<0.02	<5	<0.5
CC-SB09-30	30	0.25	<1	<5	1400	<0.5	11	6.7	<0.02	<5	0.74
Soil Boring CC-SE	<u>310</u>					-					
CC-SB10-10	10	23	6.9	<5	110	<0.5	17	<5	<0.02	<5	<0.5
CC-SB10-20	20	0.5	1.2	<5	890	0.56	16	5.3	<0.02	<5	<0.5
CC-SB10-30	30	0.34	<1.1	<5	240	0.67	15	8.3	<0.02	<5	<0.5
CC-SB10-40	40	0.12	<1.1	5.1	280	0.66	17	9.3	< 0.02	<5	<0.5
CC-SB10-50	50	0.074	<1.1	7	260	0.72	16	9.2	<0.02	<5	<0.5
CC-SB10-59	59	0.23	2.6	5.5	120	<0.5	12	8.2	<0.02	<5	0.88 J
Soil Boring CC-SE											
CC-SB11-10	10	0.078	1.5	<5	94	<0.5	16	<5	<0.02	<5	<0.5
CC-SB11-20	20	<0.04	<1	5.3	790	<0.5	20	5.9	<0.02	<5	<0.5
CC-SB11-30	30	<0.04	<1	5.3	240	<0.5	18	6.3	<0.02	<5	2.9
CC-SB11-40	40	<0.04	<1	<5	280	<0.5	18	7.7	< 0.02	<5	0.83
CC-SB11-50	50	<0.04	<1	6.7	280	0.51	17	8.1	<0.02	<5	<0.5

C-Complex Soil Sample Analytical Results for Inorganics

Sample ID	Sample Depth (feet bgs)	Perchlorate (mg/kg)	Nitrate-N (mg/kg)	Arsenic (mg/kg)	Barium (mg/kg)	Cadmium (mg/kg)	Chromium (mg/kg)	Lead (mg/kg)	Mercury (mg/kg)	Selenium (mg/kg)	Silver (mg/kg)
Residential Soil R	emediation Level	55	100,000	10	15,000	39	120,000	400	23	390	390
Soil Boring CC-SE	312										
CC-SB12-0	0	0.11	4.5	5.3	120	0.7	20	15	< 0.02	<5	<0.5
CC-SB12-10	10	0.17	<1	5.5	110	0.62	14	<5	< 0.02	<5	<0.5
CC-SB12-20	20	< 0.04	NA	NA	NA	NA	NA	NA	NA	NA	NA
CC-SB12-30	30	< 0.04	NA	NA	NA	NA	NA	NA	NA	NA	NA
Soil Boring CC-SE	313										
CC-SB13-0	0	<0.04	1.7	5.5	93	<0.5	15	7.5	<0.02	<5	<0.5
CC-SB13-10	10	<0.04	<1	<5	110	0.56	15	<5	<0.02	<5	<0.5
Soil Boring CC-SE	B14										
CC-SB14-0	0	0.74	3.8	5.9	110	1.1	37	61	<0.02	<5	<0.5
CC-SB14-10	10	1.5 J	1.2	<5	100	<0.5	14	<5	<0.02	<5	<0.5
CC-SB14-20	20	83	10	6.4	770	<0.5	22	6	<0.02	<5	<0.5
CC-SB14-30	30	1.3	1.6	5.6	210	<0.5	22	6.6	<0.02	<5	0.69
CC-SB14-40	40	0.074	<1	<5	250	<0.5	21	6.2	< 0.02	<5	<0.5
CC-SB14-50	50	< 0.04	<1	6	240	0.51	21	7.9	< 0.02	<5	0.89
Soil Boring CC-SE	B15										
CC-SB15-0	0	0.053	1.5	5.6	100	<0.5	19	33	< 0.02	<5	<0.5
CC-SB15-10	10	15	4.6	<5	190	<0.5	13	<5	< 0.02	<5	<0.5
CC-SB15-20	20	26	3.6	5.6	670	<0.5	23	7.7	<0.02	<5	<0.5
CC-SB15-30	30	0.38	<1	5.3	200	<0.5	19	5.5	< 0.02	<5	<0.5
CC-SB15-40	40	< 0.04	<1	5.4	250	<0.5	21	6.4	< 0.02	<5	<0.5
CC-SB15-50	50	<0.04	<1	6.1	250	0.5	20	7.3	<0.02	<5	<0.5
Soil Boring CC-SE	<u>316</u>					-			-	-	
CC-SB16-0	0	< 0.04	NA	NA	NA	NA	NA	NA	NA	NA	NA
CC-SB16-10	10	< 0.04	NA	NA	NA	NA	NA	NA	NA	NA	NA
CC-SB16-20	20	< 0.04	NA	NA	NA	NA	NA	NA	NA	NA	NA
CC-SB16-30	30	0.38	NA	NA	NA	NA	NA	NA	NA	NA	NA
Soil Boring CC-SE	1				-	•			T		
CC-SB17-0	0	4.7	NA	NA	NA	NA	NA	NA	NA	NA	NA
CC-SB17-10	10	< 0.04	NA	NA	NA	NA	NA	NA	NA	NA	NA
CC-SB17-20	20	< 0.04	NA	NA	NA	NA	NA	NA	NA	NA	NA
CC-SB17-30	30	< 0.04	NA	NA	NA	NA	NA	NA	NA	NA	NA
Soil Boring CC-SE	1						1				
CC-SB18-0	0	43	NA	NA	NA	NA	NA	NA	NA	NA	NA
CC-SB18-10	10	0.067	NA	NA	NA	NA	NA	NA	NA	NA	NA
CC-SB18-20	20	<0.04	NA	NA	NA	NA	NA	NA	NA	NA	NA
CC-SB18-30	30	<0.04	NA	NA	NA	NA	NA	NA	NA	NA	NA

C-Complex Soil Sample Analytical Results for Inorganics

Former Universal Propulsion Company, Inc. Facility Phoenix, Arizona

Sample ID	Sample Depth (feet bgs)	Perchlorate (mg/kg)	Nitrate-N (mg/kg)	Arsenic (mg/kg)	Barium (mg/kg)	Cadmium (mg/kg)	Chromium (mg/kg)	Lead (mg/kg)	Mercury (mg/kg)	Selenium (mg/kg)	Silver (mg/kg)
Residential Soil R	emediation Level	55	100,000	10	15,000	39	120,000	400	23	390	390
Soil Boring CC-SE	319					•				•	
CC-SB19-0	0	3.1	NA	NA	NA	NA	NA	NA	NA	NA	NA
CC-SB19-10	10	< 0.04	NA	NA	NA	NA	NA	NA	NA	NA	NA
CC-SB19-20	20	<0.04	NA	NA	NA	NA	NA	NA	NA	NA	NA
CC-SB19-30	30	<0.04	NA	NA	NA	NA	NA	NA	NA	NA	NA
Soil Boring CC-SE	320										
CC-SB20-0	0	0.44	NA	NA	NA	NA	NA	NA	NA	NA	NA
CC-SB20-10	10	7.8 J	NA	NA	NA	NA	NA	NA	NA	NA	NA
CC-SB20-20	20	3	NA	NA	NA	NA	NA	NA	NA	NA	NA
Soil Boring CC-SE	321										
CC-SB21-0	0	0.058	NA	NA	NA	NA	NA	NA	NA	NA	NA
CC-SB21-10	10	1.3	NA	NA	NA	NA	NA	NA	NA	NA	NA
CC-SB21-20	20	0.63	NA	NA	NA	NA	NA	NA	NA	NA	NA
Soil Boring CC-SE	325										
CC-SB25-0	0	0.031	NA	NA	NA	NA	NA	NA	NA	NA	NA
CC-SB25-1	1	<0.020	NA	NA	NA	NA	NA	NA	NA	NA	NA

Notes:

< = Analyte not reported above listed laboratory detection limit.

bgs = below ground surface

J = The analyte was positively identified; however, the result should be considered an estimated value.

mg/kg = milligrams per kilogram

NA = not analyzed

Old Burn Area Soil Sample Analytical Results for Inorganics

						Phoenix, Arizo	ona			-			
Sample ID	Sample Depth (feet bgs)	Perchlorate (mg/kg)	Nitrate-N (mg/kg)	Aluminum (mg/kg)	Arsenic (mg/kg)	Barium (mg/kg)	Cadmium (mg/kg)	Chromium (mg/kg)	Copper (mg/kg)	Lead (mg/kg)	Mercury (mg/kg)	Selenium (mg/kg)	Silver (mg/kg)
Residential Soil Rem	ediation Level	55	100,000	76,000	10	15,000	39	120,000	3,100	400	23	390	390
Soil Boring OB-SB01	[·							•			
OB-SB01-0	0	< 0.04	<1	25,000	7.2	140	<0.5	20	26	6.2	< 0.02	<5	<0.5
OB-SB01-10	10	0.061	<1	30,000	7.9	240	<0.5	23	11	<5	<0.02	<5	<0.5
Soil Boring OB-SB02	2									•	•		
OB-SB02-0	0	< 0.04	<1	19,000	9.6	110	<0.5	21	27	100	< 0.02	<5	<0.5
OB-SB02-8	8	< 0.04	<1	21,000	<5	150	0.73	20	27	<5	< 0.02	<5	<0.5
Soil Boring OB-SB03	3												
OB-SB03-0	0	< 0.04	<1	18,000	5.4	110	<0.5	18	22	14	< 0.02	<5	<0.5
OB-SB03-1	1	<0.04	<1	18,000	<5	130	<0.5	14	24	11	<0.02	<5	<0.5
Soil Boring OB-SB04	1												
OB-SB04-0	0	0.1	<1	22,000	5.4	120	<0.5	20	29	48	<0.02	<5	<0.5
OB-SB04-1	1	0.052	3.6	28,000	6.4	140	<0.5	20	31	<5	<0.02	<5	<0.5
OB-SB04-5	5	0.16	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
OB-SB04-10	10	<0.04	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Soil Boring OB-SB05	5												
OB-SB05-0	0	<0.04	<1	19,000	6.7	110	<0.5	17	22	35 J	<0.02	<5	<0.5
OB-SB05-1	1	<0.04	<1	21,000	5.6	140	<0.5	16	29	<5	<0.02	<5	<0.5
Soil Boring OB-SB06	6												
OB-SB06-0	0	0.052	<1	21,000	5.3	150	<0.5	17	31	57	<0.02	<5	<0.5
OB-SB06-1	1	<0.04	<1	24,000	5.4	160	<0.5	20	26	<5	<0.02	<5	<0.5
Soil Boring OB-SB07	7												
OB-SB07-0	0	<0.04	<1	18,000	5.5	110	<0.5	15	31	76	<0.02	<5	<0.5
OB-SB07-1	1	<0.04	<1	20,000	5.5	120	<0.5	15	34	21	<0.02	<5	<0.5
Soil Boring OB-SB08	3												
OB-SB08-0	0	<0.04	<1	21,000	5.9	110	<0.5	16	33	450	<0.02	<5	<0.5
OB-SB08-1	1	<0.04	<1	21,000	<5	120	<0.5	18	33	130	<0.02	<5	<0.5
Soil Boring OB-SB09)												
OB-SB09-0	0	<0.04	<1	20,000	5.9	100	0.97	17	130 J	100 J	<0.02	<5	<0.5
OB-SB09-1	1	<0.04	<1	22,000	6.4	120	<0.5	17	35	13	<0.02	<5	<0.5
OB-SB09-2	2	<0.04	<1	21,000	<5	82	<0.5	16	30	18	<0.02	<5	<0.5
Soil Boring OB-SB10													
OB-SB10-0	0	<0.04	<1	16,000	8.6	120	<0.5	15	26	150	<0.02	<5	<0.5
OB-SB10-1	1	<0.04	<1	19,000	5.8	110	0.98	15	31	30	<0.02	<5	<0.5
OB-SB10-2	2	<0.04	<1	18,000	7	110	<0.5	14	32	44	<0.02	<5	<0.5
Soil Boring OB-SB11													
OB-SB11-0	0	<0.04	1.6	18,000	6.8	110	0.96	16	47	98	<0.02	<5	<0.5
OB-SB11-1	1	<0.04	<1	19,000	6.6	110	<0.5	14	32	13	<0.02	<5	<0.5
OB-SB11-2	2	<0.04	<1	21,000	6	110	<0.5	16	33	11	<0.02	<5	<0.5
Soil Boring OB-SB12		-					1	1			-	1	
OB-SB12-0	0	<0.04	1.6	20,000	5.4	110	1.8	21	26	230	<0.02	<5	<0.5
OB-SB12-1	1	<0.04	<1	30,000	<5	150	<0.5	32	15	7	<0.02	<5	<0.5
Soil Boring OB-SB13		-					1	1			-	1	
OB-SB13-0	0	<0.04	<1	24,000	<5	120	<0.5	22	29	<5	<0.02	<5	<0.5
OB-SB13-1	1	<0.04	<1	24,000	<5	130	<0.5	24	22	<5	<0.02	<5	<0.5

Old Burn Area Soil Sample Analytical Results for Inorganics

						Phoenix, Arizo	ona						
Sample ID	Sample Depth (feet bgs)	Perchlorate (mg/kg)	Nitrate-N (mg/kg)	Aluminum (mg/kg)	Arsenic (mg/kg)	Barium (mg/kg)	Cadmium (mg/kg)	Chromium (mg/kg)	Copper (mg/kg)	Lead (mg/kg)	Mercury (mg/kg)	Selenium (mg/kg)	Silver (mg/kg)
Residential Soil Ren	nediation Level	55	100,000	76,000	10	15,000	39	120,000	3,100	400	23	390	390
Soil Boring OB-SB1	4					· · · ·							
OB-SB14-0	0	<0.04	<1	20,000	6.2	120	<0.5	17	23	<5	< 0.02	<5	<0.5
OB-SB14-1	1	<0.04	<1	12,000	11	95	<0.5	9.5	9.7	<5	< 0.02	<5	<0.5
Soil Boring OB-SB1	5												
OB-SB15-0	0	<0.04	<1	24,000	<5	98	<0.5	20	28	11	< 0.02	<5	<0.5
OB-SB15-1	1	<0.04	<1	19,000	6.9	79	<0.5	16	27	10	< 0.02	<5	<0.5
Soil Boring OB-SB1	6												
OB-SB16-0	0	<0.04	<1	31,000	5.7	140	0.51	23	36	7.8	< 0.02	<5	<0.5
OB-SB16-1	1	<0.04	<1	27,000	5.5	150	<0.5	18	28	<5	< 0.02	<5	<0.5
Soil Boring OB-SB1	7												
OB-SB17-0	0	< 0.04	1.7	20,000	6.1	110	<0.5	23	30	68	< 0.02	<5	<0.5
OB-SB17-1	1	< 0.04	<1	21,000	6.1	110	<0.5	16	31	11	<0.02	<5	<0.5
Soil Boring OB-SB1	8					-	•			-		•	
OB-SB18-0	0	< 0.04	1.1	19,000	6.1	150	0.53	17	31	310	< 0.02	<5	<0.5
OB-SB18-1	1	< 0.04	<1	20,000	5.5	120	<0.5	15	31	6.1	< 0.02	<5	<0.5
Soil Boring OB-SB1	9			· · ·						•			
OB-SB19-0	0	< 0.04	<1	19,000	<5	150	<0.5	18	39	<5	< 0.02	<5	<0.5
OB-SB19-1	1	< 0.04	<1	23,000	6.2	160	<0.5	22	58	<5	< 0.02	<5	<0.5
Soil Boring OB-SB2	0												
OB-SB20-0	0	< 0.04	<1	22,000	5.4	120	<0.5	23	37	630	< 0.02	<5	<0.5
OB-SB20-1	1	< 0.04	<1	24,000	<5	140	<0.5	18	31	5.2	0.023	<5	<0.5
Soil Boring OB-SB2	1												
OB-SB21-0	0	< 0.04	<1	23,000	<5	110	<0.5	19	27	15	< 0.02	<5	<0.5
OB-SB21-1	1	< 0.04	<1	20,000	<5	110	<0.5	16	25	5.2	0.028	<5	<0.5
Soil Boring OB-SB2	2			,									
OB-SB22-0	0	< 0.04	<1	22,000	5.2	120	<0.5	14	31	<5	< 0.02	<5	<0.5
OB-SB22-1	1	< 0.04	<1	22,000	6	110	<0.5	17	29	<5	< 0.02	<5	<0.5
Soil Boring OB-SB2	3			,									
OB-SB23-0	0	<0.2	48	23,000	5.8	120	<0.5	21	41	18	< 0.02	<5	<0.5
OB-SB23-1	1	< 0.04	5	24,000	6	140	<0.5	20	30	<5	< 0.02	<5	<0.5
Soil Boring OB-SB2	4			,									
OB-SB24-0	0	< 0.04	<1	23,000	<5	120	<0.5	20	28	<5	< 0.02	<5	<0.5
OB-SB24-1	1	0.8	76	24,000	<5	120	< 0.5	18	28	<5	< 0.02	<5	<0.5
OB-SB24-5	5	< 0.04	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
OB-SB24-10	10	< 0.04	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Soil Boring OB-SB2				<u> </u>							,		
OB-SB25-0	0	<0.04	<1	25,000 J	5.3 J	120	<0.5	22	32 J	5.5 J	0.025	<5	<0.5
OB-SB25-1	1	0.061	<1	19,000	<5	110	< 0.5	14	22	<5	< 0.02	<5	<0.5
OB-SB25-5	5	0.046	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
OB-SB25-10	10	0.052	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
OB-SB25-20	20	< 0.04	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
OB-SB25-30	30	<0.04	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Soil Boring OB-SB2													
OB-SB26-0	0	0.072	1.6	20,000	6.3	120	<0.5	21	29	28	0.022 J	<5	<0.5
OB-SB26-1	1	< 0.04	10	22,000	5	140	<0.5	19	29	<5	< 0.02	<5	<0.5
	1	NU.UT	10	-2,000	v		10.0		20		1 10.02		20.0

Old Burn Area Soil Sample Analytical Results for Inorganics

Sample II) I I I I I I I I I I I I I I I I I	(mg/kg) (n 390 - <5 - <5 - <5 - <5 - <5 - ×5 - ×5 - ×5 - ×5 - ×5 - ×5 - ×5 - ×5 - ×5 - ×5 - ×5 - <5 - <5 -	Silver (mg/kg) 390 <0.5 <0.5 <0.5 <0.5 NA NA NA <0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5<0.5
Soil Boring OB-SB27 OP OP<	<5 <5 <5 NA NA NA 5<br <5 NA NA NA 	<0.5 <0.5 <0.5 <0.5 NA NA NA <0.5 <0.5 <0.5 NA NANA
Soil Boring OB-SB27 OB-SB27-0 0 <0.04	<5 <5 <5 NA NA NA <5<5NA<5<5<5	<0.5 <0.5 <0.5 NA NA <0.5 <0.5 <0.5 NA NA NA
OB-SB27-1 1 <0.04 <1 22,000 <5 120 <0.5 16 44 <5 <0.02 Soil Boring OB-SB28	<5 <5 <5 NA NA NA <5	<0.5 <0.5 <0.5 NA NA <0.5 <0.5 <0.5 NA NA NA
OB-SB27-1 1 <0.04 <1 22,000 <5 120 <0.5 16 44 <5 <0.02 Soil Boring OB-SB28	<5 <5 NA NA NA 5<br <5 NA NA SA <5 <5 <5	<0.5 <0.5 NA NA <0.5 <0.5 <0.5 NA NA NA
OB-SB28-0 0 <0.04 1.1 28,000 5.4 140 0.62 24 30 6.8 <0.02 OB-SB28-1 1 0.065 78 25,000 5.4 140 0.52 17 28 <5	<5 NA NA <5 <5 <5 NA NA NA <5 <5 <5	<0.5 NA NA <0.5 <0.5 NA NA NA
OB-SB28-0 0 <0.04 1.1 28,000 5.4 140 0.62 24 30 6.8 <0.02 OB-SB28-1 1 0.065 78 25,000 5.4 140 0.52 17 28 <5	<5 NA NA <5 <5 <5 NA NA NA <5 <5 <5	<0.5 NA NA <0.5 <0.5 NA NA NA
OB-SB28-5 5 <0.04 NA	NA NA <5 <5 NA NA <5 <5 <5 <5	NA NA <0.5 <0.5 NA NA NA
OB-SB28-10 10 <0.04 NA	NA <5 <5 NA NA <5 <5 <5 <5 <5 <	NA <0.5 <0.5 NA NA
Soil Boring OB-SB29 OB-SB29-0 0 <0.04 5.8 23,000 5.7 120 <0.5 22 29 14 <0.02 OB-SB29-1 1 0.44 73 25,000 5.1 130 0.51 16 29 <5 0.068 OB-SB29-5 5 0.13 NA Soil Boring OB-SB30 OB-SB30	<5 <5 NA NA 5<br <5	<0.5 <0.5 NA NA
OB-SB29-0 0 <0.04 5.8 23,000 5.7 120 <0.5 22 29 14 <0.02 OB-SB29-1 1 0.44 73 25,000 5.1 130 0.51 16 29 <5	<5 NA NA <5 <5 <5	<0.5 NA NA
OB-SB29-1 1 0.44 73 25,000 5.1 130 0.51 16 29 <5 0.068 OB-SB29-5 5 0.13 NA Soil Boring OB-SB3 OB-SB3 OB-SB3 OB-SB3 OB-SB3 OB-SB3 OB-SB3 OB-SB3 OB-SB3	<5 NA NA <5 <5 <5	<0.5 NA NA
OB-SB29-5 5 0.13 NA Soil Soil Soil Soil Soil Soil Soil	NA NA <5 <5	NA NA
OB-SB29-10 10 <0.04 NA	NA <5 <5	NA
Soil Boring OB-SB30 OB-SB30-0 0 <0.04 1.5 19,000 <5 130 <0.5 33 23 8.2 <0.02 OB-SB30-1 1 <0.04	<5 <5	
OB-SB30-0 0 <0.04 1.5 19,000 <5 130 <0.5 33 23 8.2 <0.02 OB-SB30-1 1 <0.04	<5	<0.5
OB-SB30-1 1 <0.04 6.2 26,000 <5 140 <0.5 35 33 5.9 0.022 Soil Boring OB-SB31	<5	<0.5
OB-SB30-1 1 <0.04 6.2 26,000 <5 140 <0.5 35 33 5.9 0.022 Soil Boring OB-SB31	<5	
		<0.5
OB-SB31-0 0 <0.04 <1 23,000 6.1 83 <0.5 35 81 <5 <0.02		
	<5	<0.5
OB-SB31-1 1 <0.04 2.8 24,000 <5 120 <0.5 45 30 11 <0.02	<5	<0.5
Soil Boring OB-SB32		
OB-SB32-0 0 <0.04 1.7 21,000 6 110 <0.5 17 89 100 <0.02	<5	<0.5
OB-SB32-1 1 <0.04 <1 24,000 6.8 99 <0.5 17 58 J 110 J <0.02	<5	<0.5
Soil Boring OB-SB33		
OB-SB33-0 0 <0.04 <1 23,000 6 100 <0.5 17 34 140 <0.02	<5	<0.5
OB-SB33-1 1 <0.04 1.2 21,000 5.6 100 <0.5 16 42 46 <0.02	<5	<0.5
Soil Boring OB-SB34		
OB-SB34-0 0 <0.04 2.8 15,000 5.4 110 <0.5 13 25 <5 <0.02		<0.5
OB-SB34-1 1 0.052 <1 23,000 7.2 130 <0.5 18 35 <5 <0.02		<0.5
OB-SB34-5 5 <0.04 NA	NA	NA
OB-SB34-10 10 <0.04 NA	NA	NA
Soil Boring OB-SB35		
OB-SB35-0 0 <0.04 <1 19,000 6.5 99 <0.5 16 31 17 <0.02		<0.5
OB-SB35-1 1 <0.04 <1 21,000 5 110 J <0.5 18 30 320 J <0.02	<5	<0.5
Soil Boring OB-SB36		
OB-SB36-0 0 NA NA NA NA NA NA 15 NA	NA	NA
Soil Boring OB-SB37		
OB-SB37-0 0 NA NA NA NA NA NA NA NA NA 20 NA	NA	NA
Soil Boring OB-SB38		
OB-SB38-0 0 NA NA NA NA NA NA NA NA A 36 NA	NA	NA
Soil Boring OB-SB39		
OB-SB39-0 0 NA NA NA NA NA NA NA NA NA 11 NA	NA	NA
Soil Boring OB-SB40		
OB-SB40-0 0 NA NA NA NA NA NA 2,800 NA	NA	NA
OB-SB40-1 1 NA NA NA NA NA NA 4,500 NA	NA	NA
OB-SB40-2 2 NA NA NA NA NA NA 230 J NA	NA	NA

Old Burn Area Soil Sample Analytical Results for Inorganics

Former Universal Propulsion Company, Inc. Facility Phoenix, Arizona

Sample ID	Sample Depth (feet bgs)	Perchlorate (mg/kg)	Nitrate-N (mg/kg)	Aluminum (mg/kg)	Arsenic (mg/kg)	Barium (mg/kg)	Cadmium (mg/kg)	Chromium (mg/kg)	Copper (mg/kg)	Lead (mg/kg)	Mercury (mg/kg)	Selenium (mg/kg)	Silver (mg/kg)
Residential Soil Rem	ediation Level	55	100,000	76,000	10	15,000	39	120,000	3,100	400	23	390	390
Soil Boring OB-SB41													
OB-SB41-0	0	NA	NA	NA	NA	NA	NA	NA	NA	460	NA	NA	NA
OB-SB41-1	1	NA	NA	NA	NA	NA	NA	NA	NA	28 J	NA	NA	NA
Soil Boring OB-SB42													
OB-SB42-0	0	NA	NA	NA	NA	NA	NA	NA	NA	140 J	NA	NA	NA
Soil Boring OB-SB43		· ·						· · ·					
OB-SB43-0	0	NA	NA	NA	NA	NA	NA	NA	NA	340	NA	NA	NA
Soil Boring OB-SB44										-			
OB-SB44-0	0	NA	NA	NA	NA	NA	NA	NA	NA	170	NA	NA	NA
Soil Boring OB-SB45							•						
OB-SB45-0	0	NA	NA	NA	NA	NA	NA	NA	NA	4,800	NA	NA	NA
OB-SB45-1	1	NA	NA	NA	NA	NA	NA	NA	NA	200 J	NA	NA	NA
OB-SB45-2	2	NA	NA	NA	NA	NA	NA	NA	NA	66 J	NA	NA	NA
Soil Boring OB-SB46													
OB-SB46-0	0	NA	NA	NA	NA	NA	NA	NA	NA	420	NA	NA	NA
OB-SB46-1	1	NA	NA	NA	NA	NA	NA	NA	NA	16 J	NA	NA	NA
Soil Boring OB-SB47	•												
OB-SB47-0	0	NA	NA	NA	NA	NA	NA	NA	NA	18 J	NA	NA	NA
Soil Boring OB-SB48													
OB-SB48-0	0	NA	NA	NA	NA	NA	NA	NA	NA	180 J	NA	NA	NA
Soil Boring OB-SB50													
OB-SB50-0	0	NA	NA	NA	7.9 J	NA	NA	NA	NA	NA	NA	NA	NA
OB-SB50-1	1	NA	NA	NA	5.0 J	NA	NA	NA	NA	NA	NA	NA	NA
Soil Boring OB-SB51													
OB-SB51-0	0	NA	NA	NA	7.0 J	NA	NA	NA	NA	NA	NA	NA	NA
OB-SB51-1	1	NA	NA	NA	6.5 J	NA	NA	NA	NA	NA	NA	NA	NA
Soil Boring OB-SB52													
OB-SB52-0	0	NA	NA	NA	6.3 J	NA	NA	NA	NA	NA	NA	NA	NA
OB-SB52-1	1	NA	NA	NA	5.5 J	NA	NA	NA	NA	NA	NA	NA	NA

Notes:

< = Analyte not reported above the listed laboratory detection limit.

bgs = below ground surface

J = The analyte was positively identified; however, the result should be considered an estimated value.

mg/kg = milligrams per kilogram

NA = not analyzed

Thermal Treatment Unit Soil Analytical Results for Inorganics

Sample ID	Sample Depth (feet bgs)	Perchlorate (mg/kg)	Nitrate-N (mg/kg)	Aluminum (mg/kg)	Arsenic (mg/kg)	Barium (mg/kg)	Cadmium (mg/kg)	Chromium (mg/kg)	Copper (mg/kg)	Lead (mg/kg)	Mercury (mg/kg)	Selenium (mg/kg)	Silver (mg/kg)
Residential Soil Rem		55	100,000	76,000	10	15,000	39	120,000	3,100	400	23	390	390
Soil Boring TT-SB01													
TT-SB01-0	0	0.053	<1	24,000	<5	140	<0.5	19	24	12	0.021	<5	<0.5
TT-SB01-1	1	0.14	<1	30,000	5.5	260	<0.5	39	Corrective	5.9	0.036	<5	<0.5
TT-SB01-5	5	0.25	NA	NA	NA	NA	NA	NA	42,186.00	NA	NA	NA	NA
TT-SB01-10	10	< 0.04	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Soil Boring TT-SB02												· · ·	
TT-SB02-0	0	0.18	<1	23,000	<5	99	<0.5	16	25	5.9	0.026	<5	<0.5
TT-SB02-1	1	0.28	1.1	21,000	<5	100	<0.5	20	28	11	0.029	<5	<0.5
TT-SB02-5	5	0.27	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TT-SB02-10	10	0.18	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TT-SB02-20	20	< 0.04	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TT-SB02-30	30	< 0.04	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Soil Boring TT-SB03													
TT-SB03-0	0	< 0.04	<1	26,000	<5	130	<0.5	21	29	8	0.023	<5	<0.5
TT-SB03-1	1	< 0.04	<1	26,000	5.7	140	<0.5	20	32	<5	< 0.02	<5	<0.5
Soil Boring TT-SB04	•		•	· · ·			•				•	•	
TT-SB04-0	0	0.044	<1	21,000	<5	100	<0.5	18	24	5.3	< 0.02	<5	<0.5
TT-SB04-1	1	0.071	<1	19,000	<5	110	<0.5	15	24	<5	< 0.02	<5	<0.5
TT-SB04-5	5	1.7	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TT-SB04-10	10	0.12	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TT-SB04-20	20	0.18	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TT-SB04-30	30	< 0.04	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Soil Boring TT-SB05	•						•				•	•	
TT-SB05-0	0	< 0.04	<1	17,000	<5	110	0.53	16	23	8.4	< 0.02	<5	<0.5
TT-SB05-1	1	< 0.04	<1	18,000	<5	110	<0.5	16	23	8.5	<0.02	<5	<0.5
Soil Boring TT-SB06				· ·									
TT-SB06-0	0	< 0.04	<1	21,000	5	120	< 0.5	18	28	9.2	< 0.02	<5	<0.5
TT-SB06-1	1	< 0.04	<1	18,000	<5	120	0.58	18	20	5.1	0.02	<5	<0.5
Soil Boring TT-SB07								•				· ·	
TT-SB07-0	0	< 0.04	<1	19,000	5.6	110	0.56	18	31	7.9	< 0.02	<5	<0.5
TT-SB07-1	1	< 0.04	<1	22,000	5.5	110	0.52	17	25	<5	<0.02	<5	<0.5
Soil Boring TT-SB08													
TT-SB08-0	0	<0.04	<1	20,000	<5	130	0.79	16	26	12	< 0.02	<5	<0.5
TT-SB08-1	1	< 0.04	<1	17,000	<5	120	<0.5	13	15	<5	<0.02	<5	<0.5
Soil Boring TT-SB09	·							•					
TT-SB09-0	0	0.05	<1	15,000	5	94	<0.5	13	18	6.4	<0.02	<5	<0.5
TT-SB09-1	1	0.49	<1	18,000	<5	98	<0.5	15	16	<5	0.038	<5	<0.5
TT-SB09-5	5	2.7	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TT-SB09-10	10	0.92	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TT-SB09-20	20	< 0.04	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TT-SB09-30	30	< 0.04	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

Thermal Treatment Unit Soil Analytical Results for Inorganics

Sample ID	Sample Depth (feet bgs)	Perchlorate (mg/kg)	Nitrate-N (mg/kg)	Aluminum (mg/kg)	Arsenic (mg/kg)	Barium (mg/kg)	Cadmium (mg/kg)	Chromium (mg/kg)	Copper (mg/kg)	Lead (mg/kg)	Mercury (mg/kg)	Selenium (mg/kg)	Silver (mg/kg)
Residential Soil Reme	ediation Level	55	100,000	76,000	10	15,000	39	120,000	3,100	400	23	390	390
Soil Boring TT-SB10													
TT-SB10-0	0	0.099	2	21,000	5.9	110	0.86	22	25	22	<0.02	<5	<0.5
TT-SB10-1	1	0.31	1.9	22,000	<5	110	<0.5	18	28	<5	0.022	<5	<0.5
TT-SB10-5	5	4.3	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TT-SB10-10	10	< 0.04	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Soil Boring TT-SB11													
TT-SB11-0	0	< 0.04	<1	18,000	<5	120	<0.5	16	22	8.2	<0.02	<5	<0.5
TT-SB11-1	1	< 0.04	<1	15,000	<5	100	<0.5	12	18	<5	<0.02	<5	<0.5
Soil Boring TT-SB12													
TT-SB12-0	0	< 0.04	<1	21,000	5.2	110	<0.5	20	30	5.3	< 0.02	<5	<0.5
TT-SB12-1	1	<0.04	<1	15,000	5.3	110	<0.5	12	20	<5	0.02	<5	<0.5
Soil Boring TT-SB13											-		
TT-SB13-0	0	0.045	<1	25,000	5.4	100	<0.5	20	24	5.3	0.025	<5	<0.5
TT-SB13-1	1	4.9	100	18,000	<5	99	<0.5	17	25	12	<0.02	<5	<0.5
TT-SB13-5	5	0.57	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TT-SB13-10	10	< 0.04	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Soil Boring TT-SB14													
TT-SB14-0	0	< 0.04	<1	22,000	5.2	120	< 0.5	15	31	9.9	0.027	<5	<0.5
TT-SB14-1	1	< 0.04	<1	24,000	6	110	<0.5	20	27	<5	<0.02	<5	<0.5
Soil Boring TT-SB15											•	•	
TT-SB15-0	0	< 0.04	<1	23,000	5.9	100	0.54	21	26	6.4	< 0.02	<5	<0.5
TT-SB15-1	1	0.079	<1	18,000	<5	130	<0.5	15	24	<5	<0.02	<5	<0.5
TT-SB15-5	5	1.1	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TT-SB15-10	10	< 0.04	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Soil Boring TT-SB16			•										
TT-SB16-0	0	0.055	<1	21,000	<5	100	0.76	26	24	7.3	0.03	<5	<0.5
TT-SB16-1	1	2.4 J	1.5	22,000	5.4	130	<0.5	19	24	<5	<0.02	<5	<0.5
TT-SB16-5	5	0.2	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TT-SB16-10	10	< 0.04	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Soil Boring TT-SB17			•										
TT-SB17-0	0	< 0.04	<1	23,000	<5	110	0.62	19	25	<5	<0.02	<5	<0.5
TT-SB17-1	1	0.37	<1	23,000	6.2	120	0.69	23	25	<5	< 0.02	<5	< 0.5
TT-SB17-5	5	0.65	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TT-SB17-10	10	0.19	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TT-SB17-20	20	0.63	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TT-SB17-30	30	0.12	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TT-SB17-40	40	0.077	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TT-SB17-50	50	< 0.04	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Soil Boring TT-SB18										,		· ·· ·	
TT-SB18-0	0	< 0.04	<1	22,000	<5	95	<0.5	22	27	8.3	< 0.02	<5	<0.5
TT-SB18-1	1	< 0.04	<1	21,000	<5	100	<0.5	19	24	7.7	< 0.02	<5	<0.5

Thermal Treatment Unit Soil Analytical Results for Inorganics

Sample ID	Sample Depth	Perchlorate	Nitrate-N	Aluminum	Arsenic	Barium	Cadmium	Chromium	Copper	Lead	Mercury	Selenium	Silver
-	(feet bgs)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Residential Soil Ren		55	100,000	76,000	10	15,000	39	120,000	3,100	400	23	390	390
Soil Boring TT-SB19		1	•	•		1	1			1	•	1 1	
TT-SB19-0	0	<0.04	<1	18,000	<5	100	<0.5	18	23	<5	<0.02	<5	<0.5
TT-SB19-1	1	<0.04	<1	17,000	<5	120	<0.5	15	28	<5	<0.02	<5	<0.5
Soil Boring TT-SB20		1	T	•		r	1	1		T	•	1 1	
TT-SB20-0	0	<0.04	<1	19,000	<5	100	<0.5	16	21	<5	<0.02	<5	<0.5
TT-SB20-1	1	<0.04	<1	17,000	<5	130	<0.5	16	18	<5	<0.02	<5	<0.5
Soil Boring TT-SB2		r	T	1		l	1	1		T	T	T	
TT-SB21-0	0	<0.04	<1	22,000	<5	110	<0.5	17	26	<5	<0.02	<5	<0.5
TT-SB21-1	1	<0.04	<1	16,000	<5	120	<0.5	12	24	<5	<0.02	<5	<0.5
Soil Boring TT-SB22	2		•			•	-			•	•		
TT-SB22-0	0	<0.04	<1	19,000	9.7	110	0.52	14	21	<5	<0.02	<5	<0.5
TT-SB22-1	1	<0.04	<1	16,000	<5	110	<0.5	11	18	<5	<0.02	<5	<0.5
Soil Boring TT-SB23		1											
TT-SB23-0	0	<0.04	<1	17,000	<5	93	<0.5	14	21	<5	<0.02	<5	<0.5
TT-SB23-1	1	<0.04	<1	18,000	7.1	130	<0.5	14	30	<5	0.025	<5	<0.5
Soil Boring TT-SB24	4		•				-			•	•		
TT-SB24-0	0	<0.04	<1	16,000	<5	280	<0.5	14	23	<5	0.02	<5	<0.5
TT-SB24-1	1	0.14	<1	15,000	<5	220	0.58	15	24	<5	<0.02	<5	<0.5
TT-SB24-5	5	0.55	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TT-SB24-10	10	16	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TT-SB24-20	20	0.21	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TT-SB24-30	30	0.73 J	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TT-SB24-40	40	0.63	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TT-SB24-50	50	1.2	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Soil Boring TT-SB2	5												
TT-SB25-0	0	1.4	1.3	25,000	<5	130	<0.5	21	29	5.3	0.028	<5	<0.5
TT-SB25-1	1	0.82	<1	27,000	7.9	140	<0.5	22	34	<5	<0.02	<5	<0.5
TT-SB25-5	5	11	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TT-SB25-10	10	1.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TT-SB25-20	20	<0.04	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TT-SB25-30	30	0.057	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TT-SB25-40	40	<0.04	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TT-SB25-50	50	<0.04	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Soil Boring TT-SB26	6												
TT-SB26-0	0	<0.04	<1	25,000	<5	130	<0.5	49 J	27	12	0.021	<5	<0.5
TT-SB26-1	1	<0.04	1	26,000	5.9	170	<0.5	41	27	5.3	<0.02	<5	<0.5
Soil Boring TT-SB27	7												
TT-SB27-0	0	0.24	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TT-SB27-5	5	4.4	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TT-SB27-10	10	<0.020	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

Thermal Treatment Unit Soil Analytical Results for Inorganics

Former Universal Propulsion Company, Inc. Facility Phoenix, Arizona

Sample ID	Sample Depth (feet bgs)	Perchlorate (mg/kg)	Nitrate-N (mg/kg)	Aluminum (mg/kg)	Arsenic (mg/kg)	Barium (mg/kg)	Cadmium (mg/kg)	Chromium (mg/kg)	Copper (mg/kg)	Lead (mg/kg)	Mercury (mg/kg)	Selenium (mg/kg)	Silver (mg/kg)
Residential Soil Rem	ediation Level	55	100,000	76,000	10	15,000	39	120,000	3,100	400	23	390	390
Soil Boring TT-SB28													
TT-SB28-0	0	0.089	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TT-SB28-5	5	0.11	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TT-SB28-10	10	<0.020	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Soil Boring TT-SB29													
TT-SB29-0	0	0.051	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TT-SB29-5	5	1.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TT-SB29-10	10	<0.020	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Soil Boring TT-SB30													
TT-SB30-0	0	0.020	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TT-SB30-10	10	0.041	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TT-SB30-20	20	0.21	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

Notes:

< = Analyte not reported above the listed laboratory detection limit.

bgs = below ground surface

J = The analyte was positively identified; however, the result should be considered an estimated value.

mg/kg = milligrams per kilogram

NA = not analyzed

Sample ID	Sample Depth (feet bgs)	Perchlorate (mg/kg)	Lead (mg/kg)	Nitrate-N (mg/kg)
Residential Soil Remed	iation Level	55	400	100,000
Soil Boring WB-SB01				
WB-SB01-10	10	1.9	<5	2.9
WB-SB01-20	20	2.8	<5	1.6
WB-SB01-30	30	0.28	<5	<1
WB-SB01-40	40	0.14	<5	<1
WB-SB01-50	50	0.15	<5	<1
WB-SB01-60	60	0.093	<5	<1
WB-SB01-70	70	<0.04	6.4	<1
WB-SB01-80	80	<0.04	8.9	<1
WB-SB01-90	90	<0.04	8.8	<1
WB-SB01-100	100	<0.04	8.8	<1
WB-SB01-125	125	<0.04	7.1	<1
WB-SB01-150	150	<0.04	6.7	<1
WB-SB01-165	165	<0.04	5.6	<1
Soil Boring WB-SB02				
WB-SB02-10	10	0.9 J	<5	2.8
WB-SB02-20	20	<0.04 UJ	<5	<1
WB-SB02-30	30	<0.04 UJ	<5	<1
WB-SB02-40	40	<0.04 UJ	<5	<1
WB-SB02-50	50	<0.04 UJ	<5	<1
WB-SB02-60	60	<0.04 UJ	<5	<1
WB-SB02-70	70	<0.04	5.1	<1
WB-SB02-80	80	<0.04	<5	<1
WB-SB02-90	90	<0.04	<5	<1
WB-SB02-100	100	<0.04	<5	<1
WB-SB02-125	125	<0.04	<5	<1
WB-SB02-150	150	<0.04	<5	<1
WB-SB02-175	175	<0.04	<5	<1
Soil Boring WB-SB03	-			
WB-SB03-10	10	0.77	<5	<1
WB-SB03-20	20	0.089	<5	<1
WB-SB03-30	30	0.084	<5	<1
WB-SB03-40	40	<0.04	<5	<1
WB-SB03-50	50	<0.04	<5	<1
WB-SB03-60	60	<0.04	<5	<1
WB-SB03-70	70	<0.04	<5	<1
WB-SB03-80	80	<0.04	<5	<1
WB-SB03-90	90	< 0.04	<5	<1
WB-SB03-100	100	<0.04	<5	<1
WB-SB03-125	125	< 0.04	<5	<1
WB-SB03-150	150	<0.04	<5	<1
WB-SB03-175	175	<0.04	<5	<1
WB-SB03-200	200	<0.04	5.8	<1
WB-SB03-216	216	0.14	<5	<1

