

VOLUME VIII Remedial Investigation Report South Mesa WQARF Registry Site Mesa, Arizona ADEQ Task Assignment EV11-0084

Prepared for:

Arizona Department of Environmental Quality Waste Programs Division 1110 West Washington Street Phoenix, Arizona 85007

Prepared by:

AMEC Environment & Infrastructure, Inc. Phoenix, Arizona

June 7, 2013

AMEC Project No. 14-2012-2022.04.01

TABLE OF CONTENTS

LIST OF APPENDICES

VOLUME VIII

- Appendix N SVE System Vapor Sample Analytical Reports (Continued)
- Appendix O Responsiveness Summary

APPENDIX N

SVE VAPOR SAMPLE ANALYTICAL REPORTS (Continued)

a division of Aerotech Laboratories, Inc.

Monday, July 16, 2007

Jim Clarke Mactec 3630 East Wier Avenue Phoenix, AZ 85040

TEL: (602) 437-0250 FAX (602) 437-3675

RE: South Mesa/4972-07-2050.4.5

Dear Jim Clarke:

Order No.: 07070014

Aerotech Environmental Laboratories received 3 sample(s) on 7/2/2007 for the analyses presented in the following report.

This report includes the following information:

- Case Narrative.
- Analytical Report: includes test results, report limit (Limit), any applicable data qualifier (Qual), units, dilution factor (DF), and date analyzed.
- QC Summary Report.

This communication is intended only for the individual or entity to whom it is directed. It may contain information that is privileged, confidential, or otherwise exempt from disclosure under applicable law. Dissemination, distribution, or copying of this communication by anyone other than the intended recipient, or a duly designated employee or agent of such recipient, is prohibited. If you have received this communication in error, please notify us immediately and destroy this message and all attachments thereto. If you have any questions regarding these test results, please do not hesitate to call.

Sincerely,

Tim Trestrail Project Manager

Main Laboratory: 4645 E. Cotton Center Boulevard, Building 3, Suite 189 Phoenix, AZ 85040 Phone: 602.437.3340 Toll Free: 866.772.5227 Fax. 623.445.6192 Tucson Facility: 4455 S. Park Ave. Ste. 110 Tucson, AZ 85714 Phone: 520.807.3801 Fax: 520.807.3803 www.aeroenvirolabs.com

Date:	16-Jul-07
-------	-----------

CLIENT:	Mactec
Project:	South Mesa/4972-07-2050.4.5
Lab Order:	07070014

CASE NARRATIVE

Analyses included in this report were performed by Aerotech Environmental Laboratories (AEL), 4645 E. Cotton Center Boulevard, Building 3, Suite 189, Phoenix, AZ.

AEL is licensed through the State of Arizona (License No. AZ0610), and holds NELAC accreditation (OR100001) through the State of Oregon for the analytical techniques noted on the scope of accreditation.

AEL is also accredited by the American Industrial Hygiene Association (AIHA) in the industrial hygiene program for the analytical techniques noted on the scope of accreditation.

Samples were analyzed using methods outlined in references such as:

-Standard Methods for the Examination of Water and Wastewater, 20th Edition, 1998.

-40 CFR, Part 136, July 2006. Appendix A to Part 136 - Methods for Organic Chemical Analysis of Municipal and Industrial Wastewater.

-Methods for the Chemical Analysis of Water and Wastes, EPA/600/4-79-020, Revised March 1983. -Methods for the Determination of Organic Compounds in Drinking Water: Supplement III, August 1995, EPA/600/R-95/131.

-Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, EPA, 3rd Edition 1986, and Updates.

-Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air, EPA, Second Edition, 1999.

-NIOSH Manual of Analytical Methods, Fourth Edition, 1994.

Analytical Comments:

All method blanks and laboratory control spikes met method and/or laboratory quality control objectives for the analyses included in this report.

Data Qualifiers:

Listed below are the data qualifiers used in your analytical report to explain any analytical or quality control issues. You will find them noted in your report under the column header "QUAL". Any quality control deficiencies that cannot be adequately described by these qualifiers will be addressed in the analytical comments section of this case narrative.

D2 Sample required dilution due to high concentration of target analyte.

Date: 16-Jul-07

CLIENT: Lab Order: Project: Lab ID:	Mactec 07070014 South Mesa/497 07070014-01A	72-07-2050.4.	5			aber: 14	436 /2/200	7 10:50:00 AM
		р	obv	μg/	/m³			
Analyses		Result	Limit	Result	Limit	Qual	DF	Date Analyzed
VOLATILE OR 1,1,1-Trichloroe	GANICS IN AIR ethane	< 0.50	TO15 0.50	< 2.8	2.8		1	Analyst: J.J . 7/5/2007
1,1,2,2-Tetrach	loroethane	< 0.50	0.50	< 3.5	3.5		1	7/5/2007
1,1,2-Trichloroe	ethane	< 0.50	0.50	< 2.8	2.8		1	7/5/2007
1,1-Dichloroeth	ane	< 0.50	0.50	< 2.1	2.1		1	7/5/2007
1,1-Dichloroeth	ene	< 0.50	0.50	< 2.0	2.0		1	7/5/2007
1,2,4-Trichlorot	Denzene	< 2.0	2.0	< 15	15		1	7/5/2007
1,2,4-Trimethyl	benzene	1.5	0.50	7.5	2.5		1	7/5/2007
1,2-Dibromoeth	ane	< 0.50	0.50	< 3.9	3.9		1	7/5/2007
1,2-Dichlorober	nzene	< 0.50	0.50	< 3.1	3.1		1	7/5/2007
1,2-Dichloroeth	ane	< 0.50	0.50	< 2.1	2.1		1	7/5/2007
1,2-Dichloropro	pane	< 0.50	0.50	< 2.4	2.4		1	7/5/2007
1,3,5-Trimethyl	benzene	< 0.50	0.50	< 2.5	2.5		1	7/5/2007
1,3-Butadiene		< 0.50	0.50	< 1.1	1.1		1	7/5/2007

0.50

0.50

0.50

1.0

1.0

2.0

0.50

1.0

5.0

0.50

0.50

2.0

0.50

< 3.1

< 3.1

< 2.4

< 3.0

< 4.2

< 5.0

< 2.2

< 4.2

< 0.80

18

3.2

< 11

< 3.4

3.1

3.1

2.4

3.0

4.2

5.0

2.2

4.2

12

0.80

1.6

11

3.4

1

1

1

1

1

1

1

1

1

1

1

1

1

7/5/2007

7/5/2007

7/5/2007

7/5/2007

7/5/2007

7/5/2007

7/5/2007

7/5/2007

7/5/2007

7/5/2007

7/5/2007

7/5/2007

7/5/2007

ND - Not Detected at the Reporting Limit

1,3-Dichlorobenzene

1,4-Dichlorobenzene

2-Butanone (MEK)

2-Hexanone

2-Propanol

Acetone

Benzene

Qualifiers:

Allyl chloride

Benzyl chloride

Bromodichloromethane

4-Ethyltoluene

4-Methyl-2-pentanone

2,2,4-Trimethylpentane

S - Spike Recovery outside accepted recovery limits

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

< 0.50

< 0.50

< 0.50

< 1.0

< 1.0

< 2.0

< 0.50

< 1.0

7.5

< 0.50

0.99

< 2.0

< 0.50

* - Value exceeds Maximum Contaminant Level

R - RPD outside accepted recovery limits

CLIENT: Lab Order: Project: Lab ID:	Mactec 07070014 South Mesa/497 07070014-01A	72-07-2050.4.:	5		Tag Nun ollection I	e ID: EFF nber: 1436 Date: 7/2/200 ntrix: AIR	07 10:50:00 AM
Analyses		pp Result	bv Limit	μg/ Result	m³ Limit	Qual DF	Date Analyzed
				Result		Qual DI	Date Allalyzed
VOLATILE ORGA Bromoethene(Viny		< 0.50	TO15 0.50	< 1.1	1.1	1	Analyst: J.J. 7/5/2007
Bromoform		< 0.50	0.50	< 5.2	5.2	1	7/5/2007
Bromomethane		< 0.50	0.50	< 2.0	2.0	1	7/5/2007
Carbon disulfide		< 0.50	0.50	< 1.6	1.6	1	7/5/2007
Carbon tetrachlori	de	< 0.50	0.50	< 3.2	3.2	1	7/5/2007
Chlorobenzene		< 0.50	0.50	< 2.4	2.4	1	7/5/2007
Chloroethane		< 0.50	0.50	< 1.3	1.3	1	7/5/2007
Chloroform		< 0.50	0.50	< 2.5	2.5	1	7/5/2007
Chloromethane		0.64	0.50	1.3	1.0	1	7/5/2007
cis-1,2-Dichloroet	nene	< 0.50	0.50	< 2.0	2.0	1	7/5/2007
cis-1,3-Dichloropro	opene	< 0.50	0.50	< 2.3	2.3	1	7/5/2007
Cyclohexane		< 0.50	0.50	< 1.7	1.7	1	7/5/2007
Dibromochlorome	thane	< 0.50	0.50	< 4.3	4.3	1	7/5/2007
Dichlorodifluorome	ethane(F-12)	0.73	0.50	3.7	2.5	1	7/5/2007
Dichlorotetrafluoro	ethane(F-114)	< 0.50	0.50	< 3.6	3.6	1	7/5/2007
Ethyl Acetate		1.9	0.50	7.0	1.8	1	7/5/2007
Ethylbenzene		0.50	0.50	2.2	2.2	1	7/5/2007
Heptane		< 0.50	0.50	< 2.1	2.1	1	7/5/2007
Hexachlorobutadie	ene	< 1.0	1.0	< 11	11	1	7/5/2007
Hexane		< 0.50	0.50	< 1.8	1.8	1	7/5/2007
m&p-Xylene		3.2	1.0	14	4.4	1	7/5/2007
Methyl tert-butyl e	ther	< 1.0	1.0	< 3.7	3.7	1	7/5/2007
Methylene chloride	e	< 0.50	0.50	< 1.8	1.8	1	7/5/2007
o-Xylene		1.8	0.50	7.9	2.2	1	7/5/2007
Propene (Propyler	ne)	< 0.50	0.50	< 0.88	0.88	1	7/5/2007
Styrene		< 0.50	0.50	< 2.2	2.2	1	7/5/2007

Date: 16-Jul-07

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

* - Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

Date: 16-Jul-07

CLIENT:	Mactec	Client Sample ID:	EFF
Lab Order:	07070014	Tag Number:	1436
Project:	South Mesa/4972-07-2050.4.5	Collection Date:	7/2/2007 10:50:00 AM
Lab ID:	07070014-01A	Matrix:	AIR
0			
	nnby	ug/m ³	

	ppb	v	μg /1	m ³			
Analyses	Result	Limit	Result	Limit	Qual	DF	[°] Date Analyzed
VOLATILE ORGANICS IN AIR Tetrachloroethene	< 0.50	TO15 0.50	< 3.4	3.4		1	Analyst: J.J. 7/5/2007
Tetrahydrofuran	< 2.0	2.0	< 6.0	6.0		1	7/5/2007
Toluene	4.8	0.50	18	1.9	3	1	7/5/2007
trans-1,2-Dichloroethene	< 0.50	0.50	< 2.0	2.0	ł	1	7/5/2007
trans-1,3-Dichloropropene	< 0.50	0.50	< 2.3	2.3		1	7/5/2007
Trichloroethene	0.85	0.50	4.7	2.8		1	7/5/2007
Trichlorofluoromethane(F-11)	< 0.50	0.50	< 2.8	2.8		1	7/5/2007
Trichlorotrifluoroethane(F-113)	< 0.50	0.50	< 3.9	3.9		1	7/5/2007
Vinyl acetate	< 0.50	0.50	< 1.8	1.8		1	7/5/2007
Vinyl chloride	< 0.50	0.50	< 1.3	1.3		1	7/5/2007
Surr: 4-Bromofluorobenzene	103 %REC	70-130	-	-		1	7/5/2007

Qualifiers:

ND - Not Detected at the Reporting Limit

- J Analyte detected below quantitation limits
- B Analyte detected in the associated Method Blank
- * Value exceeds Maximum Contaminant Level
- S Spike Recovery outside accepted recovery limits
- R RPD outside accepted recovery limits
- E Value above quantitation range

CLIENT: Lab Order: Project: Lab ID:	Mactec 07070014 South Mesa/497 07070014-02A	72-07-2050.4.	5		Tag Nun ollection I	e ID: INT hber: 0673 Date: 7/2/200 htrix: AIR	7 10:58:00 AM
		p	ppbv µg/m³				
Analyses		Result	Limit	Result	Limit	Qual DF	Date Analyzed
VOLATILE ORC 1,1,1-Trichloroe	GANICS IN AIR	< 0.50	TO15 0.50	< 2.8	2.8	1	Analyst: J.J. 7/6/2007
1,1,2,2-Tetrachl	oroethane	< 0.50	0.50	< 3.5	3.5	1	7/6/2007
1,1,2-Trichloroe	thane	< 0.50	0.50	< 2.8	2.8	1	7/6/2007
1,1-Dichloroetha	ane	< 0.50	0.50	< 2.1	2.1	1	7/6/2007
1,1-Dichloroethe	ene	0.53	0.50	2.1	2.0	1	7/6/2007
1,2,4-Trichlorob	enzene	< 2.0	2.0	< 15	15	1	7/6/2007
1,2,4-Trimethylt	penzene	0.54	0.50	2.7	2.5	1	7/6/2007
1,2-Dibromoeth	ane	< 0.50	0.50	< 3.9	3.9	1	7/6/2007
1,2-Dichloroben	izene	< 0.50	0.50	< 3.1	3.1	1	7/6/2007
1,2-Dichloroetha	ane	< 0.50	0.50	< 2.1	2.1	1	7/6/2007
1,2-Dichloropro	pane	< 0.50	0.50	< 2.4	2.4	1	7/6/2007
1,3,5-Trimethylt	penzene	< 0.50	0.50	< 2.5	2.5	1	7/6/2007
1,3-Butadiene		< 0.50	0.50	< 1.1	1.1	1	7/6/2007
1,3-Dichloroben	izene	< 0.50	0.50	< 3.1	3.1	1	7/6/2007
1,4-Dichloroben	izene	< 0.50	0.50	< 3.1	3.1	1	7/6/2007
2,2,4-Trimethylp	pentane	< 0.50	0.50	< 2.4	2.4	1	7/6/2007
2-Butanone (ME	EK)	< 1.0	1.0	< 3.0	3.0	1	7/6/2007
2-Hexanone		< 1.0	1.0	< 4.2	4.2	1	7/6/2007
2-Propanol		< 2.0	2.0	< 5.0	5.0	1	7/6/2007
4-Ethyltoluene		< 0.50	0.50	< 2.2	2.2	1	7/6/2007
4-Methyl-2-pent	anone	< 1.0	1.0	< 4.2	4.2	1	7/6/2007
Acetone		8.5	5.0	20	12	1	7/6/2007
Allyl chloride		< 0.50	0.50	< 0.80	0.80	1	7/6/2007
Benzene		< 0.50	0.50	< 1.6	1.6	1	7/6/2007
Benzyl chloride		< 2.0	2.0	< 11	11	1	7/6/2007
Bromodichlorom	nethane	< 0.50	0.50	< 3.4	3.4	1	7/6/2007

Date: 16-Jul-07

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

* - Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

CLIENT: Lab Order: Project: Lab ID:	Mactec 07070014 South Mesa/497 07070014-02A	72-07-2050.4.:	Client Sample ID: INT Tag Number: 0673 07-2050.4.5 Collection Date: 7/2/2007 10:58:00 AM Matrix: AIR					
		ppbv		μg/	m ³			
Analyses		Result	Limit	Result	Limit	Qual DF	Date Analyzed	
VOLATILE ORG Bromoethene(Vi		< 0.50	TO15 0.50	< 1.1	1.1	1	Analyst: J.J. 7/6/2007	
Bromoform		< 0.50	0.50	< 5.2	5.2	1	7/6/2007	
Bromomethane		< 0.50	0.50	< 2.0	2.0	1	7/6/2007	
Carbon disulfide		< 0.50	0.50	< 1.6	1.6	1	7/6/2007	
Carbon tetrachlo	oride	< 0.50	0.50	< 3.2	3.2	1	7/6/2007	
Chlorobenzene		< 0.50	0.50	< 2.4	2.4	1	7/6/2007	
Chloroethane		< 0.50	0.50	< 1.3	1.3	1	7/6/2007	
Chloroform		< 0.50	0.50	< 2.5	2.5	1	7/6/2007	
Chloromethane		0.64	0.50	1.3	1.0	1	7/6/2007	
cis-1,2-Dichloroe	ethene	< 0.50	0.50	< 2.0	2.0	1	7/6/2007	
cis-1,3-Dichlorop	propene	< 0.50	0.50	< 2.3	2.3	1	7/6/2007	
Cyclohexane		< 0.50	0.50	< 1.7	1.7	1	7/6/2007	
Dibromochlorom	nethane	< 0.50	0.50	< 4.3	4.3	1	7/6/2007	
Dichlorodifluoror	methane(F-12)	0.79	0.50	4.0	2.5	1	7/6/2007	
Dichlorotetrafluc	proethane(F-114)	< 0.50	0.50	< 3.6	3.6	1	7/6/2007	
Ethyl Acetate		5.7	0.50	21	1.8	1	7/6/2007	
Ethylbenzene		< 0.50	0.50	< 2.2	2.2	1	7/6/2007	
Heptane		< 0.50	0.50	< 2.1	2.1	1	7/6/2007	
Hexachlorobutad	diene	< 1.0	1.0	< 11	11	1	7/6/2007	
Hexane		< 0.50	0.50	< 1.8	1.8	1	7/6/2007	
m&p-Xylene		< 1.0	1.0	< 4.4	4.4	1	7/6/2007	
Methyl tert-butyl	ether	< 1.0	1.0	< 3.7	3.7	1	7/6/2007	

Date: 16-Jul-07

ND - Not Detected at the Reporting Limit J - Analyte detected below quantitation limits

Methylene chloride

Propene (Propylene)

o-Xylene

Styrene

Qualifiers:

B - Analyte detected in the associated Method Blank

< 0.50

< 0.50

< 0.50

< 0.50

0.50

0.50

0.50

0.50

< 1.8

< 2.2

< 0.88

< 2.2

* - Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

1

1

1

1

7/6/2007

7/6/2007

7/6/2007

7/6/2007

R - RPD outside accepted recovery limits

E - Value above quantitation range

1.8

2.2

0.88

2.2

Date: 16-Jul-07

CLIENT:	Mactec	Client Sample ID:	INT
Lab Order:	07070014	Tag Number:	0673
Project:	South Mesa/4972-07-2050.4.5	Collection Date:	7/2/2007 10:58:00 AM
Lab ID:	07070014-02A	Matrix:	AIR

	ppb	v	μg/i	m³			
Analyses	Result	Limit	Result	Limit	Qual	DF	Date Analyzed
VOLATILE ORGANICS IN AIR Tetrachloroethene	15	TO15 0.50	100	3.4		1	Analyst: J.J. 7/6/2007
Tetrahydrofuran	< 2.0	2.0	< 6.0	6.0		1	7/6/2007
Toluene	1.1	0.50	4.2	1.9		1	7/6/2007
trans-1,2-Dichloroethene	< 0.50	0.50	< 2.0	2.0		1	7/6/2007
trans-1,3-Dichloropropene	< 0.50	0.50	< 2.3	2.3		1	7/6/2007
Trichloroethene	< 0.50	0.50	< 2.8	2.8		1	7/6/2007
Trichlorofluoromethane(F-11)	1.2 •	0.50	6.8	2.8		1	7/6/2007
Trichlorotrifluoroethane(F-113)	< 0.50	0.50	< 3.9	3.9		1	7/6/2007
Vinyl acetate	< 0.50	0.50	< 1.8	1.8		1	7/6/2007
Vinyl chloride	< 0.50	0.50	< 1.3	1.3		1	7/6/2007
Surr: 4-Bromofluorobenzene	99.4 %REC	70-130	-	-		1	7/6/2007

Qualifiers:

ND - Not Detected at the Reporting Limit

- J Analyte detected below quantitation limits
- B Analyte detected in the associated Method Blank
- * Value exceeds Maximum Contaminant Level
- S Spike Recovery outside accepted recovery limits
- R RPD outside accepted recovery limits
- E Value above quantitation range

Aerotech	Environmental	Laboratories
----------	---------------	--------------

Date: 16-Jul-07

CLIENT: Mactee Cl	Client Sample ID:	VW-7A
Lab Order: 07070014	Tag Number:	0264
Project: South Mesa/4972-07-2050.4.5	Collection Date:	7/2/2007 11:18:00 AM
Lab ID: 07070014-03A	Matrix:	AIR

	pp	bv	μg/	m ³			
Analyses	Result	Limit	Result	Limit	Qual	DF	Date Analyzed
VOLATILE ORGANICS IN AIR 1,1,1-Trichloroethane	< 2.5	TO15 2.5	< 14	14		5	Analyst: J.J. 7/5/2007
1,1,2,2-Tetrachloroethane	< 2.5	2.5	< 17	17		5	7/5/2007
1,1,2-Trichloroethane	< 2.5	2.5	< 14	14		5	7/5/2007
1,1-Dichloroethane	6.4	2.5	26	10		5	7/5/2007
1,1-Dichloroethene	2.9	2.5	12	10		5	7/5/2007
1,2,4-Trichlorobenzene	< 10	10	< 75	75		5	7/5/2007
1,2,4-Trimethylbenzene	< 2.5	2.5	< 12	12		5	7/5/2007
1,2-Dibromoethane	< 2.5	2.5	< 20	20		5	7/5/2007
1,2-Dichlorobenzene	< 2.5	2.5	< 15	15		5	7/5/2007
1,2-Dichloroethane	< 2.5	2.5	< 10	10		5	7/5/2007
1,2-Dichloropropane	< 2.5	2.5	< 12	12		5	7/5/2007
1,3,5-Trimethylbenzene	< 2.5	2.5	< 12	12		5	7/5/2007
1,3-Butadiene	< 2.5	2.5	< 5.6	5.6		5	7/5/2007
1,3-Dichlorobenzene	< 2.5	2.5	< 15	15		5	7/5/2007
1,4-Dichlorobenzene	< 2.5	2.5	< 15	15		5	7/5/2007
2,2,4-Trimethylpentane	< 2.5	2.5	< 12	12		5	7/5/2007
2-Butanone (MEK)	< 5.0	5.0	< 15	15		5	7/5/2007
2-Hexanone	< 5.0	5.0	< 21	21		5	7/5/2007
2-Propanol	< 10	10	< 25	25		5	7/5/2007
4-Ethyltoluene	< 2.5	2.5	< 11	11		5	7/5/2007
4-Methyl-2-pentanone	< 5.0	5.0	< 21	21		5	7/5/2007
Acetone	< 25	25	< 60	60		5	7/5/2007
Allyl chloride	< 2.5	2.5	< 4.0	4.0		5	7/5/2007
Benzene	< 2.5	2.5	< 8.1	8.1		5	7/5/2007
Benzyl chloride	< 10	10	< 53	53		5	7/5/2007
Bromodichloromethane	< 2.5	2.5	< 17	17		5	7/5/2007

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

* - Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

Date: 16-Jul-07

CLIENT:	Mactec	
Lab Order:	07070014	
Project:	South Mesa/4972-07-2050.4.5	
Lab ID:	07070014-03A	

Client Sample ID: VW-7A Tag Number: 0264 Collection Date: 7/2/2007 11:18:00 AM Matrix: AIR

	pp	bv	μg/	m ³		
Analyses	Result	Limit	Result	Limit	Qual D	F Date Analyzed
VOLATILE ORGANICS IN AIR Bromoethene(Vinyl Bromide)	< 2.5	TO15 2.5	< 5.6	5.6	5	Analyst: J.J. 7/5/2007
Bromoform	< 2.5	2.5	< 26	26	5	7/5/2007
Bromomethane	< 2.5	2.5	< 9.9	9.9	5	7/5/2007
Carbon disulfide	< 2.5	2.5	< 7.9	7.9	5	7/5/2007
Carbon tetrachloride	< 2.5	2.5	< 16	16	5	7/5/2007
Chlorobenzene	< 2.5	2.5	< 12	12	5	7/5/2007
Chloroethane	< 2.5	2.5	< 6.7	6.7	5	7/5/2007
Chloroform	3.0	2.5	15	12	5	7/5/2007
Chloromethane	< 2.5	2.5	< 5.2	5.2	5	7/5/2007
cis-1,2-Dichloroethene	2.8	2.5	11	10	5	7/5/2007
cis-1,3-Dichloropropene	< 2.5	2.5	< 12	12	5	7/5/2007
Cyclohexane	< 2.5	2.5	< 8.7	8.7	5	7/5/2007
Dibromochloromethane	< 2.5	2.5	< 22	22	5	7/5/2007
Dichlorodifluoromethane(F-12)	< 2.5	2.5	< 13	13	5	7/5/2007
Dichlorotetrafluoroethane(F-114)	< 2.5	2.5	< 18	18	5	7/5/2007
Ethyl Acetate	< 2.5	2.5	< 9.2	9.2	5	7/5/2007
Ethylbenzene	< 2.5	2.5	< 11	11	5	7/5/2007
Heptane	< 2.5	2.5	< 10	10	5	7/5/2007
Hexachlorobutadiene	< 5.0	5.0	< 54	54	5	7/5/2007
Hexane	< 2.5	2.5	< 8.9	8.9	5	7/5/2007
m&p-Xylene	< 5.0	5.0	< 22	22	5	7/5/2007
Methyl tert-butyl ether	< 5.0	5.0	< 18	18	5	7/5/2007
Methylene chloride	< 2.5	2.5	< 8.8	8.8	5	7/5/2007
o-Xylene	< 2.5	2.5	< 11	11	5	7/5/2007
Propene (Propylene)	< 2.5	2.5	< 4.4	4.4	5	7/5/2007
Styrene	< 2.5	2.5	< 11	11	5	7/5/2007
					100	

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

 B - Analyte detected in the associated Method Blank

* - Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

Date: 16-Jul-07

CLIENT:	Mactec	
Lab Order:	07070014	
Project:	South Mesa/4972-07-2050.4.5	
Lab ID:	07070014-03A	

Client Sample ID: VW-7A Tag Number: 0264 Collection Date: 7/2/2007 11:18:00 AM Matrix: AIR

	ppb	V	μg/	m ³			
Analyses	Result	Limit	Result	Limit	Qual	DF	Date Analyzed
VOLATILE ORGANICS IN AIR Tetrachloroethene	140	TO15 2.5	970	17	D2	5	Analyst: J.J. 7/5/2007
Tetrahydrofuran	< 10	10	< 30	30		5	7/5/2007
Toluene	< 2.5	2.5	< 9.6	9.6		5	7/5/2007
trans-1,2-Dichloroethene	< 2.5	2.5	< 10	10		5	7/5/2007
trans-1,3-Dichloropropene	< 2.5	2.5	< 12	12		5	7/5/2007
Trichloroethene	< 2.5	2.5	< 14	14		5	7/5/2007
Trichlorofluoromethane(F-11)	3.2	2.5	18	14		5	7/5/2007
Trichlorotrifluoroethane(F-113)	< 2.5	2.5	< 19	19		5	7/5/2007
Vinyl acetate	< 2.5	2.5	< 8.9	8.9		5	7/5/2007
Vinyl chloride	< 2.5	2.5	< 6.5	6.5		5	7/5/2007
Surr: 4-Bromofluorobenzene	104 %REC	70-130	-	-		5	7/5/2007

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

 B - Analyte detected in the associated Method Blank

- * Value exceeds Maximum Contaminant Level
- S Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

Aerote a division of Aero	Aerotech Environmental Laboratories a division of Aerotech Laboratories, Inc.	nmental I	_aborator	les	Date: 09-Jul-07
CLIENT: Mactec Work Order: 07070014				ANALYTICAL QC SUMMARY REPORT	JMMARY REPORT
	South Mesa/4972-07-2050.4.5			TestCode: T015	r015
Sample ID: MB-R88744	SampType: MBLK	TestCode: TO15	Units: ppbv	Prep Date:	RunNo: 88744
Client ID:	Batch ID: R88744	TestNo: T015		Analysis Date: 7/5/2007	SeqNo: 1049271
Analyte	Result	PQL SPK value	SPK Ref Val %REC	C LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
1,1,1-Trichloroethane	<0.50	0.50			
1,1,2,2-Tetrachloroethane	<0.50	0.50			
1,1,2-Trichloroethane	<0.50	0.50			
1,1-Dichloroethane	<0.50	0.50			
1,1-Dichloroethene	<0.50	0.50			
1,2,4-Trichlorobenzene	<2.0	2.0			
1,2,4-Trimethylbenzene	<0.50	0.50			
1,2-Dibromoethane	<0.50	0.50			
1,2-Dichlorobenzene	<0.50	0.50			
1,2-Dichloroethane	<0.50	0.50			
1,2-Dichloropropane	<0.50	0.50			
1,3,5-Trimethylbenzene	<0.50	0.50			
1,3-Butadiene	<0.50	0.50			
1, 3-Dichlorobenzene	<0.50	0.50			
1,4-Dichlorobenzene	<0.50	0.50			
2,2,4-Trimethylpentane	<0.50	0.50			
2-Butanone (MEK)	<1.0	1.0			
2-Hexanone	<1.0	1.0			
2-Propanol	<2.0	2.0			
4-Ethyltoluene	<0.50	0.50			
4-Methyl-2-pentanone	<1.0	1.0			
Acetone	<5.0	5.0			
Allyl chloride	<0.50	0.50			
Benzene	<0.50	0.50			
Benzyl chloride	<2.0	2.0			
		-			
Qualifiers: * Value exceeds	Value exceeds Maximum Contaminant Level	QN	Not Detected at the Reporting Limit		

Page 1 of 8

Aerote a division of Aero	Aerotech Enviro	nmental	Aerotech Environmental Laboratories a division of Aerotech Laboratories, Inc.	S	Date: 09-Jul-07
CLIENT: Mactec				ANALYTICAL QC SUMMARY REPORT	UMMARY REPORT
	South Mesa/4972-07-2050.4.5			TestCode: TO15	T015
Sample ID: MB-R88744	SampType: MBLK	TestCode: T015	Units: ppbv	Prep Date:	RunNo: 88744
Client ID:	Batch ID: R88744	TestNo: T015		Analysis Date: 7/5/2007	SeqNo: 1049271
Analyte	Result	PQL SPK value	SPK Ref Val %REC	LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Bromodichloromethane	<0.50	0.50			
Bromoethene(Vinyl Bromide)	<0.50	0.50			
Bromoform	<0.50	0.50			
Bromomethane	<0.50	0.50			
Carbon disulfide	<0.50	0.50			
Carbon tetrachloride	<0.50	0.50			
Chlorobenzene	<0.50	0.50			
Chloroethane	<0.50	0.50			
Chloroform	<0.50	0.50			
Chloromethane	<0.50	0.50			
cis-1,2-Dichloroethene	<0.50	0.50			
cis-1,3-Dichloropropene	<0.50	0.50			
Cyclohexane	<0.50	0.50			
Dibromochloromethane	<0.50	0.50			
Dichlorodifluoromethane(F-12)	<0.50	0.50			
Dichlorotetrafluoroethane(F-114)	<0.50	0.50			
Ethyl Acetate	<0.50	0.50			
Ethylbenzene	<0.50	0.50			
Heptane	<0.50	0.50			
Hexachlorobutadiene	<1.0	1.0			
Hexane	<0.50	0.50			
m&p-Xylene	<1.0	1.0			
Methyl tert-butyl ether	<1.0	1.0			
Methylene chloride	<0.50	0.50			
o-Xylene	<0.50	0.50			
Qualifiers: * Value exceeds	Value exceeds Maximum Contaminant Level	ND	Not Detected at the Reporting Limit		

Page 2 of 8

CLIENT: Mactec						ANALY	VTICAL QC S	ANALYTICAL QC SUMMARY REPORT
Project: South N	South Mesa/4972-07-2050.4.5						TestCode: T015	T015
Sample ID: MB-R88744	SampType: MBLK	TestCode: T015	e: T015	Units: ppbv		Prep Date:		RunNo: 88744
Client ID:	Batch ID: R88744	TestN	TestNo: T015			Analysis Date:	: 7/5/2007	SeqNo: 1049271
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit H	HighLimit RPD Ref Val	%RPD RPDLimit Qual
Propene (Propylene)	<0.50	0.50						
Styrene	<0.50	0.50						
Tetrachloroethene	<0.50	0.50						
Tetrahydrofuran	<2.0	2.0				•		
Toluene	<0.50	0.50						
trans-1,2-Dichloroethene	<0.50	0.50						
trans-1,3-Dichloropropene	<0.50	0.50						
Trichloroethene	<0.50	0.50						
Trichlorofluoromethane(F-11)	<0.50	0.50						
Trichlorotrifluoroethane(F-113)	<0.50	0.50						
Vinyl acetate	<0.50	0.50						
Vinyl chloride	<0.50	0.50						
Surr: 4-Bromofluorobenzene	e 9.960	0.50	10	0	99.6	20	130	
Sample ID: LCS-R88744	SampType: LCS	TestCode: TO15	e: T015	Units: ppbv		Prep Date:		RunNo: 88744
Client ID:	Batch ID: R88744	TestN	TestNo: T015			Analysis Date:	: 7/5/2007	SeqNo: 1049319
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit H	HighLimit RPD Ref Val	%RPD RPDLimit Qual
1,1,1-Trichloroethane	11.12	0.50	10	0	111	65	135	
1,1,2,2-Tetrachloroethane	10.95	0.50	10	0	110	65	135	
1,1,2-Trichloroethane	10.98	0.50	10	0	110	65	135	
1,1-Dichloroethane	11.21	0.50	10	0	112	65	135	
1,1-Dichloroethene	11.16	0.50	10	0	112	65	135	
1,2,4-Trichlorobenzene	11.72	2.0	10	0	117	65	135	
1,2,4-Trimethylbenzene	12.93	0.50	10	0	129	65	135	

Page 3 of 8

a division of Aerc	ACTOLICII EIVIOIIII a division of Aerotech Laboratories, Inc.					n			
CLIENT: Mactec Work Order: 07070014	×					ANALY	VTICAL QC S	ANALYTICAL QC SUMMARY REPORT	RT
	South Mesa/4972-07-2050.4.5						TestCode:	T015	
Sample ID: LCS-R88744	SampType: LCS	TestCod	TestCode: T015	Units: ppbv		Prep Date:		RunNo: 88744	
Client ID:	Batch ID: R88744	Test	TestNo: T015		4	Analysis Date:	7/5/2007	SeqNo: 1049319	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit H	HighLimit RPD Ref Val	%RPD RPDLimit	Qual
1,2-Dibromoethane	11.18	0.50	10	0	112	65	135		
1,2-Dichlorobenzene	12.09	0.50	10	0	121	65	135		
1,2-Dichloroethane	10.99	0.50	10	0	110	65	135		
1,2-Dichloropropane	11.32	0.50	10	0	113	65	135		
1,3,5-Trimethylbenzene	12.00	0.50	10	0	120	65	135		
1,3-Butadiene	10.81	0.50	10	0	108	65	135		
1,3-Dichlorobenzene	11.91	0.50	10	0	119	65	135		
1,4-Dichlorobenzene	11.79	0.50	10	0	118	65	135		
2,2,4-Trimethylpentane	11.50	0.50	10	0	115	65	135		
2-Butanone (MEK)	11.53	1.0	10	0	115	65	135		
2-Hexanone	11.60	1.0	10	0	116	65	135		
2-Propanol	10.59	2.0	10	0	106	65	135		
4-Ethyltoluene	12.79	0.50	10	0	128	65	135		
4-Methyl-2-pentanone	12.05	1.0	10	0	120	65	135		
Acetone	10.01	5.0	10	0	100	65	135		
Allyl chloride	11.66	0.50	10	0	117	65	135		
Benzene	11.43	0.50	10	0	114	65	135		
Benzyl chloride	12.21	2.0	10	0	122	65	135		
Bromodichloromethane	11.20	0.50	10	0	112	65	135		
Bromoethene(Vinyl Bromide)	10.81	0.50	10	0	108	65	135		
Bromoform	10.97	0.50	10	0	110	65	135		
Bromomethane	10.96	0.50	10	0	110	65	135		
Carbon disulfide	10.92	0.50	10	0	109	65	135		
Carbon tetrachloride	10.97	0.50	10	0	110	65	135		
Chlorobenzene	10.87	0.50	10	0	109	65	135		
Qualifiers: * Value exceeds	Value exceeds Maximum Contaminant Level	_	ND Not De	Not Detected at the Reporting Limit	ng Limit				

Page 4 of 8

a 7	division of Aer	ACTOLCCII CIIVII OIIIII a division of Aerotech Laboratories, Inc.					n				
CLIENT: Work Order:	Mactec 07070014						ANAL	ANALYTICAL QC SUMMARY REPORT	SUMMA	ARY REP	ORT
Project:	South Me	South Mesa/4972-07-2050.4.5						TestCode:	1015		
Sample ID: LCS-R88744	388744	SampType: LCS	TestCoo	TestCode: T015	Units: ppbv		Prep Date:		RunNo: 88744	88744	
Client ID:		Batch ID: R88744	Test	TestNo: TO15		4	Analysis Date:	: 7/5/2007	SeqNo:	SeqNo: 1049319	
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RPD Ref Val	al %RPD	PD RPDLimit	Qual
Chloroethane	-	11.00	0.50	10	0	110	65	135			
Chloroform		10.97	0.50	10	0	110	65	135			
Chloromethane		11.21	0.50	10	0	112	65	135			
cis-1,2-Dichloroethene	lene	11.40	0.50	10	0	114	65	135			
cis-1,3-Dichloropropene	opene	11.95	0.50	10	0	120	65	135			
Cyclohexane		12.08	0.50	10	0	121	65	135			
Dibromochloromethane	hane	11.00	0.50	10	0	110	65	135			
Dichlorodifluoromethane(F-12)	ethane(F-12)	11.16	0.50	10	0	112	65	135			
Dichlorotetrafluoroethane(F-114)	ethane(F-114)	11.30	0.50	10	0	113	65	135			
Ethyl Acetate		11.41	0.50	10	0	114	65	135			
Ethylbenzene		11.65	0.50	10	0	116	65	135			
Heptane		11.41	0.50	10	0	114	65	135	-	- Company	
Hexachlorobutadiene	ane	10.95	1.0	10	0	110	65	135			
Hexane		12.19	0.50	10	0	122	65	135			
m&p-Xylene		22.76	1.0	20	0	114	65	135			
Methyl tert-butyl ether	ther	10.46	1.0	10	0	105	65	135		-	
Methylene chloride		10.80	0.50	10	0	108	65	135			
o-Xylene		11.51	0.50	10	0	115	65	135			
Propene (Propylene)	le)	11.27	0.50	10	0	113	65	135			
Styrene		12.12	0.50	10	0	121	65	135			
Tetrachloroethene		11.20	0.50	10	0	112	65	135			
Tetrahydrofuran		12.31	2.0	10	0	123	65	135			
Toluene		11.72	0.50	10	0	117	65	135			
trans-1,2-Dichloroethene	ethene	11.12	0.50	10	0	111	65	135			
trans-1,3-Dichloropropene	propene	11.81	0.50	10	0	118	65	135			
Oualifiers: *	Value exceed	Value exceeds Maximum Contaminant Level	(el	ND Not De	Not Detected at the Reporting Limit	g Limit					
)					

Page 5 of 8

Date: 09-Jul-07

CLIENT: Mactec Work Order: 0707014						ANAL	YTICA	ANALYTICAL QC SUMMARY REPORT	JMMAR	Y REPO	DRT
	South Mesa/4972-07-2050.4.5						L	TestCode: TO15	r015		
Sample ID: LCS-R88744 Client ID:	SampType: LCS Batch ID: R88744	TestCoo	TestCode: TO15 TestNo: TO15	Units: ppbv		Prep Date: Analysis Date:	7/5/2007		RunNo: 88744 SeqNo: 1049319	44 19319	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit ^F	HighLimit F	RPD Ref Val	%RPD	RPDLimit	Qual
Trichloroethene	11.34	0.50	10	0	113	65	135				
Trichlorofluoromethane(F-11)	10.91	0.50	10	0	109	65	135				
Trichlorotrifluoroethane(F-113)	11.09	0.50	10	0	111	65	135				
Vinyl acetate	11.66	0.50	10	0 0	117	65 65	135				
vinyi chioride Surr: 4-Bromofluorobenzene	10.16	0.50	10	0 0	102	02	130				
Sample ID: LCSD-R88744	SampType: LCSD	TestCoo	TestCode: T015	Units: ppbv		Prep Date:			RunNo: 88744	.44	
Client ID:	Batch ID: R88744	Test	TestNo: TO15		4	Analysis Date:	7/5/2007		SeqNo: 1049321	9321	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit F	HighLimit F	RPD Ref Val	%RPD	RPDLimit	Qual
1,1,1-Trichloroethane	11.04	0.50	10	0	110	65	135	11.12	0.722	25	
1,1,2,2-Tetrachloroethane	11.01	0.50	10	0	110	65	135	10.95	0.546	25	
1,1,2-Trichloroethane	10.91	0.50	10	0	109	65	135	10.98	0.640	25	
1,1-Dichloroethane	11.24	0.50	10	0	112	65	135	11.21	0.267	25	
1,1-Dichloroethene	11.17	0.50	10	0	112	65	135	11.16	0.0896	25	
1,2,4-Trichlorobenzene	11.99	2.0	10	0	120	65	135	11.72	2.28	25	
1,2,4-Trimethylbenzene	12.93	0.50	10	0	129	65	135	12.93	0	25	
1,2-Dibromoethane	11.08	0.50	10	0	111	65	135	11.18	0.898	25	
1,2-Dichlorobenzene	11.64	0.50	10	0	116	65	135	12.09	3.79	25	
1,2-Dichloroethane	10.93	0.50	10	0	109	65	135	10.99	0.547	25	
1,2-Dichloropropane	11.18	0.50	10	0	112	65	135	11.32	1.24	25	
1,3,5-Trimethylbenzene	11.97	0.50	10	0	120	65	135	12.00	0.250	25	
1,3-Butadiene	10.74	0.50	10	0	107	65	135	10.81	0.650	25	
1,3-Dichlorobenzene	11.84	0.50	10	0	118	65	135	11.91	0.589	25	
Qualifiers: * Value exceed	Value exceeds Maximum Contaminant Level		ND Not D	Not Detected at the Reporting Limit	g Limit						

Page 6 of 8

S
e
2
a
2
S
_
[]
F
Đ
Ē
2
0
Ľ
>
C
Ш
-
Q
B
Б
Ľ
e
4

a division of Aerotech Laboratories, Inc.

