

VOLUME III Remedial Investigation Report South Mesa WQARF Registry Site Mesa, Arizona ADEQ Task Assignment EV11-0084

Prepared for:

Arizona Department of Environmental Quality
Waste Programs Division
1110 West Washington Street
Phoenix, Arizona 85007

Prepared by:

AMEC Environment & Infrastructure, Inc. Phoenix, Arizona

June 7, 2013

AMEC Project No. 14-2012-2022.04.01

TABLE OF CONTENTS

LIST OF APPENDICES

VOLUME III

Appendix D	Underground Detection Service Geophysical Report
Appendix E	Beacon Environmental Analytical Report dated June 12, 2001
Appendix F	Beacon Environmental Analytical Report dated July 30, 2002
Appendix G	Transwest Geochem, Inc. Soil, Groundwater and Soil Vapor Sample
	Analytical Report
Appendix H	Del Mar Analytical Soil Sample Analytical Report
Appendix I	Boring Logs and Well Construction Diagrams
Appendix J	Precision Analytical Laboratory TO-15 Analytical Reports

APPENDIX D

UNDERGROUND DETECTION SERVICE GEOPHYSICAL REPORT

Underground Detection Services, Inc.

6809 North 56th Ave. Glendale, AZ 85301

623/939-4690, tel 623/955-3146, fax 888/822-4999, toll free May 16, 2001

Jim Clarke Law Engineering 4634 S. 36th Pl. Phoenix, AZ 85040

Dear Jim:

This is a report on the equipment, procedures, and results of the geophysical survey performed at the north parking lot of the Gilbert Glass office in Gilbert, AZ. The survey was conducted on May 14, 2001.

The purpose of the survey was to determine the location of the septic tank and cesspool at the site. The east bay of the building was also surveyed for underground utility lines.

The equipment used for the survey included but was not limited to a GSSI Gem-300 multi-frequency electromagnetic (EM) profiler, and GSSI Sir System II ground penetrating radar (GPR) with 400 MHz antenna, Prototek RDF sewer locator, and a MetroTech 810 pipe and cable locator.

The EM produces a sinusoidal signal that is transmitted into the subsurface. This transmitted signal induces a flow of electrical current into the soil. These currents in turn induce a secondary electromagnetic field. The presence or absence of metallic objects and voids affects this secondary field. The secondary electromagnetic field is measured, collected, interpreted and stored for later processing.

The GPR utilizes high frequency radio waves to probe the subsurface. A radio wave is emitted from the antenna and travels through the soil, if there is an anomaly below the antenna; the radio wave is reflected back. The data that is collected is displayed both in real time, through a color display, and on a hard copy, thermal fax paper.

The data that is produced is a cross section of the geology directly below the antenna. The top of the data represents the ground surface while the bottom of the page is a known depth. The data is collected and displayed from left to right, with left being the beginning and right being the end of the particular survey line. Typical anomalies appear in white and gray coloring.

The depth of the signal penetration is dependant upon geological factors beyond the control of the surveyor. Conductive soils, clays and saturated, do not allow the GPR signal to penetrate as deeply as resistive soils,

sandy. The depth of penetration for this survey was determined to be approximately 3 feet.

The pipe and cable locator uses a defined radio frequency induced on the line from a transmitter attached to the line at the surface. The frequency travels the length of the line and acts as an antenna below the surface. A receiver tuned to that frequency is carried above the surface and locates the line with that frequency. Non-metallic pipes do not carry radio frequencies and therefore cannot be located with this equipment.

The sewer locator utilizes a radio transmitter that is inserted into the pipe. The transmitter is then pushed through the pipe and located from above ground with a receiver and various points along the pipes path.

The transmitter was inserted into the pipe through a wall cleanout behind the bathrooms. The transmitter was pushed out of the building and located at several places and marked on the surface. At a point consistent with the information provided by the environmental tech, the transmitter would not proceed further. This was determined to be the inlet baffle of the septic tank. That point was marked on the surface and labeled.

The EM was used first on the survey due to the ease and speed of data collection. If an anomaly appears in the data of the EM, the GPR may then be used to further delineate the area. To determine if the anomaly is iron based, the magnetic locator would be used.

The geophysical survey was setup north of the building from the west fence to a large delivery truck on the east side. There were several vehicles and debris in the lot that could not be moved that did not allow for full coverage for the survey. The survey area was setup with grid lines 5' apart running parallel to each other.

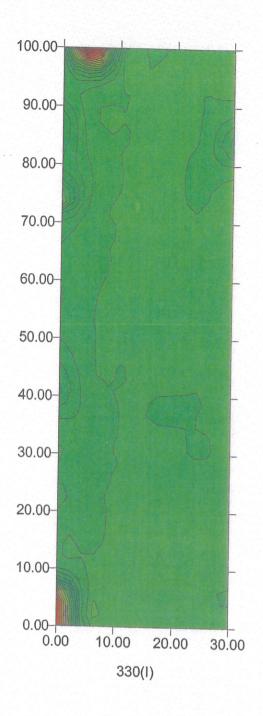
The EM was initially set up to record 4 separate frequencies for the survey, from 330Hz to 19950Hz in the continuous survey mode. The multiple frequencies allow for variable depth measurements. The lower the frequency, 330 Hz, the greater the depth penetration of the frequency. The higher the frequency, 19950 Hz, the shallower the depth penetration of the frequency. The continuous survey mode was set up to generate the frequencies every ½ second. The estimated depth penetration of the frequencies for this survey was 2 feet to 8 feet.

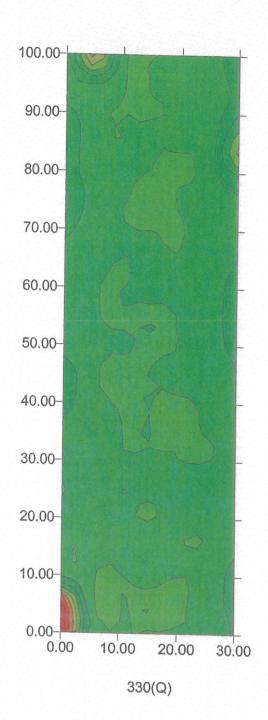
Each frequency is made up of two components, in-phase (I) and quadrature (Q). The in-phase response is typically high with metallic conductors while the quadrature response is typically high with non-metallic conductors. The grid maps are color-coded for easy interpretation. The green areas represent neutral readings while red areas represent high readings and possible anomalies.

The data collected, showed several areas of possible anomalies. The anomalies were marked on the corresponding EM map. Anomaly A1 was marked in both the 1290(I) and 1290(Q) grid maps of Area A Anomaly A2 was marked in the 1290(I).

Anomaly A1 appears in the metallic and non-metallic phase of the EM data and appears to be the edge of the septic tank. Anomaly A2 is the large delivery truck at the east end of the survey area.

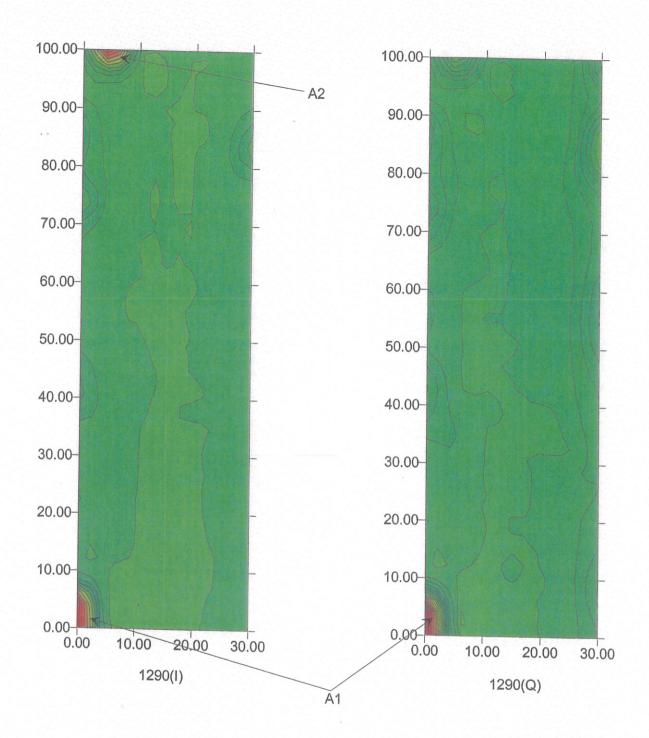
The GPR was used west and north of the septic tank, and the east side of the parking lot where the vapor extraction wells are located. The GPR data shows the possibility of the cesspool directly north of the tank. The dry well on the east side of the parking lot was not detected.

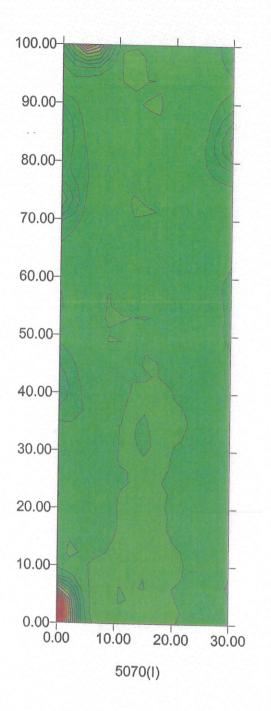

The site map was marked with the EM survey area, anomalies found and the GPR examination locations. The starting point of the EM survey was marked with an X.

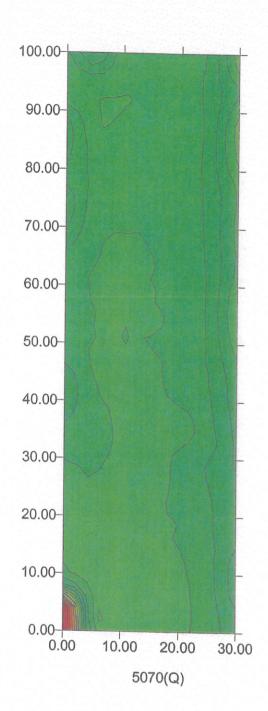

The raw data collected from the EM as well as the grid maps has been provided on a floppy disc. The GPR data is shown on hard copy color prints. Utilizing Microsoft Excel and Surfer software respectively can access the data.

If you have any questions, please feel free to call me.

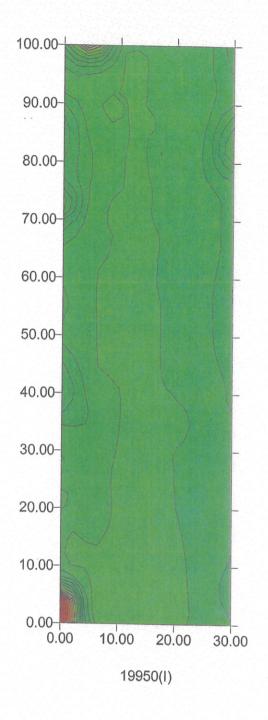
Respectfully,

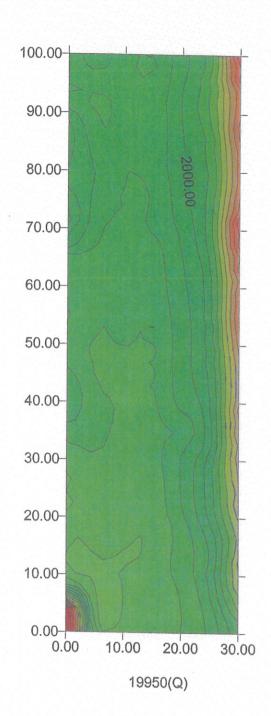

Richard A. Lund


Area A

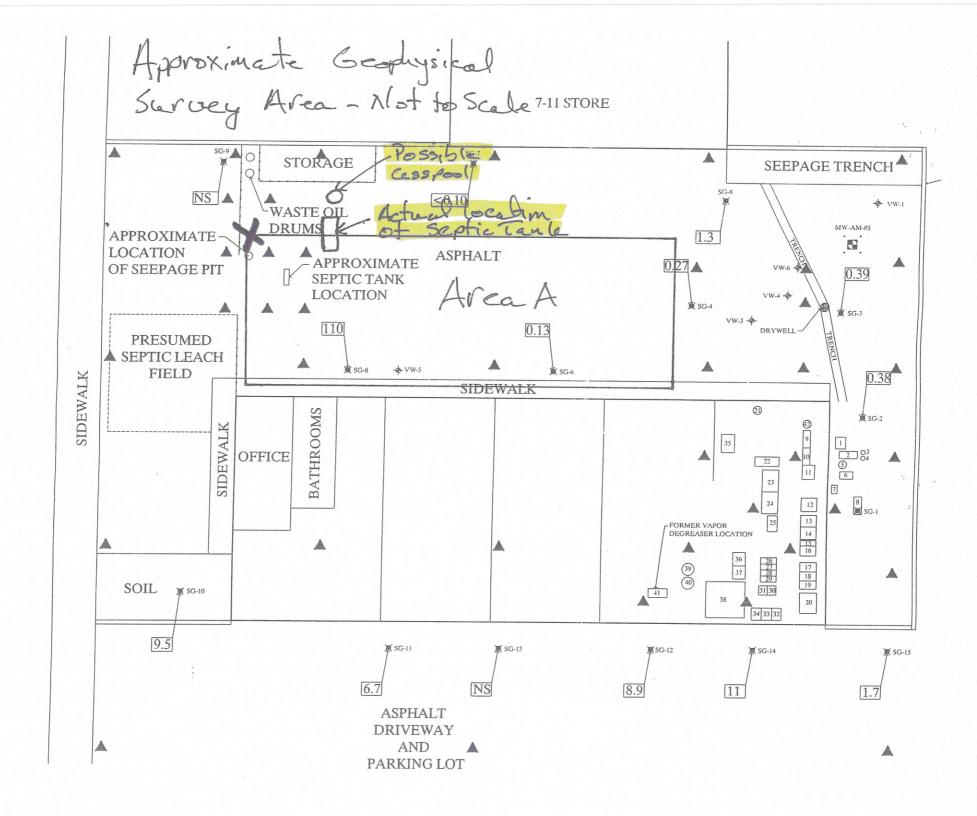


Area A





Area A



Area A

FILE1557.DZT May, 14 2001, 10:19:02

Vapor Extraction Pipe - East Parkin FILE1555.DZT May, 14 2001, 10:12:58 · Septie tank Possible Cosspool

APPENDIX E

BEACON ENVIRONMENTAL ANALYTICAL REPORT DATED JUNE 12, 2001

BEACON Report No. EM1330

EMFLUX® Passive Soil-Gas Survey

APPLIED METALLICS SITE GILBERT, AZ

Prepared for

Law Engineering & Environmental Services 4634 South 36th Place Phoenix, AZ 85040

by

BEACON Environmental Services, Inc. 19 Newport Drive Suite 102 Forest Hill, MD 21050

June 12, 2001

Applying Results from Soil-Gas Surveys

The utility of soil-gas surveys is directly proportional to their accuracy in reflecting and representing changes in the subsurface concentrations of source compounds. Passive soil-gas survey results are the mass collected from the vapor-phase emanating from the source. The vapor-phase is merely a fractional trace of the source, so, as a matter of convenience, the units used in reporting detection values from EMFLUX® surveys are smaller than those employed for source-compound concentrations.

The critical fact is that, whatever the relative concentrations of source and associated soil gas, best results are realized when the ratio of soil-gas measurements to actual subsurface concentrations remains as close to constant as the real world permits. It is the reliability and consistency of this ratio, not the particular units of mass (e.g., nanograms) that determine usefulness. Thus, BEACON emphasizes the necessity of conducting — at minimum — follow-on intrusive sampling at one or two points which show relatively high EMFLUX® values to obtain corresponding concentrations of soil and ground-water contaminants. These correspondent values furnish the basis for approximating the required ratio. Once that ratio is established, it can be used in conjunction with EMFLUX® measurements (regardless of the units adopted) to estimate subsurface contaminant concentrations across the survey field. It is important to keep in mind, however, that specific conditions at individual sample points, including soil porosity and permeability, depth to contamination, and perched ground water, can have significant impact on soil-gas measurements at those locations.

When EMFLUX® Surveys are handled in this way, the data provide information that can yield substantial savings in drilling costs and in time. They furnish, among other things, a checklist of compounds expected at each survey location and help to determine how and where drilling budgets can most effectively be spent.

EMFLUX® Survey Number: EM1330

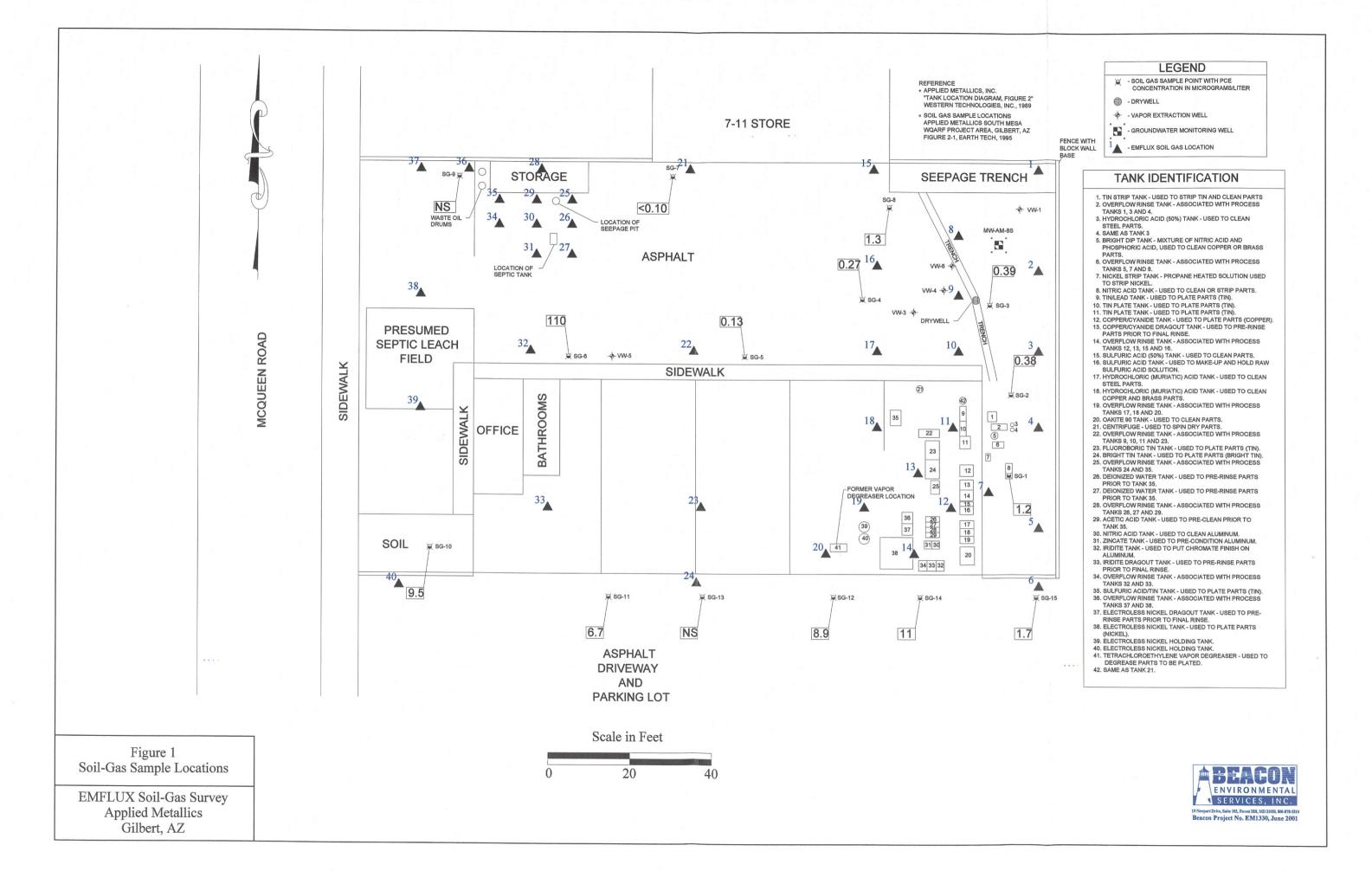
Applied Metallics Site Gilbert, AZ

This EMFLUX® Soil-Gas Survey Report has been prepared for Law Engineering & Environmental Services (LAW) by Beacon Environmental Services, Inc. (BEACON) in accordance with the terms of the signed Order Confirmation Form, dated May 16, 2001. BEACON's principal technical contact at LAW for this project has been Mr. Jim Clarke.

1. Objectives

Soil-gas samples were collected to determine the presence, identity, and relative strength of targeted contaminants in soil and/or ground water at the Applied Metallics Site. Survey results will be used to determine the distribution of contaminants and to guide further site investigation.

2. Target Compounds


This survey targeted the 10 compounds listed in **Attachment 1**, which supplies the resulting laboratory data in nanograms (ng) of specific compound per cartridge. **Table 1** provides the resulting laboratory data for those compounds identified at one or more locations.

3. Survey Description

•	No. of Field Sample Points:	40
•	No. of Duplicate Field Samples:	2
•	No. of Trip Blanks:	2
•	Total No. of EMFLUX® Cartridges:	
•	Field sample locations are shown on Figure 1 .	44

4. Field Work

LAW was provided an EMFLUX® Field Kit with the equipment needed to conduct a 40-point EMFLUX® Soil-Gas Survey. Collectors were deployed on May 25, 2001, and retrieved on May 30, 2001, in accordance with the EMFLUX® timing model. Attachment 2 describes the field procedures used. Individual deployment and retrieval times will be found in the Field Deployment Report (Attachment 3).

5. Analysis and Reporting Dates

- BEACON's laboratory received 44 sample cartridges for analysis on May 31, 2001.
- BEACON's laboratory analyzed the samples for the specified compounds, using thermal desorption and a capillary-column gas chromatograph (GC) with a photoionization detector (PID) in series with a dry electrolytic conductivity detector (DELCD) in accordance with EPA Method 8021 (Attachment 4).
- Analysis was completed on June 4, 2001. Following a laboratory review, results were provided to LAW on June 6, 2001.

6. Report Notes and Quality Assurance/Quality Control Factors

- Table 1 provides survey results in nanograms per cartridge by sample-point number and compound name. The quantitation levels represent values above which quantitative laboratory results can be achieved within specified limits of precision and with a high degree of confidence. The quantitation level for each compound, therefore, provides a reliable basis for comparing the relative strength of any detection of that compound.
- Data Compatibility. It is important to note that when sample locations are covered with or near the edge of an artificial surface (e.g., asphalt or concrete), sample measurements are often distorted (increased) significantly. Such distortion can be attributed to the fact that gas rising from sources beneath impermeable caps tends to reach equilibrium underneath the cap. Thus, a reading taken below or near an impermeable surface is much higher than it would be in the absence of such a cap.
- The Chain-of-Custody form, which was shipped with the samples for this survey, is supplied as Attachment 5.
- Laboratory QA/QC procedures consist of control blanks and verifications, as well as
 system calibration, as specified for EPA Method 8021. Laboratory personnel conducted
 internal control blanks and internal control verification analyses daily to ensure that the
 system was contaminant free and properly calibrated. The system was calibrated using
 external-standard procedures to at least three different concentrations for each compound
 targeted.
- QA/QC Contaminant Corrections. Following EPA guidelines, EMFLUX® laboratory data is not corrected for method blank or trip blank sample contamination values; any contamination detected on QA/QC samples is reported in Attachment 1. Subsequent handling of QA/QC sample contamination depends upon the circumstances and origin of the sample; any corrective conventions noted below have proved highly useful in

deriving accurate and reproducible interpretations of survey data in prior EMFLUX® Surveys. No other methods thus far tested have produced comparable levels of quality.

- Laboratory method blanks are run each day with project samples to identify contamination present in the laboratory. If contamination is detected on a method blank, measurements of identical compounds on samples analyzed the same day are considered to be suspect and are flagged in the laboratory report. The laboratory method blank analyzed in connection with the present samples revealed no contamination.
- The **trip blank** is an EMFLUX® cartridge prepared, transported, and analyzed with other samples but intentionally not exposed. The trip blanks (labeled Trip-1 and Trip-2 in **Attachment 1**) recorded none of the targeted compounds, indicating that the survey site itself is the source of detected contamination.
- Duplicates. EMFLUX® collectors are prepared with two adsorbent cartridges for subsequent duplicates or confirmatory samples. The laboratory director performed duplicate analysis for sample locations 17 and 32. Because of finite differences between the cartridges, and the random nature of diffusive particle movement, comparisons between duplicates and primary samples should be made on a qualitative basis, as quantitative results may be subject to random distortions. In general, a duplicate correspondence should be defined as a difference of 50% or less between contaminant data for base and duplicate samples. Also, for the purpose of calculating correspondences, all non-detections should be assigned, as a baseline value, the quantitation level for the specific contaminant. Based on these assumptions, a 95% correlation was found between the duplicate samples and their base samples.
 - Survey findings are relative exclusively to this project and should not routinely be compared with results of other EMFLUX[®] Surveys. To establish a relationship between reported soil-gas measurements and actual subsurface contaminant concentrations, which will indicate those detections representing significant subsurface contamination, BEACON recommends the guidelines on the inside front cover of this report.
- At the request of LAW, the following compound distribution maps have been provided:

Figure 2 — Tetrachloroethene

Figure 3 — Trichloroethene

Figure 4 — cis-1,2-Dichloroethene

- The following Attachments are included:
 - -1-
 - Laboratory Report
 EMFLUX® Field Procedures -2-
 - Field Deployment Report -3-
 - Laboratory Procedures -4-
 - Chain-of-Custody Form -5-

EM1330

Table 1

Results in Nanograms (ng)

Analysis Completed: June 4, 2001

Applied Metallics

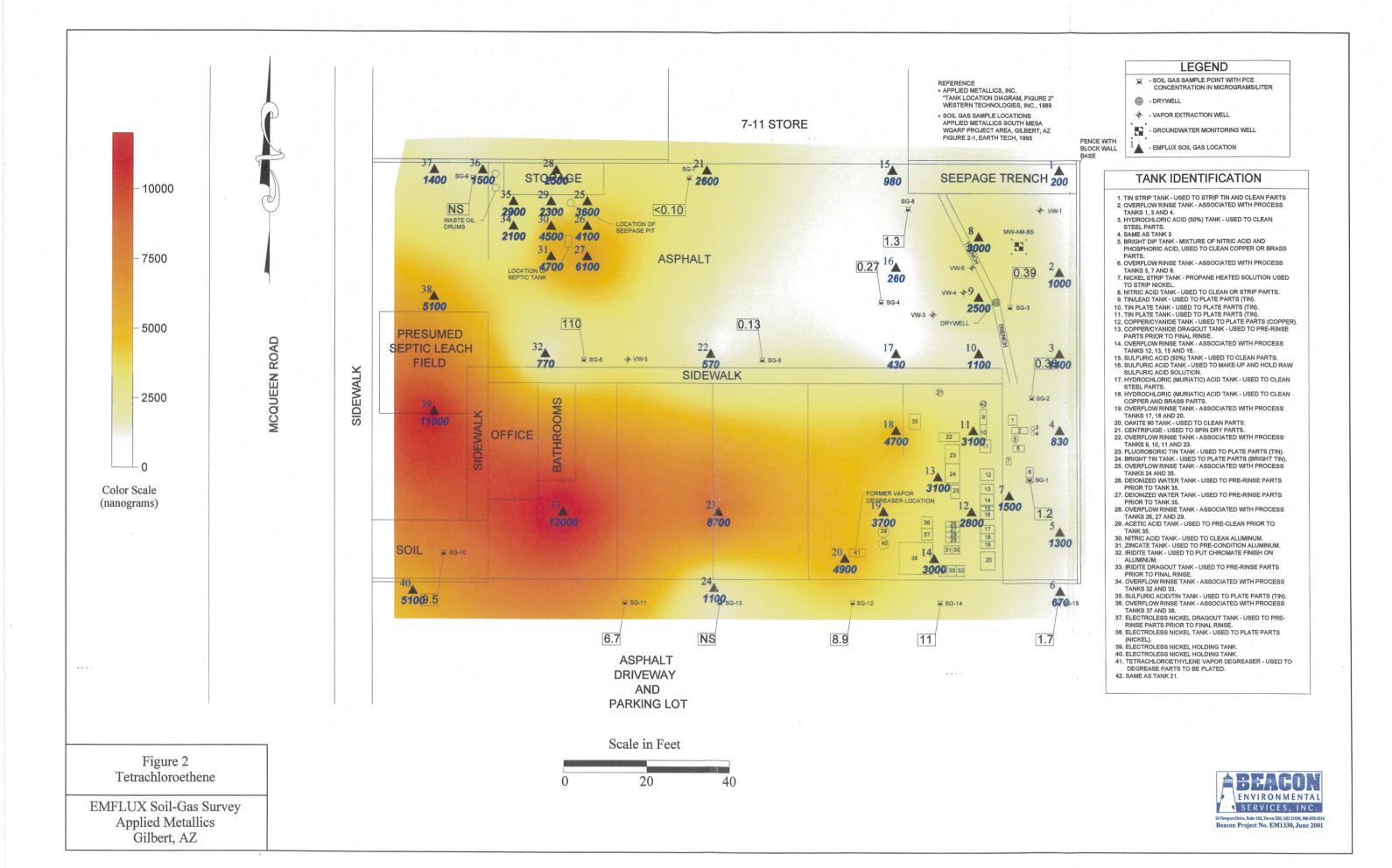
Gilbert, AZ

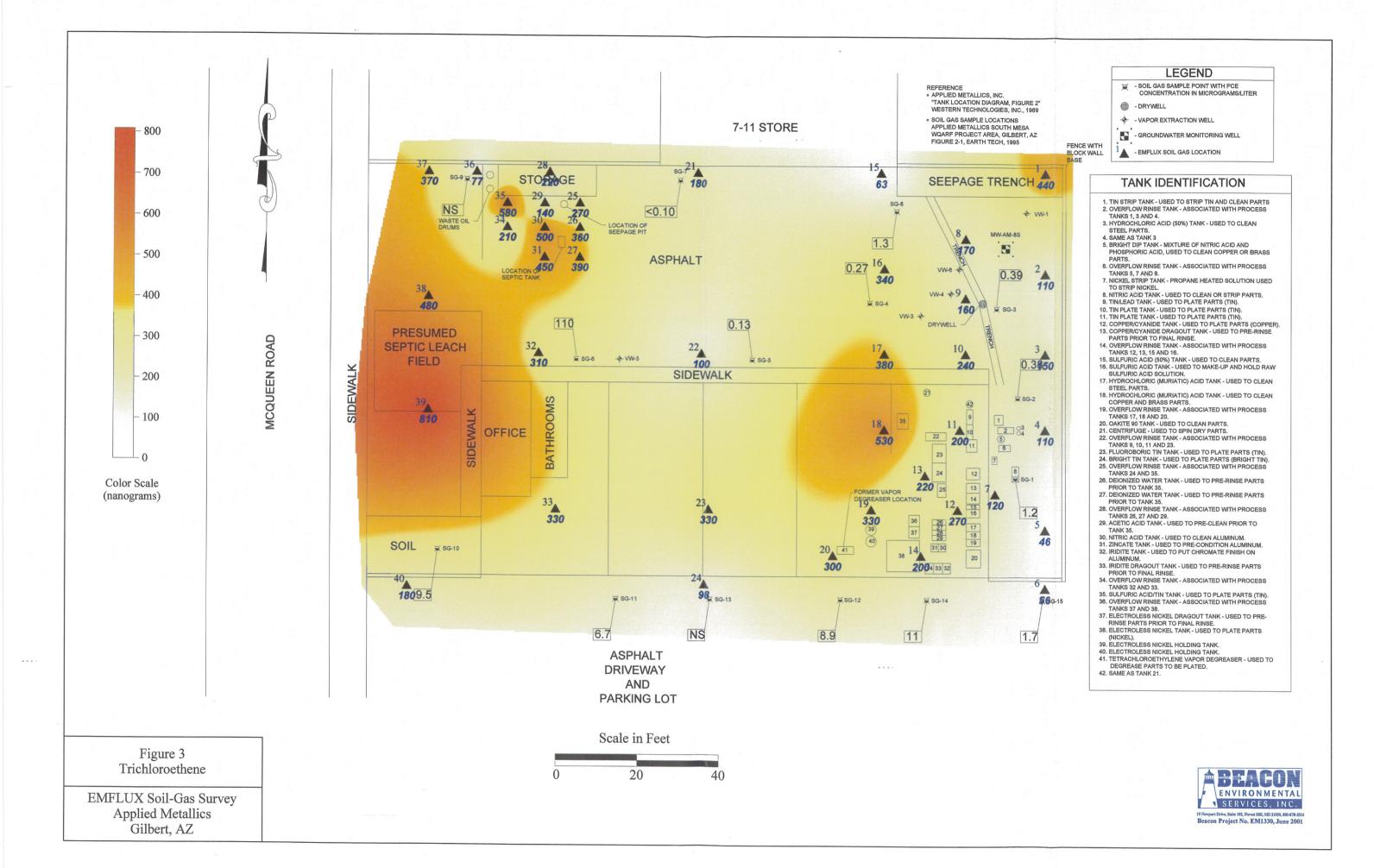
SAMPLE NO. COMPOUNDS	1	2	3	4	5	6	7	8
1,1-Dichloroethene cis-1,2-Dichloroethene 1,1,1-Trichloroethane Trichloroethene Tetrachloroethene	U	U	U	U	U	U	U	U
	U	U	U	U	U	U	U	U
	U	U	U	U	U	U	U	U
	440	110	150	110	46	56	120	170
	200	1,000	1,400	830	1,300	670	1,500	3,000

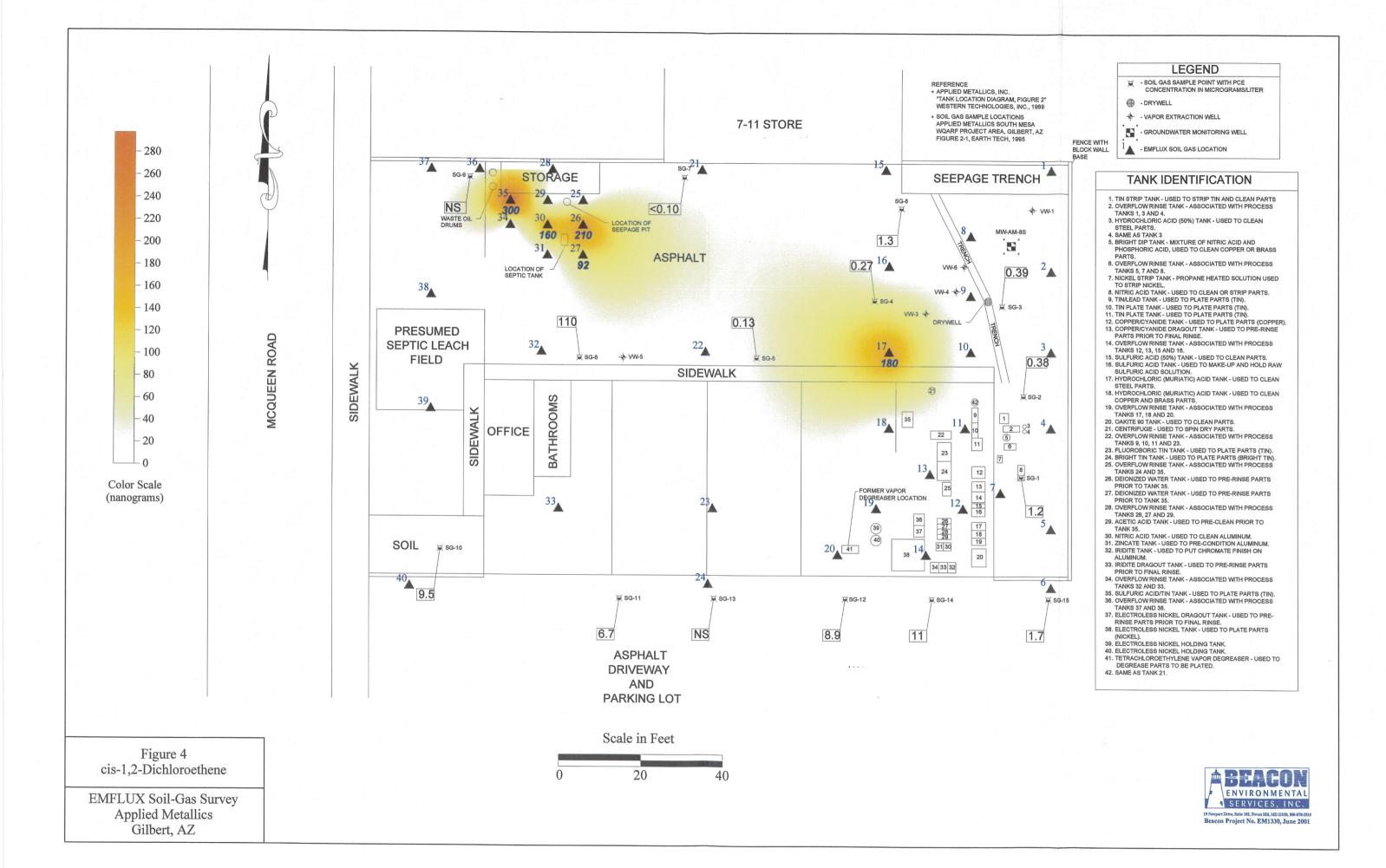
SAMPLE NO.	9	10	11	12	13	14	15	16
COMPOUNDS 1,1-Dichloroethene cis-1,2-Dichloroethene 1,1,1-Trichloroethane Trichloroethene Tetrachloroethene	U	U	U	U	U	U	U	U
	U	U	U	U	U	U	U	U
	U	U	U	U	U	48	U	U
	160	240	200	270	220	200	63	340
	2,500	1,100	3,100	2,800	3,100	3,000	980	260

Table 1
(continued)
Results in Nanograms (ng)
Analysis Completed: June 4, 2001
Applied Metallics
Gilbert, AZ

SAMPLE NO. COMPOUNDS	17	17 D	18	19	20	21	22	23
1,1-Dichloroethene cis-1,2-Dichloroethene 1,1,1-Trichloroethane Trichloroethene Tetrachloroethene	U	U	U	U	U	U	U	U
	180	250	U	U	U	U	U	U
	U	U	U	56	140	U	U	U
	380	520	530	330	300	180	100	330
	430	750	4,700	3,700	4,900	2,600	570	8,700


SAMPLE NO.	24	25	26	27	28	29	30	.31
COMPOUNDS 1,1-Dichloroethene cis-1,2-Dichloroethene 1,1,1-Trichloroethane Trichloroethene Tetrachloroethene	U U U 98 1,100	U U U 270 3,600	U 210 U 360 4,100	U 92 U 390 6,100	U . U . U . 220 2,500	U U U 140 2,300	U 160 U 500 4,500	U U U 450


Table 1 (continued) Results in Nanograms (ng) Analysis Completed: June 4, 2001


Applied Metallics Gilbert, AZ

SAMPLE NO.	32	32 D	33	34	35	36	37	38
COMPOUNDS							1	
1,1-Dichloroethene cis-1,2-Dichloroethene 1,1,1-Trichloroethane Trichloroethene Tetrachloroethene	U U U 310 770	U 39 U 340 660	U U U 330 12,000	U U U 210 2,100	U 300 U 580 2,900	43 U U 77 1,500	U U U 370 1,400	U U U 480 5,100

SAMPLE NO.	39	40	
COMPOUNDS			
1,1-Dichloroethene cis-1,2-Dichloroethene 1,1,1-Trichloroethane Trichloroethene Tetrachloroethene	U U U 810 11,000	U U U 180 5,100	

Attachment 1

Laboratory Report

Attachment 1

Applied Metallics Gilbert, AZ

Results in Nanograms (ng) Analysis Completed: June 4, 2001

In this analysis 44 EMFLUX samples were analyzed under the requirements of EPA Method 8021 using an SRI 8610 Gas Chromatograph equipped with a thermal desorber, a photoionization detector, and a dry electrolytic conductivity detector.

SAMPLE NO.	1	2	3	4	5	6	7	8
COMPOUNDS								
1,1-Dichloroethene	U	U	U	U	U	U	U	IJ
Methylene Chloride	U	U	U	U	U	IJ	IJ	IJ
trans-1,2-Dichloroethene	U	U	U	U	U	U	IJ	IJ
1,1-Dichloroethane	U	U	U	U	IJ	U	IJ	IJ
cis-1,2-Dichloroethene	U	U	U	U	IJ	IJ	IJ	0
,1,1-Trichloroethane	U	U	U	IJ	11	IJ	0	· U
Carbon Tetrachloride	U	U	IJ	U	11	U	U	U
,2-Dichloroethane	U	U	IJ	U	IJ	_	U	U
Crichloroethene	440	110	150	110	,	Ū.	U	U
etrachloroethene	200	1,000	1,400	830	46 1,300	56 670	120 1,500	170 3,000

CAMPI PINO								
SAMPLE NO.	9	10	. 11	12	13	14	15	16
COMPOUNDS						******************************		
1,1-Dichloroethene	U	U	U	U	IJ	IJ	U	7.7
Methylene Chloride	U	U	U	U	IJ	U		U
trans-1,2-Dichloroethene	U	U	U	U	11		U	U
1,1-Dichloroethane	U	IJ	IJ	U	T I	U	U	U
cis-1,2-Dichloroethene	U	II	IJ	U	U	U	U	U
1,1,1-Trichloroethane	U	IJ	. II		U	U	U	U
Carbon Tetrachloride	IJ	. U	II	U	U	48	U	U .
,2-Dichloroethane	11	IJ	0	U	U	U	U	U
Trichloroethene	0		U	U	Π .	U	U	U
Tetrachloroethene	160	240	200	270	220	200	63	340
cuacinoroemene	2,500	1,100	3,100	2,800	3,100	3,000	980	260

Attachment 1 (continued) Applied Metallics Gilbert, AZ

Results in Nanograms (ng) Analysis Completed: June 4, 2001

SAMPLE NO.	17	17 D	18	19	20	21	22	23
COMPOUNDS								
1,1-Dichloroethene Methylene Chloride trans-1,2-Dichloroethene 1,1-Dichloroethane cis-1,2-Dichloroethene 1,1,1-Trichloroethane Carbon Tetrachloride 1,2-Dichloroethane	U U U U 180 U U	U U U U 250 U U	U U U U U	U U U U U 56 U	U U U U U 140 U	U U U U U	U U U U U U	U U U U U
Trichloroethene Tetrachloroethene	380 430	520 750	530 4,700	330 3,700	U 300 4,900	U 180 2,600	U 100 570	330 8,700

SAMPLE NO.	24	25	26	27	28	29	30	31
COMPOUNDS								
1,1-Dichloroethene Methylene Chloride trans-1,2-Dichloroethene 1,1-Dichloroethane cis-1,2-Dichloroethene 1,1,1-Trichloroethane Carbon Tetrachloride ,2-Dichloroethane Crichloroethene	U U U U U U U 98	U U U U U U U U	U U U U 210 U U U 360	U U U 92 U U U 390	U U U U U U U 220	U U U U U U U 140	U U U U 160 U U U	U U U U U
etrachloroethene	1,100	3,600	4,100	6,100	2,500	2,300	500 4,500	450 4,700

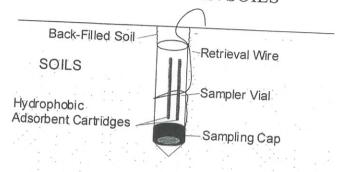
Attachment 1 (continued) Applied Metallics Gilbert, AZ

Results in Nanograms (ng) Analysis Completed: June 4, 2001

SAMPLE NO.	32	32 D	33	34	35	36	37	38
COMPOUNDS								
1,1-Dichloroethene Methylene Chloride	U	U	U	U	U	43	U	U
trans-1,2-Dichloroethene	U U	U	U	U	U	U	U	U
1,1-Dichloroethane	U	U	U	U	U	U	U	U
cis-1,2-Dichloroethene 1,1,1-Trichloroethane	U U	39 U	U	U	300	U	U	U
Carbon Tetrachloride	U	U	U U	U	U	U	U	U
l,2-Dichloroethane Γrichloroethene	U	U	U	U	U	U	U	U
Tetrachloroethene	310 770	340 660	330 12,000	210	580	77	370	480
	, 10	000	12,000	2,100	2,900	1,500	1,400	5,100

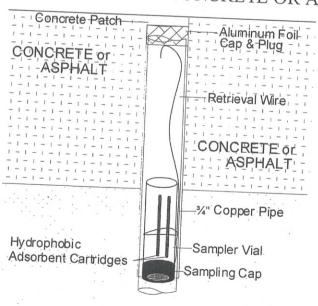
SAMPLE NO.	39	40	Trip-1	Trip-2	
COMPOUNDS					
1,1-Dichloroethene	U	U	U	IJ	
Methylene Chloride	U	U	IJ	11	
trans-1,2-Dichloroethene	U	U	U	11	
1,1-Dichloroethane	U	U	II	II	
cis-1,2-Dichloroethene	U	U	II	11	
1,1,1-Trichloroethane	U	IJ	11	11	
Carbon Tetrachloride	U	II	11	11	
,2-Dichloroethane	U	IJ	II	II.	
Trichloroethene	810	180	11	11	
Tetrachloroethene	11,000	5,100	U	U	

Attachment 2


FIELD PROCEDURES FOR EMFLUX® SOIL-GAS SURVEYS

The following field procedures are routinely used during EMFLUX® Soil-Gas Surveys. Modifications can be and are incorporated from time to time in response to individual project requirements. In all instances, BEACON adheres to EPA-approved Quality Assurance and Quality Control practices.

- A. Field personnel carry EMFLUX® system components and support equipment to the site and deploy the EMFLUX® Collectors in a prearranged survey pattern. An EMFLUX® Collector consists of a glass vial containing hydrophobic adsorbent cartridges with a length of wire attached to the vial for retrieval. Although EMFLUX® Collectors require only one person for emplacement and retrieval, the specific number of field personnel required depends upon the scope and schedule of the project. Each Collector emplacement generally takes less than two minutes.
- B. For those sample locations covered with soils or vegetation, a field technician clears vegetation and debris exposing the ground surface. Using a hammer and a ¾"-diameter pointed metal stake, the technician creates a hole approximately three inches deep. For those locations covered with an asphalt or concrete cap, the field technician drills a 1½"-diameter hole through the cap to the soils beneath. (If necessary, the Collector can be sleeved with a ¾" i.d. copper pipe for either capped or uncapped locations).
- C. The technician then removes the solid plastic cap from an EMFLUX® Collector and replaces it with a Sampling Cap (a plastic cap with a hole covered by screen meshing). The technician inserts the Collector, with the Sampling Cap end facing down, into the hole (see attached figure). The Collector is then covered with either local soils for uncapped locations or, for capped locations, aluminum foil and a concrete patch. The Collector's location, time and date of emplacement, and other relevant information are recorded on the Field Deployment Form.
- D. One or more trip blanks are included as part of the quality-control procedures.
- E. Once all EMFLUX® Collectors have been deployed, field personnel schedule Collector recovery (typically 72 hours after emplacement) and depart, taking all no-longer-needed equipment and materials with them.
- F. Field personnel retrieve the Collectors at the end of the exposure period. At each location, a field technician withdraws the Collector from its hole, removes the retrieval wire, and wipes the outside of the vial clean using gauze cloth; following removal of the Sampling Cap, the threads of the vial are also cleaned. A solid plastic cap is screwed onto the vial and the sample location number is written on the label. The technician then records sample-point location, date, time, etc. on the Field Deployment Form.
- G. Sampling holes are refilled with soil, sand, or other suitable material. If Collectors have been installed through asphalt or concrete, the hole is filled to grade with a plug of cold patch or cement.
- H. Following retrieval, field personnel ship or carry the EMFLUX® Field Kit to a specified analytical laboratory.


EMFLUX® COLLECTOR

DEPLOYMENT IN SOILS

SOILS

DEPLOYMENT THROUGH CONCRETE OR ASPHALT

SOILS

Attachment 3

Field Deployment Report

a	
9	

BEACON ENVIRONMENTAL SERVICES, INC. EMFLUX® SOIL-GAS SURVEY FIELD DEPLOYMENT REPORT	CLIENT: LAW Engineering & Environmental Services SITE: Applied Metallics site, Gilbert, AZ	INDIVIDUAL SAMPLE INFORMATION	RETRIEVAL DATE: 05/20/61	FIELD NOTES (e.g., asphalt/concrete covering, description of sample location contrided/iii)	Condition)														
BI	CLIENT: LAW E		125/01	TIME	Retrieved	240	0 \$ 0.	-	5 hc1	150)	1226	17 55	1 95 1	2	9011	8501	1653	649	16 45
	: EM 1330		EMPLACEMENT DATE: \$	T	Emplaced	14.55	1557		1620	(09)	154 B	18.7	7671	1603	1567	0026	50,92	1007	1001
	PROJECT #: EM 1330		EMPLACEN	SAMPLE NUMBER		N./	~(~	\ \	4	R	10		B	a	0/	11	7).	. 13	7

FIELD NOTES (e.g., asphalt/concrete covering, description of sample location, cartridge/vial condition)					0													
TIME	Retrieved	0 111	113	711	一大大田	1284	1267	127	1(25	1240	1230	en	1141	751:	= 33	1(5)	. 53	
T	Emplaced	8081	1608	1606	1610) =	7/01	63	W 15	[6]	15 A4	979	82 9	16 30 1	1635	129	623	
SAMPLE		2	91	17	9	(9	2	21	22	23	24	r.1	3%	207	þ	20	R	

	FIELD NOTES (e.g., asphalt/concrete covering, description of sample location, cartridge/vial condition)															
	TIME	Retrieved	- 38	1/28	1244	200	1205	1209	5/2	\$12:	1221	1337				
		Emplaced	1635	629	\$ 1618	The state of the s	800	16 37	1629	3	A C	10	·			
7.47	SAMPLE		2	32		32	125	m	37	24,	3	40				

Attachment 4

LABORATORY PROCEDURES FOR EMFLUX® ADSORBENT CARTRIDGES

Following are laboratory procedures used with the EMFLUX® Soil-Gas System, a screening technology for expedited site investigation. After exposure, EMFLUX® cartridges are analyzed using U.S. EPA Method 8021 as described in the Solid Waste Manual (SW-846) for screening purposes. This method, which is modified to accommodate thermal desorption screening of the adsorbent cartridges, uses a gas chromatograph equipped with a capillary column and a photo ionization detector (PID) in series with a dry electrolytic conductivity detector (DELCD). This procedure is summarized below:

- A. EMFLUX® cartridges are placed in the thermal desorbtion chamber, where they are purged with carrier gas then desorbed into the capillary column. The capillary column separates the sample into single component analytes. Analytes in the carrier gas are detected with a PID then a DELCD.
- B. The laboratory uses a 105-m, 0.53-mm-i.d., 3 μ m-film-thickness MXT-624 capillary column for separation during analysis.
- C. The PID and DELCD are set on high gain; ultra zero grade dry air is used in the DELCD.
- D. Lab personnel conduct internal control blank and internal control verification analyses daily to ensure that the system is contaminant free and properly calibrated. The system is calibrated using the external standard calibration procedure to at least three different concentration levels for each compound targeted, with the lowest concentration level at or near the method detection limit.
- E. The instrumentation used for these analyses is an SRI 8610 Gas Chromatograph, connected to a PID in series with a DELCD and equipped with a manually actuated thermal desorber.

Attachment 5

Chain-of-Custody Form

BEACON ENVIRONMENTAL SERVICES, INC. CHAIN-OF-CUSTODY FORM PROJECT NUMBER: EM 1330 SITE: Applied Metallics site, Gilbert, AZ CLIENT: LAW Engineering & Environmental Services TARGET COMPOUNDS: EMFLUX EM 1330 Chlorinated Compound List Sample Lab ID No. Remarks (only necessary if problem or discrepancy) Number (for lab use only) Condition of sample or vial Date Time Init. 9/30/01 1035 Pc 90 2, 7 7 RELINQUISHED BY DATE TIME RECEIVED BY Signature **Printed Name** Signature **Printed Name** Ryan Schneider 5.16.01 2000 Fedex Fedex Fedex 51704 TATRILK 5 30 01 1800 5.31-01 1300 SteveThornle

Shipment to site: Custody Seal # 000 29857

Shipment to Laboratory Custody Seal # 29878

I.O.R.S

BEACON ENVIRONMENTAL SERVICES, INC. CHAIN-OF-CUSTODY FORM

THOSECI	MOMBEK:	LIVI	1330		

SITE: Applied Metallics site, Gilbert, AZ

CLIENT: LAW Engineering & Environmental Services

TARGET COMPOUNDS: EMFLUX EM 1330 Chlorinated Compound List

Sample	Lab II		Remark	s (only necessary if pro	hlem or discre	nonov)	
Number	(for lab u	ise only)	Condition	of sample or vial	Date	Time	T 1
310						1 line	Init.
32					3/3%		PC
33						1128	P
34.						1244	18
25.						1201	DC
29 5 ·						1205	PC
37						1209	PC
34						1215	21
1039						1218	De
21						1221	9
Tripl					احرا	1237	01
Trop2					5.3/10	4380	50
119					1	1/	1
						-	- W
						-	
				<u> </u>		-	
				1			
	-						
RELINQUISHED B	V	Dim					
	ted Name	DATE	TIME	REC	CEIVED BY		

				1			
RELINQU	ISHED BY	,	DA	TE	TIME		
Signature	Printe	d Name			TIME		EIVED BY
Rom School		chneider	5.16		2000	Signature	Printed Name
Fedex		dex			2000	Fedex	Fedex
1	10	ucx	5 17	ો		3.0 Cov	PATOLICY
a- May			5 30	01	1800	FED EX	The state of the s
		_>>	5.31.	0/	1300	950	Clare D. (
							Hereview

Shipment to site: Custody Seal # 000 29857

Shipment to Laboratory Custody Seal # 52989

intact orrecaid S

APPENDIX F

BEACON ENVIRONMENTAL REPORT DATED JULY 30, 2002

BEACON Report No. EM1330B

EMFLUX® Passive Soil-Gas Survey

APPLIED METALLICS SITE GILBERT, AZ

Prepared for

LAW Engineering & Environmental Services 4634 South 36th Place Phoenix, AZ 85040

by

Beacon Environmental Services, Inc. 19 Newport Drive Suite 102 Forest Hill, MD 21050

July 30, 2002

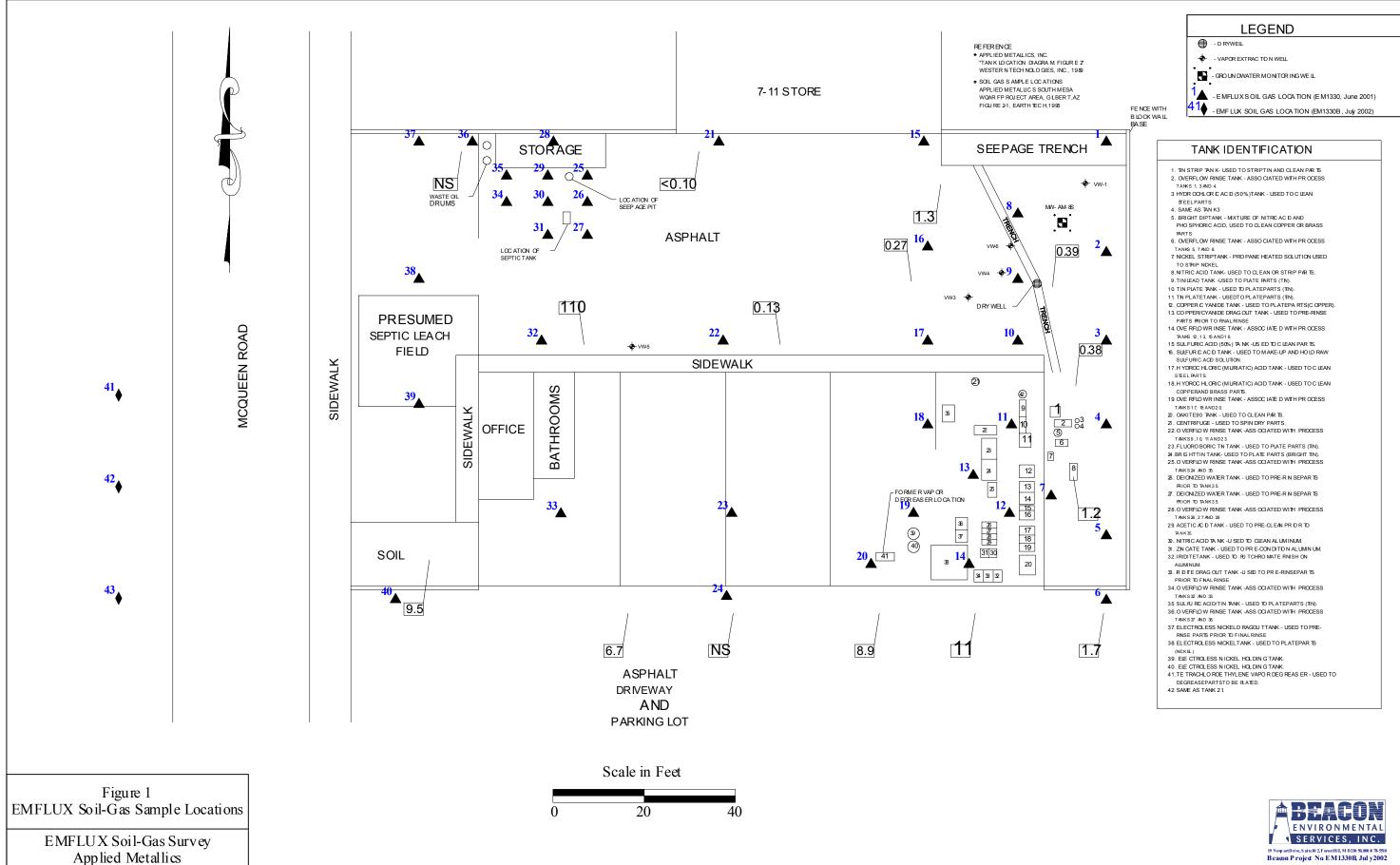
Applying Results from Soil-Gas Surveys

The utility of soil-gas surveys is directly proportional to their accuracy in reflecting and representing changes in the subsurface concentrations of source compounds. Passive soil-gas survey results are the mass collected from the vapor-phase emanating from the source. The vapor-phase is merely a fractional trace of the source, so, as a matter of convenience, the units used in reporting detection values from EMFLUX® surveys are smaller than those employed for source-compound concentrations.

The critical fact is that, whatever the relative concentrations of source and associated soil gas, best results are realized when the ratio of soil-gas measurements to actual subsurface concentrations remains as close to constant as the real world permits. It is the reliability and consistency of this ratio, not the particular units of mass (e.g., nanograms) that determine usefulness. Thus, BEACON emphasizes the necessity of conducting — at minimum — follow-on intrusive sampling at one or two points which show relatively high EMFLUX® values to obtain corresponding concentrations of soil and ground-water contaminants. These correspondent values furnish the basis for approximating the required ratio. Once that ratio is established, it can be used in conjunction with EMFLUX® measurements (regardless of the units adopted) to estimate subsurface contaminant concentrations across the survey field. It is important to keep in mind, however, that specific conditions at individual sample points, including soil porosity and permeability, depth to contamination, and perched ground water, can have significant impact on soil-gas measurements at those locations.

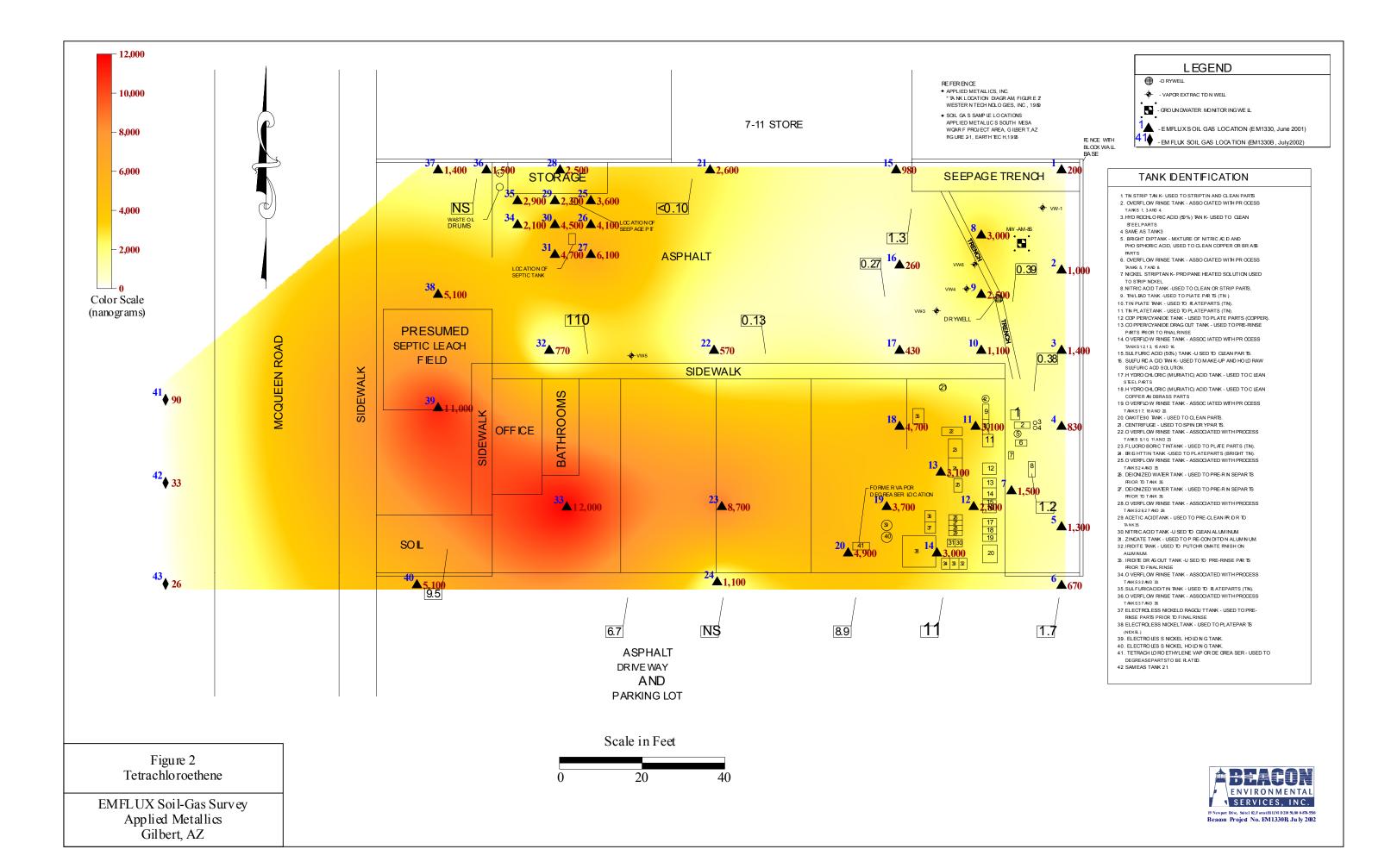
When EMFLUX® Surveys are handled in this way, the data provide information that can yield substantial savings in drilling costs and in time. They furnish, among other things, a checklist of compounds expected at each survey location and help to determine how and where drilling budgets can most effectively be spent.

Table 1


EMFLUX Passive Soil-Gas Survey
Applied Metallics
Gilbert, AZ

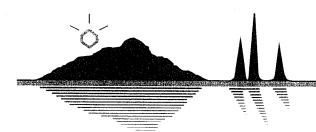
Results in Nanograms (ng)
Analysis Completed: July 15, 2002

SAMPLE NO.	41	41-D	42	42-D	43 T	TRIP-1
COMPOUNDS						
1,1-Dichloroethene	U	U	U	U	U	U
Methylene Chloride	U	U	U	U	U	U
trans-1,2-Dichloroethene	U	U	U	U	U	U
1,1-Dichloroethane	U	U	U	U	U	U
cis-1,2-Dichloroethene	U	U	U	U	U	U
Chloroform	U	U	U	U	U	U
1,1,1-Trichloroethane	U	U	U	U	U	U
Carbon Tetrachloride	U	U	U	U	U	U
1,2-Dichloroethane	U	U	U	U	U	U
Trichloroethene	U	U	U	U	U	U
1,1,2-Trichloroethane	U	U	U	U	U	U
Tetrachloroethene	90	130	33	36	26	U


Reported Quantitation Level = 25 nanograms

U = Below Reported Quantitation Level

Gilbert, AZ



APPENDIX G

TRANSWEST GEOCHEM, INC.
SOIL, GROUNDWATER, AND SOIL VAPOR SAMPLE
ANALYTICAL REPORTS

TGI ID: 0108149

September 24, 2001

Law Engineering Inc. 4634 S. 36th Pl. Phoenix, AZ. 85040

Attention:

Jim Clarke

Project Name/No:

S. Mesa WQARF/70211-0-0150-2-2.10

Samples Received:

8/20-28/2001

Matrix:

Soil/Vapor/Aqueous

Mobile Lab No .:

TGI 05

Transwest Geochem, Inc. received and analyzed samples on the above date(s). The samples were analyzed by EPA Method 8021B-Modified, a field screening technique. The results of these analyses and the quality control data are enclosed.

If you have any questions or comments, please do not hesitate to contact us at (602)437-0330.

Sincerely,

Michael E. Barber

Laboratory Director

Machael & Barbar

ADHS License No.:

AZM133/AZ0133

Client Name:

Law Engineering Inc.

Project Name/No.: Samples Received:

S. Mesa WQARF/70211-0-0150-2-2.10 8/20-28/2001

			EPA Met	EPA Method 8021B-Modified	Aodified				
	Lab ID	0108149-1	149-1	0108149-3	49-3	0108	0108149-5	0108	0108149-7
	Sample ID	LB-1-8	LB-1-SG-10	LB-1-SG-20	3G-20	LB-1-8	LB-1-SG-30	LB-1-8	LB-1-SG-40
	Date Analyzed	8/21/01	/01	8/21/01	/01	8/21/01	1/01	8/21/01	/01
	Dilution Factor	40	5	1	10	2	20	4,	5
	Matrix	Vapor	oor	Vapor	oor	Vapor	oor	Vapor	oor
ANALYTE	Units	mg/m3	ppmv	mg/m3	hmdd	mg/m3	ppmv	mg/m3	ppmv
trans-1,2-Dichloroethene	ethene	<5.0	<1.26	<10	<2.52	<20	<5.04	<5.0	<1.26
cis-1,2-Dichloroethene	nene	<5.0	<1.26	<10	<2.52	<20	<5.04	<5.0	<1.26
Trichloroethene		<5.0	<0.93	<10	<1.87	<20	<3.73	<5.0	<0.93
Tetrachloroethene		31	4.57	89	13.11	480	70.70	27	3.98
Surrogate (70-130)- %	% -(%56	%	%96	%	94%	%	94%	%

			EPA Me	EPA Method 8021B-Modified	fodified				
	Lab ID	0108	0108149-9	0108149-11	49-11	01081	0108149-13	01081	0108149-14
	Sample ID	LB-1-8	LB-1-SG-50	LB-1-SG-60	92-90	LB-1-8	LB-1-SG-70	LB-1-8	_B-1-SG-80
, mad	Date Analyzed	8/21/01	1/01	8/21/01	/01	8/21/01	/01	8/21/01	/01
<u> </u>	Dilution Factor			1		_		_	
, s	Matrix	Vapor	por	Vapor	or	Vapor	oor	Vapor	oor
ANALYTE	Units	mg/m3	hmdd	mg/m3	ppmv	mg/m3	ppmv	mg/m3	ppmv
trans-1,2-Dichloroethene	thene	<1.0	<0.25	<1.0	<0.25	<1.0	<0.25	<1.0	<0.25
cis-1,2-Dichloroethene	ene	×1.0	<0.25	<1.0	<0.25	<1.0	<0.25	<1.0	<0.25
Trichloroethene		<1.0	<0.19	<1.0	<0.19	<1.0	<0.19	<1.0	<0.19
Tetrachloroethene		310 D	45.66	11	1.62	1.2	0.18	1.5	0.22
Surrogate (70-130)- %	%-	%96	%!	%26	%	%68	%	%96	%

Client Name:

Law Engineering Inc.

Project Name/No.: Samples Received:

8/20-28/2001

S. Mesa WQARF/70211-0-0150-2-2.10

			EPA Mei	EPA Method 8021B-Modified	Aodified				
	Lab ID	01081	0108149-15	01081	0108149-16	0108149-17	49-17	01081	0108149-24
	Sample ID	LB-1-	LB-1-SG-90	LB-1-S	LB-1-SG-100	LB-1-S	LB-1-SG-110	LB-2-{	LB-2-SG-10
	Date Analyzed	8/2.	8/21/01	8/21/01	/01	8/21/01	1/01	8/25/01	5/01
	Dilution Factor		1					-	
	Matrix	Va	Vapor	Vapor	oor	Vapor	DOL	Vapor	por
ANALYTE	Units	mg/m3	hmdd	mg/m3	bpmv	mg/m3	bpmv	mg/m3	hmdd
trans-1,2-Dichloroethene	ethene	<1.0	<0.25	<1.0	<0.25	<1.0	<0.25	<1.0	<0.25
cis-1,2-Dichloroethene	hene	<1.0	<0.25	<1.0	<0.25	<1.0	<0.25	<1.0	<0.25
Trichloroethene		<1.0	<0.19	<1.0	<0.19	<1.0	<0.19	<1.0	<0.19
Tetrachloroethene	0	<1.0	<0.15	4.0	0.59	3.5	0.52	<1.0	<0.15
Surrogate (70-130)- %	% -((92	92%	%96	%	%96	%	%96	%:

			EPA Me	EPA Method 8021B-Modified	Modified				
	Lab ID	01081	0108149-26	01081	0108149-28	01081	0108149-30	01081	0108149-32
	Sample ID	LB-2-	.B-2-SG-20	LB-2-{	_B-2-SG-30	LB-2-{	_B-2-SG-40	LB-2-	LB-2-SG-50
	Date Analyzed	8/25/01	3/01	8/25/01	1/01	8/25/01	5/01	8/25/01	5/01
	Dilution Factor								_
	Matrix	\alpha	Vapor	Vapor	30 r	Vapor	por	Vapor	por
ANALYTE	Units	mg/m3	ppmv	mg/m3	bpmv	mg/m3	bbmv	mg/m3	bpmv
trans-1,2-Dichloroethene	oethene	<1.0	<0.25	<1.0	<0.25	<1.0	. <0.25	<1.0	<0.25
cis-1,2-Dichloroethene	thene	<1.0	<0.25	<1.0	<0.25	<1.0	<0.25	1.0	0.25
Trichloroethene		<1.0	<0.19	<1.0	<0.19	<1.0	<0.19	<1.0	<0.19
Tetrachloroethene	Ð	1.6	0.24	18	2.65	<1.0	<0.15	18	2.65
Surrogate (70-130)- %	% -(0	%56	%	%56	%	%E6	%	%86	%

Project Name/No.: Samples Received: Client Name:

Law Engineering Inc.

S. Mesa WQARF/70211-0-0150-2-2.10 8/20-28/2001

			EPA Met	EPA Method 8021B-Modified	lodified				
	Lab ID	0108149-34	49-34	0108149-36	19-36	0108149-37	49-37	0108149-42	49-42
	Sample ID	LB-2-SG-60	3G-60	LB-2-SG-70	:e-70	LB-2-SG-80	3G-80	S-E-B-3-6	LB-3-SG-10
	Date Analyzed	8/25/01	1/01	8/25/01	/01	8/25/01	/01	8/28/01	/01
	Dilution Factor	1		1		_			
	Matrix	Vapor	oor	Vapor	or	Vapor	oor .	Vapor	oor
ANALYTE	Units	mg/m3	hmqq	mg/m3	ppmv	mg/m3	ppmv	mg/m3	ppmv
trans-1,2-Dichloroethene	ethene	<1.0	<0.25	<1.0	<0.25	<1.0	<0.25	<1.0	<0.25
cis-1,2-Dichloroethene	hene	<1.0	<0.25	<1.0	<0.25	×4.0	<0.25	<1.0	<0.25
Trichloroethene		<1.0	<0.19	<1.0	<0.19	<1.0	<0.19	<1.0	<0.19
Tetrachloroethene	d)	<1.0	<0.15	<1.0	<0.15	<1.0	<0.15	<1.0	<0.15
Surrogate (70-130)- %	% -((%86	%	109%	%	111%	%	105	109%

			EPA Me	EPA Method 8021B-Modified	Modified				
	Lab ID	0108149-44	49-44	01081	0108149-46	01081	0108149-48	01081	0108149-50
	Sample ID	LB-3-6	.B-3-SG-20	LB-2-{	LB-2-SG-30	LB-3-	_B-3-SG-40	F-B-3-	LB-3-SG-50
	Date Analyzed	8/28/01	1/01	8/28	8/28/01	8/28	8/28/01	8/28/01	3/01
	Dilution Factor						_	•	
	Matrix	Vapor	oor	Vai	Vapor	Ν	Vapor	Vapor	por
ANALYTE	Units	mg/m3	ppmv	mg/m3	hpmv	mg/m3	bpmv	mg/m3	ppmv
trans-1,2-Dichloroethene	ethene	<1.0	<0.25	<1.0	<0.25	<1.0	<0.25	<1.0	<0.25
cis-1,2-Dichloroethene	hene	<1.0	<0.25	<1.0	<0.25	<1.0	<0.25	<1.0	<0.25
Trichloroethene		41.0	<0.19	<1.0	<0.19	<1.0	<0.19	<1.0	<0.19
Tetrachloroethene	0	<1.0	<0.15	1.0	0.15	<1.0	<0.15	1.6	0.24
Surrogate (70-130)- %	%-(C	110	110%	11(110%	10	109%	+	113%

Client Name:

Law Engineering Inc.

Project Name/No.: Samples Received:

S. Mesa WQARF/70211-0-0150-2-2.10

8/20-28/2001

Lab ID 0108149-52 0108149-54 Sample ID LB-3-SG-60 LB-2-SG-70 Date Analyzed 8/29/01 8/29/01 Matrix √apor √apor ANALYTE Units mg/m3 ppmv mg/m3 ppm trans-1,2-Dichloroethene <1.0		EPA M	EPA Method 8021B-Modified	Modified		
e ID LB-3-SG-60 LB-2-SG-nalyzed nalyzed 8/29/01 8/29/01 n Factor 1 1 wg/m3 ppmv mg/m3 <1.0	A011-001-001-001-001-001-001-001-001-001	Lab ID	01081	49-52	01081	49-54
nalyzed 8/29/01 8/29/01 n Factor 1 Napor Vapor mg/m3 ppmv mg/m3 c1.0 c0.25 c1.0 c1.0 c0.15 c1.0 c1.0 c1.0 c1.0 c1.0 c1.0 c1.0 c1.0		Sample ID	LB-3-6	SG-60	LB-2-	SG-70
n Factor 1 1 Vapor Vapor Vapor mg/m3 ppmv mg/m3 <1.0		Date Analyzed	8/26	3/01	8/26	9/01
Vapor Vapor Vapor mg/m3 ppmv mg/m3 <1.0 <0.25 <1.0 <1.0 <0.25 <1.0 <1.0 <0.19 <1.0 <1.0 <0.15 <1.0 <1.0 <0.15 <1.0		Dilution Factor				
mg/m3 ppmv mg/m3 <1.0 <0.25 <1.0 <1.0 <0.25 <1.0 <1.0 <0.19 <1.0 <1.0 <0.15 <1.0 113% 113% 110%		Matrix	 	por	Va	por
<1.0 <0.25 <1.0 <1.0 <0.25 <1.0 <1.0 <0.19 <1.0 <1.0 <0.15 <1.0 113% 110%	ANALYTE	Units	mg/m3	hpmv	mg/m3	hmy
<1.0	trans-1,2-Dichlor	oethene	<1.0	<0.25	<1.0	<0.25
<1.0	cis-1,2-Dichloroe	thene	<1.0	<0.25	<1.0	<0.25
<1.0	Trichloroethene		<1.0	<0.19	<1.0	<0.19
113%	Tetrachloroethen	Ð	<1.0	<0.15	<1.0	<0.15
	Surrogate (70-13	% -(0	77	3%	110	%0

Notes:

The vapor analysis performed by Transwest Geochem, Inc. is a screening technique based on a modified EPA method. This data is not to be used in compliance situations.

Samples Received: Project Name/No.: Client Name:

S. Mesa WQARF/70211-0-0150-2-2.10 Law Engineering Inc. 8/20-28/2001

ADHS Cert. No.: AZM133/AZ0133 TGI ID No.: 0108149

TGI ID/	CLIENT					ш	EPA 8021B-Modified/Solvent Screen	Modified/	Solvent Sci	reen		
SAMPLE	Q			Date	Date		trans-1,2	cis-1,2			Sur.	70-130%
NUMBER		Matrix	Units	Extracted	Analyzed	<u>=</u>	DCE	DCE	TCE	PCE	Rec. %	Flag
0108149 -02	LB-1-S-10	Soil	mg/kg	8/20/01	8/22/01	-	<0.10	<0.10	<0.10	<0.10	104	
0108149 -04	LB-1-S-20	Soil	mg/kg	8/20/01	8/22/01	-	<0.10	<0.10	<0.10	<0.10	101	
0108149 -06 LB-1-S-30	LB-1-S-30	Soil	mg/kg	8/20/01	8/23/01	1	<0.10	<0.10	<0.10	<0.10	113	
0108149 -08 LB-1-S-40	LB-1-S-40	Soil	mg/kg	8/20/01	8/23/01	1	<0.10	<0.10	<0.10	<0.10	106	
0108149 -10	LB-1-S-50	Soil	mg/kg	8/20/01	8/23/01	1	<0.10	<0.10	<0.10	<0.10	115	
0108149 -12 LB-1-S-60	LB-1-S-60	Soil	mg/kg	8/21/01	8/23/01	1	<0.10	<0.10	<0.10	<0.10	116	
0108149 -25	LB-2-S-10	Soil	mg/kg	8/25/01	8/25/01	1	<0.10	<0.10	<0.10	<0.10	66	
0108149 -27	LB-2-S-20	Soil	mg/kg	8/25/01	8/25/01	1	<0.10	<0.10	<0.10	<0.10	66	í
0108149 -29	LB-2-S-30	Soil	mg/kg	8/25/01	8/25/01	-	<0.10	<0.10	<0.10	<0.10	108	
0108149 -31 LB-2-S-40	LB-2-S-40	Soil	mg/kg	8/25/01	8/25/01	-	<0.10	<0.10	<0.10	<0.10	97	
0108149 -33 LB-2-S-50	LB-2-S-50	Soil	mg/kg	8/25/01	8/25/01	1	<0.10	<0.10	<0.10	<0.10	108	
0108149 -35 LB-2-S-60	LB-2-S-60	Soil	mg/kg	8/25/01	8/25/01	1	<0.10	<0.10	<0.10	<0.10	112	
0108149 -43 LB-3-S-10	LB-3-S-10	Soil	mg/kg	8/28/01	8/29/01	-	<0.10	<0.10	<0.10	<0.10	116	
0108149 -45 LB-3-S-20	LB-3-S-20	Soil	mg/kg	8/28/01	8/29/01	-	<0.10	<0.10	<0.10	<0.10	108	
0108149 -47 LB-3-S-30	LB-3-S-30	Soil	mg/kg	8/28/01	8/29/01	1	<0.10	<0.10	<0.10	<0.10	111	
0108149 -49	LB-3-S-40	Soil	mg/kg	8/28/01	8/29/01	1	<0.10	<0.10	<0.10	<0.10	119	
0108149 -51	LB-3-S-50	Soil	mg/kg	8/28/01	8/29/01	-	<0.10	<0.10	<0.10	<0.10	116	
0108149 -53	LB-3-S-60	Soil	mg/kg	8/28/01	8/29/01	-	<0.10	<0.10	<0.10	<0.10	116	

Confidential

Client Name:

Project Name/No.:

Samples Received:

Law Engineering Inc.

S. Mesa WQARF/70211-0-0150-2-2.10

8/20-28/2001

TGI ID No.: 0108149 ADHS Cert. No.: AZM133/AZ0133

TGI ID/	CLIENT					EPA 8	EPA 8021B-Modified/Solvent Screen	fied/Solve	nt Screen		
SAMPLE	<u>Q</u>			Date		trans-1,2	cis-1,2			Sur.	70-130%
NUMBER		Matrix	Units	Analyzed	ä	DCE	DCE	TCE	PCE	Rec. %	Flag
0108149 -18	LB-1-W-130	Aq	ng/L	8/22/01	_	<1.0	10	2.1	29 D	74	
0108149 -19 LB-1-W-1	LB-1-W-140	Aq	ug/L	8/22/01	-	√ 0.1°	<1.0	<1.0	<1.0	117	
0108149 -20 LB-1-W-188	LB-1-W-188	Aq	ng/L	8/22/01	-	<.10	3.1	<1.0	4.7	118	
0108149 -21	LB-1-W-205	Aq	ng/L	8/22/01	-	<1.0	3.0	د 1.0	4.6	75	
0108149 -22	LB-1-W-222	Aq	ng/L	8/22/01	-	<1.0	<1.0	<1.0	<1.0	86	
0108149 -23	LB-1-W-240	Aq	ug/L	8/22/01	-	۲.0 د۲.0	<1.0	<1.0	<1.0	25	
0108149 -38	LB-2-GW-130	Aq	ng/L	8/26/01	-	<1.0	27	7.3	12	113	
0108149 -39	LB-2-GW-150	Aq	ng/L	8/26/01	-	4.0	<1.0	41.0	9.6	113	
0108149 -40	LB-2-GW-170	Aq	T/6n	8/26/01	-	<1.0	42	8.5	88 D	108	
0108149 -41	0108149 -41 LB-2-GW-240	Aq	ng/L	8/26/01	-	√ 7.0	4.0	<1.0	<0.1>	108	
0108149 -55 LB-3-W-130	LB-3-W-130	Aq	ng/L	8/30/01	_	<1.0	3.2	در.0	2.7	98	
0108149 -56 LB-3-W-150	LB-3-W-150	Aq	ng/L	8/30/01	-	۸. 0.	۲.0 د۲.0	<1.0	1	100	
0108149 -57 LB-3-W-170	LB-3-W-170	Aq	ng/L	8/30/01	-	۸. م.0	4.4	<1.0	23	100	
0108149 -58 LB-3-W-200	LB-3-W-200	Aq	ng/L	8/30/01	-	<1.0	4.2	<1.0	11	113	
0108149 -59 LB-3-W-240	LB-3-W-240	Aq	ng/L	8/30/01	-	<1.0	<1.0	4.0	2.3	94	

Notes:

A representative sample from this project has been confirmed as required by the ADHS. EPA 8021

Analytical Quality Control Data Reagent Blank 8021B-Modified Transwest Geochem, Inc.

Law Engineering Inc. Project Name/No.:

Client Name:

S. Mesa WQARF/70211-0-0150-2-2.10 8/20-28/2001

Samples Received:

ADHS Cert. No.: AZM133/AZ0133

TGI ID No.: 0108149

Matrix:	<i>></i> '	Vapor
Units:	mg/m3	hmdd
trans-1,2-Dichloroethene:	<1.0	<0.25
cis-1,2-Dichloroethene:	<1.0	<0.25
Trichloroethene:	<1.0	<0.19
Tetrachloroethene:	<1.0	<0.15
Surrogate (70-130) %:		06
Date Analyzed:	/8	8/21/01
Samples Linked:	0108149	0108149 -(1,3,5,7,9,11)
Samples Linked:	0108149	0108149 -(13-16)
The state of the s		

Matrix:		Vapor
Units:	mg/m3	hmy
trans-1,2-Dichloroethene:	<1.0	<0.25
cis-1,2-Dichloroethene:	4.0	<0.25
Trichloroethene:	ح 1.0	<0.19
Tetrachloroethene:	<1.0	<0.15
Surrogate (70-130) %:		94
Date Analyzed:	80	8/25/01
Samples Linked:	Į.	0108149 -(24,26,28)
Samples Linked: 0108149 -(30,32,34)	0108149	-(30,32,34)
Samples Linked:	0108149 -(36,37)	-(36,37)

		/
Matrix:	,	vapor
Units:	mg/m3	hmdd
trans-1,2-Dichloroethene:	<1.0	<0.25
cis-1,2-Dichloroethene:	<1.0	<0.25
Trichloroethene:	<1.0	<0.19
Tetrachloroethene:	در.0	<0.15
Surrogate (70-130) %:		110
Date Analyzed:	æ	8/28/01
Samples Linked:	0108149	0108149 -(42,44,46,48)
Samples Linked:	0108149	0108149 -(50,52,54

The second of th

Project Name/No.: Client Name:

Samples Received:

Law Engineering Inc.

S. Mesa WQARF/70211-0-0150-2-2.10 8/20-28/2001

Duplicate

	frans.1 2.DCF	cie-1 2-DCF	TCE	H CO
- Hrite	10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		- Carlon	- Cm
3 1 2	CIII/GIII	cing/in	CHI/GHI	cili/fili
Matrix:	Vapor	Vapor	Vapor	Vapor
Sample Result:	<1.0	<1.0	<1.0	11
Duplicate Result:	<1.0	<1.0	<1.0	13
RPD:	N/A	N/A	N/A	17%
Surr Recovery (70-130)%:	95%	%96	And the second s	
Date Analyzed:	8/2	8/21/01		
Sample Duplicated:	0108149 -11	-11		
Samples Linked:	0108149	0108149 -(1,3,5,7,9,11,13)		

CS

	trans-1,2-DCE	cis-1,2-DCE	TCE	PCE
Units:	mg/m3	mg/m3	mg/m3	mg/m3
Matrix:	Vapor	Vapor	Vapor	Vapor
LCS Amount:	5.0	5.0	5.0	5.0
LCS Result:	5.7	5.6	4.3	4.4
Percent Recovery:	114	112	98	88
LCS Surr. (70-130) %:		102%		
Date Analyzed:		8/21/01		
Samples Linked:	0108149	0108149 -(1,3,7,9,11,13)		
Samples Linked.	0108149	0108149 -(5 14-16)		

TGI ID No.: 0108149

ADHS Cert. No.: AZM133/AZ0133

Client Name:

Samples Received: Project Name/No.:

Law Engineering Inc.

S. Mesa WQARF/70211-0-0150-2-2.10

8/20-28/2001

Duplicate

	The state of the s			
	trans-1,2-DCE	cis-1,2-DCE	TCE	PCE
Units:	mg/m3	mg/m3	mg/m3	mg/m3
Matrix:	Vapor	Vapor	Vapor	Vapor
Sample Result:	<20	<20	<20	480
Duplicate Result:	<20	<20	<20	390
RPD:	AA	NA	NA	21%
Surr Recovery (70-130)%:	94%	94%		
Date Analyzed:		8/21/01		
Sample Duplicated:	0108149 -05	-05		
Samples Linked:		0108149 -(5,14-16)		

CS

)		
	trans-1,2-DCE	cis-1,2-DCE	TCE	PCE
Units:	mg/m3	mg/m3	mg/m3	mg/m3
Matrix:	Vapor	Vapor	Vapor	Vapor
LCS Amount:	5.0	5.0	5.0	5.0
LCS Result:	3.9	5.0	4.6	4.6
Percent Recovery:	78	100	92	92
LCS Surr. (70-130) %:		95%		
Date Analyzed:		8/25/01		
Samples Linked:		0108149 -(24,26,28,30)		
Samples Linked:		0108149 -(32,34,36,37)		

ADHS Cert. No.: AZM133/AZ0133 TGI ID No.: 0108149

Confidential

Client Name:

Project Name/No.:

Samples Received:

Law Engineering Inc.

S. Mesa WQARF/70211-0-0150-2-2.10

8/20-28/2001

Duplicate

			Comments and Control of the Control	
	trans-1,2-DCE	cis-1,2-DCE	TCE	PCE
Units:	mg/m3	mg/m3	mg/m3	mg/m3
Matrix:	Vapor	Vapor	Vapor	Vapor
Sample Result:	<1.0	1.0	<1.0	18
Duplicate Result:	<1.0	1.3	<1.0	18
RPD:	Ą	26%	ĄN	%0
Surr Recovery (70-130)%:	93%	107%	manuman non nonexamonio (non proprio de la companya	
Date Analyzed:	8/2	8/25/01		
Sample Duplicated:	0108149 -32	-32		
Samples Linked:	0108149	0108149 -(24,26,28,30)		
Samples Linked:	0108149	0108149 -(32,34,36,37)		

LCS

		THE RESERVE THE PROPERTY OF THE PERSON NAMED AND TH		
	trans-1,2-DCE	cis-1,2-DCE	TCE	PCE
Units:	mg/m3	mg/m3	mg/m3	mg/m3
Matrix:	Vapor	Vapor	Vapor	Vapor
LCS Amount:	5.0	5.0	5.0	5.0
LCS Result:	4.5	5.2	5.0	4.7
Percent Recovery:	06	104	100	94
LCS Surr. (70-130) %:	-	116%		The state of the s
Date Analyzed:	8/2	8/28/01		
Samples Linked:	0108149	0108149 -(42,44,46,48)		
Samples Linked:	0108149	0108149 -(50,52,54		

TGI ID No.: 0108149

ADHS Cert. No.: AZM133/AZ0133

Samples Received: Project Name/No.: Client Name:

S. Mesa WQARF/70211-0-0150-2-2.10 Law Engineering Inc. 8/20-28/2001

Duplicate

	trans-1,2-DCE	cis-1,2-DCE	TCE	PCE
Units:	1	mg/m3	mg/m3	mg/m3
Matrix:	Vapor	Vapor	Vapor	Vapor
Sample Result:	<1.0	<1.0	<1.0	1.6
Duplicate Result:	41.0	<1.0	<1.0	1.7
RPD:	NA AN	N/A	AN A	%9
Surr Recovery (70-130)%:	113%	116%		
Date Analyzed:		8/29/01		
Sample Duplicated:	010814950	-50		
Samples Linked:		0108149 -(42,44,46,48)		
Samples Linked:		0108149 -(50,52,54		

ADHS Cert. No.: AZM133/AZ0133 TGI ID No.: 0108149

Confidential

Samples Received: Project Name/No.: Client Name:

S. Mesa WQARF/70211-0-0150-2-2.10 Law Engineering Inc.

8/20-28/2001

ADHS Cert. No.: AZM133/AZ0133 TGI ID No.: 0108149

Reagent Blank

Units:	mg/kg
Matrix:	Soil
trans-1,2-Dichloroethene:	<0.10
cis-1,2-Dichloroethene:	<0.10
Trichloroethene:	<0.10
Tetrachloroethene:	<0.10
Surr Rec%(70-130):	114
Date Extracted:	8/20/01
Date Analyzed:	8/21/01
Samples Linked:	0108149 -(2,4,6,8,10)

\circ		
9		
.,6,8,		
4,6,8,		
w ∣		
-		
n		
٠.,		i
7 (
-		
~ i i		
-(2,4		
\smile		
- 1		
~		
()		
-		ł
7		[
_		
0108149		1
മ		1
=		
\mathbf{c}		
$\overline{}$		1
$\overline{}$		i .
-		Į.
inked:		
_		
u		
A		Į.
Ψ.		1
\sim		1
_		1
~		
-=		1
		1
	1	ł
_		1
		4
w		i
ăí.		ł
w		
_		(
\sim		{
_		ł
_		ł
-		Į
_		ŧ
æ	i	ŧ
Samples		1
u)	l .	1
		1
		í
	1	
		1
		t
	l .	ŧ .
		ſ
	1	ŧ
		Į.
	l	ł
	1	
		4
		t
)
	ļ	ŧ
		i
		i

.alulte.	[/bi-
Matrix:	Soil
trans-1,2-Dichloroethene:	<0.10
cis-1,2-Dichloroethene:	<0.10
Trichloroethene:	<0.10
Tetrachloroethene:	<0.10
Surr Rec%(70-130):	118
Date Extracted:	8/21/01
Date Analyzed:	8/23/01
Samples Linked:	0108149 -(12)

CS

	trans-1,2-			
	DCE	cis-1,2-DCE	TCE	PCE
Units:	mg/kg	mg/kg	mg/kg	mg/kg
Matrix:	Soil	Soil	Soil	Soil
LCS Amount:	0.50	0.50	0.50	0.50
LCS Result:	0.36	0.47	0.40	0.45
Percent Recovery:	72	94	80	6
Limits	70-130%	70-130%	70-130%	70-130%
Surr Rec%(70-130):	95%			
Date Extracted:	8/20/01			
Date Analyzed:	8/21/01			
Samples Linked:	0108149	0108149 -(2,4,6,8,10)		

	trans-1,2-			
	DCE	cis-1,2-DCE	TCE	PCE
Units:	mg/kg	mg/kg	mg/kg	mg/kg
Matrix:	Soil	Soil	Soil	Soil
LCS Amount:	0.50	0.50	0.50	0.50
LCS Result:	0.40	0.47	0.45	0.51
Percent Recovery:	80	94	8	102
Limits	70-130%	70-130%	70-130%	70-130%
Surr Rec%(70-130):	%66			
Date Extracted:	8/21/01			
Date Analyzed:	8/23/01			
Samples Linked:	0108149 -(12)	-(12)		

Client Name:

Project Name/No.:

Samples Received:

Law Engineering Inc.

S. Mesa WQARF/70211-0-0150-2-2.10

8/20-28/2001

ADHS Cert. No.: AZM133/AZ0133 TGI ID No.: 0108149

Reagent Blank

Units: mg/kg Matrix: Soil trans-1,2-Dichloroethene: <0.10	
Trichloroethene: <0.10	
Tetrachioroethene: <0.10	
Surr Rec%(70-130): 101	
Date Extracted: 8/25/01	
Date Analyzed: 8/25/01	
Samples Linked: 0108149 -(25,27,29)	,27,29)
Samples Linked: 0108149 -(31,33,35)	33 35)

LCS

	trans-1,2-			
	DCE	cis-1,2-DCE	TCE	PCE
Units:	mg/kg	mg/kg	mg/kg	mg/kg
Matrix:	Soil	Soil	Soil	Soil
LCS Amount:	0.50	0.50	0.50	0.50
LCS Result:	0.43	0.53	0.48	0.48
Percent Recovery:	86	106	96	96
Limits	70-130%	70-130%	70-130%	70-130%
Surr Rec%(70-130):	106%			
Date Extracted:	8/25/01			
Date Analyzed:	8/25/01			
Samples Linked:	0108149	0108149 -(25,27,29)		
Samples Linked:	0108149	0108149 -(31,33,35)		

70-130% **1**5E ng/L 8.6 Αd 9 86 cis-1,2-DCE 70-130% ng/L 4d 0 9.7 97 0108149 -(18-23) trans-1,2-70-130% 8/22/01 DCE ng/L %66 9.0 Aq 9 8 LCS Amount: LCS Result: Date Analyzed: Samples Linked: Units: Matrix: Percent Recovery: Limits Surr Rec%(70-130):

Aqueous

ug/L

Units: Matrix: ۸ 1.0 <u>م</u>1.0 ×1.0 ۸ 1.0

trans-1,2-Dichloroethene: cis-1,2-Dichloroethene: Trichloroethene: Tetrachloroethene: 70-130%

9.1 9

PCE ng/L ₽ 10

Samples Linked: 0108149 -(18-23)

8/22/01

97

Surr Rec%(70-130): Date Analyzed:

Client Name:

Project Name/No.:

Samples Received:

8/20-28/2001

S. Mesa WQARF/70211-0-0150-2-2.10 Law Engineering Inc.

ADHS Cert. No.: AZM133/AZ0133 TGI ID No.: 0108149

Reagent Blank

Units:	ng/L
Matrix:	Aqueous
trans-1,2-Dichloroethene:	<1.0
cis-1,2-Dichloroethene:	<1.0
Trichloroethene:	<1.0
Tetrachloroethene:	<1.0
Surr Rec%(70-130):	117
Date Analyzed:	8/26/01
Samples Linked:	0108149 -(38-41)

LCS

	franc.1 2.			
	DCE	cis-1,2-DCE	TCE	PCE
Units:	ng/L	ng/L	ng/L	ng/L
Matrix:	Aq	Aq	Aq	Aq
LCS Amount:	10	10	10	10
LCS Result:	9.1	11.0	10.1	8.8
Percent Recovery:	91	110	101	88
Limits	70-130%	70-130%	70-130%	70-130%
Surr Rec%(70-130):	112%			
Date Analyzed:	8/26/01			
Samples Linked:	0108149 -(38-41)	-(38-41)		

mg/kg

Soil

Matrix: Units:

trans-1,2-Dichloroethene: cis-1,2-Dichloroethene: Trichloroethene: Tetrachloroethene:

<0.10 <0.10 <0.10 <0.10

	trans-1,2-			
	DCE	cis-1,2-DCE	TCE	PCE
Units:	mg/kg	mg/kg	mg/kg	mg/kg
Matrix:	Soil	Soil	Soil	Soil
LCS Amount:	05.0	0.50	0.50	0.50
LCS Result:	0.48	0.55	0.48	0.41
Percent Recovery:	96	110	96	82
Limits	70-130%	70-130%	70-130%	70-130%
Surr Rec%(70-130):	107%			
Date Extracted:	8/28/01			
Date Analyzed:	8/28/01			
Samples Linked:	0108149	0108149 -(43,45,47)		
Samples Linked:	0108149	0108149 -(49,51,53)		

Samples Linked: 0108149 -(43,45,47) Samples Linked: 0108149 -(49,51,53)

8/28/01 8/28/01

5

Surr Rec%(70-130): Date Extracted: Date Analyzed:

Client Name:

Project Name/No.:

Samples Received:

Law Engineering Inc.

S. Mesa WQARF/70211-0-0150-2-2.10 8/20-28/2001

TGI ID No.: 0108149

ADHS Cert. No.: AZM133/AZ0133

Reagent Blank

Units:	ug/L
Matrix:	Aqueous
trans-1,2-Dichloroethene:	1.5
cis-1,2-Dichloroethene:	<1.0
Trichloroethene:	<1.0
Tetrachloroethene:	<1.0
	d
Surr Rec%(70-130):	92
Date Analyzed:	8/30/01
Samples Linked:	0108149 -(55-59)

LCS

	trans-1,2- DCE	cis-1,2-DCE	TCE	PCE
Units:	ng/L	ug/L	ug/L	ug/L
Matrix:	Aq	Aq	Aq	Aq
LCS Amount:	9	10	10	10
LCS Result:	12.0	10.4	9.3	10.1
Percent Recovery:	120	104	93	101
Limits	70-130%	70-130%	70-130%	70-130%
Surr Rec%(70-130):	%26			
Date Analyzed:	8/30/01			
Samples Linked:	0108149 -(55-59)	-(55-59)		

Transwest Geochem, Inc. Analytical Quality Control Data MS/MSD 8021B-Modified

Client Name: Law Engir Project Name/No.: S. Mesa W Samples Received: 8/20-28/20

Law Engineering Inc. S. Mesa WQARF/70211-0-0150-2-2.10 8/20-28/2001

TGI ID No.: 0108149 ADHS Cert. No.: AZM133/AZ0133

	trans-1,2-			
	DCE	cis-1,2-DCE	10E	PCE
Units:	mg/kg	mg/kg	mg/kg	mg/kg
Matrix:	Soil	Soil	Soil	Soil
Sample Result:	<0.10	<0.10	<0.10	<0.10
Spike Amount:	0.50	0.50	0.50	0.50
Spike Result:	0.38	0.47	0.42	0.45
Percent Recovery:	%9/	94%	84%	%06
Duplicate Result:	0.40	0.48	0.45	0.5
Percent Recovery:	80%	%96	%06	100%
Limits	70-130%	70-130%	70-130%	70-130%
RPD:	2%	2%	%2	11%
Surr Rec%(70-130)	95%	102%		
Date Extracted:	/8	8/20/01		
Date Analyzed:	7/8	8/23/01		
Sample Spiked:	0108149 -10	-10		
Samples Linked:	0108149	0108149 -(2,4,6,8,10)		

	trans-1,2-			
	DCE	cis-1,2-DCE	10E	PCE
Units:	ug/L	ng/L	ng/L	ng/L
Matrix:	Aqueous	Aqueous	Aqueous	Aqueous
Sample Result:	<1.0	<1.0	در.0 م	<1.0
Spike Amount:	10	10	10	10
Spike Result:	7.1	9.1	8.1	8.5
Percent Recovery:	71%	91%	81%	85%
Duplicate Result:	7.5	9.2	8.2	9.0
Percent Recovery:	75%	95%	82%	%06
Limits	70-130%	70-130%	70-130%	70-130%
RPD:	2%	1%	1%	%9
Surr Rec%(70-130)	114%	111%		
Date Analyzed:	2/8	8/22/01		
Samples Linked:	0108149 -(18-23)	-(18-23)		4
Sample Spiked:	0108149 -19	-19		

Project Name/No.: Client Name:

Samples Received:

Law Engineering Inc.

S. Mesa WQARF/70211-0-0150-2-2.10 8/20-28/2001

	DCE	cis-1,2-DCE	TCE	PCE
Units:	mg/kg	mg/kg	mg/kg	mg/kg
Matrix:	Soil	Soil	Soil	Soil
Sample Result:	<0.10	<0.10	<0.10	<0.10
Spike Amount:	0.50	0:20	0.50	0.50
Spike Result:	0.39	0.46	0.47	0.48
Percent Recovery:	78%	95%	94%	%96
Duplicate Result:	0.36	0.48	0.45	0.47
Percent Recovery:	72%	%96	%06	94%
Limits	70-130%	70-130%	70-130%	70-130%
RPD:	8%	4%	4%	2%
Surr Rec%(70-130)	%86	%86		
Date Extracted:	//8	8/21/01		
Date Analyzed:	/8	8/23/01		
Sample Spiked:	0108149 -12	-12		
Samples Linked:	0108149 -12	-12		

Market 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	DCE	cis-1,2-DCE	TCE	PCE
Units:	mg/kg	mg/kg	mg/kg	mg/kg
Matrix:	Soil	Soil	Soil	Soil
Sample Result:	<0.10	<0.10	<0.10	<0.10
Spike Amount:	0.50	0.50	0.50	0.50
Spike Result:	0.45	0.50	0.48	0.42
Percent Recovery:	%06	100%	%96	84%
Duplicate Result:	0.43	0.51	0.48	0.43
Percent Recovery:	%98	102%	%96	%98
Limits	70-130%	70-130%	70-130%	70-130%
RPD:	2%	2%	%0	2%
Surr Rec%(70-130)	113%	117%		
Date Extracted:	78	8/25/01		
Date Analyzed:	/8	8/25/01		
Sample Spiked:	0108149 -35	-35		
Samples Linked:	0108149	0108149 -(25,27,29)		

Transwest Geochem, Inc. Analytical Quality Control Data MS/MSD 8021B-Modified

Client Name: Law Engineering Inc. Project Name/No.: S. Mesa WQARF/7021

Samples Received:

Law Engineering inc.
S. Mesa WQARF/70211-0-0150-2-2.10
8/20-28/2001

TGI ID No.: 0108149 ADHS Cert. No.: AZM133/AZ0133

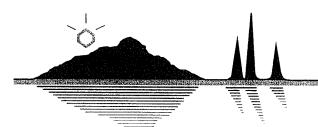
	trans-1,2-			
	DCE	cis-1,2-DCE	TCE	PCE
Units:	ng/L	ng/L	ug/L	ng/L
Matrix:	Aqueous	Aqueous	Aqueous	Aqueous
Sample Result:	<1.0	×1.0	<1.0	9.6
Spike Amount:	10	10	10	10
Spike Result:	8.9	10.8	9.6	19.1
Percent Recovery:	89%	108%	%66	95%
Duplicate Result:	8.6	10.2	9.7	19.4
Percent Recovery:	%98	102%	%26	%86
Limits	70-130%	70-130%	70-130%	70-130%
RPD:	3%	2%	2%	2%
Surr Rec%(70-130)	112%	110%		
And the state of t				
Date Analyzed:	8/2	8/26/01		
Sample Spiked:	0108149 -39	-39		
Samples Linked:	0108149 -(38-41)	-(38-41)		

	trans-1,2-			
	DCE	cis-1,2-DCE	TCE	PCE
Units:	mg/kg	mg/kg	mg/kg	mg/kg
Matrix:	Soil	Soil	Soil	Soil
Sample Result:	<0.10	<0.10	<0.10	<0.10
Spike Amount:	0.50	0:20	0.50	0:20
Spike Result:	0.50	0.57	0.51	0.43
Percent Recovery:	100%	114%	102%	%98
Duplicate Result:	0.49	0.57	0.52	0.44
Percent Recovery:	%86	114%	104%	88%
Limits	70-130%	70-130%	70-130%	70-130%
RPD:	2%	%0	2%	2%
Surr Rec%(70-130)	113%	116%		
Date Extracted:	7/8	8/28/01		
Date Analyzed:	7/8	8/29/01		
Sample Spiked:	0108149 -53	-53		
Samples Linked:	0108149	0108149 -(43,45,47)		
Samples Linked:	0108149	0108149 -(49,51,53)		

Project Name/No.: Client Name:

Samples Received:

Law Engineering Inc.


S. Mesa WQARF/70211-0-0150-2-2.10 8/20-28/2001

	trans-1,2-			
	DCE	cis-1,2-DCE	TCE	PCE
Units:	ug/L	ug/L	ng/L	ng/L
Matrix:	Aqueous	Aqueous	Aqueous	Aqueous
Sample Result:	<1.0	4.2	<1.0	11
Spike Amount:	10	10	10	10
Spike Result:	9.6	15.2	10.1	22.2
Percent Recovery:	%66	110%	101%	112%
Duplicate Result:	11.3	14.9	10.1	22.4
Percent Recovery:	113%	107%	101%	114%
Limits	70-130%	70-130%	70-130%	70-130%
RPD:	13%	2%	%0	1%
Surr Rec%(70-130)	%96	95%		
Date Analyzed:	//8	8/30/01		
Sample Spiked:	0108149 -58	-58		
Samples Linked:	0108149 -(55-59)	-(55-59)		

ADHS Cert. No.: AZM133/AZ0133 TGI ID No.: 0108149

Confidential

TGI ID: 0109067

September 24, 2001

Law Engineering Inc. 4634 S. 36th Pl. Phoenix, AZ. 85040

Attention:

Jim Clarke

Project Name/No:

S. Mesa WQARF/70211-0-0150-2-2.10

Samples Received:

9/11-13/2001

Matrix:

Soil / Vapor

Mobile Lab No.:

TGI02

Transwest Geochem, Inc. received and analyzed samples on the above date(s). The samples were analyzed by EPA Method 8021B-Modified, a field screening technique. The results of these analyses and the quality control data are enclosed.

The calibration data for trans-1,2-Dichloroethene did not meet TGI criteria and although there were no reportable hits for this compound, the effected data has been flagged as estimated values with a 'J' flag.

If you have any questions or comments, please do not hesitate to contact us at (602)437-0330.

Sincerely,

Michael E. Barber

Laboratory Director

Mchalls Barber

ADHS License No.:

AZM133/AZ0133

Client Name:

Law Engineering Inc.

Project Name/No.: Samples Received:

S. Mesa WQARF/70211-0-0150-2-2.10 9/11-13/2001

TGI ID No.: 0109067 ADHS Cert. No.: AZM133/AZ0133

			EPA 8021B-	EPA 8021B-Modified/Solvent Screen	rent Screen				
	Lab ID	0109	0109067-1	0109067-2	167-2	0109(0109067-3	0109	0109067-4
	Sample ID	LB4-8	LB4-SG-10	LB4-SG-20	G-20	LB4-S	LB4-SG-30	LB4-S	_B4-SG-40
	Date Analyzed	9/1	9/11/01	9/11/01	/01	9/11/01	1/01	9/11/01	/01
	Dilution Factor		-					-	
***************************************	Matrix	Va	Vapor	Vapor	oor	Vapor	por	Vapor	oor
ANALYTE	Units	mg/m3	hpmv	mg/m3	ppmv	mg/m3	ppmv	mg/m3	bpmv
trans-1,2-Dichloroethene	ethene	<1.0 J	<0.25 J	<1.0 J	<0.25 J	<1.0 J	<0.25 J	<1.0 J	<0.25 J
cis-1,2-Dichloroethene	hene	<1.0	<0.25	<1.0	<0.25	<1.0	<0.25	<1.0	<0.25
Trichloroethene		<1.0	<0.19	<1.0	<0.19	<1.0	<0.19	<1.0	<0.19
Tetrachloroethene	d)	1.7	0.25	<1.0	<0.15	8.1	1.19	8.3	1.22
Surrogate (70-130)- %	% -(c	10	108%	109	%601	100	106 %	100	%60I

		EPA 8021B	EPA 8021B-Modified/Solvent Screen	vent Screen				
Lab ID	0109	1109067-5	01090	0109067-11	01090	0109067-12	01090	0109067-13
Sample ID	LB4-8	LB4-SG-50	LB4-8	_B4-SG-60	S-281	LB7-SG-10	S-287-8	LB7-SG-20
Date Analyzed	1/6	9/11/01	9/1/	9/14/01	1/6	9/14/01	9/14/01	1/01
Dilution Factor			,				•	
Matrix	Va	Vapor	Vapor	por	Va	Vapor	Vapor	por
ANALYTE Units	mg/m3	bpmv	mg/m3	bpmv	mg/m3	ppmv	mg/m3	ppmv
trans-1,2-Dichloroethene	<1.0 J	<0.25 J	<1.0 J	<0.25 J	<1.0 J	<0.25 J	<1.0 J	<0.25 J
cis-1,2-Dichloroethene	<1.0	<0.25	<1.0	<0.25	<1.0	<0.25	<1.0	<0.25
Trichloroethene	<1.0	<0.19	<1.0	<0.19	<1.0	<0.19	<1.0	<0.19
Tetrachioroethene	2.1	0.31	1.1	0.16	4.5	99.0	2.0	0.29
Surrogate (70-130)- %	10	108%	1	117%	=======================================	118%	7	118%

Project Name/No.: Client Name:

Samples Received:

Law Engineering Inc.

S. Mesa WQARF/70211-0-0150-2-2.10 9/11-13/2001

			EPA 8021B	EPA 8021B-Modified/Solvent Screen	vent Screen				
	Lab ID	01090	0109067-14	01090	0109067-15	01090	0109067-16	01090	0109067-17
	Sample ID	LB7-8	LB7-SG-30	S-281	LB7-SG-40	LB7-5	LB7-SG-50	LB7-8	LB7-SG-60
	Date Analyzed	9/1/	9/14/01	9/14/01	1/01	9/1/6	9/14/01	9/1/	9/14/01
	Dilution Factor				ı		_		1
	Matrix	Va	Vapor	Va	Vapor	Va	Vapor	Va	Vapor
ANALYTE	Units	mg/m3	hpmv	mg/m3	ppmv	mg/m3	vmdd	mg/m3	bpmv
trans-1,2-Dichloroethene	oethene	<1.0 J	<0.25 J	<1.0 J	<0.25 J	<1.0 J	<0.25 J	<1.0 J	<0.25 J
cis-1,2-Dichloroethene	thene	<1.0	<0.25	<1.0	<0.25	<1.0	<0.25	<1.0	<0.25
Trichloroethene		<1.0	<0.19	ح <u>ا</u> .0	<0.19	<1.0	<0.19	<1.0	<0.19
Tetrachloroethene	9	16	2.36	3.3	0.49	19	2.80	21	3.09
Surrogate (70-130)- %	% -(0)	11	115%	11	115%	11(116%	12	120%

			EPA 8021B	EPA 8021B-Modified/Solvent Screen	vent Screen				
	Lab ID	01090	0109067-25	01090	0109067-26	01090	0109067-27	01090	0109067-28
	Sample ID	-981	LB6-SG-10)-987	LB6-SG-20	LB6-	-B6-SG-30	-98J	LB6-SG-40
	Date Analyzed	1/6	9/14/01	1/6	9/14/01	9/1	9/14/01	9/1	9/14/01
	Dilution Factor	•	-	•	1		1		1
	Matrix	Va	Vapor	Va	Vapor	Va	Vapor	Na	Vapor
ANALYTE	Units	mg/m3	hmdd	mg/m3	hpmv	mg/m3	ymdd	mg/m3	ppmv
trans-1,2-Dichloroethene	ethene	<1.0 J	<0.25 J	<1.0 J	<0.25 J	<1.0 J	<0.25 J	<1.0 J	<0.25 J
cis-1,2-Dichloroethene	hene	<1.0	<0.25	<1.0	<0.25	<1.0	<0.25	<1.0	<0.25
Trichloroethene	THE REAL PROPERTY AND ASSESSMENT OF THE PROPERTY OF THE PROPER	<1.0	<0.19	<1.0	<0.19	<1.0	<0.19	<1.0	<0.19
Tetrachloroethene		1.5	0.22	37 D	5.45	22	3.24	15	2.21
Surrogate (70-130)- %	% -((11	118%	11	118%	11	118%	117%	

Confidential

Transwest Geochem, Inc. Analytical Results

Client Name:

Law Engineering Inc.

Project Name/No.:

Samples Received:

S. Mesa WQARF/70211-0-0150-2-2.10

9/11-13/2001

	EFA 0UZID	EPA 8021B-Modified/Solveill Screen	יייייייייייייייייייייייייייייייייייייי		
	Lab ID	01090	0109067-29	01090	0109067-30
	Sample ID	S-987	_B6-SG-50	S-987	LB6-SG-60
	Date Analyzed	9/14/01	1/01	9/14/01	4/01
	Dilution Factor			•	
	Matrix	Vapor	oor	Val	Vapor
ANALYTE	Units	mg/m3	bpmv	mg/m3	ppmv
trans-1,2-Dichloroethene	ethene	<1.0 J	<0.25 J	<1.0 J	<0.25 J
cis-1,2-Dichloroethene	hene	<1.0	<0.25	<1.0	<0.25
Trichloroethene		<1.0	<0.19	<1.0	<0.19
Tetrachloroethene		65 D	9.57	82 D	12.08
Surrogate (70-130)- %	% -((112	112%	11.	117%

Notes:

Q

- The vapor analysis performed by Transwest Geochem, Inc. is a screening technique Sample was analyzed at a greater dilution on the same day.
- The reported concentration is estimated. See cover letter for narrative.

based on a modified EPA method. This data is not to be used in compliance situations.

Transwest Geochem, Inc. **Analytical Results**

Client Name:

Project Name/No.:

Samples Received:

S. Mesa WQARF/70211-0-0150-2-2.10 9/11-13/2001 Law Engineering Inc.

ADHS Cert. No.: AZM133/AZ0133 TGI ID No.: 0109067

TGI ID/	CLIENT						EPA 802	EPA 8021B-Modified/Solvent Screen	vent Screen			
SAMPLE	Q			Date	Date		trans-1,2	cis-1,2			Sur.	70-130%
NUMBER		Matrix	Units	Extracted	Analyzed	E E	DCE	DCE	TCE	PCE	Rec. %	Flag
0109067 -06	LB4-S-10	Soil	mg/kg	9/11/01	9/12/01	-	<0.10 J	<0.10	<0.10	<0.10	66	
0109067 -07	LB4-S-20	Soil	mg/kg	9/11/01	9/12/01	-	<0.10 J	<0.10	<0.10	<0.10	107	
0109067 -08	LB4-S-30	Soil	mg/kg	9/11/01	9/12/01	-	<0.10 J	<0.10	<0.10	<0.10	101	
0109067 -09 LB4-S-40	LB4-S-40	Soil	mg/kg	9/11/01	9/12/01	~	<0.10 J	<0.10	<0.10	<0.10	102	
0109067 -10	LB4-S-50	Soil	mg/kg	9/11/01	9/12/01	-	<0.10 J	<0.10	<0.10	<0.10	8	
0109067 -18	LB4-5-60	Soil	mg/kg	9/13/01	9/14/01	-	<0.10	<0.10	<0.10	<0.10	98	
0109067 -19	LB7-S-10	Soil	mg/kg	9/13/01	9/14/01	-	<0.10	<0.10	<0.10	<0.10	91	
0109067 -20 LB7-S-20	LB7-S-20	Soil	mg/kg	9/13/01	9/14/01	-	<0.10	<0.10	<0.10	<0.10	86	
0109067 -21	LB7-S-30	Soil	mg/kg	9/13/01	9/14/01	-	<0.10	<0.10	<0.10	<0.10	107	
0109067 -22	LB7-S-40	Soil	mg/kg	9/13/01	9/14/01	-	<0.10	<0.10	<0.10	<0.10	104	
0109067 -23	LB7-S-50	Soil	mg/kg	9/13/01	9/14/01	-	<0.10	<0.10	<0.10	<0.10	94	
0109067 -24	LB7-S-60	Soil	mg/kg	9/13/01	9/14/01	-	<0.10	<0.10	<0.10	<0.10	8	
0109067 -31	LB6-S-10	Soil	mg/kg	9/14/01	9/14/01	-	<0.10	<0.10	<0.10	<0.10	102	
0109067 -32	LB6-S-20	Soil	mg/kg	9/14/01	9/14/01	-	<0.10	<0.10	<0.10	<0.10	8	
0109067 -33	LB6-S-30	Soil	mg/kg	9/14/01	9/14/01	~	<0.10	<0.10	<0.10	<0.10	86	
0109067 -34	LB6-S-40	Soil	mg/kg	9/14/01	9/14/01	-	<0.10	<0.10	<0.10	<0.10	106	
0109067 -35	LB6-S-50	Soil	mg/kg	9/14/01	9/14/01	-	<0.10	<0.10	<0.10	<0.10	96	
0109067 -36	LB6-S-60	Soil	mg/kg	9/14/01	9/14/01	-	<0.10	<0.10	<0.10	<0.10	98	

Notes:

The reported concentration is estimated. See cover letter for narrative.

Confidential

Analytical Quality Control Data Reagent Blank 8021B-Modified Transwest Geochem, Inc.

9/11-13/2001 Samples Received: Project Name/No.: Client Name:

S. Mesa WQARF/70211-0-0150-2-2.10 Law Engineering Inc.

a d
A _b .
->

ADHS Cert. No.: AZM133/AZ0133

TGI ID No.: 0109067

Matrix:	/a	Vapor	
Units:	mg/m3	ppmv	
trans-1,2-Dichloroethene:	<1.0	<0.25	
cis-1,2-Dichloroethene:	<1.0	<0.25	
Trichloroethene:	<1.0	<0.19	
Tetrachloroethene:	<1.0	<0.15	
Surrogate (70-130) %:	_	116	
Date Analyzed:	9/1	9/11/01	
Samples Linked:	0109067 -(1-5)	-(1-5)	

Matrix:		Vapor
Units:	mg/m3	hpmv
trans-1,2-Dichloroethene:	<1.0 1.0	<0.25
cis-1,2-Dichloroethene:	<1.0	<0.25
Trichloroethene:	<1.0	<0.19
Tetrachloroethene:	<1.0	<0.15
Surrogate (70-130) %:		116
Date Analyzed:	53	9/14/01
Samples Linked: 0109067 -11-17,25-30	0109067	-11-17,25-30

Analytical Quality Control Data Transwest Geochem, Inc. 8021B-Modified

Client Name:

Project Name/No.:

Samples Received:

Law Engineering Inc.

S. Mesa WQARF/70211-0-0150-2-2.10

9/11-13/2001

Duplicate

	A			Contraction of the Contraction o
	trans-1,2-DCE	cis-1,2-DCE	TCE	PCE
Units:	mg/m3	mg/m3	mg/m3	mg/m3
Matrix:	Vapor	Vapor	Vapor	Vapor
Sample Result:	<1.0	<1.0	<1.0	<1.0
Duplicate Result:	<1.0	<1.0	<1.0	<1.0
RPD:	N/A	N/A	N/A	N/A
Surr Recovery (70-130)%:	117%	120%		
Date Analyzed:	9/12/01	701		
Sample Duplicated:	0109058 -1	_		
Samples Linked:	0109067 -(1-5)	-(1-5)		

LCS

)		
	trans-1,2-DCE	cis-1,2-DCE	TCE	PCE
Units:	mg/m3	mg/m3	mg/m3	mg/m3
Matrix:	Vapor	Vapor	Vapor	Vapor
LCS Amount:		5.0	5.0	15
LCS Result:	5.0	5.8	5.3	5.4
Percent Recovery:	100	116	106	36
LCS Surr. (70-130) %:	100	108%	-	
Date Analyzed:	9/11/01	/01		
Samples Linked:	0109067 -(1-5)	-(1-5)		

TGI ID No.: 0109067

ADHS Cert. No.: AZM133/AZ0133

i komini

Analytical Quality Control Data Transwest Geochem, Inc. 8021B-Modified

Client Name:

Project Name/No.:

Samples Received:

Law Engineering Inc.

S. Mesa WQARF/70211-0-0150-2-2.10

9/11-13/2001

Duplicate

	trans-1,2-DCE	cis-1,2-DCE	TCE	PCE
Units:	mg/m3	mg/m3	mg/m3	mg/m3
Matrix:	Vapor	Vapor	Vapor	Vapor
Sample Result:	<1.0	<1.0	<1.0	16
Duplicate Result:	<1.0	<1.0	<1.0	17
RPD:	N/A	N/A	N/A	%9
Surr Recovery (70-130)%:	115%	113%		
Date Analyzed:	9/14/01	1/01		
Sample Duplicated:	0109067 -14	-14		
Samples Linked:		0109067 -11-17,25-30		

CS

)) I		
	trans-1,2-DCE	cis-1,2-DCE	TCE	PCE
Units:	mg/m3	mg/m3	mg/m3	mg/m3
Matrix:	Vapor	Vapor	Vapor	Vapor
LCS Amount:	5.0	5.0	5.0	15
LCS Result:	5	5.6	5.9	5.8
Percent Recovery:	100	112	118	39
LCS Surr. (70-130) %:		115%		
Date Analyzed:	9/14/01	1/01		
Samples Linked:	0109067	0109067 -11-17,25-30		

TG! ID No.: 0109067

ADHS Cert. No.: AZM133/AZ0133

Reagent Blank/LCS Method 8021B-Modified Analytical Quality Control Data Transwest Geochem, Inc.

Client Name:

Project Name/No.:

Samples Received:

Law Engineering Inc.

S. Mesa WQARF/70211-0-0150-2-2.10 9/11-13/2001

TGI ID No.: 0109067

ADHS Cert. No.: AZM133/AZ0133

Reagent Blank

	Approximation of the control of the
Units:	mg/kg
Matrix:	Soil
trans-1,2-Dichloroethene:	<0.10
cis-1,2-Dichloroethene:	<0.10
Trichloroethene:	<0.10
Tetrachloroethene:	<0.10
Surr Rec%(70-130):	113
Date Extracted:	9/11/01
Date Analyzed:	9/12/01
Samples Linked:	0109067 -(6-10)

SS	
_	

			CONTRACTOR OF THE PARTY OF THE	
			Ethyl	Total
	Benzene	Toluene	Benzene	Xylenes
Units:	mg/kg	mg/kg	mg/kg	mg/kg
Matrix:	Soil	Soil	Soil	Soil
LCS Amount:	0.50	0.50	0.50	1.5
LCS Result:	0.50	0.58	0.51	1.6
Percent Recovery:	100	116	102	107
Limits	70-130%	70-130%	70-130%	70-130%
Surr Rec%(70-130):	110%			
Date Extracted:	9/11/01			
Date Analyzed:	9/12/01			
Samples Linked:	0109067 -(6-10)	-(6-10)		

Units:	mg/kg
Matrix:	Soil
trans-1,2-Dichloroethene:	<0.10
cis-1,2-Dichloroethene:	<0.10
Trichloroethene:	<0.10
Tetrachioroethene:	<0.10
	•
Surr Rec%(70-130):	96
Date Extracted:	9/13/01
Date Analyzed:	9/14/01
Samples Linked:	0109067 -(18-24)

		- decourable - dec	***************************************	
	trans-1,2-DCE cis-1,2-DCE	cis-1,2-DCE	TCE	PCE
Units:	mg/kg	mg/kg	mg/kg	mg/kg
Matrix:	Soil	Soil	Soil	Soil
LCS Amount:	0.50	0.50	0.50	0.50
LCS Result:	0.57	0.52	0.45	0.43
Percent Recovery:	114	104	06	98
Limits	70-130%	70-130%	70-130%	70-130%
Surr Rec%(70-130):	94%			
Date Extracted:	9/13/01			
Date Analyzed:	9/14/01			
Samples Linked:	0109067 -(18-24)	-(18-24)		

Reagent Blank/LCS Method 8021B-Modified Analytical Quality Control Data Transwest Geochem, Inc.

Client Name:

Project Name/No.:

Samples Received:

Law Engineering Inc.

S. Mesa WQARF/70211-0-0150-2-2.10 9/11-13/2001

TGI ID No.: 0109067

ADHS Cert. No.: AZM133/AZ0133

Reagent Blank

Units:	mg/kg
Matrix:	Soil
trans-1,2-Dichloroethene:	<0.10
cis-1,2-Dichloroethene:	<0.10
Trichloroethene:	<0.10
Tetrachloroethene:	<0.10
Surr Rec%(70-130):	101
Date Extracted:	9/14/01
Date Analyzed:	9/14/01
Samples Linked:	0109067 -(31-36)

LCS

)		
	trans-1,2-DCE cis-1,2-DCE	cis-1,2-DCE	TCE	PCE
Units:	mg/kg	mg/kg	mg/kg	mg/kg
Matrix:	Soil	Soil	Soil	Soil
LCS Amount:	0.50	0.50	0.50	0.50
LCS Result:	0.50	0.54	0.51	0.55
Percent Recovery:	100	108	102	110
Limits	70-130%	70-130%	70-130%	70-130%
Surr Rec%(70-130):	80%			
Date Extracted:	9/14/01			
Date Analyzed:	9/14/01			
Samples Linked:	0109067 -(31-36)	-(31-36)		

Transwest Geochem, Inc. Analytical Quality Control Data MS/MSD 8021B-Modified

Client Name: Project Name/No.:

Law Engineering Inc. S. Mesa WQARF/70211-0-0150-2-2.10

S. Mesa WQARF 9/11-13/2001

TGI ID No.: 0109067 ADHS Cert. No.: AZM133/AZ0133

Samples Received:	9/11-13/2001				
	trans-1,2-				
	DCE	cis-1,2-DCE	TCE	PCE	
Units:	mg/kg	mg/kg	mg/kg	mg/kg	
Matrix:	Soil	Soil	Soil	Soil	
Sample Result:	<0.10	<0.10	<0.10	<0.10	
Spike Amount:	0.50	0.50	0.50	0.50	
Spike Result:	0.50	0.58	0.54	0.54	
Percent Recovery:	100%	116%	108%	108%	
Duplicate Result:	0.50	0.58	0.52	0.52	
Percent Recovery:	100%	116%	104%	104%	
Limits:	70-130%	70-130%	70-130%	70-130%	
RPD:	%0	%0	4%	4%	
Surr Rec%(70-130)	100%	94%	Park de la companya de la park de		
Date Extracted:		9/11/01			
Date Analyzed:		9/12/01			
Samples Linked:	0109067 -(6-10)	-(6-10)			
Sample Spiked:	0109067 -10	-10			

	trans-1,2-			
	DCE	cis-1,2-DCE	TCE	PCE
Units:	mg/kg	mg/kg	mg/kg	mg/kg
Matrix:	Soil	Soil	Soil	Soil
Sample Result:	<0.10	<0.10	<0.10	<0.10
Spike Amount:	0.50	0.50	0.50	0.50
Spike Result:	0.55	0.53	0.47	0.43
Percent Recovery:	110%	106%	94%	%98
Duplicate Result:	0.48	0.46	0.44	0.48
Percent Recovery:	%96	95%	88%	%96
Limits:	70-130%	70-130%	70-130%	70-130%
RPD:	14%	14%	2%	11%
Surr Rec%(70-130)	95%	80%	**************************************	
Date Extracted:	9/1	9/13/01		
Date Analyzed:	9/1/	9/14/01		
Samples Linked:	0109067 -(18-24)	-(18-24)		
Sample Spiked:	0109067 -24	-24		

Analytical Quality Control Data MS/MSD 8021B-Modified Transwest Geochem, Inc.

Samples Received: Project Name/No.: Client Name:

S. Mesa WQARF/70211-0-0150-2-2.10 9/11-13/2001 Law Engineering Inc.

Her.	

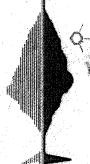
ADHS Cert. No.: AZM133/AZ0133 TGI ID No.: 0109067

	trans-1,2-				
	DCE	cis-1,2-DCE	TCE	PCE	
Units:	mg/kg	mg/kg	mg/kg	mg/kg	
Matrix:	Soil	Soil	Soil	Soil	
Sample Result:	<0.10	<0.10	<0.10	<0.10	
Spike Amount:	0.50	0.50	0.50	0.50	
Spike Result:	0.54	0.52	0.48	0.49	
Percent Recovery:	108%	104%	%96	%86	
Duplicate Result:	0.55	0.55	0.46	0.44	
Percent Recovery:	110%	110%	95%	88%	
Limits:	70-130%	70-130%	70-130%	70-130%	
RPD:	2%	%9	4%	11%	
Surr Rec%(70-130)	84%	82%			
Date Extracted:	9/1	9/14/01			
Date Analyzed:	9/1	9/14/01			
Samples Linked:	0109067	0109067 -(31-36)			
Sample Spiked:	0109067 -35	-35			

* CHAIN OF CUSTODY FORM

(949) 201-4667 FAX (999) 370-1046
 (919) 370-4667 FAX (919) 370-1046
 (818) 779-1844 FAX (818) 779-1843
 (858) 505-8566 FAX (859) 505-9569
 (480) 785-043 FAX (480) 785-0851
 (702) 798-3620 FAX (702) 798-3621

72 hours5 days	Sample integrity: (Check)		(a a a a a a a a a a a a a a a a a a a	Ç	rab by.	Necesive in Lab by.	#		Cate 7 III o.	C		romiquiented by.
72 hours 5 days				7			,		At Time	7		Delination Duri
72 hours	24 hours	,	Date /Time:	Da	ý;	Received by:	1		Dáte /Time/	O		Relinquished By:
(Check)	Turnaround Time: (C same day	0619	Bate / Ime:) Da	A STATE OF THE STA	Received by:	06)5	2	$\sqrt{30/1}$		Nay!	Relinquistred by:
			is in the second				ļ				R	
												and and
			1									
	70			Y								
					1							
4					X		る。その	1 8/			-24°	183-W
	8				>		8 18 0 0 %	The same of the sa	 ,		W-700	1881
						· State of the sta				=7		
				ř	×		72210	Steg			~ 1 €	LB3-1
				B) -								,
					×	40		3 8/2%	ر ده	*	・アントグラ	関しアルーで
Special Instructions					ives 8	ig Preservatives	ဟ	# of Sampling Cont. Date	Container	Sample (pie pien	Sample Description
					ンエ	4	\$7 36	Fax Number: 43	7	2) 20 20 10 10 10 10 10 10 10 10 10 10 10 10 10	でによく	Sample PAT
					1		250	Phone Number 256	¥	1	かり	Project Manager:
							- 0 K	\$Z11-W-015		Sp.	B	Œ
		Analysis Required	Ana								Y A	イタグ


* 14 600 14

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843

CHAIN OF CUSTODY FORM

71	77		· —			· 	· -			Γ	Rot	1) 		D	<u>~</u>	1/#	-		1	
	Relinquished By:	Linek	Relinquished By:	and the second of											•	188 L	Sample Description	**************************************	amag	E V	— 多 肉
		6421														- W	en "	を入って	, Š , D	7	のと
	6.11	^				K., +										٤	Sample Matrix	K	び発		*
Date /Time:	Date /Time:	15/18213	Date /Time:												*,	49	Sample Container Matrix Type	N SA	त्री		
ne:	/Time: (₹↑/3/	2/	ne:							7						2	er # of Cont.	A Mullipo	Phone	광	
	1356 X	1 30														01/2/1/20	Sampling Date/Time	437	M B	102/)-0-	
Received in Lab by:	Received by		Received by:													# ?	Přeservativés	27.8%	. 224	93	
ab by:	ł		d.													>	PCE 5	702 202	C15,1 (1,2-t	eons CE	T
	8	Kinger											7								
	6116												Ž-10								
		ľ			\				20												
		0	.																		
Date /Time:	Data /Time:	10,00	Date /Time:			() () () ()	1.4						,								
ē			.π.				Ė														
		Q	j.										<u> </u>								
	0							3/4													
Sample Integrity:	24 hours 48 hours	same day	Turnaround Time:										e j	3.8¢			**************************************				
			nd Time:	•	A.											ć					
(Check)]]]] 5	7.	(Check)					 	1 84 1 84 1 84					i i					*		
ck) on ice	5 days normal	72 hours _	5							fr.			100				Special			7	
K			i ski									i i		S			Special Instructions		•	*	

COC-GB

602-437-0250

Fax:

City, State ZIP:

Client Name: Project Manager:

Jim

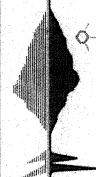
4634 S. 36th Place Law Engineering, Inc

Phoen. x, AZ 85040

GEOCHEN

Phoenix, AZ 85040 3725 E. Atlanta Ave., Ste 2

Fax: Phone: (602) 437-0330 (602) 437-0660


Mobile Lab - Chain of Custody

ML No: S TGI Work Order No: 0/08/49 Date * 5/25/01 Page / of ____

602 - 437 - 3675			ç		
-3675					
Phone:	City, State ZIP:	Address:	Company:	Bill to:	
Fax:	•				

	A TOTAL STREET	They have	,	Initials Signature Printed Name		16-3-56-70 Vayor V ALBO 54 1 1 00/0 1	10-3-5-60 Sil 1 53 1 886x	16-3-56-60 Vayor 2340 52 / 2342	20-3-5-50 5.1	23.05 50 1	cd-3-5-40 Soil 6 49 1 2350	16-3-56-40 Vapor 2230 48 1 2232	14-3-5-30 So:1 L 47 1	LB-3-56-30 Vapor 2155 46 1 2158	50:1	18-3-56-20 Vagor 2/15 44 1	43	65-3-56-10 Vapor 8/28/01 2035 42 1 R 8/28/01 2100 A	sped:	eu 	bı	paileR	te Relinquisi
Stop II	7.5	Sia	94.	Date	•	00/0	路の大	23.42		23.8	2250	22.23		2158		2/40			d By:	əviə		эөН	
	Hours: Temperature:	00 × 00		le: 🖈 👉 Total Containers:		X	*	X	×	X	*	×	×	×	×	×	*	×	8310 (1285) (282)	X (801 500 500 500 500 500 500 500 500 500 5		(8) SI (8) SI (9) TC (9) TC	
Poliulation Paris	Š Š			. (1)					6.3										Container Type/ Remarks				

White copy to TGI, Yellow copy for final repdft, Pink copy to field sampler

602-437-0250

Phoenix, AZ

04058 Fax:

602-437-3675

Phone:

Fax:

City, State ZIP:

Address: Company:

Address: Client Name: Project Manager:

4634 5.36 th Place

law Engineering Inc

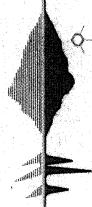
I'm Clarke

City, State ZIP:

TRANSWEST

Phoenix, AZ 85040 3725 E. Atlanta Ave., Ste 2

Fax: Phone: (602) 437-0330 Fax: (602) 437-0660


Bill to:

Mobile Lab - Chain of Custody

ML No: S TGI Work Order No: 0/08/49

Date 8/26/01 Page / of ____

P.O. No.:														Anal	ysis	Requ	Analysis Requested	
Project Name:	Mesa L	S. Mesa WOARFSte	Ste		ı	, 8	əteQ	əmiT		<u> </u>		'7V	18	<u> </u>	1.			
Project Number:					40° C	bujje	leA (leA (Э Ы					'H∀c	нон		· · · · · · · · · · · · · · · · · · ·	
					etno:	adsiu	inbui	inbu	vieo	····		(Z)		/d3	am A	<u> </u>	riga.	4
Sample Identification	Matrix	Date Sampled	Time Sampled	Lab ID	iners:	:ya b	:pəys	:pəųs	:ya be	(SA1.8	(SASI (BISO	力ル	(429/8	0168	SJAT	· · · · · · · · ·	.	Container Type/ Remarks
16-2-GW-130	A	8/26/01	0650	38	V.	76	5/26/01	0707	X.	\dashv		×					86. Y.S	
LB-2-GW-150	-		0805	39	W			08/2				×						
LB-2-6W-170			1238	40	W		er september	1239	-			×						
16-2-6W-240	q-	_	1730	1 12	W		~	1738	~		-	×					. *-	
					a greater to	Philogogy											s	
				-							,		V		ļ	_		
er mild die mild der eine gelehe der eine der e									,		<u> </u>					-		
																L	_	
											_					_		
																_	-	
					ļ						-				_	-	-	
											_							
					**													
Initials		Signature				Print	Printed Name			Date:		3/2	*/a,/6,/ Total Containers:	Total	Cont	ainer	s: B	
*	Maria	dina	P,		N.	X	WS MAIN			Start Time:	me:	ŏ.	0600	Received Intact:	ived I	ntaci	Y	
36	Mark S	XX 111	S. C.		1	a mich	50	8.06x10		Stop Time:	me:	18		Custody Seals:	dy S	eals:	ķ	
	0 "									Hours:				Temp	emperature:	Ire:	NA	
										Client Sign-off:	ign-off:			lce:	Abse	nt/P	Absent / Present	Wet / Blue

City, State ZIP:

Address: Client Name:

4634 5.

192 lin

Engineering, 36th Place

FINC

Hacks

Project Manager:

TRANSWEST GEOCHEM

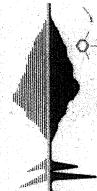
3725 E. Atlanta Ave., Ste 2 Phoenix, AZ 85040

Fax: Phoenix, AZ 85040
Phone: (602) 437-0330 (602) 437-0660

Bill to:

Company: Address:

City, State ZIP:


94

Mobile Lab - Chain of Custody

ML No: 2 TGI Work Order No: 0/08/49

Date 8/35/01 Page ______ of _____

City, State ZIP:	Phoenix,	AZ 85040	40		City, State 215:	Ite 4IP:					
Phone:	602-437-0250	Fax:			Phone:				Fax	×	
P.O. No.:					•				Analysis Requested	uested	
Project Name:	S. Mesa L	WOARF S. EC			ż	əmiT		105 105			•
Project Number:			-				378	8) SW			
						,	8) XΞ	(ヨラ. ル -			
Sample identification	Matrix	Date Time Sampled Sampled	Lab ID	ed By:	:pəys	:Va be	(SASI (BISO (SAI.8	3/624)	SJAT:		Container Type/ Remarks
01-95-2-97	Vapor	8/as/01 0822	24	25 1	8/25/01 0	084 8		×			
18-2-5-10	50.1	0825	25	7.5	•	0838		×			
16-2-56-20	Vapor	9859	26	_	0	1 4060		×			
e V	•	0905	27	/	<u> </u>	0912		×			
18-2-56-30	Vapor	25.60	થ			0736		×			
16-2-5-30		0935	29		0	1460		X			
10-2-56-40	-	1010	30			1012		×			
16-2-5-40		1010	-3/			10,20		×			
48-2-56-50		1035	18 N			1037		X			
10-2-5-50		/035	3.5			1047		×		-	
16-2-56-60	Vaper	1115	34			1120		ベ			
16-2-5-60	So./	1115	77			1140		×			
65-2-56-70	Vapor	325	36			1336		+			
16-2-56-80	Vapor	1400	37			/Y02		×			
				*		*					
Initials	, Sig	Signature		Pr	Printed Name		Date:	8/25/01 7	Total Containers:	rs: /4	
2	Man Str	some MI,		Shawa	n Axsma		Start Time:	0600 F	Received Intact:		
J?	Jan	n. Olem		- Ikmo	2	arke	Stop Time:	1430 (Custody Seals:	*	
	5						Hours:		emperature:	Ž	
							Client Sign-off:		Ice: Absent / Present	□resent	Wet / Blue

602-437-0250

Phoenix AZ

04058

Fax:

602-437-3675

Phone:

Fax

City, State ZIP: Address: Company:

City, State ZIP: Address:

> 4634 5 36 th place Law Engineering

Fuc.

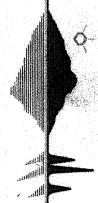
Client Name: Project Manager:

4.3

RANSWEST Geocuen

Phoenix, AZ 85040 3725 E. Atlanta Ave., Ste 2

Bill to:


Phone: (602) 437-0330 Fax: (602) 437-0660

Mobile Lab - Chain of Custody

ML No: 2 TGI Work Order No: 0108149

Date \$/32/o1 Page 1 of 1

Wet / Blue	Present	Ice: Absent / Present	8			Client Sign-off:	Client									1			
	Z Z	Temperature:	Tem				Hours:			#					{	7		æ	
	<u>چ</u>	Custody Seals:		2200	<u> </u>	ime:	Stop Time:			り	12.00	出	1	,		1/	1	21	
	ct: Y	Received Intact:	Rece	CZIO	<u>_</u> ,	ime:	Start Time:		15	Tres	hans	7			Xhan	No.		8	
	ers: /6	ج/عم/ها Total Containers:	Total	122/01	M		Date:			Printed Name	Prim				Signature	တ		Initials	
																			Г
					-														
										÷									
					\dashv														
					-														
						<u> </u>													
				-		_													
				Ī												•			
					X	_		~	2/02		die	v	25.	2100	_	_	40	CB-1-1- 240	1
					×				1913			u	શ્ર	19/0			30	16-1-W- 220	1
	37		1	×	V	P		-	1730			W	2)	1728			705	205 - M- 305	7
				×					1512		ė	u	80	1510			8.8	15-1-11-188	_
				1		_		-	09/2		7,000	_	19	0910	_		40	66-1-11-140	1
					×	-		K	0710	8/22/01	† ₂	u	18	2430	8/22/01	Ag	0 0	66-1-W-130	1
Container Type/ Remarks		SJAT	0168	(\$79)	15AZ)	(B120	(SAT.	:VB bi	:pəus	:pəųs	:ya b	iners:	Lab ID	Time Sampled	Date Sampled	Matrix	ation	Sample Identification	**
		/ WE	4 43		. 9:	<u> </u>	(eviec	inba	inpn	ədəii	sino				***			
		/HO	,HA		901	4		ээн	iləA	iləA	nbuil	o.o	• • • • • • • • • • • • • • • • • • •					Project Number:	Pro
		H	4	ecw ecw	30G		ц		əmiT	ejsQ	ЭΉ	N .		sike	QARF	S. Mesa WOARF Side	5,7	Project Name:	Pa
	₁ uested	Analysis Requested	Anal															P.O. No.: 🦎	P.O

602-437-6250

Fax:

602-437-3675

Phone:

Fax:

City, State ZIP:

Address: City, State ZIP:

4634 S. 36th Place

Phoenix, AZ 85040

Law Engineering, Inc

Project Manager: Client Name:

Jim.

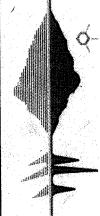
TRANSWEST

Phoenix, AZ 85040 3725 E. Atlanta Ave., Ste 2 Phone:

(602) 437-0330

Fax (602) 437-0660

BIII to:


Company: Address:

Mobile Lab - Chain of Custody

ML No: S TGI Work Order No: 0/08/14 9

Date \$/ai/or Page / of

		2	S	Initials									1011-52-110	LK-1-56-100	10-1-56-90	10-1-56-80	14-1-56-	16-1-5-60	10-1-56-60	Sample Identification		roject Number:	roject Name:	'O. No.:
	+	-/											110	-/00	-90	60	70	60	60	tification			n	-
	-		The)			,								-	.	Vaxor	3.5	Vapor	Matrix	A		Mesa	
	1	5	The -	Şignature									\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \						8/21/01	Date Sampled			S. Mesa WOARF Sike	
)										1049	1005	2/60	8280	5080	250	0745	Time Sampled			VF Side	
		1											17	16	2	14	3	3	,	Lab ID		,		
	***************************************	7	Ñ										-	-		-	,	-	*	:ereni	sino	J.0	N.	
	·	PAN	Shawa 1	Prii									\\						7,4	:ya b	əysir	ıbuj	9 H	
		K	Lusuas	Printed Name										_				-	8/2/01	:pəqs	Inbu	iləA	Date	
				Ф									1054	10/2	09/7	0842	08/2	0810	0728	:pays	iupn	iləA	əmiT	
													-						X	:d g):	eviec	ιеΉ		
	Hours:	Stop Time:	Start Time:	Date:						•										(SA1.	814)	нан	Ţ	
Client Sign-off);;	Time:	Time:																	(B120	8) X:	IT8		
∯ —								_			_			_						(Z∀S)				
		1600	0700	रू/अ//०। Total Containers:	-								X	×	×	×	×	×	<u> </u>	\$/624) od	W-	917	:0 <u>\$</u>	
2	Ter	ည္။	1000	/ Tot				1												01£8 /		1		3
Αhς	femperature:	stody	eivec	al Co						-		,								SJAT	3W /	/HOI		alysi
Ice Absent / Present	ture:	Custody Seals:	Received Intact:	ntaine																				Analysis Requested
Prese	\$		1	rs: 7		_		1	_						<u> </u>	,								uest
₹			~		_			_	_					<u> </u>	<u> -</u>							:		ă.
Wet / Rhie			ALIE PROFESSIONAL												Will have been seen as a second					Container Type/ Remarks	es A			

City, State ZIP: Address: Client Name: Project Manager:

4634 5. 36 th Place

Address:

City, State ZIP:

Law Engineering,

Jim Clarke

Phoenix, AZ

Fax:

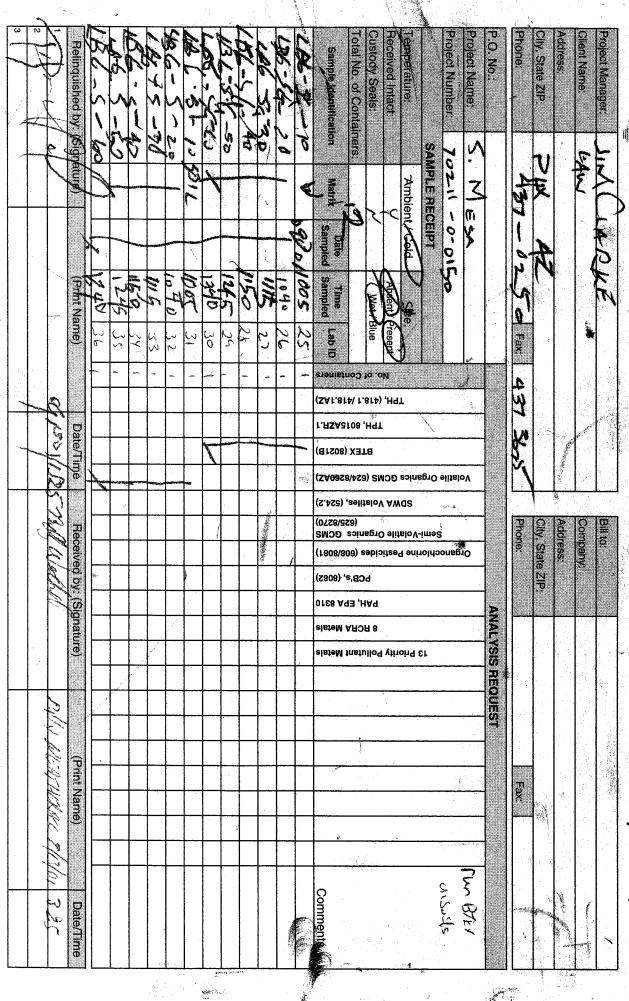
Phone:

Fax:

TRANSWEST GEOCHEM

Phoenix, AZ 85040 3725 E. Atlanta Ave., Ste 2

Phone: (602) 437-0330 Fax: (602) 437-0660


Bill to: Company:

Mobile Lab - Chain of Custody

ML No: S TGI Work Order No: 0/08/47

Date _ \$/20/01 Page / ___ of __

Wet / Blue	ice: Absent / Present	: Abs	lce.		ģ. -	Client Sign-off:	<u>Q</u>											
	ture: wa	Femperature:	Ter			TS:	Hours:		•	(-4			
	Seals: N	Custody Seals:		/230		Stop Time:	Sto		-	1	ATT. C	V			Ü	To her	<u> </u>	75
	Received Intact: Y	ceived		1030		Start Time:	Sta		Sma	X	Thank	۱۸			Starren Starren	M		۵
	Total Containers: 1/0	al Con		8/29/01		Ġ	Date:		me	Printed Name	P.				Signature			Initials
			╟	\Vdash			1 2		\parallel	-								
* Proper		1.	-															
							1											
			-	_						· · · · · · · · · · · · · · · · · · ·		-						
ere see			-	-														
~ i≥n,	Trans.		<u> </u>	X				1708 V		1	/	/	10	1650	_	So. /	50	16-1-5-
			+	×			-	1658	16		-	-	q	1650		Voyage	8	14-1-8-50
a Res			-	×				1658	16			-	Ø	1625		Sail	√ 0	16-1-5-40
		T		×			$\frac{1}{1}$	2	1633	g atress	+	1	7	1628	50,511	Vapor	40	16-1-56-
4			1	×				4	1605	-	-	_	6	1600	2 934.004.	50:/	30	16-1-5-30
			-	×			No.	100	1602	· Constant	-	-	4	8551):(3e,4::	Vagor	ဝ	18-1-56-30
			-	×				1523	15	e Shekama	-	_	4	1515	Gigino) Vic	50:1	20	65-1-5-20
				×		**;		1385	13			-	W	1255	es es para	Vador	ō	15-1-56-20
				×			June	28	857/	_	ļ.	-	Ų.	122	greet .	5.1	<i>•</i>	25-1-5 -10
			-	×				ZZ ZZ	hs.11 19	8/20/01	20	1	~	1/30	8/20/01	Vasor		14-1-56-10
Container Type/ Remarks		SJAT	01587		(ZA3r	(B1208	(ZA1.8	:Ng pa	:paysi	:pəqsi	eq Bλ:	:stania	Lab ID	Time Sampled	Date Sampled	Matrix	fication	Sample Identification
		aw v		ON		:			nhu	nbu	ysir	quo				X		
		4 80		-9		<i>3</i>			llat.	iləA	buj	ე.0						Project Number:
	·	Ħ		100.5		1	1T	14	ann	Date	ləA	N		Side	S. Mesa WRARF Site	Mesa h	5.1	Project Name:
	Analysis Requested	alysis	4				T .	-		 								P.O. No.:
											00/0	3/-	604- 43/-Je/s		250	602 - 457 - 0250	602	10.00
	5								TIONE:	_ =	1	j		Tax:				Phone:

Chain of Custody

TGI Work Order No: 0/07067

Date 1/36 Page of 1

in Marie

JIII

RANSWEST

DEDCHEN

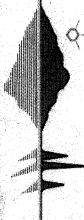
Phone: Fax:

(602) 437-0330

(602) 437-0660

Phoenix, Arizona 85040

3725 East Atlanta Avenue, Suite 2



3725 East Atlanta Avenue, Suite 2 Phoenix, Arizona 85040 Phone: (602) 437-0330 Fax: (602) 437-0660

Chain of Custody

Date 2911 Page 2 of 2

													L						eties		4		٦
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		Ì																	184			N.
61 845	9/13/21	WALLER BARRICAN	616	11/1/				Vez		K	N. C.	K.							1			N	
Date/Time	ne)	(Print Name)				nature)	(Sig	Received by:	Rece		Date/Time	Date			ame)	(Print Name)			(yre)	(Signa	Relinquished by: (Signativie)	elinquis	الإ
			-					<u> </u>	-		-			-									
										/				-									
																				i i			
								_			1			_	24	K	*		1	か	(4)	7	200
			_			_			_						23	TO TO	7	`		8	٨	1	۶
					<u> </u>	-					-				22	1220				5	Y	37-	11
			_				Ļ							_	721	12 /				لإ	1	7 3	W
								*	The second second	j	-			_	20	100				0	3	71	Si
TREATMENT OF THE PROPERTY OF T			-			<u> </u>								-	12	725		-	_	0	M	7	I
								42			-			-	×	5	19129		TIPS	8	1	ř	to
Comment						elsteM trist), EPA 8310	(S808) ,e'8:	(r808/808) SMOD eoir (0728/328)	(5.4.2)	24/8260AZ) EX (8021B)	1.AZA3108	(ZA1.814\ 1	etenistno0	Lab ID	Time Sampled		10	Matrix	ners: ion	Total No. of Containers: Sample Identification	il No. o iample je	Tota s
1,							ЧАЧ			Yolat		 	814) '	1.	Met / Blue	M			2		als:	Custody Seals:	Class
				ing a second		(IITOITY				AWGS	nics GC		нат	~~	lce:	Absent / Present	8	Ambient/Cold	Ambie		e:	Temperature: Received Intert	PIF
				niconomic.		EL		.,,.		W.C.	Organ			1			1	CEIP	SAMPLE RECEIPT	SAM			
atex and									1.50	-	əlifelo	c.,					92	37.01	702M-0-0150	2	nber:	Project Number:	Proje
Bot lynn			•								^							7 7	3	Ņ	ne:	Project Name:	P
				HES.	ALYSIS REQUEST	AI VS	A															0 No.	ם כ
		Fax:							Phone:						Fax:					Ç		ne:	Phone:
								ate ZIF	City, State ZIP									4	7	77	P;	City, State ZIP	City,
								S.	Address:									$\hat{\tau}^{i}$				Address:	Addr
								ŋy:	Company:			3					کھ	71	又	7		Client Name:	Cllen
									Bill to:			0.00					al	民	5) .	ager:	Project Manager:	Proje
The second secon					-					1							_	1111			Annual Street, Square,		ł

TRANSWEST GEOCHEM

3725 East Atlanta Avenue, Suite 2 Phoenix, Arizona 85040 Phone: (602) 437-0330 Fax: (602) 437-0660

TGI Work Order No: 0105067

Date 07 /2 W Page 1 of 2

Relinquis (ed M. (Signature) (Print Name)	Name: S.M.A. Sample Receipt Ambient / Cold Intact: Marrix Sampled Sampled Lab ID Seals: Marrix Sampled Sampled Lab ID Metablication Marrix Sampled Sampled Lab ID (ZAT.814) 1-814) 'Hdt (ZAT.814) 1-814) 'Hdt	Phone: +37 0740 Fax 437	City State ZIP: MY DZ.	me: 2	Project Manager: 1, LARKO
Date/Time R	(DYZOCZO) SDWA Volatiles, (524.2)	775 Pm		A 8	Bill to:
Received by: (Signature)	PAH, EPA 8310 (5898), e'B'34	Phane:	City, State ZIP:	Company	©
PM/Meas	SAME OF STREET	4	***		
PLANT SITTE		Fax:			
Pu/ S	Comments				

0/09067

1014 E. Cooley Dr., Suite A, Colton, CA 92824
7277 Hayvenhurst, Suite B-12, Van Nuys, CA 91406
9484 Chessipastic Dr., Suite 905, San Diego, CA 92123
9830 South 51st St., Suite B-120, Phoentx, AZ 85044
2520 E. Suriset Rd., Suite 3, Las Vegas, NV 89120

1999) 370-4667 FAX (999) 370-1046 (999) 370-4667 FAX (999) 370-1046 (818) 779-1944 FAX (818) 779-1843 (888) 505-8596 FAX (858) 505-9589 (480) 785-0043 FAX (480) 785-0851 (702) 798-3620 FAX (702) 788-3621

Relinquished By: Relinquished By: Relinquished By: 18/18 立るころで Description ミス . Q. S F) 0 JARK 2 Sample 1 Matrix Date /Time: Date /Time: Container Ďate /Time; ガジス ĺΛ Туре W Fax Number: Project/PO Number: # o, Ø, 7020-0-0150 B Sampling Sampling CHAIN OF CUSTODY FORM M NO SE 一流の 100 でい 1200 N 物 Time Received by: Received in Lab by: Received by: Preservatives 802 100 8260 Date /Time: Date /Time: Date /Time: Analysis Required Sample Integrity: 24 hours 48 hours same day Tumaround Time: (Check) (Check) Special Instructions 5 days on ice ä V W normal Page 72 hours S ٩,

をかれ

5

18

Note: By relinquishing samples to Del Mar Analytical, client agrees to pay for the services requested on this chain of custody form and any additional analyses performed on this project. Payment for services is due within 30 days from the date of invoice. Sample(s) will be disposed of after 30 days.

APPENDIX H

DEL MAR ANALYTICAL SOIL SAMPLE ANALYTICAL REPORT

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-8596 FAX (858) 505-9589 (480) 785-0043 FAX (480) 785-0851

Law Engineering 4634 S. 36th Place Phoenix, AZ 85040

Attention: Jim Clarke

Client Project ID:

70211-0-0150

Sampled: 08/20/01 Received: 08/21/01

Report Number:

PKH0356

Issued: 8/31/01

LABORATORY NUMBER	SAMPLE DESCRIPTION	SAMPLE MATRIX
PKH0356-01	LB1 Rinse	Water
PKH0356-02	LB-1-S-10	Soil
PKH0356-03	LB-1-S-20	Soil
PKH0356-04	LB-1-S-30	Soil
PKH0356-05	LB-1-S-40	Soil
PKH0356-06	LB-1-S-50	Soil
PKH0356-07	Trip Blank	Water

SAMPLE RECEIPT:

Samples were received intact, on ice, and with chain of custody documentation.

HOLDING TIMES:

Holding times were met.

PRESERVATION:

Samples requiring preservation were verified prior to sample analysis.

OBSERVATIONS:

The N1 flag on Cyanide indicates that the samples are tested for the presence of sulfide in the lab within 24 hours of

sampling. Samples were tested past the 24 hours.

SUBCONTRACTED:

No analyses were subcontracted to an outside laboratory.

QA/QC CRITERIA:

The R1 flag on Cyanide indicates that the RPD exceeded the method control limit. See Corrective Action Report.

EXPLANATION OF DATA

QUALIFIERS:

The L3 flag on 8260 and Cyanide indicates that the Laboratory Control Sample recovery was above the method control limits. Analyte not detected, data not impacted.

DEL MAR ANALY (CAL, PHOENIX (AZ0426)

Melissa Evans Project Manager

PKH0356 Page 1 of 35

CORRECTIVE ACTION REPORT

Department: Wet Chemistry

Methods:

9014

Date:

08/29/2001

Matrix:

Soil

Batch:

P1H2911

Samples Affected:

PKH0356-02 - PKH0356-06 & PKH0374-02

Identification and Definition of Problem:

The Matrix Spike Duplicate (MSD) recovered low (42%) and outside of the 70-130% acceptance limits. Because of the low recovery in the MSD the Relative Percent Difference (RPD) between the Matrix Spike (MS) and the MSD was high (52.1%) and outside of the 20% acceptance limits.

Determination of the Cause of the Problem:

A definitive cause for the low recovery has not been determined.

Corrective Action:

The MS as well as the Laboratory Control Sample recovered within acceptance limits, thus validating the batch. The MSD has been flagged "M2" to indicate the low recovery and "R1" to indicate that the RPD was outside of acceptance limits.

Quality Assurance Manager

Elizabeth C. Wueschner: Elystect C. U usul Date: 09/05/2001

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-8596 FAX (858) 505-9589 (480) 785-0043 FAX (480) 785-0851

Law Engineering
4634 S. 36th Place
Phoenix A 7 85040

Client Project ID: 70211-0-0150

Sampled: 08/20/01 Received: 08/21/01

Phoenix, AZ 85040 Attention: Jim Clarke

Report Number: PKH0356

VOLATILE ORGANICS BY GC/MS (EPA 8260B)

Sample ID: PKH0356-01 (LBI Rinse - Water) Acetone	Analyte	Method	Batch	Reporting Limit ug/l	Sample Result ug/l	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Acctone	Sample ID: PKH0356-01 (LB1 F	Rinse - Water)		9	•				
Benzene	- ,	•	P1H3106	20	ND	1	8/30/01	8/30/01	
Bromochenzene	Benzene								
Bromochloromethane	Bromobenzene		P1H3106						*
Bromofich PA 8260B PH3106 2.0 ND 1 8/30/01 8/30/01 Ph 1 8/30/01 8/30/01 Ph 1 PA 8260B PH3106 5.0 ND 1 8/30/01 8/30/01 Ph 1 PA 8260B PH3106 5.0 ND 1 8/30/01 8/30/01 Ph 1 PA 8260B PH3106 5.0 ND 1 8/30/01 Ph 1 PA 8260B PH3106 5.0 ND 1 8/30/01 Ph 1 PA 8260B PH3106 5.0 ND 1 8/30/01 Ph 1 PA 8260B PH3106 5.0 ND 1 8/30/01 Ph 1 PA 8260B PH3106 5.0 ND 1 8/30/01 RA30/01 PA 8260B PH3106 5.0 ND 1 8/30/01 RA30/01 PA 8260B PH310	Bromochloromethane		P1H3106						
Bromoform	Bromodichloromethane	EPA 8260B	P1H3106						
Promorchane	Bromoform	EPA 8260B	P1H3106						
2-Butanone (MEK)	Bromomethane								
n-Butylbenzene EPA 8260B PIH3106 5.0 ND 1 8/30/01 8/30/01 tert-Butylbenzene EPA 8260B PIH3106 5.0 ND 1 8/30/01 8/30/01 tert-Butylbenzene EPA 8260B PIH3106 5.0 ND 1 8/30/01 8/30/01 8/30/01 Ert-Butylbenzene EPA 8260B PIH3106 5.0 ND 1 8/30/01 8/30/01 8/30/01 Ert-Butylbenzene EPA 8260B PIH3106 5.0 ND 1 8/30/0	2-Butanone (MEK)								
sec-Butylbenzene EPA 8260B PIH3106 5.0 ND 1 8/30/01 8/30/01 Carbon Disulfide EPA 8260B PIH3106 5.0 ND 1 8/30/01 8/30/01 Carbon Disulfide EPA 8260B PIH3106 5.0 ND 1 8/30/01 8/30/01 Carbon Disulfide EPA 8260B PIH3106 5.0 ND 1 8/30/01 8/30/01 Chlorothane EPA 8260B PIH3106 5.0 ND 1 8/30/01 8/30/01 Chlorothane EPA 8260B PIH3106 5.0 ND 1 8/30/01 8/30/01 Chlorotoluene EPA 8260B PIH3106 5.0 ND 1 8/30/01 8/30/01 2-Chiorotoluene EPA 8260B PIH3106 5.0 ND 1 8/30/01 8/30/01 4-Chiorotoluene EPA 8260B PIH3106 5.0 ND 1 8/30/01 8/30/01 1,2-Dibromo-schlare EPA 8260B PIH3106 2.0	n-Butylbenzene	EPA 8260B		5.0		1	8/30/01		
tert-Butylbenzene EPA \$260B PIH3106 5.0 ND 1 8/30/01 8/30/01 Carbon Disulfide EPA \$260B PIH3106 5.0 ND 1 8/30/01 8/30/01 Carbon tetrachloride EPA \$260B PIH3106 5.0 ND 1 8/30/01 8/30/01 Chloroform EPA \$260B PIH3106 5.0 ND 1 8/30/01 8/30/01 Chloroform EPA \$260B PIH3106 5.0 ND 1 8/30/01 8/30/01 Chloroform EPA \$260B PIH3106 5.0 ND 1 8/30/01 8/30/01 Chlorotoluene EPA \$260B PIH3106 5.0 ND 1 8/30/01 8/30/01 4-Chiorotoluene EPA \$260B PIH3106 5.0 ND 1 8/30/01 8/30/01 4-Chiorotoluene EPA \$260B PIH3106 5.0 ND 1 8/30/01 8/30/01 12-Dirichorothane EPA \$260B PIH3106 5.0 <t< td=""><td>sec-Butylbenzene</td><td>EPA 8260B</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	sec-Butylbenzene	EPA 8260B							
Carbon Disulfide EPA 8260B P1H3106 5.0 ND 1 8/30/01 8/30/01 Carbon tetrachloride EPA 8260B P1H3106 5.0 ND 1 8/30/01 8/30/01 Chlorobenace EPA 8260B P1H3106 5.0 ND 1 8/30/01 8/30/01 Chloroform EPA 8260B P1H3106 5.0 ND 1 8/30/01 8/30/01 Chloroform EPA 8260B P1H3106 5.0 ND 1 8/30/01 8/30/01 2-Chlorofoluene EPA 8260B P1H3106 5.0 ND 1 8/30/01 8/30/01 2-Chlorofoluene EPA 8260B P1H3106 5.0 ND 1 8/30/01 8/30/01 4-Chlorofoluene EPA 8260B P1H3106 5.0 ND 1 8/30/01 8/30/01 1,2-Diblromo-3-chloropropane EPA 8260B P1H3106 2.0 ND 1 8/30/01 8/30/01 1,2-Diblromothane EPA 8260B P1H3106 2.0<	tert-Butylbenzene	EPA 8260B	P1H3106			1			
Carbon tetrachloride EPA \$260B P1H3106 5.0 ND 1 8/30/01 8/30/01 Chlorobenzene EPA \$260B P1H3106 2.0 ND 1 8/30/01 8/30/01 Chlorotefhane EPA \$260B P1H3106 5.0 ND 1 8/30/01 8/30/01 Chlorotoluene EPA \$260B P1H3106 5.0 ND 1 8/30/01 8/30/01 2-Chlorotoluene EPA \$260B P1H3106 5.0 ND 1 8/30/01 8/30/01 4-Chlorotoluene EPA \$260B P1H3106 5.0 ND 1 8/30/01 8/30/01 4-Chlorotoluene EPA \$260B P1H3106 5.0 ND 1 8/30/01 8/30/01 1,2-Dibromoethane EPA \$260B P1H3106 5.0 ND 1 8/30/01 8/30/01 1,2-Dichlorobenzene EPA \$260B P1H3106 2.0 ND 1 8/30/01 8/30/01 1,2-Dichlorobenzene EPA \$260B P1H3106 2.0	Carbon Disulfide	EPA 8260B	P1H3106	5.0		1			
Chlorobenzene EPA 8260B P1H3106 2.0 ND 1 8/30/01 8/30/01 Chloroethane EPA 8260B P1H3106 5.0 ND 1 8/30/01 8/30/01 Chloroform EPA 8260B P1H3106 5.0 ND 1 8/30/01 8/30/01 2-Chlorotoluene EPA 8260B P1H3106 5.0 ND 1 8/30/01 8/30/01 2-Chlorotoluene EPA 8260B P1H3106 5.0 ND 1 8/30/01 8/30/01 4-Chlorotoluene EPA 8260B P1H3106 5.0 ND 1 8/30/01 8/30/01 4-Chlorotoluene EPA 8260B P1H3106 5.0 ND 1 8/30/01 8/30/01 1,2-Dibromo-3-chloropropane EPA 8260B P1H3106 5.0 ND 1 8/30/01 8/30/01 1,2-Dibromo-3-chloropropane EPA 8260B P1H3106 2.0 ND 1 8/30/01 8/30/01 1,2-Dichlorobenzene EPA 8260B P1H3106	Carbon tetrachloride	EPA 8260B	P1H3106	5.0	ND	1			
Chlorochane EPA 8260B P1H3106 5.0 ND 1 8/30/01 8/30/01 Chloroform EPA 8260B P1H3106 2.0 ND 1 8/30/01 8/30/01 Chlorotoluene EPA 8260B P1H3106 5.0 ND 1 8/30/01 8/30/01 4-Chlorotoluene EPA 8260B P1H3106 5.0 ND 1 8/30/01 8/30/01 4-Chlorotoluene EPA 8260B P1H3106 5.0 ND 1 8/30/01 8/30/01 1,2-Dirbomo-3-chloropropane EPA 8260B P1H3106 5.0 ND 1 8/30/01 8/30/01 1,2-Dichlorobenzene EPA 8260B P1H3106 2.0 ND 1 8/30/01 8/30/01 1,2-Dichlorobenzene EPA 8260B P1H3106 2.0 ND 1 8/30/01 8/30/01 1,3-Dichlorobenzene EPA 8260B P1H3106 2.0 ND 1 8/30/01 8/30/01 1,1-Dichlorothane EPA 8260B P1H3106 <	Chlorobenzene	EPA 8260B	P1H3106	2.0	ND				
Chloroform EPA 8260B P1H3106 2.0 ND 1 8/30/01 8/30/01 Chloromethane EPA 8260B P1H3106 5.0 ND 1 8/30/01 8/30/01 2-Chlorotoluene EPA 8260B P1H3106 5.0 ND 1 8/30/01 8/30/01 4-Chlorotoluene EPA 8260B P1H3106 5.0 ND 1 8/30/01 8/30/01 1,2-Dibromoethane EPA 8260B P1H3106 5.0 ND 1 8/30/01 8/30/01 1,2-Dibromoethane (EDB) EPA 8260B P1H3106 2.0 ND 1 8/30/01 8/30/01 1,2-Dichlorobenzene EPA 8260B P1H3106 2.0 ND 1 8/30/01 8/30/01 1,2-Dichlorobenzene EPA 8260B P1H3106 2.0 ND 1 8/30/01 8/30/01 1,4-Dichlorobenzene EPA 8260B P1H3106 2.0 ND 1 8/30/01 8/30/01 1,1-Dichlorodifluoromethane EPA 8260B P1H3106 <td>Chloroethane</td> <td>EPA 8260B</td> <td>P1H3106</td> <td>5.0</td> <td>ND</td> <td>1</td> <td></td> <td>8/30/01</td> <td></td>	Chloroethane	EPA 8260B	P1H3106	5.0	ND	1		8/30/01	
Chloromethane EPA 8260B P1H3106 5.0 ND 1 8/30/01 8/30/01 2-Chlorotoluene EPA 8260B P1H3106 5.0 ND 1 8/30/01 8/30/01 4-Chlorotoluene EPA 8260B P1H3106 5.0 ND 1 8/30/01 8/30/01 Dibromochloromethane EPA 8260B P1H3106 2.0 ND 1 8/30/01 8/30/01 1,2-Dibromo-3-chloropropane EPA 8260B P1H3106 5.0 ND 1 8/30/01 8/30/01 1,2-Dibromoethane (EDB) EPA 8260B P1H3106 2.0 ND 1 8/30/01 8/30/01 1,2-Dichlorobenzene EPA 8260B P1H3106 2.0 ND 1 8/30/01 8/30/01 1,3-Dichlorobenzene EPA 8260B P1H3106 2.0 ND 1 8/30/01 8/30/01 1,4-Dichlorobenzene EPA 8260B P1H3106 2.0 ND 1 8/30/01 8/30/01 1,1-Dichlorothane EPA 8260B	Chloroform	EPA 8260B	P1H3106	2.0	ND	1			
2-Chlorotoluene EPA 8260B P1H3106 5.0 ND 1 8/30/01 8/30/01 4-Chlorotoluene EPA 8260B P1H3106 5.0 ND 1 8/30/01 8/30/01 Dibromochloromethane EPA 8260B P1H3106 5.0 ND 1 8/30/01 8/30/01 1,2-Dibromo-3-chloropropane EPA 8260B P1H3106 2.0 ND 1 8/30/01 8/30/01 1,2-Dichlorobenzene EPA 8260B P1H3106 2.0 ND 1 8/30/01 8/30/01 1,2-Dichlorobenzene EPA 8260B P1H3106 2.0 ND 1 8/30/01 8/30/01 1,3-Dichlorobenzene EPA 8260B P1H3106 2.0 ND 1 8/30/01 8/30/01 1,4-Dichlorobenzene EPA 8260B P1H3106 2.0 ND 1 8/30/01 8/30/01 1,1-Dichloroethane EPA 8260B P1H3106 2.0 ND 1 8/30/01 8/30/01 1,1-Dichloroethane EPA 8260B <t< td=""><td>Chloromethane</td><td>EPA 8260B</td><td>P1H3106</td><td>5.0</td><td>ND</td><td>1</td><td></td><td>8/30/01</td><td></td></t<>	Chloromethane	EPA 8260B	P1H3106	5.0	ND	1		8/30/01	
4-Chlorotoluene EPA 8260B PIH3106 5.0 ND 1 8/30/01 8/30/01 Dibromochloromethane EPA 8260B PIH3106 2.0 ND 1 8/30/01 8/30/01 1,2-Dibromo-3-chloropropane EPA 8260B PIH3106 2.0 ND 1 8/30/01 8/30/01 1,2-Dibromocthane (EDB) EPA 8260B PIH3106 2.0 ND 1 8/30/01 8/30/01 1,2-Dichlorobenzene EPA 8260B PIH3106 2.0 ND 1 8/30/01 8/30/01 1,2-Dichlorobenzene EPA 8260B PIH3106 2.0 ND 1 8/30/01 8/30/01 1,4-Dichlorobenzene EPA 8260B PIH3106 2.0 ND 1 8/30/01 8/30/01 1,4-Dichloroethane EPA 8260B PIH3106 2.0 ND 1 8/30/01 8/30/01 1,1-Dichloroethane EPA 8260B PIH3106 2.0 ND 1 8/30/01 8/30/01 1,2-Dichloroethene EPA 8260B	2-Chlorotoluene	EPA 8260B	P1H3106	5.0	ND	1			
1,2-Dibromo-3-chloropropane	4-Chlorotoluene	EPA 8260B	P1H3106	5.0	ND	1	8/30/01		
1,2-Dibromoethane (EDB)	Dibromochloromethane	EPA 8260B	P1H3106	2.0	ND	1	8/30/01	8/30/01	
Dibromomethane EPA 8260B P1H3106 2.0 ND 1 8/30/01 8/30/01 1,2-Dichlorobenzene EPA 8260B P1H3106 2.0 ND 1 8/30/01 8/30/01 1,3-Dichlorobenzene EPA 8260B P1H3106 2.0 ND 1 8/30/01 8/30/01 1,4-Dichlorobenzene EPA 8260B P1H3106 2.0 ND 1 8/30/01 8/30/01 1,4-Dichlorodifluoromethane EPA 8260B P1H3106 2.0 ND 1 8/30/01 8/30/01 1,1-Dichloroethane EPA 8260B P1H3106 2.0 ND 1 8/30/01 8/30/01 1,2-Dichloroethane EPA 8260B P1H3106 2.0 ND 1 8/30/01 8/30/01 1,1-Dichloroethane EPA 8260B P1H3106 2.0 ND 1 8/30/01 8/30/01 1,1-Dichloroethene EPA 8260B P1H3106 2.0 ND 1 8/30/01 8/30/01 1,1-Dichloroethene EPA 8260B P1H3106 2.0 ND 1 8/30/01 8/30/01 1,2-Dichloroethene EPA 8260B P1H3106 2.0 ND 1 8/30/01 8/30/01 1,2-Dichloropropane EPA 8260B P1H3106 2.0 ND 1 8/30/01 8/30/01 1,2-Dichloropropane EPA 8260B P1H3106 2.0 ND 1 8/30/01 8/30/01 1,3-Dichloropropane EPA 8260B P1H3106 2.0 ND 1 8/30/01 8/30/01 2,2-Dichloropropane EPA 8260B P1H3106 2.0 ND 1 8/30/01 8/30/01 1,1-Dichloropropane EPA 8260B P1H3106 2.0 ND 1 8/30/01 8/30/01 1,1-Dichloropropane EPA 8260B P1H3106 2.0 ND 1 8/30/01 8/30/01 1,1-Dichloropropane EPA 8260B P1H3106 2.0 ND 1 8/30/01 8/30/01 1,1-Dichloropropene EPA 8260B P1H3106 2.0 ND 1 8/30/01 8/30/01 1,1-Dichloropropene EPA 8260B P1H3106 2.0 ND 1 8/30/01 8/30/01 1,1-Dichloropropene EPA 8260B P1H3106 2.0 ND 1 8/30/01 8/30/01 1,1-Dichloropropene EPA 8260B P1H3106 2.0 ND 1 8/30/01 8/30/01 1,1-Dichloropropene EPA 8260B P1H3106 2.0 ND 1 8/30/01 8/30/01 1,1-Dichloropropene EPA 8260B P1H3106 2.0 ND 1 8/30/01 8/30/01 1,1-Dichloropropene EPA 8260B P1H3106 2.0 ND 1 8/30/01 8/30/01 1,1-Dichloropropene		EPA 8260B	P1H3106	5.0	ND	1	8/30/01	8/30/01	
1,2-Dichlorobenzene EPA 8260B P1H3106 2.0 ND 1 8/30/01 8/30/01 1,3-Dichlorobenzene EPA 8260B P1H3106 2.0 ND 1 8/30/01 8/30/01 1,4-Dichlorobenzene EPA 8260B P1H3106 2.0 ND 1 8/30/01 8/30/01 Dichlorodifluoromethane EPA 8260B P1H3106 5.0 ND 1 8/30/01 8/30/01 1,1-Dichloroethane EPA 8260B P1H3106 2.0 ND 1 8/30/01 8/30/01 1,2-Dichloroethane EPA 8260B P1H3106 2.0 ND 1 8/30/01 8/30/01 1,1-Dichloroethane EPA 8260B P1H3106 5.0 ND 1 8/30/01 8/30/01 1,1-Dichloroethene EPA 8260B P1H3106 2.0 ND 1 8/30/01 8/30/01 1,2-Dichloropropane EPA 8260B P1H3106 2.0 ND 1 8/30/01 8/30/01 1,3-Dichloropropane EPA 8260B <	1,2-Dibromoethane (EDB)	EPA 8260B	P1H3106	2.0	ND	1	8/30/01	8/30/01	
1,3-Dichlorobenzene EPA 8260B P1H3106 2.0 ND 1 8/30/01 8/30/01 1,4-Dichlorobenzene EPA 8260B P1H3106 2.0 ND 1 8/30/01 8/30/01 Dichlorodifluoromethane EPA 8260B P1H3106 5.0 ND 1 8/30/01 8/30/01 1,1-Dichloroethane EPA 8260B P1H3106 2.0 ND 1 8/30/01 8/30/01 1,2-Dichloroethane EPA 8260B P1H3106 2.0 ND 1 8/30/01 8/30/01 1,1-Dichloroethene EPA 8260B P1H3106 5.0 ND 1 8/30/01 8/30/01 1,1-Dichloroethene EPA 8260B P1H3106 2.0 ND 1 8/30/01 8/30/01 1,2-Dichloroethene EPA 8260B P1H3106 2.0 ND 1 8/30/01 8/30/01 1,2-Dichloropropane EPA 8260B P1H3106 2.0 ND 1 8/30/01 8/30/01 1,3-Dichloropropane EPA 8260B <t< td=""><td>Dibromomethane</td><td>EPA 8260B</td><td>P1H3106</td><td>2.0</td><td>ND</td><td>1</td><td>8/30/01</td><td>8/30/01</td><td></td></t<>	Dibromomethane	EPA 8260B	P1H3106	2.0	ND	1	8/30/01	8/30/01	
1,4-Dichlorobenzene EPA 8260B P1H3106 2.0 ND 1 8/30/01 8/30/01 Dichlorodifluoromethane EPA 8260B P1H3106 5.0 ND 1 8/30/01 8/30/01 1,1-Dichloroethane EPA 8260B P1H3106 2.0 ND 1 8/30/01 8/30/01 1,2-Dichloroethane EPA 8260B P1H3106 2.0 ND 1 8/30/01 8/30/01 1,1-Dichloroethene EPA 8260B P1H3106 5.0 ND 1 8/30/01 8/30/01 1,2-Dichloroethene EPA 8260B P1H3106 2.0 ND 1 8/30/01 8/30/01 1,2-Dichloropropane EPA 8260B P1H3106 2.0 ND 1 8/30/01 8/30/01 1,2-Dichloropropane EPA 8260B P1H3106 2.0 ND 1 8/30/01 8/30/01 2,2-Dichloropropane EPA 8260B P1H3106 2.0 ND 1 8/30/01 8/30/01 1,1-Dichloropropene EPA 8260B <	1,2-Dichlorobenzene	EPA 8260B	P1H3106	2.0	ND	1	8/30/01	8/30/01	
Dichlorodifluoromethane EPA 8260B P1H3106 5.0 ND 1 8/30/01 8/30/01 1,1-Dichloroethane EPA 8260B P1H3106 2.0 ND 1 8/30/01 8/30/01 1,2-Dichloroethane EPA 8260B P1H3106 2.0 ND 1 8/30/01 8/30/01 1,1-Dichloroethene EPA 8260B P1H3106 5.0 ND 1 8/30/01 8/30/01 cis-1,2-Dichloroethene EPA 8260B P1H3106 2.0 ND 1 8/30/01 8/30/01 1,2-Dichloropropane EPA 8260B P1H3106 2.0 ND 1 8/30/01 8/30/01 1,3-Dichloropropane EPA 8260B P1H3106 2.0 ND 1 8/30/01 8/30/01 2,2-Dichloropropane EPA 8260B P1H3106 2.0 ND 1 8/30/01 8/30/01 1,1-Dichloropropene EPA 8260B P1H3106 2.0 ND 1 8/30/01 8/30/01 cis-1,3-Dichloropropene EPA 8260B	1,3-Dichlorobenzene	EPA 8260B	P1H3106	2.0	ND	1	8/30/01	8/30/01	
1,1-Dichloroethane EPA 8260B P1H3106 2.0 ND 1 8/30/01 8/30/01 1,2-Dichloroethane EPA 8260B P1H3106 2.0 ND 1 8/30/01 8/30/01 1,1-Dichloroethene EPA 8260B P1H3106 5.0 ND 1 8/30/01 8/30/01 cis-1,2-Dichloroethene EPA 8260B P1H3106 2.0 ND 1 8/30/01 8/30/01 1,2-Dichloropthene EPA 8260B P1H3106 2.0 ND 1 8/30/01 8/30/01 1,2-Dichloropropane EPA 8260B P1H3106 2.0 ND 1 8/30/01 8/30/01 1,3-Dichloropropane EPA 8260B P1H3106 2.0 ND 1 8/30/01 8/30/01 2,2-Dichloropropane EPA 8260B P1H3106 2.0 ND 1 8/30/01 8/30/01 1,1-Dichloropropene EPA 8260B P1H3106 2.0 ND 1 8/30/01 8/30/01 cis-1,3-Dichloropropene EPA 8260B	1,4-Dichlorobenzene	EPA 8260B	P1H3106	2.0	ND	1	8/30/01	8/30/01	
1,2-Dichloroethane EPA 8260B P1H3106 2.0 ND 1 8/30/01 8/30/01 1,1-Dichloroethene EPA 8260B P1H3106 5.0 ND 1 8/30/01 8/30/01 cis-1,2-Dichloroethene EPA 8260B P1H3106 2.0 ND 1 8/30/01 8/30/01 trans-1,2-Dichloroethene EPA 8260B P1H3106 2.0 ND 1 8/30/01 8/30/01 1,2-Dichloropropane EPA 8260B P1H3106 2.0 ND 1 8/30/01 8/30/01 1,3-Dichloropropane EPA 8260B P1H3106 2.0 ND 1 8/30/01 8/30/01 2,2-Dichloropropane EPA 8260B P1H3106 2.0 ND 1 8/30/01 8/30/01 1,1-Dichloropropene EPA 8260B P1H3106 2.0 ND 1 8/30/01 8/30/01 cis-1,3-Dichloropropene EPA 8260B P1H3106 2.0 ND 1 8/30/01 8/30/01 Ethylbenzene EPA 8260B P1H3106 2.0 ND 1 8/30/01 8/30/01	Dichlorodifluoromethane	EPA 8260B	P1H3106	5.0	ND	1	8/30/01	8/30/01	
1,1-Dichloroethene EPA 8260B P1H3106 5.0 ND 1 8/30/01 8/30/01 cis-1,2-Dichloroethene EPA 8260B P1H3106 2.0 ND 1 8/30/01 8/30/01 trans-1,2-Dichloroethene EPA 8260B P1H3106 2.0 ND 1 8/30/01 8/30/01 1,2-Dichloropropane EPA 8260B P1H3106 2.0 ND 1 8/30/01 8/30/01 1,3-Dichloropropane EPA 8260B P1H3106 2.0 ND 1 8/30/01 8/30/01 2,2-Dichloropropane EPA 8260B P1H3106 2.0 ND 1 8/30/01 8/30/01 1,1-Dichloropropene EPA 8260B P1H3106 2.0 ND 1 8/30/01 8/30/01 cis-1,3-Dichloropropene EPA 8260B P1H3106 2.0 ND 1 8/30/01 8/30/01 trans-1,3-Dichloropropene EPA 8260B P1H3106 2.0 ND 1 8/30/01 8/30/01 Ethylbenzene EPA 8260B P1H3106 2.0 ND 1 8/30/01 8/30/01	1,1-Dichloroethane	EPA 8260B	P1H3106	2.0	ND	1	8/30/01	8/30/01	
cis-1,2-Dichloroethene EPA 8260B P1H3106 2.0 ND 1 8/30/01 8/30/01 trans-1,2-Dichloroethene EPA 8260B P1H3106 2.0 ND 1 8/30/01 8/30/01 1,2-Dichloropropane EPA 8260B P1H3106 2.0 ND 1 8/30/01 8/30/01 1,3-Dichloropropane EPA 8260B P1H3106 2.0 ND 1 8/30/01 8/30/01 2,2-Dichloropropane EPA 8260B P1H3106 2.0 ND 1 8/30/01 8/30/01 1,1-Dichloropropene EPA 8260B P1H3106 2.0 ND 1 8/30/01 8/30/01 cis-1,3-Dichloropropene EPA 8260B P1H3106 2.0 ND 1 8/30/01 8/30/01 trans-1,3-Dichloropropene EPA 8260B P1H3106 2.0 ND 1 8/30/01 8/30/01 Ethylbenzene EPA 8260B P1H3106 2.0 ND 1 8/30/01 8/30/01 2-Hexanone EPA 8260B	1,2-Dichloroethane	EPA 8260B	P1H3106		ND	1	8/30/01	8/30/01	
trans-1,2-Dichloroethene EPA 8260B P1H3106 2.0 ND 1 8/30/01 8/30/01 1,2-Dichloropropane EPA 8260B P1H3106 2.0 ND 1 8/30/01 8/30/01 1,3-Dichloropropane EPA 8260B P1H3106 2.0 ND 1 8/30/01 8/30/01 2,2-Dichloropropane EPA 8260B P1H3106 2.0 ND 1 8/30/01 8/30/01 1,1-Dichloropropene EPA 8260B P1H3106 2.0 ND 1 8/30/01 8/30/01 cis-1,3-Dichloropropene EPA 8260B P1H3106 2.0 ND 1 8/30/01 8/30/01 trans-1,3-Dichloropropene EPA 8260B P1H3106 2.0 ND 1 8/30/01 8/30/01 Ethylbenzene EPA 8260B P1H3106 2.0 ND 1 8/30/01 8/30/01 Hexachlorobutadiene EPA 8260B P1H3106 5.0 ND 1 8/30/01 8/30/01 2-Hexanone EPA 8260B <t< td=""><td>1,1-Dichloroethene</td><td>EPA 8260B</td><td>P1H3106</td><td>5.0</td><td>ND</td><td>1</td><td>8/30/01</td><td>8/30/01</td><td></td></t<>	1,1-Dichloroethene	EPA 8260B	P1H3106	5.0	ND	1	8/30/01	8/30/01	
1,2-Dichloropropane EPA 8260B P1H3106 2.0 ND 1 8/30/01 8/30/01 1,3-Dichloropropane EPA 8260B P1H3106 2.0 ND 1 8/30/01 8/30/01 2,2-Dichloropropane EPA 8260B P1H3106 2.0 ND 1 8/30/01 8/30/01 1,1-Dichloropropene EPA 8260B P1H3106 2.0 ND 1 8/30/01 8/30/01 cis-1,3-Dichloropropene EPA 8260B P1H3106 2.0 ND 1 8/30/01 8/30/01 trans-1,3-Dichloropropene EPA 8260B P1H3106 2.0 ND 1 8/30/01 8/30/01 Ethylbenzene EPA 8260B P1H3106 2.0 ND 1 8/30/01 8/30/01 Hexachlorobutadiene EPA 8260B P1H3106 5.0 ND 1 8/30/01 8/30/01 2-Hexanone EPA 8260B P1H3106 10 ND 1 8/30/01 8/30/01 Iodomethane EPA 8260B P1H3106 2.0 ND 1 8/30/01 8/30/01		EPA 8260B	P1H3106		ND	1	8/30/01	8/30/01	
1,3-Dichloropropane EPA 8260B P1H3106 2.0 ND 1 8/30/01 8/30/01 2,2-Dichloropropane EPA 8260B P1H3106 2.0 ND 1 8/30/01 8/30/01 1,1-Dichloropropene EPA 8260B P1H3106 2.0 ND 1 8/30/01 8/30/01 cis-1,3-Dichloropropene EPA 8260B P1H3106 2.0 ND 1 8/30/01 8/30/01 trans-1,3-Dichloropropene EPA 8260B P1H3106 2.0 ND 1 8/30/01 8/30/01 Ethylbenzene EPA 8260B P1H3106 2.0 ND 1 8/30/01 8/30/01 Hexachlorobutadiene EPA 8260B P1H3106 5.0 ND 1 8/30/01 8/30/01 2-Hexanone EPA 8260B P1H3106 10 ND 1 8/30/01 8/30/01 Iodomethane EPA 8260B P1H3106 2.0 ND 1 8/30/01 8/30/01		EPA 8260B	P1H3106		ND	1	8/30/01	8/30/01	
2,2-Dichloropropane EPA 8260B P1H3106 2.0 ND 1 8/30/01 8/30/01 1,1-Dichloropropene EPA 8260B P1H3106 2.0 ND 1 8/30/01 8/30/01 cis-1,3-Dichloropropene EPA 8260B P1H3106 2.0 ND 1 8/30/01 8/30/01 trans-1,3-Dichloropropene EPA 8260B P1H3106 2.0 ND 1 8/30/01 8/30/01 Ethylbenzene EPA 8260B P1H3106 2.0 ND 1 8/30/01 8/30/01 Hexachlorobutadiene EPA 8260B P1H3106 5.0 ND 1 8/30/01 8/30/01 2-Hexanone EPA 8260B P1H3106 10 ND 1 8/30/01 8/30/01 Iodomethane EPA 8260B P1H3106 2.0 ND 1 8/30/01 8/30/01		EPA 8260B	P1H3106	2.0	ND	1	8/30/01	8/30/01	
1,1-Dichloropropene EPA 8260B P1H3106 2.0 ND 1 8/30/01 8/30/01 cis-1,3-Dichloropropene EPA 8260B P1H3106 2.0 ND 1 8/30/01 8/30/01 trans-1,3-Dichloropropene EPA 8260B P1H3106 2.0 ND 1 8/30/01 8/30/01 Ethylbenzene EPA 8260B P1H3106 2.0 ND 1 8/30/01 8/30/01 Hexachlorobutadiene EPA 8260B P1H3106 5.0 ND 1 8/30/01 8/30/01 2-Hexanone EPA 8260B P1H3106 10 ND 1 8/30/01 8/30/01 Iodomethane EPA 8260B P1H3106 2.0 ND 1 8/30/01 8/30/01		EPA 8260B	P1H3106	2.0	ND	1	8/30/01	8/30/01	
cis-1,3-Dichloropropene EPA 8260B P1H3106 2.0 ND 1 8/30/01 8/30/01 trans-1,3-Dichloropropene EPA 8260B P1H3106 2.0 ND 1 8/30/01 8/30/01 Ethylbenzene EPA 8260B P1H3106 2.0 ND 1 8/30/01 8/30/01 Hexachlorobutadiene EPA 8260B P1H3106 5.0 ND 1 8/30/01 8/30/01 2-Hexanone EPA 8260B P1H3106 10 ND 1 8/30/01 8/30/01 Iodomethane EPA 8260B P1H3106 2.0 ND 1 8/30/01 8/30/01		EPA 8260B	P1H3106	2.0	ND	1	8/30/01	8/30/01	
trans-1,3-Dichloropropene EPA 8260B P1H3106 2.0 ND 1 8/30/01 8/30/01 Ethylbenzene EPA 8260B P1H3106 2.0 ND 1 8/30/01 8/30/01 Hexachlorobutadiene EPA 8260B P1H3106 5.0 ND 1 8/30/01 8/30/01 2-Hexanone EPA 8260B P1H3106 10 ND 1 8/30/01 8/30/01 Iodomethane EPA 8260B P1H3106 2.0 ND 1 8/30/01 8/30/01	1,1-Dichloropropene	EPA 8260B	P1H3106	2.0	ND	1	8/30/01	8/30/01	
Ethylbenzene EPA 8260B P1H3106 2.0 ND 1 8/30/01 8/30/01 Hexachlorobutadiene EPA 8260B P1H3106 5.0 ND 1 8/30/01 8/30/01 2-Hexanone EPA 8260B P1H3106 10 ND 1 8/30/01 8/30/01 Iodomethane EPA 8260B P1H3106 2.0 ND 1 8/30/01 8/30/01					ND	1	8/30/01	8/30/01	
Hexachlorobutadiene EPA 8260B P1H3106 5.0 ND 1 8/30/01 8/30/01 2-Hexanone EPA 8260B P1H3106 10 ND 1 8/30/01 8/30/01 Iodomethane EPA 8260B P1H3106 2.0 ND 1 8/30/01 8/30/01		EPA 8260B	P1H3106	2.0	ND	1	8/30/01	8/30/01	
2-Hexanone EPA 8260B P1H3106 10 ND 1 8/30/01 8/30/01 Iodomethane EPA 8260B P1H3106 2.0 ND 1 8/30/01 8/30/01	-		P1H3106	2.0	ND	1	8/30/01	8/30/01	
Iodomethane EPA 8260B P1H3106 2.0 ND 1 8/30/01 8/30/01			P1H3106			1	8/30/01	8/30/01	
		EPA 8260B			ND	1	8/30/01	8/30/01	
Isonronylhenzono EDA 9260D DI U2106 2.0 ND 1 0/00/01 0/00/01		EPA 8260B			ND	1	8/30/01	8/30/01	
	Isopropylbenzene	EPA 8260B	P1H3106	2.0	ND	1	8/30/01	8/30/01	
p-Isopropyltoluene EPA 8260B P1H3106 2.0 ND 1 8/30/01 8/30/01	p-Isopropyltoluene	EPA 8260B	P1H3106	2.0	ND	1	8/30/01	8/30/01	

Melissa Evans Project Manager

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-8596 FAX (858) 505-9589 (480) 785-0043 FAX (480) 785-0851

Law Engineering

4634 S. 36th Place

Phoenix, AZ 85040 Attention: Jim Clarke Client Project ID:

Report Number:

70211-0-0150

Sampled: 08/20/01

Received: 08/21/01

VOLATILE ORGANICS BY GC/MS (EPA 8260B)

PKH0356

Analyte	Method	Batch	Reporting Limit ug/l	Sample Result ug/l	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: PKH0356-01 (LB1 F	Rinse - Water)							
Methylene chloride	EPA 8260B	P1H3106	5.0	ND	1	8/30/01	8/30/01	
4-Methyl-2-pentanone (MIBK)	EPA 8260B	P1H3106	10	ND	1	8/30/01	8/30/01	
Methyl-tert-butyl Ether (MTBE)	EPA 8260B	P1H3106	5.0	ND	1	8/30/01	8/30/01	
Naphthalene	EPA 8260B	P1H3106	5.0	ND	1	8/30/01	8/30/01	
n-Propylbenzene	EPA 8260B	P1H3106	2.0	ND	1	8/30/01	8/30/01	
Styrene	EPA 8260B	P1H3106	2.0	ND	1	8/30/01	8/30/01	
1,1,1,2-Tetrachloroethane	EPA 8260B	P1H3106	5.0	ND	1	8/30/01	8/30/01	
1,1,2,2-Tetrachloroethane	EPA 8260B	P1H3106	2.0	ND	1	8/30/01	8/30/01	
Tetrachloroethene	EPA 8260B	P1H3106	2.0	ND	1	8/30/01	8/30/01	
Toluene	EPA 8260B	P1H3106	2.0	ND	1	8/30/01	8/30/01	
1,2,3-Trichlorobenzene	EPA 8260B	P1H3106	5.0	ND	1	8/30/01	8/30/01	
1,2,4-Trichlorobenzene	EPA 8260B	P1H3106	5.0	ND	1	8/30/01	8/30/01	
1,1,1-Trichloroethane	EPA 8260B	P1H3106	2.0	ND	1	8/30/01	8/30/01	
1,1,2-Trichloroethane	EPA 8260B	P1H3106	2.0	ND	1	8/30/01	8/30/01	
Trichloroethene	EPA 8260B	P1H3106	2.0	ND	1	8/30/01	8/30/01	
Trichlorofluoromethane	EPA 8260B	P1H3106	5.0	ND	1	8/30/01	8/30/01	
1,2,3-Trichloropropane	EPA 8260B	P1H3106	10	ND	1	8/30/01	8/30/01	
1,2,4-Trimethylbenzene	EPA 8260B	P1H3106	2.0	ND	1	8/30/01	8/30/01	
1,3,5-Trimethylbenzene	EPA 8260B	P1H3106	2.0	ND	1	8/30/01	8/30/01	
Vinyl acetate	EPA 8260B	P1H3106	25	ND	1	8/30/01	8/30/01	V1,L3
Vinyl chloride	EPA 8260B	P1H3106	5.0	ND	1	8/30/01	8/30/01	
Xylenes, Total	EPA 8260B	P1H3106	10	ND	1	8/30/01	8/30/01	
Surrogate: Dibromofluoromethane (80-120	0%)			102 %				
Surrogate: Toluene-d8 (80-120%)				106 %				
Surrogate: 4-Bromofluorobenzene (80-120	9%)			110 %				

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-8596 FAX (858) 505-9589 (480) 785-0043 FAX (480) 785-0851

Law Engineering

4634 S. 36th Place

Client Project ID: 70211-0-0150

Sampled: 08/20/01

Phoenix, AZ 85040 Attention: Jim Clarke

Report Number: PKH0356

Received: 08/21/01

VOLATILE ORGANICS BY GC/MS (EPA 8260B)

Analyte	Method	Batch	Reporting	Sample	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
· · · · · · · · · · · · · · · · · · ·	Method	Dutti	Limit ug/kg	Result ug/kg	ractor	Extracted	Analyzeu	Quanners
Sample ID: PKH0356-04 (LB-1	-S-30 - Soil)		ug/kg	ug/Kg				
Acetone	EPA 8260B	P1H2201	1000	ND	1	8/22/01	8/28/01	
Benzene	EPA 8260B	P1H2201	50	ND	1	8/22/01	8/28/01	
Bromobenzene	EPA 8260B	P1H2201	250	ND	1	8/22/01	8/28/01	
Bromochloromethane	EPA 8260B	P1H2201	250	ND	1	8/22/01	8/28/01	
Bromodichloromethane	EPA 8260B	P1H2201	100	ND	1	8/22/01	8/28/01	
Bromoform	EPA 8260B	P1H2201	250	ND	1	8/22/01	8/28/01	
Bromomethane	EPA 8260B	P1H2201	250	ND	1	8/22/01	8/28/01	
2-Butanone (MEK)	EPA 8260B	P1H2201	500	ND	1	8/22/01	8/28/01	
n-Butylbenzene	EPA 8260B	P1H2201	250	ND	1	8/22/01	8/28/01	
sec-Butylbenzene	EPA 8260B	P1H2201	250	ND	1	8/22/01	8/28/01	
tert-Butylbenzene	EPA 8260B	P1H2201	250	ND	1	8/22/01	8/28/01	
Carbon Disulfide	EPA 8260B	P1H2201	250	ND	1	8/22/01	8/28/01	
Carbon tetrachloride	EPA 8260B	P1H2201	250	ND	1	8/22/01	8/28/01	
Chlorobenzene	EPA 8260B	P1H2201	50	ND	1	8/22/01	8/28/01	
Chloroethane	EPA 8260B	P1H2201	250	ND	1	8/22/01	8/28/01	
Chloroform	EPA 8260B	P1H2201	100	ND	1	8/22/01	8/28/01	
Chloromethane	EPA 8260B	P1H2201	250	ND	1	8/22/01	8/28/01	
2-Chlorotoluene	EPA 8260B	P1H2201	250	ND	1	8/22/01	8/28/01	
4-Chlorotoluene	EPA 8260B	P1H2201	250	ND	1	8/22/01	8/28/01	
Dibromochloromethane	EPA 8260B	P1H2201	100	ND	1	8/22/01	8/28/01	
1,2-Dibromo-3-chloropropane	EPA 8260B	P1H2201	250	ND	1	8/22/01	8/28/01	
1,2-Dibromoethane (EDB)	EPA 8260B	P1H2201	100	ND	1	8/22/01	8/28/01	
Dibromomethane	EPA 8260B	P1H2201	100	ND	1	8/22/01	8/28/01	
1,2-Dichlorobenzene	EPA 8260B	P1H2201	100	ND	1	8/22/01	8/28/01	
1,3-Dichlorobenzene	EPA 8260B	P1H2201	100	ND	1	8/22/01	8/28/01	
1,4-Dichlorobenzene	EPA 8260B	P1H2201	100	ND	1	8/22/01	8/28/01	
Dichlorodifluoromethane	EPA 8260B	P1H2201	250	ND	1	8/22/01	8/28/01	
1,1-Dichloroethane	EPA 8260B	P1H2201	100	ND	1	8/22/01	8/28/01	
1,2-Dichloroethane	EPA 8260B	P1H2201	50	ND	1	8/22/01	8/28/01	
1,1-Dichloroethene	EPA 8260B	P1H2201	250	ND	1	8/22/01	8/28/01	
cis-1,2-Dichloroethene	EPA 8260B	P1H2201	100	. ND	1	8/22/01	8/28/01	
trans-1,2-Dichloroethene	EPA 8260B	P1H2201	100	ND	1	8/22/01	8/28/01	
1,2-Dichloropropane	EPA 8260B	P1H2201	100	ND	1	8/22/01	8/28/01	
1,3-Dichloropropane	EPA 8260B	P1H2201	100	ND	1	8/22/01	8/28/01	
2,2-Dichloropropane	EPA 8260B	P1H2201	100	ND	1	8/22/01	8/28/01	
1,1-Dichloropropene	EPA 8260B	P1H2201	100	ND	1	8/22/01	8/28/01	
cis-1,3-Dichloropropene	EPA 8260B	P1H2201	100	ND	1	8/22/01	8/28/01	
trans-1,3-Dichloropropene	EPA 8260B	P1H2201	100	ND	1	8/22/01	8/28/01	
Ethylbenzene	EPA 8260B	P1H2201	100	ND	1	8/22/01	8/28/01	
Hexachlorobutadiene	EPA 8260B	P1H2201	250	ND	1	8/22/01	8/28/01	
2-Hexanone	EPA 8260B	P1H2201	500	ND	1	8/22/01	8/28/01	
Iodomethane	EPA 8260B	P1H2201	100	ND	1	8/22/01	8/28/01	
Isopropylbenzene	EPA 8260B	P1H2201	100	ND	1	8/22/01	8/28/01	
p-Isopropyltoluene	EPA 8260B	P1H2201	100	ND	1	8/22/01	8/28/01	

Melissa Evans Project Manager PKH0356 Page 4 of 35

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-8596 FAX (858) 505-9589 (480) 785-0043 FAX (480) 785-0851

Law Engineering

4634 S. 36th Place Phoenix, AZ 85040 Client Project 1D: 70211-0-0150

Sampled: 08/20/01 Received: 08/21/01

Attention: Jim Clarke

G. Claula

Report Number: PKH0356

VOLATILE ORGANICS BY GC/MS (EPA 8260B)

			Reporting	Sample	Dilution	Date	Date	Data
Analyte	Method	Batch	Limit	Result	Factor	Extracted	Analyzed	Qualifiers
			ug/kg	ug/kg				
Sample ID: PKH0356-04 (LB-1	-S-30 - Soil)							
Methylene chloride	EPA 8260B	P1H2201	500	ND	1	8/22/01	8/28/01	
4-Methyl-2-pentanone (MIBK)	EPA 8260B	P1H2201	500	ND	1	8/22/01	8/28/01	
Methyl-tert-butyl Ether (MTBE)	EPA 8260B	P1H2201	250	ND	1	8/22/01	8/28/01	
Naphthalene	EPA 8260B	P1H2201	250	ND	1	8/22/01	8/28/01	
n-Propylbenzene	EPA 8260B	P1H2201	100	ND	1	8/22/01	8/28/01	
Styrene	EPA 8260B	P1H2201	100	ND	1	8/22/01	8/28/01	
1,1,1,2-Tetrachloroethane	EPA 8260B	P1H2201	250	ND	1	8/22/01	8/28/01	
1,1,2,2-Tetrachloroethane	EPA 8260B	P1H2201	100	ND	1	8/22/01	8/28/01	
Tetrachloroethene	EPA 8260B	P1H2201	100	ND	1	8/22/01	8/28/01	
Toluene	EPA 8260B	P1H2201	100	ND	1	8/22/01	8/28/01	
1,2,3-Trichlorobenzene	EPA 8260B	P1H2201	250	ND	1	8/22/01	8/28/01	
1,2,4-Trichlorobenzene	EPA 8260B	P1H2201	250	ND	1	8/22/01	8/28/01	
1,1,1-Trichloroethane	EPA 8260B	P1H2201	100	ND	1	8/22/01	8/28/01	
1,1,2-Trichloroethane	EPA 8260B	P1H2201	100	ND	1	8/22/01	8/28/01	
Trichloroethene	EPA 8260B	P1H2201	100	ND	1	8/22/01	8/28/01	
Trichlorofluoromethane	EPA 8260B	P1H2201	250	ND	1	8/22/01	8/28/01	
1,2,3-Trichloropropane	EPA 8260B	P1H2201	500	ND	1	8/22/01	8/28/01	
1,2,4-Trimethylbenzene	EPA 8260B	P1H2201	100	ND	1	8/22/01	8/28/01	
1,3,5-Trimethylbenzene	EPA 8260B	P1H2201	100	ND	1	8/22/01	8/28/01	
Vinyl acetate	EPA 8260B	P1H2201	1200	ND	1	8/22/01	8/28/01	V1
Vinyl chloride	EPA 8260B	P1H2201	250	ND	1 .	8/22/01	8/28/01	
Xylenes, Total	EPA 8260B	P1H2201	150	ND	1	8/22/01	8/28/01	
Surrogate: Dibromofluoromethane (70-12	?5%)			91.2 %				
Surrogate: Toluene-d8 (50-135%)				95.2 %				
Surrogate: 4-Bromofluorobenzene (70-13	0%)			92.8 %				

The reporting limit for this sample was adjusted by a factor of 0.996 to account for the applicable preparation factor.