Sample ID	Sample Depth (feet bgs)	Perchlorate (mg/kg)	Lead (mg/kg)	Nitrate-N (mg/kg)
Residential Soil Remed	iation Level	55	400	100,000
Soil Boring WB-SB04				
WB-SB04-10	10	0.077	6.9	<1
WB-SB04-20	20	<0.04	6.9	<1
WB-SB04-30	30	<0.04	7.6	<1
WB-SB04-40	40	<0.04	6.2	<1
WB-SB04-50	50	<0.04	7.3	<1
WB-SB04-60	60	<0.04	7	<1
WB-SB04-70	70	<0.04	8.2	<1
WB-SB04-80	80	<0.04	7.9	<1
WB-SB04-90	90	<0.04	6.9	<1
WB-SB04-100	100	<0.04	8.5	<1
WB-SB04-125	125	<0.04	8.1	<1
WB-SB04-150	150	<0.04	9.1	<1
WB-SB04-175	175	<0.04	6.5	<1
Soil Boring WB-SB05				
WB-SB05-10	10	2.9	8.6	1.9
WB-SB05-20	20	0.35	9.9	<1
WB-SB05-30	30	0.094	9.1	<1
WB-SB05-40	40	0.16	11	<1
WB-SB05-50	50	<0.04	9	<1
WB-SB05-60	60	0.3	7.6	<1
WB-SB05-70	70	<0.04	11 J	<1
WB-SB05-80	80	0.068	6.6	<1
WB-SB05-90	90	0.64	8.3	<1
WB-SB05-100	100	0.041	<5	<1
Soil Boring WB-SB06				
WB-SB06-10	10	130	<5	18
WB-SB06-20	20	53	<5	86
WB-SB06-30	30	21	<5	3.9
WB-SB06-40	40	34	<5	4.3
WB-SB06-50	50	51	<5	8.4
WB-SB06-60	60	84	<5	15
WB-SB06-70	70	98	<5	17
WB-SB06-80	80	85	<5	9
WB-SB06-90	90	93	<5	8.5
WB-SB06-99	100	61	<5	4.3
WB-SB06-125	125	35	<5	3.5
WB-SB06-150	150	8.9	<5	1.1
WB-SB06-175	175	32	<5	2.6

Sample ID	Sample Depth (feet bgs)	Perchlorate (mg/kg)	Lead (mg/kg)	Nitrate-N (mg/kg)
Residential Soil Remed	iation Level	55	400	100,000
Soil Boring WB-SB07	-			
WB-SB07-10	10	4.8	<5	1.5
WB-SB07-20	20	92	<5	7
WB-SB07-30	30	41	5.1	1.9
WB-SB07-40	40	39	<5	5
WB-SB07-50	50	7.1	<5	1.2
WB-SB07-60	60	24	<5	2.6
WB-SB07-70	70	13	<5	1.1
WB-SB07-80	80	2.2	<5	<1
WB-SB07-90	90	0.065	<5	<1
WB-SB07-100	100	2	<5	<1
WB-SB07-125	125	0.52	<5	<1
WB-SB07-150	150	1.5 J	<5	<1
WB-SB07-175	175	0.7	<5	<1
Soil Boring WB-SB08				
WB-SB08-10	10	<0.04	7	<1
WB-SB08-20	20	0.67	9.1	<1
WB-SB08-30	30	0.053	7.7	<1
WB-SB08-40	40	<0.04	7.3	<1
WB-SB08-50	50	<0.04	8.4	<1
WB-SB08-60	60	<0.04	7.7	<1
WB-SB08-70	70	<0.04	8.3	<1
WB-SB08-80	80	0.047	8.8	<1
WB-SB08-90	90	<0.04	7.7	<1
WB-SB08-100	100	<0.04	7.9	<1
WB-SB08-125	125	<0.04	8.9	<1
WB-SB08-150	150	<0.04	7.5	<1
WB-SB08-175	175	<0.04	8.1	<1
Soil Boring WB-SB09				
WB-SB09-10	10	<0.04	<5	<1
WB-SB09-20	20	0.049	<5	<1
WB-SB09-30	30	<0.04	<5	<1
WB-SB09-40	40	0.3	<5	<1
WB-SB09-50	50	0.36	6.5	<1
WB-SB09-60	60	<0.04	<5	<1
WB-SB09-70	70	<0.04	<5	<1
WB-SB09-80	80	<0.04	<5	<1
WB-SB09-90	90	<0.04	7.7	<1
WB-SB09-100	100	<0.04	6.1	<1

Sample ID	Sample Depth (feet bgs)	Perchlorate (mg/kg)	Lead (mg/kg)	Nitrate-N (mg/kg)
Residential Soil Remed	iation Level	55	400	100,000
Soil Boring WB-SB10				
WB-SB10-10	10	<0.04	7.4	<1
WB-SB10-20	20	0.068	8	<1
WB-SB10-30	30	0.87	7.3	<1
WB-SB10-40	40	1.8	8.3	<1
WB-SB10-50	50	1.3	7.3	<1
WB-SB10-60	60	0.45	7.8	<1
WB-SB10-70	70	2	<5	<1
WB-SB10-80	80	2	<5	<1
WB-SB10-90	90	2.1	5.6	<1
WB-SB10-100	100	4.2	<5	<1
Soil Boring WB-SB11				
WB-SB11-10	10	0.081	5.3	<1
WB-SB11-20	20	0.061	8.2	<1
WB-SB11-30	30	0.34	8.3	<1
WB-SB11-40	40	4.3	8.3	1.8
WB-SB11-50	50	9.4	<5	<1
WB-SB11-60	60	15	8.8	1.1
WB-SB11-70	70	40	8.5	3.2
WB-SB11-80	80	32	<5	3.3
WB-SB11-90	90	13	6.9	<1
WB-SB11-100	100	0.64	7.9	<1
Soil Boring WB-SB12				
WB-SB12-10	10	<0.04	7.6	<1
WB-SB12-20	20	0.42	7.1	<1
WB-SB12-30	30	0.67	8.2	<1
WB-SB12-40	40	0.78	7	<1
WB-SB12-50	50	<0.04	7.7	<1
WB-SB12-60	60	<0.04	10	<1
WB-SB12-70	70	<0.04	7.7	<1
WB-SB12-80	80	<0.04	8.9	<1
WB-SB12-90	90	<0.04	9.9	<1
WB-SB12-100	100	<0.04	7	<1
WB-SB12-125	125	<0.04	8.2	<1
WB-SB12-150	150	<0.04	7.6	<1
WB-SB12-175	175	<0.04	11	<1
Soil Boring WB-SB13	1			
WB-SB13-0	0	NA	20	NA
WB-SB13-01	1	NA	57 J	NA
WB-SB13-10	10	NA	<5.0 UJ	NA
WB-SB13-20	20	NA	<5.0 UJ	NA
Soil Boring WB-SB14	1			
WB-SB14-0	0	NA	21	NA
WB-SB14-1	1	NA	<5.0	NA
WB-SB14-2	2	NA	<5.0	NA

Sample ID	Sample Depth (feet bgs)	Perchlorate (mg/kg)	Lead (mg/kg)	Nitrate-N (mg/kg)
Residential Soil Remed	iation Level	55	400	100,000
Soil Boring WB-SB15				
WB-SB15-0	0	NA	31	NA
WB-SB15-1	1	NA	22	NA
Soil Boring A	-			
A	0.25	<2	NA	NA
А	1	<2	NA	NA
Soil Boring B	1 1			
В	0.25	7.95	NA	NA
В	1	150	NA	NA
Soil Boring C				
C C	0.25	<2.0	NA	NA
	1	35	NA	NA
Soil Boring D		1055		
D	0.25	1800	NA	NA
D	1	390	NA	NA
Soil Boring A		1055		
E	0.25	1200	NA	NA
E	1	380	NA	NA
Soil Boring F			• • •	
F	0.25	26	NA	NA
F	1	200	NA	NA
Soil Boring G				
G	0.25	<2.0	NA	NA
G	1	<2.0	NA	NA
Soil Boring H	· · · - · · ·			
Н	0.25	<2.0	NA	NA
H	1	<2.0	NA	NA
Soil Boring I	0.07	0.0	N 1 A	N 1 A
 	0.25	<2.0	NA	NA
	1	<2.0	NA	NA
Soil Boring J		0.0	N I A	
J	0.25	<2.0	NA	NA
J Ostil Dastas K	1	<2.0	NA	NA
Soil Boring K		0.0	N I A	
K	0.25	<2.0	NA	NA
K	1	<2.0	NA	NA
Soil Boring L		0.0	NI A	NI A
	0.25	<2.0	NA	NA
	1	<2.0	NA	NA
Soil Boring M	0.05	0.0	N I A	
M	0.25	<2.0	NA	NA
M	1	<2.0	NA	NA
Soil Boring N		0.0	N/A	
N	0.25	<2.0	NA	NA
Ν	1	<2.0	NA	NA

Sample ID	Sample Depth (feet bgs)	Perchlorate (mg/kg)	Lead (mg/kg)	Nitrate-N (mg/kg)
Residential Soil Remed	iation Level	55	400	100,000
Soil Boring O				
0	0.25	<2.0	NA	NA
0	1	<2.0	NA	NA
Soil Boring P				-
Р	0.25	<2.0	NA	NA
Р	1	<2.0	NA	NA
Soil Boring Q				
Q	0.25	<2.0	NA	NA
Q	1	<2.0	NA	NA
Soil Boring R				
R	0.25	<2.0	NA	NA
R	1	NA	NA	NA
Soil Boring S				
S	0.25	<2.0	NA	NA
S	1	<2.0	NA	NA
Soil Boring T				
Т	0.25	<2.0	NA	NA
Т	1	<2.0	NA	NA
Soil Boring U				
U	0.25	<2.0	NA	NA
U	1	2.4	NA	NA
Soil Boring V				
V	0.25	<2.0	NA	NA
V	1	<2.0	NA	NA
Soil Boring W	· ·			
W	0.25	<2.0	NA	NA
W	1	<2.0	NA	NA
Soil Boring X	· ·			
X	0.25	<2.0	NA	NA
X	1	<2.0	NA	NA
Soil Boring B, B1, B7	· ·			
B, B1, B7	1	150	NA	NA
B, B1, B7	2	152	NA	NA
B, B1, B7	3	173	NA	NA
B, B1, B7	5	40	NA	NA
B, B1, B7	7	23	NA	NA
Soil Boring B2	ļ <i>i</i>	20		
B2	1	13	NA	NA
B2	2	48	NA	NA
B2	3	85	NA	NA
Soil Boring B3	<u> </u>	00		
B3	1	<2	NA	NA
B3	2		NA	NA
DJ	2	<2	INA	INA

Sample ID	Sample Depth (feet bgs)	Perchlorate (mg/kg)	Lead (mg/kg)	Nitrate-N (mg/kg)
Residential Soil Reme	ediation Level	55	400	100,000
Soil Boring B4				
B4	1	23	NA	NA
B4	2	27	NA	NA
Soil Boring B5				
B5	0.5	19.7	NA	NA
B5	5	3	NA	NA
B5	7.5	0.19	NA	NA
Soil Boring B6				
B6	2.5	0.41	NA	NA
B6	5	<1	NA	NA
B6	7.5	<1	NA	NA
Soil Boring B8				
B8	2.5	22.3	NA	NA
B8	5	46	NA	NA
B8	7.5	24	NA	NA
Soil Boring C5				
C5	2.5	54.1	NA	NA
C5	5	49	NA	NA
C5	7.5	46	NA	NA
C5	10	1.8	NA	NA
Soil Boring D, D1, D5				
D, D1, D5	2	122	NA	NA
D, D1, D5	5	163	NA	NA
D, D1, D5	7.5	236	NA	NA
D, D1, D5	10	193	NA	NA
D, D1, D5	15	358	NA	NA
D, D1, D5	20	369	NA	NA
D, D1, D5	25	232	NA	NA
D, D1, D5	30	255	NA	NA
D, D1, D5	40	150	NA	NA
D, D1, D5	50	20	NA	NA
D, D1, D5	59	5	NA	NA
D, D1, D5	67	0.1	NA	NA
Soil Boring D4				
D4	0.25	22	NA	NA
D4	1	176	NA	NA
D4	2	115	NA	NA
Soil Boring E, E1				
E, E1	2	107	NA	NA
E, E1	3	149	NA	NA
E, E1	4	158	NA	NA

Sample ID	Sample Depth (feet bgs)	Perchlorate (mg/kg)	Lead (mg/kg)	Nitrate-N (mg/kg)
Residential Soil Reme	diation Level	55	400	100,000
Soil Boring E5				
E5	2.5	10.9	NA	NA
E5	5	5	NA	NA
E5	7.5	3	NA	NA
E5	10	0.19	NA	NA
Soil Boring E6				
E6	5	87.4	NA	NA
E6	7.5	95.4	NA	NA
E6	10	53.8	NA	NA
E6	15	55	NA	NA
E6	20	30.7	NA	NA
Soil Boring ED2				-
ED2	0.25	270	NA	NA
ED2	1	55	NA	NA
ED2	2.0	101	NA	NA
ED2	3	95	NA	NA
Soil Boring ED3				
ED3	0.25	3	NA	NA
ED3	1	2.9	NA	NA
ED3	2	9	NA	NA
Soil Boring F, F1, F7				
F, F1, F7	2	154	NA	NA
F, F1, F7	5	73	NA	NA
F, F1, F7	7.5	35	NA	NA
F, F1, F7	10	9	NA	NA
Soil Boring F2				
F2	1	2.1	NA	NA
F2	2	65	NA	NA
Soil Boring F3				
F3	1	<2	NA	NA
F3	2	9	NA	NA
Soil Boring F5	•			
F5	1	22	NA	NA
F5	2	148	NA	NA
F5	3	203	NA	NA
Soil Boring F8				
F8	2.5	3.2	NA	NA
F8	5	41	NA	NA
F8	7.5	50	NA	NA
F8	10	21	NA	NA
Soil Boring F9		-		<u> </u>
F9	2.5	23.8	NA	NA
F9	5	2	NA	NA
F9	7.5	<0.1	NA	NA
F9	10	<0.1	NA	NA

Waterbore Area Soil Analytical Results for Inorganics

Sample ID	Sample Depth (feet bgs)	Perchlorate (mg/kg)	Lead (mg/kg)	Nitrate-N (mg/kg)
Residential Soil Remed	iation Level	55	400	100,000
Soil Boring FE4				
FE4	0.25	82	NA	NA
FE4	1	73	NA	NA
FE4	2	88	NA	NA
FE4	3	72	NA	NA
Soil Boring SH-1				
SH-1	0-10	2.3	NA	NA
SH-1	10-20	2.6	NA	NA
SH-1	20-30	0.4	NA	NA
SH-1	30-40	0.13	NA	NA
SH-1	40-50	0.1	NA	NA

Former Universal Propulsion Company, Inc. Facility Phoenix, Arizona

Notes:

< = Analyte not reported above the listed laboratory detection limit.

bgs = below ground surface

J = The analyte was positively identified; however, the result should be considered an estimated value.

NA = not analyzed

mg/kg = milligrams per kilogram

UJ = Estimated laboratory detection limit.

Waterbore Area Supplemental Soil Analytical Results for Metals

Former Universal Propulsion Company, Inc. Facility Phoenix, Arizona

Sample ID	Sample Depth (feet bgs)	Arsenic (mg/kg)	Barium (mg/kg)	Cadmium (mg/kg)	Chromium (mg/kg)	Lead (mg/kg)	Mercury (mg/kg)	Selenium (mg/kg)	Silver (mg/kg)
Residential Soil Reme	diation Level	10	15,000	39	120,000	400	23	390	390
Soil Boring WB-SB13									
WB-SB13-0	0	<5.0	130	<0.50	17	20	<0.020	<5.0	<0.50
WB-SB13-1	1	5.8	110	<0.50	13	57 J	<0.10	<5.0	<0.50
WB-SB13-10	10	5.7	170	<0.50	10	<5.0 UJ	<0.10	<5.0	<0.50
WB-SB13-20	20	7.8	180	<0.50	15	<5.0 UJ	<0.10	<5.0	<0.50
Soil Boring WB-SB14									
WB-SB14-0	0	<5.0	96	0.88	15	21	<0.020	<5.0	<0.50
WB-SB14-1	1	<5.0	110	<0.50	15	<5.0	<0.020	<5.0	<0.50
WB-SB14-2	2	<5.0	110	<0.50	14	<5.0	<0.020	<5.0	<0.50
Soil Boring WB-SB15									
WB-SB15-0	0	<5.0	100	<0.50	14	31	<0.020	<5.0	<0.50
WB-SB15-1	1	<5.0	120	<0.50	17	22	<0.020	<5.0	<0.50

Notes:

< = Analyte not reported above the listed laboratory detection limit.

bgs = below ground surface

J = The analyte was positively identified; however, the result should be considered an estimated value.

mg/kg = milligrams per kilogram

UJ = Estimated laboratory detection limit.

Storage Magazine Area Soil Analytical Results for Inorganics

Sample ID	Sample Depth (feet bgs)	Perchlorate (mg/kg)	Barium (mg/kg)	Boron (mg/kg)	Cadmium (mg/kg)	Chromium (mg/kg)	Cobalt (mg/kg)	Lead (mg/kg)
Residential Soil Rem		55	15,000	16,000	39	120,000	900	400
Soil Boring SMA-SB0	1	•				,		
SMA-SB01-0	0	<0.04	160	<50	<0.5	16	11	16
SMA-SB01-0.5	1	0.042	140	<50	<0.5	13	12	11
Soil Boring SMA-SB0	2							
SMA-SB02-0	0	<0.04	100	<50	<0.5	12	8.6	15
SMA-SB02-0.5	1	< 0.04	91	<50	<0.5	12	5	7.7
Soil Boring SMA-SB0	3			•				•
SMA-SB03-0	0	0.041	87	<50	<0.5	11	5.6	9.8
SMA-SB03-1	1	< 0.04	97	<50	<0.5	13	6.9	11
Soil Boring SMA-SB0	4							
SMA-SB04-0	0	0.23	57	<50	<0.5	5.3	<5	6.1
SMA-SB04-1	1	< 0.04	120	<50	<0.5	15	7.1	11
Soil Boring SMA-SB0	5							
SMA-SB05-0	0	2.5	150	<50	<0.5	24	15	29
SMA-SB05-1	1	0.37	130	<50	<0.5	19	11	13
SMA-SB05-5	5	6.2	100	<50	<0.5	6.5	6.1	6.3
SMA-SB05-10	10	1.6	86	<50	<0.5	6.2	<5	5.3
SMA-SB05-20	20	0.64	NA	NA	NA	NA	NA	NA
Soil Boring SMA-SB0	6							
SMA-SB06-0	0	5.1 J	130	<50	<0.5	17	10	100 J
SMA-SB06-1	1	0.52	120	<50	<0.5	15	8.5	35
SMA-SB06-5	5	0.036	100	<50	<0.5	<1	5	17
SMA-SB06-10	10	0.032	110	<50	<0.5	17	5	5.1
Soil Boring SMA-SB0	07			•				•
SMA-SB07-0	0	0.49	110	<50	<0.5	16	6.4	15
SMA-SB07-1	1	0.23	110	<50	<0.5	17	7.6	12
Soil Boring SMA-SB0	8							
SMA-SB08-0	0	2.1 J	110	<50	<0.5	19	6.9	21
SMA-SB08-0.5	1	1.3	110	<50	<0.5	18	7.7	14
Soil Boring SMA-SB0	9	• •						
SMA-SB09-0	0	0.47	120	<50	<0.5	22	7.9	15
SMA-SB09-1	1	0.67 J	130	<50	<0.5	22	8.8	15

Storage Magazine Area Soil Analytical Results for Inorganics

Sample ID	Sample Depth (feet bgs)	Perchlorate (mg/kg)	Barium (mg/kg)	Boron (mg/kg)	Cadmium (mg/kg)	Chromium (mg/kg)	Cobalt (mg/kg)	Lead (mg/kg)
Residential Soil Reme		55	15,000	16,000	39	120,000	900	400
Soil Boring SMA-SB1			10,000	10,000		120,000	500	400
SMA-SB10-0	0	0.92 J	110	<50	<0.5	16	8.6	29 J
SMA-SB10-1	1	1.0 J	100	<50	<0.5	18	7.6	15
Soil Boring SMA-SB1	1							
SMA-SB11-0	0	0.16 J	120	<50	<0.5	15	6.9	17
SMA-SB11-1	1	0.040 J	120	<50	<0.5	20	7.7	16
Soil Boring SMA-SB1	2	<u> </u>	-					
SMA-SB12-0	0	<0.04 UJ	83	<50	<0.5	8.8	6.0	12
SMA-SB12-1	1	<0.04 UJ	92	<50	<0.5	8	5.4	13
Soil Boring SMA-SB1	3				•			•
SMA-SB13-0	0	0.088 J	58	<50	<0.5	5.6	<5.0	9.2
SMA-SB13-1	1	<0.04 UJ	110	<50	<0.5	17	8.1	15
Soil Boring SMA-SB1	4			•				
SMA-SB14-0	0	<0.04 UJ	120	<50	<0.5	21	7.1	12
SMA-SB14-1	1	<0.04 UJ	110	<50	<0.5	20	6.6	9.4
Soil Boring SMA-SB1	5							
SMA-SB15-0	0	<0.04	110	<50	<0.5	22	7.6	15
SMA-SB15-1	1	<0.04	110	<50	<0.5	23	8.4	9
Soil Boring SMA-SB1	6							
SMA-SB16-0	0	0.76	100	<50	<0.5	9	7.3	11
SMA-SB16-1	1	0.18	110	<50	<0.5	22	7.5	9.7
Soil Boring SMA-SB1	7							
SMA-SB17-0	0	0.24	120	<50	<0.5	27	8.8	10
SMA-SB17-1	1	2.9	120	<50	<0.5	25	9.3	11
SMA-SB17-5	5	0.071	NA	NA	NA	NA	NA	NA
SMA-SB17-10	10	0.05	NA	NA	NA	NA	NA	NA
Soil Boring SMA-SB1	8							
SMA-SB18-0	0	0.086	110	<50	<0.5	15	6.4	14
SMA-SB18-1	1	<0.04	92	<50	<0.5	23	5.7	10
Soil Boring SMA-SB1	9							
SMA-SB19-0	0	<0.04	90	<50	<0.5	11	<5	10
SMA-SB19-1	1	0.044	95	<50	<0.5	14	6.2	11

Storage Magazine Area Soil Analytical Results for Inorganics

Former Universal Propulsion Company, Inc. Facility Phoenix, Arizona

Sample ID	Sample Depth (feet bgs)	Perchlorate (mg/kg)	Barium (mg/kg)	Boron (mg/kg)	Cadmium (mg/kg)	Chromium (mg/kg)	Cobalt (mg/kg)	Lead (mg/kg)
Residential Soil Remed	liation Level	55	15,000	16,000	39	120,000	900	400
Soil Boring SMA-SB20								
SMA-SB20-0	0	0.07	89	<50	<0.5	15	5.7	12
SMA-SB20-1	1	0.095	110	<50	<0.5	18	8.2	11
Soil Boring SMA-SB21								
SMA-SB21-0	0	0.098	85	<50	<0.5	15	6.2	10
SMA-SB21-1	1	<0.04	86	<50	<0.5	17	5.7	9.5
Soil Boring SMA-SB22								
SMA-SB22-0	0	0.25	130	<50	<0.5	20	9.1	13
SMA-SB22-1	1	0.066	140	<50	<0.5	29	11	12
Soil Boring SMA-SB23								
SMA-SB23-0	0	0.21	100	<50	<0.5	20	8.4	15
SMA-SB23-1	1	0.12	87	<50	<0.5	16	21	11
Soil Boring SMA-SB24								
SMA-SB24-0	0	<0.04	150	<50	<0.5	31	8.9	16
SMA-SB24-1	1	<0.04	120	<50	<0.5	19	9.2	13
Soil Boring SMA-SB25								
SMA-SB25-0	0	<0.04	87	<50	<0.5	16	6.9	9.4
SMA-SB25-1	1	<0.04	84	<50	<0.5	17	5.3	9.5
Soil Boring SMA-SB26								
SMA-SB26-0	0	<0.04	110	<50	<0.5	20	9.5	11
SMA-SB26-1	1	<0.04	87	<50	<0.5	17	7.6	9.6
Soil Boring SMA-SB27								
SMA-SB27-5	5	<0.04	76	<50	<0.5	3	<5	<5
SMA-SB27-10	10	<0.04	79	<50	<0.5	12	<5	<5

Notes:

< = Analyte not reported above the listed laboratory detection limit.

bgs = below ground surface

J = The analyte was positively identified; however, the result should be considered an estimated value.

mg/kg = milligrams per kilogram

NA = not analyzed

SMA = Storage Magazine Area

UJ = Estimated laboratory detection limit.

F-Complex Soil Analytical Results for Inorganics

Sample ID	Sample Depth (feet bgs)	Perchlorate (mg/kg)	Nitrate-N (mg/kg)	Arsenic (mg/kg)	Barium (mg/kg)	Cadmium (mg/kg)	Chromium (mg/kg)	Lead (mg/kg)	Mercury (mg/kg)	Selenium (mg/kg)	Silver (mg/kg)
Residential Soil Remedi		55	100.000	10	15,000	39	120,000	400	23	390	390
Soil Boring FC-SB01			100,000		10,000		120,000		20	000	
FC-SB01-0	0	0.047	<1	8.3	140	<0.5	8.5	12	< 0.02	<5	<0.5
FC-SB01-10	10	0.86	<1	8	170 J	<0.5	24	12	< 0.02	<5	<0.5
FC-SB01-20	20	0.71	<1	6.1	160	<0.5	25	9.8	< 0.02	<5	<0.5
FC-SB01-30	30	< 0.04	<1	5.2	200	<0.5	17	11	< 0.02	<5	<0.5
Soil Boring FC-SB02				-							
FC-SB02-0	0	6.3	43	<5	340	<0.5	20	6.9	0.031	<5	<0.5
FC-SB02-10	10	< 0.04	<1	7.9	340	<0.5	28	8.5	< 0.02	<5	<0.5
FC-SB02-20	20	<0.04	<1	12	250	<0.5	30	6.2	<0.02	<5	1.1
FC-SB02-30	30	1.2	4.8	10	130	<0.5	50	6.5	<0.02	<5	3.1
FC-SB02-40	40	<0.04	NA	NA	NA	NA	NA	NA	NA	NA	NA
FC-SB02-50	50	<0.04	NA	NA	NA	NA	NA	NA	NA	NA	NA
Soil Boring FC-SB03											
FC-SB03-0	0	2	4.5	6	210	<0.5	16	47	0.037	<5	<0.5
FC-SB03-10	10	0.092	<1	6.9	100	<0.5	23	8.4	<0.02	<5	1.7
FC-SB03-20	20	0.074	<1	6.5	180	<0.5	31	10	<0.02	<5	0.64
FC-SB03-30	30	0.97	<1	6.5	180	<0.5	31	8.5	<0.02	<5	<0.5
Soil Boring FC-SB04											
FC-SB04-0	0	< 0.04	<1 UJ	5.3	380	<0.5	20	6	<0.02	<5	<0.5
FC-SB04-10	10	< 0.04	<1 UJ	5.6	200	<0.5	27	7.4	<0.02	<5	<0.5
FC-SB04-20	20	< 0.04	<1	7.1	180	<0.5	24	6.4	<0.02	<5	<0.5
FC-SB04-30	30	<0.04	<1	7.3	190	<0.5	28	7	<0.02	<5	<0.5
Soil Boring FC-SB05											
FC-SB05-0	0	0.049	<1	5.9	420	<0.5	22	6.4	<0.02	<5	<0.5
FC-SB05-10	10	<0.04	<1	5.7	190	<0.5	25	6.9	<0.02	<5	<0.5
FC-SB05-20	20	<0.04	<1	6.7	160	<0.5	27	6.8	<0.02	<5	<0.5
FC-SB05-30	30	0.12	<1	7	140	<0.5	26	9.4	<0.02	<5	<0.5
Soil Boring FC-SB06	1					•			-		
FC-SB06-0	0	0.05	8	6.3	310	<0.5	18	8.1	0.023	<5	<0.5
FC-SB06-10	10	<0.04	<1	6.1	210	<0.5	27	9.8	<0.02	<5	<0.5
FC-SB06-20	20	<0.04	<1	11	130	<0.5	17	10	<0.02	<5	<0.5
FC-SB06-30	30	<0.04	<1	5.9	160	<0.5	28	9	<0.02	<5	<0.5
FC-SB06-40	40	<0.04	<1	6.8	210	<0.5	23	12	0.044 J	<5	<0.5
FC-SB06-50	50	<0.04	<1	10	170	<0.5	22	7.5	<0.02	<5	<0.5

F-Complex Soil Analytical Results for Inorganics

Sample ID	Sample Depth	Perchlorate	Nitrate-N	Arsenic	Barium	Cadmium	Chromium	Lead	Mercury	Selenium	Silver
Residential Soil Remedi	(feet bgs)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
	ation Level	55	100,000	10	15,000	39	120,000	400	23	390	390
Soil Boring FC-SB07	<u> </u>	0.04	4	5.0	4.40	0.5	45	501	0.00.1		0.5
FC-SB07-0	0	< 0.04	<1	5.3	140 J	< 0.5	15	5.6 J	<0.02 J	<5	< 0.5
FC-SB07-10	10	<0.04	<1	6.1	350	<0.5	22	6.6	<0.02	<5	<0.5
Soil Boring FC-SB08	-										
FC-SB08-0	0	0.13	<1	9.9	310	<0.5	11	14	< 0.02	<5	< 0.5
FC-SB08-10	10	0.12	<1	6.9	200	<0.5	40	9.2	<0.02	<5	0.52
FC-SB08-20	20	0.04	<1	5.9	190	<0.5	27	11	<0.02	<5	<0.5
FC-SB08-30	30	0.056	<1	7.5	180	<0.5	34	11	<0.02	<5	1.9
FC-SB08-40	40	0.53	NA	NA	NA	NA	NA	NA	NA	NA	NA
FC-SB08-50	50	1.8	NA	NA	NA	NA	NA	NA	NA	NA	NA
Soil Boring FC-SB09	-					-			-		
FC-SB09-0	0	0.19	<1	<5	300	<0.5	18	10	0.024	<5	<0.5
FC-SB09-10	10	<0.04	<1	8.1	200	<0.5	26	9.7	< 0.02	<5	<0.5
FC-SB09-20	20	< 0.04	<1	5.4	140	<0.5	18	8.5	<0.02	<5	16
FC-SB09-30	30	<0.04	<1	6.9	200	<0.5	21	11	< 0.02	<5	1
Soil Boring FC-SB10											
FC-SB10-0	0	<0.04	<1 UJ	6	210	<0.5	21	9.3	< 0.02	<5	<0.5
FC-SB10-10	10	<0.04	<1	<5	220	<0.5	17	5.2	<0.02	<5	<0.5
Soil Boring FC-SB11											
FC-SB11-0	0	<0.04	1.3	6.8	240	<0.5	23	12	0.021	<5	<0.5
FC-SB11-10	10	0.12	1.1	6.5	210	<0.5	22	9.8	<0.02	<5	<0.5
FC-SB11-20	20	0.19	<1	7	190	<0.5	19	11	0.02	<5	<0.5
FC-SB11-30	30	0.23	<1	5	150	<0.5	17	8.7	<0.02	<5	<0.5
Soil Boring FC-SB12											
FC-SB12-0	0	0.11	<1	6.5	250	0.59	19	9.8	<0.02	<5	<0.5
FC-SB12-10	10	0.047	1.1 J	8.1	150	<0.5	14	11	0.031	<5	<0.5
FC-SB12-20	20	< 0.04	<1 UJ	<5	200	<0.5	14	6.6	<0.02	<5	<0.5
FC-SB12-30	30	<0.04	2.9 J	5.1	300	<0.5	19	9.7	<0.02	<5	<0.5
Soil Boring FC-SB13											
FC-SB13-0	0	0.16	<1	5.2	71	<0.5	6.5	6.7	<0.02	<5	<0.5
FC-SB13-5.5	5.5	< 0.04	<1	<5	87	<0.5	14	<5	< 0.02	<5	0.52
Soil Boring FC-SB14											
FC-SB14-15.5	15.5	<0.04	4.9	6.8	120	<0.5	17	11	< 0.02	<5	<0.5
Soil Boring FC-SB15											
FC-SB15-0	0	0.092 J	<1	<5	150	<0.5	14	54	< 0.02	<5	<0.5
FC-SB15-1	1	<0.04	<1	<5	78	<0.5	13	25	<0.02	<5	<0.5

F-Complex Soil Analytical Results for Inorganics

Former Universal Propulsion Company, Inc. Phoenix, Arizona

Sample ID	Sample Depth (feet bgs)	Perchlorate (mg/kg)	Nitrate-N (mg/kg)	Arsenic (mg/kg)	Barium (mg/kg)	Cadmium (mg/kg)	Chromium (mg/kg)	Lead (mg/kg)	Mercury (mg/kg)	Selenium (mg/kg)	Silver (mg/kg)
Residential Soil Remed	iation Level	55	100,000	10	15,000	39	120,000	400	23	390	390
Soil Boring FC-SB16											
FC-SB16-0	0	5.3	2.8	<5	500	<0.5	18	5	<0.02	<5	<0.5
FC-SB16-1	1	5.3	1.4	<5	690	<0.5	19	<5	<0.02	<5	<0.5
Soil Boring FC-SB17											
FC-SB17-0	0	2.8	<1	<5	250	<0.5	8.5	<5	0.025	<5	<0.5
FC-SB17-1	1	6.5	<1	<5	270	<0.5	14	<5	0.021	<5	<0.5
Soil Boring FC-SB18											
FC-SB18-0	0	0.63	2.9	<5	240	<0.5	12	6.7	0.028	<5	<0.5
FC-SB18-1	1	0.13	3	<5	220	<0.5	13	<5	0.02	<5	<0.5
Soil Boring FC-SB19											
FC-SB19-0	0	0.24	6.4	<5	270	<0.5	13	6.6	0.021	<5	<0.5
FC-SB19-1	1	< 0.04	3.3	<5	160	<0.5	11	5.4	<0.02	<5	<0.5
Soil Boring FC-SB20											
FC-SB20-0	0	0.38	6.1	<5	240	<0.5	15	<5	<0.02	<5	<0.5
FC-SB20-1	1	0.3	4.2	<5	200	<0.5	15	5.2	0.04 J	<5	<0.5
Soil Boring FC-SB24											
FC-SB24-40	40	0.74	NA	NA	NA	NA	NA	NA	NA	NA	NA
FC-SB24-50	50	1.2	NA	NA	NA	NA	NA	NA	NA	NA	NA
FC-SB24-60	60	0.47	NA	NA	NA	NA	NA	NA	NA	NA	NA
Soil Boring FC-SB25											
FC-SB25-40	40	0.14	NA	NA	NA	NA	NA	NA	NA	NA	NA
FC-SB25-50	50	0.42	NA	NA	NA	NA	NA	NA	NA	NA	NA
FC-SB25-60	60	<0.040	NA	NA	NA	NA	NA	NA	NA	NA	NA

Notes:

< = Analyte not reported above the listed laboratory detection limit.

bgs = below ground surface

J = The analyte was positively identified; however, the result should be considered an estimated value.

mg/kg = milligrams per kilogram

NA = not analyzed

UJ = Estimated laboratory detection limit.

New Burn Area (OBU) Soil Sample Analytical Results for Inorganics

Sample ID	Sample Depth (feet bgs)	Perchlorate (mg/kg)	Nitrate-N (mg/kg)	Aluminum (mg/kg)	Arsenic (mg/kg)	Barium (mg/kg)	Cadmium (mg/kg)	Chromium (mg/kg)	Copper (mg/kg)	Lead (mg/kg)	Mercury (mg/kg)	Selenium (mg/kg)	Silver (mg/kg)
Residential Soil Reme	ediation Level	55	100,000	76,000	10	15,000	39	120,000	3,100	400	23	390	390
Soil Boring NB-SB01							•			•			
NB-SB01-0	0	15	13 J	12,000	15	69	<0.5	22	40	15	<0.02 UJ	<5	<0.5
NB-SB01-10	10	1.8	<1	20,000	7.8	390	<0.5	25	53	8.4	<0.02	<5	<0.5
NB-SB01-20	20	3.8	<1	15,000	<5	140	<0.5	9.7	12	<5	<0.02 UJ	<5	4.1
NB-SB01-30	30	7.9	1.4 J	20,000	6.9	200	<0.5	20	32	8.1	<0.02 UJ	<5	<0.5
NB-SB01-40	40	15	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
NB-SB01-50	50	2.3	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
NB-SB01-56	56	4	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Soil Boring NB-SB02			•			•	•	•		•			
NB-SB02-0	0	150 J	27 J	17,000	9.2	120	3.9	35 J	35	40 J	<0.02 UJ	<5	<0.5
NB-SB02-10	10	19	1.2	19,000	<5	470	<0.5	17	25	11	< 0.02	<5	<0.5
NB-SB02-20	20	15	2.3	21,000	<5	200	<0.5	13	16	8.6	<0.02	<5	3.1
NB-SB02-30	30	6.8	2.1	39,000	<5	240	<0.5	30	12	15	<0.02	<5	4.8 J
NB-SB02-40	40	0.21	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
NB-SB02-50	50	< 0.04	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Soil Boring NB-SB03													
NB-SB03-0	0	27	5.6 J	20,000	<5	200	<0.5	15	28	6.9	< 0.02	<5	<0.5
NB-SB03-10	10	3.5	1.6	21,000	5.4	380	<0.5	22	44	9.4	<0.02	<5	<0.5
NB-SB03-20	20	2.9	<1	18,000	7.7	120	<0.5	21	34	9.6	<0.02	<5	<0.5
NB-SB03-30	30	12	<1	34,000	<5	310	<0.5	18	16	13	<0.02	<5	<0.5
NB-SB03-40	40	6.2	NA	ŇA	NA	NA	NA	NA	NA	NA	NA	NA	NA
NB-SB03-45	45	0.74	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Soil Boring NB-SB04			•			•		•					
NB-SB04-0	0	0.15	<1	19,000	6.5	120	2.4	21	28	110	< 0.02	<5	<0.5
NB-SB04-1	1	14	9.6 J	10,000	<5	120	<0.5	7.8	13	5.4	<0.02	<5	<0.5
NB-SB04-5	5	7.6	7.3 J	12,000	5	130	<0.5	22	17	21	< 0.02	5.7	<0.5
NB-SB04-10	10	0.35	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
NB-SB04-20	20	< 0.04	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
NB-SB04-30	30	< 0.04	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
NB-SB04-40	40	< 0.04	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
NB-SB04-50	50	<0.04	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
NB-SB04-60	60	< 0.04	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Soil Boring NB-SB05							•			•			
NB-SB05-0	0	0.085 J	<1	21,000	5.8	150	1.7	20	28	130 J	< 0.02	<5	<0.5
NB-SB05-1	1	1.3	<1	18,000	<5	130	<0.5	11	22	10	0.033	<5	<0.5
Soil Boring NB-SB06													
NB-SB06-0	0	2.4	<1	19,000	5.9	120	1.2	19	26	82	0.075	<5	<0.5
NB-SB06-1	1	0.49	<1	18,000	<5	95	<0.5	16	21	7.3	<0.02	<5	<0.5
NB-SB06-5	5	18 J	3.5 J	6,100	<5	140 J	<0.5	8.2	7	7.4	0.078 J	8.4	<0.5
NB-SB06-10	10	5.3	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
NB-SB06-20	20	2.6	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
NB-SB06-30	30	< 0.04	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
NB-SB06-40	40	< 0.04	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
NB-SB06-50	50	0.57	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Soil Boring NB-SB07	-	-											
NB-SB07-0	0	0.25	<1	19,000	5.5	120	2.8	20	29	140	0.068	<5	<0.5
NB-SB07-1	1	6.9	<1	23,000	6	200	1.2	21	29	280	0.053	<5	<0.5

New Burn Area (OBU) Soil Sample Analytical Results for Inorganics

Sample ID	Sample Depth (feet bgs)	Perchlorate (mg/kg)	Nitrate-N (mg/kg)	Aluminum (mg/kg)	Arsenic (mg/kg)	Barium (mg/kg)	Cadmium (mg/kg)	Chromium (mg/kg)	Copper (mg/kg)	Lead (mg/kg)	Mercury (mg/kg)	Selenium (mg/kg)	Silver (mg/kg)
Residential Soil Rem	ediation Level	55	100,000	76,000	10	15,000	39	120,000	3,100	400	23	390	390
Soil Boring NB-SB08													
NB-SB08-0	0	0.065	<1	16,000	5.8	120	5.9	19	28	130	<0.02	<5	<0.5
NB-SB08-0A	0	9.8	2.8 J	13,000	<5	110	<0.5	12	20	8	<0.02	<5	<0.5
NB-SB08-1A	1	26	8 J	12,000	<5	110	<0.5	13	18	<5	<0.02	<5	<0.5
NB-SB08-5A	5	61	10 J	14,000	<5	150	<0.5	16	21	<5	<0.02	6.2	<0.5
NB-SB08-10	10	32	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
NB-SB08-20	20	9.9	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
NB-SB08-30	30	0.33	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
NB-SB08-40	40	<0.04	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Soil Boring NB-SB09			T	-		r		1	r		T	T	
NB-SB09-0	0	0.11	<1	17,000	6.2	120	3.9	20	28	650	0.057	<5	<0.5
NB-SB09-1	1	<0.04	<1	18,000	5.2	130	1.8	16	26	270	0.035	<5	<0.5
Soil Boring NB-SB10													
NB-SB10-0	0	0.098	<1	19,000	<5	160	1.7	17	43	58	0.076	<5	<0.5
NB-SB10-1	1	1.3	3.2 J	20,000	<5	130	<0.5	12	36	<5	< 0.02	<5	<0.5
NB-SB10-5	5	7	4 J	19,000	5.3	130	<0.5	27	27	12	< 0.02	<5	<0.5
NB-SB10-10	10	36	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
NB-SB10-20	20	6.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
NB-SB10-30	30	0.33	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
NB-SB10-40	40	<0.04	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Soil Boring NB-SB11		0.01		00.000	0	1.40	0.4	0.4	20	00	0.000		0.5
NB-SB11-0	0	0.91	<1	22,000	6	140	2.4	24	30	93	0.069	<5	<0.5
NB-SB11-1	1	0.22	<1	22,000	5.7	130	0.63	19	27	23	0.039	<5	<0.5
Soil Boring NB-SB12 NB-SB12-0		3.2	1	21,000	6.0	120	E 4	00	00	140	0.053		-0 F
NB-SB12-0	0	0.18	1.3 J	13,000	6.2 <5	130 98	5.1 <0.5	22 11	28 17	140 <5	<0.02	<5 <5	<0.5 <0.5
NB-SB12-5	5	41	1.3 J 17 J	18,000	6.3	570	<0.5	25	31	6.4	<0.02	<5	<0.5
NB-SB12-5	10	38	NA	NA	NA	NA	 NA	NA	NA	NA	×0.02 NA	NA NA	<0.5 NA
NB-SB12-20	20	6.7	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
NB-SB12-30	30	<0.04	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Soil Boring NB-SB13		NO.0 4		147.4	147.					147.4	11/1		
NB-SB13-0	0	0.081	<1	24,000	6.7	140	7.9	23	31	100	0.045	<5	<0.5
NB-SB13-1	1	0.11 J	<1	18,000	5	150	1.4 J	23	26	20	0.028	<5	<0.5
Soil Boring NB-SB14		0.110		10,000	0	100	1.10	20	20	20	0.020	40	40.0
NB-SB14-0	0	<0.04	<1	27,000	5.9	160	2.3	22	30	33	0.02	<5	<0.5
NB-SB14-1	1	<0.04	<1	21,000	<5	130	0.54	18	22	12	0.029	<5	< 0.5
Soil Boring NB-SB15				,000			0.0 .				0.020		
NB-SB15-0	0	<0.04	<1	24,000	5	160	1.3	21	34	20	0.027	<5	<0.5
NB-SB15-1	1	<0.04	<1	24,000	<5	150	<0.5	21	26	7	0.023	<5	< 0.5
Soil Boring NB-SB16	·											- 	
NB-SB16-0	0	<0.04	<1	24,000	<5	160	0.82	20	26	17	0.02	<5	<0.5
NB-SB16-1	1	0.05	<1	20,000	<5	130	0.59	22	22	8.3	0.024	<5	<0.5
NB-SB16-5	5	0.1	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
NB-SB16-10	10	0.046	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
NB-SB16-13	13	0.14	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Soil Boring NB-SB17													
NB-SB17-0	0	<0.04	<1	13000	5.8	120	<0.5	9.8	20	26	<0.02	<5	<0.5
NB-SB17-1	1	<0.04	<1	12,000	6.3	89	<0.5	12	21	25	<0.02	<5	<0.5