ANALYTICAL QC SUMMARY REPORT RPDLimit SeqNo: 1049321 RunNo: 88744 %RPD 1.38 1.50 2.18 1.06 1.53 0.645 0.916 0.508 0.436 1.04 0.624 1.31 0 0 0.182 1.29 0.828 1.28 3.99 0.640 2.53 0.0878 1.19 0.0837 TestCode: TO15 11.50 11.53 11.60 10.59 12.79 12.05 10.01 11.66 11.43 11.20 10.81 10.97 10.96 10.92 10.97 10.87 11.00 10.97 11.40 11.95 HighLimit RPD Ref Val 11.79 12.21 11.21 12.08 11.00 Analysis Date: 7/5/2007 135 Prep Date: LowLimit 65 65 92 65 %REC 117 115 108 129 118 98.8 117 114 123 110 109 110 108 108 108 110 106 109 109 114 119 118 114 121 109 Units: ppbv 0 0 0 0 0 0 0 0 0 0 00 0 SPK Ref Val 0 0 SPK value 10 10 10 10 10 0 10 0 10 10 0 10 10 10 10 10 10 0 0 TestCode: T015 TestNo: T015 1.0 1.0 2.0 0.50 5.0 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 PQL 0.50 0.50 1.0 2.0 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 South Mesa/4972-07-2050.4.5 Batch ID: R88744 Result 10.75 11.79 10.95 11.45 11.69 11.48 12.87 9.880 11.66 11.43 12.34 11.03 10.88 10.82 10.83 10.83 10.97 10.57 10.90 10.93 11.39 12.08 11.85 11.94 10.87 SampType: LCSD 07070014 Mactec Bromoethene(Vinyl Bromide) Sample ID: LCSD-R88744 cis-1,3-Dichloropropene Bromodichloromethane Dibromochloromethane 2,2,4-Trimethylpentane cis-1,2-Dichloroethene 4-Methyl-2-pentanone 1,4-Dichlorobenzene Carbon tetrachloride 2-Butanone (MEK) Work Order: Carbon disulfide Benzyl chloride Bromomethane Chloromethane Chlorobenzene 4-Ethyltoluene Chloroethane Allyl chloride Cyclohexane 2-Hexanone CLIENT: Bromoform Chloroform 2-Propanol Project: Client ID: Acetone Benzene Analyte

Not Detected at the Reporting Limit

ND

Value exceeds Maximum Contaminant Level

*

Qualifiers:

Page 7 of 8

Date: 09-Jul-07

Qual

Date: 09-Jul-07

Aerotech Environmental Laboratories

a division of Aerotech Laboratories, Inc.

CLIENT: Mactec	4					ANAL	YTIC	ANALYTICAL QC SUMMARY REPORT	JMMAR	Y REPO	IRT
	South Mesa/4972-07-2050.4.5							TestCode: TO15	T015		
Sample ID: LCSD-R88744	SampType: LCSD	TestCo	TestCode: T015	Units: ppbv		Prep Date:	e:		RunNo: 88744	744	
Client ID:	Batch ID: R88744	Test	TestNo: T015			Analysis Date:	e: 7/5/2007	2	SeqNo: 1049321	19321	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Dichlorodifluoromethane(F-12)	10.96	0.50	10	0	110	65	135	11.16	1.81	25	
Dichlorotetrafluoroethane(F-114)	11.17	0.50	10	0	112	65	135	11.30	1.16	25	
Ethyl Acetate	11.38	0.50	10	0	114	65	135	11.41	0.263	25	
Ethylbenzene	11.79	0.50	10	0	118	65	135	11.65	1.19	25	
Heptane	11.29	0.50	10	0	113	65	135	11.41	1.06	25	
Hexachlorobutadiene	11.10	1.0	10	0	111	65	135	10.95	1.36	25	
Hexane	12.27	0.50	10	0	123	65	135	12.19	0.654	25	
m&p-Xylene	22.98	1.0	20	0	115	65	135	22.76	0.962	25	
Methyl tert-butyl ether	10.74	1.0	10	0	107	65	135	10.46	2.64	25	
Methylene chloride	10.75	0.50	10	0	108	65	135	10.80	0.464	25	
o-Xylene	11.49	0.50	10	0	115	65	135	11.51	0.174	25	
Propene (Propylene)	11.41	0.50	10	0	114	65	135	11.27	1.23	25	
Styrene	12.22	0.50	10	0	122	65	135	12.12	0.822	25	
Tetrachloroethene	11.03	0.50	10	0	110	65	135	11.20	1.53	25	
Tetrahydrofuran	12.36	2.0	10	0	124	65	135	12.31	0.405	25	
Toluene	11.64	0.50	10	0	116	65	135	11.72	0.685	25	
trans-1,2-Dichloroethene	11.28	0.50	10	0	113	65	135	11.12	1.43	25	
trans-1,3-Dichloropropene	11.89	0.50	10	0	119	65	135	11.81	0.675	25	
Trichloroethene	11.27	0.50	10	0	113	65	135	11.34	0.619	25	
Trichlorofluoromethane(F-11)	10.83	0.50	10	0	108	65	135	10.91	0.736	25	
Trichlorotrifluoroethane(F-113)	11.02	0.50	10	0	110	65	135	11.09	0.633	25	
Vinyl acetate	11.80	0.50	10	0	118	65	135	11.66	1.19	25	
Vinyl chloride	10.80	0.50	10	0	108	65	135	10.92	1.10	25	
Surr: 4-Bromofluorobenzene	10.07	0.50	10	0	101	20	130	10.16	0	0	

Page 8 of 8

ND Not Detected at the Reporting Limit

* Value exceeds Maximum Contaminant Level

Qualifiers:

Aerotech	Envir	onmer	ntal La	borate	ries Sa	mple	Receir	ot.Che	cklist	T .	Pi	roject Checked By
Labora	tory N	umbe	er: 0	7-0	7-0	0/1/2	1				Com	pleted By/On: Jovan Espinoza 2/2
Client N	ame: 1	MAC	TE	2			1		· .		Date/T	"ime Rec'd: 7/2/07 /155 By JE
Matrix:	(Au)	Soil	Aque	ous (Oil S	ludge	Solia	1. W	WI	€W	Carrier	Mame: Mark
Tempera	ture	· · ·	- Coo	ler #1	Am	b°C .	Cool	er #2		°C	Cool	ler #3 °C Cooler #4 °C
Temp. R.		th		mom		IR	Then	1	ter	IR		mometer IR Thermometer IR
			uare of	temp	out of	innur	2 Ve	c	lo	Cin	de one	Blue Ice Wet Ice Not Present
Chent of	PIVI III	iuc an	alc of	comp.	outor	-marige			, vo			Blue ice wei ice indi Fresent
A second second	·		····· · · · · · · · · · · · · · · · ·	*	· · · · · · · · · · · · · · · · · · ·	·			Yes	No*	Not.Pr	esent Soil Containers:
Shipping o	containe	r/coole	er in goo	od con	dition?							Brass Sleeve
Sustody s	eals inta	act on s	shipping	g conta	ainer/co	oler?	· · · · · · ·	1. 1. I		· · · · ·		Glass Jar
Justody s	eals inta	ict on a	sample	contai	ners?	. st. St.				A Part	ALCONOL MALE	Methanol
hain of C	ustody	preser	nt and re	əlinqui	shed/re	celvec	proper	ly?		W. WAY		Plastic Bag
hain of C	ustody	agrees	with sa	ample	labels?		1 - 1 - 1 					" Encore Samplers
amples in	riproper	contai	iners/bo	ottles?				120.4		Jel M.		Sterile Plastic
ample co	ntainers	intact	? .		1	***#"#"						
Ilsample	s receive	ed with	in hold	ing tim	e?	· · · · · · ·	<u>la de la c</u>		~		**See Co	mments about Chlorine and pH
there su	fficients	ample	volume	e to pe	rform th	ie test	\$?	1. 4	Y			
OmL vials	for vola	tiles. &	SOCs	receiv	ed with	zero h	éadspa	ce?!			1.14	term - a finished and the letter of the state of the
otal numb	er of bo	ttles re	eceived	8 - 19 - M	1914 – S.	3.	- 61 ¹ .		l samp	le me	dia: 11	Canister
applicable												N/A V
			l by prese	ervative	and by s	ample n	untber:(If more	than H	0-samp		ec'd, please continue on separate sheet(s)).
reservative	Simple**	* 1 :	2	3	4	5	6	7	.8	9) 10	*Any <u>No</u> response must be detailed in the comments section. Contact the PM
General		<u> ·/</u>	<u> </u>					ļ				immediately to determine how to proceed
HNO3					<u> </u>				· ·			Refer to SOP 11-001 and continue on back if additional space is needed.
H2SO4				,				· · · ·				
HCI							1	1.1.1.	1 2 3			**The holding time for pH and Total Residual
Na2S2O3				· · · · ·		· 1. * *		ne nata.				Chlorine analysis is immediate. For the most accurate results, the pH and Total Residual
VaOH	·			•					-			-Chlorine should be taken in the field within 15
Sulfide							1.00	<u>), 187</u> ,	10000	·		minutes of sampling.
la Sulfite		<u> </u>					· ·					***The Simple box is only to be used when
CAA						· · · ·	6		1		2.1	there is one bottle per preservative in equal-
1ethanol		n)					- Stj. (* 1. 3) an					sample sets.
AA												the second s
)ther		i.			· · · ·		1 . Se					
ter-pH ac		- it is the				· · · · ·	No		N/A		: ····.	in the second
eservat	ive &	1	off of	samp	oles u	oon r	eceipt	PERMI.	HI.pH r	equires		ent, listsample number and reagent I.D. number
lals		<2		e				······			<u></u>	the second s
iO ₄		<2										· · · · · · · · · · · · · · · · · · ·
4		<2										
inide		>12									£ 9	
ide		>9							ļ			
mment	S:			* 3								
											·	

*

TAI CONTRA- PORT SORATOR

Aerotech Environmental Laboratories

a division of Aerotech Laboratories, Inc.

07-07-0014		1					Analyses Requested		ç			tail 81- Yino 3		×		~									Received By:	Espires and	1 0	
	202	and the second sec	540.4.5						S		to 1:	ziJ ≯ŀ.	Type Final Receipt	AIR .											Rece	1 Dr. Durow	~	
AX 023	Sampler: DABA HENNED	ame: Sourt H M.	Project Number: 4972-07-2	P.O. Number:	ax Results:	lail Results:		48 Hours			les apply)	mation	Date Time	7/2/7 1050 4	1058	V VIX V									ished By:			
Sulte 189, Phoenix, Az 89040 602.437.35 327 623.780.4800 - FAX 623.445.6216 85714 520.807.3801 - FAX 520.807.3803	Pa	Pr.	0	P.(Fax: 602 437-3675 Fa	MACTEC. CON	round Reque		72 Hours	5 working Day Standard 10 Working Days	Subject to scheduling and availability (surcharges apply)	Sample Information	Model Sample Identification	6, 1, 0.4 EFF	6, 1, 0.4 ZNT	6, 1, 0.4 VUU-7A	6, 1, 0.4	6, 1, 0.4	6, 1, 0.4	6, 1, 0.4	6, 1, 0.4	6, 1, 0.4	6, 1, 0.4		 Samples Relinquis	Al with I tanner		
 I Main Lab - 4049 E. Cotton Center Biva., building 3, I North Phoenix - 1501 W. Knudsen, Phoenix, AZ 85(Tucson - 4455 S. Park Ave, Suite 110, Tucson, AZ www.aeroenvirolabs.com or call toll-free 866.772.5227 	IN PAPER	3620 6 10152	ID: PHX. AZ. XI	JIM CLARKE	437-6		Sample Receipt	d m H	No	intact: Yes No X			Canister Serial #	1436	0673	02.64								Instructions / Special Requirements:	Time:	1155 1		-
 J Main Lab - 4 J North Phoer J Tucson - 44 www.aeroenvirt 	Customer Number: Customer:	Address:	City, State, Zip:	Contact:	Phone: 60	E-Mail Address:		Temperature	Custody Seals:	Custody Seals Intact: Total # of Containers:			Lab #		7	3							-	Instructions / Sp	Date:	7/2/7		

Chain of Custody, Page 1 of 1, REV 02, 111803, VPQAS

Analysis performed is subject to the Terms & Conditions available at www.aeroenvirolabs.com or call 866.772.5227 to request a copy.

a division of Aerotech Laboratories, Inc.

Monday, August 20, 2007

Jim Clarke Mactec 3630 East Wier Avenue Phoenix, AZ 85040

TEL: (602) 437-0250 FAX (602) 437-3675

RE: South Mesa/4972-07-2050.4.5

Dear Jim Clarke:

Order No.: 07080288

Aerotech Environmental Laboratories received 3 sample(s) on 8/7/2007 for the analyses presented in the following report.

This report includes the following information:

- Case Narrative.
- Analytical Report: includes test results, report limit (Limit), any applicable data qualifier (Qual), units, dilution factor (DF), and date analyzed.
- QC Summary Report.

This communication is intended only for the individual or entity to whom it is directed. It may contain information that is privileged, confidential, or otherwise exempt from disclosure under applicable law. Dissemination, distribution, or copying of this communication by anyone other than the intended recipient, or a duly designated employee or agent of such recipient, is prohibited. If you have received this communication in error, please notify us immediately and destroy this message and all attachments thereto. If you have any questions regarding these test results, please do not hesitate to call.

Sincerely,

Tim Trestrail Project Manager

Main Laboratory: 4645 E. Cotton Center Boulevard, Building 3, Suite 189 Phoenix, AZ 85040 Phone: 602.437.3340 Toll Free: 866.772.5227 Fax. 623.445.6192 Tucson Facility: 4455 S. Park Ave. Ste. 110 Tucson, AZ 85714 Phone: 520.807.3801 Fax: 520.807.3803 www.aeroenvirolabs.com

Int 8/22/07

CLIENT:	Mactec
Project:	South Mesa/4972-07-2050.4.5
Lab Order:	07080288

CASE NARRATIVE

Analyses included in this report were performed by Aerotech Environmental Laboratories (AEL), 4645 E. Cotton Center Boulevard, Building 3, Suite 189, Phoenix, AZ.

AEL is licensed through the State of Arizona (License No. AZ0610), and holds NELAC accreditation (OR100001) through the State of Oregon for the analytical techniques noted on the scope of accreditation.

AEL is also accredited by the American Industrial Hygiene Association (AIHA) in the industrial hygiene program for the analytical techniques noted on the scope of accreditation.

Samples were analyzed using methods outlined in references such as:

-Standard Methods for the Examination of Water and Wastewater, 20th Edition, 1998.

-40 CFR, Part 136, July 2006. Appendix A to Part 136 - Methods for Organic Chemical Analysis of Municipal and Industrial Wastewater.

-Methods for the Chemical Analysis of Water and Wastes, EPA/600/4-79-020, Revised March 1983. -Methods for the Determination of Organic Compounds in Drinking Water: Supplement III, August 1995, EPA/600/R-95/131.

-Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, EPA, 3rd Edition 1986, and Updates.

-Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air, EPA, Second Edition, 1999.

-NIOSH Manual of Analytical Methods, Fourth Edition, 1994. NIOSH Method 7300 analyses are performed using a modified digestion procedure to eliminate the use of perchloric acid.

Analytical Comments:

All method blanks and laboratory control spikes met method and/or laboratory quality control objectives for the analyses included in this report.

Data Qualifiers:

Listed below are the data qualifiers used in your analytical report to explain any analytical or quality control issues. You will find them noted in your report under the column header "QUAL". Any quality control deficiencies that cannot be adequately described by these qualifiers will be addressed in the analytical comments section of this case narrative.

- D2 Sample required dilution due to high concentration of target analyte.
- L1 The associated blank spike recovery was above laboratory acceptance limits.
- V1 CCV recovery was above method acceptance limits. This target analyte was not detected in the sample.

CLIENT:	Mactec
Lab Order:	07080288
Project:	South Mesa/4972-07-2050.4.5
Lab ID:	07080288-01A

Date: 22-Aug-07

Client Sample ID: EFF Tag Number: 0747 Collection Date: 8/7/2007 10:40:00 AM Matrix: AIR

	p	pbv	μg /1				
Analyses	Result	Limit	Result	Limit	Qual	DF	Date Analyzed
VOLATILE ORGANICS IN AIR 1,1,1-Trichloroethane	< 0.50	TO15 0.50	< 2.8	2.8		1	Analyst: J.J. 8/17/2007
1,1,2,2-Tetrachloroethane	< 0.50	0.50	< 3.5	3.5		1	8/17/2007
1,1,2-Trichloroethane	< 0.50	0.50	< 2.8	2.8		1	8/17/2007
1,1-Dichloroethane	< 0.50	0.50	< 2.1	2.1		1	8/17/2007
1,1-Dichloroethene	< 0.50	0.50	< 2.0	2.0		1	8/17/2007
1,2,4-Trichlorobenzene	< 2.0	2.0	< 15	15		1	8/17/2007
1,2,4-Trimethylbenzene	< 0.50	0.50	< 2.5	2.5		1	8/17/2007
1,2-Dibromoethane	< 0.50	0.50	< 3.9	3.9		1	8/17/2007
1,2-Dichlorobenzene	< 0.50	0.50	< 3.1	3.1		1	8/17/2007
1,2-Dichloroethane	< 0.50	0.50	< 2.1	2.1		1	8/17/2007
1,2-Dichloropropane	< 0.50	0.50	< 2.4	2.4		1	8/17/2007
1,3,5-Trimethylbenzene	< 0.50	0.50	< 2.5	2.5		1	8/17/2007
1,3-Butadiene	< 0.50	0.50	< 1.1	1.1		1	8/17/2007
1,3-Dichlorobenzene	< 0.50	0.50	< 3.1	3.1		1	8/17/2007
1,4-Dichlorobenzene	< 0.50	0.50	< 3.1	3.1		1	8/17/2007
2,2,4-Trimethylpentane	2.2	0.50	10	2.4		1	8/17/2007
2-Butanone (MEK)	< 1.0	1.0	< 3.0	3.0		1	8/17/2007
2-Hexanone	1.1	1.0	4.6	4.2		1	8/17/2007
2-Propanol	3.3	2.0	8.2	5.0		1	8/17/2007
4-Ethyltoluene	< 0.50	0.50	< 2.2	2.2		1	8/17/2007
4-Methyl-2-pentanone	< 1.0	1.0	< 4.2	4.2		1	8/17/2007
Acetone	18	5.0	43	12		1	8/17/2007
Allyl chloride	< 0.50	0.50	< 0.80	0.80		1	8/17/2007
Benzene	< 0.50	0.50	< 1.6	1.6		1	8/17/2007
Benzyl chloride	< 2.0	2.0	< 11	11	V1L1	1	8/17/2007
Bromodichloromethane	< 0.50	0.50	< 3.4	3.4		1	8/17/2007

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

* - Value exceeds Maximum Contaminant Level

CLIENT:	Mactec
Lab Order:	07080288
Project:	South Mesa/4972-07-2050.4.5
Lab ID:	07080288-01A

Date: 22-Aug-07

 Client Sample ID:
 EFF

 Tag Number:
 0747

 Collection Date:
 8/7/2007 10:40:00 AM

 Matrix:
 AIR

	ppbv µg/m³					
Analyses	Result	Limit	Result	Limit	Qual DI	Date Analyzed
VOLATILE ORGANICS IN AIR Bromoethene(Vinyl Bromide)	< 0.50	TO15 0.50	< 1.1	1.1	1	Analyst: J.J. 8/17/2007
Bromoform	< 0.50	0.50	< 5.2	5.2	1	8/17/2007
Bromomethane	< 0.50	0.50	< 2.0	2.0	1	8/17/2007
Carbon disulfide	< 0.50	0.50	< 1.6	1.6	1	8/17/2007
Carbon tetrachloride	< 0.50	0.50	< 3.2	3.2	1	8/17/2007
Chlorobenzene	< 0.50	0.50	< 2.4	2.4	1	8/17/2007
Chloroethane	< 0.50	0.50	< 1.3	1.3	1	8/17/2007
Chloroform	< 0.50	0.50	< 2.5	2.5	1	8/17/2007
Chloromethane	0.73	0.50	1.5	1.0	1	8/17/2007
cis-1,2-Dichloroethene	< 0.50	0.50	< 2.0	2.0	1	8/17/2007
cis-1,3-Dichloropropene	< 0.50	0.50	< 2.3	2.3	1	8/17/2007
Cyclohexane	< 0.50	0.50	< 1.7	1.7	1	8/17/2007
Dibromochloromethane	< 0.50	0.50	< 4.3	4.3	1	8/17/2007
Dichlorodifluoromethane(F-12)	0.60	0.50	3.0	2.5	1	8/17/2007
Dichlorotetrafluoroethane(F-114)	< 0.50	0.50	< 3.6	3.6	1	8/17/2007
Ethyl Acetate	< 0.50	0.50	< 1.8	1.8	1	8/17/2007
Ethylbenzene	< 0.50	0.50	< 2.2	2.2	1	8/17/2007
Heptane	< 0.50	0.50	< 2.1	2.1	1	8/17/2007
Hexachlorobutadiene	< 1.0	1.0	< 11	11	1	8/17/2007
Hexane	< 0.50	0.50	< 1.8	1.8	1	8/17/2007
m&p-Xylene	< 1.0	1.0	< 4.4	4.4	1	8/17/2007
Methyl tert-butyl ether	1.1	1.0	4.0	3.7	1	8/17/2007
Methylene chloride	< 0.50	0.50	< 1.8	1.8	1	8/17/2007
o-Xylene	< 0.50	0.50	< 2.2	2.2	1	8/17/2007
Propene (Propylene)	< 0.50	0.50	< 0.88	0.88	1	8/17/2007
Styrene	< 0.50	0.50	< 2.2	2.2	1	8/17/2007

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

* - Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

 CLIENT:
 Mactec

 Lab Order:
 07080288

 Project:
 South Mesa/4972-07-2050.4.5

 Lab ID:
 07080288-01A

Date: 22-Aug-07

Client Sample ID: EFF Tag Number: 0747 Collection Date: 8/7/2007 10:40:00 AM Matrix: AIR

	ppb	v	μ g /1	m ³			
Analyses	Result	Limit	Result	Limit	Qual	DF	Date Analyzed
					2		
VOLATILE ORGANICS IN AIR Tetrachloroethene	0.75	TO15 0.50	5.2	3.4		1	Analyst: J.J. 8/17/2007
Tetrahydrofuran	< 2.0	2.0	< 6.0	6.0		1	8/17/2007
Toluene	1.0	0.50	3.8	1.9	÷	1	8/17/2007
trans-1,2-Dichloroethene	< 0.50	0.50	< 2.0	2.0		1	8/17/2007
trans-1,3-Dichloropropene	< 0.50	0.50	< 2.3	2.3	÷	1	8/17/2007
Trichloroethene	< 0.50	0.50	< 2.8	2.8		1	8/17/2007
Trichlorofluoromethane(F-11)	< 0.50	0.50	< 2.8	2.8	·	1	8/17/2007
Trichlorotrifluoroethane(F-113)	< 0.50	0.50	< 3.9	3.9		1	8/17/2007
Vinyl acetate	< 0.50	0.50	< 1.8	1.8	ŕ	1	8/17/2007
Vinyl chloride	< 0.50	0.50	< 1.3	1.3		1	8/17/2007
Surr: 4-Bromofluorobenzene	73.4 %REC	70-130	-	-		1	8/17/2007

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

* - Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

 CLIENT:
 Mactec

 Lab Order:
 07080288

 Project:
 South Mesa/4972-07-2050.4.5

 Lab ID:
 07080288-02A

Date: 22-Aug-07

 Client Sample ID:
 INF

 Tag Number:
 0736

 Collection Date:
 8/7/2007 10:55:00 AM

 Matrix:
 AIR

ppbv µg/m³							
Analyses	Result	Limit	Result	Limit	Qual	DF	Date Analyzed
VOLATILE ORGANICS IN AIR 1,1,1-Trichloroethane	< 5.0	TO15 5.0	< 28	28	2	10	Analyst: J.J. 8/18/2007
1,1,2,2-Tetrachloroethane	< 5.0	5.0	< 35	35		10	8/18/2007
1,1,2-Trichloroethane	< 5.0	5.0	< 28	28		10	8/18/2007
1,1-Dichloroethane	9.4	5.0	39	21		10	8/18/2007
1,1-Dichloroethene	< 5.0	5.0	< 20	20		10	8/18/2007
1,2,4-Trichlorobenzene	< 20	20	< 150	150		10	8/18/2007
1,2,4-Trimethylbenzene	< 5.0	5.0	< 25	25		10	8/18/2007
1,2-Dibromoethane	< 5.0	5.0	< 39	39		10	8/18/2007
1,2-Dichlorobenzene	< 5.0	5.0	< 31	31		10	8/18/2007
1,2-Dichloroethane	< 5.0	5.0	< 21	21		10	8/18/2007
1,2-Dichloropropane	< 5.0	5.0	< 24	24		10	8/18/2007
1,3,5-Trimethylbenzene	< 5.0	5.0	< 25	25		10	8/18/2007
1,3-Butadiene	< 5.0	5.0	< 11	11		10	8/18/2007
1,3-Dichlorobenzene	< 5.0	5.0	< 31	31		10	8/18/2007
1,4-Dichlorobenzene	< 5.0	5.0	< 31	31		10	8/18/2007
2,2,4-Trimethylpentane	< 5.0	5.0	< 24	24		10	8/18/2007
2-Butanone (MEK)	< 10	10	< 30	30		10	8/18/2007
2-Hexanone	< 10	10	< 42	42		10	8/18/2007
2-Propanol	< 20	20	< 50	50		10	8/18/2007
4-Ethyltoluene	< 5.0	5.0	< 22	22		10	8/18/2007
4-Methyl-2-pentanone	< 10	10	< 42	42		10	8/18/2007
Acetone	63	50	150	120	D2	10	8/18/2007
Allyl chloride	< 5.0	5.0	< 8.0	8.0		10	8/18/2007
Benzene	< 5.0	5.0	< 16	16		10	8/18/2007
Benzyl chloride	< 20	20	< 110	110	V1L1	10	8/18/2007
Bromodichloromethane	< 5.0	5.0	< 34	34		10	8/18/2007

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

* - Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

CLIENT: Mactec Lab Order: 07080288 **Project:** South Mesa/4972-07-2050.4.5 Lab ID: 07080288-02A

Date: 22-Aug-07

Client Sample ID: INF Tag Number: 0736 Collection Date: 8/7/2007 10:55:00 AM Matrix: AIR

	р	obv	μg/	m ³			
Analyses	Result	Limit	Result	Limit	Qual	DF	Date Analyzed
VOLATILE ORGANICS IN AIR Bromoethene(Vinyl Bromide)	< 5.0	TO15 5.0	< 11	11		10	Analyst: J.J. 8/18/2007
Bromoform	< 5.0	5.0	< 52	52		10	8/18/2007
Bromomethane	< 5.0	5.0	< 20	20		10	8/18/2007
Carbon disulfide	< 5.0	5.0	< 16	16		10	8/18/2007
Carbon tetrachloride	< 5.0	5.0	< 32	32		10	8/18/2007
Chlorobenzene	< 5.0	5.0	< 24	24		10	8/18/2007
Chloroethane	< 5.0	5.0	< 13	13		10	8/18/2007
Chloroform	6.1	5.0	30	25		10	8/18/2007
Chloromethane	< 5.0	5.0	< 10	10		10	8/18/2007
cis-1,2-Dichloroethene	< 5.0	5.0	< 20	20		10	8/18/2007
cis-1,3-Dichloropropene	< 5.0	5.0	< 23	23		10	8/18/2007
Cyclohexane	< 5.0	5.0	< 17	17		10	8/18/2007
Dibromochloromethane	< 5.0	5.0	< 43	43		10	8/18/2007
Dichlorodifluoromethane(F-12)	< 5.0	5.0	< 25	25		10	8/18/2007
Dichlorotetrafluoroethane(F-114)	< 5.0	5.0	< 36	36		10	8/18/2007
Ethyl Acetate	< 5.0	5.0	< 18	18		10	8/18/2007
Ethylbenzene	< 5.0	5.0	< 22	22		10	8/18/2007
Heptane	< 5.0	5.0	< 21	21		10	8/18/2007
Hexachlorobutadiene	< 10	10	< 110	110		10	8/18/2007
Hexane	< 5.0	5.0	< 18	18		10	8/18/2007
m&p-Xylene	< 10	10	< 44	44		10	8/18/2007
Methyl tert-butyl ether	< 10	10	< 37	37		10	8/18/2007
Methylene chloride	< 5.0	5.0	< 18	18		10	8/18/2007
o-Xylene	< 5.0	5.0	< 22	22		10	8/18/2007
Propene (Propylene)	< 5.0	5.0	< 8.8	8.8		10	8/18/2007
Styrene	< 5.0	5.0	< 22	22		10	8/18/2007

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

* - Value exceeds Maximum Contaminant Level

 CLIENT:
 Mactec

 Lab Order:
 07080288

 Project:
 South Mesa/4972-07-2050.4.5

 Lab ID:
 07080288-02A

Date: 22-Aug-07

 Client Sample ID:
 INF

 Tag Number:
 0736

 Collection Date:
 8/7/2007 10:55:00 AM

 Matrix:
 AIR

	ppbv		μg /1	m ³			
Analyses	Result	Limit	Result	Limit	Qual	DF	Date Analyzed
VOLATILE ORGANICS IN AIR Tetrachloroethene	170	TO15 5.0	1200	34	D2	10	Analyst: J.J. 8/18/2007
Tetrahydrofuran	< 20	20	< 60	60		10	8/18/2007
Toluene	< 5.0	5.0	< 19	19		10	8/18/2007
trans-1,2-Dichloroethene	< 5.0	5.0	< 20	20		10	8/18/2007
trans-1,3-Dichloropropene	< 5.0	5.0	< 23	23		10	8/18/2007
Trichloroethene	< 5.0	5.0	< 28	28		10	8/18/2007
Trichlorofluoromethane(F-11)	< 5.0	5.0	< 28	28		10	8/18/2007
Trichlorotrifluoroethane(F-113)	< 5.0	5.0	< 39	39		10	8/18/2007
Vinyl acetate	< 5.0	5.0	< 18	18		10	8/18/2007
Vinyl chloride	< 5.0	5.0	< 13	13		10	8/18/2007
Surr: 4-Bromofluorobenzene	91.3 %REC	70-130	-	-		10	8/18/2007

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

* - Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Page 6 of 9

CLIENT:	Mactec
Lab Order:	07080288
Project:	South Mesa/4972-07-2050.4.5
Lab ID:	07080288-03A

Date: 22-Aug-07

Client Sample ID: VW-7A Tag Number: 0193 Collection Date: 8/7/2007 11:00:00 AM Matrix: AIR

	pp	obv	μg/	m ³			
Analyses	Result	Limit	Result	Limit	Qual	DF	Date Analyzed
VOLATILE ORGANICS IN AIR 1,1,1-Trichloroethane	< 5.0	TO15 5.0	< 28	28		10	Analyst: J.J. 8/17/2007
1,1,2,2-Tetrachloroethane	< 5.0	5.0	< 35	35		10	8/17/2007
1,1,2-Trichloroethane	< 5.0	5.0	< 28	28		10	8/17/2007
1,1-Dichloroethane	11	5.0	45	21		10	8/17/2007
1,1-Dichloroethene	< 5.0	5.0	< 20	20		10	8/17/2007
1,2,4-Trichlorobenzene	< 20	20	< 150	150		10	8/17/2007
1,2,4-Trimethylbenzene	< 5.0	5.0	< 25	25		10	8/17/2007
1,2-Dibromoethane	< 5.0	5.0	< 39	39		10	8/17/2007
1,2-Dichlorobenzene	< 5.0	5.0	< 31	31		10	8/17/2007
1,2-Dichloroethane	< 5.0	5.0	< 21	21		10	8/17/2007
1,2-Dichloropropane	< 5.0	5.0	< 24	24		10	8/17/2007
1,3,5-Trimethylbenzene	< 5.0	5.0	< 25	25		10	8/17/2007
1,3-Butadiene	< 5.0	5.0	< 11	11		10	8/17/2007
1,3-Dichlorobenzene	< 5.0	5.0	< 31	31		10	8/17/2007
1,4-Dichlorobenzene	< 5.0	5.0	< 31	31		10	8/17/2007
2,2,4-Trimethylpentane	< 5.0	5.0	< 24	24		10	8/17/2007
2-Butanone (MEK)	< 10	10	< 30	30		10	8/17/2007
2-Hexanone	< 10	10	< 42	42		10	8/17/2007
2-Propanol	< 20	20	< 50	50		10	8/17/2007
4-Ethyltoluene	< 5.0	5.0	< 22	22		10	8/17/2007
4-Methyl-2-pentanone	< 10	10	< 42	42		10	8/17/2007
Acetone	< 50	50	< 120	120		10	8/17/2007
Allyl chloride	< 5.0	5.0	< 8.0	8.0		10	8/17/2007
Benzene	< 5.0	5.0	< 16	16		10	8/17/2007
Benzyl chloride	< 20	20	< 110	110	V1L1	10	8/17/2007
Bromodichloromethane	< 5.0	5.0	< 34	34		10	8/17/2007

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

* - Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

 CLIENT:
 Mactec

 Lab Order:
 07080288

 Project:
 South Mesa/4972-07-2050.4.5

 Lab ID:
 07080288-03A

Date: 22-Aug-07

Client Sample ID: VW-7A Tag Number: 0193 Collection Date: 8/7/2007 11:00:00 AM Matrix: AIR

	pp	bv	μg/i	m³			
Analyses	Result	Limit	Result	Limit	Qual	DF	Date Analyzed
VOLATILE ORGANICS IN AIR Bromoethene(Vinyl Bromide)	< 5.0	TO15 5.0	< 11	11		10	Analyst: J.J. 8/17/2007
Bromoform	< 5.0	5.0	< 52	52		10	8/17/2007
Bromomethane	< 5.0	5.0	< 20	20		10	8/17/2007
Carbon disulfide	< 5.0	5.0	< 16	16		10	8/17/2007
Carbon tetrachloride	< 5.0	5.0	< 32	32		10	8/17/2007
Chlorobenzene	< 5.0	5.0	< 24	24		10	8/17/2007
Chloroethane	< 5.0	5.0	< 13	13		10	8/17/2007
Chloroform	7.3	5.0	36	25		10	8/17/2007
Chloromethane	< 5.0	5.0	< 10	10		10	8/17/2007
cis-1,2-Dichloroethene	< 5.0	5.0	< 20	20		10	8/17/2007
cis-1,3-Dichloropropene	< 5.0	5.0	< 23	23		10	8/17/2007
Cyclohexane	< 5.0	5.0	< 17	17		10	8/17/2007
Dibromochloromethane	< 5.0	5.0	< 43	43		10	8/17/2007
Dichlorodifluoromethane(F-12)	< 5.0	5.0	< 25	25		10	8/17/2007
Dichlorotetrafluoroethane(F-114)	< 5.0	5.0	< 36	36		10	8/17/2007
Ethyl Acetate	< 5.0	5.0	< 18	18		10	8/17/2007
Ethylbenzene	< 5.0	5.0	< 22	22		10	8/17/2007
Heptane	< 5.0	5.0	< 21	21		10	8/17/2007
Hexachlorobutadiene	< 10	10	< 110	110		10	8/17/2007
Hexane	< 5.0	5.0	< 18	18		10	8/17/2007
m&p-Xylene	< 10	10	< 44	44		10	8/17/2007
Methyl tert-butyl ether	< 10	10	< 37	37		10	8/17/2007
Methylene chloride	< 5.0	5.0	< 18	18		10	8/17/2007
o-Xylene	< 5.0	5.0	< 22	22		10	8/17/2007
Propene (Propylene)	< 5.0	5.0	< 8.8	8.8		10	8/17/2007
Styrene	< 5.0	5.0	< 22	22		10	8/17/2007

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

* - Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

CLIENT:	Mactec
Lab Order:	07080288
Project:	South Mesa/4972-07-2050.4.5
Lab ID:	07080288-03A

Date: 22-Aug-07

Client Sample ID: VW-7A Tag Number: 0193 Collection Date: 8/7/2007 11:00:00 AM Matrix: AIR

	ppb	v	μg /1	m ³			
Analyses	Result	Limit	Result	Limit	Qual	DF	Date Analyzed
VOLATILE ORGANICS IN AIR Tetrachloroethene	180	TO15 5.0	1200	34	D2	10	Analyst: J.J. 8/17/2007
Tetrahydrofuran	< 20	20	< 60	60		10	8/17/2007
Toluene	< 5.0	5.0	< 19	19		10	8/17/2007
trans-1,2-Dichloroethene	< 5.0	5.0	< 20	20		10	8/17/2007
trans-1,3-Dichloropropene	< 5.0	5.0	< 23	23		10	8/17/2007
Trichloroethene	< 5.0	5.0	< 28	28		10	8/17/2007
Trichlorofluoromethane(F-11)	5.3	5.0	30	28		10	8/17/2007
Trichlorotrifluoroethane(F-113)	< 5.0	5.0	< 39	39		10	8/17/2007
Vinyl acetate	< 5.0	5.0	< 18	18		10	8/17/2007
Vinyl chloride	< 5.0	5.0	< 13	13		10	8/17/2007
Surr: 4-Bromofluorobenzene	84.7 %REC	70-130	-	-		10	8/17/2007

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

* - Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Page 9 of 9

a di	erote vision of Aerot	Aerotech Environme a division of Aerotech Laboratories, Inc.		ntal Laboratories	es	Date: 20-Aug-07
CLIENT: Work Order:	Mactec 07080288				ANALYTICAL QC SUMMARY REPORT	UMMARY REPORT
Project:	South Mesa	South Mesa/4972-07-2050.4.5			TestCode:	T015
Sample ID: MB-R90190	0190	SampType: MBLK	TestCode: T015	Units: ppbv	Prep Date:	RunNo: 90190
Client ID:		Batch ID: R90190	TestNo: TO15		Analysis Date: 8/17/2007	SeqNo: 1068108
Analyte		Result	PQL SPK value	SPK Ref Val %REC	LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
1,1,1-Trichloroethane	e	<0.50	0.50			
1,1,2,2-Tetrachloroethane	sthane	<0.50	0.50			
1,1,2-Trichloroethane	le	<0.50	0.50			
1,1-Dichloroethane		<0.50	0.50			
1,1-Dichloroethene		<0.50	0.50			
1,2,4-Trichlorobenzene	ene	<2.0	2.0			
1,2,4-Trimethylbenzene	ene	<0.50	0.50			
1,2-Dibromoethane		<0.50	0.50			
1,2-Dichlorobenzene	0	<0.50	0.50			
1,2-Dichloroethane		<0.50	0.50			
1,2-Dichloropropane		<0.50	0.50			
1,3,5-Trimethylbenzene	ene	<0.50	0.50			
1,3-Butadiene		<0.50	0.50			
1,3-Dichlorobenzene	0	<0.50	0.50			
1,4-Dichlorobenzene	0	<0.50	0.50			
2,2,4-Trimethylpentane	ane	<0.50	0.50			
2-Butanone (MEK)		<1.0	1.0			
2-Hexanone		<1.0	1.0			
2-Propanol		<2.0	2.0		*	
4-Ethyltoluene		<0.50	0.50			
4-Methyl-2-pentanone	ЭС	<1.0	1.0			
Acetone		<5.0	5.0			
Allyl chloride		<0.50	0.50			
Benzene		<0.50	0.50			
Benzyl chloride		<2.0	2.0			V1
Qualifiers: *	Value exceeds 1	Value exceeds Maximum Contaminant Level	ND Not D	ND Not Detected at the Reporting Limit		

Page 1 of 8

Aerot a division of Aer	Aerotech Environ a division of Aerotech Laboratories, Inc.	Aerotech Environmental Laboratories a division of Aerotech Laboratories, Inc.	ries	Date: 20-Aug-07
CLIENT: Mactec Work Order: 07080288			ANALYTICAL QC SUMMARY REPORT	MMARY REPORT
	South Mesa/4972-07-2050.4.5		TestCode: T015	.015
Sample ID: MB-R90190	SampType: MBLK	TestCode: TO15 Units: ppbv	Prep Date:	RunNo: 90190
Client ID:	Batch ID: R90190	TestNo: T015	Analysis Date: 8/17/2007	SeqNo: 1068108
Analyte	Result	PQL SPK value SPK Ref Val %	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Bromodichloromethane	<0.50	0.50		
Bromoethene(Vinyl Bromide)	<0.50	0.50		
Bromoform	<0.50	0.50		
Bromomethane	<0.50	0.50		
Carbon disulfide	<0.50	0.50		
Carbon tetrachloride	<0.50	0.50		
Chlorobenzene	<0.50	0.50		
Chloroethane	<0.50	0.50		
Chloroform	<0.50	0.50		
Chloromethane	<0.50	0.50		
cis-1,2-Dichloroethene	<0.50	0.50		
cis-1,3-Dichloropropene	<0.50	0.50		
Cyclohexane	<0.50	0.50		
Dibromochloromethane	<0.50	0.50		
Dichlorodifluoromethane(F-12)	<0.50	0.50		
Dichlorotetrafluoroethane(F-114)		0.50		
Ethyl Acetate	<0.50	0.50		
Ethylbenzene	<0.50	0.50		
Heptane	<0.50	0.50		
Hexachlorobutadiene	<1.0	1.0		
Hexane	<0.50	0.50		
m&p-Xylene	<1.0	1.0		
Methyl tert-butyl ether	<1.0	1.0		
Methylene chloride	<0.50	0.50		
o-Xylene	<0.50	0.50		
Qualifiers: * Value exceed	Value exceeds Maximum Contaminant Level	ND Not Detected at the Reporting Limit	mit	