Melissa Evans Project Manager

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-8596 FAX (858) 505-9589 (480) 785-0043 FAX (480) 785-0851

Law Engineering

4634 S. 36th Place Phoenix, AZ 85040 Attention: Jim Clarke Client Project ID:

70211-0-0150

Sampled: 08/20/01

Report Number:

PKH0356

Received: 08/21/01

VOLATILE ORGANICS BY GC/MS (EPA 8260B)

ug/kg ug/kg Sample ID: PKH0356-06 (LB-1-S-50 - Soil)	
Acetone EPA 8260B P1H2201 1000 ND 1 8/22/01 8/28/01	
Benzene EPA 8260B P1H2201 50 ND 1 8/22/01 8/28/01	
Bromobenzene EPA 8260B P1H2201 250 ND 1 8/22/01 8/28/01	
Bromochloromethane EPA 8260B P1H2201 250 ND 1 8/22/01 8/28/01	
Bromodichloromethane EPA 8260B P1H2201 100 ND 1 8/22/01 8/28/01	
Bromoform EPA 8260B P1H2201 250 ND 1 8/22/01 8/28/01	
Bromomethane EPA 8260B P1H2201 250 ND 1 8/22/01 8/28/01	
2-Butanone (MEK) EPA 8260B P1H2201 500 ND 1 8/22/01 8/28/01	
n-Butylbenzene EPA 8260B P1H2201 250 ND 1 8/22/01 8/28/01	
sec-Butylbenzene EPA 8260B P1H2201 250 ND 1 8/22/01 8/28/01	
tert-Butylbenzene EPA 8260B P1H2201 250 ND 1 8/22/01 8/28/01	
Carbon Disulfide EPA 8260B P1H2201 250 ND 1 8/22/01 8/28/01	
Carbon tetrachloride EPA 8260B P1H2201 250 ND 1 8/22/01 8/28/01	
Chlorobenzene EPA 8260B P1H2201 50 ND 1 8/22/01 8/28/01	
Chloroethane EPA 8260B P1H2201 250 ND 1 8/22/01 8/28/01	
Chloroform EPA 8260B P1H2201 100 ND 1 8/22/01 8/28/01	
Chloromethane EPA 8260B P1H2201 250 ND 1 8/22/01 8/28/01	
2-Chlorotoluene EPA 8260B P1H2201 250 ND 1 8/22/01 8/28/01	
4-Chlorotoluene EPA 8260B P1H2201 250 ND 1 8/22/01 8/28/01	
Dibromochloromethane EPA 8260B P1H2201 100 ND 1 8/22/01 8/28/01	
1,2-Dibromo-3-chloropropane EPA 8260B P1H2201 250 ND 1 8/22/01 8/28/01	
1,2-Dibromoethane (EDB) EPA 8260B P1H2201 100 ND 1 8/22/01 8/28/01	
Dibromomethane EPA 8260B P1H2201 100 ND 1 8/22/01 8/28/01	
1,2-Dichlorobenzene EPA 8260B P1H2201 100 ND 1 8/22/01 8/28/01	
1,3-Dichlorobenzene EPA 8260B P1H2201 100 ND 1 8/22/01 8/28/01	
1,4-Dichlorobenzene EPA 8260B P1H2201 100 ND 1 8/22/01 8/28/01	
Dichlorodifluoromethane EPA 8260B P1H2201 250 ND 1 8/22/01 8/28/01	
1,1-Dichloroethane EPA 8260B P1H2201 100 ND 1 8/22/01 8/28/01	
1,2-Dichloroethane EPA 8260B P1H2201 50 ND 1 8/22/01 8/28/01	
1,1-Dichloroethene EPA 8260B P1H2201 250 ND 1 8/22/01 8/28/01	
cis-1,2-Dichloroethene EPA 8260B P1H2201 100 ND 1 8/22/01 8/28/01	
trans-1,2-Dichloroethene EPA 8260B P1H2201 100 ND 1 8/22/01 8/28/01	
1,2-Dichloropropane EPA 8260B P1H2201 100 ND 1 8/22/01 8/28/01	
1,3-Dichloropropane EPA 8260B P1H2201 100 ND 1 8/22/01 8/28/01	
2,2-Dichloropropane EPA 8260B P1H2201 100 ND 1 8/22/01 8/28/01	
1,1-Dichloropropene EPA 8260B P1H2201 100 ND 1 8/22/01 8/28/01	
cis-1,3-Dichloropropene EPA 8260B P1H2201 100 ND 1 8/22/01 8/28/01	
trans-1,3-Dichloropropene EPA 8260B P1H2201 100 ND 1 8/22/01 8/28/01	
Ethylbenzene EPA 8260B P1H2201 100 ND 1 8/22/01 8/28/01	
Hexachlorobutadiene EPA 8260B P1H2201 250 ND 1 8/22/01 8/28/01	
2-Hexanone EPA 8260B P1H2201 500 ND 1 8/22/01 8/28/01	
Iodomethane EPA 8260B P1H2201 100 ND 1 8/22/01 8/28/01	
Isopropylbenzene EPA 8260B P1H2201 100 ND 1 8/22/01 8/28/01	
p-Isopropyltoluene EPA 8260B P1H2201 100 ND 1 8/22/01 8/28/01	

Melissa Evans Project Manager PKH0356 Page 6 of 35

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-8596 FAX (858) 505-9589 (480) 785-0043 FAX (480) 785-0851

Law Engineering 4634 S. 36th Place

Client Project ID:

70211-0-0150

Sampled: 08/20/01 Received: 08/21/01

Phoenix, AZ 85040 Attention: Jim Clarke

Report Number:

PKH0356

VOLATILE ORGANICS BY GC/MS (EPA 8260B)

	N# . (1)	D 4.1	Reporting	Sample	Dilution	Date	Date	Data
Analyte	Method	Batch	Limit	Result	Factor	Extracted	Analyzed	Qualifiers
			ug/kg	ug/kg				
Sample ID: PKH0356-06 (LB-1-	-S-50 - Soil)							
Methylene chloride	EPA 8260B	P1H2201	500	ND	1	8/22/01	8/28/01	
4-Methyl-2-pentanone (MIBK)	EPA 8260B	P1H2201	500	ND	1	8/22/01	8/28/01	
Methyl-tert-butyl Ether (MTBE)	EPA 8260B	P1H2201	250	ND	1	8/22/01	8/28/01	
Naphthalene	EPA 8260B	P1H2201	250	ND	1	8/22/01	8/28/01	
n-Propylbenzene	EPA 8260B	P1H2201	100	ND	1	8/22/01	8/28/01	
Styrene	EPA 8260B	P1H2201	100	ND	1	8/22/01	8/28/01	
1,1,1,2-Tetrachloroethane	EPA 8260B	P1H2201	250	ND	1	8/22/01	8/28/01	
1,1,2,2-Tetrachloroethane	EPA 8260B	P1H2201	100	ND	1	8/22/01	8/28/01	
Tetrachloroethene	EPA 8260B	P1H2201	100	ND	1	8/22/01	8/28/01	
Toluene	EPA 8260B	P1H2201	100	ND	1	8/22/01	8/28/01	
1,2,3-Trichlorobenzene	EPA 8260B	P1H2201	250	ND	1	8/22/01	8/28/01	
1,2,4-Trichlorobenzene	EPA 8260B	P1H2201	250	ND	1	8/22/01	8/28/01	
1,1,1-Trichloroethane	EPA 8260B	P1H2201	100	ND	1	8/22/01	8/28/01	
1,1,2-Trichloroethane	EPA 8260B	P1H2201	100	ND	1	8/22/01	8/28/01	
Trichloroethene	EPA 8260B	P1H2201	100	ND	1	8/22/01	8/28/01	
Trichlorofluoromethane	EPA 8260B	P1H2201	250	ND	1.	8/22/01	8/28/01	
1,2,3-Trichloropropane	EPA 8260B	P1H2201	500	ND	1	8/22/01	8/28/01	
1,2,4-Trimethylbenzene	EPA 8260B	P1H2201	100	ND	1 .	8/22/01	8/28/01	
1,3,5-Trimethylbenzene	EPA 8260B	P1H2201	100	ND	1	8/22/01	8/28/01	
Vinyl acetate	EPA 8260B	P1H2201	1200	ND	1	8/22/01	8/28/01	V1
Vinyl chloride	EPA 8260B	P1H2201	250	ND	1	8/22/01	8/28/01	
Xylenes, Total	EPA 8260B	P1H2201	150	ND	1	8/22/01	8/28/01	
Surrogate: Dibromofluoromethane (70-12	25%)			80.2 %				
Surrogate: Toluene-d8 (50-135%)				84.0 %				
Surrogate: 4-Bromofluorobenzene (70-13)	0%)			87.0 %				

The reporting limit for this sample was adjusted by a factor of 1.05 to account for the applicable preparation factor.

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-8596 FAX (858) 505-9589 (480) 785-0043 FAX (480) 785-0851

Law Engineering

4634 S. 36th Place

Client Project ID: 70211-0-0150

Sampled: 08/20/01

Phoenix, AZ 85040 Attention: Jim Clarke

Report Number: PKH0356

Received: 08/21/01

VOLATILE ORGANICS BY GC/MS (EPA 8260B)

Analyte	Method	Batch	Reporting Limit ug/l	Sample Result ug/l	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: PKH0356-07 (Trip	Blank - Water)			~- -				
Acetone	EPA 8260B	P1H3106	20	ND	1	8/30/01	8/30/01	
Benzene	EPA 8260B	P1H3106	2.0	ND	1	8/30/01	8/30/01	
Bromobenzene	EPA 8260B	P1H3106	5.0	ND	1	8/30/01	8/30/01	
Bromochloromethane	EPA 8260B	P1H3106	5.0	ND	1	8/30/01	8/30/01	
Bromodichloromethane	EPA 8260B	P1H3106	2.0	ND	1	8/30/01	8/30/01	
Bromoform	EPA 8260B	P1H3106	5.0	ND	1	8/30/01	8/30/01	
Bromomethane	EPA 8260B	P1H3106	5.0	ND	1	8/30/01	8/30/01	
2-Butanone (MEK)	EPA 8260B	P1H3106	10	ND	1	8/30/01	8/30/01	
n-Butylbenzene	EPA 8260B	P1H3106	5.0	ND	1	8/30/01	8/30/01	
sec-Butylbenzene	EPA 8260B	P1H3106	5.0	ND	1	8/30/01	8/30/01	
tert-Butylbenzene	EPA 8260B	P1H3106	5.0	ND	1	8/30/01	8/30/01	
Carbon Disulfide	EPA 8260B	P1H3106	5.0	ND	1	8/30/01	8/30/01	
Carbon tetrachloride	EPA 8260B	P1H3106	5.0	ND	1	8/30/01	8/30/01	
Chlorobenzene	EPA 8260B	P1H3106	2.0	ND	1	8/30/01	8/30/01	
Chloroethane	EPA 8260B	P1H3106	5.0	ND	1	8/30/01	8/30/01	
Chloroform	EPA 8260B	P1H3106	2.0	ND	1	8/30/01	8/30/01	
Chloromethane	EPA 8260B	P1H3106	5.0	ND	1	8/30/01	8/30/01	
2-Chlorotoluene	EPA 8260B	P1H3106	5.0	ND	1	8/30/01	8/30/01	
4-Chlorotoluene	EPA 8260B	P1H3106	5.0	ND	1	8/30/01	8/30/01	
Dibromochloromethane	EPA 8260B	P1H3106	2.0	ND	1	8/30/01	8/30/01	
1,2-Dibromo-3-chloropropane	EPA 8260B	P1H3106	5.0	ND	1	8/30/01	8/30/01	
1,2-Dibromoethane (EDB)	EPA 8260B	P1H3106	2.0	ND	1	8/30/01	8/30/01	
Dibromomethane	EPA 8260B	P1H3106	2.0	ND	1	8/30/01	8/30/01	
1,2-Dichlorobenzene	EPA 8260B	P1H3106	2.0	ND	1	8/30/01	8/30/01	
1,3-Dichlorobenzene	EPA 8260B	P1H3106	2.0	ND	1	8/30/01	8/30/01	
1,4-Dichlorobenzene	EPA 8260B	P1H3106	2.0	ND	1	8/30/01	8/30/01	
Dichlorodifluoromethane	EPA 8260B	P1H3106	5.0	ND	1	8/30/01	8/30/01	
1,1-Dichloroethane	EPA 8260B	P1H3106	2.0	ND	1	8/30/01	8/30/01	
1,2-Dichloroethane	EPA 8260B	P1H3106	2.0	ND	1	8/30/01	8/30/01	
1,1-Dichloroethene	EPA 8260B	P1H3106	5.0	ND	1	8/30/01	8/30/01	
cis-1,2-Dichloroethene	EPA 8260B	P1H3106	2.0	ND	1	8/30/01	8/30/01	
trans-1,2-Dichloroethene	EPA 8260B	P1H3106	2.0	ND	1	8/30/01	8/30/01	
1,2-Dichloropropane	EPA 8260B	P1H3106	2.0	ND	1	8/30/01	8/30/01	
1,3-Dichloropropane	EPA 8260B	P1H3106	2.0	ND	1	8/30/01	8/30/01	
2,2-Dichloropropane	EPA 8260B	P1H3106	2.0	ND	1	8/30/01	8/30/01	
1,1-Dichloropropene	EPA 8260B	P1H3106	2.0	ND	1	8/30/01	8/30/01	
cis-1,3-Dichloropropene	EPA 8260B	P1H3106	2.0	ND	1	8/30/01	8/30/01	
trans-1,3-Dichloropropene	EPA 8260B	P1H3106	2.0	ND	1	8/30/01	8/30/01	
Ethylbenzene	EPA 8260B	P1H3106	2.0	ND	1	8/30/01	8/30/01	
Hexachlorobutadiene	EPA 8260B	P1H3106	5.0	ND	1	8/30/01	8/30/01	
2-Hexanone	EPA 8260B	P1H3106	10	ND	1	8/30/01	8/30/01	
Iodomethane	EPA 8260B	P1H3106	2.0	ND	1	8/30/01	8/30/01	
Isopropylbenzene	EPA 8260B	P1H3106	2.0	ND	1	8/30/01	8/30/01	
p-Isopropyltoluene	EPA 8260B	P1H3106	2.0	ND	1	8/30/01	8/30/01	

Melissa Evans Project Manager

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-8596 FAX (858) 505-9589 (480) 785-0043 FAX (480) 785-0851

Law Engineering

4634 S. 36th Place Phoenix, AZ 85040 Attention: Jim Clarke Client Project ID: 70

70211-0-0150

Sampled: 08/20/01

Report Number: PI

PKH0356

Received: 08/21/01

VOLATILE ORGANICS BY GC/MS (EPA 8260B)

Analyte	Method	Batch	Reporting Limit ug/l	Sample Result ug/l	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: PKH0356-07 (Trip B	lank - Water)							
Methylene chloride	EPA 8260B	P1H3106	5.0	ND	1	8/30/01	8/30/01	
4-Methyl-2-pentanone (MIBK)	EPA 8260B	P1H3106	10	ND	1	8/30/01	8/30/01	
Methyl-tert-butyl Ether (MTBE)	EPA 8260B	P1H3106	5.0	ND	1	8/30/01	8/30/01	
Naphthalene	EPA 8260B	P1H3106	5.0	ND	1	8/30/01	8/30/01	
n-Propylbenzene	EPA 8260B	P1H3106	2.0	ND	1	8/30/01	8/30/01	
Styrene	EPA 8260B	P1H3106	2.0	ND	1	8/30/01	8/30/01	
1,1,1,2-Tetrachloroethane	EPA 8260B	P1H3106	5.0	ND	1	8/30/01	8/30/01	
1,1,2,2-Tetrachloroethane	EPA 8260B	P1H3106	2.0	ND	1	8/30/01	8/30/01	
Tetrachloroethene	EPA 8260B	P1H3106	2.0	ND	1	8/30/01	8/30/01	
Toluene	EPA 8260B	P1H3106	2.0	ND	1	8/30/01	8/30/01	
1,2,3-Trichlorobenzene	EPA 8260B	P1H3106	5.0	ND	1	8/30/01	8/30/01	
1,2,4-Trichlorobenzene	EPA 8260B	P1H3106	5.0	ND	1	8/30/01	8/30/01	
1,1,1-Trichloroethane	EPA 8260B	P1H3106	2.0	ND	1	8/30/01	8/30/01	
1,1,2-Trichloroethane	EPA 8260B	P1H3106	2.0	ND	1	8/30/01	8/30/01	
Trichloroethene	EPA 8260B	P1H3106	2.0	ND	1	8/30/01	8/30/01	
Trichlorofluoromethane	EPA 8260B	P1H3106	5.0	ND	1	8/30/01	8/30/01	
1,2,3-Trichloropropane	EPA 8260B	P1H3106	10	ND	1	8/30/01	8/30/01	
1,2,4-Trimethylbenzene	EPA 8260B	P1H3106	2.0	ND	1	8/30/01	8/30/01	
1,3,5-Trimethylbenzene	EPA 8260B	P1H3106	2.0	ND	1	8/30/01	8/30/01	
Vinyl acetate	EPA 8260B	P1H3106	25	ND	1	8/30/01	8/30/01	V1,L3
Vinyl chloride	EPA 8260B	P1H3106	5.0	ND	1	8/30/01	8/30/01	
Xylenes, Total	EPA 8260B	P1H3106	10	ND	1	8/30/01	8/30/01	
Surrogate: Dibromofluoromethane (80-120	%)			98.4 %				
Surrogate: Toluene-d8 (80-120%)				105 %				
Surrogate: 4-Bromofluorobenzene (80-120)	%)			104 %				

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-8596 FAX (858) 505-9589 (480) 785-0043 FAX (480) 785-0851

Law Engineering

4634 S. 36th Place Phoenix, AZ 85040

Attention: Jim Clarke

Client Project ID:

70211-0-0150

Report Number:

PKH0356

Sampled: 08/20/01

Received: 08/21/01

TOTAL METALS

Analyte	Method	Batch	Reporting Limit mg/kg	Sample Result mg/kg	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: PKH0356-02 (LB-1-8	5-10 - Soil)							
Arsenic	EPA 6010B	P1H2407	5.0	ND	1	8/24/01	8/28/01	
Chromium	EPA 6010B	P1H2407	1.0	21	1	8/24/01	8/28/01	•
Chromium VI	EPA 7196A	P1H3004	1.0	ND	1	8/29/01	8/30/01	
Copper	EPA 6010B	P1H2407	2.0	21	1	8/24/01	8/28/01	
Nickel	EPA 6010B	P1H2407	5.0	20	1 .	8/24/01	8/28/01	
Zinc	EPA 6010B	P1H2407	5.0	59	1	8/24/01	8/28/01	
Sample ID: PKH0356-03 (LB-1-8	S-20 - Soil)							
Arsenic	EPA 6010B	P1H2407	5.0	ND	1	8/24/01	8/28/01	
Chromium	EPA 6010B	P1H2407	1.0	15	1	8/24/01	8/28/01	
Chromium VI	EPA 7196A	P1H3004	1.0	ND	1	8/29/01	8/30/01	
Copper	EPA 6010B	P1H2407	2.0	14	1	8/24/01	8/28/01	
Nickel	EPA 6010B	P1H2407	5.0	12	1	8/24/01	8/28/01	
Zinc	EPA 6010B	P1H2407	5.0	38	1	8/24/01	8/28/01	
Sample ID: PKH0356-04 (LB-1-8	5-30 - Soil)							
Arsenic	EPA 6010B	P1H2407	5.0	ND	1	8/24/01	8/28/01	
Chromium	EPA 6010B	P1H2407	1.0	19	1	8/24/01	8/28/01	
Chromium VI	EPA 7196A	P1H3004	1.0	ND	1	8/29/01	8/30/01	
Copper	EPA 6010B	P1H2407	2.0	14	1	8/24/01	8/28/01	
Nickel	EPA 6010B	P1H2407	5.0	11	1	8/24/01	8/28/01	
Zinc	EPA 6010B	P1H2407	5.0	34	1	8/24/01	8/28/01	
Sample ID: PKH0356-05 (LB-1-8	S-40 - Soil)							
Arsenic	EPA 6010B	P1H2407	5.0	ND	1	8/24/01	8/28/01	
Chromium	EPA 6010B	P1H2407	1.0	15	1	8/24/01	8/28/01	
Chromium VI	EPA 7196A	P1H3004	1.0	ND	1	8/29/01	8/30/01	
Copper	EPA 6010B	P1H2407	2.0	20	1	8/24/01	8/28/01	
Nickel	EPA 6010B	P1H2407	5.0	15	1	8/24/01	8/28/01	
Zinc	EPA 6010B	P1H2407	5.0	46	1	8/24/01	8/28/01	

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-8596 FAX (858) 505-9589 (480) 785-0043 FAX (480) 785-0851

Law Engineering

4634 S. 36th Place Phoenix, AZ 85040

Attention: Jim Clarke

Client Project ID:

70211-0-0150

Sampled: 08/20/01

Report Number:

PKH0356

Received: 08/21/01

TOTAL METALS

Analyte	Method	Batch	Reporting Limit mg/kg	Sample Result mg/kg	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: PKH0356-06 (LB-1-S	-50 - Soil)							
Arsenic	EPA 6010B	P1H2407	5.0	ND	1	8/24/01	8/28/01	
Chromium	EPA 6010B	P1H2407	1.0	27	1	8/24/01	8/28/01	
Chromium VI	EPA 7196A	P1H3004	1.0	ND	1	8/29/01	8/30/01	
Copper	EPA 6010B	P1H2407	2.0	18	. 1	8/24/01	8/28/01	
Nickel	EPA 6010B	P1H2407	5.0	17	1 .	8/24/01	8/28/01	
Zinc	EPA 6010B	P1H2407	5.0	52	1	8/24/01	8/28/01	

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (558) 505-8596 FAX (858) 505-9589 (480) 785-0043 FAX (480) 785-0851

Law Engineering

4634 S. 36th Place

Client Project ID:

70211-0-0150

Sampled: 08/20/01

Phoenix, AZ 85040 Attention: Jim Clarke

Report Number:

PKH0356

Received: 08/21/01

TOTAL RECOVERABLE METALS

Analyte	Method	Batch	Reporting Limit mg/l	Sample Result mg/l	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: PKH0356-01 (LB1 I	Rinse - Water)							
Arsenic	EPA 200.7	P1H2320	0.050	ND	1	8/23/01	8/28/01	
Chromium	EPA 200.7	P1H2320	0.010	ND	1	8/23/01	8/28/01	
Chromium VI	SM3500CR-D	P1H2119	0.025	ND	1	8/21/01	8/21/01	M2
Copper	EPA 200.7	P1H2320	0.020	ND	1	8/23/01	8/28/01	
Nickel	EPA 200.7	P1H2320	0.050	ND	1	8/23/01	8/28/01	
Zinc	EPA 200.7	P1H2320	0.050	ND	1	8/23/01	8/28/01	

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-8596 FAX (858) 505-9589 (480) 785-0043 FAX (480) 785-0851

Law Engineering

4634 S. 36th Place

Phoenix, AZ 85040 Attention: Jim Clarke Client Project ID:

70211-0-0150

Report Number: PKH0356

Sampled: 08/20/01 Received: 08/21/01

INORGANICS

Analyte	Method	Batch	Reporting Limit mg/l	Sample Result mg/l	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: PKH0356-01 (LB1	Rinse - Water)							
Total Cyanide	SM4500-CN,C-E	P1H2906	0.020 mg/kg	ND mg/kg	1	8/28/01	8/29/01	L3,N1
Sample ID: PKH0356-02 (LB-	1-S-10 - Soil)							
Total Cyanide	EPA 9014	P1H2911	0.50	ND	1	8/29/01	8/29/01	M2
Sample ID: PKH0356-03 (LB-	1-S-20 - Soil)							
Total Cyanide	EPA 9014	P1H2911	0.50	ND	1	8/29/01	8/29/01	
Sample ID: PKH0356-04 (LB-	1-S-30 - Soil)							
Total Cyanide	EPA 9014	P1H2911	0.50	ND	1	8/29/01	8/29/01	
Sample ID: PKH0356-05 (LB-	1-S-40 - Soil)							
Total Cyanide	EPA 9014	P1H2911	0.50	ND	1	8/29/01	8/29/01	
Sample ID: PKH0356-06 (LB-	1-S-50 - Soil)							
Total Cyanide	EPA 9014	P1H2911	0.50	ND	1	8/29/01	8/29/01	

DEL MAR ANALYTICAL, PHOENIX (AZ0426

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-8596 FAX (858) 505-9589 (480) 785-0043 FAX (480) 785-0851

Law Engineering 4634 S. 36th Place Phoenix, AZ 85040

Client Project ID:

70211-0-0150

Sampled: 08/20/01

Attention: Jim Clarke

Report Number:

PKH0356

Received: 08/21/01

MITHUDER ENRIQUE DATE:

VOLATILE ORGANICS BY GC/MS (EPA 8260B)

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: P1H2201 Extracted: 08/22	/01									
Blank Analyzed: 08/28/01 (P1H2201-)										
Acetone	ND	1000	ug/kg							
Benzene	ND	50	ug/kg							
Bromobenzene	ND	250	ug/kg							
Bromochloromethane	ND	250	ug/kg							
Bromodichloromethane	ND	100	ug/kg							
Bromoform	ND	250	ug/kg							
Bromomethane	ND	250	ug/kg							
2-Butanone (MEK)	ND	500	ug/kg							
n-Butylbenzene	ND	250	ug/kg							
sec-Butylbenzene	ND	250	ug/kg							
tert-Butylbenzene	ND	250	ug/kg							
Carbon Disulfide	ND	250	ug/kg							
Carbon tetrachloride	ND	250	ug/kg							
Chlorobenzene	ND	50	ug/kg							
Chloroethane	ND	250	ug/kg							
Chloroform	ND	100	ug/kg							
Chloromethane	ND	250	ug/kg							
2-Chlorotoluene	ND	250	ug/kg							
4-Chlorotoluene	ND	250	ug/kg							
Dibromochloromethane	ND	100	ug/kg							
1,2-Dibromo-3-chloropropane	ND	250	ug/kg							
1,2-Dibromoethane (EDB)	ND	100	ug/kg							
Dibromomethane	ND	100	ug/kg							
1,2-Dichlorobenzene	ND	100	ug/kg							
1,3-Dichlorobenzene	ND	100	ug/kg							
1,4-Dichlorobenzene	ND	100	ug/kg							
Dichlorodifluoromethane	ND	250	ug/kg							
1,1-Dichloroethane	ND	100	ug/kg							
1,2-Dichloroethane	ND	50	ug/kg							
1,1-Dichloroethene	ND	250	ug/kg							
cis-1,2-Dichloroethene	ND	100	ug/kg							
trans-1,2-Dichloroethene	ND	100	ug/kg							
1,2-Dichloropropane	ND	100	ug/kg							
1,3-Dichloropropane	ND	100	ug/kg							
2,2-Dichloropropane	ND	100	ug/kg							
			2 2							

Melissa Evans Project Manager

%REC

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-8596 FAX (858) 505-9589 (480) 785-0043 FAX (480) 785-0851

Law Engineering

4634 S. 36th Place Phoenix, AZ 85040

Attention: Jim Clarke

Client Project ID:

70211-0-0150

Sampled: 08/20/01

Report Number:

Reporting

PKH0356

Received: 08/21/01

RPD

Data

METHOD BLANK/DC DATA

VOLATILE ORGANICS BY GC/MS (EPA 8260B)

Spike

Source

		Acpoi ang		Spike	bourte		/UILLC		MI D	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: P1H2201 Extracted: 08/2	2/01									
Blank Analyzed: 08/28/01 (P1H2201	-BLK1)									
1,1-Dichloropropene	ND	100	ug/kg							
cis-1,3-Dichloropropene	ND	100	ug/kg							
trans-1,3-Dichloropropene	ND	100	ug/kg							
Ethylbenzene	ND	100	ug/kg							
Hexachlorobutadiene	ND	250	ug/kg							
2-Hexanone	ND	500	ug/kg							
Iodomethane	ND	100	ug/kg							
lsopropylbenzene	ND	100	ug/kg							
p-Isopropyltoluene	ND	100	ug/kg							
Methylene chloride	ND	500	ug/kg							
4-Methyl-2-pentanone (M1BK)	ND	500	ug/kg							
Methyl-tert-butyl Ether (MTBE)	ND	250	ug/kg							
Naphthalene	ND	250	ug/kg							
n-Propylbenzene	ND	100	ug/kg							
Styrene	ND	100	ug/kg							
1,1,1,2-Tetrachloroethane	ND	250	ug/kg							
1,1,2,2-Tetrachloroethane	ND	100	ug/kg							
Tetrachloroethene	ND	100	ug/kg							
Toluene	ND	100	ug/kg							
1,2,3-Trichlorobenzene	ND	250	ug/kg							
1,2,4-Trichlorobenzene	ND	250	ug/kg							
1,1,1-Trichloroethane	ND	100	ug/kg							
1,1,2-Trichloroethane	ND	100	ug/kg							
Trichloroethene	ND	100	ug/kg							
Trichlorofluoromethane	ND	250	ug/kg							
1,2,3-Trichloropropane	ND	500	ug/kg							
1,2,4-Trimethylbenzene	ND	100	ug/kg							
1,3,5-Trimethylbenzene	ND	100	ug/kg							
Vinyl acetate	ND	1200	ug/kg							
Vinyl chloride	ND	250	ug/kg							
Xylenes, Total	ND	150	ug/kg							
Surrogate: Dibromofluoromethane	1270		ug/kg	1250		102	70-125			
Surrogate: Toluene-d8	1320		ug/kg	1250		106	50-135			
Surrogate: 4-Bromofluorobenzene	1260		ug/kg	1250		101	70-130			
i e										

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-8596 FAX (858) 505-9589 (480) 785-0043 FAX (480) 785-0851

Law Engineering

4634 S. 36th Place Phoenix, AZ 85040

Attention: Jim Clarke

Client Project ID:

70211-0-0150

Report Number:

PKH0356

Sampled: 08/20/01

Received: 08/21/01

Misiri (ODB) AX Kijiko Daji s

VOLATILE ORGANICS BY GC/MS (EPA 8260B)

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: P1H2201 Extracted: 08/22/	<u>01</u>									
LCS Analyzed: 08/30/01 (P1H2201-BS	S1)									
Acetone	ND	1000	ug/kg	1000		89.9	5-200			
Benzene	802	50	ug/kg	1000		80.2	65-130			
Bromobenzene	874	250	ug/kg	1000		87.4	60-135			
Bromochloromethane	856	250	ug/kg	1000		85.6	60-135			
Bromodichloromethane	799	100	ug/kg	1000		79.9	30-135			
Bromoform	812	250	ug/kg	1000		81.2	60-140	,		
Bromomethane	345	250	ug/kg	1000		34.5	10-200			
2-Butanone (MEK)	885	500	ug/kg	1000		88.5	10-160			
n-Butylbenzene	912	250	ug/kg	1000		91.2	65-125			
sec-Butylbenzene	934	250	ug/kg	1000		93.4	70-135			
tert-Butylbenzene	956	250	ug/kg	1000		95.6	70-130			
Carbon Disulfide	730	250	ug/kg	1000		73.0	20-120			
Carbon tetrachloride	857	250	ug/kg	1000		85.7	70-140			
Chlorobenzene	937	50	ug/kg	1000		93.7	75-125			
Chloroethane	493	250	ug/kg	1000		49.3	10-200			
Chloroform	793	100	ug/kg	1000		79.3	35-135			
Chloromethane	753	250	ug/kg	1000		75.3	10-200			
2-Chlorotoluene	909	250	ug/kg	1000		90.9	70-135			
4-Chlorotoluene	921	250	ug/kg	1000		92.1	75-135			
Dibromochloromethane	842	100	ug/kg	1000		84.2	35-135			
1,2-Dibromo-3-chloropropane	695	250	ug/kg	1000		69.5	50-155			
1,2-Dibromoethane (EDB)	893	100	ug/kg	1000		89.3	70-130			
Dibromomethane	801	100	ug/kg	1000		80.1	65-130			
1,2-Dichlorobenzene	912	100	ug/kg	1000		91.2	70-125			
1,3-Dichlorobenzene	908	100	ug/kg	1000		90.8	70-125			
1,4-Dichlorobenzene	926	100	ug/kg	1000		92.6	70-135			
Dichlorodifluoromethane	475	250	ug/kg	1000		47.5	10-185			
1,1-Dichloroethane	971	100	ug/kg	1000		97.1	60-140			
1,2-Dichloroethane	786	50	ug/kg	1000		78.6	55-135			
1,1-Dichloroethene	863	250	ug/kg	1000		86.3	55-145			
cis-1,2-Dichloroethene	955	100	ug/kg	1000		95.5	60-125			
trans-1,2-Dichloroethene	902	100	ug/kg	1000		90.2	70-145			
1,2-Dichloropropane	845	100	ug/kg	1000		84.5	65-130			
1,3-Dichloropropane	904	100	ug/kg	1000		90.4	65-130			
2,2-Dichloropropane	959	100	ug/kg	1000		95.9	60-135			
1,1-Dichloropropene	866	100	ug/kg	1000		86.6	65-130			

Melissa Evans Project Manager

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-8596 FAX (858) 505-9589 (480) 785-0043 FAX (480) 785-0851

Law Engineering 4634 S. 36th Place

Phoenix, AZ 85040 Attention: Jim Clarke Client Project ID:

70211-0-0150

Sampled: 08/20/01 Received: 08/21/01

Report Number:

PKH0356

METHOD REANKOOCDATA

VOLATILE ORGANICS BY GC/MS (EPA 8260B)

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: P1H2201 Extracted: 08/22/0	<u>)1</u>						÷			
LCS Analyzed: 08/30/01 (P1H2201-BS	1)									
cis-1,3-Dichloropropene	812	100	ug/kg	1000		81.2	60-125			
trans-1,3-Dichloropropene	810	100	ug/kg	1000		81.0	50-130			
Ethylbenzene	926	100	ug/kg	1000		92.6	70-125			
Hexachlorobutadiene	1130	250	ug/kg	1000		113	60-125			
2-Hexanone	846	500	ug/kg	1000		84.6	25-185			
Iodomethane	738	100	ug/kg	1000		73.8	30-155			
Isopropylbenzene	970	100	ug/kg	1000		97.0	70-135			
p-Isopropyltoluene	898	100	ug/kg	1000		89.8	65-130			
Methylene chloride	1050	500	ug/kg	1000		105	60-140			
4-Methyl-2-pentanone (MIBK)	831	500	ug/kg	1000		83.1	10-175			
Methyl-tert-butyl Ether (MTBE)	895	250	ug/kg	1000		89.5	55-135			
Naphthalene	866	250	ug/kg	1000		86.6	45-155			
n-Propylbenzene	904	100	ug/kg	1000		90.4	75-135			
Styrene	934	100	ug/kg	1000		93.4	70-130			
1,1,1,2-Tetrachloroethane	903	250	ug/kg	1000		90.3	70-130			
1,1,2,2-Tetrachloroethane	810	100	ug/kg	1000		81.0	60-140			
Tetrachloroethene	882	100	ug/kg	1000		88.2	65-130			
Toluene	885	100	ug/kg	1000		88.5	70-125			
1,2,3-Trichlorobenzene	892	250	ug/kg	1000		89.2	60-135			
1,2,4-Trichlorobenzene	966	250	ug/kg	1000		96.6	55-135			
1,1,1-Trichloroethane	804	100	ug/kg	1000		80.4	65-135			
1,1,2-Trichloroethane	861	100	ug/kg	1000		86.1	65-130			
Trichloroethene	873	100	ug/kg	1000		87.3	70-130			
Trichlorofluoromethane	652	250	ug/kg	1000		65.2	10-200			
1,2,3-Trichloropropane	830	500	ug/kg	1000		83.0	60-150			
1,2,4-Trimethylbenzene	887	100	ug/kg	1000		88.7	75-130			
1,3,5-Trimethylbenzene	875	100	ug/kg	1000		87.5	70-130			
Vinyl acetate	ND	1200	ug/kg	1000		100	25-130			
Vinyl chloride	807	250	ug/kg	1000		80.7	10-200			
Xylenes, Total	2870	150	ug/kg	3000		95.7	70-130			
Surrogate: Dibromofluoromethane	1200		ug/kg	1250		96.0	70-125			
Surrogate: Toluene-d8	1200		ug/kg	1250		96.0	<i>50-135</i>			
Surrogate: 4-Bromofluorobenzene	1 23 0		ug/kg	1250		98.4	70-130			

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-8596 FAX (858) 505-9589 (480) 785-0043 FAX (480) 785-0851

Law Engineering

4634 S. 36th Place Phoenix, AZ 85040

Attention: Jim Clarke

Client Project ID:

70211-0-0150

Report Number:

PKH0356

Sampled: 08/20/01

Received: 08/21/01

iši žilo i (d) i d il mavni šilo (d) i da ust

VOLATILE ORGANICS BY GC/MS (EPA 8260B)

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: P1H2201 Extracted: 08/2	22/01									
LCS Dup Analyzed: 08/30/01 (P1H2	2201-BSD1)									
Acetone	ND	1000	ug/kg	1000		88.3	5-200	1.80	35	
Benzene	854	50	ug/kg	1000		85.4	65-130	6.28	35	
Bromobenzene	901	250	ug/kg	1000		90.1	60-135	3.04	35	
Bromochloromethane	972	250	ug/kg	1000		97.2	60-135	12.7	35	
Bromodichloromethane	821	100	ug/kg	1000		82.1	30-135	2.72	35	
Bromoform	847	250	ug/kg	1000		84.7	60-140	4.22	35	
Bromomethane	384	250	ug/kg	1000		38.4	10-200	10.7	35	
2-Butanone (MEK)	961	500	ug/kg	1000		96.1	10-160	8.23	35	
n-Butylbenzene	908	250	ug/kg	1000		90.8	65-125	0.440	35	
sec-Butylbenzene	955	250	ug/kg	1000		95.5	70-135	2.22	35	
tert-Butylbenzene	962	250	ug/kg	1000		96.2	70-130	0.626	35	
Carbon Disulfide	744	250	ug/kg	1000		74.4	20-120	1.90	35	
Carbon tetrachloride	896	250	ug/kg	1000		89.6	70-140	4.45	35	
Chlorobenzene	965	50	ug/kg	1000		96.5	75-125	2.94	35	
Chloroethane	467	250	ug/kg	1000		46.7	10-200	5.42	35	
Chloroform	904	100	ug/kg	1000		90.4	35-135	13.1	35	
Chloromethane	766	250	ug/kg	1000		76.6	10-200	1.71	35	
2-Chlorotoluene	942	250	ug/kg	1000		94.2	70-135	3.57	35	
4-Chlorotoluene	942	250	ug/kg	1000		94.2	75-135	2.25	35	
Dibromochloromethane	861	100	ug/kg	1000		86.1	35-135	2.23	35	
1,2-Dibromo-3-chloropropane	773	250	ug/kg	1000		77.3	50-155	10.6	35	
1,2-Dibromoethane (EDB)	933	100	ug/kg	1000		93.3	70-130	4.38	35	
Dibromomethane	855	100	ug/kg	1000		85.5	65-130	6.52	35	
1,2-Dichlorobenzene	946	100	ug/kg	1000		94.6	70-125	3.66	35	
1,3-Dichlorobenzene	939	100	ug/kg	1000		93.9	70-125	3.36	35	
1,4-Dichlorobenzene	958	100	ug/kg	1000		95.8	70-135	3.40	35	
Dichlorodifluoromethane	483	250	ug/kg	1000		48.3	10-185	1.67	35	
1,1-Dichloroethane	952	100	ug/kg	1000		95.2	60-140	1.98	35	
1,2-Dichloroethane	814	50	ug/kg	1000		81.4	55-135	3.50	35	
1,1-Dichloroethene	859	250	ug/kg	1000		85.9	55-145	0.465	35	
cis-1,2-Dichloroethene	934	100	ug/kg	1000		93.4	60-125	2.22	35	
trans-1,2-Dichloroethene	898	100	ug/kg	1000		89.8	70-145	0.444	35	
1,2-Dichloropropane	860	100	ug/kg	1000		86.0	65-130	1.76	35	
1,3-Dichloropropane	944	100	ug/kg	1000		94.4	65-130	4.33	35	
2,2-Dichloropropane	936	100	ug/kg	1000		93.6	60-135	2.43	35	
1,1-Dichloropropene	900	100	ug/kg	1000		90.0	65-130	3.85	35	

Melissa Evans Project Manager

PKH0356 Page 18 of 35

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-8596 FAX (858) 505-9589 (480) 785-0043 FAX (480) 785-0851

Law Engineering

4634 S. 36th Place

Phoenix, AZ 85040 Attention: Jim Clarke Client Project ID:

70211-0-0150

Sampled: 08/20/01

Report Number:

PKH0356

Received: 08/21/01

METHOD BLANK-QC DATA:

VOLATILE ORGANICS BY GC/MS (EPA 8260B)

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: P1H2201 Extracted: 08/22/0	01									
LCS Dup Analyzed: 08/30/01 (P1H220	1-BSD1)									
cis-1,3-Dichloropropene	818	100	ug/kg	1000		81.8	60-125	0.736	35	
trans-1,3-Dichloropropene	822	100	ug/kg	1000		82.2	50-130	1.47	35	
Ethylbenzene	939	100	ug/kg	1000		93.9	70-125	1.39	35	
Hexachlorobutadiene	855	250	ug/kg	1000		85.5	60-125	27.7	35	
2-Hexanone	864	500	ug/kg	1000		86.4	25-185	2.11	35	
Iodomethane	876	100	ug/kg	1000		87.6	30-155	17.1	35	
Isopropylbenzene	957	100	ug/kg	1000		95.7	70-135	1.35	35	
p-Isopropyltoluene	910	100	ug/kg	1000		91.0	65-130	1.33	35	
Methylene chloride	1020	500	ug/kg	1000		102	60-140	2.90	35	
4-Methyl-2-pentanone (MIBK)	849	500	ug/kg	1000		84.9	10-175	2.14	35	
Methyl-tert-butyl Ether (MTBE)	899	250	ug/kg	1000		89.9	55-135	0.446	35	
Naphthalene	860	250	ug/kg	1000		86.0	45-155	0.695	35	
n-Propylbenzene	942	100	ug/kg	1000		94.2	75-135	4.12	35	
Styrene	933	100	ug/kg	1000		93.3	70-130	0.107	35	
1,1,1,2-Tetrachloroethane	925	250	ug/kg	1000		92.5	70-130	2.41	35	
1,1,2,2-Tetrachloroethane	848	100	ug/kg	1000		84.8	60-140	4.58	35	
Tetrachloroethene	913	100	ug/kg	1000		91.3	65-130	3.45	35	
Toluene	925	100	ug/kg	1000		92.5	70-125	4.42	35	
1,2,3-Trichlorobenzene	853	250	ug/kg	1000		85.3	60-135	4.47	35	
1,2,4-Trichlorobenzene	946	250	ug/kg	1000		94.6	55-135	2.09	35	
1,1,1-Trichloroethane	850	100	ug/kg	1000		85.0	65-135	5.56	35	
1,1,2-Trichloroethane	899	100	ug/kg	1000		89.9	65-130	4.32	35	
Trichloroethene	898	100	ug/kg	1000		89.8	70-130	2.82	35	
Trichlorofluoromethane	661	250	ug/kg	1000		66.1	10-200	1.37	35	
1,2,3-Trichloropropane	873	500	ug/kg	1000		87.3	60-150	5.05	35	
1,2,4-Trimethylbenzene	918	100	ug/kg	1000		91.8	75-130	3.43	35	
1,3,5-Trimethylbenzene	898	100	ug/kg	1000		89.8	70-130	2.59	35	
Vinyl acetate	ND	1200	ug/kg	1000		101	25-130	0.995	35	
Vinyl chloride	831	250	ug/kg	1000		83.1	10-200	2.93	35	
Xylenes, Total	2870	150	ug/kg	3000		95.7	70-130	0.00	35	
Surrogate: Dibromofluoromethane	1300		ug/kg	1250		104	70-125			
Surrogate: Toluene-d8	1270		ug/kg	1250		102	50-135			
Surrogate: 4-Bromofluorobenzene	1270		ug/kg	1250		102	70-130			

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-8596 FAX (858) 505-9589 (480) 785-0043 FAX (480) 785-0851

Law Engineering

4634 S. 36th Place

Phoenix, AZ 85040 Attention: Jim Clarke Client Project ID:

70211-0-0150

Report Number: PKH0356

Sampled: 08/20/01

Received: 08/21/01

METHOD BLANK OC DATA

VOLATILE ORGANICS BY GC/MS (EPA 8260B)

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: P1H2201 Extracted: 08/22	<u>/01</u>									
Matrix Spike Analyzed: 08/30/01 (P1	H2201-MS1)				Source: P	KH0384-	01			
Acetone	1120	1000	ug/kg	1000	ND	112	5-200			
Benzene	812	50	ug/kg	1000	ND	81.2	65-130			
Bromobenzene	918	250	ug/kg	1000	ND	91.8	60-135			
Bromochloromethane	794	250	ug/kg	1000	ND	79.4	60-135			
Bromodichloromethane	788	100	ug/kg	1000	ND	78.8	30-135			•
Bromoform	914	250	ug/kg	1000	ND	91.4	60-140			
Bromomethane	ND	250	ug/kg	1000	ND	20.2	10-200			
2-Butanone (MEK)	1100	500	ug/kg	1000	ND	110	10-160			
n-Butylbenzene	910	250	ug/kg	1000	ND	91.0	65-125			
sec-Butylbenzene	937	250	ug/kg	1000	ND	93.7	70-135			
tert-Butylbenzene	972	250	ug/kg	1000	ND	97.2	70-130			
Carbon Disulfide	546	250	ug/kg	1000	ND	54.6	20-120			
Carbon tetrachloride	896	250	ug/kg	1000	ND	89.6	70-140			
Chlorobenzene	942	50	ug/kg	1000	ND	94.2	75-125			
Chloroethane	ND	250	ug/kg	1000	ND	1 7 .7	10-200			
Chloroform	883	100	ug/kg	1000	ND	88.3	35-135			
Chloromethane	588	250	ug/kg	1000	ND	58.8	10-200			
2-Chlorotoluene	914	250	ug/kg	1000	ND	91.4	70-135			
4-Chlorotoluene	913	250	ug/kg	1000	ND	91.3	75-135			
Dibromochloromethane	922	100	ug/kg	1000	ND	92.2	35-135			
1,2-Dibromo-3-chloropropane	963	250	ug/kg	1000	ND	96.3	50-155			
1,2-Dibromoethane (EDB)	1010	100	ug/kg	1000	ND	101	70-130			
Dibromomethane	824	100	ug/kg	1000	ND	82.4	65-130			
1,2-Dichlorobenzene	923	100	ug/kg	1000	ND	92.3	70-125			
1,3-Dichlorobenzene	910	100	ug/kg	1000	ND	91.0	70-125			
1,4-Dichlorobenzene	932	100	ug/kg	1000	ND	93.2	70-135			
Dichlorodifluoromethane	283	250	ug/kg	1000	ND	28.3	10-185			
1,1-Dichloroethane	874	100	ug/kg	1000	ND	87.4	60-140			
1,2-Dichloroethane	782	50	ug/kg	1000	ND	78.2	55-135			
1,1-Dichloroethene	708	250	ug/kg	1000	ND	70.8	55-145			
cis-1,2-Dichloroethene	874	100	ug/kg	1000	ND	87.4	60-125			
trans-1,2-Dichloroethene	882	100	ug/kg	1000	ND	88.2	70-145			
1,2-Dichloropropane	780	100	ug/kg	1000	ND	78.0	65-130			
1,3-Dichloropropane	971	100	ug/kg	1000	ND	97.1	65-130			
2,2-Dichloropropane	860	100	ug/kg	1000	ND	86.0	60-135			
1,1-Dichloropropene	884	100	ug/kg	1000	ND	88.4	65-130			
							•			

Melissa Evans Project Manager

%REC

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-8596 FAX (858) 505-9589 (480) 785-0043 FAX (480) 785-0851

Law Engineering 4634 S. 36th Place

Client Project ID:

70211-0-0150

Sampled: 08/20/01 Received: 08/21/01

RPD

Data

Phoenix, AZ 85040 Attention: Jim Clarke

Report Number:

Reporting

PKH0356

NEURODBEANKIOO DATA

VOLATILE ORGANICS BY GC/MS (EPA 8260B)

Spike

Source

Batch: P1H2201 Extracted: 08/22/01 Matrix Spike Analyzed: 08/30/01 (P1H2201-MS1) Source: PKH0384-01 cis-1,3-Dichloropropene 755 100 ug/kg 1000 ND 75.5 60-125 trans-1,3-Dichloropropene 864 100 ug/kg 1000 ND 86.4 50-130 Ethylbenzene 932 100 ug/kg 1000 ND 93.2 70-125 Hexachlorobutadiene 1070 250 ug/kg 1000 ND 107 60-125 2-Hexanone 1180 500 ug/kg 1000 ND 40.9 30-155 Isopropylbenzene 949 100 ug/kg 1000 ND 94.9 70-135 p-Isopropyltoluene 883 100 ug/kg 100 ND 88.3 65-130 Methyl-2-pentanone (MIBK) 1010 500 ug/kg 1000 ND 98.1 55-135 Methyl-tert-butyl Ether (MTBE) 981 250 ug/kg 1000
cis-1,3-Dichloropropene 755 100 ug/kg 1000 ND 75.5 60-125 trans-1,3-Dichloropropene 864 100 ug/kg 1000 ND 86.4 50-130 Ethylbenzene 932 100 ug/kg 1000 ND 93.2 70-125 Hexachlorobutadiene 1070 250 ug/kg 1000 ND 107 60-125 2-Hexanone 1180 500 ug/kg 1000 ND 118 25-185 Iodomethane 409 100 ug/kg 1000 ND 40.9 30-155 Isopropylbenzene 949 100 ug/kg 1000 ND 94.9 70-135 p-Isopropyltoluene 883 100 ug/kg 1000 ND 88.3 65-130 Methyl-2-pentanone (MIBK) 1010 500 ug/kg 1000 ND ND 86.1 60-140 4-Methyl-tert-butyl Ether (MTBE) 981 250 ug/kg 1000
trans-1,3-Dichloropropene 864 100 ug/kg 1000 ND 86.4 50-130 Ethylbenzene 932 100 ug/kg 1000 ND 93.2 70-125 Hexachlorobutadiene 1070 250 ug/kg 1000 ND 107 60-125 2-Hexanone 1180 500 ug/kg 1000 ND 118 25-185 Iodomethane 409 100 ug/kg 1000 ND 40.9 30-155 Isopropylbenzene 949 100 ug/kg 1000 ND 94.9 70-135 p-Isopropyltoluene 883 100 ug/kg 1000 ND 88.3 65-130 Methyl-2-pentanone (MIBK) 1010 500 ug/kg 1000 ND 86.1 60-140 4-Methyl-tert-butyl Ether (MTBE) 981 250 ug/kg 1000 ND 98.1 55-135
Ethylbenzene 932 100 ug/kg 1000 ND 93.2 70-125 Hexachlorobutadiene 1070 250 ug/kg 1000 ND 107 60-125 2-Hexanone 1180 500 ug/kg 1000 ND 118 25-185 Iodomethane 409 100 ug/kg 1000 ND 40.9 30-155 Isopropylbenzene 949 100 ug/kg 1000 ND 94.9 70-135 p-Isopropyltoluene 883 100 ug/kg 1000 ND 88.3 65-130 Methylene chloride 861 500 ug/kg 1000 ND 86.1 60-140 4-Methyl-2-pentanone (MIBK) 1010 500 ug/kg 1000 ND 98.1 55-135 Methyl-tert-butyl Ether (MTBE) 981 250 ug/kg 1000 ND 98.1 55-135
Hexachlorobutadiene 1070 250 ug/kg 1000 ND 107 60-125 2-Hexanone 1180 500 ug/kg 1000 ND 118 25-185 Iodomethane 409 100 ug/kg 1000 ND 40.9 30-155 Isopropylbenzene 949 100 ug/kg 1000 ND 94.9 70-135 p-Isopropyltoluene 883 100 ug/kg 1000 ND 88.3 65-130 Methylene chloride 861 500 ug/kg 1000 ND 86.1 60-140 4-Methyl-2-pentanone (MIBK) 1010 500 ug/kg 1000 ND 98.1 55-135 Methyl-tert-butyl Ether (MTBE) 981 250 ug/kg 1000 ND 98.1 55-135
2-Hexanone 1180 500 ug/kg 1000 ND 118 25-185 Iodomethane 409 100 ug/kg 1000 ND 40.9 30-155 Isopropylbenzene 949 100 ug/kg 1000 ND 94.9 70-135 p-Isopropyltoluene 883 100 ug/kg 1000 ND 88.3 65-130 Methylene chloride 861 500 ug/kg 1000 ND 86.1 60-140 4-Methyl-2-pentanone (MIBK) 1010 500 ug/kg 1000 ND 98.1 55-135 Methyl-tert-butyl Ether (MTBE) 981 250 ug/kg 1000 ND 98.1 55-135
Iodomethane 409 100 ug/kg 1000 ND 40.9 30-155 Isopropylbenzene 949 100 ug/kg 1000 ND 94.9 70-135 p-Isopropyltoluene 883 100 ug/kg 1000 ND 88.3 65-130 Methylene chloride 861 500 ug/kg 1000 ND 86.1 60-140 4-Methyl-2-pentanone (MIBK) 1010 500 ug/kg 1000 ND 101 10-175 Methyl-tert-butyl Ether (MTBE) 981 250 ug/kg 1000 ND 98.1 55-135
Isopropylbenzene 949 100 ug/kg 1000 ND 94.9 70-135 p-Isopropyltoluene 883 100 ug/kg 1000 ND 88.3 65-130 Methylene chloride 861 500 ug/kg 1000 ND 86.1 60-140 4-Methyl-2-pentanone (MIBK) 1010 500 ug/kg 1000 ND 101 10-175 Methyl-tert-butyl Ether (MTBE) 981 250 ug/kg 1000 ND 98.1 55-135
p-Isopropyltoluene 883 100 ug/kg 1000 ND 88.3 65-130 Methylene chloride 861 500 ug/kg 1000 ND 86.1 60-140 4-Methyl-2-pentanone (MIBK) 1010 500 ug/kg 1000 ND 101 10-175 Methyl-tert-butyl Ether (MTBE) 981 250 ug/kg 1000 ND 98.1 55-135
Methylene chloride 861 500 ug/kg 1000 ND 86.1 60-140 4-Methyl-2-pentanone (MIBK) 1010 500 ug/kg 1000 ND 101 10-175 Methyl-tert-butyl Ether (MTBE) 981 250 ug/kg 1000 ND 98.1 55-135
4-Methyl-2-pentanone (MIBK) 1010 500 ug/kg 1000 ND 101 10-175 Methyl-tert-butyl Ether (MTBE) 981 250 ug/kg 1000 ND 98.1 55-135
Methyl-tert-butyl Ether (MTBE) 981 250 ug/kg 1000 ND 98.1 55-135
Naphthalene 993 250 ug/kg 1000 ND 99.3 45-155
n-Propylbenzene 913 100 ug/kg 1000 ND 91.3 75-135
Styrene 899 100 ug/kg 1000 ND 89.9 70-130
1,1,1,2-Tetrachloroethane 984 250 ug/kg 1000 ND 98.4 70-130
1,1,2,2-Tetrachloroethane 1020 100 ug/kg 1000 ND 102 60-140
Tetrachloroethene 971 100 ug/kg 1000 ND 97.1 65-130
Toluene 948 100 ug/kg 1000 ND 94.8 70-125
1,2,3-Trichlorobenzene 908 250 ug/kg 1000 ND 90.8 60-135
1,2,4-Trichlorobenzene 990 250 ug/kg 1000 ND 99.0 55-135
1,1,1-Trichloroethane 837 100 ug/kg 1000 ND 83.7 65-135
1,1,2-Trichloroethane 953 100 ug/kg 1000 ND 95.3 65-130
Trichloroethene 895 100 ug/kg 1000 ND 89.5 70-130
Trichlorofluoromethane 268 250 ug/kg 1000 ND 26.8 10-200
1,2,3-Trichloropropane 1060 500 ug/kg 1000 ND 106 60-150
1,2,4-Trimethylbenzene 887 100 ug/kg 1000 ND 88.7 75-130
1,3,5-Trimethylbenzene 883 100 ug/kg 1000 ND 88.3 70-130
Vinyl acetate ND 1200 ug/kg 1000 ND 29.1 25-130
Vinyl chloride 596 250 ug/kg 1000 ND 59.6 10-200
Xylenes, Total 2780 150 ug/kg 3000 ND 92.7 70-130
Surrogate: Dibromofluoromethane 1230 ug/kg 1250 98.4 70-125
Surrogate: Toluene-d8 1280 ug/kg 1250 102 50-135
Surrogate: 4-Bromofluorobenzene 1240 ug/kg 1250 99.2 70-130

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-8596 FAX (858) 505-9589 (480) 785-0043 FAX (480) 785-0851

Law Engineering

4634 S. 36th Place Phoenix, AZ 85040

Attention: Jim Clarke

Client Project ID:

70211-0-0150

Sampled: 08/20/01

Report Number:

PKH0356

Received: 08/21/01

VOLATILE ORGANICS BY GC/MS (EPA 8260B)

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: P1H3106 Extracted: 08/30/	01									
Blank Analyzed: 08/30/01 (P1H3106-F	BLK1)									
Acetone	ND	20	ug/l							
Benzene	ND	2.0	ug/l							
Bromobenzene	ND	5.0	ug/l							
Bromochloromethane	ND	5.0	ug/l							
Bromodichloromethane	ND	2.0	ug/l							
Bromoform	ND	5.0	ug/l							
Bromomethane	ND	5.0	ug/l							
2-Butanone (MEK)	ND	10	ug/l							
n-Butylbenzene	ND	5.0	ug/l							
sec-Butylbenzene	ND	5.0	ug/l							
tert-Butylbenzene	ND	5.0	ug/l							
Carbon Disulfide	ND	5.0	ug/l							
Carbon tetrachloride	ND	5.0	ug/l							
Chlorobenzene	ND	2.0	ug/l							
Chloroethane	ND	5.0	ug/l							
Chloroform	ND	2.0	ug/l							
Chloromethane	ND	5.0	ug/l							
2-Chlorotoluene	ND	5.0	ug/l							
4-Chlorotoluene	ND	5.0	ug/l							
Dibromochloromethane	ND	2.0	ug/l							
1,2-Dibromo-3-chloropropane	ND	5.0	ug/l							
1,2-Dibromoethane (EDB)	ND	2.0	ug/l							
Dibromomethane	ND	2.0	ug/l							
1,2-Dichlorobenzene	ND	2.0	ug/l							
1,3-Dichlorobenzene	ND	2.0	ug/l							
1,4-Dichlorobenzene	ND	2.0	ug/l							
Dichlorodifluoromethane	ND	5.0	ug/l							
1,1-Dichloroethane	ND	2.0	ug/l							
1,2-Dichloroethane	ND	2.0	ug/l							
1,1-Dichloroethene	ND	5.0	ug/l							
cis-1,2-Dichloroethene	ND	2.0	ug/l							
trans-1,2-Dichloroethene	ND	2.0	ug/l							
1,2-Dichloropropane	ND	2.0	ug/l							
1,3-Dichloropropane	ND	2.0	ug/I							
2,2-Dichloropropane	ND	2.0	ug/I							

Melissa Evans Project Manager

PKH0356 Page 22 of 35

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-8596 FAX (858) 505-9589 (480) 785-0043 FAX (480) 785-0851

Law Engineering

4634 S. 36th Place Phoenix, AZ 85040 Client Project ID:

70211-0-0150

Sampled: 08/20/01

Attention: Jim Clarke

Report Number:

PKH0356

Received: 08/21/01

VOLATILE ORGANICS BY GC/MS (EPA 8260B)

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: P1H3106 Extracted	l: 08/30/01									
Blank Analyzed: 08/30/01 (P1	H3106-BLK1)									
1,1-Dichloropropene	ND	2.0	ug/l							
cis-1,3-Dichloropropene	ND	2.0	ug/l							
trans-1,3-Dichloropropene	ND	2.0	ug/l							
Ethylbenzene	ND	2.0	ug/l							
Hexachlorobutadiene	ND	5.0	ug/l							
2-Hexanone	ND	10	ug/l							
lodomethane	ND	2.0	ug/l							
lsopropylbenzene	ND	2.0	ug/l							
p-Isopropyltoluene	ND	2.0	ug/l							
Methylene chloride	ND	5.0	ug/l							
4-Methyl-2-pentanone (MIBK)	ND	10	ug/l							
Methyl-tert-butyl Ether (MTBE)	ND	5.0	ug/l							
Naphthalene	ND	5.0	ug/l							
n-Propylbenzene	ND	2.0	ug/l							
Styrene	ND	2.0	ug/l							
1,1,1,2-Tetrachloroethane	ND	5.0	ug/l							
1,1,2,2-Tetrachloroethane	ND	2.0	ug/l							
Tetrachloroethene	ND	2.0	ug/l							
Toluene	ND	2.0	ug/l							
1,2,3-Trichlorobenzene	ND	5.0	ug/l							
1,2,4-Trichlorobenzene	ND	5.0	ug/l							
1,1,1-Trichloroethane	ND	2.0	ug/l							
1,1,2-Trichloroethane	ND	2.0	ug/l							
Trichloroethene	ND	2.0	ug/l							
Trichlorofluoromethane	ND	5.0	ug/l							
1,2,3-Trichloropropane	ND	10	ug/l							
1,2,4-Trimethylbenzene	ND	2.0	ug/l							
1,3,5-Trimethylbenzene	ND	2.0	ug/l							
Vinyl acetate	ND	25	ug/l							V1,L3
Vinyl chloride	ND	5.0	ug/l							
Xylenes, Total	ND	10	ug/l							
Surrogate: Dibromofluoromethane	25.5		ug/l	25.0		102	80-120			
Surrogate: Toluene-d8	26.8		ug/l	25.0		107	80-120			
Surrogate: 4-Bromofluorobenzene	26.6		ug/l	25.0		106	80-120			

Melissa Evans Project Manager

PKH0356 Page 23 of 35

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-8596 FAX (858) 505-9589 (480) 785-0043 FAX (480) 785-0851

Law Engineering

4634 S. 36th Place Phoenix, AZ 85040

Attention: Jim Clarke

Client Project ID:

70211-0-0150

Report Number:

PKH0356

Sampled: 08/20/01

Received: 08/21/01

NETHOD RLANK/QC DATA

VOLATILE ORGANICS BY GC/MS (EPA 8260B)

		Reporting		Spike	Source		%REC	,	RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: P1H3106 Extracted: 08/30	<u>/01</u>									
LCS Analyzed: 08/30/01 (P1H3106-B	S1)									
Acetone	35.8	20	ug/l	25.0		143	30-200			
Benzene	22.1	2.0	ug/l	25.0		88.4	80-120			
Bromobenzene	25.0	5.0	ug/l	25.0		100	80-120			
Bromochloromethane	25.5	5.0	ug/l	25.0		102	80-120			
Bromodichloromethane	21.5	2.0	ug/l	25.0		86.0	80-130			
Bromoform	24.1	5.0	ug/l	25.0		96.4	60-140			
Bromomethane	25.5	5.0	ug/l	25.0		102	60-150			
2-Butanone (MEK)	29.9	10	ug/l	25.0		120	30-185			
n-Butylbenzene	23.6	5.0	ug/l	25.0		94.4	75-130			
sec-Butylbenzene	24.7	5.0	ug/l	25.0		98.8	80-125			
tert-Butylbenzene	25.7	5.0	ug/l	25.0		103	80-120			
Carbon Disulfide	24.4	5.0	ug/l	25.0		97.6	65-120			
Carbon tetrachloride	26.3	5.0	ug/l	25.0		105	75-150			
Chlorobenzene	26.0	2.0	ug/l	25.0		104	80-120			
Chloroethane	28.0	5.0	ug/l	25.0		112	80-125			
Chloroform	24.1	2.0	ug/l	25.0		96.4	80-120			
Chloromethane	21.2	5.0	ug/l	25.0		84.8	60-125			
2-Chlorotoluene	25.4	5.0	ug/l	25.0		102	80-120			
4-Chlorotoluene	24.8	5.0	ug/l	25.0		99.2	80-120			
Dibromochloromethane	24.4	2.0	ug/l	25.0		97.6	70-150			
1,2-Dibromo-3-chloropropane	23.3	5.0	ug/l	25.0		93.2	50-145			
1,2-Dibromoethane (EDB)	27.3	2.0	ug/l	25.0		109	75-120			
Dibromomethane	22.3	2.0	ug/l	25.0		89.2	80-120			
1,2-Dichlorobenzene	24.8	2.0	ug/l	25.0		99.2	80-120			
1,3-Dichlorobenzene	24.6	2.0	ug/l	25.0		98.4	80-120			
1,4-Dichlorobenzene	25.1	2.0	ug/l	25.0		100	80-120			
Dichlorodifluoromethane	19.4	5.0	ug/l	25.0		77.6	25-140			
1,1-Dichloroethane	28.6	2.0	ug/l	25.0		114	80-120			
1,2-Dichloroethane	21.5	2.0	ug/l	25.0		86.0	80-120			
1,1-Dichloroethene	27.1	5.0	ug/l	25.0		108	80-120			
cis-1,2-Dichloroethene	28.6	2.0	ug/l	25.0		114	80-120			
trans-1,2-Dichloroethene	29.2	2.0	ug/l	25.0		117	80-120			
1,2-Dichloropropane	22.2	2.0	ug/l	25.0		88.8	80-120			
1,3-Dichloropropane	26.0	2.0	ug/l	25.0		104	80-120			
2,2-Dichloropropane	24.1	2.0	ug/l	25.0		96.4	75-135			
1,1-Dichloropropene	25.4	2.0	ug/l	25.0		102	80-120			

Melissa Evans Project Manager

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (588) 505-8596 FAX (858) 505-9589 (480) 785-0043 FAX (480) 785-0851

Law Engineering

4634 S. 36th Place Phoenix, AZ 85040

Attention: Jim Clarke

Client Project ID:

70211-0-0150

Sampled: 08/20/01

Report Number:

PKH0356

Received: 08/21/01

MOTOR BANKIOCHANK

VOLATILE ORGANICS BY GC/MS (EPA 8260B)

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: P1H3106 Extracted: 08/30/	<u>/01</u>									
LCS Analyzed: 08/30/01 (P1H3106-BS	S1)									
cis-1,3-Dichloropropene	20.4	2.0	ug/l	25.0		81.6	80-120			
trans-1,3-Dichloropropene	22.3	2.0	ug/l	25.0		89.2	80-120			
Ethylbenzene	25.0	2.0	ug/l	25.0		100	80-120			
Hexachlorobutadiene	25.3	5.0	ug/l	25.0		101	60-145			
2-Hexanone	27.8	10	ug/l	25.0		111	50-170			
lodomethane	34.7	2.0	ug/l	25.0		139	40-155			
Isopropylbenzene	25.2	2.0	ug/l	25.0		101	80-120			
p-Isopropyltoluene	23.7	2.0	ug/l	25.0		94.8	80-120			
Methylene chloride	29.5	5.0	ug/l	25.0		118	80-120			
4-Methyl-2-pentanone (MIBK)	25.4	10	ug/l	25.0		102	70-140			
Methyl-tert-butyl Ether (MTBE)	29.9	5.0	ug/l	25.0		120	75-135			
Naphthalene	27.1	5.0	ug/l	25.0		108	70-130			
n-Propylbenzene	23.9	2.0	ug/l	25.0		95.6	80-120			
Styrene	24.5	2.0	ug/l	25.0		98.0	80-120			
1,1,1,2-Tetrachloroethane	26.2	5.0	ug/l	25.0		105	65-150			
1,1,2,2-Tetrachloroethane	24.8	2.0	ug/l	25.0		99.2	70-130			
Tetrachloroethene	25.4	2.0	ug/l	25.0		102	80-125			
Toluene	25.1	2.0	ug/l	25.0		100	80-120			
1,2,3-Trichlorobenzene	25.7	5.0	ug/l	25.0		103	75-125			
1,2,4-Trichlorobenzene	26.4	5.0	ug/l	25.0		106	80-120			
1,1,1-Trichloroethane	23.2	2.0	ug/l	25.0		92.8	80-120			
1,1,2-Trichloroethane	25.8	2.0	ug/l	25.0		103	80-120			
Trichloroethene	23.6	2.0	ug/l	25.0		94.4	80-120			
Trichlorofluoromethane	24.8	5.0	ug/l	25.0		99.2	75-150			
1,2,3-Trichloropropane	26.0	10	ug/l	25.0		104	65-135			
1,2,4-Trimethylbenzene	23.8	2.0	ug/l	25.0		95.2	80-120			
1,3,5-Trimethylbenzene	23.5	2.0	ug/l	25.0		94.0	80-120			
Vinyl acetate	40.0	25	ug/l	25.0		160	40-120			V1,L3
Vinyl chloride	23.5	5.0	ug/l	25.0		94.0	80-120			
Xylenes, Total	75.2	10	ug/l	75.0		100	80-120			
Surrogate: Dibromofluoromethane	25.8		ug/l	25.0		103	80-120			
Surrogate: Toluene-d8	26.7		ug/l	25.0		107	80-120			
Surrogate: 4-Bromofluorobenzene	25.5		ug/l	25.0		102	80-120			

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 7079-1843 (658) 505-8596 FAX (858) 505-9589 (480) 785-0043 FAX (480) 785-0851

Law Engineering

4634 S. 36th Place Phoenix, AZ 85040

Attention: Jim Clarke

Client Project ID: 7

70211-0-0150

Report Number:

PKH0356

Sampled: 08/20/01

Received: 08/21/01

METHOD BLANK QUIDATA

VOLATILE ORGANICS BY GC/MS (EPA 8260B)

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: P1H3106 Extracted: 08/30	0/01									
Matrix Spike Analyzed: 08/31/01 (P1	H3106-MS1)				Source: F	KH0441-	03			
Acetone	27.5	20	ug/l	25.0	ND	110	5-200			
Benzene	21.0	2.0	ug/l	25.0	ND	84.0	80-120			
Bromobenzene	25,4	5.0	ug/l	25.0	ND	102	80-120			
Bromochloromethane	24.5	5.0	ug/l	25.0	ND	98.0	60-135			
Bromodichloromethane	20.0	2.0	ug/l	25.0	ND	80.0	80-120			
Bromoform	21.5	5.0	ug/l	25.0	ND	86.0	40-140			
Bromomethane	25.1	5.0	ug/l	25.0	ND	100	25-165			
2-Butanone (MEK)	26.1	10	ug/l	25.0	ND	104	10-160			
n-Butylbenzene	20.6	5.0	ug/l	25.0	ND	82.4	75-135			
sec-Butylbenzene	23.5	5.0	ug/l	25.0	ND	94.0	80-135			
tert-Butylbenzene	24.6	5.0	ug/l	25.0	ND	98.4	80-125			
Carbon Disulfide	21.8	5.0	ug/l	25.0	ND	87.2	20-120			
Carbon tetrachloride	23.4	5.0	ug/l	25.0	ND	93.6	80-145			
Chlorobenzene	24.8	2.0	ug/l	25.0	ND	99.2	80-120			
Chloroethane	27.2	5.0	ug/l	25.0	ND	109	30-150			
Chloroform	23.3	2.0	ug/l	25.0	ND	93.2	80-125			
Chloromethane	19.4	5.0	ug/l	25.0	ND	77.6	15-140			
2-Chlorotoluene	24.0	5.0	ug/l	25.0	ND	96.0	80-124			
4-Chlorotoluene	24.6	5.0	ug/l	25.0	ND	98.4	80-125			
Dibromochloromethane	22.3	2.0	ug/l	25.0	ND	89.2	75-135			
1,2-Dibromo-3-chloropropane	22.4	5.0	ug/l	25.0	ND	89.6	25-185			
1,2-Dibromoethane (EDB)	25.6	2.0	ug/l	25.0	ND	102	45-145			
Dibromomethane	20.8	2.0	ug/l	25.0	ND	83.2	55-140			
1,2-Dichlorobenzene	22.6	2.0	ug/l	25.0	ND	90.4	80-120			
1,3-Dichlorobenzene	23.0	2.0	ug/l	25.0	ND	92.0	80-120			
1,4-Dichlorobenzene	23,6	2.0	ug/l	25.0	ND	94.4	80-120			
Dichlorodifluoromethane	18.0	5.0	ug/l	25.0	ND	72.0	25-145			
1,1-Dichloroethane	24.7	2.0	ug/l	25.0	ND	98.8	75-120			
1,2-Dichloroethane	20.4	2.0	ug/l	25.0	ND	81.6	60-135			
1,1-Dichloroethene	24.3	5.0	ug/l	25.0	ND	97.2	55-120			
cis-1,2-Dichloroethene	24.6	2.0	ug/l	25.0	ND	98.4	75-120			
trans-1,2-Dichloroethene	25,3	2.0	ug/l	25.0	ND	101	65-120			
1,2-Dichloropropane	20.7	2.0	ug/l	25.0	ND	82.8	80-125			
1,3-Dichloropropane	24.2	2.0	ug/l	25.0	ND	96.8	55-140			
2,2-Dichloropropane	22.1	2.0	ug/i	25.0	ND	88.4	45-165			
1,1-Dichloropropene	22.4	2.0	ug/l	25.0	ND	89.6	80-120			
			·· <i>O</i> -			07.0	30-120			

Melissa Evans Project Manager

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-8596 FAX (858) 505-9589 (480) 785-0043 FAX (480) 785-0851

Law Engineering 4634 S. 36th Place Phoenix, AZ 85040

Attention: Jim Clarke

Client Project ID: 70211-0-0150

Sampled: 08/20/01 Received: 08/21/01

Report Number:

PKH0356

VOLATILE ORGANICS BY GC/MS (EPA 8260B)

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: P1H3106 Extracted: 08	3/30/01									
Matrix Spike Analyzed: 08/31/01	(P1H3106-MS1)				Source: P	KH0441-	03			
cis-1,3-Dichloropropene	18.6	2.0	ug/l	25.0	ND	74.4	80-120			M2
trans-1,3-Dichloropropene	21.0	2.0	ug/l	25.0	ND	84.0	70-120			
Ethylbenzene	23.0	2.0	ug/l	25.0	ND	92.0	80-120			
Hexachlorobutadiene	23.4	5.0	ug/l	25.0	ND	93.6	80-135			
2-Hexanone	24.9	10	ug/l	25.0	ND	99.6	25-185			
Iodomethane	31.8	2.0	ug/l	25.0	ND	127	30-155			
Isopropylbenzene	21.5	2.0	ug/l	25.0	ND	86.0	80-125			
p-Isopropyltoluene	21.3	2.0	ug/l	25.0	ND	85.2	80-125			
Methylene chloride	24.9	5.0	ug/l	25.0	ND	99.6	55-125			
4-Methyl-2-pentanone (MIBK)	21.1	10	ug/l	25.0	ND	84.4	10-175			
Methyl-tert-butyl Ether (MTBE)	22.3	5.0	ug/l	25.0	ND	89.2	55-135			
Naphthalene	20.7	5.0	ug/l	25.0	ND	82.8	15-160			
n-Propylbenzene	22.2	2.0	ug/l	25.0	ND	88.8	80-130			
Styrene	21.9	2.0	ug/l	25.0	ND	87.6	60-135			
1,1,1,2-Tetrachloroethane	24.0	5.0	ug/l	25.0	ND	96.0	80-135			
1,1,2,2-Tetrachloroethane	25.6	2.0	ug/l	25.0	ND	102	35-150			
Tetrachloroethene	23.3	2.0	ug/l	25.0	ND	93.2	80-120			
Toluene	24.8	2.0	ug/l	25.0	ND	99.2	80-120			
1,2,3-Trichlorobenzene	18.2	5.0	ug/l	25.0	ND	72.8	45-145			
1,2,4-Trichlorobenzene	20.0	5.0	ug/l	25.0	ND	80.0	65-130			
1,1,1-Trichloroethane	22.5	2.0	ug/l	25.0	ND	90.0	80-120			
1,1,2-Trichloroethane	24.4	2.0	ug/l	25.0	ND	97.6	55-145			
Trichloroethene	22.2	2.0	ug/l	25.0	ND	88.8	80-120			
Trichlorofluoromethane	23.1	5.0	ug/l	25.0	ND	92.4	70-145			
1,2,3-Trichloropropane	27.1	10	ug/l	25.0	ND	108	20-160			
1,2,4-Trimethylbenzene	21.6	2.0	ug/l	25.0	ND	86.4	70-135			
1,3,5-Trimethylbenzene	22.2	2.0	ug/l	25.0,	ND	88.8	80-125			
Vinyl acetate	27.2	25	ug/l	25.0	ND	109	25-130			
Vinyl chloride	22.3	5.0	ug/l	25.0	ND	89.2	25-135			
Xylenes, Total	67.3	10	ug/l	75.0	ND	89.7	80-120			
Surrogate: Dibromofluoromethane	27.5		ug/l	25.0		110	80-120			
Surrogate: Toluene-d8	27.9		ug/l	25.0		112	80-120			
Surrogate: 4-Bromofluorobenzene	28.2		ug/l	25.0		113	80-120			

2852 Alton Ave., Irvine, CA 92606 (949) 261-1022 FAX (949) 261-1228 1014 E. Coldby Dr., Suite A, Colton, CA 92324 (909) 370-4667 FAX (909) 370-1046 7277 Hayvenhurst, Suite B-12, Van Nuys, CA 91406 (818) 779-1844 FAX (818) 779-1843 9484 Chesapeake Dr., Suite 805, San Diego, CA 92123 (858) 505-8596 FAX (858) 505-9589 9830 South 51st St., Suite B-120, Phoenix, AZ 85044 (480) 785-0043 FAX (480) 785-0851

Law Engineering 4634 S. 36th Place Phoenix, AZ 85040 Attention: Jim Clarke

Client Project ID:

70211-0-0150

Sampled: 08/20/01

Report Number:

PKH0356

Received: 08/21/01

VOLATILE ORGANICS BY GC/MS (EPA 8260B)

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: P1H3106 Extracted: 08/30	<u>/01</u>									
Matrix Spike Dup Analyzed: 08/31/01	(P1H3106-M	ISD1)			Source: P	KH0441-	03			
Acetone	25.4	20	ug/l	25.0	ND	102	5-200	7.94	20	
Benzene	23.0	2.0	ug/l	25.0	ND	92.0	80-120	9.09	20	
Bromobenzene	26.2	5.0	ug/l	25.0	ND	105	80-120	3.10	20	
Bromochloromethane	25.0	5.0	ug/l	25.0	ND	100	60-135	2.02	20	
Bromodichloromethane	23.1	2.0	ug/l	25.0	ND	92.4	80-120	14.4	20	
Bromoform	23.5	5.0	ug/l	25.0	ND	94.0	40-140	8.89	20	
Bromomethane	27.1	5.0	ug/l	25.0	ND	108	25-165	7.66	20	
2-Butanone (MEK)	24.9	10	ug/l	25.0	ND	99.6	10-160	4.71	20	
n-Butylbenzene	21.3	5.0	ug/l	25.0	ND	85.2	75-135	3.34	20	
sec-Butylbenzene	24.0	5.0	ug/l	25.0	ND	96.0	80-135	2.11	20	
tert-Butylbenzene	25.7	5.0	ug/l	25.0	ND	103	80-125	4.37	20	
Carbon Disulfide	23.5	5.0	ug/l	25.0	ND	94.0	20-120	7.51	20	
Carbon tetrachloride	25.6	5.0	ug/l	25.0	ND	102	80-145	8.98	20	
Chlorobenzene	26.9	2.0	ug/l	25.0	ND	108	80-120	8.12	20	
Chloroethane	29.3	5.0	ug/l	25.0	ND	117	30-150	7.43	20	
Chloroform	24.9	2.0	ug/l	25.0	ND	99.6	80-125	6.64	20	
Chloromethane	20.3	5.0	ug/l	25.0	ND	81.2	15-140	4.53	20	
2-Chlorotoluene	25.9	5.0	ug/l	25.0	ND	104	80-124	7.62	20	
4-Chlorotoluene	25,8	5.0	ug/l	25.0	ND	103	80-125	4.76	20	
Dibromochloromethane	24.8	2.0	ug/l	25.0	ND	99.2	75-135	10.6	20	
1,2-Dibromo-3-chloropropane	20.0	5.0	ug/l	25.0	ND	80.0	25-185	11.3	20	
1,2-Dibromoethane (EDB)	26.6	2.0	ug/l	25.0	ND	106	45-145	3.83	20	
Dibromomethane	23.3	2.0	ug/l	25.0	ND	93.2	55-140	11.3	20	
1,2-Dichlorobenzene	24.7	2.0	ug/l	25.0	ND	98.8	80-120	8.88	20	
1,3-Dichlorobenzene	24.8	2.0	ug/l	25.0	ND	99.2	80-120	7.53	20	
1,4-Dichlorobenzene	25.8	2.0	ug/l	25.0	ND	103	80-120	8.91	20	
Dichlorodifluoromethane	16.1	5.0	ug/l	25.0	ND	64.4	25-145	11.1	20	
1,1-Dichloroethane	28.4	2.0	ug/l	25.0	ND	114	75-120	13.9	20	
1,2-Dichloroethane	22.1	2.0	ug/l	25.0	ND	88.4	60-135	8.00	20	
1,1-Dichloroethene	26.2	5.0	ug/l	25.0	ND	105	55-120	7.52	20	
cis-1,2-Dichloroethene	28.4	2.0	ug/l	25.0	ND	114	75-120	14.3	20	
trans-1,2-Dichloroethene	28.6	2.0	ug/l	25.0	ND	114	65-120	12.2	20	
1,2-Dichloropropane	23.1	2.0	ug/l	25.0	ND	92.4	80-125	11.0	20	
1,3-Dichloropropane	25.6	2.0	ug/l	25.0	ND	102	55-140	5.62	20	
2,2-Dichloropropane	26.4	2.0	ug/l	25.0	ND	106	45-165	17.7	20	
1,1-Dichloropropene	24.6	2.0	ug/l	25.0	ND	98.4	80-120	9.36	20	

Melissa Evans Project Manager

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-8596 FAX (858) 505-9586 (480) 785-0043 FAX (480) 785-0851

Law Engineering

4634 S. 36th Place Phoenix, AZ 85040

Attention: Jim Clarke

Client Project ID:

70211-0-0150

Report Number:

PKH0356

Sampled: 08/20/01

Received: 08/21/01

i An THEODER BANK RECEDENCES.

VOLATILE ORGANICS BY GC/MS (EPA 8260B)

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: P1H3106 Extracted: 08/30	<u>/01</u>									
Matrix Spike Dup Analyzed: 08/31/01	(P1H3106-M	ISD1)			Source: I	PKH0441-	03			
cis-1,3-Dichloropropene	21.3	2.0	ug/l	25.0	ND	85.2	80-120	13.5	20	
trans-1,3-Dichloropropene	22.5	2.0	ug/l	25.0	ND	90.0	70-120	6.90	20	
Ethylbenzene	25.4	2.0	ug/l	25.0	ND	102	80-120	9.92	20	
Hexachlorobutadiene	14.2	5.0	ug/l	25.0	ND	56.8	80-135	48.9	20	M2,Q11
2-Hexanone	23.8	10	ug/l	25.0	ND	95.2	25-185	4.52	20	
Iodomethane	34.8	2.0	ug/l	25.0	ND	139	30-155	9.01	20	
Isopropylbenzene	24.6	2.0	ug/l	25.0	ND	98.4	80-125	13.4	20	
p-Isopropyltoluene	23.0	2.0	ug/l	25.0	ND	92.0	80-125	7.67	20	
Methylene chloride	29.1	5.0	ug/l	25.0	ND	116	55-125	15.6	20	
4-Methyl-2-pentanone (MIBK)	22.7	10	ug/l	25.0	ND	90.8	10-175	7.31	20	
Methyl-tert-butyl Ether (MTBE)	27.1	5.0	ug/l	25.0	ND	108	55-135	19.4	20	
Naphthalene	21.1	5.0	ug/l	25.0	ND	84.4	15-160	1.91	20	
n-Propylbenzene	24.0	2.0	ug/l	25.0	ND	96.0	80-130	7.79	20	
Styrene	24.4	2.0	ug/l	25.0	ND	97.6	60-135	10.8	20	
1,1,1,2-Tetrachloroethane	26.1	5.0	ug/l	25.0	ND	104	80-135	8.38	20	
1,1,2,2-Tetrachloroethane	23,4	2.0	ug/l	25.0	ND	93.6	35-150	8.98	20	
Tetrachloroethene	24.8	2.0	ug/l	25.0	ND	99.2	80-120	6.24	20	
Toluene	25.8	2.0	ug/l	25.0	ND	103	80-120	3.95	20	
1,2,3-Trichlorobenzene	18.1	5.0	ug/l	25.0	ND	72.4	45-145	0.551	20	
1,2,4-Trichlorobenzene	21.4	5.0	ug/l	25.0	ND	85.6	65-130	6.76	20	
1,1,1-Trichloroethane	24.2	2.0	ug/l	25.0	ND	96.8	80-120	7.28	20	
1,1,2-Trichloroethane	25.9	2.0	ug/l	25.0	ND	104	55-145	5.96	20	
Trichloroethene	24.5	2.0	ug/l	25.0	ND	98.0	80-120	9.85	20	
Trichlorofluoromethane	24.2	5.0	ug/l	25.0	ND	96.8	70-145	4.65	20	
1,2,3-Trichloropropane	22.6	10	ug/l	25.0	ND	90.4	20-160	18.1	20	
1,2,4-Trimethylbenzene	23.3	2.0	ug/l	25.0	ND	93.2	70-135	7.57	20	
1,3,5-Trimethylbenzene	23.6	2.0	ug/l	25.0	ND	94.4	80-125	6.11	20	
Vinyl acetate	31.2	25	ug/l	25.0	ND	125	25-130	13.7	20	
Vinyl chloride	23.6	5.0	ug/l	25.0	ND	94.4	25-135	5.66	20	
Xylenes, Total	76.0	10	ug/l	75.0	ND	101	80-120	12.1	20	
Surrogate: Dibromofluoromethane	27.8		ug/l	25.0		111	80-120			
Surrogate: Toluene-d8	26.8		ug/l	25.0		107	80-120			
Surrogate: 4-Bromofluorobenzene	26.8		ug/l	25.0		107	80-120			

2852 Alton Ave., Irvine, CA 92606 (949) 261-1022 FAX (949) 261-1228 1014 E. Coldby Dr., Suite A, Colton, CA 92324 (909) 370-4667 FAX (909) 370-1046 7277 Hayvenhurst, Suite B-12, Van Nuys, CA 91406 (818) 779-1844 FAX (818) 779-1843 9484 Chesapeake Dr., Suite 805, San Diego, CA 92123 (858) 505-8596 FAX (858) 505-9589 9830 South 51st St., Suite B-120, Phoenix, AZ 85044 (480) 785-0043 FAX (480) 785-0851

Law Engineering

4634 S. 36th Place

Phoenix, AZ 85040 Attention: Jim Clarke Client Project ID:

70211-0-0150

Report Number:

PKH0356

Sampled: 08/20/01

Received: 08/21/01

TOTAL METALS

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: P1H2407 Extracted	: 08/24/01									
Blank Analyzed: 08/28/01 (P1)	H2407-BLK1)									
Arsenic	ND	5.0	mg/kg							•
Chromium	ND	1.0	mg/kg							
Copper	ND	2.0	mg/kg							
Nickel	ND	5.0	mg/kg							
Zine	ND	5.0	mg/kg							
LCS Analyzed: 08/28/01 (P1H	2407-BS1)									
Arsenic	91.6	5.0	mg/kg	100		91.6	80-120			
Chromium	93.3	1.0	mg/kg	100		93.3	80-120			
Copper	95.4	2.0	mg/kg	100		95.4	80-120			
Nickel	91.7	5.0	mg/kg	100		91.7	80-120			
Zinc	92.1	5.0	mg/kg	100		92.1	80-120			
Matrix Spike Analyzed: 08/28/	01 (P1H2407-MS1)				Source: P	КН0382-	02			
Arsenic	96.7	5.0	mg/kg	100	ND	94.6	75-125			
Chromium	106	1.0	mg/kg	100	12	94.0	75-125			
Copper	108	2.0	mg/kg	100	12	96.0	75-125			
Nickel	92.7	5.0	mg/kg	100	8.0	84.7	75-125			
Zinc	179	5.0	mg/kg	100	60	119	75-125			
Matrix Spike Dup Analyzed: 0	8/28/01 (P1H2407-M	SD1)			Source: P	КН0382-	02			
Arsenic	105	5.0	mg/kg	100	ND	103	75-125	8.23	20	
Chromium	108	1.0	mg/kg	100	12	96.0	75-125	1.87	20	
Copper	109	2.0	mg/kg	100	12	97.0	75-125	0.922	20	
Nickel	93.9	5.0	mg/kg	100	8.0	85.9	75-125	1.29	20	
Zinc	184	5.0	mg/kg	100	60	124	75-125	2.75	20	

2852 Alton Ave., Irvine, CA 92606 (949) 261-1022 FAX (949) 261-1228 1014 E. Coldby Dr., Suite A, Colton, CA 92324 (909) 370-4667 FAX (909) 370-1046 7277 Hayvenhurst, Suite B-12, Van Nuys, CA 91406 (818) 779-1844 FAX (818) 779-1843 9484 Chesapeake Dr., Suite 805, San Diego, CA 92123 (858) 505-8596 FAX (858) 505-9589 9830 South 51st St., Suite B-120, Phoenix, AZ 85044 (480) 785-0043 FAX (480) 785-0851

Law Engineering 4634 S. 36th Place Phoenix, AZ 85040 Attention: Jim Clarke

Client Project ID:

70211-0-0150

Sampled: 08/20/01

Report Number:

PKH0356

Received: 08/21/01

TOTAL METALS

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: P1H3004 Extracted: 08/29/0	<u>1</u>									
Blank Analyzed: 08/30/01 (P1H3004-BI	.K1)									
Chromium VI	ND	1.0	mg/kg							
LCS Analyzed: 08/30/01 (P1H3004-BS1)									
Chromium VI	9.73	1.0	mg/kg	10.0		97.3	85-115			
LCS Dup Analyzed: 08/30/01 (P1H3004	-BSD1)									
Chromium VI	9.28	1.0	mg/kg	10.0		92.8	85-115	4.73	20	
Matrix Spike Analyzed: 08/30/01 (P1H3	8004-MS1)				Source: P	KH0452-	01			
Chromium VI	8.84	1.0	mg/kg	10.0	ND	88.4	85-115			
Matrix Spike Dup Analyzed: 08/30/01 (P1H3004-M	SD1)			Source: P	KH0452-	01			
Chromium VI	9.98	1.0	mg/kg	10.0	ND	99.8	85-115	12.1	20	

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-8596 FAX (858) 505-9586 (480) 785-0043 FAX (480) 785-0851

Law Engineering

4634 S. 36th Place

Phoenix, AZ 85040 Attention: Jim Clarke Client Project ID:

70211-0-0150

Report Number:

PKH0356

Sampled: 08/20/01

Received: 08/21/01

METHOD BLANK/QC DATA

TOTAL RECOVERABLE METALS

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: P1H2119 Extracted: 08/21/0	1									
Blank Analyzed: 08/21/01 (P1H2119-B)	LK1)									
Chromium VI	ND	0.025	mg/l							
LCS Analyzed: 08/21/01 (P1H2119-BS)	l)									
Chromium VI	0.102	0.050	mg/l	0.100		102	85-115			
Matrix Spike Analyzed: 08/21/01 (P1H)	2119-MS1)				Source: P	KH0356-	01			
Chromium VI	0.0350	0.025	mg/l	0.0500	ND	70.0	85-115			M2
Matrix Spike Dup Analyzed: 08/21/01 (P1H2119-M	SD1)			Source: P	KH0356-	01			
Chromium VI	0.0412	0.025	mg/l	0.0500	ND	82.4	85-115	16.3	20	M2
Batch: P1H2320 Extracted: 08/23/0	1									
Blank Analyzed: 08/24/01 (P1H2320-B)	LK1)									
Arsenic	ND	0.050	mg/l							
Chromium	ND	0.010	mg/l							
Copper	ND	0.020	mg/l							
Nickel	ND	0.050	mg/l							
Zinc	ND	0.050	mg/l							
LCS Analyzed: 08/24/01 (P1H2320-BS)	l)									
Arsenic	1.06	0.050	mg/l	1.00		106	85-115			
Chromium	1.03	0.010	mg/l	1.00		103	85-115			
Copper	1.02	0.020	mg/l	1.00		102	85-115			
Nickel	1.02	0.050	mg/l	1.00		102	85-115			
Zinc	1.05	0.050	mg/l	1.00		105	85-115			

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-8596 FAX (858) 505-9589 (480) 785-0043 FAX (480) 785-0851

Law Engineering

4634 S. 36th Place Phoenix, AZ 85040 Attention: Jim Clarke Client Project ID:

70211-0-0150

Sampled: 08/20/01

Report Number:

PKH0356

Received: 08/21/01

METHOD BLANKOC DATA

TOTAL RECOVERABLE METALS

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: P1H2320 Extracted: 08/23	<u>3/01</u>									
Matrix Spike Analyzed: 08/24/01 (P1	H2320-MS1)				Source: P	KH0332-	02			
Arsenic	1.09	0.050	mg/l	1.00	ND	109	70-130			
Chromium	1.03	0.010	mg/l	1.00	0.013	102	70-130			
Copper	1.08	0.020	mg/l	1.00	ND	107	70-130			
Nickel	1.01	0.050	mg/l	1.00	ND	101	70-130			
Zinc	1.09	0.050	mg/l	1.00	ND	108	70-130			
Matrix Spike Dup Analyzed: 08/24/01	(P1H2320-N	(ISD1)			Source: I	KH0332-	02			
Arsenic	1.08	0.050	mg/l	1.00	ND	108	70-130	0.922	20	
Chromium	1.03	0.010	mg/l	1.00	0.013	102	70-130	0.00	20	
Copper	1.07	0.020	mg/l	1.00	ND	106	70-130	0.930	20	
Nickel	1.00	0.050	mg/l	1.00	ND	99.8	70-130	0.995	20	
Zinc	1.08	0.050	mg/l	1.00	ND	106	70-130	0.922	20	

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-8596 FAX (858) 505-9589 (480) 785-0043 FAX (480) 785-0851

Law Engineering 4634 S. 36th Place Phoenix, AZ 85040

Client Project ID:

70211-0-0150

Sampled: 08/20/01 Received: 08/21/01

Attention: Jim Clarke

Report Number: PKH0356

METHOD BLANK OF DATA

INORGANICS

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: P1H2906 Extracted: 08/28/	01									_
Blank Analyzed: 08/29/01 (P1H2906-B	BLK1)									
Total Cyanide	ND	0.020	mg/l							•
LCS Analyzed: 08/29/01 (P1H2906-BS	51)		Ū							
Total Cyanide	0.115	0.020	mg/l	0.100		115	90-110			L3
Matrix Spike Analyzed: 08/29/01 (P1H	(2906-MS1)		Č		Source: P	-				L3
Total Cyanide	0.123	0.020	mg/l	0.100	ND	123	70-130			
Matrix Spike Dup Analyzed: 08/29/01	(P1H2906-M	SD1)			Source: P	=				
Total Cyanide	0.0944	0.020	mg/l	0.100	ND	94.4	70-130	26.3	20	R1
Batch: P1H2911 Extracted: 08/29/0	01_									
Blank Analyzed: 08/29/01 (P1H2911-B	LK1)									
Total Cyanide	ND	0.50	mg/kg							
Matrix Spike Analyzed: 08/29/01 (P1H	(2911-MS1)				Source: P	KH0356.	02			
Total Cyanide	1.79	0.50	mg/kg	2.50	ND	71.6	70-130			
Matrix Spike Dup Analyzed: 08/29/01	(P1H2911-M	SD1)	0.0		Source: P					
Total Cyanide	1.05	0.50	mg/kg	2.50	ND	42.0	70-130	52.1	20	M2 D1
Reference Analyzed: 08/29/01 (P1H291	1-SRM1)		56		- 12-	0	,0 150	J2.1	20	M2,R1
Total Cyanide	87.4	20	mg/kg	201		43.5	40-160			

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-8596 FAX (858) 505-9589 (480) 785-0043 FAX (480) 785-0851

Law Engineering 4634 S. 36th Place Phoenix, AZ 85040 Attention: Jim Clarke

Client Project ID: 70211-0-0150

Sampled: 08/20/01 Received: 08/21/01

Report Number:

PKH0356

METHOD BLANK-QC DATA

DATA QUALIFIERS AND DEFINITIONS

- L3 The associated blank spike recovery was above method acceptance limits. See case narrative.
- M2 Matrix spike recovery was low, the method control sample recovery was acceptable.
- N1 See case narrative.
- Q11 Sample is heterogeneous. Sample homogeneity could not be readily achieved using routine laboratory practices.
- R1 RPD exceeded the method control limit. See case narrative.
- V1 CCV recovery was above method acceptance limits. This target analyte was not detected in the sample.
- ND Analyte NOT DETECTED at or above the reporting limit
- NR Not reported.
- RPD Relative Percent Difference

Del Mar Analytical

2882 Aton Ave. India CA 22800 [848] 2
1014 E. Cooley Dg. Suite A. Colton CA 22224 [893] 2
16553 Sherman Way, Suite A. Colton CA 22224 [893] 9
16553 Sherman Way, Suite Cft., Van Muys, CA 82400 [819] 7
9494 Clesspeade Dr., Suite Gft., San Diego, CA 22223 [819] 9
9600 South Siri Si., Suite B-120, Phoenic, AZ 85044 [490]

(849) 261-1022 FAXY949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (819) 770-1844 FAX (818) 770-1843 (519) 505-6556 FAX (619) 505-689 (480) 785-003 FAX (480) 785-0851 CHAIN OF CUSTODY FORM

Quote # Page 0

	Client Name/Address:	Project/PO Number:		V		Ä	Analysis Required	70				
Photos Number of Education and		702/1-0	7	Z'		יווכ						
Section Sect	Mahlager:		18	y '*! *W's	40	क् _{री दि} ष						
Description Sample Container Property	BALLER	Fax Nur	14/2		111	y -3						
		Container # of Type Cont.	Preservatives	0	√}2 }>₩	ZV					Special Instruction	
2 5 5 111 5 5 1 11 5 5 5 1 11 5 5 5 5 1 11 5 5 5 5 1 11 5 5 5 5 1 11 5 5 5 5 1 11 5 5 5 5 1 11 5 5 5 5 1 11 5 5 5 5 1 11 5 5 5 5 5 1 11 5 5 5 5 5 1 11 5 5 5 5 5 1 11 5 5 5 5 5 1 11 5	1	NOV.		V			PKL	15/2/1	701.			
20 5 5 115			- 100 Kg									
200 5 55 1 115 2 2 2 1 1015 5 20 5 5 1 1015 5 20 5 5 1 1015 5 20 5 5 1 1015 6 20 5 5 1 1015 7 20 5 5 5 1 1015 7 20 5 5 5 1 1015 7 20 5 5 5 1 1015 7 20 5 5 5 1 1015 7 20 5 5 5 1 1015 7 20 5 5 5 1 1015 7 20 5 5 5 1 1015 7 20 5 5 5 5 1 1015 7 20 5 5 5 5 1 1015 7 20 5 5 5 5 1 1015 7 20 5 5 5 5 1 1015 7 20 5 5 5 5 1 1015 7 20 5 5 5 5 5 1 1015 7 20 5 5 5 5 5 5 1 1015 7 20 5 5 5 5 5 5 5 5 5 5 1 1015 7 20 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5			秀 之						1.75			
2 2 2 2 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1					N.	Street,						1
2 5 5 1 11 5 5 5 1 10 5 5 5 1 10 1 5 5 5 1 10 1 5 5 5 1 10 1 5 5 5 1 10 1 5 5 5 1 10 1 5 5 5 1 10 1 5 5 5 1 10 1 5 5 5 1 10 1 10 10 10 10 10 10 10 10 10 10 10	and the second s		and the second s	a dependence of the contract o								
2 5 6 M												1
	-	7		N			100		200		3	
1 1910 191	(-5-0)	1 55		\			and the second					
	Ž								0			1
	S											
Date Time: Secented by: Date Time: Good Turnaround Time: Gheck	8-2-20		Selfon or morphism to a region	V	per	2,30	Tarrage Annual Contract of the		150			
Date Time: Society of the Check Date Time: Society Turnaround Time: (Check Take Time) Take Time Ta	1814 S			λ				}				1.0
Date Time; So Received by: Date Time: (Sor Turnaround Time: (Check)												
Date Time; Society Date Time; Society Turnaround Time; (Check)	7											1
Date Titine: Received by:	elinquistred By:	102		7		• //c	ate /Time: /2-0/01	to 3)	Turnaround Ti	(Š	ck) 72 hours	
Date /Time: Received in Lab by: Check)	emquismed By	Date /Time:				Ō	ate /Time:		24 hours 48 hours		5 days	
	elinquished By:	Date /Time:	Received in Lab	1 2 1	The same of the sa	Ď	ite/Time:		Sample Integr	Che		43
						The second second	1	5 - 10 m 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	The second second second second second			

uishing samples to Def Mar Analytical, client agrees to pay for the services requested on this chain of custody form and any additional analyses performed on this project. Payment for services is

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-9596 FAX (858) 505-9689 (480) 785-0043 FAX (480) 785-0851

Law Engineering 4634 S. 36th Place Phoenix, AZ 85040

Attention:

Jim Clarke

Client Project ID:

70211-D-0150

Sampled: 08/21/01 Received: 08/21/01

Report Number:

PKH0374

Issued: 9/11/01 Revised: 11/13/01

CEARDON PROPERTY OF THE PROPER

LABORATORY NUMBER	SAMPLE DESCRIPTION	SAMPLE MATRIX
PKH0374-02	LB1-S-60	Soil
PKH0374-03	LB1-S-80	Soil
PKH0374-04	LB1-S-90	Soil
PKH0374-05	LB1-S-110	Soil

SAMPLE RECEIPT:

Samples were received intact, on ice, and with chain of custody documentation.

HOLDING TIMES:

Holding times were met.

PRESERVATION:

Samples requiring preservation were verified prior to sample analysis.

OBSERVATIONS:

Report was revised 11/13/01 to correct sample identification.

SUBCONTRACTED:

No analyses were subcontracted to an outside laboratory.

QA/QC CRITERIA:

The R1 flag on Cyanide indicates that the RPD exceeded the method control limit. See Corrective Action Report.

EXPLANATION OF DATA

QUALIFIERS:

No further explanation of data qualifiers needed.

DEL MAR ANALATICAL, PHOENIX (AZ0426)

Project Manager

PKH0374 Page 1 of 7

2852 Alton Ave., Irvine, CA 92606 (949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-9596 FAX (858) 505-9689 (480) 785-0043 FAX (480) 785-0851

Law Engineering

4634 S. 36th Place Phoenix, AZ 85040

Attention: Jim Clarke

Client Project ID:

70211-D-0150

Sampled: 08/21/01

Report Number:

PKH0374

Received: 08/21/01

TOTAL METALS

Analyte	Method	Batch	Reporting Limit mg/kg	Sample Result mg/kg	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: PKH0374-02 (LB1-S-	60 - Soil)							•
Arsenic	EPA 6010B	P1H2407	5.0	ND	1	8/24/01	8/28/01	
Chromium	EPA 6010B	P1H2407	1.0	25	1	8/24/01	8/28/01	
Chromium VI	EPA 7196A	P1H3004	1.0	ND	1	8/29/01	8/30/01	
Copper	EPA 6010B	P1H2407	2.0	10	1	8/24/01	8/28/01	
Nickel	EPA 6010B	P1H2407	5.0	12	1	8/24/01	8/28/01	
Zinc	EPA 6010B	P1H2407	5.0	30	1	8/24/01	8/28/01	
Sample ID: PKH0374-03 (LB1-S-	80 - Soil)							
Arsenic	EPA 6010B	P1H2407	5.0	ND	1	8/24/01	8/28/01	
Chromium	EPA 6010B	P1H2407	1.0	1.6	1	8/24/01	8/28/01	
Chromium VI	EPA 7196A	P1H3004	1.0	ND	1	8/29/01	8/30/01	
Copper	EPA 6010B	P1H2407	2.0	2.7	1	8/24/01	9/9/01	
Nickel	EPA 6010B	P1H2407	5.0	ND	. 1	8/24/01	8/28/01	
Zinc	EPA 6010B	P1H2407	5.0	9.8	1	8/24/01	8/28/01	
Sample ID: PKH0374-04 (LB1-S-	90 - Soil)							
Arsenic	EPA 6010B	P1H2407	5.0	ND	1	8/24/0I	8/28/01	
Chromium	EPA 6010B	P1H2407	1.0	11	1	8/24/01	8/28/01	
Chromium VI	EPA 7196A	P1H3004	1.0	ND	1	8/29/01	8/30/01	
Copper	EPA 6010B	P1H2407	2.0	6.5	1	8/24/01	8/28/01	
Nickel	EPA 6010B	P1H2407	5.0	8.8	1	8/24/01	8/28/01	
Zinc	EPA 6010B	P1H2407	5.0	15	1	8/24/01	8/28/01	
Sample ID: PKH0374-05 (LB1-S-	110 - Soil)							
Arsenic	EPA 6010B	P1H2407	5.0	ND	1	8/24/01	8/28/01	
Chromium	EPA 6010B	P1H2407	1.0	ND	1	8/24/01	8/28/01	
Chromium VI	EPA 7196A	P1H3004	1.0	ND	1	8/29/01	8/30/01	
Copper	EPA 6010B	P1H2407	2.0	ND	1	8/24/01	8/28/01	
Nickel	EPA 6010B	P1H2407	5.0	ND	1	8/24/01	8/28/01	
Zinc	EPA 6010B	P1H2407	5.0	7.2	1	8/24/01	8/28/01	

DEL MAR ANALYTICAL, PHOENIX (AZ0426

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-9596 FAX (858) 505-9689 (480) 785-0043 FAX (480) 785-0851

Law Engineering

4634 S. 36th Place

Phoenix, AZ 85040 Attention: Jim Clarke Client Project ID:

70211-D-0150

Sampled: 08/21/01

Report Number:

PKH0374

Received: 08/21/01

INORGANICS

		1	HOROAN	ICS				
Analyte	Method	Batch	Reporting Limit mg/kg	Sample Result mg/kg	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: PKH0374-02 (LB1-	S-60 - Soil)							
Total Cyanide	EPA 9014	P1H2911	0.50	ND	1	8/29/01	8/29/01	
Sample ID: PKH0374-03 (LB1-	-S-80 - Soil)							
Total Cyanide	EPA 9014	P1H3007	0.50	ND	1	8/30/01	8/30/01	
Sample ID: PKH0374-04 (LB1-	·S-90 - Soil)							
Total Cyanide	EPA 9014	P1H3007	0.50	ND	1	8/30/01	8/30/01	
Sample ID: PKH0374-05 (LB1-	-S-110 - Soil)							
Total Cyanide	EPA 9014	P1H3007	0.50	ND	1	8/30/01	8/30/01	

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-9596 FAX (858) 505-9689 (480) 785-0043 FAX (480) 785-0851

Law Engineering

4634 S. 36th Place Phoenix, AZ 85040 Attention: Jim Clarke Client Project ID:

70211-D-0150

Sampled: 08/21/01

Report Number:

PKH0374

Received: 08/21/01

TMETHOD BLANKQU DATTA

TOTAL METALS

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: P1H2407 Extracted: 08/24/0	<u>)1</u>									
Blank Analyzed: 08/28/01 (P1H2407-B	LK1)									
Arsenic	ND	5.0	mg/kg							
Chromium	ND	1.0	mg/kg							
Copper	ND	2.0	mg/kg							
Nickel	ND	5.0	mg/kg							
Zinc	ND	5.0	mg/kg							
LCS Analyzed: 08/28/01 (P1H2407-BS	1)									
Arsenic	91.6	5.0	mg/kg	100		91.6	80-120			
Chromium	93.3	1.0	mg/kg	100		93.3	80-120			
Copper	95.4	2.0	mg/kg	100		95.4	80-120			
Nickel	91.7	5.0	mg/kg	100		91.7	80-120			
Zinc	92.1	5.0	mg/kg	100		92.1	80-120			
Matrix Spike Analyzed: 08/28/01 (P1H	2407-MS1)				Source: I	KH0382-	02			
Arsenic	96.7	5.0	mg/kg	100	ND	94.6	75-125			
Chromium	106	1.0	mg/kg	100	12	94.0	75-125			
Copper	108	2.0	mg/kg	100	12	96.0	75-125			
Nickel	92.7	5.0	mg/kg	100	8.0	84.7	75-125			
Zine	179	5.0	mg/kg	100	60	119	75-125			
Matrix Spike Dup Analyzed: 08/28/01 (P1H2407-MSD1)			Source: PKH0382-02							
Arsenic	105	5.0	mg/kg	100	ND	103	75-125	8.23	20	
Chromium	108	1.0	mg/kg	100	12	96.0	75-125	1.87	20	
Copper	109	2.0	mg/kg	100	12	97.0	75-125	0.922	20	
Nickel	93.9	5.0	mg/kg	100	8.0	85.9	75-125	1.29	20	
Zinc	184	5.0	mg/kg	100	60	124	75-125	2.75	20	

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-9596 FAX (858) 505-9689 (480) 785-0043 FAX (480) 785-0851

Law Engineering

4634 S. 36th Place

Phoenix, AZ 85040 Attention: Jim Clarke Client Project ID:

70211-D-0150

Report Number:

PKH0374

Sampled: 08/21/01

Received: 08/21/01

TOTAL METALS

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: P1H3004 Extracted: 08/29/0	1_									
Blank Analyzed: 08/30/01 (P1H3004-Bl	LK1)									
Chromium VI	ND	1.0	mg/kg							
LCS Analyzed: 08/30/01 (P1H3004-BS1	.)									
Chromium VI	9.73	1.0	mg/kg	10.0		97.3	85-115			
LCS Dup Analyzed: 08/30/01 (P1H3004	l-BSD1)									
Chromium VI	9.28	1.0	mg/kg	10.0		92.8	85-115	4.73	20	
Matrix Spike Analyzed: 08/30/01 (P1H3	3004-MS1)				Source: F	KH0452-	01			
Chromium VI	8.84	1.0	mg/kg	10.0	ND	88.4	85-115			
Matrix Spike Dup Analyzed: 08/30/01 (P1H3004-MSD1)			Source: PKH0452-01							
Chromium VI	9.98	1.0	mg/kg	10.0	ND	99.8	85-115	12.1	20	

2852 Alton Ave., Irvine, CA 92606 1014 E. Cooley Dr., Suite A, Colton, CA 92324 7277 Hayvenhurst, Suite B-12, Van Nuys, CA 91406 9484 Chesapeake Dr., Suite 805, San Diego, CA 92123

9830 South 51st St., Suite B-120, Phoenix, AZ 85044

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-9596 FAX (858) 505-9689 (480) 785-0043 FAX (480) 785-0851

Law Engineering 4634 S. 36th Place Phoenix, AZ 85040

Client Project ID:

70211-D-0150

Sampled: 08/21/01

Attention: Jim Clarke

Report Number:

PKH0374

Received: 08/21/01

.... METHOD BLANK QC DATA.

INORGANICS

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: P1H2911 Extracted: 08/29/	<u>01</u>									
Blank Analyzed: 08/29/01 (P1H2911-E	LK1)									
Total Cyanide	ND	0.50	mg/kg							
Matrix Spike Analyzed: 08/29/01 (P1H	(2911-MS1)				Source: P	KH0356-	02			
Total Cyanide	1.79	0.50	mg/kg	2.50	ND	71.6	70-130			
Matrix Spike Dup Analyzed: 08/29/01	(P1H2911-M	(ISD1)			Source: F	KH0356-	02			
Total Cyanide	1.05	0.50	mg/kg	2.50	ND	42.0	70-130	52.1	20	M2,R1
Reference Analyzed: 08/29/01 (P1H29)	11-SRM1)									
Total Cyanide	87.4	20	mg/kg	201		43.5	40-160			
Batch: P1H3007 Extracted: 08/30/	<u>01</u>									
Blank Analyzed: 08/30/01 (P1H3007-E	BLK1)									
Total Cyanide	ND	0.50	mg/kg							
Matrix Spike Analyzed: 08/30/01 (P1H	13007-MS1)				Source: F	KH0508-	01			
Total Cyanide	1.44	0.50	mg/kg	2.50	1.5	-2.40	70-130			M3
Matrix Spike Dup Analyzed: 08/30/01	oup Analyzed: 08/30/01 (P1H3007-MSD1)				Source: PKH0508-01					
Total Cyanide	1.54	0.50	mg/kg	2.50	1.5	1.60	70-130	6.71	20	M3
Reference Analyzed: 08/30/01 (P1H30	07-SRM1)									
Total Cyanide	85.3	20	mg/kg	201		42.4	40-160			

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-9596 FAX (858) 505-9689 (480) 785-0043 FAX (480) 785-0851

Law Engineering 4634 S. 36th Place Phoenix, AZ 85040

Client Project ID: 70211-D-0150

Sampled: 08/21/01 Received: 08/21/01

Attention: Jim Clarke

Report Number:

PKH0374

MDITHOD BLANKÇKI DADA

DATA QUALIFIERS AND DEFINITIONS

M2 Matrix spike recovery was low, the method control sample recovery was acceptable.

M3 The accuracy of the spike recovery value is reduced since the analyte concentration in the sample is disproportionate to spike

level. The method control sample recovery was acceptable.

R1 RPD exceeded the method control limit. See case narrative.

ND Analyte NOT DETECTED at or above the reporting limit

NR Not reported.

RPD Relative Percent Difference

Del Mar Analytical

2852 Alton Ave., Infine, CA 92806 1014 E. Cooley D., Sule A; Coleon, CA 92324 16525 Sherman Wey, Sule C-11, Ven Nuys, CA 92406 9484 Chesapeate D., Sule 805, San Diego, CA 92103 9830 South 51st St., Sule 81:120, Phoenix, AZ 85044

(949) 261-1022 FAX (949) 261-1228 (909) 370-4647 FAX (909) 370-1046 (918) 770-1844 FAX (818) 779-1843 (618) 505-5959 FAX (619) 505-5959 (480) 785-0043 FAX (480) 785-0851

CHAIN OF CUSTODY FORM

Page Quote #:

Special Instructions SON W 72 hours 5 days normal (Check) Sample Integrity: (Check) OB 7 40 0 Turnaround Time: same day 24 hours 48 hours intact 10/10/18 Analysis Required S. S. Date Time: Date /Time: Received in Lab by: 602 457 36X Received by: Received by: 70211.0.0/5D Sampling Preservatives
Date/Time Phone Number: PASS 12 13/2/2 Project/PO Number: 728 85 Fax Number: Cont. Date Time: Date /Time: Sample Container Matrix Type Type 3 4 Client Name/Address: | X X 3 181-5-60 が Description 815.40 Project Manager: Sampler:

Note: By relinquishing samples to Del Mar Analytical, client agrees to pay for the services requested on this chain of custody form and any additional analyses performed on this project. Payment for services is due within 30 days from the date of invoice: Sample(s) will be disposed of after 30 days.

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-8596 FAX (858) 505-9589 (480) 785-0043 FAX (480) 785-0851

Law Engineering

4634 S. 36th Place

Phoenix, AZ 85040 Jim Clarke Attention:

Client Project ID:

70211-0-0150-2-2.10

Sampled: 08/22/01

Received: 08/24/01

Issued: 9/11/01

Report Number:

PKH0446

LABORATORY NUMBER

PKH0446-01 PKH0446-02 PKH0446-03

SAMPLE DESCRIPTION

LB1 RINSATE 8/22/01 Dumpster-1 Trip Blank

SAMPLE MATRIX

> Water Soil Water

SAMPLE RECEIPT:

Samples were received intact, on ice, and with chain of custody documentation.

HOLDING TIMES:

Holding times were met.

PRESERVATION:

Samples requiring preservation were verified prior to sample analysis.

OBSERVATIONS:

The N1 flag indicates that the samples are tested for the presence of sulfide in the lab within 24 hours of sampling. Samples

were received and tested past the 24 hours.

SUBCONTRACTED:

No analyses were subcontracted to an outside laboratory.

QA/QC CRITERIA:

The N2 flag on 8260 indicates that the Matrix Spike recovery was outside the method control limits. See Corrective Action

Report.

EXPLANATION OF DATA

QUALIFIERS:

The L3 flag on 8260 indicates that the Laboratory Control Sample recovery was above the method control limits. Analyte not detected, data not impacted.

DEL MAR ANALYTICAL , PHOENIX (AZ0426)

Melissa Evans Project Manager

PKH0446 Page 1 of 35

CORRECTIVE ACTION REPORT

Department: GC/MS

Method:

8260B

Date:

09/01/2001

Matrix:

Water

Batch:

P1I0301

Samples:

PKH0411-04 – PKH0411-06, PKH0419-01, PKH0423-03, PKH0446-01,

PKH0446-03 & PKH0519-02

Identification and Definition of Problem:

The Laboratory Control Sample (LCS), Laboratory Control Sample Duplicate (LCSD), Matrix Spike (MS) and Matrix Spike (MS) recovered high and outside of acceptance limits for Vinyl acetate.

Determination of the Cause of the Problem:

A definitive cause for the high recoveries could not be determined.

Corrective Action:

All samples associated with this batch are non-detect and therefore are not impacted by the high recoveries. The associated samples as well as the LCS and LCSD have been flagged "L3" to indicate the high recovery. The MS, MSD and the source samples have also been flagged "N2".

Elizabeth C. Wueschner: Charlet Color usun Date: 09/20/2001

Quality Assurance Manager

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-8596 FAX (858) 505-9589 (480) 785-0043 FAX (480) 785-0851

Law Engineering

4634 S. 36th Place

Client Project ID: 70211-0-0150-2-2.10

Sampled: 08/22/01-08/24/01

Phoenix, AZ 85040 Attention: Jim Clarke

Report Number:

PKH0446

Received: 08/24/01

VOLATILE ORGANICS BY GC/MS (EPA 8260B)

Sample ID: PKH0446-01 (LB1 RINSATE 8/22/01 - Water) Sample ID: PKH046-01
Accione EPA 8260B PI10301 20 ND 1 9/1/01 9/1/01 Benzene EPA 8260B P110301 2.0 ND 1 9/1/01 9/1/01 Bromobenzene EPA 8260B P110301 5.0 ND 1 9/1/01 9/1/01 Bromochloromethane EPA 8260B P110301 5.0 ND 1 9/1/01 9/1/01 Bromoform EPA 8260B P110301 5.0 ND 1 9/1/01 9/1/01 Bromoform EPA 8260B P110301 5.0 ND 1 9/1/01 9/1/01 Bromomethane EPA 8260B P110301 5.0 ND 1 9/1/01 9/1/01 2-Butanone (MEK) EPA 8260B P110301 5.0 ND 1 9/1/01 9/1/01 2-Butanone (MEK) EPA 8260B P110301 5.0 ND 1 9/1/01 9/1/01 2-Butylenzene EPA 8260B P110301 5.0 ND 1 9/
Benzene
Bromobenzene EPA 8260B P 10301 5.0 ND 1 9/1/01 9/1/01 Bromodichloromethane EPA 8260B P 10301 2.0 ND 1 9/1/01 9/1/01 Bromodichloromethane EPA 8260B P 10301 2.0 ND 1 9/1/01 9/1/01 Bromoform EPA 8260B P 10301 5.0 ND 1 9/1/01 9/1/01 Bromomethane EPA 8260B P 10301 5.0 ND 1 9/1/01 9/1/01 Bromomethane EPA 8260B P 10301 5.0 ND 1 9/1/01 9/1/01 Bromomethane EPA 8260B P 10301 5.0 ND 1 9/1/01 9/1/01 Se-Burylbenzene EPA 8260B P 10301 5.0 ND 1 9/1/01 9/1/01 Carbon tetrachloride EPA 8260B P 10301 5.0 ND 1 9/1/01 9/1/01 Chlorotehane EPA 8260B P 10301 5.0
Bromodichloromethane EPA 8260B P110301 2.0 ND 1 9/1/01 9/1/01 Bromoform EPA 8260B P110301 5.0 ND 1 9/1/01 9/1/01 Bromomethane EPA 8260B P110301 5.0 ND 1 9/1/01 9/1/01 2-Butanone (MEK) EPA 8260B P110301 5.0 ND 1 9/1/01 9/1/01 n-Butylbenzene EPA 8260B P110301 5.0 ND 1 9/1/01 9/1/01 sec-Butylbenzene EPA 8260B P110301 5.0 ND 1 9/1/01 9/1/01 sec-Butylbenzene EPA 8260B P110301 5.0 ND 1 9/1/01 9/1/01 Carbon Disulfide EPA 8260B P110301 5.0 ND 1 9/1/01 9/1/01 Carbon tetraschloride EPA 8260B P110301 5.0 ND 1 9/1/01 9/1/01 Chlorotethane EPA 8260B P110301 5.0 ND
Bromoform
Bromomethane
2-Butanone (MEK) EPA 8260B P110301 10 ND 1 9/1/01 9/1/01 n-Butylbenzene EPA 8260B P110301 5.0 ND 1 9/1/01 9/1/01 sec-Butylbenzene EPA 8260B P110301 5.0 ND 1 9/1/01 9/1/01 Carbon Disulfide EPA 8260B P110301 5.0 ND 1 9/1/01 9/1/01 Carbon tetrachloride EPA 8260B P110301 5.0 ND 1 9/1/01 9/1/01 Chlorobenzene EPA 8260B P110301 5.0 ND 1 9/1/01 9/1/01 Chlorobenzene EPA 8260B P110301 5.0 ND 1 9/1/01 9/1/01 Chlorochune EPA 8260B P110301 5.0 ND 1 9/1/01 9/1/01 Chlorotoluene EPA 8260B P110301 5.0 ND 1 9/1/01 9/1/01 2-Chlorotoluene EPA 8260B P110301 5.0 ND
n-Butylbenzene EPA 8260B P110301 5.0 ND 1 9/1/01 9/1/01 sec-Butylbenzene EPA 8260B P110301 5.0 ND 1 9/1/01 9/1/01 tert-Butylbenzene EPA 8260B P110301 5.0 ND 1 9/1/01 9/1/01 Carbon Disulfide EPA 8260B P110301 5.0 ND 1 9/1/01 9/1/01 Carbon tetrachloride EPA 8260B P110301 5.0 ND 1 9/1/01 9/1/01 Chlorobenzene EPA 8260B P110301 2.0 ND 1 9/1/01 9/1/01 Chlorotenane EPA 8260B P110301 5.0 ND 1 9/1/01 9/1/01 Chlorotoluene EPA 8260B P110301 5.0 ND 1 9/1/01 9/1/01 2-Chlorotoluene EPA 8260B P110301 5.0 ND 1 9/1/01 9/1/01 4-Chlorotoluene EPA 8260B P110301 5.0 ND
n-Butylbenzene EPA 8260B P110301 5.0 ND 1 9/1/01 9/1/01 sec-Butylbenzene EPA 8260B P110301 5.0 ND 1 9/1/01 9/1/01 tert-Butylbenzene EPA 8260B P110301 5.0 ND 1 9/1/01 9/1/01 Carbon Disulfide EPA 8260B P110301 5.0 ND 1 9/1/01 9/1/01 Carbon tetrachloride EPA 8260B P110301 5.0 ND 1 9/1/01 9/1/01 Chlorobenzene EPA 8260B P110301 2.0 ND 1 9/1/01 9/1/01 Chlorotenane EPA 8260B P110301 5.0 ND 1 9/1/01 9/1/01 Chlorotenane EPA 8260B P110301 5.0 ND 1 9/1/01 9/1/01 2-Chlorotoluene EPA 8260B P110301 5.0 ND 1 9/1/01 9/1/01 4-Chlorotoluene EPA 8260B P110301 5.0 ND
tert-Burylbenzene EPA 8260B P1I0301 5.0 ND 1 9/1/01 9/1/01 Carbon Disulfide EPA 8260B P1I0301 5.0 ND 1 9/1/01 9/1/01 Carbon tetrachloride EPA 8260B P1I0301 5.0 ND 1 9/1/01 9/1/01 Chlorobenzene EPA 8260B P1I0301 2.0 ND 1 9/1/01 9/1/01 Chlorotethane EPA 8260B P1I0301 5.0 ND 1 9/1/01 9/1/01 Chlorotothane EPA 8260B P1I0301 5.0 ND 1 9/1/01 9/1/01 Chlorotoluene EPA 8260B P110301 5.0 ND 1 9/1/01 9/1/01 4-Chlorotoluene EPA 8260B P110301 5.0 ND 1 9/1/01 9/1/01 4-Chlorotoluene EPA 8260B P110301 5.0 ND 1 9/1/01 9/1/01 1,2-Dibromo-3-chloropropane EPA 8260B P110301 2.0 <
Carbon Disulfide EPA 8260B P110301 5.0 ND 1 9/1/01 9/1/01 Carbon tetrachloride EPA 8260B P110301 5.0 ND 1 9/1/01 9/1/01 Chlorobenzene EPA 8260B P110301 2.0 ND 1 9/1/01 9/1/01 Chlorotethane EPA 8260B P110301 5.0 ND 1 9/1/01 9/1/01 Chlorotoform EPA 8260B P110301 5.0 ND 1 9/1/01 9/1/01 Chlorotoluene EPA 8260B P110301 5.0 ND 1 9/1/01 9/1/01 4-Chlorotoluene EPA 8260B P110301 5.0 ND 1 9/1/01 9/1/01 4-Chlorotoluene EPA 8260B P110301 5.0 ND 1 9/1/01 9/1/01 1/2-Dibromo-3-chloropropane EPA 8260B P110301 5.0 ND 1 9/1/01 9/1/01 1/2-Dibromoethane (EDB) EPA 8260B P110301 2.0
Carbon tetrachloride EPA 8260B P110301 5.0 ND 1 9/1/01 9/1/01 Chloroebenzene EPA 8260B P110301 2.0 ND 1 9/1/01 9/1/01 Chloroethane EPA 8260B P110301 5.0 ND 1 9/1/01 9/1/01 Chloroform EPA 8260B P110301 5.0 ND 1 9/1/01 9/1/01 Chlorotoluene EPA 8260B P110301 5.0 ND 1 9/1/01 9/1/01 2-Chlorotoluene EPA 8260B P110301 5.0 ND 1 9/1/01 9/1/01 4-Chlorotoluene EPA 8260B P110301 5.0 ND 1 9/1/01 9/1/01 4-Chlorotoluene EPA 8260B P110301 5.0 ND 1 9/1/01 9/1/01 1,2-Dibromo-3-chloropropane EPA 8260B P110301 5.0 ND 1 9/1/01 9/1/01 1,2-Dibromoethane (EDB) EPA 8260B P110301 2.0
Chlorobenzene EPA 8260B P110301 2.0 ND 1 9/1/01 9/1/01 Chloroethane EPA 8260B P110301 5.0 ND 1 9/1/01 9/1/01 Chloroform EPA 8260B P110301 2.0 ND 1 9/1/01 9/1/01 Chlorotoluene EPA 8260B P110301 5.0 ND 1 9/1/01 9/1/01 2-Chlorotoluene EPA 8260B P110301 5.0 ND 1 9/1/01 9/1/01 4-Chlorotoluene EPA 8260B P110301 5.0 ND 1 9/1/01 9/1/01 4-Chlorotoluene EPA 8260B P110301 5.0 ND 1 9/1/01 9/1/01 4-Chlorotoluene EPA 8260B P110301 5.0 ND 1 9/1/01 9/1/01 1,2-Dibromoethane EPA 8260B P110301 5.0 ND 1 9/1/01 9/1/01 1,2-Dichlorobenzene EPA 8260B P110301 2.0 ND
Chloroethane EPA 8260B P110301 5.0 ND 1 9/1/01 9/1/01 Chloroform EPA 8260B P110301 2.0 ND 1 9/1/01 9/1/01 Chlorotoluene EPA 8260B P110301 5.0 ND 1 9/1/01 9/1/01 2-Chlorotoluene EPA 8260B P110301 5.0 ND 1 9/1/01 9/1/01 4-Chlorotoluene EPA 8260B P110301 5.0 ND 1 9/1/01 9/1/01 4-Chlorotoluene EPA 8260B P110301 5.0 ND 1 9/1/01 9/1/01 4-Chlorotoluene EPA 8260B P110301 2.0 ND 1 9/1/01 9/1/01 9/1/01 1,2-Dibromo-3-chloropropane EPA 8260B P110301 2.0 ND 1 9/1/01 9/1/01 9/1/01 9/1/01 9/1/01 9/1/01 9/1/01 9/1/01 9/1/01 9/1/01 9/1/01 9/1/01 9/1/01 9/1/01 9/1/01 9/1/01 </td
Chloroform EPA 8260B P1I0301 2.0 ND 1 9/1/01 9/1/01 Chloromethane EPA 8260B P1I0301 5.0 ND 1 9/1/01 9/1/01 2-Chlorotoluene EPA 8260B P1I0301 5.0 ND 1 9/1/01 9/1/01 4-Chlorotoluene EPA 8260B P1I0301 5.0 ND 1 9/1/01 9/1/01 4-Chlorotoluene EPA 8260B P1I0301 2.0 ND 1 9/1/01 9/1/01 4-Chlorotoluene EPA 8260B P1I0301 2.0 ND 1 9/1/01 9/1/01 Dibromochloromethane EPA 8260B P1I0301 2.0 ND 1 9/1/01 9/1/01 1,2-Dibromochane (EDB) EPA 8260B P1I0301 2.0 ND 1 9/1/01 9/1/01 1,2-Dichlorobenzene EPA 8260B P1I0301 2.0 ND 1 9/1/01 9/1/01 1,4-Dichlorochane EPA 8260B P1I0301 2.0 <t< td=""></t<>
Chloromethane EPA 8260B P110301 5.0 ND 1 9/1/01 9/1/01 2-Chlorotoluene EPA 8260B P110301 5.0 ND 1 9/1/01 9/1/01 4-Chlorotoluene EPA 8260B P110301 5.0 ND 1 9/1/01 9/1/01 Dibromochloromethane EPA 8260B P110301 2.0 ND 1 9/1/01 9/1/01 1,2-Dibromo-3-chloropropane EPA 8260B P110301 5.0 ND 1 9/1/01 9/1/01 1,2-Dibromoethane (EDB) EPA 8260B P110301 2.0 ND 1 9/1/01 9/1/01 1,2-Dichlorobenzene EPA 8260B P110301 2.0 ND 1 9/1/01 9/1/01 1,3-Dichlorobenzene EPA 8260B P110301 2.0 ND 1 9/1/01 9/1/01 1,4-Dichlorobenzene EPA 8260B P110301 2.0 ND 1 9/1/01 9/1/01 1,1-Dichloroethane EPA 8260B P110301
2-Chlorotoluene EPA 8260B P1I0301 5.0 ND 1 9/1/01 9/1/01 4-Chlorotoluene EPA 8260B P1I0301 5.0 ND 1 9/1/01 9/1/01 Dibromochloromethane EPA 8260B P1I0301 2.0 ND 1 9/1/01 9/1/01 1,2-Dibromo-3-chloropropane EPA 8260B P1I0301 5.0 ND 1 9/1/01 9/1/01 1,2-Dibromoethane (EDB) EPA 8260B P1I0301 2.0 ND 1 9/1/01 9/1/01 Dibromomethane EPA 8260B P1I0301 2.0 ND 1 9/1/01 9/1/01 1,2-Dichlorobenzene EPA 8260B P1I0301 2.0 ND 1 9/1/01 9/1/01 1,4-Dichlorobenzene EPA 8260B P1I0301 2.0 ND 1 9/1/01 9/1/01 1,1-Dichloroethane EPA 8260B P1I0301 2.0 ND 1 9/1/01 9/1/01 1,2-Dichloroethene EPA 8260B P1I0301
4-Chlorotoluene EPA 8260B P1I0301 5.0 ND 1 9/1/01 9/1/01 Dibromochloromethane EPA 8260B P1I0301 2.0 ND 1 9/1/01 9/1/01 1,2-Dibromo-3-chloropropane EPA 8260B P1I0301 5.0 ND 1 9/1/01 9/1/01 1,2-Dibromoethane (EDB) EPA 8260B P1I0301 2.0 ND 1 9/1/01 9/1/01 Dibromomethane EPA 8260B P1I0301 2.0 ND 1 9/1/01 9/1/01 1,2-Dichlorobenzene EPA 8260B P1I0301 2.0 ND 1 9/1/01 9/1/01 1,4-Dichlorobenzene EPA 8260B P1I0301 2.0 ND 1 9/1/01 9/1/01 Dichlorodifluoromethane EPA 8260B P1I0301 5.0 ND 1 9/1/01 9/1/01 1,1-Dichloroethane EPA 8260B P1I0301 2.0 ND 1 9/1/01 9/1/01 1,1-Dichloroethene EPA 8260B P1I0301 </td
Dibromochloromethane EPA 8260B P1I0301 2.0 ND 1 9/1/01 9/1/01 1,2-Dibromo-3-chloropropane EPA 8260B P1I0301 5.0 ND 1 9/1/01 9/1/01 1,2-Dibromoethane (EDB) EPA 8260B P1I0301 2.0 ND 1 9/1/01 9/1/01 Dibromomethane EPA 8260B P1I0301 2.0 ND 1 9/1/01 9/1/01 1,2-Dichlorobenzene EPA 8260B P1I0301 2.0 ND 1 9/1/01 9/1/01 1,3-Dichlorobenzene EPA 8260B P1I0301 2.0 ND 1 9/1/01 9/1/01 1,4-Dichlorobenzene EPA 8260B P1I0301 2.0 ND 1 9/1/01 9/1/01 1,1-Dichloroethane EPA 8260B P1I0301 2.0 ND 1 9/1/01 9/1/01 1,2-Dichloroethane EPA 8260B P1I0301 2.0 ND 1 9/1/01 9/1/01 1,1-Dichloroethene EPA 8260B P1I0301
1,2-Dibromo-3-chloropropane EPA 8260B P1I0301 5.0 ND 1 9/1/01 9/1/01 1,2-Dibromoethane (EDB) EPA 8260B P1I0301 2.0 ND 1 9/1/01 9/1/01 Dibromomethane EPA 8260B P1I0301 2.0 ND 1 9/1/01 9/1/01 1,2-Dichlorobenzene EPA 8260B P1I0301 2.0 ND 1 9/1/01 9/1/01 1,3-Dichlorobenzene EPA 8260B P1I0301 2.0 ND 1 9/1/01 9/1/01 1,4-Dichlorobenzene EPA 8260B P1I0301 2.0 ND 1 9/1/01 9/1/01 Dichlorodifluoromethane EPA 8260B P1I0301 5.0 ND 1 9/1/01 9/1/01 1,1-Dichloroethane EPA 8260B P1I0301 2.0 ND 1 9/1/01 9/1/01 1,1-Dichloroethene EPA 8260B P1I0301 5.0 ND 1 9/1/01 9/1/01 cis-1,2-Dichloroethene EPA 8260B P1I
1,2-Dibromoethane (EDB) EPA 8260B P1I0301 2.0 ND 1 9/1/01 9/1/01 Dibromomethane EPA 8260B P1I0301 2.0 ND 1 9/1/01 9/1/01 1,2-Dichlorobenzene EPA 8260B P1I0301 2.0 ND 1 9/1/01 9/1/01 1,3-Dichlorobenzene EPA 8260B P1I0301 2.0 ND 1 9/1/01 9/1/01 1,4-Dichlorobenzene EPA 8260B P1I0301 2.0 ND 1 9/1/01 9/1/01 Dichlorodifluoromethane EPA 8260B P1I0301 5.0 ND 1 9/1/01 9/1/01 1,1-Dichloroethane EPA 8260B P1I0301 2.0 ND 1 9/1/01 9/1/01 1,1-Dichloroethene EPA 8260B P1I0301 5.0 ND 1 9/1/01 9/1/01 1,1-Dichloroethene EPA 8260B P1I0301 5.0 ND 1 9/1/01 9/1/01 cis-1,2-Dichloroethene EPA 8260B P1I0301 2.0 ND 1 9/1/01 9/1/01 trans-1,2-Di
Dibromomethane EPA 8260B P1I0301 2.0 ND 1 9/1/01 9/1/01 1,2-Dichlorobenzene EPA 8260B P1I0301 2.0 ND 1 9/1/01 9/1/01 1,3-Dichlorobenzene EPA 8260B P1I0301 2.0 ND 1 9/1/01 9/1/01 1,4-Dichlorobenzene EPA 8260B P1I0301 2.0 ND 1 9/1/01 9/1/01 Dichlorodifluoromethane EPA 8260B P1I0301 5.0 ND 1 9/1/01 9/1/01 1,1-Dichloroethane EPA 8260B P1I0301 2.0 ND 1 9/1/01 9/1/01 1,1-Dichloroethene EPA 8260B P1I0301 5.0 ND 1 9/1/01 9/1/01 1,1-Dichloroethene EPA 8260B P1I0301 5.0 ND 1 9/1/01 9/1/01 cis-1,2-Dichloroethene EPA 8260B P1I0301 2.0 ND 1 9/1/01 9/1/01 trans-1,2-Dichloroethene EPA 8260B P1I0301
1,2-Dichlorobenzene EPA 8260B P1I0301 2.0 ND 1 9/1/01 9/1/01 1,3-Dichlorobenzene EPA 8260B P1I0301 2.0 ND 1 9/1/01 9/1/01 1,4-Dichlorobenzene EPA 8260B P1I0301 2.0 ND 1 9/1/01 9/1/01 Dichlorodifluoromethane EPA 8260B P1I0301 5.0 ND 1 9/1/01 9/1/01 1,1-Dichloroethane EPA 8260B P1I0301 2.0 ND 1 9/1/01 9/1/01 1,1-Dichloroethene EPA 8260B P1I0301 5.0 ND 1 9/1/01 9/1/01 1,1-Dichloroethene EPA 8260B P1I0301 5.0 ND 1 9/1/01 9/1/01 cis-1,2-Dichloroethene EPA 8260B P1I0301 2.0 ND 1 9/1/01 9/1/01 trans-1,2-Dichloroethene EPA 8260B P1I0301 2.0 ND 1 9/1/01 9/1/01
1,3-Dichlorobenzene EPA 8260B P1I0301 2.0 ND 1 9/1/01 9/1/01 1,4-Dichlorobenzene EPA 8260B P1I0301 2.0 ND 1 9/1/01 9/1/01 Dichlorodifluoromethane EPA 8260B P1I0301 5.0 ND 1 9/1/01 9/1/01 1,1-Dichloroethane EPA 8260B P1I0301 2.0 ND 1 9/1/01 9/1/01 1,1-Dichloroethane EPA 8260B P1I0301 2.0 ND 1 9/1/01 9/1/01 1,1-Dichloroethene EPA 8260B P1I0301 5.0 ND 1 9/1/01 9/1/01 cis-1,2-Dichloroethene EPA 8260B P1I0301 2.0 ND 1 9/1/01 9/1/01 trans-1,2-Dichloroethene EPA 8260B P1I0301 2.0 ND 1 9/1/01 9/1/01
1,4-Dichlorobenzene EPA 8260B P1I0301 2.0 ND 1 9/1/01 9/1/01 Dichlorodifluoromethane EPA 8260B P1I0301 5.0 ND 1 9/1/01 9/1/01 1,1-Dichloroethane EPA 8260B P1I0301 2.0 ND 1 9/1/01 9/1/01 1,2-Dichloroethane EPA 8260B P1I0301 2.0 ND 1 9/1/01 9/1/01 1,1-Dichloroethene EPA 8260B P1I0301 5.0 ND 1 9/1/01 9/1/01 cis-1,2-Dichloroethene EPA 8260B P1I0301 2.0 ND 1 9/1/01 9/1/01 trans-1,2-Dichloroethene EPA 8260B P1I0301 2.0 ND 1 9/1/01 9/1/01
Dichlorodifluoromethane EPA 8260B P1I0301 5.0 ND 1 9/1/01 9/1/01 1,1-Dichloroethane EPA 8260B P1I0301 2.0 ND 1 9/1/01 9/1/01 1,2-Dichloroethane EPA 8260B P1I0301 2.0 ND 1 9/1/01 9/1/01 1,1-Dichloroethene EPA 8260B P1I0301 5.0 ND 1 9/1/01 9/1/01 cis-1,2-Dichloroethene EPA 8260B P1I0301 2.0 ND 1 9/1/01 9/1/01 trans-1,2-Dichloroethene EPA 8260B P1I0301 2.0 ND 1 9/1/01 9/1/01
1,1-Dichloroethane EPA 8260B P1I0301 2.0 ND 1 9/1/01 9/1/01 1,2-Dichloroethane EPA 8260B P1I0301 2.0 ND 1 9/1/01 9/1/01 1,1-Dichloroethene EPA 8260B P1I0301 5.0 ND 1 9/1/01 9/1/01 cis-1,2-Dichloroethene EPA 8260B P1I0301 2.0 ND 1 9/1/01 9/1/01 trans-1,2-Dichloroethene EPA 8260B P1I0301 2.0 ND 1 9/1/01 9/1/01
1,2-Dichloroethane EPA 8260B P1I0301 2.0 ND 1 9/1/01 9/1/01 1,1-Dichloroethene EPA 8260B P1I0301 5.0 ND 1 9/1/01 9/1/01 cis-1,2-Dichloroethene EPA 8260B P1I0301 2.0 ND 1 9/1/01 9/1/01 trans-1,2-Dichloroethene EPA 8260B P1I0301 2.0 ND 1 9/1/01 9/1/01
1,1-Dichloroethene EPA 8260B P1I0301 5.0 ND 1 9/1/01 9/1/01 cis-1,2-Dichloroethene EPA 8260B P1I0301 2.0 ND 1 9/1/01 9/1/01 trans-1,2-Dichloroethene EPA 8260B P1I0301 2.0 ND 1 9/1/01 9/1/01
cis-1,2-Dichloroethene EPA 8260B P1I0301 2.0 ND 1 9/1/01 9/1/01 trans-1,2-Dichloroethene EPA 8260B P1I0301 2.0 ND 1 9/1/01 9/1/01
trans-1,2-Dichloroethene EPA 8260B P1I0301 2.0 ND 1 9/1/01 9/1/01
1 A TO 1 1 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A
1,2-Dichloropropane EPA 8260B P1I0301 2.0 ND 1 9/1/01 9/1/01
1,3-Dichloropropane EPA 8260B P1I0301 2.0 ND 1 9/1/01 9/1/01
2,2-Dichloropropane EPA 8260B P1I0301 2.0 ND 1 9/1/01 9/1/01
1,1-Dichloropropene EPA 8260B P1I0301 2.0 ND 1 9/1/01 9/1/01
cis-1,3-Dichloropropene EPA 8260B P1I0301 2.0 ND 1 9/1/01 9/1/01 M2
trans-1,3-Dichloropropene EPA 8260B P1I0301 2.0 ND 1 9/1/01 9/1/01
Ethylbenzene EPA 8260B P1I0301 2.0 ND 1 9/1/01 9/1/01
Hexachlorobutadiene EPA 8260B P1I0301 5.0 ND 1 9/1/01 9/1/01 M2
2-Hexanone EPA 8260B P1I0301 10 ND 1 9/1/01 9/1/01
Iodomethane EPA 8260B P1I0301 2.0 ND 1 9/1/01 9/1/01
Isopropylbenzene EPA 8260B P1I0301 2.0 ND 1 9/1/01 9/1/01
p-Isopropyltoluene EPA 8260B P1I0301 2.0 ND 1 9/1/01 9/1/01

Melissa Evans Project Manager PKH0446 Page 2 of 35

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 7579-1843 (858) 505-8596 FAX (858) 505-9589 (480) 785-0043 FAX (480) 785-0851

Law Engineering

4634 S. 36th Place Phoenix, AZ 85040

Attention: Jim Clarke

Client Project ID:

70211-0-0150-2-2.10

Sampled: 08/22/01-08/24/01

Report Number:

PKH0446

Received: 08/24/01

VOLATILE ORGANICS BY GC/MS (EPA 8260B)

Analyte	Method	Batch	Reporting Limit ug/l	Sample Result ug/l	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
- '	Sample ID: PKH0446-01 (LB1 RINSATE 8/22/01 - Water)							
Methylene chloride	EPA 8260B	P1I0301	5.0	ND	1	9/1/01	9/1/01	
4-Methyl-2-pentanone (MIBK)	EPA 8260B	P1I0301	10	ND	1	9/1/01	9/1/01	
Methyl-tert-butyl Ether (MTBE)	EPA 8260B	P1I0301	5.0	ND	1	9/1/01	9/1/01	
Naphthalene	EPA 8260B	P1I0301	5.0	ND	1	9/1/01	9/1/01	
n-Propylbenzene	EPA 8260B	P1I0301	2.0	ND	1	9/1/01	9/1/01	
Styrene	EPA 8260B	P1I0301	2.0	ND	1	9/1/01	9/1/01	
1,1,1,2-Tetrachloroethane	EPA 8260B	P1I0301	5.0	ND	1	9/1/01	9/1/01	
1,1,2,2-Tetrachloroethane	EPA 8260B	P1I0301	2.0	ND	1	9/1/01	9/1/01	
Tetrachloroethene	EPA 8260B	P1I0301	2.0	ND	1	9/1/01	9/1/01	
Toluene	EPA 8260B	P1I0301	2.0	ND	1	9/1/01	9/1/01	
1,2,3-Trichlorobenzene	EPA 8260B	P1I0301	5.0	ND	1	9/1/01	9/1/01	
1,2,4-Trichlorobenzene	EPA 8260B	P1I0301	5.0	ND	1	9/1/01	9/1/01	
1,1,1-Trichloroethane	EPA 8260B	P1I0301	2.0	ND	1	9/1/01	9/1/01	
1,1,2-Trichloroethane	EPA 8260B	P1I0301	2.0	ND	1	9/1/01	9/1/01	
Trichloroethene	EPA 8260B	P1I0301	2.0	ND	1	9/1/01	9/1/01	
Trichlorofluoromethane	EPA 8260B	P1I0301	5.0	ND	1	9/1/01	9/1/01	
1,2,3-Trichloropropane	EPA 8260B	P1I0301	10	ND	1	9/1/01	9/1/01	
1,2,4-Trimethylbenzene	EPA 8260B	P1I0301	2.0	ND	1	9/1/01	9/1/01	
1,3,5-Trimethylbenzene	EPA 8260B	P1I0301	2.0	ND	1	9/1/01	9/1/01	
Vinyl acetate	EPA 8260B	P1I0301	25	ND	1	9/1/01	9/1/01	V1,L3,N2
Vinyl chloride	EPA 8260B	P1I0301	5.0	ND	1	9/1/01	9/1/01	
Xylenes, Total	EPA 8260B	P1I0301	10	ND	1	9/1/01	9/1/01	
Surrogate: Dibromofluoromethane (80-120	9%)			107 %				
Surrogate: Toluene-d8 (80-120%)				110 %				
Surrogate: 4-Bromofluorobenzene (80-120	%)			108 %				

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-8596 FAX (858) 505-9589 (480) 785-0043 FAX (480) 785-0851

Law Engineering 4634 S. 36th Place

Client Project ID:

70211-0-0150-2-2.10

Sampled: 08/22/01-08/24/01

Phoenix, AZ 85040 Attention: Jim Clarke

Report Number:

PKH0446

Received: 08/24/01

VOLATILE ORGANICS BY GC/MS (EPA 8260B)

Analyte	Method	Batch	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Analyte	Method	Daten	ug/kg	ug/kg	1 actor	Latitueted	1 Mary 200	Quantiers
Sample ID: PKH0446-02 (Dump	ster_1 - Soil)		ug/kg	ug/Kg				
Acetone	EPA 8260B	P1H2501	1000	ND	1	8/25/01	9/6/01	
Benzene	EPA 8260B	P1H2501	50	ND	1	8/25/01	9/6/01	
Bromobenzene	EPA 8260B	P1H2501	250	ND	1	8/25/01	9/6/01	
Bromochloromethane	EPA 8260B	P1H2501	250	ND	1	8/25/01	9/6/01	
Bromodichloromethane	EPA 8260B	P1H2501	100	ND	1	8/25/01	9/6/01	
Bromoform	EPA 8260B	P1H2501	250	ND	1	8/25/01	9/6/01	
Bromomethane	EPA 8260B	P1H2501	250	ND	1	8/25/01	9/6/01	
2-Butanone (MEK)	EPA 8260B	P1H2501	500	ND	1	8/25/01	9/6/01	
n-Butylbenzene	EPA 8260B	P1H2501	250	ND	1	8/25/01	9/6/01	
sec-Butylbenzene	EPA 8260B	P1H2501	250	ND	1	8/25/01	9/6/01	
tert-Butylbenzene	EPA 8260B	P1H2501	250	ND	1	8/25/01	9/6/01	
Carbon Disulfide	EPA 8260B	P1H2501	250	ND	1	8/25/01	9/6/01	
Carbon tetrachloride	EPA 8260B	P1H2501	250	ND	1	8/25/01	9/6/01	
Chlorobenzene	EPA 8260B	P1H2501	50	ND	1	8/25/01	9/6/01	
Chloroethane	EPA 8260B	P1H2501	250	ND	1	8/25/01	9/6/01	
Chloroform	EPA 8260B	P1H2501	100	ND	1	8/25/01	9/6/01	
Chloromethane	EPA 8260B	P1H2501	250	ND	1	8/25/01	9/6/01	
2-Chlorotoluene	EPA 8260B	P1H2501	250	ND	1	8/25/01	9/6/01	
4-Chlorotoluene	EPA 8260B	P1H2501	250	ND	1	8/25/01	9/6/01	
Dibromochloromethane	EPA 8260B	P1H2501	100	ND	1	8/25/01	9/6/01	
1,2-Dibromo-3-chloropropane	EPA 8260B	P1H2501	250	ND	1	8/25/01	9/6/01	
1,2-Dibromoethane (EDB)	EPA 8260B	P1H2501	100	ND	1	8/25/01	9/6/01	
Dibromomethane	EPA 8260B	P1H2501	100	ND	1	8/25/01	9/6/01	
1,2-Dichlorobenzene	EPA 8260B	P1H2501	100	ND	1	8/25/01	9/6/01	
1,3-Dichlorobenzene	EPA 8260B	P1H2501	100	ND	1	8/25/01	9/6/01	
1,4-Dichlorobenzene	EPA 8260B	P1H2501	100	ND	1	8/25/01	9/6/01	
Dichlorodifluoromethane	EPA 8260B	P1H2501	250	ND	1	8/25/01	9/6/01	
1,1-Dichloroethane	EPA 8260B	P1H2501	100	ND	1	8/25/01	9/6/01	
1,2-Dichloroethane	EPA 8260B	P1H2501	50	ND	1	8/25/01	9/6/01	
1,1-Dichloroethene	EPA 8260B	P1H2501	250	ND	1	8/25/01	9/6/01	
cis-1,2-Dichloroethene	EPA 8260B	P1H2501	100	ND	1	8/25/01	9/6/01	
trans-1,2-Dichloroethene	EPA 8260B	P1H2501	100	ND	1	8/25/01	9/6/01	
1,2-Dichloropropane	EPA 8260B	P1H2501	100	ND	1	8/25/01	9/6/01	
1,3-Dichloropropane	EPA 8260B	P1H2501	100	ND	1	8/25/01	9/6/01	
2,2-Dichloropropane	EPA 8260B	P1H2501	100	ND	1	8/25/01	9/6/01	
1,1-Dichloropropene	EPA 8260B	P1H2501	100	ND	1	8/25/01	9/6/01	
cis-1,3-Dichloropropene	EPA 8260B	P1H2501	100	ND	1	8/25/01	9/6/01	
trans-1,3-Dichloropropene	EPA 8260B	P1H2501	100	ND	1	8/25/01	9/6/01	
Ethylbenzene	EPA 8260B	P1H2501	100	ND	1	8/25/01	9/6/01	
Hexachlorobutadiene	EPA 8260B	P1H2501	250	ND	1	8/25/01	9/6/01	
2-Hexanone	EPA 8260B	P1H2501	500	ND	1	8/25/01	9/6/01	
Iodomethane	EPA 8260B	P1H2501	100	ND	1	8/25/01	9/6/01	
Isopropylbenzene	EPA 8260B	P1H2501	100	ND	1	8/25/01	9/6/01	
p-Isopropyltoluene	EPA 8260B	P1H2501	100	ND	1	8/25/01	9/6/01	

Melissa Evans Project Manager PKH0446 Page 4 of 35

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-8596 FAX (858) 505-9589 (480) 785-0043 FAX (480) 785-0851

Law Engineering

4634 S. 36th Place Phoenix, AZ 85040

Attention: Jim Clarke

Client Project ID:

Report Number:

70211-0-0150-2-2.10

PKH0446

Sampled: 08/22/01-08/24/01

Received: 08/24/01

VOLATILE ORGANICS BY GC/MS (EPA 8260B)

Analyte	Method	Batch	Reporting Limit ug/kg	Sample Result ug/kg	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: PKH0446-02 (Dumj	oster-1 - Soil)							
Methylene chloride	EPA 8260B	P1H2501	500	ND	1	8/25/01	9/6/01	
4-Methyl-2-pentanone (MIBK)	EPA 8260B	P1H2501	500	ND	1	8/25/01	9/6/01	
Methyl-tert-butyl Ether (MTBE)	EPA 8260B	P1H2501	250	ND	1	8/25/01	9/6/01	
Naphthalene	EPA 8260B	P1H2501	250	ND	1	8/25/01	9/6/01	
n-Propylbenzene	EPA 8260B	P1H2501	100	ND	1	8/25/01	9/6/01	
Styrene	EPA 8260B	P1H2501	100	ND	1	8/25/01	9/6/01	
1,1,1,2-Tetrachloroethane	EPA 8260B	P1H2501	250	ND	1	8/25/01	9/6/01	
1,1,2,2-Tetrachloroethane	EPA 8260B	P1H2501	100	ND	1	8/25/01	9/6/01	
Tetrachloroethene	EPA 8260B	P1H2501	100	ND	1	8/25/01	9/6/01	
Toluene	EPA 8260B	P1H2501	100	ND	1	8/25/01	9/6/01	
1,2,3-Trichlorobenzene	EPA 8260B	P1H2501	250	ND	1	8/25/01	9/6/01	
1,2,4-Trichlorobenzene	EPA 8260B	P1H2501	250	ND	1	8/25/01	9/6/01	
1,1,1-Trichloroethane	EPA 8260B	P1H2501	100	ND	1	8/25/01	9/6/01	
1,1,2-Trichloroethane	EPA 8260B	P1H2501	100	ND	1	8/25/01	9/6/01	
Trichloroethene	EPA 8260B	P1H2501	100	ND	1	8/25/01	9/6/01	
Trichlorofluoromethane	EPA 8260B	P1H2501	250	ND	1	8/25/01	9/6/01	
1,2,3-Trichloropropane	EPA 8260B	P1H2501	500	ND	1	8/25/01	9/6/01	
1,2,4-Trimethylbenzene	EPA 8260B	P1H2501	100	ND	1	8/25/01	9/6/01	
1,3,5-Trimethylbenzene	EPA 8260B	P1H2501	100	ND	1	8/25/01	9/6/01	
Vinyl acetate	EPA 8260B	P1H2501	1200	ND	1	8/25/01	9/6/01	
Vinyl chloride	EPA 8260B	P1H2501	250	ND	1	8/25/01	9/6/01	
Xylenes, Total	EPA 8260B	P1H2501	150	ND	1	8/25/01	9/6/01	
Surrogate: Dibromofluoromethane (70-12	5%)			73.4 %				
Surrogate: Toluene-d8 (50-135%)				76.8 %				
Surrogate: 4-Bromofluorobenzene (70-130	0%)			78.3 %				

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-8596 FAX (858) 505-9589 (480) 785-0043 FAX (480) 785-0851

Law Engineering 4634 S. 36th Place Phoenix, AZ 85040

Client Project ID:

70211-0-0150-2-2.10

Sampled: 08/22/01-08/24/01

Attention: Jim Clarke Report Number:

PKH0446

Received: 08/24/01

VOLATILE ORGANICS BY GC/MS (EPA 8260B)

Analyte	Method	Batch	Reporting Limit ug/l	Sample Result ug/l	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: PKH0446-03 (Trip I	Blank - Water)		~B/^	~B'-				
Acetone	EPA 8260B	P1I0301	20	ND	1	9/1/01	9/1/01	
Benzene	EPA 8260B	P1I0301	2.0	ND	1	9/1/01	9/1/01	
Bromobenzene	EPA 8260B	P1I0301	5.0	ND	1	9/1/01	9/1/01	
Bromochloromethane	EPA 8260B	P1I0301	5.0	ND	1	9/1/01	9/1/01	
Bromodichloromethane	EPA 8260B	P1I0301	2.0	ND	1	9/1/01	9/1/01	
Bromoform	EPA 8260B	P1I0301	5.0	ND	1	9/1/01	9/1/01	
Bromomethane	EPA 8260B	P110301	5.0	ND	1	9/1/01	9/1/01	
2-Butanone (MEK)	EPA 8260B	P110301	10	ND	1	9/1/01	9/1/01	
n-Butylbenzene	EPA 8260B	P1I0301	5.0	ND	1	9/1/01	9/1/01	
sec-Butylbenzene	EPA 8260B	P1I0301	5.0	ND	1	9/1/01	9/1/01	
tert-Butylbenzene	EPA 8260B	P1I0301	5.0	ND	1	9/1/01	9/1/01	
Carbon Disulfide	EPA 8260B	P1I0301	5.0	ND	1	9/1/01	9/1/01	
Carbon tetrachloride	EPA 8260B	P1I0301	5.0	ND	1	9/1/01	9/1/01	
Chlorobenzene	EPA 8260B	P1I0301	2.0	ND	1	9/1/01	9/1/01	
Chloroethane	EPA 8260B	P1I0301	5.0	ND	1	9/1/01	9/1/01	
Chloroform	EPA 8260B	P1I0301	2.0	ND	1	9/1/01	9/1/01	
Chloromethane	EPA 8260B	P1I0301	5.0	ND	1	9/1/01	9/1/01	
2-Chlorotoluene	EPA 8260B	P1I0301	5.0	ND	1	9/1/01	9/1/01	
4-Chlorotoluene	EPA 8260B	P1I0301	5.0	ND	1	9/1/01	9/1/01	
Dibromochloromethane	EPA 8260B	P1I0301	2.0	ND	1	9/1/01	9/1/01	
1,2-Dibromo-3-chloropropane	EPA 8260B	P1I0301	5.0	ND	1	9/1/01	9/1/01	
1,2-Dibromoethane (EDB)	EPA 8260B	P1I0301	2.0	ND	1	9/1/01	9/1/01	
Dibromomethane	EPA 8260B	P1I0301	2.0	ND	1	9/1/01	9/1/01	
1,2-Dichlorobenzene	EPA 8260B	P1I0301	2.0	ND	1	9/1/01	9/1/01	
1,3-Dichlorobenzene	EPA 8260B	P1I0301	2.0	ND	1	9/1/01	9/1/01	
1,4-Dichlorobenzene	EPA 8260B	P1I0301	2.0	ND	1	9/1/01	9/1/01	
Dichlorodifluoromethane	EPA 8260B	P1I0301	5.0	ND	1	9/1/01	9/1/01	
1,1-Dichloroethane	EPA 8260B	P1I0301	2.0	ND	1	9/1/01	9/1/01	
1,2-Dichloroethane	EPA 8260B	P1I0301	2.0	ND	1 .	9/1/01	9/1/01	
1,1-Dichloroethene	EPA 8260B	P1I0301	5.0	ND	1	9/1/01	9/1/01	
cis-1,2-Dichloroethene	EPA 8260B	P1I0301	2.0	ND	1	9/1/01	9/1/01	
trans-1,2-Dichloroethene	EPA 8260B	P1I0301	2.0	ND	1	9/1/01	9/1/01	
1,2-Dichloropropane	EPA 8260B	P1I0301	2.0	ND	1	9/1/01	9/1/01	
I,3-Dichloropropane	EPA 8260B	P1I0301	2.0	ND	1	9/1/01	9/1/01	
2,2-Dichloropropane	EPA 8260B	P1I0301	2.0	ND	1	9/1/01	9/1/01	
1,1-Dichloropropene	EPA 8260B	P1I0301	2.0	ND	1	9/1/01	9/1/01	
cis-1,3-Dichloropropene	EPA 8260B	P1I0301	2.0	ND	1	9/1/01	9/1/01	
trans-1,3-Dichloropropene	EPA 8260B	P1I0301	2.0	ND	1	9/1/01	9/1/01	
Ethylbenzene	EPA 8260B	P1I0301	2.0	ND	1	9/1/01	9/1/01	
Hexachlorobutadiene	EPA 8260B	P1I0301	5.0	ND	1	9/1/01	9/1/01	
2-Hexanone	EPA 8260B	P1I0301	10	ND	1	9/1/01	9/1/01	
Iodomethane	EPA 8260B	P1I0301	2.0	ND	1	9/1/01	9/1/01	
Isopropylbenzene	EPA 8260B	P1I0301	2.0	ND	1	9/1/01	9/1/01	
p-Isopropyltoluene	EPA 8260B	P1I0301	2.0	ND	1	9/1/01	9/1/01	