New Burn Area (OBU) Soil Sample Analytical Results for Inorganics

Sample ID	Sample Depth (feet bgs)	Perchlorate (mg/kg)	Nitrate-N (mg/kg)	Aluminum (mg/kg)	Arsenic (mg/kg)	Barium (mg/kg)	Cadmium (mg/kg)	Chromium (mg/kg)	Copper (mg/kg)	Lead (mg/kg)	Mercury (mg/kg)	Selenium (mg/kg)	Silver (mg/kg)
Residential Soil Reme	diation Level	55	100,000	76,000	10	15,000	39	120,000	3,100	400	23	390	390
Soil Boring NB-SB18			/	-,	-	- /		- /					
NB-SB18-0	0	<0.04	<1	14,000	5.7	110	<0.5	13	23	38	0.041	<5	<0.5
NB-SB18-1	1	<0.04	<1	13,000	<5	110	<0.5	11	21	35	0.036	<5	<0.5
Soil Boring NB-SB19				,									
NB-SB19-0	0	<0.04	<1	15,000	7.5	130	<0.5	22	26	37	0.024	<5	< 0.5
NB-SB19-1	1	0.049	<1	16,000	<5	120	0.5	16	26	15	0.041	<5	<0.5
NB-SB19-5	5	1.2	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
NB-SB19-10	10	<0.04	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Soil Boring NB-SB20											•		
NB-SB20-0	0	<0.04	<1	16,000	7.2	130	0.53 J	21	18	45	< 0.02	<5	<0.5
NB-SB20-1	1	<0.04	<1	18,000	<5	110	<0.5	16	22	5.2	0.023	<5	<0.5
Soil Boring NB-SB21													
NB-SB21-0	0	<0.04	<1	19,000	6	110	0.6	17	30	30	0.034	<5	<0.5
NB-SB21-1	1	<0.04	<1	14,000	<5	110	<0.5	14	19	<5	0.033	<5	<0.5
Soil Boring NB-SB22													
NB-SB22-0	0	0.48	<1	23,000	7.2	130	0.7	22	32	27	0.046	<5	<0.5
NB-SB22-1	1	0.37	<1	21,000	6	97	<0.5	16	27	6.6	0.033	<5	<0.5
NB-SB22-5	5	0.071	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
NB-SB22-10	10	<0.04	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Soil Boring NB-SB23													
NB-SB23-0	0	0.09	<1	17,000	5.8	130	<0.5	16	23	14	0.032	<5	<0.5
NB-SB23-1	1	<0.04	<1	10,000	<5	150	<0.5	10	14	<5	<0.02	<5	<0.5
Soil Boring NB-SB24													
NB-SB24-0	0	0.07	<1	28,000	7	140	<0.5	24	33	27	0.032	<5	<0.5
NB-SB24-1	1	<0.04	<1	20,000	7.3	92	<0.5	17	29	12	0.038	<5	<0.5
Soil Boring NB-SB25			-	1		T	r	1			1	1	
NB-SB25-0	0	0.22	<1	18,000	<5	99	0.6	17	26	12	0.021	<5	<0.5
NB-SB25-1	1	0.073	<1	17,000	5.2	110	<0.5	17	21	6.1	<0.02	<5	<0.5
NB-SB25-5	5	0.16	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
NB-SB25-10	10	<0.04	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Soil Boring NB-SB26	-												
NB-SB26-0	0	< 0.04	<1	22,000	5.8	130	0.91	19	31	21	0.025	<5	<0.5
NB-SB26-1	1	<0.04	<1	20,000	5	140	0.58	17	27	12	<0.02	<5	<0.5
Soil Boring NB-SB27		0.007	4	40.000	5.0	400		40	00	40	0.070	-	0.5
NB-SB27-0	0	0.087	<1	19,000	5.3	120	1.1	18	26	42	0.078	<5	<0.5
NB-SB27-1	1	<0.04	<1	20,000	5	110	0.65	18	25	26	0.03	<5	<0.5
Soil Boring NB-SB28		0.070	4	05.000	0.1	450	0.00	00	22	00	0.00	-	0.5
NB-SB28-0	0	0.076 J	<1	25,000	6.1	150	0.92	23	33	23	0.02	<5	<0.5
NB-SB28-1	1	<0.04	<1	21,000	<5	120	0.53	17	31	7.1	<0.02	<5	<0.5
Soil Boring NB-SB29		-0.04		20,000	0.0	400		20	20	40	0.000 1		-0.5
NB-SB29-0	0	<0.04	<1	29,000	8.3 6.8	180	1.1	28	38 35	48	0.029 J	<5	<0.5
NB-SB29-1		<0.04	<1	23,000	0.δ	130	<0.5	19	35	13	0.033	<5	<0.5
Soil Boring NB-SB30 NB-SB30-0		-0.04	-4	25.000	7 4	140	-0 F	25	28	10	0.040	Æ	-0 F
NB-SB30-0 NB-SB30-1	0	<0.04 <0.04	<1 <1	25,000 22,000	7.4 6.3	140 140	<0.5 <0.5	25 23	28	13 10	0.046 0.041	<5 <5	<0.5 <0.5
Soil Boring NB-SB31		<0.04	<1	22,000	0.3	140	<0.5	23	20	10	0.041	<0	<0.5
NB-SB31-0	0	<0.04	-1	16,000	5.9	120	<0.5	14	27	13	<0.02	<5	<0.5
NB-SB31-0 NB-SB31-1	0		<1		<u> </u>	120		14	32	13			
110-3031-1	I	<0.04	<1	20,000	0.1	120	<0.5	17	32	13	0.028	<5	<0.5

New Burn Area (OBU) Soil Sample Analytical Results for Inorganics

Sample ID	Sample Depth (feet bgs)	Perchlorate (mg/kg)	Nitrate-N (mg/kg)	Aluminum (mg/kg)	Arsenic (mg/kg)	Barium (mg/kg)	Cadmium (mg/kg)	Chromium (mg/kg)	Copper (mg/kg)	Lead (mg/kg)	Mercury (mg/kg)	Selenium (mg/kg)	Silver (mg/kg)
Residential Soil Reme	ediation Level	55	100,000	76,000	10	15,000	39	120,000	3,100	400	23	390	390
Soil Boring NB-SB32													
NB-SB32-0	0	0.086	<1	19,000	7.1	140	0.69	19	30	27	0.026	<5	<0.5
NB-SB32-1	1	<0.04	<1	17,000	6.1	130	0.51	16	26	16	0.023	<5	<0.5
Soil Boring NB-SB33													
NB-SB33-0	0	0.14	<1	20,000	6.4	140	<0.5	20	31	16	0.026	<5	<0.5
NB-SB33-1	1	<0.04	<1	19,000	6.6	120	<0.5	18	29	7.7	< 0.02	<5	<0.5
Soil Boring NB-SB34													
NB-SB34-0	0	0.28	<1	21,000	6.3	130	<0.5	22	29	19	<0.02	<5	<0.5
NB-SB34-1	1	0.2	<1	16,000	<5	140	<0.5	14	25	6.7	0.02	5.8	<0.5
NB-SB34-5	5	0.067	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
NB-SB34-10	10	<0.04	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Soil Boring NB-SB35						•				•			
NB-SS35-0	0	0.048	<1	20,000	8	120	<0.5	19	26	13	< 0.02	<5	<0.5
NB-SB35-1	1	<0.04	<1	20,000	5.4	110	<0.5	17	22	9.2	<0.02	<5	<0.5
Soil Boring NB-SB36													
NB-SB36-0	0	<0.04	<1	22,000	6.3	130	1.3	18	29	17	<0.02	<5	<0.5
NB-SB36-1	1	< 0.04	<1	22,000	6.7	150	0.71	18	29	12	< 0.02	<5	<0.5
Soil Boring NB-SB37													
NB-SB37-0	0	<0.04	<1	15,000	5.8	110	0.63	13	24	50	< 0.02	<5	<0.5
NB-SB37-1	1	< 0.04	<1	12,000	5.1	100	<0.5	10	20	32	< 0.02	<5	<0.5
Soil Boring NB-SB38													
NB-SB38-0	0	NA	NA	NA	NA	NA	NA	NA	NA	46	NA	NA	NA
Soil Boring NB-SB039	9									•			
NB-SB39-0	0	0.21	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
NB-SB39-10	10	33	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Soil Boring NB-SB40						•				•			
NB-SB40-0	0	0.61	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
NB-SB40-7	7	1.8	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Soil Boring NB-SB41													
NB-SB41-0	0	0.068	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
NB-SB41-10	10	0.82	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
NB-SB41-20	20	< 0.04	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Soil Boring NB-SB42	•			•		•	•	•		•	•	•	
NB-SB42-0	0	<0.04	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
NB-SB42-10	10	0.053	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
NB-SB42-20	20	<0.04	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Soil Boring NB-SB43	·			• •		•	•	•			•	•	
NB-SB43-0	0	0.078	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
NB-SB43-5	5	54	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

New Burn Area (OBU) Soil Sample Analytical Results for Inorganics

Former Universal Propulsion Company, Inc. Facility Phoenix, Arizona

Sample ID	Sample Depth (feet bgs)	Perchlorate (mg/kg)	Nitrate-N (mg/kg)	Aluminum (mg/kg)	Arsenic (mg/kg)	Barium (mg/kg)	Cadmium (mg/kg)	Chromium (mg/kg)	Copper (mg/kg)	Lead (mg/kg)	Mercury (mg/kg)	Selenium (mg/kg)	Silver (mg/kg)
Residential Soil Reme	diation Level	55	100,000	76,000	10	15,000	39	120,000	3,100	400	23	390	390
Soil Boring NB-SB44													
NB-SB44-0	0	14	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
NB-SB44-5	5	26	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Soil Boring NB-SB45													
NB-SB45-0	0	<0.04	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
NB-SB45-5	5	<0.04	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Soil Boring NB-SB46													
NB-SB46-0	0	0.041	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
NB-SB46-10	10	0.58	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Soil Boring NB-SB47													
NB-SB47-0	0	0.043	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
NB-SB47-10	10	0.12	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

Notes:

< = Analyte not reported above the listed laboratory detection limit.

bgs = below ground surface

J = The analyte was positively identified; however, the result should be considered an estimated value.

mg/kg = milligrams per kilogram

NA = not analyzed

UJ = Estimated laboratory detection limit.

Table D-10New Burn Area Soil Boring Analytical Data for Perchlorate

Former Universal Propulsion Company, Inc. Facility Phoenix, Arizona

	Boring	Tatal Commiss				Sample De	pth (feet bgs)						
Boring ID	Depth	Total Samples Collected	Analysis	5	10	15	20	25	30				
	(feet bgs)			Concentrations (mg/kg)									
NB-SB72	30	6	Perchlorate	143	69.1	17.0	8.54	NA	NA				
NB-SB73	30	6	Perchlorate	251	136	17.3	10.1	NA	NA				
NB-SB74	30	6	Perchlorate	0.141	5.83	21.8	33.5	22.8	18.6				
NB-SB75	30	6	Perchlorate	3.34	6.41	3.08	17.0	28.1	16.9				
NB-SB76	30	6	Perchlorate	NA	NA	0.591	5.86	NA	NA				
NB-SB77	30	6	Perchlorate	NA	NA	7.16	6.43	NA	NA				
NB-SB78	30	6	Perchlorate	NA	NA	4.00	6.43	NA	NA				
	Per	chlorate Cleanu	p Standard		16 mg/kg								

Notes:

Bold results depict detected concentrations.

Highlighted concentrations exceed cleanup standard.

* = duplicate results

< = Analyte was not detected at or above the method reporting limit.

bgs = below ground surface

mg/kg = milligrams per kilogram

NA = soil sample not analyzed

Table D-11A

Old Burn Area Soil Analytical Data for Arsenic and Total Lead

Former Universal Propulsion Company, Inc. Facility Phoenix, Arizona

	Dening Denth	Total Complete				Sample D	epth (feet)						
Boring ID	(feet bgs)	Total Samples Collected	Analysis	1	2	3	5	7	10				
	(icci bgs)	Obliceted		Concentrations (mg/kg)									
OB-SB53	2	2	Arsenic	7.0	NA	NC	NC	NC	NC				
OB-SB54	2	2	Arsenic	5.8	NA	NC	NC	NC	NC				
OB-SB55	2	2	Arsenic	7.2 / 7.3*	NA	NC	NC	NC	NC				
OB-SB56	2	2	Arsenic	18.6	14.2	NC	NC	NC	NC				
OB-SB64	10	5	Arsenic	9.2	9.7	7.8	NA	NA	NA				
OB-SB57	2	2	Total Lead	27.4	3.9 / 3.7*	NC	NC	NC	NC				
OB-SB58	2	2	Total Lead	<1.8	<1.6	NC	NC	NC	NC				
OB-SB59	2	2	Total Lead	5.4	3.8 / 4.7*	NC	NC	NC	NC				
OB-SB60	2	2	Total Lead	25.0	1950	NC	NC	NC	NC				
OB-SB61	2	2	Total Lead	3.9	4.4	NC	NC	NC	NC				
OB-SB62	2	2	Total Lead	4.5	4.5	NC	NC	NC	NC				
OB-SB63	2	2	Total Lead	4.4	1.8	NC	NC	NC	NC				
OB-SB65	10	5	Total Lead	NC	13	14	NA	NA	NA				
		Arseni	c Cleanup Standard	10 mg/kg									
		Lea	d Cleanup Standard	d 400 mg/kg									

Notes:

* = Duplicate results.

< = Analyte was not detected at or above the method reporting limit.

BOLD = Bold type depicts detected concentrations.

Highlighted concentration exceeds cleanup standard.

Acronyms and Abbreviations:

bgs = below ground surface

mg/kg = milligrams per kilogram

NA = soil sample not analyzed

Table 11BC-Complex Area Soil Analytical Data for Perchlorate

Former Universal Propulsion Company, Inc. Facility Phoenix, Arizona

	Dening Denti	Total				Sa	mple Depth (ft	bgs)					
Boring ID	Boring Depth (ft bgs)	Samples	Analysis	0	2	5	10	15	20	25			
	(11 593)	Collected		Concentrations (mg/kg)									
CC-SB26	5	3	Perchlorate	<0.0084	1.14	NA	NC	NC	NC	NC			
CC-SB27	5	3	Perchlorate	0.0473	10.8	NA	NC	NC	NC	NC			
CC-SB28	15	3	Perchlorate	NC	NC	14.6	1.44 / 1.31*	6.66	NC	NC			
CC-SB29	15	3	Perchlorate	NC	NC NC 15.1		1.26	2.41	NC	NC			
CC-SB30	5	3	Perchlorate	4.77	26.9	0.395	NC	NC	NC	NC			
CC-SB31	5	3	Perchlorate	15.1	5.81	0.337	NC	NC	NC	NC			
CC-SB32	25	3	Perchlorate	NC	NC	NC	NC	0.834	2.75	6.25			
CC-SB33	25	3	Perchlorate	NC	NC	NC	NC	33.5	20.4	11.7			
CC-SB34	25	3	Perchlorate	NC	NC	NC	NC	0.584	0.547 / 0.481*	0.683			
CC-SB35	25	3	Perchlorate	NC	NC	NC	NC	0.0602	0.0579	<0.01			
CC-SB36	25	3	Perchlorate	NC	NC	NC	NC	48	83.2	5.07			
	Perc	hlorate Cleanu	p Standard	16 mg/kg									

Notes:

* = Duplicate results.

< = Analyte was not detected at or above the method reporting limit.

BOLD = Bold type depicts detected concentrations.

Highlighted concentration exceeds cleanup standard.

Acronyms and Abbreviations:

ft bgs = feet below ground surface

mg/kg = milligrams per kilogram

NA = soil sample not analyzed

Table 11C Storage Magazine Area (E-Complex) Soil Analytical Data For Perchlorate

Sample Depth (ft bgs) Boring Depth Total Samples **Boring ID** Analysis 2 0 1 (ft bgs) Collected Concentrations (mg/kg) SMA-SB28 Perchlorate 2 3 0.0128 0.0649 NA Perchlorate SMA-SB29 NA 2 3 < 0.0083 < 0.0085 2 NA SMA-SB30 3 Perchlorate 0.146 0.0469 SMA-SB31 2 3 Perchlorate < 0.0085 0.0173 / 0.0147* NA SMA-SB32 2 3 Perchlorate < 0.0085 NA < 0.0082 < 0.0083 SMA-SB33 2 3 Perchlorate NA < 0.0081 SMA-SB34 Perchlorate 2 3 < 0.0082 <0.0085 NA SMA-SB35 2 2 Perchlorate NC 0.0733 0.900 SMA-SB36 2 Perchlorate NC 2 0.0249 0.0509 SMA-SB37 2 2 Perchlorate <0.030 < 0.031 NC NC SMA-SB38 2 2 Perchlorate < 0.030 < 0.031 Perchlorate Cleanup Standard 16 mg/kg

Former Universal Propulsion Company, Inc. Phoenix, Arizona

Notes:

* = Duplicate results.

< = Analyte was not detected at or above the method reporting limit.

Acronyms and Abbreviations:

ft bgs = feet below ground surface

mg/kg = milligrams per kilogram

NA = soil sample not analyzed

Table 11DNew Burn Area Soil Analytical Data for Perchlorate

Former Universal Propulsion Company, Inc. Phoenix, Arizona

	Boring					Sample De	pth (ft bgs)						
Boring ID	Depth	Total Samples Collected	Analysis	0	5	10	15	20	21				
	(ft bgs)	Collected		Concentrations (mg/kg)									
NB-SB48	10	3	Perchlorate	<0.0085	2.46	0.48	NC	NC	NC				
NB-SB49	10	3	Perchlorate	<0.0084	41.4	46.6	NC	NC	NC				
NB-SB50	10	3	Perchlorate	0.0108	43	NA	NC	NC	NC				
NB-SB51	10	3	Perchlorate	<0.0086	4.05	16.3	NC	NC	NC				
NB-SB52	10	3	Perchlorate	0.0648	1.56	NA	NC	NC	NC				
NB-SB53	10	3	Perchlorate	NC	4.3	10	NA	NC	NC				
NB-SB54	10	3	Perchlorate	NC	1.54	2.07	NA	NC	NC				
NB-SB55	15	3	Perchlorate	0.0244	3.77	NA	NC	NC	NC				
NB-SB56	15	3	Perchlorate	0.173	2.41	NA	NC	NC	NC				
NB-SB57	10	3	Perchlorate	61.6	29	45.9	NC	NC	NC				
NB-SB58	15	3	Perchlorate	NC	0.0274	2.48 / 2.25*	NA	NC	NC				
NB-SB59	10	3	Perchlorate	NC	0.015	0.584	NA	NC	NC				
NB-SB60	15	3	Perchlorate	NC	1.48	0.822 / 0.943*	NA	NC	NC				
NB-SB61	15	3	Perchlorate	NC	0.792	0.104	NA	NC	NC				
NB-SB62	15	3	Perchlorate	NC	20.6	7.49 / 5.33*	NA	NC	NC				
NB-SB63	15	3	Perchlorate	NC	1.69	0.832	NA	NC	NC				
NB-SB64	15	3	Perchlorate	NC	1.46	0.11	NA	NC	NC				
NB-SB65	15	3	Perchlorate	NC	0.303	0.0963	NA	NC	NC				
NB-SB66	15	3	Perchlorate	NC	0.0732	<0.010	NA	NC	NC				
NB-SB67	15	3	Perchlorate	0.0806	0.0736	<0.0098	NC	NC	NC				
NB-SB68	15	3	Perchlorate	0.919	0.014	<0.010	NC	NC	NC				
NB-SB69	20	4	Perchlorate	NC	3.8	0.1	<0.032	NC	NC				
NB-SB70	20	4	Perchlorate	NC	31.7	3.8	1.6	NC	NC				
NB-SB71	20	4	Perchlorate	NC	57.3	44.0	29.0	27.3	14.3				
	Per	chlorate Cleanu	p Standard			16 m	ig/kg						

Notes:

* = Duplicate results.

< = Analyte was not detected at or above the method reporting limit. **BOLD** = Bold type depicts detected concentrations.

Highlighted concentration exceeds cleanup standard.

Acronyms and Abbreviations:

Table 11E Waterbore Area Soil Analytical Data for Perchlorate

Former Universal Propulsion Company, Inc. Phoenix, Arizona

																	Sample	Depth	(ft bgs)												
Boring ID	Boring Depth (ft bgs)	Total Samples	0	1	3	5	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	90	100	110	120	130	140	150	160	173	180
	(it bgs) Collecte				Concentrations (mg/kg)																										
	Conceptual Soil Cap																														
WB-SB13	70	9	120	NC	NC	47.7	16.7	NC	0.498	NC	1.87	NC	5.62	NC	8.43	NC	0.0706	NC	0.433/0.35*	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC
WB-SB14	70	9	0.425	NC	NC	13	2.21	NC	3.97	NC	0.236	NC	0.129	NC	0.0245	NC	<0.008	NC	0.0179/0.0142*	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC
WB-SB15	90	11	0.0588	NC	NC	0.323	0.993	NC	0.134	NC	1.05	-	0.725	NC	1.08	NC	0.424	NC	0.425	NC	0.259	0.0329 / 0.0215*	NC								
WB-SB16	90	11	0.698	NC	NC	<0.0082	<0.009		0.0385				0.133	NC	0.469	NC	0.443	NC	2.79	NC	6.1	10.1 / 9.41*	NC								
WB-SB17	180	20	6.74	NC	NC	7	8.59	NC	10	NC	3.21	NC	6.16	NC	6.39	NC	30.2	NC	62.6	NC	103	37.9	26.8	46.4	40.6	21.9	14.9	13.6	5.95	2.24	10.4 / 8.72*
	Former Water Wand																														
WB-SB20	5	3	NC	0.66 ^a	2.91 ^a	2.78	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC
WB-SB21	5	3	NC	106 ^a	85.8 ^a	103 ^a	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC
WB-SB24	40	9	NC	8.1	NC	11	0.3	NA	NA	NA	NA	NA	NA	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC
													F	orme	r Therm	al Trea	tment Unit														
WB-SB22	15	3	NC	NC	NC	0.366	0.0294	0.301	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC
WB-SB23	15	3	NC	NC	NC	3.41	0.142	1.5	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC
														In-Sit	u Biolog	gical R	eduction														
WB-01A	65	9	NC	NC	NC	NC	NC	NC	42.9	55.8	57.5	31.2	15.2	41.6	42.9	63.5	28.9/25*	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC
WB-SB18	80	13	NC	NC	NC	NC	NC	NC	5.9	9.78	66.3					42.7	73	47.3	9.02	38.9	42.7	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC
WB-SB19	80	0	Confirmation Soil Boring Not Conducted																												
Perc	chlorate Cleanup	Standard	16 mg/kg																												

Notes:

* = Duplicate results.

^a = Soil samples were collected by both direct-push and sonic drilling methods. Highest concentration was reported.

< = Analyte was not detected at or above the method reporting limit.

BOLD = Bold type depicts detected concentrations.

Highlighted concentration exceeds cleanup standard.

Acronyms and Abbreviations:

ft bgs = feet below ground surface

mg/kg = milligrams per kilogram

NC = soil sample not collected

NA = soil sample not analyzed

Old Burn Area Soil Analytical Data for Arsenic and Total Lead

Former Universal Propulsion Company, Inc. Facility Phoenix, Arizona

	Bering Denth	Total Complea				Sample D	epth (feet)						
Boring ID	Boring Depth (feet bgs)	Total Samples Collected	Analysis	1	2	3	5	7	10				
	(1001 bg3)	ooncoled		Concentrations (mg/kg)									
OB-SB53	2	2	Arsenic	7.0	NA	NC	NC	NC	NC				
OB-SB54	2	2	Arsenic	5.8	NA	NC	NC	NC	NC				
OB-SB55	2	2	Arsenic	7.2 / 7.3*	NA	NC	NC	NC	NC				
OB-SB56	2	2	Arsenic	18.6	14.2	NC	NC	NC	NC				
OB-SB64	10	5	Arsenic	9.2	9.7	7.8	NA	NA	NA				
OB-SB57	2	2	Total Lead	27.4	3.9 / 3.7*	NC	NC	NC	NC				
OB-SB57	2	2	Arsenic	6.2	5.0 / 7.3*	NC	NC	NC	NC				
OB-SB58	2	2	Total Lead	<1.8	<1.6	NC	NC	NC	NC				
OB-SB58	2	2	Arsenic	4.1	7.7	NC	NC	NC	NC				
OB-SB59	2	2	Total Lead	5.4	3.8 / 4.7*	NC	NC	NC	NC				
OB-SB59	2	2	Arsenic	5.5	6.6 / 5.9*	NC	NC	NC	NC				
OB-SB60	2	2	Total Lead	25.0	1950	NC	NC	NC	NC				
OB-SB60	2	2	Arsenic	8.2	6.6	NC	NC	NC	NC				
OB-SB61	2	2	Total Lead	3.9	4.4	NC	NC	NC	NC				
OB-SB61	2	2	Arsenic	5.8	5.1	NC	NC	NC	NC				
OB-SB62	2	2	Total Lead	4.5	4.5	NC	NC	NC	NC				
OB-SB62	2	2	Arsenic	6.4	6.5	NC	NC	NC	NC				
OB-SB63	2	2	Total Lead	4.4	1.8	NC	NC	NC	NC				
OB-SB63	2	2	Arsenic	7.0	4.9	NC	NC	NC	NC				
OB-SB65	10	5	Total Lead	NC	13	14	NA	NA	NA				
		Arseni	c Cleanup Standard	l 10 mg/kg									
		Lea	d Cleanup Standard	d 400 mg/kg									

Notes:

Bold results depict detected concentrations.

Highlighted concentrations exceed cleanup standard.

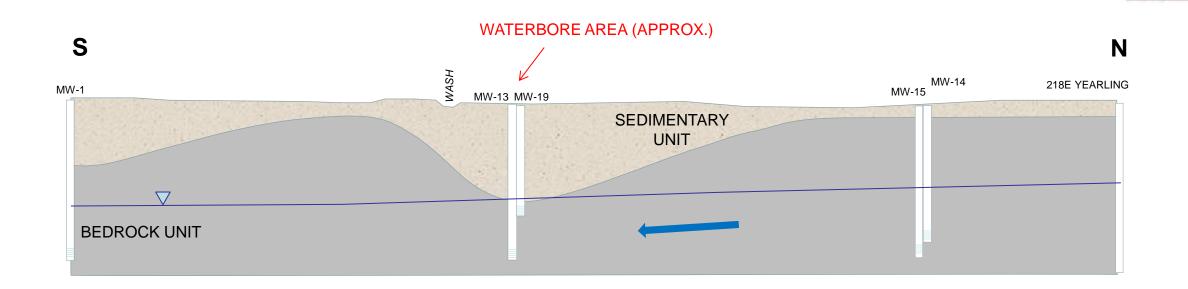
* = Duplicate results.

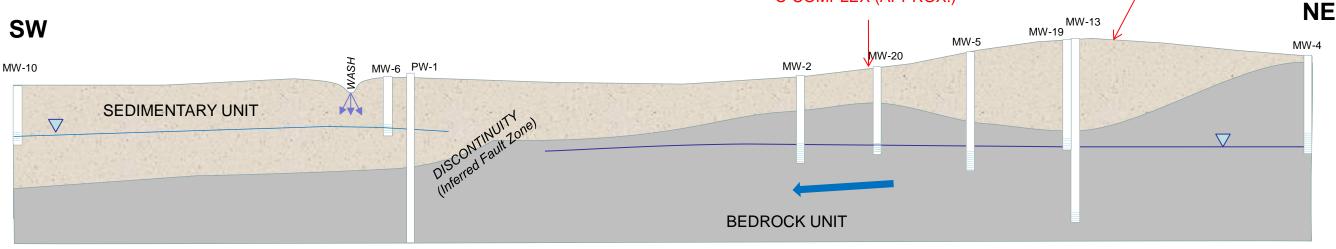
< = Analyte was not detected at or above the method reporting limit.

bgs = below ground surface

mg/kg = milligrams per kilogram

NA = soil sample not analyzed



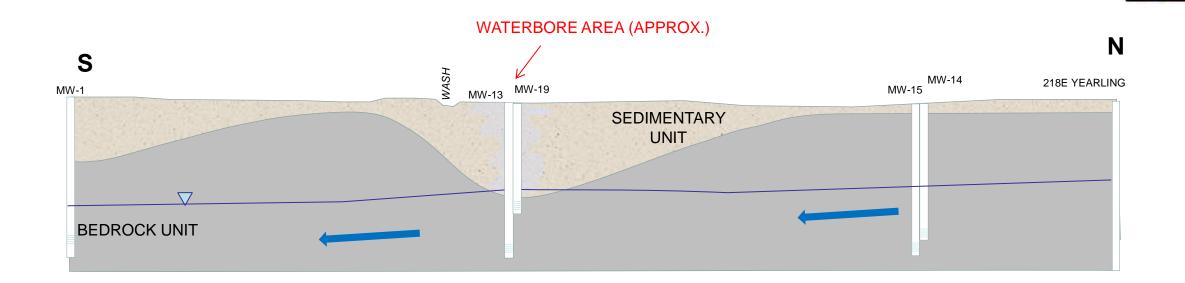

Appendix E

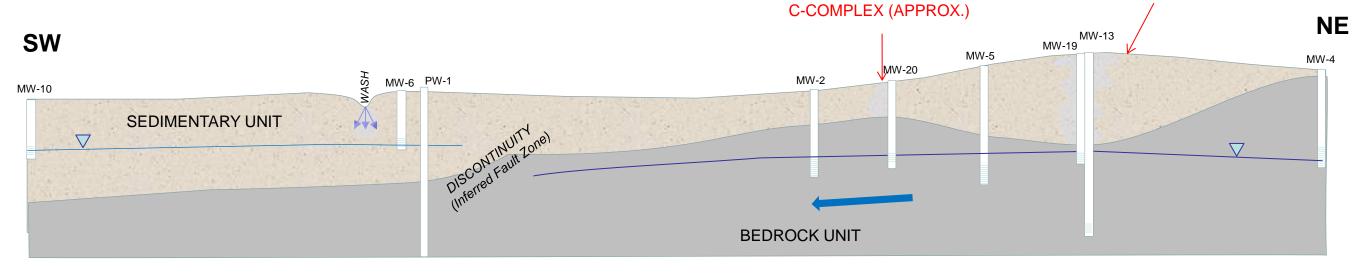
Hypothetical Cross-Sections (on CD)


HYPOTHETICAL CONDITIONS PRIOR TO WATERBORE OPERATIONS

- Historical groundwater head conditions prior to active residential pumping or waterbore operations.
- □ Water table gradient generally mimics topography, dipping gradually from north to south.
- Discontinuity near MW-6 and local recharge effect from wash cause elevated water table west of the inferred fault zone.

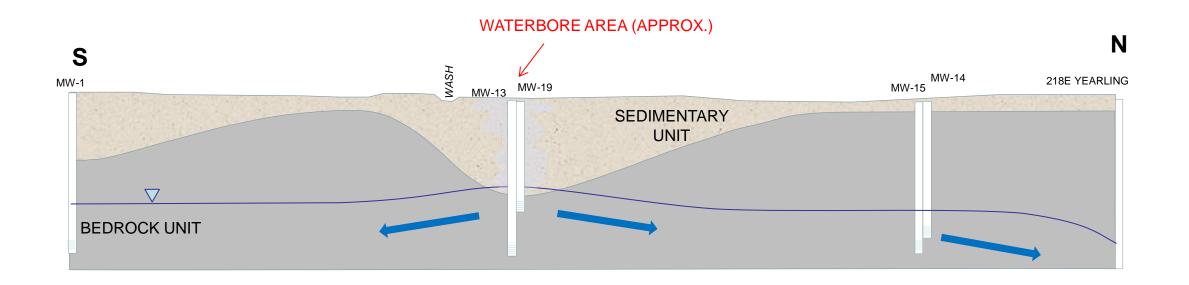
C-COMPLEX (APPROX.)

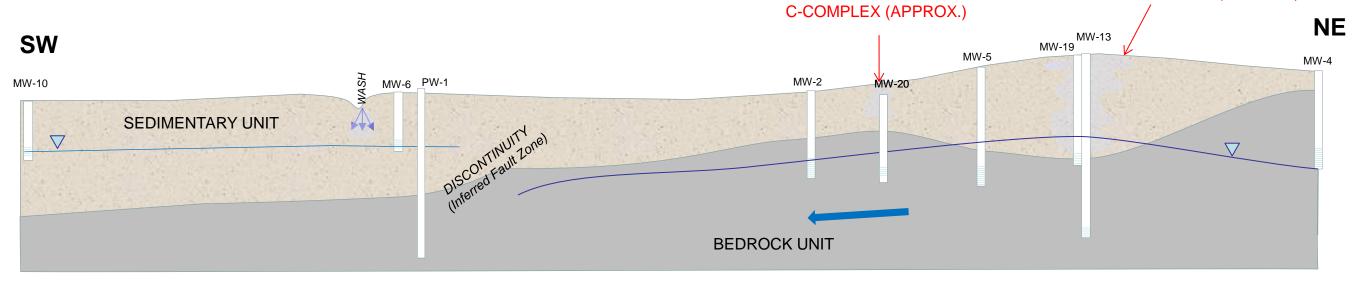



INSET SCALE - 1:12,000

HYPOTHETICAL CONDITIONS DURING WATERBORE OPERATIONS

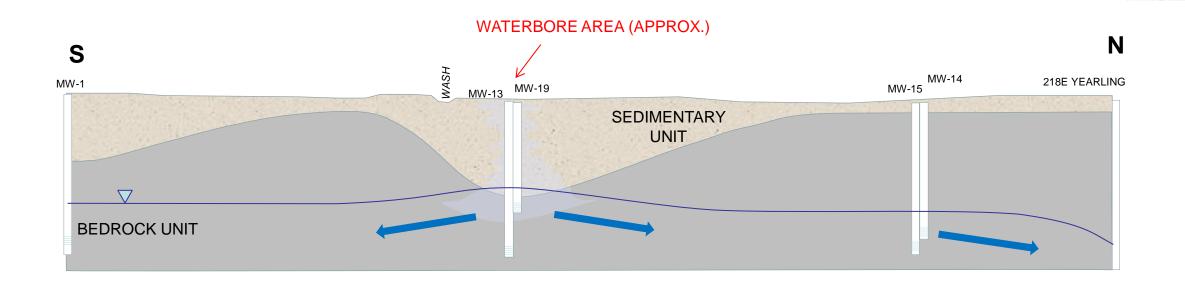
- Operations in Waterbore Area begin to cause local mounding effect in the water table due to enhanced recharge.
- D Pumping of on-site bedrock supply well PW-1 begins to locally lower heads in rock.
- □ A release from operations in C-Complex and a release from wash near MW-6.

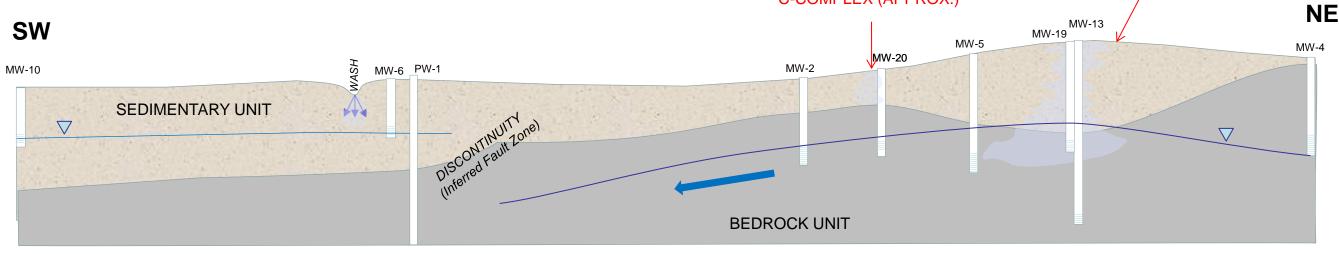



INSET SCALE - 1:12,000

HYPOTHETICAL CONDITIONS DURING WATERBORE OPERATIONS

- Pumping in residential area to north of Site begins to flatten gradient just north of the Site – steeper local gradient adjacent to pumping wells in residential area.
- □ Local water table mounding causes constituents to move outward from point of release within the Waterbore Area.
- Pumping in residential area continues to lower heads as water is pumped from aquifer storage.



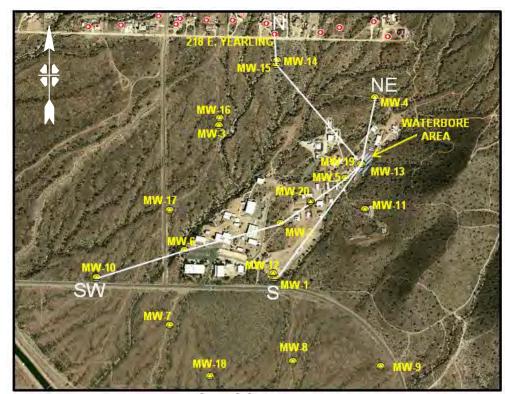

INSET SCALE - 1:12,000

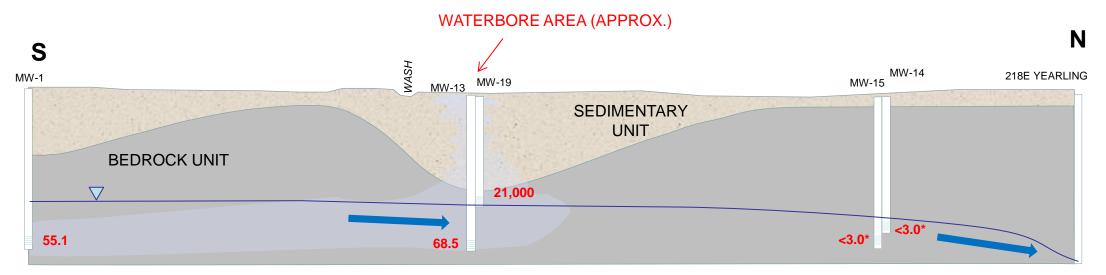
WATER BORE AREA (APPROX.)

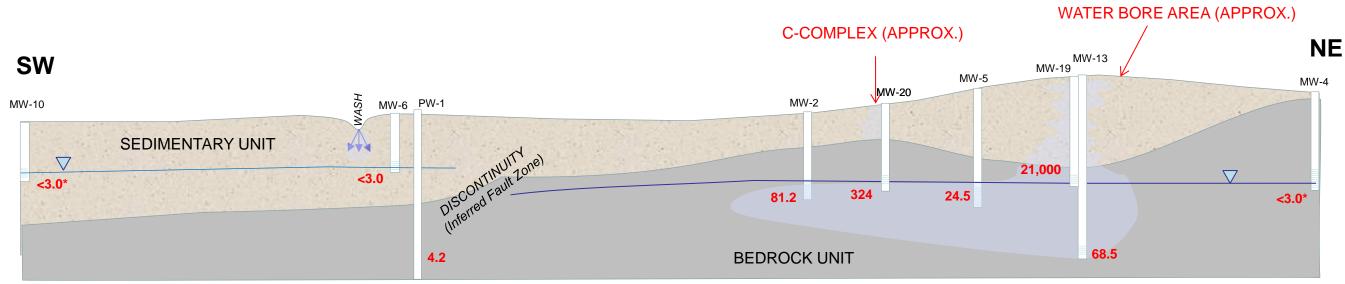
HYPOTHETICAL CONDITIONS DURING WATERBORE OPERATIONS

- Constituents in groundwater begin migrating semi-radially and slowly along gradient created between the water table mound within the Waterbore Area and inferred drawdown from on-site pumping.
- Constituent movement in groundwater is almost equally driven by both advection and diffusion due to relatively low transmissive flux.

C-COMPLEX (APPROX.)




INSET SCALE - 1:12,000


CURRENT CONDITIONS - WATERBORE OPERATIONS CEASED

- Water table mound has subsided with cessation of Waterbore Area operation.
- The gradient between residential area and Waterbore Area continues to increase gradually, but remains relatively flat in the Waterbore Area.

7 - PERCHLORATE CONCENTRATION, IN MICROGRAMS PER LITER (ug/l)

Note: Wells were sampled for perchlorate from 10/10/2014 through 10/15/2014 unless denoted with an asterisk (*); these wells were sampled from 7/8/2014 through 7/15/2014.

INSET SCALE - 1:12,000

Appendix F

Engineered Cap Design Basis Report (on CD)

Imagine the result

Universal Propulsion Company, Inc.

Engineered Cap Design Basis Report

Former Universal Propulsion Company, Inc. Facility Phoenix, Arizona

October 2015

Michael nesky

Michael P. Nesky, PE Principal Environmental Engineer

Engineered Cap Design Basis Report

Former Universal Propulsion Company, Inc. Facility Phoenix, Arizona

Prepared for: Universal Propulsion Company, Inc.

Prepared by: ARCADIS U.S., Inc. 410 North 44th Street Suite 1000 Phoenix, AZ 85008-6945 Tel 602.438.0883 Fax 602.438.0102

Our Ref.: 03994018.0015

Date: October 30, 2015

This document is intended only for the use of the individual or entity for which it was prepared and may contain information that is privileged, confidential and exempt from disclosure under applicable law. Any dissemination, distribution or copying of this document is strictly prohibited.

Table of Contents

1.	Introdu	iction	1						
2.	Engine	Engineered Cap Design 2							
	2.1	C-Complex and New Burn Area Engineered Caps	3						
3.	Hydrol	ogy and Scour Analysis	5						
	3.1	Federal Emergency Management Agency Floodplain Classification	5						
	3.2	Drainage Description	5						
	3.3	Hydrology	5						
	3.4	Hydraulics	6						
	3.5	Scour	8						
	3.6	Conclusions and Recommendations	10						
4.	Soil Mo	Disture Monitoring	11						
5.	Permit	ling	11						
6.	Refere	nces	13						

Figures

Figure 1	Site Location Map
Figure 2	Proposed Soil Cap Locations
Figure 3	Waterbore Area Cap Layout
Figure 4	Waterbore Area Cap Section A and Detail
Figure 5	Waterbore Area Cap Section B and Detail
Figure 6	C-Complex Area Cap Layout (Plan View)
Figure 7	C-Complex Area Cap Section and Detail
Figure 8	New Burn Area Cap Layout (Plan View)
Figure 9	New Burn Area Cap Section and Detail
Figure 10	Watershed Delineation

Table of Contents

Appendices

- A Manufacturer Product Information
- B Flood Insurance Rate Map
- C Rational Method Analysis
- D FlowMaster[™] Analysis
- E Scour Analysis
- F HEC-RAS Analysis

Acronyms and Abbreviations

ARCADIS	ARCADIS U.S., Inc.
ASTM	ASTM International
bgs	below ground surface
cfs	cubic feet per second
COC	constituent of concern
CWA	Clean Water Act
D ₅₀	Cumulative particle size distribution at 50 percent.
DDM Hydraulics	Drainage Design Manual for Maricopa County, Hydraulics
DDM Hydrology	Drainage Design Manual for Maricopa County, Arizona, Hydrology
DEM	digital elevation model
FEMA	Federal Emergency Management Agency
ft/s	feet per second
HDPE	high density polyethylene
HEC-RAS	Hydrologic Engineering Center River Analysis System
LLDPE	linear low density polyethylene
NOAA	National Oceanic and Atmospheric Administration
NWP	Nationwide Permit
PI	plasticity index
SA-2	Soil Alternative-2

Acronyms and Abbreviations

ARCADIS

- SiteFormer UPCO Facility located at 25401 North Central Avenue in
Phoenix, ArizonaSPTstandard penetration testUPCOUniversal Propulsion Company, Inc.U.S.C.United States CodeUSACEUnited States Army Corps of EngineersUSGSUnited States Geological Survey
- WVT water vapor transmission

Engineered Cap Design Basis Reporteport

Former Universal Propulsion Company, Inc. Facility Phoenix, Arizona

1. Introduction

On behalf of Universal Propulsion Company, Inc. (UPCO), ARCADIS U.S., Inc. (ARCADIS) has prepared this Engineered Cap Design Basis Report for the former UPCO Facility located at 25401 North Central Avenue in Phoenix, Arizona, near the intersection of Central Avenue and Happy Valley Road (Site; Facility ID Number AZD 980 814 479) (Figure 1). As presented in the Supplemental Soil Pre-Design Study Summary Report (ARCADIS 2014) and Additional Soil Characterization at Proposed Deep Excavation Areas letter (ARCADIS 2015), engineered caps were proposed for the Waterbore Area, C-Complex Area, and New Burn Area at the Site to limit infiltration of precipitation runoff and reduce the potential for direct contact with constituents of concern (COCs) in soil by potential receptors. The location and layout of each cap are shown on Figure 2.