Page 2 of 8

Aerot a division of Aer	Aerotech Environme a division of Aerotech Laboratories, Inc.	Imer	I lal I	ntal Laboratories	orie	S		Date: 2(Date: 20-Aug-07	
CLIENT: Mactec Work Order: 07080288						ANAL	ANALYTICAL QC SUMMARY REPORT	UMMAR	Y REPC	IRT
	South Mesa/4972-07-2050.4.5						TestCode:	T015		
Sample ID: MB-R90190	SampType: MBLK	TestCode: T015	: T015	Units: ppbv		Prep Date:		RunNo: 90190	190	
Client ID:	Batch ID: R90190	TestNo	TestNo: T015			Analysis Date:	8/17/2007	SeqNo: 1068108	58108	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit F	HighLimit RPD Ref Val	%RPD	RPDLimit	Qual
Propene (Propylene)	<0.50	0.50								
Styrene	<0.50	0.50								
Tetrachloroethene	<0.50	0.50								
Tetrahydrofuran	<2.0	2.0								
Toluene	<0.50	0.50								
trans-1,2-Dichloroethene	<0.50	0.50								
trans-1,3-Dichloropropene	<0.50	0.50								
Trichloroethene	<0.50	0.50								
Trichlorofluoromethane(F-11)	<0.50	0.50								
Trichlorotrifluoroethane(F-113)	<0.50	0.50								
Vinyl acetate	<0.50	0.50								
Vinyl chloride	<0.50	0.50								
Surr: 4-Bromofluorobenzene	8.870	0.50	10	0	88.7	20	130			
Sample ID: LCS-R90190	SampType: LCS	TestCode	le: T015	Units: ppbv		Prep Date:		RunNo: 90190	06	
Client ID:	Batch ID: R90190	TestNo	lo: T015			Analysis Date:	: 8/17/2007	SeqNo: 1068109	38109	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit F	HighLimit RPD Ref Val	%RPD	RPDLimit	Qual
1,1,1-Trichloroethane	8.340	0.50	10	0	83.4	65	135			
1,1,2,2-Tetrachloroethane	8.950	0.50	10	0	89.5	65	135			
1,1,2-Trichloroethane	8.940	0.50	10	0	89.4	65	135			
1,1-Dichloroethane	8.880	0.50	10	0	88.8	65	135			
1,1-Dichloroethene	8.260	0.50	10	0	82.6	65	135			
1,2,4-Trichlorobenzene	9.070	2.0	10	0	90.7	65	135			
1,2,4-Trimethylbenzene	8.860	0.50	10	0	88.6	65	135			
Qualifiers: * Value exceed	Value exceeds Maximum Contaminant Level		ND Not Det	Not Detected at the Reporting Limit	g Limit					

Page 3 of 8

	ANALYTICAL QC SUMMARY REPORT	TestCode: T015	RunNo: 90190	8/17/2007 SeqNo: 1068109	HighLimit RPD Ref Val %RPD RPDLimit Qual	135	135	135	135	135	135	135	135	135	135	135	135	135	135	135	135	135	135 L1	135	135	135	135	135	135	135	
	ANALY'		Prep Date:	Analysis Date:	LowLimit Hig	65	65	65	65	65	65	65	65	65	65	65	65	65	65	65	65	65	65	65	65	65	65	65	65	65	
			~	4	%REC	90.2	84.6	81.6	92.3	88.8	96.6	86.7	86.3	95.2	92.3	91.6	103	90.1	95.2	95.1	94.7	88.9	154	90.3	108	93.4	99.5	93.7	89.1	92.4	ing Limit
			Units: ppbv		SPK Ref Val	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Not Detected at the Reporting Limit
			TestCode: T015	TestNo: T015	SPK value	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	ND Not De
			TestCod	TestN	PQL	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	1.0	1.0	2.0	0.50	1.0	5.0	0.50	0.50	2.0	0.50	0.50	0.50	0.50	0.50	0.50	0.50	10
a division of Aerotech Laboratories, Inc.		South Mesa/4972-07-2050.4.5	SampType: LCS	Batch ID: R90190	Result	9.020	8.460	8.160	9.230	8.880	9.660	8.670	8.630	9.520	9.230	9.160	10.32	9.010	9.520	9.510	9.470	8.890	15.35	9.030	10.83	9.340	9.950	9.370	8.910	9.240	Value exceeds Maximum Contaminant Level
a division of Aero	CLIENT: Mactec		Sample ID: LCS-R90190	Client ID:	Analyte	1,2-Dibromoethane	1,2-Dichlorobenzene	1,2-Dichloroethane	1,2-Dichloropropane	1,3,5-Trimethylbenzene	1,3-Butadiene	1,3-Dichlorobenzene	1,4-Dichlorobenzene	2,2,4-Trimethylpentane	2-Butanone (MEK)	2-Hexanone	2-Propanol	4-Ethyltoluene	4-Methyl-2-pentanone	Acetone	Allyl chloride	Benzene	Benzyl chloride	Bromodichloromethane	Bromoethene(Vinyl Bromide)	Bromoform	Bromomethane	Carbon disulfide	Carbon tetrachloride	Chlorobenzene	Qualifiers: * Value exceeds

Date: 20-Aug-07

A. a div	erote	Aerotech Environmental Laboratories a division of Aerotech Laboratories, Inc.	nme	ntal	Laborat	orie	S		Date: 20-Aug-07	lug-07	
CLIENT: Work Order:	Mactec 07080288						ANAL	YTICAL QC	ANALYTICAL QC SUMMARY REPORT	REPOI	RT
Project:	South Mesa	South Mesa/4972-07-2050.4.5						TestCode:	e: T015		
Sample ID: LCS-R90190	0190	SampType: LCS	TestCoc	TestCode: T015	Units: ppbv		Prep Date:	:0	RunNo: 90190		
Client ID:		Batch ID: R90190	Test	TestNo: T015			Analysis Date:	e: 8/17/2007	SeqNo: 1068109	60	
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RPD Ref Val	%RPD	RPDLimit 0	Qual
Chloroethane		9.680	0.50	10	0	96.8	65	135			
Chloroform		8.370	0.50	10	0	83.7	65	135			
Chloromethane		9.340	0.50	10	0	93.4	65	135			
cis-1,2-Dichloroethene	Je	9.040	0.50	10	0	90.4	65	135			
cis-1,3-Dichloropropene	ene	9.200	0.50	10	0	92.0	65	135			
Cyclohexane		9.110	0.50	10	0	91.1	65	135			
Dibromochloromethane	ine	9.080	0.50	10	0	90.8	65	135			
Dichlorodifluoromethane(F-12)	ane(F-12)	8.360	0.50	10	0	83.6	65	135			
Dichlorotetrafluoroethane(F-114)	hane(F-114)	9.390	0.50	10	0	93.9	65	135			
Ethyl Acetate		9.630	0.50	10	0	96.3	65	135			
Ethylbenzene		9.250	0.50	10	0	92.5	65	135			
Heptane		9.140	0.50	10	0	91.4	65	135			
Hexachlorobutadiene		8.700	1.0	10	0	87.0	65	135			
Hexane		9.560	0.50	10	0	92.6	65	135			
m&p-Xylene		18.59	1.0	20	0	93.0	65	135			
Methyl tert-butyl ether	Ļ	8.650	1.0	10	0	86.5	65	135			
Methylene chloride		8.900	0.50	10	0	89.0	65	135			
o-Xylene		9.010	0.50	10	0	90.1	65	135			
Propene (Propylene)		9.010	0.50	10	0	90.1	65	135			
Styrene		9.090	0.50	10	0	90.9	65	135			
Tetrachloroethene		8.300	0.50	10	0	83.0	65	135			
Tetrahydrofuran		9.280	2.0	10	0	92.8	65	135			
Toluene		9.090	0.50	10	0	90.9	65	135			
trans-1,2-Dichloroethene	ene	9.160	0.50	10	0	91.6	65	135			
trans-1,3-Dichloropropene	pene	9.480	0.50	10	0	94.8	65	135			
Qualifiers: *	Value exceeds	Value exceeds Maximum Contaminant Level		ND Not D	Not Detected at the Reporting Limit	g Limit					

Page 5 of 8

Aerote a division of Aer	Aerotech Environmental Laboratories a division of Aerotech Laboratories, Inc.	men	tal	-aborat	orie	S			Date: 20	Date: 20-Aug-07	
CLIENT: Mactec Work Order: 07080288						ANAI	'YTIC	ANALYTICAL QC SUMMARY REPORT	JMMAR	Y REPO)RT
	South Mesa/4972-07-2050.4.5		ÿ					TestCode:	T015		
Sample ID: LCS-R90190	SampType: LCS	TestCode: T015	r015	Units: ppbv		Prep Date:	.e.		RunNo: 90190	190	
Client ID:	Batch ID: R90190	TestNo: T015	r015			Analysis Date:	te: 8/17/2007	07	SeqNo: 1068109	38109	
Analyte	Result	PQL SI	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Trichloroethene	8.770	0.50	10	0	87.7	65	135				
Trichlorofluoromethane(F-11)	9.560	0.50	10	0	92.6	65	135				
Trichlorotrifluoroethane(F-113)	9.100	0.50	10	0	91.0	65	135				
Vinyl acetate	11.12	0.50	10	0	111	65	135				
Vinyl chloride	9.460	0.50	10	0	94.6	65	135				
Surr: 4-Bromofluorobenzene	8.890	0.50	10	0	88.9	70	130				
Sample ID: LCSD-R90190	SampType: LCSD	TestCode: 7	T015	Units: ppbv		Prep Date:	:e:		RunNo: 90190	06	
Client ID:	Batch ID: R90190	TestNo: 7	T015			Analysis Date:	e: 8/17/2007	07	SeqNo: 1068110	8110	
Analyte	Result	PQL SI	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,1,1-Trichloroethane	8.330	0.50	10	0	83.3	65	135	8.340	0.120	25	
1,1,2,2-Tetrachloroethane	9.020	0.50	10	0	90.2	65	135	8.950	0.779	25	
1,1,2-Trichloroethane	8.940	0.50	10	0	89.4	65	135	8.940	0	25	
1,1-Dichloroethane	8.910	0.50	10	0	89.1	65	135	8.880	0.337	25	
1,1-Dichloroethene	8.250	0.50	10	0	82.5	65	135	8.260	0.121	25	
1,2,4-Trichlorobenzene	9.230	2.0	10	0	92.3	65	135	9.070	1.75	25	
1,2,4-Trimethylbenzene	8.860	0.50	10	0	88.6	65	135	8.860	0	25	
1,2-Dibromoethane	9.050	0.50	10	0	90.5	65	135	9.020	0.332	25	
1,2-Dichlorobenzene	8.470	0.50	10	0	84.7	65	135	8.460	0.118	25	
1,2-Dichloroethane	8.110	0.50	10	0	81.1	65	135	8.160	0.615	25	
1,2-Dichloropropane	9.270	0.50	10	0	92.7	65	135	9.230	0.432	25	
1,3,5-Trimethylbenzene	8.790	0.50	10	0	87.9	65	135	8.880	1.02	25	
1,3-Butadiene	9.660	0.50	10	0	96.6	65	135	9.660	0	25	
1,3-Dichlorobenzene	8.630	0.50	10	0	86.3	65	135	8.670	0.462	25	
Qualifiers: * Value exceed	Value exceeds Maximum Contaminant Level	ND		Not Detected at the Reporting Limit	g Limit			•			

Page 6 of 8

1
0
Ţ
10
0
-0
-
÷,
eni
-
onme
0
111
U
U
P
0

es

Date: 20-Aug-07

a division of Aerotech Laboratories, Inc.

Qual ANALYTICAL QC SUMMARY REPORT 5 RPDLimit SeqNo: 1068110 RunNo: 90190 %RPD 1.04 1.86 1.19 0.772 0.780 0.838 2.45 1.18 0.302 0.931 0.527 0.451 0.111 0.556 0.750 1.02 0.434 1.33 0.239 0.427 0.221 0.329 0.768 TestCode: T015 9.520 9.230 9.160 10.32 9.010 9.520 9.510 9.470 8.890 15.35 9.030 10.83 9.340 9.950 9.370 8.910 9.240 9.680 8.370 9.340 9.040 9.110 **RPD Ref Val** 8.630 9.200 9.080 Analysis Date: 8/17/2007 HighLimit 35 35 35 135 35 35 135 135 135 135 135 135 135 135 135 135 35 135 135 135 135 135 135 135 135 Prep Date: LowLimit 35 65 %REC 85.5 90.6 92.7 95.2 95.9 95.2 88.5 90.4 92.3 93.0 92.0 83.5 93.8 89.4 99.2 88.2 98.1 90.2 92.0 96.2 157 108 91.4 91.5 104 Units: ppbv 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 SPK Ref Val 0 0 SPK value 10 10 10 10 10 1010 10 10 TestNo: T015 estCode: T015 PQL 0.50 0.50 1.0 1.0 2.0 0.50 1.0 5.0 0.50 0.50 2.0 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 South Mesa/4972-07-2050.4.5 Batch ID: R90190 Result 9.620 9.060 9.270 10.40 8.940 9.520 9.590 9.520 15.73 9.040 9.810 8.850 10.77 9.230 9.920 9.300 8.820 9.200 9.380 9.020 9.200 8.350 9.140 8.550 9.150 SampType: LCSD 07080288 Mactec Bromoethene(Vinyl Bromide) Sample ID: LCSD-R90190 cis-1,3-Dichloropropene 2,2,4-Trimethylpentane Bromodichloromethane Dibromochloromethane 4-Methyl-2-pentanone cis-1,2-Dichloroethene 1,4-Dichlorobenzene Carbon tetrachloride 2-Butanone (MEK) Work Order: Carbon disulfide Benzyl chloride Bromomethane Chloromethane Chlorobenzene 4-Ethyltoluene Chloroethane 2-Hexanone Allyl chloride Cyclohexane CLIENT: Chloroform 2-Propanol Bromoform Project: Benzene Client ID: Acetone Analyte

Not Detected at the Reporting Limit

ND

Value exceeds Maximum Contaminant Level

*

Qualifiers:

Page 7 of 8

Aerotech Environmental Laboratories

a division of Aerotech Laboratories, Inc.

Qual ANALYTICAL QC SUMMARY REPORT RPDLimit SeqNo: 1068110 RunNo: 90190 %RPD 0.216 0.240 1.14 0.546 4.95 0.445 0.556 0.773 0.847 0.110 0.109 0.526 0.572 0.314 0.632 0.427 0.524 0.431 0.224 0.449 0.921 0 TestCode: T015 9.390 9.630 9.250 9.140 8.700 9.560 18.59 8.650 8.900 9.010 9.010 9.090 8.300 9.280 9.090 9.160 9.480 8.770 9.560 9.100 11.12 **RPD Ref Val** 9.460 8.360 8.890 Analysis Date: 8/17/2007 HighLimit 35 35 135 35 35 135 135 135 135 135 135 135 135 135 135 135 35 135 35 35 35 35 30 Prep Date: LowLimit 35 65 %REC 93.5 97.4 91.9 82.8 92.6 87.3 89.2 89.7 89.6 90.2 82.3 92.8 90.8 95.3 83.4 92.7 95.1 91.7 87.2 95.3 91.0 92.5 95.2 112 Units: ppbv 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 000000 SPK Ref Val SPK value FestCode: T015 TestNo: T015 0.50 0.50 0.50 1.0 0.50 1.0 1.0 0.50 0.50 0.50 0.50 0.50 2.0 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 PQL 0.50 South Mesa/4972-07-2050.4.5 Batch ID: R90190 9.190 8.280 9.510 8.970 Result 9.740 9.270 18.51 8.730 8.920 8.960 9.020 8.230 9.280 9.080 9.170 9.530 8.720 9.530 9.350 9.100 11.17 9.520 8.340 9.250 SampType: LCSD 07080288 Dichlorotetrafluoroethane(F-114) Dichlorodifluoromethane(F-12) Surr: 4-Bromofluorobenzene Mactec Frichlorotrifluoroethane(F-113) **Frichlorofluoromethane**(F-11) Sample ID: LCSD-R90190 trans-1,3-Dichloropropene trans-1,2-Dichloroethene Methyl tert-butyl ether Hexachlorobutadiene Propene (Propylene) Methylene chloride Tetrachloroethene Work Order: Tetrahydrofuran Trichloroethene Ethylbenzene Ethyl Acetate Vinyl chloride Vinyl acetate CLIENT: m&p-Xylene Project: o-Xylene Client ID Heptane Styrene **Foluene** Hexane Analyte

Page 8 of 8

Not Detected at the Reporting Limit

ND

Value exceeds Maximum Contaminant Level

*

Qualifiers:

	ry Nun			098	28D.	288				Co		ect Chec ted By			A J	1	8/1
Client Nar	me:	Mac		-						-Da	te/Tin	ne Rec'o	: 8/2	102		in F	3y: 1
Matrix: G	AD So	il Aq	ueou	s Oil	l Slu	idge	Solid	WW	D₩			lame:	Mark	H			He
Temperatu	ire		Cooler	r#1 #	Amb	°C	Cooler	#2		°CIC	Cooler	#3	°C		1		
Temp. Rea	ad With			omete			Thermo					ometer	IR ··		ooler		r`· IR
Client or E	M mode	011/070	ofto												-		
Client or P	IVI Made	awale	OILE	inp. o	utorr	ange?	Yes	No	- (Circle	one:	Blue Ic	e We	et l'ce	· Ne	t Pres	sent)
				•				Ye	es No		ot Pres	ent			.S	oil Co	ntainers
Shipping co	ontainer/c	ooler in	good	d condi	tion?				X				1				eve
Custody se	als intact	on ship	ping	contair	ner/coc	oler?					K						r
Custody se	als intact	on sam	ple c	ontaine	ers?					·	×		an the				1. H. P. C.
Chain of Cu	ustody pre	esent ar	nd rel	inquish	ed/rec	eived	properly	?	R								ag
Chain of Cu	ustody ag	rees wi	th sar	mple la	bels?				x					0.5			amplers_
Samples in	proper co	ontainer	rs/bot	tles?		<u></u>			ĸ								astic
Sample.cor	ntainers ir	ntact?							K								
All samples				<u> </u>		·· ·	-		×	**5	See Corr	ments abo	ut Chlorin	ne and	pН	-	
Is there suff									X							a fara a	
40mL vials	for volatil	es & SC)Cs r	eceived	d with a	zero h	eadspac	e?		19. 1	t	e i state		r k	÷., ., :		
Total number	er of bottl	es rece	ived:	. <u></u>	3	S.		IH s	sample	e media	a:	IL Ca	nIS	te		÷ +	
If applicable	- how ma	any can	nlo h	attlas			£	-, -						,			
ii applicable		any San	ihie n	oues v	were si	nipped	from AE	EL-IUC	son?				N/	A	2		
Number of co	ntainers re	ceived by	prese	rvative a	ind by s	ample n	umber:(I)	f more t	han 10	sample	1	c'd, please	continue	e on se	y parate	sheet(s)).
Number of co Preservative	ntainers re	ceived by	prese 2	rvative a	vere si und by si 4	nipped ample n 5	umber:(I)	L-IUC fmoret 7	<u>son?</u> han 10	sample:	s are re 10	Any No	continue o respon	se mu	st be d	etailed	in the
<i>Number of co</i> Preservative A-General	ntainers re	ceived by	prese	rvative a	ind by s	ample n	umber:(I)	f more t	han 10	sample	1	*Any <u>No</u> commen immedia	continue respon ts sectio tely to d	se mu n. Co leterm	st be d ontact t line ho	etailed the PM w to pi	in the
Number of co Preservative A-General B-HNO3	ntainers re	ceived by	prese	rvative a	ind by s	ample n	umber:(I)	f more t	han 10	sample	1	* Any <u>No</u> commen immedia Refer to	continue o respon ts sectio tely to d SOP 11	se mu n. Co leterm	st be d ontact i line ho and con	etailed the PM w to pi	in the
Number of co Preservative A-General B-HN03 C-H2S04	ntainers re	ceived by	prese	rvative a	ind by s	ample n	umber:(I)	f more t	han 10	samples	1	Any <u>No</u> commen immedia Refer to addition	continue respon ts sectio tely to d SOP 11 al space	se mu n. Co leterm -001 a is nee	st be d ontact i line ho and con ided.	etailed he PM w to pr ntinue o	in the roceed. on back
Number of co Preservative A-General B-HN03 C-H2S04 D-HCI	ntainers re	ceived by	prese	rvative a	ind by s	ample n	umber:(I)	f more t	han 10	samples	1	-*Any <u>No</u> commen immedia Refer to addition: **The h	continue respon- ts sectio tely to d SOP 11- al space	e on see se mu n. Co leterm -001 a is nee me fo	st be d ontact i line ho and con eded. r pH a	etailed the PM w to pr ntinue of nd Tota	in the roceed. on back al Residi
Number of co Preservative A-General B-HN03 C-H2S04 D-HCI E-Na2S203	ntainers re	ceived by	prese	rvative a	ind by s	ample n	umber:(I)	f more t	8	samples	1	*Any <u>No</u> commen immedia Refer to addition **The h Chlorine accurate	continue or respon- ts sectio tely to d SOP 11- al space olding ti analysis results,	e on see se mu n. Co leterm -001 a is nee me fo s is in the pl	st be d ontact t ine ho and con ded. r pH a media H and	etailed the PM w to protinue of nd Tota tte. Fo Total R	in the roceed. on back al Residu r the mo
Number of co Preservative A-General B-HN03 C-H2S04 D-HCI E-Na2S203 F-Na0H	ntainers re	ceived by	prese	rvative a	ind by s	ample n	umber:(I)	f more t	8	samples	1	*Any <u>No</u> commen immedia Refer to addition: **The h Chlorine accurate Chlorine	continue orespon ts sectio tely to d SOP 11 al space olding ti analysis results, should	e on se se mu n. Co leterm -001 a is nee me fo s is in the pl be tal	st be d ontact t ine ho and con ded. r pH a media H and	etailed the PM w to protinue of nd Tota tte. Fo Total R	in the roceed. on back al Residu r the mo
Number of co Preservative A-General B-HN03 C-H2S04 D-HCl E-Na2S203 F-Na0H G-Sulfide	ntainers re	ceived by	prese	rvative a	ind by s	ample n	umber:(I)	f more t	8	samples	1	*Any <u>No</u> commen immedia Refer to addition **The h Chlorine accurate	continue orespon ts sectio tely to d SOP 11 al space olding ti analysis results, should	e on se se mu n. Co leterm -001 a is nee me fo s is in the pl be tal	st be d ontact t ine ho and con ded. r pH a media H and	etailed the PM w to protinue of nd Tota tte. Fo Total R	in the roceed. on back al Residu r the mo
Number of co Preservative A-General B-HN03 C-H2S04 D-HCl E-Na2S203 F-Na0H G-Sulfide H-Na Sulfite	ntainers re	ceived by	prese	rvative a	ind by s	ample n	umber:(I)	f more t	8	samples	1	*Any <u>Na</u> commen immedia Refer to addition **The h Chlorine accurate Chlorine minutes	continue orespon ts sectio tely to d SOP 11 al space olding ti analysis results, should of samp Simple b	<i>e on se</i> se mu n. Co leterm -001 a is nee me fo s is in the pl be tal ling.	st be d ontact t line ho and con- ded. r pH a umedia H and cen in t only t	etailed the PM w to protinue of nd Tot. tte. Fo Total R the fiel	in the roceed. on back al Residu r the mo esidual d within ed when
Number of co Preservative A-General B-HN03 C-H2S04 D-HCl E-Na2S203 F-Na0H G-Sulfide H-Na Sulfite	ntainers re	ceived by	prese	rvative a	ind by s	ample n	umber:(I)	f more t	8	samples	1	*Any <u>Na</u> commen immedia Refer to addition **The h Chlorine accurate Chlorine minutes ***The there is o	<u>continue</u> <u>p</u> respon ts sectio tely to d SOP 11 al space blding ti analysis results, should of samp Simple to bone bottl	<i>e on se</i> se mu n. Co leterm -001 a is nee me fo s is in the pl be tal ling.	st be d ontact t line ho and con- ded. r pH a umedia H and cen in t only t	etailed the PM w to protinue of nd Tot. tte. Fo Total R the fiel	in the roceed. on back al Residu r the mo esidual d within ed when
Number of co Preservative A-General B-HN03 C-H2S04 D-HCI E-Na2S203 F-Na0H G-Sulfide H-Na Sulfite I-MCAA J-Methanol	ntainers re	ceived by	prese	rvative a	ind by s	ample n	<i>umber:(1)</i> 6	f more t	8	samples	1	*Any <u>Na</u> commen immedia Refer to addition **The h Chlorine accurate Chlorine minutes	<u>continue</u> <u>p</u> respon ts sectio tely to d SOP 11 al space blding ti analysis results, should of samp Simple to bone bottl	<i>e on se</i> se mu n. Co leterm -001 a is nee me fo s is in the pl be tal ling.	st be d ontact t line ho and con- ded. r pH a umedia H and cen in t only t	etailed the PM w to protinue of nd Tot. tte. Fo Total R the fiel	in the roceed. on back al Residu r the mo esidual d within ed when
Number of co Preservative A-General B-HN03 C-H2S04 D-HCI E-Na2S203 F-Na0H G-Sulfide H-Na Sulfite I-MCAA J-Methanol K-HAA	ntainers re	ceived by	prese	rvative a	ind by s	ample n	<i>umber:(1)</i> 6	f more t	8	samples	1	*Any <u>Na</u> commen immedia Refer to addition **The h Chlorine accurate Chlorine minutes ***The there is o	<u>continue</u> <u>p</u> respon ts sectio tely to d SOP 11 al space blding ti analysis results, should of samp Simple to bone bottl	<i>e on se</i> se mu n. Co leterm -001 a is nee me fo s is in the pl be tal ling.	st be d ontact t line ho and con- ded. r pH a umedia H and cen in t only t	etailed the PM w to protinue of nd Tot. tte. Fo Total R the fiel	in the roceed. on back al Residu r the mo esidual d within ed when
Number of co Preservative A-General B-HN03 C-H2S04 D-HCI E-Na2S203 F-NaOH G-Sulfide H-Na Sulfite I-MCAA J-Methanol K-HAA L-Other Water-pH a	Simple**** Simple****	2 upon r	2 2 ecceip	rvative a 3	Yes		No	<i>f</i> more <i>t</i> 7	8	sample: 9	1	*Any <u>Na</u> commen immedia Refer to addition **The h Chlorine accurate Chlorine minutes ***The there is o	<u>continue</u> <u>p</u> respon ts sectio tely to d SOP 11 al space blding ti analysis results, should of samp Simple to bone bottl	<i>e on se</i> se mu n. Co leterm -001 a is nee me fo s is in the pl be tal ling.	st be d ontact t line ho and con- ded. r pH a umedia H and cen in t only t	etailed the PM w to protinue of nd Tot. tte. Fo Total R the fiel	in the roceed. on back al Residu r the mo esidual d within ed when
Number of co Preservative A-General B-HN03 C-H2S04 D-HCI E-Na2S203 F-NaOH G-Sulfide H-Na Sulfite H-Na Sulfite J-MCAA J-Methanol K-HAA L-Other Water-pH a	Simple**** Simple****	2 upon r	2 2 ecceip	rvative a 3	Yes		No	<i>f</i> more <i>t</i> 7	han 10 8		10	*Any <u>Na</u> commen immedia Refer to addition **The h Chlorine accurate Chlorine minutes ***The there is o	continue orespon ts sectio tely to d SOP 11 al space olding ti analysis results, should of samp Simple to one bottl ets.	e on se se mu n. Co leterm -001 i is nee s is in the pl be tal ling.	st be d ontact t line ho and con- ded. r pH a umedia H and cen in t only t preser	etailed the PM w to pro- ntinue of nd Tota tte. Fo Total R the fiel- to be us vative i	in the roceed. on back al Residu r the mo .esidual d within ed when in equal
Number of co Preservative A-General B-HN03 C-H2S04 D-HCI E-Na2S203 F-Na0H G-Sulfide H-Na Sulfite I-MCAA J-Methanol K-HAA L-Other Water-pH and Preservation	Simple**** Simple****	2 upon r	2 2 ecceip	rvative a 3	Yes		No	<i>f</i> more <i>t</i> 7	han 10 8		10	*Any <u>No</u> commen immedia Refer to addition: **The h Chlorine accurate Chlorine minutes ***The there is o sample s	continue orespon ts sectio tely to d SOP 11 al space olding ti analysis results, should of samp Simple to one bottl ets.	e on se se mu n. Co leterm -001 i is nee s is in the pl be tal ling.	st be d ontact t line ho and con- ded. r pH a umedia H and cen in t only t preser	etailed the PM w to pro- ntinue of nd Tota tte. Fo Total R the fiel- to be us vative i	in the roceed. on back al Residu r the mo .esidual d within ed when in equal
Number of co Preservative A-General B-HN03 C-H2S04 D-HCI E-Na2S203 F-Na0H G-Sulfide H-Na Sulfite I-MCAA J-Methanol K-HAA L-Other Water-pH a Preserva Metals	Simple**** Simple****	upon r	2 2 ecceip	rvative a 3	Yes		No	<i>f</i> more <i>t</i> 7	han 10 8		10	*Any <u>No</u> commen immedia Refer to addition: **The h Chlorine accurate Chlorine minutes ***The there is o sample s	continue orespon ts sectio tely to d SOP 11 al space olding ti analysis results, should of samp Simple to one bottl ets.	e on se se mu n. Co leterm -001 i is nee s is in the pl be tal ling.	st be d ontact t line ho and con- ded. r pH a umedia H and cen in t only t preser	etailed the PM w to pro- ntinue of nd Tota tte. Fo Total R the fiel- to be us vative i	in the roceed. on back al Residu r the mo .esidual d within ed when in equal
Number of co Preservative A-General B-HN03 C-H2S04 D-HCl E-Na2S203 F-NaOH G-Sulfide H-Na Sulfite I-MCAA J-Methanol K-HAA L-Other Water-pH a Preserva Metals	Simple**** Simple****	upon r pH p <2	2 2 ecceip	rvative a 3	Yes		No	<i>f</i> more <i>t</i> 7	han 10 8		10	*Any <u>No</u> commen immedia Refer to addition: **The h Chlorine accurate Chlorine minutes ***The there is o sample s	continue orespon ts sectio tely to d SOP 11 al space olding ti analysis results, should of samp Simple to one bottl ets.	e on se se mu n. Co leterm -001 i is nee s is in the pl be tal ling.	st be d ontact t line ho and con- ded. r pH a umedia H and cen in t only t preser	etailed the PM w to pro- ntinue of nd Tota tte. Fo Total R the fiel- to be us vative i	in the roceed. on back al Residu r the mo .esidual d within ed when in equal
Number of co Preservative A-General B-HN03 C-H2S04 D-HCl E-Na2S203 F-Na0H G-Sulfide H-Na Sulfite I-MCAA J-Methanol K-HAA L-Other Water-pH au Preserva Meta1s H ₂ SO ₄	simple**** Simple**** 3 cceptable five &	2 2 2 2	2 2 ecceip	rvative a 3	Yes		No	<i>f</i> more <i>t</i> 7	han 10 8		10	*Any <u>No</u> commen immedia Refer to addition: **The h Chlorine accurate Chlorine minutes ***The there is o sample s	continue orespon ts sectio tely to d SOP 11 al space olding ti analysis results, should of samp Simple to one bottl ets.	e on se se mu n. Co leterm -001 i is nee s is in the pl be tal ling.	st be d ontact t line ho and con- ded. r pH a umedia H and cen in t only t preser	etailed the PM w to pro- ntinue of nd Tota tte. Fo Total R the fiel- to be us vative i	in the roceed. on back al Residu r the mo .esidual d within ed when in equal

a difference

Aerotech Environmental Laboratories

a division of Aerotech Laboratories, Inc.

a division of Aerotech Laboratories, Inc.

Tuesday, August 28, 2007

Jim Clarke Mactec 3630 East Wier Avenue Phoenix, AZ 85040

TEL: (602) 437-0250 FAX (602) 437-3675

RE: Southwest Mesa/4972-07-2050 4.5

Dear Jim Clarke:

Order No.: 07080720

Aerotech Environmental Laboratories received 2 sample(s) on 8/17/2007 for the analyses presented in the following report.

This report includes the following information:

- Case Narrative.
- Analytical Report: includes test results, report limit (Limit), any applicable data qualifier (Qual), units, dilution factor (DF), and date analyzed.
- QC Summary Report.

This communication is intended only for the individual or entity to whom it is directed. It may contain information that is privileged, confidential, or otherwise exempt from disclosure under applicable law. Dissemination, distribution, or copying of this communication by anyone other than the intended recipient, or a duly designated employee or agent of such recipient, is prohibited. If you have received this communication in error, please notify us immediately and destroy this message and all attachments thereto. If you have any questions regarding these test results, please do not hesitate to call.

Sincerely,

Tim Trestrail

Project Manager

Main Laboratory: 4645 E. Cotton Center Boulevard, Building 3, Suite 189 Phoenix, AZ 85040 Phone: 602.437.3340 Toll Free: 866.772.5227 Fax. 623.445.6192 Tucson Facility: 4455 S. Park Ave. Ste. 110 Tucson, AZ 85714 Phone: 520.807.3801 Fax: 520.807.3803 www.aeroenvirolabs.com

CLIENT:MactecProject:Southwest Mesa/4972-07-2050 4.5Lab Order:07080720

CASE NARRATIVE

Analyses included in this report were performed by Aerotech Environmental Laboratories (AEL), 4645 E. Cotton Center Boulevard, Building 3, Suite 189, Phoenix, AZ.

AEL is licensed through the State of Arizona (License No. AZ0610), and holds NELAC accreditation (OR100001) through the State of Oregon for the analytical techniques noted on the scope of accreditation.

AEL is also accredited by the American Industrial Hygiene Association (AIHA) in the industrial hygiene program for the analytical techniques noted on the scope of accreditation.

Samples were analyzed using methods outlined in references such as:

-Standard Methods for the Examination of Water and Wastewater, 20th Edition, 1998.

-40 CFR, Part 136, July 2006. Appendix A to Part 136 - Methods for Organic Chemical Analysis of Municipal and Industrial Wastewater.

-Methods for the Chemical Analysis of Water and Wastes, EPA/600/4-79-020, Revised March 1983. -Methods for the Determination of Organic Compounds in Drinking Water: Supplement III, August 1995, EPA/600/R-95/131.

-Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, EPA, 3rd Edition 1986, and Updates.

-Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air, EPA, Second Edition, 1999.

-NIOSH Manual of Analytical Methods, Fourth Edition, 1994.

Analytical Comments:

All method blanks and laboratory control spikes met method and/or laboratory quality control objectives for the analyses included in this report.

Data Qualifiers:

Listed below are the data qualifiers used in your analytical report to explain any analytical or quality control issues. You will find them noted in your report under the column header "QUAL". Any quality control deficiencies that cannot be adequately described by these qualifiers will be addressed in the analytical comments section of this case narrative.

D2 Sample required dilution due to high concentration of target analyte.

CLIENT:	Mactec
Lab Order:	07080720
Project:	Southwest Mesa/4972-07-2050 4.5
Lab ID:	07080720-01A

Date: 29-Aug-07

Client Sample ID: VW-7C Tag Number: 0315 Collection Date: 8/17/2007 10:15:00 AM Matrix: AIR

	р	obv	μg/	m ³	1		
Analyses	Result	Limit	Result	Limit	Qual	DF	Date Analyzed
VOLATILE ORGANICS IN AIR 1,1,1-Trichloroethane	< 0.50	TO15 0.50	< 2.8	2.8		1	Analyst: J.J. 8/26/2007
1,1,2,2-Tetrachloroethane	< 0.50	0.50	< 3.5	3.5		1	8/26/2007
1,1,2-Trichloroethane	< 0.50	0.50	< 2.8	2.8		1	8/26/2007
1,1-Dichloroethane	37	0.50	150	2.1		1	8/26/2007
1,1-Dichloroethene	10	0.50	40	2.0		1	8/26/2007
1,2,4-Trichlorobenzene	< 2.0	2.0	< 15	15		1	8/26/2007
1,2,4-Trimethylbenzene	9.2	0.50	46	2.5		1	8/26/2007
1,2-Dibromoethane	< 0.50	0.50	< 3.9	3.9		1	8/26/2007
1,2-Dichlorobenzene	< 0.50	0.50	< 3.1	3.1		1	8/26/2007
1,2-Dichloroethane	< 0.50	0.50	< 2.1	2.1		1	8/26/2007
1,2-Dichloropropane	6.5	0.50	31	2.4		1	8/26/2007
1,3,5-Trimethylbenzene	3.0	0.50	15	2.5		1	8/26/2007
1,3-Butadiene	< 0.50	0.50	< 1.1	1.1		1	8/26/2007
1,3-Dichlorobenzene	< 0.50	0.50	< 3.1	3.1		1	8/26/2007
1,4-Dichlorobenzene	< 0.50	0.50	< 3.1	3.1		1	8/26/2007
2,2,4-Trimethylpentane	2.0	0.50	9.5	2.4		1	8/26/2007
2-Butanone (MEK)	< 1.0	1.0	< 3.0	3.0		1	8/26/2007
2-Hexanone	< 1.0	1.0	< 4.2	4.2		1	8/26/2007
2-Propanol	< 2.0	2.0	< 5.0	5.0		1	8/26/2007
4-Ethyltoluene	3.6	0.50	16	2.2		1	8/26/2007
4-Methyl-2-pentanone	< 1.0	1.0	< 4.2	4.2		1	8/26/2007
Acetone	7.0	5.0	17	12		1	8/26/2007
Allyl chloride	< 0.50	0.50	< 0.80	0.80		1	8/26/2007
Benzene	1.1	0.50	3.6	1.6		1	8/26/2007
Benzyl chloride	< 2.0	2.0	< 11	11		1	8/26/2007
Bromodichloromethane	1.3	0.50	8.8	3.4		1	8/26/2007

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

* - Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

 CLIENT:
 Mactec

 Lab Order:
 07080720

 Project:
 Southwest Mesa/4972-07-2050 4.5

 Lab ID:
 07080720-01A

Date: 29-Aug-07

 Client Sample ID:
 VW-7C

 Tag Number:
 0315

 Collection Date:
 8/17/2007 10:15:00 AM

 Matrix:
 AIR

	р	obv	μg/	m ³			F Date Analyzed		
Analyses	Result	Limit	Result	Limit	Qual	DF	Date Analyzed		
/OLATILE ORGANICS IN AIR Bromoethene(Vinyl Bromide)	< 0.50	TO15 0.50	< 1.1	1.1		1	Analyst: J.J. 8/26/2007		
Bromoform	< 0.50	0.50	< 5.2	5.2		1	8/26/2007		
Bromomethane	< 0.50	0.50	< 2.0	2.0		1	8/26/2007		
Carbon disulfide	< 0.50	0.50	< 1.6	1.6		1	8/26/2007		
Carbon tetrachloride	< 0.50	0.50	< 3.2	3.2		1	8/26/2007		
Chlorobenzene	< 0.50	0.50	< 2.4	2.4		1	8/26/2007		
Chloroethane	< 0.50	0.50	< 1.3	1.3		1	8/26/2007		
Chloroform	10	0.50	50	2.5		1	8/26/2007		
Chloromethane	< 0.50	0.50	< 1.0	1.0		1	8/26/2007		
cis-1,2-Dichloroethene	2.8	0.50	11	2.0		1	8/26/2007		
cis-1,3-Dichloropropene	< 0.50	0.50	< 2.3	2.3		1	8/26/2007		
Cyclohexane	< 0.50	0.50	< 1.7	1.7		1	8/26/2007		
Dibromochloromethane	< 0.50	0.50	< 4.3	4.3		1	8/26/2007		
Dichlorodifluoromethane(F-12)	< 0.50	0.50	< 2.5	2.5		1	8/26/2007		
Dichlorotetrafluoroethane(F-114)	0.51	0.50	3.6	3.6		1	8/26/2007		
Ethyl Acetate	2.1	0.50	7.7	1.8		1	8/26/2007		
Ethylbenzene	4.2	0.50	18	2.2		1	8/26/2007		
Heptane	2.3	0.50	9.6	2.1		1	8/26/2007		
Hexachlorobutadiene	< 1.0	1.0	< 11	11		1	8/26/2007		
Hexane	0.62	0.50	2.2	1.8		1	8/26/2007		
m&p-Xylene	19	1.0	84	4.4		1	8/26/2007		
Methyl tert-butyl ether	< 1.0	1.0	< 3.7	3.7		1	8/26/2007		
Methylene chloride	< 0.50	0.50	< 1.8	1.8		1	8/26/2007		
o-Xylene	7.3	0.50	32	2.2		1	8/26/2007		
Propene (Propylene)	< 0.50	0.50	< 0.88	0.88		1	8/26/2007		
Styrene	0.98	0.50	4.2	2.2		1	8/26/2007		

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

* - Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

 CLIENT:
 Mactec

 Lab Order:
 07080720

 Project:
 Southwest Mesa/4972-07-2050 4.5

 Lab ID:
 07080720-01A

Date: 29-Aug-07

 Client Sample ID:
 VW-7C

 Tag Number:
 0315

 Collection Date:
 8/17/2007 10:15:00 AM

 Matrix:
 AIR

	ppb	v	μg /1	m ³		
Analyses	Result	Limit	Result	Limit	Qual DF	Date Analyzed
VOLATILE ORGANICS IN AIR Tetrachloroethene	48	TO15 0.50	330	3.4	1	Analyst: J.J. 8/26/2007
Tetrahydrofuran	< 2.0	2.0	< 6.0	6.0	1	8/26/2007
Toluene	17	0.50	65	1.9	1	8/26/2007
trans-1,2-Dichloroethene	< 0.50	0.50	< 2.0	2.0	.1	8/26/2007
trans-1,3-Dichloropropene	< 0.50	0.50	< 2.3	2.3	1	8/26/2007
Trichloroethene	6.2	0.50	34	2.8	1	8/26/2007
Trichlorofluoromethane(F-11)	9.8	0.50	56	2.8	1	8/26/2007
Trichlorotrifluoroethane(F-113)	0.86	0.50	6.7	3.9	1	8/26/2007
Vinyl acetate	< 0.50	0.50	< 1.8	1.8	1	8/26/2007
Vinyl chloride	< 0.50	0.50	< 1.3	1.3	1	8/26/2007
Surr: 4-Bromofluorobenzene	96.7 %REC	70-130	-	-	1	8/26/2007