Melissa Evans Project Manager PKH0446 Page 6 of 35

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (658) 505-6596 FAX (858) 505-9589 (480) 785-0043 FAX (480) 785-0851

Law Engineering

4634 S. 36th Place Phoenix, AZ 85040 Client Project ID:

70211-0-0150-2-2.10

Sampled: 08/22/01-08/24/01

Attention: Jim Clarke

Report Number:

PKH0446

Received: 08/24/01

Analyte	Method	Batch	Reporting Limit ug/l	Sample Result ug/l	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: PKH0446-03 (Trip F	Blank - Water)							
Methylene chloride	EPA 8260B	P1I0301	5.0	ND	1	9/1/01	9/1/01	
4-Methyl-2-pentanone (MIBK)	EPA 8260B	P1I0301	10	ND	1	9/1/01	9/1/01	
Methyl-tert-butyl Ether (MTBE)	EPA 8260B	P110301	5.0	ND	1	9/1/01	9/1/01	
Naphthalene	EPA 8260B	P1I0301	5.0	ND	1	9/1/01	9/1/01	
n-Propylbenzene	EPA 8260B	P1I0301	2.0	ND	1 -	9/1/01	9/1/01	
Styrene	EPA 8260B	P1I0301	2.0	ND	1	9/1/01	9/1/01	
1,1,1,2-Tetrachloroethane	EPA 8260B	P110301	5.0	ND	1	9/1/01	9/1/01	
1,1,2,2-Tetrachloroethane	EPA 8260B	P1I0301	2.0	ND	1	9/1/01	9/1/01	
Tetrachloroethene	EPA 8260B	P1I0301	2.0	ND	1	9/1/01	9/1/01	
Toluene	EPA 8260B	P1I0301	2.0	ND	1	9/1/01	9/1/01	
1,2,3-Trichlorobenzene	EPA 8260B	P110301	5.0	ND	1	9/1/01	9/1/01	
1,2,4-Trichlorobenzene	EPA 8260B	P1I0301	5.0	ND	1	9/1/01	9/1/01	
1,1,1-Trichloroethane	EPA 8260B	P1I0301	2.0	ND	1	9/1/01	9/1/01	
1,1,2-Trichloroethane	EPA 8260B	P1I0301	2.0	ND	1	9/1/01	9/1/01	
Trichloroethene	EPA 8260B	P1I0301	2.0	ND	1	9/1/01	9/1/01	
Trichlorofluoromethane	EPA 8260B	P110301	5.0	ND	1	9/1/01	9/1/01	
1,2,3-Trichloropropane	EPA 8260B	P1I0301	10	ND	1	9/1/01	9/1/01	
1,2,4-Trimethylbenzene	EPA 8260B	P110301	2.0	ND	1	9/1/01	9/1/01	
1,3,5-Trimethylbenzene	EPA 8260B	P1I0301	2.0	ND	1	9/1/01	9/1/01	
Vinyl acetate	EPA 8260B	P110301	25	ND	1	9/1/01	9/1/01	V1,L3
Vinyl chloride	EPA 8260B	P110301	5.0	ND	1	9/1/01	9/1/01	
Xylenes, Total	EPA 8260B	P1I0301	10	ND	1	9/1/01	9/1/01	
Surrogate: Dibromofluoromethane (80-120	%)			106 %				
Surrogate: Toluene-d8 (80-120%)				109 %				
Surrogate: 4-Bromofluorobenzene (80-120)	%)			109 %				

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 379-1843 (558) 505-8596 FAX (858) 505-9589 (480) 785-0043 FAX (480) 785-0851

Law Engineering

4634 S. 36th Place

Phoenix, AZ 85040 Attention: Jim Clarke Client Project ID:

70211-0-0150-2-2.10

Sampled: 08/22/01-08/24/01

Received: 08/24/01

Report Number:

PKH0446

TOTAL METALS

Analyte	Method	Batch	Reporting Limit mg/kg	Sample Result mg/kg	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: PKH0446-02 (Dumps	ter-1 - Soil)							
Arsenic	EPA 6010B	P1I0616	5.0	ND	1	9/6/01	9/9/01	
Barium	EPA 6010B	P1I0616	1.0	56	1	9/6/01	9/9/01	
Cadmium	EPA 6010B	P1I0616	0.50	ND	1	9/6/01	9/9/01	
Chromium	EPA 6010B	P1I0616	1.0	9.6	1	9/6/01	9/9/01	
Lead	EPA 6010B	P110616	5.0	ND	1	9/6/01	9/9/01	
Mercury	EPA 7471A	P1H2923	0.020	ND	1	8/29/01	8/30/01	
Selenium	EPA 6010B	P1I0616	5.0	ND	1	9/6/01	9/9/01	
Silver	EPA 6010B	P1I0616	0.50	ND	1	9/6/01	9/9/01	

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-8596 FAX (858) 505-9589 (480) 785-0043 FAX (480) 785-0851

Law Engineering 4634 S. 36th Place Phoenix, AZ 85040

Attention: Jim Clarke

Client Project ID:

70211-0-0150-2-2.10

Sampled: 08/22/01-08/24/01

Report Number:

PKH0446

Received: 08/24/01

TOTAL RECOVERABLE METALS

Analyte	Method	Batch	Reporting Limit mg/l	Sample Result mg/l	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: PKH0446-01 (LB1 RI	NSATE 8/22/0	1 - Water)	1					
Arsenic	EPA 200.7	P1H2827	0.050	ND	1	8/28/01	8/29/01	
Chromium	EPA 200.7	P1H2827	0.010	ND	1	8/28/01	8/29/01	
Copper	EPA 200.7	P1H2827	0.020	ND	1	8/28/01	8/29/01	
Nickel	EPA 200.7	P1H2827	0.050	ND	1	8/28/01	8/29/01	
Zinc	EPA 200.7	P1H2827	0.050	ND	1	8/28/01	8/29/01	

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-8596 FAX (858) 505-9589 (480) 785-0043 FAX (480) 785-0851

Law Engineering

4634 S. 36th Place Phoenix, AZ 85040

Attention: Jim Clarke

Client Project ID:

Report Number:

70211-0-0150-2-2.10

Sampled: 08/22/01-08/24/01

Received: 08/24/01

INORGANICS

PKH0446

Analyte	Method	Batch	Reporting Limit mg/l	Sample Result mg/l	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: PKH0446-01 (LB1)	RINSATE 8/22/0	1 - Water)						
Total Cyanide	SM4500-CN,C-E	P1I0418	0.020	ND	1	9/4/01	9/4/01	N 1
			P/NP	P/NP				
Sample ID: PKH0446-02 (Dum	pster-1 - Soil)							
Paint Filter Liquids Test	EPA 9095A	P1H2805	NA	Present	1	8/27/01	8/28/01	
			mg/kg	mg/kg				
Sample ID: PKH0446-02 (Dum	pster-1 - Soil)		-					
Total Cyanide	EPA 9014	P1I0513	0.50	ND	1	9/5/01	9/5/01	

DEL MAR ANALYTICAL, PHOENIX (AZ0426

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-8596 FAX (858) 505-9589 (480) 785-0043 FAX (480) 785-0851

Law Engineering

4634 S. 36th Place Phoenix, AZ 85040

Attention: Jim Clarke

Client Project ID:

70211-0-0150-2-2.10

Sampled: 08/22/01-08/24/01

Received: 08/24/01

Report Number:

PKH0446

<u> INTELUTIONERI ANNIGORIA DI ANTEG</u>

VOLATILE ORGANICS BY GC/MS (EPA 8260B)

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: P1H2501 Extracted: 08/25/	<u>/01</u>									
Blank Analyzed: 09/04/01 (P1H2501-I	BLK1)									
Acetone	ND	1000	ug/kg							
Benzene	ND	50	ug/kg							
Bromobenzene	ND	250	ug/kg							
Bromochloromethane	ND	250	ug/kg							
Bromodichloromethane	ND	100	ug/kg							
Bromoform	ND	250	ug/kg							
Bromomethane	ND	250	ug/kg							
2-Butanone (MEK)	ND	500	ug/kg							
n-Butylbenzene	ND	250	ug/kg							
sec-Butylbenzene	ND	250	ug/kg							
tert-Butylbenzene	ND	250	ug/kg							
Carbon Disulfide	ND	250	ug/kg							
Carbon tetrachloride	ND	250	ug/kg							
Chlorobenzene	ND	50	ug/kg							
Chloroethane	ND	250	ug/kg							
Chloroform	ND	100	ug/kg							
Chloromethane	ND	250	ug/kg							
2-Chlorotoluene	ND	250	ug/kg							
4-Chlorotoluene	ND	250	ug/kg							
Dibromochloromethane	ND	100	ug/kg							
1,2-Dibromo-3-chloropropane	ND	250	ug/kg				-			
1,2-Dibromoethane (EDB)	ND	100	ug/kg							
Dibromomethane	ND	100	ug/kg							
1,2-Dichlorobenzene	ND	100	ug/kg							
1,3-Dichlorobenzene	ND	100	ug/kg							
1,4-Dichlorobenzene	ND	100	ug/kg							
Dichlorodifluoromethane	ND	250	ug/kg							
1,1-Dichloroethane	ND	100	ug/kg							
1,2-Dichloroethane	ND	50	ug/kg							
1,1-Dichloroethene	ND	250	ug/kg							
cis-1,2-Dichloroethene	ND	100	ug/kg							
trans-1,2-Dichloroethene	ND	100	ug/kg							
1,2-Dichloropropane	ND	100	ug/kg							
1,3-Dichloropropane	ND	100	ug/kg							
2,2-Dichloropropane	ND	100	ug/kg							
			<i>3</i> 0							

Melissa Evans Project Manager

PKH0446 Page 11 of 35

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-8596 FAX (858) 505-9589 (480) 785-0043 FAX (480) 785-0851

Law Engineering 4634 S. 36th Place

Client Project ID:

70211-0-0150-2-2.10

Sampled: 08/22/01-08/24/01

Phoenix, AZ 85040 Attention: Jim Clarke

Report Number:

PKH0446

Received: 08/24/01

VOLATILE ORGANICS BY GC/MS (EPA 8260B)

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: P1H2501 Extracted: 08	8/25/01									
Blank Analyzed: 09/04/01 (P1H25	501-BLK1)									
1,1-Dichloropropene	ND	100	ug/kg							
cis-1,3-Dichloropropene	ND	100	ug/kg							
trans-1,3-Dichloropropene	ND	100	ug/kg							
Ethylbenzene	ND	100	ug/kg							
Hexachlorobutadiene	ND	250	ug/kg							
2-Hexanone	ND	500	ug/kg							
Iodomethane	ND	100	ug/kg							
Isopropylbenzene	ND	100	ug/kg							
p-Isopropyltoluene	ND	100	ug/kg							
Methylene chloride	ND	500	ug/kg							
4-Methyl-2-pentanone (MIBK)	ND	500	ug/kg							
Methyl-tert-butyl Ether (MTBE)	ND	250	ug/kg							
Naphthalene	ND	250	ug/kg							
n-Propylbenzene	ND	100	ug/kg							
Styrene	ND	100	ug/kg							
1,1,I,2-Tetrachloroethane	ND	250	ug/kg							
1,1,2,2-Tetrachloroethane	ND	100	ug/kg							
Tetrachloroethene	ND	100	ug/kg							
Toluene	ND	100	ug/kg							
1,2,3-Trichlorobenzene	ND	250	ug/kg							
1,2,4-Trichlorobenzene	ND	250	ug/kg							
1,1,1-Trichloroethane	ND	100	ug/kg							
1,1,2-Trichloroethane	ND	100	ug/kg							
Trichloroethene	ND	100	ug/kg							
Trichlorofluoromethane	ND	250	ug/kg							
1,2,3-Trichloropropane	ND	500	ug/kg							
1,2,4-Trimethylbenzene	ND	100	ug/kg							
1,3,5-Trimethylbenzene	ND	100	ug/kg							
Vinyl acetate	ND	1200	ug/kg							
Vinyl chloride	ND	250	ug/kg							
Xylenes, Total	ND	150	ug/kg							
Surrogate: Dibromofluoromethane	1350		ug/kg	1250		108	70-125			
Surrogate: Toluene-d8	1450		ug/kg	1250		116	50-135			
Surrogate: 4-Bromofluorobenzene	1380		ug/kg	1250		110	70-130			

Melissa Evans Project Manager

PKH0446 Page 12 of 35

2852 Alton Ave., Irvine, CA 92606 (949) 261-1022 FAX (949) 261-1228 1014 E. Coldby Dr., Suite A, Colton, CA 92324 (909) 370-4667 FAX (909) 370-1046 7277 Hayvenhurst, Suite B-12, Van Nuys, CA 91406 (818) 779-1844 FAX (818) 779-1843 9484 Chesapeake Dr., Suite 805, San Diego, CA 92123 (858) 505-8596 FAX (858) 505-9589 9830 South 51st St., Suite B-120, Phoenix, AZ 85044 (480) 785-0043 FAX (480) 785-0851

Law Engineering

4634 S. 36th Place Phoenix, AZ 85040

Attention: Jim Clarke

Client Project ID:

70211-0-0150-2-2.10

Report Number:

PKH0446

Sampled: 08/22/01-08/24/01

Received: 08/24/01

avi bilit (b) bet i ovavi (diotorio) bevez

VOLATILE ORGANICS BY GC/MS (EPA 8260B)

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: P1H2501 Extracted: 08/25	<u>/01</u>									
LCS Analyzed: 09/06/01 (P1H2501-B3	S1)									
Acetone	ND	1000	ug/kg	1000		40.0	5-200			
Benzene	1010	50	ug/kg	1000		101	65-130			
Bromobenzene	1020	250	ug/kg	1000		102	60-135			
Bromochloromethane	1070	250	ug/kg	1000		107	60-135			
Bromodichloromethane	971	100	ug/kg	1000		97.1	30-135			
Bromoform	753	250	ug/kg	1000		75.3	60-140			
Bromomethane	570	250	ug/kg	1000		57.0	10-200			
2-Butanone (MEK)	514	500	ug/kg	1000		51.4	10-160			
n-Butylbenzene	999	250	ug/kg	1000		99.9	65-125			
sec-Butylbenzene	1040	250	ug/kg	1000		104	70-135			
tert-Butylbenzene	1040	250	ug/kg	1000		104	70-130			
Carbon Disulfide	797	250	ug/kg	1000		79.7	20-120			
Carbon tetrachloride	923	250	ug/kg	1000		92.3	70-140			
Chlorobenzene	1060	50	ug/kg	1000		106	75-125			
Chloroethane	564	250	ug/kg	1000		56.4	10-200			
Chloroform	1030	100	ug/kg	1000		103	35-135			
Chloromethane	594	250	ug/kg	1000		59.4	10-200			
2-Chlorotoluene	1030	250	ug/kg	1000		103	70-135			
4-Chlorotoluene	1030	250	ug/kg	1000		103	75-135			
Dibromochloromethane	908	100	, ug/kg	1000		90.8	35-135			
1,2-Dibromo-3-chloropropane	696	250	ug/kg	1000		69.6	50-155			
1,2-Dibromoethane (EDB)	910	100	ug/kg	1000		91.0	70-130			
Dibromomethane	995	100	ug/kg	1000		99.5	65-130			
1,2-Dichlorobenzene	1040	100	ug/kg	1000		104	70-125			
1,3-Dichlorobenzene	1040	100	ug/kg	1000		104	70-125			
1,4-Dichlorobenzene	1060	100	ug/kg	1000		106	70-135			
Dichlorodifluoromethane	385	250	ug/kg	1000		38.5	10-185			
1,1-Dichloroethane	1030	100	ug/kg	1000		103	60-140			
1,2-Dichloroethane	1000	50	ug/kg	1000		100	55-135			
1,1-Dichloroethene	991	250	ug/kg	1000		99.1	55-145			
cis-1,2-Dichloroethene	1030	100	ug/kg	1000		103	60-125			
trans-1,2-Dichloroethene	1040	100	ug/kg	1000		104	70-145			
1,2-Dichloropropane	1040	100	ug/kg	1000		104	65-130			
1,3-Dichloropropane	936	100	ug/kg	1000		93.6	65-130			
2,2-Dichloropropane	666	100	ug/kg	1000		66.6	60-135			
1,1-Dichloropropene	1020	100	ug/kg	1000		102	65-130			

Melissa Evans Project Manager

PKH0446 Page 13 of 35

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-8596 FAX (858) 505-9589 (480) 785-0043 FAX (480) 785-0851

Law Engineering 4634 S. 36th Place

Client Project ID:

70211-0-0150-2-2.10

Sampled: 08/22/01-08/24/01

Phoenix, AZ 85040 Attention: Jim Clarke

Report Number:

PKH0446

Received: 08/24/01

METROD BLANKOCIDATA

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: P1H2501 Extracted: 08/25/0	<u>)1</u>									
LCS Analyzed: 09/06/01 (P1H2501-BS	1)									
cis-1,3-Dichloropropene	947	100	ug/kg	1000		94.7	60-125			
trans-1,3-Dichloropropene	871	100	ug/kg	1000		87 .1	50-130			
Ethylbenzene	1060	100	ug/kg	1000		106	70-125			
Hexachlorobutadiene	905	250	ug/kg	1000		90.5	60-125			
2-Hexanone	636	500	ug/kg	1000		63.6	25-185			
Iodomethane	1060	100	ug/kg	1000		106	30-155			
Isopropylbenzene	1080	100	ug/kg	1000		108	70-135			
p-Isopropyltoluene	991	100	ug/kg	1000		99.1	65-130			
Methylene chloride	990	500	ug/kg	1000		99.0	60-140			
4-Methyl-2-pentanone (MIBK)	719	500	ug/kg	1000		71.9	10-175			
Methyl-tert-butyl Ether (MTBE)	846	250	ug/kg	1000		84.6	55-135			
Naphthalene	875	250	ug/kg	1000		87.5	45-155			
n-Propylbenzene	1080	100	ug/kg	1000		108	75-135			
Styrene	1060	100	ug/kg	1000		106	70-130			
1,1,1,2-Tetrachloroethane	977	250	ug/kg	1000		97.7	70-130			
1,1,2,2-Tetrachloroethane	807	100	ug/kg	1000		80.7	60-140			
Tetrachloroethene	1060	100	ug/kg	1000		106	65-130			
Toluene	1010	100	ug/kg	1000		101	70-125			
1,2,3-Trichlorobenzene	965	250	ug/kg	1000		96.5	60-135			
1,2,4-Trichlorobenzene	991	250	ug/kg	1000		99.1	55-135			
1,1,1-Trichloroethane	977	100	ug/kg	1000		97. 7	65-135			
1,1,2-Trichloroethane	961	100	ug/kg	1000		96.1	65-130			
Trichloroethene	1100	100	ug/kg	1000		110	70-130			
Trichlorofluoromethane	692	250	ug/kg	1000		69.2	10-200			
1,2,3-Trichloropropane	809	500	ug/kg	1000		80.9	60-150			
1,2,4-Trimethylbenzene	1060	100	ug/kg	1000		106	75-130			
1,3,5-Trimethylbenzene	1020	100	ug/kg	1000		102	70-130			
Vinyl acetate	ND	1200	ug/kg	1000		28.8	25-130			
Vinyl chloride	575	250	ug/kg	1000		57.5	10-200			
Xylenes, Total	3160	150	ug/kg	3000		105	70-130		*	
Surrogate: Dibromofluoromethane	1290		ug/kg	1250		103	70-125			
Surrogate: Toluene-d8	1310		ug/kg	1250		105	50-135			
Surrogate: 4-Bromofluorobenzene	1320		ug/kg	1250		106	70-130			

2852 Alton Ave., Irvine, CA 92606 (949) 261-1022 FAX (949) 261-1228 1014 E. Coldby Dr., Suite A, Colton, CA 92324 (909) 370-4667 FAX (909) 370-1046 7277 Hayvenhurst, Suite B-12, Van Nuys, CA 91406 (818) 779-1844 FAX (818) 779-1843 9484 Chesapeake Dr., Suite 805, San Diego, CA 92123 (858) 505-8596 FAX (858) 505-9589 9830 South 51st St., Suite B-120, Phoenix, AZ 85044 (480) 785-0043 FAX (480) 785-0851

Law Engineering 4634 S. 36th Place Phoenix, AZ 85040

Client Project ID:

70211-0-0150-2-2.10

Sampled: 08/22/01-08/24/01

Attention: Jim Clarke

Report Number:

PKH0446

Received: 08/24/01

ZALTUR BEODER BERNARDEN BEN FAL

VOLATILE ORGANICS BY GC/MS (EPA 8260B)

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: P1H2501 Extracted: 08/25	<u>5/01</u>									
LCS Dup Analyzed: 09/07/01 (P1H25	01-BSD1)									
Acetone	ND	1000	ug/kg	1000		44.2	5-200	9.98	35	
Benzene	916	50	ug/kg	1000		91.6	65-130	9.76	35	
Bromobenzene	972	250	ug/kg	1000		97.2	60-135	4.82	35	
Bromochloromethane	996	250	ug/kg	1000		99.6	60-135	7.16	35	
Bromodichloromethane	924	100	ug/kg	1000		92.4	30-135	4.96	35	
Bromoform	812	250	ug/kg	1000		81.2	60-140	7.54	35	
Bromomethane	489	250	ug/kg	1000		48.9	10-200	15.3	35	
2-Butanone (MEK)	572	500	ug/kg	1000		57.2	10-160	10.7	35	
n-Butylbenzene	970	250	ug/kg	1000		97.0	65-125	2.95	35	
sec-Butylbenzene	969	250	ug/kg	1000		96.9	70-135	7.07	35	
tert-Butylbenzene	971	250	ug/kg	1000		97 .1	70-130	6.86	35	
Carbon Disulfide	698	250	ug/kg	1000		69.8	20-120	13.2	35	
Carbon tetrachloride	924	250	ug/kg	1000		92.4	70-140	0.108	35	
Chlorobenzene	1010	50	ug/kg	1000		101	75-125	4.83	35	
Chloroethane	492	250	ug/kg	1000		49.2	10-200	13.6	35	
Chloroform	953	100	ug/kg	1000		95.3	35-135	7.77	35	
Chloromethane	475	250	ug/kg	1000		47.5	10-200	22.3	35	
2-Chlorotoluene	968	250	ug/kg	1000		96.8	70-135	6.21	35	
4-Chlorotoluene	961	250	ug/kg	1000		96.1	75-135	6.93	35	
Dibromochloromethane	931	100	ug/kg	1000		93.1	35-135	2.50	35	
1,2-Dibromo-3-chloropropane	745	250	ug/kg	1000		74.5	50-155	6.80	35	
1,2-Dibromoethane (EDB)	930	100	ug/kg	1000		93.0	70-130	2.17	35	
Dibromomethane	942	100	ug/kg	1000		94.2	65-130	5.47	35	
1,2-Dichlorobenzene	961	100	ug/kg	1000		96.1	70-125	7.90	35	
1,3-Dichlorobenzene	990	100	ug/kg	1000		99.0	70-125	4.93	35	
1,4-Dichlorobenzene	1010	100	ug/kg	1000		101	70-135	4.83	35	
Dichlorodifluoromethane	253	250	ug/kg	1000		25.3	10-185	41.4	35	R6
1,1-Dichloroethane	940	100	ug/kg	1000		94.0	60-140	9.14	35	
1,2-Dichloroethane	921	50	ug/kg	1000		92.1	55-135	8.22	35	
1,1-Dichloroethene	902	250	ug/kg	1000		90.2	55-145	9.40	35	
cis-1,2-Dichloroethene	973	100	ug/kg	1000		97.3	60-125	5.69	35	
trans-1,2-Dichloroethene	951	100	ug/kg	1000		95.1	70-145	8.94	35	
1,2-Dichloropropane	967	100	ug/kg	1000		96.7	65-130	7.27	35	
1,3-Dichloropropane	956	100	ug/kg	1000		95.6	65-130	2.11	35	
2,2-Dichloropropane	855	100	ug/kg	1000		85.5	60-135	24.9	35	
1,1-Dichloropropene	939	100	ug/kg	1000	•	93.9	65-130	8.27	35	

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-8596 FAX (858) 505-9589 (480) 785-0043 FAX (480) 785-0851

Law Engineering 4634 S. 36th Place Phoenix, AZ 85040

Attention: Jim Clarke

Client Project ID:

70211-0-0150-2-2.10

Sampled: 08/22/01-08/24/01

Report Number:

PKH0446

Received: 08/24/01

MOTHOD BLANKQUIDATA

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: P1H2501 Extracted: 08/25/	01									
LCS Dup Analyzed: 09/07/01 (P1H250	01-BSD1)									
cis-1,3-Dichloropropene	948	100	ug/kg	1000		94.8	60-125	0.106	35	
trans-1,3-Dichloropropene	896	100	ug/kg	1000		89.6	50-130	2.83	35	
Ethylbenzene	997	100	ug/kg	1000		99.7	70-125	6.13	35	
Hexachlorobutadiene	927	250	ug/kg	1000		92.7	60-125	2.40	35	
2-Hexanone	698	500	ug/kg	1000		69.8	25-185	9.30	35	
Iodomethane	965	100	ug/kg	1000		96.5	30-155	9.38	35	
Isopropylbenzene	1020	100	ug/kg	1000		102	70-135	5.71	35	
p-Isopropyltoluene	942	100	ug/kg	1000		94.2	65-130	5.07	35	
Methylene chloride	952	500	ug/kg	1000		95.2	60-140	3.91	35	
4-Methyl-2-pentanone (MIBK)	752	500	ug/kg	1000		75.2	10-175	4.49	35	
Methyl-tert-butyl Ether (MTBE)	876	250	ug/kg	1000		87.6	55-135	3.48	35	
Naphthalene	893	250	ug/kg	1000		89.3	45-155	2.04	35	
n-Propylbenzene	1030	100	ug/kg	1000		103	75-135	4.74	35	
Styrene	1010	100	ug/kg	1000		101	70-130	4.83	35	
1,1,1,2-Tetrachloroethane	987	250	ug/kg	1000		98.7	70-130	1.02	35	
1,1,2,2-Tetrachloroethane	872	100	ug/kg	1000		87.2	60-140	7.74	35	
Tetrachloroethene	1010	100	ug/kg	1000		101	65-130	4.83	35	
Toluene	958	100	ug/kg	1000		95.8	70-125	5.28	35	
1,2,3-Trichlorobenzene	968	250	ug/kg	1000		96.8	60-135	0.310	35	
1,2,4-Trichlorobenzene	959	250	ug/kg	1000		95.9	55-135	3.28	35	
1,1,1-Trichloroethane	935	100	ug/kg	1000		93.5	65-135	4.39	35	
1,1,2-Trichloroethane	944	100	ug/kg	1000		94.4	65-130	1.78	35	
Trichloroethene	987	100	ug/kg	1000		98.7	70-130	10.8	35	
Trichlorofluoromethane	593	250	ug/kg	1000		59.3	10-200	15.4	35	
1,2,3-Trichloropropane	845	500	ug/kg	1000		84.5	60-150	4.35	35	
1,2,4-Trimethylbenzene	988	100	ug/kg	1000		98.8	75-130	7.03	35	
1,3,5-Trimethylbenzene	963	100	ug/kg	1000		96.3	70-130	5.75	35	
Vinyl acetate	ND	1200	ug/kg	1000		77.2	25-130	91.3	35	R6
Vinyl chloride	433	250	ug/kg	1000		43.3	10-200	28.2	35	
Xylenes, Total	3040	150	ug/kg	3000		101	70-130	3.87	35	
Surrogate: Dibromofluoromethane	1240		ug/kg	1250		99.2	70-125			
Surrogate: Toluene-d8	1290		ug/kg	1250		103	50-135			
Surrogate: 4-Bromofluorobenzene	1240		ug/kg	1250		99.2	70-130			

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-8596 FAX (858) 505-9589 (480) 785-0043 FAX (480) 785-0851

Law Engineering 4634 S. 36th Place

Phoenix, AZ 85040
Attention: Jim Clarke

Client Project ID:

70211-0-0150-2-2.10

Spike

Source

%REC

Sampled: 08/22/01-08/24/01

Received: 08/24/01

RPD

Data

Report Number:

Reporting

PKH0446

METHOD BLANK QC DATA

VOLATILE ORGANICS BY GC/MS (EPA 8260B)

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers	
Batch: P1H2501 Extracted: 08/	25/01										
Matrix Spike Analyzed: 09/05/01 (1	P1H2501-MS1)		Source: PKH0445-01								
Acetone	ND	1000	ug/kg	1000	ND	87.5	5-200				
Benzene	811	50	ug/kg	1000	ND	81.1	65-130				
Bromobenzene	804	250	ug/kg	1000	ND	80.4	60-135				
Bromochloromethane	811	250	ug/kg	1000	ND	81.1	60-135				
Bromodichloromethane	792	100	ug/kg	1000	ND	79.2	30-135				
Bromoform	756	250	ug/kg	1000	ND	75.6	60-140				
Bromomethane	ND	250	ug/kg	1000	ND	12.0	10-200				
2-Butanone (MEK)	872	500	ug/kg	1000	ND	87.2	10-160				
n-Butylbenzene	753	250	ug/kg	1000	ND	75.3	65-125				
sec-Butylbenzene	826	250	ug/kg	1000	ND	82.6	70-135				
tert-Butylbenzene	802	250	ug/kg	1000	ND	80.2	70-130				
Carbon Disulfide	638	250	ug/kg	1000	ND	63.8	20-120				
Carbon tetrachloride	782	250	ug/kg	1000	ND	78.2	70-140				
Chlorobenzene	796	50	ug/kg	1000	ND	79.6	75-125				
Chloroethane	ND	250	ug/kg	1000	ND	20.5	10-200				
Chloroform	764	100	ug/kg	1000	ND	76.4	35-135				
Chloromethane	594	250	ug/kg	1000	ND	59.4	10-200				
2-Chlorotoluene	817	250	ug/kg	1000	ND	81.7	70-135				
4-Chlorotoluene	832	250	ug/kg	1000	ND	83.2	75-135				
Dibromochloromethane	748	100	ug/kg	1000	ND	74.8	35-135				
1,2-Dibromo-3-chloropropane	737	250	ug/kg	1000	ND	73.7	50-155	*			
1,2-Dibromoethane (EDB)	750	100	ug/kg	1000	ND	75.0	70-130				
Dibromomethane	790	100	ug/kg	1000	ND	79.0	65-130				
1,2-Dichlorobenzene	789	100	ug/kg	1000	ND	78.9	70-125				
1,3-Dichlorobenzene	810	100	ug/kg	1000	ND	81.0	70-125				
1,4-Dichlorobenzene	822	100	ug/kg	1000	ND	82.2	70-135				
Dichlorodifluoromethane	303	250	ug/kg	1000	ND	30.3	10-185				
1,1-Dichloroethane	731	100	ug/kg	1000	ND	73.1	60-140				
1,2-Dichloroethane	777	50	ug/kg	1000	ND	77.7	55-135				
1,1-Dichloroethene	752	250	ug/kg	1000	ND	75.2	55-145				
cis-1,2-Dichloroethene	807	100	ug/kg	1000	ND	80.7	60-125				
trans-1,2-Dichloroethene	776	100	ug/kg	1000	ND	77.6	70-145				
1,2-Dichloropropane	821	100	ug/kg	1000	ND	82.1	65-130				
1,3-Dichloropropane	792	100	ug/kg	1000	ND	79.2	65-130				
2,2-Dichloropropane	707	100	ug/kg	1000	ND	70.7	60-135				
1,1-Dichloropropene	780	100	ug/kg	1000	ND	78.0	65-130				

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-8596 FAX (858) 505-9589 (480) 785-0043 FAX (480) 785-0851

Law Engineering

4634 S. 36th Place

Phoenix, AZ 85040 Attention: Jim Clarke Client Project ID:

70211-0-0150-2-2.10

Sampled: 08/22/01-08/24/01

Received: 08/24/01

Report Number: PKH0446

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: P1H2501 Extracted: 08/25	<u>5/01</u>									
Matrix Spike Analyzed: 09/05/01 (P1	H2501-MS1)				Source: F	KH0445-	01			
cis-1,3-Dichloropropene	811	100	ug/kg	1000	ND	81.1	60-125			
trans-1,3-Dichloropropene	737	100	ug/kg	1000	ND	73.7	50-130			
Ethylbenzene	816	100	ug/kg	1000	ND	81.6	70-125			
Hexachlorobutadiene	521	250	ug/kg	1000	ND	52.1	60-125			M2
2-Hexanone	768	500	ug/kg	1000	ND	76.8	25-185			
Iodomethane	624	100	ug/kg	1000	ND	62.4	30-155			
Isopropylbenzene	801	100	ug/kg	1000	ND	80.1	70-135			
p-Isopropyltoluene	778	100	ug/kg	1000	ND	7 7.8	65-130			
Methylene chloride	864	500	ug/kg	1000	ND	86.4	60-140			
4-Methyl-2-pentanone (MIBK)	76 5	500	ug/kg	1000	ND	76.5	10-175			
Methyl-tert-butyl Ether (MTBE)	772	250	ug/kg	1000	ND	7 7.2	55-135			
Naphthalene	705	250	ug/kg	1000	ND	70.5	45-155			
n-Propylbenzene	844	100	ug/kg	1000	ND	84.4	75-135			
Styrene	805	100	ug/kg	1000	ND	80.5	70-130			
1,1,1,2-Tetrachloroethane	778	250	ug/kg	1000	ND	77.8	70-130			
1,1,2,2-Tetrachloroethane	774	100	ug/kg	1000	ND	77.4	60-140			
Tetrachloroethene	800	100	ug/kg	1000	ND	80.0	65-130			
Toluene	792	100	ug/kg	1000	ND	79.2	70-125			
1,2,3-Trichlorobenzene	646	250	ug/kg	1000	ND	64.6	60-135			
1,2,4-Trichlorobenzene	703	250	ug/kg	1000	ND	70.3	55-135			
1,1,1-Trichloroethane	770	100	ug/kg	1000	ND	7 7.0	65-135			
1,1,2-Trichloroethane	764	100	ug/kg	1000	ND	76.4	65-130			
Trichloroethene	824	100	ug/kg	1000	ND	82.4	70-130			
Trichlorofluoromethane	555	250	ug/kg	1000	ND	55.5	10-200			
1,2,3-Trichloropropane	798	500	ug/kg	1000	ND	79.8	60-150			
1,2,4-Trimethylbenzene	842	100	ug/kg	1000	ND	84.2	75-130			
1,3,5-Trimethylbenzene	830	100	ug/kg	1000	ND	83.0	70-130			
Vinyl acetate	ND	1200	ug/kg	1000	ND	34.4	25-130			
Vinyl chloride	640	250	ug/kg	1000	ND	64.0	10-200			
Xylenes, Total	2420	150	ug/kg	3000	ND	80.7	70-130			
Surrogate: Dibromofluoromethane	917		ug/kg	1250		73.4	70-125			
Surrogate: Toluene-d8	920		ug/kg	1250		73.6	50-135			
Surrogate: 4-Bromofluorobenzene	1030		ug/kg	1250		82.4	70-130			

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-8596 FAX (858) 505-9589 (480) 785-0043 FAX (480) 785-0851

Law Engineering

4634 S. 36th Place Phoenix, AZ 85040

Attention: Jim Clarke

Client Project ID:

70211-0-0150-2-2.10

Sampled: 08/22/01-08/24/01

Received: 08/24/01

Report Number:

PKH0446

VOLATILE ORGANICS BY GC/MS (EPA 8260B)

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: P1H2501 Extracted: 08	3/25/01									
Matrix Spike Dup Analyzed: 09/05	5/01 (P1H2501-M	ISD1)			Source: F	KH0445-	-01			
Acetone	ND	1000	ug/kg	1000	ND	78.8	5-200	10.5	35	
Benzene	829	50	ug/kg	1000	ND	82.9	65-130	2.20	35	
Bromobenzene	815	250	ug/kg	1000	ND	81.5	60-135	1.36	35	
Bromochloromethane	797	250	ug/kg	1000	ND	79.7	60-135	1.74	35	
Bromodichloromethane	818	100	ug/kg	1000	ND	81.8	30-135	3.23	35	
Bromoform	748	250	ug/kg	1000	ND	74.8	60-140	1.06	35	
Bromomethane	ND	250	ug/kg	1000	ND	10.0	10-200	18.2	35	
2-Butanone (MEK)	822	500	ug/kg	1000	ND	82.2	10-160	5.90	35	
n-Butylbenzene	731	250	ug/kg	1000	ND	73.1	65-125	2.96	35	
sec-Butylbenzene	789	250	ug/kg	1000	ND	78.9	70-135	4.58	35	
tert-Butylbenzene	805	250	ug/kg	1000	ND	80.5	70-130	0.373	35	
Carbon Disulfide	656	250	ug/kg	1000	ND	65.6	20-120	2.78	35	
Carbon tetrachloride	788	250	ug/kg	1000	ND	78.8	70-140	0.764	35	
Chlorobenzene	833	50	ug/kg	1000	ND	83.3	75-125	4.54	35	
Chloroethane	ND	250	ug/kg	1000	ND	20.7	10-200	0.971	35	
Chloroform	745	100	ug/kg	1000	ND	74.5	35-135	2.52	35	
Chloromethane	611	250	ug/kg	1000	ND	61.1	10-200	2.82	35	
2-Chlorotoluene	813	250	ug/kg	1000	ND	81.3	70-135	0.491	35	
4-Chlorotoluene	828	250	ug/kg	1000	ND	82.8	75-135	0.482	35	
Dibromochloromethane	766	100	ug/kg	1000	ND	76.6	35-135	2.38	35	
1,2-Dibromo-3-chloropropane	652	250	ug/kg	1000	ND	65.2	50-155	12.2	35	
1,2-Dibromoethane (EDB)	751	100	ug/kg	1000	ND	75.1	70-130	0.133	35	
Dibromomethane	793	100	ug/kg	1000	ND	79.3	65-130	0.379	35	
1,2-Dichlorobenzene	802	100	ug/kg	1000	ND	80.2	70-125	1.63	35	
1,3-Dichlorobenzene	829	100	ug/kg	1000	ND	82.9	70-125	2.32	35	
1,4-Dichlorobenzene	829	100	ug/kg	1000	ND	82.9	70-135	0.848	35	
Dichlorodifluoromethane	368	250	ug/kg	1000	ND	36.8	10-185	19.4	35	
1,1-Dichloroethane	735	100	ug/kg	1000	ND	73.5	60-140	0.546	35	
1,2-Dichloroethane	806	50	ug/kg	1000	ND	80.6	55-135	3.66	35	
1,1-Dichloroethene	780	250	ug/kg	1000	ND	7 8.0	55-145	3.66	35	
cis-1,2-Dichloroethene	816	100	ug/kg	1000	ND	81.6	60-125	1.11	35	
trans-1,2-Dichloroethene	807	100	ug/kg	1000	ND	80.7	70-145	3.92	35	
1,2-Dichloropropane	847	100	ug/kg	1000	ND	84.7	65-130	3.12	35	
1,3-Dichloropropane	778	100	ug/kg	1000	ND	77.8	65-130	1.78	35	
2,2-Dichloropropane	765	100	ug/kg	1000	ND	76.5	60-135	7.88	35	
1,1-Dichloropropene	785	100	ug/kg	1000	ND	78.5	65-130	0.639	35	
			5 8							

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-8596 FAX (858) 505-9589 (480) 785-0043 FAX (480) 785-0851

Law Engineering

4634 S. 36th Place

Phoenix, AZ 85040 Attention: Jim Clarke Client Project ID:

Report Number:

70211-0-0150-2-2.10

Sampled: 08/22/01-08/24/01

Received: 08/24/01

PKH0446

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: P1H2501 Extracted: 08/25	<u>/01</u>									
Matrix Spike Dup Analyzed: 09/05/01	(P1H2501-M	ISD1)			Source: P	KH0445-	01			
cis-1,3-Dichloropropene	841	100	ug/kg	1000	ND	84.1	60-125	3.63	35	
trans-1,3-Dichloropropene	727	100	ug/kg	1000	ND	72.7	50-130	1.37	35	
Ethylbenzene	854	100	ug/kg	1000	ND	85.4	70-125	4.55	35	
Hexachlorobutadiene	827	250	ug/kg	1000	ND	82.7	60-125	45.4	35	Q11
2-Hexanone	718	500	ug/kg	1000	ND	71.8	25-185	6.73	35	
Iodomethane	689	100	ug/kg	1000	ND	68.9	30-155	9.90	35	
Isopropylbenzene	830	100	ug/kg	1000	ND	83.0	70-135	3.56	35	
p-Isopropyltoluene	752	100	ug/kg	1000	ND	75.2	65-130	3.40	35	
Methylene chloride	862	500	ug/kg	1000	ND	86.2	60-140	0.232	35	
4-Methyl-2-pentanone (MIBK)	730	500	ug/kg	1000	ND	73.0	10-175	4.68	35	
Methyl-tert-butyl Ether (MTBE)	746	250	ug/kg	1000	ND	74.6	55-135	3.43	35	
Naphthalene	688	250	ug/kg	1000	ND	68.8	45-155	2.44	35	
n-Propylbenzene	832	100	ug/kg	1000	ND	83.2	75-135	1.43	35	
Styrene	824	100	ug/kg	1000	ND	82.4	70-130	2.33	35	
1,1,1,2-Tetrachloroethane	780	250	ug/kg	1000	ND	78.0	70-130	0.257	35	
1,1,2,2-Tetrachloroethane	722	100	ug/kg	1000	ND	72.2	60-140	6.95	35	
Tetrachloroethene	819	100	ug/kg	1000	ND	81.9	65-130	2.35	35	
Toluene	811	100	ug/kg	1000	ND	81.1	70-125	2.37	35	
1,2,3-Trichlorobenzene	709	250	ug/kg	1000	ND	70.9	60-135	9.30	35	
1,2,4-Trichlorobenzene	730	250	ug/kg	1000	ND	73.0	55-135	3.77	35	
1,1,1-Trichloroethane	788	100	ug/kg	1000	ND	78.8	65-135	2.31	35	
1,1,2-Trichloroethane	768	100	ug/kg	1000	ND	76.8	65-130	0.522	35	
Trichloroethene	858	100	ug/kg	1000	ND	85.8	70-130	4.04	35	
Trichlorofluoromethane	626	250	ug/kg	1000	ND	62.6	10-200	12.0	35	
1,2,3-Trichloropropane	718	500	ug/kg	1000	ND	71.8	60-150	10.6	35	
1,2,4-Trimethylbenzene	846	100	ug/kg	1000	ND	84.6	75-130	0.474	35	
1,3,5-Trimethylbenzene	818	100	ug/kg	1000	ND	81.8	70-130	1.46	35	
Vinyl acetate	ND	1200	ug/kg	1000	ND	30.4	25-130	12.3	35	
Vinyl chloride	672	250	ug/kg	1000	ND	67.2	10-200	4.88	35	
Xylenes, Total	2470	150	ug/kg	3000	ND	82.3	70-130	2.04	35	
Surrogate: Dibromofluoromethane	900		ug/kg	1250		72.0	70-125			
Surrogate: Toluene-d8	913		ug/kg	1250		73.0	50-135			
Surrogate: 4-Bromofluorobenzene	1030		ug/kg	1250		82.4	70-130			

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-6596 FAX (858) 505-9589 (480) 785-0043 FAX (480) 785-0851

Law Engineering 4634 S. 36th Place

Client Project ID:

70211-0-0150-2-2.10

Sampled: 08/22/01-08/24/01

Phoenix, AZ 85040 Attention: Jim Clarke

Report Number:

PKH0446

Received: 08/24/01

VOLATILE ORGANICS BY GC/MS (EPA 8260B)

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: P1I0301 Extracted: 09/01/0)1_									
Blank Analyzed: 09/01/01 (P1I0301-B										
Acetone	ND	20	ug/l							
Benzene	ND	2.0	ug/l							
Bromobenzene	ND	5.0	ug/l							
Bromochloromethane	ND	5.0	ug/l							
Bromodichloromethane	ND	2.0	ug/l							
Bromoform	ND	5.0	ug/l							
Bromomethane	ND	5.0	ug/l							
2-Butanone (MEK)	ND	10	ug/l							
n-Butylbenzene	ND	5.0	ug/l							
sec-Butylbenzene	ND	5.0	ug/l							
tert-Butylbenzene	ND	5.0	ug/l							
Carbon Disulfide	ND	5.0	ug/l							
Carbon tetrachloride	ND	5.0	ug/l							
Chlorobenzene	ND	2.0	ug/l							
Chloroethane	ND	5.0	ug/l							
Chloroform	ND	2.0	ug/l	٠						
Chloromethane	ND	5.0	ug/l							
2-Chlorotoluene	ND	5.0	ug/l							
4-Chlorotoluene	ND	5.0	ug/l							
Dibromochloromethane	ND	2.0	ug/l							
1,2-Dibromo-3-chloropropane	ND	5.0	ug/l							
1,2-Dibromoethane (EDB)	ND	2.0	ug/l							
Dibromomethane	ND	2.0	ug/l							
1,2-Dichlorobenzene	ND	2.0	ug/l							
1,3-Dichlorobenzene	ND	2.0	ug/l							
1,4-Dichlorobenzene	ND	2.0	ug/l							
Dichlorodifluoromethane	ND	5.0	ug/l							
1,1-Dichloroethane	ND	2.0	ug/l							
1,2-Dichloroethane	ND	2.0	ug/l							
1,1-Dichloroethene	ND	5.0	ug/l							
cis-1,2-Dichloroethene	ND	2.0	ug/l							
trans-1,2-Dichloroethene	ND	2.0	ug/l							
1,2-Dichloropropane	ND	2.0	ug/l							
1,3-Dichloropropane	ND	2.0	ug/l							
2,2-Dichloropropane	ND	2.0	ug/l							

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-8596 FAX (858) 505-9589 (480) 785-0043 FAX (480) 785-0851

Law Engineering 4634 S. 36th Place Phoenix, AZ 85040

Attention: Jim Clarke

Client Project ID:

70211-0-0150-2-2.10

Sampled: 08/22/01-08/24/01

Report Number:

PKH0446

Received: 08/24/01

NIBITIOD BLANK(OF BALS

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: P110301 Extracted: 09/01/0	<u>01</u>									
Blank Analyzed: 09/01/01 (P1I0301-B	LK1)									
1,1-Dichloropropene	ND	2.0	ug/l							
cis-1,3-Dichloropropene	ND	2.0	ug/l							
trans-1,3-Dichloropropene	ND	2.0	ug/l							
Ethylbenzene	ND	2.0	ug/l							
Hexachlorobutadiene	ND	5.0	ug/l							
2-Hexanone	ND	10	ug/l							
Iodomethane	ND	2.0	ug/l							
Isopropylbenzene	ND	2.0	ug/l							
p-Isopropyltoluene	ND	2.0	ug/l							
Methylene chloride	ND	5.0	ug/l							
4-Methyl-2-pentanone (MIBK)	ND	10	ug/l							
Methyl-tert-butyl Ether (MTBE)	ND	5.0	ug/l							
Naphthalene	ND	5.0	ug/l							
n-Propylbenzene	ND	2.0	ug/l							
Styrene	ND	2.0	ug/l							
1,1,1,2-Tetrachloroethane	ND	5.0	ug/l							
1,1,2,2-Tetrachloroethane	ND	2.0	ug/l							
Tetrachloroethene	ND	2.0	ug/l							
Toluene	ND	2.0	ug/l							
1,2,3-Trichlorobenzene	ND	5.0	ug/l							
1,2,4-Trichlorobenzene	ND	5.0	ug/l							
1,1,1-Trichloroethane	ND	2.0	ug/l							
1,1,2-Trichloroethane	ND	2.0	ug/l							
Trichloroethene	ND	2.0	ug/l							
Trichlorofluoromethane	ND	5.0	ug/l							
1,2,3-Trichloropropane	ND	10	ug/l							
1,2,4-Trimethylbenzene	ND	2.0	ug/l							
1,3,5-Trimethylbenzene	ND	2.0	ug/l							
Vinyl acetate	ND	25	ug/l							V1,L3
Vinyl chloride	ND	5.0	ug/l							
Xylenes, Total	ND	10	ug/l							
Surrogate: Dibromofluoromethane	26.8		ug/l	25.0		107	80-120			
Surrogate: Toluene-d8	27.6		ug/l	25.0		110	80-120			
Surrogate: 4-Bromofluorobenzene	27.7		ug/l	25.0		111	80-120			

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-8596 FAX (858) 505-9589 (480) 785-0043 FAX (480) 785-0851

Law Engineering

4634 S. 36th Place Phoenix, AZ 85040

Attention: Jim Clarke

Client Project ID:

70211-0-0150-2-2.10

Sampled: 08/22/01-08/24/01

Received: 08/24/01

Report Number:

PKH0446

MELITOLBLANK (OCTAVA

VOLATILE ORGANICS BY GC/MS (EPA 8260B)

Result Puloside Result Result Puloside Result Result Puloside Result Puloside Result Resul			Reporting		Spike	Source		%REC		RPD	Data
LCS Analyzed: 09/01/01 (P110301-BST)	Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Retrotine	Batch: P1I0301 Extracted: 09/01/0	1_						-			
Benzene 21.3 2.0 ug/l 25.0 85.2 80-120	LCS Analyzed: 09/01/01 (P1I0301-BS1	.)									
Bromobenzene 23.8 5.0 ug/l 25.0 95.2 80-120	Acetone	30.6	20	ug/l	25.0		122	30-200			
Bromochloromethane 25.2 5.0 ug/l 25.0 36.0 101 80-120	Benzene	21.3	2.0	ug/l	25.0		85.2	80-120			4
Bromodichloromethane	Bromobenzene	23.8	5.0	ug/l	25.0		95.2	80-120			
Bromoform 24.7 5.0 ug/l 25.0 98.8 60-140	Bromochloromethane	25.2	5.0	ug/l	25.0		101	80-120			
Bromomethane 23.8 5.0 ug/l 25.0 95.2 60-150	Bromodichloromethane	21.0	2.0	ug/l	25.0		84.0	80-130			
2-Butanone (MEK) 26.5 10 ug/l 25.0 106 30-185 -Butylbenzene 22.8 5.0 ug/l 25.0 91.2 75-130 -Butylbenzene 23.9 5.0 ug/l 25.0 95.6 80-125 -Butylbenzene 24.1 5.0 ug/l 25.0 96.4 80-120	Bromoform	24.7	5.0	ug/l	25.0		98.8	60-140			
No. No.	Bromomethane		5.0	ug/l	25.0		95.2	60-150			
Sec-Butylbenzene 23.9 5.0 ug/l 25.0 95.6 80-125	2-Butanone (MEK)	26.5	10	ug/l	25.0		106	30-185			
tert-Buylbenzene 24.1 5.0 ug/l 25.0 96.4 80-120 Carbon Disulfide 21.2 5.0 ug/l 25.0 84.8 65-120 Carbon tetrachloride 23.4 5.0 ug/l 25.0 93.6 75-150 Chloroethane 25.3 2.0 ug/l 25.0 101 80-120 Chloroform 23.1 2.0 ug/l 25.0 92.4 80-120 Chloromethane 19.6 5.0 ug/l 25.0 92.4 80-120 Chlorotoluene 24.2 5.0 ug/l 25.0 96.8 80-120 4-Chlorotoluene 24.2 5.0 ug/l 25.0 96.8 80-120 4-Chlorotoluene 24.2 5.0 ug/l 25.0 96.8 80-120 1,2-Dibromo-3-chloropropane 24.5 2.0 ug/l 25.0 98.0 70-150 1,2-Dichlorobenzene 23.7 2.0 ug/l 25.0 10.7 75-120	n-Butylbenzene	22.8	5.0	ug/l	25.0		91.2	75-130			
Carbon Disulfide 21.2 5.0 ug/l 25.0 84.8 65-120 Carbon tetrachloride 23.4 5.0 ug/l 25.0 93.6 75-150 Chloroethane 25.3 2.0 ug/l 25.0 101 80-120 Chloroform 23.1 2.0 ug/l 25.0 92.4 80-120 Chloromethane 19.6 5.0 ug/l 25.0 98.8 80-120 2-Chlorotoluene 24.2 5.0 ug/l 25.0 98.8 80-120 4-Chlorotoluene 24.2 5.0 ug/l 25.0 98.0 70-150 4-Chlorotoluene 24.2 5.0 ug/l 25.0 98.0 70-150 4-Chlorotoluene 24.5 2.0 ug/l 25.0 98.0 70-150 1,2-Dibromo-schane (EDB) 26.8 2.0 ug/l 25.0 98.0 70-150 1,2-Dichlorobenzene 23.7 2.0 ug/l 25.0 94.8 80-120	sec-Butylbenzene	23.9	5.0	ug/l	25.0		95.6	80-125			
Carbon tetrachloride 23.4 5.0 ug/l 25.0 93.6 75-150 Chlorobenzene 25.3 2.0 ug/l 25.0 101 80-120 Chloroethane 25.8 5.0 ug/l 25.0 103 80-125 Chloroform 23.1 2.0 ug/l 25.0 92.4 80-120 Chlorodhane 19.6 5.0 ug/l 25.0 78.4 60-125 2-Chlorotoluene 24.2 5.0 ug/l 25.0 96.8 80-120 4-Chlorotoluene 24.2 5.0 ug/l 25.0 98.0 70-150 1,2-Dibromochloromethane 24.5 2.0 ug/l 25.0 98.0 70-150 1,2-Dibromochlane (EDB) 26.8 2.0 ug/l 25.0 89.2 50-145 1,2-Dichlorobenzene 23.7 2.0 ug/l 25.0 89.6 80-120 1,2-Dichlorobenzene 23.6 2.0 ug/l 25.0 94.8 80-120 <	tert-Butylbenzene	24.1	5.0	ug/l	25.0		96.4	80-120			
Chlorobenzene 25.3 2.0 ug/l 25.0 101 80-120 Chloroethane 25.8 5.0 ug/l 25.0 92.4 80-120 Chloroform 19.6 5.0 ug/l 25.0 96.8 80-120 Chlorotoluene 24.2 5.0 ug/l 25.0 96.8 80-120	Carbon Disulfide	21.2	5.0	ug/l	25.0		84.8	65-120			
Chloroethane 25.8 5.0 ug/l 25.0 103 80-125 Chloroform 23.1 2.0 ug/l 25.0 92.4 80-120 Chloromethane 19.6 5.0 ug/l 25.0 78.4 60-125 2-Chlorotoluene 24.2 5.0 ug/l 25.0 96.8 80-120 4-Chlorotoluene 24.2 5.0 ug/l 25.0 96.8 80-120 Dibromochloromethane 24.5 2.0 ug/l 25.0 98.0 70-150 1,2-Dibromo-3-chloropropane 22.3 5.0 ug/l 25.0 89.2 50-145 1,2-Dibromoethane (EDB) 26.8 2.0 ug/l 25.0 89.6 80-120 1jbromoethane 22.4 2.0 ug/l 25.0 94.8 80-120 1,2-Dichlorobenzene 23.6 2.0 ug/l 25.0 94.4 80-120 1,1-Dichlorodifluoromethane 18.5 5.0 ug/l 25.0 96.0 80-	Carbon tetrachloride	23.4	5.0	ug/l	25.0		93.6	75-150			
Chloroform 23.1 2.0 ug/l 25.0 92.4 80-120 Chloromethane 19.6 5.0 ug/l 25.0 78.4 60-125 2-Chlorotoluene 24.2 5.0 ug/l 25.0 96.8 80-120 4-Chlorotoluene 24.2 5.0 ug/l 25.0 96.8 80-120 Dibromochloromethane 24.5 2.0 ug/l 25.0 98.0 70-150 1,2-Dibromo-3-chloropropane 22.3 5.0 ug/l 25.0 89.2 50-145 1,2-Dibromochlane (EDB) 26.8 2.0 ug/l 25.0 107 75-120 Dibromomethane (EDB) 26.8 2.0 ug/l 25.0 89.6 80-120 1,1-Dibchlorobenzene 23.7 2.0 ug/l 25.0 89.6 80-120 1,3-Dichlorobenzene 23.6 2.0 ug/l 25.0 94.8 80-120 1,4-Dichlorobenzene 24.0 2.0 ug/l 25.0 94.8 80-120 1,4-Dichlorobenzene 24.0 2.0 ug/l 25.0 96.0 80-120 1,1-Dichlorodifluoromethane 18.5 5.0 ug/l 25.0 96.0 80-120 1,1-Dichlorodifluoromethane 24.0 2.0 ug/l 25.0 96.0 80-120 1,1-Dichlorotehane 24.0 2.0 ug/l 25.0 96.0 80-120 1,1-Dichlorotehane 24.0 2.0 ug/l 25.0 96.0 80-120 1,1-Dichlorotehane 24.4 2.0 ug/l 25.0 96.0 80-120 1,1-Dichlorotehane 24.4 2.0 ug/l 25.0 96.0 80-120 1,2-Dichlorotehane 24.4 2.0 ug/l 25.0 97.6 80-120 1,1-Dichlorotehane 24.4 2.0 ug/l 25.0 97.6 80-120 1,1-Dichlorotehene 24.4 2.0 ug/l 25.0 97.6 80-120 1,2-Dichlorotehene 24.2 2.0 ug/l 25.0 96.8 80-120 1,3-Dichlorotehene 24.2 2.0 ug/l 25.0 96.8 80-120 1,3-Dichlorotehene 24.2 2.0 ug/l 25.0 96.8 80-120 1,3-Dichlorotehene 25.4 2.0 ug/l 25.0 96.8 80-120		25.3	2.0	ug/l	25.0		101	80-120			
Chloromethane 19.6 5.0 ug/l 25.0 78.4 60-125 2-Chlorotoluene 24.2 5.0 ug/l 25.0 96.8 80-120 4-Chlorotoluene 24.2 5.0 ug/l 25.0 96.8 80-120 Dibromochloromethane 24.5 2.0 ug/l 25.0 98.0 70-150 1,2-Dibromo-3-chloropropane 22.3 5.0 ug/l 25.0 89.2 50-145 1,2-Dibromo-3-chloropropane 22.3 5.0 ug/l 25.0 89.2 50-145 1,2-Dibromoethane (EDB) 26.8 2.0 ug/l 25.0 89.6 80-120 Dibromomethane 22.4 2.0 ug/l 25.0 94.8 80-120 1,3-Dichlorobenzene 23.6 2.0 ug/l 25.0 94.8 80-120 1,4-Dichlorobenzene 24.0 2.0 ug/l 25.0 96.0 80-120 1,1-Dichlorothane 24.0 2.0 ug/l 25.0 96.0	Chloroethane	25.8	5.0	ug/l	25.0		103	80-125			
2-Chlorotoluene 24.2 5.0 ug/l 25.0 96.8 80-120 Dibromochloromethane 24.5 2.0 ug/l 25.0 98.0 70-150 1,2-Dibromochloromethane (EDB) 26.8 2.0 ug/l 25.0 89.6 80-120 Dibromochloromethane (EDB) 26.8 2.0 ug/l 25.0 89.6 80-120 Dibromochloromethane 22.4 2.0 ug/l 25.0 89.6 80-120 1,2-Dichlorobenzene 23.7 2.0 ug/l 25.0 94.8 80-120 1,3-Dichlorobenzene 23.6 2.0 ug/l 25.0 94.8 80-120 1,4-Dichlorobenzene 24.0 2.0 ug/l 25.0 96.0 80-120 Dichlorodifluoromethane 18.5 5.0 ug/l 25.0 96.0 80-120 Dichlorodifluoromethane 24.0 2.0 ug/l 25.0 96.0 80-120 1,1-Dichlorobenzene 23.4 5.0 ug/l 25.0 96.0 80-120 1,1-Dichlorothane 24.0 2.0 ug/l 25.0 96.0 80-120 1,1-Dichlorothane 24.0 2.0 ug/l 25.0 96.0 80-120 1,1-Dichlorothane 24.0 2.0 ug/l 25.0 96.0 80-120 1,1-Dichlorothene 23.4 5.0 ug/l 25.0 93.6 80-120 1,1-Dichlorothene 24.4 2.0 ug/l 25.0 93.6 80-120 1,1-Dichlorothene 24.4 2.0 ug/l 25.0 93.6 80-120 1,1-Dichlorothene 24.4 2.0 ug/l 25.0 96.8 80-120 1,2-Dichlorothene 24.2 2.0 ug/l 25.0 96.8 80-120 1,2-Dichloropropane 25.4 2.0 ug/l 25.0 96.8 80-120 1,3-Dichloropropane 25.4 2.0 ug/l 25.0 96.8 80-120 1,3-Dichloropropane 25.4 2.0 ug/l 25.0 96.8 84.8 80-120 1,3-Dichloropropane 25.4 2.0 ug/l 25.0 96.8 84.8 80-120	Chloroform	23.1	2.0	ug/l	25.0		92.4	80-120			
4-Chlorotoluene 24.2 5.0 ug/l 25.0 96.8 80-120 Dibromochloromethane 24.5 2.0 ug/l 25.0 98.0 70-150 1,2-Dibromo-3-chloropropane 22.3 5.0 ug/l 25.0 89.2 50-145 1,2-Dibromoethane (EDB) 26.8 2.0 ug/l 25.0 89.6 80-120 1,2-Dichlorobenzene 23.7 2.0 ug/l 25.0 94.8 80-120 1,3-Dichlorobenzene 23.6 2.0 ug/l 25.0 94.4 80-120 1,4-Dichlorobenzene 24.0 2.0 ug/l 25.0 96.0 80-120 1,4-Dichloroethane 18.5 5.0 ug/l 25.0 96.0 80-120 1,1-Dichloroethane 24.0 2.0 ug/l 25.0 96.0 80-120 1,2-Dichloroethane 20.8 2.0 ug/l 25.0 93.6 80-120 1,1-Dichloroethene 24.4 2.0 ug/l 25.0 93.6	Chloromethane	19.6	5.0	ug/l	25.0		78.4	60-125			
Dibromochloromethane 24.5 2.0 ug/l 25.0 98.0 70-150 1,2-Dibromo-3-chloropropane 22.3 5.0 ug/l 25.0 89.2 50-145 1,2-Dibromoethane (EDB) 26.8 2.0 ug/l 25.0 107 75-120 Dibromomethane 22.4 2.0 ug/l 25.0 89.6 80-120 1,2-Dichlorobenzene 23.7 2.0 ug/l 25.0 94.8 80-120 1,3-Dichlorobenzene 23.6 2.0 ug/l 25.0 94.4 80-120 1,4-Dichlorobenzene 24.0 2.0 ug/l 25.0 96.0 80-120 1,1-Dichloromethane 18.5 5.0 ug/l 25.0 96.0 80-120 1,1-Dichlorothane 24.0 2.0 ug/l 25.0 96.0 80-120 1,2-Dichlorothane 20.8 2.0 ug/l 25.0 96.0 80-120 1,1-Dichlorothane 23.4 5.0 ug/l 25.0 93.6 80-120 1,1-Dichlorothene 24.4 2.0 ug/l 25.0 97.6 80-120 1,2-Dichlorothene 24.4 2.0 ug/l 25.0 96.8 80-120 1,2-Dichlorothene 24.4 2.0 ug/l 25.0 96.8 80-120 1,2-Dichlorothene 24.4 2.0 ug/l 25.0 96.8 80-120 1,2-Dichlorothene 24.2 2.0 ug/l 25.0 96.8 80-120 1,3-Dichloropropane 21.2 2.0 ug/l 25.0 96.8 80-120 1,3-Dichloropropane 25.4 2.0 ug/l 25.0 94.4 75-135	2-Chlorotoluene	24.2	5.0	ug/l	25.0		96.8	80-120			
1,2-Dibromo-3-chloropropane 22.3 5.0 ug/l 25.0 89.2 50-145 1,2-Dibromoethane (EDB) 26.8 2.0 ug/l 25.0 107 75-120 1,2-Dichlorobenzene 22.4 2.0 ug/l 25.0 89.6 80-120 1,2-Dichlorobenzene 23.7 2.0 ug/l 25.0 94.8 80-120 1,3-Dichlorobenzene 23.6 2.0 ug/l 25.0 94.4 80-120 1,4-Dichlorobenzene 24.0 2.0 ug/l 25.0 96.0 80-120 1,1-Dichloroethane 18.5 5.0 ug/l 25.0 96.0 80-120 1,1-Dichloroethane 24.0 2.0 ug/l 25.0 96.0 80-120 1,2-Dichloroethane 20.8 2.0 ug/l 25.0 96.0 80-120 1,1-Dichloroethane 23.4 5.0 ug/l 25.0 93.6 80-120 1,1-Dichloroethene 24.4 2.0 ug/l 25.0 97.6 80-120 1,2-Dichloroethene 24.4 2.0 ug/l 25.0 97.6 80-120 1,2-Dichloroethene 24.2 2.0 ug/l 25.0 96.8 80-120 1,2-Dichloropropane 21.2 2.0 ug/l 25.0 96.8 80-120 1,3-Dichloropropane 25.4 2.0 ug/l 25.0 94.4 75-135 2,2-Dichloropropane 23.6 2.0 ug/l 25.0 94.4 75-135 2,2-Dichloropropane 23.6 2.0 ug/l 25.0 94.4 75-135 2,2-Dichloropropane 23.6 2.0 ug/l 25.0 94.4 75-135 3,2-Dichloropropane 23.6 2.0 ug/l 25.0 94.4 75-135 3,2-Dichloropropane 23.6 20 ug/l 25.0 94.4 75-135 3,2-Dichloropropane 23.6 20 ug/l 25.0 94.4 75-135 3,2-Dichloropropane 23.6 20 ug/l 25.0 94.4 75-135 3,3-Dichloropropane 23.6 20 ug/l 25.0 94.4 75-135 3,4-Dichloropropane 23.6 20 ug/l 25.0 94.4 75-135 3,5-Dichloropropane 23.6 20 ug/l	4-Chlorotoluene	24.2	5.0	ug/l	25.0		96.8	80-120			
1,2-Dibromoethane (EDB) 26.8 2.0 ug/l 25.0 107 75-120		24,5		ug/l	25.0		98.0	70-150			
Dibromomethane 22.4 2.0 ug/l 25.0 89.6 80-120 1,2-Dichlorobenzene 23.7 2.0 ug/l 25.0 94.8 80-120 1,3-Dichlorobenzene 23.6 2.0 ug/l 25.0 94.4 80-120 1,4-Dichlorobenzene 24.0 2.0 ug/l 25.0 96.0 80-120 Dichlorodifluoromethane 18.5 5.0 ug/l 25.0 74.0 25-140 1,1-Dichloroethane 24.0 2.0 ug/l 25.0 96.0 80-120 1,2-Dichloroethene 20.8 2.0 ug/l 25.0 93.6 80-120 1,1-Dichloroethene 23.4 5.0 ug/l 25.0 97.6 80-120 trans-1,2-Dichloroethene 24.4 2.0 ug/l 25.0 96.8 80-120 1,2-Dichloropropane 21.2 2.0 ug/l 25.0 96.8 80-120 1,3-Dichloropropane 25.4 2.0 ug/l 25.0 94.4 <th></th> <th></th> <th>5.0</th> <th>ug/l</th> <th>25.0</th> <th></th> <th>89.2</th> <th>50-145</th> <th></th> <th></th> <th></th>			5.0	ug/l	25.0		89.2	50-145			
1,2-Dichlorobenzene 23.7 2.0 ug/l 25.0 94.8 80-120 1,3-Dichlorobenzene 23.6 2.0 ug/l 25.0 94.4 80-120 1,4-Dichlorobenzene 24.0 2.0 ug/l 25.0 96.0 80-120 Dichlorodifluoromethane 18.5 5.0 ug/l 25.0 96.0 80-120 1,1-Dichloroethane 24.0 2.0 ug/l 25.0 96.0 80-120 1,2-Dichloroethane 20.8 2.0 ug/l 25.0 83.2 80-120 1,1-Dichloroethene 23.4 5.0 ug/l 25.0 93.6 80-120 1,1-Dichloroethene 24.4 2.0 ug/l 25.0 97.6 80-120 trans-1,2-Dichloroethene 24.2 2.0 ug/l 25.0 96.8 80-120 1,2-Dichloropropane 21.2 2.0 ug/l 25.0 84.8 80-120 1,3-Dichloropropane 25.4 2.0 ug/l 25.0 94.4 75-135	1,2-Dibromoethane (EDB)	26.8	2.0	ug/l	25.0		107	75-120			
1,3-Dichlorobenzene 23.6 2.0 ug/l 25.0 94.4 80-120 1,4-Dichlorobenzene 24.0 2.0 ug/l 25.0 96.0 80-120 Dichlorodifluoromethane 18.5 5.0 ug/l 25.0 74.0 25-140 1,1-Dichloroethane 24.0 2.0 ug/l 25.0 96.0 80-120 1,2-Dichloroethane 20.8 2.0 ug/l 25.0 83.2 80-120 1,1-Dichloroethene 23.4 5.0 ug/l 25.0 93.6 80-120 cis-1,2-Dichloroethene 24.4 2.0 ug/l 25.0 97.6 80-120 trans-1,2-Dichloroethene 24.2 2.0 ug/l 25.0 96.8 80-120 1,2-Dichloropropane 21.2 2.0 ug/l 25.0 84.8 80-120 1,3-Dichloropropane 25.4 2.0 ug/l 25.0 94.4 75-135 2,2-Dichloropropane 23.6 2.0 ug/l 25.0 94.4 75-135		22.4	2.0	ug/1	25.0		89.6	80-120			
1,4-Dichlorobenzene 24.0 2.0 ug/l 25.0 96.0 80-120 Dichlorodifluoromethane 18.5 5.0 ug/l 25.0 74.0 25-140 1,1-Dichloroethane 24.0 2.0 ug/l 25.0 96.0 80-120 1,2-Dichloroethane 20.8 2.0 ug/l 25.0 83.2 80-120 1,1-Dichloroethene 23.4 5.0 ug/l 25.0 93.6 80-120 cis-1,2-Dichloroethene 24.4 2.0 ug/l 25.0 97.6 80-120 trans-1,2-Dichloroethene 24.2 2.0 ug/l 25.0 96.8 80-120 1,2-Dichloropropane 21.2 2.0 ug/l 25.0 84.8 80-120 1,3-Dichloropropane 25.4 2.0 ug/l 25.0 102 80-120 2,2-Dichloropropane 23.6 2.0 ug/l 25.0 94.4 75-135	1,2-Dichlorobenzene	23. 7	2.0	ug/l	25.0		94.8	80-120			
Dichlorodifluoromethane 18.5 5.0 ug/l 25.0 74.0 25-140 1,1-Dichloroethane 24.0 2.0 ug/l 25.0 96.0 80-120 1,2-Dichloroethane 20.8 2.0 ug/l 25.0 83.2 80-120 1,1-Dichloroethene 23.4 5.0 ug/l 25.0 93.6 80-120 cis-1,2-Dichloroethene 24.4 2.0 ug/l 25.0 97.6 80-120 trans-1,2-Dichloroethene 24.2 2.0 ug/l 25.0 96.8 80-120 1,2-Dichloropropane 21.2 2.0 ug/l 25.0 84.8 80-120 1,3-Dichloropropane 25.4 2.0 ug/l 25.0 102 80-120 2,2-Dichloropropane 23.6 2.0 ug/l 25.0 94.4 75-135	1,3-Dichlorobenzene	23.6	2.0	ug/l	25.0		94.4	80-120			
1,1-Dichloroethane 24.0 2.0 ug/l 25.0 96.0 80-120 1,2-Dichloroethane 20.8 2.0 ug/l 25.0 83.2 80-120 1,1-Dichloroethene 23.4 5.0 ug/l 25.0 93.6 80-120 cis-1,2-Dichloroethene 24.4 2.0 ug/l 25.0 97.6 80-120 trans-1,2-Dichloroethene 24.2 2.0 ug/l 25.0 96.8 80-120 1,2-Dichloropropane 21.2 2.0 ug/l 25.0 84.8 80-120 1,3-Dichloropropane 25.4 2.0 ug/l 25.0 102 80-120 2,2-Dichloropropane 23.6 2.0 ug/l 25.0 94.4 75-135	1,4-Dichlorobenzene	24.0	2.0	ug/l	25.0		96.0	80-120			
1,2-Dichloroethane 20.8 2.0 ug/l 25.0 83.2 80-120 1,1-Dichloroethene 23.4 5.0 ug/l 25.0 93.6 80-120 cis-1,2-Dichloroethene 24.4 2.0 ug/l 25.0 97.6 80-120 trans-1,2-Dichloroethene 24.2 2.0 ug/l 25.0 96.8 80-120 1,2-Dichloropropane 21.2 2.0 ug/l 25.0 84.8 80-120 1,3-Dichloropropane 25.4 2.0 ug/l 25.0 102 80-120 2,2-Dichloropropane 23.6 2.0 ug/l 25.0 94.4 75-135	Dichlorodifluoromethane	18.5	5.0	ug/l	25.0		74.0	25-140			
1,1-Dichloroethene 23.4 5.0 ug/l 25.0 93.6 80-120 cis-1,2-Dichloroethene 24.4 2.0 ug/l 25.0 97.6 80-120 trans-1,2-Dichloroethene 24.2 2.0 ug/l 25.0 96.8 80-120 1,2-Dichloropropane 21.2 2.0 ug/l 25.0 84.8 80-120 1,3-Dichloropropane 25.4 2.0 ug/l 25.0 102 80-120 2,2-Dichloropropane 23.6 2.0 ug/l 25.0 94.4 75-135		24.0	2.0	ug/l	25.0		96.0	80-120			
cis-1,2-Dichloroethene 24.4 2.0 ug/l 25.0 97.6 80-120 trans-1,2-Dichloroethene 24.2 2.0 ug/l 25.0 96.8 80-120 1,2-Dichloropropane 21.2 2.0 ug/l 25.0 84.8 80-120 1,3-Dichloropropane 25.4 2.0 ug/l 25.0 102 80-120 2,2-Dichloropropane 23.6 2.0 ug/l 25.0 94.4 75-135	1,2-Dichloroethane	20.8	2.0	ug/l	25.0		83.2	80-120			
trans-1,2-Dichloroethene 24.2 2.0 ug/l 25.0 96.8 80-120 1,2-Dichloropropane 21.2 2.0 ug/l 25.0 84.8 80-120 1,3-Dichloropropane 25.4 2.0 ug/l 25.0 102 80-120 2,2-Dichloropropane 23.6 2.0 ug/l 25.0 94.4 75-135	1,1-Dichloroethene	23.4	5.0	ug/l	25.0		93.6	80-120			
1,2-Dichloropropane 21.2 2.0 ug/l 25.0 84.8 80-120 1,3-Dichloropropane 25.4 2.0 ug/l 25.0 102 80-120 2,2-Dichloropropane 23.6 2.0 ug/l 25.0 94.4 75-135	•	24.4	2.0	ug/l	25.0		97.6	80-120			
1,3-Dichloropropane 25.4 2.0 ug/l 25.0 102 80-120 2,2-Dichloropropane 23.6 2.0 ug/l 25.0 94.4 75-135		24.2	2.0	ug/l	25.0		96.8	80-120			
2,2-Dichloropropane 23.6 2.0 ug/l 25.0 94.4 75-135		21.2	2.0	ug/l	25.0		84.8	80-120			
7 1 200 711 70 120	_ _	25.4	2.0	ug/l	25.0		102	80-120			
1.1 Diablementary 23.5 2.0 # 25.0 00.0 00.00	* *	23.6	2.0	ug/l	25.0		94.4	75-135			
1,1-Dicinoropropene 22.5 2.0 ug/1 25.0 90.0 80-120	1,1-Dichloropropene	22.5	2.0	ug/l	25.0		90.0	80-120			

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-8596 FAX (858) 505-9589 (480) 785-0043 FAX (480) 785-0851

Law Engineering 4634 S. 36th Place Phoenix, AZ 85040 Attention: Jim Clarke

Client Project ID:

70211-0-0150-2-2.10

Sampled: 08/22/01-08/24/01

Received: 08/24/01

Report Number:

PKH0446

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: P1I0301 Extracted: 09/01/02	<u>1</u>									
LCS Analyzed: 09/01/01 (P1I0301-BS1)									
cis-1,3-Dichloropropene	20,3	2.0	ug/l	25.0		81.2	80-120			
trans-1,3-Dichloropropene	22.0	2.0	ug/l	25.0		88.0	80-120			
Ethylbenzene	24.5	2.0	ug/l	25.0		98.0	80-120			
Hexachlorobutadiene	28.1	5.0	ug/l	25.0		112	60-145			
2-Hexanone	28.2	10	ug/l	25.0		113	50-170			
Iodomethane	29.5	2.0	ug/l	25.0		118	40-155			
Isopropylbenzene	24.5	2.0	ug/l	25.0		98.0	80-120			
p-Isopropyltoluene	22.9	2.0	ug/l	25.0		91.6	80-120			
Methylene chloride	23.2	5.0	ug/l	25.0		92.8	80-120			
4-Methyl-2-pentanone (MIBK)	25.7	10	ug/l	25.0		103	70-140			
Methyl-tert-butyl Ether (MTBE)	24.5	5.0	ug/l	25.0		98.0	75-135			
Naphthalene	26.5	5.0	ug/l	25.0		106	70-130			
n-Propylbenzene	23.3	2.0	ug/l	25.0		93.2	80-120			
Styrene	23.8	2.0	ug/l	25.0		95.2	80-120			
1,1,1,2-Tetrachloroethane	25.3	5.0	ug/l	25.0		101	65-150			
1,1,2,2-Tetrachloroethane	25.0	2.0	ug/l	25.0		100	70-130			
Tetrachloroethene	24.8	2.0	ug/l	25.0		99.2	80-125			
Toluene	24.3	2.0	ug/l	25.0		97.2	80-120			
1,2,3-Trichlorobenzene	24.8	5.0	ug/l	25.0		99.2	75-125			
1,2,4-Trichlorobenzene	25.3	5.0	ug/l	25.0		101	80-120			
1,1,1-Trichloroethane	21.9	2.0	ug/l	25.0		87.6	80-120			
1,1,2-Trichloroethane	25.4	2.0	ug/l	25.0		102	80-120			
Trichloroethene	22.5	2.0	ug/l	25.0		90.0	80-120			
Trichlorofluoromethane	21.5	5.0	ug/l	25.0		86.0	75-150			
1,2,3-Trichloropropane	26.4	10	ug/l	25.0		106	65-135			
1,2,4-Trimethylbenzene	22.6	2.0	ug/l	25.0		90.4	80-120			
1,3,5-Trimethylbenzene	22.5	2.0	ug/l	25.0		90.0	80-120			
Vinyl acetate	34.2	25	ug/l	25.0		137	40-120			V1,L3
Vinyl chloride	21.4	5.0	ug/l	25.0		85.6	80-120			
Xylenes, Total	73.9	10	ug/l	75.0		98.5	80-120			
Surrogate: Dibromofluoromethane	27.1		ug/l	25.0		108	80-120			
Surrogate: Toluene-d8	27.7		ug/l	25.0		111	80-120			
Surrogate: 4-Bromofluorobenzene	26.5		ug/l	25.0		106	80-120			

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-8596 FAX (858) 505-9589 (480) 785-0043 FAX (480) 785-0851

Law Engineering

4634 S. 36th Place Phoenix, AZ 85040

Attention: Jim Clarke

Client Project ID:

70211-0-0150-2-2.10

Report Number:

PKH0446

Sampled: 08/22/01-08/24/01

Received: 08/24/01

METHOD BLANK OF DATA

VOLATILE ORGANICS BY GC/MS (EPA 8260B)

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: P1I0301 Extracted: 09/01/0	<u>1</u>						-			
LCS Dup Analyzed: 09/01/01 (P1I030)	l-BSD1)									
Acetone	30.7	20	ug/l	25.0		123	30-200	0.326	20	
Benzene	22.2	2.0	ug/l	25.0		88.8	80-120	4.14	20	
Bromobenzene	24.8	5.0	ug/l	25.0		99.2	80-120	4.12	20	
Bromochloromethane	26.5	5.0	ug/l	25.0		106	80-120	5.03	20	
Bromodichloromethane	21.9	2.0	ug/l	25.0		87.6	80-130	4.20	20	
Bromoform	26.3	5.0	ug/l	25.0		105	60-140	6.27	20	
Bromomethane	26.4	5.0	ug/l	25.0		106	60-150	10.4	20	
2-Butanone (MEK)	29.1	10	ug/l	25.0		116	30-185	9.35	20	
n-Butylbenzene	23.5	5.0	ug/l	25.0		94.0	75-130	3.02	20	
sec-Butylbenzene	24.4	5.0	ug/l	25.0		97.6	80-125	2.07	20	
tert-Butylbenzene	24.5	5.0	ug/l	25.0		98.0	80-120	1.65	20	
Carbon Disulfide	22.1	5.0	ug/l	25.0		88.4	65-120	4.16	20	
Carbon tetrachloride	24.7	5.0	ug/l	25.0		98.8	75-150	5.41	20	
Chlorobenzene	26.5	2.0	ug/l	25.0		106	80-120	4.63	20	
Chloroethane	26.6	5.0	ug/l	25.0		106	80-125	3.05	20	
Chloroform	24.5	2.0	ug/l	25.0		98.0	80-120	5.88	20	
Chloromethane	20.4	5.0	ug/l	25.0		81.6	60-125	4.00	20	
2-Chlorotoluene	24.8	5.0	ug/l	25.0		99.2	80-120	2.45	20	
4-Chlorotoluene	24.9	5.0	ug/l	25.0		99.6	80-120	2.85	20	
Dibromochloromethane	25.5	2.0	ug/l	25.0		102	70-150	4.00	20	
1,2-Dibromo-3-chloropropane	23.7	5.0	ug/l	25.0		94.8	50-145	6.09	20	
1,2-Dibromoethane (EDB)	28.7	2.0	ug/l	25.0		115	75-120	6.85	20	
Dibromomethane	23.4	2.0	ug/l	25.0		93.6	80-120	4.37	20	
1,2-Dichlorobenzene	25.1	2.0	ug/l	25.0		100	80-120	5.74	20	
1,3-Dichlorobenzene	24.2	2.0	ug/l	25.0		96.8	80-120	2.51	20	
1,4-Dichlorobenzene	24.9	2.0	ug/l	25.0		99.6	80-120	3.68	20	
Dichlorodifluoromethane	19.2	5.0	ug/l	25.0		76.8	25-140	3.71	20	
1,1-Dichloroethane	25.3	2.0	ug/l	25.0		101	80-120	5.27	20	
1,2-Dichloroethane	21.3	2.0	ug/l	25.0		85.2	80-120	2.38	20	
1,1-Dichloroethene	24.2	5.0	ug/l	25.0		96.8	80-120	3.36	20	
cis-1,2-Dichloroethene	25.4	2.0	ug/l	25.0		102	80-120	4.02	20	
trans-1,2-Dichloroethene	25.6	2.0	ug/l	25.0		102	80-120	5.62	20	
1,2-Dichloropropane	22.2	2.0	ug/l	25.0		88.8	80-120	4.61	20	
1,3-Dichloropropane	26.6	2.0	ug/l	25.0		106	80-120	4.62	20	
2,2-Dichloropropane	24.3	2.0	ug/l	25.0		97.2	75-135	2.92	20	
1,1-Dichloropropene	23.8	2.0	ug/l	25.0		95.2	80-120	5.62	20	

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-8596 FAX (858) 505-9589 (480) 785-0043 FAX (480) 785-0851

Law Engineering 4634 S. 36th Place

Phoenix, AZ 85040 Attention: Jim Clarke Client Project ID:

70211-0-0150-2-2.10

Sampled: 08/22/01-08/24/01

Report Number:

PKH0446

Received: 08/24/01

METHOD BLANK OC DATA

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: P1I0301 Extracted: 0	9/01/01									
LCS Dup Analyzed: 09/01/01 (F	P110301-BSD1)									
cis-1,3-Dichloropropene	21.0	2.0	ug/l	25.0		84.0	80-120	3.39	20	
trans-1,3-Dichloropropene	23.3	2.0	ug/l	25.0		93.2	80-120	5.74	20	
Ethylbenzene	25.6	2.0	ug/l	25.0		102	80-120	4.39	20	
Hexachlorobutadiene	24.1	5.0	ug/l	25.0		96.4	60-145	15.3	20	
2-Hexanone	30.8	10	ug/l	25.0		123	50-170	8.81	20	
Iodomethane	30.8	2.0	ug/l	25.0		123	40-155	4.31	20	
Isopropylbenzene	25.3	2.0	ug/l	25.0		101	80-120	3.21	20	
p-Isopropyltoluene	23.6	2.0	ug/l	25.0		94.4	80-120	3.01	20	
Methylene chloride	24.8	5.0	ug/l	25.0		99.2	80-120	6.67	20	
4-Methyl-2-pentanone (MIBK)	26.9	10	ug/l	25.0		108	70-140	4.56	20	
Methyl-tert-butyl Ether (MTBE)	26.3	5.0	ug/l	25.0		105	75-135	7.09	20	
Naphthalene	26.0	5.0	ug/l	25.0		104	70-130	1.90	20	
n-Propylbenzene	24.3	2.0	ug/l	25.0		97.2	80-120	4.20	20	
Styrene	25.1	2.0	ug/l	25.0		100	80-120	5.32	20	
1,1,1,2-Tetrachloroethane	26.4	5.0	ug/l	25.0		106	65-150	4.26	20	
1,1,2,2-Tetrachloroethane	26.4	2.0	ug/l	25.0		106	70-130	5.45	20	
Tetrachloroethene	26.1	2.0	ug/l	25.0		104	80-125	5.11	20	
Toluene	25.4	2.0	ug/l	25.0		102	80-120	4.43	20	
1,2,3-Trichlorobenzene	24.1	5.0	ug/l	25.0		96.4	75-125	2.86	20	
1,2,4-Trichlorobenzene	25.3	5.0	ug/l	25.0		101	80-120	0.00	20	
1,1,1-Trichloroethane	22.8	2.0	ug/l	25.0		91.2	80-120	4.03	20	
1,1,2-Trichloroethane	26.7	2.0	ug/l	25.0		107	80-120	4.99	20	
Trichloroethene	23.2	2.0	ug/l	25.0		92.8	80-120	3.06	20	
Trichlorofluoromethane	22.9	5.0	ug/l	25.0		91.6	75-150	6.31	20	
1,2,3-Trichloropropane	27.8	10	ug/l	25.0		111	65-135	5.17	20	
1,2,4-Trimethylbenzene	23.9	2.0	ug/l	25.0		95.6	80-120	5.59	20	
1,3,5-Trimethylbenzene	23.6	2.0	ug/l	25.0		94.4	80-120	4.77	20	
Vinyl acetate	36.0	25	ug/l	25.0		144	40-120	5.13	20	L3
Vinyl chloride	22.7	5.0	ug/l	25.0		90.8	80-120	5.90	20	
Xylenes, Total	76.7	10	ug/l	75.0		102	80-120	3.72	20	
Surrogate: Dibromofluoromethane	27.4		ug/l	25.0		110	80-120			
Surrogate: Toluene-d8	27.8		ug/l	25.0		111	80-120			
Surrogate: 4-Bromofluorobenzene	26.4		ug/l	25.0		106	80-120			

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-8596 FAX (858) 505-9589 (480) 785-0043 FAX (480) 785-0851

Law Engineering

4634 S. 36th Place Phoenix, AZ 85040

Attention: Jim Clarke

Client Project ID: 70211-0-0150-2-2.10

Sampled: 08/22/01-08/24/01

Received: 08/24/01

Report Number:

METHORBLANK OF DATA

PKH0446

VOLATILE ORGANICS BY GC/MS (EPA 8260B)

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: P1I0301 Extracted: 09/0	<u>1/01</u>						4			
Matrix Spike Analyzed: 09/01/01 (I	P110301-MS1)				Source: P	KH0446.	.01			
Acetone	31.9	20	ug/l	25.0	ND	128	5-200			
Benzene	21.0	2.0	ug/l	25.0	ND	84.0	80-120			
Bromobenzene	23.6	5.0	ug/l	25.0	ND	94.4	80-120			
Bromochloromethane	23.2	5.0	ug/l	25.0	ND	92.8	60-135			
Bromodichloromethane	20.3	2.0	ug/l	25.0	ND	81.2	80-120			
Bromoform	23.7	5.0	ug/l	25.0	ND	94.8	40-140			
Bromomethane	24.1	5.0	ug/l	25.0	ND	96.4	25-165			
2-Butanone (MEK)	27.3	10	ug/l	25.0	ND	109	10-160			
n-Butylbenzene	22.7	5.0	ug/l	25.0	ND	90.8	75-135			
sec-Butylbenzene	23.9	5.0	ug/l	25.0	ND	95.6	80-135			
tert-Butylbenzene	24.2	5.0	ug/l	25.0	ND	96.8	80-125			
Carbon Disulfide	23.0	5.0	ug/l	25.0	ND	92.0	20-120			
Carbon tetrachloride	23.5	5.0	ug/l	25.0	ND	94.0	80-145			
Chlorobenzene	25.6	2.0	ug/l	25.0	ND	102	80-120			
Chloroethane	27.0	5.0	ug/l	25.0	ND	108	30-150			
Chloroform	21.8	2.0	ug/l	25.0	ND	87.2	80-125			
Chloromethane	20.2	5.0	ug/l	25.0	ND	80.8	15-140			
2-Chlorotoluene	24.1	5.0	ug/l	25.0	ND	96.4	80-124			
4-Chlorotoluene	24.2	5.0	ug/l	25.0	ND	96.8	80-125			
Dibromochloromethane	23.8	2.0	ug/l	25.0	ND	95.2·	75-135			
1,2-Dibromo-3-chloropropane	19.9	5.0	ug/l	25.0	ND	79.6	25-185			
1,2-Dibromoethane (EDB)	25.8	2.0	ug/l	25.0	ND	103	45-145			
Dibromomethane	21.5	2.0	ug/l	25.0	ND	86.0	55-140			
1,2-Dichlorobenzene	23.0	2.0	ug/l	25.0	ND	92.0	80-120			
1,3-Dichlorobenzene	23.0	2.0	ug/l	25.0	ND	92.0	80-120			
1,4-Dichlorobenzene	23.6	2.0	ug/l	25.0	ND	94.4	80-120			
Dichlorodifluoromethane	19.2	5.0	ug/l	25.0	ND	76.8	25-145			
1,1-Dichloroethane	26.4	2.0	ug/l	25.0	ND	106	75-120			
1,2-Dichloroethane	20.9	2.0	ug/l	25.0	ND	83.6	60-135			
1,1-Dichloroethene	25.0	5.0	ug/l	25.0	ND	100	55-120			
cis-1,2-Dichloroethene	26.4	2.0	ug/l	25.0	ND	106	75-120			
trans-1,2-Dichloroethene	26.8	2.0	ug/l	25.0	ND	107	65-120			
1,2-Dichloropropane	20.6	2.0	ug/l	25.0	ND	82.4	80-125			
1,3-Dichloropropane	24.9	2.0	ug/l	25.0	ND	99.6	55-140			
2,2-Dichloropropane	25.6	2.0	ug/l	25.0	ND	102	45-165			
1,1-Dichloropropene	22.9	2.0	ug/l	25.0	ND	91.6	80-120			

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (588) 505-8596 FAX (868) 505-9589 (480) 785-0043 FAX (480) 785-0851

Law Engineering 4634 S. 36th Place Phoenix, AZ 85040

Attention: Jim Clarke

Client Project ID:

70211-0-0150-2-2.10

Sampled: 08/22/01-08/24/01

Report Number:

PKH0446

Received: 08/24/01

NEUHOUBIANKOEDU E

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: P1I0301 Extracted: 09/0	01/01									
Matrix Spike Analyzed: 09/01/01 (P110301-MS1)				Source: F	КН0446-	01			
cis-1,3-Dichloropropene	19.6	2.0	ug/l	25.0	ND	78.4	80-120			M2
trans-1,3-Dichloropropene	21.0	2.0	ug/l	25.0	ND	84.0	70-120			
Ethylbenzene	25.2	2.0	ug/l	25.0	ND	101	80-120			
Hexachlorobutadiene	19.4	5.0	ug/l	25.0	ND	77.6	80-135			M2
2-Hexanone	26.4	10	ug/l	25.0	ND	106	25-185			
Iodomethane	31.9	2.0	ug/l	25.0	ND	128	30-155			
Isopropylbenzene	25.0	2.0	ug/l	25.0	ND	100	80-125			
p-Isopropyltoluene	22.9	2.0	ug/l	25.0	ND	91.6	80-125			
Methylene chloride	25.4	5.0	ug/l	25.0	ND	102	55-125			
4-Methyl-2-pentanone (MIBK)	23.4	10	ug/l	25.0	ND	93.6	10-175			
Methyl-tert-butyl Ether (MTBE)	25.4	5.0	ug/l	25.0	ND	102	55-135			
Naphthalene	19.3	5.0	ug/l	25.0	ND	77.2	15-160			
n-Propylbenzene	23.6	2.0	ug/l	25.0	ND	94.4	80-130			
Styrene	24.1	2.0	ug/l	25.0	ND	96.4	60-135			
1,1,1,2-Tetrachloroethane	24.9	5.0	ug/l	25.0	ND	99.6	80-135			
1,1,2,2-Tetrachloroethane	23.5	2.0	ug/l	25.0	ND	94.0	35-150			
Tetrachloroethene	25.1	2.0	ug/l	25.0	ND	100	80-120			
Toluene	24.8	2.0	ug/l	25.0	ND	99.2	80-120			
1,2,3-Trichlorobenzene	17.9	5.0	ug/l	25.0	ND	71.6	45-145			
1,2,4-Trichlorobenzene	21.9	5.0	ug/l	25.0	ND	87.6	65-130			
1,1,1-Trichloroethane	22.3	2.0	ug/l	25.0	ND	89.2	80-120			
1,1,2-Trichloroethane	25.0	2.0	ug/l	25.0	ND	100	55-145			
Trichloroethene	22.2	2.0	ug/l	25.0	ND	88.8	80-120			
Trichlorofluoromethane	22.9	5.0	ug/l	25.0	ND	91.6	7 0-1 4 5			
1,2,3-Trichloropropane	24.6	10	ug/l	25.0	ND	98.4	20-160			
1,2,4-Trimethylbenzene	22.6	2.0	ug/l	25.0	ND	90.4	70-135			
1,3,5-Trimethylbenzene	22.7	2.0	ug/l	25.0	ND	90.8	80-125			
Vinyl acetate	34.1	25	ug/l	25.0	ND	136	25-130			N2
Vinyl chloride	22.6	5.0	ug/l	25.0	ND	90.4	25-135			
Xylenes, Total	75.1	10	ug/l	75.0	ND	100	80-120			
Surrogate: Dibromofluoromethane	27.2		ug/l	25.0		109	80-120			
Surrogate: Toluene-d8	27.8		ug/l	25.0		111	80-120			
Surrogate: 4-Bromofluorobenzene	26.7		ug/l	25.0		107	80-120			

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-8596 FAX (858) 505-9589 (480) 785-0043 FAX (480) 785-0851

Law Engineering

4634 S. 36th Place Phoenix, AZ 85040

Attention: Jim Clarke

Client Project ID:

70211-0-0150-2-2.10

Report Number: PKH0446 Sampled: 08/22/01-08/24/01

Received: 08/24/01

VOLATILE ORGANICS BY GC/MS (EPA 8260B)

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: P1I0301 Extracted: 09/01/	<u>01</u>									
Matrix Spike Dup Analyzed: 09/01/01	(P1I0301-M	SD1)			Source: P	KH0446-	01			
Acetone	34.0	20	ug/l	25.0	ND	136	5-200	6.37	20	
Benzene	21.4	2.0	ug/l	25.0	ND	85.6	80-120	1.89	20	
Bromobenzene	23.8	5.0	ug/l	25.0	ND	95.2	80-120	0.844	20	
Bromochloromethane	23.6	5.0	ug/l	25.0	ND	94.4	60-135	1.71	20	
Bromodichloromethane	20.8	2.0	ug/l	25.0	ND	83.2	80-120	2.43	20	
Bromoform	24.2	5.0	ug/l	25.0	ND	96.8	40-140	2.09	20	
Bromomethane	22.4	5.0	ug/l	25.0	ND	89.6	25-165	7.31	20	
2-Butanone (MEK)	28.6	10	ug/l	25.0	ND	114	10-160	4.65	20	
n-Butylbenzene	21.3	5.0	ug/l	25.0	ND	85.2	75-135	6.36	20	
sec-Butylbenzene	23.1	5.0	ug/l	25.0	ND	92.4	80-135	3.40	20	
tert-Butylbenzene	24.0	5.0	ug/l	25.0	ND	96.0	80-125	0.830	20	
Carbon Disulfide	22.8	5.0	ug/l	25.0	ND	91.2	20-120	0.873	20	
Carbon tetrachloride	23.8	5.0	ug/l	25.0	ND	95.2	80-145	1.27	20	
Chlorobenzene	25.7	2.0	ug/l	25.0	ND	103	80-120	0.390	20	
Chloroethane	26.2	5.0	ug/l	25.0	ND	105	30-150	3.01	20	
Chloroform	22.0	2.0	ug/l	25.0	ND	88.0	80-125	0.913	20	
Chloromethane	20.2	5.0	ug/l	25.0	ND	80.8	15-140	0.00	20	
2-Chlorotoluene	24.4	5.0	ug/l	25.0	ND	97.6	80-124	1.24	20	
4-Chlorotoluene	24.7	5.0	ug/l	25.0	ND	98.8	80-125	2.04	20	
Dibromochloromethane	24.1	2.0	ug/l	25.0	ND	96.4	75-135	1.25	20	
1,2-Dibromo-3-chloropropane	25.6	5.0	ug/l	25.0	ND	102	25-185	25.1	20	R4
1,2-Dibromoethane (EDB)	26.2	2.0	ug/l	25.0	ND	105	45-145	1.54	20	
Dibromomethane	22.1	2.0	ug/l	25.0	ND	88.4	55-140	2.75	20	
1,2-Dichlorobenzene	23.4	2.0	ug/l	25.0	ND	93.6	80-120	1.72	20	
1,3-Dichlorobenzene	23.5	2.0	ug/l	25.0	ND	94.0	80-120	2.15	20	
1,4-Dichlorobenzene	23.9	2.0	ug/l	25.0	ND	95.6	80-120	1.26	20	
Dichlorodifluoromethane	19.2	5.0	ug/l	25.0	ND	76.8	25-145	0.00	20	
1,1-Dichloroethane	26.0	2.0	ug/l	25.0	ND	104	75-120	1.53	20	
1,2-Dichloroethane	21.5	2.0	ug/l	25.0	ND	86.0	60-135	2.83	20	
1,1-Dichloroethene	25.0	5.0	ug/l	25.0	ND	100	55-120	0.00	20	
cis-1,2-Dichloroethene	26.4	2.0	ug/l	25.0	ND	106	75-120	0.00	20	
trans-1,2-Dichloroethene	26.6	2.0	ug/l	25.0	ND	106	65-120	0.749	20	
1,2-Dichloropropane	21.6	2.0	ug/l	25.0	ND	86.4	80-125	4.74	20	
1,3-Dichloropropane	24.9	2.0	ug/l	25.0	ND	99.6	55-140	0.00	20	
2,2-Dichloropropane	25.4	2.0	ug/l	25.0	ND	102	45-165	0.784	20	
1,1-Dichloropropene	22.7	2.0	ug/l	25.0	ND	90.8	80-120	0.877	20	

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-8596 FAX (858) 505-9589 (480) 785-0043 FAX (480) 785-0851

Law Engineering 4634 S. 36th Place Phoenix, AZ 85040

Attention: Jim Clarke

Client Project ID:

70211-0-0150-2-2.10

Sampled: 08/22/01-08/24/01

Report Number:

PKH0446

Received: 08/24/01

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: P1I0301 Extracted: 09/01/0	<u>)1</u>									
Matrix Spike Dup Analyzed: 09/01/01	(P1I0301-M	SD1)			Source: F	PKH0446-	01			
cis-1,3-Dichloropropene	19.9	2.0	ug/I	25.0	ND	79.6	80-120	1.52	20	
trans-1,3-Dichloropropene	21.4	2.0	ug/l	25.0	ND	85.6	70-120	1.89	20	
Ethylbenzene	24.8	2.0	ug/l	25.0	ND	99.2	80-120	1.60	20	
Hexachlorobutadiene	17.5	5.0	ug/l	25.0	ND	70.0	80-135	10.3	20	M2
2-Hexanone	27.6	10	ug/l	25.0	ND	110	25-185	4.44	20	
Iodomethane	32.2	2.0	ug/l	25.0	ND	129	30-155	0.936	20	
Isopropylbenzene	24.6	2.0	ug/l	25.0	ND	98.4	80-125	1.61	20	
p-lsopropyltoluene	22.1	2.0	ug/i	25.0	ND	88.4	80-125	3.56	20	
Methylene chloride	25.5	5.0	ug/l	25.0	ND	102	55-125	0.393	20	
4-Methyl-2-pentanone (MIBK)	24.6	10	ug/l	25.0	ND	98.4	10-175	5.00	20	
Methyl-tert-butyl Ether (MTBE)	25.8	5.0	ug/l	25.0	ND	103	55-135	1.56	20	
Naphthalene	24.9	5.0	ug/l	25.0	ND	99.6	15-160	25.3	20	R4
n-Propylbenzene	23.6	2.0	ug/l	25.0	ND	94.4	80-130	0.00	20	
Styrene	24.2	2.0	ug/l	25.0	ND	96.8	60-135	0.414	20	
1,1,1,2-Tetrachloroethane	25.4	5.0	ug/l	25.0	ND	102	80-135	1.99	20	
1,1,2,2-Tetrachloroethane	24.7	2.0	ug/l	25.0	ND	98.8	35-150	4.98	20	
Tetrachloroethene	25.1	2.0	ug/l	25.0	ND	100	80-120	0.00	20	
Toluene	24.9	2.0	ug/l	25.0	ND	99.6	80-120	0.402	20	
1,2,3-Trichlorobenzene	20.4	5.0	ug/i	25.0	ND	81.6	45-145	13.1	20	
1,2,4-Trichlorobenzene	22.6	5.0	ug/l	25.0	ND	90.4	65-130	3.15	20	
1,1,1-Trichloroethane	21.8	2.0	ug/l	25.0	ND	87.2	80-120	2.27	20	
1,1,2-Trichloroethane	25.1	2.0	ug/l	25.0	ND	100	55-145	0.399	20	
Trichloroethene	22.4	2.0	ug/l	25.0	ND	89.6	80-120	0.897	20	
Trichlorofluoromethane	22.8	5.0	ug/l	25.0	ND	91.2	70-145	0.438	20	
1,2,3-Trichloropropane	26.0	10	ug/l	25.0	ND	104	20-160	5.53	20	
1,2,4-Trimethylbenzene	23.1	2.0	ug/l	25.0	ND	92.4	70-135	2.19	20	
1,3,5-Trimethylbenzene	23.0	2.0	ug/l	25.0	ND	92.0	80-125	1.31	20	
Vinyl acetate	34.4	25	ug/l	25.0	ND	138	25-130	0.876	20	N2
Vinyl chloride	22.6	5.0	ug/l	25.0	ND	90.4	25-135	0.00	20	
Xylenes, Total	74.8	10	ug/l	75.0	ND	99.7	80-120	0.400	20	
Surrogate: Dibromofluoromethane	<i>26</i> .8		ug/l	25.0		107	80-120			
Surrogate: Toluene-d8	27.5		ug/l	25.0		110	80-120			
Surrogate: 4-Bromofluorobenzene	27.0		ug/l	25.0		108	80-120			

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-8596 FAX (858) 505-9589 (480) 785-0043 FAX (480) 785-0851

Law Engineering

4634 S. 36th Place

Phoenix, AZ 85040 Attention: Jim Clarke Client Project ID:

Report Number:

70211-0-0150-2-2.10

Sampled: 08/22/01-08/24/01

Received: 08/24/01

PKH0446

TOTAL METALS

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: P1H2923 Extracted: 08/29/0	01									•
Blank Analyzed: 08/30/01 (P1H2923-B	LK1)									
Mercury	ND	0.020	mg/kg							
LCS Analyzed: 08/30/01 (P1H2923-BS	1)		0-0							
Mercury	0.379	0.020	mg/kg	0.417		90.9	85-115			M2
Matrix Spike Analyzed: 08/30/01 (P1H	2923-MS1)		0 0		Source: P					1412
Mercury	4.45	0.20	mg/kg	0.417	3.1	324	85-115			M2
Matrix Spike Dup Analyzed: 08/30/01	P1H2923-M	(SD1)		Source: PKH0435-02						IVIZ
Mercury	4.33	0.20	mg/kg	0.417	3.1	295	85-115	2.73	20	M2
Batch: P110616 Extracted: 09/06/01	!								20	WL
Blank Analyzed: 09/06/01 (P1I0616-BL										
Arsenic	ND	5.0	mg/kg							
Barium	ND	1.0	mg/kg							
Cadmium	ND	0.50	mg/kg							
Chromium	ND	1.0	mg/kg							
Lead	ND	5.0	mg/kg							
Selenium	ND	5.0	mg/kg							
Silver	ND	0.50	mg/kg							
LCS Analyzed: 09/06/01 (P1I0616-BS1))									
Arsenic	92.0	5.0	mg/kg	100		92.0	80-120			
Barium	92.5	1.0	mg/kg	100		92.5	80-120			
Cadmium	91.8	0.50	mg/kg	100		91.8	80-120			
Chromium	92.4	1.0	mg/kg	100		92.4	80-120			
Lead	93.1	5.0	mg/kg	100		93.1	80-120			
Selenium	88.9	5.0	mg/kg	100		88.9	80-120			
Silver	93.4	0.50	mg/kg	100		93.4	80-120			

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-8596 FAX (858) 505-9589 (480) 785-0043 FAX (480) 785-0851

Law Engineering 4634 S. 36th Place Phoenix, AZ 85040 Attention: Jim Clarke

Client Project ID:

70211-0-0150-2-2.10

Sampled: 08/22/01-08/24/01

Received: 08/24/01

Report Number:

PKH0446

TOTAL METALS

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: P110616 Extracted: 09/06/02	<u>1</u>									
LCS Dup Analyzed: 09/06/01 (P1I0616	-BSD1)									
Arsenic	90.7	5.0	mg/kg	100		90.7	80-120	1.42	20	
Barium	90.1	1.0	mg/kg	100		90.1	80-120	2.63	20	
Cadmium	89.6	0.50	mg/kg	100		89.6	80-120	2.43	20	
Chromium	90.4	1.0	mg/kg	100		90.4	80-120	2.19	20	
Lead	90.2	5.0	mg/kg	100		90.2	80-120	3.16	20	
Selenium	88.1	5.0	mg/kg	100		88.1	80-120	0.904	20	
Silver	92.6	0.50	mg/kg	100		92.6	80-120	0.860	20	
Matrix Spike Analyzed: 09/06/01 (P1I0616-MS1)					Source: I					
Arsenic	95.2	5.0	mg/kg	100	ND	90.8	75-125			
Barium	152	1.0	mg/kg	100	61	91.0	75-125			
Cadmium	89.3	0.50	mg/kg	100	ND	89.3	75-125			
Chromium	118	1.0	mg/kg	100	14	104	75-125			
Lead	95.4	5.0	mg/kg	100	5.5	89.9	75-125			
Selenium	94.3	5.0	mg/kg	100	ND	92.8	75-125			
Silver	92.5	0.50	mg/kg	100	ND	92.5	75-125			
Matrix Spike Dup Analyzed: 09/06/01	(P1I0616-M	ISD1)			Source: 1	PKH0486	-02			
Arsenic	100	5.0	mg/kg	100	ND	95.6	75-125	4.92	20	
Barium	162	1.0	mg/kg	100	61	101	75-125	6.37	20	
Cadmium	92.0	0.50	mg/kg	100	ND	92.0	75-125	2.98	20	
Chromium	110	1.0	mg/kg	100	14	96.0	75-125	7.02	20	
Lead	98.5	5.0	mg/kg	100	5.5	93.0	75-125	3.20	20	
Selenium	96.9	5.0	mg/kg	100	ND	95.4	75-125	2.72	20	
Silver	96.0	0.50	mg/kg	100	ND	96.0	75-125	3.71	20	

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-8596 FAX (858) 505-9589 (480) 785-0043 FAX (480) 785-0851

Law Engineering

4634 S. 36th Place

Phoenix, AZ 85040 Attention: Jim Clarke Client Project ID:

70211-0-0150-2-2.10

Report Number:

PKH0446

Sampled: 08/22/01-08/24/01

Received: 08/24/01

METHOD BLANK OF DATA

TOTAL RECOVERABLE METALS

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: P1H2827 Extracted: 08/28/	/01									•
Blank Analyzed: 08/29/01 (P1H2827-1										
Arsenic	ND	0.050	mg/l							
Chromium	ND	0.010	mg/l							
Copper	ND	0.020	mg/l							
Nickel	ND	0.050	mg/l							
Zinc	ND	0.050	mg/l							
LCS Analyzed: 08/29/01 (P1H2827-BS	S1)									
Arsenic	0.961	0.050	mg/l	1.00		96.1	85-115			
Chromium	0.970	0.010	mg/l	1.00		97.0	85-115			
Copper	0.993	0.020	mg/l	1.00		99.3	85-115			
Nickel	0.960	0.050	mg/l	1.00		96.0	85-115			
Zinc	0.969	0.050	mg/l	1.00		96.9	85-115			
LCS Dup Analyzed: 08/30/01 (P1H282	27-BSD1)		•							
Arsenic	1.05	0.050	mg/l	1.00		105	85-115	8.85	20	
Chromium	1.03	0.010	mg/l	1.00		103	85-115	6.00	20	
Copper	1.10	0.020	mg/l	1.00		110	85-115	10.2	20	
Nickel	1.02	0.050	mg/l	1.00		102	85-115	6.06	20	
Zinc	1.04	0.050	mg/l	1.00		104	85-115	7.07	20	
Matrix Spike Analyzed: 08/29/01 (P1F	12827-MS1)				Source: P	KH0446-		7.07	20	
Arsenic	0.988	0.050	mg/l	1.00	ND	98.8	70-130			
Chromium	0.971	0.010	mg/l	1.00	ND	97.1	70-130			
Copper	1.00	0.020	mg/l	1.00	ND	100	70-130			
Nickel	0.960	0.050	mg/l	1.00	ND	96.0	70-130			
Zinc	0.974	0.050	mg/l	1.00	ND	96.0	70-130			
Matrix Spike Dup Analyzed: 08/29/01	(P1H2827-M	ISD1)	Ü			KH0446-				
Arsenic	0.948	0.050	mg/l	1.00	ND	94.8	70-130	4.13	20	
Chromium	0.952	0.010	mg/l	1.00	ND	95.2	70-130	1.98	20	
Copper	0.986	0.020	mg/l	1.00	ND	98.6	70-130	1.41	20	
Nickel	0.942	0.050	mg/l	1.00	ND	94.2	70-130	1.89	20	
Zinc	0.952	0.050	mg/l	1.00	ND	93.8	70-130	2.28	20	
			~			, .	.0 150	2.20	20	

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-8596 FAX (858) 505-9589 (480) 785-0043 FAX (480) 785-0851

Law Engineering 4634 S. 36th Place Phoenix, AZ 85040

Attention: Jim Clarke

Client Project ID:

Report Number:

70211-0-0150-2-2.10

Sampled: 08/22/01-08/24/01

PKH0446

Received: 08/24/01

INORGANICS

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: P1I0418 Extracted: 09/04/0	1									
Blank Analyzed: 09/04/01 (P1I0418-B)	LK1)									
Total Cyanide	ND	0.020	mg/l							
LCS Analyzed: 09/04/01 (P110418-BS)	l)									
Total Cyanide	0.0931	0.020	mg/l	0.100		93.1	90-110			
Matrix Spike Analyzed: 09/04/01 (P1I	0418-MS1)				Source: I	PKH0431-	-02			
Total Cyanide	0.156	0.020	mg/l	0.100	ND	156	70-130			M1
Matrix Spike Dup Analyzed: 09/04/01	(P1I0418-M	SD1)			Source: I	PKH0431-	-02			
Total Cyanide	0.130	0.020	mg/l	0.100	ND	130	70-130	18.2	20	
Batch: P110513 Extracted: 09/05/0	1									
Blank Analyzed: 09/05/01 (P1I0513-B	LK1)									
Total Cyanide	ND	0.50	mg/kg							
Matrix Spike Analyzed: 09/05/01 (P1I	0513-MS1)				Source: I	PKH0448-	-03			
Total Cyanide	2.61	0.50	mg/kg	2.50	ND	104	70-130			
Matrix Spike Dup Analyzed: 09/05/01	(P110513-M	SD1)			Source: I	PKH0448-	-03			
Total Cyanide	2.24	0.50	mg/kg	2.50	ND	89.6	70-130	15.3	20	
Reference Analyzed: 09/05/01 (P11051	3-SRM1)									
Total Cyanide	116	20	mg/kg	201		57.7	40-160			

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-8596 FAX (858) 505-9589 (480) 785-0043 FAX (480) 785-0851

Law Engineering 4634 S. 36th Place Phoenix, AZ 85040 Jim Clarke Attention:

Client Project ID:

Report Number:

70211-0-0150-2-2.10

Sampled: 08/22/01-08/24/01

Received: 08/24/01

BELLEODE ELVERANT DE L

PKH0446

DATA QUALIFIERS AND DEFINITIONS

- **B4** Target analyte detected in blank at/above method acceptance criteria.
- L3 The associated blank spike recovery was above method acceptance limits. See case narrative.
- **M1** Matrix spike recovery was high, the method control sample recovery was acceptable.
- **M2** Matrix spike recovery was low, the method control sample recovery was acceptable.
- **M3** The accuracy of the spike recovery value is reduced since the analyte concentration in the sample is disproportionate to spike level. The method control sample recovery was acceptable.
- N1See case narrative.
- N2 See corrective action report.
- 011 Sample is heterogeneous. Sample homogeneity could not be readily achieved using routine laboratory practices.
- R4 MS/MSD RPD exceeded the method control limit. Recovery met acceptance criteria.
- **R6** LFB/LFBD RPD exceeded the method control limit. Recovery met acceptance criteria.
- V1CCV recovery was above method acceptance limits. This target analyte was not detected in the sample.
- ND Analyte NOT DETECTED at or above the reporting limit
- NR Not reported.
- **RPD** Relative Percent Difference

▶ Del Mar Analytical

CHAIN OF CUSTODY FORM

Tumaround Time: (Check) Sample Integrity: same day 24 hours Analysis Required 3/ Date /Time: Date /Time: 702 11-0-8150-2-2.10

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-8596 FAX (858) 505-9589

Law Engineering 4634 S. 36th Place Phoenix, AZ 85040

Client Project ID:

[none]

Sampled: 08/25/01

Received: 08/25/01 Issued: 10/2/01

Jim Clarke Attention:

Report Number:

PKH0448

LABORATORY	SAMPLE	SAMPLE
NUMBER	DESCRIPTION	MATRIX
PKH0448-01	LB2-S-10	Soil
PKH0448-02	LB2-S-20	Soil
PKH0448-03	LB2-S-30	Soil
PKH0448-03RE8	LB2-S-30	Soil
PKH0448-04	LB2-S-30	Soil
PKH0448-05	LB2-S-40	Soil
PKH0448-06	LB2-S-50	Soil
PKH0448-06RE8	LB2-S-50	Soil
PKH0448-07	LB2-S-50	Soil
PKH0448-08	Rinsate-3	Water

SAMPLE RECEIPT:

Samples were received intact, on ice, and with chain of custody documentation.

HOLDING TIMES:

Holding times were met.

PRESERVATION:

Samples requiring preservation were verified prior to sample analysis.

OBSERVATIONS:

The N1 flag on ICP Metals indicates that the analyte was detected in the associated Method Blank. Analyte concentration in

the sample is greater than 10X the concentration found in the Method Blank.

SUBCONTRACTED:

No analyses were subcontracted to an outside laboratory.

QA/QC CRITERIA:

The N2 flag on 8260 indicates that the Matrix Spike recovery was outside the method control limits. See Corrective Action

Report.

EXPLANATION OF DATA

QUALIFIERS:

The L3 flag on Cyanide and 8260 indicates that the Laboratory Control Sample recovery was above the method control

limits. Analyte not detected, data not impacted.

LYTICAL , PHOENIX (AZ0426)

Melissa Evans Project Manager

PKH0448 Page 1 of 37

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-8596 FAX (858) 505-9589 (480) 785-0043 FAX (480) 785-0851

CORRECTIVE ACTION REPORT

Department: GC/MS

Method:

8260B

Date:

09/03/2001

Matrix:

Water

Batch:

P1I0102

Samples:

PKH0432-01, PKH0433-01 – PKH0433-07, PKH0439-03, PKH0443-01

& PKH0448-01

Identification and Definition of Problem:

The Laboratory Control Sample (LCS) and Matrix Spike (MS) recovered high and outside of acceptance limits for Vinyl acetate.

Determination of the Cause of the Problem:

A definitive cause for the high recoveries could not be determined.

Corrective Action:

The Matrix Spike Duplicate was within acceptance limits for Vinyl acetate. All samples associated with this batch are non-detect and therefore are not impacted by the high recoveries. The associated samples as well as the LCS have been flagged "L3" to indicate the high recovery. The MS and the source samples have also been flagged "N2".

Elizabeth C. Wueschner: Date: 10/5/2001

Quality Assurance Manager

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-8596 FAX (858) 505-9589 (480) 785-0043 FAX (480) 785-0851

Law Engineering 4634 S. 36th Place

Client Project ID:

[none]

PKH0448

Sampled: 08/25/01

Phoenix, AZ 85040 Attention: Jim Clarke

Report Number:

Received: 08/25/01

VOLATILE ORGANICS BY GC/MS (EPA 8260B)

Analyte	Method	Batch	Reporting Limit ug/kg	Sample Result ug/kg	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: PKH0448-04 (LB2	2-S-30 - Soil)							
Acetone	EPA 8260B	P1H2501	890	ND	1	8/25/01	9/6/01	
Benzene	EPA 8260B	P1H2501	89	ND	1	8/25/01	9/6/01	
Bromobenzene	EPA 8260B	P1H2501	220	ND	1	8/25/01	9/6/01	
Bromochloromethane	EPA 8260B	P1H2501	220	ND	1	8/25/01	9/6/01	
Bromodichloromethane	EPA 8260B	P1H2501	89	ND	1	8/25/01	9/6/01	
Bromoform	EPA 8260B	P1H2501	220	ND	1	8/25/01	9/6/01	
Bromomethane	EPA 8260B	P1H2501	220	ND	1	8/25/01	9/6/01	
2-Butanone (MEK)	EPA 8260B	P1H2501	450	ND	1	8/25/01	9/6/01	
n-Butylbenzene	EPA 8260B	P1H2501	220	ND	1	8/25/01	9/6/01	
sec-Butylbenzene	EPA 8260B	P1H2501	220	ND	1	8/25/01	9/6/01	
tert-Butylbenzene	EPA 8260B	P1H2501	220	ND	1	8/25/01	9/6/01	
Carbon Disulfide	EPA 8260B	P1H2501	220	ND	1	8/25/01	9/6/01	
Carbon tetrachloride	EPA 8260B	P1H2501	220	ND	1	8/25/01	9/6/01	
Chlorobenzene	EPA 8260B	P1H2501	89	ND	1	8/25/01	9/6/01	
Chloroethane	EPA 8260B	P1H2501	220	ND	1	8/25/01	9/6/01	
Chloroform	EPA 8260B	P1H2501	89	ND	1	8/25/01	9/6/01	
Chloromethane	EPA 8260B	P1H2501	220	ND	1	8/25/01	9/6/01	
2-Chlorotoluene	EPA 8260B	P1H2501	220	ND	1	8/25/01	9/6/01	
4-Chlorotoluene	EPA 8260B	P1H2501	220	ND	1	8/25/01	9/6/01	
Dibromochloromethane	EPA 8260B	P1H2501	89	ND	1	8/25/01	9/6/01	
1,2-Dibromo-3-chloropropane	EPA 8260B	P1H2501	220	ND	1	8/25/01	9/6/01	
1,2-Dibromoethane (EDB)	EPA 8260B	P1H2501	89	ND	1	8/25/01	9/6/01	
Dibromomethane	EPA 8260B	P1H2501	89	ND	1	8/25/01	9/6/01	
1,2-Dichlorobenzene	EPA 8260B	P1H2501	89	ND	1	8/25/01	9/6/01	
1,3-Dichlorobenzene	EPA 8260B	P1H2501	89	ND	1	8/25/01	9/6/01	
1,4-Dichlorobenzene	EPA 8260B	P1H2501	89	ND	1	8/25/01	9/6/01	
Dichlorodifluoromethane	EPA 8260B	P1H2501	220	ND	1	8/25/01	9/6/01	
1,1-Dichloroethane	EPA 8260B	P1H2501	89	ND	1	8/25/01	9/6/01	
1,2-Dichloroethane	EPA 8260B	P1H2501	89	ND	1	8/25/01	9/6/01	
1,1-Dichloroethene	EPA 8260B	P1H2501	220	ND	1	8/25/01	9/6/01	
cis-1,2-Dichloroethene	EPA 8260B	P1H2501	89	ND	1	8/25/01	9/6/01	
trans-1,2-Dichloroethene	EPA 8260B	P1H2501	89	ND	1	8/25/01	9/6/01	
1,2-Dichloropropane	EPA 8260B	P1H2501	89	ND	1	8/25/01	9/6/01	
1,3-Dichloropropane	EPA 8260B	P1H2501	89	ND	1	8/25/01	9/6/01	
2,2-Dichloropropane	EPA 8260B	P1H2501	89	ND	1	8/25/01	9/6/01	
1,1-Dichloropropene	EPA 8260B	P1H2501	89	ND	1	8/25/01	9/6/01	
cis-1,3-Dichloropropene	EPA 8260B	P1H2501	89	ND	1	8/25/01	9/6/01	
trans-1,3-Dichloropropene	EPA 8260B	P1H2501	89	ND	1	8/25/01	9/6/01	
Ethylbenzene	EPA 8260B	P1H2501	89	ND	1	8/25/01	9/6/01	
Hexachlorobutadiene	EPA 8260B	P1H2501	220	ND	1	8/25/01	9/6/01	
2-Hexanone	EPA 8260B	P1H2501	450	ND	1	8/25/01	9/6/01	
Iodomethane	EPA 8260B	P1H2501	89	ND	1	8/25/01	9/6/01	•
Isopropylbenzene	EPA 8260B	P1H2501	89	ND	1	8/25/01	9/6/01	
p-Isopropyltoluene	EPA 8260B	P1H2501	89	ND	1	8/25/01	9/6/01	

Melissa Evans Project Manager PKH0448 Page 2 of 37

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-8596 FAX (858) 505-9589 (480) 785-0043 FAX (480) 785-0851

Law Engineering

4634 S. 36th Place

Client Project ID:

[none]

Sampled: 08/25/01

Phoenix, AZ 85040 Attention: Jim Clarke

Report Number: PKH0448

Received: 08/25/01

VOLATILE ORGANICS BY GC/MS (EPA 8260B)

Analyte	Method	Batch	Reporting Limit ug/kg	Sample Result ug/kg	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: PKH0448-04 (LB2-	S-30 - Soil)							
Methylene chloride	EPA 8260B	P1H2501	450	ND	1	8/25/01	9/6/01	
4-Methyl-2-pentanone (MIBK)	EPA 8260B	P1H2501	450	ND	1	8/25/01	9/6/01	
Methyl-tert-butyl Ether (MTBE)	EPA 8260B	P1H2501	220	ND	1	8/25/01	9/6/01	
Naphthalene	EPA 8260B	P1H2501	220	ND	1	8/25/01	9/6/01	
n-Propylbenzene	EPA 8260B	P1H2501	89	ND	1	8/25/01	9/6/01	
Styrene	EPA 8260B	P1H2501	89	ND	1	8/25/01	9/6/01	
1,1,1,2-Tetrachloroethane	EPA 8260B	P1H2501	220	ND	1	8/25/01	9/6/01	
1,1,2,2-Tetrachloroethane	EPA 8260B	P1H2501	89	ND	1	8/25/01	9/6/01	
Tetrachloroethene	EPA 8260B	P1H2501	89	ND	1	8/25/01	9/6/01	
Toluene	EPA 8260B	P1H2501	89	ND	1	8/25/01	9/6/01	
1,2,3-Trichlorobenzene	EPA 8260B	P1H2501	220	ND	1	8/25/01	9/6/01	
1,2,4-Trichlorobenzene	EPA 8260B	P1H2501	220	ND	1	8/25/01	9/6/01	
1,1,1-Trichloroethane	EPA 8260B	P1H2501	89	ND	1	8/25/01	9/6/01	
1,1,2-Trichloroethane	EPA 8260B	P1H2501	89	ND	1	8/25/01	9/6/01	
Trichloroethene	EPA 8260B	P1H2501	89	ND	1	8/25/01	9/6/01	
Trichlorofluoromethane	EPA 8260B	P1H2501	220	ND	1	8/25/01	9/6/01	
1,2,3-Trichloropropane	EPA 8260B	P1H2501	450	ND	1	8/25/01	9/6/01	
1,2,4-Trimethylbenzene	EPA 8260B	P1H2501	89	ND	1	8/25/01	9/6/01	
1,3,5-Trimethylbenzene	EPA 8260B	P1H2501	89	ND	1	8/25/01	9/6/01	•
Vinyl acetate	EPA 8260B	P1H2501	1100	ND	1	8/25/01	9/6/01	
Vinyl chloride	EPA 8260B	P1H2501	220	ND	1	8/25/01	9/6/01	
Xylenes, Total	EPA 8260B	P1H2501	270	ND	1	8/25/01	9/6/01	
Surrogate: Dibromofluoromethane (70-12	25%)			81.9 %				
Surrogate: Toluene-d8 (50-135%)				86.6 %				
Surrogate: 4-Bromofluorobenzene (70-13	30%)			91.1 %				

The reporting limit for this sample was adjusted by a factor of 0.893 to account for the applicable preparation factor.

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-8596 FAX (858) 505-9589 (480) 785-0043 FAX (480) 785-0851

Law Engineering

4634 S. 36th Place Phoenix, AZ 85040 Attention: Jim Clarke Client Project ID: [

[none]

Sampled: 08/25/01

Report Number: PKH0448

Received: 08/25/01

VOLATILE ORGANICS BY GC/MS (EPA 8260B)

Analyte	Method	Batch	Reporting Limit ug/kg	Sample Result ug/kg	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: PKH0448-07 (LB2	-S-50 - Soil)		--	~- ·- ·- ·- ·- ·- ·- ·- ·- · · · · · · ·				
Acetone	EPA 8260B	P1H2501	890	ND	1	8/25/01	9/6/01	
Benzene	EPA 8260B	P1H2501	89	ND	1	8/25/01	9/6/01	
Bromobenzene	EPA 8260B	P1H2501	220	ND	1	8/25/01	9/6/01	
Bromochloromethane	EPA 8260B	P1H2501	220	ND	1	8/25/01	9/6/01	
Bromodichloromethane	EPA 8260B	P1H2501	89	ND	1	8/25/01	9/6/01	
Bromoform	EPA 8260B	P1H2501	220	ND	1	8/25/01	9/6/01	
Bromomethane	EPA 8260B	P1H2501	220	ND	1	8/25/01	9/6/01	
2-Butanone (MEK)	EPA 8260B	P1H2501	440	ND	1	8/25/01	9/6/01	
n-Butylbenzene	EPA 8260B	P1H2501	220	ND	1	8/25/01	9/6/01	
sec-Butylbenzene	EPA 8260B	P1H2501	220	ND	1	8/25/01	9/6/01	
tert-Butylbenzene	EPA 8260B	P1H2501	220	ND	1	8/25/01	9/6/01	
Carbon Disulfide	EPA 8260B	P1H2501	220	ND	1	8/25/01	9/6/01	
Carbon tetrachloride	EPA 8260B	P1H2501	220	ND	1	8/25/01	9/6/01	
Chlorobenzene	EPA 8260B	P1H2501	89	ND	1	8/25/01	9/6/01	
Chloroethane	EPA 8260B	P1H2501	220	ND	1	8/25/01	9/6/01	
Chloroform	EPA 8260B	P1H2501	89	ND	1	8/25/01	9/6/01	
Chloromethane	EPA 8260B	P1H2501	220	ND	1	8/25/01	9/6/01	
2-Chlorotoluene	EPA 8260B	P1H2501	220	ND	1	8/25/01	9/6/01	
4-Chlorotoluene	EPA 8260B	P1H2501	220	ND	1	8/25/01	9/6/01	
Dibromochloromethane	EPA 8260B	P1H2501	89	ND	1	8/25/01	9/6/01	
1,2-Dibromo-3-chloropropane	EPA 8260B	P1H2501	220	ND	1	8/25/01	9/6/01	
1,2-Dibromoethane (EDB)	EPA 8260B	P1H2501	89	ND	1	8/25/01	9/6/01	
Dibromomethane	EPA 8260B	P1H2501	89	ND	1	8/25/01	9/6/01	
1,2-Dichlorobenzene	EPA 8260B	P1H2501	89	ND	1	8/25/01	9/6/01	
1,3-Dichlorobenzene	EPA 8260B	P1H2501	89	ND	1	8/25/01	9/6/01	
1,4-Dichlorobenzene	EPA 8260B	P1H2501	89	ND	1	8/25/01	9/6/01	
Dichlorodifluoromethane	EPA 8260B	P1H2501	220	ND	1	8/25/01	9/6/01	
1,1-Dichloroethane	EPA 8260B	P1H2501		ND	1	8/25/01	9/6/01	
1,2-Dichloroethane	EPA 8260B	P1H2501	89	ND	1	8/25/01	9/6/01	
1,1-Dichloroethene	EPA 8260B	P1H2501	220	ND	1	8/25/01	9/6/01	
cis-1,2-Dichloroethene	EPA 8260B	P1H2501	89	ND	1	8/25/01	9/6/01	
trans-1,2-Dichloroethene	EPA 8260B	P1H2501	89	ND	1	8/25/01	9/6/01	
1,2-Dichloropropane	EPA 8260B	P1H2501	89	ND	1	8/25/01	9/6/01	
1,3-Dichloropropane	EPA 8260B	P1H2501	89	ND	1	8/25/01	9/6/01	
2,2-Dichloropropane	EPA 8260B	P1H2501	89	ND	1	8/25/01	9/6/01	
1,1-Dichloropropene	EPA 8260B	P1H2501	89	ND	1	8/25/01	9/6/01	
cis-1,3-Dichloropropene	EPA 8260B	P1H2501	89	ND	1	8/25/01	9/6/01	
trans-1,3-Dichloropropene	EPA 8260B	P1H2501	89	ND	1	8/25/01	9/6/01	
Ethylbenzene	EPA 8260B	P1H2501	89	ND	1	8/25/01	9/6/01	
Hexachlorobutadiene	EPA 8260B	P1H2501	220	ND	1	8/25/01	9/6/01	
2-Hexanone	EPA 8260B	P1H2501	440	ND	1	8/25/01	9/6/01	
Iodomethane	EPA 8260B	P1H2501	89	ND	1	8/25/01	9/6/01	
Isopropylbenzene	EPA 8260B	P1H2501	89	ND	1	8/25/01	9/6/01	
p-Isopropyltoluene	EPA 8260B	P1H2501	89	ND	1	8/25/01	9/6/01	

Melissa Evans Project Manager PKH0448 Page 4 of 37

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-8596 FAX (858) 505-9589 (480) 785-0043 FAX (480) 785-0851

Law Engineering 4634 S. 36th Place Phoenix, AZ 85040

Attention:

Jim Clarke

Client Project ID: [none]

Sampled: 08/25/01

Report Number:

PKH0448

Received: 08/25/01

VOLATILE ORGANICS BY GC/MS (EPA 8260B)

Qualifiers

The reporting limit for this sample was adjusted by a factor of 0.89 to account for the applicable preparation factor.

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-8596 FAX (858) 505-9589 (480) 785-0043 FAX (480) 785-0851

Law Engineering 4634 S. 36th Place Phoenix, AZ 85040

Client Project ID: [none]

Sampled: 08/25/01

Attention: Jim Clarke

Report Number: PKH0448

Received: 08/25/01

VOLATILE ORGANICS BY GC/MS (EPA 8260B)

Sample ID: PKH0448-08 (Rinsates 3 - Water) Acetone	Analyte	Method	Batch	Reporting Limit ug/l	Sample Result ug/l	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Acctone	Sample ID: PKH0448-08 (Rinsat	e-3 - Water)		8	•				
Bromochezene	-		P1I0102	20	ND	1	9/3/01	9/4/01	
Bromochloromethane	Benzene	EPA 8260B	P1I0102	2.0	ND	1	9/3/01	9/4/01	
Bromochloromethane	Bromobenzene	EPA 8260B				1		9/4/01	
Bromoform	Bromochloromethane	EPA 8260B	P1I0102	5.0	ND	1	9/3/01	9/4/01	
Bromomethane					ND	. 1	9/3/01		
2-Butanone (MEK) EPA 8260B P110102 5.0 ND 1 9/3/01 9/4/01 sce-Butylbenzene EPA 8260B P110102 5.0 ND 1 9/3/01 9/4/01 sce-Butylbenzene EPA 8260B P110102 5.0 ND 1 9/3/01 9/4/01 Carbon Disulfide EPA 8260B P110102 5.0 ND 1 9/3/01 9/4/01 Carbon Disulfide EPA 8260B P110102 5.0 ND 1 9/3/01 9/4/01 Chlorotherene EPA 8260B P110102 5.0 ND 1 9/3/01 9/4/01 Chlorothane EPA 8260B P110102 5.0 ND 1 9/3/01 9/4/01 Chlorothane EPA 8260B P110102 5.0 ND 1 9/3/01 9/4/01 Chlorothane EPA 8260B P110102 5.0 ND 1 9/3/01 9/4/01 2-Chiorothane EPA 8260B P110102 5.0 ND	Bromoform	EPA 8260B	P1I0102	5.0	ND	1	9/3/01	9/4/01	
n-Butylbenzene EPA 8260B P110102 5.0 ND 1 9/3/01 9/4/01 sec-Butylbenzene EPA 8260B P110102 5.0 ND 1 9/3/01 9/4/01 sec-Butylbenzene EPA 8260B P110102 5.0 ND 1 9/3/01 9/4/01 EVENTENDER EPA 8260B P110102 5.0 ND 1 9/3/01 9/4/01 EVENTENDER EPA 8260B P110102 5.0 ND 1 9/3/01 9/4/01 EVENTENDER EPA 8260B P110102 5.0 ND 1 9/3/01 9/4/01 EVENTENDER EPA 8260B P110102 5.0 ND 1 9/3/01 9/4/01 EVENTENDER EPA 8260B P110102 5.0 ND 1 9/3/01 9/4/01 EVENTENDER EPA 8260B P110102 5.0 ND 1 9/3/01 9/4/01 EVENTENDER EPA 8260B P110102 5.0 ND 1 9/3/01 9/4/01 EVENTENDER EPA 8260B P110102 5.0 ND 1 9/3/01 9/4/01 EVENTENDER EPA 8260B P110102 5.0 ND 1 9/3/01 9/4/01 EVENTENDER EPA 8260B P110102 5.0 ND 1 9/3/01 9/4/01 EVENTENDER EPA 8260B P110102 5.0 ND 1 9/3/01 9/4/01 EVENTENDER EPA 8260B P110102 5.0 ND 1 9/3/01 9/4/01 EVENTENDER EPA 8260B P110102 5.0 ND 1 9/3/01 9/4/01 EVENTENDER EPA 8260B P110102 5.0 ND 1 9/3/01 9/4/01 EVENTENDER EPA 8260B P110102 5.0 ND 1 9/3/01 9/4/01 EVENTENDER EPA 8260B P110102 5.0 ND 1 9/3/01 9/4/01 EVENTENDER EPA 8260B E	Bromomethane	EPA 8260B	P1I0102	5.0	ND	1	9/3/01	9/4/01	
n-Buylbenzene EPA 8260B P110102 5.0 ND 1 9/3/01 9/4/01 sec-Butylbenzene EPA 8260B P110102 5.0 ND 1 9/3/01 9/4/01 Carbon Disulfide EPA 8260B P110102 5.0 ND 1 9/3/01 9/4/01 Carbon tertanchloride EPA 8260B P110102 5.0 ND 1 9/3/01 9/4/01 Chlorobenzene EPA 8260B P110102 2.0 ND 1 9/3/01 9/4/01 Chloroform EPA 8260B P110102 5.0 ND 1 9/3/01 9/4/01 Chloroform EPA 8260B P110102 5.0 ND 1 9/3/01 9/4/01 Chlorotoluene EPA 8260B P110102 5.0 ND 1 9/3/01 9/4/01 2-Chlorotoluene EPA 8260B P110102 5.0 ND 1 9/3/01 9/4/01 1/2-Directorotoluene EPA 8260B P110102 2.0 ND	2-Butanone (MEK)	EPA 8260B	P1I0102	10	ND	1	9/3/01	9/4/01	
sec-Butylbenzene EPA 8260B P10102 5.0 ND 1 9/3/01 9/4/01 Carbon Disulfide EPA 8260B P10102 5.0 ND 1 9/3/01 9/4/01 Carbon Disulfide EPA 8260B P10102 5.0 ND 1 9/3/01 9/4/01 Carbon Letrachloride EPA 8260B P100102 5.0 ND 1 9/3/01 9/4/01 Chlorochane EPA 8260B P100102 2.0 ND 1 9/3/01 9/4/01 Chlorochane EPA 8260B P100102 5.0 ND 1 9/3/01 9/4/01 Chlorochuene EPA 8260B P100102 5.0 ND 1 9/3/01 9/4/01 4-Chlorotoluene EPA 8260B P100102 5.0 ND 1 9/3/01 9/4/01 4-Chlorotoluene EPA 8260B P100102 5.0 ND 1 9/3/01 9/4/01 1,2-Dibromo-s-chloropropane EPA 8260B P100102 5.0 ND 1 9/3/01 9/4/01 1,2-Dibromo-s-chlane (EDB) EPA 8260B P1002		EPA 8260B	P1I0102	5.0	ND	1	9/3/01	9/4/01	
Ert-Butylbenzene		EPA 8260B	P1I0102	5.0	ND	1	9/3/01	9/4/01	
Carbon tetrachloride EPA 8260B P110102 5.0 ND 1 9/3/01 9/4/01 Chlorobenzene EPA 8260B P110102 2.0 ND 1 9/3/01 9/4/01 Chlorotame EPA 8260B P110102 5.0 ND 1 9/3/01 9/4/01 Chlorotoluene EPA 8260B P110102 5.0 ND 1 9/3/01 9/4/01 2-Chlorotoluene EPA 8260B P110102 5.0 ND 1 9/3/01 9/4/01 4-Chlorotoluene EPA 8260B P110102 5.0 ND 1 9/3/01 9/4/01 4-Chlorotoluene EPA 8260B P110102 5.0 ND 1 9/3/01 9/4/01 1,2-Dichloromethane EPA 8260B P110102 2.0 ND 1 9/3/01 9/4/01 1,2-Dichlorobenzene EPA 8260B P110102 2.0 ND 1 9/3/01 9/4/01 1,3-Dichlorobenzene EPA 8260B P110102 2.0 N		EPA 8260B	P1I0102	5.0	ND	1	9/3/01	9/4/01	
Chlorobenzene	Carbon Disulfide	EPA 8260B	P1I0102	5.0	ND	1	9/3/01	9/4/01	
Chloroethane	Carbon tetrachloride	EPA 8260B	P1I0102	5.0	ND	1	9/3/01	9/4/01	
Chloroform	Chlorobenzene	EPA 8260B	P1I0102	2.0	ND	1	9/3/01	9/4/01	
Chloromethane	Chloroethane	EPA 8260B	P1I0102	5.0	ND	1	9/3/01	9/4/01	
2-Chlorotoluene EPA 8260B P110102 5.0 ND 1 9/3/01 9/4/01 4-Chlorotoluene EPA 8260B P110102 5.0 ND 1 9/3/01 9/4/01 Dibromochloromethane EPA 8260B P110102 2.0 ND 1 9/3/01 9/4/01 1,2-Dibromo-3-chloropropane EPA 8260B P110102 5.0 ND 1 9/3/01 9/4/01 1,2-Dibromoethane (EDB) EPA 8260B P110102 2.0 ND 1 9/3/01 9/4/01 Dibromoethane EPA 8260B P110102 2.0 ND 1 9/3/01 9/4/01 1,2-Dichlorobenzene EPA 8260B P110102 2.0 ND 1 9/3/01 9/4/01 1,4-Dichlorobenzene EPA 8260B P110102 2.0 ND 1 9/3/01 9/4/01 1,4-Dichlorobenzene EPA 8260B P110102 2.0 ND 1 9/3/01 9/4/01 1,1-Dichlorodifluoromethane EPA 8260B P110102<	Chloroform	EPA 8260B	P1I0102	2.0	ND	1	9/3/01	9/4/01	
2-Chlorotoluene EPA 8260B P110102 5.0 ND 1 9/3/01 9/4/01 4-Chlorotoluene EPA 8260B P110102 5.0 ND 1 9/3/01 9/4/01 Dibromochloromethane EPA 8260B P110102 2.0 ND 1 9/3/01 9/4/01 1,2-Dibromo-3-chloropropane EPA 8260B P110102 5.0 ND 1 9/3/01 9/4/01 1,2-Dibromoethane (EDB) EPA 8260B P110102 2.0 ND 1 9/3/01 9/4/01 Dibromoethane EPA 8260B P110102 2.0 ND 1 9/3/01 9/4/01 1,2-Dichlorobenzene EPA 8260B P110102 2.0 ND 1 9/3/01 9/4/01 1,4-Dichlorobenzene EPA 8260B P110102 2.0 ND 1 9/3/01 9/4/01 1,4-Dichlorobenzene EPA 8260B P110102 2.0 ND 1 9/3/01 9/4/01 1,1-Dichlorodifluoromethane EPA 8260B P110102<	Chloromethane	EPA 8260B	P1I0102		ND	1	9/3/01	9/4/01	
4-Chlorotoluene EPA \$260B P110102 5.0 ND 1 9/3/01 9/4/01 Dibromochloromethane EPA \$260B P110102 2.0 ND 1 9/3/01 9/4/01 1,2-Dibromo-3-chloropropane EPA \$260B P110102 2.0 ND 1 9/3/01 9/4/01 1,2-Dibromoethane (EDB) EPA \$260B P110102 2.0 ND 1 9/3/01 9/4/01 1,2-Dichlorobenzene EPA \$260B P110102 2.0 ND 1 9/3/01 9/4/01 1,3-Dichlorobenzene EPA \$260B P110102 2.0 ND 1 9/3/01 9/4/01 1,4-Dichlorobenzene EPA \$260B P110102 2.0 ND 1 9/3/01 9/4/01 1,4-Dichloroethane EPA \$260B P110102 2.0 ND 1 9/3/01 9/4/01 1,1-Dichloroethane EPA \$260B P110102 2.0 ND 1 9/3/01 9/4/01 1,2-Dichloroethene EPA \$260B P110102 </td <td>2-Chlorotoluene</td> <td>EPA 8260B</td> <td>P1I0102</td> <td></td> <td>ND</td> <td>1</td> <td>9/3/01</td> <td>9/4/01</td> <td></td>	2-Chlorotoluene	EPA 8260B	P1I0102		ND	1	9/3/01	9/4/01	
1,2-Dibromo-3-chloropropane EPA 8260B P110102 5.0 ND 1 9/3/01 9/4/01 1,2-Dibromoethane (EDB) EPA 8260B P110102 2.0 ND 1 9/3/01 9/4/01 Dibromomethane EPA 8260B P110102 2.0 ND 1 9/3/01 9/4/01 1,2-Dichlorobenzene EPA 8260B P110102 2.0 ND 1 9/3/01 9/4/01 1,3-Dichlorobenzene EPA 8260B P110102 2.0 ND 1 9/3/01 9/4/01 1,4-Dichlorobenzene EPA 8260B P110102 2.0 ND 1 9/3/01 9/4/01 1,4-Dichloromethane EPA 8260B P110102 2.0 ND 1 9/3/01 9/4/01 1,1-Dichloroethane EPA 8260B P110102 2.0 ND 1 9/3/01 9/4/01 1,1-Dichloroethane EPA 8260B P110102 2.0 ND 1 9/3/01 9/4/01 1,1-Dichloroethane EPA 8260B P110102 2.0 ND 1 9/3/01 9/4/01 1,1-Dichloroethene EPA 8260B P110102 2.0 ND 1 9/3/01 9/4/01 1,1-Dichloroethene EPA 8260B P110102 2.0 ND 1 9/3/01 9/4/01 1,2-Dichloroethene EPA 8260B P110102 2.0 ND 1 9/3/01 9/4/01 trans-1,2-Dichloroethene EPA 8260B P110102 2.0 ND 1 9/3/01 9/4/01 1,3-Dichloropropane EPA 8260B P110102 2.0 ND 1 9/3/01 9/4/01 1,3-Dichloropropane EPA 8260B P110102 2.0 ND 1 9/3/01 9/4/01 1,3-Dichloropropane EPA 8260B P110102 2.0 ND 1 9/3/01 9/4/01 1,3-Dichloropropene EPA 8260B P110102 2.0 ND 1 9/3/01 9/4/01 1,1-Dichloropropene EPA 8260B P110102 2.0 ND 1 9/3/01 9/4/01 1,1-Dichloropropene EPA 8260B P110102 2.0 ND 1 9/3/01 9/4/01 1,1-Dichloropropene EPA 8260B P110102 2.0 ND 1 9/3/01 9/4/01 1,1-Dichloropropene EPA 8260B P110102 2.0 ND 1 9/3/01 9/4/01 1,1-Dichloropropene EPA 8260B P110102 2.0 ND 1 9/3/01 9/4/01 1,1-Dichloropropene EPA 8260B P110102 2.0 ND 1 9/3/01 9/4/01 1,1-Dichloropropene EPA 8260B P110102 2.0 ND 1 9/3/01 9/4/01 1,1-Dichloropropene EPA 8260B P110102 2.0 ND 1 9/3/	4-Chlorotoluene	EPA 8260B			ND	1	9/3/01	9/4/01	
1,2-Dibromoethane (EDB)	Dibromochloromethane	EPA 8260B	P1I0102	2.0	ND	1	9/3/01	9/4/01	
1,2-Dibromoethane (EDB)	1,2-Dibromo-3-chloropropane	EPA 8260B	P1I0102	5.0	ND	1	9/3/01	9/4/01	
Dibromomethane EPA 8260B P110102 2.0 ND 1 9/3/01 9/4/01 1,2-Dichlorobenzene EPA 8260B P110102 2.0 ND 1 9/3/01 9/4/01 1,3-Dichlorobenzene EPA 8260B P110102 2.0 ND 1 9/3/01 9/4/01 1,4-Dichlorodifluoromethane EPA 8260B P110102 2.0 ND 1 9/3/01 9/4/01 Dichlorodifluoromethane EPA 8260B P110102 2.0 ND 1 9/3/01 9/4/01 1,1-Dichloroethane EPA 8260B P110102 2.0 ND 1 9/3/01 9/4/01 1,2-Dichloroethane EPA 8260B P110102 2.0 ND 1 9/3/01 9/4/01 1,1-Dichloroethene EPA 8260B P110102 2.0 ND 1 9/3/01 9/4/01 1,1-Dichloroethene EPA 8260B P110102 2.0 ND 1 9/3/01 9/4/01 1,2-Dichloroethene EPA 8260B P110102 2.0 ND 1 9/3/01 9/4/01 1,2-Dichloroethene EPA 8260B P110102 2.0 ND 1 9/3/01 9/4/01 1,2-Dichloroptopane EPA 8260B P110102 2.0 ND 1 9/3/01 9/4/01 1,3-Dichloroptopane EPA 8260B P110102 2.0 ND 1 9/3/01 9/4/01 1,3-Dichloroptopane EPA 8260B P110102 2.0 ND 1 9/3/01 9/4/01 2,2-Dichloroptopene EPA 8260B P110102 2.0 ND 1 9/3/01 9/4/01 1,1-Dichloroptopene EPA 8260B P110102 2.0 ND 1 9/3/01 9/4/01 1,1-Dichloroptopene EPA 8260B P110102 2.0 ND 1 9/3/01 9/4/01 1,1-Dichloroptopene EPA 8260B P110102 2.0 ND 1 9/3/01 9/4/01 1,1-Dichloroptopene EPA 8260B P110102 2.0 ND 1 9/3/01 9/4/01 1,1-Dichloroptopene EPA 8260B P110102 2.0 ND 1 9/3/01 9/4/01 1,1-Dichloroptopene EPA 8260B P110102 2.0 ND 1 9/3/01 9/4/01 1,1-Dichloroptopene EPA 8260B P110102 2.0 ND 1 9/3/01 9/4/01 1,1-Dichloroptopene EPA 8260B P110102 2.0 ND 1 9/3/01 9/4/01 1,1-Dichloroptopene EPA 8260B P110102 2.0 ND 1 9/3/01 9/4/01 1,1-Dichloroptopene EPA 8260B P110102 2.0 ND 1 9/3/01 9/4/01 1,1-Dichloroptopene EPA 8260B P110102 2.0 ND 1 9/3/01			P1I0102			1	9/3/01	9/4/01	
1,3-Dichlorobenzene EPA 8260B P110102 2.0 ND 1 9/3/01 9/4/01 1,4-Dichlorobenzene EPA 8260B P110102 2.0 ND 1 9/3/01 9/4/01 Dichlorodifluoromethane EPA 8260B P110102 5.0 ND 1 9/3/01 9/4/01 1,1-Dichloroethane EPA 8260B P110102 2.0 ND 1 9/3/01 9/4/01 1,2-Dichloroethane EPA 8260B P110102 2.0 ND 1 9/3/01 9/4/01 1,1-Dichloroethene EPA 8260B P110102 2.0 ND 1 9/3/01 9/4/01 cis-1,2-Dichloroethene EPA 8260B P110102 2.0 ND 1 9/3/01 9/4/01 trans-1,2-Dichloropropane EPA 8260B P110102 2.0 ND 1 9/3/01 9/4/01 1,3-Dichloropropane EPA 8260B P110102 2.0 ND 1 9/3/01 9/4/01 1,1-Dichloropropene EPA 8260B P1101		EPA 8260B	P1I0102	2.0	ND	1	9/3/01	9/4/01	
1,4-Dichlorobenzene	1,2-Dichlorobenzene	EPA 8260B	P1I0102	2.0	ND	1	9/3/01	9/4/01	
Dichlorodifluoromethane EPA 8260B P110102 5.0 ND 1 9/3/01 9/4/01 1,1-Dichloroethane EPA 8260B P110102 2.0 ND 1 9/3/01 9/4/01 1,2-Dichloroethane EPA 8260B P110102 2.0 ND 1 9/3/01 9/4/01 1,1-Dichloroethene EPA 8260B P110102 5.0 ND 1 9/3/01 9/4/01 cis-1,2-Dichloroethene EPA 8260B P110102 2.0 ND 1 9/3/01 9/4/01 trans-1,2-Dichloroethene EPA 8260B P110102 2.0 ND 1 9/3/01 9/4/01 1,2-Dichloropropane EPA 8260B P110102 2.0 ND 1 9/3/01 9/4/01 1,3-Dichloropropane EPA 8260B P110102 2.0 ND 1 9/3/01 9/4/01 2,2-Dichloropropane EPA 8260B P110102 2.0 ND 1 9/3/01 9/4/01 1,1-Dichloropropene EPA 8260B P11010	1,3-Dichlorobenzene	EPA 8260B	P1I0102	2.0	ND	1	9/3/01	9/4/01	
1,1-Dichloroethane EPA 8260B P110102 2.0 ND 1 9/3/01 9/4/01 1,2-Dichloroethane EPA 8260B P110102 2.0 ND 1 9/3/01 9/4/01 1,1-Dichloroethene EPA 8260B P110102 5.0 ND 1 9/3/01 9/4/01 cis-1,2-Dichloroethene EPA 8260B P110102 2.0 ND 1 9/3/01 9/4/01 trans-1,2-Dichloroethene EPA 8260B P110102 2.0 ND 1 9/3/01 9/4/01 1,2-Dichloropropane EPA 8260B P110102 2.0 ND 1 9/3/01 9/4/01 1,3-Dichloropropane EPA 8260B P110102 2.0 ND 1 9/3/01 9/4/01 2,2-Dichloropropane EPA 8260B P110102 2.0 ND 1 9/3/01 9/4/01 1,1-Dichloropropene EPA 8260B P110102 2.0 ND 1 9/3/01 9/4/01 cis-1,3-Dichloropropene EPA 8260B P110102 2.0 ND 1 9/3/01 9/4/01 Ethylb	1,4-Dichlorobenzene	EPA 8260B	P1I0102	2.0	ND	1	9/3/01	9/4/01	
1,2-Dichloroethane EPA 8260B P110102 2.0 ND 1 9/3/01 9/4/01 1,1-Dichloroethene EPA 8260B P110102 5.0 ND 1 9/3/01 9/4/01 cis-1,2-Dichloroethene EPA 8260B P110102 2.0 ND 1 9/3/01 9/4/01 trans-1,2-Dichloroethene EPA 8260B P110102 2.0 ND 1 9/3/01 9/4/01 1,2-Dichloropropane EPA 8260B P110102 2.0 ND 1 9/3/01 9/4/01 1,3-Dichloropropane EPA 8260B P110102 2.0 ND 1 9/3/01 9/4/01 2,2-Dichloropropane EPA 8260B P110102 2.0 ND 1 9/3/01 9/4/01 1,1-Dichloropropene EPA 8260B P110102 2.0 ND 1 9/3/01 9/4/01 cis-1,3-Dichloropropene EPA 8260B P110102 2.0 ND 1 9/3/01 9/4/01 Ethylbenzene EPA 8260B P110102 2.0 ND 1 9/3/01 9/4/01 Behexachloro	Dichlorodifluoromethane	EPA 8260B	P1I0102	5.0	ND	1	9/3/01	9/4/01	
1,1-Dichloroethene EPA 8260B P110102 5.0 ND 1 9/3/01 9/4/01 cis-1,2-Dichloroethene EPA 8260B P110102 2.0 ND 1 9/3/01 9/4/01 trans-1,2-Dichloroethene EPA 8260B P110102 2.0 ND 1 9/3/01 9/4/01 1,2-Dichloropropane EPA 8260B P110102 2.0 ND 1 9/3/01 9/4/01 1,3-Dichloropropane EPA 8260B P110102 2.0 ND 1 9/3/01 9/4/01 2,2-Dichloropropane EPA 8260B P110102 2.0 ND 1 9/3/01 9/4/01 1,1-Dichloropropene EPA 8260B P110102 2.0 ND 1 9/3/01 9/4/01 cis-1,3-Dichloropropene EPA 8260B P110102 2.0 ND 1 9/3/01 9/4/01 Ethylbenzene EPA 8260B P110102 2.0 ND 1 9/3/01 9/4/01 Hexachlorobutadiene EPA 8260B P110102 5.0 ND 1 9/3/01 9/4/01 2-Hexanone<	1,1-Dichloroethane	EPA 8260B	P1I0102	2.0	ND	1	9/3/01	9/4/01	
cis-1,2-Dichloroethene EPA 8260B P1I0102 2.0 ND 1 9/3/01 9/4/01 trans-1,2-Dichloroethene EPA 8260B P1I0102 2.0 ND 1 9/3/01 9/4/01 1,2-Dichloropropane EPA 8260B P1I0102 2.0 ND 1 9/3/01 9/4/01 1,3-Dichloropropane EPA 8260B P1I0102 2.0 ND 1 9/3/01 9/4/01 2,2-Dichloropropane EPA 8260B P1I0102 2.0 ND 1 9/3/01 9/4/01 1,1-Dichloropropene EPA 8260B P1I0102 2.0 ND 1 9/3/01 9/4/01 cis-1,3-Dichloropropene EPA 8260B P1I0102 2.0 ND 1 9/3/01 9/4/01 trans-1,3-Dichloropropene EPA 8260B P1I0102 2.0 ND 1 9/3/01 9/4/01 Ethylbenzene EPA 8260B P1I0102 2.0 ND 1 9/3/01 9/4/01 Hexachlorobutadiene EPA 8260B P1I0	1,2-Dichloroethane	EPA 8260B	P1I0102	2.0	ND	1	9/3/01	9/4/01	
trans-1,2-Dichloroethene EPA 8260B P1I0102 2.0 ND 1 9/3/01 9/4/01 1,2-Dichloropropane EPA 8260B P1I0102 2.0 ND 1 9/3/01 9/4/01 1,3-Dichloropropane EPA 8260B P1I0102 2.0 ND 1 9/3/01 9/4/01 2,2-Dichloropropane EPA 8260B P1I0102 2.0 ND 1 9/3/01 9/4/01 1,1-Dichloropropene EPA 8260B P1I0102 2.0 ND 1 9/3/01 9/4/01 cis-1,3-Dichloropropene EPA 8260B P1I0102 2.0 ND 1 9/3/01 9/4/01 trans-1,3-Dichloropropene EPA 8260B P1I0102 2.0 ND 1 9/3/01 9/4/01 Ethylbenzene EPA 8260B P1I0102 2.0 ND 1 9/3/01 9/4/01 Hexachlorobutadiene EPA 8260B P1I0102 5.0 ND 1 9/3/01 9/4/01 2-Hexanone EPA 8260B P1I0102	1,1-Dichloroethene	EPA 8260B	P1I0102	5.0	ND	1	9/3/01	9/4/01	
1,2-Dichloropropane EPA 8260B P110102 2.0 ND 1 9/3/01 9/4/01 1,3-Dichloropropane EPA 8260B P110102 2.0 ND 1 9/3/01 9/4/01 2,2-Dichloropropane EPA 8260B P110102 2.0 ND 1 9/3/01 9/4/01 1,1-Dichloropropene EPA 8260B P110102 2.0 ND 1 9/3/01 9/4/01 cis-1,3-Dichloropropene EPA 8260B P110102 2.0 ND 1 9/3/01 9/4/01 trans-1,3-Dichloropropene EPA 8260B P110102 2.0 ND 1 9/3/01 9/4/01 Ethylbenzene EPA 8260B P110102 2.0 ND 1 9/3/01 9/4/01 Hexachlorobutadiene EPA 8260B P110102 5.0 ND 1 9/3/01 9/4/01 2-Hexanone EPA 8260B P110102 10 ND 1 9/3/01 9/4/01 Isopropylbenzene EPA 8260B P110102 2.0 ND 1 9/3/01 9/4/01	cis-1,2-Dichloroethene	EPA 8260B	P1I0102	2.0	ND	1	9/3/01	9/4/01	
1,3-Dichloropropane EPA 8260B P1I0102 2.0 ND 1 9/3/01 9/4/01 2,2-Dichloropropane EPA 8260B P1I0102 2.0 ND 1 9/3/01 9/4/01 1,1-Dichloropropene EPA 8260B P1I0102 2.0 ND 1 9/3/01 9/4/01 cis-1,3-Dichloropropene EPA 8260B P1I0102 2.0 ND 1 9/3/01 9/4/01 trans-1,3-Dichloropropene EPA 8260B P1I0102 2.0 ND 1 9/3/01 9/4/01 Ethylbenzene EPA 8260B P1I0102 2.0 ND 1 9/3/01 9/4/01 Hexachlorobutadiene EPA 8260B P1I0102 5.0 ND 1 9/3/01 9/4/01 2-Hexanone EPA 8260B P1I0102 10 ND 1 9/3/01 9/4/01 Isopropylbenzene EPA 8260B P1I0102 2.0 ND 1 9/3/01 9/4/01	trans-1,2-Dichloroethene	EPA 8260B	P1I0102	2.0	ND	1	9/3/01	9/4/01	
2,2-Dichloropropane EPA 8260B P1I0102 2.0 ND 1 9/3/01 9/4/01 1,1-Dichloropropene EPA 8260B P1I0102 2.0 ND 1 9/3/01 9/4/01 cis-1,3-Dichloropropene EPA 8260B P1I0102 2.0 ND 1 9/3/01 9/4/01 trans-1,3-Dichloropropene EPA 8260B P1I0102 2.0 ND 1 9/3/01 9/4/01 Ethylbenzene EPA 8260B P1I0102 2.0 ND 1 9/3/01 9/4/01 Hexachlorobutadiene EPA 8260B P1I0102 5.0 ND 1 9/3/01 9/4/01 2-Hexanone EPA 8260B P1I0102 10 ND 1 9/3/01 9/4/01 Iodomethane EPA 8260B P1I0102 2.0 ND 1 9/3/01 9/4/01 Isopropylbenzene EPA 8260B P1I0102 2.0 ND 1 9/3/01 9/4/01	1,2-Dichloropropane	EPA 8260B	P110102	2.0	ND	1	9/3/01	9/4/01	
1,1-Dichloropropene EPA 8260B P1I0102 2.0 ND 1 9/3/01 9/4/01 cis-1,3-Dichloropropene EPA 8260B P1I0102 2.0 ND 1 9/3/01 9/4/01 trans-1,3-Dichloropropene EPA 8260B P1I0102 2.0 ND 1 9/3/01 9/4/01 Ethylbenzene EPA 8260B P1I0102 2.0 ND 1 9/3/01 9/4/01 Hexachlorobutadiene EPA 8260B P1I0102 5.0 ND 1 9/3/01 9/4/01 2-Hexanone EPA 8260B P1I0102 10 ND 1 9/3/01 9/4/01 Iodomethane EPA 8260B P1I0102 2.0 ND 1 9/3/01 9/4/01 Isopropylbenzene EPA 8260B P1I0102 2.0 ND 1 9/3/01 9/4/01	1,3-Dichloropropane	EPA 8260B	P1I0102	2.0	ND	1	9/3/01	9/4/01	
1,1-Dichloropropene EPA 8260B P1I0102 2.0 ND 1 9/3/01 9/4/01 cis-1,3-Dichloropropene EPA 8260B P1I0102 2.0 ND 1 9/3/01 9/4/01 trans-1,3-Dichloropropene EPA 8260B P1I0102 2.0 ND 1 9/3/01 9/4/01 Ethylbenzene EPA 8260B P1I0102 2.0 ND 1 9/3/01 9/4/01 Hexachlorobutadiene EPA 8260B P1I0102 5.0 ND 1 9/3/01 9/4/01 2-Hexanone EPA 8260B P1I0102 10 ND 1 9/3/01 9/4/01 Iodomethane EPA 8260B P1I0102 2.0 ND 1 9/3/01 9/4/01 Isopropylbenzene EPA 8260B P1I0102 2.0 ND 1 9/3/01 9/4/01	2,2-Dichloropropane	EPA 8260B	P1I0102	2.0	ND	1	9/3/01	9/4/01	
trans-1,3-Dichloropropene EPA 8260B P1I0102 2.0 ND 1 9/3/01 9/4/01 Ethylbenzene EPA 8260B P1I0102 2.0 ND 1 9/3/01 9/4/01 Hexachlorobutadiene EPA 8260B P1I0102 5.0 ND 1 9/3/01 9/4/01 2-Hexanone EPA 8260B P1I0102 10 ND 1 9/3/01 9/4/01 Iodomethane EPA 8260B P1I0102 2.0 ND 1 9/3/01 9/4/01 Isopropylbenzene EPA 8260B P1I0102 2.0 ND 1 9/3/01 9/4/01		EPA 8260B	P1I0102	2.0	ND	1	9/3/01	9/4/01	
trans-1,3-Dichloropropene EPA 8260B P1I0102 2.0 ND 1 9/3/01 9/4/01 Ethylbenzene EPA 8260B P1I0102 2.0 ND 1 9/3/01 9/4/01 Hexachlorobutadiene EPA 8260B P1I0102 5.0 ND 1 9/3/01 9/4/01 2-Hexanone EPA 8260B P1I0102 10 ND 1 9/3/01 9/4/01 Iodomethane EPA 8260B P1I0102 2.0 ND 1 9/3/01 9/4/01 Isopropylbenzene EPA 8260B P1I0102 2.0 ND 1 9/3/01 9/4/01	cis-1,3-Dichloropropene	EPA 8260B	P1I0102	2.0	ND	1	9/3/01	9/4/01	
Hexachlorobutadiene EPA 8260B P110102 5.0 ND 1 9/3/01 9/4/01 2-Hexanone EPA 8260B P110102 10 ND 1 9/3/01 9/4/01 Iodomethane EPA 8260B P110102 2.0 ND 1 9/3/01 9/4/01 Isopropylbenzene EPA 8260B P110102 2.0 ND 1 9/3/01 9/4/01		EPA 8260B		2.0	ND	1		9/4/01	
Hexachlorobutadiene EPA 8260B P110102 5.0 ND 1 9/3/01 9/4/01 2-Hexanone EPA 8260B P110102 10 ND 1 9/3/01 9/4/01 Iodomethane EPA 8260B P110102 2.0 ND 1 9/3/01 9/4/01 Isopropylbenzene EPA 8260B P110102 2.0 ND 1 9/3/01 9/4/01	Ethylbenzene	EPA 8260B	P1I0102	2.0	ND	1	9/3/01	9/4/01	
2-Hexanone EPA 8260B P1I0102 10 ND 1 9/3/01 9/4/01 Iodomethane EPA 8260B P1I0102 2.0 ND 1 9/3/01 9/4/01 Isopropylbenzene EPA 8260B P1I0102 2.0 ND 1 9/3/01 9/4/01	•								
Iodomethane EPA 8260B P1I0102 2.0 ND 1 9/3/01 9/4/01 Isopropylbenzene EPA 8260B P1I0102 2.0 ND 1 9/3/01 9/4/01									
Isopropylbenzene EPA 8260B P1I0102 2.0 ND 1 9/3/01 9/4/01						1			
p-Isopropyltoluene EPA 8260B P110102 2.0 ND 1 9/3/01 9/4/01	p-Isopropyltoluene	EPA 8260B	P1I0102	2.0	ND	1	9/3/01	9/4/01	

Melissa Evans Project Manager PKH0448 Page 6 of 37

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-8596 FAX (858) 505-9589 (480) 785-0043 FAX (480) 785-0851

Law Engineering

4634 S. 36th Place Phoenix, AZ 85040 Attention: Jim Clarke Client Project ID:

[none]

Sampled: 08/25/01

Report Number:

PKH0448

Received: 08/25/01

VOLATILE ORGANICS BY GC/MS (EPA 8260B)

Analyte	Method	Batch	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
			ug/l	ug/l				
Sample ID: PKH0448-08 (Rinsat	te-3 - Water)							
Methylene chloride	EPA 8260B	P110102	5.0	ND	1	9/3/01	9/4/01	
4-Methyl-2-pentanone (MIBK)	EPA 8260B	P1I0102	10	ND	1	9/3/01	9/4/01	
Methyl-tert-butyl Ether (MTBE)	EPA 8260B	P110102	5.0	ND	1	9/3/01	9/4/01	
Naphthalene	EPA 8260B	P1I0102	5.0	ND	1	9/3/01	9/4/01	
n-Propylbenzene	EPA 8260B	P1I0102	2.0	ND	1	9/3/01	9/4/01	
Styrene	EPA 8260B	P1I0102	2.0	ND	1	9/3/01	9/4/01	
1,1,1,2-Tetrachloroethane	EPA 8260B	P1I0102	5.0	ND	1	9/3/01	9/4/01	
1,1,2,2-Tetrachloroethane	EPA 8260B	P1I0102	2.0	ND	1	9/3/01	9/4/01	
Tetrachloroethene	EPA 8260B	P1I0102	2.0	ND	1	9/3/01	9/4/01	
Toluene	EPA 8260B	P1I0102	2.0	ND	1	9/3/01	9/4/01	
1,2,3-Trichlorobenzene	EPA 8260B	P1I0102	5.0	ND	1	9/3/01	9/4/01	
1,2,4-Trichlorobenzene	EPA 8260B	P1I0102	5.0	ND	1	9/3/01	9/4/01	
1,1,1-Trichloroethane	EPA 8260B	P1I0102	2.0	ND	1	9/3/01	9/4/01	
1,1,2-Trichloroethane	EPA 8260B	P1I0102	2.0	ND	1	9/3/01	9/4/01	
Trichloroethene	EPA 8260B	P1I0102	2.0	ND	1	9/3/01	9/4/01	
Trichlorofluoromethane	EPA 8260B	P110102	5.0	ND	1	9/3/01	9/4/01	
1,2,3-Trichloropropane	EPA 8260B	P1I0102	10	ND	1	9/3/01	9/4/01	
1,2,4-Trimethylbenzene	EPA 8260B	P1I0102	2.0	ND	1	9/3/01	9/4/01	
1,3,5-Trimethylbenzene	EPA 8260B	P1I0102	2.0	ND	1	9/3/01	9/4/01	
Vinyl acetate	EPA 8260B	P1I0102	25	ND	1	9/3/01	9/4/01	V1,L3
Vinyl chloride	EPA 8260B	P1I0102	5.0	ND	1	9/3/01	9/4/01	
Xylenes, Total	EPA 8260B	P1I0102	10	ND	1	9/3/01	9/4/01	
Surrogate: Dibromofluoromethane (80-120			107 %					
Surrogate: Toluene-d8 (80-120%)			112 %					
Surrogate: 4-Bromofluorobenzene (80-1209			119 %					

DEL MAR ANALYTICAL, PHOENIX (AZ0426

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-8596 FAX (858) 505-9589 (480) 785-0043 FAX (480) 785-0851

Law Engineering

4634 S. 36th Place Phoenix, AZ 85040

Attention: Jim Clarke

Client Project ID:

[none]

Report Number: PKH0448

Sampled: 08/25/01

Received: 08/25/01

Analyte	Method	Batch	Reporting Limit mg/kg	Sample Result mg/kg	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: PKH0448-01 (LB2	-S-10 - Soil)							
Arsenic	EPA 6010B	P1I0517	5.0	ND	1	9/5/01	9/8/01	
Chromium	EPA 6010B	P1I0517	1.0	30	1	9/5/01	9/8/01	N1
Chromium VI	EPA 7196A	P1H3004	1.0	ND	1	8/29/01	8/30/01	
Copper	EPA 6010B	P1I0517	2.0	19	1	9/5/01	9/9/01	
Nickel	EPA 6010B	P110517	5.0	19	1	9/5/01	9/8/01	
Zinc	EPA 6010B	P1I0517	5.0	62	1	9/5/01	9/8/01	N1
Sample ID: PKH0448-02 (LB2	-S-20 - Soil)							
Arsenic	EPA 6010B	P1I0517	5.0	ND	1	9/5/01	9/8/01	
Chromium	EPA 6010B	P1I0517	1.0	18	1	9/5/01	9/8/01	N1
Chromium VI	EPA 7196A	P1H3004	1.0	ND	1	8/29/01	8/30/01	_
Copper	EPA 6010B	P1I0517	2.0	15	1	9/5/01	9/9/01	
Nickel	EPA 6010B	P1I0517	5.0	15	1	9/5/01	9/8/01	
Zinc	EPA 6010B	P1I0517	5.0	45	1	9/5/01	9/8/01	N1
Sample ID: PKH0448-03 (LB2	-S-30 - Soil)						21012	
Arsenic	EPA 6010B	P1I0517	5.0	ND	1	9/5/01	9/8/01	
Chromium	EPA 6010B	P1I0517	1.0	18	1	9/5/01	9/8/01	NI
Chromium VI	EPA 7196A	P1H3004	1.0	ND	1	8/29/01	8/30/01	
Copper	EPA 6010B	P110517	2.0	11	1	9/5/01	9/9/01	
Nickel	EPA 6010B	P110517	5.0	12	1	9/5/01	9/8/01	
Sample ID: PKH0448-03RE8 (LB2-S-30 - Soil)			_	-		5. 51	
Zinc	EPA 6010B	P1J0103	5.0	36	1	10/1/01	10/2/01	

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-8596 FAX (858) 505-958 (480) 785-0043 FAX (480) 785-0851

Law Engineering

4634 S. 36th Place Phoenix, AZ 85040

Attention: Jim Clarke

Client Project ID:

[none]

Sampled: 08/25/01

Report Number:

PKH0448

Received: 08/25/01

TOTAL METALS

Analyte	Method	Batch	Reporting Limit mg/kg	Sample Result mg/kg	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: PKH0448-05 (LB2-S-	-40 - Soil)							
Arsenic	EPA 6010B	P1I0517	5.0	ND	1	9/5/01	9/8/01	
Chromium	EPA 6010B	P1I0517	1.0	18	1	9/5/01	9/8/01	N1
Chromium VI	EPA 7196A	P1H3004	1.0	ND	1	8/29/01	8/30/01	
Copper	EPA 6010B	P1I0517	2.0	19	1	9/5/01	9/9/01	
Nickel	EPA 6010B	P1I0517	5.0	17	1 .	9/5/01	9/8/01	
Zinc	EPA 6010B	P1I0517	5.0	48	1	9/5/01	9/8/01	N1
Sample ID: PKH0448-06 (LB2-S-	-50 - Soil)							
Arsenic	EPA 6010B	P1I0517	5.0	ND	1	9/5/01	9/8/01	
Chromium	EPA 6010B	P1I0517	1.0	21	1	9/5/01	9/8/01	N1
Chromium VI	EPA 7196A	P1H3004	1.0	ND	1	8/29/01	8/30/01	
Copper	EPA 6010B	P1I0517	2.0	10	1	9/5/01	9/9/01	
Nickel	EPA 6010B	P1I0517	5.0	11	1	9/5/01	9/8/01	
Sample ID: PKH0448-06RE8 (L1	32-S-50 - Soil)							
Zinc	EPA 6010B	P1J0103	5.0	28	1	10/1/01	10/2/01	

DEL MAR ANALYTICAL, PHOENIX (AZ0426

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-8596 FAX (858) 505-9589 (480) 785-0043 FAX (480) 785-0851

Law Engineering

4634 S. 36th Place Phoenix, AZ 85040

Attention: Jim Clarke

Client Project ID:

[none]

Sampled: 08/25/01

Report Number:

PKH0448

Received: 08/25/01

TOTAL RECOVERABLE METALS

Analyte	Method	Batch	Reporting Limit mg/l	Sample Result mg/l	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: PKH0448-08 (Rinsat	te-3 - Water)							
Arsenic	EPA 200.7	P1H2827	0.050	ND	1	8/28/01	8/29/01	
Chromium	EPA 200.7	P1H2827	0.010	ND	1	8/28/01	8/29/01	
Chromium VI	SM3500CR-D	P1H2706	0.025	ND	1	8/25/01	8/25/01	
Copper	EPA 200.7	P1H2827	0.020	ND	1	8/28/01	8/29/01	
Nickel	EPA 200.7	P1H2827	0.050	ND	1	8/28/01	8/29/01	
Zinc	EPA 200.7	P1H2827	0.050	ND	1	8/28/01	8/29/01	

DEL MAR ANALYTICAL, PHOENIX (AZ0426

2852 Alton Ave., Irvine, CA 92606 (949) 261-1022 FAX (949) 261-1228 1014 E. Coldby Dr., Suite A, Colton, CA 92324 (909) 370-4667 FAX (909) 370-1046 7277 Hayvenhurst, Suite B-12, Van Nuys, CA 91406 (818) 779-1844 FAX (818) 779-1843 9484 Chesapeake Dr., Suite 805, San Diego, CA 92123 (858) 505-8596 FAX (858) 505-9589 9830 South 51st St., Suite B-120, Phoenix, AZ 85044 (480) 785-0043 FAX (480) 785-0851

Law Engineering

4634 S. 36th Place

Phoenix, AZ 85040 Attention: Jim Clarke Client Project ID:

[none]

Sampled: 08/25/01

Report Number:

PKH0448

Received: 08/25/01

INORGANICS

Analyte	Method	Batch	Reporting Limit mg/kg	Sample Result mg/kg	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: PKH0448-01 (LB2-5	S-10 - Soil)							
Total Cyanide	EPA 9014	P1I0513	0.50	ND	1	9/5/01	9/5/01	
Sample ID: PKH0448-02 (LB2-5	S-20 - Soil)							
Total Cyanide	EPA 9014	P1I0513	0.50	ND	1	9/5/01	9/5/01	
Sample ID: PKH0448-03 (LB2-5	S-30 - Soil)							
Total Cyanide	EPA 9014	P1I0513	0.50	ND	1 .	9/5/01	9/5/01	
Sample ID: PKH0448-05 (LB2-5	S-40 - Soil)							
Total Cyanide	EPA 9014	P1I0611	0.50	ND	1	9/6/01	9/6/01	M2
Sample ID: PKH0448-06 (LB2-5	S-50 - Soil)							
Total Cyanide	EPA 9014	P1I0611	0.50	ND	1	9/6/01	9/6/01	
			mg/l	mg/l				
Sample ID: PKH0448-08 (Rinsa	ite-3 - Water)							
Total Cyanide	SM4500-CN,C-E	P1I0619	0.020	ND	1	9/6/01	9/6/01	L3

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-8596 FAX (858) 505-9589 (480) 785-0043 FAX (480) 785-0851

Law Engineering 4634 S. 36th Place Phoenix, AZ 85040

Attention: Jim Clarke

Client Project ID:

[none]

Sampled: 08/25/01

Report Number:

PKH0448

Received: 08/25/01

VOLATILE ORGANICS BY GC/MS (EPA 8260B)

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: P1H2501 Extracted: 08/25	/01									
Blank Analyzed: 09/04/01 (P1H2501-										
Acetone	ND	1000	ug/kg							
Benzene	ND	100	ug/kg							
Bromobenzene	ND	250	ug/kg							
Bromochloromethane	ND	250	ug/kg							
Bromodichloromethane	ND	100	ug/kg							
Bromoform	ND	250	ug/kg							
Bromomethane	ND	250	ug/kg							
2-Butanone (MEK)	ND	500	ug/kg							
n-Butylbenzene	ND	250	ug/kg							
sec-Butylbenzene	ND	250	ug/kg							
tert-Butylbenzene	ND	250	ug/kg							
Carbon Disulfide	ND	250	ug/kg							
Carbon tetrachloride	ND	250	ug/kg							
Chlorobenzene	ND	100	ug/kg							
Chloroethane	ND	250	ug/kg							
Chloroform	ND	100	ug/kg							
Chloromethane	ND	250	ug/kg							
2-Chlorotoluene	ND.	250	ug/kg							
4-Chlorotoluene	ND	250	ug/kg							
Dibromochloromethane	ND	100	ug/kg							
1,2-Dibromo-3-chloropropane	ND	250	ug/kg							
1,2-Dibromoethane (EDB)	ND	100	ug/kg							
Dibromomethane	ND	100	ug/kg							
1,2-Dichlorobenzene	ND	100	ug/kg							
1,3-Dichlorobenzene	ND	100	ug/kg							
1,4-Dichlorobenzene	ND	100	ug/kg							
Dichlorodifluoromethane	ND	250	ug/kg							
1,1-Dichloroethane	ND	100	ug/kg							
1,2-Dichloroethane	ND	100	ug/kg							
1,1-Dichloroethene	ND	250	ug/kg							
cis-1,2-Dichloroethene	ND	100	ug/kg							
trans-1,2-Dichloroethene	ND	100	ug/kg							
1,2-Dichloropropane	ND	100	ug/kg							
1,3-Dichloropropane	ND	100	ug/kg							
2,2-Dichloropropane	ND	100	ug/kg							
Melissa Evans			5 0							DIZ110449

Melissa Evans Project Manager

PKH0448 Page 12 of 37

%REC

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-8596 FAX (858) 505-9589 (480) 785-0043 FAX (480) 785-0851

Law Engineering 4634 S. 36th Place Phoenix, AZ 85040

Attention: Jim Clarke

Client Project ID:

[none]

Sampled: 08/25/01

Report Number:

Reporting

PKH0448

Received: 08/25/01

RPD

Data

N ETHODER ANKYDODATA

VOLATILE ORGANICS BY GC/MS (EPA 8260B)

Spike

Source

		reporting		Spike	Source		701120		10, 10	2
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: P1H2501 Extracted: 08/2	25/01									
Blank Analyzed: 09/04/01 (P1H250)	1-BLK1)									
1,1-Dichloropropene	ND	100	ug/kg							
cis-1,3-Dichloropropene	ND	100	ug/kg							
trans-1,3-Dichloropropene	ND	100	ug/kg							
Ethylbenzene	ND	100	ug/kg							
Hexachlorobutadiene	ND	250	ug/kg							
2-Hexanone	ND	500	ug/kg							
Iodomethane	ND	100	ug/kg							
lsopropylbenzene	ND	100	ug/kg							
p-Isopropyltoluene	ND	100	ug/kg							
Methylene chloride	ND	500	ug/kg							
4-Methyl-2-pentanone (MIBK)	ND	500	ug/kg							
Methyl-tert-butyl Ether (MTBE)	ND	250	ug/kg							
Naphthalene	ND	250	ug/kg							
n-Propylbenzene	ND	100	ug/kg							
Styrene	ND	100	ug/kg							
1,1,1,2-Tetrachloroethane	ND	250	ug/kg							
I,1,2,2-Tetrachloroethane	ND	100	ug/kg							
Tetrachloroethene	ND	100	ug/kg							
Toluene	ND	100	ug/kg							
1,2,3-Trichlorobenzene	ND	250	ug/kg							
1,2,4-Trichlorobenzene	ND	250	ug/kg							
1,1,1-Trichloroethane	ND	100	ug/kg							
1,I,2-Trichloroethane	ND	100	ug/kg							
Trichloroethene	ND	100	ug/kg							
Trichlorofluoromethane	ND	250	ug/kg							
1,2,3-Trichloropropane	ND	500	ug/kg							
1,2,4-Trimethylbenzene	ND	100	ug/kg							
1,3,5-Trimethylbenzene	ND	100	ug/kg							
Vinyl acetate	ND	1200	ug/kg							
Vinyl chloride	ND	250	ug/kg							
Xylenes, Total	ND	300	ug/kg							
Surrogate: Dibromofluoromethane	1350		ug/kg	1250		108	70-125			
Surrogate: Toluene-d8	1450		ug/kg	1250		116	50-135			
Surrogate: 4-Bromofluorobenzene	1380		ug/kg	1250		110	70-130			

Melissa Evans Project Manager

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-8596 FAX (858) 505-9589 (480) 785-0043 FAX (480) 785-0851

Law Engineering 4634 S. 36th Place Phoenix, AZ 85040

Attention: Jim Clarke

Client Project ID:

[none]

Sampled: 08/25/01

Report Number:

PKH0448

Received: 08/25/01

METHOD BLANKQC DATA

VOLATILE ORGANICS BY GC/MS (EPA 8260B)