The engineered caps will control potential hazards by eliminating routes of exposure to soil containing COCs and by potentially reducing constituent migration through isolation and elimination of surface water infiltration. The construction of an engineered cap over COCs above cleanup levels will reduce the potential for direct contact of COCs in soil by receptors. The low permeability of the engineered cap will also reduce surface water infiltration and prevent potential leaching of COCs from soil to groundwater. A construction specification document with construction drawings will be provided to Arizona Department of Environmental Quality (ADEQ) for review and approval as part of the Corrective Measures Implementation Plan to guide construction of the caps. Sections 2 through 6 of this report provide a technical evaluation for the following:

- Engineered cap design
- Hydrology and scour analysis
- Hydraulic evaluation
- Permitting

Engineered Cap Design Basis Reporteport

Former Universal Propulsion Company, Inc. Facility Phoenix, Arizona

2. Engineered Cap Design

The engineered caps (proposed as part of Soil Alternative-2 [SA-2]) consist of a relatively impermeable geomembrane liner (linear low density polyethylene [LLDPE] with MicroSpike[®]), woven geotextile, and a HydroTurf[™] CS surface layer to minimize erosion of the soil and surface water infiltration. Geomembrane liners are nonporous homogeneous materials, and transmission of permeating species through geomembranes without holes occurs by absorption of the species in the geomembrane and diffusion through the geomembrane on a molecular basis. Geomembranes possess permeability values (as measured by water-vapor transmission [WVT] test) in the range of 1×10^{-12} meters per second (m/s) to 1×10^{-15} m/s, which are one thousand to one million times lower than a typical clay liner (Scheirs, J. 2009). WVT is tested in accordance with ASTM International (ASTM) D96. Tests performed on AGRU America 40 mil smooth high density polvethylene (HDPE) geomembrane and a 60 mil MicroSpike[®] HDPE geomembrane demonstrated average permeabilities of 5.8 x 10⁻¹⁵ centimeters per second (cm/s) and 5.08 x 10⁻¹⁵, respectively. AGRU America certifies that that geomembrane will meet or exceed a permeability of 1×10^{-7} . The manufacturer's product information and testing is provided in Appendix A. Since a geomembrane liner is integrated as part of the cover, which is directly below the HydroBinder, no permeability testing has been performed on the HydroTurf[™] CS with the HydroBinder infill. The HydroTurf™ CS with the HydroBinder infill is estimated to have permeability in the range of 1×10^{-4} cm/s to 1×10^{-5} cm/s. Transmissivity tests have been conducted on this material, and the results are also provided in Appendix A for reference.

Existing soil in the cap layout areas will be excavated approximately 2 feet below ground surface (bgs) at the Waterbore and C-Complex Areas, and 5 feet bgs in the New Burn Area, and replaced with compacted native clean fill as necessary prior to placement of each respective cap. The engineered cap systems will be anchored on all sides by a concrete anchor trench. The anchor trench design is a 2-foot-deep by 5-foot-wide anchor; however, as noted in Section 3.5, the portion of the cap located within the wash in the Waterbore Area must incorporate a 3.80-foot-deep anchor trench upstream and downstream of the cap due to calculated scour potential within the wash. The Waterbore Area cap will cover an area of approximately 15,450 square feet, extending across the ephemeral wash and approximately 10 feet up the slope of the wash to the east. Figure 3 shows the proposed area to be capped in the Waterbore Area including the ephemeral wash. Figures 4 and 5 show the cross-sections and preliminary plan details for the Waterbore Area cap.

Engineered Cap Design Basis Reporteport

Former Universal Propulsion Company, Inc. Facility Phoenix, Arizona

Sections 3.3.2 and 4.2 of the Supplemental Soil Pre-Design Study Summary Report (ARCADIS 2014) discuss the methods and results of geotechnical sampling conducted in the Waterbore Area for SA-2. As noted, one standard penetration test (SPT) boring (WB-01A) was drilled, together with two additional soil borings (WB-15 and WB-16). Soils recovered during drilling were field classified, and select portions of each sample were submitted for laboratory analysis of index properties, such as moisture content (ASTM D2216), grain size (ASTM C136/C117), Atterberg limits (liquid limit, plastic limit [ASTM D4318]), and specific gravity (ASTM D854).

In general, the soils in the three borings drilled for geotechnical analysis were described as follows:

- Layer 1 Approximately 6 feet of very dense clayey and silty sands (SC, SM, and SC-SM). Moisture content ranges from 1.5% to 6%, specific gravity ranges from 2.650 to 2.687, and the plasticity index (PI) ranges from non-plastic to 8.
- Layer 2 Greater than 14 feet of very dense clayey and silty gravels (GC, GC-GM). Moisture content ranges from 4.7% to 6.1%, specific gravity ranges from 2.640 to 2.721, and the PI ranges from 5 to 10.

SPT blow counts (N-values) in soil boring WB-01A were greater than 50 blows per foot, indicating the soil is very dense.

The quantity of data and level of testing conducted during the pre-design phase of the project are adequate to provide a basis for the development of the hydrology and scour analyses and the soil hydraulic analyses that are further discussed below.

2.1 C-Complex and New Burn Area Engineered Caps

Following the April 2015 soil investigations in the C-Complex Area and New Burn Area, it was determined that engineered caps would also be required in these areas (ARCADIS 2015). The caps in these areas will be located where soils with COC concentrations higher than the cleanup goal for perchlorate are to remain in place (Figure 2). Unlike the Waterbore Area, the caps in these two areas will not be constructed within any washes, and will only be affected by localized precipitation and surface water runoff. Soil characteristics identified in the C-Complex Area and New Burn Area are similar to the soil characteristics within the Waterbore Area. Therefore, the engineered cap design, as modeled for the Waterbore Area, is applicable to these areas, and will provide similar protection against surface water infiltration and potential

Engineered Cap Design Basis Reporteport

Former Universal Propulsion Company, Inc. Facility Phoenix, Arizona

leaching of COCs from soil to groundwater. Like the cap design for the Waterbore Area, the design of the caps in these areas will incorporate the same geomembrane liner, woven geotextile, and a HydroTurf[™] CS surface layer to minimize erosion of the soil and surface water infiltration, and to reduce the potential for direct contact with COCs in soil by potential receptors. The caps will be anchored on all sides by a 2-footdeep by 5-foot-wide concrete anchor, similar to the cap design for the Waterbore Area outside of the extents of the ephemeral wash. The caps and surrounding areas will be graded and sloped to ensure positive drainage. The C-Complex Area cap will cover an area of approximately 6,637 square feet (Figure 6). Figure 7 shows the cross-section and preliminary plan detail for the C-Complex Area cap. The New Burn Area cap will cover an area of approximately 1,159 square feet (Figure 8). Figure 9 shows the cross-section and preliminary plan detail for the New Burn Area cap.

Engineered Cap Design Basis Reporteport

Former Universal Propulsion Company, Inc. Facility Phoenix, Arizona

3. Hydrology and Scour Analysis

This section presents a discussion of the anticipated hydrology within the Waterbore Area, specifically a portion of an existing ephemeral wash that will be disturbed with the excavation of soil and the installation of an engineered cap as indicated in the Supplemental Soil Pre-Design Study Summary Report (ARCADIS 2014). The ephemeral wash under consideration is located on the east side of the Waterbore Area (Figure 2). This section discusses the methods and analyses used to determine the peak flow rate for the design storm and a scour analysis performed to determine the depth to which the cap must be protected against potential scour in the wash.

3.1 Federal Emergency Management Agency Floodplain Classification

The Waterbore Area is located in Zone X (designated as "Other Flood Areas") according to the Federal Emergency Management Agency (FEMA) Flood Insurance Rate Map number 04013C1280L dated October 16, 2013. Zone X is defined as "Areas of 0.2% annual chance flood; areas of 1% annual chance flood with average depths of less than 1 foot, or with drainage areas less than 1 square mile; and areas protected by levees from 1% annual chance flood." A copy of Flood Insurance Rate Map number 04013C1280L is provided in Appendix B.

3.2 Drainage Description

A United States Geological Survey (USGS) digital elevation model (DEM) was used to determine the limits of the contributory watershed to the ephemeral wash within the Waterbore Area. Figure 10 shows this DEM and the watershed delineation. The total contributory area to the ephemeral wash is approximately 56 acres or 0.09 square miles. The contributory watershed consists of two sub-basins that combine into the ephemeral wash in the Waterbore Area. The sub-basins both drain north to south and combine at the start of the third sub-basin. The third sub-basin encompasses the ephemeral wash where the cap will be installed (Figure 10). The DEM was used to determine the route of both of the contributory washes that combine into the ephemeral wash and to determine the ephemeral wash as well.

3.3 Hydrology

Because this contributory watershed is so small, the Rational Method is an acceptable method to estimate the flow rate in the ephemeral wash. According to the Drainage Design Manual for Maricopa County, Arizona, Hydrology (DDM Hydrology; Flood

Engineered Cap Design Basis Reporteport

Former Universal Propulsion Company, Inc. Facility Phoenix, Arizona

Control District of Maricopa County 2013a), the Rational Method may be used for watersheds up to 160 acres in size. The Rational Method computes the anticipated flow in the wash based on a coefficient relating runoff to rainfall and is an empirical number based on the type of ground cover and topography and the intensity of the rainfall based on an estimated time of concentration. The Rational Method analysis is provided in Appendix C.

The coefficient used for this analysis was based on Table 3.2 of DDM Hydrology (Flood Control District of Maricopa County 2013a). The hydrology is considered to be Hillslopes, Sonoran Desert, which has a 100-year coefficient of 0.70. The maximum coefficient was used as a conservative measure.

The intensity for each of the sub-basins was determined through development of a sitespecific depth-duration-frequency table using National Oceanic and Atmospheric Administration (NOAA) Atlas 14 (NOAA 2004). Intensity was then determined iteratively through use of a time of concentration calculation per Equation 3.2 in DDM Hydrology (Flood Control District of Maricopa County 2013a).

The anticipated 100-year, 24-hour flow rate was calculated for each sub-basin per Equation 3.1 in DDM Hydrology (Flood Control District of Maricopa County 2013a). These flows were then added to determine the flow rate through the ephemeral wash for this storm event. In this case, the anticipated flow for the 100-year, 24-hour storm event is approximately 235 cubic feet per second (cfs). Pre- and post-conditions remain the same because there are no changes made to the upstream Sub-basins 1 and 2, and the installation of an engineered cap in Sub-basin 3 is not anticipated to significantly change the hydrologic conditions in terms of the anticipated flow rate in the natural ephemeral wash.

3.4 Hydraulics

Once the flow rate had been estimated for the design storm, the FlowMaster[™] program and Manning's equation were used to determine the anticipated velocity of the flow in the channel. Manning's equation relies on a roughness coefficient that is empirically derived based on the type of conditions encountered in the channel. For the natural channel, a coefficient of 0.035 is generally considered typical given the topography and vegetation indicated at the Site. For the portion of the channel where HydroTurf[™] CS will be used, the manufacturer recommends a roughness coefficient of 0.02. The velocity was calculated for the natural channel upstream of the proposed cap and for the portion of the channel where the cap will be installed. The velocity in the

Engineered Cap Design Basis Reporteport

Former Universal Propulsion Company, Inc. Facility Phoenix, Arizona

natural channel is calculated to be approximately 9.34 feet per second (ft/s) and is supercritical flow. The velocity anticipated for the channel where the cap will be installed is calculated to be approximately 12.77 ft/s and is supercritical flow. Since the flow velocity is increased to 12.77 ft/s from the existing 9.34 ft/s in the channel, rip rap erosion protection is proposed downstream of the cap. The velocity with the rip rap is calculated to be approximately 3.97 ft/s. Beyond the rip rap, the velocity is dependent on the natural channel. The FlowMaster [™] analysis is a one-dimensional analysis and does not provide an indication of how far the rip rap must extend beyond the soil cap, nor does it fully describe the flow characteristics as the wash transitions from native existing condition to the soil cap then to the rip rap and back to a native existing condition. Therefore, the FlowMaster [™] analysis, provided in Appendix D, is a preliminary analysis and a different hydraulic model is needed to determine these flow characteristics. A United States Army Corps of Engineers (USACE) Hydrologic Engineering Center River Analysis System (HEC-RAS) model was developed.

In order to perform the HEC-RAS analysis, a development of cross-sections of the drainage flow path was required. The watershed and the ephemeral wash development for the hydrology analysis were used as a starting point. The ephemeral wash as defined for the hydrology was assigned an alignment using AUTOCAD® Civil 3D and cross-sections begin at the downstream termination of Sub-Basin 3 (Figure 8) and were manually interpreted from the DEM model beginning at Station 500 and then cut at the following stations; 600, 700, 800, 1100, 1200, 1205 and 1400. Additional cross sections were interpolated in between these manual sections by the HEC RAS program. The manually defined cross sections were chosen in locations that best represent the ephemeral channel and that occur immediately before and after the proposed engineered cap in order to better define the flows and velocities in the wash at those locations. The engineered cap is approximately located between station 10+60 and station 11+75. The assignment of the alignment and stationing was not tied to any survey monumentation or any other drainage studies.

The velocities predicted in the channel were revised as a result of the HEC-RAS model and thus were reduced predicting a velocity in the native channel of approximately 7.79 ft/s, a velocity across the soil cap of approximately 13.95 ft/s and the flow velocity across the proposed rip rap section reduces the velocity to 2.95 ft/s before entering the existing channel section again where the velocity increases to approximately 5.73 ft/s at the furthest downstream section analyzed.

Engineered Cap Design Basis Reporteport

Former Universal Propulsion Company, Inc. Facility Phoenix, Arizona

3.5 Scour

A scour analysis was performed upstream of the engineered cap to determine to what depth scour could occur upstream of the engineered cap, given that no riprap or other protection is anticipated at the interface between the natural wash and the portion of the channel with the engineered cap. Estimation of scour is based on Section 11.8 of the Drainage Design Manual for Maricopa County, Hydraulics (DDM Hydraulics; Flood Control District of Maricopa County 2013b). Total scour is estimated per Equation 11.41, which includes long-term scour, general scour, bedform scour, and low-flow scour. Not all types of scour are applicable in every situation. The types of scour calculated for the ephemeral scour include long-term scour, general scour, bedform scour, bedform scour, and low-flow scour. There are no significant bends within the wash; therefore, the ephemeral wash is not subject to bend scour, (Figure 10). Local scour is intended for use where localized obstructions exist within the wash (i.e., bridge piers). The ephemeral wash does not have any of these obstructions.

Because there are no downstream control structures on the ephemeral wash and there is no pivotal point on the channel, the simplified method based on Level 1 analysis from Arizona State Standard 5-96 may be used for the estimation of long-term scour. The long-term scour was estimated to be approximately 0.53 feet. Limits on the longterm scour from natural armoring in the wash are not applicable based on aerial photographs of the ephemeral wash.

For general scour, the Lacey Equation (Equation 11.56; Flood Control District of Maricopa County 2013b) is the most applicable to a natural system, as there are no upstream features that capture sediment (Figure 10). The cumulative particle size passing at 50 percent (D_{50}), 2.36 inches, was determined from the grain size distribution analysis of sample WB-SB 15-10 obtained as part of the Supplemental Soil Pre-Design Study Summary Report (ARCADIS 2014). The general scour was estimated to be approximately 0.52 feet.

The bedform scour equation is Equation 11.61 in DDM Hydraulics (Flood Control District of Maricopa County 2013b) and is estimated based on a dune or anti-dune height that is typically measured in the channel during a site visit. This information was not available; therefore, a calculated value was used based on the calculated Froude number. The FlowMaster[™] hydraulic analysis for the ephemeral wash calculated a Froude number of approximately 1.16, and according to DDM Hydraulics, Equation 11.63 is the appropriate equation based on the Froude number. The estimated bedform scour is approximately 0.82 feet.

Engineered Cap Design Basis Reporteport

Former Universal Propulsion Company, Inc. Facility Phoenix, Arizona

Low-flow or incisement scour is typically measured in the field during a site visit. However, when this data is not available, an estimation of 1 foot for the ephemeral wash is permitted for design and planning purposes according to Section 11.8.2.5 of DDM Hydraulics (Flood Control District of Maricopa County 2013b).

The total scour is the sum of the scours identified above, with a factor of safety applied. In this case, DDM Hydraulics (Flood Control District of Maricopa County 2013b) recommends a factor of safety of 1.3. The estimated total scour is approximately 2.87 feet without the factor of safety applied; therefore, the minimum depth of the cap concrete anchor should be a minimum of 3.73 feet. The scour analysis is provided in Appendix E.

The scour analysis above estimates the scour upstream of the proposed engineered cap. Because of the higher velocity that occurs in the channel as a result of the cap (approximately 13.59 ft/s), the natural channel immediately downstream of the cap requires protection from scour as well. A United States Army Corps of Engineers (USACE) Hydrologic Engineering Center River Analysis System (HEC-RAS) evaluation of the proposed final conditions was performed to determine the length of channel that will need to be protected downstream of the proposed channel cap. An angular riprap is proposed to line the channel to provide that protection. The HEC-RAS analysis indicates that a length of 30 feet of protection will be adequate.

In order to perform the HEC-RAS analysis, a development of cross-sections of the drainage flow path was required. The watershed and the ephemeral wash development for the hydrology analysis were used as a starting point. The ephemeral wash as defined for the hydrology was assigned an alignment using AUTOCAD Civil 3D and cross-sections begin at the downstream termination of Sub-Basin 3 (Figure 10) and were manually interpreted from the DEM model beginning at Station 500 and then cut at the following stations; 600, 700, 800, 1100, 1200, 1205 and 1400 (Appendix F). Additional cross sections were interpolated in between these manual sections by the HEC-RAS program. The manually defined cross sections were chosen in locations that best represent the ephemeral channel and that occur immediately before and after the proposed engineered cap in order to better define the flows and velocities in the wash at those locations. The engineered cap is approximately located between station 10+60 and station 11+75. The assignment of the alignment and stationing was not tied to any survey monumentation or any other drainage studies.

After the length of required protection was determined, the average size of riprap was calculated using Hydraulic Engineering Circular No. 15, Third Edition – Design of

Roadside Channels with Flexible Linings (U.S. Department of Transportation, Federal Highway Administration 2005). The calculated average size of the riprap should be a minimum of 12 inches in diameter and should be placed to a minimum depth of 24 inches (2 feet), for a minimum distance of 30 feet to provide adequate protection against erosion downstream of the soil cap. This will reduce the velocity of the flow adequately enough to match existing conditions prior to installation of the engineered cap. The HEC-RAS analysis is provided in Appendix F.

3.6 Conclusions and Recommendations

The flow rate has been quantified to be approximately 235 cfs for the 100-year, 24hour storm event, with a velocity of approximately 7.79 ft/s in the natural ephemeral wash and approximately 13.59 ft/s in the portion of the wash with the engineered cap. The velocity increase at the engineered cap is due to the reduced roughness in the channel as a result of the cap. Therefore, it is recommended that riprap be placed immediately downstream of the proposed engineered cap to protect the existing wash downstream of the engineered cap from erosion due to the higher velocity. A minimum length of 30 feet of channel should be protected downstream with angular riprap, with a minimum average size of 12 inches to a minimum depth of 2 feet to provide protection against erosion immediately downstream of the engineered cap. The terminal velocity at the end of the rip rap is approximately 2.95 ft/s which then increases downstream of the rip rap in the existing native channel again to approximately 5.73 ft/s and continues in the current existing conditions downstream from the proposed improvements.

Based on the scour analysis performed upstream of the proposed engineered cap, the approximate total scour is estimated to be 3.73 feet. Therefore, it is recommended that the upstream concrete anchor in front of the engineered cap be extended to a total depth of 3.8 feet across the channel where the natural channel and the engineered cap interface.

Engineered Cap Design Basis Reporteport

Former Universal Propulsion Company, Inc. Facility Phoenix, Arizona

Engineered Cap Design Basis Reporteport

Former Universal Propulsion Company, Inc. Facility Phoenix, Arizona

4. Soil Moisture Monitoring

To address concerns of potential lateral infiltration of water originating from the wash during storm flow events within the Waterbore Area, soil moisture monitoring will be implemented beneath the engineered cap. During final remedy operation a neutron probe will be used to estimate the volumetric water content of the soil based on the thermalization of neutrons colliding with atomic nuclei in the soil. Neutrons emitted by the probe enter the soil and are thermalized by the hydrogen present in water. These thermalized neutrons enter the helium-3 detector and are registered as a count. Using a calibration program, the detected counts are converted into soil moisture readings. The objective of neutron monitoring is to provide a correlation with laboratorymeasured soil moisture content and provide the means of continuing moisture content monitoring to assess soil moisture trends and changes. The recommended approach involves advancing three 20-foot soil borings within cap at the Waterbore Area (Figure 3). During installation, soil samples will be collected at 5-foot intervals to a total depth of 20 feet in the boring. Soil samples will be analyzed for soil moisture following ASTM D2216 and for total porosity following ASTM D7263. Upon completion of drilling the boreholes, a 2 inch blank PVC access tube casing will be installed. The casing is well suited for continued moisture content monitoring using a standard Troxler-type monitoring device (Model 4301/02), or equivalent (www.troxlerlabs.com). A calibrated neutron probe is lowered into the access tube and readings taken in one foot intervals used to estimate the volumetric water content of the soil.

Initial measurements will be collected monthly for 12 consecutive months in order to establish a baseline soil moisture trend. Following baseline data collection, monitoring will be dependent upon water flow in the wash. Moisture monitoring will be performed within 30 days following flow events in the wash. A minimum of three and a maximum of ten monitoring events will be performed within a twelve month period following baseline monitoring. ADEQ and UPCO will review the data to determine the significance of the changes in moisture and agree what additional actions, if any, should be taken. Moisture monitoring may be discontinued if data shows moisture content does not increase significantly after a flow event in the wash.

5. Permitting

In the Waterbore Area, the eastern side of the cap will be constructed in an ephemeral wash (Figure 2). Activities in waters of the United States are regulated under the Clean Water Act (CWA). Section 404 of the CWA requires a permit (i.e., 404 Permit) to

Engineered Cap Design Basis Reporteport

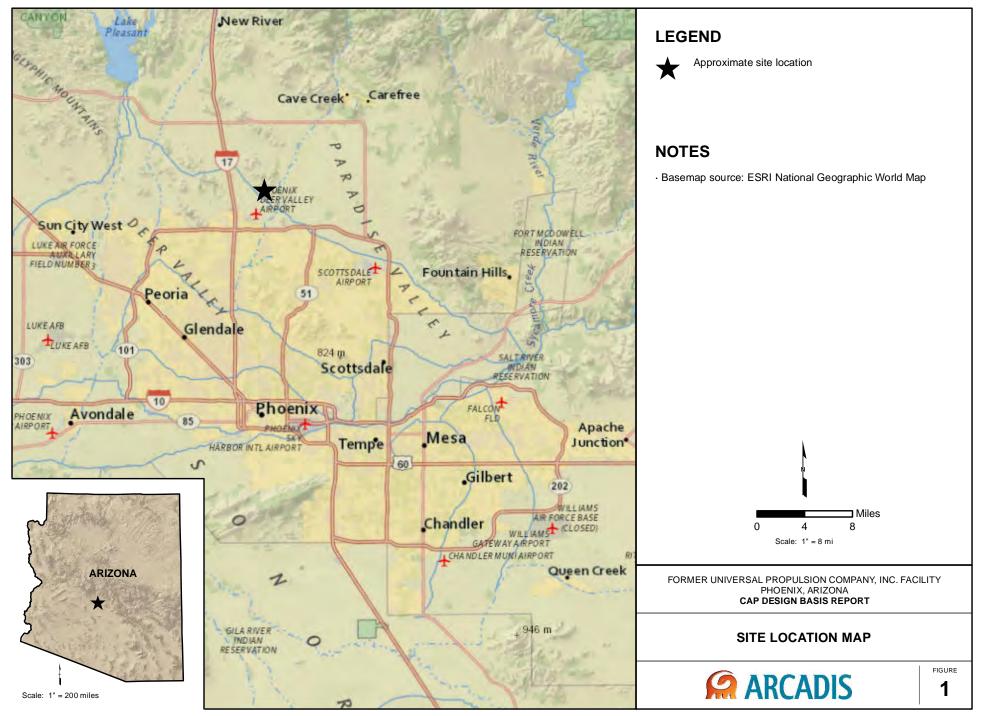
Former Universal Propulsion Company, Inc. Facility Phoenix, Arizona

dredge material from, or discharge fill material into, waters of the United States, unless the activity is exempt from Section 404 regulations.

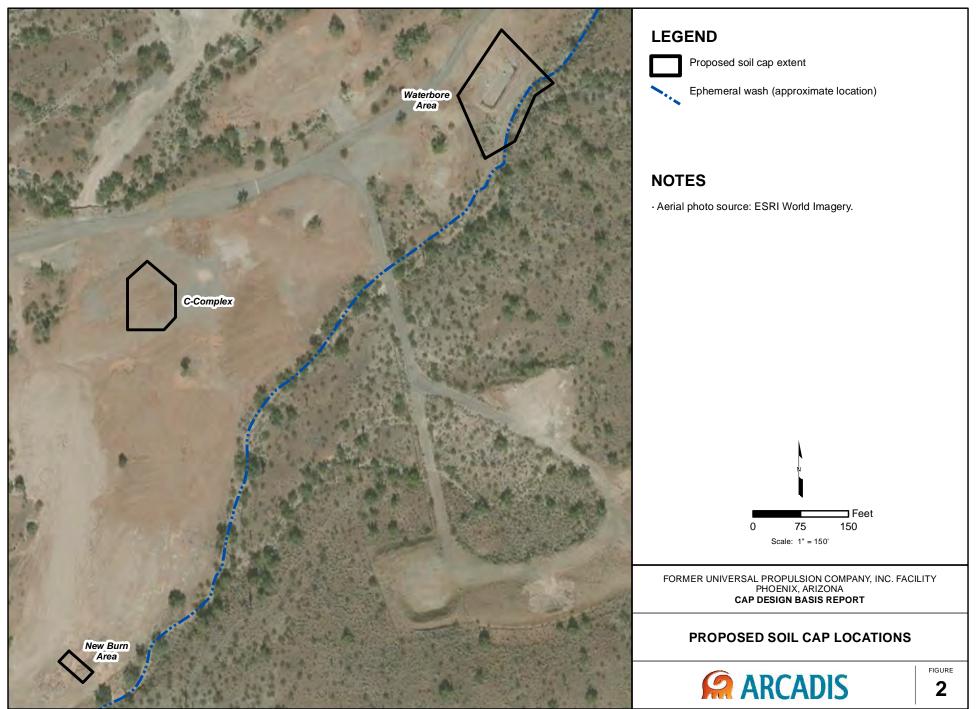
Consultation with Sallie Diebolt of USACE (email dated February 12, 2015) has concluded that the ephemeral wash in the Waterbore Area is likely jurisdictional under Section 404 of the CWA. Excavation activities and construction of the engineered cap within the wash are covered under Nationwide Permits (NWP) 38 and 13, both of which are granted statutory authority under Section 10 of the Rivers and Harbors Act of 1899 (33 United States Code [U.S.C.] 403) and Section 404 of the CWA (33 U.S.C. 1344). The NWPs are administered by USACE and incorporate a standardized review process for approval of permit applications. NWP 38 covers "specific activities required to effect the containment, stabilization, or removal of hazardous or toxic waste materials that are performed, ordered, or sponsored by a government agency with established legal or regulatory authority" (Decision Document Nationwide Permit 38). NWP 13 covers bank stabilization activities necessary for erosion prevention (Decision Document Nationwide Permit 13). Following approval of recommended soil remedial alternative SA-2 by the Arizona Department of Environmental Quality, an application package will be prepared and submitted to USACE for review and approval of cap construction within the ephemeral wash in accordance with the requirements of NWP 38 and NWP 13.

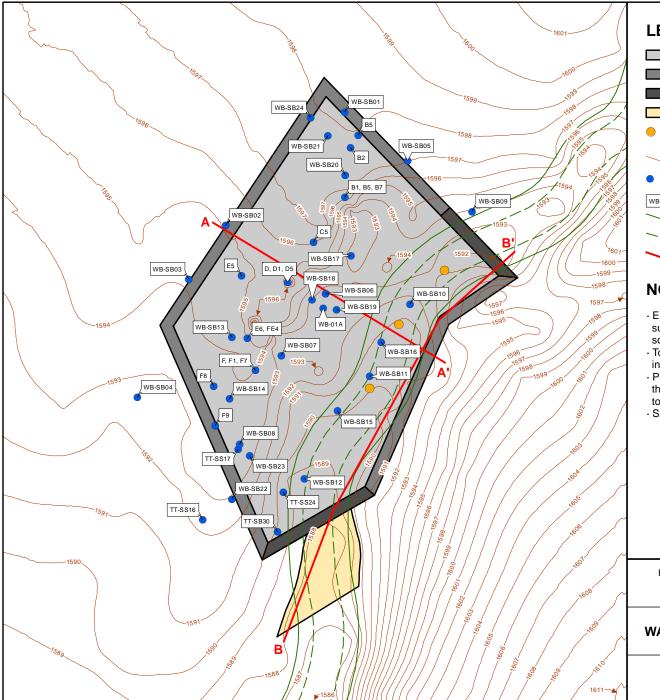
Engineered Cap Design Basis Reporteport

Former Universal Propulsion Company, Inc. Facility Phoenix, Arizona


6. References

- ARCADIS. 2014. Supplemental Soil Pre-Design Study Summary Report, Former Universal Propulsion Company, Inc. Facility, Phoenix, Arizona. October 6, 2014.
- ARCADIS. 2015. Additional Soil Characterization at Proposed Deep Excavation Areas, Former Universal Propulsion Company Facility, 25401 North Central Avenue, Phoenix, Arizona. May 15, 2015.
- Flood Control District of Maricopa County. 2013a. Drainage Design Manual for Maricopa County Arizona, Hydrology. August 2013.
- Flood Control District of Maricopa County. 2013b. Drainage Design Manual for Maricopa County Arizona, Hydraulics. August 2013.
- National Oceanic and Atmospheric Administration, 2004, Precipitation-Frequency Atlas of the United States, Volume 1 Version 5.0: Semiarid Southwest (Arizona, Southeast California, Nevada, New Mexico, Utah). Revised 2011.
- Scheirs, J. (2009) Key Performance Properties of Geomembranes, in A Guide to Polymeric Geomembranes, John Wiley & Sons, Ltd, Chichester, UK. doi: 10.1002/9780470748213.ch12
- Schroeder, P.R., T.S. Dozier, P.A. Zappi, B.M. McEnroe, J.W. Sjostrom, and R.L.
 Peyton. 1994. The Hydrologic Evaluation of Landfill Performance (HELP) Model:
 Engineering Documentation for Version 3. EPA/600/R-94-168b. U.S.
 Environmental Protection Agency Office of Research and Development,
 Washington, D.C. September 1994.
- U.S. Department of Transportation, Federal Highway Administration. 2005. Hydraulic Engineering Circular No. 15, Third Edition – Design of Roadside Channels with Flexible Linings. September 2005.



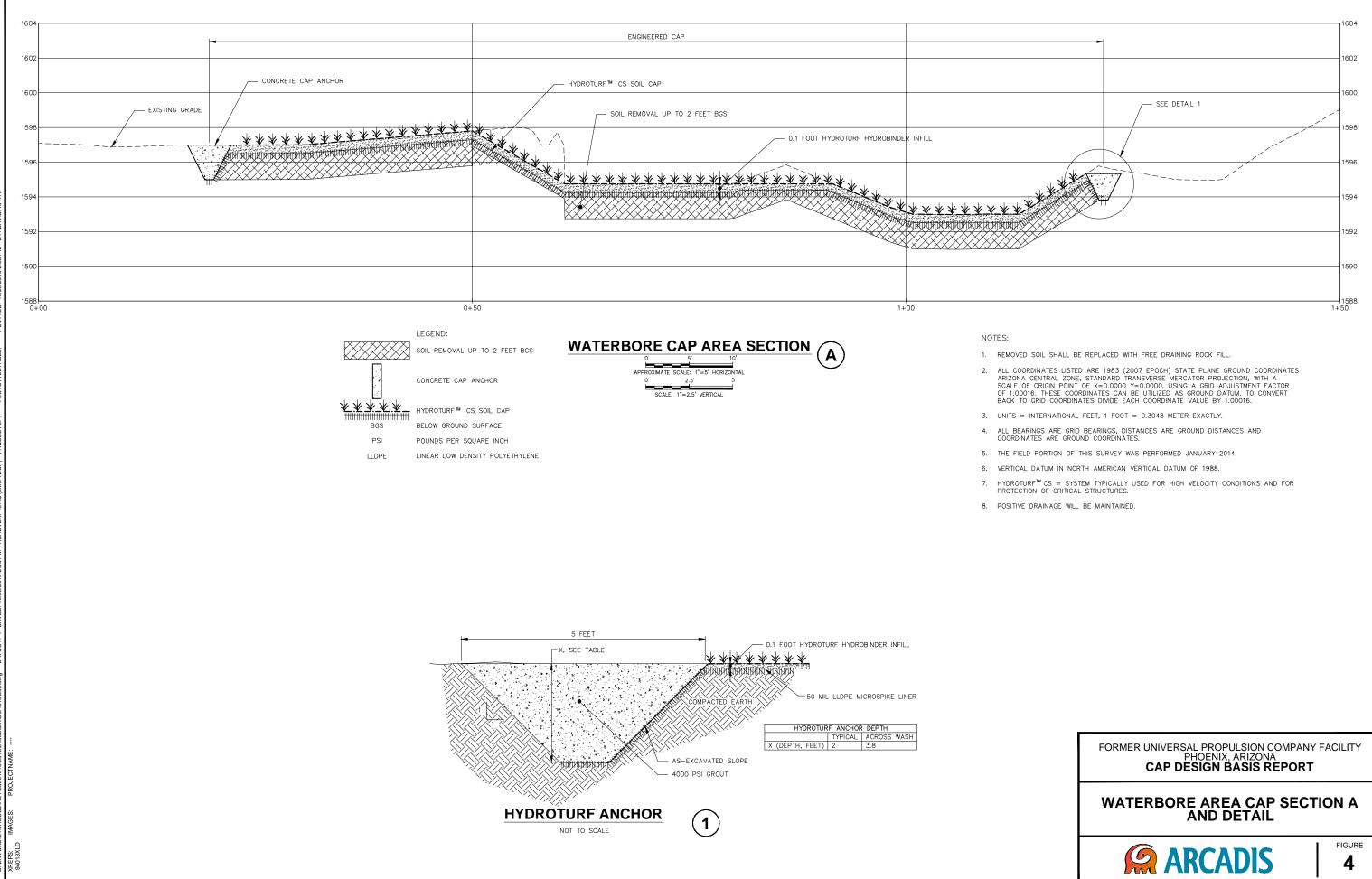

Figures

\\Scottsdale-AZ\Project\UPCO\GIS\Projects\Cap Design Basis Report 06-2015\Figure 1 site location map.mxd 6/30/2015

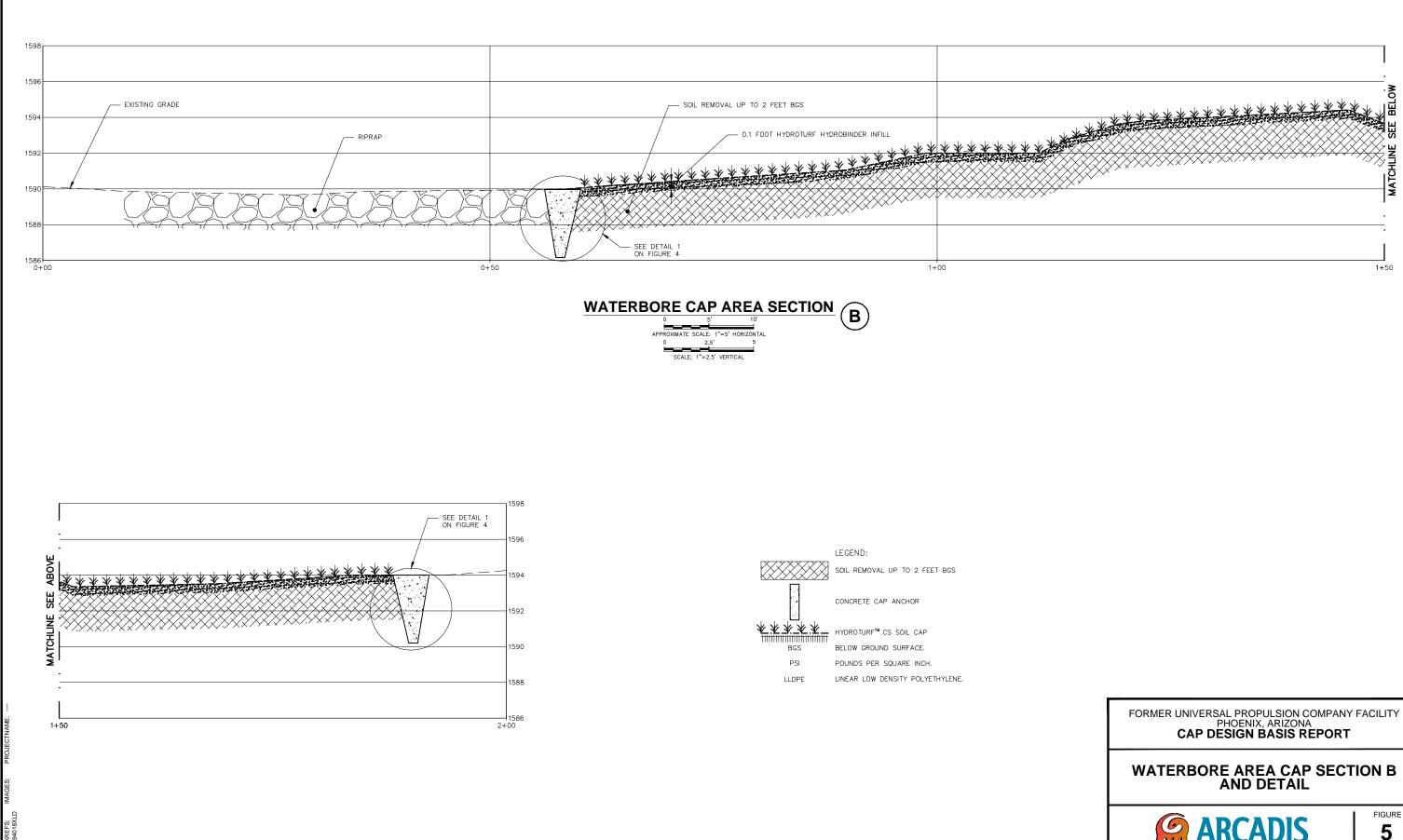
\\Scottsdale-AZ\Project\UPCO\GIS\Projects\Cap Design Basis Report 06-2015\Figure 2 proposed soil cap locations.mxd 6/18/2015

LEGEND

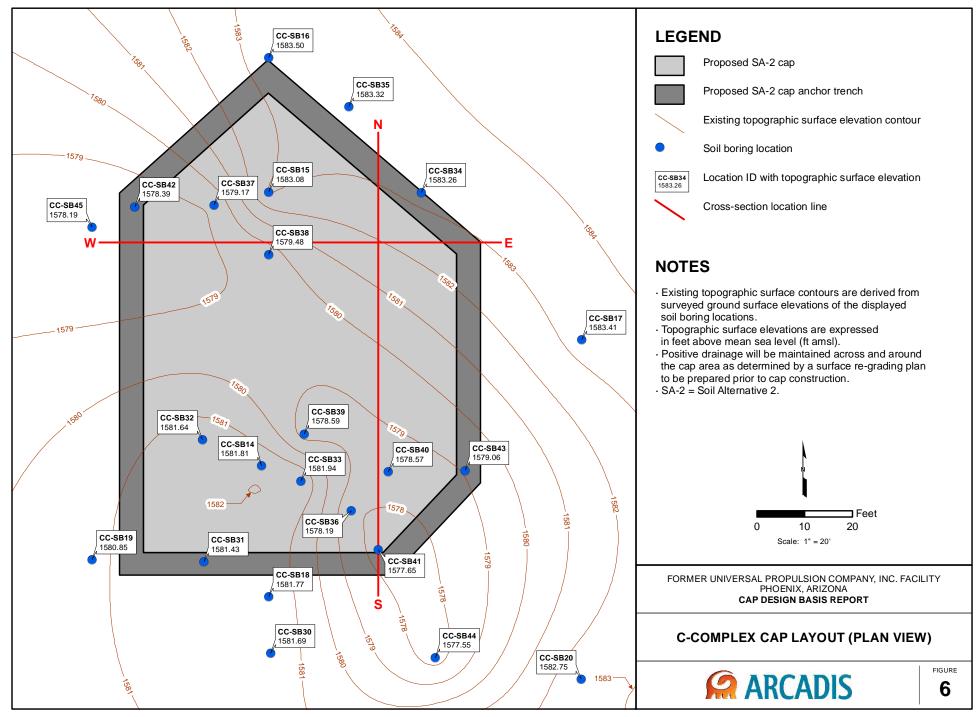
- Proposed SA-2 cap
- Proposed SA-2 cap anchor trench (2 feet deep)
- Proposed SA-2 cap anchor trench (3.8 feet deep)
- Proposed riprap
- Proposed moisture monitoring tube (approximate location)
- Existing topographic surface elevation contour
- Soil boring location
- WB-SB05 Location ID
 - Approximate edge of top of existing channel
 - Approximate edge of bottom of existing channel
 - Cross-section location line

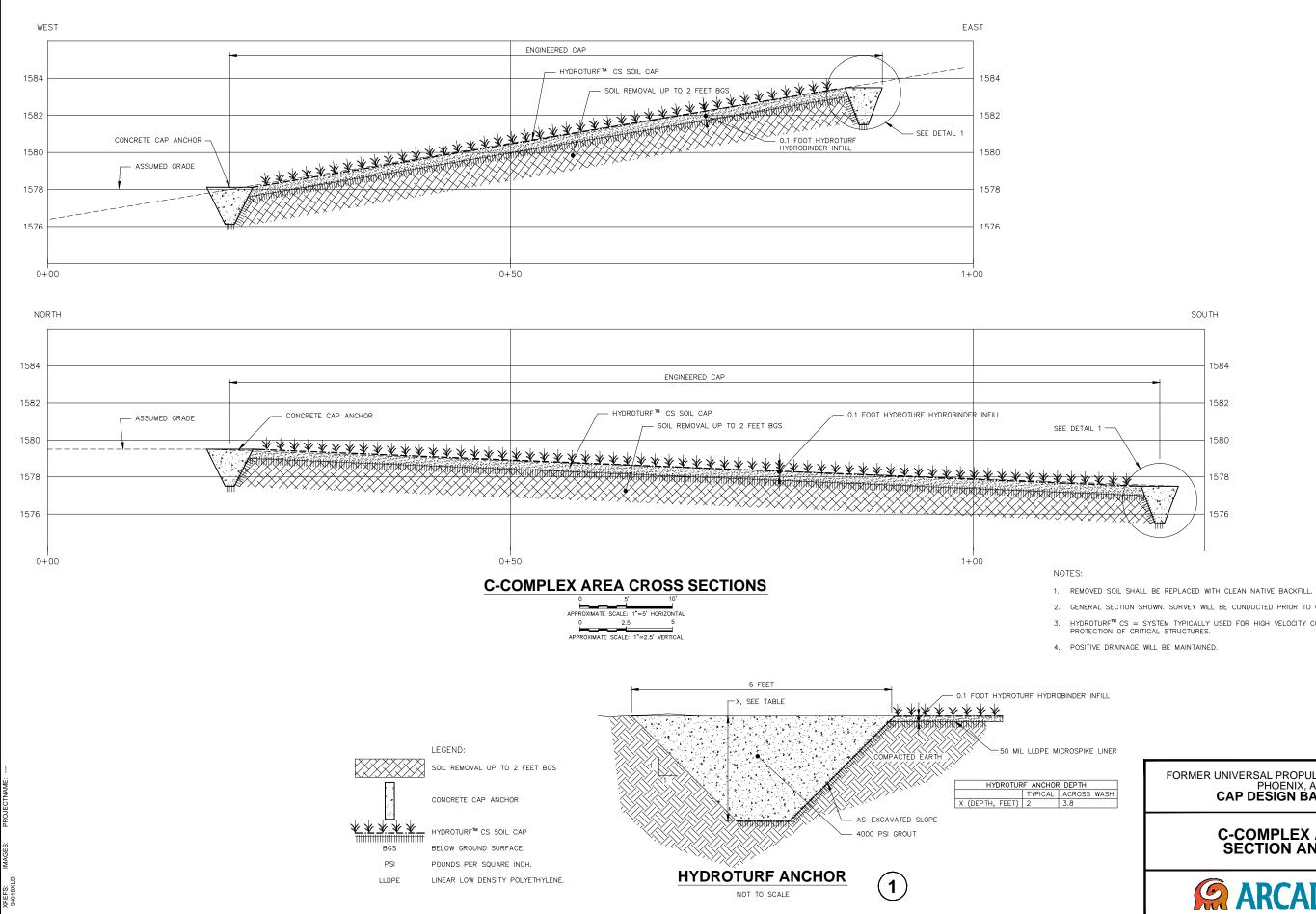

NOTES

- Existing topographic surface contours are derived from surveyed ground surface elevations of the displayed soil boring locations.
- Topographic surface elevations are expressed in feet above mean sea level (ft amsl).
- Positive drainage will be maintained across and around the cap area as determined by a surface re-grading plan to be prepared prior to cap construction.
 SA-2 = Soil Alternative 2.
 - Feet 0 20 40 Scale: 1" = 40'