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

- B Analyte detected in the associated Method Blank
- * Value exceeds Maximum Contaminant Level
- S Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

CLIENT:	Mactec
Lab Order:	07080720
Project:	Southwest Mesa/4972-07-2050 4.5
Lab ID:	07080720-02A

Date: 29-Aug-07

Client Sample ID: VW-5C Tag Number: 0741 Collection Date: 8/17/2007 10:35:00 AM Matrix: AIR

	pp	bv	μg/i	m³			
Analyses	Result	Limit	Result	Limit	Qual	DF	Date Analyzed
VOLATILE ORGANICS IN AIR 1,1,1-Trichloroethane	< 10	TO15 10	< 55	55		20	Analyst: J.J. 8/25/2007
1,1,2,2-Tetrachloroethane	< 10	10	< 70	70		20	8/25/2007
1,1,2-Trichloroethane	< 10	10	< 55	55		20	8/25/2007
1,1-Dichloroethane	< 10	10	< 41	41		20	8/25/2007
1,1-Dichloroethene	< 10	10	< 40	40		20	8/25/2007
1,2,4-Trichlorobenzene	< 40	40	< 300	300		20	8/25/2007
1,2,4-Trimethylbenzene	< 10	10	< 50	50		20	8/25/2007
1,2-Dibromoethane	< 10	10	< 78	78		20	8/25/2007
1,2-Dichlorobenzene	< 10	10	< 61	61		20	8/25/2007
1,2-Dichloroethane	< 10	10	< 41	41		20	8/25/2007
1,2-Dichloropropane	< 10	10	< 47	47		20	8/25/2007
1,3,5-Trimethylbenzene	< 10	10	< 50	50		20	8/25/2007
1,3-Butadiene	< 10	10	< 22	22		20	8/25/2007
1,3-Dichlorobenzene	< 10	10	< 61	61		20	8/25/2007
1,4-Dichlorobenzene	< 10	10	< 61	61		20	8/25/2007
2,2,4-Trimethylpentane	< 10	10	< 47	47		20	8/25/2007
2-Butanone (MEK)	< 20	20	< 60	60		20	8/25/2007
2-Hexanone	< 20	20	< 83	83		20	8/25/2007
2-Propanol	< 40	40	< 100	100		20	8/25/2007
4-Ethyltoluene	< 10	10	< 44	44		20	8/25/2007
4-Methyl-2-pentanone	< 20	20	< 83	83		20	8/25/2007
Acetone	< 100	100	< 240	240		20	8/25/2007
Allyl chloride	< 10	10	< 16	16		20	8/25/2007
Benzene	< 10	10	< 32	32		20	8/25/2007
Benzyl chloride	< 40	40	< 210	210		20	8/25/2007
Bromodichloromethane	< 10	10	< 68	68		20	8/25/2007

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

* - Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

CLIENT:	Mactec
Lab Order:	07080720
Project:	Southwest Mesa/4972-07-2050 4.5
Lab ID:	07080720-02A

Date: 29-Aug-07

Client Sample ID: VW-5C Tag Number: 0741 Collection Date: 8/17/2007 10:35:00 AM Matrix: AIR

	рр	bv	μg/i	m ³			
Analyses	Result	Limit	Result	Limit	Qual	DF	Date Analyzed
VOLATILE ORGANICS IN AIR Bromoethene(Vinyl Bromide)	< 10	TO15 10	< 22	22		20	Analyst: J.J. 8/25/2007
Bromoform	< 10	10	< 100	100		20	8/25/2007
Bromomethane	< 10	10	< 40	40		20	8/25/2007
Carbon disulfide	< 10	10	< 32	32		20	8/25/2007
Carbon tetrachloride	< 10	10	< 64	64		20	8/25/2007
Chlorobenzene	< 10	10	< 47	47		20	8/25/2007
Chloroethane	< 10	10	< 27	27		20	8/25/2007
Chloroform	15	10	74	50		20	8/25/2007
Chloromethane	< 10	10	< 21	21		20	8/25/2007
cis-1,2-Dichloroethene	< 10	10	< 40	40		20	8/25/2007
cis-1,3-Dichloropropene	< 10	10	< 46	46		20	8/25/2007
Cyclohexane	< 10	10	< 35	35		20	8/25/2007
Dibromochloromethane	< 10	10	< 86	86		20	8/25/2007
Dichlorodifluoromethane(F-12)	< 10	10	< 50	50		20	8/25/2007
Dichlorotetrafluoroethane(F-114)	< 10	10	< 71	71		20	8/25/2007
Ethyl Acetate	< 10	10	< 37	37		20	8/25/2007
Ethylbenzene	< 10	10	< 44	44		20	8/25/2007
Heptane	< 10	10	< 42	42		20	8/25/2007
Hexachlorobutadiene	< 20	20	< 220	220		20	8/25/2007
Hexane	< 10	10	< 36	36		20	8/25/2007
m&p-Xylene	< 20	20	< 88	88		20	8/25/2007
Methyl tert-butyl ether	< 20	20	< 73	73		20	8/25/2007
Methylene chloride	< 10	10	< 35	35		20	8/25/2007
o-Xylene	< 10	10	< 44	44		20	8/25/2007
Propene (Propylene)	< 10	10	< 18	18		20	8/25/2007
Styrene	< 10	10	< 43	43		20	8/25/2007

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

* - Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

 CLIENT:
 Mactec

 Lab Order:
 07080720

 Project:
 Southwest Mesa/4972-07-2050 4.5

 Lab ID:
 07080720-02A

Date: 29-Aug-07

Client Sample ID: VW-5C Tag Number: 0741 Collection Date: 8/17/2007 10:35:00 AM Matrix: AIR

	ppb	v	μ g /1	m³			
Analyses	Result	Limit	Result	Limit	Qual	DF	Date Analyzed
VOLATILE ORGANICS IN AIR Tetrachloroethene	880	TO15 20	6100	140	D2	40	Analyst: J.J. 8/27/2007
Tetrahydrofuran Toluene	< 40 13	40 10	< 120 50	120 38		20 20	8/25/2007 8/25/2007
trans-1,2-Dichloroethene trans-1,3-Dichloropropene Trichloroethene	< 10 < 10 < 10	10 10 10	< 40 < 46 < 55	40 46 55		20 20 20	8/25/2007 8/25/2007 8/25/2007
Trichlorofluoromethane(F-11) Trichlorotrifluoroethane(F-113)	< 10 < 10	10 10 10	< 57 < 78	57 78		20 20 20	8/25/2007 8/25/2007
Vinyl acetate Vinyl chloride Surr: 4-Bromofluorobenzene	< 10 < 10 86.8 %REC	10 10 70-130	< 36 < 26	36 26		20 20 20	8/25/2007 8/25/2007 8/25/2007

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

* - Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

a di	erote ivision of Aerot	Aerotecn Environme a division of Aerotech Laboratories, Inc.	nme	ntal	ntai Laboratories	orie	S	Date: 20-248-01
CLIENT: Work Order:	Mactec 07080720						ANALYTICAL QC SUMMARY REPORT	JMMARY REPORT
Project:	Southwest N	Southwest Mesa/4972-07-2050 4.5					TestCode:	T015
Sample ID: MB-R90455	0455	SampType: MBLK	TestCoo	TestCode: T015	Units: ppbv		Prep Date:	RunNo: 90455
Client ID:		Batch ID: R90455	Test	TestNo: T015			Analysis Date: 8/25/2007	SeqNo: 1071063
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
1,1,1-Trichloroethane	Эг	<0.50	0.50					
1,1,2,2-Tetrachloroethane	ethane	<0.50	0.50					
1,1,2-Trichloroethane	ле	<0.50	0.50					
1,1-Dichloroethane		<0.50	0.50					
1,1-Dichloroethene		<0.50	0.50					
1,2,4-Trichlorobenzene	ene	<2.0	2.0					
1,2,4-Trimethylbenzene	zene	<0.50	0.50					
1,2-Dibromoethane		<0.50	0.50					
1,2-Dichlorobenzene	G	<0.50	0.50					
1,2-Dichloroethane		<0.50	0.50					
1,2-Dichloropropane	۵.	<0.50	0.50					
1,3,5-Trimethylbenzene	cene	<0.50	0.50					
1,3-Butadiene		<0.50	0.50					
1,3-Dichlorobenzene	Θ	<0.50	0.50					
1,4-Dichlorobenzene	G	<0.50	0.50					
2,2,4-Trimethylpentane	ane	<0.50	0.50					
2-Butanone (MEK)		<1.0	1.0					
2-Hexanone		<1.0	1.0					
2-Propanol		<2.0	2.0					
4-Ethyltoluene		<0.50	0.50					
4-Methyl-2-pentanone	ne	<1.0	1.0					
Acetone		<5.0	5.0					
Allyl chloride		<0.50	0.50					
Benzene		<0.50	0.50					
Benzyl chloride		<2.0	2.0					
Qualifiers: *	Value exceeds N	Value exceeds Maximum Contaminant Level		ND Not De	Not Detected at the Reporting Limit	Limit		
					1			

Page 1 of 16

Aero a division of	Aerotech Environme a division of Aerotech Laboratories, Inc.	mental	ntal Laboratories	S	Date: 28-Aug-07
l: rder:	720				JMMARY REPORT
Project: Southy	Southwest Mesa/4972-07-2050 4.5			l estCode:	5101
Sample ID: MB-R90455	SampType: MBLK	TestCode: T015	Units: ppbv	Prep Date:	RunNo: 90455
Client ID:	Batch ID: R90455	TestNo: TO15		Analysis Date: 8/25/2007	SeqNo: 1071063
Analyte	Result	PQL SPK value	SPK Ref Val %REC	LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Bromodichloromethane	<0.50	0.50			
Bromoethene(Vinyl Bromide)	<0.50	0.50			
Bromoform	<0.50	0.50			
Bromomethane	<0.50	0.50			
Carbon disulfide	<0.50	0.50			
Carbon tetrachloride	<0.50	0.50			
Chlorobenzene	<0.50	0.50			
Chloroethane	<0.50	0.50			
Chloroform	<0.50	0.50			
Chloromethane	<0.50	0.50			
cis-1,2-Dichloroethene	<0.50	0.50			
cis-1,3-Dichloropropene	<0.50	0.50			
Cyclohexane	<0.50	0.50			
Dibromochloromethane	<0.50	0.50			
Dichlorodifluoromethane(F-12)	() <0.50	0.50			
Dichlorotetrafluoroethane(F-114)	14) <0.50	0.50			
Ethyl Acetate	<0.50	0.50			
Ethylbenzene	<0.50	0.50			
Heptane	<0.50	0.50			
Hexachlorobutadiene	<1.0	1.0			
Hexane	<0.50	0.50			
m&p-Xylene	<1.0	1.0			
Methyl tert-butyl ether	<1.0	1.0			
Methylene chloride	<0.50	0.50			
o-Xylene	<0.50	0.50			
Qualifiers: * Value exc	Value exceeds Maximum Contaminant Level	ND Not D	Not Detected at the Reporting Limit		

Aerot a division of Ae	Aerotech Environmen a division of Aerotech Laboratories, Inc.			tal Laboratories	orie	S		Date: 28-Aug-07	
CLIENT: Mactec Work Order: 07080720						ANAL	VTICAL QC SI	ANALYTICAL QC SUMMARY REPORT	ORT
	Southwest Mesa/4972-07-2050 4.5						TestCode: T015	T015	
Sample ID: MB-R90455	SampType: MBLK	TestCode: T015	15	Units: ppbv		Prep Date:		RunNo: 90455	
Client ID:	Batch ID: R90455	TestNo: T015	15			Analysis Date: 8/25/2007	8/25/2007	SeqNo: 1071063	
Analyte	Result	PQL SPK	SPK value	SPK Ref Val	%REC	LowLimit H	HighLimit RPD Ref Val	%RPD RPDLimit	Qual
Propene (Propylene)	<0.50	0.50							
Styrene	<0.50	0.50							
Tetrachloroethene	<0.50	0.50							
Tetrahydrofuran	<2.0	2.0							
Toluene	<0.50	0.50							
trans-1,2-Dichloroethene	<0.50	0.50							
trans-1,3-Dichloropropene	<0.50	0.50							
Trichloroethene	<0.50	0.50							
Trichlorofluoromethane(F-11)	<0.50	0.50							
Trichlorotrifluoroethane(F-113)	<0.50	0.50							
Vinyl acetate	<0.50	0.50							
Vinyl chloride	<0.50	0.50							
Surr: 4-Bromofluorobenzene	9.190	0.50	10	0	91.9	20	130		
Sample ID: MB-R90499	SampType: MBLK	TestCode: T015	15	Units: ppbv		Prep Date:		RunNo: 90499	
Client ID:	Batch ID: R90499	TestNo: T015	15			Analysis Date:	8/26/2007	SeqNo: 1071586	
Analyte	Result	PQL SPK	SPK value	SPK Ref Val	%REC	LowLimit F	HighLimit RPD Ref Val	%RPD RPDLimit	Qual
1,1,1-Trichloroethane	<0.50	0.50							
1,1,2,2-Tetrachloroethane	<0.50	0.50							
1,1,2-Trichloroethane	<0.50	0.50							
1,1-Dichloroethane	<0.50	0.50							
1,1-Dichloroethene	<0.50	0.50							
1,2,4-Trichlorobenzene	<2.0	2.0							
1,2,4-Trimethylbenzene	<0.50	0.50							
Qualifiers: * Value excee	Value exceeds Maximum Contaminant Level	ND	Not Det	ND Not Detected at the Reporting Limit	g Limit				

Page 3 of 16

Aero a division of	Aerotech Environme		ntal Laboratories	les	Date: 28-Aug-07
CLIENT: Mactec Work Order: 07080720	5 720			ANALYTICAL QC	ANALYTICAL QC SUMMARY REPORT
	Southwest Mesa/4972-07-2050 4.5			TestCod	TestCode: T015
Sample ID: MB-R90499	SampType: MBLK	TestCode: TO15	Units: ppbv	Prep Date:	RunNo: 90499
Client ID:	Batch ID: R90499	TestNo: TO15		Analysis Date: 8/26/2007	SeqNo: 1071586
Analyte	Result	PQL SPK value	e SPK Ref Val %REC	EC LowLimit HighLimit RPD Ref Val	/al %RPD RPDLimit Qual
1,2-Dibromoethane	<0.50	- 0.50			
1,2-Dichlorobenzene	<0.50	0.50			
1,2-Dichloroethane	<0.50	0.50			
1,2-Dichloropropane	<0.50	0.50			
1,3,5-Trimethylbenzene	<0.50	0.50			
1,3-Butadiene	<0.50	0.50			
1,3-Dichlorobenzene	<0.50	0.50			
1,4-Dichlorobenzene	<0.50	0.50			
2,2,4-Trimethylpentane	<0.50	0.50			
2-Butanone (MEK)	<1.0	1.0			
2-Hexanone	<1.0	1.0			
2-Propanol	<2.0	2.0			
4-Ethyltoluene	<0.50	0.50			
4-Methyl-2-pentanone	<1.0	1.0			
Acetone	<5.0	5.0			
Allyl chloride	<0.50	0.50			
Benzene	<0.50	0.50			
Benzyl chloride	<2.0	2.0			
Bromodichloromethane	<0.50	0.50			
Bromoethene(Vinyl Bromide)	<0.50	0.50			
Bromoform	<0.50	0.50			
Bromomethane	<0.50	0.50			
Carbon disulfide	<0.50	0.50			
Carbon tetrachloride	<0.50	0.50			
Chlorobenzene	<0.50	0.50			
Qualifiers: * Value exc	Value exceeds Maximum Contaminant Level	ND Not	Not Detected at the Reporting Limit		

Page 4 of 16

CLIENT: Mactec Work Order: 07080720 Work Order: 50uthwest Mesa/4972-07-2050 4.5 Project: Southwest Mesa/4972-07-2050 4.5 Sample ID: MB-R90499 SampType: Sampte ID: MB-R90499 SampType: Analyte Result Eithylorotethane(F-114) Result		Units: ppbv SPK Ref Val %REC	ANALYTICAL QC SUMMARY REPORT TestCode: T015 Prep Date: RunNo: 90499 Analysis Date: 8/26/2007 SeqNo: 1071586 LowLimit RPD Ref Val %RPD RPDLimit Qual	UMMARY REPORT T015 RunNo: 90499 SeqNo: 1071586 %RPD RPDLimit Qual
D: MB-R904 D: MB-R904 hane ethane ichloroptropel chloropropel chloromethar chloromethar etrafluoroeth state zene rrbutyl ether chloride e chloride	TestNo TestNo PQL 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.5	Aqd	TestCode: 8/26/2007 ghLimit RPD Ref Val	o: 90499 o: 1071586
D: MB-R90499 S: hane hane ethane ichloroethene ichloropropene cane cane chloromethane fiftuoromethane(F-114) state trafluoroethane(F-114) state rene rene rebutyl ether e chloride (Propylene)	TestCode: T015 TestNo: T015 PQL SPK value 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.5	Add	8/26/200 ghLimit	PDLimit
: hane ethane ichloroethene ichloropropene cane chloromethane frafluoroethane(F-114) etrafluoroethane(F-114) tatate zene rrbutyl ether rrbutyl ether e chloride (Propylene)	stNo		8/26/200 ghLimit	Fimit
hane trm - ethane ichloroethene ichloropropene ichloromethane ichloromethane ichloromethane ichloroethane F-114) etate zene robutadiene rr-butyl ether e chloride (Propylene)			HighLimit	RPDLimit
hane tethane ethane ichloropropene ichloropropene chloromethane ane tetrafluoroethane(F-114) state robutadiene rr-butyl ether e chloride (Propylene)	0.50 0.50 0.50 0.50 0.50 0.50 0.50			
rm ethane ethane ichloropropene cane chloromethane(F-12) etrafluoroethane(F-114) state zene rrbutydiene rrbutyl ether e chloride e chloride	0.50 0.50 0.50 0.50 0.50 0.50 0.50			
ethane ichloropropene ane chloromethane bifluoromethane(F-12) etrafluoroethane(F-114) state zene robutadiene rrbutyl ether e chloride e chloride	0.50 0.50 0.50 0.50 0.50 0.50			
ichloropropene ichloropropene cane chloromethane(F-12) etrafluoroethane(F-114) state rebutadiene rrebutyl ether e chloride (Propylene)	0.50 0.50 0.50 0.50 0.50			
ichloropropene ane chloromethane(F-12) etrafluoroethane(F-114) state robutadiene rrbutyl ether e chloride (Propylene)	0.50 0.50 0.50 0.50			
ane chloromethane liftuoromethane(F-12) etrafluoroethane(F-114) state zene rrobutadiene rrbutyl ether e chloride e chloride	0.50 0.50 0.50			
chloromethane liftuoromethane(F-12) etrafluoroethane(F-114) state zene robutadiene rrbutyl ether e chloride e chloride	0.50 0.50 0.50			
lifluoromethane(F-12) etrafluoroethane(F-114) state zene irobutadiene ire t-butyl ether e chloride e chloride	0.50			
etrafluoroethane(F-114) state zene irobutadiene rt-butyl ether e chloride (Propylene)	0.50			
state zene robutadiene ane rt-butyl ether e chloride (Propylene)				
zene robutadiene ane rt-butyl ether e chloride (Propylene)	0.50			
robutadiene ene e chloride (Propylene)	0.50			
rrobutadiene ene trt-butyl ether e chloride (Propylene)	0.50			
ane rt-butyl ether e chloride (Propylene)	1.0			
ane rt-butyl ether e chloride (Propylene)	0.50			
rt-butyl ether e chloride (Propylene)	1.0			
e chloride (Propylene)	1.0			
(Propylene)	0.50			
	0.50			
	0.50			
	0.50			
Tetrachloroethene <0.50	0.50			
Tetrahydrofuran <2.0	2.0			
Toluene <0.50	0.50			
trans-1,2-Dichloroethene <0.50	0.50			
trans-1,3-Dichloropropene <0.50	0.50			

CLLENT: Mactec Work Order: 07080720 Project: Southwest Mesa Sample ID: MB-R90499 Sam	Mactec 07080720 Southwest Mesa/4972-07-2050 4.5 .99 SampType: MBLK Batch ID: R90499							
Project: Southwest Mesa Sample ID: MB-R90499 Sam	v/4972-07-2050 4.5 npType: MBLK atch ID: R90499					ANALY	VTICAL QC SI	ANALYTICAL QC SUMMARY REPORT
ŭ	npType: MBLK atch ID: R90499						TestCode:	T015
	atch ID: R90499	TestCod	TestCode: T015	Units: ppbv		Prep Date:		RunNo: 90499
		TestN	TestNo: T015			Analysis Date:	: 8/26/2007	SeqNo: 1071586
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit F	HighLimit RPD Ref Val	%RPD RPDLimit Qual
Trichloroethene	<0.50	0.50						
Trichlorofluoromethane(F-11)	<0.50	0.50						
Trichlorotrifluoroethane(F-113)	<0.50	0.50						
Vinyl acetate	<0.50	0.50						
Vinyl chloride	<0.50	0.50						
Surr: 4-Bromofluorobenzene	8.580	0.50	10	0	85.8	20	130	
Sample ID: LCS-R90455 Sam	SampType: LCS	TestCode: T015	e: T015	Units: ppbv		Prep Date:		RunNo: 90455
Client ID: Ba	Batch ID: R90455	TestN	TestNo: TO15			Analysis Date:	: 8/25/2007	SeqNo: 1071254
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit H	HighLimit RPD Ref Val	%RPD RPDLimit Qual
1,1,1-Trichloroethane	10.91	0.50	10	0	109	65	135	
1,1,2,2-Tetrachloroethane	10.09	0.50	10	0	101	65	135	
1,1,2-Trichloroethane	10.34	0.50	10	0	103	65	135	
1,1-Dichloroethane	10.79	0.50	10	0	108	65	135	
1,1-Dichloroethene	10.50	0.50	10	0	105	65	135	
1,2,4-Trichlorobenzene	9.740	2.0	10	0	97.4	65	135	
1,2,4-Trimethylbenzene	10.73	0.50	10	0	107	65	135	
1,2-Dibromoethane	10.38	0.50	10	0	104	65	135	
1,2-Dichlorobenzene	10.06	0.50	10	0	101	65	135	
1,2-Dichloroethane	10.65	0.50	10	0	106	65	135	
1,2-Dichloropropane	10.50	0.50	10	0	105	65	135	
1,3,5-Trimethylbenzene	10.59	0.50	10	0	106	65	135	
1,3-Butadiene	10.30	0.50	10	0	103	65	135	
1,3-Dichlorobenzene	10.20	0.50	10	0	102	65	135	

Page 6 of 16

ANALYTICAL QC SUMMARY REPORT TestCode: T015 Units: Prep Date: 8/25/2007 SeqNo: 1071254
Prep Date: Analysis Date: 8/25/20
Prep Date: Analysis Date:
SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val
10 0 101 65 135
10 0 108 65 135
10 0 102 65 135
10 0 95.6 65 135
10 0 106 65 135
107
10 0 100 65 135
0 96.4
10 0 95.9 65 135
10 0 105 65 135
10 0 106 65 135
10 0 103 65 135
10 0 106 65 135
10 0 105 65 135
10 0 109 65 135
10 0 103 65 135
0 106 65 135
106
0 106 65 135
0 112 65 135
0 109 65 135
0 114 65 135
0 104 65 135
106 112 104 104

Page 7 of 16

a divi	STOTE (ision of Aerote	Aerotech Environmental Laboratories a division of Aerotech Laboratories, Inc.	me	ntal	Laborat	orie	S		Date: 28-Aug-07
CLIENT: Work Order:	Mactec						ANAL	YTICAL QC	ANALYTICAL QC SUMMARY REPORT
	Southwest N	Southwest Mesa/4972-07-2050 4.5						TestCode:	T015
Sample ID: LCS-R90455	1455	SampType: LCS	TestCod	TestCode: T015	Units: ppbv		Prep Date:		RunNo: 90455
Client ID:		Batch ID: R90455	TestN	TestNo: T015			Analysis Date:	e: 8/25/2007	SeqNo: 1071254
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RPD Ref Val	al %RPD RPDLimit Qual
Dichlorodifluoromethane(F-12)	ane(F-12)	10.45	0.50	10	0	104	65	135	
Dichlorotetrafluoroethane(F-114)	lane(F-114)	10.69	0.50	10	0	107	65	135	
Ethyl Acetate		10.71	0.50	10	0	107	65	135	
Ethylbenzene		10.70	0.50	10	0	107	65	135	
Heptane		10.27	0.50	10	0	103	65	135	
Hexachlorobutadiene		10.53	1.0	10	0	105	65	135	
Hexane		11.51	0.50	10	0	115	65	135	
m&p-Xylene		21.49	1.0	20	0	107	65	135	
Methyl tert-butyl ether	-	10.86	1.0	10	0	109	65	135	
Methylene chloride		10.26	0.50	10	0	103	65	135	
o-Xylene		10.55	0.50	10	0	106	65	135	
Propene (Propylene)		10.20	0.50	10	0	102	65	135	
Styrene		10.85	0.50	10	0	108	65	135	
Tetrachloroethene		10.39	0.50	10	0	104	65	135	
Tetrahydrofuran		10.46	2.0	10	0	105	65	135	
Toluene		11.03	0.50	10	0	110	65	135	
trans-1,2-Dichloroethene	ene	10.76	0.50	10	0	108	65	135	
trans-1,3-Dichloropropene	pene	10.75	0.50	10	0	108	65	135	
Trichloroethene		10.37	0.50	10	0	104	65	135	
Trichlorofluoromethane(F-11)	ne(F-11)	10.58	0.50	10	0	106	65	135	ĩ
Trichlorotrifluoroethane(F-113)	1e(F-113)	10.74	0.50	10	0	107	65	135	
Vinyl acetate		10.81	0.50	10	0	108	65	135	
Vinyl chloride		10.37	0.50	10	0	104	65	135	
Surr: 4-Bromofluorobenzene	obenzene	9.700	0.50	10	0	97.0	20	130	
Qualifiers: * V	Value exceeds N	Value exceeds Maximum Contaminant Level		ND Not De	Not Detected at the Reporting Limit	g Limit			

Page 8 of 16

a division c	a division of Aerotech Laboratories, Inc.							
CLIENT: Mactec	29					ANAL	TICAL OC S	ANALYTICAL OC SHMMARY REPORT
Work Order: 07080720	0720							
Project: South	Southwest Mesa/4972-07-2050 4.5						TestCode:	T015
Sample ID: LCS-R90499	SampType: LCS	TestCode: TO15	5	Units: ppbv		Prep Date:		RunNo: 90499
Client ID:	Batch ID: R90499	TestNo: T015	CI		4	Analysis Date:	8/26/2007	SeqNo: 1071603
Analyte	Result	PQL SPK value		SPK Ref Val	%REC	LowLimit F	HighLimit RPD Ref Val	%RPD RPDLimit Qual
1,1,1-Trichloroethane	10.76	0.50	10	0	108	65	135	
1,1,2,2-Tetrachloroethane	10.07	0.50	10	0	101	65	135	
1,1,2-Trichloroethane	10.04	0.50	10	0	100	65	135	
1,1-Dichloroethane	10.41	0.50	10	0	104	65	135	
1,1-Dichloroethene	10.06	0.50	10	0	101	65	135	
1,2,4-Trichlorobenzene	9.890	2.0	10	0	98.9	65	135	
1,2,4-Trimethylbenzene	10.61	0.50	10	0	106	65	135	
1,2-Dibromoethane	10.20	0.50	10	0	102	65	135	
1,2-Dichlorobenzene	10.09	0.50	10	0	101	65	135	
1,2-Dichloroethane	10.36	0.50	10	0	104	65	135	
1,2-Dichloropropane	10.05	0.50	10	0	100	65	135	
1,3,5-Trimethylbenzene	10.63	0.50	10	0	106	65	135	
1,3-Butadiene	9.800	0.50	10	0	98.0	65	135	
1,3-Dichlorobenzene	10.25	0.50	10	0	103	65	135	
1,4-Dichlorobenzene	10.26	0.50	10	0	103	65	135	
2,2,4-Trimethylpentane	10.46	0.50	10	0	105	65	135	
2-Butanone (MEK)	10.01	1.0	10	0	100	65	135	
2-Hexanone	9.230	1.0	10	0	92.3	65	135	
2-Propanol	10.09	2.0	10	0	101	65	135	
4-Ethyltoluene	10.73	0.50	10	0	107	65	135	
4-Methyl-2-pentanone	9.600	1.0	10	0	96.0	65	135	
Acetone	9.250	5.0	10	0	92.5	65	135	
Allyl chloride	10.48	0.50	10	0	105	65	135	
Benzene	10.81	0.50	10	0	108	65	135	
Benzyl chloride	9.660	2.0	10	0	96.6	65	135	
Qualifiers: * Value e	Value exceeds Maximum Contaminant Level	ND	Not Detected	Not Detected at the Reporting Limit	Limit			

Aerotech Environmental Laboratories

Page 9 of 16

Aerc a division o	Aerotech Environme a division of Aerotech Laboratories, Inc.		ntal	ntal Laboratories	orie	S		Date: 28-Aug-07	
CLIENT: Mactec Work Order: 07080720	ec 0720					ANAL	YTICAL QC S	ANALYTICAL QC SUMMARY REPORT	RT
	Southwest Mesa/4972-07-2050 4.5						TestCode:	T015	
Sample ID: LCS-R90499	SampType: LCS	TestCod	TestCode: T015	Units: ppbv		Prep Date:		RunNo: 90499	
Client ID:	Batch ID: R90499	TestN	TestNo: T015		A	Analysis Date:	:: 8/26/2007	SeqNo: 1071603	а 1 ж3
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RPD Ref Val	%RPD RPDLimit	Qual
Bromodichloromethane	10.20	0.50	10	0	102	65	135		
Bromoethene(Vinyl Bromide)	e) 10.33	0.50	10	0	103	65	135		
Bromoform	10.39	0.50	10	0	104	65	135		
Bromomethane	10.25	0.50	10	0	103	65	135		
Carbon disulfide	10.14	0.50	10	0	101	65	135		
Carbon tetrachloride	10.64	0.50	10	0	106	65	135		
Chlorobenzene	10.35	0.50	10	0	104	65	135		
Chloroethane	10.34	0.50	10	0	103	65	135		
Chloroform	10.38	0.50	10	0	104	65	135		
Chloromethane	9.970	0.50	10	0	99.7	65	135		
cis-1,2-Dichloroethene	10.83	0.50	10	0	108	65	135		
cis-1,3-Dichloropropene	10.69	0.50	10	0	107	65	135		
Cyclohexane	10.89	0.50	10	0	109	65	135		
Dibromochloromethane	10.19	0.50	10	0	102	65	135		
Dichlorodifluoromethane(F-12)		0.50	10	0	101	65	135		
Dichlorotetrafluoroethane(F-114)		0.50	10	0	104	65	135		
Ethyl Acetate	10.26	0.50	10	0	103	65	135		
Ethylbenzene	10.78	0.50	10	0	108	65	135		
Heptane	9.920	0.50	10	0	99.2	65	135		
Hexachlorobutadiene	12.29	1.0	10	0	123	65	135		
Hexane	11.05	0.50	10	0	110	65	135		
m&p-Xylene	21.62	1.0	20	0	108	65	135		
Methyl tert-butyl ether	10.64	1.0	10	0	106	65	135		
Methylene chloride	9.810	0.50	10	0	98.1	65	135		
o-Xylene	10.63	0.50	10	0	106	65	135		
Qualifiers: * Value e	Value exceeds Maximum Contaminant Level		ND Not De	Not Detected at the Reporting Limit	Limit				

Page 10 of 16

Aer a divisio	n of Aerot	Aerotech Environmental Laboratories a division of Aerotech Laboratories, Inc.	nme	intal	Laboral	torie	S			Date: 28	Date: 28-Aug-07	
CLIENT: Ma Work Order: 070	Mactec 07080720						ANAL	YTICA	ANALYTICAL QC SUMMARY REPORT	JMMAR	Y REPC	IRT
	uthwest 1	Southwest Mesa/4972-07-2050 4.5						L	TestCode:	T015		
Sample ID: LCS-R90499	6	SampType: LCS	TestCot	TestCode: TO15	Units: ppbv		Prep Date:			RunNo: 90499	66	
Client ID:		Batch ID: R90499	Test	TestNo: T015			Analysis Date:	: 8/26/2007	7	SeqNo: 1071603	1603	
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Propene (Propylene)		9.960	0.50	10	0	99.66	65	135				
Styrene		10.86	0.50	10	0	109	65	135				
Tetrachloroethene		10.17	0.50	10	0	102	65	135				
Tetrahydrofuran		9.920	2.0	10	0	99.2	65	135				
Toluene		10.72	0.50	10	0	107	65	135				
trans-1,2-Dichloroethene	⁰	10.42	0.50	10	0	104	65	135				
trans-1,3-Dichloropropene	ле	10.32	0.50	10	0	103	65	135				
Trichloroethene		10.29	0.50	10	0	103	65	135				
Trichlorofluoromethane(F-11)	F-11)	10.17	0.50	10	0	102	65	135				
Trichlorotrifluoroethane(F-113)	F-113)	10.49	0.50	10	0	105	65	135				
Vinyl acetate		10.54	0.50	10	0	105	65	135				
Vinyl chloride		10.07	0.50	10	0	101	65	135				
Surr: 4-Bromofluorobenzene	enzene	9.490	0.50	10	0	94.9	20	130				
Sample ID: LCSD-R90455	55	SampType: LCSD	TestCoc	TestCode: T015	Units: ppbv		Prep Date:			RunNo: 90455	55	
Client ID:		Batch ID: R90455	TestN	TestNo: T015			Analysis Date:	8/25/2007	7	SeqNo: 1071255	1255	
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit H	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,1,1-Trichloroethane		10.79	0.50	10	0	108	65	135	10.91	1.11	25	
1,1,2,2-Tetrachloroethane	le	9.940	0.50	10	0	99.4	65	135	10.09	1.50	25	
1,1,2-Trichloroethane		10.31	0.50	10	0	103	65	135	10.34	0.291	25	
1,1-Dichloroethane		10.68	0.50	10	0	107	65	135	10.79	1.02	25	
1,1-Dichloroethene		10.36	0.50	10	0	104	65	135	10.50	1.34	25	
1,2,4-Trichlorobenzene		9.350	2.0	10	0	93.5	65	135	9.740	4.09	25	
1,2,4-Trimethylbenzene		10.43	0.50	10	0	104	65	135	10.73	2.84	25	
Qualifiers: * Valu	ue exceeds	Value exceeds Maximum Contaminant Level		ND Not De	Not Detected at the Reporting Limit	ng Limit						

Page 11 of 16

6
Ű
1
2
Q
5
õ
0
14.000
2
C
e
Y
>
C
Ш
2
ä
ţ
2
0

a division of Aerotech Laboratories, Inc.

Mactec

CLIENT:

ANALYTICAL OC SUMMARY REPORT

Work Order: 07080720	720					ALVAL	I IICAI	うろうろう	ANALI HUAL VU SUMMANI NELUNI	TIMEL	IN
Project: Southy	Southwest Mesa/4972-07-2050 4.5						Te	TestCode:	T015		
Sample ID: LCSD-R90455	SampType: LCSD	TestCode: T015	T015	Units: ppbv		Prep Date:			RunNo: 90455	155	
Client ID:	Batch ID: R90455	TestNo: T015	T015			Analysis Date:	8/25/2007		SeqNo: 1071255	71255	
Analyte	Result	PQL S	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RI	RPD Ref Val	%RPD	RPDLimit	Qual
1,2-Dibromoethane	10.29	0.50	10	0	103	65	135	10.38	0.871	25	
1,2-Dichlorobenzene	066.6	0.50	10	0	6.66	65	135	10.06	0.698	25	
1,2-Dichloroethane	10.44	0.50	10	0	104	65	135	10.65	1.99	25	
1,2-Dichloropropane	10.32	0.50	10	0	103	65	135	10.50	1.73	25	
1,3,5-Trimethylbenzene	10.40	0.50	10	0	104	65	135	10.59	1.81	25	
1,3-Butadiene	10.01	0.50	10	0	100	65	135	10.30	2.86	25	
1,3-Dichlorobenzene	10.03	0.50	10	0	100	65	135	10.20	1.68	25	
1,4-Dichlorobenzene	10.12	0.50	10	0	101	65	135	10.11	0.0989	25	
2,2,4-Trimethylpentane	10.70	0.50	10	0	107	65	135	10.84	1.30	25	
2-Butanone (MEK)	10.45	1.0	10	0	104	65	135	10.22	2.23	25	
2-Hexanone	9.890	1.0	10	0	98.9	65	135	9.560	3.39	25	
2-Propanol	10.54	2.0	10	0	105	65	135	10.61	0.662	25	
4-Ethyltoluene	10.54	0.50	10	0	105	65	135	10.68	1.32	25	
4-Methyl-2-pentanone	9.980	1.0	10	0	99.8	65	135	10.00	0.200	25	
Acetone	8.870	5.0	10	0	88.7	65	135	9.640	8.32	25	
Allyl chloride	10.92	0.50	10	0	109	65	135	10.82	0.920	25	
Benzene	11.05	0.50	10	0	110	65	135	11.21	1.44	25	
Benzyl chloride	9.780	2.0	10	0	97.8	65	135	9.590	1.96	25	
Bromodichloromethane	10.31	0.50	10	0	103	65	135	10.46	1.44	25	
Bromoethene(Vinyl Bromide)	10.34	0.50	10	0	103	65	135	10.55	2.01	25	
Bromoform	10.16	0.50	10	0	102	65	135	10.28	1.17	25	
Bromomethane	10.34	0.50	10	0	103	65	135	10.57	2.20	25	
Carbon disulfide	10.30	0.50	10	0	103	65	135	10.50	1.92	25	
Carbon tetrachloride	10.74	0.50	10	0	107	65	135	10.89	1.39	25	
Chlorobenzene	9.970	0.50	10	0	99.7	65	135	10.25	2.77	25	
Qualifiers: * Value exo	Value exceeds Maximum Contaminant Level	Z	ND Not De	Not Detected at the Reporting Limit	imit						

Page 12 of 16

Date: 28-Aug-07

Aerotech Environmental Laboratories

a division of Aerotech Laboratories, Inc.

CLIENT: Mactec						ANAL	YTICA	ANALYTICAL QC SUMMARY REPORT	JMMAR	Y REPC	RT
	Southwest Mesa/4972-07-2050 4.5						L	TestCode:	T015		
Sample ID: LCSD-R90455	SampType: LCSD	TestCode: T015	e: T015	Units: ppbv		Prep Date:			RunNo: 90455	55	
Client ID:	Batch ID: R90455	TestN	TestNo: T015			Analysis Date:	s: 8/25/2007	70	SeqNo: 1071255	1255	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Chloroethane	10.20	0.50	10	0	102	65	135	10.60	3.85	25	
Chloroform	10.43	0.50	10	0	104	65	135	10.62	1.81	25	
Chloromethane	10.23	0.50	10	0	102	65	135	10.58	3.36	25	
cis-1,2-Dichloroethene	10.98	0.50	10	0	110	65	135	11.17	1.72	25	
cis-1,3-Dichloropropene	10.80	0.50	10	0	108	65	135	10.89	0.830	25	
Cyclohexane	11.17	0.50	10	0	112	65	135	11.42	2.21	25	
Dibromochloromethane	10.41	0.50	10	0	104	65	135	10.43	0.192	25	
Dichlorodifluoromethane(F-12)	10.29	0.50	10	0	103	65	135	10.45	1.54	25	
Dichlorotetrafluoroethane(F-114)	() 10.54	0.50	10	0	105	65	135	10.69	1.41	25	
Ethyl Acetate	10.61	0.50	10	0	106	65	135	10.71	0.938	25	
Ethylbenzene	10.56	0.50	10	0	106	65	135	10.70	1.32	25	
Heptane	10.14	0.50	10	0	101	65	135	10.27	1.27	25	
Hexachlorobutadiene	9.500	1.0	10	0	95.0	65	135	10.53	10.3	25	
Hexane	11.32	0.50	10	0	113	65	135	11.51	1.66	25	
m&p-Xylene	20.55	1.0	20	0	103	65	135	21.49	4.47	25	
Methyl tert-butyl ether	10.88	1.0	10	0	109	65	135	10.86	0.184	25	
Methylene chloride	10.12	0.50	10	0	101	65	135	10.26	1.37	25	
o-Xylene	10.38	0.50	10	0	104	65	135	10.55	1.62	25	
Propene (Propylene)	10.25	0.50	10	0	103	65	135	10.20	0.489	25	
Styrene	10.73	0.50	10	0	107	65	135	10.85	1.11	25	
Tetrachloroethene	10.17	0.50	10	0	102	65	135	10.39	2.14	25	
Tetrahydrofuran	10.42	2.0	10	0	104	65	135	10.46	0.383	25	
Toluene	10.82	0.50	10	0	108	65	135	11.03	1.92	25	
trans-1,2-Dichloroethene	10.79	0.50	10	0	108	65	135	10.76	0.278	25	
trans-1,3-Dichloropropene	10.52	0.50	10	0	105	65	135	10.75	2.16	25	
Qualifiers: * Value excee	Value exceeds Maximum Contaminant Level		ND Not Dete	Not Detected at the Reporting Limit	g Limit						

Page 13 of 16

Aerote a division of Aer	Aerotech Environmental Laboratories a division of Aerotech Laboratories, Inc.	me	ntal	Laborat	torie	S			Date: 28	Date: 28-Aug-07	
CLIENT: Mactec Work Order: 07080720						ANAL	NTICA	ANALYTICAL QC SUMMARY REPORT	JMMAR	Y REPC	RT
	Southwest Mesa/4972-07-2050 4.5						L	TestCode:	T015		
Sample ID: LCSD-R90455	SampType: LCSD	TestCode: T015	e: TO15	Units: ppbv		Prep Date:	:e		RunNo: 90455	155	
Client ID:	Batch ID: R90455	TestN	TestNo: T015			Analysis Date:	e: 8/25/2007	71	SeqNo: 1071255	1255	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Trichloroethene	10.24	0.50	10	0	102	65	135	10.37	1.26	25	
Trichlorofluoromethane(F-11)	10.37	0.50	10	0	104	65	135	10.58	2.00	25	
Trichlorotrifluoroethane(F-113)	10.57	0.50	10	0	106	65	135	10.74	1.60	25	
Vinyl acetate	10.89	0.50	10	0	109	65	135	10.81	0.737	25	
Vinyl chloride	10.10	0.50	10	0	101	65	135	10.37	2.64	25	
Surr: 4-Bromofluorobenzene	9.620	0.50	10	0	96.2	70	130	9.700	0	0	
Sample ID: LCSD-R90499	SampType: LCSD	TestCode: T015	e: T015	Units: ppbv		Prep Date:	e:		RunNo: 90499	661	
Client ID:	Batch ID: R90499	TestNo	TestNo: TO15			Analysis Date:	e: 8/26/2007	7	SeqNo: 1071606	1606	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,1,1-Trichloroethane	10.61	0.50	10	0	106	65	135	10.76	1.40	25	
1,1,2,2-Tetrachloroethane	9.790	0.50	10	0	97.9	65	135	10.07	2.82	25	
1,1,2-Trichloroethane	10.11	0.50	10	0	101	65	135	10.04	0.695	25	
1,1-Dichloroethane	10.45	0.50	10	0	104	65	135	10.41	0.384	25	
1,1-Dichloroethene	10.02	0.50	10	0	100	65	135	10.06	0.398	25	
1,2,4-Trichlorobenzene	9.690	2.0	10	0	96.9	65	135	9.890	2.04	25	
1,2,4-Trimethylbenzene	10.46	0.50	10	0	105	65	135	10.61	1.42	25	
1,2-Dibromoethane	10.20	0.50	10	0	102	65	135	10.20	0	25	
1,2-Dichlorobenzene	9.950	0.50	10	0	99.5	65	135	10.09	1.40	25	
1,2-Dichloroethane	10.22	0.50	10	0	102	65	135	10.36	1.36	25	
1,2-Dichloropropane	10.18	0.50	10	0	102	65	135	10.05	1.29	25	
1,3,5-Trimethylbenzene	10.49	0.50	10	0	105	65	135	10.63	1.33	25	
1,3-Butadiene	9.620	0.50	10	0	96.2	65	135	9.800	1.85	25	
1,3-Dichlorobenzene	10.14	0.50	10	0	101	65	135	10.25	1.08	25	
Qualifiers: * Value exceed	Value exceeds Maximum Contaminant Level		ND Not De	Not Detected at the Reporting Limit	g Limit						

Aerotech Environmental Laboratories

a division of Aerotech Laboratories, Inc.