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: P1H2501 Extracted: 08/25	<u>/01</u>									
LCS Analyzed: 09/06/01 (P1H2501-B	S1)									
Acetone	ND	1000	ug/kg	1000		40.0	5-200			
Benzene	1010	100	ug/kg	1000		101	65-130			
Bromobenzene	1020	250	ug/kg	1000		102	60-135			
Bromochloromethane	1070	250	ug/kg	1000		107	60-135			
Bromodichloromethane	971	100	ug/kg	1000		97.1	30-135			
Bromoform	753	250	ug/kg	1000		75.3	60-140			
Bromomethane	570	250	ug/kg	1000		57.0	10-200			
2-Butanone (MEK)	514	500	ug/kg	1000		51.4	10-160			
n-Butylbenzene	999	250	ug/kg	1000	,	99.9	65-125			
sec-Butylbenzene	1040	250	ug/kg	1000		104	70-135			
tert-Butylbenzene	1040	250	ug/kg	1000		104	70-130			
Carbon Disulfide	797	250	ug/kg	1000		79.7	20-120			
Carbon tetrachloride	923	250	ug/kg	1000		92.3	70-140			
Chlorobenzene	1060	100	ug/kg	1000		106	70-125			
Chloroethane	564	250	ug/kg	1000		56.4	10-200			
Chloroform	1030	100	ug/kg	1000		103	35-135			
Chloromethane	594	250	ug/kg	1000		59.4	10-200			
2-Chlorotoluene	1030	250	ug/kg	1000		103	70-135			
4-Chlorotoluene	1030	250	ug/kg	1000		103	75-135			
Dibromochloromethane	908	100	ug/kg	1000		90.8	35-135			
1,2-Dibromo-3-chloropropane	696	250	ug/kg	1000		69.6	50-155			
1,2-Dibromoethane (EDB)	911	100	ug/kg	1000		91.1	70-130			
Dibromomethane	995	100	ug/kg	1000		99.5	65-130			
1,2-Dichlorobenzene	1040	100	ug/kg	1000		104	70-125			
1,3-Dichlorobenzene	1040	100	ug/kg	1000		104	70-125			
1,4-Dichlorobenzene	1060	100	ug/kg	1000		106	70-135			
Dichlorodifluoromethane	385	250	ug/kg	1000		38.5	10-185			
1,1-Dichloroethane	1030	100	ug/kg	1000		103	60-140			
1,2-Dichloroethane	1000	100	ug/kg	1000		100	55-135			
1,1-Dichloroethene	991	250	ug/kg	1000		99.1	55-145			
cis-1,2-Dichloroethene	1030	100	ug/kg	1000		103	60-125			
trans-1,2-Dichloroethene	1040	100	ug/kg	1000		104	70-145			
1,2-Dichloropropane	1040	100	ug/kg	1000		104	65-130			
1,3-Dichloropropane	936	100	ug/kg	1000		93.6	65-130			
2,2-Dichloropropane	666	100	ug/kg	1000		66.6	60-135			
1,1-Dichloropropene	1020	100	ug/kg	1000		102	65-130			

Melissa Evans Project Manager

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-8596 FAX (858) 505-9589 (480) 785-0043 FAX (480) 785-0851

Law Engineering 4634 S. 36th Place Phoenix, AZ 85040 Attention: Jim Clarke

Client Project ID: [none]

Sampled: 08/25/01

Report Number:

PKH0448

Received: 08/25/01

MELHOD BLANK OC DATA

VOLATILE ORGANICS BY GC/MS (EPA 8260B)

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: P1H2501 Extracted: 08/25/	<u>01</u>									
LCS Analyzed: 09/06/01 (P1H2501-BS	51)									
cis-1,3-Dichloropropene	947	100	ug/kg	1000		94.7	60-125			
trans-1,3-Dichloropropene	871	100	ug/kg	1000		87.1	50-130			
Ethylbenzene	1060	100	ug/kg	1000		106	70-125			
Hexachlorobutadiene	905	250	ug/kg	1000		90.5	60-125			
2-Hexanone	636	500	ug/kg	1000		63.6	25-185			
Iodomethane	1060	100	ug/kg	1000		106	30-155			
Isopropylbenzene	1080	100	ug/kg	1000		108	70-135			
p-Isopropyltoluene	991	100	ug/kg	1000		99.1	65-130			
Methylene chloride	990	500	ug/kg	1000		99.0	60-140			
4-Methyl-2-pentanone (MIBK)	719	500	ug/kg	1000		71.9	10-175			
Methyl-tert-butyl Ether (MTBE)	846	250	ug/kg	1000		84.6	55-135			
Naphthalene	875	250	ug/kg	1000		87.5	45-155			
n-Propylbenzene	1080	100	ug/kg	1000		108	75-135			
Styrene	1060	100	ug/kg	1000		106	70-130			
1,1,1,2-Tetrachloroethane	977	250	ug/kg	1000		97.7	70-130			
1,1,2,2-Tetrachloroethane	807	100	ug/kg	1000		80.7	60-140			
Tetrachloroethene	1060	100	ug/kg	1000		106	65-130			
Toluene	1010	100	ug/kg	1000		101	70-125			
1,2,3-Trichlorobenzene	965	250	ug/kg	1000		96.5	60-135			
1,2,4-Trichlorobenzene	991	250	ug/kg	1000		99.1	55-135			
1,1,1-Trichloroethane	977	100	ug/kg	1000		97.7	65-135			
1,1,2-Trichloroethane	961	100	ug/kg	1000		96.1	65-130			
Trichloroethene	1100	100	ug/kg	1000		110	70-130			
Trichlorofluoromethane	692	250	ug/kg	1000		69.2	10-200			
1,2,3-Trichloropropane	809	500	ug/kg	1000		80.9	60-150			
1,2,4-Trimethylbenzene	1060	100	ug/kg	1000		106	75-130			
1,3,5-Trimethylbenzene	1020	100	ug/kg	1000		102	70-130			
Vinyl acetate	ND	1200	ug/kg	1000		28.8	25-130			
Vinyl chloride	575	250	ug/kg	1000		57.5	10-200			
Xylenes, Total	3160	300	ug/kg	3000		105	70-130			
Surrogate: Dibromofluoromethane	1290		ug/kg	1250		103	70-125			
Surrogate: Toluene-d8	1310		ug/kg	1250		105	50-135			
Surrogate: 4-Bromofluorobenzene	1320		ug/kg	1250		106	70-130			

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-8596 FAX (858) 505-9589 (480) 785-0043 FAX (480) 785-0851

Law Engineering 4634 S. 36th Place Phoenix, AZ 85040

Client Project ID: [none]

Sampled: 08/25/01 Received: 08/25/01

Phoenix, AZ 85040 Attention: Jim Clarke

Report Number:

PKH0448

METHOD BLANK QC DATA

VOLATILE ORGANICS BY GC/MS (EPA 8260B)

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: P1H2501 Extracted: 08/25	<u>/01</u>									
LCS Dup Analyzed: 09/07/01 (P1H25	01-BSD1)									
Acetone	ND	1000	ug/kg	1000		44.2	5-200	9.98	35	
Benzene	916	100	ug/kg	1000		91.6	65-130	9.76	35	
Bromobenzene	972	250	ug/kg	1000		97.2	60-135	4.82	35	
Bromochloromethane	996	250	ug/kg	1000		99.6	60-135	7.16	35	
Bromodichloromethane	924	100	ug/kg	1000		92.4	30-135	4.96	35	
Bromoform	812	250	ug/kg	1000		81.2	60-140	7.54	35	
Bromomethane	489	250	ug/kg	1000		48.9	10-200	15.3	35	
2-Butanone (MEK)	572	500	ug/kg	1000		57.2	10-160	10.7	35	
n-Butylbenzene	970	250	ug/kg	1000		97.0	65-125	2.95	35	
sec-Butylbenzene	969	250	ug/kg	1000		96.9	70-135	7.07	35	
tert-Butylbenzene	971	250	ug/kg	1000		97.1	70-130	6.86	35	
Carbon Disulfide	698	250	ug/kg	1000		69.8	20-120	13.2	35	
Carbon tetrachloride	924	250	ug/kg	1000		92.4	70-140	0.108	35	
Chlorobenzene	1010	100	ug/kg	1000		101	70-125	4.83	35	
Chloroethane	492	250	ug/kg	1000		49.2	10-200	13.6	35	
Chloroform	953	100	ug/kg	1000		95.3	35-135	7.77	35	
Chloromethane	475	250	ug/kg	1000		47.5	10-200	22.3	35	
2-Chlorotoluene	968	250	ug/kg	1000		96.8	70-135	6.21	35	
4-Chlorotoluene	961	250	ug/kg	1000		96.1	75-135	6.93	35	
Dibromochloromethane	931	100	ug/kg	1000		93.1	35-135	2.50	35	
1,2-Dibromo-3-chloropropane	745	250	ug/kg	1000		74.5	50-155	6.80	35	
1,2-Dibromoethane (EDB)	931	100	ug/kg	1000		93.1	70-130	2.17	35	
Dibromomethane	942	100	ug/kg	1000		94.2	65-130	5.47	35	
1,2-Dichlorobenzene	961	100	ug/kg	1000		96.1	70-125	7.90	35	
1,3-Dichlorobenzene	990	100	ug/kg	1000		99.0	70-125	4.93	35	
1,4-Dichlorobenzene	1010	100	ug/kg	1000		101	70-135	4.83	35	
Dichlorodifluoromethane	253	250	ug/kg	1000		25.3	10-185	41.4	35	R6
1,1-Dichloroethane	940	100	ug/kg	1000		94.0	60-140	9.14	35	
1,2-Dichloroethane	921	100	ug/kg	1000		92.1	55-135	8.22	35	
1,1-Dichloroethene	902	250	ug/kg	1000		90.2	55-145	9.40	35	
cis-1,2-Dichloroethene	973	100	ug/kg	1000		97.3	60-125	5.69	35	
trans-1,2-Dichloroethene	951	100	ug/kg	1000		95.1	70-145	8.94	35 -	
1,2-Dichloropropane	967	100	ug/kg	1000		96.7	65-130	7.27	35	
1,3-Dichloropropane	956	100	ug/kg	1000		95.6	65-130	2.11	35	
2,2-Dichloropropane	855	100	ug/kg	1000		85.5	60-135	24.9	35	
1,1-Dichloropropene	939	100	ug/kg	1000		93.9	65-130	8.27	35	

Melissa Evans Project Manager PKH0448 Page 16 of 37

Law Engineering 4634 S. 36th Place Phoenix, AZ 85040 Attention: Jim Clarke

Client Project ID: [ne

[none]

Sampled: 08/25/01

Report Number: PKH0448

Received: 08/25/01

NIETHOD BLANKIOC DATE:

VOLATILE ORGANICS BY GC/MS (EPA 8260B)

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: P1H2501 Extracted: 08/25/	<u>′01</u>									
LCS Dup Analyzed: 09/07/01 (P1H250	01-BSD1)									
cis-1,3-Dichloropropene	948	100	ug/kg	1000		94.8	60-125	0.106	35	
trans-1,3-Dichloropropene	896	100	ug/kg	1000		89.6	50-130	2.83	35	
Ethylbenzene	997	100	ug/kg	1000		99.7	70-125	6.13	35	
Hexachlorobutadiene	927	250	ug/kg	1000		92.7	60-125	2.40	35	
2-Hexanone	698	500	ug/kg	1000		69.8	25-185	9.30	35	
Iodomethane	965	100	ug/kg	1000		96.5	30-155	9.38	35	
Isopropylbenzene	1020	100	ug/kg	1000		102	70-135	5.71	35	
p-Isopropyltoluene	942	100	ug/kg	1000		94.2	65-130	5.07	35	
Methylene chloride	952	500	ug/kg	1000		95.2	60-140	3.91	35	
4-Methyl-2-pentanone (MIBK)	752	500	ug/kg	1000		75.2	10-175	4.49	35	
Methyl-tert-butyl Ether (MTBE)	876	250	ug/kg	1000		87.6	55-135	3.48	35	
Naphthalene	893	250	ug/kg	1000		89.3	45-155	2.04	35	
n-Propylbenzene	1030	100	ug/kg	1000		103	75-135	4.74	35	
Styrene	1010	100	ug/kg	1000		101	70-130	4.83	35	
1,1,1,2-Tetrachloroethane	987	250	ug/kg	1000		98.7	70-130	1.02	35	
1,1,2,2-Tetrachloroethane	872	100	ug/kg	1000		87.2	60-140	7.74	35	
Tetrachloroethene	1010	100	ug/kg	1000		101	65-130	4.83	35	
Toluene	958	100	ug/kg	1000		95.8	70-125	5.28	35	
1,2,3-Trichlorobenzene	968	250	ug/kg	1000		96.8	60-135	0.310	35	
1,2,4-Trichlorobenzene	959	250	ug/kg	1000		95.9	55-135	3.28	35	
1,1,1-Trichloroethane	935	100	ug/kg	1000		93.5	65-135	4.39	35	
1,1,2-Trichloroethane	944	100	ug/kg	1000		94.4	65-130	1.78	35	
Trichloroethene	987	100	ug/kg	1000		98.7	70-130	10.8	35	
Trichlorofluoromethane	593	250	ug/kg	1000		59.3	10-200	15.4	35	
1,2,3-Trichloropropane	845	500	ug/kg	1000		84.5	60-150	4.35	35	
1,2,4-Trimethylbenzene	988	100	ug/kg	1000		98.8	75-130	7.03	35	
1,3,5-Trimethylbenzene	963	100	ug/kg	1000		96.3	70-130	5.75	35	
Vinyl acetate	ND	1200	ug/kg	1000		77.2	25-130	91.3	35	R6
Vinyl chloride	433	250	ug/kg	1 0 00		43.3	10-200	28.2	35	
Xylenes, Total	3040	300	ug/kg	3000		101	70-130	3.87	35	
Surrogate: Dibromofluoromethane	1240		ug/kg	1250		99.2	70-125			
Surrogate: Toluene-d8	1290		ug/kg	1250		103	50-135			
Surrogate: 4-Bromofluorobenzene	1240		ug/kg	1250		99.2	70-130			

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-8596 FAX (858) 505-9589 (480) 785-0043 FAX (480) 785-0851

Law Engineering 4634 S. 36th Place Phoenix, AZ 85040

Attention: Jim Clarke

Client Project ID:

[none]

Sampled: 08/25/01

Report Number:

PKH0448

Received: 08/25/01

VOLATILE ORGANICS BY GC/MS (EPA 8260B)

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: P1H2501 Extracted: 08/	25/01									
Matrix Spike Analyzed: 09/05/01 (P1H2501-MS1)				Source: P	KH0445-	01			
Acetone	ND	1000	ug/kg	1000	ND	87.5	5-200			
Benzene	811	100	ug/kg	1000	ND	81.1	65-130			
Bromobenzene	804	250	ug/kg	1000	ND	80.4	60-135			
Bromochloromethane	811	250	ug/kg	1000	ND	81.1	60-135			
Bromodichloromethane	792	100	ug/kg	1000	ND	79.2	30-135			
Bromoform	756	250	ug/kg	1000	ND	75.6	60-140			
Bromomethane	ND	250	ug/kg	1000	ND	12.0	10-200			
2-Butanone (MEK)	872	500	ug/kg	1000	ND	87.2	10-160			
n-Butylbenzene	753	250	ug/kg	1000	ND	75.3	65-125			
sec-Butylbenzene	826	250	ug/kg	1000	ND	82.6	70-135			
tert-Butylbenzene	802	250	ug/kg	1000	ND	80.2	70-130			
Carbon Disulfide	638	250	ug/kg	1000	ND	63.8	20-120			
Carbon tetrachloride	782	250	ug/kg	1000	ND	78.2	70-140			
Chlorobenzene	796	100	ug/kg	1000	ND	79.6	75-125			
Chloroethane	ND	250	ug/kg	1000	ND	20.5	10-200			
Chloroform	764	100	ug/kg	1000	ND	76.4	35-135			
Chloromethane	594	250	ug/kg	1000	ND	59.4	10-200			
2-Chlorotoluene	817	250	ug/kg	1000	ND	81.7	70-135			
4-Chlorotoluene	832	250	ug/kg	1000	ND	83.2	75-135			
Dibromochloromethane	748	100	ug/kg	1000	ND	74.8	35-135			
1,2-Dibromo-3-chloropropane	7 37	250	ug/kg	1000	ND	73.7	50-155			
1,2-Dibromoethane (EDB)	750	100	ug/kg	1000	ND	75.0	70-130			
Dibromomethane	790	100	ug/kg	1000	ND	79.0	65-130			
1,2-Dichlorobenzene	789	100	ug/kg	1000	ND	78.9	70-125			
1,3-Dichlorobenzene	810	100	ug/kg	1000	ND	81.0	70-125			
1,4-Dichlorobenzene	822	100	ug/kg	1000	ND	82.2	70-135			
Dichlorodifluoromethane	303	250	ug/kg	1000	ND	30.3	10-185			
1,1-Dichloroethane	731	100	ug/kg	1000	ND	73.1	60-140			
1,2-Dichloroethane	777	100	ug/kg	1000	ND	77.7	55-135			
1,1-Dichloroethene	752	250	ug/kg	1000	ND	75.2	55-145			
cis-1,2-Dichloroethene	807	100	ug/kg	1000	ND	80.7	60-125			
trans-1,2-Dichloroethene	776	100	ug/kg	1000	ND	77.6	70-145			
1,2-Dichloropropane	821	100	ug/kg	1000	ND	82.1	65-130			
1,3-Dichloropropane	792	100	ug/kg	1000	ND	79.2	65-130			
2,2-Dichloropropane	707	100	ug/kg	1000	ND	70.7	60-135			
1,1-Dichloropropene	780	100	ug/kg	1000	ND	78.0	65-130			

Melissa Evans Project Manager

PKH0448 Page 18 of 37

Law Engineering

4634 S. 36th Place

Phoenix, AZ 85040 Attention: Jim Clarke Client Project ID:

[none]

Sampled: 08/25/01

Report Number:

PKH0448

Received: 08/25/01

VOLATILE ORGANICS BY GC/MS (EPA 8260B)

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: P1H2501 Extracted: 08/	25/01									
Matrix Spike Analyzed: 09/05/01 (1	P1H2501-MS1)				Source: P	KH0445-	01			
cis-1,3-Dichloropropene	811	100	ug/kg	1000	ND	81.1	60-125			
trans-1,3-Dichloropropene	737	100	ug/kg	1000	ND	73.7	50-130			
Ethylbenzene	816	100	ug/kg	1000	ND	81.6	70-125			
Hexachlorobutadiene	521	250	ug/kg	1000	ND	52.1	60-125			M2
2-Hexanone	768	500	ug/kg	1000	ND	76.8	25-185			
Iodomethane	624	100	ug/kg	1000	ND	62.4	30-155			
Isopropylbenzene	801	100	ug/kg	1000	ND	80.1	70-135			
p-Isopropyltoluene	7 78	100	ug/kg	1000	ND	77.8	65-130			
Methylene chloride	864	500	ug/kg	1000	ND	86.4	60-140			
4-Methyl-2-pentanone (MIBK)	765	500	ug/kg	1000	ND	76.5	10-175			
Methyl-tert-butyl Ether (MTBE)	772	250	ug/kg	1000	ND	77.2	55-135			
Naphthalene	705	250	ug/kg	1000	ND	70.5	45-155			
n-Propylbenzene	844	100	ug/kg	1000	ND	84.4	75-135			
Styrene	805	100	ug/kg	1000	ND	80.5	70-130			
1,1,1,2-Tetrachloroethane	778	250	ug/kg	1000	ND	77.8	70-130			
1,1,2,2-Tetrachloroethane	774	100	ug/kg	1000	ND	77.4	60-140			
Tetrachloroethene	800	. 100	ug/kg	1000	ND	80.0	65-130			
Toluene	792	100	ug/kg	1000	ND	79.2	70-125			
1,2,3-Trichlorobenzene	646	250	ug/kg	1000	ND	64.6	60-135			
1,2,4-Trichlorobenzene	703	250	ug/kg	1000	ND	70.3	55-135			
1,1,1-Trichloroethane	770	100	ug/kg	1000	ND	77.0	65-135			
1,1,2-Trichloroethane	764	100	ug/kg	1000	ND	76.4	65-130			
Trichloroethene	824	100	ug/kg	1000	ND	82.4	70-130			
Trichlorofluoromethane	555	250	ug/kg	1000	ND	55.5	10-200			
1,2,3-Trichloropropane	798	500	ug/kg	1000	ND	79.8	60-150			
1,2,4-Trimethylbenzene	842	100	ug/kg	1000	ND	84.2	75-130			
1,3,5-Trimethylbenzene	830	100	ug/kg	1000	ND	83.0	70-130			
Vinyl acetate	ND	1200	ug/kg	1000	ND	34.4	25-130			
Vinyl chloride	640	250	ug/kg	1000	ND	64.0	10-200			
Xylenes, Total	2420	300	ug/kg	3000	ND	80.7	70-130			
Surrogate: Dibromofluoromethane	917		ug/kg	1250		73.4	70-125			
Surrogate: Toluene-d8	920		ug/kg	1250		73.6	<i>50-135</i>			
Surrogate: 4-Bromofluorobenzene	1030		ug/kg	1250		82.4	70-130			

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-8596 FAX (858) 505-9589 (480) 785-0043 FAX (480) 785-0851

Law Engineering 4634 S. 36th Place Phoenix, AZ 85040

Attention: Jim Clarke

Client Project ID: [none]

Sampled: 08/25/01

Report Number:

PKH0448

Received: 08/25/01

METHOD BLANK-QC DATA:

VOLATILE ORGANICS BY GC/MS (EPA 8260B)

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: P1H2501 Extracted: 08/25	<u>/01</u>									
Matrix Spike Dup Analyzed: 09/05/01	(P1H2501-M	ISD1)			Source: F	KH0445-	01			
Acetone	ND	1000	ug/kg	1000	ND	78.8	5-200	10.5	35	
Benzene	829	100	ug/kg	1000	ND	82.9	65-130	2.20	35	
Bromobenzene	815	250	ug/kg	1000	ND	81.5	60-135	1.36	35	
Bromochloromethane	797	250	ug/kg	1000	ND	79.7	60-135	1.74	35	
Bromodichloromethane	818	100	ug/kg	1000	ND	81.8	30-135	3.23	35	
Bromoform	748	250	ug/kg	1000	ND	74.8	60-140	1.06	35	
Bromomethane	ND	250	ug/kg	1000	ND	10.0	10-200	18.2	35	
2-Butanone (MEK)	822	500	ug/kg	1000	ND	82.2	10-160	5.90	35	
n-Butylbenzene	731	250	ug/kg	1000	ND	73.1	65-125	2.96	35	
sec-Butylbenzene	789	250	ug/kg	1000	ND	78.9	70-135	4.58	35	
tert-Butylbenzene	805	250	ug/kg	1000	ND	80.5	70-130	0.373	35	
Carbon Disulfide	656	250	ug/kg	1000	ND	65.6	20-120	2.78	35	
Carbon tetrachloride	788	250	ug/kg	1000	ND	78.8	70-140	0.764	35	
Chlorobenzene	833	100	ug/kg	1000	ND	83.3	75-125	4.54	35	
Chloroethane	ND	250	ug/kg	1000	ND	20.7	10-200	0.971	35	
Chloroform	745	100	ug/kg	1000	ND	74.5	35-135	2.52	35	
Chloromethane	611	250	ug/kg	10 0 0	ND	61.1	10-200	2.82	35	
2-Chlorotoluene	813	250	ug/kg	1000	ND	81.3	70-135	0.491	35	
4-Chlorotoluene	828	250	ug/kg	1000	ND	82.8	75-135	0.482	35	
Dibromochloromethane	766	100	ug/kg	1000	ND	76.6	35-135	2.38	35	
1,2-Dibromo-3-chloropropane	652	250	ug/kg	1000	ND	65.2	50-155	12.2	35	
1,2-Dibromoethane (EDB)	751	100	ug/kg	1000	ND	75.1	70-130	0.133	35	
Dibromomethane	793	100	ug/kg	1000	ND	79.3	65-130	0.379	35	
1,2-Dichlorobenzene	802	100	ug/kg	1000	ND	80.2	70-125	1.63	35	
1,3-Dichlorobenzene	829	100	ug/kg	1000	ND	82.9	70-125	2.32	35	
1,4-Dichlorobenzene	829	100	ug/kg	1000	ND	82.9	70-135	0.848	35	
Dichlorodifluoromethane	368	250	ug/kg	1000	ND	36.8	10-185	19.4	35	
1,1-Dichloroethane	735	100	ug/kg	1000	ND	73.5	60-140	0.546	35	
1,2-Dichloroethane	806	100	ug/kg	1000	ND	80.6	55-135	3.66	35	
1,1-Dichloroethene	780	250	ug/kg	1000	ND	78.0	55-145	3.66	35	
cis-1,2-Dichloroethene	816	100	ug/kg	1000	ND	81.6	60-125	1.11	35	
trans-1,2-Dichloroethene	807	100	ug/kg	1000	ND	80.7	70-145	3.92	35	
1,2-Dichloropropane	847	100	ug/kg	1000	ND	84.7	65-130	3.12	35	
1,3-Dichloropropane	7 78	100	ug/kg	1000	ND	77.8	65-130	1.78	35	
2,2-Dichloropropane	765	100	ug/kg	1000	ND	76.5	60-135	7.88	35	
1,1-Dichloropropene	785	100	ug/kg	1000	ND	78.5	65-130	0.639	35	

Melissa Evans Project Manager

PKH0448 Page 20 of 37

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-8596 FAX (858) 505-9589 (480) 785-0043 FAX (480) 785-0851

Law Engineering 4634 S. 36th Place Phoenix, AZ 85040 Attention: Jim Clarke

Client Project ID: [no

[none]

Sampled: 08/25/01

Report Number:

r: PKH0448

Received: 08/25/01

METEODELANKOC DATA

VOLATILE ORGANICS BY GC/MS (EPA 8260B)

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: P1H2501 Extracted: 08/25	/01									
Matrix Spike Dup Analyzed: 09/05/01	(P1H2501-M	SD1)			Source: F	KH0445-	01			
cis-1,3-Dichloropropene	841	100	ug/kg	1000	ND	84.1	60-125	3.63	35	
trans-1,3-Dichloropropene	727	100	ug/kg	1000	ND	72.7	50-130	1.37	35	
Ethylbenzene	854	100	ug/kg	1000	ND	85.4	70-125	4.55	35	
Hexachlorobutadiene	827	250	ug/kg	1000	ND	82.7	60-125	45.4	35	Q11
2-Hexanone	718	500	ug/kg	1000	ND	71.8	25-185	6.73	35	
Iodomethane	689	100	ug/kg	1000	ND	68.9	30-155	9.90	35	
Isopropylbenzene	830	100	ug/kg	1000	ND	83.0	70-135	3.56	35	
p-Isopropyltoluene	752	100	ug/kg	1000	ND	75.2	65-130	3.40	35	
Methylene chloride	862	500	ug/kg	1000	ND	86.2	60-140	0.232	35	
4-Methyl-2-pentanone (MIBK)	730	500	ug/kg	1000	ND	73.0	10-175	4.68	35	
Methyl-tert-butyl Ether (MTBE)	746	250	ug/kg	1000	ND	74.6	55-135	3.43	35	
Naphthalene	688	250	ug/kg	1000	ND	68.8	45-155	2.44	35	
n-Propylbenzene	832	100	ug/kg	1000	ND	83.2	75-135	1.43	35	
Styrene	824	100	ug/kg	1000	ND	82.4	70-130	2.33	35	
1,1,1,2-Tetrachloroethane	780	250	ug/kg	1000	ND	78.0	70-130	0.257	35	
1,1,2,2-Tetrachloroethane	722	100	ug/kg	1000	ND	72.2	60-140	6.95	35	
Tetrachloroethene	819	100	ug/kg	1000	ND	81.9	65-130	2.35	35	
Toluene	811	100	ug/kg	1000	ND	81.1	70-125	2.37	35	
1,2,3-Trichlorobenzene	709	250	ug/kg	1000	ND	70.9	60-135	9.30	35	
1,2,4-Trichlorobenzene	730	250	ug/kg	1000	ND	73.0	55-135	3.77	35	
1,1,1-Trichloroethane	788	100	ug/kg	1000	ND	78.8	65-135	2.31	35	
1,1,2-Trichloroethane	768	100	ug/kg	1000	ND	76.8	65-130	0.522	35	
Trichloroethene	858	100	ug/kg	1000	ND	85.8	70-130	4.04	35	
Trichlorofluoromethane	626	250	ug/kg	1000	ND	62.6	10-200	12.0	35	
1,2,3-Trichloropropane	718	500	ug/kg	1000	ND	71.8	60-150	10.6	35	
1,2,4-Trimethylbenzene	846	100	ug/kg	1000	ND	84.6	75-130	0.474	35	
1,3,5-Trimethylbenzene	818	100	ug/kg	1000	ND	81.8	70-130	1.46	35	
Vinyl acetate	ND	1200	ug/kg	1000	ND	30.4	25-130	12.3	35	
Vinyl chloride	672	250	ug/kg	1000	ND	67.2	10-200	4.88	35	
Xylenes, Total	2470	300	ug/kg	3000	ND	82.3	70-130	2.04	35	
Surrogate: Dibromofluoromethane	900		ug/kg	1250		72.0	70-125			
Surrogate: Toluene-d8	913		ug/kg	1250		73.0	50-135			
Surrogate: 4-Bromofluorobenzene	1030		ug/kg	1250		82.4	70-130			

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-8596 FAX (858) 505-9589 (480) 785-0043 FAX (480) 785-0851

Law Engineering 4634 S. 36th Place Phoenix, AZ 85040

Attention: Jim Clarke

Client Project ID:

[none]

Sampled: 08/25/01

Report Number:

PKH0448

Received: 08/25/01

YPHODELANKOC DATA

VOLATILE ORGANICS BY GC/MS (EPA 8260B)

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: P1I0102 Extracted: 09/03/0	1									
Blank Analyzed: 09/03/01 (P1I0102-Bl										
Acetone	ND	20	ug/l							
Benzene	ND	2.0	ug/l							
Bromobenzene	ND	5.0	ug/l							
Bromochloromethane	ND	5.0	ug/l							
Bromodichloromethane	ND	2.0	ug/l							
Bromoform	ND	5.0	ug/l							
Bromomethane	ND	5.0	ug/l							
2-Butanone (MEK)	ND	10	ug/l							
n-Butylbenzene	ND	5.0	ug/l							
sec-Butylbenzene	ND	5.0	ug/l							
tert-Butylbenzene	ND	5.0	ug/l							
Carbon Disulfide	ND	5.0	ug/l							
Carbon tetrachloride	ND	5.0	ug/l							
Chlorobenzene	ND	2.0	ug/l							
Chloroethane	ND	5.0	ug/l							
Chloroform	ND	2.0	ug/l							
Chloromethane	ND	5.0	ug/l							
2-Chlorotoluene	ND	5.0	ug/l							
4-Chlorotoluene	ND	5.0	ug/l							
Dibromochloromethane	ND	2.0	ug/l							
1,2-Dibromo-3-chloropropane	ND	5.0	ug/l							
1,2-Dibromoethane (EDB)	ND	2.0	ug/l							
Dibromomethane	ND	2.0	ug/l							
1,2-Dichlorobenzene	ND	2.0	ug/l							
1,3-Dichlorobenzene	ND	2.0	ug/l							
1,4-Dichlorobenzene	ND	2.0	ug/l							
Dichlorodifluoromethane	ND	5.0	ug/l							
1,1-Dichloroethane	ND	2.0	ug/l							
1,2-Dichloroethane	ND	2.0	ug/l							
1,1-Dichloroethene	ND	5.0	ug/l							
cis-1,2-Dichloroethene	ND	2.0	ug/l							
trans-1,2-Dichloroethene	ND	2.0	ug/l							
1,2-Dichloropropane	ND	2.0	ug/l							
1,3-Dichloropropane	ND	2.0	ug/l							
2,2-Dichloropropane	ND	2.0	ug/l							
			- B -							

Melissa Evans Project Manager

PKH0448 Page 22 of 37 Law Engineering 4634 S. 36th Place

Phoenix, AZ 85040 Attention: Jim Clarke Client Project ID:

[none]

Sampled: 08/25/01

Received: 08/25/01

Report Number:

PKH0448

A CONTROL OF A CON

VOLATILE ORGANICS BY GC/MS (EPA 8260B)

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: P1I0102 Extracted: 09/03/0	<u>)1</u>									
Blank Analyzed: 09/03/01 (P1I0102-B	LK1)									
1,1-Dichloropropene	ND	2.0	ug/l							
cis-1,3-Dichloropropene	ND	2.0	ug/l							
trans-1,3-Dichloropropene	ND	2.0	ug/l							
Ethylbenzene	ND	2.0	ug/l							
Hexachlorobutadiene	ND	5.0	ug/l							
2-Hexanone	ND	10	ug/l							
Iodomethane	ND	2.0	ug/l							
Isopropylbenzene	ND	2.0	ug/l							
p-Isopropyltoluene	ND	2.0	ug/l							
Methylene chloride	ND	5.0	ug/l							
4-Methyl-2-pentanone (MIBK)	ND	10	ug/l							
Methyl-tert-butyl Ether (MTBE)	ND	5.0	ug/l							
Naphthalene	ND	5.0	ug/l							
n-Propylbenzene	ND	2.0	ug/l							
Styrene	ND	2.0	ug/l							
1,1,1,2-Tetrachloroethane	ND	5.0	ug/l							
1,1,2,2-Tetrachloroethane	ND	2.0	ug/l							
Tetrachloroethene	ND	2.0	ug/l							
Toluene	ND	2.0	ug/l							
1,2,3-Trichlorobenzene	ND	5.0	ug/l							
1,2,4-Trichlorobenzene	ND	5.0	ug/l							
1,1,1-Trichloroethane	ND	2.0	ug/l							
1,1,2-Trichloroethane	ND	2.0	ug/l							
Trichloroethene	ND	2.0	ug/l							
Trichlorofluoromethane	ND	5.0	ug/l							
1,2,3-Trichloropropane	ND	10	ug/l							
1,2,4-Trimethylbenzene	ND	2.0	ug/l							
1,3,5-Trimethylbenzene	ND	2.0	ug/l							
Vinyl acetate	ND	25	ug/l							V1,L3
Vinyl chloride	ND	5.0	ug/l							
Xylenes, Total	ND	10	ug/l							
Surrogate: Dibromofluoromethane	27.1		ug/l	25.0		108	80-120			
Surrogate: Toluene-d8	28.2		ug/l	25.0		113	80-120			
Surrogate: 4-Bromofluorobenzene	26.6		ug/l	25.0		106	80-120			

Melissa Evans Project Manager

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-8596 FAX (858) 505-9589 (480) 785-0043 FAX (480) 785-0851

Law Engineering 4634 S. 36th Place

Phoenix, AZ 85040 Attention: Jim Clarke Client Project ID:

[none]

Sampled: 08/25/01

PKH0448 Report Number:

Received: 08/25/01

VOLATILE ORGANICS BY GC/MS (EPA 8260B)

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: P1I0102 Extracted: 09/03/03	<u>L</u>									
LCS Analyzed: 09/03/01 (P1I0102-BS1)									
Acetone	44.9	20	ug/l	25.0		180	30-200			
Benzene	23.3	2.0	ug/l	25.0		93.2	80-120			
Bromobenzene	23.4	5.0	ug/l	25.0		93.6	80-120			
Bromochloromethane	25.6	5.0	ug/i	25.0		102	80-120			
Bromodichloromethane	23.4	2.0	ug/l	25.0		93.6	80-130			
Bromoform	26.2	5.0	ug/l	25.0		105	60-140			
Bromomethane	28.1	5.0	ug/l	25.0		112	60-150			
2-Butanone (MEK)	31.8	10	ug/l	25.0		127	30-185			
n-Butylbenzene	22.8	5.0	ug/l	25.0		91.2	75-130			
sec-Butylbenzene	23.4	5.0	ug/l	25.0		93.6	80-125			
tert-Butylbenzene	24.0	5.0	ug/l	25.0		96.0	80-120			
Carbon Disulfide	25,6	5.0	ug/l	25.0		102	65-120			
Carbon tetrachloride	26.4	5.0	ug/l	25.0		106	75-150			
Chlorobenzene	26.0	2.0	ug/l	25.0		104	80-120			
Chloroethane	29.2	5.0	ug/l	25.0		117	80-125			
Chloroform	24.0	2.0	ug/l	25.0		96.0	80-120			
Chloromethane	21.1	5.0	ug/l	25.0		84.4	60-125			
2-Chlorotoluene	23.6	5.0	ug/l	25.0		94.4	80-120			
4-Chlorotoluene	23.7	5.0	ug/l	25.0		94.8	80-120			
Dibromochloromethane	25.0	2.0	ug/l	25.0		100	70-150			
1,2-Dibromo-3-chloropropane	23.9	5.0	ug/l	25.0		95.6	50-145			
1,2-Dibromoethane (EDB)	27.2	2.0	ug/l	25.0		109	75-120			
Dibromomethane	24.3	2.0	ug/l	25.0		97.2	80-120			
1,2-Dichlorobenzene	23.8	2.0	ug/l	25.0		95.2	80-120			
1,3-Dichlorobenzene	23.2	2.0	ug/l	25.0		92.8	80-120			
1,4-Dichlorobenzene	24.0	2.0	ug/l	25.0		96.0	80-120			
Dichlorodifluoromethane	20.8	5.0	ug/l	25.0		83.2	25-140			
1,1-Dichloroethane	28.8	2.0	ug/l	25.0		115	80-120			
1,2-Dichloroethane	22.2	2.0	ug/l	25.0		88.8	80-120			
1,1-Dichloroethene	27.9	5.0	ug/l	25.0		112	80-120			
cis-1,2-Dichloroethene	29.8	2.0	ug/l	25.0		119	80-120			
trans-1,2-Dichloroethene	29.4	2.0	ug/l	25.0		118	80-120			
1,2-Dichloropropane	23.3	2.0	ug/l	25.0		93.2	80-120			
1,3-Dichloropropane	25.5	2.0	ug/l	25.0		102	80-120			
2,2-Dichloropropane	28.3	2.0	ug/l	25.0		113	75-135			
1,1-Dichloropropene	24.6	2.0	ug/l	25.0		98.4	80-120			

Melissa Evans Project Manager

PKH0448 Page 24 of 37

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-8596 FAX (858) 505-9589 (480) 785-0043 FAX (480) 785-0851

Law Engineering 4634 S. 36th Place Phoenix, AZ 85040

Attention: Jim Clarke

Client Project ID:

[none]

Sampled: 08/25/01

Report Number:

PKH0448

Received: 08/25/01

VOLATILE ORGANICS BY GC/MS (EPA 8260B)

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: P1I0102 Extracted: 09/03/0	1_									
LCS Analyzed: 09/03/01 (P1I0102-BS1	.)									
cis-1,3-Dichloropropene	22.1	2.0	ug/l	25.0		88.4	80-120			
trans-1,3-Dichloropropene	22.8	2.0	ug/l	25.0		91.2	80-120			
Ethylbenzene	25.1	2.0	ug/l	25.0		100	80-120			
Hexachlorobutadiene	28.5	5.0	ug/l	25.0		114	60-145			
2-Hexanone	30.4	10	ug/l	25.0		122	50-170			
Iodomethane	33.6	2.0	ug/l	25.0		134	40-155			
Isopropylbenzene	24.8	2.0	ug/l	25.0		99.2	80-120			
p-Isopropyltoluene	22.5	2.0	ug/l	25.0		90.0	80-120			
Methylene chloride	27.5	5.0	ug/l	25.0		110	80-120			
4-Methyl-2-pentanone (MIBK)	28.8	10	ug/l	25.0		115	70-140			
Methyl-tert-butyl Ether (MTBE)	30.2	5.0	ug/l	25.0		121	75-135			
Naphthalene	27.2	5.0	ug/l	25.0		109	70-130			<i>~</i>
n-Propylbenzene	22.7	2.0	ug/l	25.0		90.8	80-120			
Styrene	24.3	2.0	ug/l	25.0		97.2	80-120			
1,1,1,2-Tetrachloroethane	26.3	5.0	ug/l	25.0		105	65-150			
1,1,2,2-Tetrachloroethane	25.4	2.0	ug/l	25.0		102	70-130			
Tetrachloroethene	25.7	2.0	ug/l	25.0		103	80-125			
Toluene	25.1	2.0	ug/l	25.0		100	80-120			
1,2,3-Trichlorobenzene	25.0	5.0	ug/l	25.0		100	75-125			
1,2,4-Trichlorobenzene	25.7	5.0	ug/l	25.0		103	80-120			
1,1,1-Trichloroethane	22.8	2.0	ug/l	25.0		91.2	80-120			
1,1,2-Trichloroethane	26.3	2.0	ug/l	25.0		105	80-120			
Trichloroethene	25.3	2.0	ug/l	25.0		101	80-120			
Trichlorofluoromethane	24.8	5.0	ug/l	25.0		99.2	75-150			
1,2,3-Trichloropropane	26.4	10	ug/l	25.0		106	65-135			
1,2,4-Trimethylbenzene	22.1	2.0	ug/l	25.0		88.4	80-120			
1,3,5-Trimethylbenzene	22.2	2.0	ug/l	25.0		88.8	80-120			
Vinyl acetate	41.4	25	ug/l	25.0		166	40-120			V1,L3
Vinyl chloride	24.0	5.0	ug/l	25.0		96.0	80-120			
Xylenes, Total	74.2	10	ug/l	75.0		98.9	80-120			
Surrogate: Dibromofluoromethane	27.7		ug/l	25.0		111	80-120			
Surrogate: Toluene-d8	28.3		ug/l	25.0		113	80-120			
Surrogate: 4-Bromofluorobenzene	26.3		ug/l	25.0		105	80-120			

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-8596 FAX (858) 505-9589 (480) 785-0043 FAX (480) 785-0851

Law Engineering 4634 S. 36th Place Phoenix, AZ 85040

Attention: Jim Clarke

Client Project ID: [none]

Sampled: 08/25/01

Report Number:

PKH0448

Received: 08/25/01

METHOD BLANK QCDATA

VOLATILE ORGANICS BY GC/MS (EPA 8260B)

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: P1I0102 Extracted: 09/0	3/01									
Matrix Spike Analyzed: 09/03/01 (1	P1I0102-MS1)				Source: P	KH0432-	01			
Acetone	26.9	20	ug/l	25.0	ND	108	5-200			
Benzene	21.8	2.0	ug/l	25.0	ND	87.2	80-120			
Bromobenzene	24.3	5.0	ug/l	25.0	ND	97.2	80-120			
Bromochloromethane	24.0	5.0	ug/l	25.0	ND	96.0	60-135			
Bromodichloromethane	21.6	2.0	ug/l	25.0	ND	86.4	80-120			
Bromoform	25.2	5.0	ug/l	25.0	ND	101	40-140			
Bromomethane	26.1	5.0	ug/i	25.0	ND	104	25-165			
2-Butanone (MEK)	25.8	10	ug/1	25.0	ND	103	10-160			
n-Butylbenzene	22.7	5.0	ug/l	25.0	ND	90.8	75-135			
sec-Butylbenzene	23.9	5.0	ug/l	25.0	ND	95.6	80-135			
tert-Butylbenzene	24.5	5.0	ug/l	25.0	ND	98.0	80-125			
Carbon Disulfide	23.6	5.0	ug/l	25.0	ND	94.4	20-120			
Carbon tetrachloride	24.5	5.0	ug/l	25.0	ND	98.0	80-145			
Chlorobenzene	26.7	2.0	ug/l	25.0	ND	107	80-120			
Chloroethane	27.4	5.0	ug/1	25.0	ND	110	30-150			
Chloroform	22.7	2.0	ug/l	25.0	ND	90.8	80-125			
Chloromethane	19.5	5.0	ug/l	25.0	ND	78.0	15-140			
2-Chlorotoluene	24.7	5.0	ug/l	25.0	ND	98.8	80-125			
4-Chlorotoluene	24.6	5.0	ug/l	25.0	ND	98.4	80-125			
Dibromochloromethane	25.2	2.0	ug/l	25.0	ND	101	75-135			
1,2-Dibromo-3-chloropropane	20.7	5.0	ug/l	25.0	ND	82.8	25-185			
1,2-Dibromoethane (EDB)	27.6	2.0	ug/l	25.0	ND	110	45-145			
Dibromomethane	22.6	2.0	ug/l	25.0	ND	90.4	55-140			
1,2-Dichlorobenzene	24.2	2.0	ug/l	25.0	ND	96.8	80-120			
1,3-Dichlorobenzene	23.9	2.0	ug/l	25.0	ND	95.6	80-120			
1,4-Dichlorobenzene	24.5	2.0	ug/l	25.0	ND	98.0	80-120			
Dichlorodifluoromethane	18.0	5.0	ug/l	25.0	ND	72.0	25-145			
1,1-Dichloroethane	26.8	2.0	ug/l	25.0	ND	107	75-120			
1,2-Dichloroethane	21.0	2.0	ug/l	25.0	ND	84.0	60-135			
1,1-Dichloroethene	25.9	5.0	ug/l	25.0	ND	104	55-120			
cis-1,2-Dichloroethene	27.2	2.0	ug/l	25.0	ND	109	75-120			
trans-1,2-Dichloroethene	27.7	2.0	ug/l	25.0	ND	111	65-120			
1,2-Dichloropropane	22.0	2.0	ug/l	25.0	ND	88.0	80-125			
1,3-Dichloropropane	26.1	2.0	ug/l	25.0	ND	104	55-140			
2,2-Dichloropropane	27.1	2.0	ug/l	25.0	ND	108	45-165			
1,1-Dichloropropene	23.1	2.0	ug/l	25.0	ND	92.4	80-120			

Melissa Evans Project Manager

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-8596 FAX (858) 505-9589 (480) 785-0043 FAX (480) 785-0851

Law Engineering 4634 S. 36th Place Phoenix, AZ 85040

Client Project ID:

[none]

Sampled: 08/25/01 Received: 08/25/01

Attention: Jim Clarke

Report Number:

PKH0448

VOLATILE ORGANICS BY GC/MS (EPA 8260B)

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: P1I0102 Extracted: 09/03	<u>/01</u>									
Matrix Spike Analyzed: 09/03/01 (P1	10102-MS1)				Source: P	KH0432-	01			
cis-1,3-Dichloropropene	20.5	2.0	ug/l	25.0	ND	82.0	80-120			
trans-1,3-Dichloropropene	23.0	2.0	ug/l	25.0	ND	92.0	70-120			
Ethylbenzene	25.6	2.0	ug/l	25.0	ND	102	80-120			
Hexachlorobutadiene	21.1	5.0	ug/l	25.0	ND	84.4	80-135			
2-Hexanone	26.6	10	ug/l	25.0	ND	106	25-185			
Iodomethane	33.3	2.0	ug/l	25.0	ND	133	30-155			
Isopropylbenzene	25.4	2.0	ug/l	25.0	ND	102	80-125			
p-Isopropyltoluene	23.0	2.0	ug/l	25.0	ND	92.0	80-125			
Methylene chloride	26.6	5.0	ug/l	25.0	ND	106	55-125			
4-Methyl-2-pentanone (MIBK)	24.0	10	ug/l	25.0	ND	96.0	10-175			•
Methyl-tert-butyl Ether (MTBE)	27.0	5.0	ug/l	25.0	ND	108	55-135			
Naphthalene	23.0	5.0	ug/l	25.0	ND	92.0	15-160			
n-Propylbenzene	23.7	2.0	ug/l	25.0	ND	94.8	80-130			
Styrene	22.9	2.0	ug/l	25.0	ND	91.6	60-135			
1,1,1,2-Tetrachloroethane	27.2	5.0	ug/l	25.0	ND	109	80-135			
1,1,2,2-Tetrachloroethane	24.6	2.0	ug/l	25.0	ND	98.4	35-150			
Tetrachloroethene	25.8	2.0	ug/l	25.0	ND	103	80-120			
Toluene	25.5	2.0	ug/l	25.0	ND	102	80-120			
1,2,3-Trichlorobenzene	22.5	5.0	ug/l	25.0	ND	90.0	45-145			
1,2,4-Trichlorobenzene	24.5	5.0	ug/l	25.0	ND	98.0	65-130			
1,1,1-Trichloroethane	22.9	2.0	ug/l	25.0	ND	91.6	80-120			
1,1,2-Trichloroethane	26.2	2.0	ug/l	25.0	ND	105	55-145			
Trichloroethene	23.2	2.0	ug/l	25.0	ND	92.8	80-120			
Trichlorofluoromethane	22.7	5.0	ug/l	25.0	ND	90.8	70-145			
1,2,3-Trichloropropane	25.3	10	ug/l	25.0	ND	101	20-160			
1,2,4-Trimethylbenzene	22.9	2.0	ug/l	25.0	ND	91.6	70-135			
1,3,5-Trimethylbenzene	23.2	2.0	ug/l	25.0	ND	92.8	80-125			
Vinyl acetate	34.4	25	ug/l	25.0	ND	138	25-130			N2
Vinyl chloride	22.2	5.0	ug/l	25.0	ND	88.8	25-135			
Xylenes, Total	75.9	10	ug/l	75.0	ND	101	80-120			
Surrogate: Dibromofluoromethane	27.0		ug/l	25.0		108	80-120			
Surrogate: Toluene-d8	28.2		ug/l	25.0		113	80-120			
Surrogate: 4-Bromofluorobenzene	26.2		ug/l	25.0		105	80-120			

2852 Alton Ave., Irvine, CA 92606 (949) 261-1022 FAX (949) 261-1228 1014 E. Coldby Dr., Suite A, Colton, CA 92324 (909) 370-4667 FAX (909) 370-1046 7277 Hayvenhurst, Suite B-12, Van Nuys, CA 91406 (818) 779-1844 FAX (818) 779-1843 9484 Chesapeake Dr., Suite 805, San Diego, CA 92123 (858) 505-8596 FAX (858) 505-9589 9830 South 51st St., Suite B-120, Phoenix, AZ 85044 (480) 785-0043 FAX (480) 785-0851

Law Engineering 4634 S. 36th Place Phoenix, AZ 85040

Attention:

Jim Clarke

Client Project ID:

[none]

Sampled: 08/25/01

Report Number:

PKH0448

Received: 08/25/01

VOLATILE ORGANICS BY GC/MS (EPA 8260B)

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: P1I0102 Extracted: 09/03/	<u>′01</u>									
Matrix Spike Dup Analyzed: 09/03/01	(P1I0102-M	SD1)			Source: I	KH0432-	01			
Acetone	28.4	20	ug/l	25.0	ND	114	5-200	5.42	20	
Benzene	21.8	2.0	ug/l	25.0	ND	87.2	80-120	0.00	20	
Bromobenzene	24.5	5.0	ug/l	25.0	ND	98.0	80-120	0.820	20	
Bromochloromethane	23.7	5.0	ug/l	25.0	ND	94.8	60-135	1.26	20	
Bromodichloromethane	21.8	2.0	ug/l	25.0	ND	87.2	80-120	0.922	20	
Bromoform	24.9	5.0	ug/l	25.0	ND	99.6	40-140	1.20	20	
Bromomethane	26.0	5.0	ug/l	25.0	ND	104	25-165	0.384	20	
2-Butanone (MEK)	25.2	10	ug/l	25.0	ND	101	10-160	2.35	20	
n-Butylbenzene	22.8	5.0	ug/l	25.0	ND	91.2	75-135	0.440	20	
sec-Butylbenzene	24.2	5.0	ug/l	25.0	ND	96.8	80-135	1.25	20	
tert-Butylbenzene	24.5	5.0	ug/l	25.0	ND	98.0	80-125	0.00	20	
Carbon Disulfide	23.3	5.0	ug/l	25.0	ND	93.2	20-120	1.28	20	
Carbon tetrachloride	24.7	5.0	ug/l	25.0	ND	98.8	80-145	0.813	20	
Chlorobenzene	26.2	2.0	ug/l	25.0	ND	105	80-120	1.89	20	
Chloroethane	27.4	5.0	ug/l	25.0	ND	110	30-150	0.00	20	
Chloroform	22.5	2.0	ug/l	25.0	ND	90.0	80-125	0.885	20	
Chloromethane	19.6	5.0	ug/l	25.0	ND	78.4	15-140	0.512	20	
2-Chlorotoluene	24.9	5.0	ug/l	25.0	ND	99.6	80-125	0.806	20	
4-Chlorotoluene	24.9	5.0	ug/l	25.0	ND	99.6	80-125	1.21	20	
Dibromochloromethane	25.2	2.0	ug/l	25.0	ND	101	75-135	0.00	20	
1,2-Dibromo-3-chloropropane	21.3	5.0	ug/i	25.0	ND	85.2	25-185	2.86	20	
1,2-Dibromoethane (EDB)	27.1	2.0	ug/l	25.0	ND	108	45-145	1.83	20	
Dibromomethane	22.2	2.0	ug/l	25.0	ND	88.8	55-140	1.79	20	
1,2-Dichlorobenzene	24.5	2.0	ug/l	25.0	ND	98.0	80-120	1.23	20	
1,3-Dichlorobenzene	24.2	2.0	ug/l	25.0	ND	96.8	80-120	1.25	20	
1,4-Dichlorobenzene	24.8	2.0	ug/l	25.0	ND	99.2	80-120	1.22	20	
Dichlorodifluoromethane	17.8	5.0	ug/l	25.0	ND	71.2	25-145	1.12	20	
1,1-Dichloroethane	26.8	2.0	ug/l	25.0	ND	107	75-120	0.00	20	
1,2-Dichloroethane	21.6	2.0	ug/l	25.0	ND	86.4	60-135	2.82	20	
1,1-Dichloroethene	24.9	5.0	ug/l	25.0	ND	99.6	55-120	3.94	20	
cis-1,2-Dichloroethene	27.7	2.0	ug/l	25.0	ND	111	75-120	1.82	20	
trans-1,2-Dichloroethene	26.9	2.0	ug/l	25.0	ND	108	65-120	2.93	20	
1,2-Dichloropropane	22.2	2.0	ug/l	25.0	ND	88.8	80-125	0.905	20	
1,3-Dichloropropane	25.6	2.0	ug/l	25.0	ND	102	55-140	1.93	20	
2,2-Dichloropropane	26.4	2.0	ug/l	25.0	ND	106	45-165	2.62	20	
1,1-Dichloropropene	23.2	2.0	ug/l	25.0	ND	92.8	80-120	0.432	20	
			-							

Melissa Evans Project Manager

(949) 261-1022 FAX (949) 261-1228 (999) 370-1042 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-8596 FAX (858) 505-9589 (480) 785-0043 FAX (480) 785-0851

Law Engineering 4634 S. 36th Place Phoenix, AZ 85040

Client Project ID: [none]

Sampled: 08/25/01

Attention: Jim Clarke

Report Number:

PKH0448

Received: 08/25/01

VOLATILE ORGANICS BY GC/MS (EPA 8260B)

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: P110102 Extracted: 09/03/0	<u>)1</u>									
Matrix Spike Dup Analyzed: 09/03/01	(P1I0102-M	SD1)			Source: I	PKH0432-	01			
cis-1,3-Dichloropropene	20.6	2.0	ug/l	25.0	ND	82.4	80-120	0.487	20	
trans-1,3-Dichloropropene	22.3	2.0	ug/l	25.0	ND	89.2	70-120	3.09	20	
Ethylbenzene	25.8	2.0	ug/l	25.0	ND	103	80-120	0.778	20	
Hexachlorobutadiene	22.9	5.0	ug/l	25.0	ND	91.6	80-135	8.18	20	
2-Hexanone	26.4	10	ug/l	25.0	ND	106	25-185	0.755	20	
Iodomethane	33.1	2.0	ug/l	25.0	ND	132	30-155	0.602	20	
Isopropylbenzene	24.8	2.0	ug/l	25.0	ND	99.2	80-125	2.39	20	
p-Isopropyltoluene	22.7	2.0	ug/l	25.0	ND	90.8	80-125	1.31	20	
Methylene chloride	26.3	5.0	ug/l	25.0	ND	105	55-125	1.13	20	
4-Methyl-2-pentanone (MIBK)	23.9	10	ug/l	25.0	ND	95.6	10-175	0.418	20	
Methyl-tert-butyl Ether (MTBE)	27.1	5.0	ug/l	25.0	ND	108	55-135	0.370	20	
Naphthalene	22.5	5.0	ug/l	25.0	ND	90.0	15-160	2.20	20	
n-Propylbenzene	23.7	2.0	ug/l	25.0	ND	94.8	80-130	0.00	20	
Styrene	11.6	2.0	ug/l	25.0	ND	46.4	60-135	65.5	20	M2,Q11
1,1,1,2-Tetrachloroethane	26.0	5.0	ug/l	25.0	ND	104	80-135	4.51	20	
1,1,2,2-Tetrachloroethane	24.6	2.0	ug/l	25.0	ND	98.4	35-150	0.00	20	
Tetrachloroethene	25.9	2.0	ug/l	25.0	ND	104	80-120	0.387	20	
Toluene	25.1	2.0	ug/l	25.0	ND	100	80-120	1.58	20	
1,2,3-Trichlorobenzene	23.5	5.0	ug/l	25.0	ND	94.0	45-145	4.35	20	
1,2,4-Trichlorobenzene	25.4	5.0	ug/l	25.0	ND	102	65-130	3.61	20	
1,1,1-Trichloroethane	23.0	2.0	ug/l	25.0	ND	92.0	80-120	0.436	20	
1,1,2-Trichloroethane	25.8	2.0	ug/l	25.0	ND	103	55-145	1.54	20	
Trichloroethene	23.3	2.0	ug/l	25.0	ND	93.2	80-120	0.430	20	
Trichlorofluoromethane	23.2	5.0	ug/l	25.0	ND	92.8	70-145	2.18	20	
1,2,3-Trichloropropane	24.7	10	ug/l	25.0	ND	98.8	20-160	2.40	20	
1,2,4-Trimethylbenzene	18.4	2.0	ug/l	25.0	ND	73.6	70-135	21.8	20	R4
1,3,5-Trimethylbenzene	22.0	2.0	ug/l	25.0	ND	88.0	80-125	5.31	20	
Vinyl acetate	29.6	25	ug/l	25.0	ND	118	25-130	15.0	20	
Vinyl chloride	22.2	5.0	ug/l	25.0	ND	88.8	25-135	0.00	20	
Xylenes, Total	74.8	10	ug/l	75.0	ND	99.7	80-120	1.46	20	
Surrogate: Dibromofluoromethane	27.6		ug/l	25.0		110	80-120			
Surrogate: Toluene-d8	28.0		ug/l	25.0		112	80-120			
Surrogate: 4-Bromofluorobenzene	26.5		ug/l	25.0		106	80-120			

(949) 261-1022 FAX (949) 261-1228 (909) 370-4687 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-8596 FAX (858) 505-9589 (480) 785-0043 FAX (480) 785-0851

Law Engineering

4634 S. 36th Place Phoenix, AZ 85040 Attention: Jim Clarke Client Project ID:

[none]

Sampled: 08/25/01

Received: 08/25/01

Report Number:

PKH0448

MULHODBLANKOC DATA

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: P1H3004 Extracted: 08/2	9/01									
Blank Analyzed: 08/30/01 (P1H3004	-BLK1)									
Chromium VI	ND	1.0	mg/kg							
LCS Analyzed: 08/30/01 (P1H3004-I	3S1)									
Chromium VI	9.73	1.0	mg/kg	10.0		97.3	85-115			
LCS Dup Analyzed: 08/30/01 (P1H3	004-BSD1)									
Chromium VI	9.28	1.0	mg/kg	10.0		92.8	85-115	4.73	20	
Matrix Spike Analyzed: 08/30/01 (P.	(H3004-MS1)				Source: I	YKH0452-	01			
Chromium VI	8.84	1.0	mg/kg	10.0	ND	88.4	85-115			
Matrix Spike Dup Analyzed: 08/30/0	1 (P1H3004-M	ISD1)			Source: I	PKH0452-	-01			
Chromium VI	9.98	1.0	mg/kg	10.0	ND	99.8	85-115	12.1	20	
Batch: P1I0517 Extracted: 09/05	<u>/01</u>									
Blank Analyzed: 09/08/01 (P1I0517-	BLK1)									
Arsenic	ND	5.0	mg/kg							
Chromium	1.51	1.0	mg/kg							B 1
Copper	ND	2.0	mg/kg							
Nickel	ND	5.0	mg/kg							
Zinc	ND	5.0	mg/kg							B4
LCS Analyzed: 09/08/01 (P1I0517-B	S1)									
Arsenic	96.6	5.0	mg/kg	100		96.6	80-120			
Chromium	94.1	1.0	mg/kg	100		94.1	80-120			
Copper	94.6	2.0	mg/kg	100	\$	94.6	80-120			
Nickel	92.5	5.0	mg/kg	100		92.5	80-120			
Zinc	94.8	5.0	mg/kg	100		94.8	80-120			

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 505-9589 (388) 505-8596 FAX (888) 505-9589 (480) 785-0043 FAX (480) 785-0851

Law Engineering 4634 S. 36th Place Phoenix, AZ 85040

Attention: Jim Clarke

Client Project ID:

[none]

Sampled: 08/25/01

Report Number:

PKH0448

Received: 08/25/01

METHOD BLANK/QC DATA

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: P1I0517 Extracted: 09/05/01	<u>L</u>									
LCS Dup Analyzed: 09/08/01 (P1I0517	-BSD1)									
Arsenic	95.6	5.0	mg/kg	100		95.6	80-120	1.04	20	
Chromium	92.8	1.0	mg/kg	100		92.8	80-120	1.39	20	
Copper	92.7	2.0	mg/kg	100		92.7	80-120	2.03	20	
Nickel	91.6	5.0	mg/kg	100		91.6	80-120	0.978	20	
Zinc	93.0	5.0	mg/kg	100		93.0	80-120	1.92	20	
Matrix Spike Analyzed: 09/08/01 (P1I0	517-MS1)				Source: F	PKH0452-	01			
Arsenic	90.9	5.0	mg/kg	100	ND	89.8	75-125			
Chromium	108	1.0	mg/kg	100	19	89.0	75-125			
Copper	97.7	2.0	mg/kg	100	7.3	90.4	75-125			
Nickel	97.0	5.0	mg/kg	100	12	85.0	75-125			
Zinc	115	5.0	mg/kg	100	30	85.0	75-125			
Matrix Spike Dup Analyzed: 09/08/01	(P1I0517-MS	SD1)		Source: PKH0452-01						
Arsenic	93.3	5.0	mg/kg	100	ND	92.2	75-125	2.61	20	•
Chromium	111	1.0	mg/kg	100	19	92.0	75-125	2.74	20	
Copper	101	2.0	mg/kg	100	7.3	93.7	75-125	3.32	20	
Nickel	100	5.0	mg/kg	100	12	88.0	75-125	3.05	20	
Zinc	119	5.0	mg/kg	100	30	89.0	75-125	3.42	20	
Batch: P1J0103 Extracted: 10/01/0	<u>1</u>									
Blank Analyzed: 10/02/01 (P1J0103-Bl	LK1)									
Zinc	ND	5.0	mg/kg							
LCS Analyzed: 10/02/01 (P1J0103-BS)	0									
Zinc	86.2	5.0	mg/kg	100		86.2	80-120			

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-8596 FAX (858) 505-9589 (480) 785-0043 FAX (480) 785-0851

Law Engineering

4634 S. 36th Place Phoenix, AZ 85040 Attention: Jim Clarke Client Project ID:

[none]

Sampled: 08/25/01

Report Number:

PKH0448

Received: 08/25/01

MPHIOD BLANK OC DATA

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: P1J0103 Extracted: 10/01/02	<u>L</u>									
Matrix Spike Analyzed: 10/02/01 (P1J0	103-MS1)			Source: PKI0288-19						
Zine	142	5.0	mg/kg	100	29	113	75-125			
Matrix Spike Dup Analyzed: 10/02/01 (1 (P1J0103-MSD1)				Source: PKI0288-19					
Zinc	117	5.0	mg/kg	100	29	88.0	75-125	19.3	20	

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (588) 505-8596 FAX (858) 505-9589 (480) 785-0043 FAX (480) 785-0851

Law Engineering

4634 S. 36th Place Phoenix, AZ 85040 Attention: Jim Clarke Client Project ID:

Reporting

[none]

%REC

Sampled: 08/25/01

PKH0448 Report Number:

Received: 08/25/01

RPD

Data

TOTAL RECOVERABLE METALS

Spike

Source

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Oualifiers
Times to	Acsuit	Zimit	Omto	Level	Result	70ICLC	Limits	MD	Limit	Quantiters
Batch: P1H2706 Extracted: 08/25/9	<u>01</u>									
Blank Analyzed: 08/25/01 (P1H2706-B	LK1)									
Chromium VI	ND	0.025	mg/l							
LCS Analyzed: 08/25/01 (P1H2706-BS	1)									
Chromium VI	0.0999	0.050	mg/l	0.100		99.9	85-115			
Matrix Spike Analyzed: 08/25/01 (P1H	(2706-MS1)				Source: P	PKH0448-	08			
Chromium VI	0.0500	0.025	mg/l	0.0500	ND	100	85-115			
Matrix Spike Dup Analyzed: 08/25/01	(P1H2706-MS	SD1)			Source: P	'KH0448-	08			
Chromium VI	0.0500	0.025	mg/l	0.0500	ND	100	85-115	0.00	20	
Batch: P1H2827 Extracted: 08/28/	<u>01</u>									
Blank Analyzed: 08/29/01 (P1H2827-B	LK1)									
Arsenic	ND	0.050	mg/l							
Chromium	ND	0.010	mg/l							
Copper	ND	0.020	mg/l							
Nickel	ND	0.050	mg/l							
Zinc	ND	0.050	mg/l							
LCS Analyzed: 08/29/01 (P1H2827-BS	1)									
Arsenic	0.961	0.050	mg/l	1.00		96.1	85-115			
Chromium	0.970	0.010	mg/l	1.00		97.0	85-115			
Copper	0.993	0.020	mg/l	1.00		99.3	85-115			
Nickel	0.960	0.050	mg/l	1.00		96.0	85-115			
Zinc	0.969	0.050	mg/l	1.00		96.9	85-115			

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-8596 FAX (858) 505-9589 (480) 785-0043 FAX (480) 785-0851

Law Engineering

4634 S. 36th Place Phoenix, AZ 85040

Attention: Jim Clarke

Client Project ID:

[none]

Sampled: 08/25/01

Report Number:

PKH0448

Received: 08/25/01

MBIHOD BLANKQÇE DATA

TOTAL RECOVERABLE METALS

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: P1H2827 Extracted: 08/28/0	<u>1</u>									
LCS Dup Analyzed: 08/30/01 (P1H282	7-BSD1)									
Arsenic	1.05	0.050	mg/l	1.00		105	85-115	8.85	20	
Chromium	1.03	0.010	mg/l	1.00		103	85-115	6.00	20	
Copper	1.10	0.020	mg/l	1.00		110	85-115	10.2	20	
Nickel	1.02	0.050	mg/l	1.00		102	85-115	6.06	20	
Zine	1.04	0.050	mg/l	1.00		104	85-115	7.07	20	
Matrix Spike Analyzed: 08/29/01 (P1H	2827-MS1)				Source: P	KH0446-		,,,,,		
Arsenic	0.988	0.050	mg/l	1.00	ND	98.8	70-130			
Chromium	0.971	0.010	mg/l	1.00	ND	97.1	70-130			
Copper	1.00	0.020	mg/l	1.00	ND	100	70-130			
Nickel	0.960	0.050	mg/l	1.00	ND	96.0	70-130			
Zinc	0.974	0.050	mg/l	1.00	ND	96.0	70-130			
Matrix Spike Dup Analyzed: 08/29/01 (P1H2827-M	SD1)			Source: P	KH0446-	01			
Arsenic	0.948	0.050	mg/l	1.00	ND	94.8	70-130	4.13	20	
Chromium	0.952	0.010	mg/l	1.00	ND	95.2	70-130	1.98	20	
Copper	0.986	0.020	mg/l	1.00	ND	98.6	70-130	1.41	20	
Nickel	0.942	0.050	mg/l	1.00	ND	94.2	70-130	1.89	20	
Zinc	0.952	0.050	mg/l	1.00	ND	93.8	70-130	2.28	20	

%REC

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-8596 FAX (888) 505-9589 (480) 785-0043 FAX (480) 785-0851

Law Engineering 4634 S. 36th Place Phoenix, AZ 85040 Attention: Jim Clarke

Client Project ID: [none]

Sampled: 08/25/01 Received: 08/25/01

RPD

Data

Report Number:

Reporting

PKH0448

NETHOD BLANK/QC DATA

INORGANICS

Snike

Source

		Keporung		Spike	Source		70KLC		KPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: P110513 Extracted: 09/05/	<u>'01</u>									
Blank Analyzed: 09/05/01 (P1I0513-F	BLK1)									
Total Cyanide	ND	0.50	mg/kg							
Matrix Spike Analyzed: 09/05/01 (P1	I0513-MS1)				Source: I	PKH0448	-03			
Total Cyanide	2.61	0.50	mg/kg	2.50	ND	104	70-130			
Matrix Spike Dup Analyzed: 09/05/01	(P1I0513-M	SD1)			Source: I	PKH0448	-03			
Total Cyanide	2.24	0.50	mg/kg	2.50	ND	89.6	70-130	15.3	20	
Reference Analyzed: 09/05/01 (P1105	13-SRM1)									
Total Cyanide	116	20	mg/kg	201		57.7	40-160			
Batch: P110611 Extracted: 09/06/	<u>′01</u>									
Blank Analyzed: 09/06/01 (P1I0611-I	BLK1)									
Total Cyanide	ND	0.50	mg/kg							
Matrix Spike Analyzed: 09/06/01 (P1	10611-MS1)				Source: 1	PKH0448	-05			
Total Cyanide	1.79	0.50	mg/kg	2.50	ND	71.6	70-130			
Matrix Spike Dup Analyzed: 09/06/01	l (P1I0611-M	SD1)			Source: 1	PKH0448	-05			
Total Cyanide	1.31	0.50	mg/kg	2.50	ND	52.4	70-130	31.0	20	M2,Q11
Reference Analyzed: 09/06/01 (P1I06	511-SRM1)									
Total Cyanide	109	20	mg/kg	201		54.2	40-160			
Batch: P110619 Extracted: 09/06/	<u>/01</u>									
Blank Analyzed: 09/06/01 (P1I0619-1	BLK1)									
Total Cyanide	ND	0.020	mg/l							

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-8596 FAX (858) 505-9589 (480) 785-0043 FAX (480) 785-0851

Law Engineering 4634 S. 36th Place Phoenix, AZ 85040

Attention: Jim Clarke

Client Project ID:

[none]

Sampled: 08/25/01

Report Number:

PKH0448

Received: 08/25/01

METHOD BLANK/QC DATA

INORGANICS

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC	RPD	RPD Limit	Data Oualifiers
Batch: P1I0619 Extracted: 09/06/01	1									•
LCS Analyzed: 09/06/01 (P1I0619-BS1	_)									
Total Cyanide	0.112	0.020	mg/l	0.100		112	90-110			L3
Matrix Spike Analyzed: 09/06/01 (P1I0	619-MS1)		_		Source: P	KH0448-	08			
Total Cyanide	0.106	0.020	mg/l	0.100	ND	106	70-130			
Matrix Spike Dup Analyzed: 09/06/01 ((P1I0619-MS	D 1)			Source: P	KH0448-	08			
Total Cyanide	0.114	0.020	mg/l	0.100	ND	114	70-130	7.27	20	

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-8596 FAX (858) 505-9589 (480) 785-0043 FAX (480) 785-0851

Law Engineering 4634 S. 36th Place Phoenix, AZ 85040 Attention: Jim Clarke

Client Project ID: [no

Report Number:

[none]

Sampled: 08/25/01

PKH0448

Received: 08/25/01

Y (Bricklo) DSBLEATNEY (2011) AT LAC

DATA QUALIFIERS AND DEFINITIONS

- Target analyte detected in method blank at or above the method reporting limit.
- B4 Target analyte detected in blank at/above method acceptance criteria.
- L3 The associated blank spike recovery was above method acceptance limits. See case narrative.
- M1 Matrix spike recovery was high, the method control sample recovery was acceptable.
- M2 Matrix spike recovery was low, the method control sample recovery was acceptable.
- M3 The accuracy of the spike recovery value is reduced since the analyte concentration in the sample is disproportionate to spike level. The method control sample recovery was acceptable.
- N1 See case narrative.
- N2 See corrective action report.
- Q11 Sample is heterogeneous. Sample homogeneity could not be readily achieved using routine laboratory practices.
- R4 MS/MSD RPD exceeded the method control limit. Recovery met acceptance criteria.
- R6 LFB/LFBD RPD exceeded the method control limit. Recovery met acceptance criteria.
- V1 CCV recovery was above method acceptance limits. This target analyte was not detected in the sample.
- ND Analyte NOT DETECTED at or above the reporting limit
- NR Not reported.
- **RPD** Relative Percent Difference

Del Mar Analytical

CHAIN OF CUSTODY FORM

7277 Hayvenhurst, Suite B-12, Van Nuys, CA 91406 9484 Chesapeake Dr., Suite 805, San Diego, CA 92123 9830 South 51st St., Suite B-120, Phoenix, AZ 85044 2520 E. Surset Rd., Suite 3, Las Vegas, NV 89120

1014 E. Cooley Dr., Suite A,

Special Instructions ö Note: By relinquishing samples to Del Mar Analytical, client agrees to pay for the services requested on this chain of custody form and any additional analyses performed on this project. Payment for services is due within 30 days from the date of invoice. Sample(s) will be disposed of after 30 days. 72 hours 5 days normal (Check) (Check) P Q 1 t V D Turnaround Time: Sample Integrity: same day 24 hours 48 hours Analysis Required 0 X JOON 0928 Date /Time: Date /Time: Date /Time: X × 49 109 SW Received in Lab by 21.5-5-0310-0-11201 Preservatives Received by: Received by: Sampling 25.00 2090 0925 030 001) 010 1033 (100) Project/PO Number: Sampling S 2818 52/8 Date 12)8 \$219 2/2/8 5218 \$218 * (P) X Phone Number: Fax Number: **#**0# Sont. 3 M Chare 8185/81 Container Sleek Steeve Date /Time: Date /Time: Slappe Chase Date /Time: Sleeve VAK Y Steeve West re Sample Matrix Jim Clarke をある WITH 100 1.83 13 S 100 £ 30 0 5-40 O Description 0 5 Client Name/Address: Ś Rinshle-3 Ś Project Manager: Relinguished By: Relinquished By: Relinquished By: Min shie アカフ -28 -297 28 82. 1831 Sampler: 187

A CONTRACTOR OF THE SECOND OF

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-9596 FAX (858) 505-9689 (480) 785-0043 FAX (480) 785-0851

Law Engineering 4634 S. 36th Place Phoenix, AZ 85040 Attention: Jim Clarke

Client Project ID:

70211-0-0-0150-2-2.10 South Mesa

Sampled: 08/26/01 Received: 08/27/01

Issued: 10/11/01

Report Number:

PKH0452

LABORATORY NUMBER

PKH0452-01 PKH0452-01RE8 PKH0452-02

SAMPLE DESCRIPTION

LB2-S-60 LB2-S-60 Dumpster 4414 **SAMPLE MATRIX**

> Soil Soil

Soil

SAMPLE RECEIPT:

Samples were received intact, on ice, and with chain of custody documentation.

HOLDING TIMES:

Holding times were met.

PRESERVATION:

Samples requiring preservation were verified prior to sample analysis.

OBSERVATIONS:

No significant observations were made.

SUBCONTRACTED:

No analyses were subcontracted to an outside laboratory.

QA/QC CRITERIA:

All analyses met method criteria.

EXPLANATION OF DATA

QUALIFIERS:

The N1 flag on ICP Chromium indicates that the analyte was detected in the associated Method Blank. Analyte concentration in the sample is greater than 10X the concentration found in the Method Blank.

MAR ANAL**A**TICAL , PHOENIX (AZ0426)

Project Manager

PKH0452 Page 1 of 19

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-9596 FAX (858) 505-9689 (480) 785-0043 FAX (480) 785-0851

Law Engineering 4634 S. 36th Place Phoenix, AZ 85040

Client Project ID: 70211-0-0-0150-2-2.10 South Mesa

Sampled: 08/25/01-08/26/01

Attention: Jim Clarke

Report Number: PKH0452

Received: 08/27/01

VOLATILE ORGANICS BY GC/MS (EPA 8260B)

Analyte	Method	Batch	Reporting Limit ug/kg	Sample Result ug/kg	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: PKH0452-02 (Dumps	ter 4414 - Soil)		' B				
Acetone	EPA 8260B	P1H2801	1000	ND	1	8/28/01	9/7/01	
Benzene	EPA 8260B	P1H2801	50	ND	î	8/28/01	9/7/01	
Bromobenzene	EPA 8260B	P1H2801	250	ND	1	8/28/01	9/7/01	
Bromochloromethane	EPA 8260B	P1H2801	250	ND	1	8/28/01	9/7/01	
Bromodichloromethane	EPA 8260B	P1H2801	100	ND	1	8/28/01	9/7/01	
Bromoform	EPA 8260B	P1H2801	250	ND	1	8/28/01	9/7/01	
Bromomethane	EPA 8260B	P1H2801	250	ND	1	8/28/01	9/7/01	
2-Butanone (MEK)	EPA 8260B	P1H2801	500	ND	1	8/28/01	9/7/01	
n-Butylbenzene	EPA 8260B	P1H2801	250	ND	1	8/28/01	9/7/01	
sec-Butylbenzene	EPA 8260B	P1H2801	250	ND	1	8/28/01	9/7/01	
tert-Butylbenzene	EPA 8260B	P1H2801	250	ND	1	8/28/01	9/7/01	
Carbon Disulfide	EPA 8260B	P1H2801	250	ND	1	8/28/01	9/7/01	
Carbon tetrachloride	EPA 8260B	P1H2801	250	ND	1	8/28/01	9/7/01	
Chlorobenzene	EPA 8260B	P1H2801	50	ND	1	8/28/01	9/7/01	
Chloroethane	EPA 8260B	P1H2801	250	ND	1	8/28/01	9/7/01	
Chloroform	EPA 8260B	P1H2801	100	ND	1	8/28/01	9/7/01	
Chloromethane	EPA 8260B	P1H2801	250	ND	1	8/28/01	9/7/01	
2-Chlorotoluene	EPA 8260B	P1H2801	250	ND	1	8/28/01	9/7/01	
4-Chlorotoluene	EPA 8260B	P1H2801	250	ND	1	8/28/01	9/7/01	
Dibromochloromethane	EPA 8260B	P1H2801	100	ND	1	8/28/01	9/7/01	
1,2-Dibromo-3-chloropropane	EPA 8260B	P1H2801	250	ND	1	8/28/01	9/7/01	
1,2-Dibromoethane (EDB)	EPA 8260B	P1H2801	100	ND	1	8/28/01	9/7/01	
Dibromomethane	EPA 8260B	P1H2801	100	ND	1	8/28/01	9/7/01	
1,2-Dichlorobenzene	EPA 8260B	P1H2801	100	ND	1	8/28/01	9/7/01	
1,3-Dichlorobenzene	EPA 8260B	P1H2801	100	ND	1	8/28/01	9/7/01	
1,4-Dichlorobenzene	EPA 8260B	P1H2801	100	ND	1	8/28/01	9/7/01	
Dichlorodifluoromethane	EPA 8260B	P1H2801	250	ND	1	8/28/01	9/7/01	
1,1-Dichloroethane	EPA 8260B	P1H2801	100	ND	1	8/28/01	9/7/01	
1,2-Dichloroethane	EPA 8260B	P1H2801	50	ND	1	8/28/01	9/7/01	
1,1-Dichloroethene	EPA 8260B	P1H2801	250	ND	1	8/28/01	9/7/01	
cis-1,2-Dichloroethene	EPA 8260B	P1H2801	100	ND	1	8/28/01	9/7/01	
trans-1,2-Dichloroethene	EPA 8260B	P1H2801	100	ND	1	8/28/01	9/7/01	
1,2-Dichloropropane	EPA 8260B	P1H2801	100	ND	1	8/28/01	9/7/01	
1,3-Dichloropropane	EPA 8260B	P1H2801	100	ND	1	8/28/01	9/7/01	
2,2-Dichloropropane	EPA 8260B	P1H2801	100	ND	1	8/28/01	9/7/01	
1,1-Dichloropropene	EPA 8260B	P1H2801	100	ND	1	8/28/01	9/7/01	
cis-1,3-Dichloropropene	EPA 8260B	P1H2801	100	ND	1	8/28/01	9/7/01	
trans-1,3-Dichloropropene	EPA 8260B	P1H2801	100	ND	1	8/28/01	9/7/01	
Ethylbenzene	EPA 8260B	P1H2801	100	ND	1	8/28/01	9/7/01	
Hexachlorobutadiene	EPA 8260B	P1H2801	250	ND	1	8/28/01	9/7/01	
2-Hexanone	EPA 8260B	P1H2801	500	ND	1	8/28/01	9/7/01	
Iodomethane	EPA 8260B	P1H2801	100	ND	1	8/28/01	9/7/01	
Isopropylbenzene	EPA 8260B	P1H2801	100	ND	1	8/28/01	9/7/01	
p-Isopropyltoluene	EPA 8260B	P1H2801	100	ND	1	8/28/01	9/7/01	

Melissa Evans Project Manager

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-9596 FAX (858) 505-9689 (480) 785-0043 FAX (480) 785-0851

Law Engineering

4634 S. 36th Place Phoenix, AZ 85040

Attention: Jim Clarke

Client Project ID: 70211-0-0-0150-2-2.10 South Mesa

Sampled: 08/25/01-08/26/01

Report Number:

PKH0452

Received: 08/27/01

VOLATILE ORGANICS BY GC/MS (EPA 8260B)

Analyte	Method	Batch	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
			ug/kg	ug/kg			•	
Sample ID: PKH0452-02 (Dumps	ter 4414 - Soil)	0 0					
Methylene chloride	EPA 8260B	P1H2801	500	ND	1	8/28/01	9/7/01	
4-Methyl-2-pentanone (MIBK)	EPA 8260B	P1H2801	500	ND	1	8/28/01	9/7/01	
Methyl-tert-butyl Ether (MTBE)	EPA 8260B	P1H2801	250	ND	1	8/28/01	9/7/01	
Naphthalene	EPA 8260B	P1H2801	250	ND	1	8/28/01	9/7/01	
n-Propylbenzene	EPA 8260B	P1H2801	100	ND	1	8/28/01	9/7/01	
Styrene	EPA 8260B	P1H2801	100	ND	1	8/28/01	9/7/01	
1,1,1,2-Tetrachloroethane	EPA 8260B	P1H2801	250	ND	1	8/28/01	9/7/01	
1,1,2,2-Tetrachloroethane	EPA 8260B	P1H2801	100	ND	1	8/28/01	9/7/01	
Tetrachloroethene	EPA 8260B	P1H2801	100	ND	1	8/28/01	9/7/01	
Toluene	EPA 8260B	P1H2801	100	ND	1	8/28/01	9/7/01	
1,2,3-Trichlorobenzene	EPA 8260B	P1H2801	250	ND	1	8/28/01	9/7/01	
1,2,4-Trichlorobenzene	EPA 8260B	P1H2801	250	ND	1	8/28/01	9/7/01	
1,1,1-Trichloroethane	EPA 8260B	P1H2801	100	ND	1	8/28/01	9/7/01	
1,1,2-Trichloroethane	EPA 8260B	P1H2801	100	ND	1	8/28/01	9/7/01	
Trichloroethene	EPA 8260B	P1H2801	100	ND	1	8/28/01	9/7/01	
Trichlorofluoromethane	EPA 8260B	P1H2801	250	ND	1	8/28/01	9/7/01	
1,2,3-Trichloropropane	EPA 8260B	P1H2801	500	ND	1	8/28/01	9/7/01	
1,2,4-Trimethylbenzene	EPA 8260B	P1H2801	100	ND	1	8/28/01	9/7/01	
1,3,5-Trimethylbenzene	EPA 8260B	P1H2801	100	ND	1	8/28/01	9/7/01	
Vinyl acetate	EPA 8260B	P1H2801	1200	ND	1	8/28/01	9/7/01	
Vinyl chloride	EPA 8260B	P1H2801	250	ND	1	8/28/01	9/7/01	
Xylenes, Total	EPA 8260B	P1H2801	150	ND	1	8/28/01	9/7/01	
Surrogate: Dibromofluoromethane (70-125%	6)			90.4 %				
Surrogate: Toluene-d8 (50-135%)				91.2 %				
Surrogate: 4-Bromofluorobenzene (70-130%	5)			86.4 %				

DEL MAR ANALYTICAL, PHOENIX (AZ0426

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-9596 FAX (858) 505-9689 (480) 785-0043 FAX (480) 785-0851

Law Engineering 4634 S. 36th Place

Client Project ID:

70211-0-0-0150-2-2.10 South Mesa

Sampled: 08/25/01-08/26/01

Received: 08/27/01

Phoenix, AZ 85040 Attention: Jim Clarke

Report Number:

PKH0452

Analyte	Method	Batch	Reporting Limit mg/kg	Sample Result mg/kg	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: PKH0452-01 (LB2-	-S-60 - Soil)							
Arsenic	EPA 6010B	P110517	5.0	ND	1	9/5/01	9/8/01	
Chromium	EPA 6010B	P110517	1.0	19	1	9/5/01	9/8/01	NI
Chromium VI	EPA 7196A	P1H3004	1.0	ND	1	8/29/01	8/30/01	
Copper	EPA 6010B	P1I0517	2.0	7.3	1	9/5/01	9/9/01	
Nickel	EPA 6010B	P110517	5.0	12	1	9/5/01	9/8/01	
Sample ID: PKH0452-01RE8 (LB2-S-60 - Soil)						2. 2. 2.	
Zinc	EPA 6010B	P1J0103	5.0	23	1	10/1/01	10/2/01	
Sample ID: PKH0452-02 (Dum	pster 4414 - Soil)				10,1,01	10,2,01	
Arsenic	EPA 6010B	P110517	5.0	ND	1	9/5/01	9/8/01	
Barium	EPA 6010B	P110517	1.0	63	1	9/5/01	9/8/01	
Cadmium	EPA 6010B	P110517	0.50	ND	1	9/5/01	9/8/01	
Chromium	EPA 6010B	P110517	1.0	19	1	9/5/01	9/8/01	NI
Lead	EPA 6010B	P110517	5.0	ND	· 1	9/5/01	9/8/01	• • •
Mercury	EPA 7471A	P110523	0.020	0.76	1	9/5/01	9/5/01	
Selenium	EPA 6010B	P110517	5.0	ND	1	9/5/01	9/8/01	
Silver	EPA 6010B	P110517	0.50	ND	1	9/5/01	9/8/01	

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-9596 FAX (858) 505-9689 (480) 785-0043 FAX (480) 785-0851

Law Engineering 4634 S. 36th Place

Client Project ID:

70211-0-0-0150-2-2.10 South Mesa

Sampled: 08/25/01-08/26/01

Phoenix, AZ 85040 Attention: Jim Clarke

Report Number:

PKH0452

Received: 08/27/01

INORGANICS

Analyte	Method	Batch	Reporting Limit mg/kg	Sample Result mg/kg	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: PKH0452-01 (LB2-S-6	60 - Soil)							
Total Cyanide	EPA 9014	P110611	0.50 P/NP	ND P/NP	1	9/6/01	9/6/01	
Sample ID: PKH0452-02 (Dumpst	ter 4414 - Soil)							
Paint Filter Liquids Test	EPA 9095A	P1I0521	NA mg/kg	Present mg/kg	1	9/5/01	9/5/01	
Sample ID: PKH0452-02 (Dumpst	ter 4414 - Soil)							
Total Cyanide	EPA 9014	P110611	0.50	ND	1	9/6/01	9/6/01	

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-9596 FAX (858) 505-9689 (480) 785-0043 FAX (480) 785-0851

Law Engineering 4634 S. 36th Place Phoenix, AZ 85040 Attention: Jim Clarke

Client Project ID:

70211-0-0-0150-2-2.10 South Mesa

Sampled: 08/25/01-08/26/01

Received: 08/27/01

Report Number:

PKH0452

ŞILLERDÜLE EXNECÇE DADA

VOLATILE ORGANICS BY GC/MS (EPA 8260B)

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: P1H2801 Extracted: 08/28/	<u>′01</u>									
Blank Analyzed: 08/29/01 (P1H2801-I	BLK1)									
Acetone	ND	1000	ug/kg							
Benzene	ND	50	ug/kg							
Bromobenzene	ND	250	ug/kg							
Bromochloromethane	ND	250	ug/kg							
Bromodichloromethane	ND	100	ug/kg							
Bromoform	ND	250	ug/kg							
Bromomethane	ND	250	ug/kg							
2-Butanone (MEK)	ND	500	ug/kg							
n-Butylbenzene	ND	250	ug/kg							
sec-Butylbenzene	ND	250	ug/kg							
tert-Butylbenzene	ND	250	ug/kg							
Carbon Disulfide	ND	250	ug/kg							
Carbon tetrachloride	ND	250	ug/kg							
Chlorobenzene	ND	50	ug/kg							
Chloroethane	ND	250	ug/kg							
Chloroform	ND	100	ug/kg							
Chloromethane	ND	250	ug/kg							
2-Chlorotoluene	ND	250	ug/kg							
4-Chlorotoluene	ND	250	ug/kg							
Dibromochloromethane	ND	100	ug/kg							
1,2-Dibromo-3-chloropropane	ND	250	ug/kg							
1,2-Dibromoethane (EDB)	ND	100	ug/kg							
Dibromomethane	ND	100	ug/kg							
1,2-Dichlorobenzene	ND	100	ug/kg							
1,3-Dichlorobenzene	ND	100	ug/kg							
1,4-Dichlorobenzene	ND	100	ug/kg							
Dichlorodifluoromethane	ND	250	ug/kg							
1,1-Dichloroethane	ND	100	ug/kg							
1,2-Dichloroethane	ND	50	ug/kg							
1,1-Dichloroethene	ND	250	ug/kg							
cis-1,2-Dichloroethene	ND	100	ug/kg							
trans-1,2-Dichloroethene	ND ·	100	ug/kg							
1,2-Dichloropropane	ND	100	ug/kg							
1,3-Dichloropropane	ND	100	ug/kg							
2,2-Dichloropropane	ND	100	ug/kg							

Melissa Evans Project Manager

PKH0452 Page 6 of 19

%REC

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-9596 FAX (858) 505-9689 (480) 785-0043 FAX (480) 785-0851

Law Engineering 4634 S. 36th Place Phoenix, AZ 85040 Attention: Jim Clarke

Client Project ID: 70211-0-0-0150-2-2.10 South Mesa

Report Number: PKH0452

Sampled: 08/25/01-08/26/01

Received: 08/27/01

RPD

Data

METHOD BLANK/QC DATA

Spike

Source

VOLATILE ORGANICS BY GC/MS (EPA 8260B)

Reporting

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: P1H2801 Extracted: 08/2	8/01									
Blank Analyzed: 08/29/01 (P1H280)	l-BLK1)									
1,1-Dichloropropene	ND	100	ug/kg							
cis-1,3-Dichloropropene	ND	100	ug/kg							
trans-1,3-Dichloropropene	ND	100	ug/kg							
Ethylbenzene	ND	100	ug/kg							
Hexachlorobutadiene	ND	250	ug/kg							
2-Hexanone	ND	500	ug/kg							
lodomethane	ND	100	ug/kg							
lsopropylbenzene	ND	. 100	ug/kg							
p-Isopropyltoluene	ND	100	ug/kg							
Methylene chloride	ND	500	ug/kg							
4-Methyl-2-pentanone (MIBK)	ND	500	ug/kg							
Methyl-tert-butyl Ether (MTBE)	ND	250	ug/kg						•	
Naphthalene	ND	250	ug/kg							
n-Propylbenzene	ND	100	ug/kg							
Styrene	ND	100	ug/kg							
1,1,1,2-Tetrachloroethane	ND	250	ug/kg							
1,1,2,2-Tetrachloroethane	ND	100	ug/kg							
Tetrachloroethene	ND	100	ug/kg							
Toluene	ND	100	ug/kg							
1,2,3-Trichlorobenzene	ND	250	ug/kg							
1,2,4-Trichlorobenzene	ND	250	ug/kg							
1,1,1-Trichloroethane	ND	100	ug/kg							
1,1,2-Trichloroethane	ND	100	ug/kg							
Trichloroethene	ND	100	ug/kg							
Trichlorofluoromethane	ND	250	ug/kg							
1,2,3-Trichloropropane	ND	500	ug/kg							
1,2,4-Trimethylbenzene	ND	100	ug/kg							
1,3,5-Trimethylbenzene	ND	100	ug/kg							
Vinyl acetate	ND	1200	ug/kg							
Vinyl chloride	ND	250	ug/kg							
Xylenes, Total	ND	150	ug/kg							
Surrogate: Dibromofluoromethane	1240		ug/kg	1250		99.2	<i>70-125</i>			
Surrogate: Toluene-d8	1230		ug/kg	1250		98.4	50-135			
Surrogate: 4-Bromofluorobenzene	1250		ug/kg	1250		100	70-130			

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-9596 FAX (858) 505-9689 (480) 785-0043 FAX (480) 785-0851

Law Engineering 4634 S. 36th Place Phoenix, AZ 85040 Attention: Jim Clarke

Client Project ID: 70211-0-0-0150-2-2.10 South Mesa

Sampled: 08/25/01-08/26/01

Received: 08/27/01

Report Number:

PKH0452

-METHOD BLANKOC DATA

VOLATILE ORGANICS BY GC/MS (EPA 8260B)

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: P1H2801 Extracted: 08/28/	01									•
LCS Analyzed: 08/30/01 (P1H2801-BS	1)									
Acetone	1050	1000	ug/kg	1000		105	5-200			
Benzene	836	50	ug/kg	1000		83.6	65-130			
Bromobenzene	933	250	ug/kg	1000		93.3	60-135			
Bromochloromethane	886	250	ug/kg	1000		88.6	60-135			
Bromodichloromethane	800	100	ug/kg	1000		80.0	30-135			
Bromoform	838	250	ug/kg	1000		83.8	60-140			
Bromomethane	ND	250	ug/kg	1000		22.8	10-200			
2-Butanone (MEK)	1050	500	ug/kg	1000		105	10-160			
n-Butylbenzene	894	250	ug/kg	1000		89.4	65-125			
sec-Butylbenzene	929	250	ug/kg	1000		92.9	70-135			
tert-Butylbenzene	964	250	ug/kg	1000		96.4	70-130			
Carbon Disulfide	734	250	ug/kg	1000		73.4	20-120			•
Carbon tetrachloride	900	250	ug/kg	1000		90.0	70-140			
Chlorobenzene	940	50	ug/kg	1000		94.0	75-125			
Chloroethane	272	250	ug/kg	1000		27.2	10-200			
Chloroform	895	100	ug/kg	1000		89.5	35-135			
Chloromethane	725	250	ug/kg	1000		72.5	10-200			
2-Chlorotoluene	944	250	ug/kg	1000		94.4	70-135			
4-Chlorotoluene	931	250	ug/kg	1000		93.1	75-135			
Dibromochloromethane	870	100	ug/kg	1000		87.0	35-135			
1,2-Dibromo-3-chloropropane	812	250	ug/kg	1000		81.2	50-155			
1,2-Dibromoethane (EDB)	957	100	ug/kg	1000		95.7	70-130			
Dibromomethane	804	100	ug/kg	1000		80.4	65-130			
1,2-Dichlorobenzene	933	100	ug/kg	1000		93.3	70-125			
1,3-Dichlorobenzene	929	100	ug/kg	1000		92.9	70-125			
1,4-Dichlorobenzene	938	100	ug/kg	1000		93.8	70-135			
Dichlorodifluoromethane	551	250	ug/kg	1000		55.1	10-185			
1,1-Dichloroethane	925	100	ug/kg	1000		92.5	60-140			
1,2-Dichloroethane	808	50	ug/kg	1000		80.8	55-135			
1,1-Dichloroethene	836	250	ug/kg	1000		83.6	55-145			
cis-1,2-Dichloroethene	911	100	ug/kg	1000		91.1	60-125			
trans-1,2-Dichloroethene	926	100	ug/kg	1000		92.6	70-145			
1,2-Dichloropropane	755	100	ug/kg	1000		75.5	65-130			
1,3-Dichloropropane	925	100	ug/kg	1000		92.5	65-130			
2,2-Dichloropropane	955	100	ug/kg	1000		95.5	60-135			
1,1-Dichloropropene	890	100	ug/kg	1000		89.0	65-130			
							00 100			

Melissa Evans Project Manager

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (858) 505-9596 FAX (858) 505-9689 (480) 785-0043 FAX (480) 785-0851

Law Engineering 4634 S. 36th Place Phoenix, AZ 85040

Attention: Jim Clarke

Client Project ID: 70211-0-0-0150-2-2.10 South Mesa

Sampled: 08/25/01-08/26/01 Received: 08/27/01

Report Number:

PKH0452

VOLATILE ORGANICS BY GC/MS (EPA 8260B)

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: P1H2801 Extracted: 08/28/	01									
LCS Analyzed: 08/30/01 (P1H2801-BS	1)									
cis-1,3-Dichloropropene	785	100	ug/kg	1000		78.5	60-125			
trans-1,3-Dichloropropene	840	100	ug/kg	1000		84.0	50-130			
Ethylbenzene	919	100	ug/kg	1000		91.9	70-125			
Hexachlorobutadiene	850	250	ug/kg	1000		85.0	60-125			
2-Hexanone	964	500	ug/kg	1000		96.4	25-185			
Iodomethane	697	100	ug/kg	1000		69.7	30-155			
Isopropylbenzene	935	100	ug/kg	1000		93.5	70-135			
p-Isopropyltoluene	907	100	ug/kg	1000		90.7	65-130			
Methylene chloride	962	500	ug/kg	1000		96.2	60-140			
4-Methyl-2-pentanone (MIBK)	882	500	ug/kg	1000		88.2	10-175			
Methyl-tert-butyl Ether (MTBE)	960	250	ug/kg	1000		96.0	55-135			
Naphthalene	839	250	ug/kg	1000		83.9	45-155			
n-Propylbenzene	922	100	ug/kg	1000		92.2	75-135			
Styrene	898	100	ug/kg	1000		89.8	70-130			
1,1,1,2-Tetrachloroethane	942	250	ug/kg	1000		94.2	70-130			
1,1,2,2-Tetrachloroethane	915	100	ug/kg	1000		91.5	60-140			
Tetrachloroethene	925	100	ug/kg	1000		92.5	65-130			
Toluene	927	100	ug/kg	1000		92.7	70-125			
1,2,3-Trichlorobenzene	826	250	ug/kg	1000		82.6	60-135			
1,2,4-Trichlorobenzene	941	250	ug/kg	1000		94.1	55-135			
1,1,1-Trichloroethane	870	100	ug/kg	1000		87.0	65-135			
1,1,2-Trichloroethane	910	100	ug/kg	1000		91.0	65-130			
Trichloroethene	886	100	ug/kg	1000		88.6	70-130			
Trichlorofluoromethane	56 7	250	ug/kg	1000		56.7	10-200			
1,2,3-Trichloropropane	951	500	ug/kg	1000		95.1	60-150			
1,2,4-Trimethylbenzene	894	100	ug/kg	1000		89.4	75-130			
1,3,5-Trimethylbenzene	891	100	ug/kg	1000		89.1	70-130			
Vinyl acetate	1270	1200	ug/kg	1000		127	25-130			
Vinyl chloride	773	250	ug/kg	1000		. 77.3	10-200			
Xylenes, Total	2740	150	ug/kg	3000		91.3	70-130			
Surrogate: Dibromofluoromethane	1140		ug/kg	1250		91.2	70-125			
Surrogate: Toluene-d8	1180		ug/kg	1250		94.4	50-135			
Surrogate: 4-Bromofluorobenzene	1200		ug/kg	1250		96.0	70-130			

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-9596 FAX (858) 505-9689 (480) 785-0043 FAX (480) 785-0851

Law Engineering 4634 S. 36th Place Phoenix, AZ 85040 Attention: Jim Clarke

Client Project ID: 70211-0-0-0150-2-2.10 South Mesa

Report Number: PKH0452

Sampled: 08/25/01-08/26/01

Received: 08/27/01

METHOD BLANKOC DATA

VOLATILE ORGANICS BY GC/MS (EPA 8260B)

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: P1H2801 Extracted: 08/2	8/01									
LCS Dup Analyzed: 08/30/01 (P1H2	801-BSD1)									
Acetone	1240	1000	ug/kg	1000		124	5-200	16.6	25	
Benzene	836	50	ug/kg	1000		83.6	65-130	16.6 0.00	35 35	
Bromobenzene	923	250	ug/kg	1000		92.3	60-135		35	
Bromochloromethane	943	250	ug/kg	1000		94.3	60-135	1.08 6.23	35 35	
Bromodichloromethane	787	100	ug/kg	1000		78.7	30-135	1.64	35 35	
Bromoform	866	250	ug/kg	1000		86.6	60-140	3.29	35 35	
Bromomethane	ND	250	ug/kg	1000		21.5	10-200	5.87	35 35	
2-Butanone (MEK)	1120	500	ug/kg	1000		112	10-260	6.45	35 35	
n-Butylbenzene	904	250	ug/kg	1000		90.4	65-125	1.11	35 35	
sec-Butylbenzene	924	250	ug/kg	1000		92.4	70-135	0.540	35 35	
tert-Butylbenzene	946	250	ug/kg	1000		94.6	70-130	1.88	35	
Carbon Disulfide	723	250	ug/kg	1000		72.3	20-120	1.51	35	
Carbon tetrachloride	913	250	ug/kg	1000		91.3	70-140	1.43	35	
Chlorobenzene	936	50	ug/kg	1000		93.6	75-125	0.426	35	
Chloroethane	ND	250	ug/kg	1000		21.3	10-200	24.3	35	
Chloroform	904	100	ug/kg	1000		90.4	35-135	1.00	35	
Chloromethane	731	250	ug/kg	1000		73.1	10-200	0.824	35	
2-Chlorotoluene	926	250	ug/kg	1000		92.6	70-135	1.93	35	
4-Chlorotoluene	915	250	ug/kg	1000		91.5	75-135	1.73	35	
Dibromochloromethane	869	100	ug/kg	1000		86.9	35-135	0.115	35	
1,2-Dibromo-3-chloropropane	835	250	ug/kg	1000		83.5	50-155	2.79	35	
1,2-Dibromoethane (EDB)	963	100	ug/kg	1000		96.3	70-130	0.625	35	
Dibromomethane	825	100	ug/kg	1000		82.5	65-130	2.58	35	
1,2-Dichlorobenzene	923	100	ug/kg	1000		92.3	70-125	1.08	35	
1,3-Dichlorobenzene	920	100	ug/kg	1000		92.0	70-125	0.973	35	
1,4-Dichlorobenzene	945	100	ug/kg	1000		94.5	70-135	0.743	35	
Dichlorodifluoromethane	520	250	ug/kg	1000		52.0	10-185	5.79	35	
1,1-Dichloroethane	897	100	ug/kg	1000		89.7	60-140	3.07	35	
1,2-Dichloroethane	852	50	ug/kg	1000		85.2	55-135	5.30	35	
1,1-Dichloroethene	813	250	ug/kg	1000		81.3	55-145	2.79	35	
cis-1,2-Dichloroethene	910	100	ug/kg	1000		91.0	60-125	0.110	35	
trans-1,2-Dichloroethene	909	100	ug/kg	1000		90.9	70-145	1.85	35	
1,2-Dichloropropane	820	100	ug/kg	1000		82.0	65-130	8.25	35	
1,3-Dichloropropane	944	100	ug/kg	1000		94.4	65-130	2.03	35	
2,2-Dichloropropane	928	100	ug/kg	1000		92.8	60-135	2.87	35	
1,1-Dichloropropene	903	100	ug/kg	1000		90.3	65-130	1.45	35	
			_						20	

Melissa Evans Project Manager

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-9596 FAX (858) 505-9689 (480) 785-0043 FAX (480) 785-0851

Law Engineering 4634 S. 36th Place Phoenix, AZ 85040

Attention: Jim Clarke

Client Project ID:

70211-0-0-0150-2-2.10 South Mesa

Sampled: 08/25/01-08/26/01

Report Number:

PKH0452

Received: 08/27/01

VOLATILE ORGANICS BY GC/MS (EPA 8260B)

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: P1H2801 Extracted: 08/28/0	01									•
LCS Dup Analyzed: 08/30/01 (P1H280	1-BSD1)									
cis-1,3-Dichloropropene	786	100	ug/kg	1000		78.6	60-125	0.127	35	
trans-1,3-Dichloropropene	828	100	ug/kg	1000		82.8	50-130	1.44	35	
Ethylbenzene	907	100	ug/kg	1000		90.7	70-125	1.31	35	
Hexachlorobutadiene	899	250	ug/kg	1000		89.9	60-125	5.60	35	
2-Hexanone	1020	500	ug/kg	1000		102	25-185	5.65	35	
lodomethane	655	100	ug/kg	1000		65.5	30-155	6.21	35	
lsopropylbenzene	916	100	ug/kg	1000		91.6	70-135	2.05	35	
p-Isopropyltoluene	906	100	ug/kg	1000		90.6	65-130	0.110	35	
Methylene chloride	925	500	ug/kg	1000		92.5	60-140	3.92	35	
4-Methyl-2-pentanone (MIBK)	937	500	ug/kg	1000		93.7	10-175	6.05	35	
Methyl-tert-butyl Ether (MTBE)	962	250	ug/kg	1000		96.2	55-135	0.208	35	
Naphthalene	886	250	ug/kg	1000		88.6	45-155	5.45	35	•
n-Propylbenzene	900	100	ug/kg	1000		90.0	75-135	2.41	35	
Styrene	889	100	ug/kg	1000		88.9	70-130	1.01	35	
1,1,1,2-Tetrachloroethane	938	250	ug/kg	1000		93.8	70-130	0.426	35	
1,1,2,2-Tetrachloroethane	934	100	ug/kg	1000		93.4	60-140	2.06	35	
Tetrachloroethene	933	100	ug/kg	1000		93.3	65-130	0.861	35	
Toluene	924	100	ug/kg	1000		92.4	70-125	0.324	35	
1,2,3-Trichlorobenzene	843	250	ug/kg	1000		84.3	60-135	2.04	35	
1,2,4-Trichlorobenzene	937	250	ug/kg	1000		93.7	55-135	0.426	35	
1,1,1-Trichloroethane	851	100	ug/kg	1000		85.1	65-135	2.21	35	
1,1,2-Trichloroethane	937	100	ug/kg	1000		93.7	65-130	2.92	35	
Trichloroethene	881	100	ug/kg	1000		88.1	70-130	0.566	35	
Trichlorofluoromethane	377	250	ug/kg	1000		37.7	10-200	40.3	35	R4
1,2,3-Trichloropropane	987	500	ug/kg	1000		98.7	60-150	3.72	35	
1,2,4-Trimethylbenzene	892	100	ug/kg	1000		89.2	75-130	0.224	35	
1,3,5-Trimethylbenzene	875	100	ug/kg	1000		87.5	70-130	1.81	35	
Vinyl acetate	1270	1200	ug/kg	1000		127	25-130	0.00	35	
Vinyl chloride	7 67	250	ug/kg	1000		76.7	10-200	0.779	35	
Xylenes, Total	2740	150	ug/kg	3000		91.3	70-130	0.00	35	
Surrogate: Dibromofluoromethane	1200		ug/kg	1250		96.0	70-125			
Surrogate: Toluene-d8	1230		ug/kg	1250		98.4	50-135			
Surrogate: 4-Bromofluorobenzene	1210		ug/kg	1250		96.8	70-130			

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-9596 FAX (858) 505-9689 (480) 785-0043 FAX (480) 785-0851

Law Engineering 4634 S. 36th Place Phoenix, AZ 85040

Attention: Jim Clarke

Client Project ID: 70211-0-0-0150-2-2.10 South Mesa

Sampled: 08/25/01-08/26/01

Received: 08/27/01

RPD

Data

Report Number:

Reporting

PKH0452

MELHOD BLANKQCDATA

Spike

Source

%REC

VOLATILE ORGANICS BY GC/MS (EPA 8260B)

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: P1H2801 Extracted: 08/28	<u>/01</u>						÷			
Matrix Spike Analyzed: 08/29/01 (P11	H2801-MS1)				Source: F	KH0465-	01			
Acetone	1070	1000	ug/kg	1000	ND	107	5-200			
Benzene	713	- 50	ug/kg	1000	ND	71.3	65-130			
Bromobenzene	800	250	ug/kg	1000	ND	80.0	60-135			
Bromochloromethane	714	250	ug/kg	1000	ND	71.4	60-135			
Bromodichloromethane	669	100	ug/kg	1000	ND	66.9	30-135			
Bromoform	702	250	ug/kg	1000	ND	70.2	60-140			
Bromomethane	279	250	ug/kg	1000	ND	27.9	10-200			
2-Butanone (MEK)	898	500	ug/kg	1000	ND	89.8	10-160			
n-Butylbenzene	773	250	ug/kg	1000	ND	77.3	65-125			
sec-Butylbenzene	807	250	ug/kg	1000	ND	80.7	70-135			
tert-Butylbenzene	824	250	ug/kg	1000	ND	82.4	70-130			
Carbon Disulfide	588	250	ug/kg	1000	ND	58.8	20-120			
Carbon tetrachloride	742	250	ug/kg	1000	ND	74.2	70-140			
Chlorobenzene	820	50	ug/kg	1000	ND	82.0	75-125			
Chloroethane	ND	250	ug/kg	1000	ND	23.4	10-200			
Chloroform	758	100	ug/kg	1000	ND	75.8	35-135			
Chloromethane	552	250	ug/kg	1000	ND	55.2	10-200			
2-Chlorotoluene	818	250	ug/kg	1000	ND	81.8	70-135			
4-Chlorotoluene	805	250	ug/kg	1000	ND	80.5	75-135			
Dibromochloromethane	739	100	ug/kg	1000	ND	73.9	35-135			
1,2-Dibromo-3-chloropropane	681	250	ug/kg	1000	ND	68.1	50-155			
1,2-Dibromoethane (EDB)	849	100	ug/kg	1000	ND	84.9	70-130			
Dibromomethane	722	100	ug/kg	1000	ND	72.2	65-130			
1,2-Dichlorobenzene	806	100	ug/kg	1000	ND	80.6	70-125			
1,3-Dichlorobenzene	807	100	ug/kg	1000	ND	80.7	70-125			
1,4-Dichlorobenzene	813	100	ug/kg	1000	ND	81.3	70-135			
Dichlorodifluoromethane	328	250	ug/kg	1000	ND	32.8	10-185			
1,1-Dichloroethane	778	100	ug/kg	1000	ND	77.8	60-140			
1,2-Dichloroethane	695	50	ug/kg	1000	ND	69.5	55-135			
1,1-Dichloroethene	669 .	250	ug/kg	1000	ND	66.9	55-145			
cis-1,2-Dichloroethene	786	100	ug/kg	1000	ND	78.6	60-125			
trans-1,2-Dichloroethene	779	100	ug/kg	1000	ND	77.9	70-145			
1,2-Dichloropropane	708	100	ug/kg	1000	ND	70.8	65-130			
1,3-Dichloropropane	822	100	ug/kg	1000	ND	82.2	65-130			
2,2-Dichloropropane	753	100	ug/kg	1000	ND	75.3	60-135			
1,1-Dichloropropene	743	100	ug/kg	1000	ND	74.3	65-130			

Melissa Evans Project Manager

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-9596 FAX (858) 505-9689 (480) 785-0043 FAX (480) 785-0851

Law Engineering 4634 S. 36th Place Phoenix, AZ 85040

Attention: Jim Clarke

Client Project ID:

70211-0-0-0150-2-2.10 South Mesa

Sampled: 08/25/01-08/26/01

Report Number: PKH0452

Received: 08/27/01

MECHOD BLANKOC DATA

VOLATILE ORGANICS BY GC/MS (EPA 8260B)

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: P1H2801 Extracted: 08/	<u>/28/01</u>									
Matrix Spike Analyzed: 08/29/01 (P1H2801-MS1)				Source: P	KH0465-	01			
cis-1,3-Dichloropropene	664	100	ug/kg	1000	ND	66.4	60-125			
trans-1,3-Dichloropropene	708	100	ug/kg	1000	ND	70.8	50-130			
Ethylbenzene	796	100	ug/kg	1000	ND	79.6	70-125			
Hexachlorobutadiene	812	250	ug/kg	1000	ND	81.2	60-125			
2-Hexanone	891	500	ug/kg	1000	ND	89.1	25-185			
Iodomethane	595	100	ug/kg	1000	ND	59.5	30-155			
lsopropylbenzene	799	100	ug/kg	1000	ND	79.9	70-135			
p-Isopropyltoluene	772	100	ug/kg	1000	ND	77.2	65-130			
Methylene chloride	737	500	ug/kg	1000	ND	73.7	60-140			
4-Methyl-2-pentanone (MIBK)	793	500	ug/kg	1000	ND	79.3	10-175			
Methyl-tert-butyl Ether (MTBE)	822	250	ug/kg	1000	ND	82.2	55-135			
Naphthalene	803	250	ug/kg	1000	ND	80.3	45-155			
n-Propylbenzene	786	100	ug/kg	1000	ND	78.6	75-135			
Styrene	772	100	ug/kg	1000	ND	77.2	70-130			
1,1,1,2-Tetrachloroethane	817	250	ug/kg	1000	ND	81.7	70-130			
1,1,2,2-Tetrachloroethane	797	100	ug/kg	1000	ND	79.7	60-140			
Tetrachloroethene	815	100	ug/kg	1000	ND	81.5	65-130			
Toluene	770	100	ug/kg	1000	ND	77.0	70-125			
1,2,3-Trichlorobenzene	760	250	ug/kg	1000	ND	76.0	60-135			
1,2,4-Trichlorobenzene	825	250	ug/kg	1000	ND	82.5	55-135			
1,1,1-Trichloroethane	688	100	ug/kg	1000	ND	68.8	65-135			
1,1,2-Trichloroethane	807	100	ug/kg	1000	ND	80.7	65-130			
Trichloroethene	744	100	ug/kg	1000	ND	74.4	70-130			
Trichlorofluoromethane	398	250	ug/kg	1000	ND	39.8	10-200			
1,2,3-Trichloropropane	841	500	ug/kg	1000	ND	84.1	60-150			
1,2,4-Trimethylbenzene	777	100	ug/kg	1000	ND	77.7	75-130			
1,3,5-Trimethylbenzene	774	100	ug/kg	1000	ND	77.4	70-130			
Vinyl acetate	ND	1200	ug/kg	1000	ND	105	25-130			
Vinyl chloride	587	250	ug/kg	1000	ND	58.7	10-200			
Xylenes, Total	2400	150	ug/kg	3000	ND	80.0	70-130			
Surrogate: Dibromofluoromethane	942		ug/kg	1250		75.4	70-125			
Surrogate: Toluene-d8	972		ug/kg	1250		77.8	50-135			
Surrogate: 4-Bromofluorobenzene	1020		ug/kg	1250		81.6	70-130			

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-9596 FAX (858) 505-9689 (480) 785-0043 FAX (480) 785-0851

Law Engineering 4634 S. 36th Place

Phoenix, AZ 85040 Attention: Jim Clarke Client Project ID:

Report Number:

70211-0-0-0150-2-2.10 South Mesa

Sampled: 08/25/01-08/26/01

Received: 08/27/01

NI DE DE LO DE DE DESENTATO DE LA PARTICIO DE LA P

PKH0452

TOTAL METALS

		Reporting		Spike	Source		%REC		RPD ·	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: P1H3004 Extracted: 08/29/0	<u>1</u>						4			
Blank Analyzed: 08/30/01 (P1H3004-BI	LK1)									
Chromium VI	ND	1.0	mg/kg							
LCS Analyzed: 08/30/01 (P1H3004-BS1	.) .									
Chromium VI	9.73	1.0	mg/kg	10.0		97.3	85-115			
LCS Dup Analyzed: 08/30/01 (P1H3004	-BSD1)									
Chromium VI	9.28	1.0	mg/kg	10.0		92.8	85-115	4.73	20	
Matrix Spike Analyzed: 08/30/01 (P1H3	3004-MS1)				Source: P	KH0452-	01			
Chromium VI	8.84	1.0	mg/kg	10.0	ND	88.4	85-115			
Matrix Spike Dup Analyzed: 08/30/01 (P1H3004-M	SD1)			Source: P	KH0452-	01			
Chromium VI	9.98	1.0	mg/kg	10.0	ND	99.8	85-115	12.1	20	
Batch: P110517 Extracted: 09/05/01	_									
Blank Analyzed: 09/08/01 (P110517-BL	K1)									
Arsenic	ND	5.0	mg/kg							
Barium	ND	1.0	mg/kg							
Cadmium	ND	0.50	mg/kg							
Chromium	1.51	1.0	mg/kg							В1
Copper	ND	2.0	mg/kg							
Lead	ND	5.0	mg/kg							
Nickel	ND	5.0	mg/kg							
Selenium	ND	5.0	mg/kg							
Silver	ND	0.50	mg/kg							

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-9596 FAX (858) 505-9689 (480) 785-0043 FAX (480) 785-0851

Law Engineering 4634 S. 36th Place

Phoenix, AZ 85040

Attention: Jim Clarke

Client Project ID:

Report Number:

70211-0-0-0150-2-2.10 South Mesa

Sampled: 08/25/01-08/26/01

Received: 08/27/01

PKH0452

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: P1I0517 Extracted: 09/05/0	<u>1</u>									
LCS Analyzed: 09/08/01 (P110517-BS1)									
Arsenic	96.6	5.0	mg/kg	100		96.6	80-120			
Barium	95.7	1.0	mg/kg	100		95.7	80-120			
Cadmium	96.9	0.50	mg/kg	100		96.9	80-120			
Chromium	94.1	1.0	mg/kg	100		94.1	80-120			
Copper	94.6	2.0	mg/kg	100		94.6	80-120			
Lead	92.5	5.0	mg/kg	100		92.5	80-120			
Nickel	92.5	5.0	mg/kg	100		92.5	80-120			
Selenium	97.9	5.0	mg/kg	100		97.9	80-120			
Silver	101	0.50	mg/kg	100		101	80-120			
LCS Dup Analyzed: 09/08/01 (P110517	7-BSD1)									
Arsenic	95.6	5.0	mg/kg	100		95.6	80-120	1.04	20	
Barium	93.4	1.0	mg/kg	100		93.4	80-120	2.43	20	
Cadmium	94.1	0.50	mg/kg	100		94.1	80-120	2.93	20	
Chromium	92.8	1.0	mg/kg	100		92.8	80-120	1.39	20	
Copper	92.7	2.0	mg/kg	100		92.7	80-120	2.03	20	
Lead	92.3	5.0	mg/kg	100		92.3	80-120	0.216	20	
Nickel	91.6	5.0	mg/kg	100		91.6	80-120	0.978	20	
Selenium	96.1	5.0	mg/kg	100		96.1	80-120	1.86	20	
Silver	99.3	0.50	mg/kg	100		99.3	80-120	1.70	20	
Matrix Spike Analyzed: 09/08/01 (P1I	0517-MS1)				Source:	PKH0452	-01			
Arsenic	90.9	5.0	mg/kg	100	ND	89.8	75-125			
Barium	145	1.0	mg/kg	100	48	97.0	75-125			
Cadmium	87.6	0.50	mg/kg	100	ND	87.6	75-125			
Chromium	108	1.0	mg/kg	100	19	89.0	75-125			
Copper	97.7	2.0	mg/kg	100	7.3	90.4	75-125			
Lead	92.2	5.0	mg/kg	100	ND	88.1	75-125			
Nickel	97.0	5.0	mg/kg	100	12	85.0	75-125			
Selenium	91.4	5.0	mg/kg	100	ND	89.8	75-125			
Silver	96.8	0.50	mg/kg	100	ND	96.8	75-125			

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-9596 FAX (858) 505-9689 (480) 785-0043 FAX (480) 785-0851

Law Engineering 4634 S. 36th Place Phoenix, AZ 85040

Attention: Jim Clarke

Client Project ID:

70211-0-0-0150-2-2.10 South Mesa

Sampled: 08/25/01-08/26/01

Received: 08/27/01

Report Number:

PKH0452

METHOD BLANK/QC DATA

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: P1I0517 Extracted: 09/05/0	<u>01</u>									
Matrix Spike Dup Analyzed: 09/08/01	(P1I0517-M	SD1)			Source: F	KH0452-	01			
Arsenic	93.3	5.0	mg/kg	100	ND	92.2	75-125	2.61	20	
Barium	148	1.0	mg/kg	100	48	100	75-125	2.05	20	
Cadmium	90.5	0.50	mg/kg	100	ND	90.5	75-125	3.26	20	
Chromium	111	1.0	mg/kg	100	19	92.0	75-125	2.74	20	
Copper	101	2.0	mg/kg	100	7.3	93.7	75-125	3.32	20	
Lead	95.4	5.0	mg/kg	100	ND	91.3	75-125	3.41	20	
Nickel	100	5.0	mg/kg	100	12	88.0	75-125	3.05	20	
Selenium	92.9	5.0	mg/kg	100	ND	91.3	75-125	1.63	20	
Silver	97.5	0.50	mg/kg	100	ND	97.5	75-125	0.721	20	
Batch: P1I0523 Extracted: 09/05/6	<u>01</u>									
Blank Analyzed: 09/05/01 (P1I0523-B	LK1)									
Mercury	ND	0.020	mg/kg							
LCS Analyzed: 09/05/01 (P1I0523-BS	1)		0 0							
Mercury	0.413	0.020	mg/kg	0.417		99.0	85-115			
Matrix Spike Analyzed: 09/05/01 (P1)	(0523-MS1)				Source: F	KH0517-				
Mercury	0.594	0.020	mg/kg	0.417	ND	139	85-115			M1
Matrix Spike Dup Analyzed: 09/05/01	(P1I0523-M	SD1)			Source: F					
Mercury	0.527	0.020	mg/kg	0.417	ND	123	85-115	12.0	20	M1
Batch: P1J0103 Extracted: 10/01/	01									
Blank Analyzed: 10/02/01 (P1J0103-B										
Zinc	ND	5.0	mg/kg							

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-9596 FAX (858) 505-9689 (480) 785-0043 FAX (480) 785-0851

Law Engineering 4634 S. 36th Place Phoenix, AZ 85040

Attention: Jim Clarke

Client Project ID:

70211-0-0-0150-2-2.10 South Mesa

Sampled: 08/25/01-08/26/01

Report Number:

PKH0452

Received: 08/27/01

METHOD BLANK OF DATA

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: P1J0103 Extracted: 10/01/03	<u>L</u>									
LCS Analyzed: 10/02/01 (P1J0103-BS1))									
Zinc	86.2	5.0	mg/kg	100		86.2	80-120			
Matrix Spike Analyzed: 10/02/01 (P1J0	103-MS1)				Source: P	K10288-1	9			
Zinc	142	5.0	mg/kg	100	29	113	75-125			
Matrix Spike Dup Analyzed: 10/02/01 (P1J0103-MSI	D1)			Source: P	K10288-1	9			
Zinc	117	5.0	mg/kg	100	29	88.0	75-125	19.3	20	

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-9596 FAX (858) 505-9689 (480) 785-0043 FAX (480) 785-0851

Law Engineering 4634 S. 36th Place Phoenix, AZ 85040

Attention: Jim Clarke

Client Project ID:

70211-0-0-0150-2-2.10 South Mesa

Sampled: 08/25/01-08/26/01

Report Number:

PKH0452

Received: 08/27/01

METHOD BLANK OC DATA

INORGANICS

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: P1I0611 Extracted: 09/06/01	<u>_</u>									
Blank Analyzed: 09/06/01 (P1I0611-BL	K1)									
Total Cyanide	ND	0.50	mg/kg							
Matrix Spike Analyzed: 09/06/01 (P110	611-MS1)				Source: P	KH0448-	05			
Total Cyanide	1.79	0.50	mg/kg	2.50	ND	71.6	70-130			
Matrix Spike Dup Analyzed: 09/06/01 (P110611-MS	D1)			Source: P	KH0448-	05			
Total Cyanide	1.31	0.50	mg/kg	2.50	ND	52.4	70-130	31.0	20	M2,Q11
Reference Analyzed: 09/06/01 (P110611	-SRM1)							0110	20	1412,Q11
Total Cyanide	109	20	mg/kg	201		54.2	40-160			

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-9596 FAX (858) 505-9689 (480) 785-0043 FAX (480) 785-0851

Law Engineering 4634 S. 36th Place Phoenix, AZ 85040 Attention: Jim Clarke

Client Project ID:

Report Number:

70211-0-0-0150-2-2.10 South Mesa

Sampled: 08/25/01-08/26/01

Received: 08/27/01

NIETHOD BLANK QU DATA

PKH0452

DATA QUALIFIERS AND DEFINITIONS

Target analyte detected in method blank at or above the method reporting limit.
 Target analyte detected in blank at/above method acceptance criteria.

M1 Matrix spike recovery was high, the method control sample recovery was acceptable.
 M2 Matrix spike recovery was low, the method control sample recovery was acceptable.

N1 See case narrative.

Q11 Sample is heterogeneous. Sample homogeneity could not be readily achieved using routine laboratory practices.

R4 MS/MSD RPD exceeded the method control limit. Recovery met acceptance criteria.

ND Analyte NOT DETECTED at or above the reporting limit

NR Not reported.

RPD Relative Percent Difference

Ďel Mar Analytical

CHAIN OF CUSTODY FORM

9820 South State Brizo, Phoefix AZ 85044 (480) 785-00ns rha 1907 788-3821 2520 E. Sunsat Rd., Sulte 3, Las Veges, NV 89120 (702) 785-3820 F&X (702) 788-3821

		To the second control of the second control	Special Instructions	10-70-70-1 10-70-70-1 10-70-70-1									e: (Check) 72 hours	5 days	nomal	(37/0) Sample Integrity: (Check) on ice intact on this project. Payment for services is
	127	1:3 tx.x		7	X								Tumaround Time:	2 Points	48 hours	Sample Integrity: intact s performed on this pr
Analysis Required	2 st.	34.4x	18		X											1 . 1
	4	∂γ:•	1/1 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2	х х	×					-			Date /Time:			Date Time: S
	2.10	N 0520	9 mm 2 mm 1 mm 1 mm	×									Received by:	A	Received by: 1%	Received in Lab by:
Project/PO Number:	70211-0-0150-2-	437	Sampling Sampling Preservatives Date Time	5/11 10/52/8	0820 199218									(0:15	10/15	10010
Prolect	200		Sample Container # of Matrix Type Cont.	it skere									Date /Time:	10/22/8	Date /Time:	Date /Time:
	Olient Name/Address: $\mathcal{L}_{\mathcal{A}}_{\mathcal{A}}$	Sampler J. M. C. Lutte.	Sample Sam Description Mai	0.9-		1							Relinduished By:	JUNIA 17-11 18411	Rélinquished By:	Relinquished By: Date /Time:

CORRECTIVE ACTION REPORT

Department:

GC/MS

Method:

8260B

Date:

09/09/2001

Matrix:

Water

Batch:

P1I1002

Samples:

PKH0451-02, PKH0563-01 - PKH0563-02, PKH0535-02, PKH0511-11

- PKH00511-13, PKH0540-02 & PKI0037-03

Identification and Definition of Problem:

The Matrix Spike (MS) recovered below the Method Detection Limit (MDL) for Vinyl Acetate. The MS recovered at a concentration of 11ppb and the MDL is 12ppb. The recovery of the compound is 44% and within the acceptance limits of 25-130%. Due to the MS recovering below the MDL, the Relative Percent Difference (RPD) between the MS and the Matrix Spike Duplicate (MSD) is not calculated in the report. The actual RPD between the MS and the MSD is 13%.

Determination of the Cause of the Problem:

The cause of the low recovery in the MS which caused the concentration to be below the MDL has not been determined.

Corrective Action:

The Laboratory Control Sample (LCS), Laboratory Control Sample Duplicate (LCSD) and MSD recovered within acceptance limits for Vinyl acetate. The RPD between the LCS and the LCSD was also within acceptance limits. Therefore, the data should not be significantly impacted. The MS has been flagged "N2" for Vinyl acetate to indicate that the compound was recovered at a concentration that is less than the MDL.

Elizabeth C. Wueschner: Shabett C. Wussen Date: 9/20/2001 Quality Assurance Manager

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (588) 505-8596 FAX (858) 505-9589 (480) 785-0043 FAX (480) 785-0851

Law Engineering 4634 S. 36th Place

Client Project ID: 70211-0-0152

Sampled: 08/29/01-08/30/01

Phoenix, AZ 85040 Attention: Jim Clarke

Report Number: PKH0540

Received: 08/30/01

VOLATILE ORGANICS BY GC/MS (EPA 8260B)

Analyte	Method	Batch	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
C	ADOMED AGAG	a	ug/kg	ug/kg				
Sample ID: PKH0540-01 (DUN		•						
Acetone	EPA 8260B	P1H3104	1000	ND	1	8/31/01	9/10/01	
Benzene	EPA 8260B	P1H3104	50	ND	1	8/31/01	9/10/01	
Bromobenzene	EPA 8260B	P1H3104	250	ND	1	8/31/01	9/10/01	
Bromochloromethane	EPA 8260B	P1H3104	250	ND	1	8/31/01	9/10/01	
Bromodichloromethane	EPA 8260B	P1H3104	100	ND	1	8/31/01	9/10/01	
Bromoform	EPA 8260B	P1H3104	250	ND	1	8/31/01	9/10/01	M2
Bromomethane	EPA 8260B	P1H3104	250	ND	1	8/31/01	9/10/01	
2-Butanone (MEK)	EPA 8260B	P1H3104	500	ND	1	8/31/01	9/10/01	
n-Butylbenzene	EPA 8260B	P1H3104	250	ND	1	8/31/01	9/10/01	
sec-Butylbenzene	EPA 8260B	P1H3104	250	ND	1	8/31/01	9/10/01	
tert-Butylbenzene	EPA 8260B	P1H3104	250	ND	1	8/31/01	9/10/01	
Carbon Disulfide	EPA 8260B	P1H3104	250	ND	1	8/31/01	9/10/01	
Carbon tetrachloride	EPA 8260B	P1H3104	250	ND	1	8/31/01	9/10/01	4
Chlorobenzene	EPA 8260B	P1H3104	50	ND	1	8/31/01	9/10/01	
Chloroethane	EPA 8260B	P1H3104	250	ND	1	8/31/01	9/10/01	
Chloroform	EPA 8260B	P1H3104	100	ND	1	8/31/01	9/10/01	
Chloromethane	EPA 8260B	P1H3104	250	ND	1	8/31/01	9/10/01	
2-Chlorotoluene	EPA 8260B	P1H3104	250	ND	1	8/31/01	9/10/01	
4-Chlorotoluene	EPA 8260B	P1H3104	250	ND	1	8/31/01	9/10/01	
Dibromochloromethane	EPA 8260B	P1H3104	100	ND	1	8/31/01	9/10/01	
1,2-Dibromo-3-chloropropane	EPA 8260B	P1H3104	250	ND	1	8/31/01	9/10/01	M2
1,2-Dibromoethane (EDB)	EPA 8260B	P1H3104	100	ND	. 1	8/31/01	9/10/01	M2
Dibromomethane	EPA 8260B	P1H3104	100	ND	1	8/31/01	9/10/01	
1,2-Dichlorobenzene	EPA 8260B	P1H3104	100	ND	1	8/31/01	9/10/01	
1,3-Dichlorobenzene	EPA 8260B	P1H3104	100	ND	1	8/31/01	9/10/01	
1,4-Dichlorobenzene	EPA 8260B	P1H3104	1,00	ND	1	8/31/01	9/10/01	
Dichlorodifluoromethane	EPA 8260B	P1H3104	250	ND	1	8/31/01	9/10/01	
1,1-Dichloroethane	EPA 8260B	P1H3104	100	ND	1	8/31/01	9/10/01	
1,2-Dichloroethane	EPA 8260B	P1H3104	50	ND	. 1	8/31/01	9/10/01	
1,1-Dichloroethene	EPA 8260B	P1H3104	250	ND	1	8/31/01	9/10/01	
cis-1,2-Dichloroethene	EPA 8260B	P1H3104	100	ND	. 1	8/31/01	9/10/01	
trans-1,2-Dichloroethene	EPA 8260B	P1H3104	100	ND	. 1	8/31/01	9/10/01	
1,2-Dichloropropane	EPA 8260B	P1H3104	100	ND	1	8/31/01	9/10/01	
1,3-Dichloropropane	EPA 8260B	P1H3104	100	ND	1	8/31/01	9/10/01	
2,2-Dichloropropane	EPA 8260B	P1H3104	100	ND .	1 .	8/31/01	9/10/01	
1,1-Dichloropropene	EPA 8260B	P1H3104	100	ND	1	8/31/01	9/10/01	
cis-1,3-Dichloropropene	EPA 8260B	P1H3104	100	ND	.1	8/31/01	9/10/01	•
trans-1,3-Dichloropropene	EPA 8260B	P1H3104	100	ND	-1	8/31/01	9/10/01	
Ethylbenzene	EPA 8260B	P1H3104	100	ND	1	8/31/01	9/10/01	
Hexachlorobutadiene	EPA 8260B	P1H3104	250	ND	-1	8/31/01	9/10/01	
2-Hexanone	EPA 8260B	P1H3104	500	ND	1	8/31/01	9/10/01	
Iodomethane	EPA 8260B	P1H3104	100	ND	1	8/31/01	9/10/01	
Isopropylbenzene	EPA 8260B	P1H3104	100	ND	1	8/31/01	9/10/01	
p-Isopropyltoluene	EPA 8260B	P1H3104	100	ND	1	8/31/01	9/10/01	

Melissa Evans Project Manager

PKH0540 Page 2 of 34

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 579-1843 (858) 505-8596 FAX (858) 505-9589 (480) 785-0043 FAX (480) 785-0851

Law Engineering

4634 S. 36th Place Phoenix, AZ 85040

Attention: Jim Clarke

Client Project ID:

Report Number:

70211-0-0152

Sampled: 08/29/01-08/30/01

Received: 08/30/01

VOLATILE ORGANICS BY GC/MS (EPA 8260B)

PKH0540

Analysta	Method	Batch	Reporting	Sample	Dilution Factor	Date Extracted	Date	Data
Analyte	Method	Daten	Limit	Result	Factor	Extracted	Analyzed	Qualifiers
			ug/kg	ug/kg				
Sample ID: PKH0540-01 (DUM	PSTER 4212 -	Soil)						
Methylene chloride	EPA 8260B	P1H3104	500	ND	- 1	8/31/01	9/10/01	
4-Methyl-2-pentanone (MIBK)	EPA 8260B	P1H3104	500	ND	1	8/31/01	9/10/01	
Methyl-tert-butyl Ether (MTBE)	EPA 8260B	P1H3104	250	ND	1	8/31/01	9/10/01	
Naphthalene	EPA 8260B	P1H3104	250	ND	1	8/31/01	9/10/01	
n-Propylbenzene	EPA 8260B	P1H3104	100	ND ·	1	8/31/01	9/10/01	
Styrene	EPA 8260B	P1H3104	100	ND	1	8/31/01	9/10/01	
1,1,1,2-Tetrachloroethane	EPA 8260B	P1H3104	250	ND	1	8/31/01	9/10/01	
1,1,2,2-Tetrachloroethane	EPA 8260B	P1H3104	100	ND	1	8/31/01	9/10/01	M2
Tetrachloroethene	EPA 8260B	P1H3104	100	ND	1	8/31/01	9/10/01	. •
Toluene	EPA 8260B	P1H3104	100	ND	1	8/31/01	9/10/01	
1,2,3-Trichlorobenzene	EPA 8260B	P1H3104	250	ND	1	8/31/01	9/10/01	
1,2,4-Trichlorobenzene	EPA 8260B	P1H3104	250	ND	1	8/31/01	9/10/01	
1,1,1-Trichloroethane	EPA 8260B	P1H3104	100	ND	1	8/31/01	9/10/01	
1,1,2-Trichloroethane	EPA 8260B	P1H3104	100	ND	1	8/31/01	9/10/01	
Trichloroethene	EPA 8260B	P1H3104	100	ND	1	8/31/01	9/10/01	
Trichlorofluoromethane	EPA 8260B	P1H3104	250	ND	1	8/31/01	9/10/01	
1,2,3-Trichloropropane	EPA 8260B	P1H3104	500	ND	1	8/31/01	9/10/01	M2
1,2,4-Trimethylbenzene	EPA 8260B	P1H3104	100	ND	1 .	8/31/01	9/10/01	
1,3,5-Trimethylbenzene	EPA 8260B	P1H3104	100	ND	1	8/31/01	9/10/01	
Vinyl acetate	EPA 8260B	P1H3104	1200	ND	1	8/31/01	9/10/01	M2
Vinyl chloride	EPA 8260B	P1H3104	250	ND	1	8/31/01	9/10/01	
Xylenes, Total	EPA 8260B	P1H3104	150	ND	.1	8/31/01	9/10/01	
Surrogate: Dibromofluoromethane (70-125	5%)			89.6 %				
Surrogate: Toluene-d8 (50-135%)				86.4 %				
Surrogate: 4-Bromofluorobenzene (70-130)	%)			83.2 %				

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-8596 FAX (858) 505-9589 (480) 785-0043 FAX (480) 785-0851

Law Engineering 4634 S. 36th Place

Client Project ID:

70211-0-0152

Sampled: 08/29/01-08/30/01

Phoenix, AZ 85040 Attention: Jim Clarke

Report Number:

PKH0540

Received: 08/30/01

VOLATILE ORGANICS BY GC/MS (EPA 8260B)

Analyte	Method	Batch	Reporting Limit ug/l	Sample Result ug/l	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: PKH0540-02 (RIN	ISATE 8/30/01 -	Water)	·· ·	~· ····		•		
Acetone	EPA 8260B	P111002	20	ND	1	9/9/01	9/9/01	
Benzene	EPA 8260B	P111002	2.0	ND	i	9/9/01	9/9/01	
Bromobenzene	EPA 8260B	P111002	5.0	ND	1	9/9/01	9/9/01	
Bromochloromethane	EPA 8260B	P1I1002	5.0	ND	Ī	9/9/01	9/9/01	
Bromodichloromethane	EPA 8260B	P111002	2.0	ND	ī	9/9/01	9/9/01	
Bromoform	EPA 8260B	P1I1002	5.0	ND	1	9/9/01	9/9/01	
Bromomethane	EPA 8260B	P111002	5.0	ND	- 1	9/9/01	9/9/01	
2-Butanone (MEK)	EPA 8260B	P1I1002	10	ND	1	9/9/01	9/9/01	
n-Butylbenzene	EPA 8260B	P1I1002	5.0	ND	1	9/9/01	9/9/01	
sec-Butylbenzene	EPA 8260B	P1I1002	5.0	ND	1	9/9/01	9/9/01	•
tert-Butylbenzene	EPA 8260B	P1I1002	5.0	ND	1	9/9/01	9/9/01	
Carbon Disulfide	EPA 8260B	P1I1002	5.0	ND	1	9/9/01	9/9/01	
Carbon tetrachloride	EPA 8260B	P1I1002	5.0	ND	1	9/9/01	9/9/01	
Chlorobenzene	EPA 8260B	P1I1002	2.0	ND	1	9/9/01	9/9/01	
Chloroethane	EPA 8260B	P1I1002	5.0	ND	1	9/9/01	9/9/01	
Chloroform	EPA 8260B	P1I1002	2.0	ND	1	9/9/01	9/9/01	
Chloromethane	EPA 8260B	P1I1002	5.0	ND	1	9/9/01	9/9/01	
2-Chlorotoluene	EPA 8260B	P1I1002	5.0	ND	1	9/9/01	9/9/01	
4-Chlorotoluene	EPA 8260B	P1I1002	5.0	ND	1	9/9/01	9/9/01	
Dibromochloromethane	EPA 8260B	P1I1002	2.0	ND	1	9/9/01	9/9/01	
1,2-Dibromo-3-chloropropane	EPA 8260B	P1I1002	5.0	ND	1	9/9/01	9/9/01	
1,2-Dibromoethane (EDB)	EPA 8260B	P111002	2.0	ND	. 1	9/9/01	9/9/01	
Dibromomethane	EPA 8260B	P1I1002	2.0	ND	1	9/9/01	9/9/01	
1,2-Dichlorobenzene	EPA 8260B	P1I1002	2.0	ND	1	9/9/01	9/9/01	
1,3-Dichlorobenzene	EPA 8260B	P111002	2.0	ND	1	9/9/01	9/9/01	
1,4-Dichlorobenzene	EPA 8260B	P1I1002	2.0	ND	1	9/9/01	9/9/01	
Dichlorodifluoromethane	EPA 8260B	P1I1002	5.0	ND	1	9/9/01	9/9/01	
1,1-Dichloroethane	EPA 8260B	P1I1002	2.0	ND	1	9/9/01	9/9/01	
1,2-Dichloroethane	EPA 8260B	P1I1002	2.0	ND	1	9/9/01	9/9/01	
1,1-Dichloroethene	EPA 8260B	P111002	5.0	ND	1	9/9/01	9/9/01	
cis-1,2-Dichloroethene	EPA 8260B	P1I1002	2.0	ND	1	9/9/01	9/9/01	
trans-1,2-Dichloroethene	EPA 8260B	P1I1002	2.0	ND	. 1	9/9/01	9/9/01	
1,2-Dichloropropane	EPA 8260B	P1I1002	2.0	ND	1	9/9/01	9/9/01	
1,3-Dichloropropane	EPA 8260B	P111002	2.0	ND	1	9/9/01	9/9/01	
2,2-Dichloropropane	EPA 8260B	P1I1002	2.0	ND	1	9/9/01	9/9/01	
1,1-Dichloropropene	EPA 8260B	P1I1002	2.0	ND	1	9/9/01	9/9/01	
cis-1,3-Dichloropropene	EPA 8260B	P111002	2.0	ND	1	9/9/01	9/9/01	
trans-1,3-Dichloropropene	EPA 8260B	P1I1002	2.0	ND	1	9/9/01	9/9/01	
Ethylbenzene	EPA 8260B	P111002	2.0	ND	1	9/9/01	9/9/01	
Hexachlorobutadiene	EPA 8260B	P1I1002	5.0	ND	1	9/9/01	9/9/01	
2-Hexanone	EPA 8260B	P1I1002	10	ND .	1	9/9/01	9/9/01	
Iodomethane	EPA 8260B	P1I1002	2.0	ND	1	9/9/01	9/9/01	
Isopropylbenzene	EPA 8260B	P111002	2.0	ND	1	9/9/01	9/9/01	
p-Isopropyltoluene	EPA 8260B	P1I1002	2.0	ND	1	9/9/01	9/9/01	

Melissa Evans Project Manager

PKH0540 Page 4 of 34

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-8596 FAX (858) 505-9589 (480) 785-0043 FAX (480) 785-0851

Law Engineering

4634 S. 36th Place Phoenix, AZ 85040

Attention: Jim Clarke

Client Project ID: 70211-0-0152

Sampled: 08/29/01-08/30/01

Report Number:

PKH0540

Received: 08/30/01

VOLATILE ORGANICS BY GC/MS (EPA 8260B)

Analyte	Method	Batch	Reporting Limit ug/l	Sample Result ug/I	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: PKH0540-02 (RIN	SATE 8/30/01 - '	Water)	_	•				
Methylene chloride	EPA 8260B	P1I1002	5.0	ND	. 1	9/9/01	9/9/01	
4-Methyl-2-pentanone (MIBK)	EPA 8260B	P1I1002	10	ND .	1	9/9/01	9/9/01	
Methyl-tert-butyl Ether (MTBE)	EPA 8260B	P1I1002	5.0	ND ·	1	9/9/01	9/9/01	
Naphthalene	EPA 8260B	P1I1002	5.0	ND	1 .	9/9/01	9/9/01	
n-Propylbenzene	EPA 8260B	P1I1002	2.0	ND	. 1	9/9/01	9/9/01	
Styrene	EPA 8260B	P1I1002	2.0	ND	1	9/9/01	9/9/01	
1,1,1,2-Tetrachloroethane	EPA 8260B	P1I1002	5.0	ND	1	9/9/01	9/9/01	
1,1,2,2-Tetrachloroethane	EPA 8260B	P1I1002	2.0	ND.	1	9/9/01	9/9/01	
Tetrachloroethene	EPA 8260B	P111002	2.0	ND	1	9/9/01	9/9/01	
Toluene	EPA 8260B	P1I1002	2.0	ND	1	9/9/01	9/9/01	
1,2,3-Trichlorobenzene	EPA 8260B	P111002	5.0	ND	1	9/9/01	9/9/01	
1,2,4-Trichlorobenzene	EPA 8260B	P1I1002	5.0	ND	1	9/9/01	9/9/01	
1,1,1-Trichloroethane	EPA 8260B	P1I1002	2.0	ND	1 :	9/9/01	9/9/01	
1,1,2-Trichloroethane	EPA 8260B	P1I1002	2.0	ND	1	9/9/01	9/9/01	
Trichloroethene	EPA 8260B	P1I1002	2.0	ND	1	9/9/01	9/9/01	
Trichlorofluoromethane	EPA 8260B	P111002	5.0	ND	1	9/9/01	9/9/01	
1,2,3-Trichloropropane	EPA 8260B	P1I1002	10	ND	1	9/9/01	9/9/01	
1,2,4-Trimethylbenzene	EPA 8260B	P1I1002	2.0	ND	1	9/9/01	9/9/01	
1,3,5-Trimethylbenzene	EPA 8260B	P111002	2.0	ND	1	9/9/01	9/9/01	
Vinyl acetate	EPA 8260B	P111002	25	ND	1	9/9/01	9/9/01	
Vinyl chloride	EPA 8260B	P1I1002	5.0	ND	1	9/9/01	9/9/01	
Xylenes, Total	EPA 8260B	P1I1002	10	ND	1	9/9/01	9/9/01	
Surrogate: Dibromofluoromethane (80-12	?0%)			104 %				
Surrogate: Toluene-d8 (80-120%)				104 %				
Surrogate: 4-Bromofluorobenzene (80-12	0%)			99.2 %				

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-8596 FAX (858) 505-9589 (480) 785-0043 FAX (480) 785-0851

Law Engineering

4634 S. 36th Place Phoenix, AZ 85040

Attention: Jim Clarke

Client Project ID:

70211-0-0152

Sampled: 08/29/01-08/30/01

Report Number:

PKH0540

Received: 08/30/01

Analyte	Method	Batch	Reporting Limit mg/kg	Sample Result mg/kg	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: PKH0540-01 (DU	MPSTER 4212 - :	Soil)						
Arsenic	EPA 6010B	P110713	5.0	ND	1	9/7/01	9/10/01	
Barium	EPA 6010B	P1I0713	1.0	73	1	9/7/01	9/10/01	
Cadmium	EPA 6010B	P110713	0.50	ND	1	9/7/01	9/10/01	
Chromium	EPA 6010B	P1I0713	1.0	31	1	9/7/01	9/10/01	N1
Lead	EPA 6010B	P1I0713	5.0	ND	1	9/7/01	9/10/01	
Mercury	EPA 7471A	P1I0524	0.020	ND	1	9/5/01	9/5/01	
Selenium	EPA 6010B	P1I0713	5.0	ND	1	9/7/01	9/10/01	
Silver	EPA 6010B	P1I0713	0.50	ND	1	9/7/01	9/10/01	

2852 Alton Ave., Irvine, CA 92606 (949) 261-1022 FAX (949) 261-1228 1014 E. Coldby Dr., Suite A, Colton, CA 92324 (909) 370-4667 FAX (909) 370-1046 7277 Hayvenhurst, Suite B-12, Van Nuys, CA 91406 (818) 779-1844 FAX (818) 779-1843 9484 Chesapeake Dr., Suite 805, San Diego, CA 92123 (858) 505-8596 FAX (858) 505-9589 9830 South 51st St., Suite B-120, Phoenix, AZ 85044 (480) 785-0043 FAX (480) 785-0851

Law Engineering

4634 S. 36th Place Phoenix, AZ 85040

Attention: Jim Clarke

Client Project ID:

70211-0-0152

Sampled: 08/29/01-08/30/01

Report Number:

PKH0540

Received: 08/30/01

TOTAL RECOVERABLE METALS

Analyte	Method	Batch	Reporting Limit mg/l	Sample Result mg/l	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: PKH0540-02 (RINS	ATE 8/30/01 - V	Vater)						
Arsenic	EPA 200.7	P110605	0.050	ND	. 1	9/6/01	9/8/01	
Chromium VI	SM3500CR-D	P1I0404	0.025	ND	1	8/31/01	8/31/01	
Copper	EPA 200.7	P1I0605	0.020	ND	1	9/6/01	9/8/01	
Nickel	EPA 200.7	P1I0605	0.050	ND	1	9/6/01	9/8/01	
Zinc	EPA 200.7	P1I0605	0.050	ND	1	9/6/01	9/8/01	

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-8596 FAX (858) 505-9589 (480) 785-0043 FAX (480) 785-0851

Law Engineering

4634 S. 36th Place Phoenix, AZ 85040

Attention: Jim Clarke

Client Project ID:

70211-0-0152

Sampled: 08/29/01-08/30/01

Report Number:

PKH0540

Received: 08/30/01

INORGANICS

Analyte	Method	Batch	Reporting Limit P/NP	Sample Result P/NP	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: PKH0540-01 (DUM	PSTER 4212 - S	oil)						
Paint Filter Liquids Test	EPA 9095A	P1I0521	NA mg/kg	Not Present mg/kg	1	9/5/01	9/5/01	
Sample ID: PKH0540-01 (DUM	PSTER 4212 - Se	oil)						
Total Cyanide	EPA 9014	P111024	0.50 mg/l	ND mg/l	, 1	9/10/01	9/11/01	
Sample ID: PKH0540-02 (RINS	ATE 8/30/01 - W	ater)						
Total Cyanide	SM4500-CN,C-E	P111008	0.020	ND	1	9/10/01	9/10/01	

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-8596 FAX (858) 505-9589 (480) 785-0043 FAX (480) 785-0851

Law Engineering

Analyte

4634 S. 36th Place Phoenix, AZ 85040

Jim Clarke Attention:

Client Project ID:

Report Number:

Reporting

Limit

Result

70211-0-0152

%REC

Limits

RPD

Sampled: 08/29/01-08/30/01

Data

Qualifiers

Received: 08/30/01

RPD

Limit

PKH0540

VOLATILE ORGANICS BY GC/MS (EPA 8260B)

Units

Spike

Level

Source

Result

%REC

1111117	resure	2311111	Cinto	Level	resure	/UKLLC	Limited	141 2	A. A	Quanticis	
Batch: P1H3104 Extracted: 03	8/31/01										
Blank Analyzed: 09/10/01 (P1H3:	104-BLK1)										
Acetone	ND	1000	ug/kg								
Benzene	ND	50	ug/kg								
Bromobenzene	ND	250	ug/kg								
Bromochloromethane	ND	250	ug/kg								
Bromodichloromethane	ND	100	ug/kg								
Bromoform	ND	250	ug/kg								
Bromomethane	ND	250	ug/kg	•							
2-Butanone (MEK)	ND	500	ug/kg								
n-Butylbenzene	ND	250	ug/kg								
sec-Butylbenzene	ND	250	ug/kg								
tert-Butylbenzene	ND	250	ug/kg							1.5	
Carbon Disulfide	ND	250	ug/kg				٠				
Carbon tetrachloride	ND	250	ug/kg								
Chlorobenzene	ND	50	ug/kg								
Chloroethane	ND	250	ug/kg								
Chloroform	ND	100	ug/kg								
Chloromethane	ND	250	ug/kg								
2-Chlorotoluene	ND	250	ug/kg								
4-Chlorotoluene	ND	250	ug/kg								
Dibromochloromethane	ND	100	ug/kg						,		
1,2-Dibromo-3-chloropropane	ND	250	ug/kg								
1,2-Dibromoethane (EDB)	ND	100	ug/kg							, .	
Dibromomethane	ND	100	ug/kg								
1,2-Dichlorobenzene	ND	100	ug/kg								
1,3-Dichlorobenzene	ND -	100	ug/kg								
1,4-Dichlorobenzene	ND	100	ug/kg								
Dichlorodifluoromethane	ND	250	ug/kg								
1,1-Dichloroethane	ND	100	ug/kg								
1,2-Dichloroethane	ND	50	ug/kg								
1,1-Dichloroethene	ND	250	ug/kg								
cis-1,2-Dichloroethene	ND	100	ug/kg								
trans-1,2-Dichloroethene	ND	100	ug/kg								
1,2-Dichloropropane	ND	100	ug/kg								
1,3-Dichloropropane	ND	100	ug/kg								
2,2-Dichloropropane	, ND	100	ug/kg								
,			-6-6								
l											

Melissa Evans Project Manager

PKH0540 Page 9 of 34

1014 E. Coldby Dr., Suite A, Colton, CA 92324 (909) 370-4667 FAX (909) 370-1046 (7277 Hayvenhurst, Suite B-12, Van Nuys, CA 91406 (818) 779-1844 FAX (818) 779-1843 (9484 Chesapeake Dr., Suite 805, San Diego, CA 92123 (858) 505-8596 FAX (858) 505-9589 9830 South 51st St., Suite B-120, Phoenix, AZ 85044 (480) 785-0043 FAX (480) 785-0851

2852 Alton Ave., Irvine, CA 92606 (949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-8596 FAX (858) 505-9589

Law Engineering

4634 S. 36th Place Phoenix, AZ 85040 Attention: Jim Clarke Client Project ID:

70211-0-0152

Sampled: 08/29/01-08/30/01

Received: 08/30/01

Report Number:

PKH0540

VOLATILE ORGANICS BY GC/MS (EPA 8260B)

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: P1H3104 Extracted: 08	3/31/01		•							
Blank Analyzed: 09/10/01 (P1H31	04-BLK1)									
1,1-Dichloropropene	ND	100	ug/kg							
cis-1,3-Dichloropropene	ND	100	ug/kg							
trans-1,3-Dichloropropene	ND	100	ug/kg							
Ethylbenzene	ND	100	ug/kg							
Hexachlorobutadiene	ND	250	ug/kg							
2-Hexanone	ND	500	ug/kg	•					1.4	
Iodomethane	ND	100	ug/kg		•					
Isopropylbenzene	ND	100	ug/kg							
p-Isopropyltoluene	ND	100	ug/kg							
Methylene chloride	ND	500	ug/kg							
4-Methyl-2-pentanone (MIBK)	ND	500	ug/kg							
Methyl-tert-butyl Ether (MTBE)	ND	250	ug/kg							
Naphthalene	ND	250	ug/kg							
n-Propylbenzene	ND	100	ug/kg							
Styrene	ND	100	ug/kg							
1,1,1,2-Tetrachloroethane	ND	250	ug/kg							
I,1,2,2-Tetrachloroethane	ND	100	ug/kg							
Tetrachloroethene	ND	100	ug/kg							
Toluene	ND	100	ug/kg							
1,2,3-Trichlorobenzene	ND	250	ug/kg							
1,2,4-Trichlorobenzene	ND	250	ug/kg							
1,1,1-Trichloroethane	ND	100	ug/kg							
1,1,2-Trichloroethane	ND	100	ug/kg				•			
Trichloroethene	ND	100	ug/kg	٠						
Trichlorofluoromethane	ND	250	ug/kg							
1,2,3-Trichloropropane	ND	500	ug/kg							
1,2,4-Trimethylbenzene	ND	100	ug/kg							
1,3,5-Trimethylbenzene	ND	100	ug/kg							
Vinyl acetate	ND	1200	ug/kg							
Vinyl chloride	ND	250	ug/kg							
Xylenes, Total	ND .	150	ug/kg							
Surrogate: Dibromofluoromethane	1350		ug/kg	1250		108	70-125			
Surrogate: Toluene-d8	1250		ug/kg	1250		100	50-135		•	
Surrogate: 4-Bromofluorobenzene	1110	•	ug/kg	1250		88.8	70-130			

Melissa Evans Project Manager

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (658) 505-8596 FAX (958) 505-9589 (480) 785-0043 FAX (480) 785-0851

Law Engineering

4634 S. 36th Place Phoenix, AZ 85040

Attention: Jim Clarke

Client Project ID:

70211-0-0152

Sampled: 08/29/01-08/30/01

Received: 08/30/01

RPD

Data

Report Number:

Reporting

PKH0540

TOTALDINOPERIANK(CODASIA

VOLATILE ORGANICS BY GC/MS (EPA 8260B)

Spike

Source

%REC

Batch: P1H3104 Extracted: 08/31/0 LCS Analyzed: 09/10/01 (P1H3104-BS1 Acetone Benzene Bromobenzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane		1000 50 250 250 100	ug/kg ug/kg ug/kg	1000 1000	52.5	5-200			
Acetone Benzene Bromobenzene Bromochloromethane Bromodichloromethane Bromoform	ND 968 981 1010 988 736	50 250 250	ug/kg ug/kg	1000		5-200			
Benzene Bromobenzene Bromochloromethane Bromodichloromethane Bromoform	968 981 1010 988 736	50 250 250	ug/kg ug/kg	1000		5-200			
Bromobenzene Bromochloromethane Bromodichloromethane Bromoform	981 1010 988 736	250 250	ug/kg		06.0				
Bromochloromethane Bromodichloromethane Bromoform	1010 988 736	250		1000	96.8	65-130			
Bromodichloromethane Bromoform	988 736		. *	1000	98.1	60-135			
Bromoform	736	100	ug/kg	1000	101	60-135			
			ug/kg	1000	98.8	30-135		* .	
Bromomethane	874	250	ug/kg	1000	73.6	60-140			
	674	250	ug/kg	1000	87.4	10-200			
2-Butanone (MEK)	544	500	ug/kg	1000	54.4	10-160			
n-Butylbenzene	972	250	ug/kg	1000	97.2	65-125			
sec-Butylbenzene	968	250	ug/kg	1000	96.8	70-135			
tert-Butylbenzene	978	250	ug/kg	1000	97.8	70-130			
Carbon Disulfide	860	250	ug/kg	1000	86.0	20-120			
Carbon tetrachloride	1040	250	ug/kg	1000	104	70-140			
Chlorobenzene	1060	50	ug/kg	1000	106	75-125			
Chloroethane	893	250	ug/kg	1000	89.3	10-200			
Chloroform	1020	100	ug/kg	1000	102	35-135			
Chloromethane	809	250	ug/kg	1000	80.9	10-200			
2-Chlorotoluene	971	250	ug/kg	1000	97.1	70-135			
4-Chlorotoluene	962	250	ug/kg	1000	96.2	75-135			
Dibromochloromethane	940	100	ug/kg	1000	94.0	35-135			
1,2-Dibromo-3-chloropropane	556	250	ug/kg	1000	55.6	50-155			
1,2-Dibromoethane (EDB)	808	100	ug/kg	1000	80.8	70-130			
Dibromomethane	871	100	ug/kg	1000	 87.1	65-130			
1,2-Dichlorobenzene	978	100	ug/kg	1000	97.8	70-125			
1,3-Dichlorobenzene	1000	100	ug/kg	1000	100	70-125			
1,4-Dichlorobenzene	1020	100	ug/kg	1000	102	70-135			
Dichlorodifluoromethane	855	250	ug/kg	1000	85.5	10-185			
1,1-Dichloroethane	1020	100	ug/kg	1000	102	60-140			
1,2-Dichloroethane	901	50	ug/kg	1000	90.1	55-135			
1,1-Dichloroethene	1010	250	ug/kg	1000	101	55-145			
cis-1,2-Dichloroethene	1020	100	ug/kg	1000	102	60-125			
trans-1,2-Dichloroethene	1030	100	ug/kg	1000	103	70-145			
1,2-Dichloropropane	971	· 100	ug/kg	1000	97.1	65-130			
1,3-Dichloropropane	871	100	ug/kg	1000	87.1	65-130			
2,2-Dichloropropane	1150	100	ug/kg	1000	115	60-135			
1,1-Dichloropropene	973	100	ug/kg	1000	97.3	65-130		* *	

Melissa Evans Project Manager PKH0540 Page 11 of 34

2852 Alton Ave., Irvine, CA 92606 (949) 261-1022 FAX (949) 261-1228 1014 E. Coldby Dr., Suite A, Colton, CA 92324 (909) 370-4667 FAX (909) 370-1046 7277 Hayvenhurst, Suite B-12, Van Nuys, CA 91406 (818) 779-1844 FAX (818) 779-1843 9484 Chesapeake Dr., Suite 805, San Diego, CA 92123 (858) 505-8596 FAX (858) 505-9589 9830 South 51st St., Suite B-120, Phoenix, AZ 85044 (480) 785-0043 FAX (480) 785-0851

Law Engineering 4634 S. 36th Place

Client Project ID:

70211-0-0152

Sampled: 08/29/01-08/30/01

Phoenix, AZ 85040 Attention: Jim Clarke

Report Number:

PKH0540

Received: 08/30/01

VOLATILE ORGANICS BY GC/MS (EPA 8260B)

		Reporting		Spike	Spike Source				RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: P1H3104 Extracted: 08	<u>8/31/01</u>									
LCS Analyzed: 09/10/01 (P1H310	04-BS1)									
cis-1,3-Dichloropropene	930	100	ug/kg	1000		93.0	60-125			
trans-1,3-Dichloropropene	849	100	ug/kg	1000		84.9	50-130			
Ethylbenzene	1030	100	ug/kg	1000		103	70-125			
Hexachlorobutadiene	1020	250	ug/kg	1000		102	60-125			
2-Hexanone	563	500	ug/kg	1000		56.3	25-185			
Iodomethane	1090	100	ug/kg	1000		109	30-155			•
Isopropylbenzene	1050	100	ug/kg	1000		105	70-135			
p-Isopropyltoluene	948	100	ug/kg	1000		94.8	65-130		•	
Methylene chloride	1000	500	ug/kg	1000		100	60-140			
4-Methyl-2-pentanone (MIBK)	595	500	ug/kg	1000		59.5	10-175			
Methyl-tert-butyl Ether (MTBE)	938	250	ug/kg	1000		93.8	55-135			
Naphthalene	697	250	ug/kg	1000		69.7	45-155			
n-Propylbenzene	991	100	ug/kg	1000		99.1	75-135			
Styrene	1040	100	ug/kg	1000		104	70-130			100
1,1,1,2-Tetrachloroethane	1050	250	ug/kg	1000		105	70-130			
1,1,2,2-Tetrachloroethane	712	100	ug/kg	1000		71.2	60-140			
Tetrachloroethene	1050	100	ug/kg	1000		105	65-130			
Toluene	1000	100	ug/kg	1000		100	70-125			
1,2,3-Trichlorobenzene	930	250	ug/kg	1000		93.0	60-135			
1,2,4-Trichlorobenzene	1010	250	ug/kg	1000		101	55-135			
1,1,1-Trichloroethane	1060	100	ug/kg	1000		106	65-135			
1,1,2-Trichloroethane	880	100	ug/kg	1000		88.0	65-130			
Trichloroethene	983	100	ug/kg	1000		98.3	70-130			
Trichlorofluoromethane	1060	250	ug/kg	1000		106	10-200			
1,2,3-Trichloropropane	644	500	ug/kg	1000		64.4	60-150			
1,2,4-Trimethylbenzene	977	100	ug/kg	1000		97.7	75-130			
1,3,5-Trimethylbenzene	971	100	ug/kg	1000		97.1	70-130			
Vinyl acetate	ND	1200	ug/kg	1000		64.4	25-130			
Vinyl chloride	416	250	ug/kg	1000		41.6	10-200			
Xylenes, Total	3120	150	ug/kg	3000		104	70-130			
Surrogate: Dibromofluoromethane	1330		ug/kg	1250		106	70-125			
Surrogate: Toluene-d8	1300		ug/kg	1250		104	50-135			
Surrogate: 4-Bromofluorobenzene	1210		ug/kg	1250		96.8	70-130			
- · · · · · · · · · · · · · · · · · · ·			0 0							

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-8596 FAX (858) 505-9589 (480) 785-0043 FAX (480) 785-0851

Law Engineering 4634 S. 36th Place

Phoenix, AZ 85040 Attention: Jim Clarke Client Project ID: 7

Reporting

70211-0-0152

Sampled: 08/29/01-08/30/01

RPD

Data

Received: 08/30/01

Report Number: PKH0540

www.printelloniwaskoponiaera

Spike

Source

%REC

VOLATILE ORGANICS BY GC/MS (EPA 8260B)

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: P1H3104 Extracted: 08	/31/01						٠			
LCS Dup Analyzed: 09/10/01 (P1F	H3104-BSD1)									
Acetone	ND	1000	ug/kg	1000		45.8	5-200	13.6	35	
Benzene	949	50	ug/kg	1000		94.9	65-130	1.98	35	
Bromobenzene	957	250	ug/kg	1000		95.7	60-135	2.48	35	
Bromochloromethane	1000	250	ug/kg	1000		100	60-135	0.995	35	
Bromodichloromethane	963	100	ug/kg	1000		96.3	30-135	2.56	35	
Bromoform	718	250	ug/kg	1000		71.8	60-140	2.48	35	
Bromomethane	865	250	ug/kg	1000		86.5	10-200	1.04	35	
2-Butanone (MEK)	ND	500	ug/kg	1000		48.5	10-160	11.5	35	
n-Butylbenzene	964	250	ug/kg	1000		96.4	65-125	0.826	35	
sec-Butylbenzene	960	250	ug/kg	1000		96.0	70-135	0.830	35	
tert-Butylbenzene	968	250	ug/kg	1000		96.8	70-130	1.03	35	
Carbon Disulfide	831	250	ug/kg	1000		83.1	20-120	3.43	35	•
Carbon tetrachloride	1000	250	ug/kg	1000		100	70-140	3.92	35	
Chlorobenzene	1040	50	ug/kg	1000		104	75-125	1.90	35	
Chloroethane	826	250	ug/kg	1000		82.6	10-200	7.80	35	
Chloroform	1020	100	ug/kg-	1000		102	35-135	0.00	35	
Chloromethane	7 67	250	ug/kg	1000		76.7	10-200	5.33	35	
2-Chlorotoluene	958	. 250	ug/kg	1000		95.8	70-135	1.35	35	
4-Chlorotoluene	972	250	ug/kg	1000		97.2	75-135	1.03	35	
Dibromochloromethane	891	100	ug/kg	1000		89.1	35-135	5.35	35	
1,2-Dibromo-3-chloropropane	534	250	ug/kg	1000		53.4	50-155	4.04	35	
1,2-Dibromoethane (EDB)	796	100	ug/kg	1000		79.6	70-130	1.50	35	-
Dibromomethane	858	100	ug/kg	1000	•	85.8	65-130	1.50	35	
1,2-Dichlorobenzene	969	100	ug/kg	1000		96.9	70-125	0.924	35	
1,3-Dichlorobenzene	988	100	ug/kg	1000		98.8	70-125	1.21	35	
1,4-Dichlorobenzene	1010	100	ug/kg	1000		101	70-135	0.985	35	
Dichlorodifluoromethane	808	250	ug/kg	1000		80.8	10-185	5.65	35	
1,1-Dichloroethane	985	100	ug/kg	1000		98.5	60-140	3.49	35	
1,2-Dichloroethane	877	50	ug/kg	1000		87.7	55-135	2.70	35	
1,1-Dichloroethene	962	250	ug/kg	1000		96.2	55-145	4.87	35	
cis-1,2-Dichloroethene	1000	100	ug/kg	1000		100	60-125	1.98	35	
trans-1,2-Dichloroethene	1010	100	ug/kg	1000		101	70-145	1.96	35	
1,2-Dichloropropane	967	100	ug/kg	1000		96.7	65-130	0.413	35	
1,3-Dichloropropane	841	100	ug/kg	1000		84.1	65-130	3.50	35	
2,2-Dichloropropane	1150	100	ug/kg	1000		115	60-135	0.00	35	
1,1-Dichloropropene	959	100	ug/kg	1000		95.9	65-130	1.45	35	
4										

Melissa Evans Project Manager PKH0540 Page 13 of 34

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-8596 FAX (858) 505-9589 (480) 785-0043 FAX (480) 785-0851

Law Engineering

4634 S. 36th Place Phoenix, AZ 85040

Attention: Jim Clarke

Client Project ID:

70211-0-0152

Sampled: 08/29/01-08/30/01

Received: 08/30/01

Report Number:

PKH0540

SPRINCONNECTION

VOLATILE ORGANICS BY GC/MS (EPA 8260B)

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: P1H3104 Extracted: 0	8/31/01								2	
LCS Dup Analyzed: 09/10/01 (P1	H3104-BSD1)									
cis-1,3-Dichloropropene	922	100	ug/kg	1000		92.2	60-125	0.864	35	
trans-1,3-Dichloropropene	827	100	ug/kg	1000		82.7	50-130	2.63	35	
Ethylbenzene	1000	100	ug/kg	1000		100	70-125	2.96	35	
Hexachlorobutadiene	1030	250	ug/kg	1000		103	60-125	0.976	35	
2-Hexanone	524	500	ug/kg	1000		52.4	25-185	7.18	35	
lodomethane	1060	100	ug/kg	1000		106	30-155	2.79	35	
lsopropylbenzene	1030	100	ug/kg	1000		103	70-135	1.92	35	
p-lsopropyltoluene	942	100	ug/kg	1000		94.2	65-130	0.635	35	
Methylene chloride	967	500	ug/kg	1000		96.7	60-140	3.36	35	
4-Methyl-2-pentanone (MIBK)	.580	500	ug/kg	1000		58.0	10-175	2.55	35	
Methyl-tert-butyl Ether (MTBE)	917	250	ug/kg	1000		91.7	55-135	2.26	35	
Naphthalene	665	250	ug/kg	1000		66.5	45-155	4.70	35	
n-Propylbenzene	989	100	ug/kg	1000		98.9	75-135	0.202	35	
Styrene	1020	100	ug/kg	1000		102	70-130	1.94	35	
1,1,1,2-Tetrachloroethane	1040	250	ug/kg	1000		104	70-130	0.957	35	
1,1,2,2-Tetrachloroethane	707	100	ug/kg	1000		70.7	60-140	0.705	35	
Tetrachloroethene	1040	100	ug/kg	1000		104	65-130	0.957	35	
Toluene	994	100	ug/kg	1000		99.4	70-125	0.602	35	
1,2,3-Trichlorobenzene	894	250	ug/kg	1000		89.4	60-135	3.95	35	
1,2,4-Trichlorobenzene	979	250	ug/kg	1000		97.9	55-135	3.12	35	
1,1,1-Trichloroethane	1030	100	ug/kg	1000		103	65-135	2.87	35	
1,1,2-Trichloroethane	846	100	ug/kg	1000		84.6	65-130	3.94	35	
Trichloroethene	990	100	ug/kg	1000		99.0	70-130	0.710	35	
Trichlorofluoromethane	1050	250	ug/kg	1000		105	10-200	0.948	35	
1,2,3-Trichloropropane	627	500	ug/kg	1000		62.7	60-150	2.68	35	•
1,2,4-Trimethylbenzene	986	100	ug/kg	1000		98.6	75-130	0.917	35	
1,3,5-Trimethylbenzene	959	100	ug/kg	1000		95.9	70-130	1.24	35	
Vinyl acetate	ND	1200	ug/kg	1000		62.6	25-130	2.83	35	
Vinyl chloride	396	250	ug/kg	1000		39.6	10-200	4.93	35	
Xylenes, Total	3080	150	ug/kg	3000		103	70-130	1.29	35	-
Surrogate: Dibromofluoromethane	1280		ug/kg	1250		102	70-125			
Surrogate: Toluene-d8	1260		ug/kg	1250		101	50-135			
Surrogate: 4-Bromofluorobenzene	1210		ug/kg	1250		96.8	70-130			

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-8596 FAX (858) 505-9589 (480) 785-0043 FAX (480) 785-0851

Law Engineering

4634 S. 36th Place Phoenix, AZ 85040

Attention: Jim Clarke

Client Project ID:

Reporting

70211-0-0152

Sampled: 08/29/01-08/30/01

RPD

Data

Received: 08/30/01

%REC

Report Number: PK

PKH0540

METHOD BLANKQC DATA

Spike

Source

VOLATILE ORGANICS BY GC/MS (EPA 8260B)

Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
1/01									
1H3104-MS1)				Source: P	KH0540-	01			
ND	1000	ug/kg	1000	ND	53.5	5-200			
755	50	ug/kg	1000	ND	75.5	65-130			
840	250	ug/kg	1000	ND	84.0	60-135			
753	250	ug/kg	1000	ND	75.3	60-135			
770	100	ug/kg	1000	ND	77.0	30-135			
589	250	ug/kg	1000	ND	58.9	60-140			M2
640	250	ug/kg	1000	ND	64.0	10-200			
ND	500	ug/kg	1000	ND	46.8	10-160			
812	250	ug/kg	1000	ND	81.2	65-125		•	
831	250	ug/kg	1000	ND	83.1	70-135			
822	250	ug/kg	1000	ND	82.2	70-130			
596	250	ug/kg	1000	ND	59.6	20-120			
760	250	ug/kg	1000	ND	76.0	70-140			
872	50	ug/kg	1000	ND	87.2	75-125			
664	250	ug/kg	1000	ND	66.4	10-200			
809	100	ug/kg	1000	ND	80.9	35-135			
545	250	ug/kg	1000	ND	54.5	10-200			
822	250	ug/kg	1000	ND	82.2	70-135			
828	250	ug/kg	1000	ND	82.8	75-135			
747	100	ug/kg	1000	ND	74.7	35-135			
426	250	ug/kg	1000	ND	42.6	50-155			M2
650	100	ug/kg	1000	ND	65.0	70-130			M2
684	100	ug/kg	1000	ND	68.4	65-130			
827	100	ug/kg	1000	ND	82.7	70-125			
868	100	ug/kg	1000	ND	86.8	70-125			
875	100	ug/kg	1000	ND	87.5	70-135			
412	250	ug/kg	1000	ND	41.2	10-185			
764	100	ug/kg	1000	ND	76.4	60-140			
699	50	ug/kg	1000	ND	69.9	55-135			
716	250	ug/kg	1000	ND	71.6	55-145			
800	100	ug/kg	1000	ND	80.0	60-125			
750	100	ug/kg	1000	ND	75.0	70-145			
784	100	ug/kg	1000	ND	78.4	65-130			
699	100	ug/kg	1000	ND	69.9	65-130			•
911	100		1000	ND	91.1	60-135			
734	100	ug/kg	1000	ND	73.4	65-130			•
	1/01 1H3104-MS1) ND 755 840 753 770 589 640 ND 812 831 822 596 760 872 664 809 545 822 828 747 426 650 684 827 868 875 412 764 699 716 800 750 784 699 911	1/01 1H3104-MS1) ND 1000 755 50 840 250 753 250 770 100 589 250 640 250 ND 500 812 250 831 250 822 250 596 250 760 250 872 50 664 250 872 50 664 250 872 50 664 250 872 50 664 250 872 50 664 250 872 100 545 250 822 250 828 250 747 100 426 250 650 100 684 100 827 100 827 100 868 100 875 100 412 250 764 100 699 50 716 250 800 100 750 100 784 100 699 100 911 100	1/01 1H3104-MS1) ND 1000 ug/kg 755 50 ug/kg 840 250 ug/kg 753 250 ug/kg 770 100 ug/kg 589 250 ug/kg ND 500 ug/kg 812 250 ug/kg 812 250 ug/kg 822 250 ug/kg 822 250 ug/kg 8760 250 ug/kg 872 50 ug/kg 872 50 ug/kg 872 50 ug/kg 809 100 ug/kg 822 250 ug/kg 809 100 ug/kg 822 250 ug/kg 821 250 ug/kg 872 50 ug/kg 873 100 ug/kg 8747 100 ug/kg 8747 100 ug/kg 875 100 ug/kg 875 100 ug/kg 875 100 ug/kg 8764 100 ug/kg 875 100 ug/kg 875 100 ug/kg 875 100 ug/kg 875 100 ug/kg 8764 100 ug/kg 875 100 ug/kg 875 100 ug/kg 875 100 ug/kg 8764 100 ug/kg 875 100 ug/kg	1/01 1H3104-MS1) ND 1000 ug/kg 1000 755 50 ug/kg 1000 840 250 ug/kg 1000 753 250 ug/kg 1000 589 250 ug/kg 1000 ND 500 ug/kg 1000 812 250 ug/kg 1000 822 250 ug/kg 1000 822 250 ug/kg 1000 8760 250 ug/kg 1000 8772 50 ug/kg 1000 872 50 ug/kg 1000 872 50 ug/kg 1000 874 1000 ug/kg 1000 877 100 ug/kg 1000 877 100 ug/kg 1000 877 100 ug/kg 1000 878 1000 879 100 ug/kg 1000 871 100 ug/kg 1000 872 50 ug/kg 1000 873 1000 874 1000 ug/kg 1000 875 250 ug/kg 1000 876 250 ug/kg 1000 877 100 ug/kg 1000 878 1000 878 1000 ug/kg 1000 879 100 ug/kg 1000 871 100 ug/kg 1000 872 100 ug/kg 1000 873 100 ug/kg 1000 874 100 ug/kg 1000 875 100 ug/kg 1000 876 100 ug/kg 1000 877 100 ug/kg 1000 878 1000 ug/kg 1000 879 50 ug/kg 1000 879 50 ug/kg 1000 879 50 ug/kg 1000 879 100 ug/kg 1000	ND	1/01 1H3104-MS1 1000	1/01 1H3104-MS1 ND	101 113104-MS1 ND	101 ND

Melissa Evans Project Manager PKH0540 Page 15 of 34

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-8596 FAX (858) 505-9589 (480) 785-0043 FAX (480) 785-0851

Law Engineering 4634 S. 36th Place Phoenix, AZ 85040

Attention: Jim Clarke

Client Project ID:

70211-0-0152

Sampled: 08/29/01-08/30/01

Report Number:

Number: PKH0540

Received: 08/30/01

VOLATILE ORGANICS BY GC/MS (EPA 8260B)

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: P1H3104 Extracted: 08	/31/01									
Matrix Spike Analyzed: 09/10/01	(P1H3104-MS1)				Source: F	KH0540-	01			
cis-1,3-Dichloropropene	732	100	ug/kg	1000	ND	73.2	60-125			
trans-1,3-Dichloropropene	680	100	ug/kg	1000	ND	68.0	50-130			
Ethylbenzene	837	100	ug/kg	1000	ND	83.7	70-125			
Hexachlorobutadiene	912	250	ug/kg	1000	ND	91.2	60-125			
2-Hexanone	503	500	ug/kg	1000	ND	50.3	25-185			
Iodomethane	78 5	100	ug/kg	1000	ND	78.5	30-155			
Isopropylbenzene	865	100	ug/kg	1000	ND	86.5	70-135			
p-Isopropyitoluene	812	100	ug/kg	1000	ND	81.2	65-130			
Methylene chloride	742	500	ug/kg	1000	ND	74.2	60-140			
4-Methyl-2-pentanone (MIBK)	ND	500	ug/kg	1000	ND	47.5	10-175			
Methyl-tert-butyl Ether (MTBE)	72 7	250	ug/kg	1000	ND	72.7	55-135			
Naphthalene	534	250	ug/kg	1000	ND	53.4	45-155			
n-Propylbenzene	846	100	ug/kg	1000	ND	84.6	75-135			
Styrene	872	100	ug/kg	1000	ND	87.2	70-130			
1,1,1,2-Tetrachloroethane	878	250	ug/kg	1000	ND.	87.8	70-130			
1,1,2,2-Tetrachloroethane	594	100	ug/kg	1000	ND.	59.4	60-140		-	M2
Tetrachloroethene	873	100	ug/kg	1000	ND	87.3	65-130			
Toluene	, 824	100	ug/kg	1000	ND	82.4	70-125			
1,2,3-Trichlorobenzene	745	250	ug/kg	1000	ND	74.5	60-135			-
1,2,4-Trichlorobenzene	835	250	ug/kg	1000	ND	83.5	55-135			
1,1,1-Trichloroethane	789	100	ug/kg	1000	ND	78.9	65-135			
1,1,2-Trichloroethane	699	100	ug/kg	1000	ND	69.9	65-130			
Trichloroethene	776	100	ug/kg	1000	ND	77.6	70-130			
Trichlorofluoromethane	764	250	ug/kg	1000	ND	76.4	10-200			
1,2,3-Trichloropropane	540	500	ug/kg	1000	ND	54.0	60-150	-		M2
1,2,4-Trimethylbenzene	847	100	ug/kg	1000	ND	84.7	75-130			
1,3,5-Trimethylbenzene	824	100	ug/kg	1000	ND	82.4	70-130			
Vinyl acetate	ND	1200	ug/kg	1000	ND		25-130			M2 .
Vinyl chloride	277	250	ug/kg	1000	ND	27.7	10-200			
Xylenes, Total	2600	150	ug/kg	3000	ND	86.7	70-130			
Surrogate: Dibromofluoromethane	682		ug/kg	625		109	70-125			
Surrogate: Toluene-d8	687		ug/kg	625		110	50-135			
Surrogate: 4-Bromofluorobenzene	751		ug/kg	625		120	<i>70-130</i>			

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-8596 FAX (858) 505-9589 (480) 785-0043 FAX (480) 785-0851

Law Engineering

4634 S. 36th Place Phoenix, AZ 85040

Attention: Jim Clarke Client Project ID:

70211-0-0152

%REC

Sampled: 08/29/01-08/30/01

Data

Received: 08/30/01

RPD

Report Number:

Reporting

PKH0540

Spike

VOLATILE ORGANICS BY GC/MS (EPA 8260B)

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: P1H3104 Extracted: 08	/31/01									
Matrix Spike Dup Analyzed: 09/10	/01 (P1H3104-M	ISD1)			Source: F	KH0540-	01			
Acetone	ND	1000	ug/kg	1000	ND	46.7	5-200	13.6	35	
Benzene	802	50	ug/kg	1000	ND	80.2	65-130	6.04	35	
Bromobenzene	834	250	ug/kg	1000	ND	83.4	60-135	0.717	35	
Bromochloromethane	822	250	ug/kg	1000	ND	82.2	60-135	8.76	35	
Bromodichloromethane	776	100	ug/kg	1000	ND	77.6	30-135	0.776	35	
Bromoform	561	250	ug/kg	1000	ND	56.1	60-140	4.87	35	M2
Bromomethane	712	250	ug/kg	1000	ND	71.2	10-200	10.7	35	
2-Butanone (MEK)	ND	500	ug/kg	1000	ND	40.6	10-160	14.2	35	
n-Butylbenzene	828	250	ug/kg	1000	ND	82.8	65-125	1.95	35	
sec-Butylbenzene	850	250	ug/kg	1000	ND	85.0	70-135	2.26	35	
tert-Butylbenzene	846	250	ug/kg	1000	ND	84.6	70-130	2.88	35.	
Carbon Disulfide	625	250	ug/kg	1000	ND	62.5	20-120	4.75	35	
Carbon tetrachloride	830	250	ug/kg	1000	ND	83.0	70-140	8.81	35	
Chlorobenzene	886	50	ug/kg	1000	ND	88.6	75-125	1.59	35	
Chloroethane	681	250	ug/kg	1000	ND	68.1	10-200	2.53	35	
Chloroform	844	100	ug/kg	1000	ND	84.4	35-135	4.23	35	
Chloromethane	547	250	ug/kg	1000	ND	54.7	10-200	0.366	35	
2-Chlorotoluene	848	250	ug/kg	1000	ND	84.8	70-135	3.11	35	
4-Chlorotoluene	840	250	ug/kg	1000	ND	84.0	75-135	1.44	35	
Dibromochloromethane	712	100	ug/kg	1000	ND	71.2	35-135	4.80	35	•
1,2-Dibromo-3-chloropropane	401	250	ug/kg	1000	ND	40.1	50-155	6.05	35	M2
1,2-Dibromoethane (EDB)	609	100	ug/kg	1000	ND	60.9	70-130	6.51	35	M2
Dibromomethane	655	100	ug/kg	1000	ND	65.5	65-130	4.33	35	
1,2-Dichlorobenzene	814	100	ug/kg	1000	ND	81.4	70-125	1.58	35	
1,3-Dichlorobenzene	875	100	ug/kg	1000	ND	87.5	70-125	0.803	35	
1,4-Dichlorobenzene	885	100	ug/kg	1000	ND	88.5	70-135	1.14	35	
Dichlorodifluoromethane	343	250	ug/kg	1000	ND	34.3	10-185	18.3	35	
1,1-Dichloroethane	817	100	ug/kg	1000	ND	81.7	60-140	6.70	35	
1,2-Dichloroethane	684	50	ug/kg	1000	ND	68.4	55-135	2.17	35	
1,1-Dichloroethene	7 54	250	ug/kg	1000	ND	75.4	55-145	5.17	35	
cis-1,2-Dichloroethene	823	100	ug/kg	1000	ND	82.3	60-125	2.83	35	
trans-1,2-Dichloroethene	814	100	ug/kg	1000	ND	81.4	70-145	8.18	35	
1,2-Dichloropropane	780	100	ug/kg	1000	ND	78.0	65-130	0.512	35	
1,3-Dichloropropane	671	100	ug/kg	1000	ND	67.1	65-130	4.09	35	
2,2-Dichloropropane	983	100	ug/kg	1000	ND	98.3	60-135	7.60	35	
1,1-Dichloropropene	791	100	ug/kg	1000	ND	79.1	65-130	7.48	35	•