FORMER UNIVERSAL PROPULSION COMPANY, INC. FACILITY PHOENIX, ARIZONA CAP DESIGN BASIS REPORT

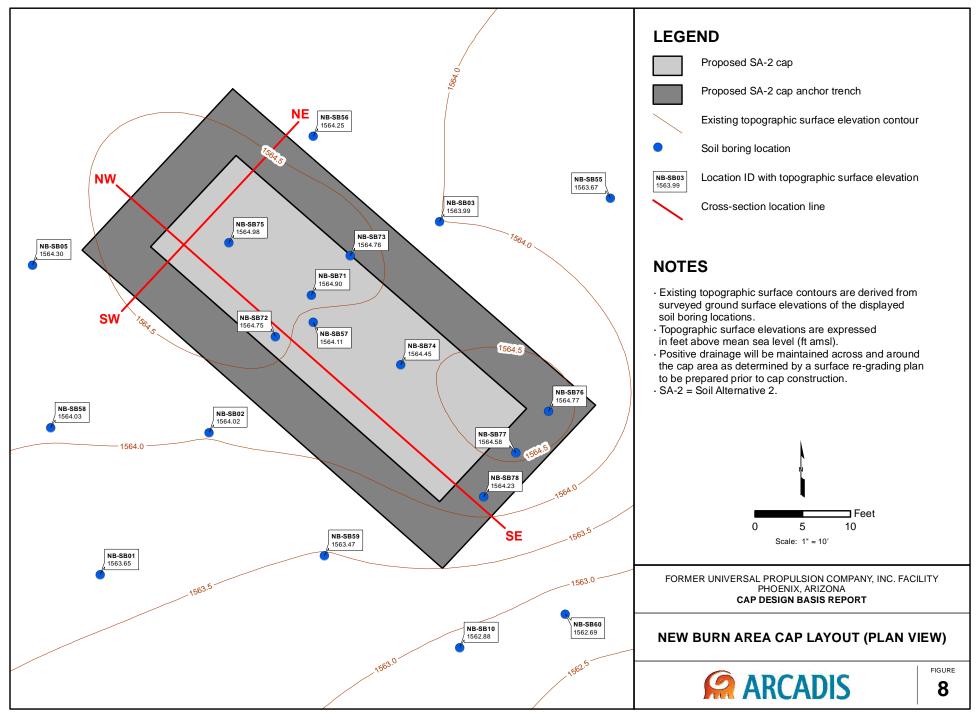
WATERBORE AREA CAP LAYOUT (PLAN VIEW)

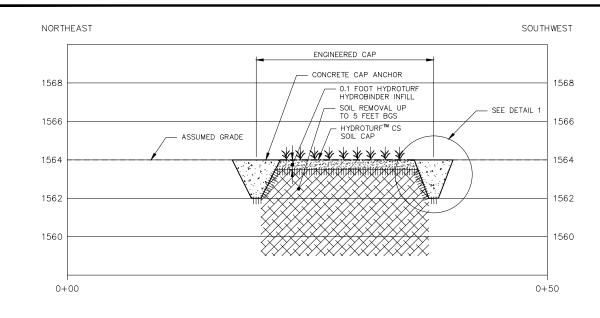




PM: M.NESKY TM: R.KILKENNY LYR: ON=*;OFF=*REF* 10/29/2015 2:53 PM ACADVER: 19.1S (LMS TECH) PAG PIC: K.LUKASIEWICZ K.DAVIS LD: K.DAVIS 03\DV/G\94018G03.dwg DB:

LYR: ON=*;OFF=*REF* 19 1S /I MS TECH) PAG PM: M.NESKY TM: R.KILKENNY 10/29/2015 3:45 PM ACADVER: PIC: K.LUKASIEWICZ LD: K.DAVIS B

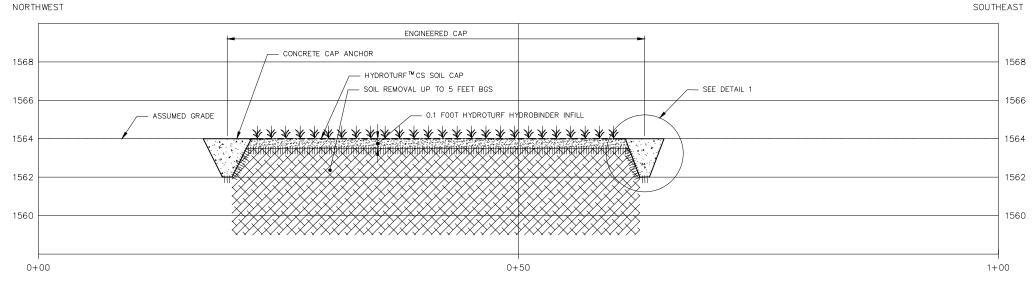


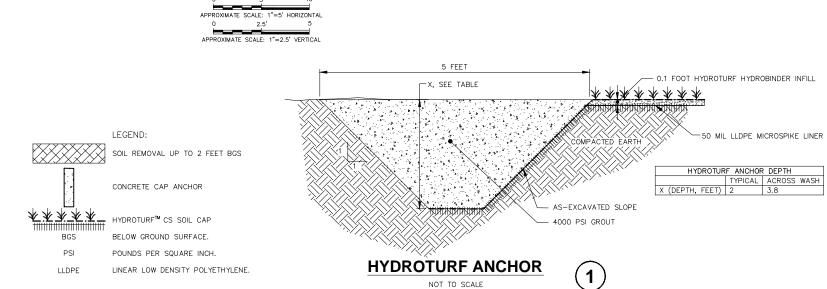

FIGURE 7

C-COMPLEX AREA CAP SECTION AND DETAIL

FORMER UNIVERSAL PROPULSION COMPANY FACILITY PHOENIX, ARIZONA CAP DESIGN BASIS REPORT

2. GENERAL SECTION SHOWN. SURVEY WILL BE CONDUCTED PRIOR TO CONSTRUCTION. 3. HYDROTURF $^{\rm M}$ CS = SYSTEM TYPICALLY USED FOR HIGH VELOCITY CONDITIONS AND FOR PROTECTION OF CRITICAL STRUCTURES.




NOTES:

- 1. REMOVED SOIL SHALL BE REPLACED WITH CLEAN NATIVE BACKFILL.
- 2. GENERAL SECTION SHOWN. SURVEY WILL BE CONDUCTED PRIOR TO CONSTRUCTION.
- 3. HYDROTURF $^{\rm TM}$ CS = SYSTEM TYPICALLY USED FOR HIGH VELOCITY CONDITIONS AND FOR PROTECTION OF CRITICAL STRUCTURES.
- 4. POSITIVE DRAINAGE WILL BE MAINTAINED.

NORTHWEST

NEW BURN AREA CROSS SECTIONS

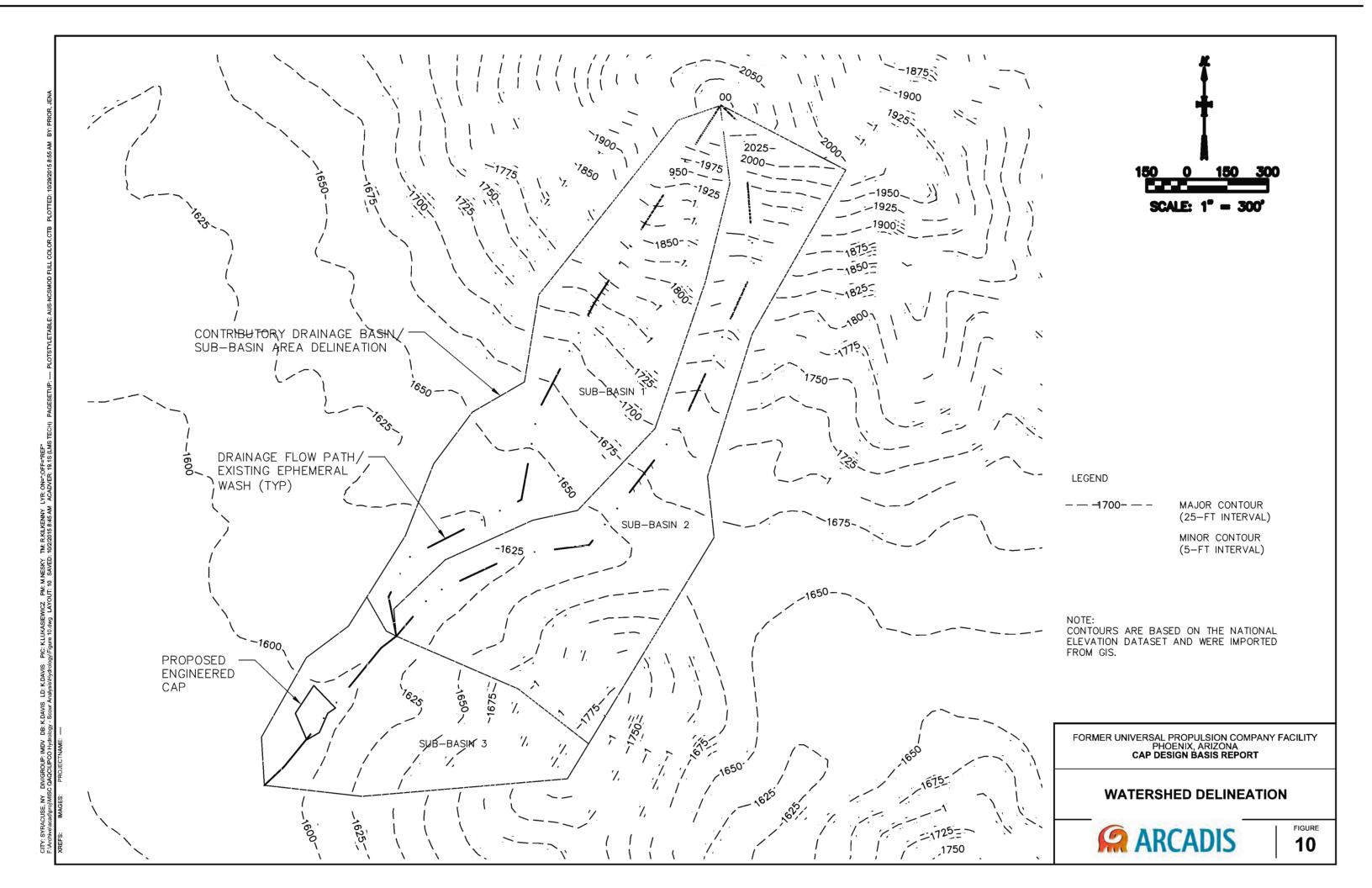

Ě LYR: ON=*;OFF= 19 1S (LMS TECH) PM: M.NESKY TM: R.KILKENNY 10/29/2015 3:05 PM ACADVER: PIC: K.LUKASIEWICZ LAYOUT: 9 SAVED: DB: K.DAVIS LD: K.DAVIS 500003/DV/G/94018G03.dwg VDV NDV

FIGURE 9

NEW BURN AREA CAP SECTION AND DETAIL

FORMER UNIVERSAL PROPULSION COMPANY FACILITY PHOENIX, ARIZONA CAP DESIGN BASIS REPORT

Appendix A

Manufacturer Product Information

8 October 2015

Brad Cooley Watershed Geosynthetics, LLC

RE: WATER VAPOR TRANSMISSION CERTIFICATION

Dear Mr. Cooley,

The water vapor transmission rate of Agru 50 mil Super Gripnet will be $< 1 \times 10^{-7}$ cm/s when tested according to ASTM D96.

Sincerely,

Notta by

Nathan Ivy Corporate Quality Control/Technical Manager Agru America

March 5, 2014 June 20, 2014

Mail To:

Bill To:

<= Same (P O# : 6333-14)

Grant Palmer Agru 500 Garrison Road Georgetown, SC 29440

email: gp@agruamerica.com

Dear Mr. Palmer:

Thank you for consulting TRI/Environmental, Inc. (TRI) for your geosynthetics testing needs. TRI is pleased to submit this final report of the laboratory testing for the sample(s) listed below.

Updated with E 96 result

Project:	Ardaman 2014 Testing
TRI Job Reference Number:	E2386-82-05
Material(s) Tested:	One, Agru 60 mil Microspike HDPE Geomembrane(s)
Test(s) Requested:	Modulus of Elasticity (ASTM D 638) Low Temperature Brittleness (ASTM D 746, NSF 54, -70C) Volatile Loss (ASTM D 1203) Water Absorption (ASTM D 570)
Updating==>	Water Vapor Transmission (E 96)

If you have any questions or require any additional information, please call us at 1-800-880-8378

Sincerely,

Mansukh Patel Laboratory Manager Geosynthetic Services Division www.GeosyntheticTesting.com

Page 1 of 2 The testing herein is based upon accepted industry practice as well as the test method listed. Test results reported herein do not apply to samples other than those tested. TRI neither accepts responsibility for nor makes claim as to the final use and purpose of the material. TRI observes and maintains client confidentiality. TRI limits reproduction of this report, except in full, without prior approval of TRI.

TRI ENVIRONMENTAL, INC.

GEOMEMBRANE TEST RESULTS TRI Client: Agru Project: Ardaman 2014 Testing

Material: Agru 60 mil Microspike HDPE Geomembrane

Sample Identification: G14C082021Resin: CP Chem Marlex K307Resin Lot# H8232868TRI Log #: E2386-82-05Resin: CP Chem Marlex K307Resin Lot# H8232868

	TEST RE		NUNDER								MEAN	DEV.
	1	2	3	4	5	6	7	8	9	10		
Modulus of Elasticity (ASTM D	638)											
MD Modulus of elasticity (psi)	109814	99268	94039	119201	125591						109583	13199
MD Modulus of elasticity (ppi)	6589	6532	6235	8487	7535						7076	928
TD Modulus of elasticity (psi)	120409	97905	91309	118017	121089						109746	14062
TD Modulus of elasticity (ppi)	7754	6726	6355	8061	8016						7382	788
Low Temperature Brittleness (A	STM D 74	6, NSF 54,	-70C)									
MD (Pass/Fail)	Pass	Pass	Pass	Pass	Pass						% passing 100	
TD (Pass/Fail)	Pass	Pass	Pass	Pass	Pass						100	
Volatile Loss (ASTM D 1203)												
% Volatile Loss - 48 hr	0.073	0.096	0.093								0.087	0.013
Water Aborption (ASTM D 570)												
Immersion Procedure: Specim	nens were e	xposed in c	deionized w	ater for 2	4 hours at	23 degre	es C.					
	2 0022	2.0//0	2 000/									
	3.0032	3.2669	3.0086									
	3.0032 3.0061	3.2669 3.2680	3.0086 3.0095									
Initial mass (g) Post immersion mass (g) Percentage Water Absorbed (%)											0.05	0.04
Post immersion mass (g) Percentage Water Absorbed (%)	3.0061 0.10	3.2680 0.03	3.0095 0.03								0.05	0.04
Post immersion mass (g) Percentage Water Absorbed (%)	3.0061 0.10	3.2680 0.03	3.0095 0.03								0.05	0.04
Post immersion mass (g) Percentage Water Absorbed (%) Water Vapor Transmission (AS	3.0061 0.10	3.2680 0.03	3.0095 0.03								0.05	
Post immersion mass (g) Percentage Water Absorbed (%) Water Vapor Transmission (AS ⁻ WVT (gm/h-m2)	3.0061 0.10 TM E 96, P	3.2680 0.03 Procedure I	3.0095 0.03 BW)									0.0001
Post immersion mass (g) Percentage Water Absorbed (%) Water Vapor Transmission (AS ⁻ WVT (gm/h-m2) WVT (gm/day-m2)	3.0061 0.10 TM E 96, P 0.0018	3.2680 0.03 Procedure I 0.0017	3.0095 0.03 BW) 0.0016								0.00170	0.004 0.0001 0.0027 0.0001
Post immersion mass (g) Percentage Water Absorbed (%) Water Vapor Transmission (AS WVT (gm/h-m2) WVT (gm/day-m2) WVT (grains/h*ft2)	3.0061 0.10 TM E 96, P 0.0018 0.0429 0.00260	3.2680 0.03 Procedure I 0.0017 0.0419	3.0095 0.03 BW) 0.0016 0.0378								0.00170	0.0001
Post immersion mass (g) Percentage Water Absorbed (%) Water Vapor Transmission (AS WVT (gm/h-m2) WVT (gm/day-m2) WVT (grains/h*ft2) Metric Perms (gm/Pa*hr*m2)	3.0061 0.10 TM E 96, P 0.0018 0.0429 0.00260	3.2680 0.03 Procedure I 0.0017 0.0419 0.00250	3.0095 0.03 BW) 0.0016 0.0378 0.00230								0.00170 0.04087 0.00247	0.0001 0.0027 0.0001
Post immersion mass (g) Percentage Water Absorbed (%) Water Vapor Transmission (AS WVT (gm/h-m2) WVT (gm/day-m2) WVT (grains/h*ft2) Metric Perms (gm/Pa*hr*m2) Perms (inch-pounds)	3.0061 0.10 TM E 96, P 0.0018 0.0429 0.00260 1.26E-06 0.0061	3.2680 0.03 Procedure I 0.0017 0.0419 0.00250 1.23E-06 0.006	3.0095 0.03 BW) 0.0016 0.0378 0.00230 1.11E-06 0.0054								0.00170 0.04087 0.00247 1.20E-06 0.00583	0.0007 0.0027 0.0007 7.94E- 0.0003
Post immersion mass (g) Percentage Water Absorbed (%) Water Vapor Transmission (AS WVT (gm/h-m2) WVT (gm/day-m2) WVT (grains/h*ft2) Metric Perms (gm/Pa*hr*m2)	3.0061 0.10 TM E 96, P 0.0018 0.0429 0.00260 1.26E-06 0.0061	3.2680 0.03 Procedure I 0.0017 0.0419 0.00250 1.23E-06	3.0095 0.03 BW) 0.0016 0.0378 0.00230 1.11E-06 0.0054								0.00170 0.04087 0.00247 1.20E-06	0.0001 0.0027 0.0001 7.94E-

MD Machine Direction

TD Transverse Direction

Page 2 of 2

The testing herein is based upon accepted industry practice as well as the test method listed. Test results reported herein do not apply to samples other than those tested. TRI neither accepts responsibility for nor makes claim as to the final use and purpose of the material. TRI observes and maintains client confidentiality. TRI limits reproduction of this report, except in full, without prior approval of TRI.

TRI ENVIRONMENTAL, INC.

September 1, 2014September 29, 2014Updated with E 96 ResultOctober 1, 2014Updated with typo correction for Perm.

Mail To:

Grant Palmer Agru America 500 Garrison Road Georgetown, SC 29440

email: gp@agruamerica.com cc email: cArnold@AgruAmerica.com cc email: nivy@agruamerica.com

Dear Mr. Palmer:

Thank you for consulting TRI/Environmental, Inc. (TRI) for your geosynthetics testing needs. TRI is pleased to submit this final report of the laboratory testing for the sample(s) listed below.

Project:		Ardaman
TRI Job Reference Nu	mber:	E2394-37-03
Material(s) Tested:		One, Agru 40 mil Smooth HDPE Geomembrane
Test(s) Requested:	Updating = =>	Modulus of Elasticity (ASTM D 638, 2 ipm strain rate) Low Temperature Brittleness (ASTM D 746, NSF 54, -70C) Volatile Loss (ASTM D 1203) Water Extraction (ASTM D 570) Water Vapor Transmission (E 96, Proc. BW)

If you have any questions or require any additional information, please call us at 1-800-880-8378

Sincerely,

C

Mansukh Patel Laboratory Manager Geosynthetic Services Division www.GeosyntheticTesting.com Bill To:

<= Same (PO # 6939 - 14)

Page 1 of 2

The testing herein is based upon accepted industry practice as well as the test method listed. Test results reported herein do not apply to samples other than those tested. TRI neither accepts responsibility for nor makes claim as to the final use and purpose of the material. TRI observes and maintains client confidentiality. TRI limits reproduction of this report, except in full, without prior approval of TRI.

TRI ENVIRONMENTAL, INC.

GEOMEMBRANE TEST RESULTS TRI Client: Agru

Project: Ardaman

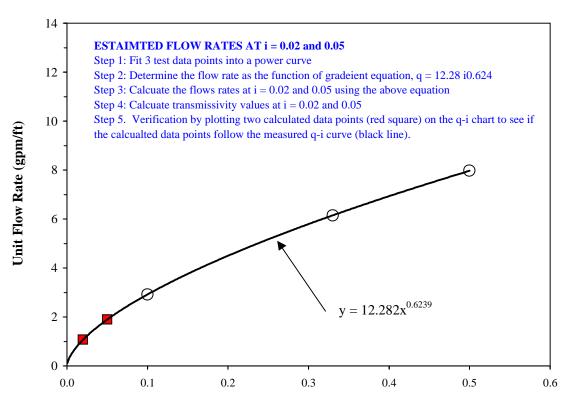
Material: Agru 40 mil Smooth HDPE Geomembrane Sample Identification:Roll # G14B303044 TRI Log : E2394-37-03

Resin CP Chem Marlex K307 Resin Lot#: H7140771

STD. PARAMETER **TEST REPLICATE NUMBER** MEAN DEV. 3 5 8 9 10 2 4 6 7 Modulus of Elasticity (ASTM D 638, 2 ipm strain rate) 8184 MD Tangent Modulus (psi) 121765 115942 121329 102528 121124 116538 TD Tangent Modulus (psi) 98588 99357 112112 136708 65717 102496 25694 Low Temperature Brittleness (ASTM D 746, NSF 54, -70C) % passing MD (Pass/Fail) Pass 100 Pass Pass Pass Pass TD (Pass/Fail) Pass Pass Pass 100 Pass Pass Volatile Loss (ASTM D 1203) % Volatile Loss 0.073 0.068 0.072 0.071 0.003 Water Extraction (ASTM D 570) Initial mass (g) 1.9865 1.8217 1.8170 Post immersion mass (g) 1.9869 1.8219 1.8171 Soluble matter lost (g) 0.0201 0.0109 0.0055 Percentage Water Absorbed (%) 0.01 0.02 0.01 0.01 0.01 Water Vapor Transmission (ASTM E 96, Procedure BW) WVT (gm/h-m2) 0.0013 0.0028 0.00293 0.00170 0.0047 0.06997 0.04070 WVT (gm/day-m2) 0.1125 0.0314 0.066 WVT (grains/h*ft2) 0.00670 0.00190 0.00390 0.00417 0.00241 Metric Perms (gm/Pa*hr*m2) 3.31E-06 9.22E-07 1.94E-06 2.06E-06 1.20E-06 Perms (inch-pounds) 0.0161 0.0045 0.0094 0.01000 0.00582 5.80E-15 3.38E-15 Permeability (cm/s) 9.33E-15 2.60E-15 5.47E-15 The data point collected for each specimen is sporadic , test value calculated is based on Trend of the data point s.

MD Machine Direction

TD Transverse Direction


The testing herein is based upon accepted industry practice as well as the test method listed. Test results reported herein do not apply to samples other than those tested. THI neither accepts responsibility for nor makes calim as to the final use and purpose of the material. TRI observes and maintains client confidentiality. TRI limits reportauction of this report, except in full, without prior approval of TRI.

TRI ENVIRONMENTAL, INC.

9063 BEE CAVES RD. - AUSTIN, TX 78733 - USA | PH: 800.880.TEST OR 512.263.2101

CLOSURETURF LLC -LANDFILL COVER SYSTEM HYDRAULIC TRANSMISSIVITY TESTING (ASTM D 4716)

Test Configuration (from Top to Bottom): Sand Layer/Polytex Artificial Grass with Geotextile Side Down/ Agru 50-mil Super Gripnet LLDPE Geomembrane with Studs Side Up

Hydraulic Gradient

							1	
Test	Flow	Specimen	Total	Seating	Hydraulic	Transmissivity	Flow	
No.	Direction	Size	Normal	Time	Gradient		Rate	
		Width x Length	Stress ⁽¹⁾					
			$\sigma_{\scriptscriptstyle n}$	t	i	$\theta = 0.00020697 \left(\frac{q}{i}\right)$	$q=12.28i^{0.624}$	q'
		(in. x in.)	(psf)	(hour)	(-)	(m ² /sec)	(gpm/ft)	(l/min/m)
					0.02	1.11E-02	1.07	
					0.05	7.84E-03	1.89	
1	MD	12 x12	47	0.25	0.10	6.04E-03	2.92	36.3
2	MD	12 x12	47	0.25	0.33	3.86E-03	6.15	76.4
3	MD	12 x12	47	0.25	0.50	3.30E-03	7.97	99.0

NOTE:

Total normal stress = total weight (sand + steel plate + surcharge) divided by the plan area of test specimen (1 square ft). A normal stress of 47 psf is approximately the minimum total stress required to keep the specimen from uplifting.

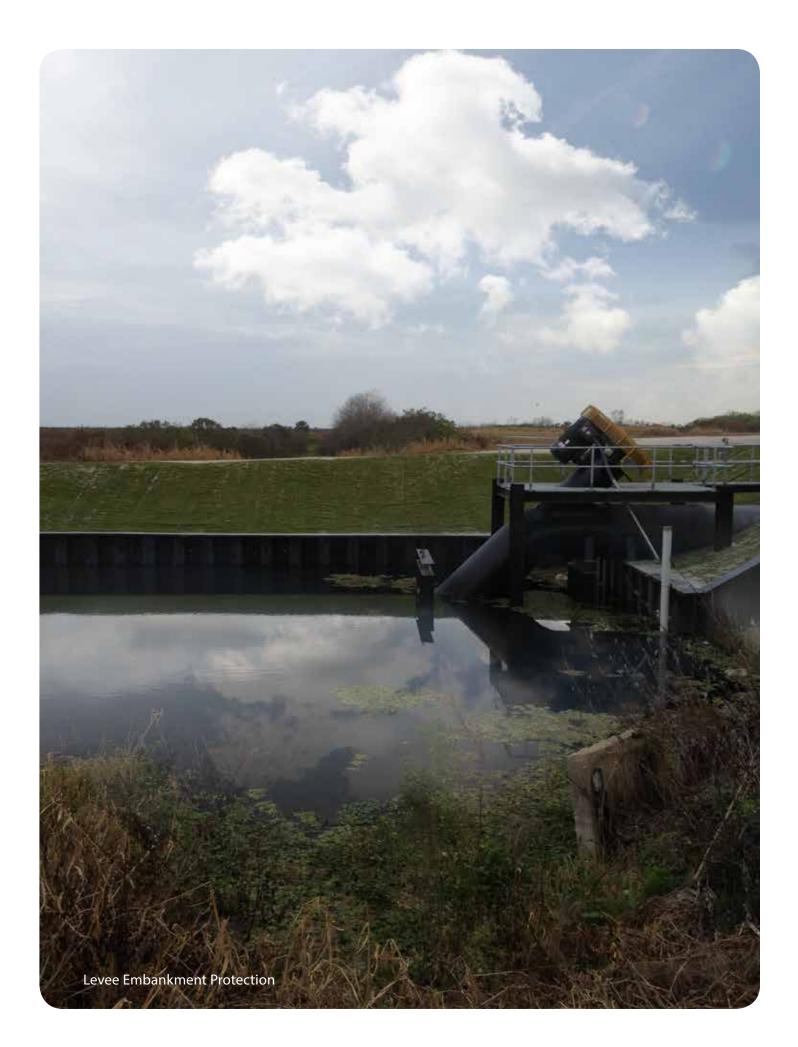
		DATE TESTED:	1/11/2013
		FIGURE NO.	A-1
(SG3)	SGI TESTING SERVICES, LLC	PROJECT NO.	SGI10007
	SGI IESTING SERVICES, LLC	DOCUMENT NO.	
		FILE NO.	

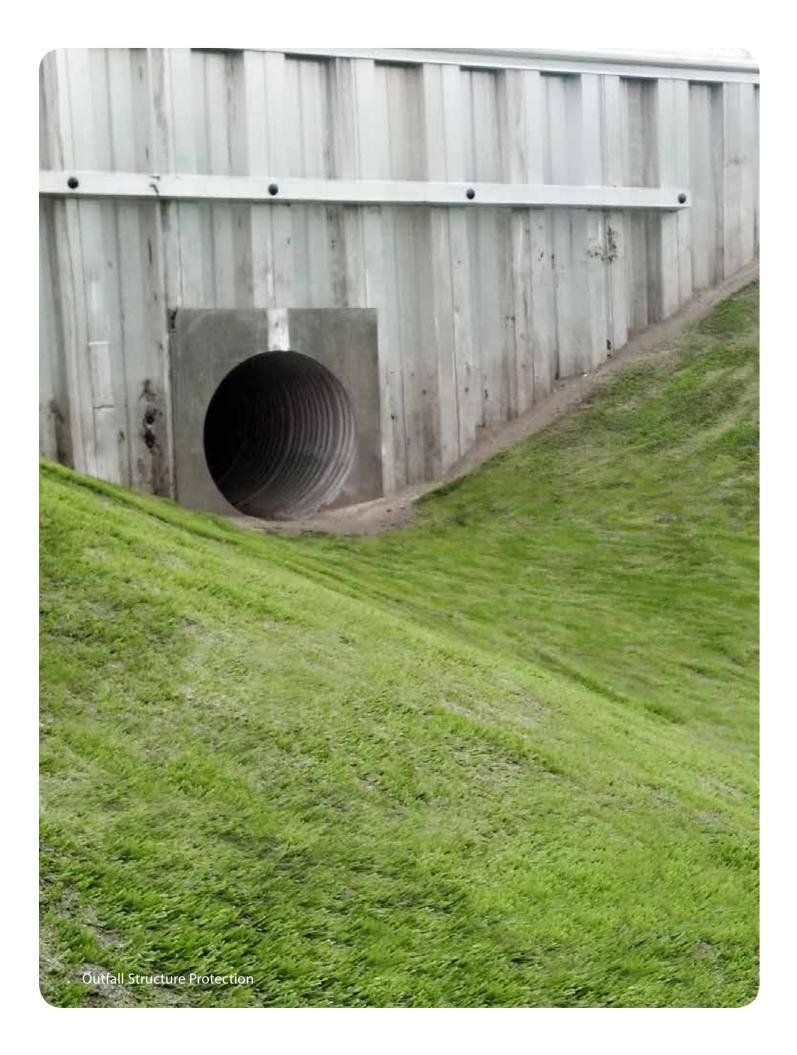
Taking Erosion Protection to a Whole New Level

Advanced Revetment Technology

U.S. Patent Nos. 7,682,105 & 8,403,597 U.S. & International Patents Pending

Superior Armoring Technology


HydroTurf[™] is an economically, environmentally friendly hardened erosion armoring technology, specifically designed to reduce construction and long-term maintenance costs. It combines engineered synthetic turf with a high friction geomembrane that are locked into place with a specially designed HydroBinder[™] high-strength infill.


HydroTurf offers the best of both worlds—the environmental and aesthetic benefits of vegetation as well as the performance and maintenance benefits of hard armor. By offering superior erosion control, pointedly less turbidity, and significantly less maintenance, HydroTurf eliminates the headaches of traditional vegetative erosion control systems. HydroTurf is also a more sustainable solution than other hard armor revetment systems since it has a lower carbon footprint.

HydroTurf is used in the following applications:

- > Protection from wave overwash/overtopping on the landward side of levees and embankments
- > Lining of drainage channels, swales, and canals
- > Spillways and slopes on dams for overtopping protection
- > Shoreline protection within basins, impoundments and reservoirs
- > Facing slopes and mechanically stabilized earth walls
- Cart paths, drainage channels and lake banks on golf courses

HydroTurf[™] has a number of benefits over other revetment solutions.

Excellent Hydraulic Performance—HydroTurf has been extensively tested in full-scale laboratories and project applications for extreme hydraulic performance.

50+ Year Functional Longevity—Through long-term weathering tests, HydroTurf is designed to have a 50+ year functional longevity when properly maintained.

Less Costly Construction—HydroTurf is significantly less costly than hard armor revetment systems (i.e. concrete, rock riprap, and articulated concrete block). Installed cost for HydroTurf is typically up to 50% less than that for traditional hard armor systems.

Rapid, Low Impact Construction—Construction and installation of the HydroTurf system are rapid and low impact. Only small, light-weight construction equipment is needed for installation. On large projects, one (1)

construction crew is able to install approximately 1 acre per day. Additional crews can be added to increase this rate.

Significant Long Term Maintenance

Cost Savings—Vegetation management and erosion control are significant maintenance costs for Anchored Turf Reinforcement Mat (TRM) products. Maintenance costs for these TRMs may be as high as \$1,500/acre/ year. HydroTurf requires minimal maintenance and will drastically lower long-term maintenance budgets.

Reduction in Carbon Footprint—HydroTurf has a lower carbon footprint (1/4 to 1/8) than that of other traditional hardened revetment solutions.

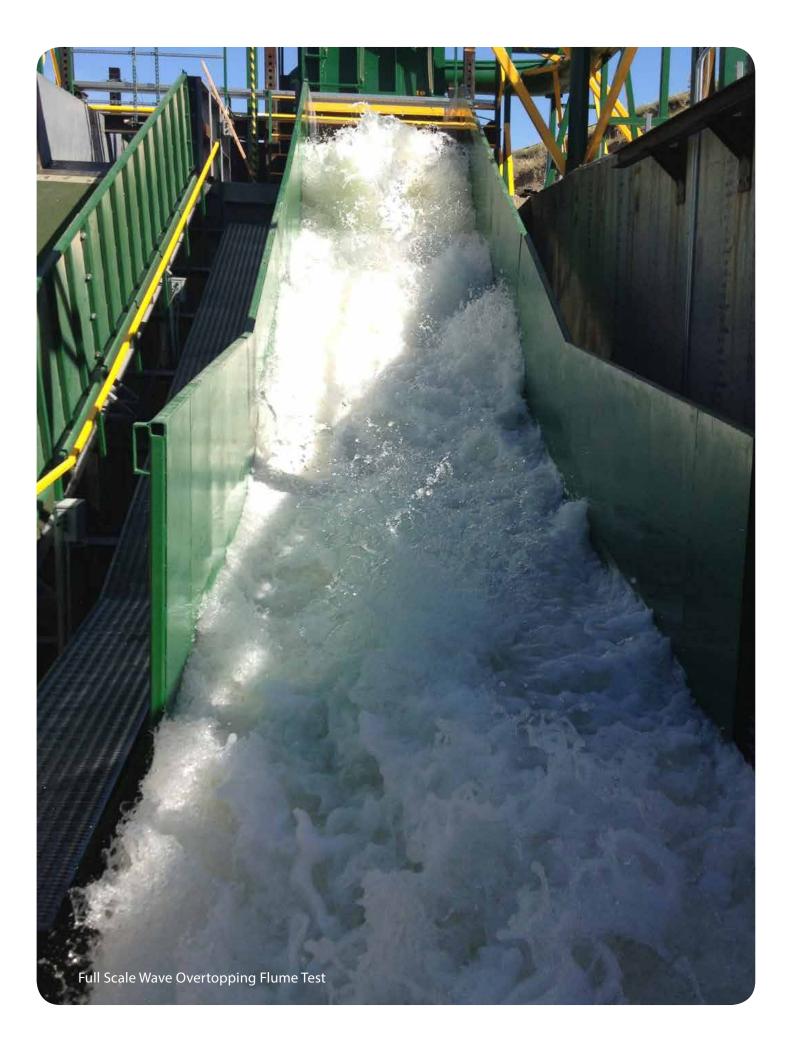
Aesthetics—HydroTurf looks and feels like natural vegetation.

HydroTurf" CS

HydroTurf is available in two system configurations.

HydroTurf CS is typically used for high velocity conditions and for protection of critical structures.

HydroTurf Z is ideal for less critical applications involving lower velocities and flow conditions.


HydroTurf[™] has been extensively tested in the laboratories and project applications for extreme performance and realworld durability. From extensive 5-ft overtopping flows to simulated 500 year hurricanes, HydroTurf[™] has established a new standard in the most comprehensive array of testing in the industry.

Full-Scale Hydraulic Testing:

- > Wave Overtopping for Levee Landward-Side Slope Protection
- > Steady State Overtopping
- > Hydraulic Jump
- > Simulated Heavy Debris Loads
- > Intentionally Damaged Conditions

Other Testing & Evaluations:

- > Aerodynamic Wind Tunnel
- > Weathering and Functional Longevity
- > Vehicle Loading
- > Carbon Footprint

SYNTHETIC TURF COMPONENT

Product Data	Test Method	Values
CBR Puncture	ASTM D6241	900 lb., (MARV)
Tensile Product (MD/XD)	ASTM D4595	1,000 lb/ft min (MARV)
Aerodynamic Evaluation	GTRI Wind Tunnel	120 mph with maximum uplift of 0.12 lb/sf
Synthetic Turf Fiber UV Stability	ASTM G147	> 60% retained tensile strength at 100 years (projected)
Full Scale Steady State Hydraulic Overtopping	ASTM D7277 / ASTM D7276	5 ft overtopping resulting in 29 ft/s velocity
		for Manning's N Value of 0.02
Full Scale Wave Overtopping Test—	Colorado State University Wave Simulator	165,000 ft ³ /ft
Cumulative Volume		
Full Scale Wave Overtopping Test— Maximum Average	Colorado State University Wave Simulator	4.0 ft ³ /s/ft
Wave Overtopping Discharge		
Transmissivity w/ underlying structured geomembrane	ASTM D4716	2.5E -03m ² /sec., min.
Normal stress 50 psf and 0.33 gradient (m ² /sec)		
Internal Friction of combined components (Low Confining Stress)	ASTM D5321	38° min. (peak)
HydroBinder [™] Infill	Compressive Strength	5,000 psi
Hydraulic Jump Test	Colorado State University	Dissipates 120 horsepower envelope curve of energy ratio
STRUCTURED GEOMEMBRANE		as a function of Froude Ratio (available upon request)
Product Data	Test Method	LLDPE Values HDPE Values

Product Data	lest Method	LLDPE Values	HDPE Values
Thickness (min. avg.), mil (mm)	ASTM D5994	50 (1.25)	50 (1.25)
Thickness (lowest indiv.), mil (mm)	ASTM D5994	45 (1.15)	45 (1.15)
Drainage Stud Height (min. avg.), mil (mm)	ASTM D7466	130 (3.30)	130 (3.30)
Friction Spike Height (min. avg.), mil (mm)	ASTM D7466	175 (4.45)	175 (4.45)
Density, g/cc	ASTM D792, Method B	0.939 (max)	0.94 (min)
Tensile Properties (avg. both directions)	ASTM D6693, Type IV		
Strength @ Yield (min. avg.), lb/in width (N/mm)	ASTM D6693, Type IV	N/A	110 (19.3)
Elongation @ Yield (min. avg.), % (GL=1.3in)	ASTM D6693, Type IV	N/A	13
Strength @ Break (min. avg.), lb/in width (N/mm)	ASTM D6693, Type IV	110 (19.3)	110 (19.3)
Elongation @ Break (min. avg.), % (GL=2.0in)	ASTM D6693, Type IV	300	200
Tear Resistance (min. avg.), lbs. (N)	ASTM D1004	30 (133)	38 (169)
Puncture Resistance (min. avg.), lbs. (N)	ASTM D4833	55 (245)	80 (356)
Carbon Black Content (range in %)	ASTM D4218	2-3	2-3
Carbon Black Dispersion (Category)	ASTM D5596	Only near spheric	al agglomerates for
		10 views: 9 views	in Cat. 1 or 2, and 1 view in Cat. 3
Stress Crack Resistance (Single Point NCTL), hours	ASTM D5397, Appendix	N/A	300
Oxidative Induction Time, minutes	ASTM D3895, 200°C, 1 atm 0,	≥140	≥140
Melt Flow Index, g/10 minutes	ASTM D1238, 190°C, 2.16kg	≤1.0	≤1.0
Oven Aging	ASTM D5721	60	80
with HP OIT, (% retained after 90 days)	ASTM D5885, 150°C, 500psi 0,		
UV Resistance	ASTM D7238	20 hr. Cycle @ 75°	C/4 hr. dark condensation @ 60°
with HP OIT, (% retained after 1600 hours)	ASTM D5885, 150°C, 500psi 0 ₂	35	50
2% Secant Modulus (max), lb/in (N/mm)	ASTM 5323	3000 (520)	N/A
Axi-Symmetric Break Resistance Strain, % (min)	ASTM D5617	30	N/A

Geomembranes are certified to pass Low Temp. Brittleness via ASTM D746 (-80°C), and Dimensional Stability via ASTM D1204 (± 2% @ 100°C)

SUPPLY INFORMATION (Standard Roll Dimensions)

Thickness	Thickness	Width	Length	Area (approx.)	Weight (avg.)
	mil mm	ft m	ft m	ft ² m ²	lbs kg
Super Gripnet	50 1.25	23 7	300 91.44	6,900 640	2,855 1,300
Turf Component	N/A N/A	15 4.6	300 91.44	4,500 418	840 381

Notes:

All liner and turf roll lengths and widths have a tolerance of $\pm 1\%$. All liner rolls are supplied with 2 slings. Both liner and turf rolls are wound on a 6 inch core. Turf rolls are strapped and wrapped for shipment. Special roll lengths are available upon request. Turf component height = 2'6'' diameter per roll.

770.777.0386 • watershedgeo.com • info@watershedgeo.com

HydroTurf^{IIII} product (US Patent No. 7,682,105; Canadian Patent No. 2,663,170; and other Patents Pending) and trademark are the property of Watershed Geosynthetics, LLC, and exclusively licensed to Agru America. All information, recommendations and suggestions appearing in this literature concerning the use of our products are based upon tests and data believed to be reliable; however, this information should not be used or relied upon for any specific application without independent professional examination and verification of its accuracy, suitability and applicability. Since the actual use by others is beyond our control, no guarantee or warranty of any kind, expressed or implied, is made by Watershed Geosynthetics LLC as to the effects of such use or the results to be obtained, nor does Watershed Geosynthetics LLC assume any liability in connection herewith. Any statement made herein may not be absolutely complete since additional information may be necessary or desirable when particular or exceptional conditions or circumstances exist or because of applicable laws or government regulations. Nothing herein is to be construed as permission or as a recommendation to infringe any patent.