Qual ANALYTICAL QC SUMMARY REPORT 25 25 25 RPDLimit SeqNo: 1071606 RunNo: 90499 %RPD 1.77 0.572 1.41 4.03 1.40 1.60 2.16 2.19 1.06 1.88 1.56 1.75 0.296 0.0939 0.461 1.36 1.75 4.25 0.386 0.503 0.0923 1.21 0.275 1.17 TestCode: T015 10.26 10.46 10.01 9.230 10.09 10.73 9.600 9.250 10.48 10.81 9.660 10.20 10.33 10.39 10.25 10.14 10.64 10.35 10.34 10.38 9.970 10.83 10.19 **RPD Ref Val** 10.69 10.89 Analysis Date: 8/26/2007 HighLimit 135 135 135 35 35 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 35 135 135 35 35 Prep Date: LowLimit 65 92 65 %REC 96.1 99.5 98.1 90.5 94.8 105 106 109 103 98.7 104 104 102 102 101 106 102 103 99.1 99.2 108 108 109 101 103 ND Not Detected at the Reporting Limit Units: ppbv 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 SPK Ref Val 0 SPK value 10 10 10 10 10 10 10 10 TestCode: T015 TestNo: T015 PQL 0.50 0.50 1.0 1.0 2.0 0.50 1.0 5.0 0.50 0.50 2.0 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 Value exceeds Maximum Contaminant Level Southwest Mesa/4972-07-2050 4.5 Batch ID: R90499 Result 10.52 9.610 10.56 9.810 9.050 10.86 10.36 10.19 10.65 9.910 10.08 9.870 9.950 10.37 9.480 10.25 10.11 10.17 10.21 10.34 9.920 10.84 10.82 10.92 SampType: LCSD 10.31 07080720 Mactec Bromoethene(Vinyl Bromide) Sample ID: LCSD-R90499 cis-1,3-Dichloropropene 2,2,4-Trimethylpentane Bromodichloromethane Dibromochloromethane 4-Methyl-2-pentanone cis-1.2-Dichloroethene 1,4-Dichlorobenzene Carbon tetrachloride 2-Butanone (MEK) * Work Order: Carbon disulfide Benzyl chloride Bromomethane Chloromethane Chlorobenzene 4-Ethyltoluene Chloroethane Allyl chloride Cyclohexane 2-Hexanone CLIENT: Chloroform Qualifiers: 2-Propanol Bromoform Project: Benzene Client ID Acetone Analyte

Page 15 of 16

S
0
ō
Ľ
-
0
0
0
-
Ľ,
C
Ð
ĕ
C
0
ihana i
Ш
C
U
ð
ų,
0
-
0

a division of Aerotech Laboratories, Inc.

Date: 28-Aug-07

CLIENT: Work Order:	Mactec 07080720						ANAL	VTICA	ANALYTICAL QC SUMMARY REPORT	JMMAR	Y REPC	RT
Project:	Southwest	Southwest Mesa/4972-07-2050 4.5							TestCode: T015	r015		
Sample ID: LCSD-R90499	R90499	SampType: LCSD	TestCod	TestCode: TO15	Units: ppbv		Prep Date:	.: .:		RunNo: 90499	66	
Client ID:		Batch ID: R90499	TestN	TestNo: TO15			Analysis Date:	e: 8/26/2007	07	SeqNo: 1071606	1606	
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Dichlorodifluoromethane(F-12)	hane(F-12)	10.04	0.50	10	0	100	65	135	10.13	0.892	25	
Dichlorotetrafluoroethane(F-114)	thane(F-114)	10.27	0.50	10	0	103	65	135	10.37	0.969	25	
Ethyl Acetate		10.25	0.50	10	0	103	65	135	10.26	0.0975	25	
Ethylbenzene		10.54	0.50	10	0	105	65	135	10.78	2.25	25	
Heptane		9.810	0.50	10	0	98.1	65	135	9.920	1.12	25	
Hexachlorobutadiene	le	10.99	1.0	10	0	110	65	135	12.29	11.2	25	
Hexane		11.02	0.50	10	0	110	65	135	11.05	0.272	25	
m&p-Xylene		20.64	1.0	20	0	103	65	135	21.62	4.64	25	
Methyl tert-butyl ether	ler	10.58	1.0	10	0	106	65	135	10.64	0.566	25	
Methylene chloride		9.830	0.50	10	0	98.3	65	135	9.810	0.204	25	
o-Xylene		10.43	0.50	10	0	104	65	135	10.63	1.90	25	
Propene (Propylene)	(8	9.740	0.50	10	0	97.4	65	135	9.960	2.23	25	
Styrene		10.79	0.50	10	0	108	65	135	10.86	0.647	25	
Tetrachloroethene		10.23	0.50	10	0	102	65	135	10.17	0.588	25	
Tetrahydrofuran		9.840	2.0	10	0	98.4	65	135	9.920	0.810	25	
Toluene		10.75	0.50	10	0	108	65	135	10.72	0.279	25	
trans-1,2-Dichloroethene	thene	10.48	0.50	10	0	105	65	135	10.42	0.574	25	
trans-1,3-Dichloropropene	opene	10.46	0.50	10	0	105	65	135	10.32	1.35	25	
Trichloroethene		10.39	0.50	10	0	104	65	135	10.29	0.967	25	
Trichlorofluoromethane(F-11)	ane(F-11)	10.17	0.50	10	0	102	65	135	10.17	0	25	
Trichlorotrifluoroethane(F-113)	ane(F-113)	10.40	0.50	10	0	104	65	135	10.49	0.862	25	
Vinyl acetate		10.37	0.50	10	0	104	65	135	10.54	1.63	25	
Vinyl chloride		9.930	0.50	10	0	99.3	65	135	10.07	1.40	25	
Surr: 4-Bromofluorobenzene	orobenzene	9.830	0.50	10	0	98.3	70	130	9.490	0	0	
Qualifiers: *	Value exceeds	Value exceeds Maximum Contaminant Level		ND Not De	Not Detected at the Reporting Limit	g Limit						

Page 16 of 16

Aerotech Environmental Laboratories Sample Receipt Checklist	Project Checked By:
Laboratory Number: 07-07-0720	Completed By/On Kora Mc and S/1
	Date I mile Rec U. D//// PO/ RU-UN
Matrix: (Air) Soil Aqueous Oil Sludge Solid WW DW	Carrier Name:
Temperature Cooler #1An S°C Cooler #2 °C	Cooler #3 °C Cooler #4 °C
Temp. Read With Thermometer IR Thermometer IR	Thermometer IR Thermometer IR

Client or PM made aware of temp. out of range? Yes No Circle one: Blue Ice Wet Ice Not Present

							1.1	Ye	es	No*	Not Pres	ent	Soil Containers:
Shipping con	itainer/c	ooler	in good	d cond	ition?			>	\leq			a ta	Brass Sleeve
Custody seal	ls intact	on s	hipping	contai	ner/coo	ler?	•				X		Glass Jar
Custody seal	ls intact	on s	ample c	ontain	ers?		an da	-			X	like provinsi diseta ani ila	Methanol
Chain of Cus	tody pre	esent	and re	linquis	hed/rec	eived	properly	17 5	2	TRANK.	And the second s		Plastic Bag
Chain of Cus	tody agi	rees	with sa	mple la	abels?		a data in o		1	1. 182			Encore Samplers
Samples in p	roper co	ontair	ners/bo	ttles?		aler ale	e dange di		1				Sterile Plastic
Sample conta				1			n an		1	- 1.4. untre.			
All samples r	eceived	with	in holdi	ng tim	e?			×	-		**See Com	ments about Chlorine and pH	· · · · · · · · · · · · · · · · · · ·
Is there suffic						efests	?		2	in the second		internes about chilorine and pri	an Burgara (Marina) An Burgara (Marina)
40mL vials fo		4.47								0.44	X		of all in an a films when The films
Total number	2		· · · · · · · · · · · · · · · · · · ·		,		Judopu		am			Entedn - 12 (2)	1-07
If applicable,					1.5		from A			1		1	
Number of con	tainers rea	ceivea	by prese	ervative	and by sa	imple n	umber:(1	If more a	han	10 san	nples are rea	N/A N/A rid, please continue on separ	ate sheet(s)).
Preservative S		1	2	3	4	5	6	7	1	3 .	9 10	*Any No response must b	e detailed in the
A-General	2											comments section. Conta immediately to determine	
B-HNO3		-					1.					Refer to SOP 11-001 and	
C-H2SO4							. 324					additional space is needed	
D-HCI					1		5. ¹ .					**The holding time for pl	Hand Total Residue
E-Na2S2O3		-				5 (M	-	1			-	Chlorine analysis is imme	ediate. For the most
F-NaOH		:	1.24				• • •			· · · ·		accurate results, the pH an	
G-Sulfide												Chlorine should be taken minutes of sampling.	in the field within 1
H-Na Sulfite													
I-MCAA		*.		-		1		1.00			·	***The Simple box is onl there is one bottle per pre	
J-Methanol									1			sample sets.	servauve ni equal -
K-HAA										-			
L-Other							-						
Water-pH acc	ceptable	upo	n receip	ot?	Yes		No ·		N/A	X	1	Se Spulles Lenger in Lene	en en de la companya
Preservati	ve& p	эΗ	pH of	sam	ples u	pon	receip	ot	Ifp	H requ	ires adjustm	ent, list sample number and r	eagent I.D. number.
Metals		<2							1				
H ₂ SO ₄		<2	*									9	·····
1664		<2				- 11		¥				1	
Cyanide		>12					- 		1				
Sulfide		>9			-	41						·	
Comment	s:		L	4° 2			<u>-</u>	·	J			ани, С. ,	

A CALL OF A CALL

Aerotech Environmental Laboratories

a division of Aerotech Laboratories, Inc.

•

Lab Number:

Main Lab - 4645 E. Cotton Center Blvd., Building 3, Suite 189, Phoenix, AZ 85040 602.437.3340 - FAX 623.445.6192
 North Phoenix - 1501 W. Knudsen. Phoenix. AZ 85027 623.780.4800 - FAX 623.445.6216

Customer: M Address: Z City, State, Zip: D Contact: 7			Page	e / of /						5			
Zip:	actor		San	ler:	Gamar								
Zip:	SOF WER	AUE	Proj	ame:	+Sa-(1)4/too	r Mesa							
5	MX. AZ		Proj	Project Number:	20-226	1 2050	L V						
	TIM CLARK		P.0	P.O. Number:									
Phone: La 02	0520-121-1	Eax:	-3675 Fax	Fax Results:	X	N							
vddre	INC @ marche	the COM	E-M	E-Mail Results:	7	z							
and the second se	le Receip		Turn Around Request							Anal	Analyses Requested	sted	
Temperature	o. Qw		24 Hours 48	48 Hours									-
S:	No												
Custody Seals Intact:	Yes No NIL		5 working Day						91	91			
Total # of Containers:	2		Standard 10 Working Days						-01	-01		-	
		Subje	Subject to scheduling and availability (surcharges apply)	s apply)									
			Sample Information	nation					isiJ 41 tsil 81	<u> (InO</u>			
Lah#	Canister Serial #	Model	Sample Identification	n Date	Time	Tvne	Final	Receint		2			
	2215	6, 1, 0.4	Jt-MN	00	10:15	AR			1	11			
2	1770	6. 1. 0.4	1		10.25	7			X	0			
		6 4 0 4	Conversion of the second se										
								-					
		- ,											
		- ·											+
		6, 1, U.4							_				
		6, 1, 0.4											
		6, 1, 0.4											
		6, 1, 0.4											
		6, 1, 0.4							_				
Instructions / Special Requirements:	equirements:												
Date:	Time:	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	Samples Relinquisl	ished By:	2	1 VI		12	Received By:	ed By:			
Fo. F. 5	12:46	. M. D. Roman				TAAT	X	And the state of t	and the second se	Arrest and a second			
		,				2	1						

a division of Aerotech Laboratories, Inc.

Monday, October 01, 2007

Jim Clarke Mactec 3630 East Wier Avenue Phoenix, AZ 85040

TEL: (602) 437-0250 FAX (602) 437-3675

RE: South Mesa/4972-07-2050 4.6

Dear Jim Clarke:

Order No.: 07090422

Aerotech Environmental Laboratories received 5 sample(s) on 9/12/2007 for the analyses presented in the following report.

This report includes the following information:

- Case Narrative.
- Analytical Report: includes test results, report limit (Limit), any applicable data qualifier (Qual), units, dilution factor (DF), and date analyzed.
- QC Summary Report.

This communication is intended only for the individual or entity to whom it is directed. It may contain information that is privileged, confidential, or otherwise exempt from disclosure under applicable law. Dissemination, distribution, or copying of this communication by anyone other than the intended recipient, or a duly designated employee or agent of such recipient, is prohibited. If you have received this communication in error, please notify us immediately and destroy this message and all attachments thereto. If you have any questions regarding these test results, please do not hesitate to call.

Sincerely,

Tim Trestrail

Project Manager

Main Laboratory: 4645 E. Cotton Center Boulevard, Building 3, Suite 189 Phoenix, AZ 85040 Phone: 602.437.3340 Toll Free: 866.772.5227 Fax. 623.445.6192 Tucson Facility: 4455 S. Park Ave. Ste. 110 Tucson, AZ 85714 Phone: 520.807.3801 Fax: 520.807.3803 www.aeroenvirolabs.com

 CLIENT:
 Mactec

 Project:
 South Mesa/4972-07-2050 4.6

 Lab Order:
 07090422

CASE NARRATIVE

Analyses included in this report were performed by Aerotech Environmental Laboratories (AEL), 4645 E. Cotton Center Boulevard, Building 3, Suite 189, Phoenix, AZ.

AEL is licensed through the State of Arizona (License No. AZ0610), and holds NELAC accreditation (OR100001) through the State of Oregon for the analytical techniques noted on the scope of accreditation.

AEL is also accredited by the American Industrial Hygiene Association (AIHA) in the industrial hygiene program for the analytical techniques noted on the scope of accreditation.

Samples were analyzed using methods outlined in references such as:

-Standard Methods for the Examination of Water and Wastewater, 20th Edition, 1998.

-40 CFR, Part 136, July 2006. Appendix A to Part 136 - Methods for Organic Chemical Analysis of Municipal and Industrial Wastewater.

-Methods for the Chemical Analysis of Water and Wastes, EPA/600/4-79-020, Revised March 1983. -Methods for the Determination of Organic Compounds in Drinking Water: Supplement III, August 1995, EPA/600/R-95/131.

-Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, EPA, 3rd Edition 1986, and Updates.

-Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air, EPA, Second Edition, 1999.

-NIOSH Manual of Analytical Methods, Fourth Edition, 1994. NIOSH Method 7300 analyses are performed using a modified digestion procedure to eliminate the use of perchloric acid.

Analytical Comments:

All method blanks and laboratory control spikes met method and/or laboratory quality control objectives for the analyses included in this report.

Data Qualifiers:

Listed below are the data qualifiers used in your analytical report to explain any analytical or quality control issues. You will find them noted in your report under the column header "QUAL". Any quality control deficiencies that cannot be adequately described by these qualifiers will be addressed in the analytical comments section of this case narrative.

- D2 Sample required dilution due to high concentration of target analyte.
- L1 The associated blank spike recovery was above laboratory acceptance limits.
- V1 CCV recovery was above method acceptance limits. This target analyte was not detected in the sample.

 CLIENT:
 Mactec

 Lab Order:
 07090422

 Project:
 South Mesa/4972-07-2050 4.6

 Lab ID:
 07090422-01A

Date: 02-Oct-07

Client Sample ID: EFF Tag Number: Collection Date: 9/12/2007 1:48:00 PM Matrix: AIR

	pi	obv	μg/	m³			
Analyses	Result	Limit	Result	Limit	Qual	DF	Date Analyzed
VOLATILE ORGANICS IN AIR 1,1,1-Trichloroethane	< 0.50	TO15 0.50	< 2.8	2.8		1	Analyst: J.J. 9/27/2007
1,1,2,2-Tetrachloroethane	< 0.50	0.50	< 3.5	3.5		1	9/27/2007
1,1,2-Trichloroethane	< 0.50	0.50	< 2.8	2.8		1	9/27/2007
1,1-Dichloroethane	< 0.50	0.50	< 2.1	2.1		1	9/27/2007
1,1-Dichloroethene	< 0.50	0.50	< 2.0	2.0		1	9/27/2007
1,2,4-Trichlorobenzene	< 2.0	2.0	< 15	15		1	9/27/2007
1,2,4-Trimethylbenzene	< 0.50	0.50	< 2.5	2.5		1	9/27/2007
1,2-Dibromoethane	< 0.50	0.50	< 3.9	3.9		1	9/27/2007
1,2-Dichlorobenzene	< 0.50	0.50	< 3.1	3.1		1	9/27/2007
1,2-Dichloroethane	< 0.50	0.50	< 2.1	2.1		1	9/27/2007
1,2-Dichloropropane	< 0.50	0.50	< 2.4	2.4		1	9/27/2007
1,3,5-Trimethylbenzene	< 0.50	0.50	< 2.5	2.5		1	9/27/2007
1,3-Butadiene	< 0.50	0.50	< 1.1	1.1		1	9/27/2007
1,3-Dichlorobenzene	< 0.50	0.50	< 3.1	3.1		1	9/27/2007
1,4-Dichlorobenzene	< 0.50	0.50	< 3.1	3.1		1	9/27/2007
2,2,4-Trimethylpentane	< 0.50	0.50	< 2.4	2.4		1	9/27/2007
2-Butanone (MEK)	< 1.0	1.0	< 3.0	3.0		1	9/27/2007
2-Hexanone	< 1.0	1.0	< 4.2	4.2	V1L1	1	9/27/2007
2-Propanol	< 2.0	2.0	< 5.0	5.0		1	9/27/2007
4-Ethyltoluene	< 0.50	0.50	< 2.2	2.2		1	9/27/2007
4-Methyl-2-pentanone	< 1.0	1.0	< 4.2	4.2	V1L1	1	9/27/2007
Acetone	12	5.0	29	12		1	9/27/2007
Allyl chloride	< 0.50	0.50	< 0.80	0.80		1	9/27/2007
Benzene	< 0.50	0.50	< 1.6	1.6		1	9/27/2007
Benzyl chloride	< 2.0	2.0	< 11	11		1	9/27/2007
Bromodichloromethane	< 0.50	0.50	< 3.4	3.4		1	9/27/2007

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

* - Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

CLIENT:	Mactec
Lab Order:	07090422
Project:	South Mesa/4972-07-2050 4.6
Lab ID:	07090422-01A

Date: 02-Oct-07

Client Sample ID: EFF Tag Number: Collection Date: 9/12/2007 1:48:00 PM Matrix: AIR

	pp	obv	μg/	m³		
Analyses	Result	Limit	Result	Limit	Qual I	DF Date Analyzed
VOLATILE ORGANICS IN AIR Bromoethene(Vinyl Bromide)	< 0.50	TO15 0.50	< 1.1	1.1	1	Analyst: J.J. 9/27/2007
Bromoform	< 0.50	0.50	< 5.2	5.2	1	9/27/2007
Bromomethane	< 0.50	0.50	< 2.0	2.0	1	9/27/2007
Carbon disulfide	< 0.50	0.50	< 1.6	1.6	1	9/27/2007
Carbon tetrachloride	< 0.50	0.50	< 3.2	3.2	1	9/27/2007
Chlorobenzene	< 0.50	0.50	< 2.4	2.4	1	9/27/2007
Chloroethane	< 0.50	0.50	< 1.3	1.3	1	9/27/2007
Chloroform	< 0.50	0.50	< 2.5	2.5	1	9/27/2007
Chloromethane	0.67	0.50	1.4	1.0	1	9/27/2007
cis-1,2-Dichloroethene	< 0.50	0.50	< 2.0	2.0	1	9/27/2007
cis-1,3-Dichloropropene	< 0.50	0.50	< 2.3	2.3	1	9/27/2007
Cyclohexane	< 0.50	0.50	< 1.7	1.7	1	9/27/2007
Dibromochloromethane	< 0.50	0.50	< 4.3	4.3	1	9/27/2007
Dichlorodifluoromethane(F-12)	0.79	0.50	4.0	2.5	1	9/27/2007
Dichlorotetrafluoroethane(F-114)	< 0.50	0.50	< 3.6	3.6	1	9/27/2007
Ethyl Acetate	< 0.50	0.50	< 1.8	1.8	1	9/27/2007
Ethylbenzene	< 0.50	0.50	< 2.2	2.2	1	9/27/2007
Heptane	< 0.50	0.50	< 2.1	2.1	1	9/27/2007
Hexachlorobutadiene	< 1.0	1.0	< 11	11	1	9/27/2007
Hexane	< 0.50	0.50	< 1.8	1.8	1	9/27/2007
m&p-Xylene	< 1.0	1.0	< 4.4	4.4	1	9/27/2007
Methyl tert-butyl ether	< 1.0	1.0	< 3.7	3.7	1	9/27/2007
Methylene chloride	< 0.50	0.50	< 1.8	1.8	1	9/27/2007
o-Xylene	< 0.50	0.50	< 2.2	2.2	1	9/27/2007
Propene (Propylene)	< 0.50	0.50	< 0.88	0.88	1	9/27/2007
Styrene	< 0.50	0.50	< 2.2	2.2	1	9/27/2007

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

* - Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

 CLIENT:
 Mactec

 Lab Order:
 07090422

 Project:
 South Mesa/4972-07-2050 4.6

 Lab ID:
 07090422-01A

Date: 02-Oct-07

Client Sample ID: EFF Tag Number: Collection Date: 9/12/2007 1:48:00 PM Matrix: AIR

	ppby	V	μg/	m³		
Analyses	Result	Limit	Result	Limit	Qual DF	Date Analyzed
VOLATILE ORGANICS IN AIR Tetrachloroethene	2.1	TO15 0.50	14	3.4	1	Analyst: J.J. 9/27/2007
Tetrahydrofuran	< 2.0	2.0	< 6.0	6.0	1	9/27/2007
Toluene	< 0.50	0.50	< 1.9	1.9	1	9/27/2007
trans-1,2-Dichloroethene	< 0.50	0.50	< 2.0	2.0	1	9/27/2007
trans-1,3-Dichloropropene	< 0.50	0.50	< 2.3	2.3	1	9/27/2007
Trichloroethene	< 0.50	0.50	< 2.8	2.8	1	9/27/2007
Trichlorofluoromethane(F-11)	< 0.50	0.50	< 2.8	2.8	1	9/27/2007
Trichlorotrifluoroethane(F-113)	< 0.50	0.50	< 3.9	3.9	1	9/27/2007
Vinyl acetate	< 0.50	0.50	< 1.8	1.8	1	9/27/2007
Vinyl chloride	< 0.50	0.50	< 1.3	1.3	1	9/27/2007
Surr: 4-Bromofluorobenzene	91.3 %REC	70-130	-	-	1	9/27/2007

Qualifiers:

ND - Not Detected at the Reporting Limit

0

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

* - Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Page 3 of 15

 CLIENT:
 Mactec

 Lab Order:
 07090422

 Project:
 South Mesa/4972-07-2050 4.6

 Lab ID:
 07090422-02A

Date: 02-Oct-07

Client Sample ID: INT Tag Number: Collection Date: 9/12/2007 2:02:00 PM Matrix: AIR

	pp	bv	μg/i	m ³			
Analyses	Result	Limit	Result	Limit	Qual	DF	Date Analyzed
VOLATILE ORGANICS IN AIR 1,1,1-Trichloroethane	< 0.50	TO15 0.50	< 2.8	2.8		1	Analyst: J.J. 9/28/2007
1,1,2,2-Tetrachloroethane	< 0.50	0.50	< 3.5	3.5		1	9/28/2007
1,1,2-Trichloroethane	< 0.50	0.50	< 2.8	2.8		1	9/28/2007
1,1-Dichloroethane	8.1	0.50	33	2.1		1	9/28/2007
1,1-Dichloroethene	2.3	0.50	9.3	2.0		1	9/28/2007
1,2,4-Trichlorobenzene	< 2.0	2.0	< 15	15		1	9/28/2007
1,2,4-Trimethylbenzene	< 0.50	0.50	< 2.5	2.5		1	9/28/2007
1,2-Dibromoethane	< 0.50	0.50	< 3.9	3.9		1	9/28/2007
1,2-Dichlorobenzene	< 0.50	0.50	< 3.1	3.1		1	9/28/2007
1,2-Dichloroethane	< 0.50	0.50	< 2.1	2.1		1	9/28/2007
1,2-Dichloropropane	< 0.50	0.50	< 2.4	2.4		1	9/28/2007
1,3,5-Trimethylbenzene	< 0.50	0.50	< 2.5	2.5		1	9/28/2007
1,3-Butadiene	< 0.50	0.50	< 1.1	1.1		1	9/28/2007
1,3-Dichlorobenzene	< 0.50	0.50	< 3.1	3.1		1	9/28/2007
1,4-Dichlorobenzene	< 0.50	0.50	< 3.1	3.1		1	9/28/2007
2,2,4-Trimethylpentane	< 0.50	0.50	< 2.4	2.4		1	9/28/2007
2-Butanone (MEK)	< 1.0	1.0	< 3.0	3.0		1	9/28/2007
2-Hexanone	< 1.0	1.0	< 4.2	4.2	V1L1	1	9/28/2007
2-Propanol	< 2.0	2.0	< 5.0	5.0		1	9/28/2007
4-Ethyltoluene	< 0.50	0.50	< 2.2	2.2		1	9/28/2007
4-Methyl-2-pentanone	< 1.0	1.0	< 4.2	4.2	V1L1	1	9/28/2007
Acetone	9.3	5.0	22	12		1	9/28/2007
Allyl chloride	< 0.50	0.50	< 0.80	0.80		1	9/28/2007
Benzene	< 0.50	0.50	< 1.6	1.6		1	9/28/2007
Benzyl chloride	< 2.0	2.0	< 11	11		1	9/28/2007
Bromodichloromethane	< 0.50	0.50	< 3.4	3.4		1	9/28/2007

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

* - Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

 CLIENT:
 Mactec

 Lab Order:
 07090422

 Project:
 South Mesa/4972-07-2050 4.6

 Lab ID:
 07090422-02A

Date: 02-Oct-07

Client Sample ID: INT Tag Number: Collection Date: 9/12/2007 2:02:00 PM Matrix: AIR

	ppbv		μg/				
Analyses	Result	Limit	Result	Limit	Qual	DF	Date Analyzed
OLATILE ORGANICS IN AIR Bromoethene(Vinyl Bromide)	< 0.50	TO15 0.50	< 1.1	1.1		1	Analyst: J.J 9/28/2007
Bromoform	< 0.50	0.50	< 5.2	5.2		1	9/28/2007
Bromomethane	< 0.50	0.50	< 2.0	2.0		1	9/28/2007
Carbon disulfide	< 0.50	0.50	< 1.6	1.6		1	9/28/2007
Carbon tetrachloride	< 0.50	0.50	< 3.2	3.2		1	9/28/2007
Chlorobenzene	< 0.50	0.50	< 2.4	2.4		1	9/28/2007
Chloroethane	< 0.50	0.50	< 1.3	1.3		1	9/28/2007
Chloroform	2.9	0.50	14	2.5		1	9/28/2007
Chloromethane	< 0.50	0.50	< 1.0	1.0		1	9/28/2007
cis-1,2-Dichloroethene	2.2	0.50	8.8	2.0		1	9/28/2007
cis-1,3-Dichloropropene	< 0.50	0.50	< 2.3	2.3		1	9/28/2007
Cyclohexane	< 0.50	0.50	< 1.7	1.7		1	9/28/2007
Dibromochloromethane	< 0.50	0.50	< 4.3	4.3		1	9/28/2007
Dichlorodifluoromethane(F-12)	0.53	0.50	2.7	2.5		1	9/28/2007
Dichlorotetrafluoroethane(F-114)	< 0.50	0.50	< 3.6	3.6		1	9/28/2007
Ethyl Acetate	< 0.50	0.50	< 1.8	1.8		1	9/28/2007
Ethylbenzene	< 0.50	0.50	< 2.2	2.2		1	9/28/2007
Heptane	< 0.50	0.50	< 2.1	2.1		1	9/28/2007
Hexachlorobutadiene	< 1.0	1.0	< 11	11		1	9/28/2007
Hexane	< 0.50	0.50	< 1.8	1.8		1	9/28/2007
m&p-Xylene	< 1.0	1.0	< 4.4	4.4		1	9/28/2007
Methyl tert-butyl ether	< 1.0	1.0	< 3.7	3.7		1	9/28/2007
Methylene chloride	< 0.50	0.50	< 1.8	1.8		1	9/28/2007
o-Xylene	< 0.50	0.50	< 2.2	2.2		1	9/28/2007
Propene (Propylene)	< 0.50	0.50	< 0.88	0.88		1	9/28/2007
Styrene	< 0.50	0.50	< 2.2	2.2		1	9/28/2007

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

* - Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

CLIENT:	Mactec
Lab Order:	07090422
Project:	South Mesa/4972-07-2050 4.6
Lab ID:	07090422-02A

Date: 02-Oct-07

Client Sample ID: INT Tag Number: Collection Date: 9/12/2007 2:02:00 PM Matrix: AIR

	ppb	v	μg/	m³		
Analyses	Result	Limit	Result	Limit	Qual DF	Date Analyzed
VOLATILE ORGANICS IN AIR Tetrachloroethene	18	TO15 0.50	120	3.4	1	Analyst: J.J. 9/28/2007
Tetrahydrofuran	< 2.0	2.0	< 6.0	6.0	1	9/28/2007
Toluene	< 0.50	0.50	< 1.9	1.9	1	9/28/2007
trans-1,2-Dichloroethene	< 0.50	0.50	< 2.0	2.0	1	9/28/2007
trans-1,3-Dichloropropene	< 0.50	0.50	< 2.3	2.3	1	9/28/2007
Trichloroethene	< 0.50	0.50	< 2.8	2.8	1	9/28/2007
Trichlorofluoromethane(F-11)	3.5	0.50	20	2.8	1	9/28/2007
Trichlorotrifluoroethane(F-113)	< 0.50	0.50	< 3.9	3.9	1	9/28/2007
Vinyl acetate	< 0.50	0.50	< 1.8	1.8	1	9/28/2007
Vinyl chloride	< 0.50	0.50	< 1.3	1.3	1	9/28/2007
Surr: 4-Bromofluorobenzene	97.1 %REC	70-130	-	-	1	9/28/2007

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

* - Value exceeds Maximum Contaminant Level

- S Spike Recovery outside accepted recovery limits
- R RPD outside accepted recovery limits
- E Value above quantitation range

Page 6 of 15

 CLIENT:
 Mactec

 Lab Order:
 07090422

 Project:
 South Mesa/4972-07-2050 4.6

 Lab ID:
 07090422-03A

Date: 02-Oct-07

Client Sample ID: INF Tag Number: Collection Date: 9/12/2007 2:07:00 PM Matrix: AIR

	pp	bv	μg/	m ³			
Analyses	Result	Limit	Result	Limit	Qual	DF	Date Analyzed
OLATILE ORGANICS IN AIR 1,1,1-Trichloroethane	< 0.50	TO15 0.50	< 2.8	2.8		1	Analyst: J.J. 9/28/2007
1,1,2,2-Tetrachloroethane	< 0.50	0.50	< 3.5	3.5		1	9/28/2007
1,1,2-Trichloroethane	< 0.50	0.50	< 2.8	2.8		1	9/28/2007
1,1-Dichloroethane	1.8	0.50	7.4	2.1		1	9/28/2007
1,1-Dichloroethene	0.91	0.50	3.7	2.0		1	9/28/2007
1,2,4-Trichlorobenzene	< 2.0	2.0	< 15	15		1	9/28/2007
1,2,4-Trimethylbenzene	< 0.50	0.50	< 2.5	2.5		1	9/28/2007
1,2-Dibromoethane	< 0.50	0.50	< 3.9	3.9		1	9/28/2007
1,2-Dichlorobenzene	< 0.50	0.50	< 3.1	3.1		1	9/28/2007
1,2-Dichloroethane	< 0.50	0.50	< 2.1	2.1		1	9/28/2007
1,2-Dichloropropane	< 0.50	0.50	< 2.4	2.4		1	9/28/2007
1,3,5-Trimethylbenzene	< 0.50	0.50	< 2.5	2.5		1	9/28/2007
1,3-Butadiene	< 0.50	0.50	< 1.1	1.1		1	9/28/2007
1,3-Dichlorobenzene	< 0.50	0.50	< 3.1	3.1		1	9/28/2007
1,4-Dichlorobenzene	< 0.50	0.50	< 3.1	3.1		1	9/28/2007
2,2,4-Trimethylpentane	< 0.50	0.50	< 2.4	2.4		1	9/28/2007
2-Butanone (MEK)	< 1.0	1.0	< 3.0	3.0		1	9/28/2007
2-Hexanone	< 1.0	1.0	< 4.2	4.2	V1L1	1	9/28/2007
2-Propanol	< 2.0	2.0	< 5.0	5.0		1	9/28/2007
4-Ethyltoluene	< 0.50	0.50	< 2.2	2.2		1	9/28/2007
4-Methyl-2-pentanone	< 1.0	1.0	< 4.2	4.2	V1L1	1	9/28/2007
Acetone	17	5.0	41	12		1	9/28/2007
Allyl chloride	< 0.50	0.50	< 0.80	0.80		1	9/28/2007
Benzene	< 0.50	0.50	< 1.6	1.6		1	9/28/2007
Benzyl chloride	< 2.0	2.0	< 11	11		1	9/28/2007
Bromodichloromethane	< 0.50	0.50	< 3.4	3.4		1	9/28/2007

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

* - Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

 CLIENT:
 Mactec

 Lab Order:
 07090422

 Project:
 South Mesa/4972-07-2050 4.6

 Lab ID:
 07090422-03A

Date: 02-Oct-07

Client Sample ID: INF Tag Number: Collection Date: 9/12/2007 2:07:00 PM Matrix: AIR

	pp	bv	μg/	m ³			
Analyses	Result	Limit	Result	Limit	Qual	DF	Date Analyzed
VOLATILE ORGANICS IN AIR Bromoethene(Vinyl Bromide)	< 0.50	TO15 0.50	< 1.1	1.1		1	Analyst: J.J. 9/28/2007
Bromoform	< 0.50	0.50	< 5.2	5.2		1	9/28/2007
Bromomethane	< 0.50	0.50	< 2.0	2.0		1	9/28/2007
Carbon disulfide	< 0.50	0.50	< 1.6	1.6		1	9/28/2007
Carbon tetrachloride	< 0.50	0.50	< 3.2	3.2		1	9/28/2007
Chlorobenzene	< 0.50	0.50	< 2.4	2.4		1	9/28/2007
Chloroethane	< 0.50	0.50	< 1.3	1.3		1	9/28/2007
Chloroform	1.1	0.50	5.4	2.5		1	9/28/2007
Chloromethane	0.63	0.50	1.3	1.0		1	9/28/2007
cis-1,2-Dichloroethene	0.54	0.50	2.2	2.0		1	9/28/2007
cis-1,3-Dichloropropene	< 0.50	0.50	< 2.3	2.3		1	9/28/2007
Cyclohexane	< 0.50	0.50	< 1.7	1.7		1	9/28/2007
Dibromochloromethane	< 0.50	0.50	< 4.3	4.3		1	9/28/2007
Dichlorodifluoromethane(F-12)	0.59	0.50	3.0	2.5		1	9/28/2007
Dichlorotetrafluoroethane(F-114)	< 0.50	0.50	< 3.6	3.6		1	9/28/2007
Ethyl Acetate	< 0.50	0.50	< 1.8	1.8		1	9/28/2007
Ethylbenzene	< 0.50	0.50	< 2.2	2.2		1	9/28/2007
Heptane	< 0.50	0.50	< 2.1	2.1		1	9/28/2007
Hexachlorobutadiene	< 1.0	1.0	< 11	11		1	9/28/2007
Hexane	< 0.50	0.50	< 1.8	1.8		1	9/28/2007
m&p-Xylene	< 1.0	1.0	< 4.4	4.4		1	9/28/2007
Methyl tert-butyl ether	< 1.0	1.0	< 3.7	3.7		1	9/28/2007
Methylene chloride	< 0.50	0.50	< 1.8	1.8		1	9/28/2007
o-Xylene	< 0.50	0.50	< 2.2	2.2		1	9/28/2007
Propene (Propylene)	< 0.50	0.50	< 0.88	0.88		1	9/28/2007
Styrene	< 0.50	0.50	< 2.2	2.2		1	9/28/2007

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

* - Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Page 8 of 15

CLIENT:	Mactec
Lab Order:	07090422
Project:	South Mesa/4972-07-2050 4.6
Lab ID:	07090422-03A

Date: 02-Oct-07

Client Sample ID: INF Tag Number: Collection Date: 9/12/2007 2:07:00 PM Matrix: AIR

	ppb	v	μg/	μg/m³			
Analyses	Result	Limit	Result	Limit	Qual	DF	Date Analyzed
/OLATILE ORGANICS IN AIR Tetrachloroethene	22	TO15 0.50	150	3.4		1	Analyst: J.J. 9/28/2007
Tetrahydrofuran	< 2.0	2.0	< 6.0	6.0	2	1	9/28/2007
Toluene	< 0.50	0.50	< 1.9	1.9		1	9/28/2007
trans-1,2-Dichloroethene	< 0.50	0.50	< 2.0	2.0		1	9/28/2007
trans-1,3-Dichloropropene	< 0.50	0.50	< 2.3	2.3		1	9/28/2007
Trichloroethene	< 0.50	0.50	< 2.8	2.8		1	9/28/2007
Trichlorofluoromethane(F-11)	1.5	0.50	8.6	2.8		1	9/28/2007
Trichlorotrifluoroethane(F-113)	< 0.50	0.50	< 3.9	3.9		1	9/28/2007
Vinyl acetate	< 0.50	0.50	< 1.8	1.8		1	9/28/2007
Vinyl chloride	< 0.50	0.50	< 1.3	1.3		1	9/28/2007
Surr: 4-Bromofluorobenzene	90.8 %REC	70-130	-	-		1	9/28/2007

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

* - Value exceeds Maximum Contaminant Level

- S Spike Recovery outside accepted recovery limits
- R RPD outside accepted recovery limits
- E Value above quantitation range

Page 9 of 15

 CLIENT:
 Mactec

 Lab Order:
 07090422

 Project:
 South Mesa/4972-07-2050 4.6

 Lab ID:
 07090422-04A

Date: 02-Oct-07

Client Sample ID: VW-5C Tag Number: Collection Date: 9/12/2007 2:20:00 PM Matrix: AIR

	pp	obv	μg/	m ³			
Analyses	Result	Limit	Result	Limit	Qual	DF	Date Analyzed
VOLATILE ORGANICS IN AIR 1,1,1-Trichloroethane	< 10	TO15 10	< 55	55		20	Analyst: J.J. 9/27/2007
1,1,2,2-Tetrachloroethane	< 10	10	< 70	70		20	9/27/2007
1,1,2-Trichloroethane	< 10	10	< 55	55		20	9/27/2007
1,1-Dichloroethane	< 10	10	< 41	41		20	9/27/2007
1,1-Dichloroethene	< 10	10	< 40	40		20	9/27/2007
1,2,4-Trichlorobenzene	< 40	40	< 300	300		20	9/27/2007
1,2,4-Trimethylbenzene	15	10	75	50		20	9/27/2007
1,2-Dibromoethane	< 10	10	< 78	78		20	9/27/2007
1,2-Dichlorobenzene	< 10	10	< 61	61		20	9/27/2007
1,2-Dichloroethane	< 10	10	< 41	41		20	9/27/2007
1,2-Dichloropropane	< 10	10	< 47	47		20	9/27/2007
1,3,5-Trimethylbenzene	< 10	10	< 50	50		20	9/27/2007
1,3-Butadiene	< 10	10	< 22	22		20	9/27/2007
1,3-Dichlorobenzene	< 10	10	< 61	61		20	9/27/2007
1,4-Dichlorobenzene	< 10	10	< 61	61		20	9/27/2007
2,2,4-Trimethylpentane	< 10	10	< 47	47		20	9/27/2007
2-Butanone (MEK)	< 20	20	< 60	60		20	9/27/2007
2-Hexanone	< 20	20	< 83	83	V1L1	20	9/27/2007
2-Propanol	< 40	40	< 100	100		20	9/27/2007
4-Ethyltoluene	< 10	10	< 44	44		20	9/27/2007
4-Methyl-2-pentanone	< 20	20	< 83	83	V1L1	20	9/27/2007
Acetone	< 100	100	< 240	240		20	9/27/2007
Allyl chloride	< 10	10	< 16	16		20	9/27/2007
Benzene	< 10	10	< 32	32		20	9/27/2007
Benzyl chloride	< 40	40	< 210	210		20	9/27/2007
Bromodichloromethane	< 10	10	< 68	68		20	9/27/2007