Melissa Evans Project Manager

PKH0540 Page 17 of 34

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-8596 FAX (858) 505-9589 (480) 785-0043 FAX (480) 785-0851

Law Engineering

4634 S. 36th Place

Phoenix, AZ 85040 Attention: Jim Clarke Client Project ID:

70211-0-0152

Sampled: 08/29/01-08/30/01

Received: 08/30/01

Report Number:

PKH0540

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: P1H3104 Extracted: 08/31	/01									
Matrix Spike Dup Analyzed: 09/10/01	(P1H3104-M	ISD1)			Source: P	KH0540-	01			
cis-1,3-Dichloropropene	729	100	ug/kg	1000	ND	72.9	60-125	0.411	35	
trans-1,3-Dichloropropene	658	100	ug/kg	1000	ND	65.8	50-130	3.29	35	
Ethylbenzene	870	100	ug/kg	1000	ND	87.0	70-125	3.87	35	
Hexachlorobutadiene	939	250	ug/kg	1000	ND	93.9	60-125	2.92	35	
2-Hexanone	ND	500	ug/kg	1000	ND	42.4	25-185	17.0	35	
Iodomethane	833	100	ug/kg	1000	ND	83.3	30-155	5.93	35	
Isopropylbenzene	886	100	ug/kg	1000	ND	88.6	70-135	2.40	35	
p-Isopropyltoluene	820	100	ug/kg	1000	ND	82.0	65-130	0.980	35	
Methylene chloride	763	500	ug/kg	1000	ND	76.3	60-140	2.79	35	
4-Methyl-2-pentanone (M1BK)	ND	500	ug/kg	1000	ND	41.2	10-175	14.2	35	
Methyl-tert-butyl Ether (MTBE)	709	250	ug/kg	1000	ND	70.9	55-135	2.51	35	
Naphthalene	483	250	ug/kg	1000	ND	48.3	45-155	10.0	35	
n-Propylbenzene	873	100	ug/kg	1000	ND	87.3	75-135	3.14	35	
Styrene	863	100	ug/kg	1000	ND	86.3	70-130	1.04	35	
1,1,1,2-Tetrachloroethane	872	250	ug/kg	1000	ND	87.2	70-130	0.686	35	
1,1,2,2-Tetrachloroethane	540	100	ug/kg	1000	ND	54.0	60-140	9.52	35	M2
Tetrachloroethene	889	100	ug/kg	1000	ND	88.9	65-130	1.82	35	
Toluene	838	100	ug/kg	1000	ND	83.8	70-125	1.68	35	
1,2,3-Trichlorobenzene	704	250	ug/kg	1000	ND	70.4	60-135	5.66	35	
1,2,4-Trichlorobenzene	805	250	ug/kg	1000	ND	80.5	55-135	3.66	35	
1,1,1-Trichloroethane	846	100	ug/kg	1000	ND	84.6	65-135	6.97	35	
1,1,2-Trichloroethane	658	100	ug/kg	1000	ND	65.8	65-130	6.04	35	
Trichloroethene	825	100	ug/kg	1000	ND	82.5	70-130	6.12	35	
Trichlorofluoromethane	781	250	ug/kg	1000	ND	78.1	10-200	2.20	35	
1,2,3-Trichloropropane	ND	500	ug/kg	1000	ND	48.9	60-150	9.91	35	M2
1,2,4-Trimethylbenzene	871	100	ug/kg	1000	ND	87.1	75-130	2.79	35	
1,3,5-Trimethylbenzene	843	100	ug/kg	1000	ND	84.3	70-130	2.28	35	
Vinyl acetate	ND	1200	ug/kg	1000	ND		25-130		35	M2 -
Vinyl chloride	283	250	ug/kg	1000	ND	28.3	10-200	2.14	35	
Xylenes, Total	2660	150	ug/kg	3000	ND	88.7	70-130	2.28	35	•
Surrogate: Dibromofluoromethane	736		ug/kg	625		118	70-125		55	
Surrogate: Toluene-d8	730		ug/kg	625		117	50-135			
Surrogate: 4-Bromofluorobenzene	812		ug/kg	625		. 130	70-130			

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-8596 FAX (858) 505-9589 (480) 785-0043 FAX (480) 785-0851

Law Engineering

4634 S. 36th Place

Phoenix, AZ 85040 Jim Clarke Attention:

Client Project ID:

70211-0-0152

%REC

Sampled: 08/29/01-08/30/01

Received: 08/30/01

RPD

Data

Report Number:

Reporting

PKH0540

15110011(0)0011#4**3**434(0)05034#5

VOLATILE ORGANICS BY GC/MS (EPA 8260B)

Spike

Source

		Tropor time		Spine	Source		/UI-C		242 27	Data	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers	
Batch: P1I1002 Extracted: 09/09	<u>/01</u>										
Blank Analyzed: 09/09/01 (P1I1002-	BLK1)										
Acetone	ND	20	ug/l								
Benzene	ND	2.0	ug/l								
Bromobenzene	ND	5.0	ug/l								
Bromochloromethane	ND	5.0	ug/l								
Bromodichloromethane	ND	2.0	ug/l								
Bromoform	ND	5.0	ug/l								
Bromomethane	ND	5.0	ug/l								
2-Butanone (MEK)	ND	10	ug/l								
n-Butylbenzene	ND	5.0	ug/l								
sec-Butylbenzene	ND	5.0	ug/l								
tert-Butylbenzene	ND	5.0	ug/l								
Carbon Disulfide	ND	5.0	ug/l								
Carbon tetrachloride	ND	5.0	ug/l								
Chlorobenzene	ND	2.0	ug/l								
Chloroethane	ND	5.0	ug/l								
Chloroform	ND	2.0	ug/l								
Chloromethane	ND	5.0	ug/l								
2-Chlorotoluene	ND	5.0	ug/l								
4-Chlorotoluene	ND	5.0	ug/l								
Dibromochloromethane	ND	2.0	ug/l				•				
1,2-Dibromo-3-chloropropane	ND	5.0	ug/l			,					
1,2-Dibromoethane (EDB)	ND	2.0	ug/l			•					
Dibromomethane	ND	2.0	ug/l								
1,2-Dichlorobenzene	ND	2.0	ug/l								
1,3-Dichlorobenzene	ND	2.0	ug/l								
1,4-Dichlorobenzene	ND	2.0	ug/l								
Dichlorodifluoromethane	ND	5.0	ug/l								
1,1-Dichloroethane	ND	2.0	ug/l								
1,2-Dichloroethane	ND	2.0	ug/l								
1,1-Dichloroethene	ND	5.0	ug/l								
cis-1,2-Dichloroethene	ND	2.0	ug/l								
trans-1,2-Dichloroethene	ND	2.0	ug/l								
1,2-Dichloropropane	ND	2.0	ug/l								
1,3-Dichloropropane	ND	2.0	ug/l								
2,2-Dichloropropane	ND	2.0	ug/l								
			-								

Melissa Evans Project Manager

PKH0540 Page 19 of 34

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-8596 FAX (858) 505-9589 (480) 785-0043 FAX (480) 785-0851

Law Engineering

4634 S. 36th Place Phoenix, AZ 85040

Attention: Jim Clarke

Client Project ID:

70211-0-0152

Sampled: 08/29/01-08/30/01

Received: 08/30/01

Report Number:

PKH0540

VOLATILE ORGANICS BY GC/MS (EPA 8260B)

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: P1I1002 Extracted: 09/09	<u>/01</u>								•	
Blank Analyzed: 09/09/01 (P1I1002-										
1,1-Dichloropropene	ND	2.0	ug/l							
cis-1,3-Dichloropropene	ND	2.0	ug/l							
trans-1,3-Dichloropropene	ND	2.0	ug/l							
Ethylbenzene	ND	2.0	ug/l							
Hexachlorobutadiene	ND	5.0	ug/l							
2-Hexanone	ND	10	ug/l							
lodomethane	ND	2.0	ug/l							
Isopropylbenzene	ND.	2.0	ug/l							*
p-lsopropyltoluene	ND	2.0	ug/Î							
Methylene chloride	ND	5.0	ug/l							
4-Methyl-2-pentanone (MIBK)	ND	10	ug/l							
Methyl-tert-butyl Ether (MTBE)	ND	5.0	ug/l							
Naphthalene	ND	5.0	ug/l							
n-Propylbenzene	ND	2.0	ug/l							
Styrene	ND	2.0	ug/l							
1,1,1,2-Tetrachloroethane	ND	5.0	ug/l							
1,1,2,2-Tetrachloroethane	ND	2.0	ug/l							
Tetrachloroethene	ND	2.0	ug/l							
Toluene	ND	2.0	ug/l							
1,2,3-Trichlorobenzene	ND	5.0	ug/l							
1,2,4-Trichlorobenzene	ND	5.0	ug/l							
1,1,1-Trichloroethane	ND	2.0	ug/l							100
1,1,2-Trichloroethane	ND ·	2.0	ug/l							
Trichloroethene	ND	2.0	ug/l				•			
Trichlorofluoromethane	ND	5.0	ug/l							
1,2,3-Trichloropropane	ND	10	ug/l							
1,2,4-Trimethylbenzene	ND	2.0	ug/l							
1,3,5-Trimethylbenzene	ND	2.0	ug/l							
Vinyl acetate	ND .	25	ug/l							
Vinyl chloride	ND	5.0	ug/l							
Xylenes, Total	ND	, 10	ug/l							
Surrogate: Dibromofluoromethane	27.9		ug/l	25.0		112	80-120			
Surrogate: Toluene-d8	26.5		ug/l	25.0		106	80-120			
Surrogate: 4-Bromofluorobenzene	26.4		ug/l	25.0		106	80-120			

Melissa Evans Project Manager

PKH0540 Page 20 of 34

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-8596 FAX (858) 505-9589 (480) 785-0043 FAX (480) 785-0851

Law Engineering 4634 S. 36th Place Phoenix, AZ 85040 Attention: Jim Clarke

Client Project ID:

70211-0-0152

Sampled: 08/29/01-08/30/01

Report Number:

Reporting

PKH0540

Received: 08/30/01

RPD

Data

Apprication and the contraction of the contraction

VOLATILE ORGANICS BY GC/MS (EPA 8260B)

Spike

Source

%REC

		Keboi ung		Spike	Sour ce		OREC		KI D	Data	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers	
Batch: P1I1002 Extracted: 09/09/	01										
LCS Analyzed: 09/09/01 (P1I1002-BS	S1)										
Acetone	28.0	20	ug/l	25.0		112	30-200				
Benzene	25.0	2.0	ug/l	25.0		100	80-120				
Bromobenzene	25.1	5.0	ug/l	25.0		100	80-120				
Bromochloromethane	28.3	5.0	ug/l	25.0		113	80-120				
Bromodichloromethane	26.8	2.0	ug/l	25.0		107	80-130				
Bromoform	27.1	5.0	ug/l	25.0		108	60-140				
Bromomethane	28.5	5.0	ug/l	25.0		114	60-150				
2-Butanone (MEK)	28.9	10	ug/l	25.0		116	30-185				
n-Butylbenzene	24.6	5.0	ug/l	25.0		98.4	75-130				
sec-Butylbenzene	25.0	5.0	ug/l	25.0		100	80-125				
tert-Butylbenzene	24.7	5.0	ug/l	25.0		98.8	80-120				
Carbon Disulfide	23.0	5.0	ug/l	25.0		92.0	65-120				
Carbon tetrachloride	28.8	5.0	ug/l	25.0		115	75-150				
Chlorobenzene	26.6	2.0	ug/l	25.0		106	80-120				
Chloroethane	24.9	5.0	ug/I	25.0		99.6	80-125				
Chloroform	26.6	2.0	ug/l	25.0		106	80-120				
Chloromethane	21.7	5.0	ug/l	25.0		86.8	60-125				
2-Chlorotoluene	24.9	5.0	ug/l	25.0		99.6	80-120				
4-Chlorotoluene	24.7	5.0	ug/l	25.0		98.8	80-120				
Dibromochloromethane	28.1	2.0	ug/l	25.0		112	70-150				
1,2-Dibromo-3-chloropropane	24.3	5.0	ug/I	25.0		97.2	50-145				
1,2-Dibromoethane (EDB)	26.0	2.0	ug/l	25.0		104	75-120				
Dibromomethane	26.3	2.0	ug/l	25.0		105	80-120				
1,2-Dichlorobenzene	25.3	2.0	ug/l	25.0		101	80-120				
1,3-Dichlorobenzene	25.1	2.0	ug/l	25.0		100	80-120				
1,4-Dichlorobenzene	26.0	2.0	ug/l	25.0		104	80-120				
Dichlorodifluoromethane	23.0	5.0	· ug/l	25.0		92.0	25-140				
1,1-Dichloroethane	26.6	2.0	ug/l	25.0		106	80-120			,	
1,2-Dichloroethane	26.4	2.0	ug/l	25.0		106	80-120				
1,1-Dichloroethene	26.2	5.0	ug/l	25.0		105	80-120		•		
cis-1,2-Dichloroethene	26.2	2.0	ug/l	25.0		105	80-120			•	
trans-1,2-Dichloroethene	27.2	2.0	ug/l	25.0		109	80-120				
1,2-Dichloropropane	25.2	2.0	ug/l	25.0	*	101	80-120		. •		
1,3-Dichloropropane	25.6	2.0	ug/l	25.0		102	80-120				
2,2-Dichloropropane	30.2	2.0	ug/l	25.0		121	75-135				
1,1-Dichloropropene	25.8	2,0	ug/l	25.0		103	80-120				
 1 .			-								

Melissa Evans Project Manager PKH0540 Page 21 of 34

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-8596 FAX (858) 505-9589 (480) 785-0043 FAX (480) 785-0851

Law Engineering

4634 S. 36th Place Phoenix, AZ 85040

Attention: Jim Clarke

Client Project ID:

70211-0-0152

Report Number:

PKH0540

Sampled: 08/29/01-08/30/01

Received: 08/30/01

METHODBIANKOC DATA

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: P1I1002 Extracted: 09/09/01	<u>L</u>									
LCS Analyzed: 09/09/01 (P1I1002-BS1))									
cis-1,3-Dichloropropene	26.2	2.0	ug/l	25.0		105	80-120			
trans-1,3-Dichloropropene	25.5	2.0	ug/l	25.0		102	80-120			
Ethylbenzene	26.0	2.0	ug/l	25.0		104	80-120			
Hexachlorobutadiene	22.3	5.0	ug/l	25.0		89.2	60-145			
2-Hexanone	27.8	10	ug/l	25.0		111	50-170			
Iodomethane	27.6	2.0	ug/l	25.0		110	40-155			
Isopropylbenzene	26.8	2.0	ug/l	25.0	•	107	80-120			
p-Isopropyltoluene	24.1	2.0	ug/l	25.0		96.4	80-120			
Methylene chloride	26.9	5.0	ug/l	25.0		108	80-120			
4-Methyl-2-pentanone (MIBK)	25.8	10	ug/l	25.0		103	70-140			
Methyl-tert-butyl Ether (MTBE)	28.4	5.0	ug/l	25.0		114	75-135			
Naphthalene	22.6	5.0	ug/l	25.0		90.4	70-130			•
n-Propylbenzene	25.7	2.0	ug/l	25.0		103	80-120			
Styrene	26.4	2.0	ug/l	25.0		106	80-120			
1,1,1,2-Tetrachloroethane	27.9	5.0	ug/l	25.0		112	65-150			
1,1,2,2-Tetrachloroethane	25.3	2.0	ug/l	25.0		101	70-130			
Tetrachloroethene	27.1	2.0	ug/l	25.0		108	80-125			
Toluene	25.4	2.0	ug/l	25.0		102	80-120			
1,2,3-Trichlorobenzene	22.4	5.0	ug/l	25.0		89.6	75-125			
1,2,4-Trichlorobenzene	23.8	5.0	ug/l	25.0		95.2	80-120		* * *	
1,1,1-Trichloroethane	27.5	2.0	ug/l	25.0	•	110	80-120	•		
1,1,2-Trichloroethane	25.4	2.0	ug/l	25.0		102	80-120			
Trichloroethene	24.8	2.0	ug/l	25.0		99.2	80-120			•
Trichlorofluoromethane	30.4	5.0	ug/l	25.0		122	75-150			
1,2,3-Trichloropropane	23.8	10	ug/l	25.0		95.2	65-135			
1,2,4-Trimethylbenzene	25.3	2.0	ug/l	25.0		101	80-120			
1,3,5-Trimethylbenzene	24.7	2.0	ug/l	25.0		98.8	80-120			
Vinyl acetate	29.8	25	ug/l	25.0		119	40-120			
Vinyl chloride	28.8	5.0	ug/l	25.0		115	80-120			
Xylenes, Total	77.9	10	ug/l	75.0		104	80-120			
Surrogate: Dibromofluoromethane	28.8		ug/l	25.0		115	80-120			
Surrogate: Toluene-d8	27.6		ug/l	25.0		110	80-120			
Surrogate: 4-Bromofluorobenzene	26.1		ug/l	25.0		104	80-120			•

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-8596 FAX (858) 505-9589 (480) 785-0043 FAX (480) 785-0851

Law Engineering

4634 S. 36th Place Phoenix, AZ 85040

Attention: Jim Clarke

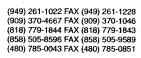
Client Project ID:

70211-0-0152

Sampled: 08/29/01-08/30/01

PKH0540 Report Number:

Received: 08/30/01



VOLATILE ORGANICS BY GC/MS (EPA 8260B)

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: P1I1002 Extracted: 0	9/09/01									
LCS Dup Analyzed: 09/09/01 (P	1I1002-BSD1)									
Acetone	31.0	20	ug/l	25.0		124	30-200	10.2	20	
Benzene	25.1	2.0	ug/l	25.0		100	80-120	0.399	20	
Bromobenzene	25.7	5.0	ug/l	25.0		103	80-120	2.36	20	
Bromochloromethane	29.1	5.0	ug/l	25.0		116	80-120	2.79	20	
Bromodichloromethane	27.0	2.0	ug/l	25.0		108	80-130	0.743	20	
Bromoform	28.0	5.0	ug/l	25.0		112	60-140	3.27	20	
Bromomethane	28.0	5.0	ug/l	25.0		112	60-150	1.77	20	
2-Butanone (MEK)	29.4	10	ug/l	25.0		118	30-185	1.72	20	
n-Butylbenzene	24.8	5.0	ug/l	25.0		99.2	75-130	0.810	20	
sec-Butylbenzene	24.9	5.0	ug/l	25.0		99.6	80-125	0.401	20	
tert-Butylbenzene	24.6	5.0	ug/l	25.0		98.4	80-120	0.406	20	
Carbon Disulfide	22.2	5.0	ug/l	25.0		88.8	65-120	3.54	20	e e e e e e e e e e e e e e e e e e e
Carbon tetrachloride	28.2	5.0	ug/l	25.0		113	75-150	2.11	20	
Chlorobenzene	26.6	2.0	ug/l	25.0		106	80-120	0.00	20	
Chloroethane	24.7	5.0	ug/l	25.0		98.8	80-125	0.806	20	
Chloroform	27.0	2.0	ug/l	25.0		108	80-120	1.49	20	
Chloromethane	21.4	5.0	ug/l	25.0		85.6	60-125	1.39	20	
2-Chlorotoluene	24.9	5.0	ug/l	25.0		99.6	80-120	0.00	20	
4-Chlorotoluene	25.1	5.0	ug/l	25.0		100	80-120	1.61	20	
Dibromochloromethane	28.7	2.0	ug/l	25.0		115	70-150	2.11	20	
1,2-Dibromo-3-chloropropane	24.5	5.0	ug/l	25.0		98.0	50-145	0.820	20	
1,2-Dibromoethane (EDB)	27.0	2.0	ug/l	25.0		108	75-120	3.77	20	
Dibromomethane	28.2	2.0	ug/l	25.0		113	80-120	6.97	20	
1,2-Dichlorobenzene	26.0	2.0	ug/l	25.0		104	80-120	2.73	20	
1,3-Dichlorobenzene	25.5	2.0	ug/l	25.0		102	80-120	1.58	20	
1,4-Dichlorobenzene	26.4	2.0	ug/l	25.0		106	80-120	1.53	20	
Dichlorodifluoromethane	21.8	5.0	ug/l	25.0		87.2	25-140	5.36	20	
1,1-Dichloroethane	26.6	2.0	ug/l	25.0		106	80-120	0.00	20	
1,2-Dichloroethane	27.6	2.0	ug/l	25.0		110	80-120	4.44	20	
1,1-Dichloroethene	25.5	5.0	ug/l	25.0		102	80-120	2.71	20	
cis-1,2-Dichloroethene	26.9	2.0	ug/l	25.0		108	80-120	2.64	20	
trans-1,2-Dichloroethene	26.4	2.0	ug/l	25.0		106	80-120	2.99	20	•
1,2-Dichloropropane	25.8	2.0	ug/l	25.0		103	80-120	2.35	20	
1,3-Dichloropropane	26.5	2.0	ug/l	25.0		106	80-120	3.45	20	
2,2-Dichloropropane	28.0	2.0	ug/l	25.0		112	75-135	7.56	20	•
1,1-Dichloropropene	25.5	2.0	ug/l	25.0		102	80-120	1.17	20	
3										

Melissa Evans Project Manager

PKH0540 Page 23 of 34

Law Engineering 4634 S. 36th Place Phoenix, AZ 85040 Attention: Jim Clarke

Client Project ID:

70211-0-0152

Sampled: 08/29/01-08/30/01

Received: 08/30/01

Report Number:

PKH0540

	•	Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: P1I1002 Extracted: 09/09/	01									
LCS Dup Analyzed: 09/09/01 (P1I100	2-BSD1)									
cis-1,3-Dichloropropene	26.6	2.0	ug/l	25.0		106	80-120	1.52	20	
trans-1,3-Dichloropropene	25.6	2.0	ug/l	25.0		102	80-120	0.391	20	
Ethylbenzene	25.8	2.0	ug/l	25.0		103	80-120	0.772	20	
Hexachlorobutadiene	23.1	5.0	ug/l	25.0		92.4	60-145	3.52	20	
2-Hexanone	28.2	10	ug/l	25.0		113	50-170	1.43	20	
Iodomethane	27.6	2.0	ug/l	25.0		110	40-155	0.00	20 .	
Isopropylbenzene	26.2	2.0	ug/l	25.0		105	80-120	2.26	20	
p-Isopropyltoluene	24.3	2.0	ug/l	25.0		97.2	80-120	0.826	20	
Methylene chloride	27.8	5.0	ug/l	25.0		111	80-120	3.29	20	
4-Methyl-2-pentanone (MIBK)	27.0	10	ug/l	25.0		108	70-140	4.55	20	
Methyl-tert-butyl Ether (MTBE)	28.1	5.0	ug/l	25.0		112	75-135	1.06	20	
Naphthalene	23.7	5.0	ug/l	25.0		94.8	70-130	4.75	20	
n-Propylbenzene	25.4	2.0	ug/l	25.0		102	80-120	1.17	20	
Styrene	26.4	2.0	ug/l	25.0		106	80-120	0.00	20	
1,1,1,2-Tetrachloroethane	28.3	5.0	ug/l	25.0		113	65-150	1.42	20	
1,1,2,2-Tetrachloroethane	26.0	2.0	ug/l	25.0		104	70-130	2.73	20	
Tetrachloroethene	27.0	2.0	ug/l	25.0		108	80-125	0.370	20	
Toluene	25.3	2.0	ug/l	25.0		101	80-120	0.394	20	
1,2,3-Trichlorobenzene	24.0	5.0	ug/i	25.0		96.0	75-125	6.90	20	
1,2,4-Trichlorobenzene	25.2	5.0	ug/l	25.0		101	80-120	5.71	20	
1,1,1-Trichloroethane	26.9	2.0	ug/l	25.0		108	80-120	2.21	20	
1,1,2-Trichloroethane	26.7	2.0	ug/l	25.0		107	80-120	4.99	20	-
Trichloroethene	25.4	2.0	ug/l	25.0		102	80-120	2.39	20	
Trichlorofluoromethane	27.1	5.0	ug/l	25.0		108	75-150	11.5	20	
1,2,3-Trichloropropane	24.6	10	ug/l	25.0		98.4	65-135	3.31	20	
1,2,4-Trimethylbenzene	25.6	2.0	ug/l	25.0		102	80-120	1.18	20	
1,3,5-Trimethylbenzene	24.8	2.0	ug/l	25.0		99.2	80-120	0.404	20	
Vinyl acetate	30.0	25	ug/l	25.0		120	40-120	0.669	20	
Vinyl chloride	26.2	5.0	ug/l	25.0		105	80-120	9.45	20	
Xylenes, Total	77.6	10	ug/l	75.0		103	80-120	0.386	20	
Surrogate: Dibromofluoromethane	29.2		ug/l	25.0		117	80-120			
Surrogate: Toluene-d8	27.6		ug/l	25.0		110	80-120			
Surrogate: 4-Bromofluorobenzene	26.3		ug/l	25.0		105	80-120			

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-8596 FAX (858) 505-9589 (480) 785-0043 FAX (480) 785-0851

Law Engineering

4634 S. 36th Place Phoenix, AZ 85040

Attention: Jim Clarke

Client Project ID:

70211-0-0152

Sampled: 08/29/01-08/30/01

Received: 08/30/01

Report Number:

PKH0540

VOLATILE ORGANICS BY GC/MS (EPA 8260B)

• •		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: P1I1002 Extracted: 09/	09/01									
Matrix Spike Analyzed: 09/09/01	(P1I1002-MS1)				Source: I	PKH0535-	02			
Acetone	ND	20	ug/I	25.0	ND	41.6	5-200			
Benzene	23.4	2.0	ug/I	25.0	ND	93.6	80-120			
Bromobenzene	24.0	5.0	ug/l	25.0	ND	96.0	80-120			
Bromochloromethane	24.4	5.0	ug/l	25.0	ND	97.6	60-135			
Bromodichloromethane	25. 7	2.0	ug/l	25.0	ND	103	80-120			
Bromoform	20.2	5.0	ug/l	25.0	ND	80.8	40-140			
Bromomethane	11.9	5.0	ug/l	25.0	ND	47.6	25-165			
2-Butanone (MEK)	12.1	10	ug/l	25.0	ND	48.4	10-160			
n-Butylbenzene	21.8	5.0	ug/l	25.0	ND	87.2	75-135			
sec-Butylbenzene	22.4	5.0	ug/l	25.0	ND	89.6	80-135			
tert-Butylbenzene	23.0	5.0	ug/I	25.0	ND	92.0	80-125			
Carbon Disulfide	10.5	5.0	ug/l	25.0	ND	42.0	20-120			
Carbon tetrachloride	26.7	5.0	ug/l	25.0	ND	107	80-145			
Chłorobenzene	26.0	2.0	ug/l	25.0	ND	104	80-120			
Chloroethane	15.5	5.0	ug/l	25.0	ND	62.0	30-150			
Chloroform	25.4	2.0	ug/l	25.0	ND	102	80-125			
Chloromethane	6.06	5.0	ug/l	25.0	ND	24.2	15-140			
2-Chlorotoluene	23.9	5.0	ug/l	25.0	ND	95.6	80-124			
4-Chlorotoluene	23.7	5.0	ug/l	25.0	ND	94.8	80-125			
Dibromochloromethane	24.2	2.0	ug/l	25.0	ND	96.8	75-135			
1,2-Dibromo-3-chloropropane	13.7	5.0	ug/l	25.0	ND	54.8	25-185			
1,2-Dibromoethane (EDB)	21.8	2.0	ug/I	25.0	ND	87.2	45-145			
Dibromomethane	23.2	2.0	ug/l	25.0	ND	92.8	55-140			
1,2-Dichlorobenzene	23.3	2.0	ug/l	25.0	ND	93.2	80-120			
1,3-Dichlorobenzene	23.6	2.0	ug/l	25.0	ND	94.4	80-120			
1,4-Dichlorobenzene	24.4	2.0	ug/i	25.0	ND .	97.6	80-120			
Dichlorodifluoromethane	10.0	5.0	ug/l	25.0	ND	40.0	25-145			
1,1-Dichloroethane	23.4	2.0	ug/l	25.0	ND	93.6	75-120			
1,2-Dichloroethane	23.3	2.0	ug/l	25.0	ND	93.2	60-135			
1,1-Dichloroethene	20.1	5.0	ug/l	25.0	ND	80.4	55-120			
cis-1,2-Dichloroethene	32.8	2.0	ug/l	25.0	9.3	94.0	75-120		* *	
trans-1,2-Dichloroethene	21.2	2.0	ug/l	25.0	ND	84.8	65-120			
1,2-Dichloropropane	24.5	2.0	ug/l	25.0	ND	98.0	80-125			
1,3-Dichloropropane	21.8	2.0	ug/l	25.0	ND	87.2	55-140			
2,2-Dichloropropane	29.4	2.0	ug/l	25.0	ND	118	45-165			
1,1-Dichloropropene	23.5	2.0	ug/l	25.0	ND .	94.0	80-120			•
			-							

Melissa Evans Project Manager

PKH0540 Page 25 of 34

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-8596 FAX (858) 505-9589 (480) 785-0043 FAX (480) 785-0851

Law Engineering
4634 S. 36th Place
Phoenix A 7 85040

Client Project ID:

70211-0-0152

Sampled: 08/29/01-08/30/01

Received: 08/30/01

Phoenix, AZ 85040 Attention: Jim Clarke

Report Number: PKH0540

....METHODIBLANKQCDATA

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: P1I1002 Extracted: 09	0/09/01									
Matrix Spike Analyzed: 09/09/01	(P1I1002-MS1)				Source: F	KH0535-	02		•	
cis-1,3-Dichloropropene	24.2	2.0	ug/l	25.0	ND	96.8	80-120			
trans-1,3-Dichloropropene	21.4	2.0	ug/l	25.0	ND	85.6	70-120			
Ethylbenzene	25.9	2.0	ug/l	25.0	ND	104	80-120			
Hexachlorobutadiene	18.1	5.0	ug/l	25.0	ND	72.4	80-135			M2
2-Hexanone	14.8	10	ug/l	25.0	ND	59.2	25-185			
lodomethane	17.3	2.0	ug/l	25.0	ND	69.2	30-155			
Isopropylbenzene	25.9	2.0	ug/l	25.0	ND	104	80-125			
p-Isopropyltoluene	21.6	2.0	ug/l	25.0	ND	86.4	80-125			
Methylene chloride	20.1	5.0	ug/l	25.0	ND	80.4	55-125			
4-Methyl-2-pentanone (MIBK)	18.5	10	ug/l	25.0	ND	74.0	10-175			
Methyl-tert-butyl Ether (MTBE)	23.2	5.0	ug/l	25.0	ND	92.8	55-135			
Naphthalene	12.9	5.0	ug/l	25.0	ND	51.6	15-160			
n-Propylbenzene	24.9	2.0	ug/l	25.0	ND	99.6	80-130			
Styrene	24.2	2.0	ug/l	25.0	ND	96.8	60-135			•
1,1,1,2-Tetrachloroethane	26.5	5.0	ug/l	25.0	ND	106	80-135			
1,1,2,2-Tetrachloroethane	14.9	2.0	ug/l	25.0	ND	59.6	35-150	-		
Tetrachloroethene	28.0	2.0	ug/l	25.0	ND	112	80-120			
Toluene	24.4	2.0	ug/l	25.0	ND	97.6	80-120			
1,2,3-Trichlorobenzene	14.8	5.0	ug/l	25.0	ND	59.2	45-145			
1,2,4-Trichlorobenzene	18.8	5.0	ug/l	25.0	ND	75.2	65-130			
1,1,1-Trichloroethane	26.4	2.0	ug/l	25.0	ND	106	80-120			
1,1,2-Trichloroethane	22.2	2.0	ug/l	25.0	ND	88.8	55-145		,	•
Trichloroethene	28.3	2.0	ug/l	25.0	ND	113	80-120			
Trichlorofluoromethane	24.3	5.0	ug/l	25.0	ND	97,2	70-145			
1,2,3-Trichloropropane	17.5	10	ug/l	25.0	ND	70.0	20-160			
1,2,4-Trimethylbenzene	23.3	2.0	ug/l	25.0	ND	93.2	70-135			
1,3,5-Trimethylbenzene	23.2	2.0	ug/l	25.0	ND	92.8	80-125			
Vinyl acetate	ND	25	ug/l	25.0	ND		25-130			N2
Vinyl chloride	13.0	5.0	ug/l	25.0	ND	52.0	25-135			
Xylenes, Total	77.0	10	ug/l	75.0	ND	103	80-120			
Surrogate: Dibromofluoromethane	24.4		ug/l	25.0		97.6	80-120			
Surrogate: Toluene-d8	26.8		ug/l	25.0		107	80-120			
Surrogate: 4-Bromofluorobenzene	25.6	*	ug/l	25.0		102	80-120			

2852 Alton Ave., Irvine, CA 92606 (949) 261-1022 FAX (949) 261-1228 1014 E. Coldby Dr., Suite A. Colton, CA 92324 (909) 370-4667 FAX (909) 370-1046 7277 Hayvenhurst, Suite B-12, Van Nuys, CA 91406 (818) 779-1844 FAX (818) 779-1843 9484 Chesapeake Dr., Suite 805, San Diego, CA 92123 (858) 505-8596 FAX (858) 505-9589 9830 South 51st St., Suite B-120, Phoenix, AZ 85044 (480) 785-0043 FAX (480) 785-0851

Law Engineering

4634 S. 36th Place

Phoenix, AZ 85040 Attention: Jim Clarke Client Project ID:

70211-0-0152

%REC

Source

Spike

Sampled: 08/29/01-08/30/01

Received: 08/30/01

RPD

Data

Report Number:

Reporting

PKH0540

Algeriti) bar este et og en de le le le

VOLATILE ORGANICS BY GC/MS (EPA 8260B)

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: P1I1002 Extracted: (09/09/01									
Matrix Spike Dup Analyzed: 09	/09/01 (P1I1002-MS	SD1)			Source: F	КН0535-	02			
Acetone	ND	20	ug/l	25.0	ND	62.4	5-200	40.0	20	R4
Benzene	23.1	2.0	ug/l	25.0	ND	92.4	80-120	1.29	20	
Bromobenzene	23.3	5.0	ug/l	25.0	ND	93.2	80-120	2.96	20	
Bromochioromethane	24.9	5.0	ug/l	25.0	ND	99.6	60-135	2.03	20	
Bromodichloromethane	25.4	2.0	ug/l	25.0	ND	102	80-120	1.17	20	
Bromoform	23.4	5.0	ug/l	25.0	ND	93.6	40-140	14.7	20	
Bromomethane	12.6	5.0	ug/l	25.0	ND	50.4	25-165	5.71	20	
2-Butanone (MEK)	14.0	10	ug/l	25.0	ND	56.0	10-160	14.6	20	*
n-Butylbenzene	21.9	5.0	ug/l	25.0	ND	87.6	75-135	0.458	20	
sec-Butylbenzene	22.2	5.0	ug/l	25.0	ND	88.8	80-135	0.897	20	
tert-Butylbenzene	22.3	5.0	ug/l	25.0	ND	89.2	80-125	3.09	20	
Carbon Disulfide	10.6	5.0	ug/l	25.0	ND	42.4	20-120	0.948	20	
Carbon tetrachloride	27.1	5.0	ug/l	25.0	ND	108	80-145	1.49	20	
Chlorobenzene	25.6	2.0	ug/l	25.0	ND	102	80-120	1.55	20	
Chloroethane	15.9	5.0	ug/l	25.0	ND	63.6	30-150	2.55	20	
Chloroform	25.6	2.0	ug/l	25.0	ND	102	80-125	0.784	20	
Chloromethane	6.17	5.0	ug/l	25.0	ND	24.7	15-140	1.80	20	
2-Chlorotoluene	23.1	5.0	ug/l	25.0	ND	92.4	80-124	3.40	20	
4-Chlorotoluene	23.5	5.0	ug/l	25.0	ND	94.0	80-125	0.847	20	
Dibromochloromethane	25.7	2.0	ug/l	25.0	ND	103	75-135	6.01	20	•
1,2-Dibromo-3-chloropropane	18.8	5.0	ug/l	25.0	ND	75.2	25-185	31.4	20	R4
1,2-Dibromoethane (EDB)	24.0	2.0	ug/I	25.0	ND	96.0	45-145	9.61	20	
Dibromomethane	24.3	2.0	ug/l	25.0	ND	97.2	55-140	4.63	20	
1,2-Dichlorobenzene	23.5	2.0	ug/l	25.0	ND	94.0	80-120	0.855	20	
1,3-Dichlorobenzene	23.4	2.0	ug/l	25.0	ND	93.6	80-120	0.851	20	
1,4-Dichlorobenzene	24.0	2.0	ug/I	25.0	ND	96.0	80-120	1.65	20	
Dichlorodifluoromethane	9.65	5.0	ug/l	25.0	ND	38.6	25-145	3.56	20	
1,1-Dichloroethane	23.7	2.0	ug/l	25.0	ND	94.8	75-120	1.27	20	
1,2-Dichloroethane	24.5	2.0	ug/l	25.0	ND	98.0	60-135	5.02	20	
1,1-Dichloroethene	20.0	5.0	ug/l	25.0	ND	80.0	55-120	0.499	20	
cis-1,2-Dichloroethene	32.6	2.0	ug/l	25.0	9.3	93.2	75-120	0.612	20	
trans-1,2-Dichloroethene	21.3	2.0	ug/l	25.0	ND	85.2	65-120	0.471	20	
1,2-Dichloropropane	24.3	2.0	ug/l	25.0	ND	97.2	80-125	0.820	20	
1,3-Dichloropropane	23.7	2.0	ug/l	25.0	ND	94.8	55-140	8.35	20	
2,2-Dichloropropane	27.3	2.0	ug/l	25.0	ND	109	45-165	7.41	20	
1,1-Dichloropropene	23.6	2.0	· ug/l	25.0	ND	94.4	80-120	0.425	20	*.

Melissa Evans Project Manager

PKH0540 Page 27 of 34

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-8596 FAX (858) 505-9589 (480) 785-0043 FAX (480) 785-0851

Law Engineering 4634 S. 36th Place Phoenix, AZ 85040

Attention: Jim Clarke

Client Project ID:

70211-0-0152

Sampled: 08/29/01-08/30/01

Report Number: PKH0540 Received: 08/30/01

— METHOD BLANKOC DATA

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: P1I1002 Extracted: 09/0	<u> 19/01</u>									
Matrix Spike Dup Analyzed: 09/09	/01 (P1I1002-M	SD1)			Source: P	KH0535-	02			
cis-1,3-Dichloropropene	24.3	2.0	ug/l	25.0	ND	97.2	80-120	0.412	20	
trans-1,3-Dichloropropene	22.6	2.0	ug/l	25.0	ND	90.4	70-120	5.45	20	
Ethylbenzene	26.0	2.0	ug/l	25.0	ND	104	80-120	0.385	20	
Hexachlorobutadiene	19.7	5.0	ug/l	25.0	ND	78.8	80-135	8.47	20	M2
2-Hexanone	20.4	10	ug/l	25.0	ND	81.6	25-185	31.8	20	R4
Iodomethane	17.3	2.0	ug/l	25.0	ND	69.2	30-155	0.00	20	
Isopropylbenzene	26.0	2.0	ug/l	25.0	ND	104	80-125	0.385	20	
p-Isopropyltoluene	21.2	2.0	ug/l	25.0	ND	84.8	80-125	1.87	20	
Methylene chloride	19.7	5.0	ug/l	25.0	ND	78.8	55-125	2.01	20	
4-Methyl-2-pentanone (MIBK)	24.2	10	ug/l	25.0	ND	96.8	10-175	26.7	20	R4
Methyl-tert-butyl Ether (MTBE)	23.9	5.0	ug/l	25.0	ND	95.6	55-135	2.97	20	
Naphthalene	17.4	5.0	ug/l	25.0	ND	69.6	15-160	29.7	20	R4
n-Propylbenzene	24.0	2.0	ug/l	25.0	ND	96.0	80-130	3.68	20	
Styrene	24.4	2.0	ug/l	25.0	ND	97.6	60-135	0.823	20	
1,1,1,2-Tetrachloroethane	26.5	5.0	ug/l	25.0	ND	106	80-135	0.00	20	
1,1,2,2-Tetrachloroethane	16.7	2.0	ug/l	25.0	ND	66.8	35-150	11.4	20	
Tetrachloroethene	27.7	2.0	ug/l	25.0	ND	111	80-120	1.08	20	
Toluene	24.2	2.0	ug/l	25.0	ND	96.8	80-120	0.823	20	
1,2,3-Trichlorobenzene	17.7	5.0	ug/l	25.0	ND	70.8	45-145	17.8	20	
1,2,4-Trichlorobenzene	20.8	5.0	ug/l	25.0	ND	83.2	65-130	10.1	20	
1,1,1-Trichloroethane	26.5	2.0	ug/l	25.0	ND	106	80-120	0.378	20	
1,1,2-Trichloroethane	23.6	2.0	ug/l	25.0	ND	94.4	55-145	6.11	20	
Trichloroethene	29.5	2.0	ug/l	25.0	ND	118	80-120	4.15	20	
Trichlorofluoromethane	23.7	5.0	ug/l	25.0	ND	94.8	70-145	2.50	20	
1,2,3-Trichloropropane	21.3	10	ug/l	25.0	ND	85.2	20-160	19.6	20	
1,2,4-Trimethylbenzene	23.4	2.0	ug/l	25.0	ND	93.6	70-135	0.428	20	
1,3,5-Trimethylbenzene	22.8	2.0	ug/l	25.0	ND	91.2	80-125	1.74	20	
Vinyl acetate	ND	25	ug/l	25.0	ND	50.4	25-130		20	
Vinyl chloride	13.4	5.0	ug/l	25.0	ND	53.6	25-135	3.03	20	
Xylenes, Total	77.8	10	ug/l	75.0	ND	104	80-120	1.03	20	•
Surrogate: Dibromofluoromethane	23.9		ug/l	25.0		95.6	80-120			
Surrogate: Toluene-d8	26.6		ug/l	25.0		106	80-120			
Surrogate: 4-Bromofluorobenzene	<i>24</i> .8		ug/l	25.0		99.2	80-120			

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-8596 FAX (858) 505-9589 (480) 785-0043 FAX (480) 785-0851

Law Engineering

4634 S. 36th Place

Phoenix, AZ 85040 Jim Clarke Attention:

Client Project ID:

Report Number:

Reporting

70211-0-0152

PKH0540

Sampled: 08/29/01-08/30/01

Received: 08/30/01

RPD

Data

%REC

Spike

Source

TOTAL METALS

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: P1I0524 Extracted: 09	<u>//05/01</u>									
Blank Analyzed: 09/05/01 (P1I05	324-BLK1)								•	
Mercury	ND	0.020	mg/kg							
LCS Analyzed: 09/05/01 (P1I052	4-BS1)				•					
Mercury	0.406	0.020	mg/kg	0.417		97.4	85-115			
Matrix Spike Analyzed: 09/05/01	(P1I0524-MS1)				Source: F	KH0487-	01			
Mercury	0.358	0.020	mg/kg	0.417	ND	84.9	85-115			
Matrix Spike Dup Analyzed: 09/0	5/01 (P1I0524-M	SD1)			Source: F	KH0487-	01			
Mercury	0.355	0.020	mg/kg	0.417	ND	84.2	85-115	0.842	20	M2
Batch: P1I0713 Extracted: 09	<u>/07/01</u>									
Blank Analyzed: 09/10/01 (P1I07	13-BLK1)									
Arsenic	ND	5.0	mg/kg							
Barium	ND.	1.0	mg/kg							
Cadmium	ND	0.50	mg/kg							
Chromium	2.99	1.0	mg/kg							B1
Lead	ND	5.0	mg/kg							
Selenium	ND	5.0	mg/kg							
Silver	ND	0.50	mg/kg							
LCS Analyzed: 09/10/01 (P1I071	3-BS1)									
Arsenic	94.8	5.0	mg/kg	100		94.8	80-120			
Barium	96.1	1.0	mg/kg	100		96.1	80-120			
Cadmium	97.9	0.50	mg/kg	100		97.9	80-120			
Chromium	95.6	1.0	mg/kg	100		95.6	80-120			
Lead	94.3	5.0	mg/kg	100		94.3	80-120			
Selenium	94.8	5.0	mg/kg	100		94.8	80-120			
Silver	81.7	0.50	mg/kg	100		81.7	80-120			

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-8596 FAX (858) 505-9589 (480) 785-0043 FAX (480) 785-0851

Law Engineering 4634 S. 36th Place Phoenix, AZ 85040 Attention: Jim Clarke

Client Project ID:

70211-0-0152

Sampled: 08/29/01-08/30/01

Report Number:

PKH0540

Received: 08/30/01

......METHOD REWNK/QCDATA

TOTAL METALS

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: P110713 Extracted: 09/07/01	<u>L</u>									
Matrix Spike Analyzed: 09/10/01 (P1I0	713-MS1)				Source: F	KH0511-	03			
Arsenic	88.9	5.0	mg/kg	100	ND	88.9	75-125			
Barium	301	1.0	mg/kg	100	230	71.0	75-125			M2
Cadmium	87.6	0.50	mg/kg	100	ND	87.6	75-125			
Chromium	101	1.0	mg/kg	100	25	76.0	75-125			
Lead	97.5	5.0	mg/kg	100	9.0	88.5	75-125			
Selenium	92.2	5.0	mg/kg	100	ND	90.0	75-125			
Silver	88.7	0.50	mg/kg	100	ND	88.7	75-125			
Matrix Spike Dup Analyzed: 09/10/01 (P110713-MS	D 1)			Source: P	KH0511-	03		•	
Arsenic	73.2	5.0	mg/kg	100	ND	73.2	75-125	19.4	20	M2
Barium	300	1.0	mg/kg	100	230	70.0	75-125	0.333	20	M2
Cadmium	73.5	0.50	mg/kg	100	ND	73.5	75-125	17.5	20	M2
Chromium	88.3	1.0	mg/kg	100	25	63.3	75-125	13.4	20	M2
Lead	81.7	5.0	mg/kg	100	9.0	72.7	75-125	17.6	20	M2
Selenium	76.4	5.0	mg/kg	100	ND	74.2	75-125	18.7	20	M2
Silver	86.5	0.50	mg/kg	100	ND .	86.5	75-125	2.51	20	

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-8596 FAX (858) 505-9589 (480) 785-0043 FAX (480) 785-0851

Law Engineering

4634 S. 36th Place Phoenix, AZ 85040 Attention: Jim Clarke Client Project ID:

70211-0-0152

Sampled: 08/29/01-08/30/01

Received: 08/30/01

RPD

Data

Report Number:

Reporting

PKH0540

- METHOD BLANK OF DATA

TOTAL RECOVERABLE METALS

Spike

Source

%REC

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: P1I0404 Extracted: 08/3	1/01	-								
Blank Analyzed: 08/31/01 (P1I0404	-BLK1)									
Chromium VI	ND	0.025	mg/l		,					
LCS Analyzed: 08/31/01 (P1I0404-1	BS1)									
Chromium VI	0.0993	0.050	mg/l	0.100		99.3	85-115			
Matrix Spike Analyzed: 08/31/01 (I	P1I0404-MS1)				Source: P	KH0540-	02			
Chromium VI	0.0521	0.025	mg/l	0.0500	ND	104	85-115			
Matrix Spike Dup Analyzed: 08/31/	01 (P1I0404-M	SD1)			Source: PKH0540-02					
Chromium VI	0.0509	0.025	mg/l	0.0500	ND	102	85-115	2.33	20	
Batch: P1I0605 Extracted: 09/0	<u>6/01</u>									
Blank Analyzed: 09/07/01 (P1I0605	-BLK1)									
Arsenic	ND	0.050	mg/l							
Copper	ND	0.020	mg/l							
Nickel	ND	0.050	mg/l							
Zinc	ND	0.050	mg/l							
LCS Analyzed: 09/07/01 (P1I0605-I	BS1)									
Arsenic	1.04	0.050	mg/l	1.00		104	85-115			
Copper	1.05	0.020	mg/l	1.00		105	85-115			
Nickel	1.02	0.050	mg/l	1.00		102	85-115			
Zinc	1.05	0.050	mg/l	1.00		105	85-115			
LCS Dup Analyzed: 09/07/01 (P1I0	605-BSD1)								,	
Arsenic	1.03	0.050	mg/l	1.00		103	85-115	0.966	20	
Copper	1.06	0.020	mg/l	1.00		106	85-115	0.948	20	
Nickel	1.01	0.050	mg/l	1.00	,	101	85-115	0.985	20	
Zinc	1.04	0.050	mg/l	1.00		104	85-115	0.957	20	

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-8596 FAX (858) 505-9589 (480) 785-0043 FAX (480) 785-0851

Law Engineering 4634 S. 36th Place Phoenix, AZ 85040 Attention: Jim Clarke

Client Project ID:

Report Number:

70211-0-0152

Sampled: 08/29/01-08/30/01

Received: 08/30/01

PKH0540

NGH HITODHKI ESIN KTOTES DELE

TOTAL RECOVERABLE METALS

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: P1I0605 Extracted: 09/06	<u>/01</u>									
Matrix Spike Analyzed: 09/07/01 (P.	110605-MS1)				Source: F	KH0544-	01			
Arsenic	1.04	0.050	mg/l	1.00	ND	104	70-130			
Copper	0.986	0.020	mg/l	1.00	ND	97.6	70-130			
Nickel	0.977	0.050	mg/l	1.00	ND	97.6	70-130			
Zine	1.01	0.050	mg/l	1.00	ND	100	70-130			
Matrix Spike Dup Analyzed: 09/07/0	1 (P1I0605-M	SD1)			Source: P	KH0544-	01			
Arsenic	1.04	0.050	mg/l	1.00	ND	104	70-130	0.00	20	
Copper	0.987	0.020	mg/l	1.00	ND	97.7	70-130	0.101	20	
Nickel	0.965	0.050	mg/l	1.00	ND	96.4	70-130	1.24	20	
Zinc	0.996	0.050	mg/l	1.00	ND	98.8	70-130	1.40	20	

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-8596 FAX (858) 505-9589 (480) 785-0043 FAX (480) 785-0851

Law Engineering

4634 S. 36th Place

Phoenix, AZ 85040 Attention: Jim Clarke Client Project ID:

70211-0-0152

Sampled: 08/29/01-08/30/01

RPD

Data

Received: 08/30/01

%REC

Report Number:

Reporting

PKH0540

-NICH HOD BLANK/QUEDAUA -

Spike

Source

INORGANICS

		F								2	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers	
Batch: P1I1008 Extracted: 09/10/0	<u>1</u>										
Blank Analyzed: 09/10/01 (P1I1008-Bl	L K1)						***				
Total Cyanide	ND	0.020	mg/l								
LCS Analyzed: 09/10/01 (P1I1008-BS1	l)				•						
Total Cyanide	0.0905	0.020	mg/l	0.100		90.5	90-110				
Matrix Spike Analyzed: 09/10/01 (P11)	1008-MS1)				Source: F	KH0515-	18				
Total Cyanide	0.0876	0.020	mg/l	0.100	ND	87.6	70-130			•	
Matrix Spike Dup Analyzed: 09/10/01	(P1I1008-MS	S D 1)			Source: P	PKH0515-	18				
Total Cyanide	0.0963	0.020	mg/l	0.100	ND	96.3	70-130	9.46	20		
Batch: P1I1024 Extracted: 09/10/0	<u>1</u>										
Blank Analyzed: 09/11/01 (P1I1024-BI	LK1)										
Total Cyanide	ND	0.50	mg/kg								
Matrix Spike Analyzed: 09/11/01 (P1I)	1024-MS1)				Source: P	KH0540-	01				
Total Cyanide	2.46	0.50	mg/kg	2.50	ND	98.4	70-130				
Matrix Spike Dup Analyzed: 09/11/01	(P1I1024-MS	SD1)		•	Source: P	KH0540-	01				
Total Cyanide	2.19	0.50	mg/kg	2.50	ND	87.6	70-130	11.6	20		
Reference Analyzed: 09/11/01 (P1I1024	4-SRM1)										
Total Cyanide	138	20	mg/kg	201		68.7	40-160				

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-8596 FAX (858) 505-9589 (480) 785-0043 FAX (480) 785-0851

Law Engineering 4634 S. 36th Place Phoenix, AZ 85040 Jim Clarke Attention:

Client Project ID:

Report Number:

70211-0-0152

Sampled: 08/29/01-08/30/01

Received: 08/30/01

PKH0540

DATA QUALIFIERS AND DEFINITIONS

B1 Target analyte detected in method blank at or above the method reporting limit.

B4 Target analyte detected in blank at/above method acceptance criteria.

Matrix spike recovery was low, the method control sample recovery was acceptable. M₂

N1 See case narrative.

N2 See corrective action report.

MS/MSD RPD exceeded the method control limit. Recovery met acceptance criteria. R4

ND Analyte NOT DETECTED at or above the reporting limit

NR Not reported.

RPD Relative Percent Difference

(909) 370-4667 FAX (909) 370-1046 (919) 778-1949 FAX (819) 778-1943 (819) 505-8596 FAX (819) 505-969 (480) 785-0043 FAX (480) 785-0851 1014 E. Colon, Chia, Sulfe, A. Colon, Ghagaga, 16325 Sherman Way, Sulfe C-11, Van Nuys, CA 82406 9444 Chestpeake Dr., Sulfe 805, San Diego, CA 92140 9830 South 51st St., Sulfe 805, Sun Diego, CA 82004 9830 South 51st St., Sulfe 8120, Phoenix, AZ 85044 CHAIN OF CUSTODY FORM

Special Instructions \mathcal{C} 20 ♂ 05 72 hours Sdays normal on Ice Page (Check) (Check Turnaround Time: Sample Integrity: 10 16 9 WILL Quote #: same day 24 hours 48 hours intact i, ii UZ んかい Analysis Required Date /Time: Date /Time Date./Time: RCRA うるかろ Received in Lab by: Preservatives 200 X をマナ Received by: Received by NONE 70211-11-0150 0220 Sampling Date/Time Project/PO Number: 1000 The second 13/12/20 Phone Number: カン Fax Number: 437 01/1 Cont. # O Date Time: Date (Time: Date /Time Sample Container Type VON S Matrix 421451 STO W. TATE OF STATE するかな Description Client Name/Address: Sample NEW PRE Project Manager auished By (X) Sampler

by relinquishing samples to Del Mar Analytical, client agrees to pay for the services requested on this chain of custody form and any additional analyses performed on this project. Payment for services tement o A due within 30 days from the date of invoice. Sample(s) will be disposed of after 30 days.

COCGB

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-9596 FAX (858) 505-9689 (480) 785-0043 FAX (480) 785-0851

Law Engineering

4634 S. 36th Place Phoenix, AZ 85040

Attention: Jim Clarke

Client Project ID 70211-0-0150

Report Number: PKH0511

Sampled: 08/28/01-08/29/01

Received: 08/29/01

Issued: 10/2/01-11/26/01

Revised: 11/26/01

LABORATORY NUMBER	SAMPLE DESCRIPTION	SAMPLE MATRIX
PKH0511-01	LB3-S-10	Soil
PKH0511-02	LB3-S-20	Soil
PKH0511-03	LB3-S-30	Soil
PKH0511-03RE2	LB3-S-30	Soil
PKH0511-04	LB3-S-40	Soil
PKH0511-04RE2	LB3-S-40	Soil
PKH0511-05	LB3-S-50	Soil
PKH0511-05RE2	LB3-S-50	Soil
PKH0511-05RE7	LB3-S-50	Soil
PKH0511-06	LB3-S-60	Soil
PKH0511-09	LB3-S-30	Soil
PKH0511-11	LB3-S-50	Soil
PKH0511-13	RINSATE	Water

SAMPLE RECEIPT:

Samples were received intact, on ice, and with chain of custody documentation. Soil samples requiring volatile analysis were

received in Encore Container(s). Samples were received at a temperature of 7 degrees C.

HOLDING TIMES:

Holding times were met.

PRESERVATION:

Samples requiring preservation were verified prior to sample analysis.

OBSERVATIONS:

Report was revised 11/26/01 to include Quality Control data for Method 8260 (Soils).

SUBCONTRACTED:

No analyses were subcontracted to an outside laboratory.

QA/QC CRITERIA:

The N2 flag on ICP Metals indicates that the Matrix Spike recovery was outside the method control limits. See Corrective Action Report. The R1 flag on ICP Metals indicates that the RPD exceeded the method control limit. See Corrective Action

Report.

EXPLANATION OF DATA

QUALIFIERS:

The N1 flag on ICP Metals indicates that the analyte was detected in the associated Method Blank. Analyte concentration in the sample is greater than 10X the concentration found in the Method Blank. The N2 flag on 8260 indicates that one or more

QC parameters were outside of laboratory acceptance limits. Please see Corrective Action Report.

DEL MAR ANALYTICAL, PHOENIX (AZ0426)

Debbie Fuller

Project Manager

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced, except in full, without written permission from Del Mar Analytical.

PKH0511 Page 1 of 36

CORRECTIVE ACTION REPORT

Department: Metals

Methods:

6010B

Date:

09/14/2001

Matrix:

Soil

Batch:

P111410

Samples Affected:

PKI0059-01 - PKI0059-04, PKI0037-02, PKI0078-01,

PKI0082-01 - PKI0082-03, PKI0091-01 PKI0091-02, PKI0138-074, PKH0511-03 - PKH0511-05, PKH0448-03,

PKH0448-06 & PKH0471-02

Identification and Definition of Problem:

Several analytes recovered low and outside of acceptance limits in the Matrix Spike Duplicate (MSD). Also, several of the analytes recovered high and outside of acceptance limits in the Matrix Spike (MS). Because the MSD recovered low and the MS recovered high the Relative Percent Difference between the MS and the MSD for these compounds was also high and outside of acceptance limits.

Determination of the Cause of the Problem:

A definitive cause for the out of acceptance limits recoveries could not be determined.

Corrective Action:

The Laboratory Control Sample (LCS) and Laboratory Control Sample Duplicate (LCSD) were both within acceptance limits for all analytes. The RPDs between the LCS and the LCSD were also within acceptance limits. Therefore the data should not be significantly impacted. The MS and MSD have been flagged "N2" to indicate that the recoveries were outside of acceptance limits. The MSD has also been flagged "R1" to indicate that the RPD was outside of acceptance limits.

Elizabeth C. Wueschner: Shaketh C. Uneschen Date: 10/5/2001
Quality Assurance Manager

CORRECTIVE ACTION REPORT

Department: GC/MS

Method:

8260B

Date:

09/09/2001

Matrix:

Water

Batch:

P111002

Samples:

PKH0451-02, PKH0563-01 - PKH0563-02, PKH0535-02, PKH0511-11

- PKH00511-13, PKH0540-02 & PKI0037-03

Identification and Definition of Problem:

The Matrix Spike (MS) recovered below the Method Detection Limit (MDL) for Vinyl Acetate. The MS recovered at a concentration of 11ppb and the MDL is 12ppb. The recovery of the compound is 44% and within the acceptance limits of 25-130%. Due to the MS recovering below the MDL, the Relative Percent Difference (RPD) between the MS and the Matrix Spike Duplicate (MSD) is not calculated in the report. The actual RPD between the MS and the MSD is 13%.

Determination of the Cause of the Problem:

The cause of the low recovery in the MS which caused the concentration to be below the MDL has not been determined.

Corrective Action:

The Laboratory Control Sample (LCS), Laboratory Control Sample Duplicate (LCSD) and MSD recovered within acceptance limits for Vinyl acetate. The RPD between the LCS and the LCSD was also within acceptance limits. Therefore, the data should not be significantly impacted. The MS has been flagged "N2" for Vinyl acetate to indicate that the compound was recovered at a concentration that is less than the MDL.

Ouality Assurance Manager

Elizabeth C. Wueschner: Charles C. Wueschner Date: 10/5/2001

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-9596 FAX (858) 505-9689 (480) 785-0043 FAX (480) 785-0851

Law Engineering 4634 S. 36th Place Phoenix, AZ 85040

Client Project 1D:

70211-0-0150

Sampled: 08/28/01-08/29/01

Attention: Jim Clarke

Report Number: PKH0511

Received: 08/29/01

Analyte	Method	Batch	Reporting Limit ug/kg	Sample Result ug/kg	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: PKH0511-09 (LB3-S	-30 - Soil)		-	~-B/B				
Acetone	EPA 8260B	P1H3001	850	ND	1	8/30/01	9/9/01	
Benzene	EPA 8260B	P1H3001	42	ND	1	8/30/01	9/9/01	
Bromobenzene	EPA 8260B	P1H3001	210	ND	1	8/30/01	9/9/01	
Bromochloromethane	EPA 8260B	P1H3001	210	ND	1	8/30/01	9/9/01	
Bromodichloromethane	EPA 8260B	P1H3001	85	ND	1	8/30/01	9/9/01	
Bromoform	EPA 8260B	P1H3001	210	ND	1	8/30/01	9/9/01	
Bromomethane	EPA 8260B	P1H3001	210	ND	1	8/30/01	9/9/01	
2-Butanone (MEK)	EPA 8260B	P1H3001	420	ND	1	8/30/01	9/9/01	
n-Butylbenzene	EPA 8260B	P1H3001	210	ND	1	8/30/01	9/9/01	
sec-Butylbenzene	EPA 8260B	P1H3001	210	ND	1	8/30/01	9/9/01	
tert-Butylbenzene	EPA 8260B	P1H3001	210	ND	1	8/30/01	9/9/01	
Carbon Disulfide	EPA 8260B	P1H3001	210	ND	1	8/30/01	9/9/01	
Carbon tetrachloride	EPA 8260B	P1H3001	210	ND	1	8/30/01	9/9/01	
Chlorobenzene	EPA 8260B	P1H3001	42	ND	1	8/30/01	9/9/01	
Chloroethane	EPA 8260B	P1H3001	210	ND	1	8/30/01	9/9/01	
Chloroform	EPA 8260B	P1H3001	85	ND	1	8/30/01	9/9/01	
Chloromethane	EPA 8260B	P1H3001	210	ND	1	8/30/01	9/9/01	
2-Chlorotoluene	EPA 8260B	P1H3001	210	ND	1	8/30/01	9/9/01	
4-Chlorotoluene	EPA 8260B	P1H3001	210	ND	1	8/30/01	9/9/01	
Dibromochloromethane	EPA 8260B	P1H3001	85	ND	1	8/30/01	9/9/01	
1,2-Dibromo-3-chloropropane	EPA 8260B	P1H3001	210	ND	1	8/30/01	9/9/01	
1,2-Dibromoethane (EDB)	EPA 8260B	P1H3001	85	ND	1	8/30/01	9/9/01	
Dibromomethane	EPA 8260B	P1H3001	85	ND	1	8/30/01	9/9/01	
1,2-Dichlorobenzene	EPA 8260B	P1H3001	85	ND	1	8/30/01	9/9/01	
1,3-Dichlorobenzene	EPA 8260B	P1H3001	85	ND	1	8/30/01	9/9/01	
1,4-Dichlorobenzene	EPA 8260B	P1H3001	85	ND	1	8/30/01	9/9/01	
Dichlorodifluoromethane	EPA 8260B	P1H3001	210	ND	1	8/30/01	9/9/01	
1,1-Dichloroethane	EPA 8260B	P1H3001	85	ND	1	8/30/01	9/9/01	
1,2-Dichloroethane	EPA 8260B	P1H3001	42	ND	1	8/30/01	9/9/01	
1,1-Dichloroethene	EPA 8260B	P1H3001	210	ND	1	8/30/01	9/9/01	
cis-1,2-Dichloroethene	EPA 8260B	P1H3001	85	ND	1	8/30/01	9/9/01	
trans-1,2-Dichloroethene	EPA 8260B	P1H3001	85	ND	1	8/30/01	9/9/01	
1,2-Dichloropropane	EPA 8260B	P1H3001	85	ND	1	8/30/01	9/9/01	
1,3-Dichloropropane	EPA 8260B	P1H3001	85	ND	1	8/30/01	9/9/01	
2,2-Dichloropropane	EPA 8260B	P1H3001	85	ND	1	8/30/01	9/9/01	
1,1-Dichloropropene	EPA 8260B	P1H3001	85	ND	1	8/30/01	9/9/01	
cis-1,3-Dichloropropene	EPA 8260B	P1H3001	85	ND	1	8/30/01	9/9/01	
trans-1,3-Dichloropropene	EPA 8260B	P1H3001	85	ND	1	8/30/01	9/9/01	
Ethylbenzene	EPA 8260B	P1H3001	85	ND	1	8/30/01	9/9/01	
Hexachlorobutadiene	EPA 8260B	P1H3001	210	ND	1	8/30/01	9/9/01	
2-Hexanone	EPA 8260B	P1H3001	420	ND	1	8/30/01	9/9/01	
Iodomethane	EPA 8260B	P1H3001	85	ND	1	8/30/01	9/9/01	
Isopropylbenzene	EPA 8260B	P1H3001	85	ND	1	8/30/01	9/9/01	

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-9596 FAX (858) 505-9689 (480) 785-0043 FAX (480) 785-0851

Law Engineering 4634 S. 36th Place Phoenix, AZ 85040 Attention: Jim Clarke

Client Project ID: 70211-0-0150

Sampled: 08/28/01-08/29/01

Report Number:

PKH0511

Received: 08/29/01

VOLATILE ORGANICS BY GC/MS (EPA 8260B)

Analyte	Method	Batch	Reporting Limit ug/kg	Sample Result ug/kg	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: PKH0511-09 (LB3-	-S-30 - Soil)		8 8	0 0				
p-Isopropyltoluene	EPA 8260B	P1H3001	85	ND	1	8/30/01	9/9/01	
Methylene chloride	EPA 8260B	P1H3001	420	ND	1	8/30/01	9/9/01	
4-Methyl-2-pentanone (MIBK)	EPA 8260B	P1H3001	420	ND	1	8/30/01	9/9/01	
Methyl-tert-butyl Ether (MTBE)	EPA 8260B	P1H3001	210	ND	1	8/30/01	9/9/01	
Naphthalene	EPA 8260B	P1H3001	210	ND	1	8/30/01	9/9/01	
n-Propylbenzene	EPA 8260B	P1H3001	85	ND	1	8/30/01	9/9/01	
Styrene	EPA 8260B	P1H3001	85	ND	1	8/30/01	9/9/01	
1,1,1,2-Tetrachloroethane	EPA 8260B	P1H3001	210	ND	1	8/30/01	9/9/01	
1,1,2,2-Tetrachloroethane	EPA 8260B	P1H3001	85	ND	1	8/30/01	9/9/01	
Tetrachloroethene	EPA 8260B	P1H3001	85	ND	1	8/30/01	9/9/01	
Toluene	EPA 8260B	P1H3001	85	ND	1	8/30/01	9/9/01	
1,2,3-Trichlorobenzene	EPA 8260B	P1H3001	210	ND	1	8/30/01	9/9/01	
1,2,4-Trichlorobenzene	EPA 8260B	P1H3001	210	ND	1	8/30/01	9/9/01	
1,1,1-Trichloroethane	EPA 8260B	P1H3001	85	ND	1	8/30/01	9/9/01	
1,1,2-Trichloroethane	EPA 8260B	P1H3001	85	ND	1	8/30/01	9/9/01	
Trichloroethene	EPA 8260B	P1H3001	85	ND	1	8/30/01	9/9/01	
Trichlorofluoromethane	EPA 8260B	P1H3001	210	ND	1	8/30/01	9/9/01	
1,2,3-Trichloropropane	EPA 8260B	P1H3001	420	ND	1	8/30/01	9/9/01	
1,2,4-Trimethylbenzene	EPA 8260B	P1H3001	85	ND	1	8/30/01	9/9/01	
1,3,5-Trimethylbenzene	EPA 8260B	P1H3001	85	ND	1	8/30/01	9/9/01	
Vinyl acetate	EPA 8260B	P1H3001	1000	ND	1	8/30/01	9/9/01	
Vinyl chloride	EPA 8260B	P1H3001	210	ND	1	8/30/01	9/9/01	
Xylenes, Total	EPA 8260B	P1H3001	` 130	ND	1	8/30/01	9/9/01	
Surrogate: Dibromofluoromethane (70-12	25%)			89.2 %				
Surrogate: Toluene-d8 (50-135%)				96.2 %				
Surrogate: 4-Bromofluorobenzene (70-13	10%)			93.4 %				
The reporting limit for this sample was ad	lineted by a factor of	0 846 to accoun	nt for the annlica	hle proparation	factor			

The reporting limit for this sample was adjusted by a factor of 0.846 to account for the applicable preparation factor.

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-9596 FAX (858) 505-9689 (480) 785-0043 FAX (480) 785-0851

Law Engineering 4634 S. 36th Place Phoenix, AZ 85040

Attention: Jim Clarke

Client Project ID: 70211-0-0150

Sampled: 08/28/01-08/29/01

Received: 08/29/01

Report Number:

PKH0511

on the billion by									
Analyte	Method	Batch	Reporting Limit ug/kg	Sample Result ug/kg	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers	
Sample ID: PKH0511-11 (LB3-5	S-50 - Soil)		ug/Ng	ug/kg					
Acetone	EPA 8260B	P1H3001	890	ND	1	9/20/01	0/0/01		
Benzene	EPA 8260B	P1H3001	44	ND	1 1	8/30/01 8/30/01	9/9/01		
Bromobenzene	EPA 8260B	P1H3001	220	ND	1	8/30/01	9/9/01 9/9/01		
Bromochloromethane	EPA 8260B	P1H3001	220	ND	1	8/30/01	9/9/01		
Bromodichloromethane	EPA 8260B	P1H3001	89	ND	1	8/30/01	9/9/01		
Bromoform	EPA 8260B	P1H3001	220	ND	1	8/30/01	9/9/01		
Bromomethane	EPA 8260B	P1H3001	220	ND	1	8/30/01	9/9/01		
2-Butanone (MEK)	EPA 8260B	P1H3001	440	ND	1	8/30/01	9/9/01		
n-Butylbenzene	EPA 8260B	P1H3001	220	ND	1	8/30/01	9/9/01		
sec-Butylbenzene	EPA 8260B	P1H3001	220	ND	1	8/30/01	9/9/01		
tert-Butylbenzene	EPA 8260B	P1H3001	220	ND	1	8/30/01	9/9/01		
Carbon Disulfide	EPA 8260B	P1H3001	220	ND	1	8/30/01	9/9/01		
Carbon tetrachloride	EPA 8260B	P1H3001	220	ND	1	8/30/01	9/9/01		
Chlorobenzene	EPA 8260B	P1H3001	44	ND	1	8/30/01	9/9/01		
Chloroethane	EPA 8260B	P1H3001	220	ND	1	8/30/01	9/9/01		
Chloroform	EPA 8260B	P1H3001	89	ND	1	8/30/01	9/9/01		
Chloromethane	EPA 8260B	P1H3001	220	ND	1	8/30/01	9/9/01		
2-Chlorotoluene	EPA 8260B	P1H3001	220	ND	1	8/30/01	9/9/01		
4-Chlorotoluene	EPA 8260B	P1H3001	220	ND	1	8/30/01	9/9/01		
Dibromochloromethane	EPA 8260B	P1H3001	89	ND	1	8/30/01	9/9/01		
1,2-Dibromo-3-chloropropane	EPA 8260B	P1H3001	220	ND	i	8/30/01	9/9/01		
1,2-Dibromoethane (EDB)	EPA 8260B	P1H3001	89	ND	1	8/30/01	9/9/01		
Dibromomethane	EPA 8260B	P1H3001	89	ND	1	8/30/01	9/9/01		
1,2-Dichlorobenzene	EPA 8260B	P1H3001	89	ND	1	8/30/01	9/9/01		
1,3-Dichlorobenzene	EPA 8260B	P1H3001	89	ND	1	8/30/01	9/9/01		
1,4-Dichlorobenzene	EPA 8260B	P1H3001	89	ND	1	8/30/01	9/9/01		
Dichlorodifluoromethane	EPA 8260B	P1H3001	220	ND	1	8/30/01	9/9/01		
1,1-Dichloroethane	EPA 8260B	P1H3001	89	ND	1	8/30/01	9/9/01		
1,2-Dichloroethane	EPA 8260B	P1H3001	44	ND	1	8/30/01	9/9/01		
1,1-Dichloroethene	EPA 8260B	P1H3001	220	ND	1	8/30/01	9/9/01		
cis-1,2-Dichloroethene	EPA 8260B	P1H3001	89	ND	1	8/30/01	9/9/01		
trans-1,2-Dichloroethene	EPA 8260B	P1H3001	89	ND	1	8/30/01	9/9/01		
1,2-Dichloropropane	EPA 8260B	P1H3001	89	ND	1	8/30/01	9/9/01		
1,3-Dichloropropane	EPA 8260B	P1H3001	89	ND	1	8/30/01	9/9/01		
2,2-Dichloropropane	EPA 8260B	P1H3001	89	ND	1	8/30/01	9/9/01		
1,1-Dichloropropene	EPA 8260B	P1H3001	89	ND	1	8/30/01	9/9/01		
cis-1,3-Dichloropropene	EPA 8260B	P1H3001	89	ND	1	8/30/01	9/9/01		
trans-1,3-Dichloropropene	EPA 8260B	P1H3001	89	ND	1	8/30/01	9/9/01		
Ethylbenzene	EPA 8260B	P1H3001	89	ND	1	8/30/01	9/9/01		
Hexachlorobutadiene	EPA 8260B	P1H3001	220	ND	1	8/30/01	9/9/01		
2-Hexanone	EPA 8260B	P1H3001	440	ND	1	8/30/01	9/9/01		
Iodomethane	EPA 8260B	P1H3001	89	ND	1	8/30/01	9/9/01		
Isopropylbenzene	EPA 8260B	P1H3001	89	ND	1	8/30/01	9/9/01		

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (858) 505-9596 FAX (858) 505-9689 (480) 785-0043 FAX (480) 785-0851

Law Engineering 4634 S. 36th Place Phoenix, AZ 85040

Client Project ID: 70211-0-0150

Sampled: 08/28/01-08/29/01

Attention: Jim Clarke

PKH0511 Report Number:

Received: 08/29/01

VOLATILE ORGANICS BY GC/MS (EPA 8260B)

Analyte	Method	Batch	Reporting Limit ug/kg	Sample Result ug/kg	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: PKH0511-11 (LB3-	S-50 - Soil)							
p-Isopropyltoluene	EPA 8260B	P1H3001	89	ND	1	8/30/01	9/9/01	
Methylene chloride	EPA 8260B	P1H3001	440	ND	1	8/30/01	9/9/01	
4-Methyl-2-pentanone (MIBK)	EPA 8260B	P1H3001	440	ND	1	8/30/01	9/9/01	
Methyl-tert-butyl Ether (MTBE)	EPA 8260B	P1H3001	220	ND	1	8/30/01	9/9/01	
Naphthalene	EPA 8260B	P1H3001	220	ND	1	8/30/01	9/9/01	
n-Propylbenzene	EPA 8260B	P1H3001	89	ND	1	8/30/01	9/9/01	
Styrene	EPA 8260B	P1H3001	89	ND	1 .	8/30/01	9/9/01	
1,1,1,2-Tetrachloroethane	EPA 8260B	P1H3001	220	ND	1	8/30/01	9/9/01	
1,1,2,2-Tetrachloroethane	EPA 8260B	P1H3001	89	ND	1	8/30/01	9/9/01	
Tetrachloroethene	EPA 8260B	P1H3001	89	ND	1	8/30/01	9/9/01	
Toluene	EPA 8260B	P1H3001	89	ND	1	8/30/01	9/9/01	
1,2,3-Trichlorobenzene	EPA 8260B	P1H3001	220	ND	1	8/30/01	9/9/01	
1,2,4-Trichlorobenzene	EPA 8260B	P1H3001	220	ND	1	8/30/01	9/9/01	
1,1,1-Trichloroethane	EPA 8260B	P1H3001	89	ND	1	8/30/01	9/9/01	
1,1,2-Trichloroethane	EPA 8260B	P1H3001	89	ND	1	8/30/01	9/9/01	
Trichloroethene	EPA 8260B	P1H3001	89	ND	1	8/30/01	9/9/01	
Trichlorofluoromethane	EPA 8260B	P1H3001	220	ND	1	8/30/01	9/9/01	
1,2,3-Trichloropropane	EPA 8260B	P1H3001	440	ND	1	8/30/01	9/9/01	
1,2,4-Trimethylbenzene	EPA 8260B	P1H3001	89	ND	1	8/30/01	9/9/01	
1,3,5-Trimethylbenzene	EPA 8260B	P1H3001	89	ND	1	8/30/01	9/9/01	
Vinyl acetate	EPA 8260B	P1H3001	1100	ND	1	8/30/01	9/9/01	
Vinyl chloride	EPA 8260B	P1H3001	220	ND	1	8/30/01	9/9/01	
Xylenes, Total	EPA 8260B	P1H3001	130	ND	1	8/30/01	9/9/01	
Surrogate: Dibromofluoromethane (70-12		92.8 %						
Surrogate: Toluene-d8 (50-135%)		95.5 %						
Surrogate: 4-Bromofluorobenzene (70-13	0%)			86.1 %				
TTI		0.007 +		1.1	- C			

The reporting limit for this sample was adjusted by a factor of 0.887 to account for the applicable preparation factor.

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-9596 FAX (858) 505-9689 (480) 785-0043 FAX (480) 785-0851

Law Engineering 4634 S. 36th Place Phoenix, AZ 85040 Attention: Jim Clarke

Client Project ID: 70211-0-0150

Sampled: 08/28/01-08/29/01

Report Number:

PKH0511

Received: 08/29/01

Analyte	Method	Batch	Reporting Limit ug/l	Sample Result ug/l	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: PKH0511-13 (RINSA	ATE - Water)		 -	8'-				
Acetone	EPA 8260B	P1I1002	20	ND	1	9/9/01	9/9/01	
Benzene	EPA 8260B	P1I1002	2.0	ND	i	9/9/01	9/9/01	
Bromobenzene	EPA 8260B	P1I1002	5.0	ND	1	9/9/01	9/9/01	
Bromochloromethane	EPA 8260B	P1I1002	5.0	ND	i	9/9/01	9/9/01	
Bromodichloromethane	EPA 8260B	P1I1002	2.0	ND	1	9/9/01	9/9/01	
Bromoform	EPA 8260B	P1I1002	5.0	ND	1	9/9/01	9/9/01	
Bromomethane	EPA 8260B	P1I1002	5.0	ND	i	9/9/01	9/9/01	
2-Butanone (MEK)	EPA 8260B	P1I1002	10	ND	i	9/9/01	9/9/01	
n-Butylbenzene	EPA 8260B	P1I1002	5.0	ND	1	9/9/01	9/9/01	
sec-Butylbenzene	EPA 8260B	P111002	5.0	ND	1	9/9/01	9/9/01	
tert-Butylbenzene	EPA 8260B	P1I1002	5.0	ND	1	9/9/01	9/9/01	
Carbon Disulfide	EPA 8260B	P1I1002	5.0	ND	1	9/9/01	9/9/01	
Carbon tetrachloride	EPA 8260B	P1I1002	5.0	ND	1	9/9/01	9/9/01	
Chlorobenzene	EPA 8260B	P111002	2.0	ND	1	9/9/01	9/9/01	
Chloroethane	EPA 8260B	P111002	5.0	ND	1	9/9/01	9/9/01	
Chloroform	EPA 8260B	P111002	2.0	ND	1	9/9/01		
Chloromethane	EPA 8260B	P111002	5.0	ND	1	9/9/01	9/9/01	
2-Chlorotoluene	EPA 8260B	P111002	5.0	ND	1	9/9/01	9/9/01	
4-Chlorotoluene	EPA 8260B	P1I1002	5.0	ND	1		9/9/01	
Dibromochloromethane	EPA 8260B	P111002	2.0	ND ND	1	9/9/01	9/9/01	
1,2-Dibromo-3-chloropropane	EPA 8260B	P111002	5.0		_	9/9/01	9/9/01	
1,2-Dibromoethane (EDB)	EPA 8260B	P111002	2.0	ND ND	1	9/9/01	9/9/01	
Dibromomethane	EPA 8260B	P111002	2.0	ND ND	1	9/9/01	9/9/01	
1,2-Dichlorobenzene	EPA 8260B	P111002	2.0		1	9/9/01	9/9/01	
1,3-Dichlorobenzene	EPA 8260B		2.0	ND	1	9/9/01	9/9/01	
1,4-Dichlorobenzene	EPA 8260B	P1I1002		ND	1	9/9/01	9/9/01	
Dichlorodifluoromethane		P111002	2.0	ND	1	9/9/01	9/9/01	
1,1-Dichloroethane	EPA 8260B	P111002	5.0	ND	1	9/9/01	9/9/01	
1,2-Dichloroethane	EPA 8260B	P1I1002	2.0	ND	1	9/9/01	9/9/01	
1,1-Dichloroethene	EPA 8260B	P1I1002	2.0	ND	1	9/9/01	9/9/01	
	EPA 8260B	P1I1002	5.0	ND	1	9/9/01	9/9/01	
cis-1,2-Dichloroethene	EPA 8260B	P111002	2.0	ND	1	9/9/01	9/9/01	
trans-1,2-Dichloroethene	EPA 8260B	P111002	2.0	ND	1	9/9/01	9/9/01	
1,2-Dichloropropane	EPA 8260B	P111002	2.0	ND	1	9/9/01	9/9/01	
1,3-Dichloropropane	EPA 8260B	P111002	2.0	ND	1	9/9/01	9/9/01	
2,2-Dichloropropane	EPA 8260B	P1I1002	2.0	ND	1	9/9/01	9/9/01	
1,1-Dichloropropene	EPA 8260B	P1I1002	2.0	ND	1	9/9/01	9/9/01	
cis-1,3-Dichloropropene	EPA 8260B	P1I1002	2.0	ND	1	9/9/01	9/9/01	
trans-1,3-Dichloropropene	EPA 8260B	P1I1002	2.0	ND	1	9/9/01	9/9/01	
Ethylbenzene	EPA 8260B	P1I1002	2.0	ND	1	9/9/01	9/9/01	
Hexachlorobutadiene	EPA 8260B	P1I1002	5.0	ND	1	9/9/01	9/9/01	
2-Hexanone	EPA 8260B	P111002	10	ND	1	9/9/01	9/9/01	
Iodomethane	EPA 8260B	P1I1002	2.0	ND	1	9/9/01	9/9/01	
Isopropylbenzene	EPA 8260B	P111002	2.0	ND	1	9/9/01	9/9/01	

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-9596 FAX (858) 505-9689 (480) 785-0043 FAX (480) 785-0851

Law Engineering 4634 S. 36th Place Phoenix, AZ 85040 Attention: Jim Clarke

Client Project ID: 70211-0-0150

Sampled: 08/28/01-08/29/01

Report Number: PKH0511

Received: 08/29/01

VOLATILE ORGANICS BY GC/MS (EPA 8260B)

Analyte	Method	Batch	Reporting Limit ug/l	Sample Result ug/l	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: PKH0511-13 (RINS	SATE - Water)							
p-Isopropyltoluene	EPA 8260B	P1I1002	2.0	ND	1	9/9/01	9/9/01	
Methylene chloride	EPA 8260B	P111002	5.0	ND	1	9/9/01	9/9/01	
4-Methyl-2-pentanone (MIBK)	EPA 8260B	P111002	10	ND	1	9/9/01	9/9/01	
Methyl-tert-butyl Ether (MTBE)	EPA 8260B	P1I1002	5.0	ND	1	9/9/01	9/9/01	
Naphthalene	EPA 8260B	P1I1002	5.0	ND	1	9/9/01	9/9/01	
n-Propylbenzene	EPA 8260B	P111002	2.0	ND	1	9/9/01	9/9/01	
Styrene	EPA 8260B	P111002	2.0	ND	1	9/9/01	9/9/01	
1,1,1,2-Tetrachloroethane	EPA 8260B	P1I1002	5.0	ND	1	9/9/01	9/9/01	
1,1,2,2-Tetrachloroethane	EPA 8260B	P1I1002	2.0	ND	1	9/9/01	9/9/01	
Tetrachloroethene	EPA 8260B	P1I1002	2.0	ND	1	9/9/01	9/9/01	
Toluene	EPA 8260B	P1I1002	2.0	ND	1	9/9/01	9/9/01	
1,2,3-Trichlorobenzene	EPA 8260B	P1I1002	5.0	ND	1	9/9/01	9/9/01	
1,2,4-Trichlorobenzene	EPA 8260B	P1I1002	5.0	ND	1	9/9/01	9/9/01	
1,1,1-Trichloroethane	EPA 8260B	P1I1002	2.0	ND	1	9/9/01	9/9/01	
1,1,2-Trichloroethane	EPA 8260B	P1I1002	2.0	ND	1	9/9/01	9/9/01	
Trichloroethene	EPA 8260B	P1I1002	2.0	ND	1	9/9/01	9/9/01	
Trichlorofluoromethane	EPA 8260B	P1I1002	5.0	ND	1	9/9/01	9/9/01	
1,2,3-Trichloropropane	EPA 8260B	P1I1002	10	ND	1	9/9/01	9/9/01	
1,2,4-Trimethylbenzene	EPA 8260B	P111002	2.0	ND	1	9/9/01	9/9/01	
1,3,5-Trimethylbenzene	EPA 8260B	P111002	2.0	ND	1	9/9/01	9/9/01	
Vinyl acetate	EPA 8260B	P1I1002	25	ND	1	9/9/01	9/9/01	
Vinyl chloride	EPA 8260B	P1I1002	5.0	ND	1	9/9/01	9/9/01	
Xylenes, Total	EPA 8260B	P1I1002	10	ND	1	9/9/01	9/9/01	
Surrogate: Dibromofluoromethane (80-12	10%)			107 %				
Surrogate: Toluene-d8 (80-120%)				106 %				
Surrogate: 4-Bromofluorobenzene (80-12)	0%)			103 %				

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-9596 FAX (858) 505-9689 (480) 785-0043 FAX (480) 785-0851

Law Engineering 4634 S. 36th Place Phoenix, AZ 85040

Attention: Jim Clarke

Client Project ID: 70211-0-0150

Report Number:

Sampled: 08/28/01-08/29/01

Received: 08/29/01

TOTAL METALS

PKH0511

Analyte	Method	Batch	Reporting Limit mg/kg	Sample Result mg/kg	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: PKH0511-01 (LB3	3-S-10 - Soil)							
Arsenic	EPA 6010B	P110616	5.0	ND	1	9/6/01	9/9/01	
Chromium	EPA 6010B	P1I0616	1.0	26	1	9/6/01	9/9/01	
Chromium VI	EPA 7196A	P1I0722	1.0	ND	1	9/7/01	9/7/01	
Copper	EPA 6010B	P1I0616	2.0	24	1	9/6/01	9/9/01	
Nickel	EPA 6010B	P1I0616	5.0	24	1	9/6/01	9/9/01	
Zinc	EPA 6010B	P1I0616	5.0	74	1	9/6/01	9/9/01	NI
Sample ID: PKH0511-02 (LB3	3-S-20 - Soil)							
Arsenic	EPA 6010B	P110616	5.0	ND	1	9/6/01	9/10/01	
Chromium	EPA 6010B	P1I0616	1.0	20	1	9/6/01	9/10/01	
Chromium VI	EPA 7196A	P1I0722	1.0	ND	1	9/7/01	9/7/01	
Copper	EPA 6010B	P1I0616	2.0	16	1	9/6/01	9/10/01	
Nickel	EPA 6010B	P1I0616	5.0	15	1	9/6/01	9/10/01	
Zinc	EPA 6010B	P110616	5.0	51	1	9/6/01	9/10/01	N1
Sample ID: PKH0511-03 (LB3	3-S-30 - Soil)						-,,	
Arsenic	EPA 6010B	P1I0713	5.0	ND	1	9/7/01	9/10/01	M2
Chromium VI	EPA 7196A	P1I0722	1.0	ND	1	9/7/01	9/7/01	
Copper	EPA 6010B	P110713	2.0	13	·1	9/7/01	9/10/01	
Nickel	EPA 6010B	P110713	5.0	32	1	9/7/01	9/10/01	M2
Zinc	EPA 6010B	P1I0713	5.0	38	1	9/7/01	9/10/01	
Sample ID: PKH0511-03RE2	(LB3-S-30 - Soil)			- -	-		2, 10, 01	
Chromium	EPA 6010B	P1I1410	1.0	61	1	9/11/01	9/14/01	

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-9596 FAX (858) 505-9689 (480) 785-0043 FAX (480) 785-0851

Law Engineering 4634 S. 36th Place Phoenix, AZ 85040

Client Project ID: 70211-0-0150

Sampled: 08/28/01-08/29/01

Received: 08/29/01

Attention: Jim Clarke

Report Number: P

PKH0511

KH0311

TOTAL METALS

Analyte	Method	Batch	Reporting Limit mg/kg	Sample Result mg/kg	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: PKH0511-04 (LB3-S-	-40 - Soil)							
Arsenic	EPA 6010B	P1I0713	5.0	ND	1	9/7/01	9/10/01	
Chromium VI	EPA 7196A	P1I0722	1.0	ND	1	9/7/01	9/7/01	
Copper	EPA 6010B	P1I0713	2.0	16	1	9/7/01	9/10/01	
Nickel	EPA 6010B	P1I0713	5.0	33	1	9/7/01	9/10/01	
Zinc	EPA 6010B	P1I0713	5.0	39	1	9/7/01	9/10/01	
Sample ID: PKH0511-04RE2 (LI	33-S-40 - Soil)							
Chromium	EPA 6010B	P111410	1.0	21	1	9/11/01	9/14/01	
Sample ID: PKH0511-05 (LB3-S-	-50 - Soil)							
Chromium VI	EPA 7196A	P1I0722	1.0	ND	1	9/7/01	9/7/01	
Sample ID: PKH0511-05RE2 (Ll	33-S-50 - Soil)							
Arsenic	EPA 6010B	P1I1410	5.0	ND	1	9/11/01	9/14/01	
Chromium	EPA 6010B	P1I1410	1.0	150	1	9/11/01	9/14/01	
Copper	EPA 6010B	P1I1410	2.0	9.8	1	9/11/01	9/14/01	
Nickel	EPA 6010B	P1I1410	5.0	53	1	9/11/01	9/14/01	
Sample ID: PKH0511-05RE7 (LI	B3-S-50 - Soil)							
Zinc	EPA 6010B	PIJ0103	5.0	30	1	10/1/01	10/2/01	
Sample ID: PKH0511-06 (LB3-S	-60 - Soil)							
Arsenic	EPA 6010B	P1I0713	5.0	ND	1	9/7/01	9/10/01	
Chromium	EPA 6010B	P1I0713	1.0	45	1	9/7/01	9/10/01	N1
Chromium VI	EPA 7196A	P1I0722	1.0	ND	1	9/7/01	9/7/01	
Copper	EPA 6010B	P1I0713	2.0	39	1	9/7/01	9/10/01	
Nickel	EPA 6010B	P1I0713	5.0	51	1	9/7/01	9/10/01	
Zinc	EPA 6010B	P1I0713	5.0	33	1	9/7/01	9/10/01	

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-9596 FAX (858) 505-9689 (480) 785-0043 FAX (480) 785-0851

Law Engineering 4634 S. 36th Place

Client Project ID:

70211-0-0150

Sampled: 08/28/01-08/29/01

Phoenix, AZ 85040 Attention: Jim Clarke

Report Number:

PKH0511

Received: 08/29/01

TOTAL RECOVERABLE METALS

Analyte	Method	Batch	Reporting Limit mg/I	Sample Result mg/l	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: PKH0511-13 (RINS	ATE - Water)							
Arsenic	EPA 200.7	P1H3011	0.050	ND	1	8/30/01	9/7/01	
Chromium	EPA 200.7	P1H3011	0.010	ND	1	8/30/01	9/7/01	
Chromium VI	SM3500CR-D	P1H3101	0.025	ND	1	8/30/01	8/30/01	
Copper	EPA 200.7	P1H3011	0.020	ND	1	8/30/01	9/7/01	
Nickel	EPA 200.7	P1H3011	0.050	ND	1	8/30/01	9/7/01	
Zinc	EPA 200.7	P1H3011	0.050	ND	1	8/30/01	9/7/01	

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-9596 FAX (858) 505-9689 (480) 785-0043 FAX (480) 785-0851

Law Engineering 4634 S. 36th Place Phoenix, AZ 85040 Attention: Jim Clarke

Client Project ID: 702

Report Number:

70211-0-0150

Sampled: 08/28/01-08/29/01

Received: 08/29/01

PKH0511

INORGANICS											
Analyte	Method	Batch	Reporting Limit mg/kg	Sample Result mg/kg	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers			
Sample ID: PKH0511-01 (LB3-9	S-10 - Soil)										
Total Cyanide	EPA 9014	P1I0611	0.50	ND	1	9/6/01	9/6/01				
Sample ID: PKH0511-02 (LB3-5	S-20 - Soil)										
Total Cyanide	EPA 9014	P110720	0.50	ND	1	9/7/01	9/10/01				
Sample ID: PKH0511-03 (LB3-5	S-30 - Soil)										
Total Cyanide	EPA 9014	P1I0720	0.50	ND	1	9/7/01	9/10/01				
Sample ID: PKH0511-04 (LB3-5	S-40 - Soil)										
Total Cyanide	EPA 9014	P110720	0.50	ND	1	9/7/01	9/10/01				
Sample ID: PKH0511-05 (LB3-5	S-50 - Soil)										
Total Cyanide	EPA 9014	P1I0720	0.50	ND	1	9/7/01	9/10/01				
Sample ID: PKH0511-06 (LB3-	S-60 - Soil)										
Total Cyanide	EPA 9014	P1I0720	0.50	ND	1	9/7/01	9/10/01				
			mg/l	mg/l							
Sample ID: PKH0511-13 (RINS	SATE - Water)										
Total Cyanide	SM4500-CN,C-E	P1I0709	0.020	ND	1	9/7/01	9/7/01				

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-9596 FAX (858) 505-9689 (480) 785-0043 FAX (480) 785-0851

Law Engineering 4634 S. 36th Place Phoenix, AZ 85040 Attention: Jim Clarke

Client Project ID:

70211-0-0150

Sampled: 08/28/01-08/29/01

Report Number:

PKH0511

Received: 08/29/01

... METROD REANKIGE DATA

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: P1H3001 Extracted: 08/30	<u>/01</u>									
Blank Analyzed: 09/05/01 (P1H3001-	BLK1)									
Acetone	ND	1000	ug/kg							
Benzene	ND	50	ug/kg							
Bromobenzene	ND	250	ug/kg							
Bromochloromethane	ND	250	ug/kg							
Bromodichloromethane	ND	100	ug/kg							
Bromoform	ND	250	ug/kg							
Bromomethane	ND	250	ug/kg							
2-Butanone (MEK)	ND	500	ug/kg							
n-Butylbenzene	ND	250	ug/kg							
sec-Butylbenzene	ND	250	ug/kg							
tert-Butylbenzene	ND	250	ug/kg							
Carbon Disulfide	ND	250	ug/kg							
Carbon tetrachloride	ND	250	ug/kg							
Chlorobenzene	ND	50	ug/kg							
Chloroethane	ND	250	ug/kg							
Chloroform	ND	100	ug/kg							
Chloromethane	ND	250	ug/kg							
2-Chlorotoluene	ND	250	ug/kg							
4-Chlorotoluene	ND	250	ug/kg							
Dibromochloromethane	ND	100	ug/kg							
1,2-Dibromo-3-chloropropane	ND	250	ug/kg							
1,2-Dibromoethane (EDB)	ND	100	ug/kg							
Dibromomethane	ND	100	ug/kg							
1,2-Dichlorobenzene	ND	100	ug/kg							
1,3-Dichlorobenzene	ND	100	ug/kg							
1,4-Dichlorobenzene	ND	100	ug/kg							
Dichlorodifluoromethane	ND	250	ug/kg							
1,1-Dichloroethane	ND	100	ug/kg							
1,2-Dichloroethane	ND	50	ug/kg							
1,1-Dichloroethene	ND	250	ug/kg							
cis-1,2-Dichloroethene	ND	100	ug/kg							
trans-1,2-Dichloroethene	ND	100	ug/kg							
1,2-Dichloropropane	ND	100	ug/kg							
1,3-Dichloropropane	ND	100	ug/kg							

O/ DEC

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-9596 FAX (858) 505-9689 (480) 785-0043 FAX (480) 785-0851

Law Engineering

4634 S. 36th Place Phoenix, AZ 85040

Attention: Jim Clarke

Client Project ID:

70211-0-0150

Sampled: 08/28/01-08/29/01

Report Number:

PKH0511

Received: 08/29/01

DDD

Data

NETHOD BLANKQC DATA.

VOLATILE ORGANICS BY GC/MS (EPA 8260B)

Cuilea

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: P1H3001 Extracted: 08/30	<u>)/01</u>									
Blank Analyzed: 09/05/01 (P1H3001-	·BLK1)									
2,2-Dichloropropane	ND	100	ug/kg							
1,1-Dichloropropene	ND	100	ug/kg							
cis-1,3-Dichloropropene	ND	100	ug/kg							
trans-1,3-Dichloropropene	ND	100	ug/kg							
Ethylbenzene	ND	100	ug/kg							
Hexachlorobutadiene	ND	250	ug/kg							
2-Hexanone	ND	500	ug/kg							
Iodomethane	ND	100	ug/kg							
Isopropylbenzene	ND	100	ug/kg							
p-Isopropyltoluene	ND	100	ug/kg							
Methylene chloride	ND	500	ug/kg							
4-Methyl-2-pentanone (MIBK)	ND	500	ug/kg							
Methyl-tert-butyl Ether (MTBE)	ND	250	ug/kg							
Naphthalene	ND	250	ug/kg							
n-Propylbenzene	ND	100	ug/kg							
Styrene	ND	100	ug/kg							
1,1,1,2-Tetrachloroethane	ND	250	ug/kg							
1,1,2,2-Tetrachloroethane	ND	100	ug/kg							
Tetrachloroethene	ND	100	ug/kg							
Toluene	ND	100	ug/kg							
1,2,3-Trichlorobenzene	ND	250	ug/kg							
1,2,4-Trichlorobenzene	ND	250	ug/kg							
1,1,1-Trichloroethane	ND	100	ug/kg							
1,1,2-Trichloroethane	ND	100	ug/kg							
Trichloroethene	ND	100	ug/kg							
Trichlorofluoromethane	ND	250	ug/kg							
1,2,3-Trichloropropane	ND	500	ug/kg							
1,2,4-Trimethylbenzene	ND	100	ug/kg							
1,3,5-Trimethylbenzene	ND	100	ug/kg							
Vinyl acetate	ND	1200	ug/kg							
Vinyl chloride	ND	250	ug/kg							
Xylenes, Total	ND	150	ug/kg							
Surrogate: Dibromofluoromethane	1100		ug/kg	1250		88.0	70-125			
Surrogate: Toluene-d8	1210		ug/kg	1250		96.8	50-135			

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-9596 FAX (858) 505-9689 (480) 785-0043 FAX (480) 785-0851

Law Engineering 4634 S. 36th Place Phoenix, AZ 85040 Attention: Jim Clarke

Client Project ID:

70211-0-0150

Sampled: 08/28/01-08/29/01

Report Number:

PKH0511

Received: 08/29/01

METHOD BLANKQC DATA

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: P1H3001 Extracted: 08/30/0	1									
Blank Analyzed: 09/05/01 (P1H3001-B)	LK1)									
Surrogate: 4-Bromofluorobenzene	1220		ug/kg	1250		97.6	70-130			
LCS Analyzed: 09/05/01 (P1H3001-BS)	1)									
Acetone	ND	1000	ug/kg	1000		91.9	5-200			
Benzene	880	50	ug/kg	1000		88.0	65-130			
Bromobenzene	878	250	ug/kg	1000		87.8	60-135			
Bromochloromethane	880	250	ug/kg	1000		88.0	60-135			
Bromodichloromethane	854	100	ug/kg	1000		85.4	30-135			
Bromoform	818	250	ug/kg	1000		81.8	60-140			
Bromomethane	ND	250	ug/kg	1000		20.0	10-200			
2-Butanone (MEK)	849	500	ug/kg	1000		84.9	10-160			
n-Butylbenzene	897	250	ug/kg	1000		89.7	65-125			
sec-Butylbenzene	936	250	ug/kg	1000		93.6	70-135			
tert-Butylbenzene	906	250	ug/kg	1000		90.6	70-130			
Carbon Disulfide	742	250	ug/kg	1000		74.2	20-120			
Carbon tetrachloride	862	250	ug/kg	1000		86.2	70-140			
Chlorobenzene	896	50	ug/kg	1000		89.6	75-125			
Chloroethane	ND	250	ug/kg	1000		22.5	10-200			
Chloroform	847	100	ug/kg	1000		84.7	35-135			
Chloromethane	729	250	ug/kg	1000		72.9	10-200			
2-Chlorotoluene	870	250	ug/kg	1000		87.0	70-135			
4-Chlorotoluene	887	250	ug/kg	1000		88.7	75-135			
Dibromochloromethane	837	100	ug/kg	1000		83.7	35-135			
1,2-Dibromo-3-chloropropane	734	250	ug/kg	1000		73.4	50-155			
1,2-Dibromoethane (EDB)	827	100	ug/kg	1000		82.7	70-130			
Dibromomethane	831	100	ug/kg	1000		83.1	65-130			
1,2-Dichlorobenzene	862	100	ug/kg	1000		86.2	70-125			
1,3-Dichlorobenzene	888	100	ug/kg	1000		88.8	70-125			
1,4-Dichlorobenzene	892	100	ug/kg	1000		89.2	70-135			
Dichlorodifluoromethane	610	250	ug/kg	1000		61.0	10-185			
1,1-Dichloroethane	866	100	ug/kg	1000		86.6	60-140			
1,2-Dichloroethane	839	50	ug/kg	1000		83.9	55-135			
1,1-Dichloroethene	866	250	ug/kg	1000		86.6	55-145			
cis-1,2-Dichloroethene	894	100	ug/kg	1000		89.4	60-125			
trans-1,2-Dichloroethene	878	100	ug/kg	1000		87.8	70-145			
1,2-Dichloropropane	879	100	ug/kg	1000		87.9	65-130			

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-9596 FAX (858) 505-9689 (480) 785-0043 FAX (480) 785-0851

Law Engineering 4634 S. 36th Place Phoenix, AZ 85040

Client Project ID: 70211-0-0150

Sampled: 08/28/01-08/29/01

Received: 08/29/01

Phoenix, AZ 85040 Attention: Jim Clarke

Report Number: PKH0511

ATOTTIODELANGOCERA

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: P1H3001 Extracted: 08/30/0	<u>)1</u>									
LCS Analyzed: 09/05/01 (P1H3001-BS	1)									
1,3-Dichloropropane	862	100	ug/kg	1000		86.2	65-130			
2,2-Dichloropropane	818	100	ug/kg	1000		81.8	60-135			
1,1-Dichloropropene	849	100	ug/kg	1000		84.9	65-130			
cis-1,3-Dichloropropene	886	100	ug/kg	1000		88.6	60-125			
trans-1,3-Dichloropropene	818	100	ug/kg	1000		81.8	50-130			
Ethylbenzene	899	100	ug/kg	1000		89.9	70-125			
Hexachlorobutadiene	950	250	ug/kg	1000		95.0	60-125			
2-Hexanone	7 77	500	ug/kg	1000		77.7	25-185			
Iodomethane	7 47	100	ug/kg	1000		74.7	30-155			
Isopropylbenzene	899	100	ug/kg	1000		89.9	70-135			
p-Isopropyltoluene	883	100	ug/kg	1000		88.3	65-130			
Methylene chloride	943	500	ug/kg	1000		94.3	60-140			
4-Methyl-2-pentanone (MIBK)	777	500	ug/kg	1000		77.7	10-175			
Methyl-tert-butyl Ether (MTBE)	805	250	ug/kg	1000		80.5	55-135			
Naphthalene	788	250	ug/kg	1000		78.8	45-155			
n-Propylbenzene	894	100	ug/kg	1000		89.4	75-135			
Styrene	899	100	ug/kg	1000		89.9	70-130			
1,1,1,2-Tetrachloroethane	861	250	ug/kg	1000		86.1	7 0-130			
1,1,2,2-Tetrachloroethane	799	100	ug/kg	1000		7 9.9	60-140			
Tetrachloroethene	900	100	ug/kg	1000		90.0	65-130			
Toluene	899	100	ug/kg	1000		89.9	70-125			
1,2,3-Trichlorobenzene	794	250	ug/kg	1000		79.4	60-135			
1,2,4-Trichlorobenzene	828	250	ug/kg	1000		82.8	55-135			
1,1,1-Trichloroethane	855	100	ug/kg	1000		85.5	65-135			
1,1,2-Trichloroethane	857	100	ug/kg	1000		85.7	65-130			
Trichloroethene	896	100	ug/kg	1000		89.6	70-130			
Trichlorofluoromethane	690	250	ug/kg	1000		69.0	10-200			
1,2,3-Trichloropropane	786	500	ug/kg	1000		78.6	60-150			
1,2,4-Trimethylbenzene	907	100	ug/kg	1000		90.7	75-130			
1,3,5-Trimethylbenzene	886	100	ug/kg	1000		88.6	70-130			
Vinyl acetate	ND	1200	ug/kg	1000		66.4	25-130			
Vinyl chloride	806	250	ug/kg	1000		80.6	10-200			
Xylenes, Total	2680	150	ug/kg	3000		89.3	70-130			
Surrogate: Dibromofluoromethane	1080		ug/kg	1250		86.4	70-125			
Surrogate: Toluene-d8	1140		ug/kg	1250		91.2	50-135			
Surrogate: 4-Bromofluorobenzene	1160		ug/kg	1250		92.8	70-130			

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-9596 FAX (858) 505-9689 (480) 785-0043 FAX (480) 785-0851

Law Engineering 4634 S. 36th Place Phoenix, AZ 85040 Attention: Jim Clarke

Client Project ID:

70211-0-0150

Sampled: 08/28/01-08/29/01

Report Number:

PKH0511

Received: 08/29/01

METHOD BLANKQC DATA

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: P1H3001 Extracted: 08/30/	<u>′01</u>									
LCS Dup Analyzed: 09/05/01 (P1H300	01-BSD1)									
Acetone	ND	1000	ug/kg	1000		89.9	5-200	2.20	35	
Benzene	861	50	ug/kg	1000		86.1	65-130	2.18	35	
Bromobenzene	880	250	ug/kg	1000		88.0	60-135	0.228	35	
Bromochloromethane	852	250	ug/kg	1000		85.2	60-135	3.23	35	
Bromodichloromethane	864	100	ug/kg	1000		86.4	30-135	1.16	35	
Bromoform	773	250	ug/kg	1000		7 7 .3	60-140	5.66	35	
Bromomethane	ND	250	ug/kg	1000		11.5	10-200	54.0	35	R6
2-Butanone (MEK)	835	500	ug/kg	1000		83.5	10-160	1.66	35	
n-Butylbenzene	892	250	ug/kg	1000		89.2	65-125	0.559	35	
sec-Butylbenzene	931	250	ug/kg	1000		93.1	70-135	0.536	35	
tert-Butylbenzene	886	250	ug/kg	1000		88.6	70-130	2.23	35	
Carbon Disulfide	648	250	ug/kg	1000		64.8	20-120	13.5	35	
Carbon tetrachloride	794	250	ug/kg	1000		79.4	70-140	8.21	35	
Chlorobenzene	856	50	ug/kg	1000		85.6	75-125	4.57	35	
Chloroethane	ND	250	ug/kg	1000		21.9	10-200	2.70	35	
Chloroform	796	100	ug/kg	1000		7 9.6	35-135	6.21	35	
Chloromethane	675	250	ug/kg	1000		67.5	10-200	7.69	35	
2-Chlorotoluene	867	250	ug/kg	1000		86.7	70-135	0.345	35	
4-Chlorotoluene	888	250	ug/kg	1000		88.8	75-135	0.113	35	
Dibromochloromethane	779	100	ug/kg	1000		7 7 .9	35-135	7.18	35	
1,2-Dibromo-3-chloropropane	688	250	ug/kg	1000		68.8	50-155	6.47	35	
1,2-Dibromoethane (EDB)	753	100	ug/kg	1000		75.3	70-130	9.37	35	
Dibromomethane	841	100	ug/kg	1000		84.1	65-130	1.20	35	
1,2-Dichlorobenzene	861	100	ug/kg	1000		86.1	70-125	0.116	35	
1,3-Dichlorobenzene	882	100	ug/kg	1000		88.2	70-125	0.678	35	
1,4-Dichlorobenzene	887	100	ug/kg	1000		88.7	70-135	0.562	35	
Dichlorodifluoromethane	569	250	ug/kg	1000		56.9	10-185	6.96	35	
1,1-Dichloroethane	850	100	ug/kg	1000		85.0	60-140	1.86	35	
1,2-Dichloroethane	803	50	ug/kg	1000		80.3	55-135	4.38	35	
1,1-Dichloroethene	844	250	ug/kg	1000		84.4	55-145	2.57	35	
cis-1,2-Dichloroethene	838	100	ug/kg	1000		83.8	60-125	6.47	35	
trans-1,2-Dichloroethene	809	100	ug/kg	1000		80.9	70-145	8.18	35	
1,2-Dichloropropane	899	100	ug/kg	1000		89.9	65-130	2.25	35	
1,3-Dichloropropane	788	100	ug/kg	1000		78.8	65-130	8.97	35	
2,2-Dichloropropane	787	100	ug/kg	1000		78.7	60-135	3.86	35	

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-9596 FAX (858) 505-9689 (480) 785-0043 FAX (480) 785-0851

Law Engineering 4634 S. 36th Place

Client Project ID:

70211-0-0150

Sampled: 08/28/01-08/29/01

Phoenix, AZ 85040 Attention: Jim Clarke

Report Number:

PKH0511

Received: 08/29/01

NETHOD BLANKOO DATA

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: P1H3001 Extracted: 08/30/	<u>'01</u>									
LCS Dup Analyzed: 09/05/01 (P1H300	01-BSD1)									
1,1-Dichloropropene	789	100	ug/kg	1000		78.9	65-130	7.33	35	
cis-1,3-Dichloropropene	885	100	ug/kg	1000		88.5	60-125	0.113	35	
trans-1,3-Dichloropropene	746	100	ug/kg	1000		74.6	50-130	9.21	35	
Ethylbenzene	883	100	ug/kg	1000		88.3	70-125	1.80	35	
Hexachlorobutadiene	684	250	ug/kg	1000		68.4	60-125	32.6	35	
2-Hexanone	709	500	ug/kg	1000		70.9	25-185	9.15	35	
Iodomethane	751	100	ug/kg	1000		75.1	30-155	0.534	35	
Isopropylbenzene	851	100	ug/kg	1000		85.1	70-135	5.49	35	
p-Isopropyltoluene	862	100	ug/kg	1000		86.2	65-130	2.41	35	
Methylene chloride	917	500	ug/kg	1000		91.7	60-140	2.80	35	
4-Methyl-2-pentanone (MIBK)	777	500	ug/kg	1000		7 7.7	10-175	0.00	35	
Methyl-tert-butyl Ether (MTBE)	752	250	ug/kg	1000		75.2	55-135	6.81	35	
Naphthalene	696	250	ug/kg	1000		69.6	45-155	12.4	35	
n-Propylbenzene	885	100	ug/kg	1000		88.5	75-135	1.01	35	
Styrene	841	100	ug/kg	1000		84.1	70-130	6.67	35	
1,1,1,2-Tetrachloroethane	812	250	ug/kg	1000		81.2	70-130	5.86	35	
1,1,2,2-Tetrachloroethane	780	100	ug/kg	1000		78.0	60-140	2.41	35	
Tetrachloroethene	824	100	ug/kg	1000		82.4	65-130	8.82	35	
Toluene	830	100	ug/kg	1000		83.0	70-125	7.98	35	
1,2,3-Trichlorobenzene	680	250	ug/kg	1000		68.0	60-135	15.5	35	
1,2,4-Trichlorobenzene	772	250	ug/kg	1000		7 7. 2	55-135	7.00	35	
1,1,1-Trichloroethane	821	100	ug/kg	1000		82.1	65-135	4.06	35	
1,1,2-Trichloroethane	780	100	ug/kg	1000		78.0	65-130	9.41	35	
Trichloroethene	879	100	ug/kg	1000		87.9	70-130	1.92	35	
Trichlorofluoromethane	709	250	ug/kg	1000		70.9	10-200	2.72	35	
1,2,3-Trichloropropane	753	500	ug/kg	1000		75.3	60-150	4.29	35	
1,2,4-Trimethylbenzene	905	100	ug/kg	1000		90.5	75-130	0.221	35	
1,3,5-Trimethylbenzene	890	100	ug/kg	1000		89.0	70-130	0.450	35	
Vinyl acetate	ND	1200	ug/kg	1000		67.6	25-130	1.79	35	
Vinyl chloride	758	250	ug/kg	1000		75.8	10-200	6.14	35	
Xylenes, Total	2510	150	ug/kg	3000		83.7	70-130	6.55	35	
Surrogate: Dibromofluoromethane	1080		ug/kg	1250	•	86.4	70-125			
Surrogate: Toluene-d8	1090		ug/kg	1250		87.2	50-135			
Surrogate: 4-Bromofluorobenzene	1170		ug/kg	1250		93.6	70-130			

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-9596 FAX (858) 505-9689 (480) 785-0043 FAX (480) 785-0851

Law Engineering 4634 S. 36th Place

Client Project ID:

70211-0-0150

Sampled: 08/28/01-08/29/01

Phoenix, AZ 85040 Attention: Jim Clarke

Report Number:

PKH0511

Received: 08/29/01

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: P1I1002 Extracted: 09/09/	<u>/01</u>									
Blank Analyzed: 09/09/01 (P1I1002-1	BLK1)									
Acetone	ND	20	ug/l							
Benzene	ND	2.0	ug/l							
Bromobenzene	ND	5.0	ug/l							
Bromochloromethane	ND	5.0	ug/l							
Bromodichloromethane	ND	2.0	ug/l							
Bromoform	ND	5.0	ug/l							
Bromomethane	ND	5.0	ug/l							
2-Butanone (MEK)	ND	10	ug/l							
n-Butylbenzene	ND	5.0	ug/l							
sec-Butylbenzene	ND									
tert-Butylbenzene	ND		_							
Carbon Disulfide	ND		_							
Carbon tetrachloride	ND									
Chlorobenzene	ND		_							
Chloroethane	ND		=							
Chloroform	ND									
Chloromethane			_							
2-Chlorotoluene	ND									
4-Chlorotoluene	ND		_							
Dibromochloromethane										
1,2-Dibromo-3-chloropropane			_							
1,2-Dibromoethane (EDB)										
Dibromomethane			_							
1,2-Dichlorobenzene										
I,3-Dichlorobenzene			_							
1,4-Dichlorobenzene			_							
Dichlorodifluoromethane			_							
1,1-Dichloroethane										
1,2-Dichloroethane										
1,1-Dichloroethene			_							
cis-1,2-Dichloroethene										
			_							
1,3-Dichloropropane			_							
- •		2.0	ug/I							
tert-Butylbenzene Carbon Disulfide Carbon tetrachloride Chlorobenzene Chloroethane Chloroform Chloromethane 2-Chlorotoluene 4-Chlorotoluene Dibromochloromethane 1,2-Dibromo-3-chloropropane 1,2-Dibromoethane (EDB) Dibromomethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene Dichlorodifluoromethane 1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloroethene cis-1,2-Dichloroethene trans-1,2-Dichloroethene 1,2-Dichloropropane	ND ND ND ND ND ND	5.0 5.0 5.0 5.0 2.0 5.0 2.0 5.0 5.0 2.0 5.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l							

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-9596 FAX (858) 505-9689 (480) 785-0043 FAX (480) 785-0851

Law Engineering 4634 S. 36th Place Phoenix, AZ 85040 Attention: Jim Clarke

Client Project ID: 70211-0-0150

Sampled: 08/28/01-08/29/01

Received: 08/29/01

RPD

Data

Report Number:

Reporting

PKH0511

MDI HODBEANKOC DATA

VOLATILE ORGANICS BY GC/MS (EPA 8260B)

Spike

Source

%REC

		Reporting		Spike	Source		70 KEC		KPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: P1I1002 Extracted: 09/0	9/01									
Blank Analyzed: 09/09/01 (P1I1002	2-BLK1)									
2,2-Dichloropropane	ND	2.0	ug/l							
1,1-Dichloropropene	ND	2.0	ug/I							
cis-1,3-Dichloropropene	ND	2.0	ug/l							
trans-1,3-Dichloropropene	ND	2.0	ug/l							
Ethylbenzene	ND	2.0	ug/l							
Hexachlorobutadiene	ND	5.0	ug/l							
2-Hexanone	ND	10	ug/l							
lodomethane	ND	2.0	ug/l							
Isopropylbenzene	ND	2.0	ug/l							
p-Isopropyltoluene	ND	2.0	ug/l							
Methylene chloride	ND	5.0	ug/l							
4-Methyl-2-pentanone (MIBK)	ND	10	ug/l							
Methyl-tert-butyl Ether (MTBE)	ND	5.0	ug/l							
Naphthalene	ND	5.0	ug/l							
n-Propylbenzene	ND	2.0	ug/l							
Styrene	ND	2.0	ug/l							
1,1,1,2-Tetrachloroethane	ND	5.0	ug/l							
1,1,2,2-Tetrachloroethane	ND	2.0	ug/l							
Tetrachloroethene	ND	2.0	ug/l							
Toluene	ND	2.0	ug/l							
1,2,3-Trichlorobenzene	ND	5.0	ug/l							
1,2,4-Trichlorobenzene	ND	5.0	ug/l							
1,1,1-Trichloroethane	ND	2.0	ug/l							
1,1,2-Trichloroethane	ND	2.0	ug/l							
Trichloroethene	ND	2.0	ug/l							
Trichlorofluoromethane	ND	5.0	ug/l							
1,2,3-Trichloropropane	ND	10	ug/l							
1,2,4-Trimethylbenzene	ND	2.0	ug/l							
1,3,5-Trimethylbenzene	ND	2.0	ug/l							
Vinyl acetate	ND	25	ug/l							
Vinyl chloride	ND	5.0	ug/l							
Xylenes, Total	ND	10	ug/l							
Surrogate: Dibromofluoromethane	27.9		ug/l	25.0		112	80-120			
Surrogate: Toluene-d8	26.5		ug/l	25.0		106	80-120			

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-9596 FAX (858) 505-9689 (480) 785-0043 FAX (480) 785-0851

Law Engineering 4634 S. 36th Place Phoenix, AZ 85040 Attention: Jim Clarke

Client Project ID:

70211-0-0150

Sampled: 08/28/01-08/29/01

Received: 08/29/01

Report Number:

PKH0511

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: P1I1002 Extracted: 09/09/01	<u>L</u>									
Blank Analyzed: 09/09/01 (P1I1002-BL	.К1)									
Surrogate: 4-Bromofluorobenzene	26.4		ug/l	25.0		106	80-120			
LCS Analyzed: 09/09/01 (P1I1002-BS1))									
Acetone	28.0	20	ug/l	25.0		112	30-200			
Benzene	25.0	2.0	ug/l	25.0		100	80-120			
Bromobenzene	25.1	5.0	ug/l	25.0		100	80-120			
Bromochloromethane	28.3	5.0	ug/i	25.0		113	80-120			
Bromodichloromethane	26.8	2.0	ug/l	25.0		107	80-130			
Bromoform	27.1	5.0	ug/l	25.0		108	60-140			
Bromomethane	28.5	5.0	ug/l	25.0		114	60-150			
2-Butanone (MEK)	28.9	10	ug/l	25.0		116	30-185			
n-Butylbenzene	24.6	5.0	ug/l	25.0		98.4	75-130			
sec-Butylbenzene	25.0	5.0	ug/l	25.0		100	80-125			
tert-Butylbenzene	24.7	5.0	ug/i	25.0		98.8	80-120			
Carbon Disulfide	23.0	5.0	ug /1	25.0		92.0	65-120			
Carbon tetrachloride	28.8	5.0	ug/l	25.0		115	75-150			
Chlorobenzene	26.6	2.0	ug/l	25.0		106	80-120			
Chloroethane	24.9	5.0	ug/l	25.0		99.6	80-125			
Chloroform	26.6	2.0	ug/l	25.0		106	80-120			
Chloromethane	21.7	5.0	ug/l	25.0		86.8	60-125			
2-Chlorotoluene	24.9	5.0	ug/l	25.0		99.6	80-120			
4-Chlorotoluene	24.7	5.0	ug/l	25.0		98.8	80-120			
Dibromochloromethane	28.1	2.0	ug/l	25.0		112	70-150			
1,2-Dibromo-3-chloropropane	24.3	5.0	ug/i	25.0		97.2	50-145			
1,2-Dibromoethane (EDB)	26.0	2.0	ug/l	25.0		104	75-120			
Dibromomethane	26.3	2.0	ug/l	25.0		105	80-120			
1,2-Dichlorobenzene	25.3	2.0	ug/l	25.0		101	80-120			
1,3-Dichlorobenzene	25.1	2.0	ug/l	25.0		100	80-120			
1,4-Dichlorobenzene	26.0	2.0	ug/i	25.0		104	80-120			
Dichlorodifluoromethane	23.0	5.0	ug/l	25.0		92.0	25-140			
1,1-Dichloroethane	26.6	2.0	ug/l	25.0		106	80-120			
1,2-Dichloroethane	26.4	2.0	ug/l	25.0		106	80-120			
1,1-Dichloroethene	26.2	5.0	ug/l	25.0		105	80-120			
cis-1,2-Dichloroethene	26.2	2.0	ug/l	25.0		105	80-120			
trans-1,2-Dichloroethene	27.2	2.0	ug/l	25.0		109	80-120			
1,2-Dichloropropane	25.2	2.0	ug/l	25.0		101	80-120			
1,3-Dichloropropane	25.6	2.0	ug/i	25.0		102	80-120			

(909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-9596 FAX (858) 505-9689 (480) 785-0043 FAX (480) 785-0851

Law Engineering 4634 S. 36th Place Phoenix, AZ 85040 Attention: Jim Clarke

Client Project ID:

70211-0-0150

Sampled: 08/28/01-08/29/01

Received: 08/29/01

Report Number:

PKH0511

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: P1I1002 Extracted: 09/09/0	1_			•						
LCS Analyzed: 09/09/01 (P1I1002-BS1)									
2,2-Dichloropropane	30.2	2.0	ug/l	25.0		121	75-135			
1,1-Dichloropropene	25.8	2.0	ug/l	25.0		103	80-120			
cis-1,3-Dichloropropene	26.2	2.0	ug/l	25.0		105	80-120			
trans-1,3-Dichloropropene	25.5	2.0	ug/l	25.0		102	80-120			
Ethylbenzene	26.0	2.0	ug/l	25.0		104	80-120			
Hexachlorobutadiene	22. 3	5.0	ug/l	25.0		89.2	60-145			
2-Hexanone	27.8	10	ug/l	25.0		111	50-170			
Iodomethane	27.6	2.0	ug/l	25.0		110	40-155			
Isopropylbenzene	26.8	2.0	ug/l	25.0		107	80-120			
p-Isopropyltoluene	24.1	2.0	ug/l	25.0		96.4	80-120			
Methylene chloride	26.9	5.0	ug/l	25.0		108	80-120			
4-Methyl-2-pentanone (MIBK)	25.8	10	ug/l	25.0		103	70-140			
Methyl-tert-butyl Ether (MTBE)	28.4	5.0	ug/l	25.0		114	75-135			
Naphthalene	22.6	5.0	ug/l	25.0		90.4	70-130			
n-Propylbenzene	25.7	2.0	ug/l	25.0		103	80-120			
Styrene	26.4	2.0	ug/l	25.0		106	80-120			
1,1,1,2-Tetrachloroethane	27.9	5.0	ug/l	25.0		112	65-150			
1,1,2,2-Tetrachloroethane	25.3	2.0	ug/l	25.0		101	70-130			
Tetrachloroethene	27.1	2.0	ug/l	25.0		108	80-125			
Toluene	25.4	2.0	ug/l	25.0		102	80-120			
1,2,3-Trichlorobenzene	22.4	5.0	ug/l	25.0		89.6	75-125			
1,2,4-Trichlorobenzene	23.8	5.0	ug/l	25.0		95.2	80-120			
1,1,1-Trichloroethane	27.5	2.0	ug/l	25.0		110	80-120			
1,1,2-Trichloroethane	25.4	2.0	ug/l	25.0		102	80-120			
Trichloroethene	24.8	2.0	ug/l	25.0		99.2	80-120			
Trichlorofluoromethane	30.4	5.0	ug/l	25.0		122	75-150			
1,2,3-Trichloropropane	23.8	10	ug/l	25.0		95.2	65-135			
1,2,4-Trimethylbenzene	25.3	2.0	ug/l	25.0		101	80-120			
1,3,5-Trimethylbenzene	24.7	2.0	ug/l	25.0		98.8	80-120			
Vinyl acetate	29.8	25	ug/l	25.0		119	40-120			
Vinyl chloride	28.8	5.0	ug/l	25.0		115	80-120			
Xylenes, Total	77.9	10	ug/l	75.0		104	80-120			
Surrogate: Dibromofluoromethane	28.8		ug/l	25.0		115	80-120			
Surrogate: Toluene-d8	27.6		ug/l	25.0		110	80-120			
Surrogate: 4-Bromofluorobenzene	26.1		ug/l	25.0		104	80-120			

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-9596 FAX (858) 505-9689 (480) 785-0043 FAX (480) 785-0851

Law Engineering 4634 S. 36th Place Phoenix, AZ 85040 Attention: Jim Clarke

Client Project ID: 70211-0-0150

Sampled: 08/28/01-08/29/01

Report Number:

PKH0511

Received: 08/29/01

METHOD BLANKIOC DATA

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: P1I1002 Extracted: 09/09/0	<u>1</u>									
LCS Dup Analyzed: 09/09/01 (P1I1002	-BSD1)									
Acetone	31.0	20	ug/l	25.0		124	30-200	10.2	20	
Benzene	25.1	2.0	ug/l	25.0		100	80-120	0.399	20	
Bromobenzene	25.7	5.0	ug/l	25.0		103	80-120	2.36	20	
Bromochloromethane	29.1	5.0	ug/l	25.0		116	80-120	2.79	20	
Bromodichloromethane	27.0	2.0	ug/l	25.0		108	80-130	0.743	20	
Bromoform	28.0	5.0	ug/l	25.0		112	60-140	3.27	20	
Bromomethane	28.0	5.0	ug/l	25.0		112	60-150	1.77	20	
2-Butanone (MEK)	29.4	10	ug/l	25.0		118	30-185	1.72	20	
n-Butylbenzene	24.8	5.0	ug/l	25.0		99.2	75-130	0.810	20	
sec-Butylbenzene	24.9	5.0	ug/l	25.0		99.6	80-125	0.401	20	
tert-Butylbenzene	24.6	5.0	ug/l	25.0		98.4	80-120	0.406	20	
Carbon Disulfide	22.2	5.0	ug/l	25.0		88.8	65-120	3.54	20	
Carbon tetrachloride	28.2	5.0	ug/l	25.0		113	75-150	2.11	20	
Chlorobenzene	26.6	2.0	ug/l	25.0		106	80-120	0.00	20	
Chloroethane	24.7	5.0	ug/l	25.0		98.8	80-125	0.806	20	
Chloroform	27.0	2.0	ug/l	25.0		108	80-120	1.49	20	
Chloromethane	21.4	5.0	ug/l	25.0		85.6	60-125	1.39	20	
2-Chlorotoluene	24.9	5.0	ug/l	25.0		99.6	80-120	0.00	20	
4-Chlorotoluene	25.1	5.0	ug/l	25.0		100	80-120	1.61	20	
Dibromochloromethane	28.7	2.0	ug/l	25.0		115	70-150	2.11	20	
1,2-Dibromo-3-chloropropane	24.5	5.0	ug/l	25.0		98.0	50-145	0.820	20	
1,2-Dibromoethane (EDB)	27.0	2.0	ug/l	25.0		108	75-120	3.77	20	
Dibromomethane	28.2	2.0	ug/l	25.0		113	80-120	6.97	20	
1,2-Dichlorobenzene	26.0	2.0	ug/l	25.0		104	80-120	2.73	20	
1,3-Dichlorobenzene	25.5	2.0	ug/l	25.0		102	80-120	1.58	20	
1,4-Dichlorobenzene	26.4	2.0	ug/l	25.0		106	80-120	1.53	20	
Dichlorodifluoromethane	21.8	5.0	ug/l	25.0		87.2	25-140	5.36	20	
1,1-Dichloroethane	26.6	2.0	ug/l	25.0		106	80-120	0.00	20	
1,2-Dichloroethane	27.6	2.0	ug/l	25.0		110	80-120	4.44	20	
1,1-Dichloroethene	25.5	5.0	ug/l	25.0		102	80-120	2.71	20	
cis-1,2-Dichloroethene	26.9	2.0	ug/l	25.0		108	80-120	2.64	20	
trans-1,2-Dichloroethene	26.4	2.0	ug/l	25.0		106	80-120	2.99	20	
1,2-Dichloropropane	25.8	2.0	ug/l	25.0		103	80-120	2.35	20	
1,3-Dichloropropane	26.5	2.0	ug/l	25.0		106	80-120	3.45	20	
2,2-Dichloropropane	28.0	2.0	ug/l	25.0		112	75-135	7.56	20	

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-9596 FAX (858) 505-9689 (480) 785-0043 FAX (480) 785-0851

Law Engineering 4634 S. 36th Place Phoenix, AZ 85040 Attention: Jim Clarke

Client Project ID: 70211-0-0150

Sampled: 08/28/01-08/29/01

Report Number:

PKH0511

Received: 08/29/01

METHOD BLANKIQC DATA

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: P111002 Extracted: 09/09/0	<u>1</u>									
LCS Dup Analyzed: 09/09/01 (P1I100)	2-BSD1)									
1,1-Dichloropropene	25.5	2.0	ug/l	25.0		102	80-120	1.17	20	
cis-1,3-Dichloropropene	26.6	2.0	ug/l	25.0		106	80-120	1.52	20	
trans-1,3-Dichloropropene	25.6	2.0	ug/l	25.0		102	80-120	0.391	20	
Ethylbenzene	25.8	2.0	ug/i	25.0		103	80-120	0.772	20	
Hexachlorobutadiene	23.1	5.0	ug/l	25.0		92.4	60-145	3.52	20	
2-Hexanone	28.2	10	ug/l	25.0		113	50-170	1.43	20	
Iodomethane	27.6	2.0	ug/l	25.0		110	40-155	0.00	20	
Isopropyibenzene	26.2	2.0	ug/l	25.0		105	80-120	2.26	20	
p-Isopropyltoluene	24.3	2.0	ug/l	25.0		97.2	80-120	0.826	20	
Methylene chloride	27.8	5.0	ug/l	25.0		111	80-120	3.29	20	
4-Methyl-2-pentanone (MIBK)	27.0	10	ug/l	25.0		108	70-140	4.55	20	
Methyl-tert-butyl Ether (MTBE)	28.1	5.0	ug/l	25.0		112	75-135	1.06	20	
Naphthalene	23.7	5.0	ug/l	25.0		94.8	70-130	4.75	20	X.
n-Propylbenzene	25.4	2.0	ug/l	25.0		102	80-120	1.17	20	
Styrene	26.4	2.0	ug/l	25.0		106	80-120	0.00	20	
1,1,1,2-Tetrachloroethane	28.3	5.0	ug/l	25.0		113	65-150	1.42	20	
1,1,2,2-Tetrachloroethane	26.0	2.0	ug/l	25.0		104	70-130	2.73	20	
Tetrachloroethene	27.0	2.0	ug/l	25.0		108	80-125	0.370	20	
Toluene	25.3	2.0	ug/l	25.0		101	80-120	0.394	20	
1,2,3-Trichlorobenzene	24.0	5.0	ug/l	25.0		96.0	75-125	6.90	20	
1,2,4-Trichlorobenzene	25.2	5.0	ug/l	25.0		101	80-120	5.71	20	
1,1,1-Trichloroethane	26.9	2.0	ug/l	25.0		108	80-120	2.21	20	
1,1,2-Trichloroethane	26.7	2.0	ug/l	25.0		107	80-120	4.99	20	
Trichloroethene	25.4	2.0	ug/l	25.0		102	80-120	2.39	20	
Trichlorofluoromethane	27.1	5.0	ug/l	25.0		108	75-150	11.5	20	
1,2,3-Trichloropropane	24.6	10	ug/l	25.0		98.4	65-135	3.31	20	
1,2,4-Trimethylbenzene	25.6	2.0	ug/l	25.0		102	80-120	1.18	20	
1,3,5-Trimethylbenzene	24.8	2.0	ug/l	25.0		99.2	80-120	0.404	20	
Vinyl acetate	30.0	25	ug/l	25.0		120	40-120	0.669	20	
Vinyl chloride	26.2	5.0	ug/l	25.0		105	80-120	9.45	20	
Xylenes, Total	77.6	10	ug/l	75.0		103	80-120	0.386	20	
Surrogate: Dibromofluoromethane	29.2		ug/l	25.0		117	80-120			
Surrogate: Toluene-d8	27.6		ug/l	25.0		110	80-120			
Surrogate: 4-Bromofluorobenzene	26.3		ug/l	25.0		105	80-120			

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-9596 FAX (858) 505-9689 (480) 785-0043 FAX (480) 785-0851

Law Engineering 4634 S. 36th Place Phoenix, AZ 85040

Attention: Jim Clarke

Client Project ID: 70211-0-0150

Sampled: 08/28/01-08/29/01

Report Number:

er: PKH0511

Received: 08/29/01

METHOD BLANK QC DATA

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: P1I1002 Extracted: 09/09/	01									-
Matrix Spike Analyzed: 09/09/01 (P1	I1002-MS1)				Source: P	KH0535-	02			
Acetone	ND	20	ug/l	25.0	ND	41.6	5-200			
Benzene	23.4	2.0	ug/l	25.0	ND	93.6	80-120			
Bromobenzene	24.0	5.0	ug/l	25.0	ND	96.0	80-120			
Bromochloromethane	24.4	5.0	ug/l	25.0	ND	97.6	60-135			
Bromodichloromethane	25.7	2.0	ug/l	25.0	ND	103	80-120			
Bromoform	20.2	5.0	ug/l	25.0	ND	80.8	40-140			
Bromomethane	11.9	5.0	ug/l	25.0	ND	47.6	25-165			
2-Butanone (MEK)	12.1	10	ug/l	25.0	ND	48.4	10-160			
n-Butylbenzene	21.8	5.0	ug/l	25.0	ND	87.2	75-135			
sec-Butylbenzene	22.4	5.0	ug/l	25.0	ND	89.6	80-135			•
tert-Butylbenzene	23.0	5.0	ug/l	25.0	ND	92.0	80-125			
Carbon Disulfide	10.5	5.0	ug/l	25.0	ND	42.0	20-120			
Carbon tetrachloride	26.7	5.0	ug/l	25.0	ND	107	80-145			
Chlorobenzene	26.0	2.0	ug/l	25.0	ND	104	80-120			
Chloroethane	15.5	5.0	ug/l	25.0	ND	62.0	30-150			
Chloroform	25.4	2.0	ug/l	25.0	ND	102	80-125			
Chloromethane	6.06	5.0	ug/l	25.0	ND	24.2	15-140			
2-Chlorotoluene	23.9	5.0	ug/l	25.0	ND	95.6	80-124			
4-Chlorotoluene	23.7	5.0	ug/l	25.0	ND	94.8	80-125			
Dibromochloromethane	24.2	2.0	ug/l	25.0	ND	96.8	75-135			
1,2-Dibromo-3-chloropropane	13.7	5.0	ug/l	25.0	ND	54.8	25-185			
1,2-Dibromoethane (EDB)	21.8	2.0	ug/l	25.0	ND	87.2	45-145			
Dibromomethane	23.2	2.0	ug/l	25.0	ND	92.8	55-140			
1,2-Dichlorobenzene	23.3	2.0	ug/l	25.0	ND	93.2	80-120			
1,3-Dichlorobenzene	23.6	2.0	ug/l	25.0	ND	94.4	80-120			
1,4-Dichlorobenzene	24.4	2.0	ug/l	25.0	ND	97.6	80-120			
Dichlorodifluoromethane	10.0	5.0	ug/l	25.0	ND	40.0	25-145			
1,1-Dichloroethane	23.4	2.0	ug/l	25.0	ND	93.6	75-120			
1,2-Dichloroethane	23.3	2.0	ug/l	25.0	ND	93.2	60-135			
1,1-Dichloroethene	20.1	5.0	ug/l	25.0	ND	80.4	55-120			
cis-1,2-Dichloroethene	32.8	2.0	ug/l	25.0	9.3	94.0	75-120			
trans-1,2-Dichloroethene	21.2	2.0	ug/l	25.0	ND	84.8	65-120			
1,2-Dichloropropane	24.5	2.0	ug/l	25.0	ND	98.0	80-125			
1,3-Dichloropropane	21.8	2.0	ug/l	25.0	ND	87.2	55-140			
2,2-Dichloropropane	29.4	2.0	ug/l	25.0	ND	118	45-165			

% DEC

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-9596 FAX (858) 505-9689 (480) 785-0043 FAX (480) 785-0851

Law Engineering 4634 S. 36th Place Phoenix, AZ 85040 Attention: Jim Clarke

Client Project ID: 70211-0-0150

Sampled: 08/28/01-08/29/01

Report Number:

PKH0511

Received: 08/29/01

DPD

MUTHOD BUSKKOCDŠUA

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: P1I1002 Extracted: 09/0	9/01									
Matrix Spike Analyzed: 09/09/01 (P1I1002-MS1)				Source: I	YKH0535-	02			
1,1-Dichloropropene	23.5	2.0	ug/l	25.0	ND	94.0	80-120			
cis-1,3-Dichloropropene	24.2	2.0	ug/l	25.0	ND	96.8	80-120			
trans-1,3-Dichloropropene	21.4	2.0	ug/l	25.0	ND	85.6	70-120			
Ethylbenzene	25.9	2.0	ug/l	25.0	ND	104	80-120			
Hexachlorobutadiene	18.1	5.0	ug/l	25.0	ND	72.4	80-135			M2
2-Hexanone	14.8	10	ug/l	25.0	ND	59.2	25-185			
Iodomethane	17.3	2.0	ug/l	25.0	ND	69.2	30-155			
lsopropylbenzene	25.9	2.0	ug/l	25.0	ND	104	80-125			
p-lsopropyltoluene	21.6	2.0	ug/l	25.0	ND	86.4	80-125			
Methylene chloride	20.1	5.0	ug/l	25.0	ND	80.4	55-125			
4-Methyl-2-pentanone (MIBK)	18.5	10	ug/l	25.0	ND	74.0	10-175			
Methyl-tert-butyl Ether (MTBE)	23.2	5.0	ug/l	25.0	ND	92.8	55-135			
Naphthalene	12.9	5.0	ug/l	25.0	ND	51.6	15-160			
n-Propylbenzene	24.9	2.0	ug/l	25.0	ND	99.6	80-130			
Styrene	24.2	2.0	ug/l	25.0	ND	96.8	60-135			
1,1,1,2-Tetrachloroethane	26.5	5.0	ug/l	25.0	ND	106	80-135			
1,1,2,2-Tetrachloroethane	14.9	2.0	ug/l	25.0	ND	59.6	35-150			
Tetrachloroethene	28.0	2.0	ug/l	25.0	ND	112	80-120			
Toluene	24.4	2.0	ug/l	25.0	ND	97.6	80-120			
1,2,3-Trichlorobenzene	14.8	5.0	ug/l	25.0	ND	59.2	45-145			
1,2,4-Trichlorobenzene	18.8	5.0	ug/l	25.0	ND	75.2	65-130			
1,1,1-Trichloroethane	26.4	2.0	ug/l	25.0	ND	106	80-120			
1,1,2-Trichloroethane	22.2	2.0	ug/l	25.0	ND	88.8	55-145			
Trichloroethene	28.3	2.0	ug/l	25.0	ND	113	80-120			
Trichlorofluoromethane	24.3	5.0	ug/l	25.0	ND	97.2	70-145			
1,2,3-Trichloropropane	17.5	10	ug/l	25.0	ND	70.0	20-160			
1,2,4-Trimethylbenzene	23.3	2.0	ug/l	25.0	ND	93.2	70-135			
1,3,5-Trimethylbenzene	23.2	2.0	ug/l	25.0	ND	92.8	80-125			
Vinyl acetate	ND	25	ug/l	25.0	ND		25-130			N2
Vinyl chloride	13.0	5.0	ug/l	25.0	ND	52.0	25-135			
Xylenes, Total	77.0	10	ug/l	75.0	ND	103	80-120			
Surrogate: Dibromofluoromethane	24.4		ug/l	25.0		97.6	80-120			
Surrogate: Toluene-d8	26.8		ug/l	25.0		107	80-120			
Surrogate: 4-Bromofluorobenzene	25.6		ug/l	25.0		102	80-120			

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-9596 FAX (858) 505-9689 (480) 785-0043 FAX (480) 785-0851

Law Engineering 4634 S. 36th Place Phoenix, AZ 85040

Client Project ID:

70211-0-0150

Sampled: 08/28/01-08/29/01

Attention: Jim Clarke

Report Number:

PKH0511

Received: 08/29/01

MELHOD BLANK OCDATA

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: P1I1002 Extracted: 09/09	<u>/01</u>									•
Matrix Spike Dup Analyzed: 09/09/0	1 (P1I1002-M	SD1)			Source: P	KH0535	-02			
Acetone	ND	20	ug/l	25.0	ND	62.4	5-200	40.0	20	R4
Benzene	23.1	2.0	ug/l	25.0	ND	92.4	80-120	1.29	20	104
Bromobenzene	23.3	5.0	ug/l	25.0	ND	93.2	80-120	2.96	20	
Bromochloromethane	24.9	5.0	ug/l	25.0	ND	99.6	60-135	2.03	20	
Bromodichloromethane	25.4	2.0	ug/l	25.0	ND	102	80-120	1.17	20	
Bromoform	23.4	5.0	ug/l	25.0	ND	93.6	40-140	14.7	20	
Bromomethane	12.6	5.0	ug/l	25.0	ND	50.4	25-165	5.71	20	
2-Butanone (MEK)	14.0	10	ug/l	25.0	ND	56.0	10-160	14.6	20	
n-Butylbenzene	21.9	5.0	ug/l	25.0	ND	87.6	75-135	0.458	20	
sec-Butylbenzene	22.2	5.0	ug/l	25.0	ND	88.8	80-135	0.897	20	
tert-Butylbenzene	22.3	5.0	ug/l	25.0	ND	89.2	80-125	3.09	20	
Carbon Disulfide	10.6	5.0	ug/l	25.0	ND	42.4	20-120	0.948	20	
Carbon tetrachloride	27.1	5.0	ug/l	25.0	ND	108	80-145	1.49	20	
Chlorobenzene	25.6	2.0	ug/l	25.0	ND	102	80-120	1.55	20	
Chloroethane	15.9	5.0	ug/l	25.0	ND	63.6	30-150	2.55	20	
Chloroform	25.6	2.0	ug/l	25.0	ND	102	80-125	0.784	20	
Chloromethane	6.17	5.0	ug/l	25.0	ND	24.7	15-140	1.80	20	
2-Chlorotoluene	23.1	5.0	ug/l	25.0	ND	92.4	80-124	3.40	20	
4-Chlorotoluene	23.5	5.0	ug/l	25.0	ND	94.0	80-125	0.847	20	
Dibromochloromethane	25.7	2.0	ug/l	25.0	ND	103	75-135	6.01	20	
1,2-Dibromo-3-chloropropane	18.8	5.0	ug/l	25.0	ND	75.2	25-185	31.4	20	R4
1,2-Dibromoethane (EDB)	24.0	2.0	ug/l	25.0	ND	96.0	45-145	9.61	20	
Dibromomethane	24.3	2.0	ug/l	25.0	ND	97.2	55-140	4.63	20	
1,2-Dichlorobenzene	23.5	2.0	ug/l	25.0	ND	94.0	80-120	0.855	20	
1,3-Dichlorobenzene	23.4	2.0	ug/l	25.0	ND	93.6	80-120	0.851	20	
1,4-Dichlorobenzene	24.0	2.0	ug/l	25.0	ND	96.0	80-120	1.65	20	
Dichlorodifluoromethane	9.65	5.0	ug/l	25.0	ND	38.6	25-145	3.56	20	
1,1-Dichloroethane	23.7	2.0	ug/l	25.0	ND	94.8	75-120	1.27	20	
1,2-Dichloroethane	24.5	2.0	ug/l	25.0	ND	98.0	60-135	5.02	20	
1,1-Dichloroethene	20.0	5.0	ug/l	25.0	ND	80.0	55-120	0.499	20	
cis-1,2-Dichloroethene	32.6	2.0	ug/l	25.0	9.3	93.2	75-120	0.612	20	
trans-1,2-Dichloroethene	21.3	2.0	ug/l	25.0	ND	85.2	65-120	0.471	20	
1,2-Dichloropropane	24.3	2.0	ug/l	25.0	ND	97.2	80-125	0.820	20	
1,3-Dichloropropane	23.7	2.0	ug/l	25.0	ND	94.8	55-140	8.35	20	
2,2-Dichloropropane	27.3	2.0	ug/l	25.0	ND	109	45-165	7.41	20	

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-9596 FAX (858) 505-9689 (480) 785-0043 FAX (480) 785-0851

Law Engineering 4634 S. 36th Place Phoenix, AZ 85040 Attention: Jim Clarke

Client Project ID:

70211-0-0150

% DEC

Sampled: 08/28/01-08/29/01

Report Number:

PKH0511

Received: 08/29/01

PPN

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: P1I1002 Extracted: 09/0	<u>9/01</u>									
Matrix Spike Dup Analyzed: 09/09/	01 (P1I1002-M	SD1)			Source: I	PKH0535-	02			
1,1-Dichloropropene	23.6	2.0	ug/l	25.0	ND	94.4	80-120	0.425	20	
cis-1,3-Dichloropropene	24.3	2.0	ug/l	25.0	ND	97.2	80-120	0.412	20	
trans-1,3-Dichloropropene	22.6	2.0	ug/l	25.0	ND	90.4	70-120	5.45	20	
Ethylbenzene	26.0	2.0	ug/l	25.0	ND	104	80-120	0.385	20	
Hexachlorobutadiene	19.7	5.0	ug/l	25.0	ND	78.8	80-135	8.47	20	M2
2-Hexanone	20.4	10	ug/l	25.0	ND	81.6	25-185	31.8	20	R4
Iodomethane	17.3	2.0	ug/l	25.0	ND	69.2	30-155	0.00	20	
Isopropylbenzene	26.0	2.0	ug/l	25.0	ND	104	80-125	0.385	20	
p-Isopropyltoluene	21.2	2.0	ug/l	25.0	ND	84.8	80-125	1.87	20	
Methylene chloride	19.7	5.0	ug/l	25.0	ND	78.8	55-125	2.01	20	
4-Methyl-2-pentanone (MIBK)	24.2	10	ug/l	25.0	ND	96.8	10-175	26.7	20	R4
Methyl-tert-butyl Ether (MTBE)	23.9	5.0	ug/l	25.0	ND	95.6	55-135	2.97	20	
Naphthalene	17.4	5.0	ug/l	25.0	ND	69.6	15-160	29.7	20	R4
n-Propylbenzene	24.0	2.0	ug/l	25.0	ND	96.0	80-130	3.68	20	
Styrene	24.4	2.0	ug/l	25.0	ND	97.6	60-135	0.823	20	
1,1,1,2-Tetrachloroethane	26.5	5.0	ug/l	25.0	ND	106	80-135	0.00	20	
1,1,2,2-Tetrachloroethane	16.7	2.0	ug/l	25.0	ND	66.8	35-150	11.4	20	
Tetrachloroethene	27.7	2.0	ug/l	25.0	ND	111	80-120	1.08	20	
Toluene	24.2	2.0	ug/l	25.0	ND	96.8	80-120	0.823	20	
1,2,3-Trichlorobenzene	17.7	5.0	ug/l	25.0	ND	70.8	45-145	17.8	20	
1,2,4-Trichlorobenzene	20.8	5.0	ug/l	25.0	ND	83.2	65-130	10.1	20	
1,1,1-Trichloroethane	26.5	2.0	ug/l	25.0	ND	106	80-120	0.378	20	
1,1,2-Trichloroethane	23.6	2.0	ug/l	25.0	ND	94.4	55-145	6.11	20	
Trichloroethene	29.5	2.0	ug/l	25.0	ND	118	80-120	4.15	20	
Trichlorofluoromethane	23.7	5.0	ug/l	25.0	ND	94.8	70-145	2.50	20	
1,2,3-Trichloropropane	21.3	10	ug/l	25.0	ND	85.2	20-160	19.6	20	
1,2,4-Trimethylbenzene	23.4	2.0	ug/l	25.0	ND	93.6	70-135	0.428	20	
1,3,5-Trimethylbenzene	22.8	2.0	ug/l	25.0	ND	91.2	80-125	1.74	20	
Vinyl acetate	ND	25	ug/l	25.0	ND	50.4	25-130		20	
Vinyl chloride	13.4	5.0	ug/l	25.0	ND	53.6	25-135	3.03	20	
Xylenes, Total	77.8	10	ug/l	75.0	ND	104	80-120	1.03	20	
Surrogate: Dibromofluoromethane	23.9		ug/l	25.0		95.6	80-120			
Surrogate: Toluene-d8	26.6		ug/l	25.0		106	80-120			
Surrogate: 4-Bromofluorobenzene	24.8		ug/l	25.0		99.2	80-120			

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-9596 FAX (858) 505-9689 (480) 785-0043 FAX (480) 785-0851

Law Engineering 4634 S. 36th Place Phoenix, AZ 85040

Client Project ID: 70211-0-0150

Sampled: 08/28/01-08/29/01

Attention: Jim Clarke

Report Number: PKH0511

Received: 08/29/01

NETHOD BLANKIQC DATA

Analyte	Result	Reporting Limit	TY24	Spike	Source		%REC		RPD	Data
·		Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: P1I0616 Extracted: 09/06/0										
Blank Analyzed: 09/06/01 (P110616-Bl	.K1)									
Arsenic	ND	5.0	mg/kg							
Chromium	ND	1.0	mg/kg							
Copper	ND	2.0	mg/kg							
Nickel	ND	5.0	mg/kg							
Zinc	ND	5.0	mg/kg							В4
LCS Analyzed: 09/06/01 (P1I0616-BS1))									
Arsenic	92.0	5.0	mg/kg	100		92.0	80-120			
Chromium	92.4	1.0	mg/kg	100		92.4	80-120			
Copper	96.8	2.0	mg/kg	100		96.8	80-120			
Nickel	90.6	5.0	mg/kg	100		90.6	80-120			
Zinc	93.7	5.0	mg/kg	100		93.7	80-120			
LCS Dup Analyzed: 09/06/01 (P110616-	-BSD1)		0 0			,,,,	00-120			
Arsenic	90.7	5.0	mg/kg	100		90.7	80-120	1.42	20	
Chromium	90.4	1.0	mg/kg	100		90.4	80-120	2.19	20	
Copper	95.4	2.0	mg/kg	100		95.4	80-120	1.46	20	
Nickel	88.6	5.0	mg/kg	100		88.6	80-120	2.23	20	
Zinc	93.8	5.0	mg/kg	100		93.8	80-120	0.107	20	
Matrix Spike Analyzed: 09/06/01 (P110	616-MS1)			:	Source: P			0.107	20	
Arsenic	95.2	5.0	mg/kg	100	ND	90.8	75-125			
Chromium	118	1.0	mg/kg	100	14	104	75-125 75-125			
Copper	208	2.0	mg/kg	100	80	128	75-125			М3
Nickel	108	5.0	mg/kg	100	14	94.0	75-125			IVIS
Zinc	157	5.0	mg/kg	100	58	99.0	75-125			
Matrix Spike Dup Analyzed: 09/06/01 (P110616-MS	SD1)		•	Source: P					
Arsenic	100	5.0	mg/kg	100	ND	95.6	75-125	4.92	20	
Chromium	110	1.0	mg/kg	100	14	96.0	75-125	7.02	20	
Copper	224	2.0	mg/kg	100	80	144	75-125	7.02 7.41	20	M2
Nickel	106	5.0	mg/kg	100	14	92.0	75-125	1.87	20	M3
Zine	176	5.0	mg/kg	100	58	118	75-125 75-125	1.87	20	
			פרי סייי	100	20	110	13-123	11.4	20	

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-9596 FAX (858) 505-9689 (480) 785-0043 FAX (480) 785-0851

Law Engineering 4634 S. 36th Place Phoenix, AZ 85040 Attention: Jim Clarke

Client Project ID:

70211-0-0150

Sampled: 08/28/01-08/29/01

Report Number:

PKH0511

Received: 08/29/01

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: P1I0713 Extracted: 09/07/0	<u>)1</u>									
Blank Analyzed: 09/10/01 (P1I0713-B	LK1)									
Arsenic	ND	5.0	mg/kg							
Chromium	2.99	1.0	mg/kg							B1
Copper	ND	2.0	mg/kg							
Nickel	ND	5.0	mg/kg							
Zinc	ND	5.0	mg/kg							
LCS Analyzed: 09/10/01 (P110713-BS	1)									
Arsenic	94.8	5.0	mg/kg	100		94.8	80-120			
Chromium	95.6	1.0	mg/kg	100		95.6	80-120			
Copper	97.6	2.0	mg/kg	100		97.6	80-120			
Nickel	93.8	5.0	mg/kg	100		93.8	80-120			
Zinc	96.3	5.0	mg/kg	100		96.3	80-120			
Matrix Spike Analyzed: 09/10/01 (P1I	0713-MS1)				Source: I	PKH0511-	-03			
Arsenic	88.9	5.0	mg/kg	100	ND	88.9	75-125			
Chromium	101	1.0	mg/kg	100	25	76.0	75-125			
Copper	108	2.0	mg/kg	100	13	95.0	75-125			
Nickel	97.5	5.0	mg/kg	100	32	65.5	75-125			M2
Zinc	130	5.0	mg/kg	100	38	92.0	75-125			
Matrix Spike Dup Analyzed: 09/10/01	(P1I0713-M	(SD1)			Source: 1	PKH0511	-03			
Arsenic	73.2	5.0	mg/kg	100	ND	73.2	75-125	19.4	20	M2
Chromium	88.3	1.0	mg/kg	100	25	63.3	75-125	13.4	20	M2
Copper	91.6	2.0	mg/kg	100	13	78.6	75-125	16.4	20	
Nickel	82.6	5.0	mg/kg	100	32	50.6	75-125	16.5	20	M2
Zinc	114	5.0	mg/kg	100	38	76.0	75-125	13.1	20	

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-9596 FAX (858) 505-9689 (480) 785-0043 FAX (480) 785-0851

Law Engineering 4634 S. 36th Place Phoenix, AZ 85040

Client Project ID:

70211-0-0150

Sampled: 08/28/01-08/29/01

Attention: Jim Clarke

Report Number:

PKH0511

Received: 08/29/01

METHOD BLANK/QC DATA

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: P1I0722 Extracted: 09/07/01	<u>-</u>									
Blank Analyzed: 09/07/01 (P1I0722-BL	K1)									
Chromium VI	ND	1.0	mg/kg							
LCS Analyzed: 09/07/01 (P1I0722-BS1)	•									
Chromium VI	9.48	1.0	mg/kg	10.0		94.8	85-115			
Matrix Spike Analyzed: 09/07/01 (P110	722-MS1)				Source: F	KH0511-	01			
Chromium VI	9.23	1.0	mg/kg	10.0	ND	89.3	85-115			
Matrix Spike Dup Analyzed: 09/07/01 (P110722-MS	D1)			Source: F	PKH0511-	01			
Chromium VI	9.23	1.0	mg/kg	10.0	ND	89.3	85-115	0.00	20	
Batch: P1I1410 Extracted: 09/14/01	<u> </u>									
Blank Analyzed: 09/14/01 (P1I1410-BL	K1)									
Arsenic	ND	5.0	mg/kg							
Chromium	ND	1.0	mg/kg							
Copper	ND	2.0	mg/kg							
Nickel	ND	5.0	mg/kg							
LCS Analyzed: 09/14/01 (P1I1410-BS1))									
Arsenic	91.2	5.0	mg/kg	100		91.2	80-120			
Chromium	95.3	1.0	mg/kg	100		95.3	80-120			
Copper	100	2.0	mg/kg	100		100	80-120			
Nickel	93.7	5.0	mg/kg	100		93.7	80-120			
LCS Dup Analyzed: 09/14/01 (P1I1410-	·BSD1)									
Arsenic	91.3	5.0	mg/kg	100		91.3	80-120	0.110	20	
Chromium	96.4	1.0	mg/kg	100		96.4	80-120	1.15	20	
Copper	99.7	2.0	mg/kg	100		99.7	80-120	0.300	20	
Nickel	94.3	5.0	mg/kg	100		94.3	80-120	0.638	20	

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-9596 FAX (858) 505-9689 (480) 785-0043 FAX (480) 785-0851

Law Engineering 4634 S. 36th Place Phoenix, AZ 85040

Attention: Jim Clarke

Client Project ID:

70211-0-0150

Sampled: 08/28/01-08/29/01

Report Number:

PKH0511

Received: 08/29/01

TOTAL METALS

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: P1I1410 Extracted: 09/14/0	<u>)1</u>									
Matrix Spike Analyzed: 09/14/01 (P1I	1410-MS1)				Source: I	KI0089-0	4RE1			
Arsenic	159	5.0	mg/kg	100	ND	159	75-125			N2
Chromium	190	1.0	mg/kg	100	18	172	75-125			N2
Copper	221	2.0	mg/kg	100	16	205	75-125			N2
Nickel	171	5.0	mg/kg	100	9.7	161	75-125			N2
Matrix Spike Dup Analyzed: 09/14/01	(P1I1410-M	ISD1)			Source: I	KI0089-0	4RE1			
Arsenic	22,2	5.0	mg/kg	100	ND	22.2	75-125	151	20	N2,R1
Chromium	22.8	1.0	mg/kg	100	18	4.80	75-125	157	20	N2,R1
Copper	24.6	2.0	mg/kg	100	16	8.60	75-125	160	20	N2,R1
Nickel	21.1	5.0	mg/kg	100	9.7	11.4	75-125	156	. 20	N2,R1
Batch: P1J0103 Extracted: 10/01/	<u>01</u>									
Blank Analyzed: 10/02/01 (P1J0103-B	LK1)									
Zinc	ND	5.0	mg/kg							
LCS Analyzed: 10/02/01 (P1J0103-BS	51)									
Zinc	86.2	5.0	mg/kg	100		86.2	80-120			
Matrix Spike Analyzed: 10/02/01 (P1.	J0103-MS1)				Source: I	PKI0288-1	19			
Zinc	142	5.0	mg/kg	100	29	113	75-125			
Matrix Spike Dup Analyzed: 10/02/01	(P1J0103-N	ASD1)			Source: 1	PKI0288-1	19			
Zinc	117	5.0	mg/kg	100	29	88.0	75-125	19.3	20	

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-9596 FAX (858) 505-9689 (480) 785-0043 FAX (480) 785-0851

Law Engineering 4634 S. 36th Place Phoenix, AZ 85040 Attention: Jim Clarke

Client Project ID:

70211-0-0150

Sampled: 08/28/01-08/29/01

Report Number:

PKH0511

Received: 08/29/01

METHOD RLANKQC DATA

TOTAL RECOVERABLE METALS

Analyte Result Limit Units Level Result %REC Limits RPD Limit	Qualifiers
Detals D117011 February 1, 00/20/01	
<u>Batch: P1H3011 Extracted: 08/30/01</u>	
Blank Analyzed: 09/06/01 (P1H3011-BLK1)	
Arsenic ND 0.050 mg/l	
Chromium ND 0.010 mg/l	B1
Copper ND 0.020 mg/l	21
Nickel ND 0.050 mg/l	
Zinc ND 0.050 mg/l	B4
LCS Analyzed: 09/06/01 (P1H3011-BS1)	2.
Arsenic 1.03 0.050 mg/l 1.00 103 85-115	
Chromium 0.988 0.010 mg/l 1.00 98.8 85-115	
Copper 1.05 0.020 mg/l 1.00 105 85-115	
Nickel 0.980 0.050 mg/l 1.00 98.0 85-115	
Zinc 1.02 0.050 mg/l 1.00 102 85-115	
Matrix Spike Analyzed: 09/06/01 (P1H3011-MS1) Source: PKH0510-01	
Arsenic 1.05 0.050 mg/l 1.00 ND 105 70-130	
Chromium 0.999 0.010 mg/l 1.00 ND 98.9 70-130	
Copper 1.04 0.020 mg/l 1.00 ND 104 70-130	
Nickel 0.967 0.050 mg/l 1.00 ND 96.4 70-130	
Zinc 1.22 0.050 mg/l 1.00 0.22 100 70-130	
Matrix Spike Dup Analyzed: 09/06/01 (P1H3011-MSD1) Source: PKH0510-01	
Arsenic 1.02 0.050 mg/l 1.00 ND 102 70-130 2.90 20	
Chromium 0.976 0.010 mg/l 1.00 ND 96.6 70-130 2.33 20	
Copper 1.01 0.020 mg/l 1.00 ND 101 70-130 2.93 20	
Nickel 0.944 0.050 mg/l 1.00 ND 94.1 70-130 2.41 20	
Zinc 1.19 0.050 mg/l 1.00 0.22 97.0 70-130 2.49 20	

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-9596 FAX (858) 505-9689 (480) 785-0043 FAX (480) 785-0851

Law Engineering 4634 S. 36th Place Phoenix, AZ 85040

Client Project ID:

70211-0-0150

Sampled: 08/28/01-08/29/01

Received: 08/29/01

Attention: Jim Clarke

Report Number:

PKH0511

TOTAL RECOVERABLE METALS

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: P1H3101 Extracted: 08/30/0	1									
Blank Analyzed: 08/30/01 (P1H3101-B)	LK1)									
Chromium VI	ND	0.025	mg/l							
LCS Analyzed: 08/30/01 (P1H3101-BS)	l)									
Chromium VI	0.104	0.050	mg/l	0.100		104	85-115			
Matrix Spike Analyzed: 08/30/01 (P1H	3101-MS1)				Source: P	KH0511-	13			
Chromium VI	0.0558	0.025	mg/l	0.0500	ND	112	85-115			
Matrix Spike Dup Analyzed: 08/30/01 (P1H3101-MS	D1)			Source: P	KH0511-	13			
Chromium VI	0.0521	0.025	mg/l	0.0500	ND	104	85-115	6.86	20	

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-9596 FAX (858) 505-9689 (480) 785-0043 FAX (480) 785-0851

Law Engineering 4634 S. 36th Place Phoenix, AZ 85040 Attention: Jim Clarke

Client Project ID: . 70211-0-0150

Sampled: 08/28/01-08/29/01

Received: 08/29/01

Report Number:

PKH0511

NETHOD BLANK QC DATA

INORGANICS

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: P110611 Extracted: 09/06/03	1_									
Blank Analyzed: 09/06/01 (P110611-BI	LK1)									
Total Cyanide	ND	0.50	mg/kg							
Matrix Spike Analyzed: 09/06/01 (P110)611-MS1)				Source: F	KH0448-	05			
Total Cyanide	1.79	0.50	mg/kg	2.50	ND	71.6	70-130			
Matrix Spike Dup Analyzed: 09/06/01	(P1I0611-M	SD1)			Source: F	KH0448-	05			
Total Cyanide	1.31	0.50	mg/kg	2.50	ND	52.4	70-130	31.0	20	M2,Q11
Reference Analyzed: 09/06/01 (P110611	I-SRM1)									~
Total Cyanide	109	20	mg/kg	201		54.2	40-160			
Batch: P110709 Extracted: 09/07/01	<u>1</u>									
Blank Analyzed: 09/07/01 (P110709-BI	.K1)									
Total Cyanide	ND	0.020	mg/l							
LCS Analyzed: 09/07/01 (P110709-BS1)		_							
Total Cyanide	0.101	0.020	mg/l	0.100		101	90-110			
Matrix Spike Analyzed: 09/07/01 (P110	709-MS1)				Source: F	KH0515-	02			
Total Cyanide	0.155	0.020	mg/l	0.100	0.038	117	70-130			
Matrix Spike Dup Analyzed: 09/07/01	(P110709-M	SD1)	_		Source: F	PKH0515-	02			
Total Cyanide	0.170	0.020	mg/l	0.100	0.038	132	70-130	9.23	20	M1
Batch: P110720 Extracted: 09/07/01	1_									
Blank Analyzed: 09/10/01 (P110720-BI										
Total Cyanide	ND	0.50	mg/kg							

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-9596 FAX (858) 505-9689 (480) 785-0043 FAX (480) 785-0851

Law Engineering 4634 S. 36th Place Phoenix, AZ 85040

Client Project ID:

70211-0-0150

Sampled: 08/28/01-08/29/01

Received: 08/29/01

Attention: Jim Clarke

PKH0511 Report Number:

INORGANICS

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: P1I0720 Extracted: 09/07/0	01									
Matrix Spike Analyzed: 09/10/01 (P1)	10720-MS1)				Source: P	KH0511-	02			
Total Cyanide	2.95	0.50	mg/kg	2.50	ND	118	70-130			
Matrix Spike Dup Analyzed: 09/10/01	(P1I0720-M	SD1)			Source: F	PKH0511-	02			
Total Cyanide	2.45	0.50	mg/kg	2.50	ND	98.0	70-130	18.5	20	
Reference Analyzed: 09/10/01 (P1I072	20-SRM1)									
Total Cyanide	164	20	mg/kg	201		81.6	40-160			

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-9596 FAX (858) 505-9689 (480) 785-0043 FAX (480) 785-0851

Law Engineering 4634 S. 36th Place Phoenix, AZ 85040 Attention: Jim Clarke

Client Project ID: 70211-0-0150

Sampled: 08/28/01-08/29/01

Received: 08/29/01

0 Report Number:

METHOD BLANK OC DATA

PKH0511

DATA QUALIFIERS AND DEFINITIONS

- B1 Target analyte detected in method blank at or above the method reporting limit.
- B4 Target analyte detected in blank at/above method acceptance criteria.
- M1 Matrix spike recovery was high, the method control sample recovery was acceptable.
- M2 Matrix spike recovery was low, the method control sample recovery was acceptable.
- M3 The accuracy of the spike recovery value is reduced since the analyte concentration in the sample is disproportionate to spike level. The method control sample recovery was acceptable.
- N1 See case narrative.
- N2 See corrective action report.
- Q11 Sample is heterogeneous. Sample homogeneity could not be readily achieved using routine laboratory practices.
- R1 RPD exceeded the method control limit. See case narrative.
- R4 MS/MSD RPD exceeded the method control limit. Recovery met acceptance criteria.
- R6 LFB/LFBD RPD exceeded the method control limit. Recovery met acceptance criteria.
- ND Analyte NOT DETECTED at or above the reporting limit
- NR Not reported.
- RPD Relative Percent Difference

Del Mår Analytical

CHAIN OF GUSTODY FORM

Quote #:

ō

Circle Name Address.				Analysis Required	red		
L AND ENG	10211-0+0150						
Project Manager.	Phone Number. 10250	13 1 149	7/VE		·		a. 3 - 4
Sampler:	Fax Number: Start Fax Fax	B	i wh	. *			
* Sample C		servatives (A A A	<i>(</i>)				Special Instructions
77-2-10 Son 5	10/8 How 1	A SINON	×		PKYO	211	10
20		-	×)		00
3-5-	1		X				50
122-6 - Co	222	Х 	× - ??			2	10
(70%	<i>y</i>	×				<i>\$0</i>
	7 - 253	Y	×				8
5- 10 Can	ALC. I ZOZE	X				<i>&</i>	27 HOLD -
1 20 1	7	×					onal &
1-6-	2 2	×					24
1	22%	×			. Profession		5,
M	3086	*					
182.	- X	\ \ \					3/64
)	· .
3-1-1-1	1/2/20 9	× ×	*	¥			3.
Relinguished By:	26/10	Received by:		Date /Time:		Turnaround Time: same day	(Check) 72 hours
Refinduished By: Dat		Received by:		Date /Time:	**.	24 hours 48 hours	5 days
Relinquished By: Dai		Received in Lab by:	د ادامه می دادند. در ادامه می دادند ادامه می دادند ادامه دادند ادامه دادند ادامه دادند ادامه دادند ادامه دادند دادند دادند دادند	Date /Time:	10 10 18	Sample Integrity:	(Check)

due within 30 days from the date of invoice. Sample(s) will be disposed of after 30 days.

COC-GB

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-9596 FAX (858) 505-9689 (480) 785-0043 FAX (480) 785-0851

Law Engineering 4634 S. 36th Place Phoenix, AZ 85040

Client Project ID 70211-0-0150

Sampled: 09/11/01 Received: 09/11/01

Attention: Jim Clarke

Report Number: PKI0159

Revised: 11/27/01

Issued: 10/1/01-11/27/01

CIPALITY SEE FOR THE CONTROL OF THE

LABORATORY	SAMPLE	SAMPLE
NUMBER	DESCRIPTION	MATRIX.
PKI0159-03	LB4 S-30	Soil
PKI0159-04	LB4 S-40	Soil
PKI0159-06	RINSATE 9/11/01	Water
PKI0159-07	LB4 S-10	Soil
PKI0159-07RE2	LB4 S-10	Soil
PKI0159-08	LB4 S-20	Soil
PKI0159-08RE2	LB4 S-20	Soil
PKI0159-09	LB4 S-30	Soil
PKI0159-09RE2	LB4 S-30	Soil
PKI0159-10	LB4 S-40	Soil
PKI0159-10RE1	LB4 S-40	Soil
PKI0159-11	LB4 S-50	Soil
PKI0159-11RE1	LB4 S-50	Soil

SAMPLE RECEIPT:

Samples were received intact, on ice, and with chain of custody documentation. Soil samples requiring volatile analysis were

received in Encore Container(s).

HOLDING TIMES:

Holding times were met.

PRESERVATION:

Samples requiring preservation were verified prior to sample analysis.

OBSERVATIONS:

Report was revised 11/27/01 to include an LCS Duplicate for 8260 soils.

SUBCONTRACTED:

No analyses were subcontracted to an outside laboratory.

QA/QC CRITERIA:

The N2 flag on 8260 indicates that one or more QC parameters were outside of laboratory acceptance criteria. Please see

Corrective Action Report. The R1 flag on Cyanide indicates that the RPD exceeded the method control limit. See Corrective

Action Report.

EXPLANATION OF DATA

QUALIFIERS:

The D1 flag on ICP Arsenic indicates that the reporting limit was raised due to sample matrix effects.

DEL MAR ANALYTICAL, PHOENIX (AZ0426)

Como for:

Debbie Fuller

Project Manager

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced, except in full, without written permission from Del Mar Analytical.

PKI0159 Page 1 of 39

2852 Alton Ave., Irvine, CA 92606 1014 E. Cooley Dr., Suite A, Colton, CA 92324 (909) 370-4667 FAX (909) 370-1046 7277 Hayvenhurst, Suite B-12, Van Nuys, CA 91406 (818) 779-1844 FAX (818) 779-1843 9484 Chesapeake Dr., Suite 805, San Diego, CA 92123 (858) 505-9596 FAX (858) 505-9689

(949) 261-1022 FAX (949) 261-1228 9830 South 51st St., Suite B-120, Phoenix, AZ 85044 (480) 785-0043 FAX (480) 785-0851

CORRECTIVE ACTION REPORT

Department:

GC/MS

Method:

8260B

Date:

09/17/2001

Matrix:

Soil

Batch:

P1I1201

Samples:

PKI0123-01 - PKI0123-05, PKI0169-02, PKI0130-01 - PKI0130-03 &

PKI0159-03 - PKI0159-04

Identification and Definition of Problem:

1,2-Dibromo-3-chloropropane recovered low (43%) and outside of the 50-155% acceptance limits in the Laboratory Control Sample Duplicate (LCSD). There is no MTBE spike data available for the above batch.

Determination of the Cause of the Problem:

The cause of the low recovery in the LCSD could not be determined. The analyst who prepared the spiking standard inadvertently did not add MTBE to the spiking mix.

Corrective Action:

The Laboratory Control Sample (LCS), Matrix Spike (MS) and Matrix Spike Duplicate (MSD) recovered within acceptance limits for 1,2-Dibromo-3chloropropane. The RPDs between the LCS and the LCSD and the MS and MSD were also within acceptance limits. The LCSD has been flagged "N2" to indicate the low recovery. A new standard has been prepared that contains all target analytes and is now in use.

Elizabeth C. Wueschner: Synhett C.W weschner Date: 12/18/2001 Quality Assurance Manager

(818) 779-1844 FAX (818) 779-1843 (858) 505-8596 FAX (858) 505-9589 (480) 785-0043 FAX (480) 785-0851

CORRECTIVE ACTION REPORT

Department:

Wet Chemistry

Methods:

9014

Date:

09/24/2001

Matrix:

Soil

Batch:

P1I2125

Samples Affected:

PKI0159-07 - PKI0159-11

Identification and Definition of Problem:

The Relative Percent Difference (RPD) between the Matrix Spike (MS) and the Matrix Spike Duplicate (MSD) was high (35%) and outside of the 20% acceptance limits.

Determination of the Cause of the Problem:

A definitive cause for the high RPD has not been determined.

Corrective Action:

The MS, MSD as well as the Laboratory Control Sample recovered within acceptance limits, thus validating the batch. The MSD "R1" to indicate that the RPD was outside of acceptance limits.

Ouality Assurance Manager

Elizabeth C. Wueschner: Wuschen Date 0 61/2001

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-9596 FAX (858) 505-9689 (480) 785-0043 FAX (480) 785-0851

Law Engineering

4634 S. 36th Place Phoenix, AZ 85040

Attention: Jim Clarke

Client Project ID:

70211-0-0150

Report Number:

PKI0159

Sampled: 09/11/01

Received: 09/11/01

Analyte	Method	Batch	Reporting Limit ug/kg	Sample Result ug/kg	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: PKI0159-03 (LB4 5	S-30 - Soil)		~B/ ~B	B/ 1-B				
Acetone	EPA 8260B	P1I1201	1000	ND	1	9/12/01	9/23/01	
Benzene	EPA 8260B	P1I1201	100	ND	1	9/12/01	9/23/01	
Bromobenzene	EPA 8260B	P1I1201	250	ND	1	9/12/01	9/23/01	
Bromochloromethane	EPA 8260B	P111201	250	ND	1	9/12/01	9/23/01	
Bromodichloromethane	EPA 8260B	P111201	100	ND	1	9/12/01	9/23/01	
Bromoform	EPA 8260B	P1I1201	250	ND	1	9/12/01	9/23/01	
Bromomethane	EPA 8260B	P1I1201	250	ND	1	9/12/01	9/23/01	
2-Butanone (MEK)	EPA 8260B	P1I1201	500	ND	1	9/12/01	9/23/01	
n-Butylbenzene	EPA 8260B	P1I1201	250	ND	1	9/12/01	9/23/01	
sec-Butylbenzene	EPA 8260B	P111201	250	ND	1	9/12/01	9/23/01	
tert-Butylbenzene	EPA 8260B	P111201	250	ND	1	9/12/01	9/23/01	
Carbon Disulfide	EPA 8260B	P111201	250	ND	1	9/12/01	9/23/01	
Carbon tetrachloride	EPA 8260B	P111201	250	ND	1	9/12/01	9/23/01	
Chlorobenzene	EPA 8260B	P111201	100	ND	1	9/12/01	9/23/01	
Chloroethane	EPA 8260B	P111201	250	ND	1	9/12/01	9/23/01	
Chloroform	EPA 8260B	P111201	100	ND	1	9/12/01	9/23/01	
Chloromethane	EPA 8260B	P1I1201	250	ND	1	9/12/01	9/23/01	
2-Chlorotoluene	EPA 8260B	P111201	250	ND	1	9/12/01	9/23/01	
4-Chlorotoluene	EPA 8260B	P1I1201	250	ND	1	9/12/01	9/23/01	
Dibromochloromethane	EPA 8260B	P1I1201	100	ND	1	9/12/01	9/23/01	
1,2-Dibromo-3-chloropropane	EPA 8260B	P1I1201	250	ND	1	9/12/01	9/23/01	
1,2-Dibromoethane (EDB)	EPA 8260B	P111201	100	ND	1	9/12/01	9/23/01	
Dibromomethane	EPA 8260B	P111201	100	ND	1	9/12/01	9/23/01	
1,2-Dichlorobenzene	EPA 8260B	P1I1201	100	ND	1	9/12/01	9/23/01	
1,3-Dichlorobenzene	EPA 8260B	P1I1201	100	ND	1	9/12/01	9/23/01	
1,4-Dichlorobenzene	EPA 8260B	P111201	100	ND	1	9/12/01	9/23/01	
Dichlorodifluoromethane	EPA 8260B	P111201	250	ND	1	9/12/01	9/23/01	
1,1-Dichloroethane	EPA 8260B	P111201	100	ND	1	9/12/01	9/23/01	
1,2-Dichloroethane	EPA 8260B	P111201	100	ND	1	9/12/01	9/23/01	
1,1-Dichloroethene	EPA 8260B	P111201	250	ND	1	9/12/01	9/23/01	
cis-1,2-Dichloroethene	EPA 8260B	P1I1201	100	ND	1	9/12/01	9/23/01	
trans-1,2-Dichloroethene	EPA 8260B	P111201	100	ND	1	9/12/01	9/23/01	
1,2-Dichloropropane	EPA 8260B	P111201	100	ND	1	9/12/01	9/23/01	
1,3-Dichloropropane	EPA 8260B	P111201	100	ND	1	9/12/01	9/23/01	
2,2-Dichloropropane	EPA 8260B	P111201	100	· ND	1	9/12/01	9/23/01	
1,1-Dichloropropene	EPA 8260B	P111201	100	ND	1	9/12/01	9/23/01	
cis-1,3-Dichloropropene	EPA 8260B	P111201	100	ND	1	9/12/01	9/23/01	
trans-1,3-Dichloropropene	EPA 8260B	P111201	100	ND	1	9/12/01	9/23/01	
Ethylbenzene	EPA 8260B	P111201	100	ND	1	9/12/01	9/23/01	
Hexachlorobutadiene	EPA 8260B	P111201	250	ND	1	9/12/01	9/23/01	
2-Hexanone	EPA 8260B	P111201	500	ND	1	9/12/01	9/23/01	
Iodomethane	EPA 8260B	P111201	100	ND	1	9/12/01	9/23/01	
Isopropylbenzene	EPA 8260B	P111201	100	ND	1	9/12/01	9/23/01	

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-9596 FAX (858) 505-9689 (480) 785-0043 FAX (480) 785-0851

Law Engineering 4634 S. 36th Place

Client Project ID:

70211-0-0150

Sampled: 09/11/01

Phoenix, AZ 85040 Attention: Jim Clarke

Report Number: PKI0159

Received: 09/11/01

VOLATILE ORGANICS BY GC/MS (EPA 8260B)

Analyte	Method	Batch	Reporting Limit ug/kg	Sample Result ug/kg	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: PKI0159-03 (LB4 S	-30 - Soil)							
p-lsopropyltoluene	EPA 8260B	P1I1201	100	ND	1	9/12/01	9/23/01	
Methylene chloride	EPA 8260B	P111201	500	ND	1	9/12/01	9/23/01	
4-Methyl-2-pentanone (MIBK)	EPA 8260B	P1I1201	500	ND	1	9/12/01	9/23/01	
Methyl-tert-butyl Ether (MTBE)	EPA 8260B	P111201	250	ND	1	9/12/01	9/23/01	
Naphthalene	EPA 8260B	P111201	250	ND	1	9/12/01	9/23/01	
n-Propylbenzene	EPA 8260B	P111201	100	ND	1	9/12/01	9/23/01	
Styrene	EPA 8260B	P111201	100	ND	1	9/12/01	9/23/01	
1,1,1,2-Tetrachloroethane	EPA 8260B	P111201	250	ND	1	9/12/01	9/23/01	
1,1,2,2-Tetrachloroethane	EPA 8260B	P111201	100	ND	1	9/12/01	9/23/01	
Tetrachloroethene	EPA 8260B	P111201	100	ND	1	9/12/01	9/23/01	
Toluene	EPA 8260B	P1I1201	100	ND	1	9/12/01	9/23/01	
1,2,3-Trichlorobenzene	EPA 8260B	P111201	250	ND	1	9/12/01	9/23/01	
1,2,4-Trichlorobenzene	EPA 8260B	P111201	250	ND	1	9/12/01	9/23/01	
1,1,1-Trichloroethane	EPA 8260B	P111201	100	ND	1	9/12/01	9/23/01	
1,1,2-Trichloroethane	EPA 8260B	P111201	100	ND	1	9/12/01	9/23/01	
Trichloroethene	EPA 8260B	P111201	100	ND	1	9/12/01	9/23/01	
Trichlorofluoromethane	EPA 8260B	P111201	250	ND	1	9/12/01	9/23/01	
1,2,3-Trichloropropane	EPA 8260B	P111201	500	ND	1	9/12/01	9/23/01	
1,2,4-Trimethylbenzene	EPA 8260B	P1I1201	100	ND	1	9/12/01	9/23/01	
1,3,5-Trimethylbenzene	EPA 8260B	P1I1201	100	ND	1	9/12/01	9/23/01	
Vinyl acetate	EPA 8260B	P1I1201	1200	ND	1	9/12/01	9/23/01	V1
Vinyl chloride	EPA 8260B	P1I1201	250	ND	1	9/12/01	9/23/01	
Xylenes, Total	EPA 8260B	P111201	300	ND	1	9/12/01	9/23/01	
Surrogate: Dibromofluoromethane (70-12	5%)			108 %				
Surrogate: Toluene-d8 (50-135%)				99.1 %				
Surrogate: 4-Bromofluorobenzene (70-136	0%)			94.0 %				

The reporting limit for this sample was adjusted by a factor of 0.929 to account for the applicable preparation factor.