Linear Low Density Polyethylene MicroSpike[®] Liner

Product Data

Property	Test Method		Values			
Thickness, nominal, (mm)		40 (1.0)	60 (1.5)	80 (2.0)	100 (2.5)	
Thickness (min. ave.), mil (mm)	ASTM D5994*	38 (.95)	57 (1.43)	76 (1.90)	95 (2.38)	
Thickness (lowest indiv. for 8 of 10 spec.), mil (mm)	ASTM D5994*	36 (.90)	54 (1.35)	72 (1.80)	90 (2.25)	
Thickness (lowest individual), mil (mm)	ASTM D5994*	34 (.85)	51 (1.28)	68 (1.70)	85 (2.13)	
*The thickness values may be changed due to project specifications (i.e., absolute minimum thickness)						
Asperity Height (min. ave.), mil (mm)	ASTM D7466	16 (.41)	16 (.41)	16 (.41)	16 (.41)	
Density, g/cc, maximum	ASTM D792, Method B	0.939	0.939	0.939	0.939	
Tensile Properties (ave. both directions)	ASTM D6693, Type IV					
Strength @ Break (min. ave.), lb/in width (N/mm)	2 in/minute	112 (19.6)	168 (29.4)	224 (39.2)	280 (49.0)	
Elongation @ Break (min. ave.), % (GL=2.0in)	5 specimens in each direction	400	400	400	400	
Tear Resistance (min. ave.), lbs. (N)	ASTM D1004	25 (111)	36 (160)	50 (222)	60 (267)	
Puncture Resistance (min. ave.), lbs. (N)	ASTM D4833	50 (222)	70 (310)	90 (400)	115 (512)	
Carbon Black Content (range in %)	ASTM D4218	2 - 3	2 - 3	2 - 3	2 - 3	
Carbon Black Dispersion (Category)	ASTM D5596	Only near s	pherical agglom	erates		
		for 10 views	for 10 views: 9 views in Cat. 1 or 2, and 1 view in Cat. 3			
Oxidative Induction Time, minutes	ASTM D3895, 200°C, 1 atm O2	≥140	≥140	≥140	≥140	
Melt Flow Index, g/10 minutes	ASTM D1238, 190°C, 2.16kg	≤1.0	≤1.0	≤1.0	≤1.0	
Oven Aging	ASTM D5721	60	60	60	60	
with HP OIT, (% retained after 90 days)	ASTM D5885, 150°C, 500psi O2					
UV Resistance	ASTM D7238	20hr. Cycle	@ 75°C/4 hr. d	ark condensatio	on @ 60°C	
with HP OIT, (% retained after 1600 hours)	ASTM D5885, 150°C, 500psi O2	35	35	35	35	
2% Secant Modulus (max.), lb/in. (N/mm)	ASTM D5323	2400 (420)	3600 (630)	4800 (840)	6000 (1050)	
Axi-Symmetric Break Resistance Strain, % (min.)	ASTM D5617	30	30	30	30	

Agru America's geomembranes are certified to pass Low Temp. Brittleness via ASTM D746 (-80°C),

and Dimensional Stability via ASTM D1204 (±2% @ 100°C).

These product specifications meet or exceed GRI's GM17

Supply Information (Standard Roll Dimensions)

Thic	kness	Wi	dth	Ler	ngth	Area (a	approx.)	Weight (average)*
mil	mm	ft	m	ft	m	ft ²	m^2	lbs	kg
40	1.0	23	7	710	216.40	16,330	1,514.87	3,900	1,770
60	1.5	23	7	505	153.90	11,615	1,078	3,900	1,770
80	2.0	23	7	385	117.35	8,855	821	3,900	1,770
100	2.5	23	7	310	94.49	7,130	661	3,900	1,770

Notes:

All rolls are supplied with two slings. All rolls are wound on a 6 inch core. Special lengths are available on request. All roll lengths and widths have a tolerance of ±1% *The weight values may change due to project specifications (i.e. absolute minimum thickness or special roll lengths) or shipping requirements (i.e. international containerized shipments).

All information, recommendations and suggestions appearing in this literature concerning the use of our products are based upon tests and data believed to be reliable; however, it is the users responsibility to determine the suitability for their own use of the products described herein. Since the actual use by others is beyond our control, no guarantee or warranty of any kind, expressed or implied, is made by Agru America as to the effects of such use or the results to be obtained, nor does Agru America assume any liability in connection herewith. Any statement made herein may not be absolutely complete since additional information may be necessary or desirable when particular or exceptional conditions or circumstances exist or because of applicable laws or government regulations. Nothing herein is to be construed as permission or as a recommendation to infringe any patent.

500 Garrison Road, Georgetown, South Carolina 29440

 440
 843-546-0600
 800-373-2478

 america.com
 www.AgruAmerica.com

478 Fax: 843-527-2738

email: salesmkg@agruamerica.com

© Agru America, Inc. 1.14

Appendix B

Flood Insurance Rate Map

NOTES TO USERS

This map is for use in administering the Nation Flood Insurance Program. It does not necessarily identify all areas subject to flooding, particularly from local drainage sources of small size. The community map repository should be consulted for possible updated or additional flood hazard information.

To obtain more detailed information in areas where Base Flood Elevations (BFEs) and/or floodways have been determined, users are encouraged to consult the Flood Profiles and Floodway Data and/or Summary of Stillwater Elevations tables contained within the Flood Insurance Study (FIS) report that accompanies this FIRM. Users should be aware that BFEs shown on the FIRM represent rounded whole-foot elevations. These BFEs are intended for flood insurance rating purposes only and should not be used as the sole source of flood elevation information. Accordingly, flood elevation data presented in the FIS report should be utilized in conjunction with the FIRM for purposes of construction and/or floodplain management.

Coastal Base Flood Elevations shown on this map apply only landward of 0.0' North American Vertical Datum of 1988 (NAVD 88). Users of this FIRM should be aware that coastal flood elevations are also provided in the Summary of Stillwater Elevations tables in the Flood Insurance Study report for this jurisdiction. Elevations shown in the Summary of Stillwater Elevations table should be used for construction and/or floodplain management purposes when they are higher than the elevations shown on this FIRM.

Boundaries of the floodways were computed at cross sections and interpolated between cross sections. The floodways were based on hydraulic considerations with regard to requirements of the National Flood Insurance Program. Floodway widths and other pertinent floodway data are provided in the Flood Insurance Study report for this jurisdiction.

Certain areas not in Special Flood Hazard Areas may be protected by flood control structures. Refer to Section 2.4 "Flood Protection Measures" of the Flood Insurance Study report for information on flood control structures for this jurisdiction.

The projection used in the preparation of this map was Arizona State Plane Central zone (FIPSZONE 0202). The horizontal datum was NAD 83 HARN. GRS1980 spheroid. Differences in datum, spheroid, projection or State Plane zones used in the production of FIRMs for adjacent jurisdictions may result in slight positional differences in map features across jurisdiction boundaries. These differences do not affect the accuracy of this FIRM.

Flood elevations on this map are referenced to the North American Vertical Datum of 1988 (NAVD 88). These flood elevations must be compared to structure and ground elevations referenced to the same vertical datum. Map users wishing to obtain flood elevations referenced to the National Geodetic Vertical Datum of 1929 (NGVD 29) may use the following Maricopa County website application: http://www.fcd.maricopa.gov/Maps/gismaps/apps/gdacs/application/index.cfm

This web tool allows users to obtain point-specific datum conversion values by zooming in and hovering over a VERTCON checkbox on the layers menu on the left side of the screen. The VERTCON grid referenced in this web application was also used to convert existing flood elevations from NGVD 29 to NAVD 88.

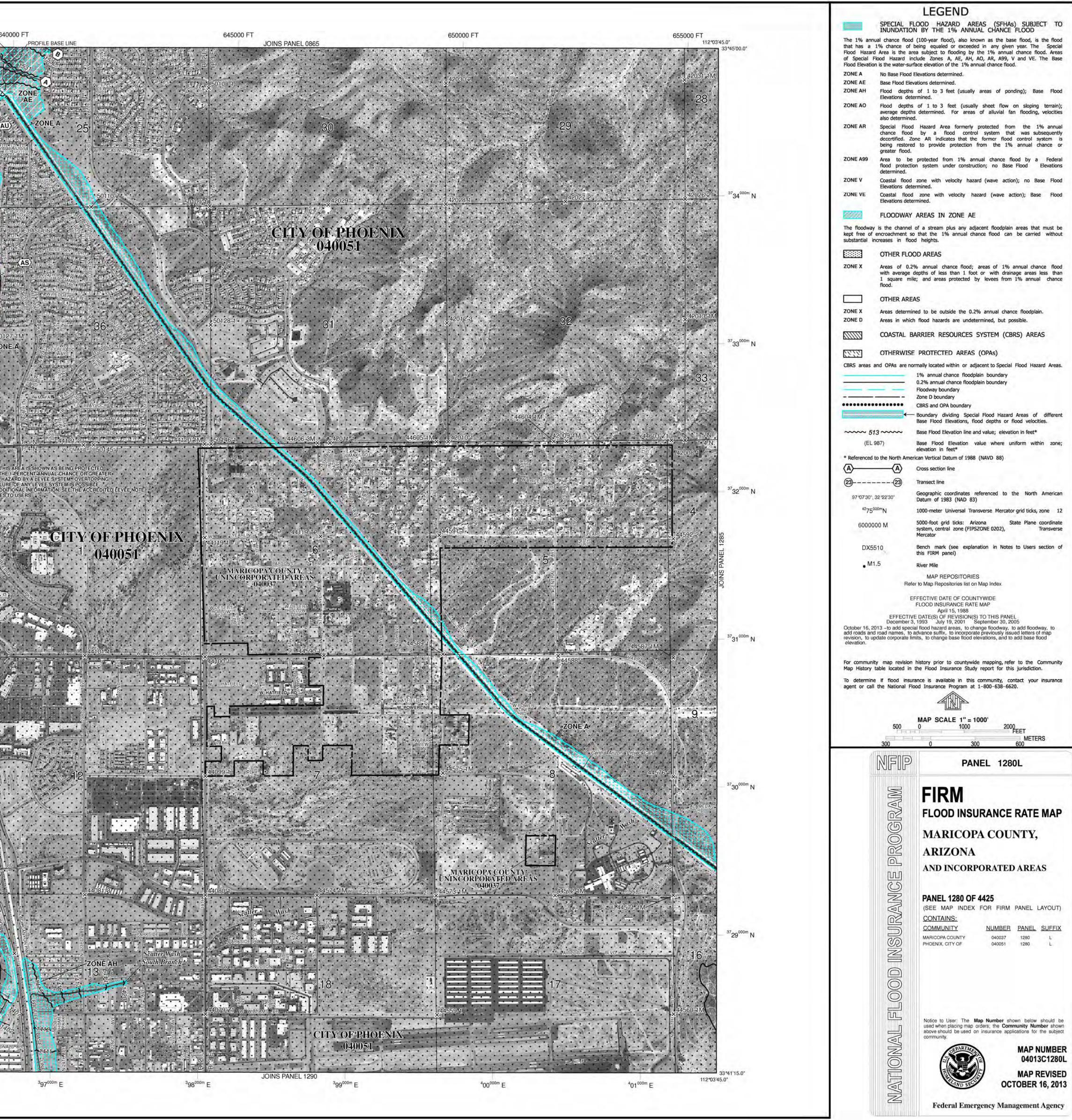
To obtain current elevation, description, and/or location information for National Geodetic Survey bench marks shown on this map, please contact the Information Services Branch of the National Geodetic Survey at (301) 713-3242, or visit its website at http://www.ngs.noaa.gov. To obtain information about Geodetic Densification and Cadastral Survey bench marks produced by the Maricopa County Department of Transportation, please visit the Flood Control District of Maricopa County website at:

http://www.fcd.maricopa.gov/Maps/gismaps/apps/gdacs/application/index.cfm. Base map information shown on this FIRM was derived from multiple sources. Aerial imagery was provided in digital format by the Maricopa County Department of Public Works, Flood Control District. The imagery is dated October 2009 to November 2009. Additional National Agricultural Imagery Program (NAIP) imagery was provided by the Arizona State Land Department (ALRIS) and is dated 2007 The coordinate system used for the production of the digital FIRM is State Plane Arizona Central NAD83 HARN, International Feet.

The profile baseline depicted on this map represents the hydraulic modeling baselines that match flood profiles in the FIS report. As a result of improved topographic data, the profile baseline, in some cases, may deviate significantly from the channel centerline or appear outside the SFHA.

Corporate limits shown on this map are based on the best data available at the time of publication. Because changes due to annexations or de-annexations may have occurred after this map was published, map users should contact appropriate community officials to verify current corporate limit locations.

Please refer to the separately printed Map Index for an overview map of the county showing the layout of map panels; community map repository addresses; and a Listing of Communities table containing National Flood Insurance Program dates for each community as well as a listing of the panels on which each community is located.


For Information on available products associated with this FIRM, visit the Map Service Center (MSC) website at http://msc.fema.gov. Available products may include previously issued Letters of Map Change, a Flood Insurance Study Report, or digital versions of this map. Many of these products can be ordered or obtained directly from the website.

If you have **questions about this map**, how to order products, or the National Flood Insurance Program in general, please call the **FEMA Map Information** eXchange (FMIX) at 1-877-FEMA MAP (1-877-336-2627) or visit the FEMA website at http://www.fema.gov/.

Accredited Levee Notes to Users: Check with your local community to obtain more information, such as the estimated level of protection provided (which may exceed the 1-percent-annual-chance level) and Emergency Action Plan, on the levee system(s) shown as providing protection for areas on this panel. To mitigate flood risk in residual risk areas, property owners and residents are encouraged to consider flood insurance and floodproofing or other protective measures. For more information on flood insurance, interested parties should visit the FEMA Website at http://www.fema.gov/business/nfip/index.shtm.

640000 F 112°07'30.0" Sonoran Wash 33°45'00.0" 1000000 FT 995000 FT NOTE: THIS AREA IS SHOWN AS BEING PROTECTED FROM THE 1 -PERCENT-ANNUAL-CHANCE OR **GREATER FLOOD HAZARD BY A LEVEE** LARD -SYSTEM. OVERTOPPING OR FAILURE OF ANY LEVEE SYSTEM IS POSSIBLE. FOR ADDITIONAL INFORMATION, SEE THE "ACCREDITED LEVEE NOTE" IN NOTES TO USERS. 990000 FT 985000 FT 980000 F

33941'15.0

397000m E

Appendix C

Rational Method Analysis

UPCO

Flood Control District of Maricopa County + 004 0)

roximately 0.09 sq mi

Drainage	Design Manual Vo	lume 1 Hydrol	ogy (August	2013)		
Rational I	Method is appropria	ate as total dra	inage area a	analyzed	is approxima	tely 0.09 s
Rational I	Vethod					
Q-CiA				(3.1)		
Q C i A	peak discsharge runoff c oefficient average rainfall in drainage area in	: ntensity in in/h	r			
T _c = 11.4	L ^{0.5} K _b ^{0.52} S ^{-0.31} i ^{-0.38}			(3.2)		
T _c L K⊳ S i	Time of Concentri Length of longest Watershed resist Watercourse slop rainfall intensity in	t flow path in m ance coefficier be in ft/mile				
A C i		res Total overable 3.2 DDMN		y Rationa	al Method	
L K _b S	Fi	gure 3.1 DDM	ИС Hydrolog	gy Ration	al Method	
P P	2.85 in 3.89 in		100-yr, 6-hr 100-yr, 24-ł			
Duration (min) 11 11 12 30 61 12 12 18 36 72 72 144	5 1.35 0 1.81 0 2.25 0 2.52 0 2.61 0 2.85 0 3.09	infall Intensity (in/hr) 8.57 6.54 5.40 3.62 2.25 1.26 0.87 0.48 0.26 0.16	ncy Estimate	es (PPFE	;) from NOAA	A Atlas 14
Sub Basi	n Area	S	Sadjusted	K _b	С	L
	(acres)	(ft/mile)				(miles)

Sub Basin	Area	S	Sadjusted	K _b	С	L	i	Tc	Tc	Q
	(acres)	(ft/mile)				(miles)	(in/hr)	(hr)	(min)	(cfs)
1	20.1	1087.63	313.00	0.1174	0.7	0.46	5.803	0.22	13	81.65
2	23.8	994.58	313.00	0.1156	0.7	0.50	5.664	0.23	14	94.36
3	12.1	142.51	142.51	0.1229	0.7	0.14	6.995	0.15	9	59.25
									Total	235.26

Sadjusted is per Section 5.5.1 Time of Concentration Figure 5.4 where the curve appears to be asymtotic and reaches a maximum value of 313 ft/mile The equation indicated for this figure and Table 5.2 does not calculate beyond 600 ft/mile natural slope

Appendix D

FlowMaster[™] Analysis

Section A-A Native Wash Upstream

Project Description		
Friction Method	Manning Formula	
Solve For	Normal Depth	
Input Data		
Channel Slope	0.0305	50 ft/ft
Discharge	256.3	37 ft³/s
Section Definitions		

Station (ft)	Elevation (ft)
0+	00 1601.46
0+	10 1601.30
0+	20 1600.80
0+	30 1598.21
0+	35 1596.00
0+	43 1596.00
0+	49 1598.00
0+	56 1601.00
0+	64 1604.00

Roughness Segment Definitions

Start Station & Elevation	End Statior	h & Elevation		Roughness Coefficient	
(0+00, 16	01.46)	(0+64,	1604.00)		0.035
Options					
Current Roughness Weighted Method Open Channel Weighting Method Closed Channel Weighting Method	Pavlovskii's Method Pavlovskii's Method Pavlovskii's Method				
Results					
Normal Depth Elevation Range	1596.00 to 1604.00 ft	2.05	ft		
Flow Area		27.44	ft²		
Wetted Perimeter		19.39	ft		

Bentley Systems, Inc. Haestad Methods SchemidleyCeluterMaster V8i (SELECTseries 1) [08.11.01.03]

10/12/2015 8:35:49 AM

27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 1 of 2

	Section A-A Native Was	sh Upstream
Results		
Hydraulic Radius	1.4	l1 ft
Top Width	18.59	59 ft
Normal Depth	2.05	95 ft
Critical Depth	2.43	l3 ft
Critical Slope	0.01592	02 ft/ft
Velocity	9.34	34 ft/s
Velocity Head	1.36	36 ft
Specific Energy	3.40	lO ft
Froude Number	1.36	36
Flow Type	Supercritical	
GVF Input Data		
Downstream Depth	0.00	00 ft
Length	0.00	00 ft
Number Of Steps	(0
GVF Output Data		
Upstream Depth	0.00	00 ft
Profile Description		
Profile Headloss	0.00	00 ft
Downstream Velocity	Infinit	ty ft/s
Upstream Velocity	Infinit	ty ft/s
Normal Depth	2.05)5 ft
Critical Depth	2.43	l3 ft
Channel Slope	0.03050	50 ft/ft
Critical Slope	0.01592	92 ft/ft

Section A-A Native Wash Upstream

Project Description		
Friction Method Solve For	Manning Formula Normal Depth	
Input Data		
Channel Slope	0.03050	ft/ft
Normal Depth	2.05	ft
Discharge	256.37	ft³/s
Cross Section Image		

1604.00 1603.50 1603.00 1602.50 1602.00 1601.50 1601.00 Elevation 1600.50 1600.00 1599.50 1599.00 1598.50 1598.00 1597.50 1597.003 1596.50 1596.00 0+00 0+10 0+20 0+30 0+40 0+50 0+60 Station

Section B-B Engineered Cap

Project Description		
Friction Method	Manning Formula	
Solve For	Normal Depth	
Input Data		
Channel Slope	0.03219	ft/ft
Discharge	256.37	ft³/s

Section Definitions

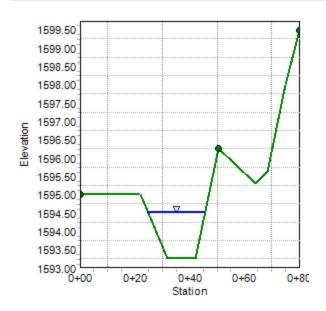
Station (ft)	Elevation (ft)
0+00	1595.00
0+10	1595.00
0+22	1595.00
0+32	1593.25
0+42	1593.25
0+50	1596.25
0+56	1595.86
0+64	1595.31
0+68	1595.62
0+75	1598.00
0+80	1599.49

Roughness Segment Definitions

Start Station & Elevation	End Station &	& Elevation	Roughness Coefficient	
(0+00, 159 (0+50, 159	,	(0+50, 1596.25) (0+80, 1599.49)		0.020 0.035
Options				
Current Rougnness Weighted Method Open Channel Weighting Method	Pavlovskii's Method Pavlovskii's Method			
Closed Channel Weighting Method	Pavlovskii's Method			
Results				
Normal Depth		1.27 ft		

Bentley Systems, Inc. Haestad Methods Schericher/Clenter/Master V8i (SELECTseries 1) [08.11.01.03]

10/12/2015 8:41:37 AM


27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 1 of 2

	Section B-B Engineer	ed Cap
Results		
Elevation Range	1593.25 to 1599.49 ft	
Flow Area	20.08	ft²
Wetted Perimeter	21.41	ft
Hydraulic Radius	0.94	ft
Top Width	21.07	ft
Normal Depth	1.27	ft
Critical Depth	2.07	ft
Critical Slope	0.00605	ft/ft
Velocity	12.77	ft/s
Velocity Head	2.53	ft
Specific Energy	3.80	ft
Froude Number	2.31	
Flow Type	Supercritical	
GVF Input Data		
Downstream Depth	0.00	ft
Length	0.00	ft
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.00	ft
Profile Description		
Profile Headloss	0.00	ft
Downstream Velocity	Infinity	ft/s
Upstream Velocity	Infinity	ft/s
Normal Depth	1.27	ft
Critical Depth	2.07	ft
Channel Slope	0.03219	ft/ft
Critical Slope	0.00605	ft/ft

Section B-B Engineered Cap

Project Description			
Friction Method	Manning Formula		
Solve For	Normal Depth		
Input Data			
Channel Slope	0.032	219	ft/ft
Normal Depth	1	1.27	ft
Discharge	256	6.37	ft³/s

Cross Section Image

Section C-C Native Wash Downstream

Project Description		
Friction Method	Manning Formula	
Solve For	Normal Depth	
Input Data		
Channel Slope	0.0262	20 ft/ft
Discharge	256.3	37 ft³/s
Section Definitions		

Station (ft)	Elevation (ft)
0+00	1592.38
0+10	1591.41
0+20	1590.47
0+25	1590.00
0+31	1589.51
0+42	1589.00
0+50	1591.21
0+60	1594.43
0+70	1597.72

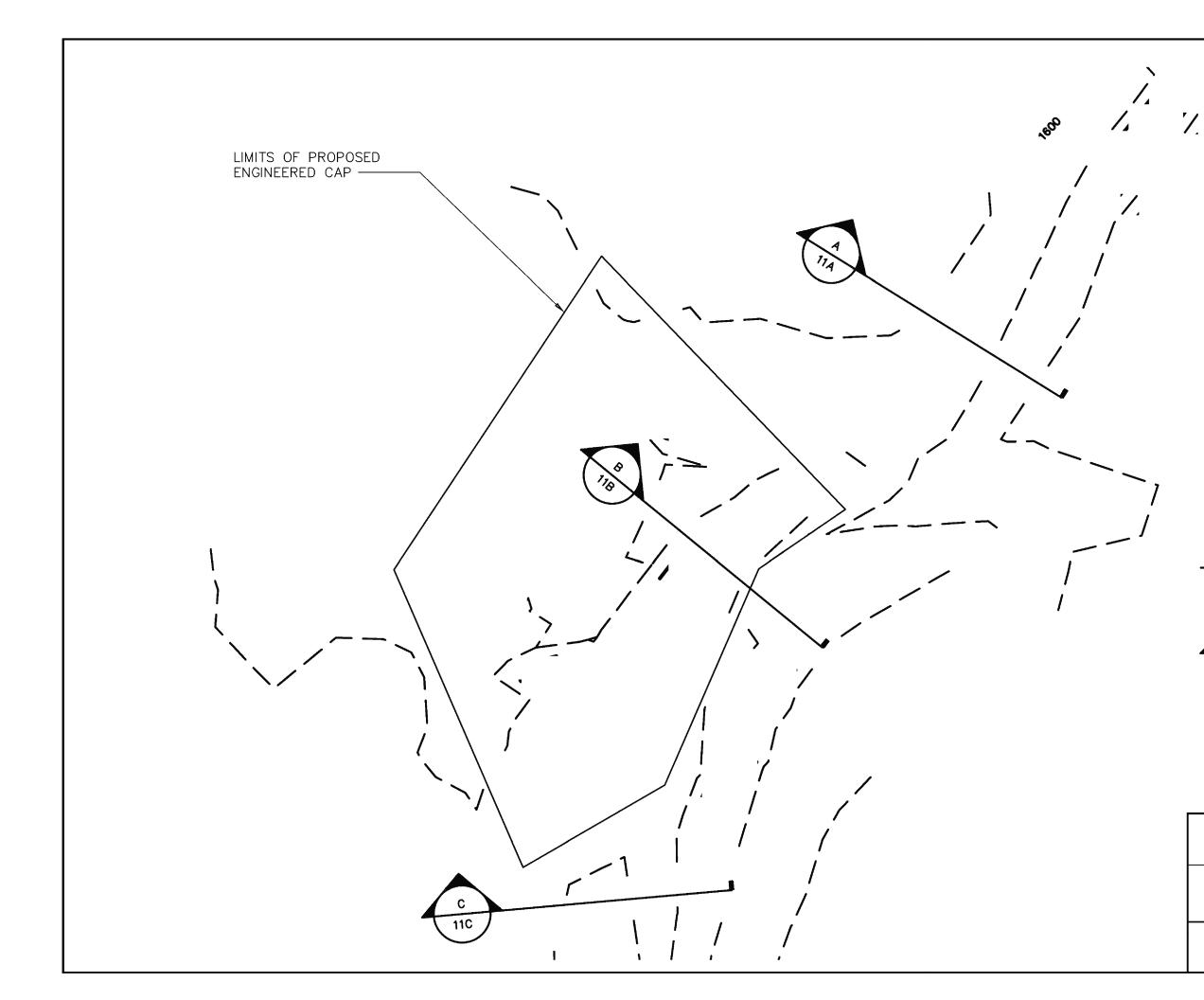
Roughness Segment Definitions

Start Station & Elevation	End Station	n & Elevation		Roughness Coefficient	
(0+00, 15	92.38)	(0+70,	1597.72)		0.078
Options					
Current Roughness Weighted Method Open Channel Weighting Method Closed Channel Weighting Method	Pavlovskii's Method Pavlovskii's Method Pavlovskii's Method				
Results					
Normal Depth Elevation Range	1589.00 to 1597.72 ft	2.65	ft		
Flow Area		64.61	ft²		
Wetted Perimeter		44.26	ft		

Bentley Systems, Inc. Haestad Methods Schemidley Clearer Master V8i (SELECTseries 1) [08.11.01.03]

10/12/2015 9:02:43 AM

27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 1 of 2


Section C-C Native Wash Downstream

Results				
Hydraulic Radius		1.46	ft	
Top Width		43.79	ft	
Normal Depth		2.65	ft	
Critical Depth		2.08	ft	
Critical Slope		0.08536	ft/ft	
Velocity		3.97	ft/s	
Velocity Head		0.24	ft	
Specific Energy		2.89	ft	
Froude Number		0.58		
Flow Type	Subcritical			
GVF Input Data				
Downstream Depth		0.00	ft	
Length		0.00	ft	
Number Of Steps		0		
GVF Output Data				
Upstream Depth		0.00	ft	
Profile Description				
Profile Headloss		0.00	ft	
Downstream Velocity		Infinity	ft/s	
Upstream Velocity		Infinity	ft/s	
Normal Depth		2.65	ft	
Critical Depth		2.08	ft	
Channel Slope		0.02620	ft/ft	
Critical Slope		0.08536	ft/ft	

Section C-C Native Wash Downstream

Project Description		
Friction Method Solve For	Manning Formula Normal Depth	
Input Data		
Channel Slope	0.02620	ft/ft
Normal Depth	2.65	ft
Discharge	256.37	ft³/s
Cross Section Image		

1597.50 1597.00 1596.50 1596.00 1595.50 1595.00 1594.50 5094.00 5094.00 5093.50 1593.00 1593.00 1592.50 1592.50 1592.00 -1591.50 1591.00 1590.50 1590.00 1589.50 1589.00 0+00 0+10 0+20 0+30 0+40 0+50 0+60 0+70 Station



FIGURE

FLOWMASTER SECTIONS

FORMER UNIVERSAL PROPULSION COMPANY FACILITY PHOENIX, ARIZONA CAP DESIGN BASIS REPORT

-1700-



CROSS SECTION

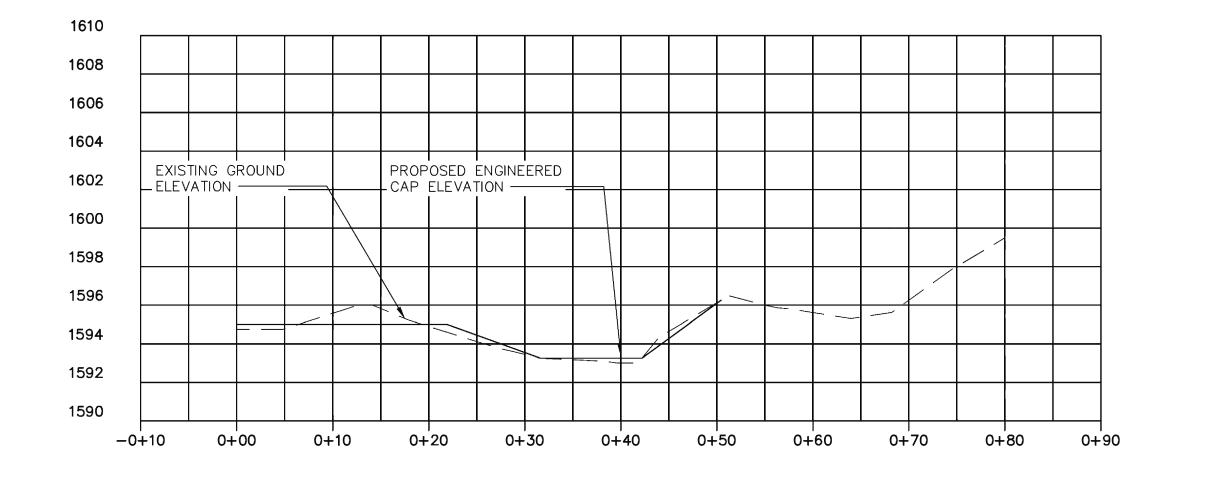
(5-FT INTERVAL) MINOR CONTOUR (1-FT INTERVAL)

MAJOR CONTOUR

LEGEND

SECTION A-A NATIVE WASH UPSTREAM

FIGURE 11A


SECTION A-A

FORMER UNIVERSAL PROPULSION COMPANY FACILITY PHOENIX, ARIZONA CAP DESIGN BASIS REPORT

20'

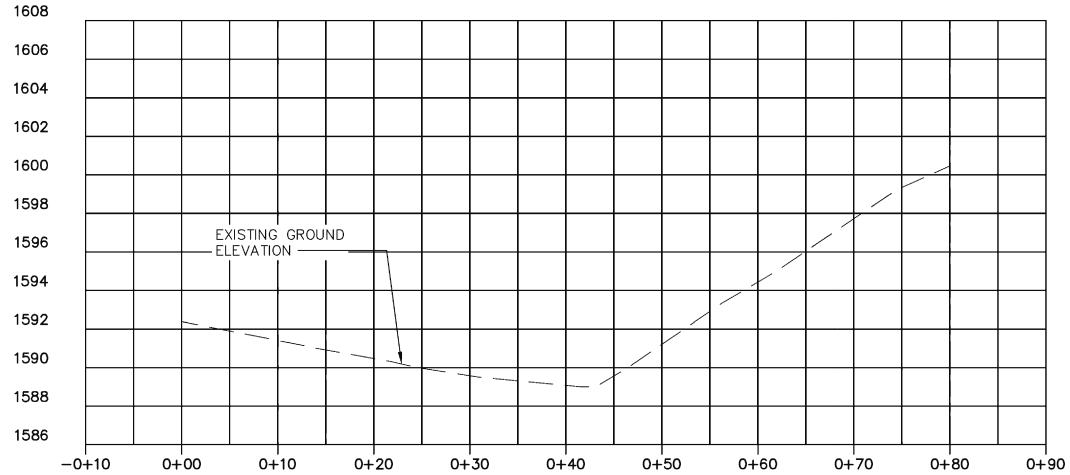
HORIZONTAL

SECTION B-B ENGINEERED CAP

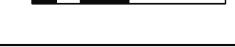
FIGURE 11B

20'

SECTION B-B


FORMER UNIVERSAL PROPULSION COMPANY FACILITY PHOENIX, ARIZONA CAP DESIGN BASIS REPORT

HORIZONTAL


SECTION C-C NATIVE WASH DOWNSTREAM

FORMER UNIVERSAL PROPULSION COMPANY FACILITY PHOENIX, ARIZONA CAP DESIGN BASIS REPORT

20'

FIGURE

11C

HORIZONTAL

Appendix E

Scour Analysis

This analysis is based on Section 11.8 of the Drainage Design Manual Volume 2: Hydraulics

Total Scour:

$$Z_{t} = FS(Z_{LT}+Z_{g}+Z_{bend}+Z_{bedform}+Z_{LF})+FS_{L}*Z_{L}$$
(11.41)

Where:

Z _t Total Scour
FS Factor of safety for all but local scour (1.3)
FS _L Factor of safety for local scour
Z _{LT} Long term scour (1.3)
Z _g General scour
Z _{bend} Bend scour
Z _{bedform} Bed form scour
Z _{LF} Low flow scour

Local scour not applicable (no structures)

Bend scour not applicable (no significant bends)

Long term Scour:

Level 1 Analysis from Arizona State Standard 5-96

Z_{LT} 0.02Q₁₀₀^{0.6}

Where:

 Q_{100} 100-year design storm

Z_{LT} 0.53 ft (DDM Volume 2 pg 11-94)

Limits to long term Scour from Armoring

 $d_{50} \ kV_{a}^{\ 2}(\gamma_{w}/\gamma_{s} - \gamma_{w}) \tag{11.46}$

 $\begin{array}{l} d_{50} \mbox{ medial sediment particle diameter (from grain size distribution analysis)} \\ k \ 0.0191 \mbox{ for straight channel} \\ V_a \mbox{ average velocity (ft/s) [from HEC RAS analysis]} \\ \gamma_s \mbox{ specific weight of stone lb/ft}^3 (from grain size distribution analysis) \\ \gamma_w \mbox{ specific weight of water lb/ft}^3 \end{array}$

Determined to be non-applicable based on aerial and photographic evidence

General Scour

Lacey Equation is applicable

$$Z_{\rm g} = z(0.47({\rm Q/f})^{1/3})$$
(11.56)

 $f = 1.76(D_m)^{0.5}$ Lacey's silt factor

D_m mean grain size (from grain size distribution)

Q design discharge

z multiplying factor (0.25 for straight reach)

Bedform Scour

$$Z_{\text{bedform}} 0.5^* d_h \tag{11.61}$$

d_h dune or antidune height

$$d_{\rm h} = 0.027 V_{\rm a}^{2}$$
 (11.63)

froude number 0.96 per Flowmaster analysis V_a average channel velocity (7.79 ft/s per Flowmaster analysis)

d_h 1.64 ft

Since the froude number is between 0.7 and 1.0 dune height the equation for the case where the froude number is less than 0.7 must be checked

$$0.15 < d_h/y_h < 0.3$$

(11.62)

	d_h	У _h
0.16	0.32	2.03
0.17	0.35	2.03
0.18	0.37	2.03
0.19	0.39	2.03
0.20	0.41	2.03
0.21	0.43	2.03
0.22	0.45	2.03
0.23	0.47	2.03
0.24	0.49	2.03
0.25	0.51	2.03
0.26	0.53	2.03
0.27	0.55	2.03
0.28	0.57	2.03
0.29	0.59	2.03

Since all calculated d_h between 0.15 and 0.3 are less than 1.64, use d_h of 1.64

Z_{bedform} 0.82 ft

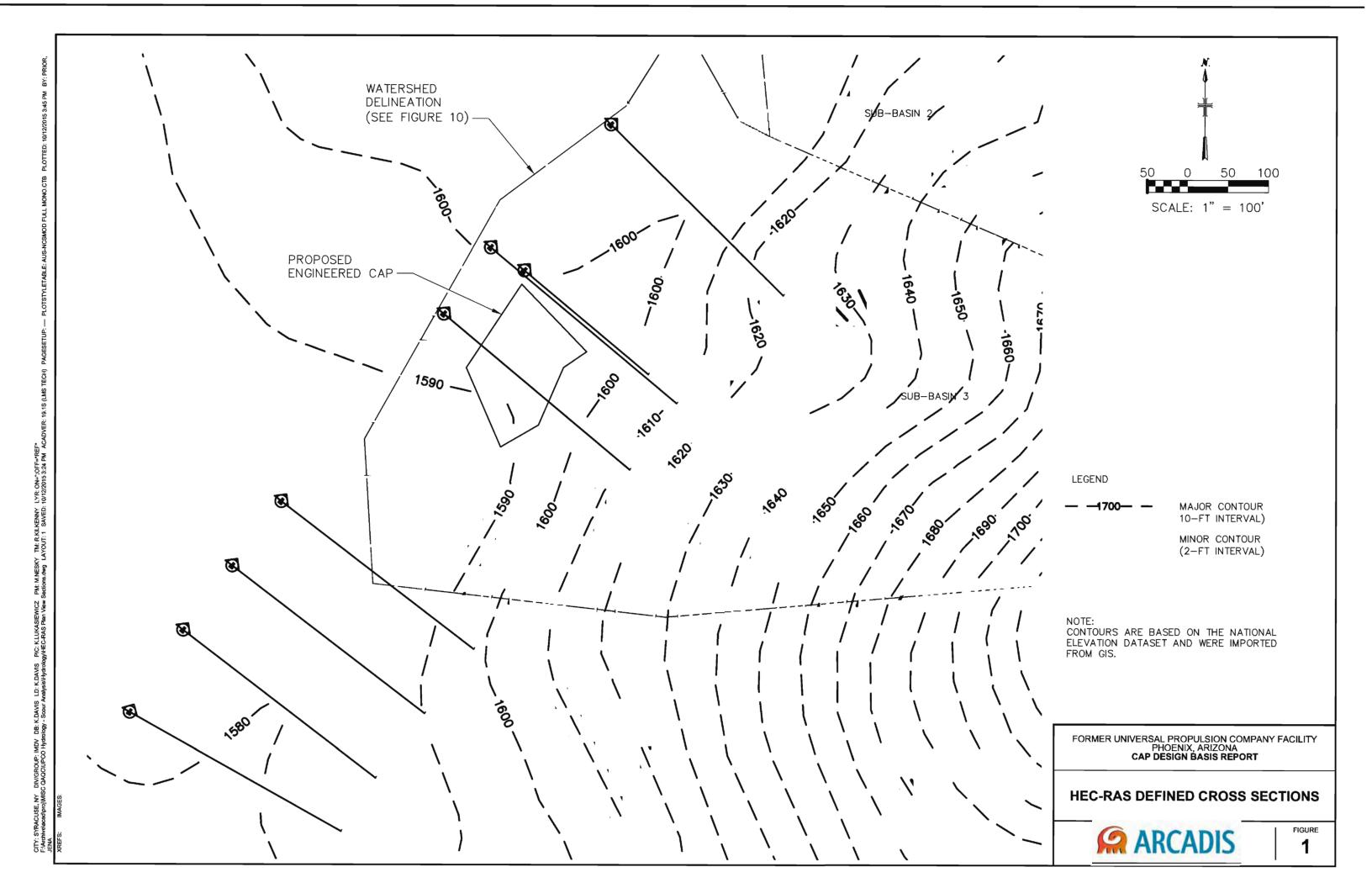
Low Flow Scour

1 ft per Section 11.8.2.5

Total Scour

Z_t 2.87 ft (11.41)

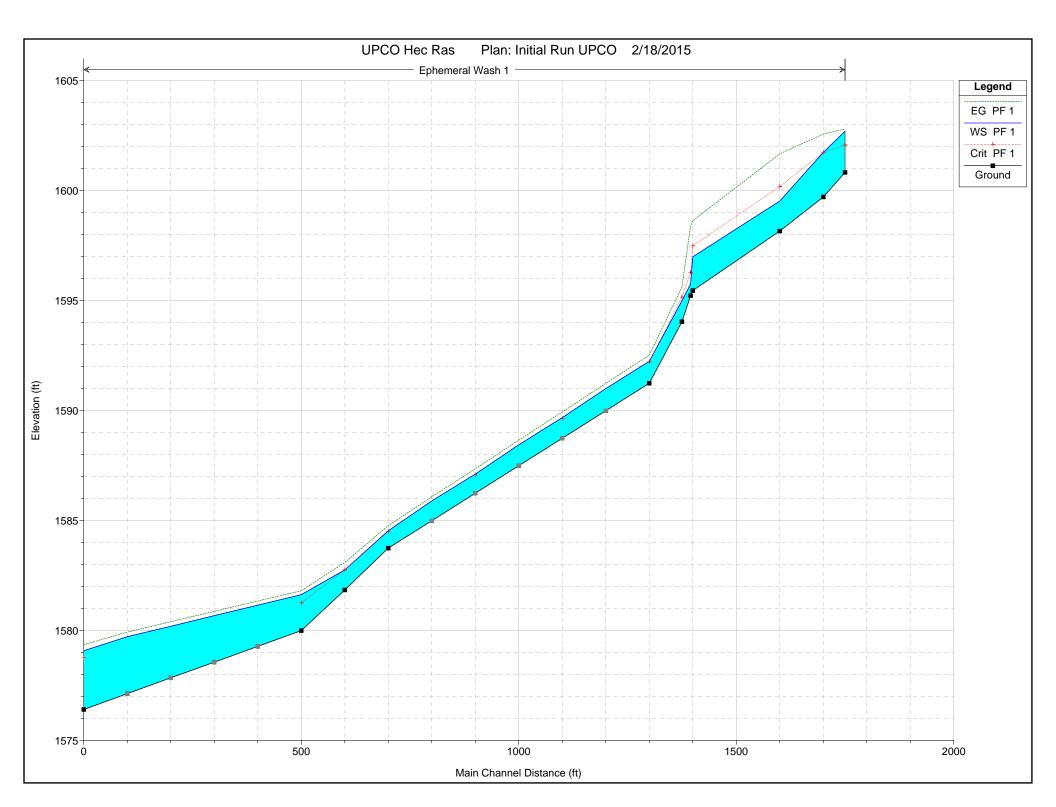
Applying a factor of safety of 1.3 per Section 11.8.2 of the DDM

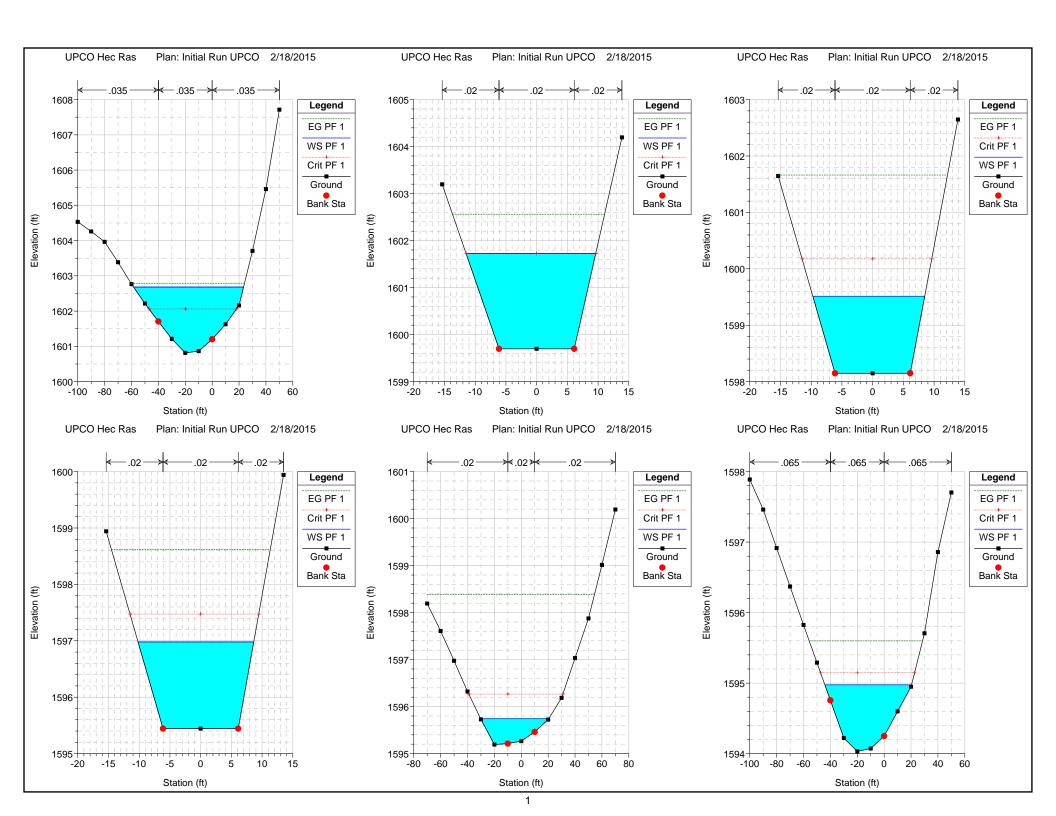

Z_t 3.73 ft

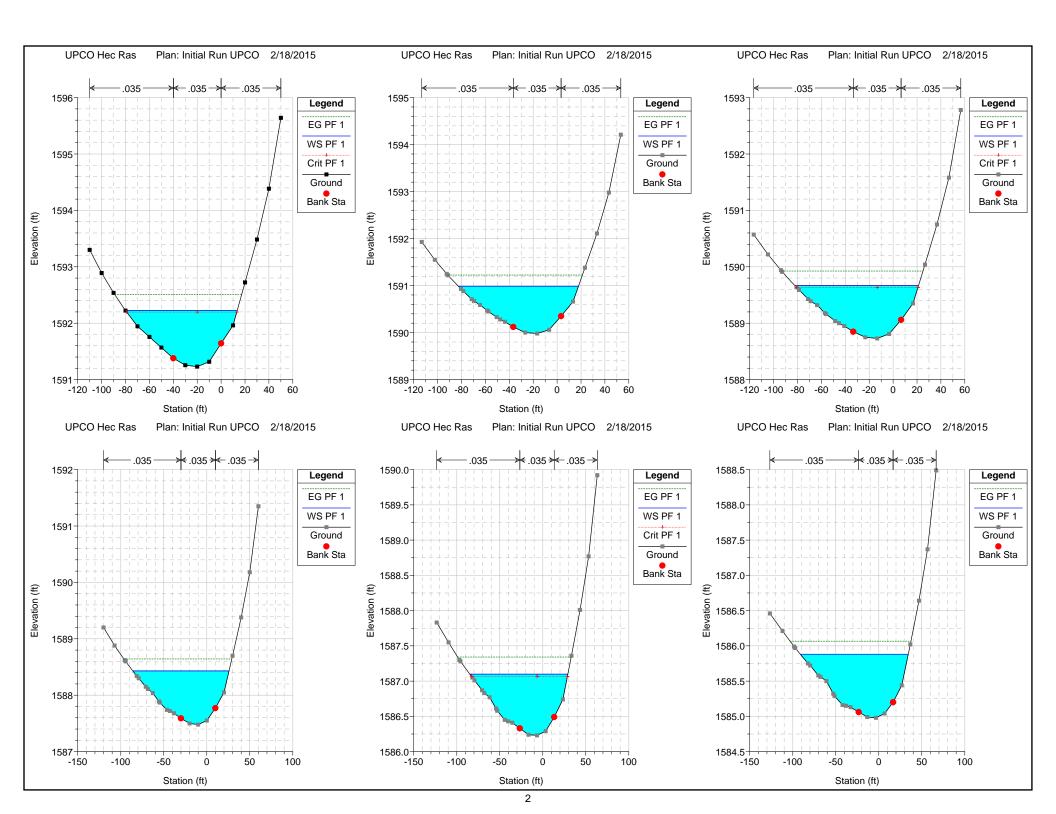
The 4,000 psi grout wedge at the edge of the hydroturf should extend a minimum of 3.8 feet below ground surface to adequtely protect against scour.