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

* - Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

 CLIENT:
 Mactec

 Lab Order:
 07090422

 Project:
 South Mesa/4972-07-2050 4.6

 Lab ID:
 07090422-04A

Date: 02-Oct-07

Client Sample ID: VW-5C Tag Number: Collection Date: 9/12/2007 2:20:00 PM Matrix: AIR

	pp	bv	μg/i	m ³			
Analyses	Result	Limit	Result	Limit	Qual	DF	Date Analyzed
/OLATILE ORGANICS IN AIR Bromoethene(Vinyl Bromide)	< 10	TO15 10	< 22	22		20	Analyst: J.J. 9/27/2007
Bromoform	< 10	10	< 100	100		20	9/27/2007
Bromomethane	< 10	10	< 40	40		20	9/27/2007
Carbon disulfide	< 10	10	< 32	32		20	9/27/2007
Carbon tetrachloride	< 10	10	< 64	64		20	9/27/2007
Chlorobenzene	< 10	10	< 47	47		20	9/27/2007
Chloroethane	< 10	10	< 27	27		20	9/27/2007
Chloroform	< 10	10	< 50	50		20	9/27/2007
Chloromethane	< 10	10	< 21	21		20	9/27/2007
cis-1,2-Dichloroethene	< 10	10	< 40	40		20	9/27/2007
cis-1,3-Dichloropropene	< 10	10	< 46	46		20	9/27/2007
Cyclohexane	< 10	10	< 35	35		20	9/27/2007
Dibromochloromethane	< 10	10	< 86	86		20	9/27/2007
Dichlorodifluoromethane(F-12)	< 10	10	< 50	50		20	9/27/2007
Dichlorotetrafluoroethane(F-114)	< 10	10	< 71	71		20	9/27/2007
Ethyl Acetate	< 10	10	< 37	37		20	9/27/2007
Ethylbenzene	< 10	10	< 44	44		20	9/27/2007
Heptane	< 10	10	< 42	42		20	9/27/2007
Hexachlorobutadiene	< 20	20	< 220	220		20	9/27/2007
Hexane	< 10	10	< 36	36		20	9/27/2007
m&p-Xylene	< 20	20	< 88	88		20	9/27/2007
Methyl tert-butyl ether	< 20	20	< 73	73		20	9/27/2007
Methylene chloride	< 10	10	< 35	35		20	9/27/2007
o-Xylene	< 10	10	< 44	44		20	9/27/2007
Propene (Propylene)	< 10	10	< 18	18		20	9/27/2007
Styrene	< 10	10	< 43	43		20	9/27/2007

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

* - Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

 CLIENT:
 Mactec

 Lab Order:
 07090422

 Project:
 South Mesa/4972-07-2050 4.6

 Lab ID:
 07090422-04A

Date: 02-Oct-07

Client Sample ID: VW-5C Tag Number: Collection Date: 9/12/2007 2:20:00 PM Matrix: AIR

	ppby	v	μg/	m ³			
Analyses	Result	Limit	Result	Limit	Qual	DF	Date Analyzed
VOLATILE ORGANICS IN AIR Tetrachloroethene	250	TO15 10	1700	69	D2	20	Analyst: J.J. 9/27/2007
Tetrahydrofuran	< 40	40	< 120	120		20	9/27/2007
Toluene	< 10	10	< 38	38		20	9/27/2007
trans-1,2-Dichloroethene	< 10	10	< 40	40		20	9/27/2007
trans-1,3-Dichloropropene	< 10	10	< 46	46		20	9/27/2007
Trichloroethene	< 10	10	< 55	55		20	9/27/2007
Trichlorofluoromethane(F-11)	< 10	10	< 57	57		20	9/27/2007
Trichlorotrifluoroethane(F-113)	< 10	10	< 78	78		20	9/27/2007
Vinyl acetate	< 10	10	< 36	36		20	9/27/2007
Vinyl chloride	< 10	10	< 26	26		20	9/27/2007
Surr: 4-Bromofluorobenzene	89.6 %REC	70-130	-	-		20	9/27/2007

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

* - Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Page 12 of 15

CLIENT:	Mactec
Lab Order:	07090422
Project:	South Mesa/4972-07-2050 4.6
Lab ID:	07090422-05A

Date: 02-Oct-07

Client Sample ID: VW-7C Tag Number: Collection Date: 9/12/2007 2:27:00 PM Matrix: AIR

	pr	obv	μg/	m ³			
Analyses	Result	Limit	Result	Limit	Qual	DF	Date Analyzed
/OLATILE ORGANICS IN AIR 1,1,1-Trichloroethane	1.2	TO15 0.50	6.6	2.8		1	Analyst: J.J. 9/27/2007
1,1,2,2-Tetrachloroethane	< 0.50	0.50	< 3.5	3.5		1	9/27/2007
1,1,2-Trichloroethane	< 0.50	0.50	< 2.8	2.8		1	9/27/2007
1,1-Dichloroethane	13	0.50	54	2.1		1	9/27/2007
1,1-Dichloroethene	4.8	0.50	19	2.0		1	9/27/2007
1,2,4-Trichlorobenzene	< 2.0	2.0	< 15	15		1	9/27/2007
1,2,4-Trimethylbenzene	< 0.50	0.50	< 2.5	2.5		1	9/27/2007
1,2-Dibromoethane	< 0.50	0.50	< 3.9	3.9		1	9/27/2007
1,2-Dichlorobenzene	< 0.50	0.50	< 3.1	3.1		1	9/27/2007
1,2-Dichloroethane	< 0.50	0.50	< 2.1	2.1		1	9/27/2007
1,2-Dichloropropane	4.2	0.50	20	2.4		1	9/27/2007
1,3,5-Trimethylbenzene	< 0.50	0.50	< 2.5	2.5		1	9/27/2007
1,3-Butadiene	< 0.50	0.50	< 1.1	1.1		1	9/27/2007
1,3-Dichlorobenzene	< 0.50	0.50	< 3.1	3.1		1	9/27/2007
1,4-Dichlorobenzene	< 0.50	0.50	< 3.1	3.1		1	9/27/2007
2,2,4-Trimethylpentane	2.0	0.50	9.5	2.4		1	9/27/2007
2-Butanone (MEK)	< 1.0	1.0	< 3.0	3.0		1	9/27/2007
2-Hexanone	< 1.0	1.0	< 4.2	4.2	V1L1	1	9/27/2007
2-Propanol	< 2.0	2.0	< 5.0	5.0		1	9/27/2007
4-Ethyltoluene	< 0.50	0.50	< 2.2	2.2		1	9/27/2007
4-Methyl-2-pentanone	< 1.0	1.0	< 4.2	4.2	V1L1	1	9/27/2007
Acetone	7.9	5.0	19	12		1	9/27/2007
Allyl chloride	< 0.50	0.50	< 0.80	0.80		1	9/27/2007
Benzene	< 0.50	0.50	< 1.6	1.6		1	9/27/2007
Benzyl chloride	< 2.0	2.0	< 11	11		1	9/27/2007
Bromodichloromethane	0.63	0.50	4.3	3.4		1	9/27/2007

Qualifiers:

ND - Not Detected at the Reporting Limit

S - Spike Recovery outside accepted recovery limits

- J Analyte detected below quantitation limits
- B Analyte detected in the associated Method Blank

* - Value exceeds Maximum Contaminant Level

E - Value above quantitation range

R - RPD outside accepted recovery limits

 CLIENT:
 Mactec

 Lab Order:
 07090422

 Project:
 South Mesa/4972-07-2050 4.6

 Lab ID:
 07090422-05A

Date: 02-Oct-07

Client Sample ID: VW-7C Tag Number: Collection Date: 9/12/2007 2:27:00 PM Matrix: AIR

	pp	obv	μg/i	m ³		
Analyses	Result	Limit	Result	Limit	Qual DI	Date Analyzed
OLATILE ORGANICS IN AIR Bromoethene(Vinyl Bromide)	< 0.50	TO15 0.50	< 1.1	1.1	1	Analyst: J.J 9/27/2007
Bromoform	< 0.50	0.50	< 5.2	5.2	1	9/27/2007
Bromomethane	< 0.50	0.50	< 2.0	2.0	1	9/27/2007
Carbon disulfide	< 0.50	0.50	< 1.6	1.6	1	9/27/2007
Carbon tetrachloride	< 0.50	0.50	< 3.2	3.2	1	9/27/2007
Chlorobenzene	< 0.50	0.50	< 2.4	2.4	1	9/27/2007
Chloroethane	< 0.50	0.50	< 1.3	1.3	1	9/27/2007
Chloroform	5.0	0.50	25	2.5	1	9/27/2007
Chloromethane	< 0.50	0.50	< 1.0	1.0	1	9/27/2007
cis-1,2-Dichloroethene	< 0.50	0.50	< 2.0	2.0	1	9/27/2007
cis-1,3-Dichloropropene	< 0.50	0.50	< 2.3	2.3	1	9/27/2007
Cyclohexane	< 0.50	0.50	< 1.7	1.7	1	9/27/2007
Dibromochloromethane	< 0.50	0.50	< 4.3	4.3	1	9/27/2007
Dichlorodifluoromethane(F-12)	< 0.50	0.50	< 2.5	2.5	1	9/27/2007
Dichlorotetrafluoroethane(F-114)	< 0.50	0.50	< 3.6	3.6	1	9/27/2007
Ethyl Acetate	18	0.50	66	1.8	1	9/27/2007
Ethylbenzene	< 0.50	0.50	< 2.2	2.2	1	9/27/2007
Heptane	< 0.50	0.50	< 2.1	2.1	1	9/27/2007
Hexachlorobutadiene	< 1.0	1.0	< 11	11	1	9/27/2007
Hexane	< 0.50	0.50	< 1.8	1.8	1	9/27/2007
m&p-Xylene	< 1.0	1.0	< 4.4	4.4	1	9/27/2007
Methyl tert-butyl ether	< 1.0	1.0	< 3.7	3.7	1	9/27/2007
Methylene chloride	0.58	0.50	2.0	1.8	1	9/27/2007
o-Xylene	< 0.50	0.50	< 2.2	2.2	1	9/27/2007
Propene (Propylene)	< 0.50	0.50	< 0.88	0.88	1	9/27/2007
Styrene	< 0.50	0.50	< 2.2	2.2	1	9/27/2007

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

* - Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

 CLIENT:
 Mactec

 Lab Order:
 07090422

 Project:
 South Mesa/4972-07-2050 4.6

 Lab ID:
 07090422-05A

Date: 02-Oct-07

Client Sample ID: VW-7C Tag Number: Collection Date: 9/12/2007 2:27:00 PM Matrix: AIR

	ppby	V	μg/ı	m³			
Analyses	Result	Limit	Result	Limit	Qual	DF	Date Analyzed
			14 A.				
VOLATILE ORGANICS IN AIR Tetrachloroethene	41	TO15 0.50	280	3.4		1	Analyst: J.J. 9/27/2007
Tetrahydrofuran	< 2.0	2.0	< 6.0	6.0		1	9/27/2007
Toluene	0.56	0.50	2.1	1.9		1	9/27/2007
trans-1,2-Dichloroethene	< 0.50	0.50	< 2.0	2.0		1	9/27/2007
trans-1,3-Dichloropropene	< 0.50	0.50	< 2.3	2.3		1	9/27/2007
Trichloroethene	0.99	0.50	5.5	2.8		1	9/27/2007
Trichlorofluoromethane(F-11)	6.6	0.50	38	2.8		1	9/27/2007
Trichlorotrifluoroethane(F-113)	0.52	0.50	4.0	3.9		1	9/27/2007
Vinyl acetate	< 0.50	0.50	< 1.8	1.8		1	9/27/2007
Vinyl chloride	< 0.50	0.50	< 1.3	1.3		1	9/27/2007
Surr: 4-Bromofluorobenzene	94.6 %REC	70-130	-	-		1	9/27/2007

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

* - Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Page 15 of 15

Aerot	Aerotech Environme	nment	ntal Laboratories		Date: 01-Oct-07
CLIENT: Mactec Work Order: 07090422	5			ANALYTICAL QC SUMMARY REPORT	IMARY REPORT
	South Mesa/4972-07-2050 4.6			TestCode: T015	15
Sample ID: MB-R91544	SampType: MBLK	TestCode: T015	15 Units: ppbv	Prep Date:	RunNo: 91544
Cilent ID. Analyte	Batch ID. K91344 Result	PQL SPK va	SPK value SPK Ref Val	ghLimit RPD Ref Val	%RPD RPDLimit Qual
1,1,1-Trichloroethane	<0.50	0.50			
1,1,2,2-Tetrachloroethane	<0.50	0.50			
1,1,2-Trichloroethane	<0.50	0.50			
1,1-Dichloroethane	<0.50	0.50			
1,1-Dichloroethene	<0.50	0.50			
1,2,4-Trichlorobenzene	<2.0	2.0			
1,2,4-Trimethylbenzene	<0.50	0.50			
1,2-Dibromoethane	<0.50	0.50			
1,2-Dichlorobenzene	<0.50	0.50			
1,2-Dichloroethane	<0.50	0.50			
1,2-Dichloropropane	<0.50	0.50			
1,3,5-Trimethylbenzene	<0.50	0.50			
1,3-Butadiene	<0.50	0.50			
1,3-Dichlorobenzene	<0.50	0.50			
1,4-Dichlorobenzene	<0.50	0.50			
2,2,4-Trimethylpentane	<0.50	0.50			
2-Butanone (MEK)	<1.0	1.0			
2-Hexanone	<1.0	1.0			71
2-Propanol	<2.0	2.0			
4-Ethyltoluene	<0.50	0.50			
4-Methyl-2-pentanone	<1.0	1.0			71
Acetone	<5.0	5.0			
Allyl chloride	<0.50	0.50			
Benzene	<0.50	0.50			
Benzyl chloride	<2.0	2.0			
Qualifiers: * Value excee	Value exceeds Maximum Contaminant Level	I ND	Not Detected at the Reporting Limit	ng Limit	

Page 1 of 8

Aeroté a division of Aero	Aerotech Environmental Laboratories a division of Aerotech Laboratories, Inc.	nmenta	al Laborat	tories	Date: 01-Oct-07
CLLENT: Mactec Work Order: 07090422				ANALYTICAL QC SUMMARY REPORT	MMARY REPORT
	South Mesa/4972-07-2050 4.6			TestCode: 1	T015
Sample ID: MB-R91544	SampType: MBLK	TestCode: TO15	5 Units: ppbv	Prep Date:	RunNo: 91544
Client ID:	Batch ID: R91544	TestNo: T015	2	Analysis Date: 9/27/2007	SeqNo: 1083893
Analyte	Result	PQL SPK	SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Bromodichloromethane	<0.50	0.50			
Bromoethene(Vinyl Bromide)	<0.50	0.50			
Bromoform	<0.50	0.50			
Bromomethane	<0.50	0.50			
Carbon disulfide	<0.50	0.50			
Carbon tetrachloride	<0.50	0.50			
Chlorobenzene	<0.50	0.50			
Chloroethane	<0.50	0.50			
Chloroform	<0.50	0.50			
Chloromethane	<0.50	0.50			
cis-1,2-Dichloroethene	<0.50	0.50			
cis-1,3-Dichloropropene	<0.50	0.50			
Cyclohexane	<0.50	0.50			
Dibromochloromethane	<0.50	0.50			
Dichlorodifluoromethane(F-12)	<0.50	0.50			
Dichlorotetrafluoroethane(F-114)	<0.50	0.50			
Ethyl Acetate	<0.50	0.50			
Ethylbenzene	<0.50	0.50			
Heptane	<0.50	0.50			
Hexachlorobutadiene	<1.0	1.0			
Hexane	<0.50	0.50			
m&p-Xylene	<1.0	1.0			
Methyl tert-butyl ether	<1.0	1.0			
Methylene chloride	<0.50	0.50			
o-Xylene	<0.50	0.50			
Qualifiers: * Value exceed	Value exceeds Maximum Contaminant Level	IN ND	Not Detected at the Reporting Limit	ag Limit	

Page 2 of 8

Aero a division of	Aerotech Environmental Laboratories a division of Aerotech Laboratories, Inc.	nment		aborat	orie	S		Date: 01-Oct-07	
CLIENT: Mactec						ANALYI	TICAL QC SI	ANALYTICAL QC SUMMARY REPORT	T
	South Mesa/4972-07-2050 4.6						TestCode: T015	T015	
Sample ID: MB-R91544	SampType: MBLK	TestCode: TO15	15	Units: ppbv		Prep Date:		RunNo: 91544	
Client ID:	Batch ID: R91544	TestNo: TO15	15			Analysis Date: 9	9/27/2007	SeqNo: 1083893	
Analyte	Result	PQL SPK	SPK value	SPK Ref Val	%REC	LowLimit High	HighLimit RPD Ref Val	%RPD RPDLimit Q	Qual
Propene (Propylene)	<0.50	0.50							
Styrene	<0.50	0.50							
Tetrachloroethene	<0.50	0.50							
Tetrahydrofuran	<2.0	2.0							
Toluene	<0.50	0.50							
trans-1,2-Dichloroethene	<0.50	0.50							
trans-1,3-Dichloropropene	<0.50	0.50							
Trichloroethene	<0.50	0.50							
Trichlorofluoromethane(F-11)	<0.50	0.50							
Trichlorotrifluoroethane(F-113)		0.50							
Vinyl acetate	<0.50	0.50							
Vinyl chloride	<0.50	0.50							
Surr: 4-Bromofluorobenzene	le 9.320	0.50	10	0	93.2	20	130		
Sample ID: LCS-R91544	SampType: LCS	TestCode: TO15	15	Units: ppbv		Prep Date:		RunNo: 91544	
Client ID:	Batch ID: R91544	TestNo: T015	15			Analysis Date: 9	9/27/2007	SeqNo: 1083894	
Analyte	Result	PQL SPK	SPK value	SPK Ref Val	%REC	LowLimit High	HighLimit RPD Ref Val	%RPD RPDLimit Q	Qual
1,1,1-Trichloroethane	9.240	0.50	10	0	92.4	65	135		
1,1,2,2-Tetrachloroethane	9.520	0.50	10	0	95.2	65	135		
1,1,2-Trichloroethane	9.580	0.50	10	0	95.8	65	135		
1,1-Dichloroethane	9.780	0.50	10	0	97.8	65	135		
1,1-Dichloroethene	9.440	0.50	10	0	94.4	65	135		
1,2,4-Trichlorobenzene	9.650	2.0	10	0	96.5	65	135		
1,2,4-Trimethylbenzene	10.90	0.50	10	0	109	65	135		
Qualifiers: * Value exe	Value exceeds Maximum Contaminant Level	el ND	Not Det	Not Detected at the Reporting Limit	Limit				

Page 3 of 8

D: LCS-R91						ANAL	YTICAL QC	ANALYTICAL QC SUMMARY REPORT	PORT
	South Mesa/4972-07-2050 4.6						TestCode:	:: T015	
	SampType: LCS	TestCo	TestCode: T015	Units: ppbv		Prep Date:		RunNo: 91544	
Client IU:	Batch ID: R91544	Test	TestNo: T015		4	Analysis Date:	e: 9/27/2007	SeqNo: 1083894	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RPD Ref Val	'al %RPD RPDLimit	nit Qual
1,2-Dibromoethane	9.910	0.50	10	0	99.1	65	135		
1,2-Dichlorobenzene	10.14	0.50	10	0	101	65	135		
1,2-Dichloroethane	9.640	0.50	10	0	96.4	65	135		
1,2-Dichloropropane	9.720	0.50	10	0	97.2	65	135		
1,3,5-Trimethylbenzene	10.90	0.50	10	0	109	65	135		
1,3-Butadiene	9.620	0.50	10	0	96.2	65	135		
1,3-Dichlorobenzene	9.940	0.50	10	0	99.4	65	135		
1,4-Dichlorobenzene	10.18	0.50	10	0	102	65	135		
2,2,4-Trimethylpentane	10.39	0.50	10	0	104	65	135		
2-Butanone (MEK)	11.15	1.0	10	0	112	65	135		
2-Hexanone	17.35	1.0	10	0	174	65	135		L1
2-Propanol	7.250	2.0	10	0	72.5	65	135		
4-Ethyltoluene	9.550	0.50	10	0	95.5	65	135		
4-Methyl-2-pentanone	17.57	1.0	10	0	176	65	135		L1
Acetone	9.690	5.0	10	0	96.9	65	135		
Allyl chloride	8.940	0.50	10	0	89.4	65	135		
Benzene	10.35	0.50	10	0	104	65	135		
Benzyl chloride	9.660	2.0	10	0	96.6	65	135		
Bromodichloromethane	9.700	0.50	10	0	97.0	65	135		
Bromoethene(Vinyl Bromide)	9.270	0.50	10	0	92.7	65	135		
Bromoform	9.700	0.50	10	0	97.0	65	135		
Bromomethane	9.320	0.50	10	0	93.2	65	135		`
Carbon disulfide	9.390	0.50	10	0	93.9	65	135		
Carbon tetrachloride	9.700	0.50	10	0	97.0	65	135		
Chlorobenzene	9.740	0.50	10	0	97.4	65	135		

Aerotech Environmental Laboratories a division of Aerotech Laboratories, Inc.

Date: 01-Oct-07

Page 4 of 8

Work Order: 07090422	Mactec					ANAL	XTICA	ANALYTICAL OC SUMMARY REPORT	IMMA	XY REP(JRT
Draiget. South	07090422 South Mess/4072_07_0760 4 6						L	TestCode: TO15	T015		
mo											
Sample ID: LCS-R91544	SampType: LCS	TestCot	TestCode: TO15	Units: ppbv		Prep Date:	te:		RunNo: 91544	1544	
Client ID:	Batch ID: R91544	Test	TestNo: T015			Analysis Date:	te: 9/27/2007	71	SeqNo: 1083894	083894	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Chloroethane	9.470	0.50	10	0	94.7	65	135				
Chloroform	8.860	0.50	10	0	88.6	65	135				
Chloromethane	9.400	0.50	10	0	94.0	65	135				
cis-1,2-Dichloroethene	10.08	0.50	10	0	101	65	135				
cis-1,3-Dichloropropene	9.000	0.50	10	0	90.0	65	135				
Cyclohexane	7.970	0.50	10	0	79.7	65	135				
Dibromochloromethane	9.690	0.50	10	0	96.9	65	135				
Dichlorodifluoromethane(F-12)	2) 9.440	0.50	10	0	94.4	65	135				
Dichlorotetrafluoroethane(F-114)	114) 9.620	0.50	10	0	96.2	65	135				
Ethyl Acetate	12.34	0.50	10	0	123	65	135				
Ethylbenzene	8.820	0.50	10	0	88.2	65	135				
Heptane	10.13	0.50	10	0	101	65	135				
Hexachlorobutadiene	10.23	1.0	10	0	102	65	135				
Hexane	9.280	0.50	10	0	92.8	65	135				
m&p-Xylene	18.44	1.0	20	0	92.2	65	135				
Methyl tert-butyl ether	10.53	1.0	10	0	105	65	135				
Methylene chloride	9.440	0.50	10	0	94.4	65	135				
o-Xylene	9.970	0.50	10	0	99.7	65	135				
Propene (Propylene)	9.490	0.50	10	0	94.9	65	135				
Styrene	8.900	0.50	10	0	89.0	65	135				
Tetrachloroethene	9.470	0.50	10	0	94.7	65	135				
Tetrahydrofuran	11.42	2.0	10	0	114	65	135				
Toluene	9.310	0.50	10	0	93.1	65	135				
trans-1,2-Dichloroethene	9.710	0.50	10	0	97.1	65	135				
trans-1,3-Dichloropropene	8.630	0.50	10	0	86.3	65	135				

Aerotech Environmental Laboratories

* Value exceeds Maximum Contaminant Level

Page 5 of 8

5	
Ű	
1	
2	
Ō	
ō	
Ď	
ŋ	
<u>n</u>	
È	
O	
E	
C	
9	
C	
Ш	
C	•
S	
ţ	
9	
O	
4	

a division of Aerotech Laboratories, Inc.

CLIENT: Mactec					ANAL	YTICA	L QC SU	ANALYTICAL QC SUMMARY REPORT	Y REPC	RT
	South Mesa/4972-07-2050 4.6					Te	TestCode: T015	r015		
Sample ID: LCS-R91544	SampType: LCS	TestCode: TO15	5 Units: ppbv		Prep Date:			RunNo: 91544	544	
Client ID:	Batch ID: R91544	TestNo: T015	10		Analysis Date:	e: 9/27/2007		SeqNo: 1083894	33894	
Analyte	Result	PQL SPK value	alue SPK Ref Val	%REC	LowLimit	HighLimit R	RPD Ref Val	%RPD	RPDLimit	Qual
Trichloroethene	9.390	0.50	10 0	93.9	65	135				
Trichlorofluoromethane(F-11)	9.580	0.50	10 0	95.8	65	135				
Trichlorotrifluoroethane(F-113)	9.790	0.50	10 0	97.9	65	135				
Vinyl acetate	8.850	0.50	10 0	88.5	65	135				
Vinyl chloride	9.230	0.50	10 0	92.3	65	135				
Surr: 4-Bromofluorobenzene	9.780	0.50	10 0	97.8	70	130				
Sample ID: LCSD-R91544	SampType: LCSD	TestCode: TO15	5 Units: ppbv		Prep Date:		N a	RunNo: 91544	544	
Client ID:	Batch ID: R91544	TestNo: T015	0		Analysis Date:	e: 9/27/2007		SeqNo: 1083895	33895	а Э
Analyte	Result	PQL SPK value	alue SPK Ref Val	%REC	LowLimit	HighLimit R	RPD Ref Val	%RPD	RPDLimit	Qual
1,1,1-Trichloroethane	9.160	0.50	10 0	91.6	65	135	9.240	0.870	25	
1,1,2,2-Tetrachloroethane	9.410	0.50	10 0	94.1	65	135	9.520	1.16	25	
1,1,2-Trichloroethane	9.450	0.50	10 0	94.5	65	135	9.580	1.37	25	
1,1-Dichloroethane	9.750	0.50	10 0	97.5	65	135	9.780	0.307	25	
1,1-Dichloroethene	9.450	0.50	10 0	94.5	65	135	9.440	0.106	25	
1,2,4-Trichlorobenzene	9.840	2.0	10 0	98.4	65	135	9.650	1.95	25	
1,2,4-Trimethylbenzene	10.71	0.50	10 0	107	65	135	10.90	1.76	25	
1,2-Dibromoethane	9.750	0.50	10 0	97.5	65	135	9.910	1.63	25	
1,2-Dichlorobenzene	10.02	0.50	10 0	100	65	135	10.14	1.19	25	
1,2-Dichloroethane	9.420	0.50	10 0	94.2	65	135	9.640	2.31	25	
1,2-Dichloropropane	9.560	0.50	10 0	95.6	65	135	9.720	1.66	25	
1,3,5-Trimethylbenzene	10.75	0.50	10 0	108	65	135	10.90	1.39	25	
1,3-Butadiene	9.320	0.50	10 0	93.2	65	135	9.620	3.17	25	
1,3-Dichlorobenzene	9.790	0.50	10 0	97.9	65	135	9.940	1.52	25	

Page 6 of 8

ND Not Detected at the Reporting Limit

Value exceeds Maximum Contaminant Level

Qualifiers:

Aerotech Environmental Laboratories

a division of Aerotech Laboratories, Inc.

Project: South Mes								t				
	South Mesa/4972-07-2050 4.6								TestCode:	ciui.		
Sample ID: LCSD-R91544	SampType: LCSD	TestCoc	TestCode: T015	Units: ppbv	ppbv		Prep Date:			RunNo: 91544	544	
Client ID:	Batch ID: R91544	Testh	TestNo: T015			Ar	Analysis Date:	9/27/2007	7	SeqNo: 1083895	33895	
Analyte	Result	PQL	SPK value	le SPK Ref Val		%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,4-Dichlorobenzene	10.13	0.50	-	10	0	101	65	135	10.18	0.492	25	
2,2,4-Trimethylpentane	10.14	0.50	4	10	0	101	65	135	10.39	2.44	25	
2-Butanone (MEK)	11.20	1.0	-	10	0	112	65	135	11.15	0.447	25	
2-Hexanone	18.05	1.0	-	10	0	180	65	135	17.35	3.95	25	L
2-Propanol	7.610	2.0	-	10	0	76.1	65	135	7.250	4.85	25	
4-Ethyltoluene	9.380	0.50	~	10	0	93.8	65	135	9.550	1.80	25	
4-Methyl-2-pentanone	18.01	1.0	~	10	0	180	65	135	17.57	2.47	25	2
Acetone	9.690	5.0	~	10	0	96.9	65	135	9.690	0	25	
Allyl chloride	8.940	0.50	-	10	0	89.4	65	135	8.940	0	25	
Benzene	10.43	0.50	,	10	0	104	65	135	10.35	0.770	25	
Benzyl chloride	9.790	2.0	-	10	0	97.9	65	135	9.660	1.34	25	
Bromodichloromethane	9.460	0.50	-	10	0	94.6	65	135	9.700	2.51	25	
Bromoethene(Vinyl Bromide)	9.260	0.50	-	10	0	92.6	65	135	9.270	0.108	25	
Bromoform	9.530	0.50	-	10	0	95.3	65	135	9.700	1.77	25	
Bromomethane	9.350	0.50	-	10	0	93.5	65	135	9.320	0.321	25	
Carbon disulfide	9.360	0.50	-	10	0	93.6	65	135	9.390	0.320	25	
Carbon tetrachloride	9.570	0.50	~	10	0	95.7	65	135	9.700	1.35	25	
Chlorobenzene	9.630	0.50	-	10	0	96.3	65	135	9.740	1.14	25	
Chloroethane	9.450	0.50	~	10	0	94.5	65	135	9.470	0.211	25	
Chloroform	8.780	0.50	-	10	0	87.8	65	135	8.860	0.907	25	
Chloromethane	9.270	0.50	-	10	0	92.7	65	135	9.400	1.39	25	
cis-1,2-Dichloroethene	10.22	0.50	-	10	0	102	65	135	10.08	1.38	25	
cis-1,3-Dichloropropene	8.930	0.50	~	10	0	89.3	65	135	9.000	0.781	25	
Cyclohexane	7.970	0.50	-	10	0	79.7	65	135	7.970	0	25	
Dibromochloromethane	9.430	0.50	-	10	0	94.3	65	135	9.690	2.72	25	

Page 7 of 8

Aerotech Environmental Laboratories

a division of Aerotech Laboratories, Inc.

CLIENT: Ma Work Order: 070	Mactec						ANAI	YTIC/	ANALYTICAL QC SUMMARY REPORT	JMMAR	Y REPC	RT
	South Mesa/4972-07-2050 4.6	07-2050 4.6							TestCode:	T015		
Sample ID: LCSD-R91544		SampType: LCSD	TestCoc	TestCode: T015	Units: ppbv	pbv	Prep Date:	te:		RunNo: 91544	544	
Client ID:	Batc	Batch ID: R91544	TestN	TestNo: T015			Analysis Date:	te: 9/27/2007	07	SeqNo: 1083895	33895	
Analyte		Result	PQL	SPK value	e SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Dichlorodifluoromethane(F-12)	(F-12)	9.280	0.50	-	10 0	92.8	65	135	9.440	1.71	25	
Dichlorotetrafluoroethane(F-114)	∋(F-114)	9.550	0.50	-	10 0	95.5	65	135	9.620	0.730	25	
Ethyl Acetate		12.40	0.50	-	10 0	124	65	135	12.34	0.485	25	
Ethylbenzene		8.830	0.50	~	10 0	88.3	65	135	8.820	0.113	25	
Heptane		9.790	0.50	-	10 0	97.9	65	135	10.13	3.41	25	
Hexachlorobutadiene		9.530	1.0	-	10 0	95.3	65	135	10.23	7.09	25	
Hexane		9.170	0.50	~	10 0	91.7	65	135	9.280	1.19	25	
m&p-Xylene		17.69	1.0	20	0 0	88.4	65	135	18.44	4.15	25	
Methyl tert-butyl ether		11.06	1.0	10	0 0	111	65	135	10.53	4.91	25	
Methylene chloride		9.200	0.50	10	0 0	92.0	65	135	9.440	2.58	25	
o-Xylene		9.800	0.50	10	0 0	98.0	65	135	9.970	1.72	25	
Propene (Propylene)		9.830	0.50	10	0 0	98.3	65	135	9.490	3.52	25	
Styrene		8.860	0.50	10	0 0	88.6	65	135	8.900	0.450	25	
Tetrachloroethene		9.290	0.50	10	0 0	92.9	65	135	9.470	1.92	25	
Tetrahydrofuran		11.53	2.0	10	0 0	115	65	135	11.42	0.959	25	
Toluene		9.210	0.50	10	0	92.1	65	135	9.310	1.08	25	
trans-1,2-Dichloroethene		10.01	0.50	10	0 0	100	65	135	9.710	3.04	25	
trans-1,3-Dichloropropene	Ð	8.480	0.50	10	0 0	84.8	65	135	8.630	1.75	25	
Trichloroethene		9.360	0.50	10	0 0	93.6	65	135	9.390	0.320	25	
Trichlorofluoromethane(F-11)	11)	9.330	0.50	10	0 0	93.3	65	135	9.580	2.64	25	
Trichlorotrifluoroethane(F-113)	-113)	9.620	0.50	10	0 0	96.2	65	135	9.790	1.75	25	
Vinyl acetate		9.060	0.50	10	0 0	90.6	65	135	8.850	2.35	25	
Vinyl chloride		9.240	0.50	10	0	92.4	65	135	9.230	0.108	25	
Surr: 4-Bromofluorobenzene	nzene	9.730	0.50	10	0	97.3	70	130	9.780	0	0	

ND Not Detected at the Reporting Limit

Value exceeds Maximum Contaminant Level

*

Qualifiers:

Page 8 of 8

Aerotech Er	nvironm	ental	Labor	atories	Samp	le Rec	eipt C	hecklis	t		Proje	ct Checked By:_			
Laboratory	y Num	ber:	07	-09.	- 04	22				C	omplet	ed By/On: O	A		
Client Name	e: m	acti	c							D	ate/Time	e Rec'd: 9/12	0 15	5153 By:	Pf
Matrix: (A	ir) Soi	l Aq	ueous	Oil	Slud	ge S	olid	WW	DW	C	arrier Na	ame: Client			
Temperatur	e	(Cooler	#1	Amb	CC	ooler #	2	0	C	Cooler 7	#3 °C	Coole	r #4	°C
Temp. Read				ometer			hermoi		IR		Thermo			nometer	IR
C1:	£ 1		C /			0	17	٦T	0				(\rightarrow)
Client or PN	vi made	aware	e or te	mp. ot	it of rai	nge?	Yes	No	C	ircl	e one:	Blue Ice Wet 1	ice (r	Not Presen	t
								Yes	No	* 1	Not Prese	ent		Soil Conta	iners:
Shipping con	ntainer/co	ooler ii	n good	condit	ion?			X						Brass Sleeve	ə
Custody sea	ls intact	on shi	pping	contain	er/coole	er?					×			Glass Jar	
Custody sea	ls intact	on sar	mple co	ontaine	rs?						a			Methanol	
Chain of Cus	stody pre	esent a	and reli	inquish	ed/rece	ived p	roperly	? X						Plastic Bag_	
Chain of Cus	stody ag	rees w	ith sar	nple la	oels?			\propto						Encore Sam	plers
Samples in p	oroper co	ontaine	ers/bot	tles?				×						Sterile Plast	ic
Sample cont	tainers ir	ntact?						×							
All samples	received	l withir	n holdir	ng time	?			×			**See Com	ments about Chlorine	and pH		
Is there suffi	icient sa	mple v	olume	to perf	orm the	tests?)	\propto							
40mL vials for	or volatil	es & S	SOCs r	eceive	d with z	ero he	adspac	e?			X				
Total numbe	er of bott	les rec	eived:					IH sa	ample	e me	edia:	l Liter can	\		
If applicable	, how ma	any sa	mple b	ottles v	vere sh	ipped ·	from AB	EL-Tucs	son?		2	N/A			
		eceived		rvative d	and by sa	mple ni	mber:(I)	f more th	an 10	samp		'd, please continue o			(1
Preservative	Simple***	1	2	3	4	5	6	7	8		9 10	*Any <u>No</u> response comments section.			the
A-General					1	1						immediately to det	ermine	how to proc	
B-HNO3												Refer to SOP 11-0 additional space is			back if
C-H2SO4													neeuce		
D-HCI												**The holding tim			
E-Na2S2O3												Chlorine analysis i accurate results, th			
F-NaOH												Chlorine should be	e taken		
G-Sulfide												minutes of samplin	ng.		
H-Na Sulfite												***The Simple bo			
												there is one bottle sample sets.	per pre	servative in	equal
J-Methanol K-HAA															
L-Other												-			
	ocontabl				Yes		No	1	NUA	N					
Water-pH a Preserva	and the second		1	1	ples u	inon		ht	N/A If pH			nent, list sample numb	per and r	eagent I.D. n	umber.
Metals	LIVE O	<2	prio	i Sain	piest	pon	recen	51		1					
H ₂ SO ₄		<2												-	
1664		<2													
Cyanide		>12													
Sulfide															
Commer	nts•	>9							J						
Commer											Anter contract and				

EROTE

Aerotech Environmental Laboratories, Inc.

Lab Number:

		i
		(
	c.	
ATOPA	ision of boratories, In	
OTARO	a diu Aorotech La	

340 - FAX 623.445.6192
602.437.33
Phoenix, AZ 85040
Suite 189,
Building 3,
Cotton Center Blvd.,
Lab - 4645 E.
[] Main

[] North Phoenix -	1501 W. Knudsen, Pho	oenix, AZ 85027 623. Tuccon AZ 85714 52	[] North Phoenix - 1501 W. Knudsen, Phoenix, AZ 85027 623.780.4800 - FAX 623.445.6216 F1 Truccom - 4465 & Dark Avia Suite 140 Truccom AZ 85744 520 807 3804 - EAX 520 807 3803								
www.aeroenvirolab	L) LUCSOL 1 4430 O. LAIN AVE, OUNE 110, LUCSOL, AL WWW. aeroenvirolabs. com or call toll-free 866.772.5227	36.772.5227						Ò	521090422	57	
Customer Number:	Der:		Pade	e of							2
Customer:	Marter		Sam	ler: Scir M	.1160						
Address:	3630 E WITP	TR AUF	Proj	ame:	Ah Merce						
City, State, Zip:	PLOENIX		Proj	Project Number: 497	- +0-2	H 0502	.6	T			
Contact:	Jun Clar		P.O.	P.O. Number:				1			
Phone:		Fax:	Fax	Fax Results:	×	z					
E-Mail Address:		A	E-W	E-Mail Results:	Ø	z					
	Sample Receipt		Turn Around Request						Analyses Requested	uested	
Temperature	And oc		24 Hours 48	48 Hours							
.: S	Yes No X		72 Hours	-							
Custody Seals Intact:	ct: Yes No M M	J.	5 working Day				51-		CL		-
Total # of Containers:	t		Standard 10 Working Days				01 ł		-01		
			Subject to scheduling and availability (surcharges apply)	apply)			t oi		λa		
			Sample Information	nation			siJ 41	teil čl	VInO		
Lab#	Canister Serial #	Model	Sample Identification	n Date	Time	Type	Final Receipt O	-01			
differen -		6, 1, 0.4	the part of the	t0.21.6	13:48	AIR		2			
2		6, 1, 0.4	TUT		20:41	_		7-			
~		6, 1, 0.4	TUF		14:07			2			
7		6, 1, 0.4	VW-50		02:41			2			-
5		6, 1, 0.4	Dt-MA	>	£2:51	>		9			
		6, 1, 0.4									
		6, 1, 0.4									
		6, 1, 0.4									
		6, 1, 0.4									
		6, 1, 0.4									
Instructions / Special Requirements:	al Requirements:										
Date:	Time:		Samples Relinquish	shed By:		AL 1	Rec	Received By:	iy:		
9.12.07	15:53	SA MUL				- VAA	s = Crustonia e musiki filiti i Akiton UK/UUBSAL kumatana setempeta and "Alte ug				
						>.					
Analysis performed	is subject to the Terms	& Conditions available	Analysis performed is subject to the Terms & Conditions available at www.aeroenvirolabs.com or call 866.772.5227 to request a copy.	366.772.5227 to request a	a copy.		Chair	n of Custod	Chain of Custody, Page 1 of 1, REV 02, 111803, VPQAS	EV 02, 11180	03, VPQAS

a division of Aerotech Laboratories, Inc.

Wednesday, November 07, 2007

Jim Clarke Mactec 3630 East Wier Avenue Phoenix, AZ 85040

TEL: (602) 437-0250 FAX (602) 437-3675

RE: South Mesa/4972-07-2050

Order No.: 07100569

Dear Jim Clarke:

Aerotech Environmental Laboratories received 5 sample(s) on 10/12/2007 for the analyses presented in the following report.

This report includes the following information:

- Case Narrative.
- Analytical Report: includes test results, report limit (Limit), any applicable data qualifier (Qual), units, dilution factor (DF), and date analyzed.

- QC Summary Report.

This communication is intended only for the individual or entity to whom it is directed. It may contain information that is privileged, confidential, or otherwise exempt from disclosure under applicable law. Dissemination, distribution, or copying of this communication by anyone other than the intended recipient, or a duly designated employee or agent of such recipient, is prohibited. If you have received this communication in error, please notify us immediately and destroy this message and all attachments thereto. If you have any questions regarding these test results, please do not hesitate to call.