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-9596 FAX (858) 505-9689 (480) 785-0043 FAX (480) 785-0851

Law Engineering

4634 S. 36th Place Phoenix, AZ 85040

Attention: Jim Clarke

Client Project ID:

70211-0-0150

Report Number:

PKI0159

Sampled: 09/11/01

Received: 09/11/01

Analyte	Method	Batch	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
			ug/kg	ug/kg				
Sample ID: PKI0159-04 (LB4 S-	40 - Soil)							
Acetone	EPA 8260B	P1I1201	1400	ND	1	9/12/01	9/23/01	
Benzene	EPA 8260B	P111201	140	ND	1	9/12/01	9/23/01	
Bromobenzene	EPA 8260B	P111201	350	ND	1	9/12/01	9/23/01	
Bromochloromethane	EPA 8260B	P111201	350	ND	1	9/12/01	9/23/01	
Bromodichloromethane	EPA 8260B	P1I1201	140	ND	1	9/12/01	9/23/01	
Bromoform	EPA 8260B	P111201	350	ND	1 .	9/12/01	9/23/01	
Bromomethane	EPA 8260B	P1I1201	350	ND	1	9/12/01	9/23/01	
2-Butanone (MEK)	EPA 8260B	P111201	690	ND	1	9/12/01	9/23/01	
n-Butylbenzene	EPA 8260B	P111201	350	ND	1	9/12/01	9/23/01	
sec-Butylbenzene	EPA 8260B	P111201	350	ND	1	9/12/01	9/23/01	
tert-Butylbenzene	EPA 8260B	P111201	350	ND	1	9/12/01	9/23/01	
Carbon Disulfide	EPA 8260B	P111201	350	ND	1	9/12/01	9/23/01	
Carbon tetrachloride	EPA 8260B	P1I1201	350	ND	1	9/12/01	9/23/01	
Chlorobenzene	EPA 8260B	P1I1201	140	ND	1	9/12/01	9/23/01	
Chloroethane	EPA 8260B	P111201	350	ND	1	9/12/01	9/23/01	
Chloroform	EPA 8260B	P111201	140	ND	1	9/12/01	9/23/01	
Chloromethane	EPA 8260B	P111201	350	ND	1	9/12/01	9/23/01	
2-Chlorotoluene	EPA 8260B	P1I1201	350	ND	1	9/12/01	9/23/01	
4-Chlorotoluene	EPA 8260B	P1I1201	350	ND	1	9/12/01	9/23/01	
Dibromochloromethane	EPA 8260B	P111201	140	ND	1	9/12/01	9/23/01	
1,2-Dibromo-3-chloropropane	EPA 8260B	P111201	350	ND	1	9/12/01	9/23/01	
1,2-Dibromoethane (EDB)	EPA 8260B	P111201	140	ND	1	9/12/01	9/23/01	
Dibromomethane	EPA 8260B	P111201	140	ND	1	9/12/01	9/23/01	
1,2-Dichlorobenzene	EPA 8260B	P1I1201	140	ND	1	9/12/01	9/23/01	
1,3-Dichlorobenzene	EPA 8260B	P1I1201	140	ND	1	9/12/01	9/23/01	
1,4-Dichlorobenzene	EPA 8260B	P1I1201	140	ND	1	9/12/01	9/23/01	
Dichlorodifluoromethane	EPA 8260B	P111201	350	ND	1	9/12/01	9/23/01	
1,1-Dichloroethane	EPA 8260B	P111201	140	ND	1	9/12/01	9/23/01	
1,2-Dichloroethane	EPA 8260B	P111201	140	ND	1	9/12/01	9/23/01	
1,1-Dichloroethene	EPA 8260B	P111201	350	ND	1	9/12/01	9/23/01	
cis-1,2-Dichloroethene	EPA 8260B	P111201	140	ND	1	9/12/01	9/23/01	
trans-1,2-Dichloroethene	EPA 8260B	P111201	140	ND	1	9/12/01	9/23/01	
1,2-Dichloropropane	EPA 8260B	P111201	140	ND	1	9/12/01	9/23/01	
1,3-Dichloropropane	EPA 8260B	P111201	140	ND	1	9/12/01	9/23/01	
2,2-Dichloropropane	EPA 8260B	P111201	140	ND	1	9/12/01	9/23/01	
1,1-Dichloropropene	EPA 8260B	P111201	140	ND	1	9/12/01	9/23/01	
cis-1,3-Dichloropropene	EPA 8260B	P1I1201	140	ND	1	9/12/01	9/23/01	
trans-1,3-Dichloropropene	EPA 8260B	P111201	140	ND	1	9/12/01	9/23/01	
Ethylbenzene	EPA 8260B	P1I1201	140	ND	1	9/12/01	9/23/01	
Hexachlorobutadiene	EPA 8260B	P111201	350	ND	1	9/12/01	9/23/01	
2-Hexanone	EPA 8260B	P1I1201	690	ND	1	9/12/01	9/23/01	
Iodomethane	EPA 8260B	P111201	140	ND	1	9/12/01	9/23/01	
Isopropylbenzene	EPA 8260B	P111201	140	ND	1	9/12/01	9/23/01	

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-9596 FAX (858) 505-9689 (480) 785-0043 FAX (480) 785-0851

Law Engineering

Attention:

4634 S. 36th Place Phoenix, AZ 85040

Jim Clarke

Client Project ID:

70211-0-0150

PKI0159 Report Number:

Sampled: 09/11/01

Received: 09/11/01

VOLATILE ORGANICS BY GC/MS (EPA 8260B)

Analyte	Method	Batch	Reporting Limit ug/kg	Sample Result ug/kg	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: PKI0159-04 (LB4 S-40 - Soil)								
p-Isopropyltoluene	EPA 8260B	P111201	140	ND	1	9/12/01	9/23/01	
Methylene chloride	EPA 8260B	P1I1201	690	ND	1	9/12/01	9/23/01	
4-Methyl-2-pentanone (MIBK)	EPA 8260B	P111201	690	ND	1	9/12/01	9/23/01	
Methyl-tert-butyl Ether (MTBE)	EPA 8260B	P111201	350	ND	1	9/12/01	9/23/01	
Naphthalene	EPA 8260B	P111201	350	ND	1	9/12/01	9/23/01	
n-Propylbenzene	EPA 8260B	P111201	140	ND	1	9/12/01	9/23/01	
Styrene	EPA 8260B	P111201	140	ND	1	9/12/01	9/23/01	
1,1,1,2-Tetrachloroethane	EPA 8260B	P111201	350	ND	1	9/12/01	9/23/01	
1,1,2,2-Tetrachloroethane	EPA 8260B	P111201	140	ND	1	9/12/01	9/23/01	
Tetrachloroethene	EPA 8260B	P111201	140	ND	1	9/12/01	9/23/01	
Toluene	EPA 8260B	P1I1201	140	ND	1	9/12/01	9/23/01	
1,2,3-Trichlorobenzene	EPA 8260B	P1I1201	350	ND	1	9/12/01	9/23/01	
1,2,4-Trichlorobenzene	EPA 8260B	P111201	350	ND	1	9/12/01	9/23/01	
1,1,1-Trichloroethane	EPA 8260B	P1I1201	140	ND	1	9/12/01	9/23/01	
1,1,2-Trichloroethane	EPA 8260B	P111201	140	ND	1	9/12/01	9/23/01	
Trichloroethene	EPA 8260B	P111201	140	ND	1	9/12/01	9/23/01	
Trichlorofluoromethane	EPA 8260B	P111201	350	ND	1	9/12/01	9/23/01	
1,2,3-Trichloropropane	EPA 8260B	P111201	690	ND	1	9/12/01	9/23/01	
1,2,4-Trimethylbenzene	EPA 8260B	P111201	140	ND	1	9/12/01	9/23/01	
1,3,5-Trimethylbenzene	EPA 8260B	P111201	140	ND	1	9/12/01	9/23/01	
Vinyl acetate	EPA 8260B	P111201	1700	ND	1	9/12/01	9/23/01	Vl
Vinyl chloride	EPA 8260B	P111201	350	ND	1	9/12/01	9/23/01	
Xylenes, Total	EPA 8260B	P111201	420	ND	1	9/12/01	9/23/01	
Surrogate: Dibromofluoromethane (70-12	?5%)			98.8 %				
Surrogate: Toluene-d8 (50-135%)				87.9 %				
Surrogate: 4-Bromofluorobenzene (70-13	0%)			80.9 %				

The reporting limit for this sample was adjusted by a factor of 1.39 to account for the applicable preparation factor.

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-9596 FAX (858) 505-9689 (480) 785-0043 FAX (480) 785-0851

Law Engineering

4634 S. 36th Place Phoenix, AZ 85040

Attention: Jim Clarke

Client Project ID:

70211-0-0150

Report Number:

PKI0159

Sampled: 09/11/01

Received: 09/11/01

Analyte	Method	Batch	Reporting Limit ug/l	Sample Result ug/l	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: PKI0159-06 (RINSA	TE 9/11/01 - V	Vater)	8	-8				
Acetone	EPA 8260B	P1I1912	20	ND	1	9/24/01	9/24/01	
Benzene	EPA 8260B	P1I1912	2.0	ND	1	9/24/01	9/24/01	
Bromobenzene	EPA 8260B	P1I1912	5.0	ND	i	9/24/01	9/24/01	
Bromochloromethane	EPA 8260B	P1I1912	5.0	ND	i	9/24/01	9/24/01	
Bromodichloromethane	EPA 8260B	P1I1912	2.0	ND	1	9/24/01	9/24/01	
Bromoform	EPA 8260B	P111912	5.0	ND	1	9/24/01	9/24/01	
Bromomethane	EPA 8260B	P111912	5.0	ND	1	9/24/01	9/24/01	
2-Butanone (MEK)	EPA 8260B	P1I1912	10	ND	1	9/24/01	9/24/01	
n-Butylbenzene	EPA 8260B	P111912	5.0	ND	1	9/24/01	9/24/01	
sec-Butylbenzene	EPA 8260B	P1I1912	5.0	ND	1	9/24/01	9/24/01	
tert-Butylbenzene	EPA 8260B	P111912	5.0	ND	1	9/24/01	9/24/01	
Carbon Disulfide	EPA 8260B	P111912	5.0	ND	1	9/24/01	9/24/01	
Carbon tetrachloride	EPA 8260B	P111912	5.0	ND	1	9/24/01	9/24/01	
Chlorobenzene	EPA 8260B	P1I1912	2.0	ND	1	9/24/01	9/24/01	
Chloroethane	EPA 8260B	P111912	5.0	ND	1	9/24/01	9/24/01	
Chloroform	EPA 8260B	P111912	2.0	ND	1	9/24/01	9/24/01	
Chloromethane	EPA 8260B	P111912	5.0	ND	1	9/24/01	9/24/01	
2-Chlorotoluene	EPA 8260B	P111912	5.0	ND	1	9/24/01	9/24/01	
4-Chlorotoluene	EPA 8260B	P111912	5.0	ND	1	9/24/01	9/24/01	
Dibromochloromethane	EPA 8260B	P111912	2.0	ND	1	9/24/01	9/24/01	
1,2-Dibromo-3-chloropropane	EPA 8260B	P1I1912	5.0	ND	1	9/24/01	9/24/01	
1,2-Dibromoethane (EDB)	EPA 8260B	P111912	2.0	ND	1	9/24/01	9/24/01	
Dibromomethane	EPA 8260B	P1I1912	2.0	ND	1	9/24/01	9/24/01	
1,2-Dichlorobenzene	EPA 8260B	P1I1912	2.0	ND	1	9/24/01	9/24/01	
1,3-Dichlorobenzene	EPA 8260B	P111912	2.0	ND	1	9/24/01	9/24/01	
1,4-Dichlorobenzene	EPA 8260B	P111912	2.0	ND	1	9/24/01	9/24/01	
Dichlorodifluoromethane	EPA 8260B	P111912	5.0	ND	1	9/24/01	9/24/01	
1,1-Dichloroethane	EPA 8260B	P1I1912	2.0	ND	1	9/24/01	9/24/01	
1,2-Dichloroethane	EPA 8260B	P1I1912	2.0	ND	1	9/24/01	9/24/01	
1,1-Dichloroethene	EPA 8260B	P111912	5.0	ND	1	9/24/01	9/24/01	
cis-1,2-Dichloroethene	EPA 8260B	P111912	2.0	ND	1	9/24/01	9/24/01	
trans-1,2-Dichloroethene	EPA 8260B	P1I1912	2.0	ND	1	9/24/01	9/24/01	
1,2-Dichloropropane	EPA 8260B	P111912	2.0	ND	1	9/24/01	9/24/01	
1,3-Dichloropropane	EPA 8260B	P1I1912	2.0	ND	1	9/24/01	9/24/01	
2,2-Dichloropropane	EPA 8260B	P111912	2.0	ND	1	9/24/01	9/24/01	
1,1-Dichloropropene	EPA 8260B	P1I1912	2.0	ND	1	9/24/01	9/24/01	
cis-1,3-Dichloropropene	EPA 8260B	P111912	2.0	ND	1	9/24/01	9/24/01	
trans-1,3-Dichloropropene	EPA 8260B	P111912	2.0	ND	1	9/24/01	9/24/01	
Ethylbenzene	EPA 8260B	P111912	2.0	ND	1	9/24/01	9/24/01	
Hexachlorobutadiene	EPA 8260B	P111912	5.0	ND	1	9/24/01	9/24/01	
2-Hexanone	EPA 8260B	P111912	10	ND	i	9/24/01	9/24/01	
Iodomethane	EPA 8260B	P1I1912	2.0	ND	1	9/24/01	9/24/01	
Isopropylbenzene	EPA 8260B	P111912	2.0	ND	1	9/24/01	9/24/01	

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-9596 FAX (858) 505-9689 (480) 785-0043 FAX (480) 785-0851

Law Engineering

4634 S. 36th Place Phoenix, AZ 85040

Attention: Jim Clarke

Client Project ID:

70211-0-0150

Sampled: 09/11/01

Report Number:

PKI0159

Received: 09/11/01

VOLATILE ORGANICS BY GC/MS (EPA 8260B)

Analyte	Method	Batch	Reporting Limit ug/l	Sample Result ug/l	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: PKI0159-06 (RINS	Sample ID: PKI0159-06 (RINSATE 9/11/01 - Water)							
p-Isopropyltoluene	EPA 8260B	P111912	2.0	ND	1	9/24/01	9/24/01	
Methylene chloride	EPA 8260B	P1I1912	5.0	ND	1	9/24/01	9/24/01	
4-Methyl-2-pentanone (MIBK)	EPA 8260B	P111912	10	ND	1	9/24/01	9/24/01	
Methyl-tert-butyl Ether (MTBE)	EPA 8260B	P111912	5.0	ND	1	9/24/01	9/24/01	
Naphthalene	EPA 8260B	P111912	5.0	ND	1	9/24/01	9/24/01	
n-Propylbenzene	EPA 8260B	P1I1912	2.0	ND	1	9/24/01	9/24/01	
Styrene	EPA 8260B	P1I1912	2.0	ND	1	9/24/01	9/24/01	
1,1,1,2-Tetrachloroethane	EPA 8260B	P1I1912	5.0	ND	1	9/24/01	9/24/01	
1,1,2,2-Tetrachloroethane	EPA 8260B	P1I1912	2.0	ND	1	9/24/01	9/24/01	
Tetrachloroethene	EPA 8260B	P111912	2.0	ND	1	9/24/01	9/24/01	
Toluene	EPA 8260B	P111912	2.0	ND	1	9/24/01	9/24/01	
1,2,3-Trichlorobenzene	EPA 8260B	P1I1912	5.0	ND	1	9/24/01	9/24/01	
1,2,4-Trichlorobenzene	EPA 8260B	P111912	5.0	ND	1	9/24/01	9/24/01	
1,1,1-Trichloroethane	EPA 8260B	P111912	2.0	ND	1	9/24/01	9/24/01	
1,1,2-Trichloroethane	EPA 8260B	P1I1912	2.0	ND	1	9/24/01	9/24/01	
Trichloroethene	EPA 8260B	P111912	2.0	ND	1	9/24/01	9/24/01	
Trichlorofluoromethane	EPA 8260B	P111912	5.0	ND	1	9/24/01	9/24/01	
1,2,3-Trichloropropane	EPA 8260B	P1I1912	10	ND	1	9/24/01	9/24/01	
1,2,4-Trimethylbenzene	EPA 8260B	P1I1912	2.0	ND	1	9/24/01	9/24/01	
1,3,5-Trimethylbenzene	EPA 8260B	P111912	2.0	ND	1	9/24/01	9/24/01	
Vinyl acetate	EPA 8260B	P111912	25°	ND	1	9/24/01	9/24/01	
Vinyl chloride	EPA 8260B	P1I1912	5.0	ND	1	9/24/01	9/24/01	
Xylenes, Total	EPA 8260B	P111912	10	ND	1	9/24/01	9/24/01	
Surrogate: Dibromofluoromethane (80-1.	20%)			99.6 %				
Surrogate: Toluene-d8 (80-120%)		104 %						
Surrogate: 4-Bromofluorobenzene (80-12	20%)			94.0 %				

Surrogate: 4-Bromofluorobenzene (80-120%)

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-9596 FAX (858) 505-9689 (480) 785-0043 FAX (480) 785-0851

Law Engineering

4634 S. 36th Place Phoenix, AZ 85040

Attention: Jim Clarke

Client Project ID:

70211-0-0150

Sampled: 09/11/01 Received: 09/11/01

Report Number:

PKI0159

Analyte	Method	Batch	Reporting Limit mg/kg	Sample Result mg/kg	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: PKI0159-07 (LB4 S-	10 - Soil)							
Arsenic	EPA 6010B	P111219	5.0	ND	1	9/12/01	9/13/01	
Chromium	EPA 6010B	P111219	1.0	25	1	9/12/01	9/13/01	
Chromium VI	EPA 7196A	P1I2415	1.0	ND	1	9/24/01	9/24/01	
Copper	EPA 6010B	P111219	2.0	19	1	9/12/01	9/13/01	
Nickel	EPA 6010B	P111219	5.0	18	1	9/12/01	9/13/01	
Sample ID: PKI0159-07RE2 (LE	84 S-10 - Soil)							
Zinc	EPA 6010B	P1I2605	5.0	54	1	9/26/01	9/28/01	
Sample ID: PKI0159-08 (LB4 S-20 - Soil)								
Arsenic	EPA 6010B	P111219	5.0	ND	1	9/12/01	9/13/01	
Chromium	EPA 6010B	P111219	1.0	22	1	9/12/01	9/13/01	
Chromium VI	EPA 7196A	P112415	1.0	ND	1	9/24/01	9/24/01	
Copper	EPA 6010B	P1I1219	2.0	21	1	9/12/01	9/13/01	
Nickel	EPA 6010B	P111219	5.0	23	1	9/12/01	9/13/01	
Sample ID: PKI0159-08RE2 (LF	34 S-20 - Soil)							
Zinc	EPA 6010B	P1I2605	5.0	66	1	9/26/01	9/28/01	
Sample ID: PKI0159-09 (LB4 S-	30 - Soil)							
Arsenic	EPA 6010B	P111219	5.0	ND	1	9/12/01	9/13/01	
Chromium	EPA 6010B	P111219	1.0	18	1	9/12/01	9/13/01	
Chromium VI	EPA 7196A	P1I2415	1.0	ND	1	9/24/01	9/24/01	
Copper	EPA 6010B	P111219	2.0	17	1	9/12/01	9/13/01	
Nickel	EPA 6010B	P111219	5.0	14	1	9/12/01	9/13/01	

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-9596 FAX (858) 505-9689 (480) 785-0043 FAX (480) 785-0851

Law Engineering 4634 S. 36th Place Phoenix, AZ 85040

Client Project ID:

70211-0-0150

Sampled: 09/11/01

Attention: Jim Clarke

Report Number: PKI0159

Received: 09/11/01

TOTAL METALS

			- -								
Analyte	Method	Batch	Reporting Limit mg/kg	Sample Result mg/kg	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers			
Sample ID: PKI0159-09RE2 (LI	34 S-30 - Soil)										
Zinc	EPA 6010B	P112605	5.0	46	1	9/26/01	9/28/01				
Sample ID: PKI0159-10 (LB4 S-	-40 - Soil)										
Arsenic	EPA 6010B	P1I1805	25	ND	5	9/18/01	9/20/01	D1			
Chromium	EPA 6010B	P1I1805	1.0	18	1	9/18/01	9/20/01				
Chromium VI	EPA 7196A	P1I2415	1.0	ND	1	9/24/01	9/24/01				
Copper	EPA 6010B	P111805	2.0	16	1	9/18/01	9/20/01				
Nickel	EPA 6010B	P111805	5.0	14	1	9/18/01	9/20/01				
Sample ID: PKI0159-10RE1 (LI	B4 S-40 - Soil)										
Zinc	EPA 6010B	P1I2605	5.0	45	1	9/26/01	9/28/01				
Sample ID: PKI0159-11 (LB4 S-	-50 - Soil)										
Arsenic	EPA 6010B	P111805	5.0	ND	1	9/18/01	9/20/01				
Chromium	EPA 6010B	P1I1805	1.0	15	1	9/18/01	9/20/01				
Chromium VI	EPA 7196A	P112415	1.0	ND	1	9/24/01	9/24/01				
Copper	EPA 6010B	P111805	2.0	14	1	9/18/01	9/20/01				
Nickel	EPA 6010B	P1I1805	5.0	12	1	9/18/01	9/20/01				
Sample ID: PKI0159-11RE1 (LI	B4 S-50 - Soil)										
Zinc	EPA 6010B	P1I2605	5.0	470	1	9/26/01	9/28/01				

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-9596 FAX (858) 505-9689 (480) 785-0043 FAX (480) 785-0851

Law Engineering 4634 S. 36th Place

Client Project ID:

70211-0-0150

Sampled: 09/11/01

Phoenix, AZ 85040 Attention: Jim Clarke

Report Number:

PKI0159

Received: 09/11/01

TOTAL RECOVERABLE METALS

Analyte	Method	Batch	Reporting Limit mg/l	Sample Result mg/l	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers		
Sample ID: PKI0159-06 (RINSATE 9/11/01 - Water)										
Arsenic	EPA 200.7	P111815	0.050	ND	1	9/18/01	9/19/01			
Chromium	EPA 200.7	P111815	0.010	ND	1	9/18/01	9/19/01			
Chromium VI	SM3500CR-D	P111206	0.025	ND	1	9/12/01	9/12/01			
Copper	EPA 200.7	P111815	0.020	ND	1	9/18/01	9/19/01			
Nickel	EPA 200.7	P111815	0.050	ND	1	9/18/01	9/19/01			
Zinc	EPA 200.7	P111815	0.050	ND	1	9/18/01	9/19/01			

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-9596 FAX (858) 505-9689 (480) 785-0043 FAX (480) 785-0851

Law Engineering 4634 S. 36th Place Phoenix, AZ 85040 Attention: Jim Clarke

Client Project ID:

70211-0-0150

Sampled: 09/11/01

Report Number:

PKI0159

Received: 09/11/01

INORGANICS

HORGINIOS											
Analyte	Method	Batch	Reporting Limit mg/l	Sample Result mg/l	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers			
Sample ID: PKI0159-06 (RINSATE 9/11/01 - Water)											
Total Cyanide S	M4500-CN,C-E	P112028	0.020 mg/kg	ND mg/kg	1	9/20/01	9/21/01				
Sample ID: PKI0159-07 (LB4 S-1	0 - Soil)										
Total Cyanide	EPA 9014	P1I2125	0.62	ND	1.25	9/21/01	9/24/01				
Sample ID: PKI0159-08 (LB4 S-2	20 - Soil)										
Total Cyanide	EPA 9014	P112125	0.62	ND	1.25	9/21/01	9/24/01				
Sample ID: PKI0159-09 (LB4 S-3	30 - Soil)										
Total Cyanide	EPA 9014	P1I2125	0.62	ND	1.25	9/21/01	9/24/01				
Sample ID: PKI0159-10 (LB4 S-4	10 - Soil)										
Total Cyanide	EPA 9014	P112125	0.62	ND	1.25	9/21/01	9/24/01				
Sample ID: PKI0159-11 (LB4 S-5	50 - Soil)										
Total Cyanide	EPA 9014	P1I2125	0.62	ND	1.25	9/21/01	9/24/01				

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-9596 FAX (858) 505-9689 (480) 785-0043 FAX (480) 785-0851

Law Engineering 4634 S. 36th Place

Client Project ID:

70211-0-0150

Sampled: 09/11/01

Phoenix, AZ 85040 Attention: Jim Clarke

Report Number:

PKI0159

Received: 09/11/01

МРТНОЙ ВЕАККОС ВАТА.

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: P1I1201 Extracted: 09/12/01										
Blank Analyzed: 09/17/01 (P111201-B	LK1)									
Acetone	ND	1000	ug/kg							
Benzene	ND	100	ug/kg							
Bromobenzene	ND	250	ug/kg							
Bromochloromethane	ND	250	ug/kg							
Bromodichloromethane	ND	100	ug/kg							
Bromoform	ND	250	ug/kg							
Bromomethane	ND	250	ug/kg							
2-Butanone (MEK)	ND	500	ug/kg							
n-Butylbenzene	ND	250	ug/kg							
sec-Butylbenzene	ND	250	ug/kg							
tert-Butylbenzene	ND	250	ug/kg							
Carbon Disulfide	ND	250	ug/kg							
Carbon tetrachloride	ND	250	ug/kg							
Chlorobenzene	ND	100	ug/kg							
Chloroethane	ND	250	ug/kg							
Chloroform	ND	100	ug/kg							
Chloromethane	ND	250	ug/kg							
2-Chlorotoluene	ND	250	ug/kg							
4-Chlorotoluene	ND	250	ug/kg							
Dibromochloromethane	ND	100	ug/kg							
1,2-Dibromo-3-chloropropane	ND	250	ug/kg							
1,2-Dibromoethane (EDB)	ND	100	ug/kg							
Dibromomethane	ND	100	ug/kg							
1,2-Dichlorobenzene	ND	100	ug/kg		•					
1,3-Dichlorobenzene	ND	100	ug/kg							
1,4-Dichlorobenzene	ND	100	ug/kg							
Dichlorodifluoromethane	ND	250	ug/kg							
1,1-Dichloroethane	ND	100	ug/kg							
1,2-Dichloroethane	ND	100	ug/kg							
1,1-Dichloroethene	ND	250	ug/kg							
cis-1,2-Dichloroethene	ND	100	ug/kg							
trans-1,2-Dichloroethene	ND	100	ug/kg							
1,2-Dichloropropane	ND	100	ug/kg							
1,3-Dichloropropane	ND	100	ug/kg							

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-9596 FAX (858) 505-9689 (480) 785-0043 FAX (480) 785-0851

Law Engineering 4634 S. 36th Place

Client Project ID:

70211-0-0150

Sampled: 09/11/01

Phoenix, AZ 85040 Attention: Jim Clarke

Report Number:

PKI0159

Received: 09/11/01

METHOD BLANK OC DATA

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: P1I1201 Extracted: 09/12/01										
Blank Analyzed: 09/17/01 (P	1I1201-BLK1)									
2,2-Dichloropropane	ND	100	ug/kg							
1,1-Dichloropropene	ND	100	ug/kg							
cis-1,3-Dichloropropene	ND	100	ug/kg							
trans-1,3-Dichloropropene	ND	100	ug/kg							
Ethylbenzene	ND	100	ug/kg							
Hexachlorobutadiene	ND	250	ug/kg							
2-Hexanone	ND	500	ug/kg							
Iodomethane	ND	100	ug/kg							
Isopropylbenzene	ND	100	ug/kg							
p-Isopropyltoluene	ND	100	ug/kg							
Methylene chloride	ND	500	ug/kg							
4-Methyl-2-pentanone (MIBK)	ND	500	ug/kg							
Methyl-tert-butyl Ether (MTBE)	ND	250	ug/kg							
Naphthalene	ND	250	ug/kg							
n-Propylbenzene	ND	100	ug/kg							
Styrene	ND	100	ug/kg							
1,1,1,2-Tetrachloroethane	ND	250	ug/kg							
I,1,2,2-Tetrachloroethane	ND	100	ug/kg							
Tetrachloroethene	ND	100	ug/kg	•						
Toluene	ND	100	ug/kg							
1,2,3-Trichlorobenzene	ND	250	ug/kg							
1,2,4-Trichlorobenzene	ND	250	ug/kg							
1,1,1-Trichloroethane	ND	100	ug/kg							
1,1,2-Trichloroethane	ND	100	ug/kg							
Trichloroethene	ND	100	ug/kg							
Trichlorofluoromethane	ND	250	ug/kg							
1,2,3-Trichloropropane	ND	500	ug/kg							
1,2,4-Trimethylbenzene	ND	100	ug/kg							
1,3,5-Trimethylbenzene	ND	100	ug/kg							
Vinyl acetate	ND	1200	ug/kg							
Vinyl chloride	ND	250	ug/kg							
Xylenes, Total	ND	300	ug/kg							
Surrogate: Dibromofluoromethane	161		ug/kg	125		129	70-125			S4
Surrogate: Toluene-d8	168		ug/kg	125		134	50-135			

2852 Alton Ave., Irvine, CA 92606 1014 E. Cooley Dr., Suite A, Colton, CA 92324 7277 Hayvenhurst, Suite B-12, Van Nuys, CA 91406 9484 Chesapeake Dr., Suite 805, San Diego, CA 92123

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-9596 FAX (858) 505-9689 9830 South 51st St., Suite B-120, Phoenix, AZ 85044 (480) 785-0043 FAX (480) 785-0851

Law Engineering 4634 S. 36th Place

Client Project ID:

70211-0-0150

Sampled: 09/11/01

Phoenix, AZ 85040 Attention: Jim Clarke

Report Number:

PKI0159

Received: 09/11/01

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: P1I1201 Extracted: 09/12/0	<u>1</u>									
Blank Analyzed: 09/17/01 (P1I1201-BI	.K1)									
Surrogate: 4-Bromofluorobenzene	151		ug/kg	125		121	70-130			
LCS Analyzed: 09/17/01 (P1I1201-BS1)									
Acetone	ND	1000	ug/kg	1000		55.8	5-200			
Benzene	927	100	ug/kg	1000		92.7	65-130			
Bromobenzene	1090	250	ug/kg	1000		109	60-135			
Bromochloromethane	1030	250	ug/kg	1000		103	60-135			
Bromodichloromethane	915	100	ug/kg	1000		91.5	30-135			
Bromoform	737	250	ug/kg	1000		73.7	60-140			
Bromomethane	1330	250	ug/kg	2000		66.5	10-200			
2-Butanone (MEK)	521	500	ug/kg	1000		52.1	10-160			
n-Butylbenzene	900	250	ug/kg	1000		90.0	65-125			
sec-Butylbenzene	928	250	ug/kg	1000		92.8	70-135			
tert-Butylbenzene	982	250	ug/kg	1000		98.2	70-130			
Carbon Disulfide	757	250	ug/kg	1000		75.7	20-120			
Carbon tetrachloride	859	250	ug/kg	1000		85.9	70-140			
Chlorosthan	1050	100	ug/kg	1000		105	70-125			
Chloroethane Chloroform	1270	250	ug/kg	2000		63.5	10-200			
Chloromethane	987	100	ug/kg	1000		98.7	35-135			
2-Chlorotoluene	1410	250	ug/kg	2000		70.5	10-200			
4-Chlorotoluene	972	250	ug/kg	1000		97.2	70-135			
Dibromochloromethane	965 898	250 100	ug/kg	1000		96.5	75-135			
1,2-Dibromo-3-chloropropane	537	250	ug/kg	1000		89.8	35-135			
1,2-Dibromoethane (EDB)	900	100	ug/kg	1000		53.7	50-155			
Dibromomethane	925	100	ug/kg ug/kg	1000 1000		90.0 92.5	70-130			
1,2-Dichlorobenzene	987	100	ug/kg ug/kg	1000		92.3 98.7	65-130 70-125			
1,3-Dichlorobenzene	1000	100	ug/kg ug/kg	1000		100	70-125 70-125			
1,4-Dichlorobenzene	1040	100	ug/kg ug/kg	1000		104	70-125			
Dichlorodifluoromethane	1380	250	ug/kg ug/kg	2000		69.0	10-185			
1,1-Dichloroethane	952	100	ug/kg	1000		95.2	60-140			
1,2-Dichloroethane	935	100	ug/kg ug/kg	1000		93.5	55-135			
1,1-Dichloroethene	992	250	ug/kg ug/kg	1000		99.2	55-145			
cis-1,2-Dichloroethene	996	100	ug/kg	1000		99.6	60-125			
trans-1,2-Dichloroethene	973	100	ug/kg ug/kg	1000		97.3	70-145			
1,2-Dichloropropane	921	100	ug/kg	1000		92.1	65-130			
• •			-00			/ -	33 130			

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-9596 FAX (858) 505-9689 (480) 785-0043 FAX (480) 785-0851

Law Engineering 4634 S. 36th Place Phoenix, AZ 85040 Attention: Jim Clarke

Client Project ID:

70211-0-0150

Sampled: 09/11/01

Report Number:

PKI0159

Received: 09/11/01

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: P1I1201 Extracted: 09/12/0	<u>1</u>									
LCS Analyzed: 09/17/01 (P1I1201-BS1)									
1,3-Dichloropropane	920	100	ug/kg	1000		92.0	65-130			
2,2-Dichloropropane	863	100	ug/kg	1000		86.3	60-135			
1,1-Dichloropropene	925	100	ug/kg	1000		92.5	65-130			
cis-1,3-Dichloropropene	840	100	ug/kg	1000		84.0	60-125			
trans-1,3-Dichloropropene	784	100	ug/kg	1000		78.4	50-130			
Ethylbenzene	1010	100	ug/kg	1000		101	70-125			
Hexachlorobutadiene	942	250	ug/kg	1000		94.2	60-125			
2-Hexanone	600	500	ug/kg	1000		60.0	25-185			
Iodomethane	1120	100	ug/kg	1000		112	30-155			
Isopropylbenzene	1010	100	ug/kg	1000		101	70-135			
p-Isopropyltoluene	926	100	ug/kg	1000		92.6	65-130	•		
Methylene chloride	953	500	ug/kg	1000		95.3	60-140			
4-Methyl-2-pentanone (MIBK)	685	500	ug/kg	1000		68.5	10-175			
Methyl-tert-butyl Ether (MTBE)	ND	250	ug/kg				55-135			
Naphthalene	731	250	ug/kg	1000		73.1	45-155			
n-Propylbenzene	965	100	ug/kg	1000		96.5	75-135			
Styrene	1020	100	ug/kg	1000		102	70-130			
1,1,1,2-Tetrachloroethane	951	250	ug/kg	1000		95.1	70-130			
1,1,2,2-Tetrachloroethane	757	100	ug/kg	1000		75.7	60-140			
Tetrachloroethene	1070	100	ug/kg	1000		107	65-130			
Toluene	985	100	ug/kg	1000		98.5	70-125			
1,2,3-Trichlorobenzene	853	250	ug/kg	1000		85.3	60-135			
1,2,4-Trichlorobenzene	950	250	ug/kg	1000		95.0	55-135			
1,1,1-Trichloroethane	943	100	ug/kg	1000		94.3	65-135			
1,1,2-Trichloroethane	919	100	ug/kg	1000		91.9	65-130			
Trichloroethene	992	100	ug/kg	1000		99.2	70-130			
Trichlorofluoromethane	2000	250	ug/kg	2000		100	10-200			
1,2,3-Trichloropropane	745	500	ug/kg	1000		74.5	60-150			
1,2,4-Trimethylbenzene	1000	100	ug/kg	1000		100	75-130			
1,3,5-Trimethylbenzene	955	100	ug/kg	1000		95.5	70-130			
Vinyl acetate	ND	1200	ug/kg	1000		52.8	25-130			
Vinyl chloride	853	250	ug/kg	2000		42.6	10-200			
Xylenes, Total	3040	300	ug/kg	3000		101	70-130			
Surrogate: Dibromofluoromethane	150		ug/kg	125		120	70-125			
Surrogate: Toluene-d8	161		ug/kg	125		129	50-135			
Surrogate: 4-Bromofluorobenzene	156		ug/kg	125		125	70-130			

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-9596 FAX (858) 505-9689 (480) 785-0043 FAX (480) 785-0851

Law Engineering 4634 S. 36th Place

Client Project ID:

70211-0-0150

Sampled: 09/11/01

Phoenix, AZ 85040 Attention: Jim Clarke

Report Number:

PKI0159

Received: 09/11/01

METHOD BLANK/OC DATA

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: P1I1201 Extracted: 09/12/0	1									
LCS Dup Analyzed: 09/17/01 (P11120)	1-BSD1)									
Acetone	ND	1000	ug/kg	1000		62.8	5-200	11.8	35	
Benzene	961	100	ug/kg	1000		96.1	65-130	3.60	35	
Bromobenzene	1080	250	ug/kg	1000		108	60-135	0.922	35	
Bromochloromethane	1050	250	ug/kg	1000		105	60-135	1.92	35	
Bromodichloromethane	944	100	ug/kg	1000		94.4	30-135	3.12	35	
Bromoform	729	250	ug/kg	1000		72.9	60-140	1.09	35	
Bromomethane	1440	250	ug/kg	2000		72.0	10-200	7.94	35	
2-Butanone (MEK)	528	500	ug/kg	1000		52.8	10-160	1.33	35	
n-Butylbenzene	960	250	ug/kg	1000		96.0	65-125	6.45	35	
sec-Butylbenzene	995	250	ug/kg	1000		99.5	70-135	6.97	35	
tert-Butylbenzene	1030	250	ug/kg	1000		103	70-130	4.77	35	
Carbon Disulfide	788	250	ug/kg	1000		78.8	20-120	4.01	35	
Carbon tetrachloride	928	250	ug/kg	1000		92.8	70-140	7.72	35	
Chlorobenzene	1100	100	ug/kg	1000		110	70-125	4.65	35	
Chloroethane	1350	250	ug/kg	2000		67.5	10-200	6.11	35	
Chloroform	1040	100	ug/kg	1000		104	35-135	5.23	35	
Chloromethane	1520	250	ug/kg	2000		76.0	10-200	7.51	35	
2-Chlorotoluene	1020	250	ug/kg	1000		102	70-135	4.82	35	
4-Chlorotoluene	1020	250	ug/kg	1000		102	75-135	5.54	35	
Dibromochloromethane	929	100	ug/kg	1000		92.9	35-135	3.39	35	
1,2-Dibromo-3-chloropropane	429	250	ug/kg	1000		42.9	50-155	22.4	35	N2
1,2-Dibromoethane (EDB)	897	100	ug/kg	1000		89.7	70-130	0.334	35	
Dibromomethane	938	100	ug/kg	1000		93.8	65-130	1.40	35	
1,2-Dichlorobenzene	1040	100	ug/kg	1000		104	70-125	5.23	35	
1,3-Dichlorobenzene	1060	100	ug/kg	1000		106	70-125	5.83	35	
1,4-Dichlorobenzene	1070	100	ug/kg	1000		107	70-135	2.84	35	
Dichlorodifluoromethane	1500	250	ug/kg	2000		75.0	10-185	8.33	35	
1,1-Dichloroethane	992	100	ug/kg	1000		99.2	60-140	4.12	35	
1,2-Dichloroethane	966	100	ug/kg	1000		96.6	55-135	3.26	35	
1,1-Dichloroethene	1040	250	ug/kg	1000		104	55-145	4.72	35	
cis-1,2-Dichloroethene	1020	100	ug/kg	1000		102	60-125	2.38	35	
trans-1,2-Dichloroethene	1040	100	ug/kg	1000		104	70-145	6.66	35	
1,2-Dichloropropane	963	100	ug/kg	1000		96.3	65-130	4.46	35	
1,3-Dichloropropane	940	100	ug/kg	1000		94.0	65-130	2.15	35	
2,2-Dichloropropane	948	100	ug/kg	1000		94.8	60-135	9.39	35	

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-9596 FAX (858) 505-9689 (480) 785-0043 FAX (480) 785-0851

Law Engineering 4634 S. 36th Place Phoenix, AZ 85040

Attention: Jim Clarke

Client Project ID:

70211-0-0150

Sampled: 09/11/01

Report Number:

PKI0159

Received: 09/11/01

INDANIA INTO DER DE ANTERO (DE EL PARTEY.

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: P1I1201 Extracted: 09/12/	<u>01</u>									
LCS Dup Analyzed: 09/17/01 (P1I120	01-BSD1)									
1,1-Dichloropropene	964	100	ug/kg	1000		96.4	65-130	4.13	35	
cis-1,3-Dichloropropene	883	100	ug/kg	1000		88.3	60-125	4.99	35	
trans-1,3-Dichloropropene	810	100	ug/kg	1000		81.0	50-130	3.26	35	
Ethylbenzene	1080	100	ug/kg	1000		108	70-125	6.70	35	
Hexachlorobutadiene	1040	250	ug/kg	1000		104	60-125	9.89	35	
2-Hexanone	601	500	ug/kg	1000		60.1	25-185	0.167	35	
lodomethane	1170	100	ug/kg	1000		117	30-155	4.37	35	
Isopropylbenzene	1080	100	ug/kg	1000		108	70-135	6.70	35	
p-Isopropyltoluene	988	100	ug/kg	1000		98.8	65-130	6.48	35	
Methylene chloride	987	500	ug/kg	1000		98.7	60-140	3.51	35	
4-Methyl-2-pentanone (MIBK)	639	500	ug/kg	1000		63.9	10-175	6.95	35	
Methyl-tert-butyl Ether (MTBE)	ND	250	ug/kg				55-135		35	
Naphthalene	686	250	ug/kg	1000		68.6	45-155	6.35	35	
n-Propylbenzene	1020	100	ug/kg	1000		102	75-135	5.54	35	
Styrene	1080	100	ug/kg	1000		108	70-130	5.71	35	
1,1,1,2-Tetrachloroethane	992	250	ug/kg	1000		99.2	70-130	4.22	35	
1,1,2,2-Tetrachloroethane	726	100	ug/kg	1000		72.6	60-140	4.18	35	
Tetrachloroethene	1120	100	ug/kg	1000		112	65-130	4.57	35	
Toluene	1060	100	ug/kg	1000		106	70-125	7.33	35	
1,2,3-Trichlorobenzene	820	250	ug/kg	1000		82.0	60-135	3.95	35	
1,2,4-Trichlorobenzene	990	250	ug/kg	1000		99.0	55-135	4.12	35	
1,1,1-Trichloroethane	1010	100	ug/kg	1000		101	65-135	6.86	35	
1,1,2-Trichloroethane	942	100	ug/kg	1000		94.2	65-130	2.47	35	
Trichloroethene	1060	100	ug/kg	1000		106	70-130	6.63	35	
Trichlorofluoromethane	2260	250	ug/kg	2000		113	10-200	12.2	35	
1,2,3-Trichloropropane	714	500	ug/kg	1000		71.4	60-150	4.25	35	
1,2,4-Trimethylbenzene	1050	100	ug/kg	1000		105	75-130	4.88	35	
1,3,5-Trimethylbenzene	1010	100	ug/kg	1000		101	70-130	5.60	35	
Vinyl acetate	ND	1200	ug/kg	1000		37.4	25-130	34.1	35	
Vinyl chloride	859	250	ug/kg	2000		43.0	10-200	0.701	35	
Xylenes, Total	3250	300	ug/kg	3000		108	70-130	6.68	35	
Surrogate: Dibromofluoromethane	140		ug/kg	125		112	70-125			
Surrogate: Toluene-d8	162		ug/kg	125		130	50-135			
Surrogate: 4-Bromofluorobenzene	153		ug/kg	125		122	70-130			

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-9596 FAX (858) 505-9689 (480) 785-0043 FAX (480) 785-0851

Law Engineering

4634 S. 36th Place Phoenix, AZ 85040

Attention: Jim Clarke

Client Project ID:

70211-0-0150

Report Number: PKI0159

Sampled: 09/11/01

Received: 09/11/01

METHOD BLANK OF DATA.

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: P1I1201 Extracted: 09/12/0	01									
Matrix Spike Analyzed: 09/17/01 (P1)					Source: P	K10130-0	1			
Acetone	ND	1000	ug/kg	1000	ND	54.6	5-200			
Benzene	932	100	ug/kg	1000	ND	93.2	65-130			
Bromobenzene	1090	250	ug/kg	1000	ND	109	60-135			
Bromochloromethane	1060	250	ug/kg	1000	ND	106	60-135			
Bromodichloromethane	956	100	ug/kg	1000	ND	95.6	30-135			
Bromoform	789	250	ug/kg	1000	ND	78.9	60-140			
Bromomethane	1250	250	ug/kg	2000	ND	62.5	10-200			
2-Butanone (MEK)	505	500	ug/kg	1000	ND	50.5	10-160			
n-Butylbenzene	964	250	ug/kg	1000	ND	96.4	65-125			
sec-Butylbenzene	991	250	ug/kg	1000	ND	99.1	70-135			
tert-Butylbenzene	999	250	ug/kg	1000	ND	99.9	70-130			
Carbon Disulfide	743	250	ug/kg	1000	ND	74.3	20-120			
Carbon tetrachloride	901	250	ug/kg	1000	ND	90.1	70-140			
Chlorobenzene	1100	100	ug/kg	1000	ND	110	75-125			
Chloroethane	1270	250	ug/kg	2000	ND	63.5	10-200			
Chloroform	1020	100	ug/kg	1000	ND	102	35-135			
Chloromethane	1420	250	ug/kg	2000	ND	71.0	10-200			
2-Chlorotoluene	1000	250	ug/kg	1000	ND	100	70-135			
4-Chlorotoluene	1000	250	ug/kg	1000	ND	100	75-135			
Dibromochloromethane	942	100	ug/kg	1000	ND	94.2	35-135			
1,2-Dibromo-3-chloropropane	584	250	ug/kg	1000	ND	58.4	50-155			
1,2-Dibromoethane (EDB)	938	100	ug/kg	1000	ND	93.8	70-130			
Dibromomethane	940	100	ug/kg	1000	ND	94.0	65-130			
1,2-Dichlorobenzene	1040	100	ug/kg	1000	ND	104	70-125			
1,3-Dichlorobenzene	1040	100	ug/kg	1000	ND	104	70-125			
1,4-Dichlorobenzene	1090	100	ug/kg	1000	ND	109	70-135			
Dichlorodifluoromethane	1300	250	ug/kg	2000	ND	65.0	10-185			
1,1-Dichloroethane	976	100	ug/kg	1000	ND	97.6	60-140			
1,2-Dichloroethane	952	100	ug/kg	1000	ND	95.2	55-135			
1,1-Dichloroethene	1010	250	ug/kg	1000	ND	101	55-145			
cis-1,2-Dichloroethene	1010	100	ug/kg	1000	ND	101	60-125			
trans-1,2-Dichloroethene	1020	100	ug/kg	1000	ND	102	70-145			
1,2-Dichloropropane	932	100	ug/kg	1000	ND	93.2	65-130			
1,3-Dichloropropane	942	100	ug/kg	1000	ND	94.2	65-130			
2,2-Dichloropropane	827	100	ug/kg	1000	ND	82.7	60-135			

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-9596 FAX (858) 505-9689 (480) 785-0043 FAX (480) 785-0851

Law Engineering

Attention:

4634 S. 36th Place Phoenix, AZ 85040

Jim Clarke

Client Project ID:

70211-0-0150

PKI0159

Report Number:

Reporting

Sampled: 09/11/01

%REC

Received: 09/11/01

RPD

Data

NETHOD BLANK OF DATA

Spike

Source

		reporting		Spine	Source		/UICE		IXI D	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: P1I1201 Extracted: 09/12	<u>2/01</u>									
Matrix Spike Analyzed: 09/17/01 (F	P111201-MS1)				Source: F	KI0130-0)1			
1,1-Dichloropropene	943	100	ug/kg	1000	ND	94.3	65-130			
cis-1,3-Dichloropropene	876	100	ug/kg	1000	ND	87.6	60-125			
trans-1,3-Dichloropropene	835	100	ug/kg	1000	ND	83.5	50-130			
Ethylbenzene	1060	100	ug/kg	1000	ND	106	70-125			
Hexachlorobutadiene	1140	250	ug/kg	1000	ND	114	60-125			
2-Hexanone	639	500	ug/kg	1000	ND	63.9	25-185			
lodomethane	1120	100	ug/kg	1000	ND	112	30-155			
lsopropylbenzene	1070	100	ug/kg	1000	ND	107	70-135			
p-Isopropyltoluene	998	100	ug/kg	1000	ND	99.8	65-130			
Methylene chloride	971	500	ug/kg	1000	ND	97.1	60-140			
4-Methyl-2-pentanone (MIBK)	709	500	ug/kg	1000	ND	70.9	10-175			
Naphthalene	781	250	ug/kg	1000	ND	78.1	45-155			
n-Propylbenzene	1030	100	ug/kg	1000	ND	103	75-135			
Styrene	1080	100	ug/kg	1000	ND	108	70-130			
1,1,1,2-Tetrachloroethane	1010	250	ug/kg	1000	ND	101	70-130			
1,1,2,2-Tetrachloroethane	815	100	ug/kg	1000	ND	81.5	60-140			
Tetrachloroethene	1140	100	ug/kg	1000	ND	114	65-130			
Toluene	1060	100	ug/kg	1000	ND	106	70-125			
1,2,3-Trichlorobenzene	906	250	ug/kg	1000	ND	90.6	60-135			
1,2,4-Trichlorobenzene	1020	250	ug/kg	1000	ND	102	55-135			
1,1,1-Trichloroethane	963	100	ug/kg	1000	ND	96.3	65-135			
1,1,2-Trichloroethane	987	100	ug/kg	1000	ND	98.7	65-130			
Trichloroethene	1060	100	ug/kg	1000	ND	106	70-130			
Trichlorofluoromethane	1970	250	ug/kg	2000	ND	98.5	10-200			
1,2,3-Trichloropropane	791	500	ug/kg	1000	ND	79.1	60-150			
1,2,4-Trimethylbenzene	1050	100	ug/kg	1000	ND	105	75-130			
1,3,5-Trimethylbenzene	1000	100	ug/kg	1000	ND	100	70-130			
Vinyl acetate	ND	1200	ug/kg	1000	ND	28.4	25-130			
Vinyl chloride	830	250	ug/kg	2000	ND	41.5	10-200			
Xylenes, Total	3220	300	ug/kg	3000	ND	107	70-130			
Surrogate: Dibromofluoromethane	143		ug/kg	125		114	70-125			
Surrogate: Toluene-d8	159		.ug/kg	125		127	50-135			
Surrogate: 4-Bromofluorobenzene	148		ug/kg	125		118	70-130			

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-9596 FAX (858) 505-9689 (480) 785-0043 FAX (480) 785-0851

Law Engineering 4634 S. 36th Place

Client Project ID:

70211-0-0150

Sampled: 09/11/01

Phoenix, AZ 85040 Attention: Jim Clarke

Report Number:

PKI0159

Received: 09/11/01

tslan (ad) dirimaki ketulci iyada

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: P111201 Extracted: 09/12/	01									
Matrix Spike Dup Analyzed: 09/17/01	(P111201-M	SD1)			Source: F	KI0130-0	1			
Acetone	ND	1000	ug/kg	1000	ND	52.7	5-200	3.54	35	
Benzene	92 7	100	ug/kg	1000	ND	92.7	65-130	0.538	35	
Bromobenzene	1070	250	ug/kg	1000	ND	107	60-135	1.85	35	
Bromochloromethane	1020	250	ug/kg	1000	ND	102	60-135	3.85	35	
Bromodichloromethane	900	100	ug/kg	1000	ND	90.0	30-135	6.03	35	
Bromoform	717	250	ug/kg	1000	ND	71.7	60-140	9.56	35	
Bromomethane	1260	250	ug/kg	2000	ND	63.0	10-200	0.797	35	
2-Butanone (MEK)	ND	500	ug/kg	1000	ND	46.7	10-160	7.82	35	
n-Butylbenzene	939	250	ug/kg	1000	ND	93.9	65-125	2.63	35	
sec-Butylbenzene	956	250	ug/kg	1000	ND	95.6	70-135	3.60	35	
tert-Butylbenzene	986	250	ug/kg	1000	ND	98.6	70-130	1.31	35	
Carbon Disulfide	736	250	ug/kg	1000	ND	73.6	20-120	0.947	35	
Carbon tetrachloride	893	250	ug/kg	1000	ND	89.3	70-140	0.892	35	
Chlorobenzene	1090	100	ug/kg	1000	ND	109	75-125	0.913	35	
Chloroethane	1260	250	ug/kg	2000	ND	63.0	10-200	0.791	35	
Chloroform	989	100	ug/kg	1000	ND	98.9	35-135	3.09	35	
Chloromethane	1450	250	ug/kg	2000	ND	72.5	10-200	2.09	35	
2-Chlorotoluene	984	250	ug/kg	1000	ND	98.4	70-135	1.61	35	
4-Chlorotoluene	992	250	ug/kg	1000	ND	99.2	75-135	0.803	35	
Dibromochloromethane	912	100	ug/kg	1000	ND	91.2	35-135	3.24	35	
1,2-Dibromo-3-chloropropane	509	250	ug/kg	1000	ND	50.9	50-155	13.7	35	
1,2-Dibromoethane (EDB)	889	100	ug/kg	1000	ND	88.9	70-130	5.36	35	
Dibromomethane	913	100	ug/kg	1000	ND	91.3	65-130	2.91	35	
1,2-Dichlorobenzene	998	100	ug/kg	1000	ND	99.8	70-125	4.12	35	
1,3-Dichlorobenzene	1010	100	ug/kg	1000	ND	101	70-125	2.93	35	
1,4-Dichlorobenzene	1070	100	ug/kg	1000	ND	107	70-135	1.85	35	
Dichlorodifluoromethane	1290	250	ug/kg	2000	ND	64.5	10-185	0.772	35	
1,1-Dichloroethane	970	100	ug/kg	1000	ND	97.0	60-140	0.617	35	
1,2-Dichloroethane	901	100	ug/kg	1000	ND	90.1	55-135	5.50	35	
1,1-Dichloroethene	977	250	ug/kg	1000	ND	97.7	55-145	3.32	35	
cis-1,2-Dichloroethene	984	100	ug/kg	1000	ND	98.4	60-125	2.61	35	
trans-1,2-Dichloroethene	1010	100	ug/kg	1000	ND	101	70-145	0.985	35	
1,2-Dichloropropane	893	100	ug/kg	1000	ND	89.3	65-130	4.27	35	
1,3-Dichloropropane	909	100	ug/kg	1000	ND	90.9	65-130	3.57	35	
2,2-Dichloropropane	811	100	ug/kg	1000	ND	81.1	60-135	1.95	35	

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-9596 FAX (858) 505-9689 (480) 785-0043 FAX (480) 785-0851

Law Engineering

4634 S. 36th Place Client Project ID:

70211-0-0150

Sampled: 09/11/01 Received: 09/11/01

Phoenix, AZ 85040 Attention: Jim Clarke

Report Number:

PKI0159

WETHOD RLANKGOODATA

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: P1I1201 Extracted: 09/12/0	<u>01</u>									
Matrix Spike Dup Analyzed: 09/17/01	(P111201-M	SD1)			Source: F	KI0130-0)1 -			
1,1-Dichloropropene	916	100	ug/kg	1000	ND	91.6	65-130	2.90	35	
cis-1,3-Dichloropropene	851	100	ug/kg	1000	ND	85.1	60-125	2.90	35	
trans-1,3-Dichloropropene	811	100	ug/kg	1000	ND	81.1	50-130	2.92	35	
Ethylbenzene	1040	100	ug/kg	1000	ND	104	70-125	1.90	35	
Hexachlorobutadiene	1040	250	ug/kg	1000	ND	104	60-125	9.17	35	
2-Hexanone	554	500	ug/kg	1000	ND	55.4	25-185	14.2	35	
Iodomethane	1130	100	ug/kg	1000	ND	113	30-155	0.889	35	
Isopropylbenzene	1040	100	ug/kg	1000	ND	104	70-135	2.84	35	
p-Isopropyltoluene	953	100	ug/kg	1000	ND	95.3	65-130	4.61	35	
Methylene chloride	957	500	ug/kg	1000	ND	95.7	60-140	1.45	35	
4-Methyl-2-pentanone (MIBK)	630	500	ug/kg	1000	ND	63.0	10-175	11.8	35	
Naphthalene	729	250	ug/kg	1000	ND	72.9	45-155	6.89	35	
n-Propylbenzene	1000	100	ug/kg	1000	ND	100	75-135	2.96	35	
Styrene	1070	100	ug/kg	1000	ND	107	70-130	0.930	35	
1,1,1,2-Tetrachloroethane	984	250	ug/kg	1000	ND	98.4	70-130	2.61	35	
1,1,2,2-Tetrachloroethane	724	100	ug/kg	1000	ND	72.4	60-140	11.8	35	
Tetrachloroethene	1120	100	ug/kg	1000	ND	112	65-130	1.77	35	
Toluene	1030	100	ug/kg	1000	ND	103	70-125	2.87	35	
1,2,3-Trichlorobenzene	848	250	ug/kg	1000	ND	84.8	60-135	6.61	35	
1,2,4-Trichlorobenzene	958	250	ug/kg	1000	ND	95.8	55-135	6.27	35	
1,1,1-Trichloroethane	950	100	ug/kg	1000	ND	95.0	65-135	1.36	35	
1,1,2-Trichloroethane	912	100	ug/kg	1000	ND	91.2	65-130	7.90	35	
Trichloroethene	987	100	ug/kg	1000	ND	98.7	70-130	7.13	35	
Trichlorofluoromethane	1950	250	ug/kg	2000	ND	97.5	10-200	1.02	35	
1,2,3-Trichloropropane	719	500	ug/kg	1000	ND	71.9	60-150	9.54	35	
1,2,4-Trimethylbenzene	1020	100	ug/kg	1000	ND	102	75-130	2.90	35	
1,3,5-Trimethylbenzene	990	100	ug/kg	1000	ND	99.0	70-130	1.01	35	
Vinyl acetate	ND	1200	ug/kg	1000	ND	23.0	25-130	21.0	35	M2
Vinyl chloride	1040	250	ug/kg	2000	ND	52.0	10-200	22.5	35	
Xylenes, Total	3150	300	ug/kg	3000	ND	105	70-130	2.20	35	
Surrogate: Dibromofluoromethane	140		ug/kg	125		112	70-125			
Surrogate: Toluene-d8	161		ug/kg	125		129	50-135			
Surrogate: 4-Bromofluorobenzene	148		ug/kg	125		118	70-130			

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-9596 FAX (858) 505-9689 (480) 785-0043 FAX (480) 785-0851

Law Engineering

4634 S. 36th Place Phoenix, AZ 85040

Attention: Jim Clarke

Client Project ID:

70211-0-0150

Report Number:

PKI0159

Sampled: 09/11/01

Received: 09/11/01

METHOD BEANK OF DATA

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: P1I1912 Extracted: 09/24/0	<u>1</u>									
Blank Analyzed: 09/24/01 (P1I1912-Bl	LK1)									
Acetone	ND	20	ug/l							
Benzene	ND	2.0	ug/l							
Bromobenzene	ND	5.0	ug/l							
Bromochloromethane	. ND	5.0	ug/l							
Bromodichloromethane	ND	2.0	ug/l							
Bromoform	ND	5.0	ug/l							
Bromomethane	ND	5.0	ug/l							
2-Butanone (MEK)	ND	10	ug/l							
n-Butylbenzene	ND	5.0	ug/l							
sec-Butylbenzene	ND	5.0	ug/l							
tert-Butylbenzene	ND	5.0	ug/l							
Carbon Disulfide	ND	5.0	ug/l							
Carbon tetrachloride	ND	5.0	ug/l							
Chlorobenzene	ND	2.0	ug/l							
Chloroethane	ND	5.0	ug/l							
Chloroform	ND ·	2.0	ug/l							
Chloromethane	ND	5.0	ug/l							
2-Chlorotoluene	ND	5.0	ug/l							
4-Chlorotoluene	ND	5.0	ug/l							
Dibromochloromethane	ND	2.0	ug/l							
1,2-Dibromo-3-chloropropane	ND	5.0	ug/l							
1,2-Dibromoethane (EDB)	ND	2.0	ug/l							•
Dibromomethane	ND	2.0	ug/l							
1,2-Dichlorobenzene	ND	2.0	ug/l							
1,3-Dichlorobenzene	ND	2.0	ug/l							
1,4-Dichlorobenzene	ND	2.0	ug/l							
Dichlorodifluoromethane	ND	5.0	ug/l							
1,1-Dichloroethane	ND	2.0	ug/l							
1,2-Dichloroethane	ND	2.0	ug/l							
1,1-Dichloroethene	ND	5.0	ug/l							
cis-1,2-Dichloroethene	ND	2.0	ug/l							
trans-1,2-Dichloroethene	ND	2.0	ug/l							
1,2-Dichloropropane	ND	2.0	ug/l							
1,3-Dichloropropane	ND	2.0	ug/l							

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-9596 FAX (858) 505-9689 (480) 785-0043 FAX (480) 785-0851

Law Engineering

4634 S. 36th Place Phoenix, AZ 85040

Attention: Jim Clarke

Client Project ID:

70211-0-0150

Sampled: 09/11/01

Report Number:

PKI0159

Received: 09/11/01

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: P1I1912 Extracted: 09/24/	<u>01</u>									
Blank Analyzed: 09/24/01 (P1I1912-B	BLK1)									
2,2-Dichloropropane	ND	2.0	ug/l							
1,1-Dichloropropene	ND	2.0	ug/l							
cis-1,3-Dichloropropene	ND	2.0	ug/l							
trans-1,3-Dichloropropene	ND	2.0	ug/l							
Ethylbenzene	ND	2.0	ug/l							
Hexachlorobutadiene	ND	5.0	ug/l							
2-Hexanone	ND	10	ug/l							
Iodomethane	ND	2.0	ug/l							
Isopropylbenzene	ND	2.0	ug/l							
p-Isopropyltoluene	ND	2.0	ug/l							
Methylene chloride	ND	5.0	ug/l							
4-Methyl-2-pentanone (MIBK)	ND	10	ug/l							
Methyl-tert-butyl Ether (MTBE)	ND	5.0	ug/l							
Naphthalene	ND	5.0	ug/l							
n-Propylbenzene	ND	2.0	ug/l							
Styrene	ND	2.0	ug/l							
1,1,1,2-Tetrachloroethane	ND	5.0	ug/l							
1,1,2,2-Tetrachloroethane	ND	2.0	ug/l							
Tetrachloroethene	ND	2.0	ug/l							
Toluene	ND	2.0	ug/l							
1,2,3-Trichlorobenzene	ND	5.0	ug/l							
1,2,4-Trichlorobenzene	ND	5.0	ug/l							
1,1,1-Trichloroethane	ND	2.0	ug/l							
1,1,2-Trichloroethane	ND	2.0	ug/l							
Trichloroethene	ND	2.0	ug/l							
Trichlorofluoromethane	ND	5.0	ug/l							
1,2,3-Trichloropropane	ND	10	ug/l							
1,2,4-Trimethylbenzene	ND	2.0	ug/l							
1,3,5-Trimethylbenzene	ND	2.0	ug/l							
Vinyl acetate	ND	25	ug/l							
Vinyl chloride	ND	5.0	ug/l							
Xylenes, Total	ND	10	ug/l							
Surrogate: Dibromofluoromethane	28.2		ug/l	25.0		113	80-120			
Surrogate: Toluene-d8	26.2		ug/l	25.0		105	80-120			

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-9596 FAX (858) 505-9689 (480) 785-0043 FAX (480) 785-0851

Law Engineering 4634 S. 36th Place

Client Project ID:

70211-0-0150

Sampled: 09/11/01

Phoenix, AZ 85040 Attention: Jim Clarke

Report Number:

PKI0159

Received: 09/11/01

MUTHOD BLANKYOC DATA.

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: P1I1912 Extracted: 09/24/0	01									
Blank Analyzed: 09/24/01 (P111912-B	LK1)									
Surrogate: 4-Bromofluorobenzene	23.0		ug/l	25.0		92.0	80-120			
LCS Analyzed: 09/24/01 (P111912-BS	1)									
Acetone	27.5	20	ug/l	25.0		110	30-200			
Benzene	22.5	2.0	ug/l	25.0		90.0	80-120			
Bromobenzene	24.6	5.0	ug/I	25.0		98.4	80-120			
Bromochloromethane	28.6	5.0	ug/l	25.0		114	80-120			
Bromodichloromethane	27.7	2.0	ug/l	25.0		111	80-130			
Bromoform	30.8	5.0	ug/l	25.0		123	60-140			
Bromomethane	27.8	5.0	ug/i	25.0		111	60-150			
2-Butanone (MEK)	21.1	10	ug/l	25.0		84.4	30-185			
n-Butylbenzene	21.6	5.0	ug/l	25.0		86.4	75-130			
sec-Butylbenzene	21.8	5.0	ug/l	25.0		87.2	80-125			
tert-Butylbenzene	22.3	5.0	ug/l	25.0		89.2	80-120			
Carbon Disulfide	21.8	5.0	ug/l	25.0		87.2	65-120			
Carbon tetrachloride	30.4	5.0	ug/l	25.0		122	75-150			
Chlorobenzene	27.2	2.0	ug/l	25.0		109	80-120			
Chloroethane	23.6	5.0	ug/l	25.0		94.4	80-125			
Chloroform	25.9	2.0	ug/l	25.0		104	80-120			
Chloromethane	19.8	5.0	ug/l	25.0		79.2	60-125			
2-Chlorotoluene	22.5	5.0	ug/l	25.0		90.0	80-120			
4-Chlorotoluene	22.6	5.0	ug/l	25.0		90.4	80-120			
Dibromochloromethane	31.1	2.0	ug/l	25.0		124	70-150			
1,2-Dibromo-3-chloropropane	24.7	5.0	ug/l	25.0		98.8	50-145			
1,2-Dibromoethane (EDB)	26.0	2.0	ug/l	25.0		104	75-120			
Dibromomethane	26.5	2.0	ug/l	25.0		106	80-120			
1,2-Dichlorobenzene	24.4	2.0	ug/l	25.0		97.6	80-120			
1,3-Dichlorobenzene	24.0	2.0	ug/l	25.0		96.0	80-120			
1,4-Dichlorobenzene	25.1	2.0	ug/l	25.0		100	80-120			
Dichlorodifluoromethane	22.8	5.0	ug/l	25.0		91.2	25-140			
1,1-Dichloroethane	23.9	2.0	ug/I	25.0		95.6	80-120			
1,2-Dichloroethane	25.0	2.0	ug/l	25.0		100	80-120			
1,1-Dichloroethene	25.6	5.0	ug/l	25.0		102	80-120			
cis-1,2-Dichloroethene	25.3	2.0	ug/l	25.0		101	80-120			
trans-1,2-Dichloroethene	24.9	2.0	ug/l	25.0		99.6	80-120			
1,2-Dichloropropane	23.3	2.0	ug/l	25.0		93.2	80-120			
1,3-Dichloropropane	24.3	2.0	ug/l	25.0		97.2	80-120			

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-9596 FAX (858) 505-9689 (480) 785-0043 FAX (480) 785-0851

Law Engineering 4634 S. 36th Place Phoenix, AZ 85040

Client Project ID:

70211-0-0150

Sampled: 09/11/01 Received: 09/11/01

Attention: Jim Clarke

Report Number:

PKI0159

		Reporting		Spike	Source		%REC		RPD ·	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: P1I1912 Extracted: 09/24/0	<u>1</u>									
LCS Analyzed: 09/24/01 (P1I1912-BS1)									
2,2-Dichloropropane	31.3	2.0	ug/l	25.0		125	75-135			
1,1-Dichloropropene	23.3	2.0	ug/l	25.0		93.2	80-120			
cis-1,3-Dichloropropene	24.7	2.0	ug/l	25.0		98.8	80-120			
trans-1,3-Dichloropropene	24.4	2.0	ug/l	25.0		97.6	80-120			
Ethylbenzene	25.4	2.0	ug/l	25.0		102	80-120			
Hexachlorobutadiene	25.1	5.0	ug/l	25.0		100	60-145			
2-Hexanone	22. 7	10	ug/l	25.0		90.8	50-170			
Iodomethane	30.2	2.0	ug/l	25.0		121	40-155			
Isopropylbenzene	25.8	2.0	ug/l	25.0		103	80-120			
p-Isopropyltoluene	21.7	2.0	ug/l	25.0		86.8	80-120			
Methylene chloride	23.8	5.0	ug/l	25.0		95.2	80-120			
4-Methyl-2-pentanone (MIBK)	23.0	10	ug/l	25.0		92.0	70-140			
Methyl-tert-butyl Ether (MTBE)	23.9	5.0	ug/l	25.0		95.6	75-135			
Naphthalene	23.8	5.0	ug/l	25.0		95.2	70-130			
n-Propylbenzene	22.6	2.0	ug/l	25.0		90.4	80-120			
Styrene	26.0	2.0	ug/l	25.0		104	80-120			
1,1,1,2-Tetrachloroethane	30.6	5.0	ug/l	25.0		122	65-150			
1,1,2,2-Tetrachloroethane	23.4	2.0	ug/l	25.0		93.6	70-130			
Tetrachloroethene	28.4	2.0	ug/l	25.0		114	80-125			
Toluene	24.7	2.0	ug/l	25.0		98.8	80-120			
1,2,3-Trichlorobenzene	23.4	5.0	ug/l	25.0		93.6	75-125			
1,2,4-Trichlorobenzene	23.2	5.0	ug/l	25.0		92.8	80-120			
1,1,1-Trichloroethane	28.0	2.0	ug/l	25.0		112	80-120			
1,1,2-Trichloroethane	26.2	2.0	ug/l	25.0		105	80-120			
Trichloroethene	25.6	2.0	ug/l	25.0		102	80-120			
Trichlorofluoromethane	31.6	5.0	ug/l	25.0		126	75-150			
1,2,3-Trichloropropane	21.6	10	ug/l	25.0		86.4	65-135			
1,2,4-Trimethylbenzene	23.5	2.0	ug/l	25.0		94.0	80-120			
1,3,5-Trimethylbenzene	22.4	2.0	ug/l	25.0		89.6	80-120			
Vinyl acetate	ND	25	ug/l	25.0		90.4	40-120			
Vinyl chloride	24.3	5.0	ug/l	25.0		97.2	80-120			
Xylenes, Total	76.5	10	ug/l	75.0		102	80-120			
Surrogate: Dibromofluoromethane	28.4		ug/l	25.0		114	80-120			
Surrogate: Toluene-d8	26.8		ug/l	25.0		107	80-120			
Surrogate: 4-Bromofluorobenzene	23.6		ug/l	25.0		94.4	80-120			

2852 Alton Ave., Irvine, CA 92606 (949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-9596 FAX (858) 505-9689 (480) 785-0043 FAX (480) 785-0851

Law Engineering

4634 S. 36th Place Phoenix, AZ 85040

Attention: Jim Clarke

Client Project ID:

70211-0-0150

Report Number:

PKI0159

Sampled: 09/11/01

Received: 09/11/01

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: P111912 Extracted: 09/24/0	1									-
LCS Dup Analyzed: 09/24/01 (P111912										
Acetone	34.1	20	ug/l	25.0		136	30-200	21.4	20	R6
Benzene	22.4	2.0	ug/l	25.0		89.6	80-120	0.445	20	Ro
Bromobenzene	25.2	5.0	ug/l	25.0		101	80-120	2.41	20	
Bromochloromethane	27.5	5.0	ug/l	25.0		110	80-120	3.92	20	
Bromodichloromethane	27.1	2.0	ug/l	25.0		108	80-130	2.19	20	
Bromoform	30.7	5.0	ug/i	25.0		123	60-140	0.325	20	
Bromomethane	27.4	5.0	ug/l	25.0		110	60-150	1.45	20	
2-Butanone (MEK)	26.7	10	ug/l	25.0		107	30-185	23.4	20	R6
n-Butylbenzene	21.3	5.0	ug/l	25.0		85.2	75-130	1.40	20	
sec-Butylbenzene	21.9	5.0	ug/l	25.0		87.6	80-125	0.458	20	
tert-Butylbenzene	22.6	5.0	ug/l	25.0		90.4	80-120	1.34	20	
Carbon Disulfide	21.0	5.0	ug/l	25.0		84.0	65-120	3.74	20	
Carbon tetrachloride	30.0	5.0	ug/l	25.0		120	75-150	1.32	20	
Chlorobenzene	26.6	2.0	ug/l	25.0		106	80-120	2.23	20	
Chloroethane	23.0	5.0	ug/l	25.0		92.0	80-125	2.58	20	
Chloroform	25.6	2.0	ug/l	25.0		102	80-120	1.17	20	
Chloromethane	19.1	5.0	ug/l	25.0		76.4	60-125	3.60	20	
2-Chlorotoluene	22.6	5.0	ug/l	25.0		90.4	80-120	0.443	20	
4-Chlorotoluene	22.9	5.0	ug/l	25.0		91.6	80-120	1.32	20	
Dibromochloromethane	31.8	2.0	ug/l	25.0		127	70-150	2.23	20	
1,2-Dibromo-3-chloropropane	26.3	5.0	ug/l	25.0		105	50-145	6.27	20	
1,2-Dibromoethane (EDB)	26.6	2.0	ug/l	25.0		106	75-120	2.28	20	
Dibromomethane	26.9	2.0	ug/l	25.0		108	80-120	1.50	20	
1,2-Dichlorobenzene	24.6	2.0	ug/l	25.0		98.4	80-120	0.816	20	
1,3-Dichlorobenzene	24.4	2.0	ug/l	25.0		97.6	80-120	1.65	20	
1,4-Dichlorobenzene	25.0	2.0	ug/l	25.0		100	80-120	0.399	20	
Dichlorodifluoromethane	22.9	5.0	ug/l	25.0		91.6	25-140	0.438	20	
1,1-Dichloroethane	23.6	2.0	ug/l	25.0		94.4	80-120	1.26	20	
1,2-Dichloroethane	25.2	2.0	ug/l	25.0		101	80-120	0.797	20	
1,1-Dichloroethene	25.5	5.0	ug/l	25.0		102	80-120	0.391	20	
cis-1,2-Dichloroethene	24.8	2.0	ug/l	25.0		99.2	80-120	2.00	20	
trans-1,2-Dichloroethene	24.7	2.0	ug/l	25.0		98.8	80-120	0.806	20	
1,2-Dichloropropane	22.9	2.0	ug/l	25.0		91.6	80-120	1.73	20	
1,3-Dichloropropane	24.6	2.0	ug/l	25.0		98.4	80-120	1.23	20	
2,2-Dichloropropane	30.5	2.0	ug/l	25.0		122	75-135	2.59	20	

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-9596 FAX (858) 505-9689 (480) 785-0043 FAX (480) 785-0851

Law Engineering

4634 S. 36th Place

Phoenix, AZ 85040 Attention: Jim Clarke Client Project ID:

70211-0-0150

Report Number:

PKI0159

Sampled: 09/11/01

Received: 09/11/01

METHOD BLANKADE DATA

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: P1I1912 Extracted: 09/24/0	<u>)1</u>									
LCS Dup Analyzed: 09/24/01 (P1I191:	2-BSD1)									
1,1-Dichloropropene	23.0	2.0	ug/l	25.0		92.0	80-120	1.30	20	
cis-1,3-Dichloropropene	24.3	2.0	ug/l	25.0		97.2	80-120	1.63	20	
trans-1,3-Dichloropropene	24.8	2.0	ug/l	25.0		99.2	80-120	1.63	20	
Ethylbenzene	25.1	2.0	ug/l	25.0		100	80-120	1.19	20	
Hexachlorobutadiene	25.3	5.0	ug/l	25.0		101	60-145	0.794	20	
2-Hexanone	27.5	10	ug/l	25.0		110	50-170	19.1	20	
lodomethane	29.6	2.0	ug/l	25.0		118	40-155	2.01	20	
Isopropylbenzene	25.4	2.0	ug/l	25.0		102	80-120	1.56	20	
p-lsopropyltoluene	21.7	2.0	ug/l	25.0		86.8	80-120	0.00	20	
Methylene chloride	23.4	5.0	ug/l	25.0		93.6	80-120	1.69	20	
4-Methyl-2-pentanone (MIBK)	23.9	10	ug/l	25.0		95.6	70-140	3.84	20	
Methyl-tert-butyl Ether (MTBE)	24.6	5.0	ug/l	25.0		98.4	75-135	2.89	20	
Naphthalene	24.9	5.0	ug/l	25.0		99.6	70-130	4.52	20	
n-Propylbenzene	22.7	2.0	ug/l	25.0		90.8	80-120	0.442	20	•
Styrene	25.9	2.0	ug/l	25.0		104	80-120	0.385	20	
1,1,1,2-Tetrachloroethane	29.8	5.0	ug/l	25.0		119	65-150	2.65	20	
1,1,2,2-Tetrachloroethane	24.2	2.0	ug/l	25.0		96.8	70-130	3.36	20	
Tetrachloroethene	27.3	2.0	ug/l	25.0		109	80-125	3.95	20	
Toluene	24.8	2.0	ug/l	25.0		99.2	80-120	0.404	20	
1,2,3-Trichlorobenzene	23.8	5.0	ug/l	.25.0		95.2	75-125	1.69	20	
1,2,4-Trichlorobenzene	23.4	5.0	ug/l	25.0		93.6	80-120	0.858	20	
1,1,1-Trichloroethane	27.3	2.0	ug/l	25.0		109	80-120	2.53	20	
1,1,2-Trichloroethane	26.3	2.0	ug/l	25.0		105	80-120	0.381	20	
Trichloroethene	24.6	2.0	ug/l	25.0		98.4	80-120	3.98	20	
Trichlorofluoromethane	30.6	5.0	ug/l	25.0		122	75-150	3.22	20	
1,2,3-Trichloropropane	22.7	10	ug/l	25.0		90.8	65-135	4.97	20	
1,2,4-Trimethylbenzene	23.6	2.0	ug/l	25.0		94.4	80-120	0.425	20	
1,3,5-Trimethylbenzene	22.6	2.0	ug/l	25.0		90.4	80-120	0.889	20	
Vinyl acetate	ND	25	ug/l	25.0		92.8	40-120	2.62	20	
Vinyl chloride	23.7	5.0	ug/l	25.0		94.8	80-120	2.50	20	
Xylenes, Total	76.1	10	ug/l	75.0		101	80-120	0.524	20	
Surrogate: Dibromofluoromethane	28.4		ug/l	25.0		114	80-120			
Surrogate: Toluene-d8	26.4		ug/l	25.0		106	80-120			
Surrogate: 4-Bromofluorobenzene	24.1		ug/l	25.0		96.4	80-120			

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-9596 FAX (858) 505-9689 (480) 785-0043 FAX (480) 785-0851

Law Engineering 4634 S. 36th Place Phoenix, AZ 85040

Attention: Jim Clarke

Client Project ID:

70211-0-0150

Report Number:

PKI0159

Sampled: 09/11/01

Received: 09/11/01

-NETHOD BLANKOC DATA:

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: P1I1912 Extracted: 09/24	4/01									
Matrix Spike Analyzed: 09/24/01 (P	111912-MS1)				Source: P	KI0173-0)1			
Acetone	ND	20	ug/l	25.0	ND		5-200			M2
Benzene	26.5	2.0	ug/l	25.0	ND	106	80-120			
Bromobenzene	26.5	5.0	ug/l	25.0	ND	106	80-120			
Bromochloromethane	26.1	5.0	ug/l	25.0	ND	104	60-135			
Bromodichloromethane	28.6	2.0	ug/l	25.0	ND	114	80-120			
Bromoform	18.3	5.0	ug/l	25.0	ND	73.2	40-140			
Bromomethane	33.6	5.0	ug/l	25.0	ND	134	25-165			
2-Butanone (MEK)	ND	10	ug/l	25.0	ND		10-160			M2
n-Butylbenzene	28.2	5.0	ug/l	25.0	ND	113	75-135			
sec-Butylbenzene	27.3	5.0	ug/l	25.0	ND	109	80-135			
tert-Butylbenzene	27.7	5.0	ug/l	25.0	ND	111	80-125			
Carbon Disulfide	24.1	5.0	ug/l	25.0	ND	96.4	20-120			
Carbon tetrachloride	36.7	5.0	ug/l	25.0	ND	147	80-145			M1
Chlorobenzene	30.6	2.0	ug/l	25.0	ND	122	80-120			M1
Chloroethane	27.6	5.0	ug/l	25.0	ND	110	30-150			
Chloroform	29.9	2.0	ug/l	25.0	ND	120	80-125			
Chloromethane	23.5	5.0	ug/l	25.0	ND	94.0	15-140			
2-Chlorotoluene	26.7	5.0	ug/l	25.0	ND	107	80-125			
4-Chlorotoluene	26.8	5.0	ug/l	25.0	ND	107	80-125			
Dibromochloromethane	26.2	2.0	ug/l	25.0	ND	105	75-135			
1,2-Dibromo-3-chloropropane	11.0	5.0	ug/l	25.0	ND	44.0	25-185			
1,2-Dibromoethane (EDB)	19.0	2.0	ug/l	25.0	ND	76.0	45-145			
Dibromomethane	20.8	2.0	ug/l	25.0	ND	83.2	55-140			
1,2-Dichlorobenzene	25.3	2.0	ug/l	25.0	ND	101	80-120			
1,3-Dichlorobenzene	26.6	2.0	ug/l	25.0	ND	106	80-120			
1,4-Dichlorobenzene	27.1	2.0	ug/l	25.0	ND	108	80-120			
Dichlorodifluoromethane	34.0	5.0	ug/l	25.0	ND	136	25-145			
1,1-Dichloroethane	27.8	2.0	ug/l	25.0	ND	111	75-120			
1,2-Dichloroethane	22.3	2.0	ug/l	25.0	ND	89.2	60-135			
1,1-Dichloroethene	30.6	5.0	ug/l	25.0	ND	122	55-120			Ml
cis-1,2-Dichloroethene	28.2	2.0	ug/l	25.0	ND	113	75-120			
trans-1,2-Dichloroethene	30.0	2.0	ug/l	25.0	ND	120	65-120			
1,2-Dichloropropane	25.3	2.0	ug/l	25.0	ND	101	80-125			
1,3-Dichloropropane	20.4	2.0	ug/l	25.0	ND	81.6	55-140			
2,2-Dichloropropane	43.2	2.0	ug/l	25.0	ND	173	45-165			M1

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-9596 FAX (858) 505-9689 (480) 785-0043 FAX (480) 785-0851

Law Engineering 4634 S. 36th Place

Client Project ID:

70211-0-0150

Sampled: 09/11/01

Phoenix, AZ 85040 Attention: Jim Clarke

Report Number:

PKI0159

Received: 09/11/01

METEOD BLANKQC DATA

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: P1I1912 Extracted: 09/2	4/01									
Matrix Spike Analyzed: 09/24/01 (P111912-MS1)				Source: F	KI0173-0	1 -			
1,1-Dichloropropene	28.8	2.0	ug/l	25.0	ND	115	80-120			
cis-1,3-Dichloropropene	24.9	2.0	ug/l	25.0	ND	99.6	80-120			
trans-1,3-Dichloropropene	22.0	2.0	ug/l	25.0	ND	88.0	70-120			
Ethylbenzene	30.6	2.0	ug/l	25.0	ND	122	80-120			M1
Hexachlorobutadiene	33.0	5.0	ug/l	25.0	ND	132	80-135			
2-Hexanone	10.0	10	ug/l	25.0	ND	40.0	25-185			
Iodomethane	34.7	2.0	ug/l	25.0	ND.	139	30-155			
Isopropylbenzene	30.9	2.0	ug/l	25.0	ND	124	80-125			
p-Isopropyltoluene	27.5	2.0	ug/l	25.0	ND	110	80-125			
Methylene chloride	24.5	5.0	ug/l	25.0	ND	98.0	55-125			
4-Methyl-2-pentanone (MIBK)	12.3	10	ug/l	25.0	ND	49.2	10-175			
Methyl-tert-butyl Ether (MTBE)	25.0	5.0	ug/l	25.0	ND	100	55-135			
Naphthalene	13.2	5.0	ug/l	25.0	ND	52.8	15-160			
n-Propylbenzene	27.8	2.0	ug/l	25.0	ND	111	80-130			
Styrene	29.2	2.0	ug/l	25.0	ND	117	60-135			
1,1,1,2-Tetrachloroethane	33.1	5.0	ug/l	25.0	ND	132	80-135			
1,1,2,2-Tetrachloroethane	15.3	2.0	ug/l	25.0	ND	61.2	35-150			
Tetrachloroethene	34.3	2.0	ug/l	25.0	ND	137	80-120			Ml
Toluene	29.5	2.0	ug/l	25.0	ND	118	80-120			
1,2,3-Trichlorobenzene	18.1	5.0	ug/l	25.0	ND	72.4	45-145			
1,2,4-Trichlorobenzene	21.7	5.0	ug/l	25.0	ND	86.8	65-130			
1,1,1-Trichloroethane	34.0	2.0	ug/l	25.0	ND	136	80-120			Ml
1,1,2-Trichloroethane	21.2	2.0	ug/l	25.0	ND	84.8	55-145			
Trichloroethene	29.8	2.0	ug/l	25.0	ND	119	80-120			
Trichlorofluoromethane	38.0	5.0	ug/l	25.0	ND	152	70-145			Ml
1,2,3-Trichloropropane	13.0	10	ug/l	25.0	ND	52.0	20-160			
1,2,4-Trimethylbenzene	28.8	2.0	ug/l	25.0	ND	115	70-135			
1,3,5-Trimethylbenzene	27.4	2.0	ug/l	25.0	ND	110	80-125			
Vinyl acetate	ND	25	ug/l	25.0	ND ·	64.0	25-130			
Vinyl chloride	33.7	5.0	ug/l	25.0	ND	135	25-135			
Xylenes, Total	90.7	10	ug/l	75.0	ND	121	80-120			Ml
Surrogate: Dibromofluoromethane	24.5		ug/l	25.0		98.0	80-120			
Surrogate: Toluene-d8	26.3		ug/l	25.0		105	80-120			
Surrogate: 4-Bromofluorobenzene	23.0		ug/l	25.0		92.0	80-120			

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-9596 FAX (858) 505-9689 (480) 785-0043 FAX (480) 785-0851

Law Engineering

4634 S. 36th Place Phoenix, AZ 85040

Attention: Jim Clarke

Client Project ID:

70211-0-0150

Report Number:

PKI0159

Sampled: 09/11/01

Received: 09/11/01

Matrix Spike Dup Analyzed: 09/24/01 PIII912-MSD1)	Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC	RPD	RPD	Data
Matrix Spike Dup Anniyzed: 09/24/01 PIII1912-MSDI Caccone ND 20 ug/l 25.0 ND 0.2 80-120 3.45 20 M2 Benzene 25.6 2.0 ug/l 25.0 ND 103 80-120 3.45 20 M2 Bromochenzene 25.8 2.0 ug/l 25.0 ND 103 80-120 3.65 20 M2 Bromochenzene 25.6 2.0 ug/l 25.0 ND 103 80-120 26.8 20 M2 Bromochenzene 25.6 2.0 ug/l 25.0 ND 103 80-120 26.9 20 M2 M2 M2 M2 M2 M2 M2	•		Zimit	Omis	Level	Nesun	70 KEC	Limits	KPD	Limit	Qualifiers
Penzene ND 20			an.4)								
Benzene 25.6 2.0 ug/l 25.0 ND 102 80.120 3.45 20			-	,,			PK10173-0				
Bromobenzene 25.8 5.0 ug/l 25.0 ND 103 80-120 2.68 20				-						20	M2
Bromochloromethane 22.3 5.0 ug/l 25.0 ND 89.2 60-135 15.7 20	_			_					3.45	20	
Bromodichloromethane 25.6 2.0 ug/l 25.0 ND 102 80-120 11.1 20 20 20 20 20 20 20 2				•					2.68	20	
Bromoferm 14.1 5.0 ug/l 25.0 ND 56.4 40.140 25.9 20 R4											
Bromomethane 32.7 5.0 ug/l 25.0 ND 131 25.165 2.71 20 M2											
2-Butanone (MEK) ND 10 ug/l 25.0 ND 10-160 20 M2											R4
No. No.				•			131		2.71	-	
Second	` ,			-						20	M2
Tert-Buylbenzene 19.3 5.0 19.6 12.5 10.0 11.7 18.0 12.5 13.0 12.0 13.	•			_							
Carbon Disulfide 23.1 5.0 ug/l 25.0 ND 92.4 20-120 4.24 20	•			-					5.35	20	
Carbon tetrachloride 36.3 5.0 ug/l 25.0 ND 145 80-145 1.10 20	•			-							
Chlorobenzene 30.4 2.0 ug/l 25.0 ND 122 80-120 0.656 20 M1				_				20-120	4.24	20	
Chloroethane 28.3 5.0 ug/l 25.0 ND 113 30.150 2.50 20 Chloroform 28.7 2.0 ug/l 25.0 ND 115 80.125 4.10 20 Chloromethane 22.4 5.0 ug/l 25.0 ND 115 80.125 4.10 20 Chloromethane 22.4 5.0 ug/l 25.0 ND 112 80.125 4.75 20 Chlorotoluene 28.0 5.0 ug/l 25.0 ND 112 80.125 3.30 20 Chlorotoluene 27.7 5.0 ug/l 25.0 ND 111 80.125 3.30 20 Chlorotoluene 21.9 2.0 ug/l 25.0 ND 87.6 75.135 17.9 20 R4 Chlorotoluene 21.9 2.0 ug/l 25.0 ND 87.6 75.135 31.5 20 R4 R4 R4 R4 R4 R4 R4 R				_					1.10	20	
Chloroform 28.7 2.0 ug/l 25.0 ND 115 80-125 4.10 20				-					0.656		M1
Chloromethane 22.4 5.0 ug/l 25.0 ND 89.6 15-140 4.79 20				_					2.50	20	
2-Chlorotoluene 28.0 5.0 ug/l 25.0 ND 112 80-125 4.75 20				_				80-125	4.10	20	
4-Chlorotoluene 27.7 5.0 ug/l 25.0 ND 111 80-125 3.30 20 Dibromochloromethane 21.9 2.0 ug/l 25.0 ND 87.6 75-135 17.9 20 1,2-Dibromo-3-chloropropane 8.01 5.0 ug/l 25.0 ND 87.6 75-135 17.9 20 1,2-Dibromoethane (EDB) 16.1 2.0 ug/l 25.0 ND 87.6 75-135 17.9 20 Dibromoethane (EDB) 16.1 2.0 ug/l 25.0 ND 64.4 45-145 16.5 20 Dibromomethane 17.5 2.0 ug/l 25.0 ND 70.0 55-140 17.2 20 1,2-Dichlorobenzene 23.2 2.0 ug/l 25.0 ND 92.8 80-120 8.66 20 1,3-Dichlorobenzene 26.6 2.0 ug/l 25.0 ND 106 80-120 0.00 20 1,4-Dichlorobenzene 26.7 2.0 ug/l 25.0 ND 106 80-120 0.00 20 1,4-Dichlorodifluoromethane 33.6 5.0 ug/l 25.0 ND 134 25-145 1.18 20 1,1-Dichlorothane 27.6 2.0 ug/l 25.0 ND 110 75-120 0.722 20 1,2-Dichlorothane 19.0 2.0 ug/l 25.0 ND 110 75-120 0.722 20 1,2-Dichlorothane 27.0 2.0 ug/l 25.0 ND 106 80-120 1.32 20 M1 1,1-Dichlorothane 27.6 2.0 ug/l 25.0 ND 110 75-120 0.722 20 1,2-Dichlorothane 27.0 2.0 ug/l 25.0 ND 110 75-120 0.722 20 1,2-Dichlorothane 27.0 2.0 ug/l 25.0 ND 108 75-120 1.32 20 M1 cis-1,2-Dichloroethene 27.0 2.0 ug/l 25.0 ND 108 75-120 4.35 20 1,1-Dichlorothene 29.2 2.0 ug/l 25.0 ND 117 65-120 2.70 20 1,2-Dichloropropane 23.2 2.0 ug/l 25.0 ND 117 65-120 2.70 20 1,3-Dichloropropane 17.5 2.0 ug/l 25.0 ND 92.8 80-125 8.66 20 1,3-Dichloropropane 17.5 2.0 ug/l 25.0 ND 70.0 55-140 15.3 20	•			•			89.6	15-140	4.79	20	
Dibromochloromethane 21.9 2.0 ug/l 25.0 ND 87.6 75-135 17.9 20 1,2-Dibromo-3-chloropropane 8.01 5.0 ug/l 25.0 ND 32.0 25-185 31.5 20 R4 1,2-Dibromoethane (EDB) 16.1 2.0 ug/l 25.0 ND 64.4 45-145 16.5 20 1,2-Dibromoethane 17.5 2.0 ug/l 25.0 ND 70.0 55-140 17.2 20 1,2-Dichlorobenzene 23.2 2.0 ug/l 25.0 ND 92.8 80-120 8.66 20 1,3-Dichlorobenzene 26.6 2.0 ug/l 25.0 ND 106 80-120 0.00 20 1,4-Dichlorobenzene 26.7 2.0 ug/l 25.0 ND 107 80-120 1.49 20 20 1,4-Dichloroethane 27.6 2.0 ug/l 25.0 ND 110 75-120 0.722 20 1,2-Dichloroethane 19.0 2.0 ug/l 25.0 ND 110 75-120 0.722 20 1,2-Dichloroethane 19.0 2.0 ug/l 25.0 ND 121 55-120 1.32 20 M1 25-1,2-Dichloroethene 27.0 2.0 ug/l 25.0 ND 108 75-120 4.35 20 1,2-Dichloroethene 29.2 2.0 ug/l 25.0 ND 117 65-120 2.70 20 1,2-Dichloroethene 29.2 2.0 ug/l 25.0 ND 117 65-120 2.70 20 1,2-Dichloropropane 23.2 2.0 ug/l 25.0 ND 117 65-120 2.70 20 1,3-Dichloropropane 23.2 2.0 ug/l 25.0 ND 117 65-120 2.70 20 1,3-Dichloropropane 17.5 2.0 ug/l 25.0 ND 92.8 80-125 8.66 20 1,3-Dichloropropane 17.5 2.0 ug/l 25.0 ND 70.0 55-140 15.3 20 1.3-Dichloropropane 17.5 2.0 ug/l 25.0 ND 70.0 55-140 15.3 20 1.3-Dichloropropane 17.5 2.0 ug/l 25.0 ND 70.0 55-140 15.3 20 13.0 15.3 20 13.0 15.3 20 13.0 15.3 20 13.0 15.3 20 13.0 15.0 15.3 20 13.0 15.3 20 13.0 15.3 20 13.0 15.0 15.3 20 13.0 15.3 20 13.0 15.3 20 13.0 15.0 15.3 20 15.0 15.3 20 15.0 15.3 20 15.0 15.0 15.3 20 15.0 15.3 20 15.0 15.3 20 15.0 15.0 15.3 20 15.0 15.3 20 15.0 15.0 15.0 15.3 20 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0				•		ND	112	80-125	4.75	20	
1,2-Dibromo-3-chloropropane 8.01 5.0 ug/l 25.0 ND 32.0 25-185 31.5 20 R4 1,2-Dibromoethane (EDB) 16.1 2.0 ug/l 25.0 ND 64.4 45-145 16.5 20 Dibromomethane 17.5 2.0 ug/l 25.0 ND 70.0 55-140 17.2 20 1,2-Dichlorobenzene 23.2 2.0 ug/l 25.0 ND 92.8 80-120 8.66 20 1,3-Dichlorobenzene 26.6 2.0 ug/l 25.0 ND 106 80-120 0.00 20 1,4-Dichlorobenzene 26.7 2.0 ug/l 25.0 ND 107 80-120 1.49 20 1,4-Dichloromethane 33.6 5.0 ug/l 25.0 ND 134 25-145 1.18 20 1,1-Dichloroethane 27.6 2.0 ug/l 25.0 ND 110 75-120 0.722 20 1,2-Dichloroethane 19.0 2.0 ug/l 25.0 ND 76.0 60-135 16.0 20 1,1-Dichloroethene 27.0 2.0 ug/l 25.0 ND 121 55-120 1.32 20 M1 cis-1,2-Dichloroethene 27.0 2.0 ug/l 25.0 ND 108 75-120 4.35 20 trans-1,2-Dichloroethene 29.2 2.0 ug/l 25.0 ND 117 65-120 2.70 20 1,2-Dichloropropane 23.2 2.0 ug/l 25.0 ND 92.8 80-125 8.66 20 1,3-Dichloropropane 11.6 20.0 ug/l 25.0 ND 70.0 55-140 15.3 20 1,3-Dichloropropane 11.5 2.0 ug/l 25.0 ND 70.0 55-140 15.3 20 1,3-Dichloropropane 11.5 2.0 ug/l 25.0 ND 70.0 55-140 15.3 20 1,3-Dichloropropane 11.5 2.0 ug/l 25.0 ND 70.0 55-140 15.3 20 1,3-Dichloropropane 11.5 2.0 ug/l 25.0 ND 70.0 55-140 15.3 20 1,3-Dichloropropane 11.5 2.0 ug/l 25.0 ND 70.0 55-140 15.3 20 1,3-Dichloropropane 11.5 2.0 ug/l 25.0 ND 70.0 55-140 15.3 20 1,3-Dichloropropane 11.5 2.0 ug/l 25.0 ND 70.0 55-140 15.3 20 1,3-Dichloropropane 11.5 2.0 ug/l 25.0 ND 70.0 55-140 15.3 20 1,3-Dichloropropane 11.5 2.0 ug/l 25.0 ND 70.0 55-140 15.3 20 1,3-Dichloropropane 11.5 2.0 ug/l 25.0 ND 70.0 55-140 15.3 20 1,3-Dichlor				•			111	80-125	3.30	20	
1,2-Dibromoethane (EDB) 16.1 2.0 ug/l 25.0 ND 64.4 45-145 16.5 20				_			87.6	75-135	17.9	20	
Dibromomethane				-			32.0	25-185	31.5	20	R4
1,2-Dichlorobenzene 23.2 2.0 ug/l 25.0 ND 92.8 80-120 8.66 20 1,3-Dichlorobenzene 26.6 2.0 ug/l 25.0 ND 106 80-120 0.00 20 1,4-Dichlorobenzene 26.7 2.0 ug/l 25.0 ND 107 80-120 1.49 20 Dichlorodifluoromethane 33.6 5.0 ug/l 25.0 ND 134 25-145 1.18 20 1,1-Dichloroethane 27.6 2.0 ug/l 25.0 ND 110 75-120 0.722 20 1,1-Dichloroethane 19.0 2.0 ug/l 25.0 ND 76.0 60-135 16.0 20 1,1-Dichloroethene 30.2 5.0 ug/l 25.0 ND 121 55-120 1.32 20 M1 cis-1,2-Dichloroethene 27.0 2.0 ug/l 25.0 ND 108 75-120 4.35 20 1,2-Dichloropropane 23.2 2.0 ug/l 25.0 ND 70.0 <t< td=""><td>• • • • • • • • • • • • • • • • • • • •</td><td></td><td></td><td>•</td><td></td><td></td><td>64.4</td><td>45-145</td><td>16.5</td><td>20</td><td></td></t<>	• • • • • • • • • • • • • • • • • • • •			•			64.4	45-145	16.5	20	
1,3-Dichlorobenzene 26.6 2.0 ug/l 25.0 ND 106 80-120 0.00 20 1,4-Dichlorobenzene 26.7 2.0 ug/l 25.0 ND 107 80-120 1.49 20 Dichlorodifluoromethane 33.6 5.0 ug/l 25.0 ND 134 25-145 1.18 20 1,1-Dichloroethane 27.6 2.0 ug/l 25.0 ND 110 75-120 0.722 20 1,2-Dichloroethane 19.0 2.0 ug/l 25.0 ND 76.0 60-135 16.0 20 1,1-Dichloroethene 30.2 5.0 ug/l 25.0 ND 121 55-120 1.32 20 M1 cis-1,2-Dichloroethene 27.0 2.0 ug/l 25.0 ND 108 75-120 4.35 20 1,2-Dichloropropane 23.2 2.0 ug/l 25.0 ND 117 65-120 2.70 20 1,3-Dichloropropane 17.5 2.0 ug/l 25.0 ND 70.0 <td< td=""><td></td><td></td><td></td><td>•</td><td></td><td>ND</td><td>70.0</td><td>55-140</td><td>17.2</td><td>20</td><td></td></td<>				•		ND	70.0	55-140	17.2	20	
1,4-Dichlorobenzene 26.7 2.0 ug/l 25.0 ND 107 80-120 1.49 20 Dichlorodifluoromethane 33.6 5.0 ug/l 25.0 ND 134 25-145 1.18 20 1,1-Dichloroethane 27.6 2.0 ug/l 25.0 ND 110 75-120 0.722 20 1,2-Dichloroethane 19.0 2.0 ug/l 25.0 ND 76.0 60-135 16.0 20 1,1-Dichloroethene 30.2 5.0 ug/l 25.0 ND 121 55-120 1.32 20 M1 cis-1,2-Dichloroethene 27.0 2.0 ug/l 25.0 ND 108 75-120 4.35 20 trans-1,2-Dichloroethene 29.2 2.0 ug/l 25.0 ND 117 65-120 2.70 20 1,2-Dichloropropane 23.2 2.0 ug/l 25.0 ND 92.8 80-125 8.66 20 1,3-Dichloropropane 17.5 2.0 ug/l 25.0 ND 70.0	•			_			92.8	80-120	8.66	20	
Dichlorodifluoromethane 33.6 5.0 ug/l 25.0 ND 134 25-145 1.18 20 1,1-Dichloroethane 27.6 2.0 ug/l 25.0 ND 110 75-120 0.722 20 1,2-Dichloroethane 19.0 2.0 ug/l 25.0 ND 76.0 60-135 16.0 20 1,1-Dichloroethene 30.2 5.0 ug/l 25.0 ND 121 55-120 1.32 20 M1 cis-1,2-Dichloroethene 27.0 2.0 ug/l 25.0 ND 108 75-120 4.35 20 trans-1,2-Dichloroethene 29.2 2.0 ug/l 25.0 ND 117 65-120 2.70 20 1,2-Dichloropropane 23.2 2.0 ug/l 25.0 ND 70.0 55-140 15.3 20 1,3-Dichloropropane 17.5 2.0 ug/l 25.0 ND 70.0 55-140 15.3 20						ND	106	80-120	0.00	20	
1,1-Dichloroethane 27.6 2.0 ug/l 25.0 ND 110 75-120 0.722 20 1,2-Dichloroethane 19.0 2.0 ug/l 25.0 ND 76.0 60-135 16.0 20 1,1-Dichloroethene 30.2 5.0 ug/l 25.0 ND 121 55-120 1.32 20 M1 cis-1,2-Dichloroethene 27.0 2.0 ug/l 25.0 ND 108 75-120 4.35 20 trans-1,2-Dichloroethene 29.2 2.0 ug/l 25.0 ND 117 65-120 2.70 20 1,2-Dichloropropane 23.2 2.0 ug/l 25.0 ND 92.8 80-125 8.66 20 1,3-Dichloropropane 17.5 2.0 ug/l 25.0 ND 70.0 55-140 15.3 20				ug/l	25.0	ND	107	80-120	1.49	20	
1,2-Dichloroethane 19.0 2.0 ug/l 25.0 ND 76.0 60-135 16.0 20 1,1-Dichloroethene 30.2 5.0 ug/l 25.0 ND 121 55-120 1.32 20 M1 cis-1,2-Dichloroethene 27.0 2.0 ug/l 25.0 ND 108 75-120 4.35 20 trans-1,2-Dichloroethene 29.2 2.0 ug/l 25.0 ND 117 65-120 2.70 20 1,2-Dichloropropane 23.2 2.0 ug/l 25.0 ND 92.8 80-125 8.66 20 1,3-Dichloropropane 17.5 2.0 ug/l 25.0 ND 70.0 55-140 15.3 20				ug/i	25.0	ND	134	25-145	1.18	20	
1,1-Dichloroethene 30.2 5.0 ug/l 25.0 ND 121 55-120 1.32 20 M1 cis-1,2-Dichloroethene 27.0 2.0 ug/l 25.0 ND 108 75-120 4.35 20 trans-1,2-Dichloroethene 29.2 2.0 ug/l 25.0 ND 117 65-120 2.70 20 1,2-Dichloropropane 23.2 2.0 ug/l 25.0 ND 92.8 80-125 8.66 20 1,3-Dichloropropane 17.5 2.0 ug/l 25.0 ND 70.0 55-140 15.3 20 2.0 2.0 2.0 2.0 2.0 2.0 ND 70.0 55-140 15.3 20				ug/l	25.0	ND	110	75-120	0.722	20	
cis-1,2-Dichloroethene 27.0 2.0 ug/l 25.0 ND 108 75-120 4.35 20 trans-1,2-Dichloroethene 29.2 2.0 ug/l 25.0 ND 117 65-120 2.70 20 1,2-Dichloropropane 23.2 2.0 ug/l 25.0 ND 92.8 80-125 8.66 20 1,3-Dichloropropane 17.5 2.0 ug/l 25.0 ND 70.0 55-140 15.3 20 2.0 </td <td>·</td> <td></td> <td></td> <td>ug/l</td> <td>25.0</td> <td>ND</td> <td>76.0</td> <td>60-135</td> <td>16.0</td> <td>20</td> <td></td>	·			ug/l	25.0	ND	76.0	60-135	16.0	20	
trans-1,2-Dichloroethene 29.2 2.0 ug/l 25.0 ND 117 65-120 2.70 20 1,2-Dichloropropane 23.2 2.0 ug/l 25.0 ND 92.8 80-125 8.66 20 1,3-Dichloropropane 17.5 2.0 ug/l 25.0 ND 70.0 55-140 15.3 20 2 3. Dichloropropane 41.0 2.0				-		ND	121	55-120	1.32	20	M1
1,2-Dichloropropane 23.2 2.0 ug/l 25.0 ND 92.8 80-125 8.66 20 1,3-Dichloropropane 17.5 2.0 ug/l 25.0 ND 70.0 55-140 15.3 20 2.0 1.0	-				25.0	ND	108	75-120	4.35	20	
1,3-Dichloropropane 17.5 2.0 ug/l 25.0 ND 70.0 55-140 15.3 20				ug/l	25.0	ND	117	65-120	2.70	20	
2. Dishlarananana	- ·		2.0	ug/l	25.0	ND	92.8	80-125	8.66	20	
2,2-Dichloropropane 41.8 2.0 ug/l 25.0 ND 167 45-165 3.29 20 M1	• •		2.0	ug/l	25.0	ND	70.0	55-140	15.3	20	
	2,2-Dichloropropane	41.8	2.0	ug/l	25.0	ND	167	45-165	3.29	20	M1

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-9596 FAX (858) 505-9689 (480) 785-0043 FAX (480) 785-0851

Law Engineering

4634 S. 36th Place Phoenix, AZ 85040

Attention: Jim Clarke

Client Project ID:

70211-0-0150

Sampled: 09/11/01

Report Number:

PKI0159

Received: 09/11/01

METRODERIANK/OCIDATA

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: P1I1912 Extracted: 09/24/0	<u>)1</u>									
Matrix Spike Dup Analyzed: 09/24/01	(P1I1912-M	SD1)			Source: F	KI0173-0	1 .			
1,1-Dichloropropene	28.4	2.0	ug/l	25.0	ND	114	80-120	1.40	20	
cis-1,3-Dichloropropene	22.1	2.0	ug/l	25.0	ND	88.4	80-120	11.9	20	
trans-1,3-Dichloropropene	19.3	2.0	ug/l	25.0	ND	77.2	70-120	13.1	20	
Ethylbenzene	31.4	2.0	ug/l	25.0	ND	126	80-120	2.58	20	M1
Hexachlorobutadiene	31.5	5.0	ug/l	25.0	ND	126	80-135	4.65	20	
2-Hexanone	ND	10	ug/l	25.0	ND	31.5	25-185	23.7	20	R4
Iodomethane	33.6	2.0	ug/l	25.0	ND	134	30-155	3.22	20	
lsopropylbenzene	31.5	2.0	ug/l	25.0	ND	126	80-125	1.92	20	M1
p-Isopropyltoluene	28.3	2.0	ug/l	25.0	ND	113	80-125	2.87	20	
Methylene chloride	22.5	5.0	ug/l	25.0	ND	90.0	55-125	8.51	20	
4-Methyl-2-pentanone (MIBK)	ND	10	ug/l	25.0	ND	37.7	10-175	26.4	20	R4
Methyl-tert-butyl Ether (MTBE)	21.5	5.0	ug/l	25.0	ND	86.0	55-135	15.1	20	
Naphthalene	9.26	5.0	ug/l	25.0	ND	37.0	15-160	35.1	20	R4
n-Propyibenzene	29.5	2.0	ug/l	25.0	ND	118	80-130	5.93	20	
Styrene	27.8	2.0	ug/l	25.0	ND	111	60-135	4.91	20	
1,1,1,2-Tetrachloroethane	31.6	5.0	ug/l	25.0	ND	126	80-135	4.64	20	
1,1,2,2-Tetrachloroethane	13.3	2.0	ug/l	25.0	ND	53.2	35-150	14.0	20	
Tetrachloroethene	35.2	2.0	ug/l	25.0	ND	141	80-120	2.59	20	M1
Toluene	30.0	2.0	ug/l	25.0	ND	120	80-120	1.68	20	
1,2,3-Trichlorobenzene	12.8	5.0	ug/l	25.0	ND	51.2	45-145	34.3	20	R4
1,2,4-Trichlorobenzene	17.5	5.0	ug/l	25.0	ND	70.0	65-130	21.4	20	R4
1,1,1-Trichloroethane	33.5	. 2.0	ug/l	25.0	ND	134	80-120	1.48	20	M 1
1,1,2-Trichloroethane	18.4	2.0	ug/l	25.0	ND	73.6	55-145	14.1	20	
Trichloroethene	29.3	2.0	ug/l	25.0	ND	117	80-120	1.69	20	
Trichlorofluoromethane	38.7	5.0	ug/l	25.0	ND	155	70-145	1.83	20	M1
1,2,3-Trichloropropane	11.2	10	ug/l	25.0	ND	44.8	20-160	14.9	20	
1,2,4-Trimethylbenzene	29.5	2.0	ug/l	25.0	ND	118	70-135	2.40	20	
1,3,5-Trimethylbenzene	28.8	2.0	u g/l	25.0	ND	115	80-125	4.98	20	
Vinyl acetate	ND	25	ug/l	25.0	ND	50.4	25-130	23.8	20	R4
Vinyl chloride	33.1	5.0	ug/l	25.0	ND	132	25-135	1.80	20	
Xylenes, Total	93.3	10	ug/l	75.0	ND	124	80-120	2.83	20	M1
Surrogate: Dibromofluoromethane	23.5		ug/l	25.0		94.0	80-120			
Surrogate: Toluene-d8	27.4		ug/l	25.0		110	80-120			
Surrogate: 4-Bromofluorobenzene	24.0		ug/l	25.0		96.0	80-120			

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-9596 FAX (858) 505-9689 (480) 785-0043 FAX (480) 785-0851

Law Engineering 4634 S. 36th Place

Client Project ID:

70211-0-0150

Sampled: 09/11/01

Phoenix, AZ 85040 Attention: Jim Clarke

Report Number:

PKI0159

Received: 09/11/01

METHOD BLANK/QC DATA

TOTAL METALS

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: P1I1219 Extracted: 09/12/01	<u>L</u>									
Blank Analyzed: 09/13/01 (P111219-BL	K1)									
Arsenic	ND	5.0	mg/kg							
Chromium	ND	1.0	mg/kg							
Copper	ND	2.0	mg/kg							
Nickel	ND	5.0	mg/kg							
LCS Analyzed: 09/13/01 (P111219-BS1))									•
Arsenic	107	5.0	mg/kg	100		107	80-120			
Chromium	108	1.0	mg/kg	100		108	80-120			
Copper	109	2.0	mg/kg	100		109	80-120			
Nickel	106	5.0	mg/kg	100		106	80-120			
LCS Dup Analyzed: 09/13/01 (P111219	-BSD1)									
Arsenic	101	5.0	mg/kg	100		101	80-120	5.77	20	
Chromium	101	1.0	mg/kg	100		101	80-120	6.70	20	
Copper	102	2.0	mg/kg	100		102	80-120	6.64	20	
Nickel	101	5.0	mg/kg	100		101	80-120	4.83	20	
Matrix Spike Analyzed: 09/13/01 (P111	219-MS1)				Source: P	K10089-0	5			
Arsenic	94.2	5.0	mg/kg	100	ND	94.2	75-125			
Chromium	118	1.0	mg/kg	100	14	104	75-125			
Copper	135	2.0	mg/kg	100	27	108	75-125			
Nickel	102	5.0	mg/kg	100	6.6	95.4	75-125			
Matrix Spike Dup Analyzed: 09/13/01 (P111219-MS	D 1)			Source: P	K10089-0	5			
Arsenic	94.0	5.0	mg/kg	100	ND	94.0	75-125	0.213	20	
Chromium	109	1.0	mg/kg	100	14	95.0	75-125	7.93	20	•
Copper	133	2.0	mg/kg	100	27	106	75-125	1.49	20	
Nickel	96.4	5.0	mg/kg	100	6.6	89.8	75-125	5.65	20	

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-9596 FAX (858) 505-9689 (480) 785-0043 FAX (480) 785-0851

Law Engineering

4634 S. 36th Place

Phoenix, AZ 85040 Attention: Jim Clarke Client Project ID:

Reporting

70211-0-0150

Sampled: 09/11/01

%REC

Received: 09/11/01

RPD

Data

PKI0159 Report Number:

TOTAL METALS

Spike

Source

		reporting		Spine	Dourte		/UILLC		IXI D	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: P111805 Extracted: 09/18	<u>/01</u>									
Blank Analyzed: 09/20/01 (P1I1805-	BLK1)									
Arsenic	ND	5.0	mg/kg							
Chromium	ND	1.0	mg/kg							
Copper	ND	2.0	mg/kg							
Nickel	ND	5.0	mg/kg							
LCS Analyzed: 09/20/01 (P1I1805-B	S1)									
Arsenic	89.9	5.0	mg/kg	100		89.9	80-120			
Chromium	88.0	1.0	mg/kg	100		88.0	80-120			
Copper	90.2	2.0	mg/kg	100		90.2	80-120			
Nickel	86.6	5.0	mg/kg	100		86.6	80~120			
LCS Dup Analyzed: 09/20/01 (P1118	05-BSD1)									
Arsenic	91.6	5.0	mg/kg	100		91.6	80-120	1.87	20	
Chromium	89.4	1.0	mg/kg	100		89.4	80-120	1.58	20	
Copper	90.2	2.0	mg/kg	100		90.2	80-120	0.00	20	
Nickel	87.8	5.0	mg/kg	100		87.8	80-120	1.38	20	
Matrix Spike Analyzed: 09/20/01 (P)	II1805-MS1)				Source: 1	PK10226-1	10			
Arsenic	77.3	5.0	mg/kg	100	ND	77.3	75-125			
Chromium	95.8	1.0	mg/kg	100	12	83.8	75-125			
Copper	102	2.0	mg/kg	100	7.6	94.4	75-125			
Nickel	86.1	5.0	mg/kg	100	ND	81.4	75-125			
Matrix Spike Dup Analyzed: 09/20/0	1 (P1I1805-M	ISD1)			Source: 1	PKI0226-1	10			
Arsenic	80.5	5.0	mg/kg	100	ND	80.5	75-125	4.06	20	
Chromium	99.4	1.0	mg/kg	100	12	87.4	75-125	3.69	20	
Copper	99.5	2.0	mg/kg	100	7.6	91.9	75-125	2.48	20	
Nickel	89.3	5.0	mg/kg	100	ND	84.6	75-125	3.65	20	

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-9596 FAX (858) 505-9689 (480) 785-0043 FAX (480) 785-0851

Law Engineering

4634 S. 36th Place Phoenix, AZ 85040

Attention: Jim Clarke

Client Project ID:

70211-0-0150

Report Number:

PKI0159

Sampled: 09/11/01

Received: 09/11/01

METHOD BLANK QC DATA.

TOTAL METALS

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: P1I2415 Extracted: 09/24/01	<u>.</u>									
Blank Analyzed: 09/24/01 (P112415-BL	K1)									
Chromium VI	ND	1.0	mg/kg							
LCS Analyzed: 09/24/01 (P112415-BS1))									
Chromium VI	9.73	1.0	mg/kg	10.0		97.3	85-115			
LCS Dup Analyzed: 09/24/01 (P112415-	-BSD1)									
Chromium VI	8.93	1.0	mg/kg	10.0		89.3	85-115	8.57	20	
Matrix Spike Analyzed: 09/24/01 (P112	415-MS1)				Source: P	KI0159-0	7			
Chromium VI	9.08	1.0	mg/kg	10.0	ND	89.3	85-115			
Matrix Spike Dup Analyzed: 09/24/01 (P112415-MSI	D1)			Source: P	K10159-0	7			
Chromium VI	9.08	1.0	mg/kg	10.0	ND	89.3	85-115	0.00	20	
Batch: P1I2605 Extracted: 09/26/01										
Blank Analyzed: 09/28/01 (P112605-BL	K1)									
Zinc	ND	5.0	mg/kg							
LCS Analyzed: 09/28/01 (P112605-BS1))									
Zinc	104	5.0	mg/kg	100		104	80-120			
Matrix Spike Analyzed: 09/28/01 (P112	605-MS1)				Source: P	KI0365-0	1			
Zinc	121	5.0	mg/kg	100	43	78.0	75-125			
Matrix Spike Dup Analyzed: 09/28/01 (P112605-MSI	D1)			Source: P	K10365-0	1			
Zinc	130	5.0	mg/kg	100	43	87.0	75-125	7.17	20	

%REC

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-9596 FAX (858) 505-9689 (480) 785-0043 FAX (480) 785-0851

Law Engineering 4634 S. 36th Place

Client Project ID:

70211-0-0150

Sampled: 09/11/01

RPD

Data

Phoenix, AZ 85040 Attention: Jim Clarke

Report Number:

Reporting

PKI0159

Received: 09/11/01

MELHOD BLANKQU DATA

Spike

Source

TOTAL RECOVERABLE METALS

		reporting		Spine	Domice		,,,,,,,,,,		111 2	Duth
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: P111206 Extracted: 09/12/0	<u>L</u>									
Blank Analyzed: 09/12/01 (P1I1206-BI	.K1)									
Chromium VI	ND	0.025	mg/l							
LCS Analyzed: 09/12/01 (P1I1206-BS1)									
Chromium VI	0.0993	0.050	mg/l	0.100		99.3	85-115			
Matrix Spike Analyzed: 09/12/01 (P1I1	206-MS1)				Source: F	KI0159-0)6			
Chromium VI	0.0521	0.025	mg/l	0.0500	ND	104	85-115			
Matrix Spike Dup Analyzed: 09/12/01	(P111206-M	SD1)			Source: F	KI0159-0)6			
Chromium VI	0.0521	0.025	mg/l	0.0500	ND	104	85-115	0.00	20	
Batch: P1I1815 Extracted: 09/18/0	<u>1</u>									
Blank Analyzed: 09/19/01 (P111815-BI	.K1)									
Arsenic	ND	0.050	mg/l							
Chromium	ND	0.010	mg/l							
Copper	ND	0.020	mg/l							
Nickel	ND	0.050	mg/l							
Zinc	ND	0.050	mg/l							
LCS Analyzed: 09/19/01 (P1I1815-BS1)									
Arsenic	0.981	0.050	mg/l	1.00		98.1	85-115			
Chromium	0.970	0.010	mg/l	1.00		97.0	85-115			
Copper	0.968	0.020	mg/l	1.00		96.8	85-115			
Nickel	0.954	0.050	mg/l	1.00		95.4	85-115			
Zinc	0.996	0.050	mg/l	1.00		99.6	85-115			

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-9596 FAX (858) 505-9689 (480) 785-0043 FAX (480) 785-0851

Law Engineering 4634 S. 36th Place

Client Project ID:

70211-0-0150

Sampled: 09/11/01

Phoenix, AZ 85040 Attention: Jim Clarke

Report Number:

PKI0159

Received: 09/11/01

MECHOD BLANKQC DATA

TOTAL RECOVERABLE METALS

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: P1I1815 Extracted: 09/18	<u>/01</u>									
LCS Dup Analyzed: 09/19/01 (P1118	15-BSD1)									
Arsenic	0.991	0.050	mg/l	1.00		99.1	85-115	1.01	20	
Chromium	0.976	0.010	mg/l	1.00		97.6	85-115	0.617	20	
Copper	0.976	0.020	mg/l	1.00		97.6	85-115	0.823	20	
Nickel	0.961	0.050	mg/l	1.00		96.1	85-115	0.731	20	
Zinc	1.01	0.050	mg/l	1.00		101	85-115	1.40	20	
Matrix Spike Analyzed: 09/19/01 (P1	II1815-MS1)				Source: P	KI0142-0	3			
Arsenic	1.06	0.050	mg/l	1.00	ND	106	70-130			
Chromium	1.07	0.010	mg/l	1.00	0.053	102	70-130			
Copper	1.04	0.020	mg/l	1.00	ND	104	70-130			
Nickel	1.00	0.050	ıng/l	1.00	ND	100	70-130			
Zinc	1.11	0.050	mg/l	1.00	ND	108	70-130			
Matrix Spike Dup Analyzed: 09/19/01	1 (P1I1815-M	SD1)			Source: P	KI0142-0	3			
Arsenic	1.06	0.050	mg/l	1.00	ND	106	70-130	0.00	20	
Chromium	1.07	0.010	mg/l	1.00	0.053	102	70-130	0.00	20	
Copper	1.04	0.020	mg/l	1.00	ND	104	70-130	0.00	20	
Nickel	1.00	0.050	mg/l	1.00	ND	100	70-130	0.00	20	
Zinc	1.10	0.050	mg/l	1.00	ND	107	70-130	0.905	20	

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-9596 FAX (858) 505-9689 (480) 785-0043 FAX (480) 785-0851

Law Engineering 4634 S. 36th Place Phoenix, AZ 85040 Attention: Jim Clarke

Client Project ID:

70211-0-0150

Sampled: 09/11/01

Report Number:

PKI0159

Received: 09/11/01

- NEFTEROR BLANKSOF DATE

INORGANICS

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: P1I2028 Extracted: 09/20/0	<u>1</u>									
Blank Analyzed: 09/21/01 (P1I2028-BI	.K1)									
Total Cyanide	ND	0.020	mg/l							
LCS Analyzed: 09/21/01 (P1I2028-BS1)									
Total Cyanide	0.105	0.020	mg/l	0.100		105	90-110			
LCS Dup Analyzed: 09/21/01 (P1I2028	-BSD1)									
Total Cyanide	0.109	0.020	mg/l	0.100		109	90-110	3.74	20	
Matrix Spike Analyzed: 09/21/01 (P1I2	2028-MS1)				Source: I	KI0170-1	l 6			
Total Cyanide	0.0639	0.020	mg/l	0.100	ND	63.9	70-130			M2
Matrix Spike Dup Analyzed: 09/21/01	(P1I2028-M	SD1)			Source: I	KI0170-1	16			
Total Cyanide	0.0570	0.020	mg/l	0.100	ND	57.0	70-130	11.4	20	M2
Batch: P1I2125 Extracted: 09/21/0	<u>1</u>									
Blank Analyzed: 09/24/01 (P1I2125-BI	.K1)									
Total Cyanide	ND	0.50	mg/kg							
Matrix Spike Analyzed: 09/24/01 (P112	2125-MS1)				Source: I	PK10159-0)7			
Total Cyanide	2.64	0.62	mg/kg	2.50	ND	106	70-130			
Matrix Spike Dup Analyzed: 09/24/01	(P1I2125-M	SD1)			Source: I	PK10159-0	07			
Total Cyanide	1.85	0.62	mg/kg	2.50	ND	74.0	70-130	35.2	20	R1
Reference Analyzed: 09/24/01 (P1I2125	5-SRM1)									
Total Cyanide	167	20	mg/kg	201		83.1	40-160			

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-9596 FAX (858) 505-9689 (480) 785-0043 FAX (480) 785-0851

Law Engineering 4634 S. 36th Place

Phoenix, AZ 85040 Attention: Jim Clarke Client Project ID:

70211-0-0150

Report Number:

PKI0159

Sampled: 09/11/01

Received: 09/11/01

METHOD BLANK (QCDATA)

INORGANICS

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: P1I2125 Extracted: 09/21/01										
Reference Analyzed: 09/24/01 (P112125-	-SRM2)									
Total Cyanide	128	20	mg/kg	201		63.7	40-160			

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-9596 FAX (858) 505-9689 (480) 785-0043 FAX (480) 785-0851

Law Engineering 4634 S. 36th Place Phoenix, AZ 85040 Attention: Jim Clarke

Client Project ID: 70211-0-0150

Sampled: 09/11/01 Received: 09/11/01

Report Number:

PKI0159

METHOD BLANK/QC DATA

DATA QUALIFIERS AND DEFINITIONS

- B1 Target analyte detected in method blank at or above the method reporting limit.
- D1 Sample required dilution due to matrix interference. See case narrative.
- M1 Matrix spike recovery was high, the method control sample recovery was acceptable.
- Matrix spike recovery was low, the method control sample recovery was acceptable.
- N2 See corrective action report.
- R1 RPD exceeded the method control limit. See case narrative.
- R4 MS/MSD RPD exceeded the method control limit. Recovery met acceptance criteria.
- R6 LFB/LFBD RPD exceeded the method control limit. Recovery met acceptance criteria.
- Surrogate recovery was above laboratory and method acceptance limits. No target analytes were detected in the sample.
- V1 CCV recovery was above method acceptance limits. This target analyte was not detected in the sample.
- ND Analyte NOT DETECTED at or above the reporting limit
- NR Not reported.
- RPD Relative Percent Difference

2852 Alton Ave., Irvine, CA 92606 1014 E. Cooley Dr., Suite A, Colton, CA 92324 7277 Hayvenhurst, Suite B-12, Van Nuys, CA 91406 9484 Chesapeake Dr., Suite 805, San Diego, CA 92123

9830 South 51st St., Suite B-120, Phoenix, AZ 85044

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-9596 FAX (858) 505-9689

(858) 505-9596 FAX (858) 505-9689 (480) 785-0043 FAX (480) 785-0851

Law Engineering 4634 S. 36th Place Phoenix, AZ 85040 Attention: Jim Clarke

Client Project ID:

70211-0-0150-2-2.10

Sampled: 09/13/01

Received: 09/13/01 Issued: 10/12/01 Revised: 11/13/01

Report Number:

PKI0198

CASE NARRATIN

LABORATORY SAMPLE NUMBER DESCRIPTION	SAMPLE MATRIX
PKI0198-03 LB6-S-30	Soil
PKI0198-05 LB6-S-50	Soil
PKI0198-07 LB6-S-10	Soil
PKI0198-08 LB6-S-20	Soil
PKI0198-09 LB6-S-30	Soil
PKI0198-09RE6 LB6-S-30	Soil
PKI0198-10 LB6-S-40	Soil
PKI0198-10RE4 LB6-S-40	Soil
PKI0198-11 LB6-S-50	Soil
PKI0198-12 LB6-S-60	Soil
PKI0198-12RE3 LB6-S-60	Soil

SAMPLE RECEIPT:

Samples were received intact, on ice, and with chain of custody documentation.

HOLDING TIMES:

Holding times were met.

PRESERVATION:

Samples requiring preservation were verified prior to sample analysis.

OBSERVATIONS:

Report was revised 11/13/01 to include that the samples were received at a temperature of 8 degrees C. The N1 flag on ICP Zinc indicates that the analyte was detected in the associated Method Blank. Analyte concentration in the sample is greater

than 10X the concentration found in the Method Blank.

SUBCONTRACTED:

No analyses were subcontracted to an outside laboratory.

QA/QC CRITERIA:

The N2 flag on Cyanide indicates that the Matrix Spike recovery was outside the method control limits. See Corrective

Action Report.

The R1 flag on Cyanide indicates that the RPD exceeded the method control limit. See Corrective Action Report.

EXPLANATION OF DATA

QUALIFIERS:

The D1 flag on ICP Arsenic indicates that the reporting limit was raised due to sample matrix effects.

DEL MAR ANALYTICAL, PHOENIX (AZ0426)

Project Manager

PKI0198 Page 1 of 25

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-8596 FAX (858) 505-9589 (480) 785-0043 FAX (480) 785-0851

CORRECTIVE ACTION REPORT

Department:

Wet Chemistry

Methods:

9014

Date:

09/27/2001

Matrix:

Soil

Batch:

P1I2701

Samples Affected:

PKI0198-09 - PKI0198-12 & PKI0355-01

Identification and Definition of Problem:

The Relative Percent Difference (RPD) between the Matrix Spike (MS) and the Matrix Spike Duplicate (MSD) was high (24%) and outside of the 20% acceptance limits.

Determination of the Cause of the Problem:

A definitive cause for the high RPD could not be determined.

Corrective Action:

Both the MS and the MSD recovered within acceptance limits. Also, the Laboratory Control Sample (LCS) and Laboratory Control Sample Duplicate (LCSD) recovered within acceptance limits. The RPD between the LCS and the LCSD was also within acceptance limits, therefore the data should not be significantly impacted. The MSD has been flagged "R1" to indicate that the RPD was outside of acceptance limits.

Elizabeth C. Wueschner: Chyslett (... U uselne Date: 10/12/2001

Ouality Assurance Manager

CORRECTIVE ACTION REPORT

Department:

Wet Chemistry

Methods:

9014

Date:

09/25/2001

Matrix:

Soil

Batch:

P1I2412

Samples Affected:

PKI0198-07, PKI0198-08, PKI0168-01 - PKI0168-05 &

PKI0180-08 - PKI0180-14

Identification and Definition of Problem:

The Matrix Spike Duplicate (MSD) recovered high (131%) and outside of the 70-130% acceptance limits. Because of the high recovery in the MSD the Relative Percent Difference (RPD) between the Matrix Spike (MS) and the MSD was high (41.8%) and outside of the 20% acceptance limits.

Determination of the Cause of the Problem:

A definitive cause for the high recovery has not been determined.

Corrective Action:

The MS as well as the Laboratory Control Sample recovered within acceptance limits, thus validating the batch. The MSD has been flagged "N2" to indicate the low recovery and "R1" to indicate that the RPD was outside of acceptance limits.

whet C.W ussle Date: 10/13 /2001 Elizabeth C. Wueschner: Quality Assurance Manager

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-9596 FAX (858) 505-9689 (480) 785-0043 FAX (480) 785-0851

Law Engineering

4634 S. 36th Place

Phoenix, AZ 85040 Attention: Jim Clarke Client Project ID:

70211-0-0150-2-2.10

Sampled: 09/13/01 Received: 09/13/01

Report Number:

PKI0198

VOLATILE ORGANICS BY GC/MS (EPA 8260B)

	VOLATI	LE ONG	AMCSDI	GC/MS	(EI A 62	oob)		
Analyte	Method	Batch	Reporting Limit ug/kg	Sample Result ug/kg	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: PKI0198-03 (LB6-	S-30 - Soil)		5 5					
Acetone	EPA 8260B	P111401	1000	ND	1	9/14/01	9/27/01	
Benzene	EPA 8260B	P1I1401	100	ND	1	9/14/01	9/27/01	
Bromobenzene	EPA 8260B	P111401	250	ND	1	9/14/01	9/27/01	
Bromochloromethane	EPA 8260B	P1I1401	250	ND	1	9/14/01	9/27/01	
Bromodichloromethane	EPA 8260B	P1I1401	100	ND	1	9/14/01	9/27/01	
Bromoform	EPA 8260B	P111401	250	ND	1	9/14/01	9/27/01	
Bromomethane	EPA 8260B	P111401	250	ND	1	9/14/01	9/27/01	
2-Butanone (MEK)	EPA 8260B	P1I1401	500	ND	1	9/14/01	9/27/01	
n-Butylbenzene	EPA 8260B	P1I1401	250	ND	1	9/14/01	9/27/01	
sec-Butylbenzene	EPA 8260B	P1I1401	250	ND	1	9/14/01	9/27/01	
tert-Butylbenzene	EPA 8260B	P111401	250	ND	1	9/14/01	9/27/01	
Carbon Disulfide	EPA 8260B	P1I1401	250	ND	1	9/14/01	9/27/01	
Carbon tetrachloride	EPA 8260B	P1I1401	250	ND	1	9/14/01	9/27/01	
Chlorobenzene	EPA 8260B	P1I1401	100	ND	1	9/14/01	9/27/01	
Chloroethane	EPA 8260B	P1I1401	250	ND	1	9/14/01	9/27/01	
Chloroform	EPA 8260B	P1I1401	100	ND	1	9/14/01	9/27/01	
Chloromethane	EPA 8260B	P1I1401	250	ND	1	9/14/01	9/27/01	
2-Chlorotoluene	EPA 8260B	P111401	250	ND	1	9/14/01	9/27/01	
4-Chlorotoluene	EPA 8260B	P111401	250	ND	1	9/14/01	9/27/01	
Dibromochloromethane	EPA 8260B	P111401	100	ND	1	9/14/01	9/27/01	4
1,2-Dibromo-3-chloropropane	EPA 8260B	P111401	250	ND	1	9/14/01	9/27/01	
1,2-Dibromoethane (EDB)	EPA 8260B	P1I1401	100	ND	1	9/14/01	9/27/01	
Dibromomethane	EPA 8260B	P1I1401	100	ND	1	9/14/01	9/27/01	
1,2-Dichlorobenzene	EPA 8260B	P111401	100	ND	1	9/14/01	9/27/01	
1,3-Dichlorobenzene	EPA 8260B	P1I1401	100	ND	1	9/14/0I	9/27/01	
1,4-Dichlorobenzene	EPA 8260B	P1I1401	100	ND	1	9/14/01	9/27/01	
Dichlorodifluoromethane	EPA 8260B	P1I1401	250	ND	1	9/14/01	9/27/01	
1,1-Dichloroethane	EPA 8260B	P1I1401	100	ND	1	9/14/01	9/27/01	
1,2-Dichloroethane	EPA 8260B	P1I1401	100	ND	1	9/14/01	9/27/01	
1,1-Dichloroethene	EPA 8260B	P1I1401	250	ND	1	9/14/01	9/27/01	
cis-1,2-Dichloroethene	EPA 8260B	P111401	100	ND	1	9/14/01	9/27/01	
trans-1,2-Dichloroethene	EPA 8260B	P1I1401	100	ND	1	9/14/01	9/27/01	
I,2-Dichloropropane	EPA 8260B	P1I1401	100	ND	1	9/14/01	9/27/01	
1,3-Dichloropropane	EPA 8260B	P1I1401	100	ND	1	9/14/01	9/27/01	
2,2-Dichloropropane	EPA 8260B	P111401	100	ND	1	9/14/01	9/27/01	V1
1,1-Dichloropropene	EPA 8260B	P1I1401	100	ND	1	9/14/01	9/27/01	
cis-1,3-Dichloropropene	EPA 8260B	P1I1401	100	ND	1	9/14/01	9/27/01	
- ·								

Melissa Evans Project Manager PKI0198 Page 2 of 25

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-9596 FAX (858) 505-9689 (480) 785-0043 FAX (480) 785-0851

Law Engineering 4634 S. 36th Place

Client Project ID:

70211-0-0150-2-2.10

Sampled: 09/13/01 Received: 09/13/01

Phoenix, AZ 85040 Attention: Jim Clarke

Report Number:

PKI0198

VOLATILE ORGANICS BY GC/MS (EPA 8260B)

Analyte	Method	Batch	Reporting Limit ug/kg	Sample Result ug/kg	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: PKI0198-03 (LB6-	S-30 - Soil)		ug/kg	ug/kg				
trans-1,3-Dichloropropene	EPA 8260B	P1I1401	100	ND	1	9/14/01	9/27/01	
Ethylbenzene	EPA 8260B	P1I1401	100	ND	1	9/14/01	9/27/01	
Hexachlorobutadiene	EPA 8260B	P1I1401	250	ND	1	9/14/01	9/27/01	
2-Hexanone	EPA 8260B	P111401	500	ND	1	9/14/01	9/27/01	
lodomethane	EPA 8260B	P1I1401	100	ND	1	9/14/01	9/27/01	
Isopropylbenzene	EPA 8260B	P111401	100	ND	1	9/14/01	9/27/01	
p-Isopropyltoluene	EPA 8260B	P111401	100	ND	1	9/14/01	9/27/01	
Methylene chloride	EPA 8260B	P111401	500	ND	1	9/14/01	9/27/01	
4-Methyl-2-pentanone (MIBK)	EPA 8260B	P111401	500	ND	1	9/14/01	9/27/01	
Methyl-tert-butyl Ether (MTBE)	EPA 8260B	P111401	250	ND	1	9/14/01	9/27/01	
Naphthalene	EPA 8260B	P1I1401	250	ND	1	9/14/01	9/27/01	
n-Propylbenzene	EPA 8260B	P1I1401	100	ND	1	9/14/01	9/27/01	
Styrene	EPA 8260B	P1I1401	100	ND	1	9/14/01	9/27/01	
1,1,1,2-Tetrachloroethane	EPA 8260B	P1I1401	250	ND	1	9/14/01	9/27/01	
1,1,2,2-Tetrachloroethane	EPA 8260B	P1I1401	100	ND	1	9/14/01	9/27/01	
Tetrachloroethene	EPA 8260B	P1I1401	100	ND	1	9/14/01	9/27/01	
Toluene	EPA 8260B	P1I1401	100	ND	1	9/14/01	9/27/01	
1,2,3-Trichlorobenzene	EPA 8260B	P1I1401	250	ND	1	9/14/01	9/27/01	
1,2,4-Trichlorobenzene	EPA 8260B	P1I1401	250	ND	1	9/14/01	9/27/01	
1,1,1-Trichloroethane	EPA 8260B	P1I1401	100	ND	1	9/14/01	9/27/01	
1,1,2-Trichloroethane	EPA 8260B	P1I1401	100	ND	1	9/14/01	9/27/01	
Trichloroethene	EPA 8260B	P111401	100	ND	1	9/14/01	9/27/01	
Trichlorofluoromethane	EPA 8260B	P1I1401	250	ND	1	9/14/01	9/27/01	
1,2,3-Trichloropropane	EPA 8260B	P1I1401	500	ND	1	9/14/01	9/27/01	
1,2,4-Trimethylbenzene	EPA 8260B	P1I1401	100	ND	1	9/14/01	9/27/01	
1,3,5-Trimethylbenzene	EPA 8260B	P1I1401	100	. ND	1	9/14/01	9/27/01	
Vinyl acetate	EPA 8260B	P1I1401	1200	ND	1	9/14/01	9/27/01	
Vinyl chloride	EPA 8260B	P1I1401	250	ND	1	9/14/01	9/27/01	
Xylenes, Total	EPA 8260B	P111401	300	ND	1	9/14/01	9/27/01	
Surrogate: Dibromofluoromethane (70-12 Surrogate: Toluene-d8 (50-135%)	25%)			101 % 110 %				
Surrogata: A Promofesoushamera (70.12	00/1			03.3.0/				

Surrogate: 4-Bromofluorobenzene (70-130%)

The reporting limit for this sample was adjusted by a factor of 0.952 to account for the applicable preparation factor.

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-9596 FAX (858) 505-9689 (480) 785-0043 FAX (480) 785-0851

Law Engineering 4634 S. 36th Place

Client Project ID: 702

70211-0-0150-2-2.10

Sampled: 09/13/01 Received: 09/13/01

Phoenix, AZ 85040 Attention: Jim Clarke

Report Number: PKI0198

VOLATILE ORGANICS BY GC/MS (EPA 8260B)

Analyte	Method	Batch	Reporting Limit ug/kg	Sample Result ug/kg	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: PKI0198-05 (LB6-S	-50 - Soil)		0 0					
Acetone	EPA 8260B	P1I1401	1000	ND	1	9/14/01	9/27/01	
Benzene	EPA 8260B	P111401	100	ND	1	9/14/01	9/27/01	
Bromobenzene	EPA 8260B	P1I1401	250	ND	1	9/14/01	9/27/01	
Bromochloromethane	EPA 8260B	P111401	250	ND	1	9/14/01	9/27/01	
Bromodichloromethane	EPA 8260B	P1I1401	100	ND	1	9/14/01	9/27/01	
Bromoform	EPA 8260B	P1I1401	250	ND	1	9/14/01	9/27/01	
Bromomethane	EPA 8260B	P111401	250	ND	1	9/14/01	9/27/01	
2-Butanone (MEK)	EPA 8260B	P1I1401	500	ND	1	9/14/01	9/27/01	
n-Butylbenzene	EPA 8260B	P111401	250	ND	1	9/14/01	9/27/01	
sec-Butylbenzene	EPA 8260B	P111401	250	ND	1	9/14/01	9/27/01	
tert-Butylbenzene	EPA 8260B	P1I1401	250	ND	1	9/14/01	9/27/01	
Carbon Disulfide	EPA 8260B	P1I1401	250	ND	1	9/14/01	9/27/01	
Carbon tetrachloride	EPA 8260B	P1I1401	250	ND	1	9/14/01	9/27/01	
Chlorobenzene	EPA 8260B	P111401	100	ND	1	9/14/01	9/27/01	
Chloroethane	EPA 8260B	P1I1401	250	ND	1	9/14/01	9/27/01	
Chloroform	EPA 8260B	P111401	100	ND	1	9/14/01	9/27/01	
Chloromethane	EPA 8260B	P1I1401	250	ND	1	9/14/01	9/27/01	
2-Chlorotoluene	EPA 8260B	P111401	250	ND	1 .	9/14/01	9/27/01	
4-Chlorotoluene	EPA 8260B	P111401	250	ND	1	9/14/01	9/27/01	
Dibromochloromethane	EPA 8260B	P111401	100	ND	1	9/14/01	9/27/01	
1,2-Dibromo-3-chloropropane	EPA 8260B	P1I1401	250	ND	1	9/14/01	9/27/01	
1,2-Dibromoethane (EDB)	EPA 8260B	P1I1401	100	ND	1	9/14/01	9/27/01	
Dibromomethane	EPA 8260B	P111401	100	ND	1	9/14/01	9/27/01	
1,2-Dichlorobenzene	EPA 8260B	P111401	100	ND	1	9/14/01	9/27/01	
1,3-Dichlorobenzene	EPA 8260B	P111401	100	ND	1	9/14/01	9/27/01	
1,4-Dichlorobenzene	EPA 8260B	P111401	100	ND	1	9/14/01	9/27/01	
Dichlorodifluoromethane	EPA 8260B	P1I1401	250	ND	1	9/14/01	9/27/01	
1,1-Dichloroethane	EPA 8260B	P1I1401	100	ND	1	9/14/01	9/27/01	
1,2-Dichloroethane	EPA 8260B	P1I1401	100	ND	1	9/14/01	9/27/01	
1,1-Dichloroethene	EPA 8260B	P111401	250	ND	1	9/14/01	9/27/01	
cis-1,2-Dichloroethene	EPA 8260B	P111401	100	ND	1	9/14/01	9/27/01	
trans-1,2-Dichloroethene	EPA 8260B	P1I1401	100	ND	1	9/14/01	9/27/01	
1,2-Dichloropropane	EPA 8260B	P111401	100	ND	1	9/14/01	9/27/01	
1,3-Dichloropropane	EPA 8260B	P111401	100	ND	1	9/14/01	9/27/01	
2,2-Dichloropropane	EPA 8260B	P1I1401	100	ND	1	9/14/01	9/27/01	V1
1,1-Dichloropropene	EPA 8260B	P111401	100	ND	1	9/14/01	9/27/01	
cis-1,3-Dichloropropene	EPA 8260B	P1I1401	100	ND	1	9/14/01	9/27/01	
,								

Melissa Evans Project Manager PKI0198 Page 4 of 25

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-9596 FAX (858) 505-9689 (480) 785-0043 FAX (480) 785-0851

Law Engineering 4634 S. 36th Place

Client Project ID:

70211-0-0150-2-2.10

Sampled: 09/13/01

Phoenix, AZ 85040 Attention: Jim Clarke

Report Number:

PKI0198

Received: 09/13/01

VOLATILE ORGANICS BY GC/MS (EPA 8260B)

Analyte	Method	Batch	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: PKI0198-05 (LB6-S	50 Cott		ug/kg	ug/kg				
trans-1,3-Dichloropropene	EPA 8260B	P1I1401	100	ND	1	9/14/01	9/27/01	
Ethylbenzene	EPA 8260B	P1I1401	100	ND	1	9/14/01	9/27/01	
Hexachlorobutadiene	EPA 8260B	P111401	250	ND	1	9/14/01	9/27/01	
2-Hexanone	EPA 8260B	P111401	500	ND	1	9/14/01	9/27/01	
Iodomethane	EPA 8260B	P1I1401	100	ND	1	9/14/01	9/27/01	
Isopropylbenzene	EPA 8260B	P1I1401	100	ND	1	9/14/01	9/27/01	
p-Isopropyltoluene	EPA 8260B	P1I1401	100	ND	1	9/14/01	9/27/01	
Methylene chloride	EPA 8260B	P111401	500	ND	1	9/14/01	9/27/01	
4-Methyl-2-pentanone (MIBK)	EPA 8260B	P1I1401	500	ND	1	9/14/01	9/27/01	
Methyl-tert-butyl Ether (MTBE)	EPA 8260B	P111401	250	ND	1	9/14/01	9/27/01	
Naphthalene	EPA 8260B	P1I1401	250	ND	1	9/14/01	9/27/01	
n-Propylbenzene	EPA 8260B	P111401	100	ND	1	9/14/01	9/27/01	
Styrene	EPA 8260B	P1I1401	100	ND	1	9/14/01	9/27/01	
1,1,1,2-Tetrachloroethane	EPA 8260B	P1I1401	250	ND	1	9/14/01	9/27/01	
1,1,2,2-Tetrachloroethane	EPA 8260B	P1I1401	100	ND	1	9/14/01	9/27/01	
Tetrachloroethene	EPA 8260B	P1I1401	100	ND	1	9/14/01	9/27/01	
Toluene	EPA 8260B	P1I1401	100	ND	1	9/14/01	9/27/01	
1,2,3-Trichlorobenzene	EPA 8260B	P1I1401	250	ND	1	9/14/01	9/27/01	
1,2,4-Trichlorobenzene	EPA 8260B	P1I1401	250	ND	1	9/14/01	9/27/01	
1,1,1-TrichIoroethane	EPA 8260B	P1I1401	100	ND	1	9/14/01	9/27/01	
1,1,2-Trichloroethane	EPA 8260B	P1I1401	100	ND	1	9/14/01	9/27/01	
Trichloroethene	EPA 8260B	P1I1401	100	ND	1	9/14/01	9/27/01	
Trichlorofluoromethane	EPA 8260B	P1I1401	250	ND	1	9/14/01	9/27/01	
1,2,3-Trichloropropane	EPA 8260B	P1I1401	500	ND	1	9/14/01	9/27/01	
1,2,4-Trimethylbenzene	EPA 8260B	P1I1401	100	ND	1	9/14/01	9/27/01	
1,3,5-Trimethylbenzene	EPA 8260B	P1I1401	100	ND	1	9/14/01	9/27/01	
Vinyl acetate	EPA 8260B	P1I1401	1200	ND	1	9/14/01	9/27/01	
Vinyl chloride	EPA 8260B	P1I1401	250	ND	1	9/14/01	9/27/01	
Xylenes, Total	EPA 8260B	P1I1401	300	ND	1	9/14/01	9/27/01	
Surrogate: Dibromofluoromethane (70-12.	5%)			97.5 %				
Surrogate: Toluene-d8 (50-135%)				112%				
Surrogate: 4-Bromofluorobenzene (70-130)%)			96.7 %				

The reporting limit for this sample was adjusted by a factor of 0.978 to account for the applicable preparation factor.

DEL MAR ANALYTICAL, PHOENIX (AZ0426

Melissa Evans Project Manager

PKI0198 Page 5 of 25

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-9596 FAX (858) 505-9689 (480) 785-0043 FAX (480) 785-0851

Law Engineering

4634 S. 36th Place Phoenix, AZ 85040

Attention: Jim Clarke

Client Project ID:

70211-0-0150-2-2.10

Report Number:

Sampled: 09/13/01

Received: 09/13/01

TOTAL METALS

PKI0198

Analyte	Method	Batch	Reporting Limit mg/kg	Sample Result mg/kg	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: PKI0198-07 (LB6-S-1	10 - Soil)		mg/kg	mg/ Kg				
Arsenic	EPA 6010B	P1I2006	10	ND	2	9/20/01	9/25/01	D1
Chromium	EPA 6010B	P1I2006	1.0	22	1	9/20/01	9/21/01	
Chromium VI	EPA 7196A	P1I2415	1.0	ND	1	9/24/01	9/24/01	
Copper	EPA 6010B	P1I2006	2.0	21	1	9/20/01	9/21/01	
Nickel	EPA 6010B	P1I2006	5.0	21	1	9/20/01	9/21/01	
Zinc	EPA 6010B	P1I2006	5.0	66	1	9/20/01	9/21/01	N1
Sample ID: PKI0198-08 (LB6-S-2	20 - Soil)							
Arsenic	EPA 6010B	P1I2006	10	ND	2	9/20/01	9/25/01	D1
Chromium	EPA 6010B	P1I2006	1.0	22	1	9/20/01	9/21/01	
Chromium VI	EPA 7196A	P1I2415	1.0	ND	1	9/24/01	9/24/01	
Copper	EPA 6010B	P1I2006	2.0	21	1	9/20/01	9/21/01	
Nickel	EPA 6010B	P1I2006	5.0	18	1	9/20/01	9/21/01	
Zinc	EPA 6010B	P112006	5.0	56	1	9/20/01	9/21/01	N1
Sample ID: PKI0198-09 (LB6-S-3	30 - Soil)							
Arsenic	EPA 6010B	P1I2006	5.0	ND	1	9/20/01	9/24/01	
Chromium	EPA 6010B	P112006	1.0	16	1	9/20/01	9/21/01	
Chromium VI	EPA 7196A	P1I2415	1.0	ND	1	9/24/01	9/24/01	
Copper	EPA 6010B	P1I2006	2.0	14	1	9/20/01	9/21/01	
Nickel	EPA 6010B	P112006	5.0	12	1	9/20/01	9/21/01	
Sample ID: PKI0198-09RE6 (LB	6-S-30 - Soil)							
Zinc	EPA 6010B	P1J1010	5.0	63	1	10/10/01	10/11/01	N1

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-9596 FAX (858) 505-9689 (480) 785-0043 FAX (480) 785-0851

Law Engineering

4634 S. 36th Place Phoenix, AZ 85040 Client Project ID:

70211-0-0150-2-2.10

Sampled: 09/13/01

Attention: Jim Clarke

Report Number:

PKI0198

Received: 09/13/01

TOTAL METALS

Analyte	Method	Batch	Reporting Limit mg/kg	Sample Result mg/kg	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: PKI0198-10 (LB6-S	,							
Arsenic	EPA 6010B	P1I2006	5.0	ND	1	9/20/01	9/24/01	
Chromium	EPA 6010B	P1I2006	1.0	23	1	9/20/01	9/21/01	
Chromium VI	EPA 7196A	P1I2415	1.0	ND	1	9/24/01	9/24/01	
Copper	EPA 6010B	P1I2006	2.0	16	1	9/20/01	9/21/01	
Nickel	EPA 6010B	P1I2006	5.0	16	1	9/20/01	9/21/01	
Sample ID: PKI0198-10RE4 (L	B6-S-40 - Soil)							
Zinc	EPA 6010B	P1J0507	5.0	5 6	1	10/5/01	10/7/01	N1
Sample ID: PKI0198-11 (LB6-S	5-50 - Soil)							
Arsenic	EPA 6010B	P111911	5.0	ND	1	9/19/01	9/20/01	
Chromium	EPA 6010B	P111911	1.0	25	1	9/19/01	9/20/01	
Chromium VI	EPA 7196A	P1I2415	1.0	ND	1	9/24/01	9/24/01	
Copper	EPA 6010B	P111911	2.0	13	1	9/19/01	9/20/01	
Nickel	EPA 6010B	P111911	5.0	13	1	9/19/01	9/20/01	
Zinc	EPA 6010B	P111911	5.0	46	1	9/19/01	9/20/01	N1
Sample ID: PKI0198-12 (LB6-S	5-60 - Soil)							
Arsenic	EPA 6010B	P111911	5.0	ND	1	9/19/01	9/20/01	
Chromium	EPA 6010B	P111911	1.0	14	1	9/19/01	9/20/01	
Chromium VI	EPA 7196A	P1I2415	1.0	ND	1	9/24/01	9/24/01	
Copper	EPA 6010B	P1I1911	2.0	7.5	1	9/19/01	9/20/01	
Nickel	EPA 6010B	P111911	5.0	9.5	1	9/19/01	9/20/01	
Sample ID: PKI0198-12RE3 (L	B6-S-60 - Soil)							
Zinc	EPA 6010B	P1J0103	5.0	26	1	10/1/01	10/2/01	

DEL MAR ANALYTICAL, PHOENIX (AZ0426

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-9596 FAX (858) 505-9689 (480) 785-0043 FAX (480) 785-0851

Law Engineering 4634 S. 36th Place Phoenix, AZ 85040

Client Project ID:

70211-0-0150-2-2.10

Sampled: 09/13/01

Attention: Jim Clarke

Report Number:

PKI0198

Received: 09/13/01

INORGANICS

Analyte	Method	Batch	Reporting Limit mg/kg	Sample Result mg/kg	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: PKI0198-07 (LB6-S-10	- Soil)							
Total Cyanide	EPA 9014	P1I2412	0.50	ND	1	9/24/01	9/25/01	
Sample ID: PKI0198-08 (LB6-S-20 Total Cyanide	- Soil) EPA 9014	P1I2412	0.50	ND	1	9/24/01	9/25/01	
Sample ID: PKI0198-09 (LB6-S-30 Total Cyanide) - Soil) EPA 9014	P1I2701	0.50	ND	1	9/27/01	9/27/01	
Sample ID: PKI0198-10 (LB6-S-40 Total Cyanide) - Soil) EPA 9014	P1I2701	0.50	ND	1	9/27/01	9/27/01	
Sample ID: PKI0198-11 (LB6-S-50 Total Cyanide) - Soil) EPA 9014	P112701	0.50	ND	1	9/27/01	9/27/01	
Sample ID: PKI0198-12 (LB6-S-60 Total Cyanide) - Soil) EPA 9014	P112701	0.50	ND	1	9/27/01	9/27/01	

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-9596 FAX (858) 505-9689 (480) 785-0043 FAX (480) 785-0851

Law Engineering

4634 S. 36th Place Phoenix, AZ 85040

Attention: Jim Clarke

Client Project ID:

Report Number:

70211-0-0150-2-2.10

Sampled: 09/13/01

Received: 09/13/01

PKI0198

VOLATILE ORGANICS BY GC/MS (EPA 8260B)

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: P1I1401 Extracted:	09/14/01									
Blank Analyzed: 09/19/01 (P1	I1401-BLK1)									
Acetone	ND	1000	ug/kg							
Benzene	ND	100	ug/kg							
Bromobenzene	ND	250	ug/kg							
Bromochloromethane	ND	250	ug/kg							
Bromodichloromethane	ND	100	ug/kg							
Bromoform	ND	250	ug/kg							
Bromomethane	ND	250	ug/kg							
2-Butanone (MEK)	ND	500	ug/kg							
n-Butylbenzene	ND	250	ug/kg							
sec-Butylbenzene	ND	250	ug/kg							
tert-Butylbenzene	ND	250	ug/kg							
Carbon Disulfide	ND	250	ug/kg							
Carbon tetrachloride	ND	250	ug/kg							
Chlorobenzene	ND	100	ug/kg							
Chloroethane	ND	250	ug/kg							
Chloroform	ND	100	ug/kg							
Chloromethane	ND	250	ug/kg							
2-Chlorotoluene	ND	250	ug/kg							
4-Chlorotoluene	ND	250	ug/kg							
Dibromochloromethane	ND	100	ug/kg							
1,2-Dibromo-3-chloropropane	ND	250	ug/kg							
1,2-Dibromoethane (EDB)	ND	100	ug/kg							
Dibromomethane	ND	100	ug/kg							
1,2-Dichlorobenzene	ND	100	ug/kg							
1,3-Dichlorobenzene	ND	100	ug/kg							
1,4-Dichlorobenzene	ND	100	ug/kg							
Dichlorodifluoromethane	ND	250	ug/kg							
1,1-Dichloroethane	ND	100	ug/kg					•		
1,2-Dichloroethane	ND	100	ug/kg							
1,1-Dichloroethene	ND	250	ug/kg							
cis-1,2-Dichloroethene	ND	100	ug/kg							
trans-1,2-Dichloroethene	ND	100	ug/kg							
1,2-Dichloropropane	ND	100	ug/kg							
1,3-Dichloropropane	ND	100	ug/kg							
2,2-Dichloropropane	ND	100	ug/kg							

Melissa Evans Project Manager

(949) 261-1022 FAX (949) 261-1228 (818) 779-1844 FAX (818) 779-1843 (858) 505-9596 FAX (858) 505-9689 (480) 785-0043 FAX (480) 785-0851

Law Engineering

4634 S. 36th Place Phoenix, AZ 85040

Attention: Jim Clarke

Client Project ID:

70211-0-0150-2-2.10

Sampled: 09/13/01

Report Number:

PKI0198

Received: 09/13/01

VOLATILE ORGANICS BY GC/MS (EPA 8260B)

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: P1I1401 Extracted: 09/14/0	<u>)1</u>									
Blank Analyzed: 09/19/01 (P1I1401-B	LK1)									
1,1-Dichloropropene	ND	100	ug/kg							
cis-1,3-Dichloropropene	ND	100	ug/kg							
trans-1,3-Dichloropropene	ND	100	ug/kg							
Ethylbenzene	ND	100	ug/kg							
Hexachlorobutadiene	ND	250	ug/kg							
2-Hexanone	ND	500	ug/kg							
lodomethane	ND	100	ug/kg							
lsopropylbenzene	ND	100	ug/kg							
p-lsopropyltoluene	ND	100	ug/kg							
Methylene chloride	ND	500	ug/kg							
4-Methyl-2-pentanone (M1BK)	ND	500	ug/kg							
Methyl-tert-butyl Ether (MTBE)	ND	250	ug/kg							
Naphthalene	ND	250	ug/kg							
n-Propylbenzene	ND	100	ug/kg							
Styrene	ND	100	ug/kg							
1,1,1,2-Tetrachloroethane	ND	250	ug/kg							
1,1,2,2-Tetrachloroethane	ND	100	ug/kg							
Tetrachloroethene	ND	100	ug/kg							
Toluene	ND	100	ug/kg							
1,2,3-Trichlorobenzene	ND	250	ug/kg							
1,2,4-Trichlorobenzene	ND	250	ug/kg							
1,1,1-Trichloroethane	ND	100	ug/kg							
1,1,2-Trichloroethane	ND	100	ug/kg							
Trichloroethene	ND	100	ug/kg							
Trichlorofluoromethane	ND	250	ug/kg							
1,2,3-Trichloropropane	ND	500	ug/kg							
1,2,4-Trimethylbenzene	ND	100	ug/kg							
1,3,5-Trimethylbenzene	ND	100	ug/kg							
Vinyl acetate	ND	1200	ug/kg							
Vinyl chloride	ND	250	ug/kg							
Xylenes, Total	ND	300	ug/kg							
Surrogate: Dibromofluoromethane	146		ug/kg	125		117	70-125			
Surrogate: Toluene-d8	168		ug/kg	125		134	50-135			~·
Surrogate: 4-Bromofluorobenzene	164		ug/kg	125		131	70-130			S4

Melissa Evans Project Manager

PKI0198 Page 10 of 25

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-9596 FAX (858) 505-9689 (480) 785-0043 FAX (480) 785-0851

Law Engineering

4634 S. 36th Place Phoenix, AZ 85040

Attention: Jim Clarke

Client Project ID:

70211-0-0150-2-2.10

Report Number:

PKI0198

Sampled: 09/13/01

Received: 09/13/01

METHOD BLANK OF DATA

VOLATILE ORGANICS BY GC/MS (EPA 8260B)

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: P1I1401 Extracted: 09/14/0	<u>1</u>									
LCS Analyzed: 09/19/01 (P1I1401-BS1)									
Acetone	ND	1000	ug/kg	1000		96.7	5-200			
Benzene	931	100	ug/kg	1000		93.1	65-130			
Bromobenzene	1120	250	ug/kg	1000		112	60-135			
Bromochloromethane	1120	250	ug/kg	1000		112	60-135			
Bromodichloromethane	936	100	ug/kg	1000		93.6	30-135			
Bromoform	880	250	ug/kg	1000		88.0	60-140			
Bromomethane	1250	250	ug/kg	2000		62.5	10-200			
2-Butanone (MEK)	1030	500	ug/kg	1000		103	10-160			
n-Butylbenzene	935	250	ug/kg	1000		93.5	65-125			
sec-Butylbenzene	985	250	ug/kg	1000		98.5	70-135			
tert-Butylbenzene	1010	250	ug/kg	1000		101	70-130			
Carbon Disulfide	738	250	ug/kg	1000		73.8	20-120			
Carbon tetrachloride	899	250	ug/kg	1000		89.9	70-140			
Chlorobenzene	1090	100	ug/kg	1000		109	70-125			
Chloroethane	1190	250	ug/kg	2000		59.5	10-200			
Chloroform	994	100	ug/kg	1000		99.4	35-135			
Chloromethane	1480	250	ug/kg	2000		74.0	10-200			
2-Chlorotoluene	997	250	ug/kg	1000		99.7	70-135			
4-Chlorotoluene	998	250	ug/kg	1000		99.8	75-135			
Dibromochloromethane	974	100	ug/kg	1000		97.4	35-135			
1,2-Dibromo-3-chloropropane	1040	250	ug/kg	1000		104	50-155			
1,2-Dibromoethane (EDB)	1110	100	ug/kg	1000		111	70-130			
Dibromomethane	1090	100	ug/kg	1000		109	65-130			
1,2-Dichlorobenzene	1050	100	ug/kg	1000		105	70-125			
1,3-Dichlorobenzene	1050	100	ug/kg	1000		105	70-125			
1,4-Dichlorobenzene	1090	100	ug/kg	1000		109	70-135			
Dichlorodifluoromethane	1330	250	ug/kg	2000		66.5	10-185			
1,1-Dichloroethane	966	100	ug/kg	1000		96.6	60-140			
1,2-Dichloroethane	1020	100	ug/kg	1000		102	55-135			
1,1-Dichloroethene	987	250	ug/kg	1000		98.7	55-145			
cis-1,2-Dichloroethene	1010	100	ug/kg	1000		101	60-125			
trans-1,2-Dichloroethene	1010	100	ug/kg	1000		101	70-145			
1,2-Dichloropropane	956	100	ug/kg	1000		95.6	65-130			
1,3-Dichloropropane	1060	100	ug/kg	1000		106	65-130			
2,2-Dichloropropane	677	100	ug/kg	1000		67.7	60-135			
1,1-Dichloropropene	929	100	ug/kg	1000		92.9	65-130			

Melissa Evans Project Manager

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-9596 FAX (858) 505-9689 (480) 785-0043 FAX (480) 785-0851

Law Engineering 4634 S. 36th Place Phoenix, AZ 85040

Attention: Jim Clarke

Client Project ID:

70211-0-0150-2-2.10

Sampled: 09/13/01

Report Number:

PKI0198

Received: 09/13/01

ATECTA (DE) ISHTAN KAQOO DIATTA

VOLATILE ORGANICS BY GC/MS (EPA 8260B)

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: P1I1401 Extracted: 09/14/01	<u>L</u>									
LCS Analyzed: 09/19/01 (P1I1401-BS1))						•			
cis-1,3-Dichloropropene	885	100	ug/kg	1000		88.5	60-125			
trans-1,3-Dichloropropene	882	100	ug/kg	1000		88.2	50-130			
Ethylbenzene	1060	100	ug/kg	1000		106	70-125			
Hexachlorobutadiene	1030	250	ug/kg	1000		103	60-125			
2-Hexanone	1110	500	ug/kg	1000		111	25-185			
Iodomethane	1150	100	ug/kg	1000		115	30-155			
Isopropylbenzene	1070	100	ug/kg	1000		107	70-135			
p-Isopropyltoluene	967	100	ug/kg	1000		96.7	65-130			
Methylene chloride	979	500	ug/kg	1000		97.9	60-140			
4-Methyl-2-pentanone (MIBK)	1170	500	ug/kg	1000		117	10-175			
Naphthalene	1210	250	ug/kg	1000		121	45-155			
n-Propylbenzene	1010	100	ug/kg	1000		101	75-135			
Styrene	1070	100	ug/kg	1000		107	70-130			
1,1,1,2-Tetrachloroethane	1020	250	ug/kg	1000		102	70-130			
1,1,2,2-Tetrachloroethane	1060	100	ug/kg	1000		106	60-140			
Tetrachloroethene	1120	100	ug/kg	1000		112	65-130			
Toluene	1040	100	ug/kg	1000		104	70-125			
1,2,3-Trichlorobenzene	1080	250	ug/kg	1000		108	60-135			
1,2,4-Trichlorobenzene	1070	250	ug/kg	1000		107	55-135			
1,1,1-Trichloroethane	953	100	ug/kg	1000		95.3	65-135			
1,1,2-Trichloroethane	1070	100	ug/kg	1000		107	65-130			
Trichloroethene	1030	100	ug/kg	1000		103	70-130			
Trichlorofluoromethane	1140	250	ug/kg	2000		57.0	10-200			
1,2,3-Trichloropropane	1110	500	ug/kg	1000		111	60-150			
1,2,4-Trimethylbenzene	1040	100	ug/kg	1000		104	75-130			
1,3,5-Trimethylbenzene	1010	100	ug/kg	1000		101	70-130			
Vinyl acetate	ND	1200	ug/kg	1000		66.4	25-130			
Vinyl chloride	938	250	ug/kg	2000		46.9	10-200			
Xylenes, Total	3210	300	ug/kg	3000		107	70-130			
Surrogate: Dibromofluoromethane	149		ug/kg	125		119	70-125			
Surrogate: Toluene-d8	166		ug/kg	125		133	<i>50-135</i>			
Surrogate: 4-Bromofluorobenzene	158		ug/kg	125		126	70-130			

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-9596 FAX (858) 505-9689 (480) 785-0043 FAX (480) 785-0851

Law Engineering

4634 S. 36th Place Phoenix, AZ 85040

Attention: Jim Clarke

Client Project ID:

70211-0-0150-2-2.10

1211-0-0130-2-2.10

Report Number: PKI0198

Sampled: 09/13/01

Received: 09/13/01

NETHOD BLANKQUODATA.