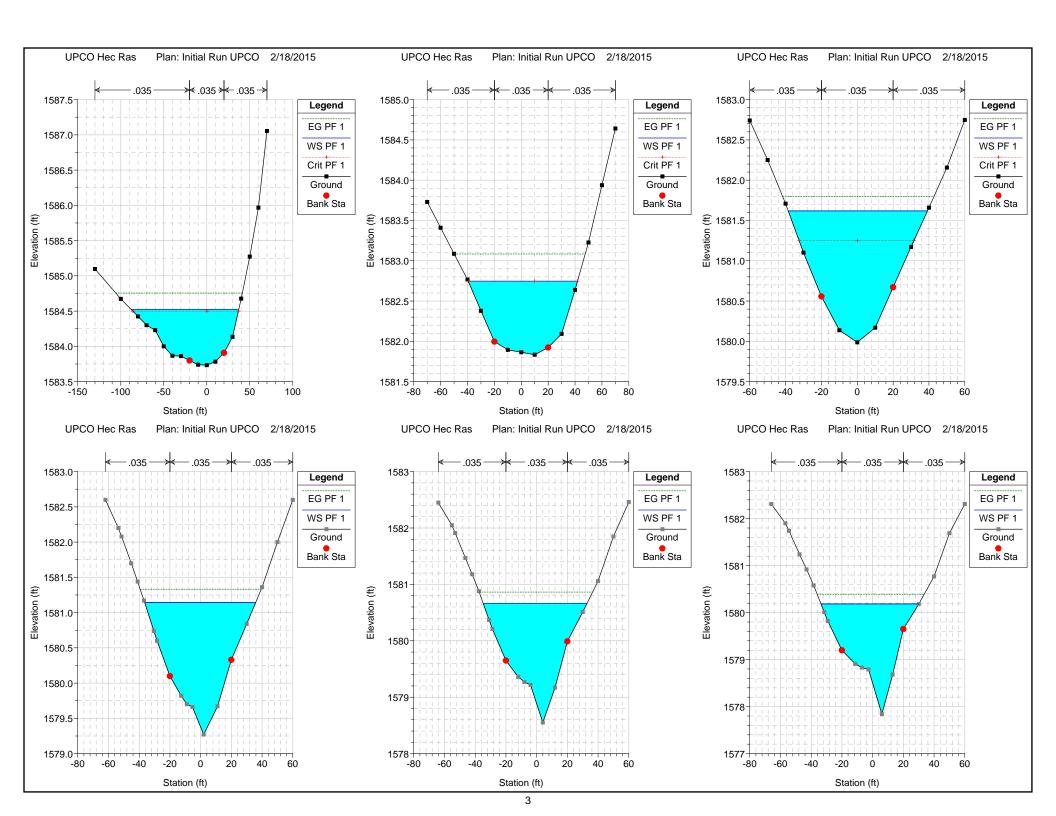
Appendix F

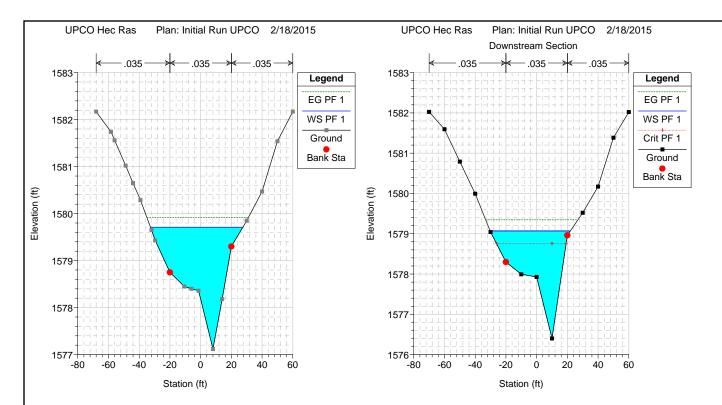
HEC-RAS Analysis

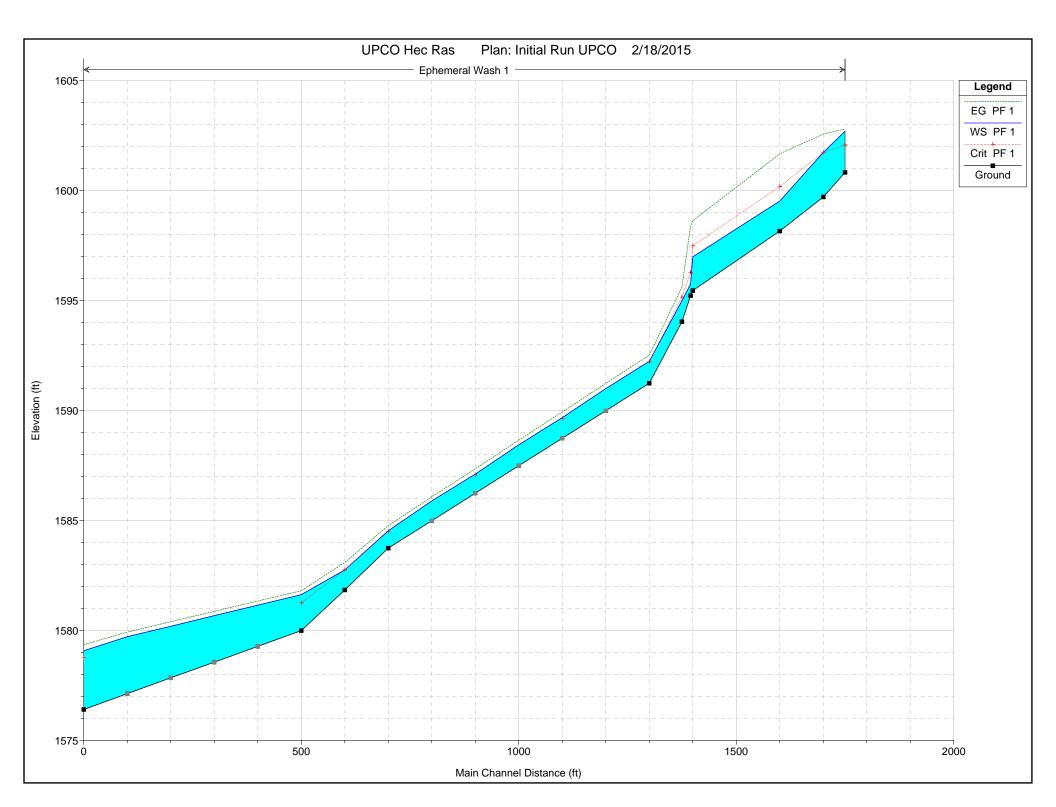


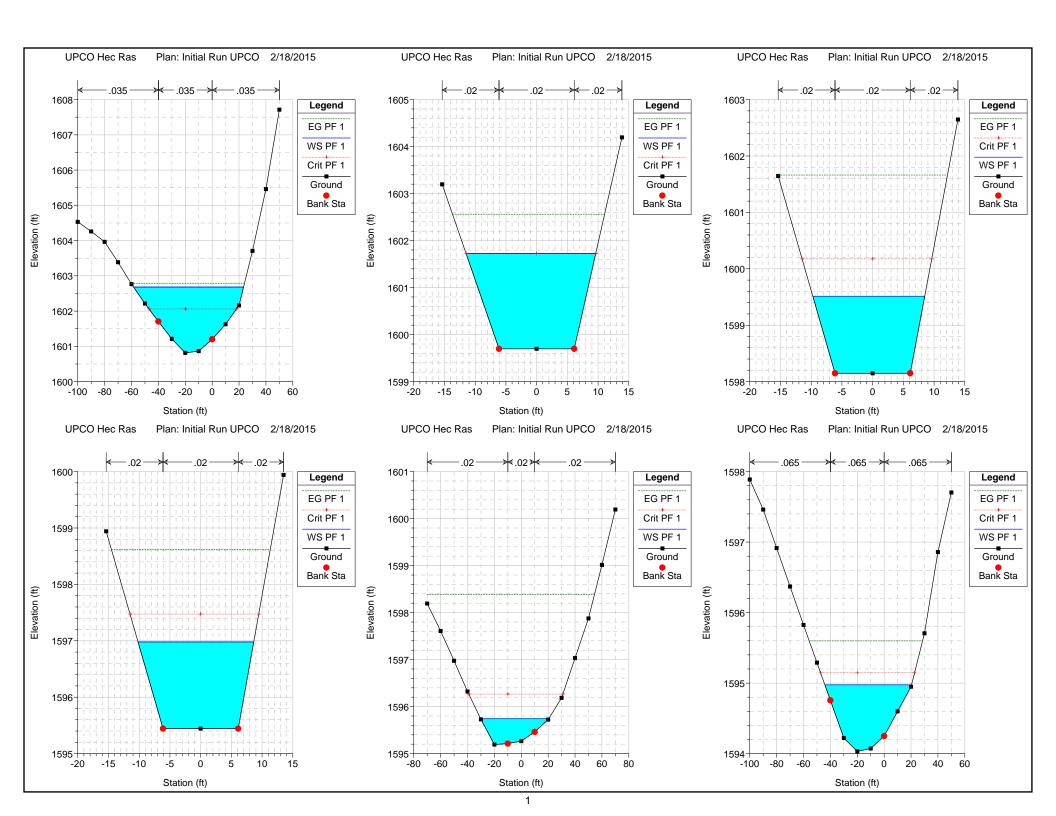

Hydraulic Engineering Circular 15 (HEC-15) Flexible Channel Lining Stability Calculation Sheet

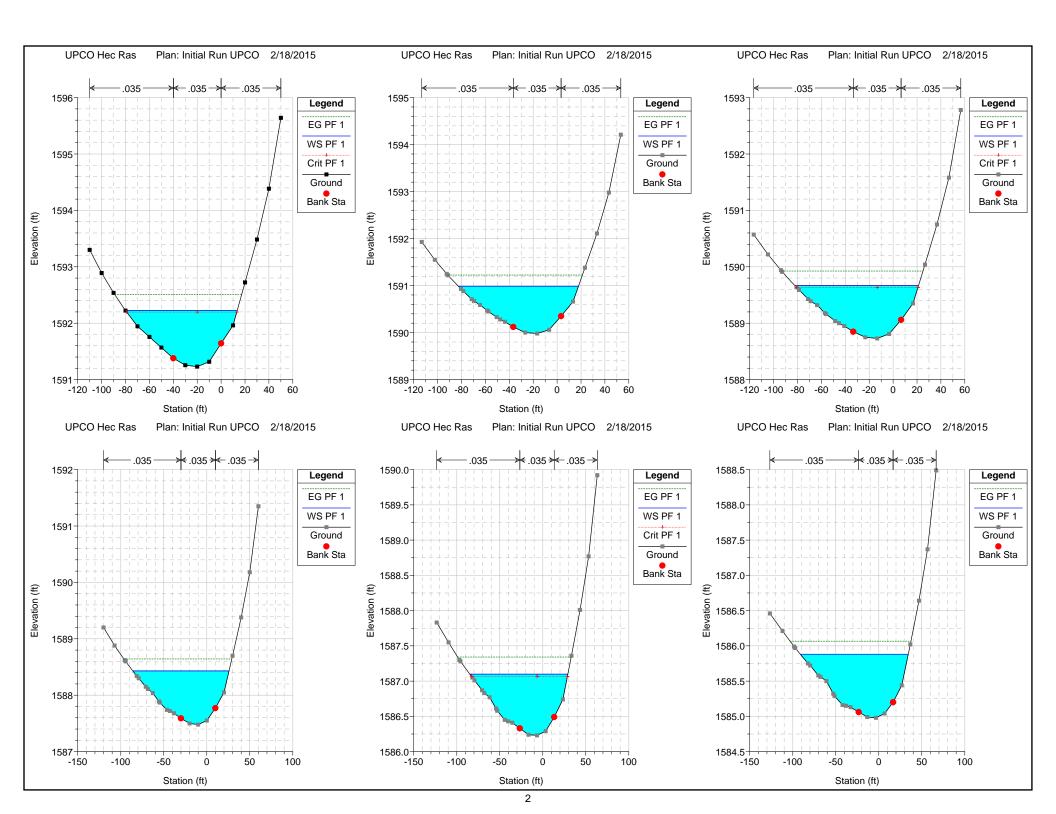

$\begin{array}{c} \mbox{Main Channel} \\ \mbox{Q} \\ \mbox{Q} \\ \mbox{S}_{0} \\ \mbox{D}_{50} \\ \mbox{φ} \\ \mbox{SG} \\ \mbox{γ} \\ \mbox{d_{a}} \\ \mbox$	2.65 165.4 1.77 1.12 1.12 0.092 82.10 73.10 1.12 235.00 2.86 0.0 1.766 2.97 8.94 1.24 1.24 1.24	ft :1 ft/ft in deg pcf ft psf psf	Peak Flowrate Bottom Width Side Slopes Channel Slope Average Stone Size Angle of Repose Stone Specific Gravity Stone Specific Weight Assumed Depth Average Depth Computed 'n' (Equ. 6.1 or 6.2) Flow Area Wetted Perimeter Hydraulic Radius Computed Flowrate Velocity Percent Error Iterative Depth Shear Stress at Maximum Depth (Equ. 2.4) Permissible Shear Stress (Equ. 6.7)			
$\begin{array}{c} b \\ Z \\ S_0 \\ D_{50} \\ \phi \\ SG \\ \gamma \\ d_i \\ d_a \\ d_a/d_{50} \\ n \\ d_a/d_{50} \\ n \\ A \\ P_w \\ R_h \\ Q \\ V \\ R_h \\ Q \\ V \\ Fror \\ d_{i+1} \\ \hline T_q \\ V_{\cdot} \\ R_e \\ F^* \\ \end{array}$	20 15 0.02699053 12 42 2.65 165.4 1.77 1.12 1.12 0.092 82.10 73.10 1.12 235.00 2.86 0.0 1.766 2.97 8.94 1.24 1.12	ft :1 ft/ft in deg pcf ft psf psf	Bottom Width Side Slopes Channel Slope Average Stone Size Angle of Repose Stone Specific Gravity Stone Specific Weight Assumed Depth Average Depth Computed 'n' (Equ. 6.1 or 6.2) Flow Area Wetted Perimeter Hydraulic Radius Computed Flowrate Velocity Percent Error Iterative Depth Shear Stress at Maximum Depth (Equ. 2.4)			
$\begin{array}{c} Z \\ S_0 \\ S_0 \\ D_{50} \\ \phi \\ SG \\ Y \\ \hline \\ \\ SG \\ Y \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	15 0.02699053 12 42 2.65 165.4 1.77 1.12 1.12 0.092 82.10 73.10 1.12 235.00 2.86 0.00 1.766 2.97 8.94 1.24 101798 0.087	:1 ft/ft in deg pcf ft ft ft ft ft ft cfs fps % ft ft ft psf psf	Side Slopes Channel Slope Average Stone Size Angle of Repose Stone Specific Gravity Stone Specific Weight Assumed Depth Average Depth Computed 'n' (Equ. 6.1 or 6.2) Flow Area Wetted Perimeter Hydraulic Radius Computed Flowrate Velocity Percent Error Iterative Depth Shear Stress at Maximum Depth (Equ. 2.4)			
$\begin{array}{c} S_{0} \\ S_{0} \\ D_{50} \\ \phi \\ SG \\ \gamma \\ \end{array} \\ \hline \\ SG \\ \gamma \\ \hline \\ \\ SG \\ \gamma \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	0.02699053 12 42 2.65 165.4 1.77 1.12 1.12 0.092 82.10 73.10 1.12 235.00 2.86 0.0 1.766 2.97 8.94 1.24 101798 0.087	ft/ft in deg pcf ft psf psf	Channel Slope Average Stone Size Angle of Repose Stone Specific Gravity Stone Specific Weight Assumed Depth Average Depth Computed 'n' (Equ. 6.1 or 6.2) Flow Area Wetted Perimeter Hydraulic Radius Computed Flowrate Velocity Percent Error Iterative Depth Shear Stress at Maximum Depth (Equ. 2.4)			
$\begin{array}{c} D_{50} \\ \phi \\ SG \\ Y \\ \hline \\ d_{a} \\ d_{a}/d_{50} \\ n \\ d_{a}/d_{50} \\ n \\ A \\ P_{w} \\ R_{h} \\ Q \\ V \\ Error \\ d_{i+1} \\ \hline \\ \tau_{d} \\ \tau_{p} \\ V. \\ Re \\ F^{*} \\ \end{array}$	12 42 2.65 165.4 1.77 1.12 1.12 0.092 82.10 73.10 1.12 235.00 2.86 0.0 1.766 2.97 8.94 1.24 101798 0.087	in deg pcf ft ft ft ft ft cfs fps % ft ft psf psf	Average Stone Size Angle of Repose Stone Specific Gravity Stone Specific Weight Assumed Depth Average Depth Computed 'n' (Equ. 6.1 or 6.2) Flow Area Wetted Perimeter Hydraulic Radius Computed Flowrate Velocity Percent Error Iterative Depth Shear Stress at Maximum Depth (Equ. 2.4)			
	42 2.65 165.4 1.77 1.12 1.12 0.092 82.10 73.10 1.12 235.00 2.86 0.0 1.766 2.97 8.94 1.24 101798 0.087	deg pcf ft ft ft sf ft ft cfs fps % ft ft psf psf	Angle of Repose Stone Specific Gravity Stone Specific Weight Assumed Depth Average Depth Computed 'n' (Equ. 6.1 or 6.2) Flow Area Wetted Perimeter Hydraulic Radius Computed Flowrate Velocity Percent Error Iterative Depth Shear Stress at Maximum Depth (Equ. 2.4)			
$\begin{array}{c} SG \\ \hline \gamma \\ \hline \\ d_{a} \\ d_{a}/d_{50} \\ \hline \\ n \\ A \\ \hline \\ P_{w} \\ \hline \\ R_{h} \\ \hline \\ Q \\ \hline \\ V \\ \hline \\ Error \\ \hline \\ d_{i+1} \\ \hline \\ \hline \\ \tau_{d} \\ \hline \\ \tau_{p} \\ \hline \\ V_{\bullet} \\ \hline \\ Re \\ \hline \\ F^{*} \\ \end{array}$	2.65 165.4 1.77 1.12 1.12 0.092 82.10 73.10 1.12 235.00 2.86 0.0 1.766 2.97 8.94 1.24 1.24 1.24	pcf ft ft sf ft ft cfs fps % ft ft psf psf	Stone Specific Gravity Stone Specific Weight Assumed Depth Average Depth Computed 'n' (Equ. 6.1 or 6.2) Flow Area Wetted Perimeter Hydraulic Radius Computed Flowrate Velocity Percent Error Iterative Depth Shear Stress at Maximum Depth (Equ. 2.4)			
$\begin{array}{c} \gamma \\ \\ d_{i} \\ \\ d_{a} \\ \\ d_{a}/d_{50} \\ \\ n \\ \\ A \\ \\ P_{w} \\ \\ R_{h} \\ \\ Q \\ \\ V \\ \\ R_{h} \\ \\ Q \\ \\ V \\ \\ Error \\ \\ d_{i+1} \\ \\ \\ \\ T_{p} \\ \\ V_{*} \\ \\ Re \\ \\ F^{*} \\ \end{array}$	165.4 1.77 1.12 1.12 0.092 82.10 73.10 1.12 235.00 2.86 0.00 1.766 2.97 8.94 1.24 101798 0.087	ft ft sf ft ft cfs fps % ft ft psf psf	Stone Specific Weight Assumed Depth Average Depth Computed 'n' (Equ. 6.1 or 6.2) Flow Area Wetted Perimeter Hydraulic Radius Computed Flowrate Velocity Percent Error Iterative Depth Shear Stress at Maximum Depth (Equ. 2.4)			
$\begin{array}{c} d_{a} \\ d_{a}/d_{50} \\ n \\ A \\ P_{w} \\ R_{h} \\ Q \\ v \\ Error \\ d_{i+1} \\ \hline \tau_{d} \\ \tau_{p} \\ V_{*} \\ Re \\ F^{*} \end{array}$	1.77 1.12 1.12 0.092 82.10 73.10 1.12 235.00 2.86 0.0 1.766 2.97 8.94 1.24 1.24 101798 0.087	ft ft sf ft ft cfs fps % ft ft psf psf	Assumed Depth Average Depth Computed 'n' (Equ. 6.1 or 6.2) Flow Area Wetted Perimeter Hydraulic Radius Computed Flowrate Velocity Percent Error Iterative Depth Shear Stress at Maximum Depth (Equ. 2.4)			
$\begin{array}{c} d_{a} \\ d_{a}/d_{50} \\ n \\ A \\ P_{w} \\ R_{h} \\ Q \\ v \\ Error \\ d_{i+1} \\ \hline \tau_{d} \\ \tau_{p} \\ V_{*} \\ Re \\ F^{*} \end{array}$	1.12 1.12 0.092 82.10 73.10 1.12 235.00 2.86 0.0 1.766 2.97 8.94 1.24 1.24 101798 0.087	ft sf ft ft cfs fps % ft ft psf psf	Average Depth Computed 'n' (Equ. 6.1 or 6.2) Flow Area Wetted Perimeter Hydraulic Radius Computed Flowrate Velocity Percent Error Iterative Depth Shear Stress at Maximum Depth (Equ. 2.4)			
$\begin{array}{c} d_{a} \\ d_{a}/d_{50} \\ n \\ A \\ P_{w} \\ R_{h} \\ Q \\ v \\ Error \\ d_{i+1} \\ \hline \tau_{d} \\ \tau_{p} \\ V_{*} \\ Re \\ F^{*} \end{array}$	1.12 1.12 0.092 82.10 73.10 1.12 235.00 2.86 0.0 1.766 2.97 8.94 1.24 1.24 101798 0.087	ft sf ft ft cfs fps % ft ft psf psf	Average Depth Computed 'n' (Equ. 6.1 or 6.2) Flow Area Wetted Perimeter Hydraulic Radius Computed Flowrate Velocity Percent Error Iterative Depth Shear Stress at Maximum Depth (Equ. 2.4)			
$\begin{array}{c} d_{a}/d_{50} & & \\ n & & \\ A & & \\ P_{w} & & \\ R_{h} & & \\ Q & & \\ V & & \\ Error & & \\ d_{i+1} & & \\ & & \\ T_{d} & & \\ T_{p} & & \\ V_{\cdot} & & \\ Re & & \\ F^{*} & \end{array}$	1.12 0.092 82.10 73.10 1.12 235.00 2.86 0.0 1.766 2.97 8.94 1.24 101798 0.087	sf ft ft cfs fps % ft ft psf psf	Computed 'n' (Equ. 6.1 or 6.2) Flow Area Wetted Perimeter Hydraulic Radius Computed Flowrate Velocity Percent Error Iterative Depth Shear Stress at Maximum Depth (Equ. 2.4)			
n A P _w R _h Q V Error d _{i+1} τ _d τ _p V. Re F*	0.092 82.10 73.10 1.12 235.00 2.86 0.0 1.766 2.97 2.97 8.94 1.24 101798 0.087	ft ft cfs fps % ft ft ps f ps f	Flow Area Wetted Perimeter Hydraulic Radius Computed Flowrate Velocity Percent Error Iterative Depth Shear Stress at Maximum Depth (Equ. 2.4)			
A Pw Rh Q V Error di+1 Td V V Re F*	82.10 73.10 1.12 235.00 2.86 0.0 1.766 2.97 8.94 1.24 101798 0.087	ft ft cfs fps % ft ft ps f ps f	Flow Area Wetted Perimeter Hydraulic Radius Computed Flowrate Velocity Percent Error Iterative Depth Shear Stress at Maximum Depth (Equ. 2.4)			
Pw Rh Q V Error di+1 τd V V Re F*	73.10 1.12 235.00 2.86 0.0 1.766 2.97 8.94 1.24 101798 0.087	ft ft cfs fps % ft ft ps f ps f	Wetted Perimeter Hydraulic Radius Computed Flowrate Velocity Percent Error Iterative Depth Shear Stress at Maximum Depth (Equ. 2.4)			
R _h Q v Error d _{i+1} τ _d τ _p V. Re F*	1.12 235.00 2.86 0.0 1.766 2.97 2.97 8.94 1.24 101798 0.087	ft cfs fps % ft psf psf	Hydraulic Radius Computed Flowrate Velocity Percent Error Iterative Depth Shear Stress at Maximum Depth (Equ. 2.4)			
$ \begin{array}{c} Q \\ v \\ Error \\ d_{i+1} \\ \hline \\ \tau_{d} \\ \tau_{p} \\ V_{*} \\ \hline \\ Re \\ F^{*} \end{array} $	235.00 2.86 0.0 1.766 2.97 2.97 8.94 1.24 101798 0.087	cfs fps % ft psf psf	Computed Flowrate Velocity Percent Error Iterative Depth Shear Stress at Maximum Depth (Equ. 2.4)			
	2.86 0.0 1.766 2.97 8.94 1.24 101798 0.087	fps % ft psf psf	Velocity Percent Error Iterative Depth Shear Stress at Maximum Depth (Equ. 2.4)			
	0.0 1.766 2.97 8.94 1.24 101798 0.087	% ft psf psf	Percent Error Iterative Depth Shear Stress at Maximum Depth (Equ. 2.4)			
d_{i+1} τ_{d} τ_{p} V_{*} Re F^{*}	1.766 2.97 8.94 1.24 101798 0.087	ft psf psf	Iterative Depth Shear Stress at Maximum Depth (Equ. 2.4)			
τ _d τ _p V. Re F*	2.97 8.94 1.24 101798 0.087	psf psf	Shear Stress at Maximum Depth (Equ. 2.4)			
τ _d τ _p V. Re F*	8.94 1.24 101798 0.087	psf				
τ _p V. Re F*	8.94 1.24 101798 0.087	psf				
V₊ Re F*	1.24 101798 0.087		Permissible Shear Stress (Equ. 6.7)			
V₊ Re F*	101798 0.087	fps				
Re F*	101798 0.087	.60	Shear Velocity (Equ. 6.10)			
F*	0.087	1	Reynolds Number	v = 1.217x ⁻	10-5 sf/s @) 60°
-			Shields' Parameter	V = 1.217X	10-0 31/3 @	
	1.19		Safety Factor	Re	F*	SF
				40000	0.047	1
	D50 OK			200000	0.15	1.5
D	4.77	in	D_{50} Required for a stable channel bottom, SF = 1.0		0.1.0	
D _{50,b} SF	3.0					
Эг	3.0					╂────┦
Side Slope						
K1	1.66		Equ. 3.4			
K2	1.00		Equ. 6.16			
D _{50,s}	7.95	in	D ₅₀ Required for stable side slope (Equ. 6.15)			
K1'	1.00		Ratio of channel side to bottom shear stress			
τ _s	2.97	psf	Side Shear Stress on the Channel (Equ. 3.3)			
3		-				
	D50 OK					
SF	3.0					
b	0.26		Parameter (Bathurst) (Equ. 6.6)			
T	72.98		Top Width			<u> </u>
Fr	0.48		Froude Number			<u> </u>
f(Fr)	0.73		Equ. 6.3			
f(REG)	11.18 0.38		Equ. 6.4			
f(CG)	0.38		Equ. 6.5 Manning's 'n' (Equ. 6.2)	Bathurst		0.3 <= d _a
n				Datnurst		$0.5 \le u_a$
d _a /d ₅₀	1.12					ļ
n	0.106		Manning's 'n' (Equ. 6.1)	Blodgett		1.5 <= d _a
						<u> </u>
NOTE:						ļ]
			IWA Hydraulic Engineering Circular (HEC) 15:			
			Dadside Channels with Flexible Linings			+
L	Publication No. FH	WA-INHI-05-	114, September 2005			

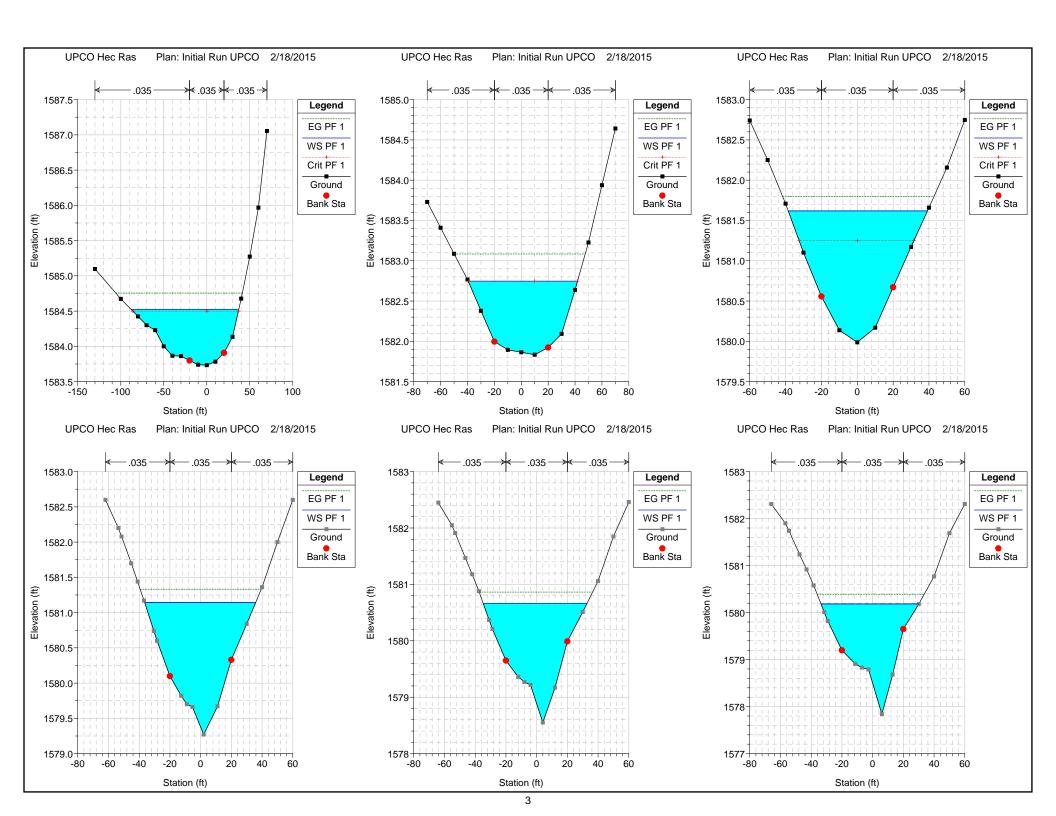

Reach	River Sta	Profile	Q Total	W.S. Elev	Max Chl Dpth	Invert Slope	Crit W.S.	E.G. Elev	Vel Chnl	Flow Area	Top Width	Froude # Chl
			(cfs)	(ft)	(ft)		(ft)	(ft)	(ft/s)	(sq ft)	(ft)	
1	1400	PF 1	235.00	1602.68	1.87	0.0223	1602.06	1602.79	2.83	94.57	81.89	0.40
1	1350	PF 1	235.00	1601.73	2.03	0.0155	1601.73	1602.56	7.79	33.84	21.11	0.96
1	1300	PF 1	235.00	1599.51	1.37	0.0135	1600.18	1601.66	12.28	20.81	18.21	1.85
1	1205	PF 1	235.00	1596.98	1.54	0.0458	1597.47	1598.62	10.77	23.90	18.83	1.53
1	1200	PF 1	235.00	1595.74	0.55	0.0591	1596.27	1598.38	13.59	18.52	50.65	3.61
1	1175	PF 1	235.00	1594.98	0.94	0.0374	1595.15	1595.60	6.62	38.72	64.46	1.33
1	1100	PF 1	235.00	1592.23	1.00	0.0125	1592.20	1592.51	4.67	59.16	93.67	0.87
1	1050.*	PF 1	235.00	1590.99	1.01	0.0125		1591.22	4.35	64.24	100.50	0.80
1	1000.*	PF 1	235.00	1589.67	0.94	0.0125	1589.63	1589.92	4.56	61.54	103.38	0.87
1	950.*	PF 1	235.00	1588.43	0.95	0.0125		1588.64	4.17	67.88	111.83	0.78
1	900.*	PF 1	235.00	1587.10	0.87	0.0125	1587.07	1587.34	4.48	63.41	113.95	0.88
1	850.*	PF 1	235.00	1585.88	0.90	0.0125		1586.07	3.96	72.45	125.43	0.76
1	800	PF 1	235.00	1584.53	0.79	0.0190	1584.50	1584.76	4.43	64.62	125.32	0.90
1	700	PF 1	235.00	1582.75	0.91	0.0185	1582.75	1583.08	5.04	52.94	81.31	0.96
1	600	PF 1	235.00	1581.62	1.63	0.0072	1581.25	1581.80	3.59	74.85	77.72	0.54
1	580.*	PF 1	235.00	1581.14	1.87	0.0072		1581.33	3.66	72.03	72.21	0.54
1	560.*	PF 1	235.00	1580.67	2.12	0.0071		1580.86	3.70	69.99	67.66	0.54
1	540.*	PF 1	235.00	1580.18	2.34	0.0072		1580.39	3.75	67.94	63.68	0.55
1	520.*	PF 1	235.00	1579.71	2.59	0.0072		1579.92	3.75	66.99	60.11	0.54
1	500	PF 1	235.00	1579.07	2.67		1578.75	1579.35	4.27	57.36	52.21	0.65

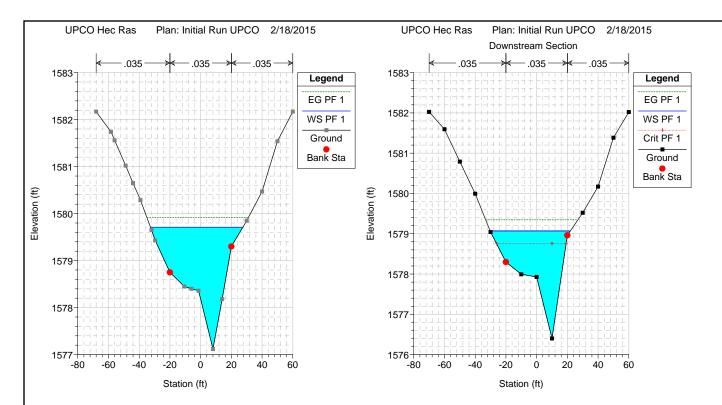

HEC-RAS Plan: InitRun River: Ephemeral Wash Reach: 1 Profile: PF 1











Appendix G

Cost Estimates (on CD)

Table G-1 Summary of Soil Costs for Corrective Measures Corrective Measures Study

Remedial Alternatives	Capital Cost	O&M Cost	Periodic Cost	Total Project Cost	Net Present Value
Alternative SA-1: No Action	\$0	\$0	\$0	\$0	\$0
Alternative SA-2: Soil Excavation, Soil Capping, Deed Restrictions	\$2,026,950	\$459,000	\$35,000	\$2,521,000	\$2,089,000
Alternative SA-3: Soil Excavation, In Situ Biological Reduction	\$2,602,386	\$1,063,300	\$198,750	\$3,864,000	\$3,010,000
Alternative SA-4: ADEQ Soil Treatment Scenario	\$4,484,250	\$270,000	\$0	\$4,754,000	\$4,303,000

Notes:

ADEQ = Arizona Department of Environmental Quality

O&M = Operation and Maintenance

Table G-2 Summary of Groundwater Costs for Corrective Measures Corrective Measures Study

Remedial Alternatives	Capital Cost	O&M Cost	Periodic Cost	Total Project Cost	Net Present Value
Alternative GW-1: No Action	\$0	\$0	\$0	\$0	\$0
Alternative Gw-2: Bedrock Source Area Groundwater Extraction, Ex Situ	ψŪ				φυ
Treatment with Anaerobic Bioreactor, Reinjection, and Alluvium In Situ Biological					
Reduction	\$3,221,900	\$6,697,500	\$313,200	\$10,233,000	\$6,669,000
Alternative GW-3: Bedrock Source Area Hydraulic Control and In Situ Biological					
Reduction and Alluvium In Situ Biological Reduction	\$1,584,300	\$5,856,800	\$313,200	\$7,754,000	\$4,750,000
Alternative GW-4: ADEQ Groundwater Treatment Scenario	\$5,261,400	\$10,006,900	\$0	\$15,268,000	\$8,770,000

Notes:

ADEQ = Arizona Department of Environmental Quality

O&M = Operation and Maintenance

Table G-3 Summary of Soil Costs for Soil Alternative SA-2: Soil Excavation, Soil Capping, and Deed Restrictions Corrective Measures Study

	UNIT COST	UNIT	REQ'D	SUBTOTAL
PRE-DESIGN INVESTIGATION				
Pre-Design Investigation Mob and Drill Rig		LS LS	1 1	\$0 \$0
Pre-Design Laboratory Fees		LS	1	эt.
COMPLETED		Invest	igation Subtotal	\$0
	Health & S	Safety/Air Monitori	ng/Security (3%)	\$0
		ering Design and P		\$0
		Investigation Ma	nagement (10%)	\$0
			Subtotal	\$0
PRE-DI	ESIGN INVESTIGATIO	N CAPITAL COS	ST SUBTOTAL	\$0
SOIL EXCAVATION AND OFF-SITE DISPOSAL (NON-CAI	P AREAS)			
Mobilization/Demobilization	\$5,889	LS	1	\$5,889
Excavation	\$22	Ton	3,506	\$77,132
Surveying\Utility Location	\$18,250	LS	1	\$18,250
ISM Sampling Laboratory Fees	\$27,570	LS	1	\$27,570
Off-Site Soil Transportation/Disposal	\$44	Ton	3,506	\$152,610
Backfill	\$13.40	Ton	3,506	\$46,980
Restoration	\$0.25	sf	9,835	\$2,459
Labor	\$147,745	LS	1	\$147,745
Expenses (PPE, Truck Rental, etc)	\$11,920	LS	1	\$11,920
• • • • • • •		Const	ruction Subtotal	\$491,000
Contingency (15% of Construction Costs)				\$48,450
		Co	nstruction Total	\$539,450
		Inctiv	tutional Controls	\$1,000
	Health &	Safety/Air Monitori		\$16,200
		ering Design and F		\$53,900
	Englie	Construction Ma		\$53,900
			Subtotal	\$125,000
SOIL EXCAV	ATION AND DISPOSA	L CAPITAL COS	ST SUBTOTAL	\$664,450
SOIL EXCAVATION OF SOIL CAP AREA				
Pre-Design Investigation Mob and Rig	\$8,000	LS	0	\$0
Mobilization/Demobilization	\$4,574	LS	1	\$4,574
Clear/Spray Vegetation	\$500	Acre	0.52	\$260
Excavation	\$22	Ton	2,723	\$59,900
Surveying	\$3,600	LS	1	\$3,600
Pre-Design and Confirmatory Sampling Laboratory Fees	\$4,690	LS	0	\$
Off-Site Soil Transportation/Disposal	\$44	Ton	2,723	\$118,53
Restoration	\$0.25	sf	0	\$
Labor	\$36,936	LS	1	\$36,93
Expenses (PPE, Truck Rental, etc)	\$2,980	LS	1	\$2,980
		Const	ruction Subtotal	\$227,00
Contingency (15% of Construction Costs)				\$27,30
		Co	nstruction Total	\$254,300
		Turnet	tutional Controls	\$1,000
		Safety/Air Monitori	ng/Security (3%)	\$7,600
		Safety/Air Monitori ering Design and P	ng/Security (3%) Permitting (10%)	\$7,600 \$25,400
		Safety/Air Monitori	ng/Security (3%) Permitting (10%)	\$7,600

Table G-3 Summary of Soil Costs for Soil Alternative SA-2: Soil Excavation, Soil Capping, and Deed Restrictions Corrective Measures Study

	UNIT COST	UNIT	REQ'D	SUBTOTAL
ENGINEERED CAP INSTALLATION				
Mobilization/Demobilization	\$25,000	LS	1	\$25,000
Equipment (Dozer, Compactor, Grader, Front End Loader)	\$43,500	LS	1	\$43,500
Site Preparation	\$2,500	Acre	0.52	\$1,300
Backfill (compacted sub-grade)	\$13.40	Ton	819	\$10,975
CAP Installation	\$8	sf	22815	\$182,520
CAP Anchor (preparation and installation)	\$1,500	CY	285	\$427,500
Erosion Control	\$11	CY	1815	\$20,092
Labor	\$26,618	LS	1	\$26,618
Expenses (PPE, Truck Rental, etc)	\$2,598	LS	1	\$2,598
Deed Restrictions	\$1,500	LS	1	\$1,500
		Constr	ruction Subtotal	\$742,000
Contingency (15% of Construction Costs)				\$111,000
		Cor	nstruction Total	\$853,000
	Health	& Safety/Air Monitoria	ng/Security (3%)	\$25,600
		gineering Design and P		\$85,300
		Construction Mar		\$85,300
			Subtotal	\$196,200
	SOIL CAP	PING CAPITAL COS	ST SUBTOTAL	\$1,049,200
ANNUAL OPERATION & MAINTENANCE (O&M)				
O&M Labor (Quarterly Cap Inspections)	\$7,218	LS	1	\$7,218
Annual Purge Water Storage and Disposal	\$4,440	Annual	1	\$4,440
Laboratory Fees (Annual Sampling)	\$525	Annual	1	\$525
O&M Expenses	\$1,072	LS	1	\$1,072
-		Annual	O&M Subtotal	\$13,255
Contingency 15% of O&M Subtotal				\$2,000
		ANNUAL O&M COS	TS: Voors 1-30	\$15,300
		AININUAL O&M CON	515. Itals 1-50	\$15,500
		SOIL CAPPING O&	M SUBTOTAL	\$459,000

Table G-3 Summary of Soil Costs for Soil Alternative SA-2: Soil Excavation, Soil Capping, and Deed Restrictions Corrective Measures Study

	UNIT COST	UNIT	REQ'D	SUBTOTAL
Closure Report				
Draft Demobilization Plan Labor and Communications	\$21,538	LS	1	\$21,538
Draft Final Demobilization Plan Labor and Communications	\$4,759	LS	1	\$4,759
Final Demobilization Plan Labor and Communications	\$4,178	LS	1	\$4,178
		Period	lic Cost Subtotal	\$30,500
Contingency (15% of Periodic Costs)				\$4,500
		Per	riodic Cost Total	\$35,000
		PERIODIC COS	ST SUBTOTAL	\$35,000
		C	APITAL COST	\$2,026,950
	OPERATIO	N AND MAINTE	NANCE COSTS	\$459,000
		PEI	RIODIC COSTS	\$35,000
		TOTAL P	ROJECT COST	\$2,521,000
	7% Discount rate	PR	ESENT VALUE	\$2,089,000

Assumptions:

Excavation and Disposal

1. The estimated volume of impacted soil to be removed is based on evaluation of data collected during pre-design soil investigation.