Sincerely,

Tim Trestrail Project Manager

Main Laboratory: 4645 E. Cotton Center Boulevard, Building 3, Suite 189 Phoenix, AZ 85040 Phone: 602.437.3340 Toll Free: 866.772.5227 Fax. 623.445.6192 Tucson Facility: 4455 S. Park Ave. Ste. 110 Tucson, AZ 85714 Phone: 520.807.3801 Fax: 520.807.3803 www.aeroenvirolabs.com

Int allelo7

CLIENT:MactecProject:South Mesa/4972-07-2050Lab Order:07100569

CASE NARRATIVE

Analyses included in this report were performed by Aerotech Environmental Laboratories (AEL), 4645 E. Cotton Center Boulevard, Building 3, Suite 189, Phoenix, AZ.

AEL is licensed through the State of Arizona (License No. AZ0610), and holds NELAC accreditation (OR100001) through the State of Oregon for the analytical techniques noted on the scope of accreditation.

AEL is also accredited by the American Industrial Hygiene Association (AIHA) in the industrial hygiene program for the analytical techniques noted on the scope of accreditation.

Samples were analyzed using methods outlined in references such as:

-Standard Methods for the Examination of Water and Wastewater, 20th Edition, 1998.

-40 CFR, Part 136, July 2006. Appendix A to Part 136 - Methods for Organic Chemical Analysis of Municipal and Industrial Wastewater.

-Methods for the Chemical Analysis of Water and Wastes, EPA/600/4-79-020, Revised March 1983. -Methods for the Determination of Organic Compounds in Drinking Water: Supplement III, August 1995, EPA/600/R-95/131.

-Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, EPA, 3rd Edition 1986, and Updates.

-Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air, EPA, Second Edition, 1999.

-NIOSH Manual of Analytical Methods, Fourth Edition, 1994.

Analytical Comments:

All method blanks and laboratory control spikes met method and/or laboratory quality control objectives for the analyses included in this report.

Data Qualifiers:

Listed below are the data qualifiers used in your analytical report to explain any analytical or quality control issues. You will find them noted in your report under the column header "QUAL". Any quality control deficiencies that cannot be adequately described by these qualifiers will be addressed in the analytical comments section of this case narrative.

- D2 Sample required dilution due to high concentration of target analyte.
- L1 The associated blank spike recovery was above laboratory acceptance limits.

 CLIENT:
 Mactec

 Lab Order:
 07100569

 Project:
 South Mesa/4972-07-2050

 Lab ID:
 07100569-01A

Date: 07-Nov-07

Client Sample ID: EFF Tag Number: 1620 Collection Date: 10/12/2007 8:42:00 AM Matrix: AIR

	р	obv	μg/	m³			
Analyses	Result	Limit	Result	Limit	Qual	DF	Date Analyzed
VOLATILE ORGANICS IN AIR 1,1,1-Trichloroethane	< 0.50	TO15 0.50	< 2.8	2.8		1	Analyst: J.J. 10/31/2007
1,1,2,2-Tetrachloroethane	< 0.50	0.50	< 3.5	3.5	_	1	10/31/2007
1,1,2-Trichloroethane	< 0.50	0.50	< 2.8	2.8		1	10/31/2007
1,1-Dichloroethane	< 0.50	0.50	< 2.1	2.1		1	10/31/2007
1,1-Dichloroethene	< 0.50	0.50	< 2.0	2.0		1	10/31/2007
1,2,4-Trichlorobenzene	< 2.0	2.0	< 15	15		1	10/31/2007
1,2,4-Trimethylbenzene	0.55	0.50	2.7	2.5		1	10/31/2007
1,2-Dibromoethane	< 0.50	0.50	< 3.9	3.9		1	10/31/2007
1,2-Dichlorobenzene	< 0.50	0.50	< 3.1	3.1		1	10/31/2007
1,2-Dichloroethane	< 0.50	0.50	< 2.1	2.1		1	10/31/2007
1,2-Dichloropropane	< 0.50	0.50	< 2.4	2.4		1	10/31/2007
1,3,5-Trimethylbenzene	< 0.50	0.50	< 2.5	2.5		1	10/31/2007
1,3-Butadiene	< 0.50	0.50	< 1.1	1.1		1	10/31/2007
1,3-Dichlorobenzene	< 0.50	0.50	< 3.1	3.1		1	10/31/2007
1,4-Dichlorobenzene	< 0.50	0.50	< 3.1	3.1		1	10/31/2007
2,2,4-Trimethylpentane	2.0	0.50	9.5	2.4		1	10/31/2007
2-Butanone (MEK)	1.0	1.0	3.0	3.0		1	10/31/2007
2-Hexanone	< 1.0	1.0	< 4.2	4.2		1	10/31/2007
2-Propanol	2.0	2.0	5.0	5.0		1	10/31/2007
4-Ethyltoluene	< 0.50	0.50	< 2.2	2.2		1	10/31/2007
4-Methyl-2-pentanone	< 1.0	1.0	< 4.2	4.2		1	10/31/2007
Acetone	15	5.0	36	12		1	10/31/2007
Allyl chloride	< 0.50	0.50	< 0.80	0.80		1	10/31/2007
Benzene	1.1	0.50	3.6	1.6		1	10/31/2007
Benzyl chloride	< 2.0	2.0	< 11	11		1	10/31/2007
Bromodichloromethane	< 0.50	0.50	< 3.4	3.4		1	10/31/2007

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

* - Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

 CLIENT:
 Mactec

 Lab Order:
 07100569

 Project:
 South Mesa/4972-07-2050

 Lab ID:
 07100569-01A

Date: 07-Nov-07

 Client Sample ID:
 EFF

 Tag Number:
 1620

 Collection Date:
 10/12/2007 8:42:00 AM

 Matrix:
 AIR

	pp	bv	μg/:	m ³			
Analyses	Result	Limit	Result	Limit	Qual	DF	Date Analyzed
VOLATILE ORGANICS IN AIR Bromoethene(Vinyl Bromide)	< 0.50	TO15 0.50	< 1.1	1.1		1	Analyst: J.J. 10/31/2007
Bromoform	< 0.50	0.50	< 5.2	5.2		1	10/31/2007
Bromomethane	< 0.50	0.50	< 2.0	2.0		1	10/31/2007
Carbon disulfide	< 0.50	0.50	< 1.6	1.6		1	10/31/2007
Carbon tetrachloride	< 0.50	0.50	< 3.2	3.2		1	10/31/2007
Chlorobenzene	< 0.50	0.50	< 2.4	2.4		1	10/31/2007
Chloroethane	< 0.50	0.50	< 1.3	1.3		1	10/31/2007
Chloroform	< 0.50	0.50	< 2.5	2.5		1	10/31/2007
Chloromethane	0.69	0.50	1.4	1.0		1	10/31/2007
cis-1,2-Dichloroethene	< 0.50	0.50	< 2.0	2.0		1	10/31/2007
cis-1,3-Dichloropropene	< 0.50	0.50	< 2.3	2.3	L1	1	10/31/2007
Cyclohexane	< 0.50	0.50	< 1.7	1.7	L1	1	10/31/2007
Dibromochloromethane	< 0.50	0.50	< 4.3	4.3		1	10/31/2007
Dichlorodifluoromethane(F-12)	0.75	0.50	3.8	2.5		1	10/31/2007
Dichlorotetrafluoroethane(F-114)	< 0.50	0.50	< 3.6	3.6		1	10/31/2007
Ethyl Acetate	< 0.50	0.50	< 1.8	1.8		1	10/31/2007
Ethylbenzene	0.63	0.50	2.8	2.2		1	10/31/2007
Heptane	0.56	0.50	2.3	2.1		1	10/31/2007
Hexachlorobutadiene	< 1.0	1.0	< 11	11		1	10/31/2007
Hexane	< 0.50	0.50	< 1.8	1.8		1	11/1/2007
m&p-Xylene	2.1	1.0	9.2	4.4		1	10/31/2007
Methyl tert-butyl ether	< 1.0	1.0	< 3.7	3.7		1	10/31/2007
Methylene chloride	< 0.50	0.50	< 1.8	1.8		1	10/31/2007
o-Xylene	0.73	0.50	3.2	2.2		1	10/31/2007
Propene (Propylene)	< 0.50	0.50	< 0.88	0.88		1	10/31/2007
Styrene	< 0.50	0.50	< 2.2	2.2		1	10/31/2007

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

* - Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

 CLIENT:
 Mactec

 Lab Order:
 07100569

 Project:
 South Mesa/4972-07-2050

 Lab ID:
 07100569-01A

Date: 07-Nov-07

Client Sample ID: EFF Tag Number: 1620 Collection Date: 10/12/2007 8:42:00 AM Matrix: AIR

	ppb	v	μg/i	m ³		
Analyses	Result	Limit	Result	Limit	Qual DF	Date Analyzed
VOLATILE ORGANICS IN AIR Tetrachloroethene	< 0.50	TO15 0.50	< 3.4	3.4	1	Analyst: J.J. 10/31/2007
Tetrahydrofuran	< 2.0	2.0	< 6.0	6.0	1	10/31/2007
Toluene	3.6	0.50	14	1.9	1	10/31/2007
trans-1,2-Dichloroethene	< 0.50	0.50	< 2.0	2.0	1	10/31/2007
trans-1,3-Dichloropropene	< 0.50	0.50	< 2.3	2.3	1	10/31/2007
Trichloroethene	1.2	0.50	6.6	2.8	1	10/31/2007
Trichlorofluoromethane(F-11)	< 0.50	0.50	< 2.8	2.8	1	10/31/2007
Trichlorotrifluoroethane(F-113)	< 0.50	0.50	< 3.9	3.9	1	10/31/2007
Vinyl acetate	< 0.50	0.50	< 1.8	1.8	1	10/31/2007
Vinyl chloride	< 0.50	0.50	< 1.3	1.3	1	10/31/2007
Surr: 4-Bromofluorobenzene	110 %REC	70-130	-	-	1	10/31/2007

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

* - Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

Date: 07-Nov-07

 CLIENT:
 Mactec
 Client Sample ID:
 INT

 Lab Order:
 07100569
 Tag Number:
 673

 Project:
 South Mesa/4972-07-2050
 Collection Date:
 10/12/2007 8:49:00 AM

 Lab ID:
 07100569-02A
 Matrix:
 AIR

	р	obv	μg/	m³			
Analyses	Result	Limit	Result	Limit	Qual	DF	Date Analyzed
VOLATILE ORGANICS IN AIR 1,1,1-Trichloroethane	< 0.50	TO15 0.50	< 2.8	2.8		1	Analyst: J.J. 10/31/2007
1,1,2,2-Tetrachloroethane	< 0.50	0.50	< 3.5	3.5		1	10/31/2007
1,1,2-Trichloroethane	< 0.50	0.50	< 2.8	2.8		1	10/31/2007
1,1-Dichloroethane	3.4	0.50	14	2.1		1	10/31/2007
1,1-Dichloroethene	0.53	0.50	2.1	2.0		1	10/31/2007
1,2,4-Trichlorobenzene	< 2.0	2.0	< 15	15		1	10/31/2007
1,2,4-Trimethylbenzene	< 0.50	0.50	< 2.5	2.5		1	10/31/2007
1,2-Dibromoethane	< 0.50	0.50	< 3.9	3.9		1	10/31/2007
1,2-Dichlorobenzene	< 0.50	0.50	< 3.1	3.1		1	10/31/2007
1,2-Dichloroethane	< 0.50	0.50	< 2.1	2.1		1	10/31/2007
1,2-Dichloropropane	< 0.50	0.50	< 2.4	2.4		1	10/31/2007
1,3,5-Trimethylbenzene	< 0.50	0.50	< 2.5	2.5		1	10/31/2007
1,3-Butadiene	< 0.50	0.50	< 1.1	1.1		1	10/31/2007
1,3-Dichlorobenzene	< 0.50	0.50	< 3.1	3.1		1	10/31/2007
1,4-Dichlorobenzene	< 0.50	0.50	< 3.1	3.1		1	10/31/2007
2,2,4-Trimethylpentane	1.6	0.50	7.6	2.4		1	10/31/2007
2-Butanone (MEK)	1.6	1.0	4.8	3.0		1	10/31/2007
2-Hexanone	< 1.0	1.0	< 4.2	4.2		1	10/31/2007
2-Propanol	2.4	2.0	6.0	5.0		1	10/31/2007
4-Ethyltoluene	< 0.50	0.50	< 2.2	2.2		1	10/31/2007
4-Methyl-2-pentanone	< 1.0	1.0	< 4.2	4.2		1	10/31/2007
Acetone	12	5.0	29	12		1	10/31/2007
Allyl chloride	< 0.50	0.50	< 0.80	0.80		1	10/31/2007
Benzene	0.83	0.50	2.7	1.6		1	10/31/2007
Benzyl chloride	< 2.0	2.0	< 11	11		1	10/31/2007
Bromodichloromethane	< 0.50	0.50	< 3.4	3.4		1	10/31/2007

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

* - Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

Date: 07-Nov-07

 CLIENT:
 Mactec
 Client Sample ID:
 INT

 Lab Order:
 07100569
 Tag Number:
 673

 Project:
 South Mesa/4972-07-2050
 Collection Date:
 10/12/2007 8:49:00 AM

 Lab ID:
 07100569-02A
 Matrix:
 AIR

	ppbv		μg/m³				
Analyses	Result	Limit	Result	Limit	Qual DF	Date Analyzed	
OLATILE ORGANICS IN AIR Bromoethene(Vinyl Bromide)	< 0.50	TO15 0.50	< 1.1	1.1		1	Analyst: J.J 10/31/2007
Bromoform	< 0.50	0.50	< 5.2	5.2		1	10/31/2007
Bromomethane	< 0.50	0.50	< 2.0	2.0		1	10/31/2007
Carbon disulfide	< 0.50	0.50	< 1.6	1.6		1	10/31/2007
Carbon tetrachloride	< 0.50	0.50	< 3.2	3.2		1	10/31/2007
Chlorobenzene	< 0.50	0.50	< 2.4	2.4		1	10/31/2007
Chloroethane	< 0.50	0.50	< 1.3	1.3		1	10/31/2007
Chloroform	3.4	0.50	17	2.5		1	10/31/2007
Chloromethane	0.58	0.50	1.2	1.0		1	10/31/2007
cis-1,2-Dichloroethene	0.84	0.50	3.4	2.0		1	10/31/2007
cis-1,3-Dichloropropene	< 0.50	0.50	< 2.3	2.3	L1	1	10/31/2007
Cyclohexane	< 0.50	0.50	< 1.7	1.7	L1	1	10/31/2007
Dibromochloromethane	< 0.50	0.50	< 4.3	4.3		1	10/31/2007
Dichlorodifluoromethane(F-12)	0.68	0.50	3.4	2.5		1	10/31/2007
Dichlorotetrafluoroethane(F-114)	< 0.50	0.50	< 3.6	3.6		1	10/31/2007
Ethyl Acetate	6.4	0.50	23	1.8		1	10/31/2007
Ethylbenzene	< 0.50	0.50	< 2.2	2.2		1	10/31/2007
Heptane	< 0.50	0.50	< 2.1	2.1		1	10/31/2007
Hexachlorobutadiene	< 1.0	1.0	< 11	11		1	10/31/2007
Hexane	0.62	0.50	2.2	1.8		1	11/1/2007
m&p-Xylene	< 1.0	1.0	< 4.4	4.4		1	10/31/2007
Methyl tert-butyl ether	< 1.0	1.0	< 3.7	3.7		1	10/31/2007
Methylene chloride	0.79	0.50	2.8	1.8		1	10/31/2007
o-Xylene	0.52	0.50	2.3	2.2		1	10/31/2007
Propene (Propylene)	< 0.50	0.50	< 0.88	0.88		1	10/31/2007
Styrene	< 0.50	0.50	< 2.2	2.2		1	10/31/2007

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

* - Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

 CLIENT:
 Mactec

 Lab Order:
 07100569

 Project:
 South Mesa/4972-07-2050

 Lab ID:
 07100569-02A

Date: 07-Nov-07

Client Sample ID: INT Tag Number: 673 Collection Date: 10/12/2007 8:49:00 AM Matrix: AIR

	ppbv		μg/m³				
Analyses	Result	Limit	Result	Limit	Qual DF	Date Analyzed	
OLATILE ORGANICS IN AIR		TO15					Analyst: J.J.
Tetrachloroethene	14	0.50	97	3.4		1	10/31/2007
Tetrahydrofuran	< 2.0	2.0	< 6.0	6.0		1	10/31/2007
Toluene	3.3	0.50	13	1.9		1	10/31/2007
trans-1,2-Dichloroethene	< 0.50	0.50	< 2.0	2.0		1	10/31/2007
trans-1,3-Dichloropropene	< 0.50	0.50	< 2.3	2.3		1	10/31/2007
Trichloroethene	56	2.5	310	14	D2	5	11/1/2007
Trichlorofluoromethane(F-11)	1.7	0.50	9.7	2.8		1	10/31/2007
Trichlorotrifluoroethane(F-113)	< 0.50	0.50	< 3.9	3.9		1	10/31/2007
Vinyl acetate	< 0.50	0.50	< 1.8	1.8		1	10/31/2007
Vinyl chloride	< 0.50	0.50	< 1.3	1.3		1	10/31/2007
Surr: 4-Bromofluorobenzene	102 %REC	70-130	-	-		1	10/31/2007

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

* - Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Page 6 of 15

Date: 07-Nov-07

CLIENT: Lab Order: Project: Lab ID:	Mactec 07100569 South Mesa/497 07100569-03A							
Analyses		ppbv Result Limit		µg/m³ Result Limit		Qual DF	Date Analyzed	
		ittouit	Linit	Result		Quai DI	Date Analyzeu	
VOLATILE ORGA 1,1,1-Trichloroeth		< 1.0	TO15 1.0	< 5.5	5.5	2	Analyst: J.J. 10/31/2007	
1,1,2,2-Tetrachlor	oethane	< 1.0	1.0	< 7.0	7.0	2	10/31/2007	
1,1,2-Trichloroeth	ane	< 1.0	1.0	< 5.5	5.5	2	10/31/2007	
1,1-Dichloroethan	e	7.4	1.0	30	4.1	2	10/31/2007	
1,1-Dichloroethen	e	2.6	1.0	10	4.0	2	10/31/2007	
1,2,4-Trichlorober	nzene	< 4.0	4.0	< 30	30	2	10/31/2007	
1,2,4-Trimethylbe	nzene	< 1.0	1.0	< 5.0	5.0	2	10/31/2007	
1,2-Dibromoethar	e	< 1.0	1.0	< 7.8	7.8	2	10/31/2007	
1,2-Dichlorobenze	ene	< 1.0	1.0	< 6.1	6.1	2	10/31/2007	
1,2-Dichloroethan	e	< 1.0	1.0	< 4.1	4.1	2	10/31/2007	
1,2-Dichloropropa	ine	2.8	1.0	13	4.7	2	10/31/2007	
1,3,5-Trimethylbe	nzene	< 1.0	1.0	< 5.0	5.0	2	10/31/2007	
1,3-Butadiene		< 1.0	1.0	< 2.2	2.2	2	10/31/2007	
1,3-Dichlorobenze	ene	< 1.0	1.0	< 6.1	6.1	2	10/31/2007	
1,4-Dichlorobenze	ene	< 1.0	1.0	< 6.1	6.1	2	10/31/2007	
2,2,4-Trimethylpe	ntane	< 1.0	1.0	< 4.7	4.7	2	10/31/2007	
2-Butanone (MEK	.)	4.7	2.0	14	6.0	2	10/31/2007	
2-Hexanone		< 2.0	2.0	< 8.3	8.3	2	10/31/2007	
2-Propanol		< 4.0	4.0	< 10	10	2	10/31/2007	
4-Ethyltoluene		< 1.0	1.0	< 4.4	4.4	2	10/31/2007	
4-Methyl-2-pentar	none	< 2.0	2.0	< 8.3	8.3	2	10/31/2007	
Acetone		57	10	140	24	2	10/31/2007	
Allyl chloride		< 1.0	1.0	< 1.6	1.6	2	10/31/2007	
Benzene		< 1.0	1.0	< 3.2	3.2	2	10/31/2007	
Benzyl chloride		< 4.0	4.0	< 21	21	2	10/31/2007	
Bromodichlorome	thane	1.6	1.0	11	6.8	2	10/31/2007	

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

* - Value exceeds Maximum Contaminant Level

Date: 07-Nov-07

CLIENT: Lab Order: Project: Lab ID:	Mactec 07100569 South Mesa/497 07100569-03A	0569 h Mesa/4972-07-2050			Client Sample ID: INF Tag Number: 1614 Collection Date: 10/12/2007 8:55:00 AM Matrix: AIR					
		ppbv		μg/						
Analyses		Result	Limit	Result	Limit	Qual	DF	Date Analyzed		
VOLATILE ORG Bromoethene(Vi		< 1.0	TO15 1.0	< 2.2	2.2		2	Analyst: J.J. 10/31/2007		
Bromoform		< 1.0	1.0	< 10	10		2	10/31/2007		
Bromomethane		< 1.0	1.0	< 4.0	4.0		2	10/31/2007		
Carbon disulfide		< 1.0	1.0	< 3.2	3.2		2	10/31/2007		
Carbon tetrachlo	oride	< 1.0	1.0	< 6.4	6.4		2	10/31/2007		
Chlorobenzene		< 1.0	1.0	< 4.7	4.7		2	10/31/2007		
Chloroethane		< 1.0	1.0	< 2.7	2.7		2	10/31/2007		
Chloroform		8.1	1.0	40	5.0		2	10/31/2007		
Chloromethane		< 1.0	1.0	< 2.1	2.1		2	10/31/2007		
cis-1,2-Dichloroe	ethene	2.3	1.0	9.2	4.0		2	10/31/2007		
cis-1,3-Dichloro	propene	< 1.0	1.0	< 4.6	4.6	L1	2	10/31/2007		
Cyclohexane		< 1.0	1.0	< 3.5	3.5	L1	2	10/31/2007		
Dibromochlorom	nethane	< 1.0	1.0	< 8.6	8.6		2	10/31/2007		
Dichlorodifluoro	methane(F-12)	< 1.0	1.0	< 5.0	5.0		2	10/31/2007		
Dichlorotetrafluc	proethane(F-114)	< 1.0	1.0	< 7.1	7.1		2	10/31/2007		
Ethyl Acetate		< 1.0	1.0	< 3.7	3.7		2	10/31/2007		
Ethylbenzene		< 1.0	1.0	< 4.4	4.4		2	10/31/2007		
Heptane		< 1.0	1.0	< 4.2	4.2		2	10/31/2007		
Hexachlorobuta	diene	< 2.0	2.0	< 22	22		2	10/31/2007		
Hexane		< 1.0	1.0	< 3.6	3.6	L1	2	10/31/2007		
m&p-Xylene		< 2.0	2.0	< 8.8	8.8		2	10/31/2007		
Methyl tert-butyl	ether	< 2.0	2.0	< 7.3	7.3		2	10/31/2007		
Methylene chlor	ide	< 1.0	1.0	< 3.5	3.5		2	10/31/2007		
o-Xylene		< 1.0	1.0	< 4.4	4.4		2	10/31/2007		
Propene (Propy	lene)	< 1.0	1.0	< 1.8	1.8		2	10/31/2007		
Styrene		< 1.0	1.0	< 4.3	4.3		2	10/31/2007		

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

* - Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

 CLIENT:
 Mactec

 Lab Order:
 07100569

 Project:
 South Mesa/4972-07-2050

 Lab ID:
 07100569-03A

Date: 07-Nov-07

 Client Sample ID:
 INF

 Tag Number:
 1614

 Collection Date:
 10/12/2007 8:55:00 AM

 Matrix:
 AIR

	ppb	v	μ g /1	m ³			
Analyses	Result	Limit	Result	Limit	Qual	DF	Date Analyzed
VOLATILE ORGANICS IN AIR Tetrachloroethene	160	TO15 5.0	1100	34	D2	10	Analyst: J.J. 10/31/2007
Tetrahydrofuran	< 4.0	4.0	< 12	12		2	10/31/2007
Toluene	1.3	1.0	5.0	3.8		2	10/31/2007
trans-1,2-Dichloroethene	< 1.0	1.0	< 4.0	4.0		2	10/31/2007
trans-1,3-Dichloropropene	< 1.0	1.0	< 4.6	4.6		2	10/31/2007
Trichloroethene	8.6	1.0	48	5.5		2	10/31/2007
Trichlorofluoromethane(F-11)	6.1	1.0	35	5.7		2	10/31/2007
Trichlorotrifluoroethane(F-113)	< 1.0	1.0	< 7.8	7.8		2	10/31/2007
Vinyl acetate	< 1.0	1.0	< 3.6	3.6		2	10/31/2007
Vinyl chloride	< 1.0	1.0	< 2.6	2.6		2	10/31/2007
Surr: 4-Bromofluorobenzene	97.1 %REC	70-130	-	-		2	10/31/2007

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

* - Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

 CLIENT:
 Mactec

 Lab Order:
 07100569

 Project:
 South Mesa/4972-07-2050

 Lab ID:
 07100569-04A

Date: 07-Nov-07

 Client Sample ID:
 VW-5C

 Tag Number:
 752

 Collection Date:
 10/12/2007 9:06:00 AM

 Matrix:
 AIR

	pp	bv	μg/i	m ³		
Analyses	Result	Limit	Result	Limit	Qual DF	Date Analyzed
VOLATILE ORGANICS IN AIR 1,1,1-Trichloroethane	< 10	TO15 10	< 55	55	20	Analyst: J.J. 10/31/2007
1,1,2,2-Tetrachloroethane	< 10	10	< 70	70	20	10/31/2007
1,1,2-Trichloroethane	< 10	10	< 55	55	20	10/31/2007
1,1-Dichloroethane	< 10	10	< 41	41	20	10/31/2007
1,1-Dichloroethene	< 10	10	< 40	40	20	10/31/2007
1,2,4-Trichlorobenzene	< 40	40	< 300	300	20	10/31/2007
1,2,4-Trimethylbenzene	< 10	10	< 50	50	20	10/31/2007
1,2-Dibromoethane	< 10	10	< 78	78	20	10/31/2007
1,2-Dichlorobenzene	< 10	10	< 61	61	20	10/31/2007
1,2-Dichloroethane	< 10	10	< 41	41	20	10/31/2007
1,2-Dichloropropane	< 10	10	< 47	47	20	10/31/2007
1,3,5-Trimethylbenzene	< 10	10	< 50	50	20	10/31/2007
1,3-Butadiene	< 10	10	< 22	22	20	10/31/2007
1,3-Dichlorobenzene	< 10	10	< 61	61	20	10/31/2007
1,4-Dichlorobenzene	< 10	10	< 61	61	20	10/31/2007
2,2,4-Trimethylpentane	< 10	10	< 47	47	20	10/31/2007
2-Butanone (MEK)	< 20	20	< 60	60	20	10/31/2007
2-Hexanone	< 20	20	< 83	83	20	10/31/2007
2-Propanol	< 40	40	< 100	100	20	10/31/2007
4-Ethyltoluene	< 10	10	< 44	44	20	10/31/2007
4-Methyl-2-pentanone	< 20	20	< 83	83	20	10/31/2007
Acetone	< 100	100	< 240	240	20	10/31/2007
Allyl chloride	< 10	10	< 16	16	20	10/31/2007
Benzene	< 10	10	< 32	32	20	10/31/2007
Benzyl chloride	< 40	40	< 210	210	20	10/31/2007
Bromodichloromethane	< 10	10	< 68	68	20	10/31/2007

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

* - Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Page 10 of 15

 CLIENT:
 Mactec

 Lab Order:
 07100569

 Project:
 South Mesa/4972-07-2050

 Lab ID:
 07100569-04A

Date: 07-Nov-07

 Client Sample ID:
 VW-5C

 Tag Number:
 752

 Collection Date:
 10/12/2007 9:06:00 AM

 Matrix:
 AIR

	pp	bv	μg/	m ³			
Analyses	Result	Limit	Result	Limit	Qual	DF	Date Analyzed
VOLATILE ORGANICS IN AIR Bromoethene(Vinyl Bromide)	< 10	TO15 10	< 22	22		20	Analyst: J.J. 10/31/2007
Bromoform	< 10	10	< 100	100		20	10/31/2007
Bromomethane	< 10	10	< 40	40		20	10/31/2007
Carbon disulfide	< 10	10	< 32	32		20	10/31/2007
Carbon tetrachloride	< 10	10	< 64	64		20	10/31/2007
Chlorobenzene	< 10	10	< 47	47		20	10/31/2007
Chloroethane	< 10	10	< 27	27		20	10/31/2007
Chloroform	11	10	54	50	D2	20	10/31/2007
Chloromethane	< 10	10	< 21	21		20	10/31/2007
cis-1,2-Dichloroethene	< 10	10	< 40	40		20	10/31/2007
cis-1,3-Dichloropropene	< 10	10	< 46	46	L1	20	10/31/2007
Cyclohexane	< 10	10	< 35	35	L1	20	10/31/2007
Dibromochloromethane	< 10	10	< 86	86		20	10/31/2007
Dichlorodifluoromethane(F-12)	< 10	10	< 50	50		20	10/31/2007
Dichlorotetrafluoroethane(F-114)	< 10	10	< 71	71		20	10/31/2007
Ethyl Acetate	< 10	10	< 37	37		20	10/31/2007
Ethylbenzene	< 10	10	< 44	44		20	10/31/2007
Heptane	< 10	10	< 42	42		20	10/31/2007
Hexachlorobutadiene	< 20	20	< 220	220		20	10/31/2007
Hexane	< 10	10	< 36	36	L1	20	10/31/2007
m&p-Xylene	< 20	20	< 88	88		20	10/31/2007
Methyl tert-butyl ether	< 20	20	< 73	73		20	10/31/2007
Methylene chloride	< 10	10	< 35	35		20	10/31/2007
o-Xylene	< 10	10	< 44	44		20	10/31/2007
Propene (Propylene)	< 10	10	< 18	18		20	10/31/2007
Styrene	< 10	10	< 43	43		20	10/31/2007

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

* - Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

 CLIENT:
 Mactec

 Lab Order:
 07100569

 Project:
 South Mesa/4972-07-2050

 Lab ID:
 07100569-04A

Date: 07-Nov-07

Client Sample ID: VW-5C Tag Number: 752 Collection Date: 10/12/2007 9:06:00 AM Matrix: AIR

	ppb	v	μ g /1	m ³	x		
Analyses	Result	Limit	Result	Limit	Qual	DF	Date Analyzed
VOLATILE ORGANICS IN AIR Tetrachloroethene	360	TO15 10	2500	69	D2	20	Analyst: J.J. 10/31/2007
Tetrahydrofuran	< 40	40	< 120	120		20	10/31/2007
Toluene	< 10	10	< 38	38		20	10/31/2007
trans-1,2-Dichloroethene	< 10	10	< 40	40		20	10/31/2007
trans-1,3-Dichloropropene	< 10	10	< 46	46		20	10/31/2007
Trichloroethene	< 10	10	< 55	55		20	10/31/2007
Trichlorofluoromethane(F-11)	< 10	10	< 57	57		20	10/31/2007
Trichlorotrifluoroethane(F-113)	< 10	10	< 78	78		20	10/31/2007
Vinyl acetate	< 10	10	< 36	36		20	10/31/2007
Vinyl chloride	< 10	10	< 26	26		20	10/31/2007
Surr: 4-Bromofluorobenzene	103 %REC	70-130	-	-		20	10/31/2007

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

* - Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

Date: 07-Nov-07

CLIENT: Mactec Client Sample ID: VW-7C Lab Order: 07100569 Tag Number: 315 Collection Date: 10/12/2007 9:13:00 AM **Project:** South Mesa/4972-07-2050 Lab ID: 07100569-05A Matrix: AIR µg/m³ ppbv Analyses Result Limit Result Limit Qual DF **Date Analyzed VOLATILE ORGANICS IN AIR TO15** Analyst: J.J. 1,1,1-Trichloroethane < 0.50 0.50 < 2.8 2.8 1 10/31/2007 1,1,2,2-Tetrachloroethane < 0.50 0.50 < 3.5 3.5 10/31/2007 1 1,1,2-Trichloroethane < 0.50 0.50 < 2.8 10/31/2007 2.8 1 1,1-Dichloroethane 11 0.50 45 2.1 1 10/31/2007 1,1-Dichloroethene 3.5 0.50 14 10/31/2007 2.0 1

1,2,4-Trichlorobenzene	< 2.0	2.0	< 15	15	1	10/31/2007
1,2,4-Trimethylbenzene	0.87	0.50	4.3	2.5	1	10/31/2007
1,2-Dibromoethane	< 0.50	0.50	< 3.9	3.9	1	10/31/2007
1,2-Dichlorobenzene	< 0.50	0.50	< 3.1	3.1	1	10/31/2007
1,2-Dichloroethane	< 0.50	0.50	< 2.1	2.1	1	10/31/2007
1,2-Dichloropropane	4.3	0.50	20	2.4	1	10/31/2007
1,3,5-Trimethylbenzene	< 0.50	0.50	< 2.5	2.5	1	10/31/2007
1,3-Butadiene	< 0.50	0.50	< 1.1	1.1	1	10/31/2007
1,3-Dichlorobenzene	< 0.50	0.50	< 3.1	3.1	1	10/31/2007
1,4-Dichlorobenzene	< 0.50	0.50	< 3.1	3.1	1	10/31/2007
2,2,4-Trimethylpentane	< 0.50	0.50	< 2.4	2.4	1	10/31/2007
2-Butanone (MEK)	< 1.0	1.0	< 3.0	3.0	1	10/31/2007
2-Hexanone	< 1.0	1.0	< 4.2	4.2	1	10/31/2007
2-Propanol	< 2.0	2.0	< 5.0	5.0	1	10/31/2007
4-Ethyltoluene	< 0.50	0.50	< 2.2	2.2	1	10/31/2007
4-Methyl-2-pentanone	< 1.0	1.0	< 4.2	4.2	1	10/31/2007
Acetone	5.8	5.0	14	12	1	10/31/2007
Allyl chloride	< 0.50	0.50	< 0.80	0.80	1	10/31/2007
Benzene	< 0.50	0.50	< 1.6	1.6	1	10/31/2007
Benzyl chloride	< 2.0	2.0	< 11	11	1	10/31/2007
Bromodichloromethane	0.88	0.50	6.0	3.4	1	10/31/2007

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

* - Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

 CLIENT:
 Mactec

 Lab Order:
 07100569

 Project:
 South Mesa/4972-07-2050

 Lab ID:
 07100569-05A

Date: 07-Nov-07

Client Sample ID: VW-7C Tag Number: 315 Collection Date: 10/12/2007 9:13:00 AM Matrix: AIR

	pp	obv	μg/	m ³			
Analyses	Result	Limit	Result	Limit	Qual	DF	Date Analyzed
VOLATILE ORGANICS IN AIR Bromoethene(Vinyl Bromide)	< 0.50	TO15 0.50	< 1.1	1.1		1	Analyst: J.J. 10/31/2007
Bromoform	< 0.50	0.50	< 5.2	5.2		1	10/31/2007
Bromomethane	< 0.50	0.50	< 2.0	2.0		1	10/31/2007
Carbon disulfide	< 0.50	0.50	< 1.6	1.6		1	10/31/2007
Carbon tetrachloride	< 0.50	0.50	< 3.2	3.2		1	10/31/2007
Chlorobenzene	< 0.50	0.50	< 2.4	2.4		1	10/31/2007
Chloroethane	< 0.50	0.50	< 1.3	1.3		1	10/31/2007
Chloroform	5.7	0.50	28	2.5		1	10/31/2007
Chloromethane	< 0.50	0.50	< 1.0	1.0		1	10/31/2007
cis-1,2-Dichloroethene	< 0.50	0.50	< 2.0	2.0		1	10/31/2007
cis-1,3-Dichloropropene	< 0.50	0.50	< 2.3	2.3	L1	1	10/31/2007
Cyclohexane	< 0.50	0.50	< 1.7	1.7	L1	1	10/31/2007
Dibromochloromethane	< 0.50	0.50	< 4.3	4.3		1	10/31/2007
Dichlorodifluoromethane(F-12)	< 0.50	0.50	< 2.5	2.5		1	10/31/2007
Dichlorotetrafluoroethane(F-114)	< 0.50	0.50	< 3.6	3.6		1	10/31/2007
Ethyl Acetate	< 0.50	0.50	< 1.8	1.8		1	10/31/2007
Ethylbenzene	< 0.50	0.50	< 2.2	2.2		1	10/31/2007
Heptane	< 0.50	0.50	< 2.1	2.1		1	10/31/2007
Hexachlorobutadiene	< 1.0	1.0	< 11	11		1	10/31/2007
Hexane	< 0.50	0.50	< 1.8	1.8	L1	1	10/31/2007
m&p-Xylene	< 1.0	1.0	< 4.4	4.4		1	10/31/2007
Methyl tert-butyl ether	< 1.0	1.0	< 3.7	3.7		1	10/31/2007
Methylene chloride	< 0.50	0.50	< 1.8	1.8		1	10/31/2007
o-Xylene	0.54	0.50	2.4	2.2		1	10/31/2007
Propene (Propylene)	< 0.50	0.50	< 0.88	0.88		1	10/31/2007
Styrene	< 0.50	0.50	< 2.2	2.2		1	10/31/2007

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

* - Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Page 14 of 15

 CLIENT:
 Mactec

 Lab Order:
 07100569

 Project:
 South Mesa/4972-07-2050

 Lab ID:
 07100569-05A

Date: 07-Nov-07

 Client Sample ID:
 VW-7C

 Tag Number:
 315

 Collection Date:
 10/12/2007 9:13:00 AM

 Matrix:
 AIR

	ppb	v	μg/	m ³			
Analyses	Result	Limit	Result	Limit	Qual	DF	Date Analyzed
VOLATILE ORGANICS IN AIR Tetrachloroethene	53	TO15 2.5	370	17	D2	5	Analyst: J.J. 10/31/2007
Tetrahydrofuran	< 2.0	2.0	< 6.0	6.0		1	10/31/2007
Toluene	1.3	0.50	5.0	1.9		1	10/31/2007
trans-1,2-Dichloroethene	< 0.50	0.50	< 2.0	2.0		1	10/31/2007
trans-1,3-Dichloropropene	< 0.50	0.50	< 2.3	2.3		1	10/31/2007
Trichloroethene	4.1	0.50	23	2.8		1	10/31/2007
Trichlorofluoromethane(F-11)	6.2	0.50	35	2.8		1	10/31/2007
Trichlorotrifluoroethane(F-113)	< 0.50	0.50	< 3.9	3.9		1	10/31/2007
Vinyl acetate	< 0.50	0.50	< 1.8	1.8		1	10/31/2007
Vinyl chloride	< 0.50	0.50	< 1.3	1.3		1	10/31/2007
Surr: 4-Bromofluorobenzene	107 %REC	70-130	-	-		1	10/31/2007

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

* - Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Page 15 of 15

Aerote a division of Aerot	Aerotech Environme a division of Aerotech Laboratories, Inc.	mental l	ntal Laboratories	S	Date: 07-Nov-07
CLIENT: Mactec Work Order: 07100569				ANALYTICAL QC SUMMARY REPORT	JMMARY REPORT
Project: South Mesa	South Mesa/4972-07-2050			TestCode:	T015
Sample ID: MB-R92773	SampType: MBLK	TestCode: T015	Units: ppbv	Prep Date:	RunNo: 92773
Client ID:	Batch ID: R92773	TestNo: T015		Analysis Date: 10/30/2007	SeqNo: 1098660
Analyte	Result	PQL SPK value	SPK Ref Val %REC	LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
1,1,1-Trichloroethane	<0.50	0.50			
1,1,2,2-Tetrachloroethane	<0.50	0.50			
1,1,2-Trichloroethane	<0.50	0.50			
1,1-Dichloroethane	<0.50	0.50			
1,1-Dichloroethene	<0.50	0.50			
1,2,4-Trichlorobenzene	<2.0	2.0			
1,2,4-Trimethylbenzene	<0.50	0.50			
1,2-Dibromoethane	<0.50	0.50			
1,2-Dichlorobenzene	<0.50	0.50			
1,2-Dichloroethane	<0.50	0.50			
1,2-Dichloropropane	<0.50	0.50			
1,3,5-Trimethylbenzene	<0.50	0.50			
1,3-Butadiene	<0.50	0.50			
1,3-Dichlorobenzene	<0.50	0.50			
1,4-Dichlorobenzene	<0.50	0.50			
2,2,4-Trimethylpentane	<0.50	0.50			
2-Butanone (MEK)	<1.0	1.0			
2-Hexanone	<1.0	1.0			
2-Propanol	<2.0	2.0			
4-Ethyltoluene	<0.50	0.50			
4-Methyl-2-pentanone	<1.0	1.0			
Acetone	<5.0	5.0			
Allyl chloride	<0.50	0.50			
Benzene	<0.50	0.50			
Benzyl chloride	<2.0	2.0			
Qualifiers: * Value exceeds	Value exceeds Maximum Contaminant Level	ND Not De	Not Detected at the Reporting Limit		

Page 1 of 16

Aer a division	Aerotech Environme a division of Aerotech Laboratories, Inc.	Imental	ntal Laboratories	S	Date: 07-Nov-07
CLIENT: Mac Work Order: 071	Mactec 07100560			ANALYTICAL QC SUMMARY REPORT	UMMARY REPORT
	South Mesa/4972-07-2050			TestCode: T015	T015
Sample ID: MB-R92773	SampType: MBLK	TestCode: T015	Units: ppbv	Prep Date:	RunNo: 92773
Client ID:	Batch ID: R92773	TestNo: T015		Analysis Date: 10/30/2007	SeqNo: 1098660
Analyte	Result	PQL SPK value	e SPK Ref Val %REC	LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Bromodichloromethane	<0.50	0.50			
Bromoethene(Vinyl Bromide)	ide) <0.50	0.50			
Bromoform	<0.50	0.50			
Bromomethane	<0.50	0.50			
Carbon disulfide	<0.50	0.50			
Carbon tetrachloride	<0.50	0.50			
Chlorobenzene	<0.50	0.50			
Chloroethane	<0.50	0.50			
Chloroform	<0.50	0.50			
Chloromethane	<0.50	0.50			
cis-1,2-Dichloroethene	<0.50	0.50			
cis-1,3-Dichloropropene	<0.50	0.50			
Cyclohexane	<0.50	0.50			
Dibromochloromethane	<0.50	0.50			
Dichlorodifluoromethane(F-12)	F-12) <0.50	0.50			
Dichlorotetrafluoroethane(F-114)		0.50			
Ethyl Acetate	<0.50	0.50			
Ethylbenzene	<0.50	0.50			
Heptane	<0.50	0.50			
Hexachlorobutadiene	<1.0	1.0			
Hexane	<0.50	0.50			
m&p-Xylene	<1.0	1.0			
Methyl tert-butyl ether	<1.0	1.0			
Methylene chloride	<0.50	0.50			
o-Xylene	<0.50	0.50			
Qualifiers: * Value	Value exceeds Maximum Contaminant Level	ND Not	Not Detected at the Reporting Limit		