VOLATILE ORGANICS BY GC/MS (EPA 8260B)

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: P1I1401 Extracted: 09/14/0	<u>01</u>									
LCS Dup Analyzed: 09/19/01 (P1I140	1-BSD1)									
Acetone	ND	1000	ug/kg	1000		68.5	5-200	34.1	35	
Benzene	904	100	ug/kg	1000		90.4	65-130	2.94	35	
Bromobenzene	1040	250	ug/kg	1000		104	60-135	7.41	35	
Bromochloromethane	1050	250	ug/kg	1000		105	60-135	6.45	35	
Bromodichloromethane	919	100	ug/kg	1000		91.9	30-135	1.83	35	
Bromoform	946	250	ug/kg	1000		94.6	60-140	7.23	35	
Bromomethane	903	250	ug/kg	2000		45.2	10-200	32.2	35	
2-Butanone (MEK)	835	500	ug/kg	1000		83.5	10-160	20.9	35	
n-Butylbenzene	829	250	ug/kg	1000		82.9	65-125	12.0	35	
sec-Butylbenzene	891	250	ug/kg	1000		89.1	70-135	10.0	35	
tert-Butylbenzene	933	250	ug/kg	1000		93.3	70-130	7.93	35	
Carbon Disulfide	647	250	ug/kg	1000		64.7	20-120	13.1	35	
Carbon tetrachloride	908	250	ug/kg	1000		90.8	70-140	0.996	35	
Chlorobenzene	1060	100	ug/kg	1000		106	70-125	2.79	35	
Chloroethane	944	250	ug/kg	2000		47.2	10-200	23.1	35	
Chloroform	970	100	ug/kg	1000		97.0	35-135	2.44	35	
Chloromethane	1030	250	ug/kg	2000		51.5	10-200	35.9	35	R6
2-Chlorotoluene	936	250	ug/kg	1000		93.6	70-135	6.31	35	
4-Chlorotoluene	941	250	ug/kg	1000		94.1	75-135	5.88	35	
Dibromochloromethane	1030	100	ug/kg	1000		103	35-135	5.59	35	
1,2-Dibromo-3-chloropropane	881	250	ug/kg	1000		88.1	50-155	16.6	35	
1,2-Dibromoethane (EDB)	1080	100	ug/kg	1000		108	70-130	2.74	35	
Dibromomethane	1010	100	ug/kg	1000		101	65-130	7.62	35	
1,2-Dichlorobenzene	976	100	ug/kg	1000		97.6	70-125	7.31	35	
1,3-Dichlorobenzene	973	100	ug/kg	1000		97.3	70-125	7.61	35	
1,4-Dichlorobenzene	1020	100	ug/kg	1000		102	70-135	6.64	35	
Dichlorodifluoromethane	736	250	ug/kg	2000		36.8	10-185	57.5	35	R6
1,1-Dichloroethane	926	100	ug/kg	1000		92.6	60-140	4.23	35	
1,2-Dichloroethane	983	100	ug/kg	1000		98.3	55-135	3.69	35	
1,1-Dichloroethene	912	250	ug/kg	1000		91.2	55-145	7.90	35	
cis-1,2-Dichloroethene	974	100	ug/kg	1000		97.4	60-125	3.63	35	•
trans-1,2-Dichloroethene	966	100	ug/kg	1000		96.6	70-145	4.45	35	
1,2-Dichloropropane	911	100	ug/kg	1000		91.1	65-130	4.82	35	
1,3-Dichloropropane	1020	100	ug/kg	1000		102	65-130	3.85	35	
2,2-Dichloropropane	765	100	ug/kg	1000		76.5	60-135	12.2	35	
1,1-Dichloropropene	886	100	ug/kg	1000		88.6	65-130	4.74	35	

Melissa Evans Project Manager

PKI0198 Page 13 of 25

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-9596 FAX (858) 505-9689 (480) 785-0043 FAX (480) 785-0851

Law Engineering

4634 S. 36th Place Phoenix, AZ 85040

Attention: Jim Clarke

Client Project ID:

70211-0-0150-2-2.10

Sampled: 09/13/01

Report Number: PKI0198

Received: 09/13/01

METHOD BLANKOC DATA

VOLATILE ORGANICS BY GC/MS (EPA 8260B)

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: P1I1401 Extracted: 09/14/0	<u>)1</u>									
LCS Dup Analyzed: 09/19/01 (P1I140	1-BSD1)									
cis-1,3-Dichloropropene	889	100	ug/kg	1000		88.9	60-125	0.451	35	
trans-1,3-Dichloropropene	896	100	ug/kg	1000		89.6	50-130	1.57	35	
Ethylbenzene	1010	100	ug/kg	1000		101	70-125	4.83	35	
Hexachlorobutadiene	849	250	ug/kg	1000		84.9	60-125	19.3	35	
2-Hexanone	981	500	ug/kg	1000		98.1	25-185	12.3	35	
Iodomethane	1040	100	ug/kg	1000		104	30-155	10.0	35	
Isopropylbenzene	1010	100	ug/kg	1000		101	70-135	5.77	35	
p-Isopropyltoluene	884	100	ug/kg	1000		88.4	65-130	8.97	35	
Methylene chloride	942	500	ug/kg	1000		94.2	60-140	3.85	35	
4-Methyl-2-pentanone (MIBK)	1020	500	ug/kg	1000		102	10-175	13.7	35	
Naphthalene	922	250	ug/kg	1000		92.2	45-155	27.0	35	
n-Propylbenzene	937	100	ug/kg	1000		93.7	75-135	7.50	35	
Styrene	1050	100	ug/kg	1000		105	70-130	1.89	35	
1,1,1,2-Tetrachloroethane	1040	250	ug/kg	1000		104	70-130	1.94	35	
1,1,2,2-Tetrachloroethane	1010	100	ug/kg	1000		101	60-140	4.83	35	
Tetrachloroethene	1080	100	ug/kg	1000		108	65-130	3.64	35	
Toluene	1010	100	ug/kg	1000		101	70-125	2.93	35	
1,2,3-Trichlorobenzene	872	250	ug/kg	1000		87.2	60-135	21.3	35	
1,2,4-Trichlorobenzene	899	250	ug/kg	1000		89.9	55-135	17.4	35	
1,1,1-Trichloroethane	934	100	ug/kg	1000		93.4	65-135	2.01	35	
1,1,2-Trichloroethane	1040	100	ug/kg	1000		104	65-130	2.84	35	
Trichloroethene	971	100	ug/kg	1000		97.1	70-130	5.90	35	
Trichlorofluoromethane	1080	250	ug/kg	2000		54.0	10-200	5.41	35	
1,2,3-Trichloropropane	982	500	ug/kg	1000		98.2	60-150	12.2	35	
1,2,4-Trimethylbenzene	972	100	ug/kg	1000		97.2	75-130	6.76	35	
1,3,5-Trimethylbenzene	928	100	ug/kg	1000		92.8	70-130	8.46	35	
Vinyl acetate	ND	1200	ug/kg	1000		76.3	25-130	13.9	35	
Vinyl chloride	869	250	ug/kg	2000		43.4	10-200	7.64	35	
Xylenes, Total	3090	300	ug/kg	3000		103	70-130	3.81	35	
Surrogate: Dibromofluoromethane	138		ug/kg	125		110	70-125			
Surrogate: Toluene-d8	152		ug/kg	125		122	50-135			
Surrogate: 4-Bromofluorobenzene	152		ug/kg	125		122	70-130			

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-9596 FAX (858) 505-9689 (480) 785-0043 FAX (480) 785-0851

Law Engineering 4634 S. 36th Place

Client Project ID:

70211-0-0150-2-2.10

Sampled: 09/13/01

Phoenix, AZ 85040 Attention: Jim Clarke

Report Number:

PKI0198

Received: 09/13/01

NETHODISE NEKOODADA

VOLATILE ORGANICS BY GC/MS (EPA 8260B)

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: P1I1401 Extracted: 09	/14/01									
Matrix Spike Analyzed: 09/20/01	(P111401-MS1)				Source: F	KI0199-0)1			
Acetone	ND	1000	ug/kg	1000	ND	75.8	5-200			
Benzene	956	100	ug/kg	1000	ND	95.6	65-130			
Bromobenzene	980	250	ug/kg	1000	ND	98.0	60-135			
Bromochloromethane	1090	250	ug/kg	1000	ND	109	60-135			
Bromodichloromethane	1010	100	ug/kg	1000	ND	101	30-135			
Bromoform	8 7 7	250	ug/kg	1000	ND	87.7	60-140			
Bromomethane	1640	250	ug/kg	2000	ND	82.0	10-200			
2-Butanone (MEK)	806	500	ug/kg	1000	ND	80.6	10-160			
n-Butylbenzene	1010	250	ug/kg	1000	ND	101	65-125			
sec-Butylbenzene	960	250	ug/kg	1000	ND	96.0	70-135			
tert-Butylbenzene	932	250	ug/kg	1000	ND	93.2	70-130			
Carbon Disulfide	553	250	ug/kg	1000	ND	55.3	20-120			
Carbon tetrachloride	1120	250	ug/kg	1000	ND	112	70-140			
Chlorobenzene	1050	100	ug/kg	1000	ND	105	75-125			
Chloroethane	1440	250	ug/kg	2000	ND	72.0	10-200			
Chloroform	1040	100	ug/kg	1000	ND	104	35-135			
Chloromethane	1270	250	ug/kg	2000	ND	63.5	10-200			
2-Chlorotoluene	891	250	ug/kg	1000	ND	89.1	70-135			
4-Chlorotoluene	897	250	ug/kg	1000	ND	89.7	75-135			
Dibromochloromethane	969	100	ug/kg	1000	ND	96.9	35-135			
1,2-Dibromo-3-chloropropane	576	250	ug/kg	1000	ND	57.6	50-155			
1,2-Dibromoethane (EDB)	866	100	ug/kg	1000	ND	86.6	70-130			
Dibromomethane	1000	100	ug/kg	1000	ND	100	65-130			
1,2-Dichlorobenzene	960	100	ug/kg	1000	ND	96.0	70-125			
1,3-Dichlorobenzene	969	100	ug/kg	1000	ND	96.9	70-125			
1,4-Dichlorobenzene	1010	100	ug/kg	1000	ND	101	70-135			
Dichlorodifluoromethane	972	250	ug/kg	2000	ND	48.6	10-185			
1,1-Dichloroethane	991	100	ug/kg	1000	ND	99.1	60-140			
1,2-Dichloroethane	950	100	ug/kg	1000	ND	95.0	55-135			
1,1-Dichloroethene	651	250	ug/kg	1000	ND	65.1	55-145			
cis-1,2-Dichloroethene	1020	100	ug/kg	1000	ND	102	60-125			
trans-1,2-Dichloroethene	1040	100	ug/kg	1000	ND	104	70-145			
1,2-Dichloropropane	941	100	ug/kg	1000	ND	94.1	65-130			
1,3-Dichloropropane	841	100	ug/kg	1000	ND	84.1	65-130	•		
2,2-Dichloropropane	1140	100	ug/kg	1000	ND	114	60-135			
1,1-Dichloropropene	928	100	ug/kg	1000	ND	92.8	65-130			

Melissa Evans Project Manager

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-9596 FAX (858) 505-9689 (480) 785-0043 FAX (480) 785-0851

Law Engineering

4634 S. 36th Place Phoenix, AZ 85040

Attention: Jim Clarke

Client Project ID:

70211-0-0150-2-2.10

10

Report Number: I

PKI0198

Sampled: 09/13/01

Received: 09/13/01

MEDHOD BEANKIOCDALA

VOLATILE ORGANICS BY GC/MS (EPA 8260B)

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: P1I1401 Extracted: 09/14	<u>//01</u>									
Matrix Spike Analyzed: 09/20/01 (P	111401-MS1)				Source: F	K10199-0	1			
cis-1,3-Dichloropropene	943	100	ug/kg	1000	ND	94.3	60-125			
trans-1,3-Dichloropropene	795	100	ug/kg	1000	ND	79.5	50-130			
Ethylbenzene	1020	100	ug/kg	1000	ND	102	70-125			
Hexachlorobutadiene	1380	250	ug/kg	1000	ND	138	60-125			M1
2-Hexanone	785	500	ug/kg	1000	ND	78.5	25-185			
Iodomethane	710	100	ug/kg	1000	ND	71.0	30-155			
Isopropylbenzene	1080	100	ug/kg	1000	ND	108	70-135			
p-Isopropyltoluene	975	100	ug/kg	1000	ND	97.5	65-130			
Methylene chloride	659	500	ug/kg	1000	ND	65.9	60-140			
4-Methyl-2-pentanone (MIBK)	734	500	ug/kg	1000	ND	73.4	10-175			
Methyl-tert-butyl Ether (MTBE)	ND	250	ug/kg		ND		55-135			
Naphthalene	710	250	ug/kg	1000	ND	71.0	45-155			
n-Propylbenzene	902	100	ug/kg	1000	ND	90.2	75-135			
Styrene	1030	100	ug/kg	1000	ND	103	70-130			
1,1,1,2-Tetrachloroethane	1120	250	ug/kg	1000	ND	112	70-130			
1,1,2,2-Tetrachloroethane	597	100	ug/kg	1000	ND	59.7	60-140			
Tetrachloroethene	1030	100	ug/kg	1000	ND	103	65-130			
Toluene	952	100	ug/kg	1000	ND	95.2	70-125			
1,2,3-Trichlorobenzene	809	250	ug/kg	1000	ND	80.9	60-135			
1,2,4-Trichlorobenzene	898	250	ug/kg	1000	ND	89.8	55-135			
1,1,1-Trichloroethane	1110	100	ug/kg	1000	ND	111	65-135			
1,1,2-Trichloroethane	885	100	ug/kg	1000	ND	88.5	65-130			
Trichloroethene	1170	100	ug/kg	1000	ND	117	70-130			
Trichlorofluoromethane	1860	250	ug/kg	2000	ND	93.0	10-200			
1,2,3-Trichloropropane	692	500	ug/kg	1000	ND	69.2	60-150			
1,2,4-Trimethylbenzene	955	100	ug/kg	1000	ND	95.5	75-130			
1,3,5-Trimethylbenzene	908	100	ug/kg	1000	ND	90.8	70-130			
Vinyl acetate	ND	1200	ug/kg	1000	ND	24.7	25-130			
Vinyl chloride	2000	250	ug/kg	2000	ND	100	10-200			
Xylenes, Total	3110	300	ug/kg	3000	ND	104	70-130			
Surrogate: Dibromofluoromethane	137		ug/kg	125		110	70-125			
Surrogate: Toluene-d8	137		ug/kg	125		110	50-135			
Surrogate: 4-Bromofluorobenzene	135		ug/kg	125		108	70-130			

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-9596 FAX (858) 505-9689 (480) 785-0043 FAX (480) 785-0851

Law Engineering 4634 S. 36th Place Phoenix, AZ 85040

Client Project ID: 70211-0-0150-2-2.10

Sampled: 09/13/01 Received: 09/13/01

Attention: Jim Clarke

Report Number: P

PKI0198

METHOD BLANK/OC DATA

VOLATILE ORGANICS BY GC/MS (EPA 8260B)

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: P1I1401 Extracted: 09/1	4/01									
Matrix Spike Dup Analyzed: 09/20/	01 (P1I1401-MS	SD1)			Source: F	KI0199-()1			
Acetone	ND	1000	ug/kg	1000	ND	66.5	5-200	13.1	35	
Benzene	952	100	ug/kg	1000	ND	95.2	65-130	0.419	35	
Bromobenzene	1030	250	ug/kg	1000	ND	103	60-135	4.98	35	
Bromochloromethane	1070	250	ug/kg	1000	ND	107	60-135	1.85	35	
Bromodichloromethane	1040	100	ug/kg	1000	ND	104	30-135	2.93	35	
Bromoform	878	250	ug/kg	1000	ND	87.8	60-140	0.114	35	
Bromomethane	1250	250	ug/kg	2000	ND	62.5	10-200	27.0	35	
2-Butanone (MEK)	753	500	ug/kg	1000	ND	75.3	10-160	6.80	35	
n-Butylbenzene	982	250	ug/kg	1000	ND	98.2	65-125	2.81	35	
sec-Butylbenzene	969	250	ug/kg	1000	ND	96.9	70-135	0.933	35	
tert-Butylbenzene	955	250	ug/kg	1000	ND	95.5	70-130	2.44	35	
Carbon Disulfide	843	250	ug/kg	1000	ND	84.3	20-120	41.5	35	R4
Carbon tetrachloride	1110	250	ug/kg	1000	ND	111	70-140	0.897	35	
Chlorobenzene	1070	100	ug/kg	1000	ND	107	75-125	1.89	35	
Chloroethane	1140	250	ug/kg	2000	ND	57.0	10-200	23.3	35	
Chloroform	1060	100	ug/kg	1000	ND	106	35-135	1.90	35	
Chloromethane	1120	250	ug/kg	2000	ND	56.0	10-200	12.6	35	
2-Chlorotoluene	917	250	ug/kg	1000	ND	91.7	70-135	2.88	35	
4-Chlorotoluene	923	250	ug/kg	1000	ND	92.3	75-135	2.86	35	
Dibromochloromethane	974	100	ug/kg	1000	ND	97.4	35-135	0.515	35	
1,2-Dibromo-3-chloropropane	605	250	ug/kg	1000	ND	60.5	50-155	4.91	35	
1,2-Dibromoethane (EDB)	903	100	ug/kg	1000	ND	90.3	70-130	4.18	35	
Dibromomethane	984	100	ug/kg	1000	ND	98.4	65-130	1.61	35	
1,2-Dichlorobenzene	943	100	ug/kg	1000	ND	94.3	70-125	1.79	35	
1,3-Dichlorobenzene	959	100	ug/kg	1000	ND	95.9	70-125	1.04	35	
1,4-Dichlorobenzene	983	100	ug/kg	1000	ND	98.3	70-135	2.71	35	
Dichlorodifluoromethane	968	250	ug/kg	2000	ND	48.4	10-185	0.412	35	
1,1-Dichloroethane	1040	100	ug/kg	1000	ND	104	60-140	4.83	35	
1,2-Dichloroethane	966	100	ug/kg	1000	ND	96.6	55-135	1.67	35	
1,1-Dichloroethene	7 57	250	ug/kg	1000	ND	75.7	55-145	15.1	35	
cis-1,2-Dichloroethene	1030	100	ug/kg	1000	ND	103	60-125	0.976	35	
trans-1,2-Dichloroethene	1100	100	ug/kg	1000	ND	110	70-145	5.61	35	
1,2-Dichloropropane	942	100	ug/kg	1000	ND	94.2	65-130	0.106	35	
1,3-Dichloropropane	861	100	ug/kg	1000	ND	86.1	65-130	2.35	35	
2,2-Dichloropropane	1090	100	ug/kg	1000	ND	109	60-135	4.48	35	
1,1-Dichloropropene	934	100	ug/kg	1000	ND	93.4	65-130	0.644	35	

Melissa Evans Project Manager

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-9596 FAX (858) 505-9689 (480) 785-0043 FAX (480) 785-0851

Law Engineering

4634 S. 36th Place Phoenix, AZ 85040

Attention: Jim Clarke

Client Project ID:

70211-0-0150-2-2.10

Report Number: PKI0198

Sampled: 09/13/01

Received: 09/13/01

METHOD BLANKOO DATA

VOLATILE ORGANICS BY GC/MS (EPA 8260B)

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: P1I1401 Extracted: 09/14/0	1_									
Matrix Spike Dup Analyzed: 09/20/01	(P1I1401-M	SD1)			Source: P	K10199-0	1			
cis-1,3-Dichloropropene	945	100	ug/kg	1000	ND	94.5	60-125	0.212	35	
trans-1,3-Dichloropropene	859	100	ug/kg	1000	ND	85.9	50-130	7.74	35	
Ethylbenzene	1050	100	ug/kg	1000	ND	105	70-125	2.90	35	
Hexachlorobutadiene	1420	250	ug/kg	1000	ND	142	60-125	2.86	35	M1
2-Hexanone	664	500	ug/kg	1000	ND	66.4	25-185	16.7	35	
Iodomethane	886	100	ug/kg	1000	ND	88.6	30-155	22.1	35	
Isopropylbenzene	1050	100	ug/kg	1000	ND	105	70-135	2.82	35	
p-Isopropyltoluene	969	100	ug/kg	1000	ND	96.9	65-130	0.617	35	
Methylene chloride	1030	500	ug/kg	1000	ND	103	60-140	43.9	35	R4
4-Methyl-2-pentanone (MIBK)	694	500	ug/kg	1000	ND	69.4	10-175	5.60	35	
Methyl-tert-butyl Ether (MTBE)	ND	250	ug/kg		ND		55-135	12.8	35	
Naphthalene	736	250	ug/kg	1000	ND	73.6	45-155	3.60	35	•
n-Propylbenzene	949	100	ug/kg	1000	ND	94.9	75-135	5.08	35	
Styrene	1020	100	ug/kg	1000	ND	102	70-130	0.976	35	
1,1,1,2-Tetrachloroethane	1130	250	ug/kg	1000	ND	113	70-130	0.889	35	
1,1,2,2-Tetrachloroethane	580	100	ug/kg	1000	ND	58.0	60-140	2.89	35	M2
Tetrachloroethene	1070	100	ug/kg	1000	ND	107	65-130	3.81	35	
Toluene	1020	100	ug/kg	1000	ND	102	70-125	6.90	35	
1,2,3-Trichlorobenzene	838	250	ug/kg	1000	ND	83.8	60-135	3.52	35	
1,2,4-Trichlorobenzene	923	250	ug/kg	1000	ND	92.3	55-135	2.75	35	
1,1,1-Trichloroethane	1110	100	ug/kg	1000	ND	111	65-135	0.00	35	
1,1,2-Trichloroethane	937	100	ug/kg	1000	ND	93.7	65-130	5.71	35	
Trichloroethene	1210	100	ug/kg	1000	ND	121	70-130	3.36	35	
Trichlorofluoromethane	1400	250	ug/kg	2000	ND	70.0	10-200	28.2	35	
1,2,3-Trichloropropane	743	500	ug/kg	1000	ND	74.3	60-150	7.11	35	
1,2,4-Trimethylbenzene	954	100	ug/kg	1000	ND	95.4	75-130	0.105	35	
1,3,5-Trimethylbenzene	923	100	ug/kg	1000	ND	92.3	70-130	1.64	35	•
Vinyl acetate	ND .	1200	ug/kg	1000	ND	20.0	25-130	21.0	35	M2
Vinyl chloride	1590	250	ug/kg	2000	ND	79.5	10-200	22.8	35	
Xylenes, Total	3200	300	ug/kg	3000	ND	107	70-130	2.85	35	
Surrogate: Dibromofluoromethane	136		ug/kg	125		109	70-125			
Surrogate: Toluene-d8	156		ug/kg	125		125	50-135			
Surrogate: 4-Bromofluorobenzene	152		ug/kg	125		122	70-130			

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-9596 FAX (858) 505-9689 (480) 785-0043 FAX (480) 785-0851

Law Engineering 4634 S. 36th Place Phoenix, AZ 85040 Attention: Jim Clarke

Client Project ID:

70211-0-0150-2-2.10

Sampled: 09/13/01

Report Number:

PKI0198

Received: 09/13/01

METHODIBLANKQCDATA

•		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: P111911 Extracted: 09/19/01	1									
Blank Analyzed: 09/20/01 (P1I1911-BL	– .K1)									
Arsenic	ND	5.0	mg/kg							
Chromium	ND	1.0	mg/kg							
Copper	ND	2.0	mg/kg							
Nickel	ND	5.0	mg/kg							
Zinc	ND	5.0	mg/kg							B4
LCS Analyzed: 09/20/01 (P1I1911-BS1))									٥,
Arsenic	88.2	5.0	mg/kg	100		88.2	80-120			
Chromium	87.1	1.0	mg/kg	100		87.1	80-120			
Copper	88.0	2.0	mg/kg	100		88.0	80-120			
Nickel	85.7	5.0	mg/kg	100		85.7	80-120			
Zinc	92.6	5.0	mg/kg	100		92.6	80-120			
LCS Dup Analyzed: 09/20/01 (P111911-	-BSD1)									
Arsenic	92.8	5.0	mg/kg	100		92.8	80-120	5.08	20	
Chromium	91.5	1.0	mg/kg	100		91.5	80-120	4.93	20	
Copper	93.7	2.0	mg/kg	100		93.7	80-120	6.27	20	
Nickel	90.1	5.0	mg/kg	100		90.1	80-120	5.01	20	
Zinc	94.8	5.0	mg/kg	100		94.8	80-120	2.35	20	
Matrix Spike Analyzed: 09/20/01 (P111	911-MS1)				Source: P	K10198-1	1			
Arsenic	80.9	5.0	mg/kg	100	ND	80.9	75-125			
Chromium	115	1.0	mg/kg	100	25	90.0	75-125			
Copper	107	2.0	mg/kg	100	13	94.0	75-125			
Nickel	101	5.0	mg/kg	100	13	88.0	75-125			
Zine	133	5.0	mg/kg	100	46	87.0	75-125			
Matrix Spike Dup Analyzed: 09/20/01 (P111911-MS	D1)			Source: P	KI0198-1	1			
Arsenic	79.6	5.0	mg/kg	100	ND	79.6	75-125	1.62	20	
Chromium	108	1.0	mg/kg	100	25	83.0	75-125	6.28	20	
Copper	103	2.0	mg/kg	100	13	90.0	75-125	3.81	20	
Nickel	92.4	5.0	mg/kg	100	13	79.4	75-125	8.89	20	
Zinc	122	5.0	mg/kg	100	46	76.0	75-125	8.63	20	

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-9596 FAX (858) 505-9689 (480) 785-0043 FAX (480) 785-0851

Law Engineering 4634 S. 36th Place Phoenix, AZ 85040

Client Project ID:

70211-0-0150-2-2.10

Sampled: 09/13/01

Attention: Jim Clarke

Report Number:

PKI0198

Received: 09/13/01

NE HODBLANKORDATA

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: P1I2006 Extracted: 09/20/0	<u>1</u>									
Blank Analyzed: 09/21/01 (P1I2006-Bl	LK1)						÷			
Arsenic	ND	5.0	mg/kg							
Chromium	ND	1.0	mg/kg							
Copper	ND	2.0	mg/kg							
Nickel	ND	5.0	mg/kg							
Zinc	ND	5.0	mg/kg							B4
LCS Analyzed: 09/21/01 (P1I2006-BS1	1)	•								
Arsenic	87.5	5.0	mg/kg	100		87.5	80-120			
Chromium	88.5	1.0	mg/kg	100		88.5	80-120			
Copper	92.8	2.0	mg/kg	100		92.8	80-120			
Nickel	87.7	5.0	mg/kg	100		87.7	80-120			
Zinc	99.2	5.0	mg/kg	100		99.2	80-120			
LCS Dup Analyzed: 09/21/01 (P1I2000	6-BSD1)									
Arsenic	83.7	5.0	mg/kg	100		83.7	80-120	4.44	20	
Chromium	83.7	1.0	mg/kg	100		83.7	80-120	5.57	20	
Copper	84.6	2.0	mg/kg	100		84.6	80-120	9.24	20	
Nickel	83.7	5.0	mg/kg	100		83.7	80-120	4.67	20	
Zinc	89.8	5.0	mg/kg	100		89.8	80-120	9.95	20	
Matrix Spike Analyzed: 09/21/01 (P11)	2006-MS1)				Source: 1	PK10202-0)5			
Arsenic	77.9	5.0	mg/kg	100	ND	77.9	75-125			
Chromium	93.8	1.0	mg/kg	100	14	79.8	75-125			
Copper	97.2	2.0	mg/kg	100	15	82.2	75-125			
Nickel	85.1	5.0	mg/kg	100	7.4	77.7	75-125			
Zinc	104	5.0	mg/kg	100	25	79.0	75-125			
Matrix Spike Dup Analyzed: 09/21/01	(P1I2006-M	1SD1)			Source: 1	PK10202-0	05			
Arsenic	58.8	5.0	mg/kg	100	ND	58.8	75-125	27.9	20	M2,Q11
Chromium	95.5	1.0	mg/kg	100	14	81.5	75-125	1.80	20	
Copper	97.5	2.0	mg/kg	100	15	82.5	75-125	0.308	20	
Nickel	84.8	5.0	mg/kg	100	7.4	77.4	75-125	0.353	20	
Zinc	110	5.0	mg/kg	100	25	85.0	75-125	5.61	20	

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-9596 FAX (858) 505-9689 (480) 785-0043 FAX (480) 785-0851

Law Engineering 4634 S. 36th Place Phoenix, AZ 85040 Attention: Jim Clarke

Client Project ID:

Report Number:

70211-0-0150-2-2.10

PKI0198

Sampled: 09/13/01 Received: 09/13/01

METHOD BLANK QC: DATA

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: P1I2415 Extracted: 09/24/01	-									
Blank Analyzed: 09/24/01 (P1I2415-BL	K1)									
Chromium VI	ND	1.0	mg/kg							
LCS Analyzed: 09/24/01 (P1I2415-BS1)										
Chromium VI	9.73	1.0	mg/kg	10.0		97.3	85-115			
LCS Dup Analyzed: 09/24/01 (P1I2415-	BSD1)									
Chromium VI	8.93	1.0	mg/kg	10.0		89.3	85-115	8.57	20	
Matrix Spike Analyzed: 09/24/01 (P1124	115-MS1)				Source: P	KI0159-0	7			
Chromium VI	9.08	1.0	mg/kg	10.0	ND	89.3	85-115			
Matrix Spike Dup Analyzed: 09/24/01 (/01 (P1I2415-MSD1)				Source: P	KI0159-0	7			
Chromium VI	9.08	1.0	mg/kg	10.0	ND	89.3	85-115	0.00	20	
Batch: P1J0103 Extracted: 10/01/01	_									
Blank Analyzed: 10/02/01 (P1J0103-BL	K1)									
Zinc	ND	5.0	mg/kg							
LCS Analyzed: 10/02/01 (P1J0103-BS1)										
Zinc	86.2	5.0	mg/kg	100		86.2	80-120			
Matrix Spike Analyzed: 10/02/01 (P1J0	103-MS1)				Source: P	KI0288-1	9			
Zinc	142	5.0	mg/kg	100	29	113	75-125			
Matrix Spike Dup Analyzed: 10/02/01 (P1J0103-MSD1)				Source: P	KI0288-1	9				
Zinc	117	5.0	mg/kg	100	29	88.0	75-125	19.3	20	

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-9596 FAX (858) 505-9689 (480) 785-0043 FAX (480) 785-0851

Law Engineering 4634 S. 36th Place Phoenix, AZ 85040 Attention: Jim Clarke

Client Project ID:

70211-0-0150-2-2.10

Sampled: 09/13/01

Report Number:

PKI0198

Received: 09/13/01

METHODIHLANKOE DATA

		Reporting	ting		Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: P1J0507 Extracted: 10	/05/01									
Blank Analyzed: 10/07/01 (P1J05	07-BLK1)									
Zinc	5.44	5.0	mg/kg							B1
LCS Analyzed: 10/07/01 (P1J050)	7-BS1)									
Zinc	105	5.0	mg/kg	100		105	80-120			
Matrix Spike Analyzed: 10/07/01	(P1J0507-MS1)				Source: F	PKJ0075-0	01			
Zinc	191	5.0	mg/kg	100	75	116	75-125			
Matrix Spike Dup Analyzed: 10/0	7/01 (P1J0507-M	SD1)			Source: I	PKJ0075-0	01			
Zine	180	5.0	mg/kg	100	75	105	75-125	5.93	20	
Batch: P1J1010 Extracted: 10	/10/01									
Blank Analyzed: 10/11/01 (P1J10	10-BLK1)									
Zinc	6.02	5.0	mg/kg							B1
LCS Analyzed: 10/11/01 (P1J101	0-BS1)									
Zinc	99.7	5.0	mg/kg	100		99.7	80-120			
Matrix Spike Analyzed: 10/11/01	(P1J1010-MS1)				Source: I	PKJ0029-	01RE2			
Zinc	152	5.0	mg/kg	100	64	88.0	75-125			
Matrix Spike Dup Analyzed: 10/1	1/01 (P1J1010-M	(SD1)			Source: I	PKJ0029-	01RE2			
Zinc	147	5.0	mg/kg	100	64	83.0	75-125	3.34	20	

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-9596 FAX (858) 505-9689 (480) 785-0043 FAX (480) 785-0851

Law Engineering 4634 S. 36th Place Phoenix, AZ 85040

Client Project ID:

70211-0-0150-2-2.10

Sampled: 09/13/01

Attention: Jim Clarke

Report Number:

PKI0198

Received: 09/13/01

METHOD BLANKKOU DATA

INORGANICS

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: P1I2412 Extracted: 09/24/0	<u>L</u>									
Blank Analyzed: 09/25/01 (P1I2412-BI	K1)									
Total Cyanide	ND	0.020	mg/kg							
Blank Analyzed: 09/25/01 (P1I2412-BI	.K2)									
Total Cyanide	ND	0.020	mg/kg							
Matrix Spike Analyzed: 09/25/01 (P1I2	412-MS1)				Source: P	KI0180-0	8			
Total Cyanide	2.14	0.50	mg/kg	2.50	ND	85.6	70-130			
Matrix Spike Dup Analyzed: 09/25/01	(P1I2412-M	SD1)			Source: P	K10180-0	8			
Total Cyanide	3.27	0.50	mg/kg	2.50	ND	131	70-130	41.8	20	N2,R1
Reference Analyzed: 09/25/01 (P112412	2-SRM1)									
Total Cyanide	101	20	mg/kg	201		50.2	40-160			
Reference Analyzed: 09/25/01 (P1I2412	2-SRM2)									
Total Cyanide	157	20	mg/kg	201		78.1	40-160			
Batch: P1I2701 Extracted: 09/27/0	<u>L</u>									
Blank Analyzed: 09/27/01 (P1I2701-BI	.K1)									
Total Cyanide	ND	0.50	mg/kg							
Matrix Spike Analyzed: 09/27/01 (P112	701-MS1)				Source: P	K10355-0	1			
Total Cyanide	2.77	0.50	mg/kg	2.50	ND	111	70-130			
Matrix Spike Dup Analyzed: 09/27/01 (P112701-MSD1)					Source: P	KI0355-0	1			
Total Cyanide	2.18	0.50	mg/kg	2.50	ND	87.2	70-130	23.8	20	R1

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-9596 FAX (858) 505-9689 (480) 785-0043 FAX (480) 785-0851

Law Engineering 4634 S. 36th Place Phoenix, AZ 85040 Attention: Jim Clarke

Client Project ID:

70211-0-0150-2-2.10

Sampled: 09/13/01

Report Number:

PKI0198

Received: 09/13/01

NETHODELANKOU DATA

INORGANICS

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: P1I2701 Extracted: 09/27/	<u>/01</u>									
Reference Analyzed: 09/27/01 (P1I27	(01-SRM1)									
Total Cyanide	177	20	mg/kg	201		88.1	40-160			
Reference Analyzed: 09/27/01 (P1I27	(01-SRM2)									
Total Cyanide	138	20	mg/kg	201		68.7	40-160			

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-9596 FAX (858) 505-9689 (480) 785-0043 FAX (480) 785-0851

Law Engineering 4634 S. 36th Place Phoenix, AZ 85040 Attention: Jim Clarke

Client Project ID:

70211-0-0150-2-2.10

Sampled: 09/13/01

Report Number:

PKI0198

Received: 09/13/01

METHOD BLANKQC DATA

DATA QUALIFIERS AND DEFINITIONS

- Target analyte detected in method blank at or above the method reporting limit.
- B4 Target analyte detected in blank at/above method acceptance criteria.
- D1 Sample required dilution due to matrix interference. See case narrative.
- M1 Matrix spike recovery was high, the method control sample recovery was acceptable.
- M2 Matrix spike recovery was low, the method control sample recovery was acceptable.
- N1 See case narrative.
- N2 See corrective action report.
- Q11 Sample is heterogeneous. Sample homogeneity could not be readily achieved using routine laboratory practices.
- R1 RPD exceeded the method control limit. See case narrative.
- R4 MS/MSD RPD exceeded the method control limit. Recovery met acceptance criteria.
- R6 LFB/LFBD RPD exceeded the method control limit. Recovery met acceptance criteria.
- S4 Surrogate recovery was above laboratory and method acceptance limits. No target analytes were detected in the sample.
- V1 CCV recovery was above method acceptance limits. This target analyte was not detected in the sample.
- ND Analyte NOT DETECTED at or above the reporting limit
- NR Not reported.
- RPD Relative Percent Difference

Del Mar Analytical

CHAIN OF CUSTODY FORM

(909) 370-466 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (828) 505-8596 FAX (818) 779-1843 (480) 785-0045 FAX (819) 785-085 (702) 798-3020 FAX (702) 798-3021

7277 Hayvenhurst, Suite B-12, Van Nuys, CA 91406 9484 Chesapeeke Dr., Suite 805, San Diego, CA 82123 9830 South 51st St., Suite B-120, Phoenb, AZ 8604 2520 E. Sunset Rd., Suite G, Las Vegas, NV 89120

1014 E. Cooley Dr., Suite A,

Special Instructions ō HOLD 72 hours 5 days Page normal on ice (Check) Sample Integrity: (Check) O 3 S B <u>_</u> で 8 5 Ç -Tumaround Time: 18/18/N same day 24 hours 48 hours intact 10/2/16 Analysis Required 16:10 4/11/1/21 Date /Time: Date /Time: Date /Time: Received in Lab by: Sampling | Sampling | Preservatives Received by: Received by: 240 10% N 12.45 五大 SA SA 0401 10-0-11-W Time MESTON 100K 1180 3/11 437 0250 Project/PO Number: Date Phone Number: =ax Number: 16:40 Cont. 2 realle かんかな Date /Time: Container Type 10/2/ Sample Matrix えずか M Š 0 Û 9 S B 3 O I į ş Description Client Name/Address: V 100 100 199 しのい į elinquished By Relinquished By BB B 188 180 186

Note: By relinquishing samples to Del Mar Analytical, client agrees to pay for the services requested on this chain of custody form and any additional analyses performed on this project. Payment for services is due within 30 days from the date of invoice. Sample(s) will be disposed of after 30 days.

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-8596 FAX (858) 505-9589 (480) 785-0043 FAX (480) 785-0851

Law Engineering 4634 S. 36th Place Phoenix, AZ 85040

Attention: Jim Clarke

Client Project ID:

70211-0-01SD

Sampled: 09/12/01 Received: 09/12/01

Issued: 9/28/01

Report Number:

PKI0180

---- (OASP NARRATIA)

LABORATORY	SAMPLE	SAMPLE
NUMBER	DESCRIPTION	MATRIX
PKI0180-04	LB7-S-30	Soil
PKI0180-06	LB7-S-50	Soil
PKI0180-08	LB4-S-60	Soil
PKI0180-08RE1	LB4-S-60	Soil
PKI0180-09	LB7-S-10	Soil
PKI0180-09RE1	LB7-S-10	Soil
PKI0180-10	LB7-S-20	Soil
PK10180-10RE1	LB7-S-20	Soil
PKI0180-11	LB7-S-30	Soil
PKI0180-11RE1	LB7-S-30	Soil
PKI0180-12	LB7-S-40	Soil
PKI0180-12RE1	LB7-S-40	Soil
PKI0180-13	LB7-S-50	Soil
PKI0180-13RE1	LB7-S-50	Soil
PK10180-14	LB7-S-60	Soil
PKI0180-14RE1	LB7-S-60	Soil
PKI0180-15	RINSATE 7/12/01	Water
PKI0180-15RE1	RINSATE 7/12/01	Water

SAMPLE RECEIPT:

Samples were received intact, on ice, and with chain of custody documentation.

HOLDING TIMES:

Holding times were met.

PRESERVATION:

Samples requiring preservation were verified prior to sample analysis.

OBSERVATIONS:

No significant observations were made.

SUBCONTRACTED:

No analyses were subcontracted to an outside laboratory.

QA/QC CRITERIA:

The R1 flag on Cyanide indicates that the RPD exceeded the method control limit. See Corrective Action Report.

EXPLANATION OF DATA

QUALIFIERS:

The N2 flag on Cyanide indicates that the Matrix Spike recovery was outside the method control limits. See Corrective Action Report.

DEL MAR ANALYT**I**CAL , PHOENIX (AZ0426)

Melissa Evans Project Manager PKI0180 Page 1 of 39

CORRECTIVE ACTION REPORT

Department:

Wet Chemistry

Methods:

9014

Date:

09/25/2001

Matrix:

Soil

Batch:

P1I2412

Samples Affected:

PKI0198-07, PKI0198-08, PKI0168-01 - PKI0168-05 &

PKI0180-08 - PKI0180-14

Identification and Definition of Problem:

The Matrix Spike Duplicate (MSD) recovered high (131%) and outside of the 70-130% acceptance limits. Because of the high recovery in the MSD the Relative Percent Difference (RPD) between the Matrix Spike (MS) and the MSD was high (41.8%) and outside of the 20% acceptance limits.

Determination of the Cause of the Problem:

A definitive cause for the high recovery has not been determined.

Corrective Action:

The MS as well as the Laboratory Control Sample recovered within acceptance limits, thus validating the batch. The MSD has been flagged "N2" to indicate the low recovery and "R1" to indicate that the RPD was outside of acceptance limits.

Elizabeth C. Wueschner: Lhyalet C Wuscher Date: 07/28/2001 Quality Assurance Manager

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-8596 FAX (858) 505-9589 (480) 785-0043 FAX (480) 785-0851

Law Engineering

4634 S. 36th Place Phoenix, AZ 85040

Attention: Jim Clarke

Client Project ID: 70211-0-01SD

Sampled: 09/12/01

Report Number:

PKI0180

Received: 09/12/01

VOLATILE ORGANICS BY GC/MS (EPA 8260B)

Analyte	Method	Batch	Reporting Limit ug/kg	Sample Result ug/kg	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: PKI0180-04 (LB7-S-	-30 - Soil)		00	0 0				
Acetone	EPA 8260B	P111401	1000	ND	1	9/14/01	9/26/01	
Benzene	EPA 8260B	P1I1401	100	ND	1	9/14/01	9/26/01	
Bromobenzene	EPA 8260B	P1I1401	250	ND	1	9/14/01	9/26/01	
Bromochloromethane	EPA 8260B	P1I1401	250	ND	1	9/14/01	9/26/01	
Bromodichloromethane	EPA 8260B	P111401	100	ND	1	9/14/01	9/26/01	
Bromoform	EPA 8260B	P111401	250	ND	1	9/14/01	9/26/01	
Bromomethane	EPA 8260B	P1I1401	250	ND	1	9/14/01	9/26/01	
2-Butanone (MEK)	EPA 8260B	P1I1401	500	ND	1	9/14/01	9/26/01	
n-Butylbenzene	EPA 8260B	P1I1401	250	ND	1	9/14/01	9/26/01	
sec-Butylbenzene	EPA 8260B	P1I1401	250	ND	1	9/14/01	9/26/01	
tert-Butylbenzene	EPA 8260B	P1I1401	250	ND	1	9/14/01	9/26/01	
Carbon Disulfide	EPA 8260B	P1I1401	250	ND	1	9/14/01	9/26/01	
Carbon tetrachloride	EPA 8260B	P1I1401	250	ND	1	9/14/01	9/26/01	
Chlorobenzene	EPA 8260B	P1I1401	100	ND	1	9/14/01	9/26/01	
Chloroethane	EPA 8260B	P1I1401	250	ND	1	9/14/01	9/26/01	
Chloroform	EPA 8260B	P1I1401	100	ND	1	9/14/01	9/26/01	
Chloromethane	EPA 8260B	P1I1401	250	ND	1	9/14/01	9/26/01	
2-Chlorotoluene	EPA 8260B	P1I1401	250	ND	1	9/14/01	9/26/01	
4-Chlorotoluene	EPA 8260B	P1I1401	250	ND	1	9/14/01	9/26/01	
Dibromochloromethane	EPA 8260B	P1I1401	100	ND	1	9/14/01	9/26/01	
1,2-Dibromo-3-chloropropane	EPA 8260B	P1I1401	250	ND	1	9/14/01	9/26/01	
1,2-Dibromoethane (EDB)	EPA 8260B	P1I1401	100	ND	1	9/14/01	9/26/01	
Dibromomethane	EPA 8260B	P1I1401	100	ND	1	9/14/01	9/26/01	
1,2-Dichlorobenzene	EPA 8260B	P1I1401	100	ND	1	9/14/01	9/26/01	
1,3-Dichlorobenzene	EPA 8260B	P111401	100	ND	1	9/14/01	9/26/01	
1,4-Dichlorobenzene	EPA 8260B	P111401	100	ND	1	9/14/01	9/26/01	
Dichlorodifluoromethane	EPA 8260B	P111401	250	ND	1	9/14/01	9/26/01	
1,1-Dichloroethane	EPA 8260B	P111401	100	ND	1	9/14/01	9/26/01	
1,2-Dichloroethane	EPA 8260B	P111401	100	ND	1	9/14/01	9/26/01	
1,1-Dichloroethene	EPA 8260B	P111401	250	ND	1	9/14/01	9/26/01	
cis-1,2-Dichloroethene	EPA 8260B	P111401	100	ND	1	9/14/01	9/26/01	
trans-1,2-Dichloroethene	EPA 8260B	P111401	100	ND	1	9/14/01	9/26/01	
1,2-Dichloropropane	EPA 8260B	P1I1401	100	ND	1	9/14/01	9/26/01	
1,3-Dichloropropane	EPA 8260B	P111401	100	ND	1	9/14/01	9/26/01	
2,2-Dichloropropane	EPA 8260B	P1I1401	100	ND	1	9/14/01	9/26/01	
1,1-Dichloropropene	EPA 8260B	P111401	100	ND	1	9/14/01	9/26/01	
cis-1,3-Dichloropropene	EPA 8260B	P111401	100	ND	1	9/14/01	9/26/01	
trans-1,3-Dichloropropene	EPA 8260B	P1I1401	100	ND	1	9/14/01	9/26/01	
Ethylbenzene	EPA 8260B	P111401	100	ND	1	9/14/01	9/26/01	
Hexachlorobutadiene	EPA 8260B	P1I1401	250	ND	1	9/14/01	9/26/01	
2-Hexanone	EPA 8260B	P1I1401	500	ND	1	9/14/01	9/26/01	
Iodomethane	EPA 8260B	P1I1401	100	ND	1	9/14/01	9/26/01	
Isopropylbenzene	EPA 8260B	P1I1401	100	ND	1	9/14/01	9/26/01	
p-Isopropyltoluene	EPA 8260B	P111401	100	ND	1	9/14/01	9/26/01	

Melissa Evans Project Manager PKI0180 Page 2 of 39

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-8596 FAX (858) 505-9589 (480) 785-0043 FAX (480) 785-0851

Law Engineering 4634 S. 36th Place Phoenix, AZ 85040

Attention: Jim Clarke

Client Project ID: 70211-0-01SD

Report Number: PKI0180

Sampled: 09/12/01 Received: 09/12/01

VOLATILE ORGANICS BY GC/MS (EPA 8260B)

Analyte	Method	Batch	Reporting Limit ug/kg	Sample Result ug/kg	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: PKI0180-04 (LB7-	-S-30 - Soil)							
Methylene chloride	EPA 8260B	P1I1401	500	ND	1	9/14/01	9/26/01	
4-Methyl-2-pentanone (MIBK)	EPA 8260B	P1I1401	500	ND	1	9/14/01	9/26/01	
Methyl-tert-butyl Ether (MTBE)	EPA 8260B	P1I1401	250	ND	1	9/14/01	9/26/01	
Naphthalene	EPA 8260B	P1I1401	250	ND	1	9/14/01	9/26/01	
n-Propylbenzene	EPA 8260B	P1I1401	100	ND	1	9/14/01	9/26/01	
Styrene	EPA 8260B	P1I1401	100	ND	1	9/14/01	9/26/01	
1,1,1,2-Tetrachloroethane	EPA 8260B	P1I1401	250	ND	1	9/14/01	9/26/01	
1,1,2,2-Tetrachloroethane	EPA 8260B	P1I1401	100	ND	1	9/14/01	9/26/01	
Tetrachloroethene	EPA 8260B	P111401	100	ND	1	9/14/01	9/26/01	
Toluene	EPA 8260B	P111401	100	ND	1	9/14/01	9/26/01	
1,2,3-Trichlorobenzene	EPA 8260B	P111401	250	ND	1	9/14/01	9/26/01	
1,2,4-Trichlorobenzene	EPA 8260B	P1I1401	250	ND	1	9/14/01	9/26/01	
1,1,1-Trichloroethane	EPA 8260B	P1I1401	100	ND	1	9/14/01	9/26/01	
1,1,2-Trichloroethane	EPA 8260B	P111401	100	ND	1	9/14/01	9/26/01	
Trichloroethene	EPA 8260B	P111401	100	ND	1	9/14/01	9/26/01	
Trichlorofluoromethane	EPA 8260B	P1I1401	250	ND	1	9/14/01	9/26/01	
1,2,3-Trichloropropane	EPA 8260B	P111401	500	ND	1	9/14/01	9/26/01	
1,2,4-Trimethylbenzene	EPA 8260B	P111401	100	ND	1	9/14/01	9/26/01	
1,3,5-Trimethylbenzene	EPA 8260B	P111401	100	ND	1	9/14/01	9/26/01	
Vinyl acetate	EPA 8260B	P1I1401	1200	ND	1	9/14/01	9/26/01	
Vinyl chloride	EPA 8260B	P111401	250	ND	1	9/14/01	9/26/01	
Xylenes, Total	EPA 8260B	P111401	300	ND	1	9/14/01	9/26/01	
Surrogate: Dibromofluoromethane (70-1	125%)			109 %				
Surrogate: Toluene-d8 (50-135%)				128 %				
Surrogate: 4-Bromofluorobenzene (70-1	30%)			116%				

The reporting limit for this sample was adjusted by a factor of 0.936 to account for the applicable preparation factor.

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-8596 FAX (858) 505-9589 (480) 785-0043 FAX (480) 785-0851

Law Engineering 4634 S. 36th Place Phoenix, AZ 85040

Attention: Jim Clarke

Client Project ID: 70211-0-01SD

Sampled: 09/12/01

Report Number:

PKI0180

Received: 09/12/01

VOLATILE ORGANICS BY GC/MS (EPA 8260B)

Analyte	Method	Batch	Reporting Limit ug/kg	Sample Result ug/kg	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: PKI0180-06 (LB7-	-S-50 - Soil)		88	88				
Acetone	EPA 8260B	P1I1401	910	ND	1	9/14/01	9/25/01	
Benzene	EPA 8260B	P1I1401	91	ND	1	9/14/01	9/25/01	
Bromobenzene	EPA 8260B	P1I1401	230	ND	1	9/14/01	9/25/01	
Bromochloromethane	EPA 8260B	P1I1401	230	ND	1	9/14/01	9/25/01	
Bromodichloromethane	EPA 8260B	P1I1401	91	ND	1	9/14/01	9/25/01	
Bromoform	EPA 8260B	P1I1401	230	ND	1	9/14/01	9/25/01	
Bromomethane	EPA 8260B	P1I1401	230	ND	1	9/14/01	9/25/01	
2-Butanone (MEK)	EPA 8260B	P1I1401	450	ND	1	9/14/01	9/25/01	
n-Butylbenzene	EPA 8260B	P1I1401	230	ND	1	9/14/01	9/25/01	
sec-Butylbenzene	EPA 8260B	P1I1401	230	ND	1	9/14/01	9/25/01	
tert-Butylbenzene	EPA 8260B	P1I1401	230	ND	1	9/14/01	9/25/01	
Carbon Disulfide	EPA 8260B	P1I1401	230	ND	1	9/14/01	9/25/01	
Carbon tetrachloride	EPA 8260B	P1I1401	230	ND	1	9/14/01	9/25/01	
Chlorobenzene	EPA 8260B	P1I1401	91	ND	1	9/14/01	9/25/01	
Chloroethane	EPA 8260B	P1I1401	230	ND	1	9/14/01	9/25/01	V1
Chloroform	EPA 8260B	P1I1401	91	ND	1	9/14/01	9/25/01	
Chloromethane	EPA 8260B	P1I1401	230	ND	1	9/14/01	9/25/01	
2-Chlorotoluene	EPA 8260B	P1I1401	230	ND	1	9/14/01	9/25/01	
4-Chlorotoluene	EPA 8260B	P1I1401	230	ND	1	9/14/01	9/25/01	
Dibromochloromethane	EPA 8260B	P1I1401	91	ND	1	9/14/01	9/25/01	
1,2-Dibromo-3-chloropropane	EPA 8260B	P1I1401	230	ND	1	9/14/01	9/25/01	
1,2-Dibromoethane (EDB)	EPA 8260B	P111401	91	ND	1	9/14/01	9/25/01	
Dibromomethane	EPA 8260B	P111401	91	ND	1	9/14/01	9/25/01	
1,2-Dichlorobenzene	EPA 8260B	P1I1401	91	ND	1	9/14/01	9/25/01	
1,3-Dichlorobenzene	EPA 8260B	P1I1401	91	ND	1	9/14/01	9/25/01	
1,4-Dichlorobenzene	EPA 8260B	P1I1401	91	ND	1	9/14/01	9/25/01	
Dichlorodifluoromethane	EPA 8260B	P1I1401	230	ND	1	9/14/01	9/25/01	
1,1-Dichloroethane	EPA 8260B	P1I1401	91	ND	1	9/14/01	9/25/01	
1,2-Dichloroethane	EPA 8260B	P1I1401	91	ND	1	9/14/01	9/25/01	
1,1-Dichloroethene	EPA 8260B	P1I1401	230	ND	1	9/14/01	9/25/01	
cis-1,2-Dichloroethene	EPA 8260B	P1I1401	91	ND	i	9/14/01	9/25/01	
trans-1,2-Dichloroethene	EPA 8260B	P1I1401	91	ND	1	9/14/01	9/25/01	
1,2-Dichloropropane	EPA 8260B	P1I1401	91	ND	1	9/14/01	9/25/01	
1,3-Dichloropropane	EPA 8260B	P1I1401	91	ND	1	9/14/01	9/25/01	
2,2-Dichloropropane	EPA 8260B	P1I1401	91	ND	i	9/14/01	9/25/01	
1,1-Dichloropropene	EPA 8260B	P1I1401	91	ND	1	9/14/01	9/25/01	
cis-1,3-Dichloropropene	EPA 8260B	P1I1401	91	ND	1	9/14/01	9/25/01	
trans-1,3-Dichloropropene	EPA 8260B	P1I1401	91	ND	1	9/14/01	9/25/01	
Ethylbenzene	EPA 8260B	P1I1401	91	ND	1	9/14/01	9/25/01	
Hexachlorobutadiene	EPA 8260B	P1I1401	230	ND	1	9/14/01	9/25/01	
2-Hexanone	EPA 8260B	P1I1401	450	ND	1	9/14/01	9/25/01	
Iodomethane	EPA 8260B	P1I1401	91	ND	1	9/14/01	9/25/01	
Isopropylbenzene	EPA 8260B	P111401	91	ND	1	9/14/01	9/25/01	
p-Isopropyltoluene	EPA 8260B	P1I1401	91	ND	1	9/14/01	9/25/01	
p isopropyriorium	LI A 0200D	1 111701	91	עויו	1	21 1 4 /U1	31 4 31 U I	

Melissa Evans Project Manager

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-8596 FAX (858) 505-9589 (480) 785-0043 FAX (480) 785-0851

Law Engineering 4634 S. 36th Place Phoenix, AZ 85040

Client Project ID: 70211-0-01SD

Sampled: 09/12/01 Received: 09/12/01

Attention: Jim Clarke

Report Number: PKI0180

VOLATILE ORGANICS BY GC/MS (EPA 8260B)

Analyte	Method	Batch	Reporting Limit ug/kg	Sample Result ug/kg	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: PKI0180-06 (LB7-8	S-50 - Soil)		8 8	0 0				
Methylene chloride	EPA 8260B	P1I1401	450	ND	1	9/14/01	9/25/01	VI
4-Methyl-2-pentanone (MIBK)	EPA 8260B	P1I1401	450	ND	1	9/14/01	9/25/01	
Methyl-tert-butyl Ether (MTBE)	EPA 8260B	P1I1401	230	ND	1	9/14/01	9/25/01	
Naphthalene	EPA 8260B	P111401	230	ND	1	9/14/01	9/25/01	
n-Propylbenzene	EPA 8260B	P1I1401	91	ND	1	9/14/01	9/25/01	
Styrene	EPA 8260B	P1I1401	91	ND	1	9/14/01	9/25/01	
1,1,1,2-Tetrachloroethane	EPA 8260B	P1I1401	230	ND	1	9/14/01	9/25/01	
1,1,2,2-Tetrachloroethane	EPA 8260B	P1I1401	91	ND	1	9/14/01	9/25/01	
Tetrachloroethene	EPA 8260B	P1I1401	91	ND	1	9/14/01	9/25/01	
Toluene	EPA 8260B	P1I1401	91	ND	1	9/14/01	9/25/01	
1,2,3-Trichlorobenzene	EPA 8260B	P111401	230	ND	1	9/14/01	9/25/01	
1,2,4-Trichlorobenzene	EPA 8260B	P1I1401	230	ND	1	9/14/01	9/25/01	
1,1,1-Trichloroethane	EPA 8260B	P111401	91	ND	1	9/14/01	9/25/01	V1
1,1,2-Trichloroethane	EPA 8260B	P111401	91	ND	1	9/14/01	9/25/01	
Trichloroethene	EPA 8260B	P1I1401	91	ND	1	9/14/01	9/25/01	
Trichlorofluoromethane	EPA 8260B	P1I1401	230	ND	1	9/14/01	9/25/01	
1,2,3-Trichloropropane	EPA 8260B	P1I1401	450	ND	1	9/14/01	9/25/01	
1,2,4-Trimethylbenzene	EPA 8260B	P1I1401	91	ND	1	9/14/01	9/25/01	
1,3,5-Trimethylbenzene	EPA 8260B	P111401	91	ND	1	9/14/01	9/25/01	
Vinyl acetate	EPA 8260B	P111401	1100	ND	1	9/14/01	9/25/01	
Vinyl chloride	EPA 8260B	P1I1401	230	ND	1	9/14/01	9/25/01	
Xylenes, Total	EPA 8260B	P111401	270	ND	1	9/14/01	9/25/01	
Surrogate: Dibromofluoromethane (70-12		89.4 %						
Surrogate: Toluene-d8 (50-135%)				91.2 %				
Surrogate: 4-Bromofluorobenzene (70-13)	0%)			86.7 %				

The reporting limit for this sample was adjusted by a factor of 0.907 to account for the applicable preparation factor.

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-8596 FAX (858) 505-9589 (480) 785-0043 FAX (480) 785-0851

Law Engineering 4634 S. 36th Place Phoenix, AZ 85040 Attention: Jim Clarke

Client Project ID: 70211-0-01SD

Sampled: 09/12/01 Received: 09/12/01

Report Number:

PKI0180

VOLATILE ORGANICS BY GC/MS (EPA 8260B)

					Dilution	Data	D-4-	Data
Analysta	Method	Dotoh	Reporting	Sample	Dilution	Date Extracted	Date	Data
Analyte	Method	Batch	Limit	Result	Factor	Extracted	Analyzed	Qualifiers
			ug/l	ug/l				
Sample ID: PKI0180-15 (RINSA								
Acetone	EPA 8260B	P112706	20	ND	1	9/26/01	9/26/01	
Benzene	EPA 8260B	P112706	2.0	ND	1	9/26/01	9/26/01	
Bromobenzene	EPA 8260B	P112706	5.0	ND	1	9/26/01	9/26/01	
Bromochloromethane	EPA 8260B	P1I2706	5.0	ND	1	9/26/01	9/26/01	
Bromodichloromethane	EPA 8260B	P1I2706	2.0	ND	1	9/26/01	9/26/01	
Bromoform	EPA 8260B	P1I2706	5.0	ND	1	9/26/01	9/26/01	
Bromomethane	EPA 8260B	P1I2706	5.0	ND	1	9/26/01	9/26/01	
2-Butanone (MEK)	EPA 8260B	P1I2706	10	ND	1	9/26/01	9/26/01	
n-Butylbenzene	EPA 8260B	P112706	5.0	ND	1	9/26/01	9/26/01	
sec-Butylbenzene	EPA 8260B	P1I2706	5.0	ND	1	9/26/01	9/26/01	
tert-Butylbenzene	EPA 8260B	P1I2706	5.0	ND	1	9/26/01	9/26/01	
Carbon Disulfide	EPA 8260B	P1I2706	5.0	ND	1	9/26/01	9/26/01	
Carbon tetrachloride	EPA 8260B	P112706	5.0	ND	1	9/26/01	9/26/01	
Chlorobenzene	EPA 8260B	P112706	2.0	ND	1	9/26/01	9/26/01	
Chloroethane	EPA 8260B	P1I2706	5.0	ND	1	9/26/01	9/26/01	
Chloroform	EPA 8260B	P112706	2.0	ND	1	9/26/01	9/26/01	
Chloromethane	EPA 8260B	P1I2706	5.0	ND	1	9/26/01	9/26/01	
2-Chlorotoluene	EPA 8260B	P1I2706	5.0	ND	1	9/26/01	9/26/01	
4-Chlorotoluene	EPA 8260B	P112706	5.0	ND	1	9/26/01	9/26/01	
Dibromochloromethane	EPA 8260B	P1I2706	2.0	ND	1	9/26/01	9/26/01	
1,2-Dibromo-3-chloropropane	EPA 8260B	P1I2706	5.0	ND	1 -	9/26/01	9/26/01	
1,2-Dibromoethane (EDB)	EPA 8260B	P1I2706	2.0	ND	1	9/26/01	9/26/01	
Dibromomethane	EPA 8260B	P1I2706	2.0	ND	1	9/26/01	9/26/01	
1,2-Dichlorobenzene	EPA 8260B	P1I2706	2.0	ND	1	9/26/01	9/26/01	
1,3-Dichlorobenzene	EPA 8260B	P112706	2.0	ND	1	9/26/01	9/26/01	
1,4-Dichlorobenzene	EPA 8260B	P1I2706	2.0	ND	1	9/26/01	9/26/01	
Dichlorodifluoromethane	EPA 8260B	P1I2706	5.0	ND	1	9/26/01	9/26/01	
1,1-Dichloroethane	EPA 8260B	P1I2706	2.0	ND	1	9/26/01	9/26/01	
1,2-Dichloroethane	EPA 8260B	P1I2706	2.0	ND	1	9/26/01	9/26/01	
1,1-Dichloroethene	EPA 8260B	P1I2706	5.0	ND	1	9/26/01	9/26/01	
cis-1,2-Dichloroethene	EPA 8260B	P112706	2.0	ND	1	9/26/01	9/26/01	
trans-1,2-Dichloroethene	EPA 8260B	P112706	2.0	ND	1	9/26/01	9/26/01	
1,2-Dichloropropane	EPA 8260B	P1I2706	2.0	ND	1	9/26/01	9/26/01	
1,3-Dichloropropane	EPA 8260B	P1I2706	2.0	ND	1	9/26/01	9/26/01	
2,2-Dichloropropane	EPA 8260B	P1I2706	2.0	ND	1	9/26/01	9/26/01	
1,1-Dichloropropene	EPA 8260B	P1I2706	2.0	ND	1	9/26/01	9/26/01	
cis-1,3-Dichloropropene	EPA 8260B	P112706	2.0	ND	1	9/26/01	9/26/01	
trans-1,3-Dichloropropene	EPA 8260B	P1I2706	2.0	ND	1	9/26/01	9/26/01	
Ethylbenzene	EPA 8260B	P1I2706	2.0	ND	1	9/26/01	9/26/01	
Hexachlorobutadiene	EPA 8260B	P1I2706	5.0	ND	1	9/26/01	9/26/01	
2-Hexanone	EPA 8260B	P1I2706	10	ND	1	9/26/01	9/26/01	
Iodomethane	EPA 8260B	P1I2706	2.0	ND	1	9/26/01	9/26/01	
Isopropylbenzene	EPA 8260B	P1I2706	2.0	ND	1	9/26/01	9/26/01	
p-Isopropyltoluene	EPA 8260B	P1I2706	2.0	ND	1	9/26/01	9/26/01	
					_			

Melissa Evans Project Manager PKI0180 Page 6 of 39

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-8596 FAX (858) 505-9589 (480) 785-0043 FAX (480) 785-0851

Law Engineering 4634 S. 36th Place Phoenix, AZ 85040 Attention: Jim Clarke

Client Project ID: 702

70211-0-01SD

Sampled: 09/12/01

Report Number: PKI

PKI0180

Received: 09/12/01

VOLATILE ORGANICS BY GC/MS (EPA 8260B)

Analyte	Method	Batch	Reporting Limit ug/I	Sample Result ug/l	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: PKI0180-15 (RINSA	ATE 7/12/01 - V	Vater)						
Methylene chloride	EPA 8260B	P1I2706	5.0	ND	1	9/26/01	9/26/01	M1
4-Methyl-2-pentanone (MIBK)	EPA 8260B	P1I2706	10	ND	1	9/26/01	9/26/01	
Methyl-tert-butyl Ether (MTBE)	EPA 8260B	P1I2706	5.0	ND	1	9/26/01	9/26/01	
Naphthalene	EPA 8260B	P1I2706	5.0	ND	1	9/26/01	9/26/01	
n-Propylbenzene	EPA 8260B	P1I2706	2.0	ND	1	9/26/01	9/26/01	
Styrene	EPA 8260B	P1I2706	2.0	ND	1	9/26/01	9/26/01	
1,1,1,2-Tetrachloroethane	EPA 8260B	P1I2706	5.0	ND	1	9/26/01	9/26/01	
1,1,2,2-Tetrachloroethane	EPA 8260B	P1I2706	2.0	ND	1	9/26/01	9/26/01	
Tetrachloroethene	EPA 8260B	P1I2706	2.0	ND	1	9/26/01	9/26/01	
Toluene	EPA 8260B	P1I2706	2.0	ND	1	9/26/01	9/26/01	
1,2,3-Trichlorobenzene	EPA 8260B	P1I2706	5.0	ND	1	9/26/01	9/26/01	
1,2,4-Trichlorobenzene	EPA 8260B	P1I2706	5.0	ND	1	9/26/01	9/26/01	
1,1,1-Trichloroethane	EPA 8260B	P1I2706	2.0	ND	1	9/26/01	9/26/01	
1,1,2-Trichloroethane	EPA 8260B	P1I2706	2.0	ND	1	9/26/01	9/26/01	
Trichloroethene	EPA 8260B	P1I2706	2.0	ND	1	9/26/01	9/26/01	
Trichlorofluoromethane	EPA 8260B	P1I2706	5.0	ND	1	9/26/01	9/26/01	
1,2,3-Trichloropropane	EPA 8260B	P1I2706	10	ND	1	9/26/01	9/26/01	
1,2,4-Trimethylbenzene	EPA 8260B	P1I2706	2.0	ND	1	9/26/01	9/26/01	
1,3,5-Trimethylbenzene	EPA 8260B	P1I2706	2.0	ND	1	9/26/01	9/26/01	
Vinyl acetate	EPA 8260B	P1I2706	25	ND	1	9/26/01	9/26/01	
Vinyl chloride	EPA 8260B	P1I2706	5.0	ND	1	9/26/01	9/26/01	
Xylenes, Total	EPA 8260B	P1I2706	10	ND	1	9/26/01	9/26/01	
Surrogate: Dibromofluoromethane (80-12	0%)			103 %				
Surrogate: Toluene-d8 (80-120%)				109 %				
Surrogate: 4-Bromofluorobenzene (80-120	0%)			100 %				

DEL MAR ANALYTICAL, PHOENIX (AZ0426

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-8596 FAX (858) 505-9589 (480) 785-0043 FAX (480) 785-0851

Law Engineering 4634 S. 36th Place

Client Project ID:

70211-0-01SD

Sampled: 09/12/01

Phoenix, AZ 85040 Attention: Jim Clarke

Report Number: PKI0180

Received: 09/12/01

Analyte	Method	Batch	Reporting Limit mg/kg	Sample Result mg/kg	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers	
Sample ID: PKI0180-08 (LB4-5	S-60 - Soil)								
Arsenic	EPA 6010B	P111805	5.0	ND	1	9/18/01	9/27/01		
Chromium	EPA 6010B	P111805	1.0	50	1	9/18/01	9/20/01		
Chromium VI	EPA 7196A	P1I2415	1.0	ND	1	9/24/01	9/24/01		
Copper	EPA 6010B	P1I1805	2.0	14	1	9/18/01	9/20/01		
Nickel	EPA 6010B	P111805	5.0	19	1	9/18/01	9/20/01		
Sample ID: PKI0180-08RE1 (L	B4-S-60 - Soil)								
Zinc	EPA 6010B	P112605	5.0	58	1	9/26/01	9/28/01		
Sample ID: PKI0180-09 (LB7-S-10 - Soil)									
Arsenic	EPA 6010B	P1I1805	5.0	ND	1	9/18/01	9/27/01		
Chromium	EPA 6010B	P1I1805	1.0	20	1	9/18/01	9/20/01		
Chromium VI	EPA 7196A	P1I2415	1.0	ND	1	9/24/01	9/24/01		
Copper	EPA 6010B	P111805	2.0	20	1	9/18/01	9/20/01		
Nickel	EPA 6010B	P1I1805	5.0	19	1	9/18/01	9/20/01		
Sample ID: PKI0180-09RE1 (L	B7-S-10 - Soil)								
Zinc	EPA 6010B	P1I2605	5.0	63	1	9/26/01	9/28/01		
Sample ID: PKI0180-10 (LB7-9	S-20 - Soil)								
Arsenic	EPA 6010B	P1I1805	5.0	ND	1	9/18/01	9/20/01		
Chromium	EPA 6010B	P1I1805	1.0	27	1	9/18/01	9/20/01		
Chromium VI	EPA 7196A	P1I2415	1.0	ND	1	9/24/01	9/24/01		
Copper	EPA 6010B	P1I1805	2.0	17	1	9/18/01	9/20/01		
Nickel	EPA 6010B	P111805	5.0	18	1	9/18/01	9/20/01		

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-8596 FAX (858) 505-9589 (480) 785-0043 FAX (480) 785-0851

Law Engineering 4634 S. 36th Place Phoenix, AZ 85040 Attention: Jim Clarke

Client Project ID:

70211-0-01SD

Report Number: PKI0180

Sampled: 09/12/01

Received: 09/12/01

Analyte	Method	Batch	Reporting Limit mg/kg	Sample Result mg/kg	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: PKI0180-10RE1 (LB	7-S-20 - Soil)							
Zinc	EPA 6010B	P1I2605	5.0	56	1	9/26/01	9/28/01	
Sample ID: PKI0180-11 (LB7-S-	30 - Soil)							
Arsenic	EPA 6010B	P1I1805	5.0	ND	1	9/18/01	9/27/01	
Chromium	EPA 6010B	P1I1805	1.0	18	1	9/18/01	9/20/01	
Chromium VI	EPA 7196A	P1I2415	1.0	ND	1	9/24/01	9/24/01	
Copper	EPA 6010B	P1I1805	2.0	14	1	9/18/01	9/20/01	
Nickel	EPA 6010B	P1I1805	5.0	12	1	9/18/01	9/20/01	
Sample ID: PKI0180-11RE1 (LB	7-S-30 - Soil)							
Zinc	EPA 6010B	P1I2605	5.0	41	1	9/26/01	9/28/01	
Sample ID: PKI0180-12 (LB7-S-	40 - Soil)							
Arsenic	EPA 6010B	P1I1805	5.0	ND	1	9/18/01	9/27/01	
Chromium	EPA 6010B	P1I1805	1.0	16	1	9/18/01	9/20/01	
Chromium VĬ	EPA 7196A	P1I2415	1.0	ND	1	9/24/01	9/24/01	
Copper	EPA 6010B	P1I1805	2.0	18	1	9/18/01	9/20/01	
Nickel	EPA 6010B	P1I1805	5.0	15	1	9/18/01	9/20/01	
Sample ID: PKI0180-12RE1 (LB	37-S-40 - Soil)							
Zinc	EPA 6010B	P1I2605	5.0	56	1	9/26/01	9/28/01	
Sample ID: PKI0180-13 (LB7-S-	50 - Soil)							
Arsenic	EPA 6010B	P1I1805	5.0	ND	1	9/18/01	9/27/01	
Chromium	EPA 6010B	P1I1805	1.0	14	1	9/18/01	9/20/01	
Chromium VI	EPA 7196A	P1I2415	1.0	ND	1	9/24/01	9/24/01	
Copper	EPA 6010B	P1I1805	2.0	12	1	9/18/01	9/20/01	
Nickel	EPA 6010B	P111805	5.0	11	1	9/18/01	9/20/01	

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-8596 FAX (858) 505-9589 (480) 785-0043 FAX (480) 785-0851

Law Engineering 4634 S. 36th Place

Client Project ID:

70211-0-01SD

Sampled: 09/12/01

Phoenix, AZ 85040 Attention: Jim Clarke

Report Number:

Received: 09/12/01

TOTAL METALS

PKI0180

Analyte	Method	Batch	Reporting Limit mg/kg	Sample Result mg/kg	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: PKI0180-13RE1 (LB7	7-S-50 - Soil)							
Zinc	EPA 6010B	P1I2605	5.0	41	1	9/26/01	9/28/01	
Sample ID: PKI0180-14 (LB7-S-6	0 - Soil)							
Arsenic	EPA 6010B	P1I1805	5.0	ND	1	9/18/01	9/20/01	
Chromium	EPA 6010B	P1I1805	1.0	15	1	9/18/01	9/20/01	
Chromium VI	EPA 7196A	P112415	1.0	ND	1	9/24/01	9/24/01	
Copper	EPA 6010B	P111805	2.0	10	1	9/18/01	9/20/01	
Nickel	EPA 6010B	P111805	5.0	14	1	9/18/01	9/20/01	
Sample ID: PKI0180-14RE1 (LB7	7-S-60 - Soil)							
Zinc	EPA 6010B	P1I2605	5.0	35	1	9/26/01	9/28/01	

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-8596 FAX (858) 505-9589 (480) 785-0043 FAX (480) 785-0851

Law Engineering

4634 S. 36th Place Phoenix, AZ 85040

Attention: Jim Clarke

Client Project ID:

70211-0-01SD

Report Number: PKI0180

Sampled: 09/12/01

Received: 09/12/01

TOTAL RECOVERABLE METALS

Analyte	Method	Batch	Reporting Limit mg/l	Sample Result mg/l	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: PKI0180-15 (RINSA	TE 7/12/01 - W	ater)						
Arsenic	EPA 200.7	P1I2021	0.050	ND	1	9/20/01	9/23/01	
Chromium	EPA 200.7	P1I2021	0.010	ND	1	9/20/01	9/23/01	
Chromium VI	SM3500CR-D	P1I1408	0.025	ND	1	9/13/01	9/13/01	
Copper	EPA 200.7	P1I2021	0.020	ND	1	9/20/01	9/23/01	
Nickel	EPA 200.7	P1I2021	0.050	ND	1	9/20/01	9/23/01	
Zinc	EPA 200.7	P112021	0.050	ND	1	9/20/01	9/23/01	

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-8596 FAX (858) 505-9589 (480) 785-0043 FAX (480) 785-0851

Law Engineering 4634 S. 36th Place Phoenix, AZ 85040

Client Project ID:

70211-0-01SD

Sampled: 09/12/01

Attention: Jim Clarke

Report Number:

PKI0180

Received: 09/12/01

INORGANICS

Analyte	Method	Batch	Reporting Limit mg/kg	Sample Result mg/kg	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers			
Sample ID: PKI0180-08 (LB4-	-S-60 - Soil)										
Total Cyanide	EPA 9014	P1I2412	0.50	ND	1	9/24/01	9/25/01				
Sample ID: PKI0180-09 (LB7-	-S-10 - Soil)										
Total Cyanide	EPA 9014	P1I2412	0.50	ND	1	9/24/01	9/25/01				
Sample ID: PKI0180-10 (LB7-	-S-20 - Soil)										
Total Cyanide	EPA 9014	P1I2412	0.50	ND	1	9/24/01	9/25/01				
Sample ID: PKI0180-11 (LB7-	-S-30 - Soil)										
Total Cyanide	EPA 9014	P1I2412	0.50	ND	1	9/24/01	9/25/01				
Sample ID: PKI0180-12 (LB7-	-S-40 - Soil)										
Total Cyanide	EPA 9014	P1I2412	0.50	ND	1	9/24/01	9/25/01				
Sample ID: PKI0180-13 (LB7-	-S-50 - Soil)										
Total Cyanide	EPA 9014	P112412	0.50	ND	1	9/24/01	9/25/01				
Sample ID: PKI0180-14 (LB7-	-S-60 - Soil)										
Total Cyanide	EPA 9014	P1I2412	0.50	ND	1	9/24/01	9/25/01				
			mg/l	mg/l							
Sample ID: PKI0180-15RE1 (RINSATE 7/12/0 :	1 - Water)									
Total Cyanide	SM4500-CN,C-E	P1I2622	0.020	ND	1	9/26/01	9/26/01				

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-8569 FAX (886) 505-9589 (480) 785-0043 FAX (480) 785-0851

Law Engineering 4634 S. 36th Place Phoenix, AZ 85040

Attention: Jim Clarke

Client Project ID:

70211-0-01SD

Sampled: 09/12/01

Report Number:

PKI0180

Received: 09/12/01

. VIET HOD BIJANKOX. DATA-

VOLATILE ORGANICS BY GC/MS (EPA 8260B)

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: P1I1401 Extracted: 09/14/0	1									
Blank Analyzed: 09/19/01 (P1I1401-B)	LK1)									
Acetone	ND	1000	ug/kg							
Benzene	ND	100	ug/kg							
Bromobenzene	ND	250	ug/kg							
Bromochloromethane	ND	250	ug/kg							
Bromodichloromethane	ND	100	ug/kg							
Bromoform	ND	250	ug/kg							
Bromomethane	ND	250	ug/kg							
2-Butanone (MEK)	ND	500	ug/kg							
n-Butylbenzene	ND	250	ug/kg							
sec-Butylbenzene	ND	250	ug/kg							
tert-Butylbenzene	ND	250	ug/kg							
Carbon Disulfide	ND	250	ug/kg							
Carbon tetrachloride	ND	250	ug/kg							
Chlorobenzene	ND	100	ug/kg							
Chloroethane	ND	250	ug/kg							
Chloroform	ND	100	ug/kg							
Chloromethane	ND	250	ug/kg							
2-Chlorotoluene	ND	250	ug/kg							
4-Chlorotoluene	ND	250	ug/kg							
Dibromochloromethane	ND	100	ug/kg							
1,2-Dibromo-3-chloropropane	ND	250	ug/kg							
1,2-Dibromoethane (EDB)	ND	100	ug/kg							
Dibromomethane	ND	100	ug/kg							
1,2-Dichlorobenzene	ND	100	ug/kg							
1,3-Dichlorobenzene	ND	100	ug/kg							
1,4-Dichlorobenzene	ND	100	ug/kg							
Dichlorodifluoromethane	ND	250	ug/kg							
1,1-Dichloroethane	ND	100	ug/kg							
1,2-Dichloroethane	ND	100	ug/kg							
1,1-Dichloroethene	ND	250	ug/kg							
cis-1,2-Dichloroethene	ND	100	ug/kg							
trans-1,2-Dichloroethene	ND	100	ug/kg							
1,2-Dichloropropane	ND	100	ug/kg							
1,3-Dichloropropane	ND	100	ug/kg							
2,2-Dichloropropane	ND	100	ug/kg							
			_							

Melissa Evans Project Manager PKI0180 Page 13 of 39

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-8596 FAX (858) 505-9589 (480) 785-0043 FAX (480) 785-0851

Law Engineering 4634 S. 36th Place Phoenix, AZ 85040 Attention: Jim Clarke

Client Project ID:

70211-0-01SD

Sampled: 09/12/01

Report Number:

PKI0180

Received: 09/12/01

METHOD BLANK/96 DATA

VOLATILE ORGANICS BY GC/MS (EPA 8260B)

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: P111401 Extracted: 09/14/0	<u>)1</u>									
Blank Analyzed: 09/19/01 (P1I1401-B	LK1)						÷			
1,1-Dichloropropene	ND	100	ug/kg							
cis-1,3-Dichloropropene	ND	100	ug/kg							
trans-1,3-Dichloropropene	ND	100	ug/kg							
Ethylbenzene	ND	100	ug/kg							
Hexachlorobutadiene	ND	250	ug/kg							
2-Hexanone	ND	500	ug/kg							
Iodomethane	ND	100	ug/kg							
Isopropylbenzene	ND	100	ug/kg							
p-lsopropyltoluene	ND	100	ug/kg							
Methylene chloride	ND	500	ug/kg							
4-Methyl-2-pentanone (MIBK)	ND	500	ug/kg							
Methyl-tert-butyl Ether (MTBE)	ND	250	ug/kg							
Naphthalene	ND	250	ug/kg							
n-Propylbenzene	ND	100	ug/kg							
Styrene	ND	100	ug/kg							
1,1,1,2-Tetrachloroethane	ND	250	ug/kg							
1,1,2,2-Tetrachloroethane	ND	100	ug/kg							
Tetrachloroethene	ND	100	ug/kg							
Toluene	ND	100	ug/kg							
1,2,3-Trichlorobenzene	ND	250	ug/kg							
1,2,4-Trichlorobenzene	ND	250	ug/kg							
1,1,1-Trichloroethane	ND	100	ug/kg							
1,1,2-Trichloroethane	ND	100	ug/kg							
Trichloroethene	ND	100	ug/kg							
Trichlorofluoromethane	ND	250	ug/kg							
1,2,3-Trichloropropane	ND	500	ug/kg							
1,2,4-Trimethylbenzene	ND	100	ug/kg							
1,3,5-Trimethylbenzene	ND	100	ug/kg							
Vinyl acetate	ND	1200	ug/kg							
Vinyl chloride	ND	250	ug/kg							
Xylenes, Total	ND	300	ug/kg							
Surrogate: Dibromofluoromethane	146		ug/kg	125		117	70-125			
Surrogate: Toluene-d8	168		ug/kg	125		134	50-135			
Surrogate: 4-Bromofluorobenzene	164		ug/kg	125		131	70-130			S4

Melissa Evans Project Manager

2852 Alton Ave., Irvine, CA 92606 (949) 261-1022 FAX (949) 261-1228 1014 E. Coldby Dr., Suite A, Colton, CA 92324 (909) 370-4667 FAX (909) 370-1046 7277 Hayvenhurst, Suite B-12, Van Nuys, CA 91406 (818) 779-1844 FAX (818) 779-1843 9484 Chesapeake Dr., Suite 805, San Diego, CA 92123 (858) 505-8596 FAX (858) 505-9589 9830 South 51st St., Suite B-120, Phoenix, AZ 85044 (480) 785-0043 FAX (480) 785-0851

Law Engineering 4634 S. 36th Place Phoenix, AZ 85040 Attention: Jim Clarke

Client Project ID: 70211-0-01SD

Report Number: PKI0180

Sampled: 09/12/01 Received: 09/12/01

MDHLIODEBLANKOJO DAGA

VOLATILE ORGANICS BY GC/MS (EPA 8260B)

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: P1I1401 Extracted: 09/14/01	<u>L</u>									
LCS Analyzed: 09/19/01 (P1I1401-BS1)									
Acetone	ND	1000	ug/kg	1000		96.7	5-200			
Benzene	931	100	ug/kg	1000		93.1	65-130			
Bromobenzene	1120	250	ug/kg	1000		112	60-135			
Bromochloromethane	1120	250	ug/kg	1000		112	60-135			
Bromodichloromethane	936	100	ug/kg	1000		93.6	30-135			
Bromoform	880	250	ug/kg	1000		88.0	60-140			
Bromomethane	1250	250	ug/kg	2000		62.5	10-200			
2-Butanone (MEK)	1030	500	ug/kg	1000		103	10-160			
n-Butylbenzene	935	250	ug/kg	1000		93.5	65-125			
sec-Butylbenzene	985	250	ug/kg	1000		98.5	70-135			
tert-Butylbenzene	1010	250	ug/kg	1000		101	70-130			
Carbon Disulfide	738	250	ug/kg	1000		73.8	20-120			
Carbon tetrachloride	899	250	ug/kg	1000		89.9	70-140			
Chlorobenzene	1090	100	ug/kg	1000		109	70-125			
Chloroethane	1190	250	ug/kg	2000		59.5	10-200			
Chloroform	994	100	ug/kg	1000		99.4	35-135			
Chloromethane	1480	250	ug/kg	2000		74.0	10-200			
2-Chlorotoluene	997	250	ug/kg	1000		99.7	70-135			
4-Chlorotoluene	998	250	ug/kg	1000		99.8	75-135			
Dibromochloromethane	974	100	ug/kg	1000		97.4	35-135			
1,2-Dibromo-3-chloropropane	1040	250	ug/kg	1000		104	50-155			
1,2-Dibromoethane (EDB)	1110	100	ug/kg	1000		111	70-130			
Dibromomethane	1090	100	ug/kg	1000		109	65-130			
1,2-Dichlorobenzene	1050	100	ug/kg	1000		105	70-125			
1,3-Dichlorobenzene	1050	100	ug/kg	1000		105	70-125			
1,4-Dichlorobenzene	1090	100	ug/kg	1000		109	70-135			
Dichlorodifluoromethane	1330	250	ug/kg	2000		66.5	10-185			
1,1-Dichloroethane	966	100	ug/kg	1000		96.6	60-140			
1,2-Dichloroethane	1020	100	ug/kg	1000		102	55-135			
1,1-Dichloroethene	987	250	ug/kg	1000		98.7	55-145			
cis-1,2-Dichloroethene	1010	100	ug/kg	1000		101	60-125			
trans-1,2-Dichloroethene	1010	100	ug/kg	1 0 00		101	70-145			
1,2-Dichloropropane	956	100	ug/kg	1000		95.6	65-130			
1,3-Dichloropropane	1060	100	ug/kg	1000		1 0 6	65-130			
2,2-Dichloropropane	677	100	ug/kg	1000		67.7	60-135			
1,1-Dichloropropene	929	100	ug/kg	1000		92.9	65-130			

Melissa Evans Project Manager

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-8596 FAX (858) 505-9589 (480) 785-0043 FAX (480) 785-0851

Law Engineering 4634 S. 36th Place Phoenix, AZ 85040 Attention: Jim Clarke

Client Project ID:

70211-0-01SD

Sampled: 09/12/01 Received: 09/12/01

Report Number:

PKI0180

VOLATILE ORGANICS BY GC/MS (EPA 8260B)

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: P1I1401 Extracted: 09/14/01										
LCS Analyzed: 09/19/01 (P1I1401-BS1)										
cis-1,3-Dichloropropene	885	100	ug/kg	1000		88.5	60-125			
trans-1,3-Dichloropropene	882	100	ug/kg	1000		88.2	50-130			
Ethylbenzene	1060	100	ug/kg	1000		106	70-125			
Hexachlorobutadiene	1030	250	ug/kg	1000		103	60-125			
2-Hexanone	1110	500	ug/kg	1000		111	25-185			
Iodomethane	1150	100	ug/kg	1000		115	30-155			
Isopropylbenzene	1070	100	ug/kg	1000		107	70-135			
p-Isopropyltoluene	967	100	ug/kg	1000		96.7	65-130			
Methylene chloride	979	500	ug/kg	1000		97.9	60-140			
4-Methyl-2-pentanone (MIBK)	1170	500	ug/kg	1000		117	10-175			
Naphthalene	1210	250	ug/kg	1000		121	45-155			
n-Propylbenzene	1010	100	ug/kg	1000		101	75-135			
Styrene	1070	100	ug/kg	1000		107	70-130			
1,1,1,2-Tetrachloroethane	1020	250	ug/kg	1000		102	70-130			
1,1,2,2-Tetrachloroethane	1060	100	ug/kg	1000		106	60-140			
Tetrachloroethene	1120	100	ug/kg	1000		112	65-130			
Toluene	1040	100	ug/kg	1000		104	70-125			
1,2,3-Trichlorobenzene	1080	250	ug/kg	1000		108	60-135			•
1,2,4-Trichlorobenzene	1070	250	ug/kg	1000		107	55-135			
1,1,1-Trichloroethane	953	100	ug/kg	1000		95.3	65-135			
1,1,2-Trichloroethane	1070	100	ug/kg	1000		107	65-130			
Trichloroethene	1030	100	ug/kg	1000		103	70-130			
Trichlorofluoromethane	1140	250	ug/kg	2000		57.0	10-200			
1,2,3-Trichloropropane	1110	500	ug/kg	1000		111	60-150			
1,2,4-Trimethylbenzene	1040	100	ug/kg	1000		104	75-130			
1,3,5-Trimethylbenzene	1010	100	ug/kg	1000		101	70-130			
Vinyl acetate	ND	1200	ug/kg	1000		66.4	25-130			
Vinyl chloride	938	250	ug/kg	2000		46.9	10-200			
Xylenes, Total	3210	300	ug/kg	3000		107	70-130			
Surrogate: Dibromofluoromethane	149		ug/kg	125		119	70-125			
Surrogate: Toluene-d8	166		ug/kg	125		133	50-135			
Surrogate: 4-Bromofluorobenzene	158		ug/kg	125		126	70-130			

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-8596 FAX (858) 505-9589 (480) 785-0043 FAX (480) 785-0851

Law Engineering 4634 S. 36th Place Phoenix, AZ 85040 Attention: Jim Clarke

Client Project ID: 70211-0-01SD

Report Number: PKI0180

Sampled: 09/12/01

Received: 09/12/01

METHODBLANKOCDATA

VOLATILE ORGANICS BY GC/MS (EPA 8260B)

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: P1I1401 Extracted: 09/14/0	1_									-
LCS Dup Analyzed: 09/19/01 (P11140)	-BSD1)									
Acetone	ND	1000	ug/kg	1000		68.5	5-200	34.1	35	
Benzene	904	100	ug/kg	1000		90.4	65-130	2.94	35	
Bromobenzene	1040	250	ug/kg	1000		104	60-135	7.41	35	
Bromochloromethane	1050	250	ug/kg	1000		105	60-135	6.45	35	
Bromodichloromethane	919	100	ug/kg	1000		91.9	30-135	1.83	35	
Bromoform	946	250	ug/kg	1000		94.6	60-140	7.23	35	
Bromomethane	903	250	ug/kg	2000		45.2	10-200	32.2	35	
2-Butanone (MEK)	835	500	ug/kg	1000		83.5	10-160	20.9	35	
n-Butylbenzene	829	250	ug/kg	1000		82.9	65-125	12.0	35	
sec-Butylbenzene	891	250	ug/kg	1000		89.1	70-135	10.0	35	
tert-Butylbenzene	933	250	ug/kg	1000		93.3	70-130	7.93	35	
Carbon Disulfide	647	250	ug/kg	1000		64.7	20-120	13.1	35	
Carbon tetrachloride	908	250	ug/kg	1000		90.8	70-140	0.996	35	
Chlorobenzene	1060	100	ug/kg	1000		106	70-125	2.79	35	
Chloroethane	944	250	ug/kg	2000		47.2	10-200	23.1	35	
Chloroform	970	100	ug/kg	1000		97.0	35-135	2.44	35	
Chloromethane.	1030	250	ug/kg	2000		51.5	10-200	35.9	35	R6
2-Chlorotoluene	936	250	ug/kg	1000		93.6	70-135	6.31	35	
4-Chlorotoluene	941	250	ug/kg	1000		94.1	75-135	5.88	35	
Dibromochloromethane	1030	100	ug/kg	1000		103	35-135	5.59	35	
1,2-Dibromo-3-chloropropane	881	250	ug/kg	1000		88.1	50-155	16.6	35	
1,2-Dibromoethane (EDB)	1080	100	ug/kg	1000		108	70-130	2.74	35	
Dibromomethane	1010	100	ug/kg	1000		101	65-130	7.62	35	
1,2-Dichlorobenzene	976	100	ug/kg	1000		97.6	70-125	7.31	35	
1,3-Dichlorobenzene	973	100	ug/kg	1000		97.3	70-125	7.61	35	
1,4-Dichlorobenzene	1020	100	ug/kg	1000		102	70-135	6.64	35	
Dichlorodifluoromethane	736	250	ug/kg	2000		36.8	10-185	57.5	35	R6
1,1-Dichloroethane	926	100	ug/kg	1000		92.6	60-140	4.23	35	
1,2-Dichloroethane	983	100	ug/kg	1000		98.3	55-135	3.69	35	
1,1-Dichloroethene	912	250	ug/kg	1000		91.2	55-145	7.90	35	
cis-1,2-Dichloroethene	974	100	ug/kg	1000		97.4	60-125	3.63	35	
trans-1,2-Dichloroethene	966	100	ug/kg	1000		96.6	70-145	4.45	35	
1,2-Dichloropropane	911	100	ug/kg	1000		91.1	65-130	4.82	35	
1,3-Dichloropropane	1020	100	ug/kg	1000		102	65-130	3.85	35	
2,2-Dichloropropane	765	100	ug/kg	1000		76.5	60-135	12.2	35	
1,1-Dichloropropene	886	100	ug/kg	1000		88.6	65-130	4.74	35	

Melissa Evans Project Manager

PKI0180 Page 17 of 39

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-8596 FAX (858) 505-9589 (480) 785-0043 FAX (480) 785-0851

Law Engineering 4634 S. 36th Place Phoenix, AZ 85040 Attention: Jim Clarke

Client Project ID:

70211-0-01SD

Report Number: PKI0180

Sampled: 09/12/01

Received: 09/12/01

NETEOD BLANKOP DATA

VOLATILE ORGANICS BY GC/MS (EPA 8260B)

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: P1I1401 Extracted: 09/14/0	<u>)1</u>									
LCS Dup Analyzed: 09/19/01 (P11140	1-BSD1)									
cis-1,3-Dichloropropene	889	100	ug/kg	1000		88.9	60-125	0.451	35	
trans-1,3-Dichloropropene	896	100	ug/kg	1000		89.6	50-130	1.57	35	
Ethylbenzene	1010	100	ug/kg	1000		101	70-125	4.83	35	
Hexachlorobutadiene	849	250	ug/kg	1000		84.9	60-125	19.3	35	
2-Hexanone	981	500	ug/kg	1000		98.1	25-185	12.3	35	
Iodomethane	1040	100	ug/kg	1000		104	30-155	10.0	35	
Isopropylbenzene	1010	100	ug/kg	1000		101	70-135	5.77	35	
p-Isopropyltoluene	884	100	ug/kg	1000		88.4	65-130	8.97	35	
Methylene chloride	942	500	ug/kg	1000		94.2	60-140	3.85	35	
4-Methyl-2-pentanone (MIBK)	1020	500	ug/kg	1000		102	10-175	13.7	35	
Naphthalene	922	250	ug/kg	1000		92.2	45-155	27.0	35	
n-Propylbenzene	937	100	ug/kg	1000		93.7	75-135	7.50	35	
Styrene	1050	100	ug/kg	1000		105	70-130	1.89	35	
1,1,1,2-Tetrachloroethane	1040	250	ug/kg	1000		104	70-130	1.94	35	
1,1,2,2-Tetrachloroethane	1010	100	ug/kg	1000		101	60-140	4.83	35	
Tetrachloroethene	1080	100	ug/kg	1000		108	65-130	3.64	35	
Toluene	1010	100	ug/kg	1000		101	70-125	2.93	35	
1,2,3-Trichlorobenzene	872	250	ug/kg	1000		87.2	60-135	21.3	35	
1,2,4-Trichlorobenzene	899	250	ug/kg	1000		89.9	55-135	17.4	35	
1,1,1-Trichloroethane	934	100	ug/kg	1000		93.4	65-135	2.01	35	
1,1,2-Trichloroethane	1040	100	ug/kg	1000		104	65-130	2.84	35	
Trichloroethene	971	100	ug/kg	1000		97.1	70-130	5.90	35	
Trichlorofluoromethane	1080	250	ug/kg	2000		54.0	10-200	5.41	35	
1,2,3-Trichloropropane	982	500	ug/kg	1000		98.2	60-150	12.2	35	
1,2,4-Trimethylbenzene	972	100	ug/kg	1000		97.2	75-130	6.76	35	
1,3,5-Trimethylbenzene	928	100	ug/kg	1000		92.8	70-130	8.46	35	
Vinyl acetate	ND	1200	ug/kg	1000		76.3	25-130	13.9	35	
Vinyl chloride	869	250	ug/kg	2000		43.4	10-200	7.64	35	
Xylenes, Total	3090	300	ug/kg	3000		103	70-130	3.81	35	
Surrogate: Dibromofluoromethane	138		ug/kg	125		110	70-125			
Surrogate: Toluene-d8	152		ug/kg	125		122	50-135			
Surrogate: 4-Bromofluorobenzene	152		ug/kg	125		122	70-130			

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-8596 FAX (858) 505-9589 (480) 785-0043 FAX (480) 785-0851

Law Engineering 4634 S. 36th Place Phoenix, AZ 85040 Attention: Jim Clarke

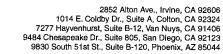
Client Project ID:

70211-0-01SD

Report Number:

PKI0180

Sampled: 09/12/01


Received: 09/12/01

METHOD BLANKOC DATA

VOLATILE ORGANICS BY GC/MS (EPA 8260B)

	Reporting		Spike	Source		%REC		RPD	Data
Analyte Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: P1I1401 Extracted: 09/14/01									
Matrix Spike Analyzed: 09/20/01 (P1I1401-MS1)				Source: P	KI0199-0	1			
Acetone ND	1000	ug/kg	1000	ND	75.8	5-200			
Benzene 956	100	ug/kg	1000	ND	95.6	65-130			
Bromobenzene 980	250	ug/kg	1000	ND	98.0	60-135			
Bromochloromethane 1090	250	ug/kg	1000	ND	109	60-135			
Bromodichloromethane 1010	100	ug/kg	1000	ND	101	30-135			
Bromoform 877	250	ug/kg	1000	ND	87 .7	60-140			
Bromomethane 1640	250	ug/kg	2000	ND	82.0	10-200			
2-Butanone (MEK) 806	500	ug/kg	1000	ND	80.6	10-160			
n-Butylbenzene 1010	250	ug/kg	1000	ND	101	65-125			
sec-Butylbenzene 960	250	ug/kg	1000	ND	96.0	70-135			
tert-Butylbenzene 932	250	ug/kg	1000	ND	93.2	70-130			
Carbon Disulfide 553	250	ug/kg	1000	ND	55.3	20-120			
Carbon tetrachloride 1120	250	ug/kg	1000	ND	112	70-140			
Chlorobenzene 1050	100	ug/kg	1000	ND	105	75-125			
Chloroethane 1440	250	ug/kg	2000	ND	72.0	10-200			
Chloroform 1040	100	ug/kg	1000	ND	104	35-135			
Chloromethane 1270	250	ug/kg	2000	ND	63.5	10-200			
2-Chlorotoluene 891	250	ug/kg	1000	ND	89.1	70-135			
4-Chlorotoluene 897	250	ug/kg	1000	ND	89.7	75-135			
Dibromochloromethane 969	100	ug/kg	1000	ND	96.9	35-135			
1,2-Dibromo-3-chloropropane 576	250	ug/kg	1000	ND	57.6	50-155			
1,2-Dibromoethane (EDB) 866	100	ug/kg	1000	ND	86.6	70-130			
Dibromomethane 1000	100	ug/kg	1000	ND	100	65-130			
1,2-Dichlorobenzene 960	100	ug/kg	1000	ND	96.0	70-125			
1,3-Dichlorobenzene 969	100	ug/kg	1000	ND	96.9	70-125			
1,4-Dichlorobenzene 1010	100	ug/kg	1000	ND	101	70-135			
Dichlorodifluoromethane 972	250	ug/kg	2000	ND	48.6	10-185			
1,1-Dichloroethane 991	100	ug/kg	1000	ND	99.1	60-140			
1,2-Dichloroethane 950	100	ug/kg	1000	ND	95.0	55-135			
1,1-Dichloroethene 651	250	ug/kg	1000	ND	65.1	55-145			
cis-1,2-Dichloroethene 1020	100	ug/kg	1000	ND	102	60-125			
trans-1,2-Dichloroethene 1040	100	ug/kg	1000	ND	104	70-145			
1,2-Dichloropropane 941	100	ug/kg	1000	ND	94.1	65-130			
1,3-Dichloropropane 841	100	ug/kg	1000	ND	84.1	65-130			
2,2-Dichloropropane 1140	100	ug/kg	1000	ND	114	60-135			
1,1-Dichloropropene 928	100	ug/kg	1000	ND	92.8	65-130			

Melissa Evans Project Manager

92606 (949) 261-1022 FAX (949) 261-1228 92324 (909) 370-4667 FAX (809) 370-1046 91406 (818) 779-1844 FAX (818) 779-1843 92123 (858) 505-8596 FAX (858) 505-9589 (480) 785-0043 FAX (480) 785-0851

Del Mar Analytical

Law Engineering 4634 S. 36th Place Phoenix, AZ 85040

Attention: Jim Clarke

Client Project ID: 70211-0-01SD

Sampled: 09/12/01 Received: 09/12/01

Report Number:

PKI0180

METHOD BLANKQC DATA

VOLATILE ORGANICS BY GC/MS (EPA 8260B)

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: P1I1401 Extracted: 09/1	4/01									
Matrix Spike Analyzed: 09/20/01 (1	P111401-MS1)				Source: P	KI0199-0	1			
cis-1,3-Dichloropropene	943	100	ug/kg	1000	ND	94.3	60-125			
trans-1,3-Dichloropropene	795	100	ug/kg	1000	ND	79.5	50-130			
Ethylbenzene	1020	100	ug/kg	1000	ND	102	70-125			
Hexachlorobutadiene	1380	250	ug/kg	1000	ND	138	60-125			M1
2-Hexanone	785	500	ug/kg	1000	ND	78.5	25-185			
Iodomethane	710	100	ug/kg	1000	ND	71.0	30-155		•	
Isopropylbenzene	1080	100	ug/kg	1000	ND	108	70-135			
p-Isopropyltoluene	975	100	ug/kg	1000	ND	97.5	65-130			
Methylene chloride	659	500	ug/kg	1000	ND	65.9	60-140			
4-Methyl-2-pentanone (MIBK)	734	500	ug/kg	1000	ND	73.4	10-175			
Methyl-tert-butyl Ether (MTBE)	ND	250	ug/kg		ND		55-135			
Naphthalene	710	250	ug/kg	1000	ND	71.0	45-155			
n-Propylbenzene	902	100	ug/kg	1000	ND	90.2	75-135			
Styrene	1030	100	ug/kg	1000	ND	103	70-130			
1,1,1,2-Tetrachloroethane	1120	250	ug/kg	1000	ND	112	70-130			
1,1,2,2-Tetrachloroethane	597	100	ug/kg	1000	ND	59.7	60-140			
Tetrachloroethene	1030	100	ug/kg	1000	ND	103	65-130			
Toluene	952	100	ug/kg	1000	ND	95.2	70-125			
1,2,3-Trichlorobenzene	809	250	ug/kg	1000	ND	80.9	60-135			
1,2,4-Trichlorobenzene	898	250	ug/kg	1000	ND	89.8	55-135			
1,1,1-Trichloroethane	1110	100	ug/kg	1000	ND	111	65-135			
1,1,2-Trichloroethane	885	100	ug/kg	1000	ND	88.5	65-130			
Trichloroethene	1170	100	ug/kg	1000	ND	117	70-130			
Trichlorofluoromethane	1860	250	ug/kg	2000	ND	93.0	10-200			
1,2,3-Trichloropropane	692	500	ug/kg	1000	ND	69.2	60-150			
1,2,4-Trimethylbenzene	955	100	ug/kg	1000	ND	95.5	75-130			
1,3,5-Trimethylbenzene	908	100	ug/kg	1000	ND	90.8	70-130			
Vinyl acetate	ND	1200	ug/kg	1000	ND	24.7	25-130			
Vinyl chloride	2000	250	ug/kg	2000	ND	100	10-200			
Xylenes, Total	3110	300	ug/kg	3000	ND	104	70-130			
Surrogate: Dibromofluoromethane	137		ug/kg	125		110	70-125			
Surrogate: Toluene-d8	137		ug/kg	125		110	50-135			
Surrogate: 4-Bromofluorobenzene	135		ug/kg	125		108	70-130			

2852 Alton Ave., Irvine, CA 92606 (949) 261-1022 FAX (949) 261-1228 1014 E. Coldby Dr., Suite A, Colton, CA 92324 (909) 370-4667 FAX (909) 370-1046 7277 Hayvenhurst, Suite B-12, Van Nuys, CA 91406 (818) 779-1844 FAX (818) 779-1843 9484 Chesapeake Dr., Suite 805, San Diego, CA 92123 (858) 505-8596 FAX (858) 505-9589 9830 South 51st St., Suite B-120, Phoenix, AZ 85044 (480) 785-0043 FAX (480) 785-0851

Law Engineering 4634 S. 36th Place Phoenix, AZ 85040 Attention: Jim Clarke

Client Project ID: 70211-0-01SD

Report Number: PKI0180 Sampled: 09/12/01

Received: 09/12/01

MEDROD BLANKOYO DALA

VOLATILE ORGANICS BY GC/MS (EPA 8260B)

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: P1I1401 Extracted: 09/14/	<u>01</u>									
Matrix Spike Dup Analyzed: 09/20/01	(P1I1401-M	SD1)			Source: P	KI0199-0)1			
Acetone	ND	1000	ug/kg	1000	ND	66.5	5-200	13.1	35	
Benzene	952	100	ug/kg	1000	ND	95.2	65-130	0.419	35	
Bromobenzene	1030	250	ug/kg	1000	ND	103	60-135	4.98	35	
Bromochloromethane	1070	250	ug/kg	1000	ND	107	60-135	1.85	35	
Bromodichloromethane	1040	100	ug/kg	1000	ND	104	30-135	2.93	35	
Bromoform	878	250	ug/kg	1000	ND	87.8	60-140	0.114	35	
Bromomethane	1250	250	ug/kg	2000	ND	62.5	10-200	27.0	35	
2-Butanone (MEK)	753	500	ug/kg	1000	ND	75.3	10-160	6.80	35	
n-Butylbenzene	982	250	ug/kg	1000	ND	98.2	65-125	2.81	35	
sec-Butylbenzene	969	250	ug/kg	1000	ND	96.9	70-135	0.933	35	
tert-Butylbenzene	955	250	ug/kg	1000	ND	95.5	70-130	2.44	35	
Carbon Disulfide	843	250	ug/kg	1000	ND	84.3	20-120	41.5	35	R4
Carbon tetrachloride	1110	250	ug/kg	1000	ND	111	70-140	0.897	35	
Chlorobenzene	1070	100	ug/kg	1000	ND	107	75-125	1.89	35	
Chloroethane	1140	250	ug/kg	2000	ND	57.0	10-200	23.3	35	
Chloroform	1060	100	ug/kg	1000	ND	106	35-135	1.90	35	
Chloromethane	1120	250	ug/kg	2000	ND	56.0	10-200	12.6	35	
2-Chlorotoluene	917	250	ug/kg	1000	ND	91.7	70-135	2.88	35	
4-Chlorotoluene	923	250	ug/kg	1000	ND	92.3	75-135	2.86	35	
Dibromochloromethane	974	100	ug/kg	1000	ND	97.4	35-135	0.515	35	
1,2-Dibromo-3-chloropropane	605	250	ug/kg	1000	ND	60.5	50-155	4.91	35	
1,2-Dibromoethane (EDB)	903	100	ug/kg	1000	ND	90.3	70-130	4.18	35	
Dibromomethane	984	100	ug/kg	1000	ND	98.4	65-130	1.61	35	
1,2-Dichlorobenzene	943	100	ug/kg	1000	ND	94.3	70-125	1.79	35	
1,3-Dichlorobenzene	959	100	ug/kg	1000	ND	95.9	70-125	1.04	35	
1,4-Dichlorobenzene	983	100	ug/kg	1000	ND	98.3	70-135	2.71	35	•
Dichlorodifluoromethane	968	250	ug/kg	2000	ND	48.4	10-185	0.412	35	
1,1-Dichloroethane	1040	100	ug/kg	1000	ND	104	60-140	4.83	35	
1,2-Dichloroethane	966	100	ug/kg	1000	ND	96.6	55-135	1.67	35	
1,1-Dichloroethene	757	250	ug/kg	1000	ND	75.7	55-145	15.1	35	
cis-1,2-Dichloroethene	1030	100	ug/kg	1000	ND	103	60-125	0.976	35	
trans-1,2-Dichloroethene	1100	100	ug/kg	1000	ND	110	70-145	5.61	35	
1,2-Dichloropropane	942	100	ug/kg	1000	ND	94.2	65-130	0.106	35	
1,3-Dichloropropane	861	100	ug/kg	1000	ND	86.1	65-130	2.35	-35	
2,2-Dichloropropane	1090	100	ug/kg	1000	ND	109	60-135	4.48	35	
1,1-Dichloropropene	934	100	ug/kg	1000	ND	93.4	65-130	0.644	35	

Melissa Evans Project Manager

PKI0180 Page 21 of 39

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-8596 FAX (858) 505-9589 (480) 785-0043 FAX (480) 785-0851

Law Engineering 4634 S. 36th Place Phoenix, AZ 85040

Attention: Jim Clarke

Client Project ID: 70211-0-01SD

Sampled: 09/12/01

Report Number: PKI0180

Received: 09/12/01

EANS HOODBEANKOODELA

VOLATILE ORGANICS BY GC/MS (EPA 8260B)

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: P1I1401 Extracted: 09/14/0	<u>01</u>									
Matrix Spike Dup Analyzed: 09/20/01	(P1I1401-M	SD1)			Source: P	KI0199-0	1			
cis-1,3-Dichloropropene	945	100	ug/kg	1000	ND	94.5	60-125	0.212	35	
trans-1,3-Dichloropropene	859	100	ug/kg	1000	ND	85.9	50-130	7.74	35	
Ethylbenzene	1050	100	ug/kg	1000	ND	105	70-125	2.90	35	
Hexachlorobutadiene	1420	250	ug/kg	1000	ND	142	60-125	2.86	35	Ml
2-Hexanone	664	500	ug/kg	1000	ND	66.4	25-185	16.7	35	
Iodomethane	886	100	ug/kg	1000	ND	88.6	30-155	22.1	35	
lsopropylbenzene	1050	100	ug/kg	1000	ND	105	70-135	2.82	35	
p-Isopropyltoluene	969	100	ug/kg	1000	ND	96.9	65-130	0.617	35	
Methylene chloride	1030	500	ug/kg	1000	ND	103	60-140	43.9	35	R4
4-Methyl-2-pentanone (MIBK)	694	500	ug/kg	1000	ND	69.4	10-175	5.60	35	•
Methyl-tert-butyl Ether (MTBE)	ND	250	ug/kg		ND		55-135	12.8	35	
Naphthalene	736	250	ug/kg	1000	ND	73.6	45-155	3.60	35	
n-Propylbenzene	949	100	ug/kg	1000	ND	94.9	75-135	5.08	35	
Styrene	1020	100	ug/kg	1000	ND	102	70-130	0.976	35	
1,1,1,2-Tetrachloroethane	1130	250	ug/kg	1000	ND	113	70-130	0.889	35	
1,1,2,2-Tetrachloroethane	580	100	ug/kg	1000	ND	58.0	60-140	2.89	35	M2
Tetrachloroethene	1070	100	ug/kg	1000	ND	107	65-130	3.81	35	
Toluene	1020	100	ug/kg	1000	ND	102	70-125	6.90	35	
1,2,3-Trichlorobenzene	838	250	ug/kg	1000	ND	83.8	60-135	3.52	35	
1,2,4-Trichlorobenzene	923	250	ug/kg	1000	ND	92.3	55-135	2.75	35	
1,1,1-Trichloroethane	1110	100	ug/kg	1000	ND	111	65-135	0.00	35	
1,1,2-Trichloroethane	937	100	ug/kg	1000	ND	93.7	65-130	5.71	35	
Trichloroethene	1210	100	ug/kg	1000	ND	121	70-130	3.36	35	
Trichlorofluoromethane	1400	250	ug/kg	2000	ND	70.0	10-200	28.2	35	
1,2,3-Trichloropropane	743	500	ug/kg	1000	ND	74.3	60-150	7.11	35	
1,2,4-Trimethylbenzene	954	100	ug/kg	1000	ND	95.4	75-130	0.105	35	
1,3,5-Trimethylbenzene	923	100	ug/kg	1000	ND	92.3	70-130	1.64	35	
Vinyl acetate	ND	1200	ug/kg	1000	ND	20.0	25-130	21.0	35	M2
Vinyl chloride	1590	250	ug/kg	2000	ND	79.5	10-200	22.8	35	
Xylenes, Total	3200	300	ug/kg	3000	ND	107	70-130	2.85	35	
Surrogate: Dibromofluoromethane	136		ug/kg	125		109	70-125			
Surrogate: Toluene-d8	156		ug/kg	125		125	50-135			
Surrogate: 4-Bromofluorobenzene	152		ug/kg	125		122	70-130			

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-8596 FAX (858) 505-9589 (480) 785-0043 FAX (480) 785-0851

Law Engineering 4634 S. 36th Place Phoenix, AZ 85040

Client Project ID:

70211-0-01SD

Sampled: 09/12/01

Attention: Jim Clarke

Report Number: PKI0180 Received: 09/12/01

Miking (d) MBJ HANKKOJOZI) SĄTĄ

VOLATILE ORGANICS BY GC/MS (EPA 8260B)

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: P1I2706 Extracted: 09/26	<u>5/01</u>									
Blank Analyzed: 09/26/01 (P1I2706-	-BLK1)									
Acetone	ND	20	ug/l							
Benzene	ND	2.0	ug/l							
Bromobenzene	ND	5.0	ug/l							
Bromochloromethane	ND	5.0	ug/l							
Bromodichloromethane	ND	2.0	ug/l							
Bromoform	ND	5.0	ug/l							
Bromomethane	ND	5.0	ug/l							
2-Butanone (MEK)	ND	10	ug/l							
n-Butylbenzene	ND	5.0	ug/l							
sec-Butylbenzene	ND	5.0	ug/l							
tert-Butylbenzene	ND	5.0	ug/l							
Carbon Disulfide	ND	5.0	ug/l							
Carbon tetrachloride	ND	5.0	ug/l							
Chlorobenzene	ND	2.0	ug/l							
Chloroethane	ND	5.0	ug/l							
Chloroform	ND	2.0	ug/l							
Chloromethane	ND	5.0	ug/l							
2-Chlorotoluene	ND	5.0	ug/l							
4-Chlorotoluene	ND	5.0	ug/l							
Dibromochloromethane	ND	2.0	ug/l							
1,2-Dibromo-3-chloropropane	ND	5.0	ug/l							
1,2-Dibromoethane (EDB)	ND	2.0	ug/l							
Dibromomethane	ND	2.0	ug/l					•		
1,2-Dichlorobenzene	ND	2.0	ug/l							
1,3-Dichlorobenzene	ND	2.0	ug/l							
1,4-Dichlorobenzene	ND	2.0	ug/l							
Dichlorodifluoromethane	ND	5.0	ug/l							
1,1-Dichloroethane	ND	2.0	ug/l							
1,2-Dichloroethane	ND	2.0	ug/l							
1,1-Dichloroethene	ND	5.0	ug/l							
cis-1,2-Dichloroethene	ND	2.0	ug/l							
trans-1,2-Dichloroethene	ND	2.0	ug/l							
1,2-Dichloropropane	ND	2.0	ug/l							
1,3-Dichloropropane	ND	2.0	ug/l							
2,2-Dichloropropane	ND	2.0	ug/l							
			_							

Melissa Evans Project Manager

PKI0180 Page 23 of 39

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-8596 FAX (858) 505-9589 (480) 785-0043 FAX (480) 785-0851

Law Engineering 4634 S. 36th Place Phoenix, AZ 85040 Attention: Jim Clarke

Client Project ID:

Report Number:

70211-0-01SD

PKI0180

Sampled: 09/12/01

Received: 09/12/01

VIETHOD BLANKOC DATA

VOLATILE ORGANICS BY GC/MS (EPA 8260B)

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: P1I2706 Extracted: 09/26/0	1_									
Blank Analyzed: 09/26/01 (P1I2706-BI	.K1)									
1,1-Dichloropropene	ND	2.0	ug/l							
cis-1,3-Dichloropropene	ND	2.0	ug/l							
trans-1,3-Dichloropropene	ND	2.0	ug/l							
Ethylbenzene	ND	2.0	ug/l							
Hexachlorobutadiene	ND	5.0	ug/l							
2-Hexanone	ND	10	ug/l							
Iodomethane	ND	2.0	ug/l							
lsopropylbenzene	ND	2.0	ug/l							
p-Isopropyltoluene	ND	2.0	ug/l							
Methylene chloride	ND	5.0	ug/l							
4-Methyl-2-pentanone (MIBK)	ND	10	ug/l							
Methyl-tert-butyl Ether (MTBE)	ND	5.0	ug/l							
Naphthalene	ND	5.0	ug/l							
n-Propylbenzene	ND	2.0	ug/l							
Styrene	ND	2.0	ug/l							
1,1,1,2-Tetrachloroethane	ND	5.0	ug/l							
1,1,2,2-Tetrachloroethane	ND	2.0	ug/l							
Tetrachloroethene	ND	2.0	ug/l							
Toluene	ND	2.0	ug/l							
1,2,3-Trichlorobenzene	ND	5.0	ug/l							
1,2,4-Trichlorobenzene	ND	5.0	ug/l							
1,1,1-Trichloroethane	ND	2.0	ug/l							
1,1,2-Trichloroethane	ND	2.0	ug/l							
Trichloroethene	ND	2.0	ug/l							
Trichlorofluoromethane	ND	5.0	ug/l							
1,2,3-Trichloropropane	ND	10	ug/l							
1,2,4-Trimethylbenzene	ND	2.0	ug/l							
1,3,5-Trimethylbenzene	ND	2.0	ug/l							
Vinyl acetate	ND	25	ug/l							
Vinyl chloride	ND	5.0	ug/l							
Xylenes, Total	ND	10	ug/l							
Surrogate: Dibromofluoromethane	27.2		ug/l	25.0		109	80-120			
Surrogate: Toluene-d8	25.5		ug/l	25.0		102	80-120			
Surrogate: 4-Bromofluorobenzene	23.2		ug/l	25.0		92.8	80-120			

Melissa Evans Project Manager

2852 Alton Ave., Irvine, CA 92606 (949) 261-1022 FAX (949) 261-1228 1014 E. Coldby Dr., Suite A, Colton, CA 92324 (909) 370-4667 FAX (909) 370-1046 7277 Hayvenhurst, Suite B-12, Van Nuys, CA 91406 (818) 779-1844 FAX (818) 779-1843 9484 Chesapeake Dr., Suite 805, San Diego, CA 92123 (858) 505-8596 FAX (858) 505-9589 9830 South 51st St., Suite B-120, Phoenix, AZ 85044 (480) 785-0043 FAX (480) 785-0851

Law Engineering 4634 S. 36th Place Phoenix, AZ 85040 Attention: Jim Clarke

Client Project ID: 70211-0-01SD

Report Number:

PKI0180

Sampled: 09/12/01

Received: 09/12/01

VOLATILE ORGANICS BY GC/MS (EPA 8260B)

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: P1I2706 Extracted: 09/26/01	<u>L</u>									
LCS Analyzed: 09/26/01 (P112706-BS1)									
Acetone	25.5	20	ug/l	25.0		102	30-200			
Benzene	23.3	2.0	ug/l	25.0		93.2	80-120			
Bromobenzene	27.7	5.0	ug/l	25.0		111	80-120			
Bromochloromethane	28.3	5.0	ug/l	25.0		113	80-120			
Bromodichloromethane	27.5	2.0	ug/l	25.0		110	80-130			
Bromoform	32.9	5.0	ug/l	25.0		132	60-140			
Bromomethane	27.3	5.0	ug/l	25.0		109	60-150			
2-Butanone (MEK)	23.9	10	ug/l	25.0		95.6	30-185			
n-Butylbenzene	22.3	5.0	ug/l	25.0		89.2	75-130			
sec-Butylbenzene	23.3	5.0	ug/l	25.0		93.2	80-125			
tert-Butylbenzene	24.1	5.0	ug/l	25.0		96.4	80-120			
Carbon Disulfide	21.4	5.0	ug/l	25.0		85.6	65-120			
Carbon tetrachloride	30.4	5.0	ug/l	25.0		122	75-150			
Chlorobenzene	2 7 .7	2.0	ug/l	25.0		111	80-120			
Chloroethane	22.6	5.0	ug/l	25.0		90.4	80-125			
Chloroform	26. 7	2.0	ug/l	25.0		107	80-120			
Chloromethane	19.5	5.0	ug/l	25.0		78.0	60-125			
2-Chlorotoluene	24.8	5.0	ug/l	25.0		99.2	80-120			
4-Chlorotoluene	24.8	5.0	ug/l	25.0		99.2	80-120			
Dibromochloromethane	32.8	2.0	ug/l	25.0		131	70-150			
1,2-Dibromo-3-chloropropane	33.8	5.0	ug/l	25.0		135	50-145			
1,2-Dibromoethane (EDB)	29.5	2.0	ug/l	25.0		118	75-120			
Dibromomethane	28.8	2.0	ug/l	25.0		115	80-120			
1,2-Dichlorobenzene	26.3	2.0	ug/l	25.0		105	80-120			
1,3-Dichlorobenzene	25.8	2.0	ug/l	25.0		103	80-120			
1,4-Dichlorobenzene	27.0	2.0	ug/l	25.0		108	80-120			
Dichlorodifluoromethane	27.2	5.0	ug/l	25.0		109	25-140			
1,1-Dichloroethane	24.6	2.0	ug/l	25.0		98.4	80-120			
1,2-Dichloroethane	26.9	2.0	ug/l	25.0		108	80-120			
1,1-Dichloroethene	27.1	5.0	ug/l	25.0		108	80-120			
cis-1,2-Dichloroethene	25.5	2.0	ug/l	25.0		102	80-120			
trans-1,2-Dichloroethene	26.1	2.0	ug/l	25.0		104	80-120			
1,2-Dichloropropane	23.3	2.0	ug/l	25.0		93.2	80-120			
1,3-Dichloropropane	26.4	2.0	ug/l	25.0		106	80-120			
2,2-Dichloropropane	27.3	2.0	ug/l	25.0		109	75-135			
1,1-Dichloropropene	24.0	2.0	ug/l	25.0		96.0	80-120			

Melissa Evans Project Manager

PKI0180 Page 25 of 39

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-8596 FAX (858) 505-9589 (480) 785-0043 FAX (480) 785-0851

Law Engineering 4634 S. 36th Place Phoenix, AZ 85040

Attention: Jim Clarke

Client Project ID:

70211-0-01SD

Report Number: PKI0180

Sampled: 09/12/01

Received: 09/12/01

METHOD BLANK QC DATA

VOLATILE ORGANICS BY GC/MS (EPA 8260B)

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: P1I2706 Extracted: 09/26/03	<u>L</u>									
LCS Analyzed: 09/26/01 (P1I2706-BS1))									
cis-1,3-Dichloropropene	25.8	2.0	ug/l	25.0		103	80-120			
trans-1,3-Dichloropropene	26.5	2.0	ug/l	25.0		106	80-120			
Ethylbenzene	26.6	2.0	ug/l	25.0		106	80-120			
Hexachlorobutadiene	24.9	5.0	ug/l	25.0		99.6	60-145			
2-Hexanone	26.0	10	ug/l	25.0		104	50-170			
Iodomethane	30.6	2.0	ug/l	25.0		122	40-155			
Isopropyłbenzene	26.5	2.0	ug/l	25.0		106	80-120			
p-Isopropyltoluene	23.4	2.0	ug/l	25.0		93.6	80-120			
Methylene chloride	25.9	5.0	ug/l	25.0		104	80-120			
4-Methyl-2-pentanone (MIBK)	29.0	10	ug/l	25.0		116	70-140			
Methyl-tert-butyl Ether (MTBE)	25.9	5.0	ug/l	25.0		104	75-135			
Naphthalene	29.9	5.0	ug/l	25.0		120	70-130			
n-Propylbenzene	24.4	2.0	ug/l	25.0		97.6	80-120			
Styrene	27.1	2.0	ug/l	25.0		108	80-120			
1,1,1,2-Tetrachloroethane	30.5	5.0	ug/l	25.0		122	65-150			
1,1,2,2-Tetrachloroethane	28.4	2.0	ug/l	25.0		114	70-130			
Tetrachloroethene	29.2	2.0	ug/l	25.0		117	80-125			
Toluene	26.0	2.0	ug/l	25.0		104	80-120			
1,2,3-Trichlorobenzene	25.1	5.0	ug/l	25.0		100	75-125			
1,2,4-Trichlorobenzene	24.8	5.0	ug/l	25.0		99.2	80-120			
1,1,1-Trichloroethane	28.4	2.0	ug/l	25.0		114	80-120			
1,1,2-Trichloroethane	27.9	2.0	ug/l	25.0		112	80-120			
Trichloroethene	26.0	2.0	ug/l	25.0		104	80-120			
Trichlorofluoromethane	24.8	5.0	ug/l	25.0		99.2	75-150			
1,2,3-Trichloropropane	27.7	10	ug/l	25.0		111	65-135			
1,2,4-Trimethylbenzene	25.2	2.0	ug/l	25.0		101	80-120			
1,3,5-Trimethylbenzene	24.5	2.0	ug/l	25.0		98.0	80-120			
Vinyl acetate	27.4	25	ug/l	25.0		110	40-120			
Vinyl chloride	27.2	5.0	ug/l	25.0		109	80-120			
Xylenes, Total	79.7	10	ug/l	75.0		106	80-120			
Surrogate: Dibromofluoromethane	27.6		ug/l	25.0		110	80-120			
Surrogate: Toluene-d8	26.9		ug/l	25.0		108	80~120			
Surrogate: 4-Bromofluorobenzene	24.0		ug/l	25.0		96.0	80-120			

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-8596 FAX (858) 505-9589 (480) 785-0043 FAX (480) 785-0851

Law Engineering 4634 S. 36th Place Phoenix, AZ 85040 Attention: Jim Clarke

Client Project ID: 7

Report Number:

70211-0-01SD

PKI0180

Sampled: 09/12/01

Received: 09/12/01

METHOD BLANKIOC DATA

VOLATILE ORGANICS BY GC/MS (EPA 8260B)

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: P1I2706 Extracted: 09	/26/01									
LCS Dup Analyzed: 09/26/01 (P1	I2706-BSD1)									
Acetone	35.9	20	ug/l	25.0		144	30-200	33.9	20	R6
Benzene	23.2	2.0	ug/l	25.0		92.8	80-120	0.430	20	
Bromobenzene	27.4	5.0	ug/l	25.0		110	80-120	1.09	20	
Bromochloromethane	28.9	5.0	ug/l	25.0		116	80-120	2.10	20	
Bromodichloromethane	28.5	2.0	ug/l	25.0		114	80-130	3.57	20	
Bromoform	35.0	5.0	ug/l	25.0		140	60-140	6.19	20	
Bromomethane	27.4	5.0	ug/l	25.0		110	60-150	0.366	20	
2-Butanone (MEK)	27.3	10	ug/l	25.0		109	30-185	13.3	20	
n-Butylbenzene	22.7	5.0	ug/l	25.0		90.8	75-130	1.78	20	
sec-Butylbenzene	23.4	5.0	ug/l	25.0		93.6	80-125	0.428	20	
tert-Butylbenzene	24.5	5.0	ug/l	25.0		98.0	80-120	1.65	20	
Carbon Disulfide	20.8	5.0	ug/l	25.0		83.2	65-120	2.84	20	
Carbon tetrachloride	30.9	5.0	ug/l	25.0		124	75-150	1.63	20	
Chlorobenzene	28.1	2.0	ug/l	25.0		112	80-120	1.43	20	
Chloroethane	22.4	5.0	ug/l	25.0		89.6	80-125	0.889	20	
Chloroform	26.7	2.0	ug/l	25.0		107	80-120	0.00	20	
Chloromethane	18.9	5.0	ug/l	25.0		75.6	60-125	3.13	20	
2-Chlorotoluene	24.8	5.0	ug/l	25.0		99.2	80-120	0.00	20	
4-Chlorotoluene	24.7	5.0	ug/l	25.0		98.8	80-120	0.404	20	
Dibromochloromethane	33.1	2.0	ug/l	25.0		132	70-150	0.910	20	
1,2-Dibromo-3-chloropropane	35.5	5.0	ug/l	25.0		142	50-145	4.91	20	
1,2-Dibromoethane (EDB)	29.8	2.0	ug/l	25.0		119	75-120	1.01	20	
Dibromomethane	28.8	2.0	ug/l	25.0		115	80-120	0.00	20	
1,2-Dichlorobenzene	26.5	2.0	ug/l	25.0		106	80-120	0.758	20	
1,3-Dichlorobenzene	26.1	2.0	ug/l	25.0		104	80-120	1.16	20	
1,4-Dichlorobenzene	27.0	2.0	ug/l	25.0		108	80-120	0.00	20	
Dichlorodifluoromethane	26.6	5.0	ug/l	25.0		106	25-140	2.23	20	
1,1-Dichloroethane	24.5	2.0	ug/l	25.0		98.0	80-120	0.407	20	
1,2-Dichloroethane	27.2	2.0	ug/l	25.0		109	80-120	1.11	20	
1,1-Dichloroethene	26.9	5.0	ug/l	25.0		108	80-120	0.741	20	
cis-1,2-Dichloroethene	25.2	2.0	ug/l	25.0		101	80-120	1.18	20	
trans-1,2-Dichloroethene	25.9	2.0	ug/l	25.0		104	80-120	0.769	20	
1,2-Dichloropropane	23.5	2.0	ug/l	25.0		94.0	80-120	0.855	20	
1,3-Dichloropropane	26.8	2.0	ug/l	25.0		107	80-120	1.50	20	
2,2-Dichloropropane	25.3	2.0	ug/l	25.0		101	75-135	7.60	20	
1,1-Dichloropropene	23.8	2.0	ug/l	25.0		95.2	80-120	0.837	20	
		2.0	 E/1	25.0		93.4	30-120	0.657	20	

Melissa Evans Project Manager

PKI0180 Page 27 of 39

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-8596 FAX (858) 505-9589 (480) 785-0043 FAX (480) 785-0851

Law Engineering 4634 S. 36th Place Phoenix, AZ 85040

Client Project ID:

70211-0-01SD

Sampled: 09/12/01

Attention: Jim Clarke

Report Number:

PKI0180

Received: 09/12/01

TYTET HOD BLANKQC DATA

VOLATILE ORGANICS BY GC/MS (EPA 8260B)

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: P1I2706 Extracted: 09/26/	01									
LCS Dup Analyzed: 09/26/01 (P1I270	06-BSD1)									
cis-1,3-Dichloropropene	25.4	2.0	ug/l	25.0		102	80-120	1.56	20	
trans-1,3-Dichloropropene	26.9	2.0	ug/l	25.0		108	80-120	1.50	20	
Ethylbenzene	26.8	2.0	ug/l	25.0		107	80-120	0.749	20	
Hexachlorobutadiene	25.3	5.0	ug/l	25.0		101	60-145	1.59	20	
2-Hexanone	31.7	10	ug/l	25.0		127	50-170	19.8	20	
Iodomethane	30.3	2.0	ug/l	25.0		121	40-155	0.985	20	
Isopropylbenzene	26.5	2.0	ug/l	25.0		106	80-120	0.00	20	
p-Isopropyltoluene	23.5	2.0	ug/l	25.0		94.0	80-120	0.426	20	
Methylene chloride	24.9	5.0	ug/l	25.0		99.6	80-120	3.94	20	
4-Methyl-2-pentanone (MIBK)	30.9	10	ug/l	25.0		124	70-140	6.34	20	
Methyl-tert-butyl Ether (MTBE)	26.4	5.0	ug/l	25.0		106	75-135	1.91	20	
Naphthalene	30.6	5.0	ug/l	25.0		122	70-130	2.31	20	
n-Propylbenzene	24.8	2.0	ug/l	25.0		99.2	80-120	1.63	20	
Styrene	27.2	2.0	ug/ 1	25.0		109	80-120	0.368	20	
1,1,1,2-Tetrachloroethane	31.7	5.0	ug/l	25.0		127	65-150	3.86	20	
1,1,2,2-Tetrachloroethane	29.5	2.0	ug/l	25.0		118	70-130	3.80	20	
Tetrachloroethene	29.3	2.0	ug/l	25.0		117	80-125	0.342	20	
Toluene	25.8	2.0	ug/l	25.0		103	80-120	0.772	20	
1,2,3-Trichlorobenzene	25,0	5.0	ug/l	25.0		100	75-125	0.399	20	
1,2,4-Trichlorobenzene	25.2	5.0	ug/l	25.0		101	80-120	1.60	20	
1,1,1-Trichloroethane	28.0	2.0	ug/l	25.0		112	80-120	1.42	20	
1,1,2-Trichloroethane	28.3	2.0	ug/l	25.0		113	80-120	1.42	20	
Trichloroethene	26.2	2.0	ug/l	25.0		105	80-120	0.766	20	
Trichlorofluoromethane	21.6	5.0	ug/l	25.0		86.4	75-150	13.8	20	
1,2,3-Trichloropropane	28.8	10	ug/l	25.0		115	65-135	3.89	20	
1,2,4-Trimethylbenzene	25.7	2.0	ug/l	25.0		103	80-120	1.96	20	
1,3,5-Trimethylbenzene	24.9	2.0	ug/l	25.0		99.6	80-120	1.62	20	
Vinyl acetate	27.8	25	ug/l	25.0		111	40-120	1.45	20	
Vinyl chloride	27.4	5.0	ug/l	25.0		110	80-120	0.733	20	
Xylenes, Total	80.0	10	ug/l	75.0		107	80-120	0.376	20	
Surrogate: Dibromofluoromethane	27.3		ug/l	25.0		109	80-120			
Surrogate: Toluene-d8	26.7		ug/l	25.0		107	80-120			
Surrogate: 4-Bromofluorobenzene	24.5		ug/l	25.0		98.0	80-120			

Law Engineering 4634 S. 36th Place Phoenix, AZ 85040 Attention: Jim Clarke

Client Project ID:

70211-0-01SD

Report Number:

PKI0180

Sampled: 09/12/01

Received: 09/12/01

MDH HODBESKKOJE DADA

VOLATILE ORGANICS BY GC/MS (EPA 8260B)

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: P1I2706 Extracted: 09/26	6/01									
Matrix Spike Analyzed: 09/26/01 (F	P112706-MS1)				Source: P	KI0180-1	15			
Acetone	ND	20	ug/l	25.0	ND	58.0	5-200			
Benzene	21.4	2.0	ug/l	25.0	ND	85.6	80-120			
Bromobenzene	26.9	5.0	ug/l	25.0	ND	108	80-120			
Bromochloromethane	25.6	5.0	ug/l	25.0	ND	102	60-135			
Bromodichloromethane	24.8	2.0	ug/l	25.0	ND	99.2	80-120			
Bromoform	28.5	5.0	ug/l	25.0	ND	114	40-140			
Bromomethane	23.4	5.0	ug/l	25.0	ND	93.6	25-165			
2-Butanone (MEK)	19.6	10	ug/l	25.0	ND	78.4	10-160			
n-Butylbenzene	21.6	5.0	ug/l	25.0	ND	86.4	75-135			
sec-Butylbenzene	22.9	5.0	ug/l	25.0	ND	91.6	80-135			
tert-Butylbenzene	24.2	5.0	ug/l	25.0	ND	96.8	80-125			
Carbon Disulfide	19.1	5.0	ug/l	25.0	ND	76.4	20-120			
Carbon tetrachloride	27.5	5.0	ug/l	25.0	ND	110	80-145			
Chlorobenzene	26.5	2.0	ug/l	25.0	ND	106	80-120			
Chloroethane	20.5	5.0	ug/l	25.0	ND	82.0	30-150			
Chloroform	24.0	2.0	ug/l	25.0	ND	96.0	80-125			
Chloromethane	17.7	5.0	ug/l	25.0	ND	70.8	15-140			
2-Chlorotoluene	24.4	5.0	ug/l	25.0	ND	97.6	80-125			
4-Chlorotoluene	24.4	5.0	ug/l	25.0	ND	97.6	80-125			
Dibromochloromethane	28.9	2.0	ug/l	25.0	ND	116	75-135			
1,2-Dibromo-3-chloropropane	28.4	5.0	ug/l	25.0	ND	114	25-185			
1,2-Dibromoethane (EDB)	26.3	2.0	ug/l	25.0	ND	105	45-145			
Dibromomethane	24.9	2.0	ug/l	25.0	ND	99.6	55-140			
1,2-Dichlorobenzene	25.6	2.0	ug/l	25.0	ND	102	80-120			
1,3-Dichlorobenzene	25.0	2.0	ug/l	25.0	ND	100	80-120			
1,4-Dichlorobenzene	26.0	2.0	ug/l	25.0	ND	104	80-120			
Dichlorodifluoromethane	23.7	5.0	ug/l	25.0	ND	94.8	25-145			
1,1-Dichloroethane	22.6	2.0	ug/l	25.0	ND	90.4	75-120			
1,2-Dichloroethane	23.4	2.0	ug/l	25.0	ND	93.6	60-135			
1,1-Dichloroethene	25.0	5.0	· ug/l	25.0	ND	100	55-120			
cis-1,2-Dichloroethene	23.2	2.0	ug/l	25.0	ND	92.8	75-120			
trans-1,2-Dichloroethene	24.2	2.0	ug/l	25.0	ND	96.8	65-120			
1,2-Dichloropropane	22.0	2.0	ug/l	25.0	ND	88.0	80-125			
1,3-Dichloropropane	23.2	2.0	ug/l	25.0	ND	92.8	55-140			
2,2-Dichloropropane	24.8	2.0	ug/l	25.0	ND	99.2	45-165			
1,1-Dichloropropene	22.7	2.0	ug/l	25.0	ND	90.8	80-120			

Melissa Evans Project Manager

PKI0180 Page 29 of 39

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-8596 FAX (858) 505-9589 (480) 785-0043 FAX (480) 785-0851

Law Engineering 4634 S. 36th Place Phoenix, AZ 85040

Attention: Jim Clarke

Client Project ID:

70211-0-01SD

Sampled: 09/12/01

Report Number:

PKI0180

Received: 09/12/01

<u>N 190 I HOODERDAAN KKOKULOPAUP</u>

VOLATILE ORGANICS BY GC/MS (EPA 8260B)

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: P112706 Extracted: 09/26	<u>/01</u>									
Matrix Spike Analyzed: 09/26/01 (P1	12706-MS1)				Source: P	K10180-1	5			
cis-1,3-Dichloropropene	23.1	2.0	ug/l	25.0	ND	92.4	80-120			
trans-1,3-Dichloropropene	23.6	2.0	ug/l	25.0	ND	94.4	70-120			
Ethylbenzene	25.7	2.0	ug/l	25.0	ND	103	80-120			
Hexachlorobutadiene	23.8	5.0	ug/l	25.0	ND	95.2	80-135			
2-Hexanone	24.7	10	ug/l	25.0	ND	98.8	25-185			
Iodomethane	27.4	2.0	ug/l	25.0	ND	110	30-155			
Isopropylbenzene	25.6	2.0	ug/l	25.0	ND	102	80-125			
p-Isopropyltoluene	22.8	2.0	ug/l	25.0	ND	91.2	80-125			
Methylene chloride	30.2	5.0	ug/l	25.0	ND	121	55-125			
4-Methyl-2-pentanone (MIBK)	25.5	10	ug/l	25.0	ND	102	10-175			
Methyl-tert-butyl Ether (MTBE)	24.5	5.0	ug/l	25.0	ND	98.0	55-135			
Naphthalene	27.9	5.0	ug/l	25.0	ND	112	15-160			
n-Propylbenzene	24.1	2.0	ug/l	25.0	ND	96.4	80-130			
Styrene	25.6	2.0	ug/l	25.0	ND	102	60-135			
1,1,1,2-Tetrachloroethane	28.6	5.0	ug/l	25.0	ND	114	80-135			
1,1,2,2-Tetrachloroethane	26.5	2.0	ug/l	25.0	ND	106	35-150			
Tetrachloroethene	28.2	2.0	ug/l	25.0	ND	113	80-120			
Toluene	24.3	2.0	ug/l	25.0	ND	97.2	80-120			
1,2,3-Trichlorobenzene	23.9	5.0	ug/l	25.0	ND	95.6	45-145			
1,2,4-Trichlorobenzene	24.2	5.0	ug/l	25.0	ND	96.8	65-130			
1,1,1-Trichloroethane	26.3	2.0	ug/l	25.0	ND	105	80-120			
1,1,2-Trichloroethane	25.0	2.0	ug/l	25.0	ND	100	55-145			
Trichloroethene	23.9	2.0	ug/l	25.0	ND	95.6	80-120			
Trichlorofluoromethane	19.1	5.0	ug/l	25.0	ND	76.4	70-145			
1,2,3-Trichloropropane	25.5	10	ug/l	25.0	ND	102	20-160			
1,2,4-Trimethylbenzene	25.0	2.0	ug/l	25.0	ND	100	70-135			
1,3,5-Trimethylbenzene	24.0	2.0	ug/l	25.0	ND	96.0	80-125			
Vinyl acetate	ND	25	ug/l	25.0	ND	92.4	25-130			
Vinyl chloride	24.3	5.0	ug/l	25.0	ND	97.2	25-135			
Xylenes, Total	76.6	10	ug/l	75.0	ND	102	80-120			
Surrogate: Dibromofluoromethane	25.7		ug/l	25.0		103	80-120			
Surrogate: Toluene-d8	26.6		ug/l	25.0		106	80-120			
Surrogate: 4-Bromofluorobenzene	24.8		ug/l	25.0		99.2	80-120			

2852 Alton Ave., Irvine, CA 92606 (949) 261-1022 FAX (949) 261-1228 1014 E. Coldby Dr., Suite A, Colton, CA 92324 (909) 370-4667 FAX (909) 370-1046 7277 Hayvenhurst, Suite B-12, Van Nuys, CA 91406 (818) 779-1844 FAX (818) 779-1843 9484 Chesapeake Dr., Suite 805, San Diego, CA 92123 (858) 505-8596 FAX (858) 505-9589 9830 South 51st St., Suite B-120, Phoenix, AZ 85044 (480) 785-0043 FAX (480) 785-0851

Law Engineering 4634 S. 36th Place Phoenix, AZ 85040 Attention: Jim Clarke

Client Project ID: 70211-0-01SD

Report Number: PKI0180

Sampled: 09/12/01 Received: 09/12/01

ASTRIDICOJO PRIMANJENOJEDOM I

VOLATILE ORGANICS BY GC/MS (EPA 8260B)

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: P1I2706 Extracted: 09/26/0	<u>)1</u>									
Matrix Spike Dup Analyzed: 09/26/01	(P1I2706-MS	SD1)			Source: F	KI0180-1	5			
Acetone	ND	20	ug/l	25.0	ND	60.0	5-200	3.39	20	
Benzene	21.9	2.0	ug/l	25.0	ND	87.6	80-120	2.31	20	
Bromobenzene	27.0	5.0	ug/l	25.0	ND	108	80-120	0.371	20	
Bromochloromethane	26.1	5.0	ug/i	25.0	ND	104	60-135	1.93	20	
Bromodichloromethane	26.0	2.0	ug/l	25.0	ND	104	80-120	4.72	20	
Bromoform	30.0	5.0	ug/l	25.0	ND	120	40-140	5.13	20	
Bromomethane	24.8	5.0	ug/l	25.0	ND	99.2	25-165	5.81	20	
2-Butanone (MEK)	18.6	10	ug/l	25.0	ND	74.4	10-160	5.24	20	
n-Butylbenzene	21.2	5.0	ug/l	25.0	ND	84.8	75-135	1.87	20	
sec-Butylbenzene	22.5	5.0	ug/1	25.0	ND	90.0	80-135	1.76	20	
tert-Butylbenzene	23.4	5.0	ug/l	25.0	ND	93.6	80-125	3.36	20	
Carbon Disulfide	19.6	5.0	ug/l	25.0	ND	78.4	20-120	2.58	20	
Carbon tetrachloride	28.3	5.0	ug/l	25.0	ND	113	80-145	2.87	20	
Chlorobenzene	27.2	2.0	ug/l	25.0	ND	109	80-120	2.61	20	
Chloroethane	21.4	5.0	ug/l	25.0	ND	85.6	30-150	4.30	20	
Chloroform	24.7	2.0	ug/l	25.0	ND	98.8	80-125	2.87	20	
Chloromethane	18.1	5.0	ug/l	25.0	ND	72.4	15-140	2,23	20	
2-Chlorotoluene	24.0	5.0	ug/l	25.0	ND	96.0	80-125	1.65	20	
4-Chlorotoluene	24.3	5.0	ug/l	25.0	ND	97.2	80-125	0.411	20	
Dibromochloromethane	30.4	2.0	ug/l	25.0	ND	122	75-135	5.06	20	
1,2-Dibromo-3-chloropropane	29.0	5.0	ug/l	25.0	ND	116	25-185	2.09	20	
1,2-Dibromoethane (EDB)	27.3	2.0	ug/l	25.0	ND	109	45-145	3.73	20	
Dibromomethane	25.2	2.0	ug/l	25.0	ND	101	55-140	1.20	20	
1,2-Dichlorobenzene	25.5	2.0	ug/l	25.0	ND	102	80-120	0.391	20	
1,3-Dichlorobenzene	25.1	2.0	ug/l	25.0	ND	100	80-120	0.399	20	
1,4-Dichlorobenzene	26.1	2.0	ug/l	25.0	ND	104	80-120	0.384	20	
Dichlorodifluoromethane	24.7	5.0	ug/l	25.0	ND	98.8	25-145	4.13	20	
1,1-Dichloroethane	23.0	2.0	ug/l	25.0	ND	92.0	75-120	1.75	20	
1,2-Dichloroethane	23.9	2.0	ug/l	25.0	ND	95.6	60-135	2.11	20	
1,1-Dichloroethene	25.1	5.0	ug/l	25.0	ND	100	55-120	0.399	20	
cis-1,2-Dichloroethene	23.9	2.0	ug/l	25.0	ND	95.6	75-120	2.97	20	
trans-1,2-Dichloroethene	24.1	2.0	ug/l	25.0	ND	96.4	65-120	0.414	20	
1,2-Dichloropropane	22.2	2.0	ug/l	25.0	ND	88.8	80-125	0.905	20	
1,3-Dichloropropane	24.0	2.0	ug/l	25.0	ND	96.0	55-140	3.39	20	
2,2-Dichloropropane	24.4	2.0	ug/l	25.0	ND	97.6	45-165	1.63	20	
1,1-Dichloropropene	23.0	2.0	ug/l	25.0	ND	92.0	80-120	1.31	20	
			-				_			

Melissa Evans Project Manager

PKI0180 Page 31 of 39

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-8596 FAX (858) 505-9589 (480) 785-0043 FAX (480) 785-0851

Law Engineering 4634 S. 36th Place Phoenix, AZ 85040 Attention: Jim Clarke

Client Project ID: 70211-0-01SD

Sampled: 09/12/01

Report Number:

PKI0180

Received: 09/12/01

<u>iyi dadukoo dubburyak kalozaddah baruka</u>

VOLATILE ORGANICS BY GC/MS (EPA 8260B)

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: P1I2706 Extracted: 09/26/0	1									
Matrix Spike Dup Analyzed: 09/26/01	(P1I2706-M	SD1)			Source: P	KI0180-1	5			
cis-1,3-Dichloropropene	23.6	2.0	ug/l	25.0	ND	94.4	80-120	2.14	20	
trans-1,3-Dichloropropene	24.8	2.0	ug/l	25.0	ND	99.2	70-120	4.96	20	
Ethylbenzene	26.4	2.0	ug/l	25.0	ND	106	80-120	2.69	20	
Hexachlorobutadiene	23.7	5.0	ug/l	25.0	ND	94.8	80-135	0.421	20	
2-Hexanone	25.3	10	ug/l	25.0	ND	101	25-185	2.40	20	
Iodomethane	28.1	2.0	ug/l	25.0	ND	112	30-155	2.52	20	
Isopropylbenzene	26.3	2.0	ug/l	25.0	ND	105	80-125	2.70	20	
p-Isopropyltoluene	22.4	2.0	ug/l	25.0	ND	89.6	80-125	1.77	20	
Methylene chloride	31.5	5.0	ug/l	25.0	ND	126	55-125	4.21	20	M1
4-Methyl-2-pentanone (MIBK)	25.8	10	ug/l	25.0	ND	103	10-175	1.17	20	
Methyl-tert-butyl Ether (MTBE)	25.2	5.0	ug/l	25.0	ND	101	55-135	2.82	20	
Naphthalene	28.0	5.0	ug/l	25.0	ND	112	15-160	0.358	20	
n-Propylbenzene	23.8	2.0	ug/l	25.0	ND	95.2	80-130	1.25	20	
Styrene	26.4	2.0	ug/l	25.0	ND	106	60-135	3.08	20	
1,1,1,2-Tetrachloroethane	29.8	5.0	ug/l	25.0	ND	119	80-135	4.11	20	
1,1,2,2-Tetrachloroethane	26.8	2.0	ug/l	25.0	ND	107	35-150	1.13	20	
Tetrachloroethene	28.5	2.0	ug/l	25.0	ND	114	80-120	1.06	20	
Toluene	25.0	2.0	ug/l	25.0	ND	100	80-120	2.84	20	
1,2,3-Trichlorobenzene	23.5	5.0	ug/l	25.0	ND	94.0	45-145	1.69	20	
1,2,4-Trichlorobenzene	24.0	5.0	ug/l	25.0	ND	96.0	65-130	0.830	20	
1,1,1-Trichloroethane	26.7	2.0	ug/l	25.0	ND	107	80-120	1.51	20	
1,1,2-Trichloroethane	26.3	2.0	ug/l	25.0	ND	105	55-145	5.07	20	
Trichloroethene	24.1	2.0	ug/l	25.0	ND	96.4	80-120	0.833	20	
Trichlorofluoromethane	20.7	5.0	ug/l	25.0	ND	82.8	70-145	8.04	20	
1,2,3-Trichloropropane	25.4	10	ug/l	25.0	ND	102	20-160	0.393	20	
1,2,4-Trimethylbenzene	24.5	2.0	ug/l	25.0	ND	98.0	70-135	2.02	20	
1,3,5-Trimethylbenzene	23.8	2.0	ug/l	25.0	ND	95.2	80-125	0.837	20	
Vinyl acetate	ND	25	ug/l	25.0	ND	92.4	25-130	0.00	20	
Vinyl chloride	25.3	5.0	ug/l	25.0	ND	101	25-135	4.03	20	,
Xylenes, Total	78.9	10	ug/l	75.0	ND	105	80-120	2.96	20	
Surrogate: Dibromofluoromethane	26.1		ug/l	25.0		104	80-120			
Surrogate: Toluene-d8	27.2		ug/l	25.0		109	80-120			
Surrogate: 4-Bromofluorobenzene	24.7		ug/l	25.0		98.8	80-120			

Law Engineering 4634 S. 36th Place

Phoenix, AZ 85040 Attention: Jim Clarke Client Project ID:

70211-0-01SD

Report Number:

PKI0180

Sampled: 09/12/01

Received: 09/12/01

NICHTO BRISNACK DATE

TOTAL METALS

	Reporting		Spike	Source		%REC		RPD	Data
Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
<u>1_</u>									
.K1)									
ND	5.0	mg/kg							
ND	1.0	mg/kg							
ND	2.0	mg/kg							
ND	5.0	mg/kg							
)									
89.9	5.0	mg/kg	100		89.9	80-120			
88.0	1.0	mg/kg	100		88.0	80-120			
90.2	2.0	mg/kg	100		90.2	80-120			
86.6	5.0	mg/kg	100		86.6	80-120			
-BSD1)									
91.6	5.0	mg/kg	100		91.6	80-120	1.87	20	
89.4	1.0	mg/kg	100		89.4	80-120	1.58	20	
90.2	2.0	mg/kg	100		90.2	80-120	0.00	20	
87.8	5.0	mg/kg	100		87.8	80-120	1.38	20	
(805-MS1)				Source: I	PKI0226-1	10			
77.3	5.0	mg/kg	100	ND	77.3	75-125			
95.8	1.0	mg/kg	100	12	83.8	75-125			
102	2.0	mg/kg	100	7.6	94.4	75-125			
86.1		mg/kg	100						
(P111805-M	SD1)				PKI0226-1	10			
80.5	5.0	mg/kg	100	ND	80.5	75-125	4.06	20	
99.4	1.0	mg/kg	100	12	87.4	75-125	3.69	20	
99.5	2.0	mg/kg	100	7.6	91.9	75-125	2.48	20	
89.3	5.0	mg/kg	100	ND	84.6	75-125	3.65	20	
	1 ND ND ND ND ND 1 89.9 88.0 90.2 86.6 89.4 90.2 87.8 1805-MS1) 77.3 95.8 102 86.1 (P111805-Million 199.5	Result Limit	ND S.0 mg/kg S8.0 S.0 mg/kg 90.2 S.0 mg/kg 90.2 S.0 mg/kg 91.6 S.0 mg/kg 91.6 S.0 mg/kg 90.2 S.0 mg/kg 90.3 S.0 mg/kg 90.4 S.0 mg/kg 90.5 S.0 mg/kg 90.6 S.0 mg/kg 90.7 S.0 mg/kg 90.8 S.0 mg/kg 90.9 S.0 mg/kg 90.0 S.0 mg	Result Limit Units Level	ND S.0 mg/kg S8.0 S.0 mg/kg S6.6 S.0 mg/kg S9.4 S.0 mg/kg S9.4 S.0 mg/kg S7.3 S7.3	ND S.0 mg/kg ND 1.0 mg/kg ND 5.0 mg/kg 100 89.9 88.0 1.0 mg/kg 100 88.0 90.2 2.0 mg/kg 100 86.6 90.2 86.6 5.0 mg/kg 100 86.6 91.6 89.4 1.0 mg/kg 100 89.4 90.2 2.0 mg/kg 100 89.4 90.2 2.0 mg/kg 100 87.8 87.8 5.0 mg/kg 100 87.8 87.8 87.8 100 mg/kg 100 ND 77.3 95.8 1.0 mg/kg 100 ND 81.4 (P111805-MSD1) Source: PK10226-100 80.5 5.0 mg/kg 100 ND 80.5 99.4 1.0 mg/kg 100 ND 80.5 99.4 1.0 mg/kg 100 12 87.4 99.5 2.0 mg/kg 100 7.6 91.9	ND 5.0 mg/kg ND 2.0 mg/kg ND 5.0 mg/kg 100 89.9 80-120 88.0 80-120 90.2 2.0 mg/kg 100 86.6 80-120 86.6 5.0 mg/kg 100 86.6 80-120 89.4 1.0 mg/kg 100 91.6 80-120 89.4 1.0 mg/kg 100 89.4 80-120 90.2 2.0 mg/kg 100 89.4 80-120 90.2 2.0 mg/kg 100 89.4 80-120 90.2 2.0 mg/kg 100 87.8 80-120 87.8 5.0 mg/kg 100 87.8 80-120 87.8 5.0 mg/kg 100 ND 77.3 75-125 95.8 1.0 mg/kg 100 ND 77.3 75-125 95.8 1.0 mg/kg 100 ND 77.3 75-125 95.8 1.0 mg/kg 100 ND 81.4 75-125 86.1 5.0 mg/kg 100 ND 81.4 75-125 86.1 5.0 mg/kg 100 ND 81.4 75-125 99.4 1.0 mg/kg 100 ND 80.5 75-125 99.5 2.0 mg/kg 100 7.6 91.9 75-125 99.5 2.0 mg/kg 100 7.6 91.9 75-125 99.5 99.5 2.0 mg/kg 100 7.6 91.9 75-	No	

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-8596 FAX (858) 505-9589 (480) 785-0043 FAX (480) 785-0851

Law Engineering 4634 S. 36th Place Phoenix, AZ 85040 Attention: Jim Clarke

Client Project ID:

70211-0-01SD

Sampled: 09/12/01

%REC

Report Number:

Reporting

PKI0180

Received: 09/12/01

RPD

Data

MÜTHOD BLANK (XC.DATA

TOTAL METALS

Spike

Source

		reporting		Spine	Dourte		/UILLOC		111 12	Dutu
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: P1I2415 Extracted: 09/24/6	<u>01</u>									
Blank Analyzed: 09/24/01 (P1I2415-B	LK1)									
Chromium VI	ND	1.0	mg/kg							
LCS Analyzed: 09/24/01 (P1I2415-BS	1)									
Chromium VI	9.73	1.0	mg/kg	10.0		97.3	85-115			
LCS Dup Analyzed: 09/24/01 (P1I241	5-BSD1)									
Chromium VI	8.93	1.0	mg/kg	10.0		89.3	85-115	8.57	20	
Matrix Spike Analyzed: 09/24/01 (P1)	(2415-MS1)				Source: 1	PK10159-0)7			
Chromium VI	9.08	1.0	mg/kg	10.0	ND	89.3	85-115			
Matrix Spike Dup Analyzed: 09/24/01	(P1I2415-M	(SD1)			Source: 1	PK10159-()7			
Chromium VI	9.08	1.0	mg/kg	10.0	ND	89.3	85-115	0.00	20	
Batch: P1I2605 Extracted: 09/26/	01									
Blank Analyzed: 09/28/01 (P1I2605-E	LK1)									
Zinc	ND	5.0	mg/kg							
LCS Analyzed: 09/28/01 (P1I2605-BS	51)									
Zinc	104	5.0	mg/kg	100		104	80-120			
Matrix Spike Analyzed: 09/28/01 (P1	(12605-MS1)				Source:	PK10365-0	01			
Zinc	121	5.0	mg/kg	100	43	78.0	75-125			
Matrix Spike Dup Analyzed: 09/28/01	(P1I2605-M	ISD1)			Source:	PK10365-	01			
Zinc	130	5.0	mg/kg	100	43	87.0	75-125	7.17	20	

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-8596 FAX (858) 505-9589 (480) 785-0043 FAX (480) 785-0851

Law Engineering 4634 S. 36th Place

Client Project ID:

70211-0-01SD

Sampled: 09/12/01

Phoenix, AZ 85040 Attention: Jim Clarke

Report Number:

PKI0180

Received: 09/12/01

NIETHOD BLANKIQUIDADA.

TOTAL RECOVERABLE METALS

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: P1I1408 Extracted: 09/13/01	_									
Blank Analyzed: 09/13/01 (P1I1408-BL	K1)									
Chromium V1	ND	0.025	mg/l							
LCS Analyzed: 09/13/01 (P1I1408-BS1)										
Chromium VI	0.0993	0.050	mg/l	0.100		99.3	85-115			
LCS Dup Analyzed: 09/13/01 (P111408-	BSD1)									
Chromium VI	0.0993	0.050	mg/l	0.100		99.3	85-115	0.00	20	
Matrix Spike Analyzed: 09/13/01 (P1114	408-MS1)				Source: P	K10180-1	5			
Chromium VI	0.0496	0.025	mg/l	0.0500	ND	99.2	85-115			
Matrix Spike Dup Analyzed: 09/13/01 (P111408-MSI	D1)			Source: P	K10180-1	5			
Chromium VI	0.0509	0.025	mg/l	0.0500	ND	102	85-115	2.59	20	
Batch: P1I2021 Extracted: 09/20/01	-									
Blank Analyzed: 09/23/01 (P112021-BL	K1)							•		
Arsenic	ND	0.050	mg/l							
Chromium	ND	0.010	mg/l							
Copper	ND	0.020	mg/l							
Nickel	ND	0.050	mg/l							
Zinc	ND	0.050	mg/l							
LCS Analyzed: 09/23/01 (P112021-BS1)										
Arsenic	1.01	0.050	mg/l	1.00		101	85-115			
Chromium	0.982	0.010	mg/l	1.00		98.2	85-115			
Copper	0.971	0.020	mg/l	1.00		97.1	85-115			
Nickel	0.971	0.050	mg/l	1.00		97.1	85-115			
Zinc	0.992	0.050	mg/l	1.00		99.2	85-115			

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-8596 FAX (858) 505-9589 (480) 785-0043 FAX (480) 785-0851

Law Engineering 4634 S. 36th Place Phoenix, AZ 85040 Attention: Jim Clarke

Client Project ID:

Report Number:

70211-0-01SD

PKI0180

Sampled: 09/12/01

Received: 09/12/01

TOTAL RECOVERABLE METALS

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: P1I2021 Extracted: 09/2	0/01									
LCS Dup Analyzed: 09/23/01 (P112	2021-BSD1)									
Arsenic	1.03	0.050	mg/l	1.00		103	85-115	1.96	20	
Chromium	0.994	0.010	mg/l	1.00		99.4	85-115	1.21	20	
Copper	0.991	0.020	mg/l	1.00		99.1	85-115	2.04	20	
Nickel	0.983	0.050	mg/l	1.00		98.3 `	85-115	1.23	20	
Zinc	0.997	0.050	mg/l	1.00		99.7	85-115	0.503	20	
Matrix Spike Analyzed: 09/23/01 (P1I2021-MS1)				Source: F	PK10308-0	1			
Arsenic	1.08	0.050	mg/l	1.00	ND	108	70-130			
Chromium	1.02	0.010	mg/l	1.00	ND	102	70-130			
Copper	1.08	0.020	mg/l	1.00	ND	107	70-130			
Nickel	1.01	0.050	mg/l	1.00	ND	101	70-130			
Zinc	1.66	0.050	mg/l	1.00	0.62	104	70-130			
Matrix Spike Dup Analyzed: 09/23/	01 (P1I2021-M	SD1)			Source: I	PK10308-0	1			
Arsenic	1.06	0.050	mg/l	1.00	ND	106	70-130	1.87	20	
Chromium	1.00	0.010	mg/l	1.00	ND	100	70-130	1.98	20	
Copper	1.06	0.020	mg/l	1.00	ND	105	70-130	1.87	20	
Nickel	0.988	0.050	mg/l	1.00	ND	98.8	70-130	2.20	20	
Zinc	1.63	0.050	mg/l	1.00	0.62	101	70-130	1.82	20	

Del Mar Analytical

2852 Alton Ave., Irvine, CA 92606 (949) 261-1022 FAX (949) 261-1228 1014 E. Coldby Dr., Suite A, Colton, CA 92324 (909) 370-4667 FAX (909) 370-1046 7277 Hayvenhurst, Suite B-12, Van Nuys, CA 91406 (818) 779-1844 FAX (818) 779-1843 9484 Chesapeake Dr., Suite 805, San Diego, CA 92123 (858) 505-8596 FAX (858) 505-9589 9830 South 51st St., Suite B-120, Phoenix, AZ 85044 (480) 785-0043 FAX (480) 785-0851

Law Engineering 4634 S. 36th Place Phoenix, AZ 85040 Attention: Jim Clarke

Client Project ID:

70211-0-01SD

Report Number: PKI0180 Sampled: 09/12/01

Received: 09/12/01

INORGANICS

C-:1--

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: P1I2412 Extracted: 09/24/	<u>′01</u>									
Blank Analyzed: 09/25/01 (P1I2412-1	BLK1)									
Total Cyanide	ND	0.020	mg/kg							
Blank Analyzed: 09/25/01 (P1I2412-I	BLK2)									
Total Cyanide	ND	0.020	mg/kg							
Matrix Spike Analyzed: 09/25/01 (P1	12412-MS1)				Source: F	KI0180-0	8			
Total Cyanide	2.14	0.50	mg/kg	2.50	ND	85.6	70-130			
Matrix Spike Dup Analyzed: 09/25/01	(P1I2412-M	SD1)			Source: F	KI0180-0	8			
Total Cyanide	3.27	0.50	mg/kg	2.50	ND	131	70-130	41.8	20	N2,R1
Reference Analyzed: 09/25/01 (P1124	12-SRM1)									
Total Cyanide	101	20	mg/kg	201		50.2	40-160			
Reference Analyzed: 09/25/01 (P1124	12-SRM2)									
Total Cyanide	157	20	mg/kg	201		78.1	40-160			
Batch: P1I2622 Extracted: 09/26/	<u>′01</u>									
Blank Analyzed: 09/26/01 (P112622-1	BLK1)									
Total Cyanide	ND	0.020	mg/l							
LCS Analyzed: 09/26/01 (P112622-BS	S1)									
Total Cyanide	0.110	0.020	mg/l	0.100		110	90-110			
LCS Dup Analyzed: 09/26/01 (P1I26	22-BSD1)									
Total Cyanide	0.110	0.020	mg/l	0.100		110	90-110	0.00	20	

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (858) 505-8596 FAX (858) 505-9589 (480) 785-0043 FAX (480) 785-0851

Law Engineering 4634 S. 36th Place Phoenix, AZ 85040

Attention: Jim Clarke

Client Project ID:

70211-0-01SD

Sampled: 09/12/01

Report Number:

PKI0180

Received: 09/12/01

METHOD BLANK QC DATA

INORGANICS

		Keporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: P1I2622 Extracted: 09/26/6	<u>)1</u>									
Matrix Spike Analyzed: 09/26/01 (P11	2622-MS1)				Source: F	K10235-0	1RE1			
Total Cyanide	0.115	0.020	mg/l	0.100	ND	115	70-130			
Matrix Spike Dup Analyzed: 09/26/01	(P1I2622-M	SD1)			Source: F	K10235-0	1RE1			
Total Cyanide	0.139	0.020	mg/l	0.100	ND	139	70-130	18.9	20	Ml

(949) 261-1022 FAX (949) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (585) 505-8596 FAX (858) 505-9589 (480) 785-0043 FAX (480) 785-0851

Law Engineering 4634 S. 36th Place Phoenix, AZ 85040 Attention: Jim Clarke

Client Project ID: 70211-0-01SD

Report Number: PKI0180

Sampled: 09/12/01 Received: 09/12/01

MOTHOD BLAD (WOODARS)

DATA QUALIFIERS AND DEFINITIONS

B 1	Target analyte detected in method blank at or above the method reporting limit.
M1	Matrix spike recovery was high, the method control sample recovery was acceptable.
M2	Matrix spike recovery was low, the method control sample recovery was acceptable.
N2	See corrective action report.

R1 RPD exceeded the method control limit. See case narrative.

R4 MS/MSD RPD exceeded the method control limit. Recovery met acceptance criteria.
 R6 LFB/LFBD RPD exceeded the method control limit. Recovery met acceptance criteria.

Surrogate recovery was above laboratory and method acceptance limits. No target analytes were detected in the sample.

V1 CCV recovery was above method acceptance limits. This target analyte was not detected in the sample.

ND Analyte NOT DETECTED at or above the reporting limit

NR Not reported.

RPD Relative Percent Difference

Del Mar Analytical

CHAIN OF CUSTODY FORM

(858) 505-8596 FAX (858) 505-9589 (480) 785-0043 FAX (480) 785-0851 (702] 798-3620 FAX (702) 798-3621

7277 Hayvenhurst, Suite B-12, Vari Nuys, CA 91406 9464 Chesepperke Dr., Suite 805, San Diggs, CA 82123 9930 South 51st St., Suite 8-120, Phoenite, Az 65044 2620 E. Surset Hd., Suite 3, Las Vegas, NV 89120

ō

sted on this chain of custody form and any additional analyses performed on this project. Payment for services is 404 72 hours Tumaround Time: (Check) Sample Integrity: (Check) 0 \mathcal{B} 3 30 0-04 \mathcal{E} 0 \mathcal{Z} same day 24 hours 48 hours [m/0.15H disto Analysis Required ٤ PAIN DE D Date (Time: Date /Time: 821°P Z Received in Lab by Sampling Sampling Preservatives
Date Time Received by: Received by: 0510-0-11201 Fee. Number, 431 3215 14/5 1070 31 がかっ 1200 7 12 2 10T6 G かに 10/10 10/c1/6 10/0 かがあ X 5 W C C 0 100 えつずる 2 Client Name/Address: C, Refinquished By 18

Note: By relinquishing samples to Del Mar Analytical, client agrees to pay for the services reduce within 30 days from the date of invoice. Sample(s) will be disposed of after 30 days.

Del Mar Analytical

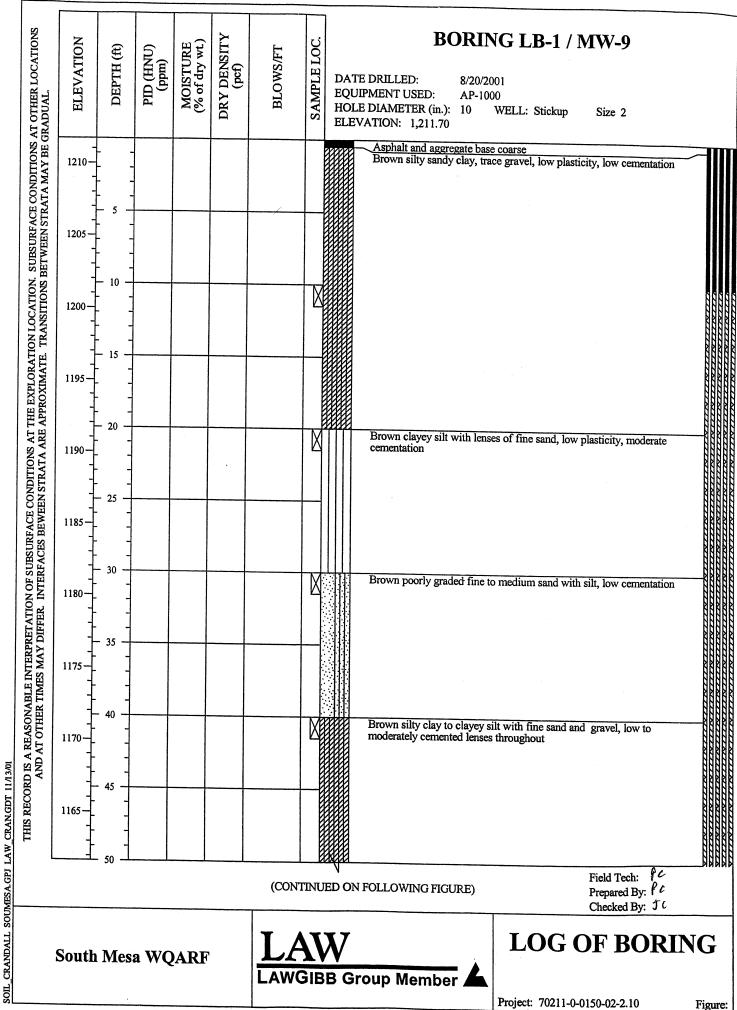
CHAIN OF CUSTODY FORM

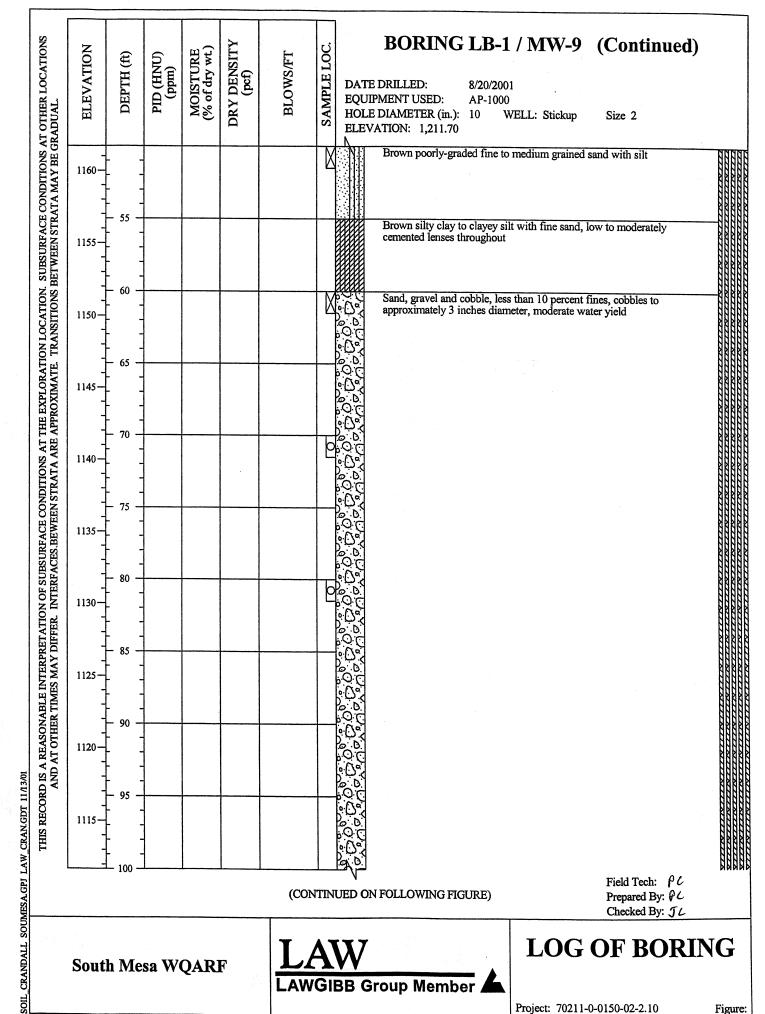
(949) 261-1022 FAX (949) 261-1228 (909) 370-4657 FAX (909) 370-1046 (816) 779-1844 FAX (818) 779-1843 (859) 505-6395 FAX (859) 756-695 (480) 786-0943 FAX (480) 786-0951 (702) 798-3620 FAX (702) 798-3621

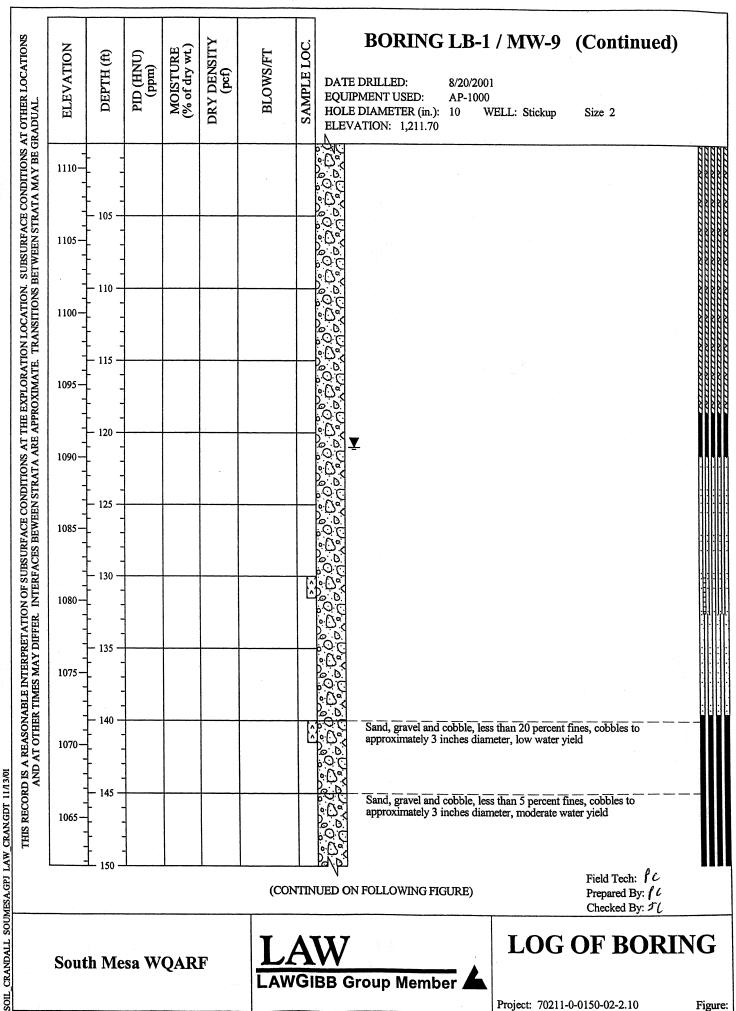
2852 Alton Ave. Irvine, CA 92606 (coleby Dr., Sulte A, Cathon, CA 92324 (st. Sulte B-12, Vari Nuys, CA 91406 (br., Sulte B-12, Vari Nuys, CA 91433 (st. Sulte B-120, Pheerik, AZ 85044 (t Pd., Sulte B-120, Les Végas, NV 89120 (t R Pd., Sulte 3)

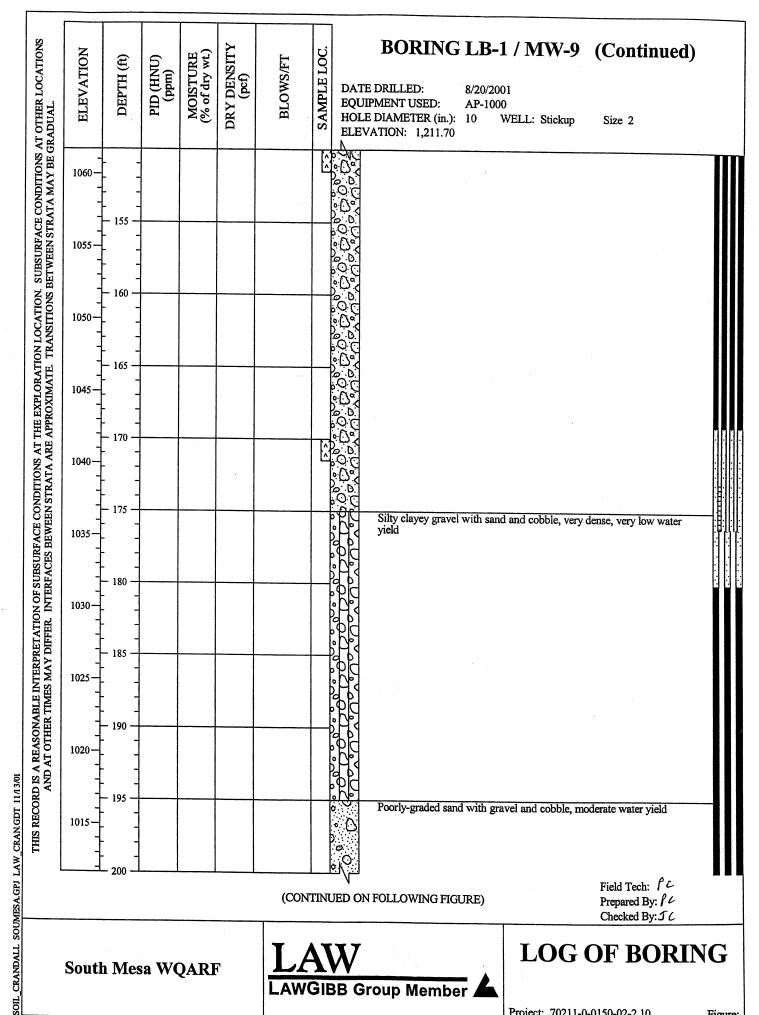
7

Page

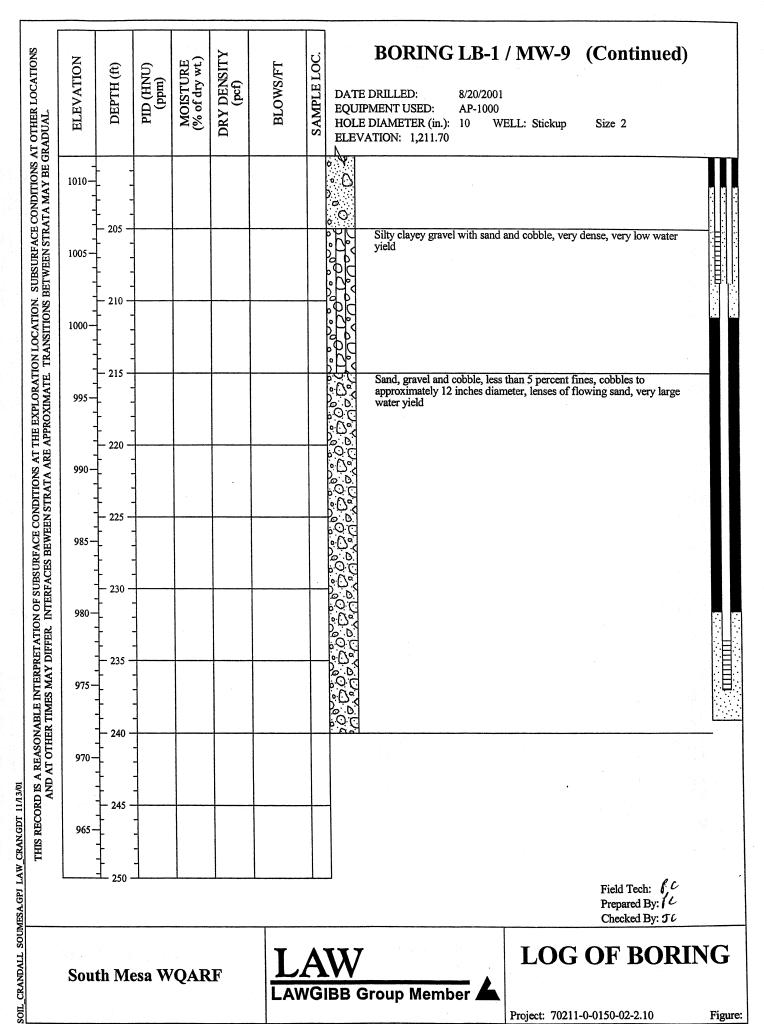

Special Instructions additional analyses performed on this project. Payment for services is 72 hours 5 days normal on ice Turnaround Time: (Check) Sample Integrity: (Check) 0 YIOK YIOK same day 24 hours 48 hours intact , Analysis Required X lote: By relinquishing samples to Det Mar Analytical, client agrees to pay for the services requested on this chain of custody joint and any Date Time: Date /Time: 11 / Date Fime X × e my × 30 A Received by: Received in Lab 5% Sampling Sampling Preservatives
Date Time Received by: 0510-0-11201 11/2/M2/11 0/21 1045 Project/PO Number: Phone Number Fax Number. 9/2/01 ò Sont. Sample Container
Watrix Type Date /Time: となり Tot. RITHE BIRD Sec. Sample Description Client Name/Address: hed By: Sampler:

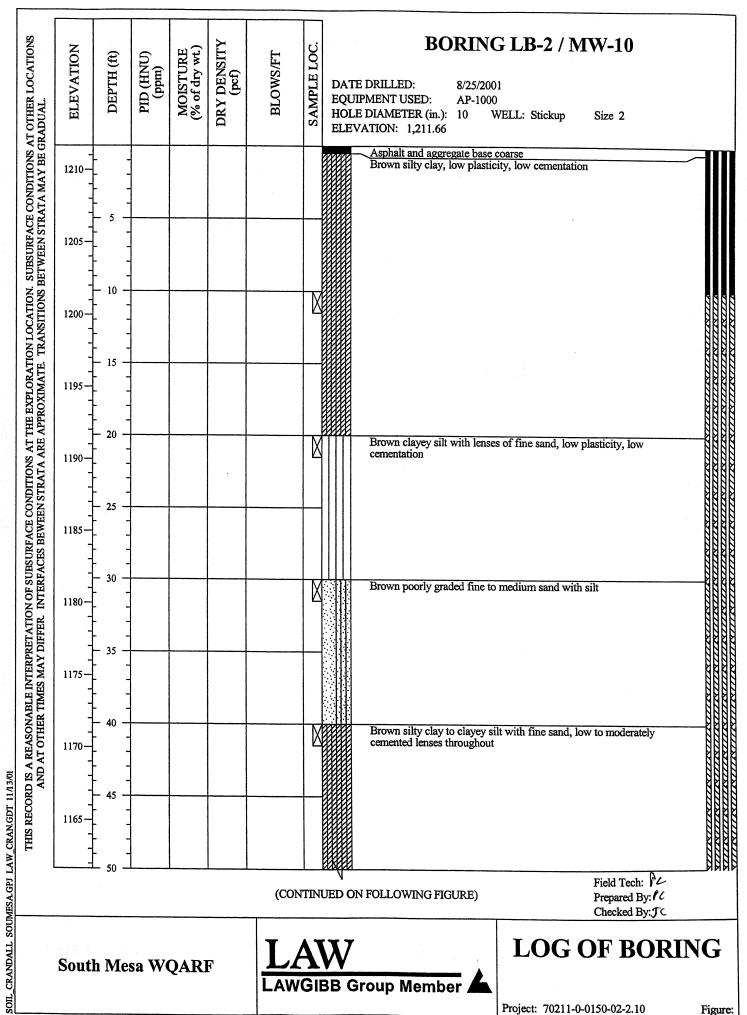

In 30 days fish the date of invoice. Sample(s) will be disposed of after 30 days.