2. The actual volume removed, and the volume of unimpacted soil to remain in place (if any), determined based on the results of pre-design soil sampling and additional soil characterization.

3. Excavated soil assumed to weigh 1.5 tons per cubic yard of moist unexcavated soil. Backfill soil assumed to have same weight of the soil disposed.

4. The soil disposal and transportation costs are \$44 per ton for excavation.

Soil Excavation of Engineered Cap Area

1. The estimated volume of impacted soil to be removed is based on evaluation of data collected during soil investigation.

2. Excavated soil assumed to weigh 1.5 tons per cubic yard of moist unexcavated soil. Backfill soil assumed to have same weight of the soil disposed.

Engineered Capping Installation

1. Dimensions of engineered caps are approximately 150*102 feet, 80*77 feet, and 45*25 feet.

2. Engineered cap installation includes clearing the area of vegetation, procuring and placing a protective cover.

3. Engineered caps will include erosion control.

4. The area to be capped based on location of perchlorate in soil above the cleanup standard and presented on the attached figure.

Engineered Capping O&M

1. Duration of engineered capping operations and maintenance is 30 years.

2. Groundwater sampling at 5 wells for perchlorate will be conducted annually for 30 years.

3. Quarterly engineered cap inspections will be conducted for 30 years.

Periodic Costs

1. Closure report to be completed after 30 years.

Table G-4 Summary of Soil Costs for Soil Alternative SA-3: In-Situ Biological Reduction and Excavation Corrective Measures Study

	UNIT COST	UNIT	REQ'D	SUBTOTAL
PRE-DESIGN INVESTIGATION				
Pre-Design Investigation Mob and Drill Rig	\$62,000	LS	0	\$
Pre-Design Laboratory Fees	\$10,000	LS	0	\$
COMPLETED		Inves	tigation Subtotal	\$0
	Health &	Safety/Air Monitor	ing/Security (3%)	\$0
	Engir	neering Design and I		\$
		Investigation Ma	anagement (10%)	\$
			Subtotal	\$
PRE-I	DESIGN INVESTIGATIO	ON CAPITAL COS	ST SUBTOTAL	\$
SOIL EXCAVATION AND OFF-SITE DISPOSAL				
Mobilization/Demobilization	\$20,769	LS	1	\$20,76
Excavation	\$22	Ton	13,201	\$290,422
Surveying	\$15,120	LS	1	\$15,12
SM Sampling Laboratory Fees	\$28,245 \$44	LS Ton	1 13,201	\$28,24 \$574.64
Off-Site Soil Transportation/Disposal Backfill	\$44 \$13	Ton	13,201	\$574,64 \$176,89
Restoration	\$0.25	SF	19,561	\$4,89
Labor	\$101,112	LS	1	\$101,11
Expenses (PPE, Truck Rental, etc)	\$12,516	LS	1	\$12,51
		Const	truction Subtotal	\$1,225,00
Contingency (15% of Construction Costs)				\$163,50
		Co	onstruction Total	\$1,388,50
		Inst	itutional Controls	\$1,00
	Health &	Safety/Air Monitor		\$41,70
		neering Design and		\$138,90
	Engi		anagement (10%)	\$138,90
			Subtotal	\$321,00
SOIL EXCA	VATION AND DISPOSA	AL CAPITAL COS	ST SUBTOTAL	\$1,709,500
N SITU BIOLOGICAL TREATMENT INSTALLATION				
Mobilization/Demobilization	\$3,500	LS	2	\$7,00
Well Installation and Development (50 ft screens)	\$15,100	EA	30	\$453,00
Well Installation and Development (30 ft screens)	\$9,570	EA	4	\$38,28
Lysimeter Installation (Shallow)	\$1,000	EA	7	\$7,00
_ysimeter Installation (Deep)	\$2,000	EA	8	\$16,00
Allolasses (includes delivery)	\$375	Ton	8 1	\$3,00
Laboratory Fees (includes waste characterization sampling) Waste Storage, Transportation, and Disposal	\$23,280 \$121	LS Ton	189	\$23,28 \$22,86
Labor	\$53,576	LS	1	\$53,57
Expenses (PPE, Truck Rental, etc)	\$23,026	LS	1	\$23,02
		Const	ruction Subtotal	\$647,03
Contingency (15% of Construction Costs)				\$97,05
		Co	onstruction Total	\$744,08
	Health &	Safety/Air Monitor	ing/Security (3%)	\$19,40
		neering Design and		\$64,70
	2		anagement (10%)	\$64,70
			Subtotal	
			Subtotal	\$148,80

Table G-4 Summary of Soil Costs for Soil Alternative SA-3: In-Situ Biological Reduction and Excavation Corrective Measures Study

	UNIT COST	UNIT	REQ'D	SUBTOTAL
IN SITU BIOLOGICAL TREATMENT O&M				
Quarterly Injection for 5 Years				
Carbon Source Injection Labor	\$15,088	event	4	\$60,352
Molasses	\$220	event	4	\$880
Performance Monitoring	\$220	event	4	4000
Laboratory Analysis (Quarterly Sampling of 25 Lysimeters)	\$3,240	event	4	\$12.960
Field Monitoring Equipment and Expenses	\$914	event	4	\$3.656
Process Monitoring& Data Evaluation (labor)	\$3,654	event	4	\$14,616
	<i>te,et</i> :		Subtotal	\$92,46
G (* (159())				¢12.07
Contingency (15%)				\$13,87
		ANNUAL INJE	CTION COSTS:	\$106,334
IN SITU BIOL	OGICAL TREATMEN	T O&M SUBTOTA	AL (10 YEARS)	\$1,063,300
				• / /
CONFIRMATION SAMPLING AND CLOSEOUT COSTS				
Confirmation Sampling				
Mobilization/Demobilization	\$3,500	LS	2	\$7,000
Boring Installation -Waterbore Area (6 borings)	\$11,000	each	6	\$66,000
Boring Installation - New Burn Area (2 borings)	\$2,750	each	2	\$5,500
Permitting (Well Permits and Air Permit) & Implementation	\$13,650	LS	1	\$13,650
Laboratory Fees (includes waste characterization sampling)	\$2,040	LS	1	\$2,040
Waste Disposal (includes drums, purge water)	\$44	Ton	13	\$566
Labor	\$22,152	LS	1	\$22,152
Expenses (PPE, Truck Rental, etc)	\$10,022	LS	1	\$10,022
Closeout Reporting	\$31,885	LS	1	\$31,885
			Subtotal	\$159,000
Contingency (15%)				\$39,750
			Total	\$198,750
CONFIRM	ATION SAMPLING AN	D CLOSEOUT CO	ST SUBTOTAL	\$198,750
		(CAPITAL COST	\$2,602,380

	CAPITAL COST	\$2,602,386
OPERATION	AND MAINTENANCE COSTS	\$1,063,300
	PERIODIC COSTS	\$198,750
	TOTAL PROJECT COST	\$3,864,000
7% Discount Rate	PRESENT VALUE	\$3,010,000

UNIT COST UNIT REQ'D SUBTOTAL

Assumptions:

Excavation and Disposal

1. The estimated volume of impacted soil to be removed is based on evaluation of data collected during the pre-design soil investigations.

- 2. The actual volume removed, and the volume of unimpacted soil to remain in place (if any), will be determined based on the results of pre-design soil sampling.
 - Excavated soil assumed to weigh 1.5 tons per cubic yard of moist unexcavated soil. Backfill soil assumed to have same weight of the soil disposed.
 The soil disposal and transportation costs are \$44 per ton for excavation and \$121 per ton for well drilling installation.

In Situ Biological Treatment Installation (Waterbore Area)

- 1. A total of 10 pairs of 3-dual nested wells will be installed.
- 2. Screen intervals for each well pair include, 1 well screened 10-60 ft bgs, 1 well screened 60-110 ft bgs, and 1 well screened 110-160 ft bgs.
- 3. A radius of influence of 5 ft.
- 4. A total of 12 lysimeters will be installed in 4 boreholes. 1 deep and 2 shallow lysimters in each borehole.
- 5. Installation costs include first injection event.
- 6. Assumed costs: 2015 Drilling costs from proposal.
- 7. Molasses is used as the source of carbon.

In Situ Biological Treatment Installation (New Burn Area)

- 1. A total of 3 single wells will be installed.
- 2. Screen intervals for each well is 10-40 ft bgs.
- 3. A radius of influence of 5 ft.
- 4. A total of 3 lysimeters will be installed in 3 boreholes. 1 shallow lysimters in each borehole.
- 5. Installation costs include first injection event.
- 6. Assumed costs: 2015 Drilling costs from proposal.
- 7. Molasses is used as the source of carbon.

In Situ Biological Treatment O&M

- 1. Duration of In Situ Biological Treatment is 5 years
- 2. Injections will be conducted quarterly for the 5 years.
- 3. A total of 1,586 gallons of a molasses solution will be injected in the New Burn Area per event.
- 4. A total of 44,061 gallons of a molasses solution will be injected in the Waterbore Area per event.
- 5. All lysimters will be sampled quarterly and analyzed for Perchlorate and TOC.
- 6. Assumed that all the molasses solution can be injected every event.
- 7. Molasses is used as the source of carbon.

Table G-5 Summary of Soil Costs for Soil Alternative SA-4: ADEQ Soil Treatment Scenario Corrective Measures Study

	UNIT COST	UNIT	REQ'D	SUBTOTAL
SOIL EXCAVATION AND OFF-SITE DISPOSAL-WATE	RBORE			
Mobilization/Demobilization	\$28,589	LS	1	\$28,589
Clear/Spray Vegetation	\$500	Acre	0.35	\$175
Excavation	\$22	Ton	17.018	\$374,396
Confirmatory Sampling Laboratory Fees	\$1,595	LS	0	\$0
Off-Site Soil Transportation/Disposal	\$44	Ton	17,018	\$740,794
Backfill	\$13	Ton	17,018	\$228,041
Surveying/Utility Location	\$20,520	LS	1	\$20,520
Labor	\$123,115	LS	1	\$123,115
Expenses	\$16,986	LS	1	\$16,986
		Constru	ction Subtotal	\$1,533,000
Contingency (15% of Construction Costs)			_	\$204,600
		Cons	truction Total	\$1,737,600
		Institut	ional Controls	\$1,000
	Health & Safety/A	ir Monitoring	/Security (3%)	\$52,100
			mitting (10%)	\$173,800
			gement (10%)	\$173,800
			Subtotal	\$401,000
SOIL EXCAVATION	ON AND DISPOSAL CAP	ITAL COST	SUBTOTAL	\$2,138,600
SOIL EXCAVATION AND OFF-SITE DISPOSAL-NEW E				
Mobilization/Demobilization	\$28,505	LS	1	\$28,505
Excavation	\$22	Ton	13890	\$305,580
Confirmatory Sampling Laboratory Fees	\$16,385	LS	1	\$16,385
Off-Site Soil Transportation/Disposal	\$44	Ton	13,890	\$604,632
Surveying/Utility Location	\$16,800	LS	1	\$16,800
Backfill	\$13	Ton	13,890	\$186,126
Seeding and Vegetative Cover	\$8,476	LS	1	\$8,476
Labor	\$101,244	LS	1	\$101,244
Expenses (PPE, Truck Rental, etc)	\$11,374	LS	1	\$11,374
		Constru	ction Subtotal	\$1,279,000
Contingency (15% of Construction Costs)			_	\$141,750
		Cons	truction Total	\$1,420,750
			ional Controls	\$1,000
	Health & Safety/A			\$42,600
	Engineering D			\$142,100
	Cons	truction Mana	gement (10%)	\$142,100
			Subtotal	\$328,000
	ON AND DISPOSAL CAP	ITAL COST	SUDTOTAL	\$1,748,750

Table G-5 Summary of Soil Costs for Soil Alternative SA-4: ADEQ Soil Treatment Scenario Corrective Measures Study

	UNIT COST	UNIT	REQ'D	SUBTOTAL
ENGINEERED CAP INSTALLATION - WATERBORE				
Mobilization/Demobilization Equipment (Dozer, Compactor, Grader, Front End Loader)	\$3,500 \$23,200	LS LS	1	\$3,500 \$23,200
Site Preparation Surveying CAP Installation	\$2,500 \$2,880 \$8	Acre LS sf	0.35 1 15450	\$875 \$2,880 \$123,600
CAP Anchor (preparation and installation) Erosion Control Labor	\$1,500 \$11 \$26,618	CY CY LS	150 1145 1	\$225,000 \$12,675 \$26,618
Expenses (PPE, Truck Rental, etc)	\$3,200	LS	1	\$3,200
		Constru	ction Subtotal	\$422,000
Contingency (15% of Construction Costs)			_	\$63,300
		Cons	truction Total	\$485,300
	Health & Safety/A Engineering D		\$14,600 \$48,500	
			gement (10%)	\$48,500
			Subtotal	\$111,600
	SOIL CAPPING CAP	ITAL COST	SUBTOTAL	\$596,900
ANNUAL OPERATION & MAINTENANCE (O&M)				
O&M Labor (Monthly Inspections) O&M Expenses (PPE, Truck Rental, etc)	\$7,218 \$592	LS LS	1 1	\$7,218 \$592
Contingency 15% of O&M Subtotal		Annual O	&M Subtotal	\$7,810 \$1,200
Contingency 15% of Own Subtotal	ANNUAL	O&M COST		\$1,200 \$9,000
	SOIL CAP	PPING O&M	SUBTOTAL	\$270,000
		MAINTENA FOTAL PRO	DJECT COST	\$4,484,250 \$270,000 \$4,754,000
	7% Discount rate	PKES	ENT VALUE	\$4,303,000

Assumptions:

Excavation and Disposal

1. The estimated volume of impacted soil to be removed is based on ADEQ RACER output volumes.

Engineered Cap Installation

- 1. Engineered cap is approximately 15450 square feet.
- 2. Engineered cap includes removal of soil down to approximately 20 feet, concrete anchor trench, and HydroTurf[™] or similar.
- 3. Engineered cap only installed in the Waterbore Area.

Soil Capping O&M

- 1. Duration of engineered cap operations and maintenance is 30 years.
- 3. Monthly engineered cap inspections will be conducted for 30 years.

Table G-7

Summary of Costs for Groundwater Alternative GW-2:

Bedrock Source Area Groundwater Extraction, Ex-Situ Treatment with Anaerobic Bioreactor,

Reinjection, and Alluvium In-Situ Biological Reduction

Corrective Measures Study

	UNIT COST	UNIT	REQ'D	SUBTOTAL
PRE-DESIGN INVESTIGATION				
Pre-Design Investigation and Tracer Testing	\$0	LS	0	\$0
COMPLETED				
PRE-DESIG	GN INVESTIGATION CA	APITAL COST	SUBTOTAL	\$0
GROUNDWATER EXTRACTION, EX SITU TREATMENT AND R	FINIECTION SVSTEM	INSTALLATI	ION	
Drilling Mobilization/Demobilization	\$4,250	LS	1	\$4,250
Permitting (UIC Permit, Air Permit, Well Permit)	\$9,900	LS	1	\$9,900
Well Installation and Development (1 Injection Well)	\$59,930	Each	1	\$59,930
Laboratory Analysis (includes waste characterization samples)	\$4,345	LS	1	\$4,345
Frenching, Pipe and Conduit Installation	\$207,400	LS	1	\$207,400
Extraction Wellhead (includes downhole piping and pump)	\$10,500	EA	4	\$42,000
Injection Wellhead	\$500	EA	6	\$3,000
APTWater ARoPer Reactor (capital)	\$1,300,000	LS	1	\$1,300,000
System Equipment (includes instrumentation and controls)	\$111,000	LS	1	\$111,000
Treatment Building (includes power drop)	\$222,000	LS	1	\$222,000
Waste Storage, Transportation, and Disposal	\$121	Ton	40	\$4,840
Labor	\$244,752	LS	1	\$244,752
Expenses (PPE, Truck Rental, etc)	\$35,250	LS	1	\$35,250
RCRA Reporting (includes Statement of Basis and CMI)	\$230,700	LS	1	\$230,700
		Constru	ction Subtotal	\$2,479,367
Contingency (15% of Construction Costs)				\$371,905
		Cons	struction Total	\$2,851,272
				*•••••••••••••
	Health & Safety			\$85,500
	11	nstallation Mana	igement (10%)	\$285,100
			Subtotal	\$370,600
PUMP & TREAT V	WITH REINJECTION CA	APITAL COST	SUBTOTAL	\$3,221,900
GROUNDWATER EXTRACTION, EX SITU TREATMENT AND R	FINIECTION O&M (10	VFADS)		
O&M Labor	\$216,580	annual	1	\$216,580
Laboratory Costs	\$28,200	annual	1	\$28,200
APTWater ARoPer Reactor (annual O&M)	\$70,000	annual	1	\$70,000
Maintenance (equipment replacement)	\$13,000	annual	1	\$13,000
Expenses (includes electricity)	\$40,400	annual	1	\$40,400
Annual Reporting	\$26,598	annual	1	\$26,598
			Subtotal	\$394,77
		Cont	ingency (15%)	\$59,217
		ANN	UAL COSTS:	\$454,000
PUMP	& TREAT WITH REINJ	ECTION O&	M (10 YEARS)	\$4,540,00
				.)=,00
ALLUVIUM INJECTION WELL INSTALLATION (TARGETING N Mobilization/Demobilization	MW-06) \$0	LS	0	\$0
Permitting (Well Permits and UIC Permit)	\$0 \$0	LS	0	\$0 \$0
Well Installation and Development	\$0 \$0	LS	0	\$0 \$0
Laboratory Analysis (includes waste characterization sampling)	\$0 \$0	LS	0	\$0 \$0
Waste Transportation and Disposal	\$0 \$0	Ton	0	\$0 \$0
COMPLETED		Constru	ction Subtotal	\$0
				**
Contingency (15% of Construction Costs)				\$0

Table G-7

Summary of Costs for Groundwater Alternative GW-2: Bedrock Source Area Groundwater Extraction, Ex-Situ Treatment with Anaerobic Bioreactor, Reinjection, and Alluvium In-Situ Biological Reduction Corrective Measures Study

	UNIT COST	UNIT Con	REQ'D struction Total	SUBTOTAL \$0
	Health & Safety		g/Security (3%)	\$0 \$0
	Co		g Design (10%) agement (10%)	\$0 \$0
	0	iisu detion wian	agement (1070)	40
			Subtotal	\$0
	ALLUVIUM INJECTIONS CA	APITAL COS	Γ SUBTOTAL	\$0
ALLUVIUM INJECTION O&M (TARGETING MW-06)				
Sampling Equipment (Quarterly)	\$1,285	Qrtly	4	\$5,140
Laboratory Analysis (Quarterly)	\$1,590	Qrtly	4	\$6,360
Annual Storage and Disposal	\$750	Annual	1	\$750
Labor (sampling)	\$2,258	Qrtly	4	\$9,032
Expenses (PPE, Truck Rental, etc)	\$5,393	LS	1	\$5,393
		Con	Subtotal tingency (15%)	\$26,700 \$4,050
		Con		
			Annual Costs	\$30,750
ALLU	VIUM INJECTIONS O&M CO	OST SUBTOTA	AL (2 YEARS)	\$61,500
GROUNDWATER MONITORING ANNUAL COSTS				
For Years 1 and 2				
Laboratory Analyses (quarterly)	\$6,500	Qrtly	4	\$26,000
Quarterly Storage and Disposal	\$10,537	Qrtly	4	\$42,148
Labor	\$17,096	Qrtly	4	\$68,384
Expenses (PPE, Truck Rental, etc)	\$5,958	Qrtly	4	\$23,832
			Subtotal	\$160,364
		Cont	tingency (15%)	\$24,100
	GROUNDWATER MO		NUAL COSTS: (Years 1 and 2)	\$184,000 \$368,000
			(+;
For Years 3 through 12 Laboratory Analyses (quarterly)	\$6,500	Qrtly	4	\$26,000
Labor	\$0,500 \$17,096	Qrtly	4	\$68,384
Expenses (PPE, Truck Rental, etc)	\$5,958	Qrtly	4	\$23,832
			Subtotal	\$118,216
		Cont	tingency (15%)	\$17,700
		ANI	NUAL COSTS:	\$136,000
	GROUNDWATER MONIT			\$1,360,000
For Year 13 and 14		_		
Laboratory Analyses (quarterly)	\$6,500	Qrtly	4	\$26,000
Quarterly Storage and Disposal	\$10,537	Qrtly	4	\$42,148
Labor	\$17,096	Qrtly	4	\$68,384
Expenses (PPE, Truck Rental, etc)	\$5,958	Qrtly	4	\$23,832
		Cont	Subtotal tingency (15%)	\$160,364 \$24,100
			NUAL COSTS:	\$184,000
	GROUNDWATER MON	ITORING (Y	ears 13 and 14)	\$368,000
	GROUNDWATER MONI	TORING O&	M (14 YEARS)	\$2,096,000

Table G-7

Summary of Costs for Groundwater Alternative GW-2:

Bedrock Source Area Groundwater Extraction, Ex-Situ Treatment with Anaerobic Bioreactor,

Reinjection, and Alluvium In-Situ Biological Reduction

Corrective Measures Study

	UNIT COST	UNIT	REQ'D	SUBTOTAL
SYSTEM DECOMISSIONING AND CLOSURE REPORTING				
Mobilization/Demobilization	\$4,400	LS	1	\$4,400
Well Abandonment	\$15	LF	8700	\$130,500
Well Abandonment Equipment	\$9,600	LS	1	\$9,600
System Decommissioning	\$15,000	LS	1	\$15,000
Labor	\$36,269	LS	1	\$36,269
Expenses	\$3,090	LS	1	\$3,090
Closure Report	\$41,953	LS	1	\$41,953
			Subtotal	\$241,000
		Cont	tingency (15%)	\$36,150
			Subtotal	\$277,150
	Health & Safety	/Air Monitorin	g/Security (3%)	\$8,300
	Decomm	nissioning Man	agement (10%)	\$27,700
		•	Subtotal	\$36,000

SYSTEM DECOMMISSIONING AND CLOSURE REPORTING COST

	CAPITAL COST	\$3,221,900
OPERATION A	ND MAINTENANCE COSTS	\$6,697,500
	PERIODIC COST	\$313,200
	TOTAL PROJECT COST	\$10,233,000
7% Discount rate	PRESENT NET VALUE	\$6,669,000

Assumptions:

Groundwater Extraction, Ex Situ Treatment and Reinjection-System Installation

- 1. Only 1 new well installed.
- 2. Well depth of the new well is 400 ft, with 75 ft screen intervals.
- 3. Assumed costs: 2015 Drilling costs from proposal.
- 4. Waste generated during system installation will be transported and disposed off-site and costs are \$44 per ton.
- 5. An APTWater ARoPer Reactor will be used for ex situ treatment, capital costs include control panel, booster pumps, plumbing, valves, and controls to operate system, set of basins with hollow fiber modules and aeration, onsite hydrogen supply system, re-aeration system to replenish dissolved oxygen that is removed along with perchlorate, and hydrogen detector and safety gear.

Groundwater Extraction, Ex Situ Treatment and Reinjection-O&M (10 Years)

- 1. Duration of groundwater extraction, ex situ treatment and reinjection is 10 years.
- 2. APTWater ARoPer Reactor O&M includes power and consumables.

3. Monthly sampling will be conducted to evaluate system performance.

4. Parameters to be analyzed during monthly sampling include perchlorate, 1,4-dioxane, chloride, sulfate and nitrate.

Alluvium Injections (Targeting MW-06)

- 1. No perchlorate remains in the alluvium near MW-06 following the pilot test.
- 2. No further alluvium injections.
- 3. Quarterly samples will be collected from each well to evaluate system performance for 2 years.

Groundwater Monitoring

- 1. Duration of Groundwater Sampling is 12 years, quarterly sampling.
- 2. Purge water will be transported and disposed off-site during first years prior to system installation, and last years following system shutdown.
- 3. Purge water will be treated along with extracted water and reinjected during 10 years of system operation.
- 4. Parameters to be analyzed include VOCs, 1,4-dioxane, perchlorate and RCRA metals.

System Decommissioning and Closure Reporting

- 1. Assumes well abandonment and system decommissioning following 10 years of system operations.
- 2. Includes closure reporting costs.

\$313,200

Table G-8 Summary of Costs for Groundwater Alternative GW-3:

Bedrock Source Area Hydraulic Control and In Situ Biological Reduction and Alluvium In Situ Biological Reduction Corrective Measures Study

	UNIT COST	UNIT	REQ'D	SUBTOTAL
PRE-DESIGN INVESTIGATION				
Pre-Design Investigation and Tracer Testing	\$0	LS	0	\$0
PRF-DESIGN	NINVESTIGATION C	APITAL COST	SUBTOTAL	\$(
				Ψ.
GROUNDWATER EXTRACTION AND IN SITU BIOLOGICA Mobilization/Demobilization	L REDUCTION-SYST \$4,250	EM INSTALL LS	ATION 1	\$4,250
	\$9,900	LS	1	\$9,900
Permitting (UIC Permit, Air Permit, Well Permit)				
Well Installation (1 Injection Well)	\$59,930	Each	1	\$59,930
Laboratory Analysis (includes waste characterization samples)	\$4,345	LS	1	\$4,345
Trenching, Pipe and Conduit Installation	\$207,400	LS	1 4	\$207,40
Extraction Wellhead (includes downhole piping and pump)	\$10,500 \$500	EA	4 8	\$42,000 \$4,000
Injection Wellhead	\$35,000	EA LS	8 1	\$4,000
In-Line Mixing Tanks and Major Infrastructure System Fabrication (includes instrumentation and controls)	\$114,500	LS	1	\$33,000
Treatment Building (includes power drop)	\$222,000	LS	1	\$222,000
Waste Storage, Transportation, and Disposal	\$121	Ton	40	\$222,000
Labor	\$244,752	LS	40	\$244,752
Expenses (PPE, Truck Rental, etc)	\$35,250	LS	1	\$35,250
RCRA Reporting (includes Statement of Basis and CMI)	\$231,000	LS	1	\$231,000
(includes building in Dasis and Chir)	¢231,000		iction Subtotal	\$1,219,16
		Constru	iction Subtotal	\$1,219,10
Contingency (15% of Construction Costs)			_	\$182,87
		Con	struction Total	\$1,402,04
	Health & Safet	ty/Air Monitorin	g/Security (3%)	\$42,10
		Installation Man		\$140,200
			Subtotal	\$182,300
GROUNDWATER EXTRACTION & IN SITU BIOLOGI	ICAL REDUCTION C	APITAL COST	SUBTOTAL	\$1,584,300
GROUNDWATER EXTRACTION AND IN SITU BIOLOGICA	L REDUCTION-O&M	(10 VEARS)		
O&M Labor	\$179,928	annual	1	\$179,92
Laboratory Costs	\$36,976	annual	1	\$36,970
Molasses	\$300	Ton	14	\$4,200
Maintenance (equipment replacement)	\$13,000	annual	1	\$13,000
Well Rehab and Replacement	\$11,511	annual	1	\$11,51
Expenses (includes electricity)	\$40,944	annual	1	\$40,94
Annual Reporting	\$26,598	annual	1	\$26,59
			Subtotal	\$313,15
		Cont	ingency (15%)	\$46,97
		ANN	UAL COSTS:	\$360,13
GROUNDWATER EXTRACTION & IN SIT	U BIOLOGICAL REI	OUCTION O&N	M (10 YEARS)	\$3,601,30
ALLUVIUM INJECTION WELL INSTALLATION (TARGETI	NG MW-06)			
Mobilization/Demobilization	\$0	LS	0	\$
Permitting (Well Permits and UIC Permit)	\$0 \$0	LS	0	\$
Well Installation and Development	\$0 \$0	LS	0	\$ \$
Laboratory Analysis (includes waste characterization sampling)	\$0 \$0	LS	0	\$
Waste Transportation and Disposal	\$0 \$0	Ton	0	\$
	ψŪ	1011	0	ψ

Table G-8 Summary of Costs for Groundwater Alternative GW-3:

Bedrock Source Area Hydraulic Control and In Situ Biological Reduction and Alluvium In Situ Biological Reduction Corrective Measures Study

	UNIT COST	UNIT	REQ'D	SUBTOTAL
Contingency (15% of Construction Costs)				\$0
		Con	struction Total	\$0
COMPLETED	Health & Cafe	ty/Air Monitorin	$\alpha/S_{\alpha\alpha}$	\$0
	Health & Sale		g Design (10%)	\$0 \$0
	C	onstruction Man		\$0
			Subtotal	\$0
ALLUV	IUM INJECTIONS C	APITAL COST	SUBTOTAL	\$0
ALLUVIUM INJECTION O&M (TARGETING MW-06) Sampling Equipment (Quarterly)	\$1,285	Qrtly	4	\$5,140
Laboratory Analysis (Quarterly)	\$1,590	Qrtly	4	\$6,360
Annual Storage and Disposal	\$750	Annual	1	\$750
Labor (sampling)	\$2,258	Qrtly	4	\$9,032
Expenses (PPE, Truck Rental, etc)	\$5,393	LS	1	\$5,393
			Subtotal	\$26,700
		Cont	ingency (15%)	\$4,050
		ANN	UAL COSTS:	\$30,750
ALLUVIUM	I INJECTIONS O&M	COST SUBTO	TAL (2 Years)	\$61,500
GROUNDWATER MONITORING ANNUAL COSTS For Years 1 and 2 Laboratory Analyses (quarterly)	\$8,000	Qrtly	4	\$32,000
Quarterly Storage and Disposal	\$10,537	Qrtly	4	\$42,148
Labor	\$17,096	Qrtly	4	\$68,384
Expenses (PPE, Truck Rental, etc)	\$5,958	Qrtly	4	\$23,832
		Cont	Subtotal ingency (15%)	\$166,364 \$25,000
		ANNUAL COS		\$191,000
	GROUNDWATER M			\$382,000
For Years 3 through 12				
Laboratory Analyses (quarterly)	\$8,000	Qrtly	4	\$32,000
Labor	\$17,096	Qrtly	4	\$68,384
Expenses (PPE, Truck Rental, etc)	\$5,958	Qrtly	4	\$23,832
		Cont	Subtotal ingency (15%)	\$124,216 \$18,600
		ANN	UAL COSTS:	\$143,000
GRO	UNDWATER MONIT			\$1,430,000
For Year 13 and 14				
Laboratory Analyses (quarterly)	\$8,000	Qrtly	4	\$32,000
Quarterly Storage and Disposal	\$10,537	Qrtly	4	\$42,148
Labor	\$17,096	Qrtly	4	\$68,384
Expenses (PPE, Truck Rental, etc)	\$5,958	Qrtly	4	\$23,832
		Cont	Subtotal ingency (15%)	\$166,364 \$25,000
G	ROUNDWATER MO		UAL COSTS: ears 13 and 14)	\$191,000 \$382,000
		(++ -=,000

Table G-8 Summary of Costs for Groundwater Alternative GW-3:

Bedrock Source Area Hydraulic Control and In Situ Biological Reduction and Alluvium In Situ Biological Reduction Corrective Measures Study

	UNIT COST	UNIT	REQ'D	SUBTOTAL
	GROUNDWATER MON	ITORING O&	M (14 YEARS)	\$2,194,000
SYSTEM DECOMISSIONING AND CLOSURE REPO	RTING			
Mobilization/Demobilization	\$4,400	LS	1	\$4,400
Well Abandonment	\$15	LF	8700	\$130,500
Well Abandonment Equipment	\$9,600	LS	1	\$9,600
System Decommissioning	\$15,000	LS	1	\$15,000
Labor	\$36,269	LS	1	\$36,269
Expenses	\$3,090	LS	1	\$3,090
Closure Report	\$41,953	LS	1	\$41,953
			Subtotal	\$241,000
		Cont	ingency (15%)	\$36,150
			Subtotal	\$277,150
	Health & Safe	ty/Air Monitorin	g/Security (3%)	\$8,300
		missioning Man		\$27,700
		C	Subtotal	\$36,000

SYSTEM DECOMMISSIONING AND CLOSURE REPORTING COST \$313,200

	CAPITAL COST	\$1,584,300
OPERATION AN	ND MAINTENANCE COSTS	\$5,856,800
	PERIODIC COST	\$313,200
	TOTAL PROJECT COST	\$7,754,000
7% Discount rate	PRESENT NET VALUE	\$4,750,000

Assumptions:

Groundwater Extraction, Ex Situ Treatment and Reinjection-System Installation

- 1. Only 1 new well installed.
- 2. Well depth of the new well is 400 ft, with 75 ft screen intervals.
- 3. Assumed costs: 2015 Drilling costs from proposal.
- 4. Waste generated during system installation will be transported and disposed off-site and costs are \$44 per ton.
- 5. Molasses will be used as the carbon source.
- 6. System equipment includes tanks and major infrastructure for in-line molasses mixing system.

Groundwater Extraction, Ex Situ Treatment and Reinjection-O&M (10 Years)

- 1. Duration of groundwater extraction, ex situ treatment and reinjection is 10 years.
- 2. Molasses will be used as the carbon source.
- 3. Monthly sampling will be conducted to evaluate system performance.
- 4. Parameters to be analyzed during monthly sampling include perchlorate, 1,4-dioxane, chloride, sulfate and nitrate.
- 5. Assumed that each injection well will be redeveloped once in the 10 years of system operations.
- 5. Assumed that one well will need to be replaced in the 10 years of system operations.

Alluvium Injections (Targeting MW-06)

- 1. No perchlorate remains in the alluvium near MW-06 following the pilot test.
- 2. No further alluvium injections.
- 3. Quarterly samples will be collected from each well to evaluate system performance for 2 years.

Groundwater Monitoring

- 1. Duration of Groundwater Sampling is 14 years, quarterly sampling.
- 2. Purge water will be transported and disposed off-site during first years prior to system installation, and last years following system shutdown.
- 3. Purge water will be treated along with extracted water and reinjected during 10 years of system operation.
- 4. Parameters to be analyzed include VOCs, 1,4-dioxane, perchlorate, total and dissolved organic carbon, and RCRA metals.

Table G-8 Summary of Costs for Groundwater Alternative GW-3: Bedrock Source Area Hydraulic Control and In Situ Biological Reduction and Alluvium In Situ Biological Reduction Corrective Measures Study

UNIT COST UNIT REQ'D SUBTOTAL

System Decommissioning and Closure Reporting

1. Assumes well abandonment and system decommissioning following 10 years of system operations.

2. Includes closure reporting costs.

Table G-9 Summary of Groundwater Costs for Groundwater Alternative GW-4: **ADEQ Groundwater Treatment Scenario**

Corrective Measures Study

	UNIT COST	UNIT	REQ'D	SUBTOTAL
BEDROCK GROUNDWATER EXTRACTION AND EX SITU TRE	EATMENT SCENAR	IO-SYSTEM I	NSTALLATION	
Waterbore				
Mobilization/Demobilization	\$4,250	LS	1	\$4,250
Permitting (Well Permits)	\$250	EA	3	\$750
Well Installation and Development (3 Injection Wells)	\$274,470	LS	1	\$274,470
Air Permit	\$3,150	LS	1	\$3,150
Laboratory Analysis (includes waste characterization samples)	\$2,275	LS	1	\$2,275
	. ,			. ,
Trenching, Pipe and Conduit Installation	\$103,823 \$10,500	LS EA	1	\$103,823 \$21,000
Extraction Wellhead (includes downhole piping and pump)	. ,	EA	2	. ,
Injection Wellhead	\$500 \$121		5	\$2,500
Waste Storage, Transportation, and Disposal		Ton	120	\$14,520
Expenses (PPE, Truck Rental, etc)	\$17,100	LS	1 Subtotal	\$17,100 \$443,838
			Subtotal	ψ++0,000
New Burn	\$4,250	LS	1	¢4.250
Mobilization/Demobilization				\$4,250
Permitting (Well Permits)	\$250 \$74,000	EA	1	\$250
Vell Installation (1 Extraction Wells)	\$74,090	LS	1	\$74,090
aboratory Analysis (includes waste characterization samples)	\$1,435	LS	1	\$1,435
Trenching, Pipe and Conduit Installation	\$103,823	LS	1	\$103,823
Extraction Wellhead (includes downhole piping and pump)	\$10,500	EA	2	\$21,000
Waste Storage, Transportation, and Disposal	\$121	Ton	40	\$4,840
Expenses (PPE, Truck Rental, etc)	\$17,100	LS	1 Subtotal	\$17,100 \$226,788
			Subtotal	φ220,700
C-Complex Trenching, Pipe and Conduit Installation	\$103,823	LS	1	\$103,823
Extraction Wellhead (includes downhole piping and pump)	\$10,500	EA	2	\$21,000
		LS	2	
Expenses (PPE, Truck Rental, etc)	\$17,100	LS	Subtotal	\$17,100 \$141,923
			Subtotal	φ141,923
Plume Control	¢4.050		4	¢4.050
Mobilization/Demobilization	\$4,250	LS	1	\$4,250
Permitting (Well Permits)	\$250	EA	3	\$750
Well Installation and Development (3 Extraction Wells)	\$222,270	LS	1	\$222,270
_aboratory Analysis (includes waste characterization samples)	\$1,645	LS	1	\$1,645
Trenching, Pipe and Conduit Installation	\$107,635	LS	1	\$107,635
Extraction Wellhead (includes downhole piping and pump)	\$10,500	EA	4	\$42,000
Waste Storage, Transportation, and Disposal	\$121	Ton	40	\$4,840
Expenses (PPE, Truck Rental, etc)	\$17,100	LS	1 Subtatal —	\$17,100
			Subtotal	\$400,490
Central Treatment System				
APTWater ARoPer Reactor (capital)	\$1,300,000	LS	1	\$1,300,000
System Equipment (includes instrumentation and controls)	\$200,000	LS	1	\$200,000
Treatment Building (includes power drop)	\$592,500	LS	1	\$592,500
_abor	\$244,752	LS	1	\$244,752
RCRA Reporting (includes Statement of Basis and CMI)	\$169,304	LS	1 -	\$169,304
			Subtotal	\$2,506,556
		Construc	tion Subtotal	\$3,719,595
Contingency (15% of Construction Costs)			_	\$557,939
		Cons	truction Total	\$4,277,534
	Health & Safety	/Air Monitorina	/Security (3%)	\$128,300
		Design and Per	,	\$427,800
		tallation Manag		\$427,800
		·	Subtotal	
			Subtotal	\$983,900

GROUNDWATER EXTRACTION AND EX SITU TREATMENT CAPITAL COST SUBTOTAL \$5,261,400

Table G-9 Summary of Groundwater Costs for Groundwater Alternative GW-4: ADEQ Groundwater Treatment Scenario Corrective Measures Study

	UNIT COST	UNIT	REQ'D	SUBTOTAL
BEDROCK GROUNDWATER EXTRACTION AN	D EX SITU TREATMENT SCEN	ARIO-O&M (28 Y	EARS)	
O&M Labor	\$54,880	annual	1	\$54,880
APTWater ARoPer Reactor (annual O&M)	\$52,000	annual	1	\$52,000
Maintenance (equipment replacement)	\$47,548	annual	1	\$47,548
Expenses	\$3,800	annual	1	\$3,800
			Subtotal	\$158,228
		Contir	ngency (15%)	\$23,734.20
		ANNUAL COS	TS: 28 Years	\$181,962
GROUNDWATE	R EXTRACTION AND EX SITU T	REATMENT O&M	I SUBTOTAL	\$5,094,900
GROUNDWATER MONITORING ANNUAL COS	STS			
For Years 1 and 2				
Laboratory Analyses (quarterly)	\$9,405	Qrtly	4	\$37,620
Quarterly Storage and Disposal	\$12,257	Qrtly	4	\$49,028
Labor	\$18,736	Qrtly	4	\$74,945
Expenses (PPE, Truck Rental, etc)	\$6,620	Qrtly	4	\$26,480
			Subtotal	\$188,073
		Contir	ngency (15%)	\$28,200
		ANNUAL COST	FS: Years 1-2	\$216,000
	GROUNDWATER I	MONITORING (Y	ears 1 and 2)	\$432,000
For Years 3 through 30				
Laboratory Analyses (quarterly)	\$9,405	Qrtly	4	\$37,620
Labor	\$18,736	Qrtly	4	\$74,944
Expenses (PPE, Truck Rental, etc)	\$6,620	Qrtly	4	\$26,480
			Subtotal	\$139,044
		Contir	ngency (15%)	\$20,900
		ANNUAL COST		\$160,000
	GROUNDWATER MONI	TORING (Years 3	3 through 30)	\$4,480,000
	GROUNDWATER M	ONITORING O&	M (30YEARS)	\$4,912,000
		-	PITAL COST	\$5,261,400
	OPERATION	AND MAINTENA	NULE COSTS	\$10,006,900

	CAPITAL COST	\$5,261,400
OPERATION AN	ID MAINTENANCE COSTS	\$10,006,900
	TOTAL PROJECT COST	\$15,268,000
7% Discount rate	PRESENT NET VALUE	\$8,770,000

Assumptions:

Groundwater Extraction and Ex Situ Treatment- Installation

- 1. Two extraction wells each at Waterbore, C-Complex, and New Burn (six total with one being new)
- 2. Four extraction wells downgradient of existing monitoring well MW-1, to control groundwater contamination (3 new wells).
- 3. An injection well field northeast of Waterbore consisting of five injection wells (3 new wells).
- 4. Groundwater extraction well costs are based on 400 ft deep with 150 ft screens.
- 5. Groundwater injection well costs are based on 400 ft deep with 300 ft screens.

6. An APTWater ARoPer Reactor will be used for ex situ treatment, capital costs include control panel, booster pumps, plumbing, valves, and controls to operate system, set of basins with hollow fiber modules and aeration, onsite hydrogen supply system, re-aeration system to replenish dissolved oxygen that is removed along with perchlorate, and hydrogen detector and safety gear.

Groundwater Extraction and Ex Situ Treatment- O&M (30 years)

- 1. Duration of groundwater extraction and ex situ treatment is 30 years.
- 2. APTWater ARoPer Reactor O&M includes power and consumables.

Groundwater Monitoring

- 1. Duration of Groundwater Sampling is 30 years at 33 wells.
- 2. Purge water will be transported and disposed off-site during first years prior to system installation.
- 3. Purge water will be treated along with extracted water and reinjected during 30 years of system operation.
- 4. Parameters to be analyzed include VOCs, 1,4-dioxane, perchlorate and RCRA metals.