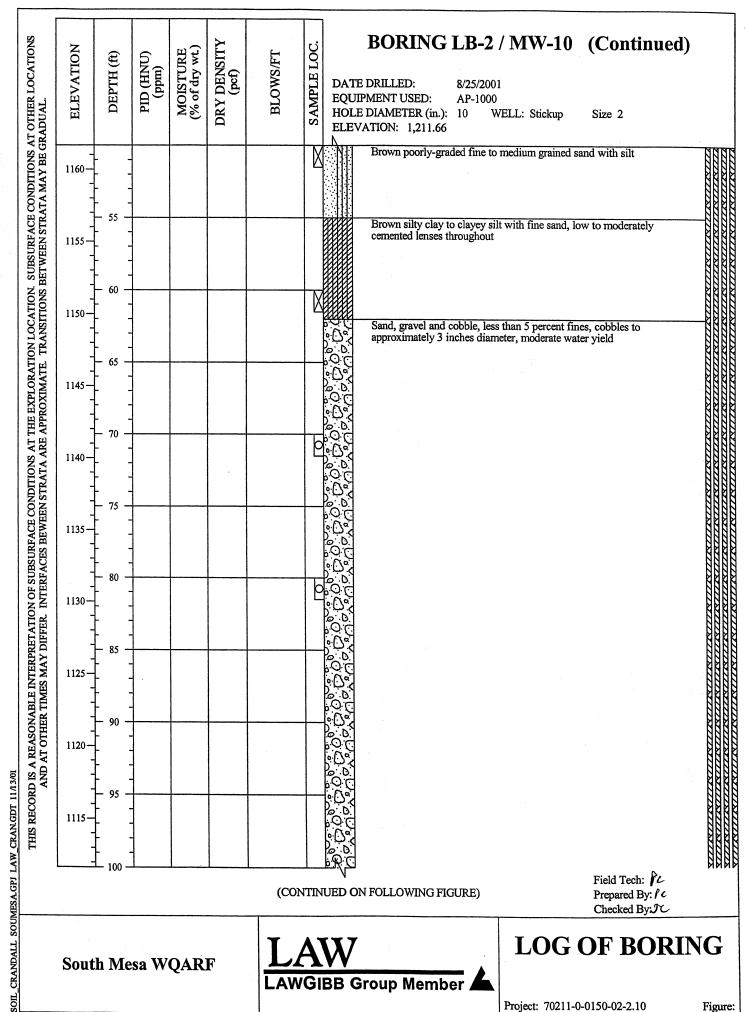


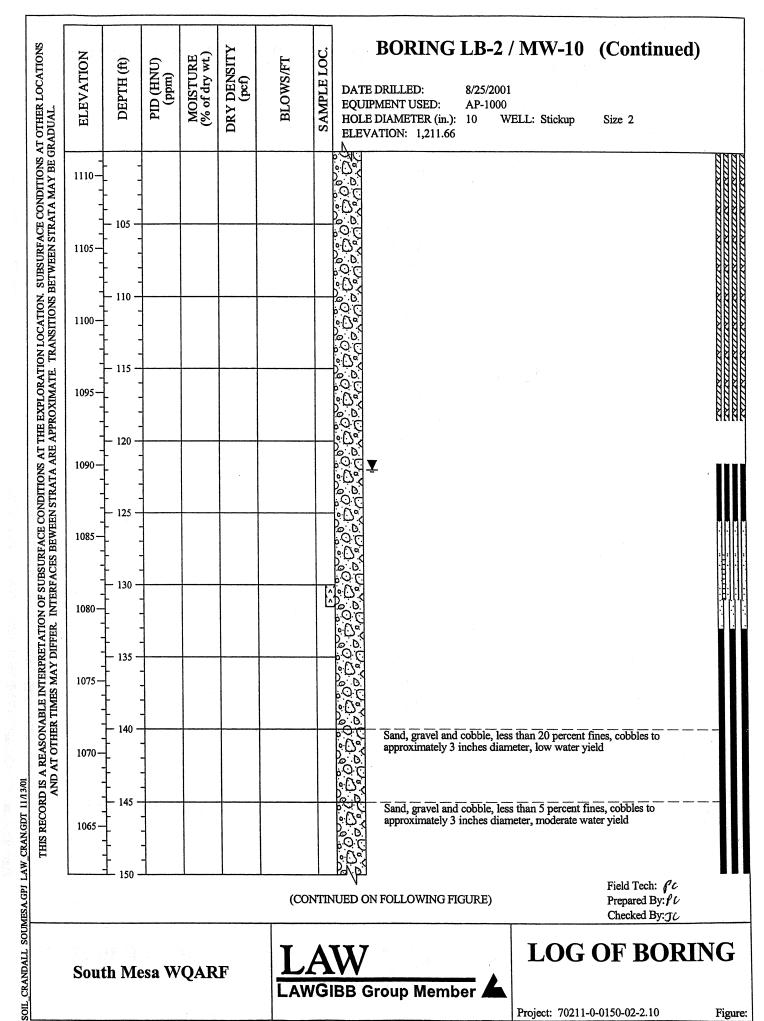

APPENDIX I

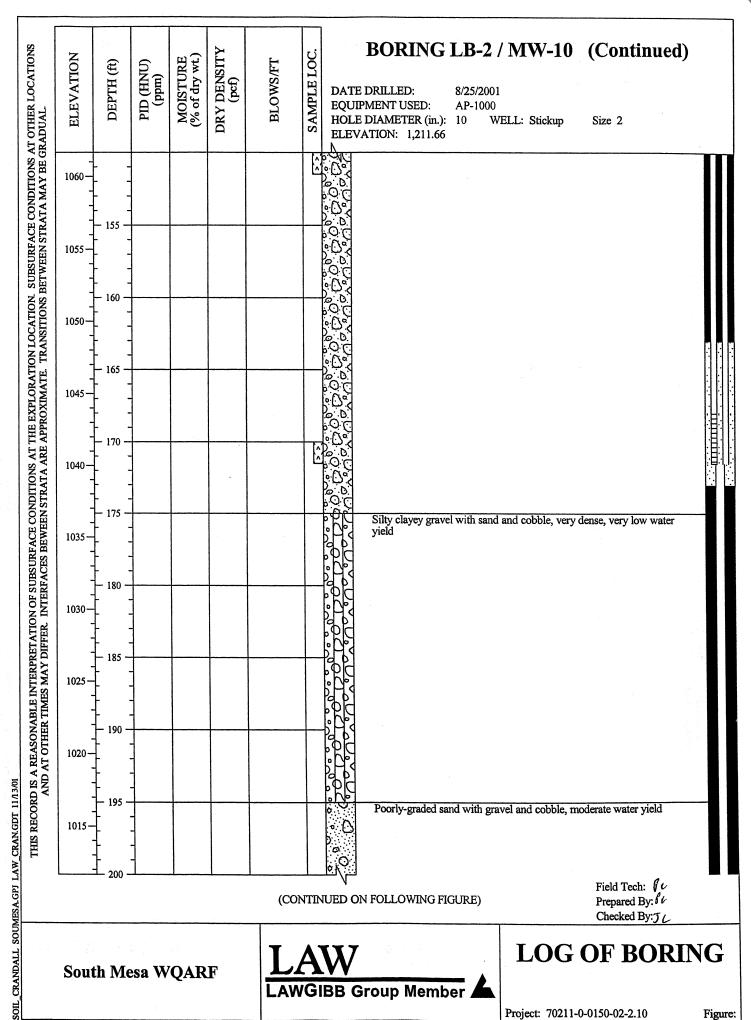
BORING LOGS AND WELL CONSTRUCTION DIAGRAM

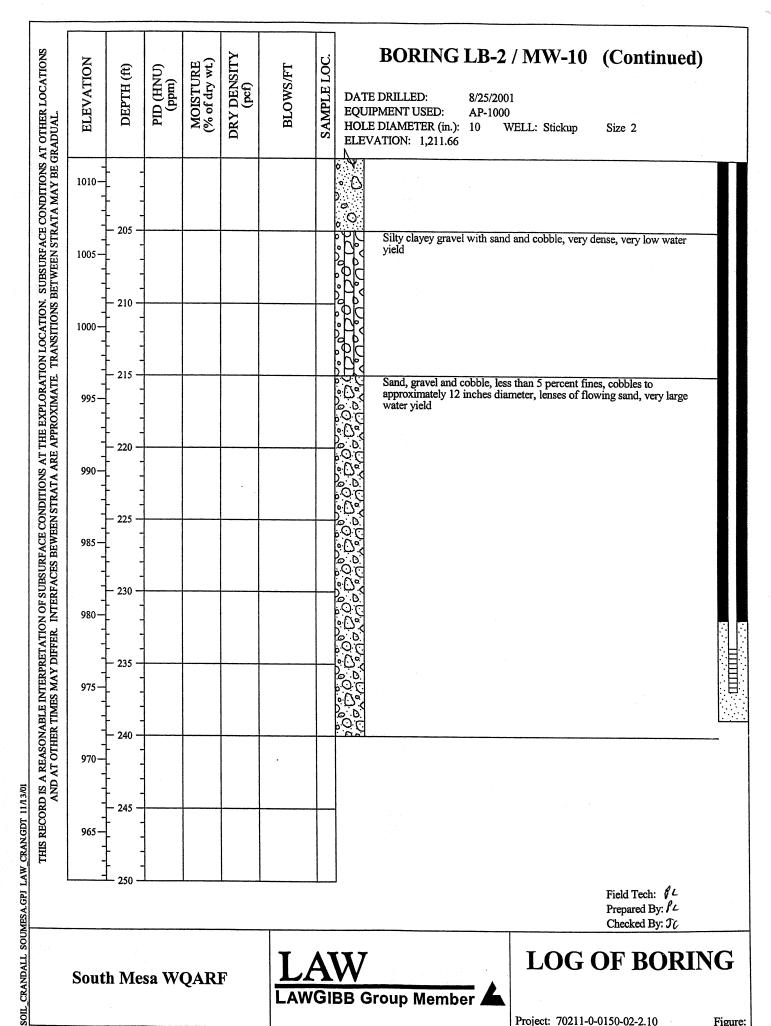


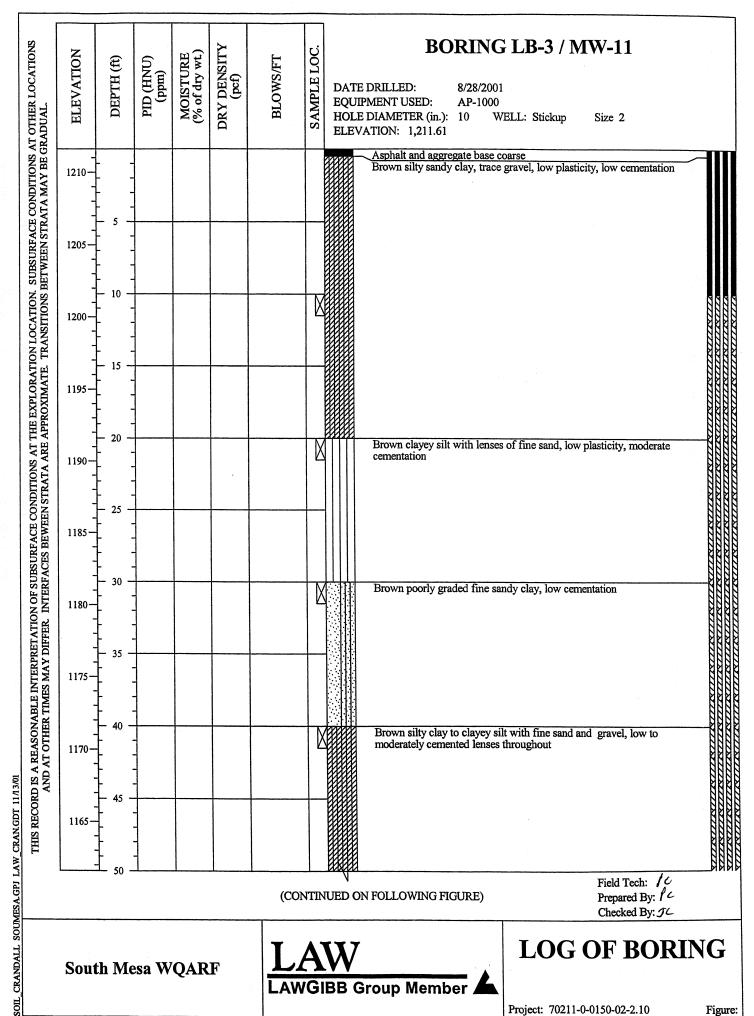


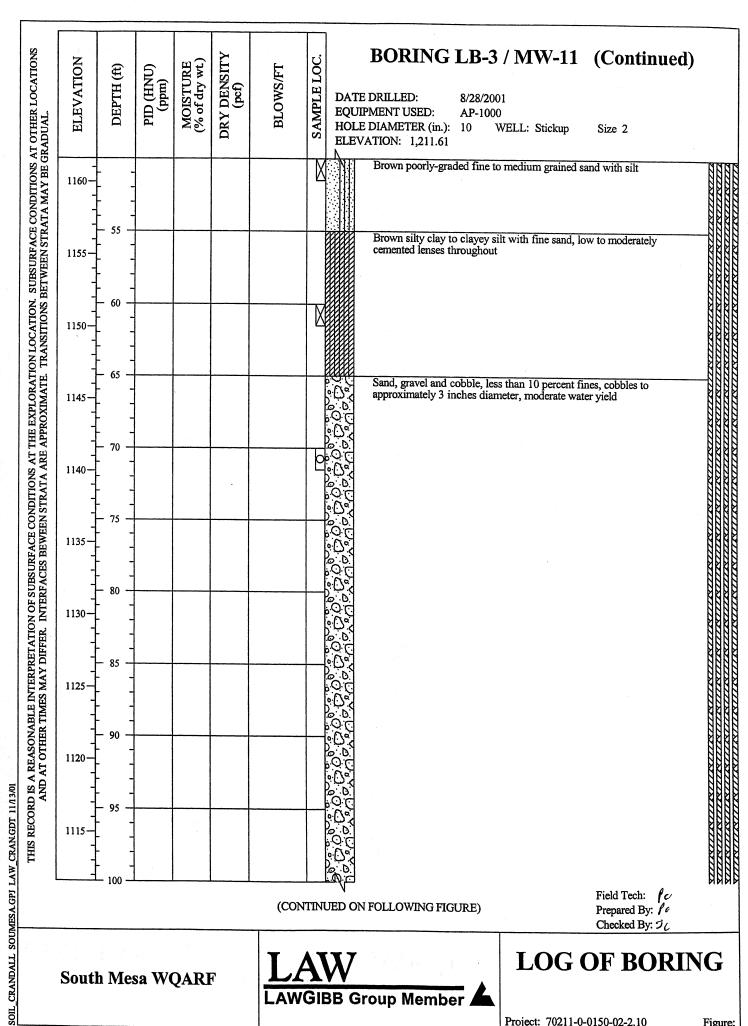


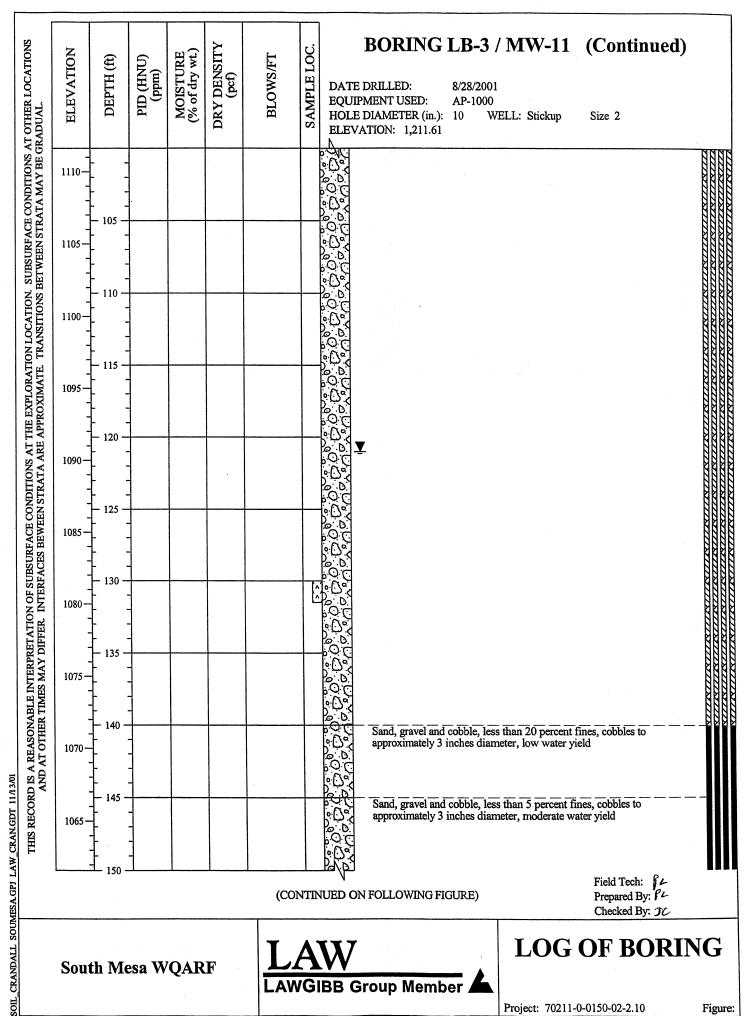

Project: 70211-0-0150-02-2.10

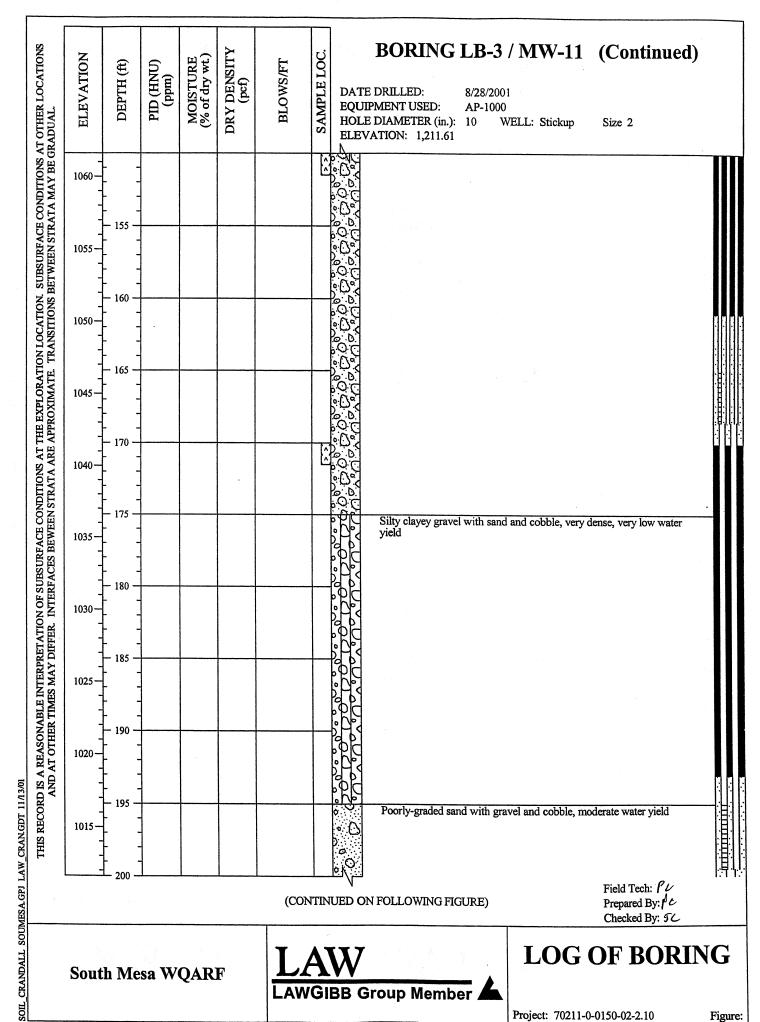


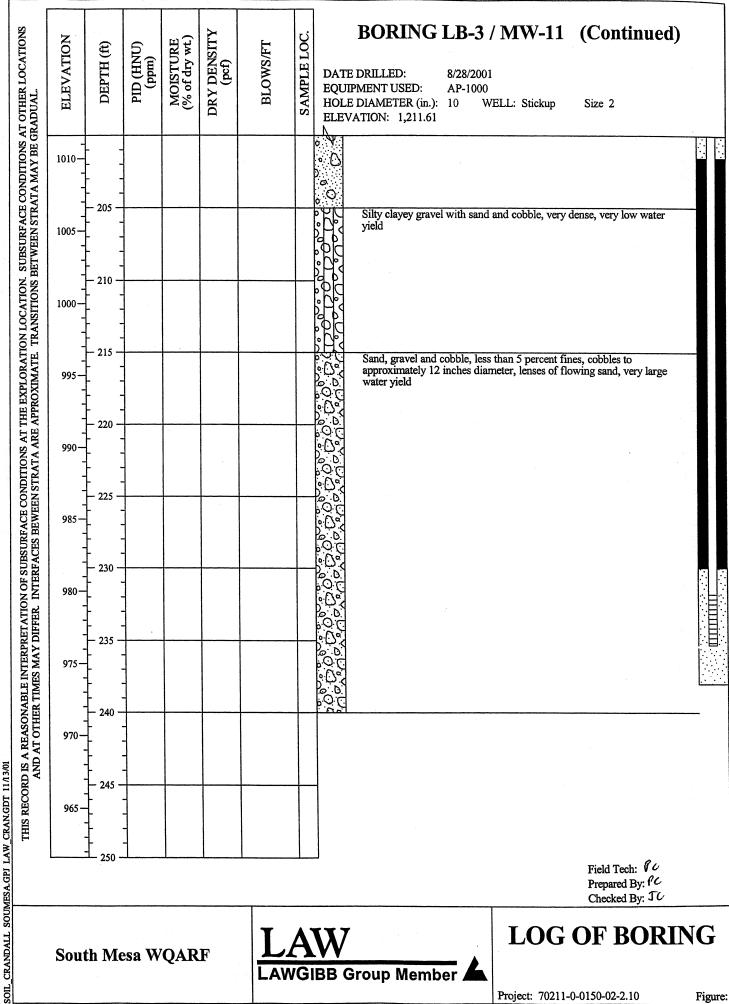

Project: 70211-0-0150-02-2.10



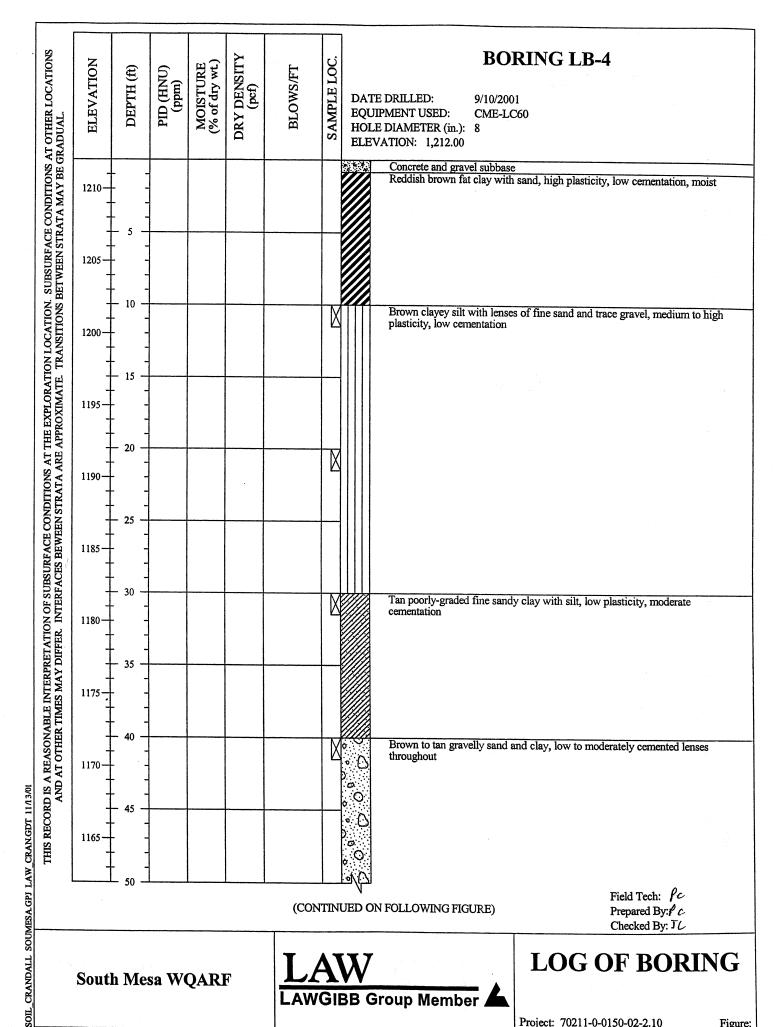


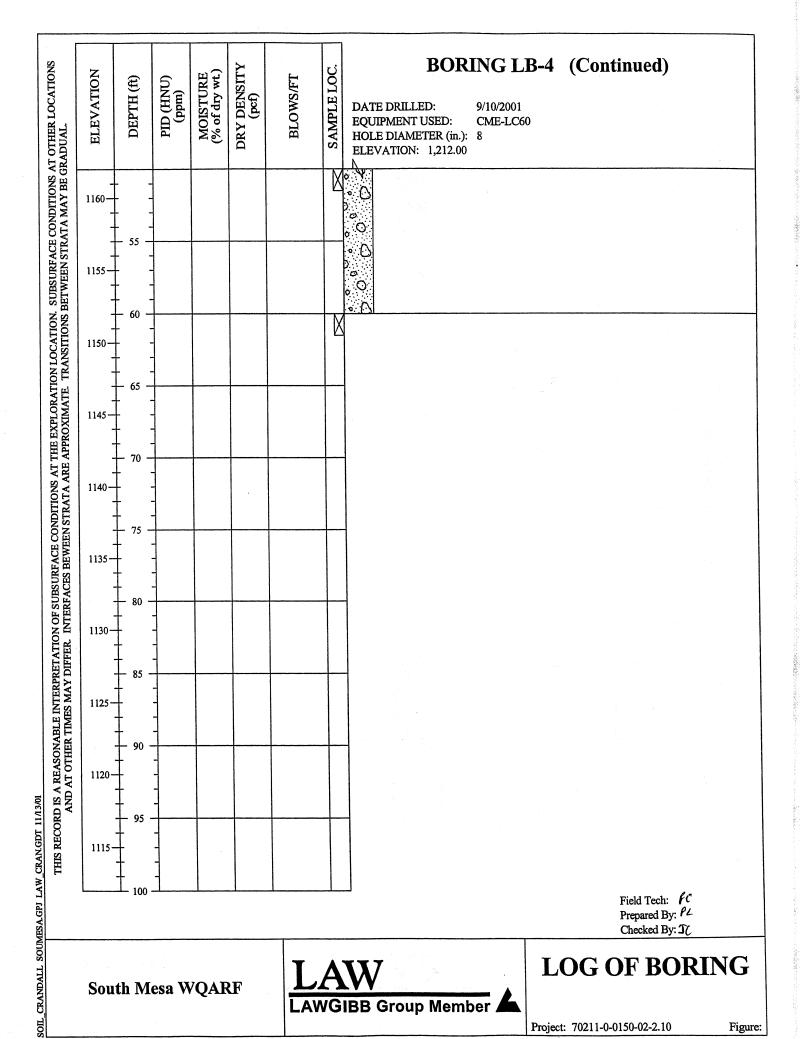


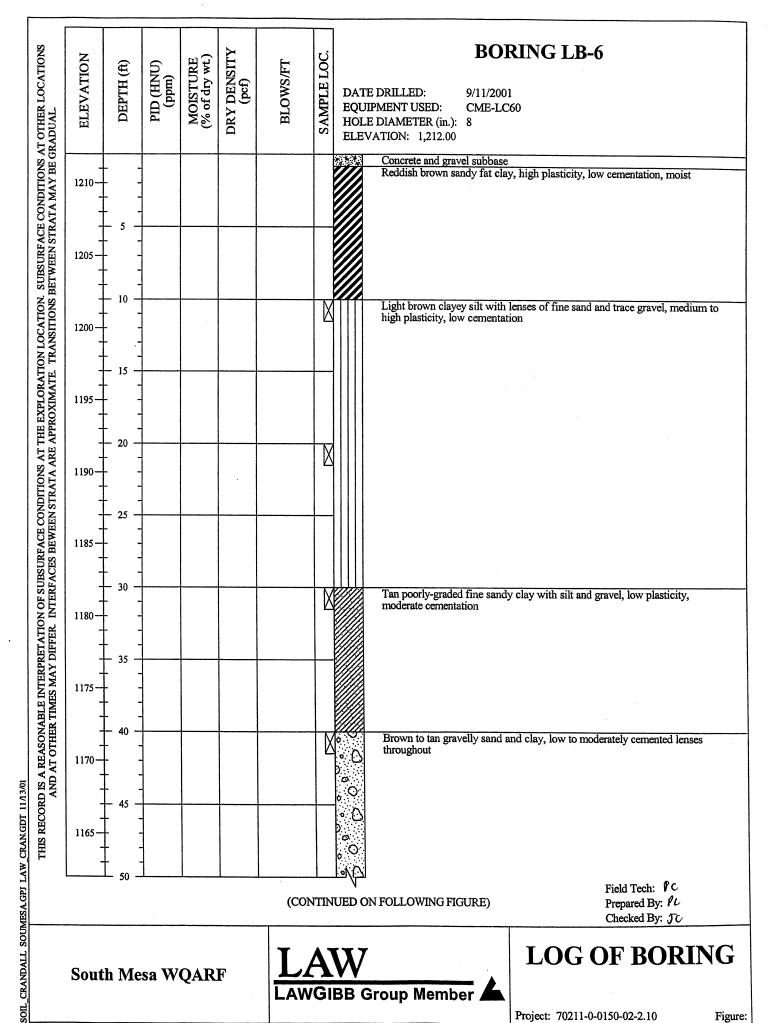

Project: 70211-0-0150-02-2.10

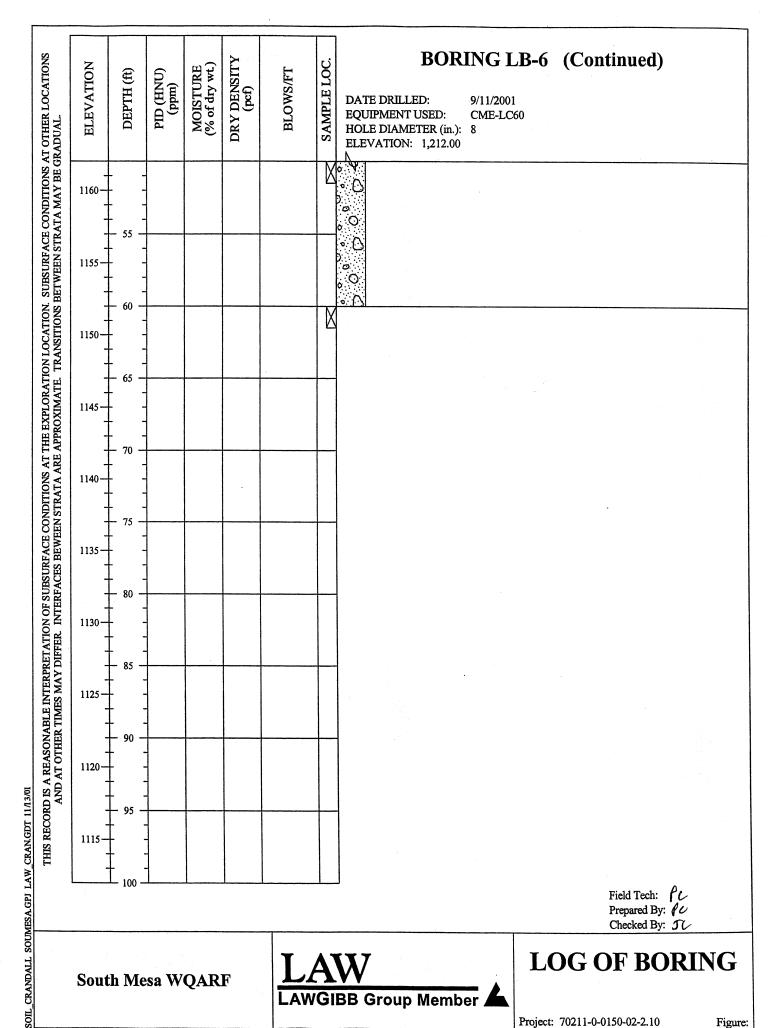


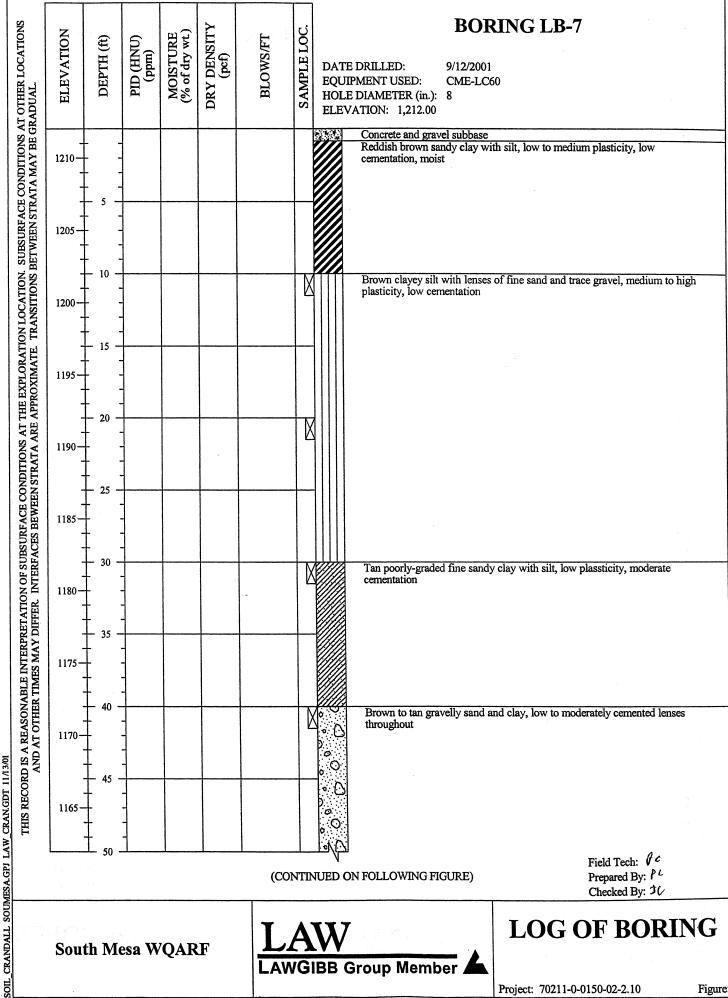
Project: 70211-0-0150-02-2.10 Figure:

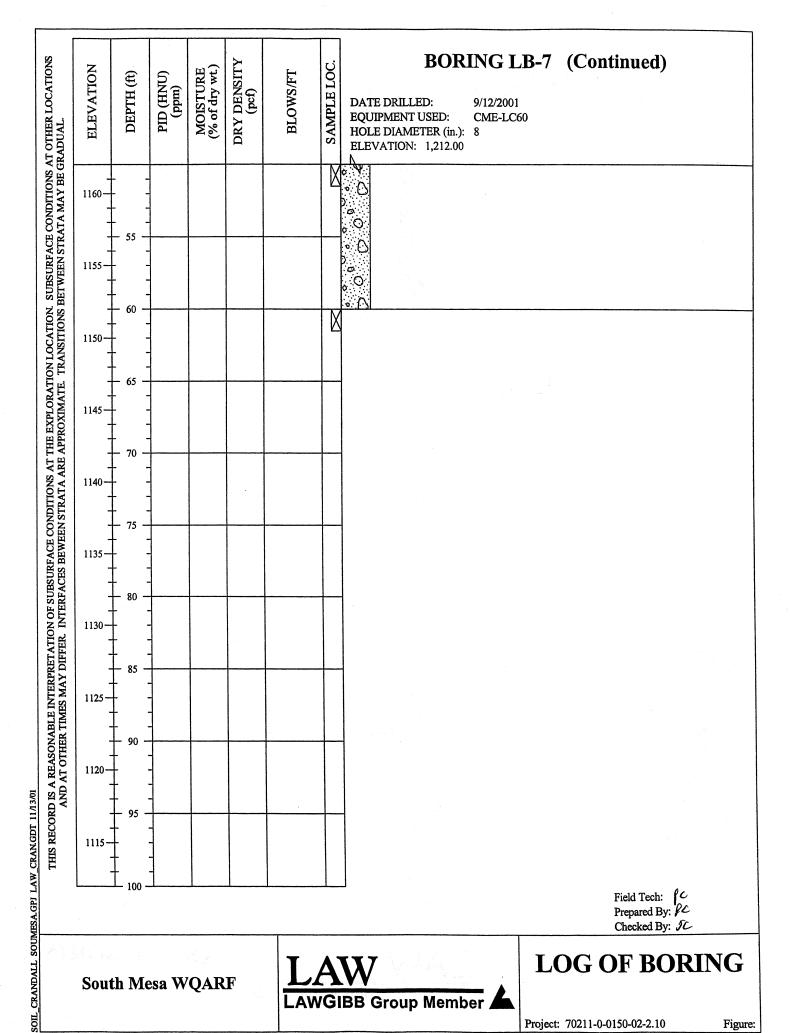


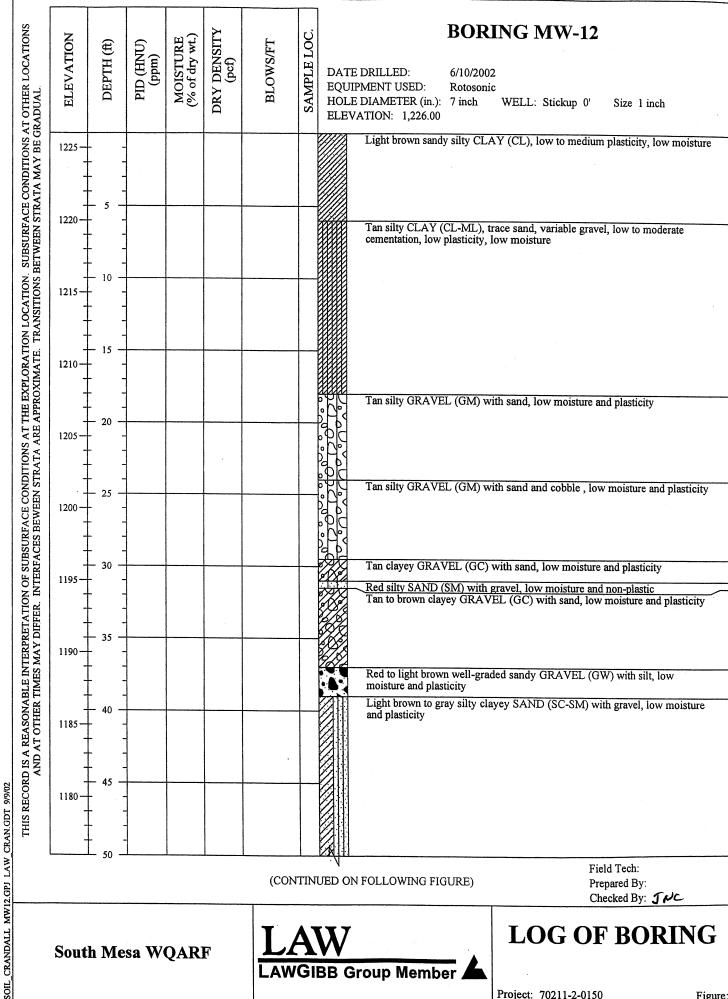


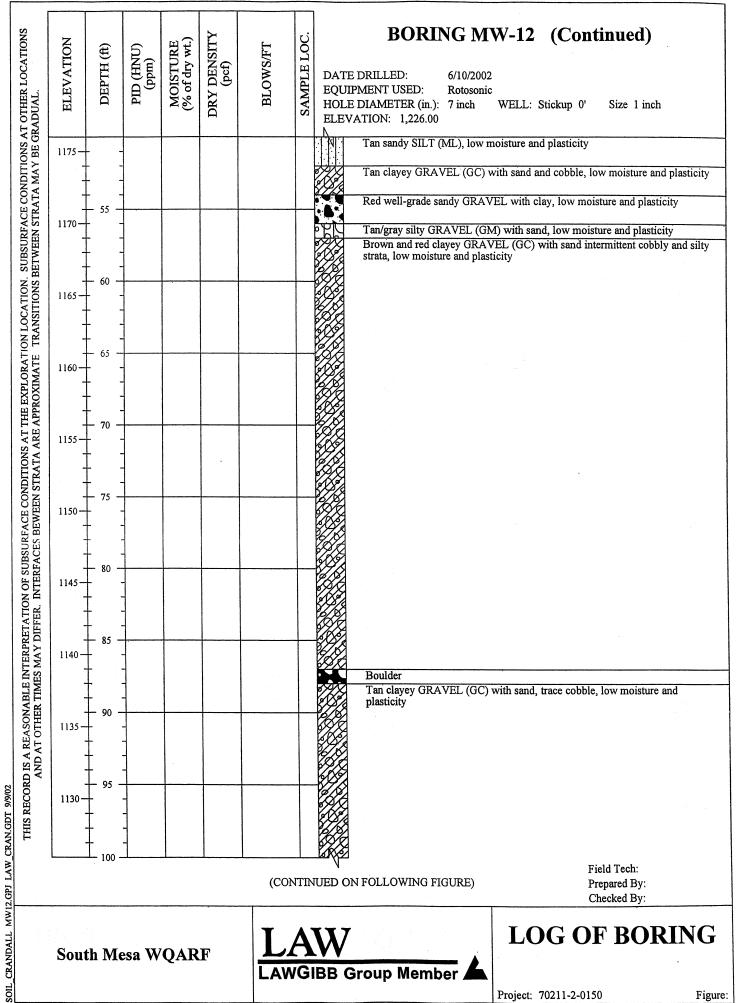

South Mesa WQARF

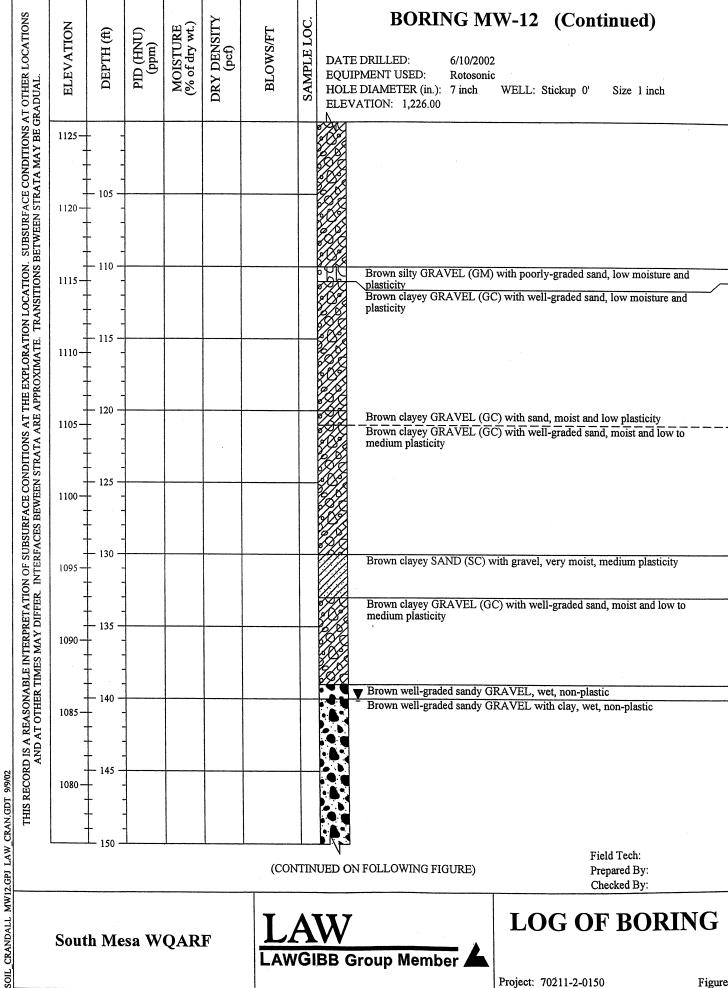



Project: 70211-0-0150-02-2.10

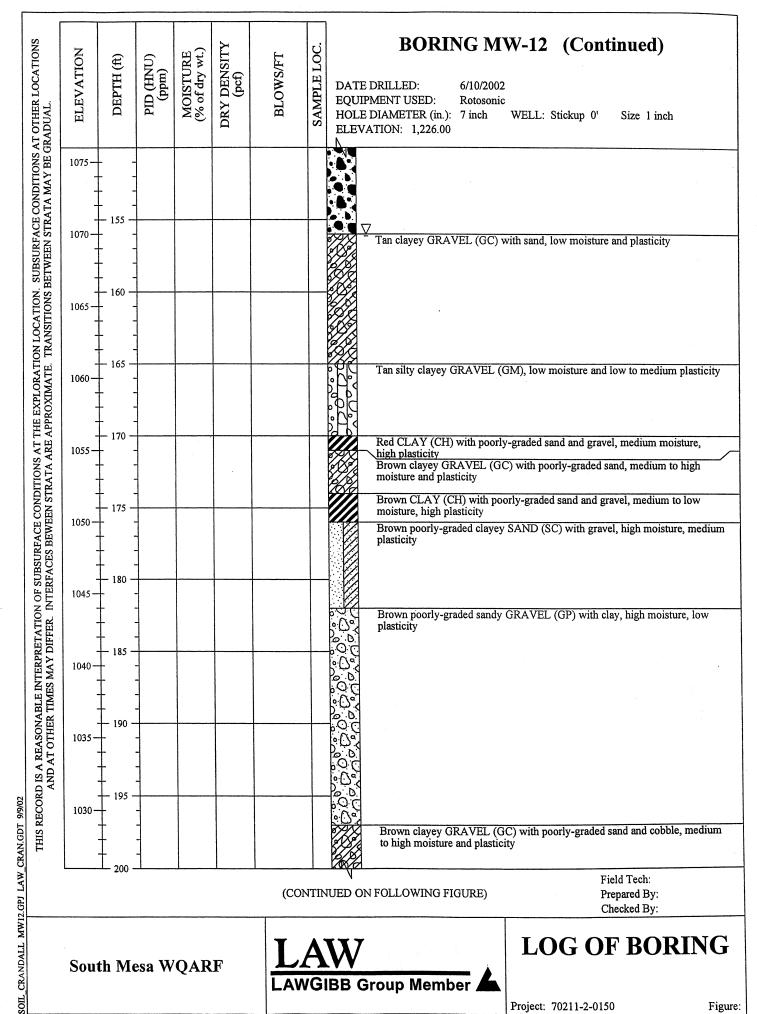


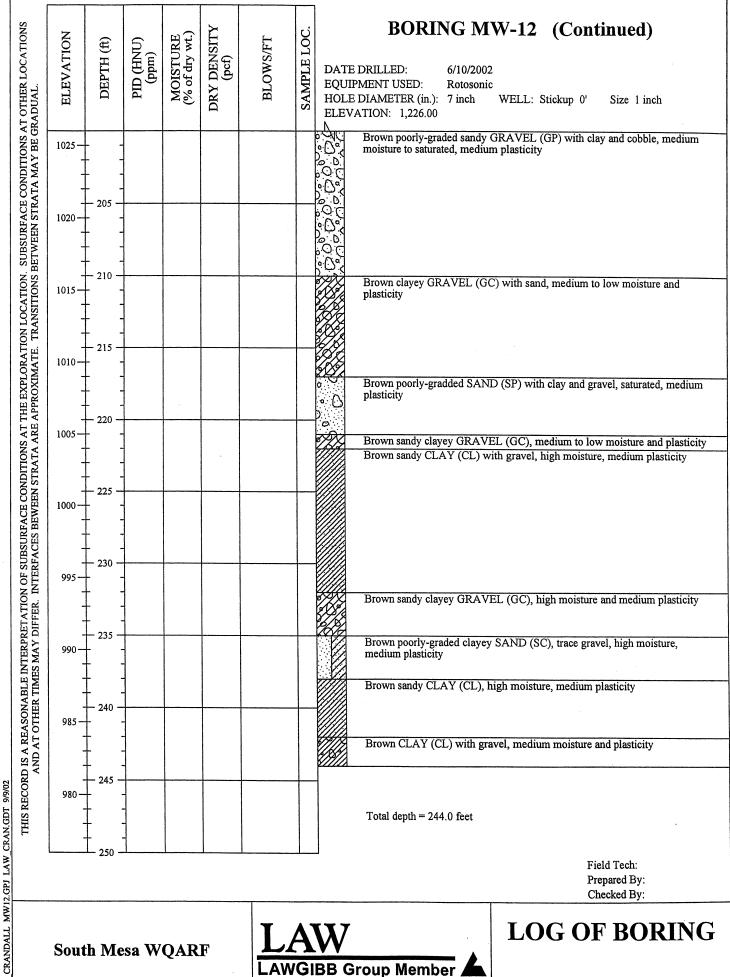






South Mesa WQARF


Project: 70211-2-0150



AWGIBB Group Member

Project: 70211-2-0150

Project: 70211-2-0150

South Mesa WQARF

AWGIBB Group Member

Project: 70211-2-0150

APPENDIX J

PRECISION ANALYTICAL LABORATORY TO-15 ANALYTICAL REPORTS

A Division of Aerotech Laboratories, Inc.

July 05, 2002

Jim Clarke Law Engineering 4634 S. 36th Place Phoenix, AZ 85040

RE: South Mesa WQARF/70211-2-0064

Dear Jim Clarke:

Order No.: 02061078

Precision Analytical Laboratories received 7 samples on 6/28/2002 for the analyses presented in the following report.

This report includes the following information:

Ellan Hashcote

- Case Narrative.
- Analytical Report: includes test results, report limit (Limit), any applicable data qualifier (Qual), units, dilution factor (DF), and date analyzed.
- QC Summary Report.

This communication is intended only for the individual or entity to whom it is directed. It may contain information that is privileged, confidential, or otherwise exempt from disclosure under applicable law. Dissemination, distribution, or copying of this communication by anyone other than the intended recipient, or a duly designated employee or agent of such recipient, is prohibited. If you have received this communication in error, please notify us immediately and destroy this message and all attachments thereto. If you have any questions regarding these test results, please do not hesitate to call.

Sincerely,

Lee Ann Heathcote

Project Manager

A Division of Aerotech Laboratories, Inc.

Precision Analytical Laboratories

Date: 05-Jul-02

CLIENT:

Law Engineering

Project:

South Mesa WQARF/70211-2-0064

Lab Order:

02061078

CASE NARRATIVE

Samples were analyzed using methods outlined in references such as:

Standard Methods for the Examination of Water and Wastewater, 18th Edition, 1992, and 19th Edition, 1995.

Methods for Chemical Analysis of Water and Wastes, EPA-600/4-79-020, Revised March 1983.

Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW846, 3rd Edition.

40 CFR, Part 136, Revised 1995. Appendix A to Part 136 - Methods for Organic Chemical Analysis of Municipal and Industrial Wastewater.

NIOSH Manual of Analytical Methods, Fourth Edition, 1994.

Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air, Second Edition, 1999.

Precision Analytical Laboratories, Inc. (PAL) holds Arizona certification no. AZ0610 and PAL-Tucson holds Arizona certification no. AZ0609.

PAL participates in the AIHA Proficiency Analytical Testing (PAT) program for metals, solvents and formaldehyde.

Analytical Comments:

All method blanks and laboratory control spikes met EPA method and/or laboratory quality control objectives for the analyses included in this report.

Data Qualifiers:

Listed below are the data qualifiers used in your analytical report to explain any analytical or quality control issues. You will find them noted in your report under the column header "QUAL". Any quality control deficiencies that cannot be adequately described by these qualifiers will be addressed in the analytical comments section of this case narrative.

D2 Sample required dilution due to high concentration of target analyte.

A Division of Aerotech Laboratories, Inc.

Precision Analytical Laboratories

CLIENT:

Law Engineering

Lab Order:

02061078

Project:

South Mesa WQARF/70211-2-0064

Lab ID:

02061078-01A

Date: 05-Jul-02

Client Sample ID: 4

Tag Number:

Collection Date: 6/27/2002 8:15:00 AM

Matrix: AIR

Analyses	Result	Limit Qu	al Units	DF	Date Analyzed
VOLATILE ORGANICS IN AIR		D15			Analyst: SP
1,1,1-Trichloroethane	< 0.50	0.50	ppbv	1	6/29/2002
1,1,2,2-Tetrachloroethane	< 0.50	0.50	ppbv	1	6/29/2002
1,1,2-Trichloroethane	< 0.50	0.50	ppbv	1	6/29/2002
1,1-Dichloroethane	< 0.50	0.50	ppbv	1	6/29/2002
1,1-Dichloroethene	< 0.50	0.50	ppbv	1	6/29/2002
1,2,4-Trichlorobenzene	< 1.0	a 1.0	ppbv	1	6/29/2002
1,2,4-Trimethylbenzene	< 0.50	0.50	ppbv	1	6/29/2002
1,2-Dibromoethane	< 0.50	0.50	ppbv	1	6/29/2002
1,2-Dichlorobenzene	< 0.50	0.50	ppbv	- 1	6/29/2002
1,2-Dichloroethane	< 0.50	0.50	ppbv	1	6/29/2002
1,2-Dichloropropane	< 0.50	0.50	ppbv	1	6/29/2002
1,3,5-Trimethylbenzene	< 0.50	0.50	ppb∨	1	6/29/2002
1,3-Butadiene	< 0.50	0.50	ppbv	1	6/29/2002
1,3-Dichlorobenzene	< 0.50	0.50	ppbv	1	6/29/2002
1,4-Dichlorobenzene	< 0.50	0.50	ppbv	1	6/29/2002
1,4-Dioxane	< 5.0	5.0	ppbv	1	6/29/2002
2,2,4-Trimethylpentane	< 0.50	0.50	ppbv	1	6/29/2002
2-Butanone (MEK)	4.3	1.0	ppbv	1	6/29/2002
2-Hexanone	< 1.0	1.0	ppbv	1	6/29/2002
2-Propanol	14	1.0	ppbv	. 1	6/29/2002
4-Ethyltoluene	< 0.50	0.50	ppbv	1	6/29/2002
4-Methyl-2-pentanone	< 1.0	1.0	ppbv	1	6/29/2002
Acetone	15	5.0	ppbv	1	6/29/2002
Allyl chloride	< 0.50	0.50	ppbv	1	6/29/2002
Benzene	< 0.50	0.50	ppbv	1	6/29/2002
Benzyl chloride	< 2.0	2.0	ppbv	1	6/29/2002
Bromodichloromethane	< 0.50	0.50	ppb∨	1	6/29/2002
Bromoethene(Vinyl Bromide)	< 0.50	0.50	ppbv	1	6/29/2002
Bromoform	< 0.50	0.50	ppbv	1	6/29/2002
Bromomethane	< 0.50	0.50	ppbv	1	6/29/2002
Carbon disulfide	< 0.50	0.50	ppbv	1	6/29/2002
Carbon tetrachloride	< 0.50	0.50	ppbv	1	6/29/2002
Chlorobenzene	< 0.50	0.50	ppbv	1	6/29/2002
Chloroethane	< 0.50	0.50	ppbv	1	6/29/2002
Chloroform	< 0.50	0.50	ppbv	1	6/29/2002
Chloromethane	< 0.50	0.50	ppbv	1	6/29/2002
cis-1,2-Dichloroethene	< 0.50	0.50	ppbv	1	6/29/2002
cis-1,3-Dichloropropene	< 0.50	0.50	ppbv	1	6/29/2002
Cyclohexane	< 0.50	0.50	ppbv	1	6/29/2002
Dibromochloromethane	< 0.50	0.50	ppbv	1	6/29/2002

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Page 1 of 14

* - Value exceeds Maximum Contaminant Level

A Division of Aerotech Laboratories, Inc.

Precision Analytical Laboratories

CLIENT:

Law Engineering

Lab Order:

02061078

Project:

South Mesa WQARF/70211-2-0064

Lab ID:

02061078-01A

Date: 05-Jul-02

Client Sample ID: 4

Tag Number:

Collection Date: 6/27/2002 8:15:00 AM

Matrix: AIR

Analyses	Result	Limit Qu	ıal Units	DF	Date Analyzed
VOLATILE ORGANICS IN AIR		O15	****	na filiati i i kale i wesi	Analyst: SP
Dichlorodifluoromethane(F-12)	0.64	0.50	ppbv	1	6/29/2002
Dichlorotetrafluoroethane(F-114)	< 0.50	0.50	ppbv	1	6/29/2002
Ethyl Acetate	< 0.50	0.50	ppbv	1	6/29/2002
Ethylbenzene	< 0.50	0.50	ppbv	1	6/29/2002
Heptane	0.75	0.50	ppbv	1	6/29/2002
Hexachlorobutadiene	< 1.0	1.0	ppbv	1	6/29/2002
Hexane	1.3	0.50	ppbv	1	6/29/2002
m&p-Xylene	< 1.0	1.0	ppbv	1	6/29/2002
Methyl tert-butyl ether	1.6	1.0	ppbv	1	6/29/2002
Methylene chloride	< 0.50	0.50	ppbv	1	6/29/2002
o-Xylene	< 0.50	0.50	ppbv	1	6/29/2002
Propene (Propylene)	< 0.50	0.50	ppbv	1	6/29/2002
Styrene	< 0.50	0.50	ppbv	1	6/29/2002
Tetrachloroethene	< 0.50	0.50	ppbv	1	6/29/2002
Tetrahydrofuran	< 1.0	1.0	ppbv	1	6/29/2002
Toluene	4.8	0.50	ppbv	1	6/29/2002
trans-1,2-Dichloroethene	< 0.50	0.50	ppbv	1	6/29/2002
trans-1,3-Dichloropropene	< 0.50	0.50	ppbv	1	6/29/2002
Trichloroethene	< 0.50	0.50	ppbv	1	6/29/2002
Trichlorofluoromethane(F-11)	< 0.50	0.50	ppbv	1	6/29/2002
Trichlorotrifluoroethane(F-113)	< 0.50	0.50	ppbv	1	6/29/2002
Vinyl acetate	< 0.50	0.50	ppbv	1	6/29/2002
Vinyl chloride	< 0.50	0.50	ppbv	1	6/29/2002
Surr: 4-Bromofluorobenzene	98.9	70-130	%REC	1	6/29/2002
	· - ·				

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

R - RPD outside accepted recovery limits

E - Value above quantitation range

S - Spike Recovery outside accepted recovery limits

Value exceeds Maximum Contaminant Level

Page 2 of 14

1725 W. 17th St. • Tempe, AZ 85281 • Toll Free 866 772-5227 • 480 967-1310 • Fax 480 967-1019 4455 S. Park Ave., Ste. 110 • Tucson, AZ 85714 • 520 807-3801 • Fax 520 807-3803 • www.palabs.com

A Division of Aerotech Laboratories, Inc.

Precision Analytical Laboratories

CLIENT: Law Engineering

Lab Order:

02061078

Project:

South Mesa WQARF/70211-2-0064

Lab ID:

02061078-02A

Date: 05-Jul-02

Client Sample ID: 5

Tag Number:

Collection Date: 6/27/2002 8:22:00 AM

Matrix: AIR

Analyses	Result	Limit Q	ual Units	DF	Date Analyzed	
VOLATILE ORGANICS IN AIR	TO15		-		Analyst: SP	
1,1,1-Trichloroethane	< 0.50	0.50	ppbv	1	6/29/2002	
1,1,2,2-Tetrachloroethane	< 0.50	0.50	ppbv	1 .	6/29/2002	
1,1,2-Trichloroethane	< 0.50	0.50	ppbv	1	6/29/2002	
1,1-Dichloroethane	< 0.50	0.50	ppbv	1	6/29/2002	
1,1-Dichloroethene	< 0.50	0.50	ppbv	1	6/29/2002	
1,2,4-Trichlorobenzene	< 1.0	1.0	ppbv	1	6/29/2002	
1,2,4-Trimethylbenzene	0.86	0.50	ppbv	1	6/29/2002	
1,2-Dibromoethane	< 0.50	0.50	ppbv	1,	6/29/2002	
1,2-Dichlorobenzene	< 0.50	0.50	ppbv	. 1	6/29/2002	
1,2-Dichloroethane	< 0.50	0.50	ppbv	1	6/29/2002	
1,2-Dichloropropane	< 0.50	0.50	ppbv	1	6/29/2002	
1,3,5-Trimethylbenzene	< 0.50	0.50	ppbv	1	6/29/2002	
1,3-Butadiene	< 0.50	0.50	ppb∨	1	6/29/2002	
1,3-Dichlorobenzene	< 0.50	0.50	ppbv	1	6/29/2002	
1,4-Dichlorobenzene	< 0.50	0.50	ppbv	1	6/29/2002	
1,4-Dioxane	< 5.0	5.0	ppbv	. 1	6/29/2002	
2,2,4-Trimethylpentane	0.81	0.50	ppbv	1	6/29/2002	
2-Butanone (MEK)	3.1	1.0	ppbv	1	6/29/2002	
2-Hexanone	< 1.0	1.0	ppbv	1	6/29/2002	
2-Propanol	15	1.0	ppbv	1	6/29/2002	
4-Ethyltoluene	< 0.50	0.50	ppbv	1	6/29/2002	
4-Methyl-2-pentanone	< 1.0	1.0	ppbv	1	6/29/2002	
Acetone	12	5.0	ppbv	1	6/29/2002	
Allyl chloride	< 0.50	0.50	ppbv	1	6/29/2002	
Benzene	0.74	0.50	ppbv	1	6/29/2002	
Benzyl chloride	< 2.0	2.0	ppbv	1	6/29/2002	
Bromodichloromethane	< 0.50	0.50	ppbv	1	6/29/2002	
Bromoethene(Vinyl Bromide)	< 0.50	0.50	ppbv	1	6/29/2002	
Bromoform	< 0.50	0.50	ppbv	1	6/29/2002	
Bromomethane	< 0.50	0.50	ppbv	1	6/29/2002	
Carbon disulfide	< 0.50	0.50	ppbv	1	6/29/2002	
Carbon tetrachloride	< 0.50	0.50	ppbv	1	6/29/2002	
Chlorobenzene	< 0.50	0.50	ppbv	1	6/29/2002	
Chloroethane	< 0.50	0.50	ppbv	1	6/29/2002	
Chloroform	< 0.50	0.50	ppbv	1	6/29/2002	
Chloromethane	< 0.50	0.50	ppbv	1	6/29/2002	
cis-1,2-Dichloroethene	< 0.50	0.50	ppbv	1	6/29/2002	
cis-1,3-Dichloropropene	< 0.50	0.50	ppbv	1	6/29/2002	
Cyclohexane	0.78	0.50	ppbv	1	6/29/2002	
Dibromochloromethane	< 0.50	0.50	ppbv	1	6/29/2002	

Qualifiers:

ND - Not Detected at the Reporting Limit

S - Spike Recovery outside accepted recovery limits

J - Analyte detected below quantitation limits

R - RPD outside accepted recovery limits

B - Analyte detected in the associated Method Blank

E - Value above quantitation range

* - Value exceeds Maximum Contaminant Level

Page 3 of 14

A Division of Aerotech Laboratories, Inc.

Precision Analytical Laboratories

CLIENT:

Law Engineering

Lab Order:

02061078

Project:

South Mesa WQARF/70211-2-0064

Lab ID:

02061078-02A

Date: 05-Jul-02

Client Sample ID: 5

Tag Number:

Collection Date: 6/27/2002 8:22:00 AM

Matrix: AIR

Analyses	Result	Limit Qu	al Units	DF	Date Analyzed
VOLATILE ORGANICS IN AIR	Т	O15			Analyst: SP
Dichlorodifluoromethane(F-12)	0.62	0.50	ppbv	1	6/29/2002
Dichlorotetrafluoroethane(F-114)	< 0.50	0.50	ppbv	1	6/29/2002
Ethyl Acetate	< 0.50	0.50	ppbv	1	6/29/2002
Ethylbenzene	5.3	0.50	ppbv	1	6/29/2002
Heptane	1.2	0.50	ppbv	1	6/29/2002
Hexachlorobutadiene	< 1.0	1.0	ppbv	1	6/29/2002
Hexane	1.5	0.50	ppbv	1	6/29/2002
m&p-Xylene	19	1.0	ppbv	1	6/29/2002
Methyl tert-butyl ether	3.1	1.0	ppbv	1	6/29/2002
Methylene chloride	< 0.50	0.50	ppbv	1	6/29/2002
o-Xylene	5.9	0.50	ppbv	1	6/29/2002
Propene (Propylene)	< 0.50	0.50	ppbv	1	6/29/2002
Styrene	< 0.50	0.50	ppbv	1	6/29/2002
Tetrachloroethene	2.0	0.50	ppbv	1	6/29/2002
Tetrahydrofuran	1.0	1.0	ppbv	1	6/29/2002
Toluene	22	0.50	ppbv	1	6/29/2002
trans-1,2-Dichloroethene	< 0.50	0.50	ppbv	1	6/29/2002
trans-1,3-Dichloropropene	< 0.50	0.50	ppbv	1	6/29/2002
Trichloroethene	< 0.50	0.50	ppbv	1	6/29/2002
Trichlorofluoromethane(F-11)	< 0.50	0.50	ppbv	1	6/29/2002
Trichlorotrifluoroethane(F-113)	< 0.50	0.50	ppbv	1	6/29/2002
Vinyl acetate	< 0.50	0.50	ppbv	1	6/29/2002
Vinyl chloride	< 0.50	0.50	ppbv	1	6/29/2002
Surr: 4-Bromofluorobenzene	100	70-130	%REC	1	6/29/2002

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

* Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Page 4 of 14

A Division of Aerotech Laboratories, Inc.

Precision Analytical Laboratories

CLIENT: Law Engineering

Lab Order:

02061078

South Mesa WQARF/70211-2-0064

Project: Lab ID:

02061078-03A

Date: 05-Jul-02

Client Sample ID: 7

Tag Number:

Collection Date: 6/27/2002 8:31:00 AM

Matrix: AIR

Analyses	Result	Limit Qu	al Units	DF	Date Analyzed
OLATILE ORGANICS IN AIR	T.	D15			Analyst: SP
1,1,1-Trichloroethane	< 0.50	0.50	ppbv	1	6/29/2002
1,1,2,2-Tetrachloroethane	< 0.50	0.50	ppbv	1	6/29/2002
1,1,2-Trichloroethane	< 0.50	0.50	ppbv	1	6/29/2002
1,1-Dichloroethane	< 0.50	0.50	ppbv	1 -	6/29/2002
1,1-Dichloroethene	< 0.50	0.50	ppbv	1	6/29/2002
1,2,4-Trichlorobenzene	< 1.0	1.0	ppbv	1	6/29/2002
1,2,4-Trimethylbenzene	< 0.50	0.50	ppbv	1	6/29/2002
1,2-Dibromoethane	< 0.50	0.50	ppbv	1	6/29/2002
1,2-Dichlorobenzene	< 0.50	0.50	ppbv	1	6/29/2002
1,2-Dichloroethane	< 0.50	0.50	ppbv	1	6/29/2002
1,2-Dichloropropane	< 0.50	0.50	ppbv	1	6/29/2002
1,3,5-Trimethylbenzene	< 0.50	0.50	ppbv	1	6/29/2002
1,3-Butadiene	< 0.50	0.50	ppbv	1	6/29/2002
1,3-Dichlorobenzene	< 0.50	0.50	ppbv	1	6/29/2002
1,4-Dichlorobenzene	< 0.50	0.50	ppbv	1	6/29/2002
1,4-Dioxane	< 5.0	5.0	ppbv	1	6/29/2002
2,2,4-Trimethylpentane	< 0.50	0.50	ppbv	1	6/29/2002
2-Butanone (MEK)	2.0	1.0	ppbv	1	6/29/2002
2-Hexanone	< 1.0	1.0	ppbv	1	6/29/2002
2-Propanol	< 1.0	1.0	ppbv	1	6/29/2002
4-Ethyltoluene	< 0.50	0.50	ppbv	1	6/29/2002
4-Methyl-2-pentanone	< 1.0	1.0	ppbv	1	6/29/2002
Acetone	24	5.0	ppbv	1	6/29/2002
Allyl chloride	< 0.50	0.50	ppbv	1	6/29/2002
Benzene	< 0.50	0.50	ppbv	1	6/29/2002
Benzyl chloride	< 2.0	2.0	ppbv	1	6/29/2002
Bromodichloromethane	< 0.50	0.50	ppb∨	1	6/29/2002
Bromoethene(Vinyl Bromide)	< 0.50	0.50	ppb∨	1	6/29/2002
Bromoform	< 0.50	0.50	ppbv	1	6/29/2002
Bromomethane	< 0.50	0.50	ppbv	1	6/29/2002
Carbon disulfide	< 0.50	0.50	ppbv	1	6/29/2002
Carbon tetrachloride	< 0.50	0.50	ppbv	1	6/29/2002
Chlorobenzene	< 0.50	0.50	ppbv	1	6/29/2002
Chloroethane	< 0.50	0.50	ppbv	1	6/29/2002
Chloroform	< 0.50	0.50	ppbv	1	6/29/2002
Chloromethane	< 0.50	0.50	ppbv	1	6/29/2002
cis-1,2-Dichloroethene	< 0.50	0.50	ppbv	1	6/29/2002
cis-1,3-Dichloropropene	< 0.50	0.50	ppbv	1	6/29/2002
Cyclohexane	< 0.50	0.50	ppbv	1	6/29/2002
Dibromochloromethane	< 0.50	0.50	ppbv	1	6/29/2002

Qualifiers:

ND - Not Detected at the Reporting Limit

S - Spike Recovery outside accepted recovery limits

J - Analyte detected below quantitation limits

R - RPD outside accepted recovery limits

B - Analyte detected in the associated Method Blank

E - Value above quantitation range

* Value exceeds Maximum Contaminant Level

Page 5 of 14

A Division of Aerotech Laboratories, Inc.

Precision Analytical Laboratories

CLIENT:

Law Engineering

Lab Order:

02061078

Project:

South Mesa WQARF/70211-2-0064

Lab ID:

02061078-03A

Date: 05-Jul-02

Client Sample ID: 7

Tag Number:

Collection Date:

Collection Date: 6/27/2002 8:31:00 AM

Matrix: AIR

Analyses	Result	Limit Q	ual Units	DF	Date Analyzed
VOLATILE ORGANICS IN AIR	Т	O15		ter veral valence i i i en	Analyst: SP
Dichlorodifluoromethane(F-12)	0.57	0.50	ppbv	1	6/29/2002
Dichlorotetrafluoroethane(F-114)	< 0.50	0.50	ppbv	1	6/29/2002
Ethyl Acetate	< 0.50	0.50	ppbv	1	6/29/2002
Ethylbenzene	0.99	0.50	ppbv	1	6/29/2002
Heptane	0.81	0.50	ppbv	1	6/29/2002
Hexachlorobutadiene	< 1.0	1.0	ppbv	1	6/29/2002
Hexane	< 0.50	0.50	ppbv	1	6/29/2002
m&p-Xylene	3.4	1.0	ppbv	1	6/29/2002
Methyl tert-butyl ether	< 1.0	1.0	ppbv	1	6/29/2002
Methylene chloride	< 0.50	0.50	ppbv	1	6/29/2002
o-Xylene	1.1	0.50	ppbv	1	6/29/2002
Propene (Propylene)	< 0.50	0.50	ppbv	1	6/29/2002
Styrene	< 0.50	0.50	ppbv	1	6/29/2002
Tetrachloroethene	< 0.50	0.50	ppbv	1	6/29/2002
Tetrahydrofuran	< 1.0	1.0	ppbv	1	6/29/2002
Toluene	4.0	0.50	ppbv	1	6/29/2002
trans-1,2-Dichloroethene	< 0.50	0.50	ppbv	1	6/29/2002
trans-1,3-Dichloropropene	< 0.50	0.50	ppbv	1	6/29/2002
Trichloroethene	< 0.50	0.50	ppbv	1	6/29/2002
Trichlorofluoromethane(F-11)	< 0.50	0.50	ppbv	1	6/29/2002
Trichlorotrifluoroethane(F-113)	< 0.50	0.50	ppbv	1	6/29/2002
Vinyl acetate	< 0.50	0.50	ppbv	1	6/29/2002
Vinyl chloride	< 0.50	0.50	ppbv	1	6/29/2002
Surr: 4-Bromofluorobenzene	100	70-130	%REC	1	6/29/2002

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

* - Value exceeds Maximum Contaminant Level

Page 6 of 14

A Division of Aerotech Laboratories, Inc.

Precision Analytical Laboratories

CLIENT: Law Engineering

Lab Order:

02061078

Project:

South Mesa WQARF/70211-2-0064

Lab ID:

02061078-04A

Date: 05-Jul-02

Client Sample ID: 2

Tag Number:

Collection Date: 6/27/2002 8:44:00 AM

Matrix: AIR

Analyses	Result	Limit Q	ual Units	DF	Date Analyzed
OLATILE ORGANICS IN AIR	T(D15	return remember virtual en	2:	Analyst: SP
1,1,1-Trichloroethane	< 0.50	0.50	ppbv	1	6/29/2002
1,1,2,2-Tetrachloroethane	< 0.50	0.50	ppbv	1	6/29/2002
1,1,2-Trichloroethane	< 0.50	0.50	ppbv	1	6/29/2002
1,1-Dichloroethane	< 0.50	0.50	ppbv	1	6/29/2002
1,1-Dichloroethene	< 0.50	0.50	ppbv	1	6/29/2002
1,2,4-Trichlorobenzene	< 1.0	1.0	ppbv	1	6/29/2002
1,2,4-Trimethylbenzene	0.86	0.50	ppbv	1	6/29/2002
1,2-Dibromoethane	< 0.50	0.50	ppbv	1	6/29/2002
1,2-Dichlorobenzene	< 0.50	0.50	ppbv	1	6/29/2002
1,2-Dichloroethane	< 0.50	0.50	ppbv	1	6/29/2002
1,2-Dichloropropane	< 0.50	0.50	ppbv	1	6/29/2002
1,3,5-Trimethylbenzene	< 0.50	0.50	ppbv	1	6/29/2002
1,3-Butadiene	< 0.50	0.50	ppbv	1	6/29/2002
1,3-Dichlorobenzene	< 0.50	0.50	ppbv	1	6/29/2002
1,4-Dichlorobenzene	< 0.50	0.50	ppbv	1	6/29/2002
1,4-Dioxane	< 5.0	5.0	ppbv	1	6/29/2002
2,2,4-Trimethylpentane	< 0.50	0.50	ppbv	1	6/29/2002
2-Butanone (MEK)	2.9	1.0	ppbv	1	6/29/2002
2-Hexanone	< 1.0	1.0	ppbv	1	6/29/2002
2-Propanol	14	1.0	ppbv	1	6/29/2002
4-Ethyltoluene	< 0.50	0.50	ppbv	1	6/29/2002
4-Methyl-2-pentanone	< 1.0	1.0	ppbv	1	6/29/2002
Acetone	12	5.0	ppbv	1	6/29/2002
Allyl chloride	< 0.50	0.50	ppbv	1	6/29/2002
Benzene	0.60	0.50	ppbv	1	6/29/2002
Benzyl chloride	< 2.0	2.0	ppbv	1	6/29/2002
Bromodichloromethane	< 0.50	0.50	ppbv	1	6/29/2002
Bromoethene(Vinyl Bromide)	< 0.50	0.50	ppbv	1	6/29/2002
Bromoform	< 0.50	0.50	ppbv	1	6/29/2002
Bromomethane	< 0.50	0.50	ppbv	1	6/29/2002
Carbon disulfide	< 0.50	0.50	ppbv	1	6/29/2002
Carbon tetrachloride	< 0.50	0.50	ppbv	1	6/29/2002
Chlorobenzene	< 0.50	0.50	ppbv	1	6/29/2002
Chloroethane	< 0.50	0.50	ppbv	1	6/29/2002
Chloroform	< 0.50	0.50	ppbv	1	6/29/2002
Chloromethane	< 0.50	0.50	ppbv	1	6/29/2002
cis-1,2-Dichloroethene	< 0.50	0.50	ppbv	1	6/29/2002
cis-1,3-Dichloropropene	< 0.50	0.50	ppbv	1	6/29/2002
Cyclohexane	< 0.50	0.50	ppbv	1	6/29/2002
Dibromochloromethane	< 0.50	0.50	ppbv	1	6/29/2002

Qualifiers:

ND - Not Detected at the Reporting Limit

S - Spike Recovery outside accepted recovery limits

J - Analyte detected below quantitation limits

R - RPD outside accepted recovery limits

B - Analyte detected in the associated Method Blank

* - Value exceeds Maximum Contaminant Level

E - Value above quantitation range

Page 7 of 14

A Division of Aerotech Laboratories, Inc.

Precision Analytical Laboratories

CLIENT:

Law Engineering

Lab Order:

02061078

Project:

South Mesa WQARF/70211-2-0064

Lab ID:

02061078-04A

Date: 05-Jul-02

Client Sample ID: 2

Tag Number:

Collection Date: 6/27/2002 8:44:00 AM

Matrix: AIR

Analyses	Result	Limit	Qual Units	DF	Date Analyzed
VOLATILE ORGANICS IN AIR	Т	O15		:	Analyst: SP
Dichlorodifluoromethane(F-12)	0.64	0.50	ppbv	1	6/29/2002
Dichlorotetrafluoroethane(F-114)	< 0.50	0.50	ppbv	1	6/29/2002
Ethyl Acetate	< 0.50	0.50	ppbv	1	6/29/2002
Ethylbenzene	< 0.50	0.50	ppbv	1	6/29/2002
Heptane	1.2	0.50	ppbv	1	6/29/2002
Hexachlorobutadiene	< 1.0	1.0	ppbv	1	6/29/2002
Hexane	< 0.50	0.50	ppbv	1	6/29/2002
m&p-Xylene	1.1	1.0	ppbv	1	6/29/2002
Methyl tert-butyl ether	1.6	1.0	ppbv	1	6/29/2002
Methylene chloride	< 0.50	0.50	ppbv	1	6/29/2002
o-Xylene	0.57	0.50	ppbv	1	6/29/2002
Propene (Propylene)	< 0.50	0.50	ppbv	1	6/29/2002
Styrene	< 0.50	0.50	ppbv	1	6/29/2002
Tetrachloroethene	57	2.5	D2 ppbv	5	6/30/2002
Tetrahydrofuran	< 1.0	1.0	ppbv	1	6/29/2002
Toluene	1.8	0.50	ppbv	1	6/29/2002
trans-1,2-Dichloroethene	< 0.50	0.50	ppbv	1	6/29/2002
trans-1,3-Dichloropropene	< 0.50	0.50	ppbv	1	6/29/2002
Trichloroethene	0.94	0.50	ppbv	1	6/29/2002
Trichlorofluoromethane(F-11)	2.6	0.50	ppbv	. 1	6/29/2002
Trichlorotrifluoroethane(F-113)	< 0.50	0.50	ppbv	1	6/29/2002
Vinyl acetate	< 0.50	0.50	ppbv	1	6/29/2002
Vinyl chloride	< 0.50	0.50	ppbv	1	6/29/2002
Surr: 4-Bromofluorobenzene	98.7	70-130	%REC	1	6/29/2002

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Page 8 of 14

A Division of Aerotech Laboratories, Inc.

Precision Analytical Laboratories

CLIENT:

Law Engineering

Lab Order:

02061078

Project:

South Mesa WQARF/70211-2-0064

Lab ID:

02061078-05A

Date: 05-Jul-02

Client Sample ID: 3

Tag Number:

Collection Date: 6/27/2002 8:49:00 AM

Matrix: AIR

Analyses	Result	Limit Qu	al Units	DF	Date Analyzed
VOLATILE ORGANICS IN AIR	T	O15			Analyst: SP
1,1,1-Trichloroethane	< 0.50	0.50	ppbv	1	6/29/2002
1,1,2,2-Tetrachloroethane	< 0.50	0.50	ppbv	1	6/29/2002
1,1,2-Trichloroethane	< 0.50	0.50	ppbv	1	6/29/2002
1,1-Dichloroethane	< 0.50	0.50	ppbv	1	6/29/2002
1,1-Dichloroethene	< 0.50	0.50	ppbv	1	6/29/2002
1,2,4-Trichlorobenzene	< 1.0	1.0	ppbv	1	6/29/2002
1,2,4-Trimethylbenzene	1.7	0.50	ppbv	1	6/29/2002
1,2-Dibromoethane	< 0.50	0.50	ppbv	. 1	6/29/2002
1,2-Dichlorobenzene	< 0.50	0.50	ppbv	1	6/29/2002
1,2-Dichloroethane	< 0.50	0.50	ppbv	1	6/29/2002
1,2-Dichloropropane	< 0.50	0.50	ppbv	1	6/29/2002
1,3,5-Trimethylbenzene	< 0.50	0.50	ppbv	1	6/29/2002
1,3-Butadiene	< 0.50	0.50	ppbv	1	6/29/2002
1,3-Dichlorobenzene	< 0.50	0.50	ppbv	1	6/29/2002
1,4-Dichlorobenzene	< 0.50	0.50	ppbv	1	6/29/2002
1,4-Dioxane	< 5.0	5.0	ppbv	1	6/29/2002
2,2,4-Trimethylpentane	< 0.50	0.50	ppbv	1	6/29/2002
2-Butanone (MEK)	< 1.0	1.0	ppbv	1	6/29/2002
2-Hexanone	< 1.0	1.0	ppbv	1	6/29/2002
2-Propanol	16	1.0	ppbv	1	6/29/2002
4-Ethyltoluene	0.53	0.50	ppbv	1	6/29/2002
4-Methyl-2-pentanone	< 1.0	1.0	ppbv	1	6/29/2002
Acetone	11	5.0	ppbv	1	6/29/2002
Allyl chloride	< 0.50	0.50	ppbv	1	6/29/2002
Benzene	< 0.50	0.50	ppbv	1	6/29/2002
Benzyl chloride	< 2.0	2.0	ppbv	. 1	6/29/2002
Bromodichloromethane	< 0.50	0.50	ppbv	1	6/29/2002
Bromoethene(Vinyl Bromide)	< 0.50	0.50	ppbv	1	6/29/2002
Bromoform	< 0.50	0.50	ppbv	1	6/29/2002
Bromomethane	< 0.50	0.50	ppbv	1	6/29/2002
Carbon disulfide	< 0.50	0.50	ppbv	1	6/29/2002
Carbon tetrachloride	< 0.50	0.50	ppbv	1	6/29/2002
Chlorobenzene	< 0.50	0.50	ppbv	1	6/29/2002
Chloroethane	< 0.50	0.50	ppbv	1	6/29/2002
Chloroform	< 0.50	0.50	ppbv	1	6/29/2002
Chloromethane	< 0.50	0.50	ppbv	1	6/29/2002
cis-1,2-Dichloroethene	< 0.50	0.50	ppbv	1	6/29/2002
cis-1,3-Dichloropropene	< 0.50	0.50	ppbv	1	6/29/2002
Cyclohexane	< 0.50	0.50	ppb∨	1	6/29/2002
Dibromochloromethane	< 0.50	0.50	ppbv	1	6/29/2002

Qualifiers:

ND - Not Detected at the Reporting Limit

S - Spike Recovery outside accepted recovery limits

J - Analyte detected below quantitation limits

E - Value above quantitation range

R - RPD outside accepted recovery limits

B - Analyte detected in the associated Method Blank
* - Value exceeds Maximum Contaminant Level

Page 9 of 14

1725 W. 17th St. • Tempe, AZ 85281 • Toll Free 866 772-5227 • 480 967-1310 • Fax 480 967-1019 4455 S. Park Ave., Ste. 110 • Tucson, AZ 85714 • 520 807-3801 • Fax 520 807-3803 • www.palabs.com

A Division of Aerotech Laboratories, Inc.

Precision Analytical Laboratories

CLIENT:

Law Engineering

Lab Order:

02061078

Project:

South Mesa WQARF/70211-2-0064

Lab ID:

02061078-05A

Date: 05-Jul-02

Client Sample ID: 3

Tag Number:

Collection Date: 6/27/2002 8:49:00 AM

Matrix: AIR

Analyses	Result	Limit Qu	al Units	DF	Date Analyzed
VOLATILE ORGANICS IN AIR	T	O15			Analyst: SP
Dichlorodifluoromethane(F-12)	0.64	0.50	ppbv	1	6/29/2002
Dichlorotetrafluoroethane(F-114)	< 0.50	0.50	ppbv	1	6/29/2002
Ethyl Acetate	< 0.50	0.50	ppbv	1	6/29/2002
Ethylbenzene	< 0.50	0.50	ppbv	1	6/29/2002
Heptane	0.86	0.50	ppbv	1	6/29/2002
Hexachlorobutadiene	< 1.0	1.0	ppbv	1	6/29/2002
Hexane	< 0.50	0.50	ppbv	1	6/29/2002
m&p-Xylene	1.1	1.0	ppbv	1	6/29/2002
Methyl tert-butyl ether	1.3	1.0	ppbv	1	6/29/2002
Methylene chloride	5.1	0.50	ppbv	1	6/29/2002
o-Xylene	0.60	0.50	ppbv	1	6/29/2002
Propene (Propylene)	< 0.50	0.50	ppbv	1	6/29/2002
Styrene	< 0.50	0.50	ppbv	1	6/29/2002
Tetrachloroethene	16	0.50	ppbv	1	6/29/2002
Tetrahydrofuran	< 1.0	1.0	ppbv	1	6/29/2002
Toluene	1.4	0.50	ppbv	1	6/29/2002
trans-1,2-Dichloroethene	< 0.50	0.50	ppbv	1	6/29/2002
trans-1,3-Dichloropropene	< 0.50	0.50	ppbv	1	6/29/2002
Trichloroethene	0.81	0.50	ppbv	1	6/29/2002
Trichlorofluoromethane(F-11)	1.6	0.50	ppbv	1	6/29/2002
Trichlorotrifluoroethane(F-113)	< 0.50	0.50	ppbv	1	6/29/2002
Vinyl acetate	< 0.50	0.50	ppbv	1	6/29/2002
Vinyl chloride	< 0.50	0.50	ppbv	1	6/29/2002
Surr: 4-Bromofluorobenzene	98.5	70-130	%REC	1	6/29/2002

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank * - Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Page 10 of 14

1725 W. 17th St. • Tempe, AZ 85281 • Toll Free 866 772-5227 • 480 967-1310 • Fax 480 967-1019 4455 S. Park Ave., Ste. 110 • Tucson, AZ 85714 • 520 807-3801 • Fax 520 807-3803 • www.palabs.com

A Division of Aerotech Laboratories, Inc.

Precision Analytical Laboratories

CLIENT:

Law Engineering

Lab Order:

02061078

Project:

South Mesa WQARF/70211-2-0064

Lab ID:

02061078-06A

Date: 05-Jul-02

Client Sample ID: 1

Tag Number:

Collection Date: 6/27/2002 8:52:00 AM

Matrix: AIR

Analyses	Result	Limit Qu	al Units	DF	Date Analyzed
OLATILE ORGANICS IN AIR	TO	D15	4. 2.		Analyst: SP
1,1,1-Trichloroethane	< 0.50	0.50	ppbv	1	6/29/2002
1,1,2,2-Tetrachloroethane	< 0.50	0.50	ppbv	1	6/29/2002
1,1,2-Trichloroethane	< 0.50	0.50	ppbv	1	6/29/2002
1,1-Dichloroethane	< 0.50	0.50	ppbv	1	6/29/2002
1,1-Dichloroethene	< 0.50	0.50	ppbv	1	6/29/2002
1,2,4-Trichlorobenzene	< 1.0	1.0	ppbv	1	6/29/2002
1,2,4-Trimethylbenzene	< 0.50	0.50	ppbv	1	6/29/2002
1,2-Dibromoethane	< 0.50	0.50	ppbv	1	6/29/2002
1,2-Dichlorobenzene	< 0.50	0.50	ppbv	·· 1	6/29/2002
1,2-Dichloroethane	< 0.50	0.50	ppbv	1	6/29/2002
1,2-Dichloropropane	< 0.50	0.50	ppbv	1	6/29/2002
1,3,5-Trimethylbenzene	< 0.50	0.50	ppbv	1	6/29/2002
1,3-Butadiene	< 0.50	0.50	ppbv	1	6/29/2002
1,3-Dichlorobenzene	< 0.50	0.50	ppbv	1	6/29/2002
1,4-Dichlorobenzene	< 0.50	0.50	ppbv	1	6/29/2002
1,4-Dioxane	< 5.0	5.0	ppbv	1	6/29/2002
2,2,4-Trimethylpentane	< 0.50	0.50	ppbv	1	6/29/2002
2-Butanone (MEK)	2.8	1.0	ppbv	1	6/29/2002
2-Hexanone	< 1.0	1.0	ppbv	1	6/29/2002
2-Propanol	4.3	1.0	ppbv	1	6/29/2002
4-Ethyltoluene	< 0.50	0.50	ppbv	1	6/29/2002
4-Methyl-2-pentanone	< 1.0	1.0	ppb∨	1	6/29/2002
Acetone	12	5.0	ppb∨	1	6/29/2002
Allyl chloride	< 0.50	0.50	ppbv	1	6/29/2002
Benzene	0.53	0.50	ppbv	1	6/29/2002
Benzyl chloride	< 2.0	2.0	ppbv	1	6/29/2002
Bromodichloromethane	< 0.50	0.50	ppbv	1	6/29/2002
Bromoethene(Vinyl Bromide)	< 0.50	0.50	ppbv	1	6/29/2002
Bromoform	< 0.50	0.50	ppbv	1	6/29/2002
Bromomethane	< 0.50	0.50	ppbv	1	6/29/2002
Carbon disulfide	< 0.50	0.50	ppbv	1	6/29/2002
Carbon tetrachloride	< 0.50	0.50	ppbv	1	6/29/2002
Chlorobenzene	< 0.50	0.50	ppbv	1	6/29/2002
Chloroethane	< 0.50	0.50	ppbv	1	6/29/2002
Chloroform	< 0.50	0.50	ppbv	1	6/29/2002
Chloromethane	< 0.50	0.50	ppbv	1	6/29/2002
cis-1,2-Dichloroethene	< 0.50	0.50	ppbv	1	6/29/2002
cis-1,3-Dichloropropene	< 0.50	0.50	ppbv		6/29/2002
Cyclohexane	0.53	0.50	ppbv	1	
Dibromochloromethane	< 0.50	0.50	ppbv	1 1	6/29/2002 6/29/2002

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

* - Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Page 11 of 14

1725 W. 17th St. • Tempe, AZ 85281 • Toll Free 866 772-5227 • 480 967-1310 • Fax 480 967-1019 4455 S. Park Ave., Ste. 110 • Tucson, AZ 85714 • 520 807-3801 • Fax 520 807-3803 • www.palabs.com

A Division of Aerotech Laboratories, Inc.

Precision Analytical Laboratories

CLIENT:

Law Engineering

Lab Order:

02061078

Project:

South Mesa WQARF/70211-2-0064

Lab ID:

02061078-06A

Date: 05-Jul-02

Client Sample ID: 1

Tag Number:

Collection Date: 6/27/2002 8:52:00 AM

Matrix: AIR

Analyses	Result	Limit Q	ual Units	DF	Date Analyzed
VOLATILE ORGANICS IN AIR)	O15		and the second s	Analyst: SP
Dichlorodifluoromethane(F-12)	0.62	0.50	ppbv	1	6/29/2002
Dichlorotetrafluoroethane(F-114)	< 0.50	0.50	ppbv	1	6/29/2002
Ethyl Acetate	< 0.50	0.50	ppbv	1	6/29/2002
Ethylbenzene	< 0.50	0.50	ppbv	1	6/29/2002
Heptane	0.71	0.50	ppbv	1	6/29/2002
Hexachlorobutadiene	< 1.0	1.0	ppbv	1	6/29/2002
Hexane	0.69	0.50	ppbv	. 1	6/29/2002
m&p-Xylene	1.6	1.0	ppbv	1 -	6/29/2002
Methyl tert-butyl ether	< 1.0	1.0	ppbv	1	6/29/2002
Methylene chloride	< 0.50	0.50	ppbv	1	6/29/2002
o-Xylene	< 0.50	0.50	ppbv	1	6/29/2002
Propene (Propylene)	< 0.50	0.50	ppbv	1	6/29/2002
Styrene	< 0.50	0.50	ppbv	1	6/29/2002
Tetrachloroethene	20	0.50	ppbv	1	6/29/2002
Tetrahydrofuran	< 1.0	1.0	ppbv	1	6/29/2002
Toluene	1.8	0.50	ppbv	1	6/29/2002
trans-1,2-Dichloroethene	< 0.50	0.50	ppbv	1	6/29/2002
trans-1,3-Dichloropropene	< 0.50	0.50	ppbv	1	6/29/2002
Trichloroethene	0.97	0.50	ppbv	1	6/29/2002
Trichlorofluoromethane(F-11)	2.0	0.50	ppbv	1	6/29/2002
Trichlorotrifluoroethane(F-113)	< 0.50	0.50	ppbv	1	6/29/2002
Vinyl acetate	< 0.50	0.50	ppbv	1	6/29/2002
Vinyl chloride	< 0.50	0.50	ppbv	1	6/29/2002
Surr: 4-Bromofluorobenzene	98.6	70-130	%REC	1	6/29/2002

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

 \boldsymbol{B} - Analyte detected in the associated Method Blank

* - Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Page 12 of 14

A Division of Aerotech Laboratories, Inc.

Precision Analytical Laboratories

CLIENT:

Law Engineering

Lab Order:

02061078

02001070

Project:

South Mesa WQARF/70211-2-0064

Lab ID:

02061078-07A

Date: 05-Jul-02

Client Sample ID: 6

Tag Number:

Collection Date: 6/27/2002 8:56:00 AM

Matrix: AIR

Analyses	Result	Limit Qu	al Units	DF	Date Analyzed
VOLATILE ORGANICS IN AIR	TC	015			Analyst: SP
1,1,1-Trichloroethane	< 0.50	0.50	ppbv	1	6/30/2002
1,1,2,2-Tetrachloroethane	< 0.50	0.50	ppbv	1	6/30/2002
1,1,2-Trichloroethane	< 0.50	0.50	ppbv	1	6/30/2002
1,1-Dichloroethane	< 0.50	0.50	ppbv	1	6/30/2002
1,1-Dichloroethene	< 0.50	0.50	ppbv	1	6/30/2002
1,2,4-Trichlorobenzene	< 1.0	1.0	ppbv	1	6/30/2002
1,2,4-Trimethylbenzene	< 0.50	0.50	ppbv	1	6/30/2002
1,2-Dibromoethane	< 0.50	0.50	ppbv	1	6/30/2002
1,2-Dichlorobenzene	< 0.50	0.50	ppbv	1	6/30/2002
1,2-Dichloroethane	< 0.50	0.50	ppbv	1	6/30/2002
1,2-Dichloropropane	< 0.50	0.50	ppbv	1	6/30/2002
1,3,5-Trimethylbenzene	< 0.50	0.50	ppbv	1	6/30/2002
1,3-Butadiene	< 0.50	0.50	ppbv	1	6/30/2002
1,3-Dichlorobenzene	< 0.50	0.50	ppbv	1	6/30/2002
1,4-Dichlorobenzene	< 0.50	0.50	ppbv	1	6/30/2002
1,4-Dioxane	< 5.0	5.0	ppbv	1	6/30/2002
2,2,4-Trimethylpentane	< 0.50	0.50	ppbv	1	6/30/2002
2-Butanone (MEK)	2.8	1.0	ppbv	1	6/30/2002
2-Hexanone	< 1.0	1.0	ppbv	1	6/30/2002
2-Propanol	4.4	1.0	ppbv	1	6/30/2002
4-Ethyltoluene	< 0.50	0.50	ppbv	1	6/30/2002
4-Methyl-2-pentanone	< 1.0	1.0	ppbv	1	6/30/2002
Acetone	21	5.0	ppbv	1	6/30/2002
Allyl chloride	< 0.50	0.50	ppbv	1	6/30/2002
Benzene	0.64	0.50	ppbv	1	6/30/2002
Benzyl chloride	< 2.0	2.0	ppbv	1	6/30/2002
Bromodichloromethane	< 0.50	0.50	ppbv	1	6/30/2002
Bromoethene(Vinyl Bromide)	< 0.50	0.50	ppbv	1	6/30/2002
Bromoform	< 0.50	0.50	ppbv	1	6/30/2002
Bromomethane	< 0.50	0.50	ppbv	1	6/30/2002
Carbon disulfide	< 0.50	0.50	ppbv	1	6/30/2002
Carbon tetrachloride	< 0.50	0.50	ppbv	1	6/30/2002
Chlorobenzene	< 0.50	0.50	ppbv	1	6/30/2002
Chloroethane	< 0.50	0.50	ppbv	1	6/30/2002
Chloroform	< 0.50	0.50	ppbv	1	6/30/2002
Chloromethane	< 0.50	0.50	ppbv	1	6/30/2002
cis-1,2-Dichloroethene	< 0.50	0.50	ppbv	1	6/30/2002
cis-1,3-Dichloropropene	< 0.50	0.50	ppbv	1	6/30/2002
Cyclohexane	0.68	0.50	ppbv	1	6/30/2002
Dibromochloromethane	< 0.50	0.50	ppbv	1	6/30/2002

Qualifiers:

ND - Not Detected at the Reporting Limit

S - Spike Recovery outside accepted recovery limits

J - Analyte detected below quantitation limits

R - RPD outside accepted recovery limits

B - Analyte detected in the associated Method Blank

E - Value above quantitation range

* - Value exceeds Maximum Contaminant Level

Page 13 of 14

A Division of Aerotech Laboratories, Inc.

Precision Analytical Laboratories

CLIENT:

Law Engineering

Lab Order:

02061078

Project:

South Mesa WQARF/70211-2-0064

Lab ID:

02061078-07A

Date: 05-Jul-02

Client Sample ID: 6

Tag Number:

Collection Date: 6/27/2002 8:56:00 AM

Matrix: AIR

Analyses	Result	Limit Qu	ual Units	DF	Date Analyzed
VOLATILE ORGANICS IN AIR	T	O15			Analyst: SP
Dichlorodifluoromethane(F-12)	0.66	0.50	ppbv	1	6/30/2002
Dichlorotetrafluoroethane(F-114)	< 0.50	0.50	ppbv	1	6/30/2002
Ethyl Acetate	< 0.50	0.50	ppbv	1	6/30/2002
Ethylbenzene	< 0.50	0.50	ppbv	1	6/30/2002
Heptane	0.67	0.50	ppb∨	1	6/30/2002
Hexachlorobutadiene	< 1.0	1.0	ppbv	1	6/30/2002
Hexane	0.86	0.50	ppbv	1	6/30/2002
m&p-Xylene	< 1.0	1.0	ppbv	1	6/30/2002
Methyl tert-butyl ether	2.2	1.0	ppbv	1	6/30/2002
Methylene chloride	< 0.50	0.50	ppbv	1	6/30/2002
o-Xylene	< 0.50	0.50	ppbv	1	6/30/2002
Propene (Propylene)	< 0.50	0.50	ppbv	1	6/30/2002
Styrene	< 0.50	0.50	ppbv	1	6/30/2002
Tetrachloroethene	5.5	0.50	ppbv	1	6/30/2002
Tetrahydrofuran	< 1.0	1.0	ppbv	1	6/30/2002
Toluene	2.3	0.50	ppbv	1	6/30/2002
trans-1,2-Dichloroethene	< 0.50	0.50	ppbv	1	6/30/2002
trans-1,3-Dichloropropene	< 0.50	0.50	ppbv	1	6/30/2002
Trichloroethene	0.76	0.50	ppbv	1	6/30/2002
Trichlorofluoromethane(F-11)	2.3	0.50	ppbv	1	6/30/2002
Trichlorotrifluoroethane(F-113)	< 0.50	0.50	ppbv	1	6/30/2002
Vinyl acetate	< 0.50	0.50	ppbv	1	6/30/2002
Vinyl chloride	< 0.50	0.50	ppbv	1	6/30/2002
Surr: 4-Bromofluorobenzene	98.2	70-130	%REC	1	6/30/2002

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Page 14 of 14

Law Engineering CLIENT:

02061078 Work Order:

Project:

South Mesa WQARF/70211-2-0064

ANALYTICAL QC SUMMARY REPORT

Date: 05-Jul-02

TestCode: TO15

Sample ID MB-R24682	SampType: MBLK	TestCode: TO15	Units: ppbv	Prep Date:	Run ID: MS04_020629A
Client ID: ZZZZZ	Batch ID: R24682	TestNo: T015		Analysis Date: 6/29/2002	SeqNo: 266705
Analyte	Result	PQL SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
1,1,1-Trichloroethane	< 0.50	0.50			
1,1,2,2-Tetrachloroethane	< 0.50	0.50			
1,1,2-Trichloroethane	< 0.50	0.50			
1,1-Dichloroethane	< 0.50	0,50			
1,1-Dichloroethene	< 0.50	0.50			
1,2,4-Trichlorobenzene	< 1.0	1.0			
1,2,4-Trimethylbenzene	< 0.50	0.50			
1,2-Dibromoethane	< 0.50	0.50			
1,2-Dichlorobenzene	< 0.50	0.50			
1,2-Dichloroethane	< 0.50	0.50			
1,2-Dichloropropane	< 0.50	0.50			
1,3,5-Trimethylbenzene	< 0.50	0.50			
1,3-Butadiene	< 0.50	0.50			
1,3-Dichlorobenzene	< 0.50	0.50			
1,4-Dichlorobenzene	< 0.50	0.50			
1,4-Dioxane	< 5.0	5.0			
2,2,4-Trimethylpentane	< 0.50	0.50			
2-Butanone (MEK)	< 1.0	1.0			
2-Hexanone	< 1.0	1.0			
2-Propanol	< 1.0	1.0			
4-Ethyltoluene	< 0.50	0.50			
4-Methyl-2-pentanone	< 1.0	0.1			
Acetone	< 5.0	5.0			
Allyl chloride	0.50	0.50			
Benzene	< 0.50	0.50			
Benzyl chloride	< 2.0	2.0			
Bromodichloromethane	< 0.50	0.50			
Bromoethene(Vinyl Bromide)	< 0.50	0.50			
Bromoform	< 0.50	0.50			
Bromomethane	< 0.50	0.50			
Carbon disulfide	< 0.50	0.50			

Page 2 of 6

ANALYTICAL QC SUMMARY REPORT

TestCode: TO15

TestCode: TO15 Units: ppbv Prep Date: Run ID: MS04_020629A	2000 COND. 2000 COND. COND. 2000 COND. 2000 COND.
TestCode: TO15	
SampType: MBLK	
Sample ID MB-R24682	

Law Engineering 02061078 South Mesa WQARF/70211-2-0064

Work Order: CLIENT:

Project:

Sample ID MB-R24682	SampType: MBLK	TestCo	TestCode: T015	Units: ppbv		Prep Date:		Run ID: MS	Run ID: MS04_020629A	
Client ID: ZZZZZ	Batch ID: R24682	Test	TestNo: TO15			Analysis Date:	6/29/2002	SeqNo: 266705	3705	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit Hig	HighLimit RPD Ref Val	%RPD	RPDLimit	Qual
Carbon tetrachloride	< 0.50	0.50				·				
Chlorobenzene	< 0.50	0.50								
Chloroethane	< 0.50	0.50								
Chloroform	< 0.50	0.50								
Chloromethane	< 0.50	0.50								
cis-1,2-Dichloroethene	< 0.50	0.50								
cis-1,3-Dichloropropene	< 0.50	0.50								
Cyclohexane	< 0.50	0.50								
Dibromochloromethane	< 0.50	0.50								
Dichlorodifluoromethane(F-12)	< 0.50	0.50								
Dichlorotetrafluoroethane(F-114)	< 0.50	0.50								
Ethyl Acetate	< 0.50	0.50								
Ethylbenzene	< 0.50	0.50								
Heptane	< 0.50	0.50								
Hexachlorobutadiene	< 1.0	1.0								
Hexane	< 0.50	0.50								
m&p-Xylene	< 1.0	1.0								
Methyl tert-butyl ether	< 1.0	1.0								
Methylene chloride	< 0.50	0.50								
o-Xylene	< 0.50	0.50								
Propene (Propylene)	< 0.50	0.50								
Styrene	< 0.50	0.50								
Tetrachloroethene	< 0.50	0.50								
Tetrahydrofuran	< 1.0	1.0								
Toluene	< 0.50	0.50								
trans-1,2-Dichloroethene	< 0.50	0.50								
trans-1,3-Dichloropropene	< 0.50	0.50								
Trichloroethene	< 0.50	0.50								
Trichlorofluoromethane(F-11)	< 0.50	0.50								
Trichlorotrifluoroethane(F-113)	< 0.50	0.50								
Vinyl acetate	< 0.50	0.50								
Vinyl chloride	< 0.50	0.50			1	1				
Surr: 4-Bromofluorobenzene	9.37	0.50	10	0	93.7	9/	0 051	>		

Page 3 of 6

ANALYTICAL QC SUMMARY REPORT

Law Engineering 02061078 South Mesa WQARF/70211-2-0064

Work Order: CLIENT:

Project:

TestCode: TO15

	+	+	Total TOAR	lotto.		Drop Date.			M. Claig	Prin ID: MSnA nongoa	
Sample ID LCS-K24682	Sampiype: LCS	oolsa	ne. 1013	oute. ppp		רופט טמופי					
Client ID: ZZZZZ	Batch ID: R24682	Test	TestNo: TO15		· ·	Analysis Date:	6/29/2002	02	SeqNo: 267029	7029	
Analyte	Result	Pol	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,1,1-Trichloroethane	8.82	0.50	10	0	88.2	65	135	0	0		
1,1,2,2-Tetrachloroethane	9.26	0.50	10	0	97.6	65	135	0	0		
1,1,2-Trichloroethane	8.87	0.50	10	0	88.7	65	135	0	0		
1,1-Dichloroethane	8.67	0.50	10	0	86.7	92	135	0	0		
1,1-Dichloroethene	8.67	0.50	10	0	86.7	65	135	0	0		
1,2,4-Trichlorobenzene	6.6	1.0	10	0	93	65	135	0	0		
1,2,4-Trimethylbenzene	9.52	0.50	10	0	95.2	65	135	0	0		
1,2-Dibromoethane	8.78	0.50	10	0	87.8	65	135	0	0		
1,2-Dichlorobenzene	9.13	0.50	10	0	91.3	65	135	0	0		
1,2-Dichloroethane	8.13	0.50	10	0	81.3	65	135	0	0		
1.2-Dichloropropane	9.02	0.50	10	0	90.2	65	135	0	0		
1.3.5-Trimethylbenzene	9.37	0.50	10	0	93.7	65	135	0	0		
1,3-Butadiene	8.09	0.50	10	0	80.9	92	135	0	0		
1,3-Dichlorobenzene	9,12	0.50	10	0	91.2	65	135	0	0		
1,4-Dichlorobenzene	9.18	0.50	10	0	91.8	65	135	0	0		
1,4-Dioxane	10.19	5.0	10	0	102	65	135	0	0		
2.2.4-Trimethylpentane	9.03	0.50	10	0	90.3	65	135	0	0		
2-Butanone (MEK)	9.11	1.0	10	0	91.1	65	135	0	0		
2-Hexanone	8.48	1.0	10	0	84.8	65	135	0	0		
2-Propanol	9.54	1.0	10	0	95.4	65	135	0	0		
4-Ethyltoluene	9.31	0.50	10	0	93.1	65	135	0	0		
4-Methyl-2-pentanone	9.27	1.0	10	0	92.7	65	135	0	0		
Acetone	7.8	2.0	10	0	78	65	135	0	0		
Allyl chloride	8.9	0.50	10	0	88	65	135	0	0		
Benzene	9.03	0.50	10	0	90.3	65	135	0	0		
Benzyl chloride	8.38	2.0	10	0	83.8	65	135	0	0		
Bromodichloromethane	8.87	0.50	10	0	88.7	65	135	0	0		
Bromoethene(Vinyl Bromide)	8.26	0.50	10	0	82.6	65	135	0	0		
Bromoform	9.14	0.50	10	0	91.4	65	135	0	0		
Bromomethane	2.98	0.50	10	0	79.8	65	135	0	0		
Carbon disulfide	8.56	0.50	9	0	85.6	65	135	0			
Carbon tetrachloride	8.69	0.50	10	0	86.9	65	135	0	0		
Chlorobenzene	8.8	0.50	10	0	88	92	135	0	0		

Page 4 of 6

ANALYTICAL QC SUMMARY REPORT

TestCode: TO15

Law Engineering 02061078 Work Order: CLIENT:

Project:

South Mesa WQARF/70211-2-0064

Sample ID 1 CS-R24682	SampType: LCS	TestCo	TestCode: T015	Units: ppbv		Prep Date:			Run ID: MS	Run ID: MS04_020629A	
Client ID: ZZZZZ	Batch ID: R24682	Test	TestNo: TO15			Analysis Date:	: 6/29/2002	02	SeqNo: 267029	7029	
Analyte	Result	Pol	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Chloroethane	7.19	0.50	10	0	71.9	65	135	0	0		
Chloroform	8.68	0.50	10	0	86.8	65	135	0	0		
Chloromethane	8,21	0.50	10	0	82.1	65	135	0	0		
cis-1.2-Dichloroethene	8.69	0.50	10	0	86.9	65	135	0	0		
cis-1,3-Dichloropropene	9.43	0.50	10	0	94.3	92	135	0	0		
Cyclohexane	9.06	0.50	10	0	90.6	65	135	0	0		
Dibromochloromethane	8.83	0.50	10	0	88.3	65	135	0	0		
Dichlorodifluoromethane(F-12)	7.38	0.50	10	0	73.8	65	135	0	0		
Dichlorotetrafluoroethane(F-114)	8.06	0.50	10	0	80.6	92	135	0	0		
Ethyl Acetate	9.44	0.50	10	0	94.4	92	135	0	0		
Ethylbenzene	9.28	0.50	10	0	92.8	92	135	0	0		
Heptane	8.89	0.50	10	0	88.9	65	135	0	0		
Hexachlorobutadiene	8.86	1.0	10	0	88.6	65	135	0	0		
Hexane	9.42	0.50	10	0	94.2	65	135	0	0		
m&n-Xvlene	18.69	1.0	20	0	93.4	65	135	0	0		
Methyl tert-butyl ether	8.16	1.0	10	0	81.6	65	135	0	0		
Methylene chloride	8.53	0.50	10	0	85.3	65	135	0	0		
o-Xvlene	9:36	0.50	10	0	93.6	65	135	0	0		
Propene (Propylene)	7.67	0.50	10	0	76.7	92	135	0	0		
Strene	9.29	0.50	10	0	92.9	65	135	0	0		
Tetrachloroethene	8.77	0.50	10	0	87.7	92	135	0	0		
Tetrahydrofuran	9.24	1.0	10	0	92.4	92	135	0	0		
Toluene	9.13	0.50	10	0	91.3	9	135	0	0		
trans-1.2-Dichloroethene	8.58	0.50	10	0	82.8	65	135	0	0		
trans-1.3-Dichloropropene	9.28	0.50	10	0	92.8	92	135	0	0		
Trichloroethene	8.76	0.50	10	0	87.6	65	135	0	0		
Trichlorofluoromethane(F-11)	9.63	0.50	10	0	96.3	65	135	0	0		
Trichlorotrifluoroethane(F-113)	8.59	0.50	10	0	85.9	929	135	0	0		
Vinvl acetate	9,54	0.50	10	0	95.4	65	135	0	0		
Vinvi chloride	7.45	0.50	10	0	74.5	92	135	0	0		
Surr: 4-Bromofluorobenzene	66.6	0.50	10	0	6.66	20	130	0	0		

Page 5 of 6

Law Engineering CLIENT:

ANALYTICAL QC SUMMARY REPORT

TestCode: TO15

02061078 Work Order:

South Mesa WQARF/70211-2-0064 Project:

Sample ID LCSD-R24682	SampType: LCSD	TestCoc	TestCode: TO15	Units: ppbv		Prep Date:			Run ID: MS	Run ID: MS04_020629A	,
Client ID: ZZZZZ	Batch ID: R24682	Test	TestNo: T015			Analysis Date:	6/29/2002	02	SeqNo: 267030	030	
Analyte	Result	Pol	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1 1 1-Trichloroethane	8.75	0.50	10	0	87.5	65	135	8.82	0.797	25	
1.1.2.2-Tetrachloroethane	8.98	0.50	10	0	89.8	65	135	9.26	3.07	25	
1.1.2-Trichloroethane	8.79	0.50	10	0	87.9	65	135	8.87	906.0	25	
1.1-Dichloroethane	8.69	0.50	10	0	86.9	99	135	8.67	0.230	22	
1.1-Dichloroethene	8.87	0.50	10	0	88.7	65	135	8.67	2.28	25	
1.2.4-Trichlorobenzene	9.41	1.0	10	0	94.1	65	135	9.3	1.18	25	
1.2.4-Trimethylbenzene	9.54	0.50	10	0	95.4	65	135	9.52	0.210	25	
1.2-Dibromoethane	8.73	0.50	10	0	87.3	65	135	8.78	0.571	25	
1.2-Dichlorobenzene	9.12	0.50	10	0	91.2	65	135	9.13	0.110	25	
1,2-Dichloroethane	8.21	0.50	10	0	82.1	65	135	8.13	0.979	22	
1,2-Dichloropropane	8.97	0.50	10	0	89.7	65	135	9.05	0.556	22	
1.3.5-Trimethylbenzene	9.41	0.50	10	0	94.1	65	135	9.37	0.426	22	
1.3-Butadiene	8.8	0.50	10	0	88	65	135	8.09	8.41	22	
1,3-Dichlorobenzene	6.07	0.50	10	0	90.7	65	135	9.12	0.550	22	
1,4-Dichlorobenzene	9.14	0.50	10	0	91.4	65	135	9.18	0.437	22	
1.4-Dioxane	10.95	5.0	10	0	110	65	135	10.19	7.19	22	
2.2.4-Trimethylpentane	9.17	0.50	10	0	91.7	65	135	9.03	1.54	22	
2-Butanone (MEK)	6	1.0	10	0	06	65	135	9.11	1.21	22	
2-Hexanone	8.82	1.0	10	0	88.2	65	135	8.48	3,93	22	
2-Propanol	10.04	1.0	10	0	100	65	135	9.54	5.11	22	
4-Ethyltoluene	9.33	0.50	10	0	93.3	65	135	9.31	0.215	22	
4-Methyl-2-pentanone	9.55	1.0	10	0	95.5	65	135	9.27	2.98	22	
Acetone	7.96	5.0	10	0	79.6	65	135	7.8	2.03	25	
Allyl chloride	8.85	0.50	10	0	88.5	65	135	8.9	0.563	22	
Benzene	9.12	0.50	10	0	91.2	65	135	9.03	0.992	22	
Benzyl chloride	8.29	2.0	10	0	82.9	65	135	8.38	1.08	22	
Bromodichloromethane	8.8	0.50	10	0	88	65	135	8.87	0.792	22	
Bromoethene(Vinyl Bromide)	8.51	0.50	10	0	85.1	65	135	8.26	2.98	22	
Bromoform	9.13	0.50	10	0	91.3	65	135	9.14	0.109	22	
Bromomethane	8.22	0.50	10	0	82.2	65	135	7.98	2.96	22	
Carbon disulfide	8.64	0.50	10	0	86.4	65	135	8.56	0.930	52	
Carbon tetrachloride	8.66	0.50	10	0	86.6	65	135	8.69	0.346	22	
Chlorobenzene	8.85	0.50	10	0	88.5	65	135	8.8	0.567	25	

Page 6 of 6

ANALYTICAL QC SUMMARY REPORT

TestCode: TO15

South Mesa WQARF/70211-2-0064

Law Engineering 02061078

Work Order: CLIENT:

Project:

Run ID: MS0	Coahle: 9670
Prep Date:	
Units: ppbv	
TestCode: TO15	
SampType: LCSD	
Sample ID LCSD-R24682	

Sample ID 1 CSD-R24682	SampType: LCSD	TestCoc	TestCode: TO15	Units: ppbv		Prep Date:			Run ID: MS	Run ID: MS04_020629A	
Client ID: ZZZZZ	Batch ID: R24682	TestN	TestNo: TO15			Analysis Date:	6/29/2002	02	SeqNo: 267030	030	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
one afternoon of	7 92	0.50	10	0	79.2	65	135	7.19	99.6	25	
Chloroform	8.74	0.50	10	0	87.4	65	135	8.68	0.689	25	
Chloromethane	8.67	0.50	10	0	86.7	65	135	8.21	5.45	22	
circl Officerians	8.66	0.50	10	0	86.6	65	135	8.69	0.346	. 25	
cis-1,2-Dichloropropene	9.28	0.50	10	0	92.8	65	135	9.43	1.60	25	
Cyclohexane	9.12	0.50	10	0	91.2	65	135	90'6	0.660	25	
Dibromochloromethane	8.83	0.50	10	0	88.3	65	135	8.83	0	25	
Dichlorodiffuoromethane(F-12)	7.39	0.50	10	0	73.9	65	135	7.38	0.135	22	
Dichlorotetrafluoroethane(F-114)	8.6	0.50	10	0	86	65	135	8.06	6.48	22	
Ethyl Acetate	9.67	0.50	10	0	2.96	65	135	9.44	2.41	25	
Ethylhenzene	9.32	0.50	10	0	93.2	65	135	9.28	0.430	25	
Hentane	တ	0.50	10	0	06	65	135	8.89	1.23	22	
Hevachlorobutadiene	8.68	1.0	10	0	86.8	65	135	8.86	2.05	25	
	9.62	0.50	10	0	96.2	65	135	9.42	2.10	25	
Hexalle Wood	18.82	1.0	20	0	94.1	65	135	18.69	0.693	25	
Methyl tert-butyl ether	8.12	0.1	10	0	81.2	65	135	8.16	0.491	25	
Methylene chloride	8.57	0.50	10	0	85.7	65	135	8.53	0.468	25	
Metriylerie cinoride	9.31	0.50	10	0	93.1	65	135	9:36	0.536	25	
O-Aylerie	7 83	0.50	9	0	78.3	65	135	7.67	2.06	25	
Properte (Propyrene)	9.23	0.50	10	0	92.3	65	135	9.29	0.648	52	
Totrocklonethene	8.76	0.50	10	0	87.6	65	135	8.77	0.114	25	
Tetrahydrofiran	9.42	1.0	10	0	94.2	65	135	9.24	1.93	22	
Holisas	9.14	0.50	10	0	91.4	92	135	9.13	0.109	25	
tolderie	8 74	0.50	10	0	87.4	65	135	8.58	1.85	25	
trans-1,2-Dichloropropose	. 6	0.50	19	0	91.8	65	135	9.28	1.08	25	
Tans-1,3-Ucinolopiopene	8.87	0.50	10	0	88.7	65	135	8.76	1.25	22	
Trickloroff ioromethane(F-11)	62.6	0.50	10	0	97.9	65	135	9.63	1.65	25	
Tricklorofrigues of F113	8.63	0.50	10	0	86.3	65	135	8.59	0.465	25	
Visit analate	9.85	0.50	10	0	98.5	65	135	9.54	3.20	25	
Viryl chloride	8.29	0.50	10	0	82.9	65	135	7.45	10.7	52	
Surr: 4-Bromofluorobenzene	6.97	0.50	10	0	99.7	70	130	0	0		

a division of Aerotech Laboratories, Inc.

8+01-908-0

Main Lab - 1725 W. 17th Street, Tempe, AZ 85281 (480) 967-1310 FAX (480) 967-1019
[] North Phoenix - 1501 W. Knudsen, Phoenix, AZ 85027 (623) 780-4700 FAX (623) 780-2934

[] Tucson - 4455 S. Park Ave, Suite 110, Tucson, AZ 85714 (520) 807-3801 FAX (520) 807-3803

www.palabs.com or call foll-free 1-866-7PALABS (1-866-772-5227)

Customer Number:	nber:		Page	e of									
Customer:	LAW ENG		Sar	Sampler: PATOLC	K George				-1	450			
Address: 4	4 95 5 7576	1d 4	Pro	Project Name: Sor	T. 1155	. WRARE	T			a-			
City, State, Zip	7 v	· Chir	9.6	Project Number: 7	00 - 2 - (1	1790							
Contact: / IAA	CARKE			P.O. Number:		Copell:					4		
100	437	62 Sn Fax:	3678	Fax Results:	B	z							
E-Mail Address:	Ω Σ Σ	O MAGTEC		E-Mail Results:	Ę	z							
	Sample R		Turn Around Request		Ò					Analys	Analysės Requested	ested	
Temperature	, i			48 Hours									N Company
Custody Seals: Yes	용 							SI		ÇI			
Custody Seals Intact: Tes. Total # of Containers:	lact: resno		Standard 10 Working Days					-OT %		-01/			
***************************************		Subj	Subject to scheduling and availability (surcharges apply)	s apply)				0 39	1	(a /			- N
			Sample Inform	ormation				eiJ Þt-	isil Gt-I	E Oul	ف در در در در		
Lab#	Canister Se <u>rial</u> #	Model	Sample Identification	n Date	Time	Type	Final Receipt		от	24			
	59700	6.0, 0.4	•	1/2-1/02	2 0815				X	34			
B2 ()	60200	60.0.4	4		7250				X				
	2014-5	6A) 0.4			1831				X	4			
200-8	To So	6.7.6 4.0.0.4			6430	\$	/		X				
	20227	6€			0844				Z	4			
	71,900	4:0°			(CNY)	e. C			X		***		
	17900	6/10.4			7380				X				
		6, 1, 0.4							•				
		6, 1, 0.4							*			,	
		6, 1, 0.4					1. 3 ⁵				4. 1 m		
structions / Spe	Instructions / Special Requirements:										1		
		White the second se		and the second second second	Action of the Street of the St	Section of the second						A 200 CO CO.	
Date:			Samples Relinquis	quished By:				Rec	Received By:				
6/25/07	1500			The			Jane 1						
)							-1			

All services are performed subject to the Terms & Conditions on the reverse side.

a division of Aerotech Laboratories, Inc.

December 27, 2002

Jim Clarke Mactec 4634 South 36th Place Phoenix, AZ 85040

RE: South Mesa WQARF/70211-2-0064-2.55

Dear Jim Clarke:

Order No.: 02120918

Precision Analytical Laboratories received 5 samples on 12/18/2002 for the analyses presented in the following report.

This report includes the following information:

- Case Narrative.
- Analytical Report: includes test results, report limit (Limit), any applicable data qualifier (Qual), units, dilution factor (DF), and date analyzed.
- QC Summary Report.

This communication is intended only for the individual or entity to whom it is directed. It may contain information that is privileged, confidential, or otherwise exempt from disclosure under applicable law. Dissemination, distribution, or copying of this communication by anyone other than the intended recipient, or a duly designated employee or agent of such recipient, is prohibited. If you have received this communication in error, please notify us immediately and destroy this message and all attachments thereto. If you have any questions regarding these test results, please do not hesitate to call.

Sincerely,

Lucas Menendez

Project Manager

a division of Aerotech Laboratories, Inc.

Precision Analytical Laboratories

Date: 27-Dec-02

CLIENT:

Mactec

Project:

South Mesa WOARF/70211-2-0064-2.55

Lab Order:

02120918

CASE NARRATIVE

Samples were analyzed using methods outlined in references such as:

Standard Methods for the Examination of Water and Wastewater, 18th Edition, 1992, and 19th Edition, 1995.

Methods for Chemical Analysis of Water and Wastes, EPA-600/4-79-020, Revised March 1983.

Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW846, 3rd Edition.

40 CFR, Part 136, Revised 1995. Appendix A to Part 136 - Methods for Organic Chemical Analysis of Municipal and Industrial Wastewater.

NIOSH Manual of Analytical Methods, Fourth Edition, 1994.

Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air, Second Edition, 1999.

Precision Analytical Laboratories, Inc. (PAL) holds Arizona certification no. AZ0610 and PAL-Tucson holds Arizona certification no. AZ0609.

PAL participates in the AIHA Proficiency Analytical Testing (PAT) program for metals, solvents and formaldehyde.

Analytical Comments:

All method blanks and laboratory control spikes met EPA method and/or laboratory quality control objectives for the analyses included in this report.

Data Qualifiers:

Listed below are the data qualifiers used in your analytical report to explain any analytical or quality control issues. You will find them noted in your report under the column header "QUAL". Any quality control deficiencies that cannot be adequately described by these qualifiers will be addressed in the analytical comments section of this case narrative.

D2 Sample required dilution due to high concentration of target analyte.

Page 1 of 1

Corporate Address 1501 W. Knudsen Phoenix, AZ 85027 Phone: 623-780-4800 Toll Free: 800-651-4802 Fax: 623-780-7695 www.aerotechlabs.com Main Laboratory 1725 W. 17th Street Tempe, AZ 85281 Phone: 480-967-1310 Toll Free: 866-772-5227 Fax: 480-967-1019 www.palabs.com

Precision Analytical Laboratories

Date: 27-Dec-02

CLIENT:

Mactec

Client Sample ID: 1

Lab Order:

02120918

Tag Number:

Project:

South Mesa WQARF/70211-2-0064-2.55

Collection Date: 12/17/2002 9:11:00 AM

Lab ID:

02120918-01A

Matrix: AIR

Analyses	Result	Limit	Qual	Units	DF	Date Analyzed
VOLATILE ORGANICS IN AIR	т.	O15				Analyst: JG
1,1,1-Trichloroethane	< 0.50	0.50		ppbv	1	12/19/2002
1,1,2,2-Tetrachloroethane	< 0.50	0.50		ppbv	1	12/19/2002
1,1,2-Trichloroethane	< 0.50	0.50		ppbv	1	12/19/2002
1,1-Dichloroethane	< 0.50	0.50		ppbv	1	12/19/2002
1,1-Dichloroethene	< 0.50	0.50		ppbv	1	12/19/2002
1,2,4-Trichlorobenzene	< 1.0	1.0		ppbv	1	12/19/2002
1,2,4-Trimethylbenzene	< 0.50	0.50		ppbv	1	12/19/2002
1,2-Dibromoethane	< 0.50	0.50		ppbv	1	12/19/2002
1,2-Dichlorobenzene	< 0.50	0.50		ppbv	1	12/19/2002
1,2-Dichloroethane	< 0.50	0.50		ppbv	1 1	12/19/2002
1,2-Dichloropropane	< 0.50	0.50		ppbv	1	12/19/2002
1,3,5-Trimethylbenzene	< 0.50	0.50		ppbv	1	12/19/2002
1,3-Butadiene	< 0.50	0.50		ppbv	1	12/19/2002
1,3-Dichlorobenzene	< 0.50	0.50		ppbv	1	12/19/2002
1,4-Dichlorobenzene	< 0.50	0.50		ppbv	1	12/19/2002
2,2,4-Trimethylpentane	< 0.50	0.50		ppbv	1	12/19/2002
2-Butanone (MEK)	1.3	1.0		ppbv	1	12/19/2002
2-Hexanone	< 1.0	1.0		ppbv	1	12/19/2002
2-Propanol	< 1.0	1.0		ppbv	1	12/19/2002
4-Ethyltoluene	< 0.50	0.50		ppbv	1	12/19/2002
4-Methyl-2-pentanone	< 1.0	1.0		ppbv	1	12/19/2002
Acetone	18	5.0		ppbv	1	12/19/2002
Allyl chloride	< 0.50	0.50		ppbv	1	12/19/2002
Benzene	< 0.50	0.50		ppbv	1	12/19/2002
Benzyl chloride	< 2.0	2.0		ppbv	. 1	12/19/2002
Bromodichloromethane	< 0.50	0.50		ppbv	1	12/19/2002
Bromoethene(Vinyl Bromide)	< 0.50	0.50		ppbv	1	12/19/2002
Bromoform	< 0.50	0.50		ppbv	1	12/19/2002
Bromomethane	< 0.50	0.50		ppbv	1	12/19/2002
Carbon disulfide	< 0.50	0.50		ppbv	1 ,	12/19/2002
Carbon tetrachloride	< 0.50	0.50		ppbv	1	12/19/2002
Chlorobenzene	< 0.50	0.50		ppbv	1	12/19/2002
Chloroethane	< 0.50	0.50		ppbv	1	12/19/2002
Chloroform	< 0.50	0.50		ppbv	1	12/19/2002
Chloromethane	0.52	0.50		ppbv	1	12/19/2002
cis-1,2-Dichloroethene	< 0.50	0.50		ppbv	1 1	12/19/2002
cis-1,3-Dichloropropene	< 0.50	0.50		ppbv	1	12/19/2002
Cyclohexane	< 0.50	0.50		ppbv	1	12/19/2002
Dibromochloromethane	< 0.50	0.50		ppbv	1	12/19/2002
Dichlorodifluoromethane(F-12)	0.62	0.50		ppbv	1	12/19/2002

Qualifiers:

ND - Not Detected at the Reporting Limit

S - Spike Recovery outside accepted recovery limits

J - Analyte detected below quantitation limits

R - RPD outside accepted recovery limits

B - Analyte detected in the associated Method Blank

E - Value above quantitation range

Page 1 of 10

^{* -} Value exceeds Maximum Contaminant Level

Corporate Address 1501 W. Knudsen Phoenix, AZ 85027 Phone: 623-780-4800 Toll Free: 800-651-4802 Fax: 623-780-7695 www.aerotechlabs.com Main Laboratory 1725 W. 17th Street Tempe, AZ 85281 Phone: 480-967-1310 Toll Free: 866-772-5227 Fax: 480-967-1019 www.palabs.com Tucson Facility 4455 S. Park Ave. Ste. 110 Tucson, AZ 85714 Phone: 520-807-3801 Fax: 520-807-3803

Precision Analytical Laboratories

CLIENT:

Mactec

Lab Order:

02120918

Project:

South Mesa WQARF/70211-2-0064-2.55

Lab ID:

02120918-01A

Date: 27-Dec-02

Client Sample ID: 1

Tag Number:

Collection Date: 12/17/2002 9:11:00 AM

Matrix: AIR

Analyses	Result	Limit	Qual Units	DF	Date Analyzed
OLATILE ORGANICS IN AIR		TO15			Analyst: JG
Dichlorotetrafluoroethane(F-114)	< 0.50	0.50	ppbv	1	12/19/2002
Ethyl Acetate	< 0.50	0.50	ppbv	1	12/19/2002
Ethylbenzene	< 0.50	0.50	ppbv	1	12/19/2002
Heptane	< 0.50	0.50	ppbv	1	12/19/2002
Hexachlorobutadiene	< 1.0	1.0	ppbv	1	12/19/2002
Hexane	< 0.50	0.50	ppbv	1	12/19/2002
m&p-Xylene	< 1.0	1.0	ppbv	1.	12/19/2002
Methyl tert-butyl ether	< 1.0	1.0	ppbv	.1	12/19/2002
Methylene chloride	0.58	0.50	ppbv	1	12/19/2002
o-Xylene	< 0.50	0.50	ppbv	1	12/19/2002
Propene (Propylene)	< 0.50	0.50	ppbv	1	12/19/2002
Styrene	< 0.50	0.50	ppbv	1	12/19/2002
Tetrachloroethene	13	0.50	ppbv	1	12/19/2002
Tetrahydrofuran	< 1.0	1.0	ppbv	1	12/19/2002
Toluene	1.1	0.50	ppbv	1	12/19/2002
trans-1,2-Dichloroethene	< 0.50	0.50	ppbv	1	12/19/2002
trans-1,3-Dichloropropene	< 0.50	0.50	ppbv	1	12/19/2002
Trichloroethene	1.2	0.50	ppbv	1	12/19/2002
Trichlorofluoromethane(F-11)	< 0.50	0.50	ppbv	1	12/19/2002
Trichlorotrifluoroethane(F-113)	< 0.50	0.50	ppbv	1	12/19/2002
Vinyl acetate	< 0.50	0.50	ppbv	1	12/19/2002
Vinyl chloride	< 0.50	0.50	ppbv	1	12/19/2002
Surr: 4-Bromofluorobenzene	97.4	70-130	%REC	1	12/19/2002

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

* - Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Page 2 of 10

■ Corporate Address 1501 W. Knudsen Phoenix, AZ 85027 Phone: 623-780-4800 Toll Free: 800-651-4802 Fax: 623-780-7695 www.aerotechlabs.com ■ Main Laboratory 1725 W. 17th Street Tempe, AZ 85281 Phone: 480-967-1310 Toll Free: 866-772-5227 Fax: 480-967-1019 www.palabs.com

Precision Analytical Laboratories

Mactec

02120918

Client Sample ID: 2

Tag Number:

Project:

CLIENT:

Lab Order:

South Mesa WQARF/70211-2-0064-2.55

Collection Date: 12/17/2002 9:17:00 AM

Date: 27-Dec-02

Lab ID:

02120918-02A

Matrix: AIR

Analyses	Result	Limit Qu	ual Units	DF	Date Analyzed
VOLATILE ORGANICS IN AIR	T	O15	erika		Analyst: JG
1,1,1-Trichloroethane	< 0.50	0.50	ppbv	1	12/19/2002
1,1,2,2-Tetrachloroethane	< 0.50	0.50	ppbv	1	12/19/2002
1,1,2-Trichloroethane	< 0.50	0.50	ppbv	1	12/19/2002
1,1-Dichloroethane	< 0.50	0.50	ppbv	1	12/19/2002
1,1-Dichloroethene	< 0.50	0.50	ppbv	1	12/19/2002
1,2,4-Trichlorobenzene	< 1.0	1.0	ppbv	. 1	12/19/2002
1,2,4-Trimethylbenzene	< 0.50	0.50	ppbv	1	12/19/2002
1,2-Dibromoethane	< 0.50	0.50	ppbv	1	12/19/2002
1,2-Dichlorobenzene	< 0.50	0.50	ppbv	1	12/19/2002
1,2-Dichloroethane	< 0.50	0.50	ppbv	1	12/19/2002
1,2-Dichloropropane	< 0.50	0.50	ppbv	1	12/19/2002
1,3,5-Trimethylbenzene	< 0.50	0.50	ppbv	1	12/19/2002
1,3-Butadiene	< 0.50	0.50	ppbv	1	12/19/2002
1,3-Dichlorobenzene	< 0.50	0.50	ppbv	1	12/19/2002
1,4-Dichlorobenzene	< 0.50	0.50	ppbv	1	12/19/2002
2,2,4-Trimethylpentane	< 0.50	0.50	ppbv	1	12/19/2002
2-Butanone (MEK)	1.5	1.0	ppbv	1	12/19/2002
2-Hexanone	< 1.0	1.0	ppbv	1	12/19/2002
2-Propanol	2.4	1.0	ppbv	1	12/19/2002
4-Ethyltoluene	< 0.50	0.50	ppbv	1	12/19/2002
4-Methyl-2-pentanone	< 1.0	1.0	ppbv	1	12/19/2002
Acetone	19	5.0	ppbv	1	12/19/2002
Allyl chloride	< 0.50	0.50	ppbv	1	12/19/2002
Benzene	0.57	0.50	ppbv	1	12/19/2002
Benzyl chloride	< 2.0	2.0	ppbv	1	12/19/2002
Bromodichloromethane	< 0.50	0.50	ppbv	1	12/19/2002
Bromoethene(Vinyl Bromide)	< 0.50	0.50	ppbv	1	12/19/2002
Bromoform	< 0.50	0.50	ppbv	1	12/19/2002
Bromomethane	< 0.50	0.50	ppbv	1	12/19/2002
Carbon disulfide	0.51	0.50	ppbv	1	12/19/2002
Carbon tetrachloride	< 0.50	0.50	ppbv	1	12/19/2002
Chlorobenzene	< 0.50	0.50	ppbv	1	12/19/2002
Chloroethane	< 0.50	0.50	ppbv	1	12/19/2002
Chloroform	< 0.50	0.50	ppbv	1	12/19/2002
Chloromethane	0.60	0.50	ppbv	1	12/19/2002
cis-1,2-Dichloroethene	< 0.50	0.50	ppbv	1	12/19/2002
cis-1,3-Dichloropropene	< 0.50	0.50	ppbv	1	12/19/2002
Cyclohexane	< 0.50	0.50	ppbv	1	12/19/2002
Dibromochloromethane	< 0.50	0.50	ppbv	1	12/19/2002
Dichlorodifluoromethane(F-12)	0.64	0.50	ppbv	1	12/19/2002

Qualifiers:

ND - Not Detected at the Reporting Limit

S - Spike Recovery outside accepted recovery limits

J - Analyte detected below quantitation limits

R - RPD outside accepted recovery limits

B - Analyte detected in the associated Method Blank

E - Value above quantitation range

Page 3 of 10

^{* -} Value exceeds Maximum Contaminant Level

[■] Corporate Address 1501 W. Knudsen Phoenix, AZ 85027 Phone: 623-780-4800 Toll Free: 800-651-4802 Fax: 623-780-7695 www.aerotechlabs.com ■ Main Laboratory 1725 W. 17th Street Tempe, AZ 85281 Phone: 480-967-1310 Toll Free: 866-772-5227 Fax: 480-967-1019 www.palabs.com

[■] Tucson Facility 4455 S. Park Ave. Ste. 110 Tucson, AZ 85714 Phone: 520-807-3801 Fax: 520-807-3803

Precision Analytical Laboratories

CLIENT:

Mactec

Lab Order:

02120918

Project:

South Mesa WQARF/70211-2-0064-2.55

Lab ID:

02120918-02A

Date: 27-Dec-02

Client Sample ID: 2

Tag Number:

Collection Date: 12/17/2002 9:17:00 AM

Matrix: AIR

Analyses	Result	Limit	Qual U	nits	DF	Date Analyzed
VOLATILE ORGANICS IN AIR	Т	O15	de.			Analyst: JG
Dichlorotetrafluoroethane(F-114)	< 0.50	0.50	pį	pbv	1	12/19/2002
Ethyl Acetate	0.57	0.50	pj	pbv	1	12/19/2002
Ethylbenzene	1.4	0.50	PI	pbv	1	12/19/2002
Heptane	< 0.50	0.50	pı	pbv	1	12/19/2002
Hexachlorobutadiene	< 1.0	1.0	p _l	pbv	1	12/19/2002
Hexane	0.65	0.50	p _l	pbv	1	12/19/2002
m&p-Xylene	5.6	1.0	p	obv	1	12/19/2002
Methyl tert-butyl ether	< 1.0	1.0	p	obv	1	12/19/2002
Methylene chloride	< 0.50	0.50	p	obv	1	12/19/2002
o-Xylene	2.0	0.50		obv	1	12/19/2002
Propene (Propylene)	< 0.50	0.50		obv	1	12/19/2002
Styrene	< 0.50	0.50		obv	1	12/19/2002
Tetrachloroethene	180	5.0	• • •	obv	10	12/19/2002
Tetrahydrofuran	< 1.0	1.0	p	obv	1	12/19/2002
Toluene	2.3	0.50	p	obv	1	12/19/2002
trans-1,2-Dichloroethene	< 0.50	0.50	pr	obv	1	12/19/2002
trans-1,3-Dichloropropene	< 0.50	0.50		obv	1	12/19/2002
Trichloroethene	4.0	0.50		obv	1	12/19/2002
Trichlorofluoromethane(F-11)	< 0.50	0.50	pr	obv	1	12/19/2002
Trichlorotrifluoroethane(F-113)	< 0.50	0.50		obv	1	12/19/2002
Vinyl acetate	< 0.50	0.50		obv	1	12/19/2002
Vinyl chloride	< 0.50	0.50	• •	obv	1	12/19/2002
Surr: 4-Bromofluorobenzene	99.1	70-130		REC	1	12/19/2002

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

* - Value exceeds Maximum Contaminant Level

Page 4 of 10

■ Corporate Address 1501 W. Knudsen Phoenix, AZ 85027 Phone: 623-780-4800 Toll Free: 800-651-4802 Fax: 623-780-7695 www.aerotechlabs.com ■ Main Laboratory 1725 W. 17th Street Tempe, AZ 85281 Phone: 480-967-1310 Toll Free: 866-772-5227 Fax: 480-967-1019 www.palabs.com

Precision Analytical Laboratories

CLIENT: Lab Order: Mactec

02120918

Client Sample ID: 3

Tag Number:

Project:

South Mesa WQARF/70211-2-0064-2.55

Collection Date: 12/17/2002 9:19:00 AM

Date: 27-Dec-02

Lab ID:

02120918-03A

Matrix: AIR

Analyses	Result	Limit Qu	ial Units	DF	Date Analyzed	
VOLATILE ORGANICS IN AIR	Т	O15			Analyst: J (
1,1,1-Trichloroethane	< 0.50	0.50	ppbv	1	12/19/2002	
1,1,2,2-Tetrachloroethane	< 0.50	0.50	ppbv	1	12/19/2002	
1,1,2-Trichloroethane	< 0.50	0.50	ppbv	1	12/19/2002	
1,1-Dichloroethane	< 0.50	0.50	ppbv	1	12/19/2002	
1,1-Dichloroethene	< 0.50	0.50	ppbv	1	12/19/2002	
1,2,4-Trichlorobenzene	< 1.0	1.0	ppbv	1	12/19/2002	
1,2,4-Trimethylbenzene	0.64	0.50	ppbv	1	12/19/2002	
1,2-Dibromoethane	< 0.50	0.50	ppbv	1	12/19/2002	
1,2-Dichlorobenzene	< 0.50	0.50	ppbv	1	12/19/2002	
1,2-Dichloroethane	< 0.50	0.50	ppbv	1	12/19/2002	
1,2-Dichloropropane	< 0.50	0.50	ppbv	1	12/19/2002	
1,3,5-Trimethylbenzene	< 0.50	0.50	ppbv	1	12/19/2002	
1,3-Butadiene	< 0.50	0.50	ppbv	1	12/19/2002	
1,3-Dichlorobenzene	< 0.50	0.50	ppbv	1	12/19/2002	
1,4-Dichlorobenzene	< 0.50	0.50	ppbv	1	12/19/2002	
2,2,4-Trimethylpentane	1.0	0.50	ppbv	1	12/19/2002	
2-Butanone (MEK)	1.0	1.0	ppbv	1	12/19/2002	
2-Hexanone	< 1.0	1.0	ppbv	1	12/19/2002	
2-Propanol	3.1	1.0	ppbv	1	12/19/2002	
4-Ethyltoluene	< 0.50	0.50	ppbv	1	12/19/2002	
4-Methyl-2-pentanone	< 1.0	1.0	ppbv	1	12/19/2002	
Acetone	13	5.0	ppbv	1	12/19/2002	
Allyl chloride	< 0.50	0.50	ppbv	1	12/19/2002	
Benzene	1.1	0.50	ppbv	1	12/19/2002	
Benzyl chloride	< 2.0	2.0	ppbv	1	12/19/2002	
Bromodichloromethane	< 0.50	0.50	ppbv	1	12/19/2002	
Bromoethene(Vinyl Bromide)	< 0.50	0.50	ppbv	1	12/19/2002	
Bromoform	< 0.50	0.50	ppbv	1	12/19/2002	
Bromomethane	< 0.50	0.50	ppbv	1	12/19/2002	
Carbon disulfide	1.5	0.50	ppbv	1	12/19/2002	
Carbon tetrachloride	< 0.50	0.50	ppbv	1	12/19/2002	
Chlorobenzene	< 0.50	0.50	ppbv	1	12/19/2002	
Chloroethane	< 0.50	0.50	ppbv	1	12/19/2002	
Chloroform	< 0.50	0.50	ppbv	1	12/19/2002	
Chloromethane	0.54	0.50	ppbv	1	12/19/2002	
cis-1,2-Dichloroethene	< 0.50	0.50	ppbv	1	12/19/2002	
cis-1,3-Dichloropropene	< 0.50	0.50	ppbv	1	12/19/2002	
Cyclohexane	< 0.50	0.50	ppbv	1	12/19/2002	
Dibromochloromethane	< 0.50	0.50	ppbv	1	12/19/2002	
Dichlorodifluoromethane(F-12)	0.62	0.50	ppbv	1	12/19/2002	

Qualifiers:

ND - Not Detected at the Reporting Limit

S - Spike Recovery outside accepted recovery limits

J - Analyte detected below quantitation limits

R - RPD outside accepted recovery limits

B - Analyte detected in the associated Method Blank

E - Value above quantitation range

* - Value exceeds Maximum Contaminant Level

Page 5 of 10

Corporate Address 1501 W. Knudsen Phoenix, AZ 85027 Phone: 623-780-4800 Toll Free: 800-651-4802 Fax: 623-780-7695 www.aerotechlabs.com Main Laboratory 1725 W. 17th Street Tempe, AZ 85281 Phone: 480-967-1310 Toll Free: 866-772-5227 Fax: 480-967-1019 www.palabs.com Tucson Facility 4455 S. Park Ave. Ste. 110 Tucson, AZ 85714 Phone: 520-807-3801 Fax: 520-807-3803

Precision Analytical Laboratories

CLIENT: Lab Order: Mactec

02120918

Project:

South Mesa WQARF/70211-2-0064-2.55

Lab ID:

02120918-03A

Date: 27-Dec-02

Client Sample ID: 3

Tag Number:

Collection Date: 12/17/2002 9:19:00 AM

Matrix: AIR

Analyses	Result	Limit	Qual	Units	DF	Date Analyzed
VOLATILE ORGANICS IN AIR	T	O15	7.5.1			Analyst: JG
Dichlorotetrafluoroethane(F-114)	< 0.50	0.50		ppbv	1	12/19/2002
Ethyl Acetate	< 0.50	0.50		ppbv	1	12/19/2002
Ethylbenzene	0.65	0.50		ppbv	1 -	12/19/2002
Heptane	1.2	0.50		ppbv	1	12/19/2002
Hexachlorobutadiene	< 1.0	1.0		ppbv	1	12/19/2002
Hexane	0.82	0.50		ppbv	1	12/19/2002
m&p-Xylene	2.4	1.0		ppbv	1_	12/19/2002
Methyl tert-butyl ether	< 1.0	1.0		ppbv	1	12/19/2002
Methylene chloride	< 0.50	0.50		ppbv	1	12/19/2002
o-Xylene	0.87	0.50		ppbv	1	12/19/2002
Propene (Propylene)	< 0.50	0.50		ppbv	1	12/19/2002
Styrene	< 0.50	0.50		ppbv	1	12/19/2002
Tetrachloroethene	17	0.50		ppbv	1	12/19/2002
Tetrahydrofuran	< 1.0	1.0		ppbv	1	12/19/2002
Toluene	3.2	0.50		ppbv	1	12/19/2002
trans-1,2-Dichloroethene	< 0.50	0.50		ppbv	1	12/19/2002
trans-1,3-Dichloropropene	< 0.50	0.50		ppbv	1	12/19/2002
Trichloroethene	0.78	0.50		ppbv	1	12/19/2002
Trichlorofluoromethane(F-11)	< 0.50	0.50		ppbv	1	12/19/2002
Trichlorotrifluoroethane(F-113)	< 0.50	0.50		ppbv	1	12/19/2002
Vinyl acetate	< 0.50	0.50		ppbv	1	12/19/2002
Vinyl chloride	< 0.50	0.50		ppbv	1	12/19/2002
Surr: 4-Bromofluorobenzene	98.0	70-130		%REC	1	12/19/2002

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

* - Value exceeds Maximum Contaminant Level

B - Analyte detected in the associated Method Blank

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Page 6 of 10

Corporate Address 1501 W. Knudsen Phoenix, AZ 85027 Phone: 623-780-4800 Toll Free: 800-651-4802 Fax: 623-780-7695 www.aerotechlabs.com ■ Main Laboratory 1725 W. 17th Street Tempe, AZ 85281 Phone: 480-967-1310 Toll Free: 866-772-5227 Fax: 480-967-1019 www.palabs.com

Date: 27-Dec-02

Precision Analytical Laboratories

Mactec

Client Sample ID: 6

Lab Order:

CLIENT:

02120918

Tag Number:

Project:

South Mesa WQARF/70211-2-0064-2.55

Collection Date: 12/17/2002 9:05:00 AM

Lab ID:

02120918-04A

Matrix: AIR

Analyses	Result	Limit	Qual	Units	DF	Date Analyzed
VOLATILE ORGANICS IN AIR	Т	O15				Analyst: JG
1,1,1-Trichloroethane	< 0.50	0.50		ppbv	1	12/19/2002
1,1,2,2-Tetrachloroethane	< 0.50	0.50		ppbv	1	12/19/2002
1,1,2-Trichloroethane	< 0.50	0.50		ppbv	1	12/19/2002
1,1-Dichloroethane	< 0.50	0.50		ppbv	1	12/19/2002
1,1-Dichloroethene	< 0.50	0.50		ppbv	1	12/19/2002
1,2,4-Trichlorobenzene	< 1.0	1.0		ppbv	1	12/19/2002
1,2,4-Trimethylbenzene	< 0.50	0.50		ppbv	1	12/19/2002
1,2-Dibromoethane	< 0.50	0.50		ppbv	1	12/19/2002
1,2-Dichlorobenzene	< 0.50	0.50		ppbv	1	12/19/2002
1,2-Dichloroethane	< 0.50	0.50		ppbv	1	12/19/2002
1,2-Dichloropropane	< 0.50	0.50		ppbv	1	12/19/2002
1,3,5-Trimethylbenzene	< 0.50	0.50		ppbv	1	12/19/2002
1,3-Butadiene	< 0.50	0.50		ppbv	1	12/19/2002
1,3-Dichlorobenzene	< 0.50	0.50		ppbv	1	12/19/2002
1,4-Dichlorobenzene	< 0.50	0.50		ppbv	1	12/19/2002
2,2,4-Trimethylpentane	< 0.50	0.50		ppbv	1	12/19/2002
2-Butanone (MEK)	< 1.0	1.0		ppbv	1	12/19/2002
2-Hexanone	< 1.0	1.0		ppbv	1	12/19/2002
2-Propanol	< 1.0	1.0		ppbv	1	12/19/2002
4-Ethyltoluene	< 0.50	0.50		ppbv	1	12/19/2002
4-Methyl-2-pentanone	< 1.0	1.0		ppbv	1	12/19/2002
Acetone	26	5.0		ppbv	1	12/19/2002
Allyl chloride	< 0.50	0.50		ppbv	1	12/19/2002
Benzene	< 0.50	0.50		ppbv	1	12/19/2002
Benzyl chloride	< 2.0	2.0		ppbv	1	12/19/2002
Bromodichloromethane	< 0.50	0.50		ppbv	1	12/19/2002
Bromoethene(Vinyl Bromide)	< 0.50	0.50		ppbv	1	12/19/2002
Bromoform	2.4	0.50		ppbv	1	12/19/2002
Bromomethane	< 0.50	0.50		ppbv	1	12/19/2002
Carbon disulfide	< 0.50	0.50		ppbv	1	12/19/2002
Carbon tetrachloride	< 0.50	0.50		ppbv	1	12/19/2002
Chlorobenzene	< 0.50	0.50		ppbv	1	12/19/2002
Chloroethane	< 0.50	0.50		ppbv	1	12/19/2002
Chloroform	< 0.50	0.50		ppbv	1	12/19/2002
Chloromethane	0.50	0.50		ppbv	1	12/19/2002
cis-1,2-Dichloroethene	< 0.50	0.50		ppbv	1	12/19/2002
cis-1,3-Dichloropropene	< 0.50	0.50		ppbv	1	12/19/2002
Cyclohexane	< 0.50	0.50		ppbv	1	12/19/2002
Dibromochloromethane	< 0.50	0.50		ppbv	1	12/19/2002
Dichlorodifluoromethane(F-12)	0.62	0.50		ppbv	1	12/19/2002

Qualifiers:

ND - Not Detected at the Reporting Limit

S - Spike Recovery outside accepted recovery limits

J - Analyte detected below quantitation limits

R - RPD outside accepted recovery limits

B - Analyte detected in the associated Method Blank

E - Value above quantitation range

Page 7 of 10

^{* -} Value exceeds Maximum Contaminant Level

Corporate Address 1501 W. Knudsen Phoenix, AZ 85027 Phone: 623-780-4800 Toll Free: 800-651-4802 Fax: 623-780-7695 www.aerotechlabs.com ■ Main Laboratory 1725 W. 17th Street Tempe, AZ 85281 Phone: 480-967-1310 Toll Free: 866-772-5227 Fax: 480-967-1019 www.palabs.com

[■] Tucson Facility 4455 S. Park Ave. Ste. 110 Tucson, AZ 85714 Phone: 520-807-3801 Fax: 520-807-3803

Precision Analytical Laboratories

Mactec

Lab Order: 02120918

Project: South Mesa WQARF/70211-2-0064-2.55

Lab ID:

CLIENT:

02120918-04A

Date: 27-Dec-02

Client Sample ID: 6

Tag Number:

Collection Date: 12/17/2002 9:05:00 AM

Matrix: AIR

Analyses	Result	Limit	Qual Units	DF	Date Analyzed
VOLATILE ORGANICS IN AIR		TO15	e projekt	7 :	Analyst: JG
Dichlorotetrafluoroethane(F-114)	< 0.50	0.50	ppbv	1	12/19/2002
Ethyl Acetate	< 0.50	0.50	ppbv	1	12/19/2002
Ethylbenzene	< 0.50	0.50	ppbv	1	12/19/2002
Heptane	< 0.50	0.50	ppbv	1	12/19/2002
Hexachlorobutadiene	< 1.0	1.0	ppbv	1	12/19/2002
Hexane	< 0.50	0.50	ppbv	1	12/19/2002
m&p-Xylene	< 1.0	1.0	ppbv	1	12/19/2002
Methyl tert-butyl ether	< 1.0	1.0	ppbv	1	12/19/2002
Methylene chloride	< 0.50	0.50	ppbv	1	12/19/2002
o-Xylene	< 0.50	0.50	ppbv	1	12/19/2002
Propene (Propylene)	< 0.50	0.50	ppbv	1	12/19/2002
Styrene	< 0.50	0.50	ppbv	1	12/19/2002
Tetrachloroethene	7.0	0.50	ppbv	1	12/19/2002
Tetrahydrofuran	< 1.0	1.0	ppbv	1	12/19/2002
Toluene	1.3	0.50	ppbv	1	12/19/2002
trans-1,2-Dichloroethene	< 0.50	0.50	ppbv	1	12/19/2002
trans-1,3-Dichloropropene	< 0.50	0.50	ppbv	1	12/19/2002
Trichloroethene	0.61	0.50	ppbv	1	12/19/2002
Trichlorofluoromethane(F-11)	< 0.50	0.50	ppbv	1	12/19/2002
Trichlorotrifluoroethane(F-113)	< 0.50	0.50	ppbv	1	12/19/2002
Vinyl acetate	< 0.50	0.50	ppbv	1	12/19/2002
Vinyl chloride	< 0.50	0.50	ppbv	1	12/19/2002
Surr: 4-Bromofluorobenzene	97.2	70-130	%REC	1	12/19/2002

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

* - Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Page 8 of 10

Corporate Address 1501 W. Knudsen Phoenix, AZ 85027 Phone: 623-780-4800 Toll Free: 800-651-4802 Fax: 623-780-7695 www.aerotechlabs.com ■ Main Laboratory 1725 W. 17th Street Tempe, AZ 85281 Phone: 480-967-1310 Toll Free: 866-772-5227 Fax: 480-967-1019 www.palabs.com

Date: 27-Dec-02

Precision Analytical Laboratories

Mactec

Client Sample ID: 7

CLIENT: Lab Order:

02120918

Tag Number:

Project:

South Mesa WQARF/70211-2-0064-2.55

Collection Date: 12/17/2002 8:59:00 AM

Lab ID:

02120918-05A

Matrix: AIR

Analyses	Result	Limit Q	ual Units	DF	Date Analyzed
OLATILE ORGANICS IN AIR	Т	O15		*	Analyst: JG
1,1,1-Trichloroethane	< 0.50	0.50	ppbv	1	12/19/2002
1,1,2,2-Tetrachloroethane	< 0.50	0.50	ppbv	1	12/19/2002
1,1,2-Trichloroethane	< 0.50	0.50	ppbv	1	12/19/2002
1,1-Dichloroethane	< 0.50	0.50	ppbv	1	12/19/2002
1,1-Dichloroethene	< 0.50	0.50	ppbv	1	12/19/2002
1,2,4-Trichlorobenzene	< 1.0	1.0	ppbv	1	12/19/2002
1,2,4-Trimethylbenzene	< 0.50	0.50	ppbv	1	12/19/2002
1,2-Dibromoethane	< 0.50	0.50	ppbv	1	12/19/2002
1,2-Dichlorobenzene	< 0.50	0.50	ppbv	1	12/19/2002
1,2-Dichloroethane	< 0.50	0.50	ppbv	1	12/19/2002
1,2-Dichloropropane	< 0.50	0.50	ppbv	1	12/19/2002
1,3,5-Trimethylbenzene	< 0.50	0.50	ppbv	1	12/19/2002
1,3-Butadiene	< 0.50	0.50	ppbv	1	12/19/2002
1,3-Dichlorobenzene	< 0.50	0.50	ppbv	1	12/19/2002
1,4-Dichlorobenzene	< 0.50	0.50	ppbv	1	12/19/2002
2,2,4-Trimethylpentane	< 0.50	0.50	ppbv	1	12/19/2002
2-Butanone (MEK)	< 1.0	1.0	ppbv	1	12/19/2002
2-Hexanone	< 1.0	1.0	ppbv	1	12/19/2002
2-Propanol	< 1.0	1.0	ppbv	1	12/19/2002
4-Ethyltoluene	< 0.50	0.50	ppbv	1	12/19/2002
4-Methyl-2-pentanone	< 1.0	1.0	ppbv	1	12/19/2002
Acetone	< 5.0	5.0	ppbv	1	12/19/2002
Allyl chloride	< 0.50	0.50	ppbv	1	12/19/2002
Benzene	< 0.50	0.50	ppbv	1	12/19/2002
Benzyl chloride	< 2.0	2.0	ppbv	1	12/19/2002
Bromodichloromethane	< 0.50	0.50	ppbv	1	12/19/2002
Bromoethene(Vinyl Bromide)	< 0.50	0.50	ppbv	1	12/19/2002
Bromoform	2.6	0.50	ppbv	1	12/19/2002
Bromomethane	< 0.50	0.50	ppbv	1	12/19/2002
Carbon disulfide	< 0.50	0.50	ppbv	1	12/19/2002
Carbon tetrachloride	< 0.50	0.50	ppbv	1	12/19/2002
Chlorobenzene	< 0.50	0.50	ppbv	1	12/19/2002
Chloroethane	< 0.50	0.50	ppbv	1	12/19/2002
Chloroform	< 0.50	0.50	ppbv	1	12/19/2002
Chloromethane	0.52	0.50	ppbv	1	12/19/2002
cis-1,2-Dichloroethene	< 0.50	0.50	ppbv	1	12/19/2002
cis-1,3-Dichloropropene	< 0.50	0.50	ppbv	1	12/19/2002
Cyclohexane	< 0.50	0.50	ppbv	1	12/19/2002
Dibromochloromethane	< 0.50	0.50	ppbv	- 1	12/19/2002
Dichlorodifluoromethane(F-12)	0.65	0.50	ppbv	1	12/19/2002

Qualifiers:

ND - Not Detected at the Reporting Limit

S - Spike Recovery outside accepted recovery limits

J - Analyte detected below quantitation limits

R - RPD outside accepted recovery limits

B - Analyte detected in the associated Method Blank

E - Value above quantitation range

^{* -} Value exceeds Maximum Contaminant Level

Page 9 of 10

[■] Corporate Address 1501 W. Knudsen Phoenix, AZ 85027 Phone: 623-780-4800 Toll Free: 800-651-4802 Fax: 623-780-7695 www.aerotechlabs.com ■ Main Laboratory 1725 W. 17th Street Tempe, AZ 85281 Phone: 480-967-1310 Toll Free: 866-772-5227 Fax: 480-967-1019 www.palabs.com

[■] Tucson Facility 4455 S. Park Ave. Ste. 110 Tucson, AZ 85714 Phone: 520-807-3801 Fax: 520-807-3803

Precision Analytical Laboratories

CLIENT:

Mactec

Lab Order:

02120918

Project:

South Mesa WQARF/70211-2-0064-2.55

Lab ID:

02120918-05A

Date: 27-Dec-02

Client Sample ID: 7

Tag Number:

Collection Date: 12/17/2002 8:59:00 AM

Matrix: AIR

Analyses	Result	Limit Q	ual Units	DF	Date Analyzed
VOLATILE ORGANICS IN AIR	T	O15			Analyst: JG
Dichlorotetrafluoroethane(F-114)	< 0.50	0.50	ppbv	1	12/19/2002
Ethyl Acetate	< 0.50	0.50	ppbv	1	12/19/2002
Ethylbenzene	< 0.50	0.50	ppbv	1	12/19/2002
Heptane	< 0.50	0.50	ppbv	1	12/19/2002
Hexachlorobutadiene	< 1.0	1.0	ppbv	1	12/19/2002
Hexane	< 0.50	0.50	ppbv	1	12/19/2002
m&p-Xylene	< 1.0	1.0	ppbv	1	12/19/2002
Methyl tert-butyl ether	< 1.0	1.0	ppbv	1	12/19/2002
Methylene chloride	< 0.50	0.50	ppbv	1	12/19/2002
o-Xylene	< 0.50	0.50	ppbv	1	12/19/2002
Propene (Propylene)	< 0.50	0.50	ppbv	1	12/19/2002
Styrene	< 0.50	0.50	ppbv	1	12/19/2002
Tetrachloroethene	< 0.50	0.50	ppbv	1	12/19/2002
Tetrahydrofuran	< 1.0	1.0	ppbv	1	12/19/2002
Toluene	0.86	0.50	ppbv	1	12/19/2002
trans-1,2-Dichloroethene	< 0.50	0.50	ppbv	1	12/19/2002
trans-1,3-Dichloropropene	< 0.50	0.50	ppbv	1	12/19/2002
Trichloroethene	0.67	0.50	ppbv	1	12/19/2002
Trichlorofluoromethane(F-11)	< 0.50	0.50	ppbv	1	12/19/2002
Trichlorotrifluoroethane(F-113)	< 0.50	0.50	ppbv	: 1	12/19/2002
Vinyl acetate	< 0.50	0.50	ppbv	1	12/19/2002
Vinyl chloride	< 0.50	0.50	ppbv	. 1	12/19/2002
Surr: 4-Bromofluorobenzene	97.6	70-130	%REC	1	12/19/2002

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits B - Analyte detected in the associated Method Blank

* - Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Page 10 of 10

■ Corporate Address 1501 W. Knudsen Phoenix, AZ 85027 Phone: 623-780-4800 Toll Free: 800-651-4802 Fax: 623-780-7695 www.aerotechlabs.com Main Laboratory 1725 W. 17th Street Tempe, AZ 85281 Phone: 480-967-1310 Toll Free: 866-772-5227 Fax: 480-967-1019 www.palabs.com

Date: 27-Dec-02

CLIENT:

02120918 Work Order: South Mesa WQARF/70211-2-0064-2.55 Project:

ANALYTICAL QC SUMMARY REPORT

TestCode: TO15

Sample ID MB-R30598	SampType: MBLK	TestCod	TestCode: TO15	Units: ppbv	Prep Date:	Run ID: MS05_021218A
Client ID: ZZZZZ	Batch ID: R30598	TestN	TestNo: TO15		Analysis Date: 12/18/2002	SeqNo: 341812
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
1,1,1-Trichloroethane	< 0.50	0.50				
1,1,2,2-Tetrachloroethane	< 0.50	0.50				
1,1,2-Trichloroethane	< 0.50	0.50				
1,1-Dichloroethane	< 0.50	0.50				
1,1-Dichloroethene	< 0.50	0.50				
1,2,4-Trichlorobenzene	< 1.0	1.0				
1,2,4-Trimethylbenzene	< 0.50	0.50				
1,2-Dibromoethane	< 0.50	0.50				
1,2-Dichlorobenzene	< 0.50	0.50				
1,2-Dichloroethane	< 0.50	0.50				
1,2-Dichloropropane	< 0.50	0.50				
1,3,5-Trimethylbenzene	< 0.50	0.50				
1,3-Butadiene	< 0.50	0.50				
1,3-Dichlorobenzene	< 0.50	0.50				
1,4-Dichlorobenzene	< 0.50	0.50				
2,2,4-Trimethylpentane	< 0.50	0.50				
2-Butanone (MEK)	< 1.0	1.0				
2-Hexanone	< 1.0	1.0				
2-Propanol	< 1.0	1.0				
4-Ethyltoluene	< 0.50	0.50				
4-Methyl-2-pentanone	< 1.0	1.0				
Acetone	< 5.0	2.0				
Allyl chloride	< 0.50	0.50				
Benzene	< 0.50	0.50				
Benzyl chloride	< 2.0	2.0				
Bromodichloromethane	< 0.50	0.50				
Bromoethene(Vinyl Bromide)	< 0.50	0.50				
and the second s				The second secon	Companies and comment on coloring to the description of the second comments of the second coloring to the second c	A CAMPAGE OF THE PROPERTY OF T

Page I of 8 Corporate Address 1501 W. Knudsen Phoenix, AZ 85027 Phone: 623-780-4800 Toll Free: 800-651-4802 Fax: 623-780-7695 www.aerotechlabs.com
 Main Laboratory 1725 W. 17th Street Tempe, AZ 85281 Phone: 480-967-1310 Toll Free: 866-772-5227 Fax: 480-967-1019 www.palabs.com
 Tucson Facility 4455 S. Park Ave. Ste. 110 Tucson, AZ 85714 Phone: 520-807-3801 Fax: 520-807-3803 R - RPD outside accepted recovery limits J - Analyte detected below quantitation limits

S - Spike Recovery outside accepted recovery limits

ND - Not Detected at the Reporting Limit

Qualifiers:

B - Analyte detected in the associated Method Blank

Mactec CLIENT:

02120918 Work Order: South Mesa WQARF/70211-2-0064-2.55 Project:

ANALYTICAL QC SUMMARY REPORT

TestCode: TO15

Sample ID MB-R30598	SampType: MBLK	TestCo	TestCode: TO15	Units: ppbv		Prep Date:			Run ID: MS	Run ID: MS05 021218A	
Client ID: ZZZZZ	Batch ID: R30598	Test	TestNo: TO15		∢	nalysis Date:	Analysis Date: 12/18/2002		SeqNo: 341812	1812	
Analyte	Result	POL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RP	RPD Ref Val	%RPD	RPDLimit	Qual
Bromoform	< 0.50	0.50									
Bromomethane	< 0.50	0.50									
Carbon disulfide	< 0.50	0.50									
Carbon tetrachloride	< 0.50	0.50									
Chlorobenzene	< 0.50	0.50									
Chloroethane	< 0.50	0.50									
Chloroform	< 0.50	0.50									
Chloromethane	< 0.50	0.50									
cis-1,2-Dichloroethene	< 0.50	0.50									
cis-1,3-Dichloropropene	< 0.50	0.50									
Cyclohexane	< 0.50	0.50									
Dibromochloromethane	< 0.50	0.50									
Dichlorodifluoromethane(F-12)	< 0.50	0.50									
Dichlorotetrafluoroethane(F-114)	< 0.50	0.50									
Ethyl Acetate	< 0.50	0.50									
Ethylbenzene	< 0.50	0.50									
Heptane	< 0.50	0.50									
Hexachlorobutadiene	< 1.0	1.0									
Hexane	< 0.50	0.50									
m&p-Xylene	0.1 > < 1.0	1.0									
Methyl tert-butyl ether	< 1.0	1.0									
Methylene chloride	< 0.50	0.50									
o-Xylene	< 0.50	0.50									
Propene (Propylene)	< 0.50	0.50									
Styrene	< 0.50	0.50									
Tetrachloroethene	< 0.50	0.50									
Tetrahydrofuran	< 1.0	1.0									
Toluene	< 0.50	0.50									

S - Spike Recovery outside accepted recovery limits J - Analyte detected below quantitation limits ND - Not Detected at the Reporting Limit Qualifiers:

R - RPD outside accepted recovery limits

B - Analyte detected in the associated Method Blank

Page 2 of 8

Corporate Address 1501 W. Knudsen Phoenix, AZ 85027 Phone: 623-780-4800 Toll Free: 800-651-4802 Fax: 623-780-7695 www.aerotechlabs.com
 Main Laboratory 1725 W. 17th Street Tempe, AZ 85281 Phone: 480-967-1310 Toll Free: 866-772-5227 Fax: 480-967-1019 www.palabs.com
 Tucson Facility 4455 S. Park Ave. Ste. 110 Tucson, AZ 85714 Phone: 520-807-3801 Fax: 520-807-3803

Mactec CLIENT: 02120918 Work Order: South Mesa WQARF/70211-2-0064-2.55

Project:

ANALYTICAL QC SUMMARY REPORT

TestCode: TO15

Sample ID MB-R30598	SampType: MBLK	TestCod	TestCode: T015	Units: ppbv		Prep Date:			Run ID: MS	Run ID: MS05_021218A	
Client ID: ZZZZZ	Batch ID: R30598	TestN	TestNo: TO15		•	Analysis Date:	12/18/2002	002	SeqNo: 341812	812	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit Hi	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
trans-1,2-Dichloroethene	< 0.50	0.50									
trans-1,3-Dichloropropene	< 0.50	0.50									
Trichloroethene	< 0.50	0.50									
Trichlorofluoromethane(F-11)	< 0.50	0.50									
Trichlorotrifluoroethane(F-113)	3) < 0.50	0.50									
Vinyl acetate	< 0.50	0.50									
Vinyl chloride	< 0.50	0.50									
Surr: 4-Bromofluorobenzene	9.6	0.50	10	0	96	70	130	0	0		
Sample ID LCS-R30598	SampType: LCS	TestCod	TestCode: T015	Units: ppbv		Prep Date:			Run ID: MS	Run ID: MS05_021218A	
Client ID: ZZZZZ	Batch ID: R30598	TestN	TestNo: T015		•	Analysis Date:	12/18/2002	202	SeqNo: 341817	817	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit Hi	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1.1.1-Trichloroethane	10.67	0.50	10	0	107	65	135	0	0		
1.1.2.2-Tetrachloroethane	10.58	0.50	10	0	106	65	135	0	0		
1,1,2-Trichloroethane	10.81	0.50	10	0	108	65	135	0	0		
1,1-Dichloroethane	10.74	0.50	10	0	107	65	135	0	0		
1,1-Dichloroethene	10.25	0.50	10	0	103	65	135	0	0		
1,2,4-Trichlorobenzene	10.05	1.0	10	0	100	65	135	0	0		
1,2,4-Trimethylbenzene	12.16	0.50	10	0	122	65	135	0	0		
1,2-Dibromoethane	11.17	0.50	10	0	112	65	135	0	0		
1,2-Dichlorobenzene	10.94	0.50	10	0	109	65	135	0	0		
1,2-Dichloroethane	10.84	0.50	10	0	108	65	135	0	0		
1,2-Dichloropropane	11.01	0.50	10	0	110	65	135	0	0		
1,3,5-Trimethylbenzene	12.58	0.50	10	0	126	65	135	0	0		
1,3-Butadiene	10.01	0.50	10	0	100	65	135	0	0		
1,3-Dichlorobenzene	11.1	0.50	10	0	111	65	135	0	0		
1,4-Dichlorobenzene	11.33	0.50	10	0	113	65	135	0	0		
			Jino o	C. Caibe Denovery outside accented recovery limits	oppted reco	very limits		B - Analyte detected in the associated Method Blank	ed in the associa	ted Method BI	ank
Qualifiers: ND - Not I	ND - Not Detected at the Reporting Limit		nde - e	ke necovery oursine at	nadica ica	very minus	3	- / many to decree			
1 A A 1	detected below amountated		Idd d	PPD outside accented recovery limits	overy limits					Dage 2 of 8	8,00

Page 3 of 8 Corporate Address 1501 W. Knudsen Phoenix, AZ 85027 Phone: 623-780-4800 Toll Free: 800-651-4802 Fax: 623-780-7695 www.aerotechlabs.com
 Main Laboratory 1725 W. 17th Street Tempe, AZ 85281 Phone: 480-967-1310 Toll Free: 866-772-5227 Fax: 480-967-1019 www.palabs.com
 Tucson Facility 4455 S. Park Ave. Ste. 110 Tucson, AZ 85714 Phone: 520-807-3801 Fax: 520-807-3803 R - RPD outside accepted recovery limits J - Analyte detected below quantitation limits

Mactec CLIENT:

02120918 Work Order: South Mesa WQARF/70211-2-0064-2.55

Project:

ANALYTICAL QC SUMMARY REPORT

TestCode: TO15

Sample ID LCS-R30598	SampType: LCS	TestCo	TestCode: TO15	Units: ppbv		Prep Date:			Run ID: MS	Run ID: MS05_021218A	
Client ID: ZZZZZ	Batch ID: R30598	Test	TestNo: TO15			Analysis Date:	12/18/2002	002	SeqNo: 341817	1817	-
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit H	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
2,2,4-Trimethylpentane	11.47	0:20	10	0	115	65	135	0	0		
2-Butanone (MEK)	10.63	1.0	10	0	106	65	135	0	0		
2-Hexanone	12.21	1.0	10	0	122	65	135	0	0		
2-Propanol	9.04	1.0	10	0	90.4	65	135	0	0		
4-Ethyltoluene	12.54	0.50	10	0	125	65	135	0	0		
4-Methyl-2-pentanone	11.98	1.0	10	0	120	65	135	0	0		
Acetone	10.17	5.0	10	0	102	65	135	0	0		
Allyl chloride	11.36	0.50	10	0	114	65	135	0	0		
Benzene	11.54	0.50	10	0	115	65	135	0	0		
Benzyl chloride	11.52	2.0	10	0	115	65	135	0	0		
Bromodichloromethane	10.69	0.50	10	0	107	65	135	0	0		
Bromoethene(Vinyl Bromide)	10.05	0.50	10	0	100	65	135	0	0		
Bromoform	10.65	0.50	10	0	106	65	135	0	0		
Bromomethane	10.21	0.50	10	0	102	65	135	0	0		
Carbon disulfide	6.77	0.50	10	0	7.76	65	135	0	0		
Carbon tetrachloride	10.82	0.50	10	0	108	65	135	0	0		
Chlorobenzene	10.69	0.50	10	0	107	65	135	0	0		
Chloroethane	10.01	0.50	10	0	101	65	135	0	0		
Chloroform	10.66	0.50	10	0	107	65	135	0	0		
Chloromethane	88.6	0.50	10	0	98.8	92	135	0	0		
cis-1,2-Dichloroethene	11.41	0.50	10	0	114	99	135		0		
cis-1,3-Dichloropropene	12.15	0.50	10	0	122	65	135	0	0		
Cyclohexane	12.53	0.50	10	0	125	92	135	0	0		
Dibromochloromethane	10.66	0.50	10	0	107	92	135	0	0		
Dichlorodifluoromethane(F-12)	10.14	0.50	10	0	101	65	135	0	0		
Dichlorotetrafluoroethane(F-114)	10.1	0.50	10	0	101	65	135	0	0		
Ethyl Acetate	11.49	0.50	10	0	115	65	135	0	0		
Ethylbenzene	12.43	0.50	10	0	124	65	135	0	0		

Page 4 of 8 B - Analyte detected in the associated Method Blank Corporate Address 1501 W. Knudsen Phoenix, AZ 85027 Phone: 623-780-4800 Toll Free: 800-651-4802 Fax: 623-780-7695 www.aerotechlabs.com
 Main Laboratory 1725 W. 17th Street Tempe, AZ 85281 Phone: 480-967-1310 Toll Free: 866-772-5227 Fax: 480-967-1019 www.palabs.com
 Tucson Facility 4455 S. Park Ave. Ste. 110 Tucson, AZ 85714 Phone: 520-807-3801 Fax: 520-807-3803 S - Spike Recovery outside accepted recovery limits R - RPD outside accepted recovery limits J - Analyte detected below quantitation limits ND - Not Detected at the Reporting Limit Qualifiers:

Mactec CLIENT: 02120918 Work Order: South Mesa WQARF/70211-2-0064-2.55

Project:

ANALYTICAL QC SUMMARY REPORT

TestCode: TO15

Sample ID LCS-R30598	SampType: LCS	TestCod	TestCode: T015	Units: ppbv		Prep Date:			Run ID: MS	Run ID: MS05_021218A	
Client ID: ZZZZZ	Batch ID: R30598	TestN	TestNo: T015			Analysis Date:	12/18/2002	002	SeqNo: 341817	817	500420St.
Analyte	Result	Pal	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Heptane	11.34	0.50	10	0	113	65	135	0	0		
Hexachlorobutadiene	9.44	1.0	10	0	94.4	92	135	0	0		
Hexane	12.29	0.50	10	0	123	92	135	0	0		
m&p-Xylene	24.55	1.0	20	0	123	92	135	0	0		
Methyl tert-butyl ether	11.25	1.0	10	0	112	65	135	0	0		
Methylene chloride	9.19	0.50	10	0	91.9	65	135	0	0		
o-Xylene	12.35	0.50	10	0	124	92	135	0	0		
Propene (Propylene)	10.29	0.50	10	0	103	65	135	0	0		
Styrene	10.12	0.50	10	0	101	65	135	0	0		
Tetrachloroethene	11.23	0.50	10	0	112	92	135	0	0		
Tetrahydrofuran	11.8	1.0	10	0	118	92	135	0	0		
Toluene	12.55	0.50	9	0	126	65	135	0	0		
trans-1,2-Dichloroethene	10.88	0.50	10	0	109	65	135	0	0		
trans-1,3-Dichloropropene	12.12	0.50	10	0	121	65	135	0	0		
Trichloroethene	11.06	0.50	10	0	111	65	135	0	0		
Trichlorofluoromethane(F-11)	10.33	0.50	10	0	103	92	135	0	0		
Trichlorotrifluoroethane(F-113)	10.33	0.50	10	0	103	92	135	0	0		
Vinyl acetate	12.14	0.50	10	0	121	92	135	0	0		
Vinyl chloride	10.02	0.50	10	0	100	65	135	0	0		
Surr: 4-Bromofluorobenzene	10.17	0.50	10	0	102	70	130	0	0		
Sample ID LCSD-R30598	SampType: LCSD	TestCod	TestCode: TO15	Units: ppbv		Prep Date:			Run ID: MS05_021218A	05_021218A	
Client ID: ZZZZZ	Batch ID: R30598	TestN	TestNo: TO15			Analysis Date:	: 12/19/2002	002	SeqNo: 341818	818	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,1,1-Trichloroethane	10.66	0.50	10	0	107	65	135	10.67	0.0938	25	
1,1,2,2-Tetrachloroethane	10.64	0.50	10	0	106	92	135	10.58	0.566	25	
1,1,2-Trichloroethane	10.91	0.50	10	0	109	65	135	10.81	0.921	25	
				Max later program to copye y province and a second of the	and the same of th						

Corporate Address 1501 W. Knudsen Phoenix, AZ 85027 Phone: 623-780-4800 Toll Free: 800-651-4802 Fax: 623-780-7695 www.aerotechlabs.com
 Main Laboratory 1725 W. 17th Street Tempe, AZ 85281 Phone: 480-967-1310 Toll Free: 866-772-5227 Fax: 480-967-1019 www.palabs.com
 Tucson Facility 4455 S. Park Ave. Ste. 110 Tucson, AZ 85714 Phone: 520-807-3801 Fax: 520-807-3803

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

J - Analyte detected below quantitation limits ND - Not Detected at the Reporting Limit

Qualifiers:

Page 5 of 8

B - Analyte detected in the associated Method Blank

Mactec CLIENT:

02120918 Work Order: South Mesa WQARF/70211-2-0064-2.55

Project:

ANALYTICAL QC SUMMARY REPORT

TestCode: TO15

Sample ID LCSD-R30598	SampType: LCSD	TestCoc	TestCode: T015	Units: ppbv		Prep Date:			Run ID: MS	Run ID: MS05_021218A	
Client ID: ZZZZZ	Batch ID: R30598	Testh	TestNo: TO15			Analysis Date:	12/19/2002	002	SeqNo: 341818	1818	· · · · · · · · · · · · · · · · · · ·
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit Hi	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,1-Dichloroethane	10.75	0.50	10	0	108	65	135	10.74	0.0931	25	
1,1-Dichloroethene	10.14	0.50	10	0	101	65	135	10.25	1.08	25	
1,2,4-Trichlorobenzene	10.09	1.0	10	0	101	65	135	10.05	0.397	25	
1,2,4-Trimethylbenzene	12.25	0.50	10	0	122	65	135	12.16	0.737	25	
1,2-Dibromoethane	11.28	0.50	10	0	113	65	135	11.17	0.980	25	
1,2-Dichlorobenzene	11.02	0.50	10	0	110	65	135	10.94	0.729	25	
1,2-Dichloroethane	10.81	0.50	10	0	108	65	135	10.84	0.277	25	
1,2-Dichloropropane	11.02	0.50	10	0	110	65	135	11.01	0.0908	25	
1,3,5-Trimethylbenzene	12.63	0.50	10	0	126	65	135	12.58	0.397	25	
1,3-Butadiene	6.63	0.50	10	0	99.3	65	135	10.01	0.802	25	
1,3-Dichlorobenzene	11.22	0.50	10	0	112	65	135	11.1	1.08	25	
1,4-Dichlorobenzene	11.35	0.50	10	0	114	65	135	11.33	0.176	25	
2,2,4-Trimethylpentane	11.54	0.50	10	0	115	65	135	11.47	0.608	25	
2-Butanone (MEK)	10.72	1.0	10	0	107	65	135	10.63	0.843	25	
2-Hexanone	12.4	1.0	10	0	124	65	135	12.21	1.54	25	
2-Propanol	9.18	1.0	10	0	91.8	65	135	9.04	1.54	25	
4-Ethyltoluene	12.59	0.50	10	0	126	65	135	12.54	0.398	25	
4-Methyl-2-pentanone	12.06	1.0	10	0	121	65	135	11.98	0.666	25	
Acetone	10.41	2.0	10	0	104	65	135	10.17	2.33	25	
Allyl chloride	11.45	0.50	10	0	114	65	135	11.36	0.789	25	
Benzene	11.65	0.50	10	0	116	65	135	11.54	0.949	25	
Benzyl chloride	11.58	2.0	10	0	116	65	135	11.52	0.519	25	
Bromodichloromethane	10.84	0.50	10	0	108	65	135	10.69	1.39	25	
Bromoethene(Vinyl Bromide)	10.03	0.50	10	0	100	65	135	10.05	0.199	25	
Bromoform	10.72	0.50	10	0	107	65	135	10.65	0.655	25	
Bromomethane	10.16	0.50	10	0	102	65	135	10.21	0.491	25	
Carbon disulfide	9.78	0.50	10	0	97.8	65	135	9.77	0.102	25	
Carbon tetrachloride	10.76	0.50	10	0	108	65	135	10.82	0.556	25	

S - Spike Recovery outside accepted recovery limits J - Analyte detected below quantitation limits ND - Not Detected at the Reporting Limit

Qualifiers:

R - RPD outside accepted recovery limits

B - Analyte detected in the associated Method Blank

Page 6 of 8

■ Corporate Address 1501 W. Knudsen Phoenix, AZ 85027 Phone: 623-780-4800 Toll Free: 800-651-4802 Fax: 623-780-7695 www.aerotechlabs.com
 ■ Main Laboratory 1725 W. 17th Street Tempe, AZ 85281 Phone: 480-967-1310 Toll Free: 866-772-5227 Fax: 480-967-1019 www.palabs.com
 ■ Tucson Facility 4455 S. Park Ave. Ste. 110 Tucson, AZ 85714 Phone: 520-807-3801 Fax: 520-807-3803

Mactec CLIENT: 02120918 Work Order: South Mesa WQARF/70211-2-0064-2.55

Project:

ANALYTICAL QC SUMMARY REPORT

TestCode: TO15

Sample ID LCSD-R30598	SampType: LCSD	TestCo	TestCode: T015	Units: ppbv		Prep Date:			Run ID: MS	Run ID: MS05_021218A	
Client ID: ZZZZZ	Batch ID: R30598	Test	TestNo: T015			Analysis Date:	12/19/2002	7	SeqNo: 341818	818	
Analyte	Result	PoL	SPK value	SPK Ref Val	%REC	LowLimit H	HighLimit R	RPD Ref Val	%RPD	RPDLimit Q	Qual
Chlorobenzene	10.75	0.50	10	0	108	65	135	10.69	0.560	25	
Chloroethane	10.1	0.50	10	0	101	. 65	135	10.07	0.297	25	
Chloroform	10.69	0.50	10	0	107	65	135	10.66	0.281	25	
Chloromethane	9.87	0.50	10	0	98.7	65	135	9.88	0.101	25	
cis-1,2-Dichloroethene	11.49	0.50	10	0	115	65	135	11.41	0.699	25	
cis-1,3-Dichloropropene	12.4	0.50	10	0	124	65	135	12.15	2.04	25	
Cyclohexane	12.36	0.50	10	0	124	65	135	12.53	1.37	25	
Dibromochloromethane	10.78	0.50	10	0	108	65	135	10.66	1.12	25	
Dichlorodifluoromethane(F-12)	10.1	0.50	10	0	101	65	135	10.14	0.395	25	
Dichlorotetrafluoroethane(F-114)	10.08	0.50	10	0	101	65	135	10.1	0.198	25	
Ethyl Acetate	11.57	0.50	10	0	116	65	135	11.49	0.694	25	
Ethylbenzene	12.48	0.50	10	0	125	65	135	12.43	0.401	25	
Heptane	11.45	0.50	10	0	114	65	135	11.34	0.965	25	
Hexachlorobutadiene	9.49	1.0	10	0	94.9	65	135	9.44	0.528	25	
Hexane	12.29	0.50	10	0	123	65	135	12.29	0	25	
m&p-Xylene	24.71	1.0	20	0	124	65	135	24.55	0.650	25	
Methyl tert-butyl ether	11.34	1.0	10	0	113	65	135	11.25	0.797	25	
Methylene chloride	9.12	0.50	10	0	91.2	92	135	9.19	0.765	25	
o-Xylene	12.39	0.50	10	0	124	65	135	12.35	0.323	25	
Propene (Propylene)	10.23	0.50	10	0	102	65	135	10.29	0.585	25	
Styrene	10.24	0.50	10	0	102	65	135	10.12	1.18	25	
Tetrachloroethene	11.28	0.50	10	0	113	65	135	11.23	0.444	25	
Tetrahydrofuran	11.78	1.0	10	0	118	65	135	11.8	0.170	25	
Toluene	12.65	0.50	10	0	126	65	135	12.55	0.794	25	
trans-1,2-Dichloroethene	10.83	0.50	10	0	108	99	135	10.88	0.461	25	
trans-1,3-Dichloropropene	12.24	0.50	10	0	122	65	135	12.12	0.985	25	
Trichloroethene	11.14	0.50	10	0	111	65	135	11.06	0.721	25	
Trichlorofluoromethane(F-11)	10.32	0.50	10	0	103	65	135	10.33	0.0969	52	

Page 7 of 8 B - Analyte detected in the associated Method Blank S - Spike Recovery outside accepted recovery limits R - RPD outside accepted recovery limits J - Analyte detected below quantitation limits ND - Not Detected at the Reporting Limit Qualifiers:

■ Corporate Address 1501 W. Knudsen Phoenix, AZ 85027 Phone: 623-780-4800 Toll Free: 800-651-4802 Fax: 623-780-7695 www.aerotechlabs.com
 ■ Main Laboratory 1725 W. 17th Street Tempe, AZ 85281 Phone: 480-967-1310 Toll Free: 866-772-5227 Fax: 480-967-1019 www.palabs.com
 ■ Tucson Facility 4455 S. Park Ave. Ste. 110 Tucson, AZ 85714 Phone: 520-807-3801 Fax: 520-807-3803

Mactec CLIENT:

02120918 Work Order: South Mesa WQARF/70211-2-0064-2.55

Project:

ANALYTICAL QC SUMMARY REPORT TestCode: TO15

Sample ID LCSD-R30598	SampType: LCSD	TestCoo	TestCode: T015	Units: ppbv		Prep Date:	:e:		Run ID: MS	Run ID: MS05_021218A	_
Client ID: ZZZZZ	Batch ID: R30598	Test	TestNo: TO15			Analysis Dat	Analysis Date: 12/19/2002	002	SeqNo: 341818	818	
Analyte	Result	PQL	SPK value	SPK value SPK Ref Val	%REC	LowLimit	HighLimit	%REC LowLimit HighLimit RPD Ref Val	%RPD	%RPD RPDLimit Qual	Qual
Trichlorotrifluoroethane(F-113)	10.28	0.50	10	0	103	65	135	10.33	0.485	25	
Vinyl acetate	12.24	0.50	10	0	122	65	135	12.14	0.820	25	
Vinyl chloride	10.01	0.50	10	0	100	65	135	10.02	0.0999	25	
Surr: 4-Bromofluorobenzene	10.19	0.50	10	0	102	20	130	0	0		

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

B - Analyte detected in the associated Method Blank

Page 8 of 8

■ Corporate Address 1501 W. Knudsen Phoenix, AZ 85027 Phone: 623-780-4800 Toll Free: 800-651-4802 Fax: 623-780-7695 www.aerotechlabs.com
 ■ Main Laboratory 1725 W. 17th Street Tempe, AZ 85281 Phone: 480-967-1310 Toll Free: 866-772-5227 Fax: 480-967-1019 www.palabs.com
 ■ Tucson Facility 4455 S. Park Ave. Ste. 110 Tucson, AZ 85714 Phone: 520-807-3801 Fax: 520-807-3803

Sample Receipt Checklist

Client Name MACTEC	Date an	d Time Received	15/18/05 1	350
Lab Number 0-3(2-09(8	Receive	ed by $\bigcap \varphi$		
Checklist completed by Signature /	12/18/02 Date	Containers:	Brass Sleeves Glass Jars	
Matrix: A	Carrier name:	DP	Methanol Kits	
Shipping container/cooler in good condition?		Yes 🔀	No	Not Present
Custody seals intact on shipping container/coole	r?	Yes	No	Not Present 🔀
Custody seals intact on sample bottles?		Yes	No	Not Present 👱
Chain of custody present?		Yes 👱	No	
Chain of custody signed when relinquished and	received?	Yes 🔀	No	
Chain of custody agrees with sample labels?		Yes 座	No	
Samples in proper container/bottle?	v	Yes y	No	
Sample containers intact?		Yes 🗩	No	
All samples received within holding time?		Yes 🗩	No	
Water - VOA vials have zero headspace?			Yes	No
Number of sample bottles: 7 5 16 + 7 frow	Preserved:		Unpreserved:	
Temperature of samples? regulators	<u>Ambiento</u>	Blue Ice	Wet Ice	Not Present \succeq
Water - pH acceptable upon receipt?		Yes	No	Not applicable _>
pH: Metals 413.1 Cyanide 418.1 Nutrients Sulfide		Other		
Adjusted? Results?				
Any No response must be detailed in the comments section	below:			
Person/Client contacted:				
Comments:				
Corrective Action:		· · · · · · · · · · · · · · · · · · ·		

a division of Aerotech Laboratories, Inc.

8160-616-0

		16
	dig.	
		7
	2	
-	8	
_ ∞	ကို	
_ 8	7	
2 6	œ	
<u> </u>	6	
L =	22	
8 8	ಆ	
9)	ゞ	
ຂ×	迁	
3 ₹	-	
× ~	8	
2 3		
	ကု	
Ē 🕏	37-3	18. 18.
10 Fy 0-47(807-3	
1310 F/ 780-470	0) 807-3	2
7-1310 F/ 3) 780-47(520) 807-3	227)
367-1310 F/ 23) 780-470	(520) 807-3	-5227)
) 967-1310 F/ (623) 780-470	4 (520) 807-3	(2-5227)
30) 967-1310 F/ 7 (623) 780-470	714 (520) 807-3	772-5227)
(480) 967-1310 F/ 127 (623) 780-470	35714 (520) 807-3	6-772-5227)
1 (480) 967-1310 F/ 5027 (623) 780-470	2 85714 (520) 807-3	366-772-5227)
281 (480) 967-1310 F/ 85027 (623) 780-470	AZ 85714 (520) 807-3	1-866-772-5227)
5281 (480) 967-1310 F/ \Z 85027 (623) 780-470	n, AZ 85714 (520) 807-3	(1-866-772-5227)
. 85281 (480) 967-1310 F/ , AZ 85027 (623) 780-470	ion, AZ 85714 (520) 807-3	38 (1-866-772-5227)
4Z 85281 (480) 967-1310 F/ iix, AZ 85027 (623) 780-470	cson, AZ 85714 (520) 807-3	ABS (1-866-772-5227)
, AZ 85281 (480) 967-1310 F/ ienix, AZ 85027 (623) 780-470	Tucson, AZ 85714 (520) 807-3	ALABS (1-866-772-5227)
pe, AZ 85281 (480) 967-1310 F/ hoenix, AZ 85027 (623) 780-470), Tucson, AZ 85714 (520) 807-3	PALABS (1-866-772-5227)
mpe, AZ 85281 (480) 967-1310 F/ Phoenix, AZ 85027 (623) 780-470	10, Tucson, AZ 85714 (520) 807-3	-7PALABS (1-866-772-5227)
Tempe, AZ 85281 (480) 967-1310 F/ n, Phoenix, AZ 85027 (623) 780-470	. 110, Tucson, AZ 85714 (520) 807-3	56-7PALABS (1-866-772-5227)
t, Tempe, AZ 85281 (480) 967-1310 F/ sen, Phoenix, AZ 85027 (623) 780-470	ite 110, Tucson, AZ 85714 (520) 807-3	-866-7PALABS (1-866-772-5227)
et, Tempe, AZ 85281 (480) 967-1310 F/ Idsen, Phoenix, AZ 85027 (623) 780-470	Suite 110, Tucson, AZ 85714 (520) 807-3	1-866-7PALABS (1-866-772-5227)
treet, Tempe, AZ 85281 (480) 967-1310 F/ nudsen, Phoenix, AZ 85027 (623) 780-470	, Suite 110, Tucson, AZ 85714 (520) 807-3	ee 1-866-7PALABS (1-866-772-5227)
Street, Tempe, AZ 85281 (480) 967-1310 F/ Knudsen, Phoenix, AZ 85027 (623) 780-470	ve, Suite 110, Tucson, AZ 85714 (520) 807-3	free 1-866-7PALABS (1-866-772-5227)
'th Street, Tempe, AZ 85281 (480) 967-1310 F./ N. Knudsen, Phoenix, AZ 85027 (623) 780-470	Ave, Suite 110, Tucson, AZ 85714 (520) 807-3	II-free 1-866-7PALABS (1-866-772-5227)
17th Street, Tempe, AZ 85281 (480) 967-1310 F/ 1 W. Knudsen, Phoenix, AZ 85027 (623) 780-470	rk Ave, Suite 110, Tucson, AZ 85714 (520) 807-3	toll-free 1-866-7PALABS (1-866-772-5227)
 17th Street, Tempe, AZ 85281 (480) 967-1310 FJ 101 W. Knudsen, Phoenix, AZ 85027 (623) 780-470 	Park Ave, Suite 110, Tucson, AZ 85714 (520) 807-3	all toll-free 1-866-7PALABS (1-866-772-5227)
W. 17th Street, Tempe, AZ 85281 (480) 967-1310 F/ 1501 W. Knudsen, Phoenix, AZ 85027 (623) 780-470	. Park Ave, Suite 110, Tucson, AZ 85714 (520) 807-3	call toll-free 1-866-7PALABS (1-866-772-5227)
25 W. 17th Street, Tempe, AZ 85281 (480) 967-1310 F/ - 1501 W. Knudsen, Phoenix, AZ 85027 (623) 780-470	S. Park Ave, Suite 110, Tucson, AZ 85714 (520) 807-3	or call toll-free 1-866-7PALABS (1-866-772-5227)
1725 W. 17th Street, Tempe, AZ 85281 (480) 967-1310 F/ lix - 1501 W. Knudsen, Phoenix, AZ 85027 (623) 780-470	55 S. Park Ave, Suite 110, Tucson, AZ 85714 (520) 807-3	m or call toll-free 1-866-7PALABS (1-866-772-5227)
- 1725 W. 17th Street, Tempe, AZ 85281 (480) 967-1310 F/ enix - 1501 W. Knudsen, Phoenix, AZ 85027 (623) 780-470	1455 S. Park Ave, Suite 110, Tucson, AZ 85714 (520) 807-3	som or call toll-free 1-866-7PALABS (1-866-772-5227)
b - 1725 W. 17th Street, Tempe, AZ 85281 (480) 967-1310 F/ noenix - 1501 W. Knudsen, Phoenix, AZ 85027 (623) 780-470	- 4455 S. Park Ave, Suite 110, Tucson, AZ 85714 (520) 807-3	s.com.or.call.toll-free 1-866-7PALABS (1-866-772-5227)
.ab - 1725 W. 17th Street, Tempe, AZ 85281 (480) 967-1310 F/ Phoenix - 1501 W. Knudsen, Phoenix, AZ 85027 (623) 780-470	n - 4455 S. Park Ave, Suite 110, Tucson, AZ 85714 (520) 807-3	abs.com.or.call.toll-free 1-866-7PALABS (1-866-772-5227)
n Lab - 1725 W. 17th Street, Tempe, AZ 85281 (480) 967-1310 F/ th Phoenix - 1501 W. Knudsen, Phoenix, AZ 85027 (623) 780-470	son - 4455 S. Park Ave, Suite 110, Tucson, AZ 85714 (520) 807-3	alabs.com or.call toll-free 1-866-7PALABS (1-866-772-5227)
ain Lab - 1725 W. 17th Street, Tempe, AZ 85281 (480) 967-1310 F/ orth Phoenix - 1501 W. Knudsen, Phoenix, AZ 85027 (623) 780-470	. 100 - 4455 S. Park Ave, Suite 110, Tucson, AZ 85714 (520)	palabs.com or call toll-free 1-866-7PALABS (1-866-772-5227)
Main Lab - 1725 W. 17th Street, Tempe, AZ 85281 (480) 967-1310 F/ North Phoenix - 1501 W. Knudsen, Phoenix, AZ 85027 (623) 780-470	Tucson - 4455 S. Park Ave, Suite 110, Tucson, AZ 85714 (520) 807-3	w.palabs.com.or.call.toll-free 1-866-7PALABS (1-866-772-5227)
] Main Lab - 1725 W. 17th Street, Tempe, AZ 85281 (480) 967-1310 F/] North Phoenix - 1501 W. Knudsen, Phoenix, AZ 85027 (623) 780-470	Tucson - 4455 S. Park Ave, Suite 110, Tucson, AZ 85714 (520) 807-3	ww.palabs.com or call toll-free 1-866-7PALABS (1-866-772-5227)
[] Main Lab - 1725 W. 17th Street, Tempe, AZ 85281 (480) 967-1310 FAX (480) 967-1019 [] North Phoenix - 1501 W. Knudsen, Phoenix, AZ 85027 (623) 780-4700 FAX (623) 780-2934	[] Tucson - 4455 S. Park Ave, Suite 110, Tucson, AZ 85714 (520) 807-3801 FAX (520) 807-3803	www.palabs.com.or.call.toll-free 1-866-7PALABS (1-866-772-5227)
[] Main Lab - 1725 W. 17th Street, Tempe, AZ 85281 (480) 967-1310 FAX (480) 967-1019 [] North Phoenix - 1501 W. Knudsen, Phoenix, AZ 85027 (623) 780-4700 FAX (623) 780-29	[] Tucson - 4455 S. Park Ave, Suite 110, Tucson, AZ 85714 (520) 807-3	www.palabs.com.or.call.toll-free 1-866-7PALABS (1-866-772-5227)

Customer Number:			Page / of /										
Customer: MACTEL KAIRPRING & LONDILLA	ne & Contall		Sampler: $ ho_{m{\lambda}}$	1 Cusk									
Address: 3630 E. We'r Av	Avenue		Project Name: Çr	ΥJ	mess wash	4							
	85040		Project Number: 7 (70211-7-	-0069.2.	3.8							
AIKC			P.O. Number: P.C.N	,	29255								
Phone: 607 - 437 - 02 5 U	Fax: 602-437-	-437-3675	Fax Results:	ව	Z								
E-Mail Address: Clarke @ Macket, Com	cfec. Com		E-Mail Results:	ව	Z								
Sam		Turn Around Requi	uest						Analys	Analyses Requested	lested		
Temperature		_ 24 Hours	48 Hours										
Custody Seals: YesNo		_72 Hours											
Custody Seals Intact: Yes No		_5 working Day						~	SI-(
Total # of Containers:	Sabje	Standard 10 Working Days Subject to scheduling and availability (surcharges apply)	Days surcharges apply)				<i>,</i> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	<u> </u>	OT Yd			1	
		Sample Info	formation					14 List 15 list	VlnO :				
Lab# Canister Serial #	Model	Sample Identification	ation Date	Time	Type	Final	Receipt		PCE		ı		
9	6, 1, 0.4		2012/121	1140				X					\mathcal{A}^{\prime}
01383	6, 1, 0.4	7	12/11/21	2 0417				×					
01377	6, 1, 0.4	2	20/11/21	6/69 2				X					
新的/	6, 1, 0.4	7	12/19/02	20405				Х					
O5 01376/8938	6, 1, 0.4	* 4	20/21/21	\$ 8 8 CA				×				ę	
	6, 1, 0.4										_		
	6, 1, 0.4												
	6, 1, 0.4											,	
	6, 1, 0.4												
	6, 1, 0.4												
Instructions / Special Requirements:	•												j N

PALCOC01

Patrick Cook - MACFEC

All services are performed subject to the Terms & Conditions on the reverse side.