Page 2 of 16

CLIENT: Mactec Work Order: 07100569	ic 1569				ANALY	TICAL QC SI	ANALYTICAL QC SUMMARY REPORT	DRT
Project: South	South Mesa/4972-07-2050					TestCode: T015	T015	
Sample ID: MB-R92773	SampType: MBLK	TestCode: T015	Units: ppbv		Prep Date:		RunNo: 92773	
Client ID:	Batch ID: R92773	TestNo: T015		A	Analysis Date:	10/30/2007	SeqNo: 1098660	
Analyte	Result	PQL SPK value	SPK Ref Val %	%REC	LowLimit Hi	HighLimit RPD Ref Val	%RPD RPDLimit	Qual
Propene (Propylene)	<0.50	0.50						
Styrene	<0.50	0.50						
Tetrachloroethene	<0.50	0.50						
Tetrahydrofuran	<2.0	2.0						
Toluene	<0.50	0.50						
trans-1,2-Dichloroethene	<0.50	0.50						
trans-1,3-Dichloropropene	<0.50	0.50						
Trichloroethene	<0.50	0.50						
Trichlorofluoromethane(F-11)) <0.50	0.50						
Trichlorotrifluoroethane(F-113)	3) <0.50	0.50						
Vinyl acetate	<0.50	0.50						
Vinyl chloride	<0.50	0.50						
Surr: 4-Bromofluorobenzene	ne 10.20	0.50 10	0	102	20	130		
Sample ID: MB-R92848	SampType: MBLK	TestCode: T015	Units: ppbv		Prep Date:		RunNo: 92848	
Client ID:	Batch ID: R92848	TestNo: T015		A	Analysis Date:	11/1/2007	SeqNo: 1099417	
Analyte	Result	PQL SPK value	SPK Ref Val %	%REC	LowLimit Hig	HighLimit RPD Ref Val	%RPD RPDLimit	Qual
1,1,1-Trichloroethane	<0.50	0.50						
1,1,2,2-Tetrachloroethane	<0.50	0.50						
1,1,2-Trichloroethane	<0.50	0.50						
1,1-Dichloroethane	<0.50	0.50						
1,1-Dichloroethene	<0.50	0.50						
1,2,4-Trichlorobenzene	<2.0	2.0						
1,2,4-Trimethylbenzene	<0.50	0.50						

Page 3 of 16

Aeroto a division of Aer	Aerotech Environme	nme		ntal Laboratories	orie	S	Date: 07-Nov-07	70-vc	
CLIENT: Mactec						ANALYTICAL QC SUMMARY REPORT	JMMARY J	REPO	RT
	South Mesa/4972-07-2050					TestCode: T015	T015		
Sample ID: MB-R92848	SampType: MBLK	TestCoc	TestCode: T015	Units: ppbv		Prep Date:	RunNo: 92848		
Client ID:	Batch ID: R92848	Test	TestNo: TO15		đ	Analysis Date: 11/1/2007	SeqNo: 1099417	4	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit HighLimit RPD Ref Val	%RPD RP	RPDLimit (Qual
1,2-Dibromoethane	<0.50	0.50							
1,2-Dichlorobenzene	<0.50	0.50							
1,2-Dichloroethane	<0.50	0.50							
1,2-Dichloropropane	<0.50	0.50							
1,3,5-Trimethylbenzene	<0.50	0.50							
1,3-Butadiene	<0.50	0.50							
1,3-Dichlorobenzene	<0.50	0.50							
1,4-Dichlorobenzene	<0.50	0.50							
2,2,4-Trimethylpentane	<0.50	0.50							
2-Butanone (MEK)	<1.0	1.0							
2-Hexanone	<1.0	1.0							
2-Propanol	<2.0	2.0							
4-Ethyltoluene	<0.50	0.50							
4-Methyl-2-pentanone	<1.0	1.0							
Acetone	<5.0	5.0							
Allyl chloride	<0.50	0.50							
Benzene	<0.50	0.50							
Benzyl chloride	<2.0	2.0							
Bromodichloromethane	<0.50	0.50							
Bromoethene(Vinyl Bromide)	<0.50	0.50							
Bromoform	<0.50	0.50							
Bromomethane	<0.50	0.50							
Carbon disulfide	<0.50	0.50							
Carbon tetrachloride	<0.50	0.50							
Chlorobenzene	<0.50	0.50							
Qualifiers: * Value exceed	Value exceeds Maximum Contaminant Level		ND Not De	Not Detected at the Reporting Limit	Limit				

Page 4 of 16

Aerote a division of Aer	Aerotech Environme a division of Aerotech Laboratories, Inc.		ntal Laboratories	Ş	Date: 07-Nov-07
CLIENT: Mactec				ANALYTICAL QC SUMMARY REPORT	JMMARY REPORT
	South Mesa/4972-07-2050			TestCode: T015	T015
Sample ID: MB-R92848	SampType: MBLK	TestCode: T015	Units: ppbv	Prep Date:	RunNo: 92848
Client ID:	Batch ID: R92848	TestNo: T015		Analysis Date: 11/1/2007	SeqNo: 1099417
Analyte	Result	PQL SPK value	SPK Ref Val %REC	LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Chloroethane	<0.50	0.50			
Chloroform	<0.50	0.50			
Chloromethane	<0.50	0.50			
cis-1,2-Dichloroethene	<0.50	0.50			
cis-1,3-Dichloropropene	<0.50	0.50			
Cyclohexane	<0.50	0.50			
Dibromochloromethane	<0.50	0.50			
Dichlorodifluoromethane(F-12)	<0.50	0.50			
Dichlorotetrafluoroethane(F-114)		0.50			
Ethyl Acetate	<0.50	0.50			
Ethylbenzene	<0.50	0.50			
Heptane	<0.50	0.50			
Hexachlorobutadiene	<1.0	1.0			
Hexane	<0.50	0.50			
m&p-Xylene	<1.0	1.0			
Methyl tert-butyl ether	<1.0	1.0			
Methylene chloride	<0.50	0.50		ų.	
o-Xylene	<0.50	0.50			
Propene (Propylene)	<0.50	0.50			
Styrene	<0.50	0.50			
Tetrachloroethene	<0.50	0.50			
Tetrahydrofuran	<2.0	2.0			
Toluene	<0.50	0.50			
trans-1,2-Dichloroethene	<0.50	0.50			
trans-1,3-Dichloropropene	<0.50	0.50			
Qualifiers: * Value exceed	Value exceeds Maximum Contaminant Level	ND Not De	Not Detected at the Reporting Limit		

Page 5 of 16

Aerot	Aerotech Environmental Laboratories a division of Aerotech Laboratories, Inc.	ume	ntal	Laborat	torie	S			Date: 0	Date: 07-Nov-07	
CLIENT: Mactec Work Order: 07100569						ANALY	/TICAL	, QC SU	MMAR	ANALYTICAL QC SUMMARY REPORT	RT
	South Mesa/4972-07-2050						Te	TestCode: 7	T015		
Sample ID: MB-R92848	SampType: MBLK	TestCo	TestCode: T015	Units: ppbv		Prep Date:			RunNo: 92848	848	
Client ID:	Batch ID: R92848	Test	TestNo: T015		ł	Analysis Date:	11/1/2007		SeqNo: 1099417	99417	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit F	HighLimit RF	RPD Ref Val	%RPD	RPDLimit	Qual
Trichloroethene	<0.50	0.50									
Trichlorofluoromethane(F-11)	<0.50	0.50									
Trichlorotrifluoroethane(F-113)	<0.50	0.50									
Vinyl acetate	<0.50	0.50									
Vinyl chloride	<0.50	0.50									
Surr: 4-Bromofluorobenzene	9.310	0.50	10	0	93.1	70	130				
Sample ID: LCS-R92773	SampType: LCS	TestCo	TestCode: T015	Units: ppbv		Prep Date:			RunNo: 92773	773	
Client ID:	Batch ID: R92773	Test	TestNo: TO15		P	Analysis Date:	10/30/2007		SeqNo: 1098661	98661	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit H	HighLimit RF	RPD Ref Val	%RPD	RPDLimit	Qual
1,1,1-Trichloroethane	10.83	0.50	10	0	108	65	135				
1,1,2,2-Tetrachloroethane	11.01	0.50	10	0	110	65	135				
1,1,2-Trichloroethane	10.39	0.50	10	0	104	65	135				
1,1-Dichloroethane	10.27	0.50	10	0	103	65	135				
1,1-Dichloroethene	11.17	0.50	10	0	112	65	135				
1,2,4-Trichlorobenzene	12.22	2.0	10	0	122	65	135				
1,2,4-Trimethylbenzene	12.88	0.50	10	0	129	65	135				
1,2-Dibromoethane	10.66	0.50	10	0	107	65	135				
1,2-Dichlorobenzene	11.43	0.50	10	0	114	65	135				
1,2-Dichloroethane	10.26	0.50	10	0	103	65	135				
1,2-Dichloropropane	10.81	0.50	10	0	108	65	135				
1,3,5-Trimethylbenzene	12.61	0.50	10	0	126	65	135				
1,3-Butadiene	9.980	0.50	10	0	99.8	65	135				
1,3-Dichlorobenzene	11.50	0.50	10	0	115	65	135				
Qualifiers: * Value exceed	Value exceeds Maximum Contaminant Level		ND Not Do	Not Detected at the Reporting Limit	ng Limit						

Page 6 of 16

CLIENT: Mactec								
Wark Ordon 0710	Mactec					ANAL	YTICAL QC SI	ANALYTICAL QC SUMMARY REPORT
	south Mesa/4972-07-2050						TestCode:	T015
Sample ID: LCS-R92773	SampType: LCS	TestCode:	e: T015	Units: ppbv		Prep Date:		RunNo: 92773
Client ID:	Batch ID: R92773	TestNo:	o: TO15			Analysis Date:	e: 10/30/2007	SeqNo: 1098661
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RPD Ref Val	%RPD RPDLimit Qual
1,4-Dichlorobenzene	11.59	0.50	10	0	116	65	135	
2,2,4-Trimethylpentane	11.56	0.50	10	0	116	65	135	
2-Butanone (MEK)	10.85	1.0	10	0	108	65	135	
2-Hexanone	10.99	1.0	10	0	110	65	135	
2-Propanol	9.280	2.0	10	0	92.8	65	135	
4-Ethyltoluene	12.95	0.50	10	0	130	65	135	
4-Methyl-2-pentanone	11.05	1.0	10	0	110	65	135	
Acetone	8.890	5.0	10	0	88.9	65	135	
Allyl chloride	11.01	0.50	10	0	110	65	135	
Benzene	11.00	0.50	10	0	110	65	135	
Benzyl chloride	10.81	2.0	10	0	108	65	135	
Bromodichloromethane	10.70	0.50	10	0	107	65	135	
Bromoethene(Vinyl Bromide)	le) 9.860	0.50	10	0	98.6	65	135	
Bromoform	10.95	0.50	10	0	110	65	135	
Bromomethane	9.920	0.50	10	0	99.2	65	135	
Carbon disulfide	10.03	0.50	10	0	100	65	135	
Carbon tetrachloride	10.09	0.50	10	0	101	65	135	
Chlorobenzene	11.15	0.50	10	0	112	65	135	
Chloroethane	9.760	0.50	10	0	97.6	65	135	
Chloroform	10.45	0.50	10	0	104	65	135	
Chloromethane	9.930	0.50	10	0	99.3	65	135	
cis-1,2-Dichloroethene	10.93	0.50	10	0	109	65	135	
cis-1,3-Dichloropropene	12.36	0.50	10	0	124	65	135	
Cyclohexane	12.14	0.50	10	0	121	65	135	
Dibromochloromethane	10.32	0.50	10	0	103	65	135	

ו מו אבו מרב									
Mactec						ANALY	TICAL QC SI	UMMARY REPORT	
uuoooy ith Mesa/4	1972-07-2050						TestCode:	T015	I
Sample ID: LCS-R92773 S	SampType: LCS	TestCoc	e: T015	Units: ppbv		Prep Date:		RunNo: 92773	
	Batch ID: R92773	TestN	lo: TO15		H	Analysis Date:	10/30/2007	SeqNo: 1098661	
	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit H	lighLimit RPD Ref Val	%RPD RPDLimit Qual	
Dichlorodifluoromethane(F-12)	10.20	0.50	10	0	102	65	135		
Dichlorotetrafluoroethane(F-114)	10.23	0.50	10	0	102	65	135		
	11.21	0.50	10	0	112	65	135		
	12.46	0.50	10	0	125	65	135		
	11.27	0.50	10	0	113	65	135		
	12.13	1.0	10	0	121	65	135		
	12.27	0.50	10	0	123	65	135		
	25.16	1.0	20	0	126	65	135		
	10.44	1.0	10	0	104	65	135		
	9.710	0.50	10	0	97.1	65	135		
	11.99	0.50	10	0	120	65	135		
	10.24	0.50	10	0	102	65	135		
	12.87	0.50	10	0	129	65	135		
	11.41	0.50	10	0	114	65	135		
	11.33	2.0	10	0	113	65	135		
	11.85	0.50	10	0	118	65	135		
	10.33	0.50	10	0	103	65	135		
trans-1,3-Dichloropropene	11.48	0.50	10	0	115	65	135		
	11.51	0.50	10	0	115	65	135		
Trichlorofluoromethane(F-11)	10.07	0.50	10	0	101	65	135		
Frichlorotrifluoroethane(F-113)	9.940	0.50	10	0	99.4	65	135		
	11.72	0.50	10	0	117	65	135		
	10.01	0.50	10	0	100	65	135		
Surr: 4-Bromofluorobenzene	10.47	0.50	10	0	105	70	130		
e exceeds M	laximum Contaminant Leve		ND Not De	etected at the Reportin	g Limit				
	Mactec 07100569 South Mesa/ ane(F-12) ane(F-114) ane (F-114) refere pene pene pene pene benzene	Mactec 07100569 South Mesa/4972-07-2050 T73 SampType: LCS Batch ID: R92773 Result Result 11.27 11.21 11.27 1	69 fresa/4972-07-2050 SampType: LCS Batch ID: R92773 Result Result 11.27 12.13 11.27 12.13 11.27 12.46 11.27 12.46 11.27 12.46 11.27 12.46 11.27 12.46 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.33 11.33 11.33 11.41 11.33 11.41 11.33 11.41 11.33 11.41 11.33 11.41 11.33 11.41 11.27 11.41 11.27 11.41 11.27 11.27 25.16 10.24 11.27 11.27 25.16 10.24 11.27 11.27 25.16 10.24 11.27 11.27 25.16 10.24 11.27	69 fesa/4972-07-2050 SampType: LCS TestCode: T01 Batch ID: R92773 TestNo: T01 Result PQL SPK 11.21 0.50 11.227 0.50 11.2187 0.50 11.2187 0.50 11.246 0.50 11.2187 0.50 11.246 0.50 11.213 1.0 11.27 0.50 11.33 2.0 11.41 0.50 11.41 0.50 11.41 0.50 11.41 0.50 11.48 0.50 11.44 0.5	69 fesa/4972-07-2050 SampType: LCS TestCode: T01 Batch ID: R92773 TestNo: T01 Result PQL SPK 11.21 0.50 11.227 0.50 11.2187 0.50 11.2187 0.50 11.246 0.50 11.2187 0.50 11.246 0.50 11.213 1.0 11.27 0.50 11.33 2.0 11.41 0.50 11.41 0.50 11.41 0.50 11.41 0.50 11.48 0.50 11.44 0.5	69 fesa/4972-07-2050 SampType: LCS TestCode: TO15 Units: ppbv Batch ID: R92773 TestNo: TO15 Units: ppbv Result PQL SPK value SPK Ref Val %REC 10, 10, 23 0, 50 10 0 102 11, 21, 10, 20 10 0 102 11, 21, 10, 20 10 0 102 11, 21, 10, 20 10 0 102 11, 22, 10, 20 10 0 102 11, 22, 10, 20 10 0 102 11, 24, 10 20 10 0 123 11, 24, 10 20 10 0 123 11, 24, 10 20 10 0 123 11, 24, 10 20 10 0 101 11, 22, 10, 20 10 0 101 11, 22, 10, 20 10 0 101 11, 24, 10, 20 10 0 101 11, 24, 10, 20 10 0 113 11, 24, 10, 20 10 0 113 11, 24, 10, 25, 10 0 0 0 0 113 11, 24, 10, 25, 10 0 0 0 0 113 11, 24, 10, 25, 10 0 0 0 0 113 11, 24, 10, 25, 10 0 0 0 0 113 11, 24, 10, 25, 10 0 0 0 0 0 113 11, 24, 10, 25, 10, 10 0 0 0 113 11, 24, 10, 25, 10, 10 0 0 0 113 11, 24, 10, 25, 25, 10, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25	69 Test/Code: TO15 Units: ppbv SampType: LCS Test/No: TO15 Units: ppbv Batch ID: R92773 Test/No: TO15 Units: ppbv Result PQL SPK Nature SPK Ref Val %REC 1 10.20 0.50 10 0 102 1 11.21 0.50 10 0 113 11.21 0.50 10 0 123 11.21 0.50 10 0 123 11.21 0.50 10 0 123 11.21 0.50 10 0 123 11.23 0.50 10 0 123 11.24 0.50 10 0 123 11.33 2.50 10 0 114 11.34 0.50 10 0 113 11.38 0.50 10 0 113 11.36 0.50 10 0 113 </td <td>69 Test/Code: TO15 Units: ppbv SampType: LCS Test/No: TO15 Units: ppbv Batch ID: R92773 Test/No: TO15 Units: ppbv Result PQL SPK Nature SPK Ref Val %REC 1 10.20 0.50 10 0 102 1 11.21 0.50 10 0 113 11.21 0.50 10 0 123 11.21 0.50 10 0 123 11.21 0.50 10 0 123 11.21 0.50 10 0 123 11.23 0.50 10 0 123 11.24 0.50 10 0 123 11.33 2.05 10 0 123 11.34 0.50 10 0 114 11.33 0.50 10 0 113 11.48 0.50 10 0 113 <!--</td--><td>Analysis Analysis Analysis</td></td>	69 Test/Code: TO15 Units: ppbv SampType: LCS Test/No: TO15 Units: ppbv Batch ID: R92773 Test/No: TO15 Units: ppbv Result PQL SPK Nature SPK Ref Val %REC 1 10.20 0.50 10 0 102 1 11.21 0.50 10 0 113 11.21 0.50 10 0 123 11.21 0.50 10 0 123 11.21 0.50 10 0 123 11.21 0.50 10 0 123 11.23 0.50 10 0 123 11.24 0.50 10 0 123 11.33 2.05 10 0 123 11.34 0.50 10 0 114 11.33 0.50 10 0 113 11.48 0.50 10 0 113 </td <td>Analysis Analysis Analysis</td>	Analysis Analysis

Aerotech Environmental Laboratories

Page 8 of 16

						ANALY	TICAL QC SI	ANALYTICAL QC SUMMARY REPORT	Z
Project: South Mes	0/100209 South Mesa/4972-07-2050						TestCode:	T015	
Sample ID: LCS-R92848	SampType: LCS	TestCode:	de: T015	Units: ppbv		Prep Date:		RunNo: 92848	
Client ID:	Batch ID: R92848	Test	TestNo: T015			Analysis Date:	11/1/2007	SeqNo: 1099420	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit H	HighLimit RPD Ref Val	%RPD RPDLimit Q	Qual
1,1,1-Trichloroethane	10.96	0.50	10	0	110	65	135		
1,1,2,2-Tetrachloroethane	10.96	0.50	10	0	110	65	135		
1,1,2-Trichloroethane	10.34	0.50	10	0	103	65	135		
1,1-Dichloroethane	10.56	0.50	10	0	106	65	135		
1,1-Dichloroethene	11.20	0.50	10	0	112	65	135		
1,2,4-Trichlorobenzene	10.31	2.0	10	0	103	65	135		
1,2,4-Trimethylbenzene	12.73	0.50	10	0	127	65	135		
1,2-Dibromoethane	10.64	0.50	10	0	106	65	135		
1,2-Dichlorobenzene	11.23	0.50	10	0	112	65	135		
1,2-Dichloroethane	10.53	0.50	10	0	105	65	135		
1,2-Dichloropropane	10.92	0.50	10	0	109	65	135		
1,3,5-Trimethylbenzene	12.45	0.50	10	0	125	65	135		
1,3-Butadiene	9.900	0.50	10	0	0.06	65	135		
1,3-Dichlorobenzene	11.22	0.50	10	0	112	65	135		
1,4-Dichlorobenzene	11.40	0.50	10	0	114	65	135		
2,2,4-Trimethylpentane	11.58	0.50	10	0	116	65	135		
2-Butanone (MEK)	11.10	1.0	10	0	111	65	135		
2-Hexanone	11.35	1.0	10	0	114	65	135		
2-Propanol	9.460	2.0	10	0	94.6	65	135		
4-Ethyltoluene	12.74	0.50	10	0	127	65	135		
4-Methyl-2-pentanone	11.35	1.0	10	0	114	65	135		
Acetone	9.030	5.0	10	0	90.3	65	135		
Allyl chloride	11.36	0.50	10	0	114	65	135		
Benzene	11.29	0.50	10	0	113	65	135		
Benzyl chloride	11.03	2.0	10	0	110	65	135		

Date: 07-Nov-07

Page 9 of 16

Aerote a division of Aer	Aerotech Environme a division of Aerotech Laboratories, Inc.	men	tal	ntal Laboratories	orie	S		Date	Date: 07-Nov-07	
CLIENT: Mactec						ANAL	YTICAL Q	C SUMMA	ANALYTICAL QC SUMMARY REPORT	E
	South Mesa/4972-07-2050						TestCode:	de: TO15		
Sample ID: LCS-R92848	SampType: LCS	TestCode:	le: T015	Units: ppbv		Prep Date:		RunNo: 92848	92848	
Client ID:	Batch ID: R92848	TestNo: T015	T015			Analysis Date:	9: 11/1/2007	SeqNo:	SeqNo: 1099420	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RPD Ref Val	if Val %RPD	D RPDLimit Qual	_
Bromodichloromethane	10.71	0.50	10	0	107	65	135			
Bromoethene(Vinyl Bromide)	9.800	0.50	10	0	98.0	65	135			
Bromoform	10.68	0.50	10	0	107	65	135			
Bromomethane	9.780	0.50	10	0	97.8	65	135			
Carbon disulfide	9.870	0.50	10	0	98.7	65	135			
Carbon tetrachloride	10.24	0.50	10	0	102	65	135			
Chlorobenzene	11.06	0.50	10	0	111	65	135			
Chloroethane	9.870	0.50	10	0	98.7	65	135			
Chloroform	10.67	0.50	10	0	107	65	135			
Chloromethane	9.780	0.50	10	0	97.8	65	135			
cis-1,2-Dichloroethene	11.04	0.50	10	0	110	65	135			
cis-1,3-Dichloropropene	12.72	0.50	10	0	127	65	135			
Cyclohexane	12.53	0.50	10	0	125	65	135			
Dibromochloromethane	10.18	0.50	10	0	102	65	135			
Dichlorodifluoromethane(F-12)	10.01	0.50	10	0	100	65	135			
Dichlorotetrafluoroethane(F-114)		0.50	10	0	101	65	135			
Ethyl Acetate	11.76	0.50	10	0	118	65	135			
Ethylbenzene	12.44	0.50	10	0	124	65	135			
Heptane	11.41	0.50	10	0	114	65	135			
Hexachlorobutadiene	10.19	1.0	10	0	102	65	135			
Hexane	12.74	0.50	10	0	127	65	135			
m&p-Xylene	25.03	1.0	20	0	125	65	135			
Methyl tert-butyl ether	10.56	1.0	10	0	106	65	135			
Methylene chloride	9.960	0.50	10	0	99.6	65	135			
o-Xylene	11.90	0.50	10	0	119	65	135			
Qualifiers: * Value excee	Value exceeds Maximum Contaminant Level		ND Not De	Not Detected at the Reporting Limit	g Limit					

Page 10 of 16

Aer a division	Aerotech Envir a division of Aerotech Laboratories, Inc.	Aerotech Environmental Laboratories a division of Aerotech Laboratories, Inc.	me	ntal	Laborat	orie	S			Date: 07-Nov-07	-Nov-07	
CLIENT: Ma Work Order: 071	Mactec 07100569						ANAL	VTICAI	c QC SU	ANALYTICAL QC SUMMARY REPORT	V REPO	RT
	South Mesa/4972-07-2050	-07-2050						Te	TestCode: 7	T015		
Sample ID: LCS-R92848		SampType: LCS	TestCode: T015	e: T015	Units: ppbv		Prep Date:			RunNo: 92848	18	
Client ID:	Batc	Batch ID: R92848	TestN	TestNo: T015		4	Analysis Date:	: 11/1/2007		SeqNo: 1099420	9420	
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit R	RPD Ref Val	%RPD	RPDLimit	Qual
Propene (Propylene)		10.29	0.50	10	0	103	65	135				
Styrene		12.73	0.50	10	0	127	65	135				
Tetrachloroethene		11.17	0.50	10	0	112	65	135				
Tetrahydrofuran		11.83	2.0	10	0	118	65	135				
Toluene		11.82	0.50	10	0	118	65	135				
trans-1,2-Dichloroethene		10.61	0.50	10	0	106	65	135				
trans-1,3-Dichloropropene	Θ	11.71	0.50	10	0	117	65	135				
Trichloroethene		11.36	0.50	10	0	114	65	135				
Trichlorofluoromethane(F-11)	-11)	10.02	0.50	10	0	100	65	135				
Trichlorotrifluoroethane(F-113)	-113)	10.01	0.50	10	0	100	65	135				
Vinyl acetate		12.38	0.50	10	0	124	65	135				
Vinyl chloride		9.850	0.50	10	0	98.5	65	135				
Surr: 4-Bromofluorobenzene	nzene	10.07	0.50	10	0	101	20	130				
Sample ID: LCSD-R92773		SampType: LCSD	TestCode: T015	9: T015	Units: ppbv		Prep Date:			RunNo: 92773	3	
Client ID:	Batcl	Batch ID: R92773	TestNo	TestNo: T015		ď	Analysis Date:	10/30/2007	7	SeqNo: 1098662	3662	
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit F	HighLimit RI	RPD Ref Val	%RPD	RPDLimit	Qual
1,1,1-Trichloroethane		11.87	0.50	10	0	119	65	135	10.83	9.16	25	
1,1,2,2-Tetrachloroethane	0	11.11	0.50	10	0	111	65	135	11.01	0.904	25	
1,1,2-Trichloroethane		11.47	0.50	10	0	115	65	135	10.39	9.88	25	
1,1-Dichloroethane		11.44	0.50	10	0	114	65	135	10.27	10.8	25	
1,1-Dichloroethene		12.28	0.50	10	0	123	65	135	11.17	9.47	25	
1,2,4-Trichlorobenzene		12.62	2.0	10	0	126	65	135	12.22	3.22	25	
1,2,4-Trimethylbenzene		12.98	0.50	10	0	130	65	135	12.88	0.773	25	
Qualifiers: * Valu	e exceeds Maximu	Value exceeds Maximum Contaminant Level		ND Not De	Not Detected at the Reporting Limit	g Limit						

Page 11 of 16

Aerotech Environmental Laboratories

a division of Aerotech Laboratories, Inc.

ANALYTICAL QC SUMMARY REPORT Qual RPDLimit
 22
 23
 23
 23
 23
 23
 23
 23
 23
 23
 23
 23
 23
 23
 23
 23
 23
 23
 23
 23
 23
 23
 23
 23
 23
 23
 23
 23
 23
 23
 23
 23
 23
 23
 23
 23
 23
 23
 23
 23
 23
 23
 23
 23
 23
 23
 23
 23
 23
 23
 23
 23
 23
 23
 23
 23
 23
 23
 23
 23
 23
 23
 23
 23
 23
 23
 23
 23
 23
 23
 23
 23
 23
 23
 23
 23
 23
 23
 23
 23
 23
 23
 23
 23
 23
 23
 23
 23
 23
 23
 23
 23
 23
 23
 23
 23
 23
 23
 23
 23
 23
 23< SeqNo: 1098662 RunNo: 92773 %RPD 12.9 9.91 10.1 0.317 7.34 1.64 1.96 9.48 14.4 1.23 12.9 11.0 5.66 8.67 9.28 1.18 8.40 7.76 9.26 10.4 1.65 12.4 11.1 13.2 1.42 TestCode: T015 11.43 10.99 12.95 11.05 10.66 10.26 11.50 11.59 11.56 10.85 9.280 8.890 11.00 10.70 9.860 10.95 HighLimit RPD Ref Val 10.81 9.980 11.01 10.81 9.920 10.09 12.61 10.03 11.15 Analysis Date: 10/30/2007 35 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 35 135 135 135 135 Prep Date: LowLimit 65 35 **35** 35 %REC 116 113 126 99.3 118 120 107 117 118 127 123 127 106 131 126 126 123 114 117 108 111 108 108 111 113 Not Detected at the Reporting Limit Units: ppbv 0 SPK Ref Val 0 0 SPK value 10 10 10 10 10 10 01 01 01 01 01 10 10 0 10 10 10 TestNo: T015 TestCode: T015 QN 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 1.0 1.0 2.0 0.50 1.0 5.0 0.50 0.50 0.50 0.50 PQL 2.0 0.50 0.50 0.50 0.50 0.50 0.50 Value exceeds Maximum Contaminant Level Batch ID: R92773 Result 11.62 11.33 11.96 12.65 10.74 11.69 11.82 12.29 12.70 10.56 13.11 12.58 9.930 12.57 12.28 11.44 11.67 10.82 11.08 10.79 12.71 10.84 11.83 11.07 11.31 SampType: LCSD South Mesa/4972-07-2050 07100569 Mactec Bromoethene(Vinyl Bromide) Sample ID: LCSD-R92773 I,3,5-Trimethylbenzene Bromodichloromethane 2,2,4-Trimethylpentane 4-Methyl-2-pentanone I.2-Dichlorobenzene I,2-Dichloropropane 1,3-Dichlorobenzene 1,4-Dichlorobenzene Carbon tetrachloride I,2-Dichloroethane 1,2-Dibromoethane 2-Butanone (MEK) * Work Order: Carbon disulfide Benzyl chloride Bromomethane Chlorobenzene 4-Ethyltoluene 1,3-Butadiene Allyl chloride 2-Hexanone CLIENT: Qualifiers: 2-Propanol Bromoform Project: Client ID: Benzene Acetone Analyte

Page 12 of 16

Aerotech Environmental Laboratories

a division of Aerotech Laboratories, Inc.

CLIENT: Mactec						ANAL	YTICA	ANALYTICAL OC SUMMARY REPORT	IMMAR	Y REPC	RT
Work Order: 07100569								,			
Project: South Me	South Mesa/4972-07-2050						E	TestCode:	T015		
Sample ID: LCSD-R92773	SampType: LCSD	TestCode: T015	:: T015	Units: ppbv		Prep Date:			RunNo: 92773	73	
Client ID:	Batch ID: R92773	TestNc	TestNo: T015		4	Analysis Date:	e: 10/30/2007	107	SeqNo: 1098662	8662	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Chloroethane	10.66	0.50	10	0	107	65	135	9.760	8.81	25	
Chloroform	11.49	0.50	10	0	115	65	135	10.45	9.48	25	
Chloromethane	10.65	0.50	10	0	106	65	135	9.930	7.00	25	
cis-1,2-Dichloroethene	12.36	0.50	10	0	124	65	135	10.93	12.3	25	
cis-1,3-Dichloropropene	13.92	0.50	10	0	139	65	135	12.36	11.9	25	L1
Cyclohexane	13.54	0.50	10	0	135	65	135	12.14	10.9	25	Г1
Dibromochloromethane	11.45	0.50	10	0	114	65	135	10.32	10.4	25	
Dichlorodifluoromethane(F-12)	10.76	0.50	10	0	108	65	135	10.20	5.34	25	
Dichlorotetrafluoroethane(F-114)	10.98	0.50	10	0	110	65	135	10.23	7.07	25	
Ethyl Acetate	12.72	0.50	10	0	127	65	135	11.21	12.6	25	
Ethylbenzene	12.76	0.50	10	0	128	65	135	12.46	2.38	25	
Heptane	12.28	0.50	10	0	123	65	135	11.27	8.58	25	
Hexachlorobutadiene	12.00	1.0	10	0	120	65	135	12.13	1.08	25	
Hexane	13.70	0.50	10	0	137	65	135	12.27	11.0	25	Г1
m&p-Xylene	25.71	1.0	20	0	129	65	135	25.16	2.16	25	
Methyl tert-butyl ether	11.96	1.0	10	0	120	65	135	10.44	13.6	25	
Methylene chloride	10.69	0.50	10	0	107	65	135	9.710	9.61	25	
o-Xylene	12.07	0.50	10	0	121	65	135	11.99	0.665	25	
Propene (Propylene)	11.64	0.50	10	0	116	65	135	10.24	12.8	25	
Styrene	13.11	0.50	10	0	131	65	135	12.87	1.85	25	
Tetrachloroethene	12.66	0.50	10	0	127	65	135	11.41	10.4	25	
Tetrahydrofuran	12.74	2.0	10	0	127	65	135	11.33	11.7	25	
Toluene	13.18	0.50	10	0	132	65	135	11.85	10.6	25	
trans-1,2-Dichloroethene	11.83	0.50	10	0	118	65	135	10.33	13.5	25	
trans-1,3-Dichloropropene	13.03	0.50	10	0	130	65	135	11.48	12.6	25	
Qualifiers: * Value exceed	Value exceeds Maximum Contaminant Level		ND Not De	Not Detected at the Reporting Limit	g Limit						

Page 13 of 16

Aero a division of	Aerotech Environmental Laboratories a division of Aerotech Laboratories, Inc.	nme	ntal	Laborat	orie	S			Date: 07	Date: 07-Nov-07	
CLIENT: Mactec Work Order: 07100569	095					ANAL	YTIC	AL QC SI	ANALYTICAL QC SUMMARY REPORT	Y REPC	RT
	South Mesa/4972-07-2050						L	TestCode:	T015		
Sample ID: LCSD-R92773	SampType: LCSD	TestCoo	TestCode: TO15	Units: ppbv		Prep Date:			RunNo: 92773	73	
Client ID:	Batch ID: R92773	Test	TestNo: T015			Analysis Date:	e: 10/30/2007	007	SeqNo: 1098662	8662	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Trichloroethene	12.70	0.50	10	0	127	65	135	11.51	9.83	25	
Trichlorofluoromethane(F-11)	10.86	0.50	10	0	109	65	135	10.07	7.55	25	
Trichlorotrifluoroethane(F-113)	3) 10.99	0.50	10	0	110	65	135	9.940	10.0	25	
Vinyl acetate	13.32	0.50	10	0	133	65	135	11.72	12.8	25	
Vinyl chloride	10.81	0.50	10	0	108	65	135	10.01	7.68	25	
Surr: 4-Bromofluorobenzene	10.97 ID	0.50	10	0	110	70	130	10.47	0	0	
Sample ID: LCSD-R92848	SampType: LCSD	TestCoo	TestCode: T015	Units: ppbv		Prep Date:			RunNo: 92848	48	
Client ID:	Batch ID: R92848	Test	TestNo: T015			Analysis Date:	e: 11/1/2007	07	SeqNo: 1099421	9421	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,1,1-Trichloroethane	11.18	0.50	10	0	112	65	135	10.96	1.99	25	
1,1,2,2-Tetrachloroethane	11.11	0.50	10	0	111	65	135	10.96	1.36	25	
1,1,2-Trichloroethane	10.26	0.50	10	0	103	65	135	10.34	0.777	25	
1,1-Dichloroethane	10.73	0.50	10	0	107	65	135	10.56	1.60	25	
1,1-Dichloroethene	11.55	0.50	10	0	116	65	135	11.20	3.08	25	
1,2,4-Trichlorobenzene	12.15	2.0	10	0	122	65	135	10.31	16.4	25	
1,2,4-Trimethylbenzene	12.82	0.50	10	0	128	65	135	12.73	0.705	25	
1,2-Dibromoethane	10.58	0.50	10	0	106	65	135	10.64	0.566	25	
1,2-Dichlorobenzene	11.43	0.50	10	0	114	65	135	11.23	1.77	25	
1,2-Dichloroethane	10.50	0.50	10	0	105	65	135	10.53	0.285	25	
1,2-Dichloropropane	10.83	0.50	10	0	108	65	135	10.92	0.828	25	
1,3,5-Trimethylbenzene	12.56	0.50	10	0	126	65	135	12.45	0.880	25	
1,3-Butadiene	10.11	0.50	10	0	101	65	135	9.900	2.10	25	
1,3-Dichlorobenzene	11.51	0.50	10	0	115	65	135	11.22	2.55	25	
Qualifiers: * Value ex	Value exceeds Maximum Contaminant Level	I	ND Not Do	Not Detected at the Reporting Limit	g Limit						

Page 14 of 16

Aerotech Environmental Laboratories a division of Aerotech Laboratories, Inc.

						THE TA TET			IN THE INFINITION OF THE INFINITION		INI
Froject: South Mesa	South Mesa/4972-07-2050						L	TestCode:	T015		
Sample ID: LCSD-R92848	SampType: LCSD	TestCod	TestCode: T015	Units: ppbv		Prep Date:			RunNo: 92848	48	
Client ID:	Batch ID: R92848	TestN	TestNo: T015		4	Analysis Date:	: 11/1/2007	70	SeqNo: 1099421	9421	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit ^F	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,4-Dichlorobenzene	11.62	0.50	10	0	116	65	135	11.40	1.91	25	
2,2,4-Trimethylpentane	11.56	0.50	10	0	116	65	135	11.58	0.173	25	
2-Butanone (MEK)	11.34	1.0	10	0	113	65	135	11.10	2.14	25	
2-Hexanone	11.84	1.0	10	0	118	65	135	11.35	4.23	25	
2-Propanol	10.01	2.0	10	0	100	65	135	9.460	5.65	25	
4-Ethyltoluene	12.92	0.50	10	0	129	65	135	12.74	1.40	25	
4-Methyl-2-pentanone	11.57	1.0	10	0	116	65	135	11.35	1.92	25	
Acetone	9.380	5.0	10	0	93.8	65	135	9.030	3.80	25	
Allyl chloride	11.88	0.50	10	0	119	65	135	11.36	4.48	25	
Benzene	11.47	0.50	10	0	115	65	135	11.29	1.58	25	
Benzyl chloride	11.52	2.0	10	0	115	65	135	11.03	4.35	25	
Bromodichloromethane	10.55	0.50	10	0	106	65	135	10.71	1.51	25	
Bromoethene(Vinyl Bromide)	10.13	0.50	10	0	101	65	135	9.800	3.31	25	
Bromoform	10.76	0.50	10	0	108	65	135	10.68	0.746	25	
Bromomethane	10.00	0.50	10	0	100	65	135	9.780	2.22	25	
Carbon disulfide	10.04	0.50	10	0	100	65	135	9.870	1.71	25	
Carbon tetrachloride	10.21	0.50	10	0	102	65	135	10.24	0.293	25	
Chlorobenzene	11.18	0.50	10	0	112	65	135	11.06	1.08	25	
Chloroethane	10.00	0.50	10	0	100	65	135	9.870	1.31	25	
Chloroform	10.70	0.50	10	0	107	65	135	10.67	0.281	25	
Chloromethane	9.820	0.50	10	0	98.2	65	135	9.780	0.408	25	
cis-1,2-Dichloroethene	11.30	0.50	10	0	113	65	135	11.04	2.33	25	
cis-1,3-Dichloropropene	12.70	0.50	10	0	127	65	135	12.72	0.157	25	
Cyclohexane	12.64	0.50	10	0	126	65	135	12.53	0.874	25	
Dibromochloromethane	10.11	0.50	10	0	101	65	135	10.18	0.690	25	

Page 15 of 16

Aerotech Environmental Laboratories

a division of Aerotech Laboratories, Inc.

						ANAI	XTICA	ANALYTICAL QC SUMMARY REPORT	JMMAR	Y REPC	RT
Work Order: 07100569								,			
Project: South Mes	South Mesa/4972-07-2050							TestCode:	T015		
Sample ID: LCSD-R92848	SampType: LCSD	TestCo	TestCode: T015	Units: ppbv		Prep Date:	:e:		RunNo: 92848	848	
Client ID:	Batch ID: R92848	Test	TestNo: TO15			Analysis Date:	e: 11/1/2007	07	SeqNo: 1099421	99421	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Dichlorodifluoromethane(F-12)	9.950	0.50	10	0	99.5	65	135	10.01	0.601	25	
Dichlorotetrafluoroethane(F-114)	10.21	0.50	10	0	102	65	135	10.13	0.787	25	
Ethyl Acetate	12.13	0.50	10	0	121	65	135	11.76	3.10	25	
Ethylbenzene	12.66	0.50	10	0	127	65	135	12.44	1.75	25	
Heptane	11.18	0.50	10	0	112	65	135	11.41	2.04	25	
Hexachlorobutadiene	10.28	1.0	10	0	103	65	135	10.19	0.879	25	
Hexane	12.94	0.50	10	0	129	65	135	12.74	1.56	25	
m&p-Xylene	25.35	1.0	20	0	127	65	135	25.03	1.27	25	
Methyl tert-butyl ether	11.12	1.0	10	0	111	65	135	10.56	5.17	25	
Methylene chloride	10.02	0.50	10	0	100	65	135	9.960	0.601	25	
o-Xylene	11.96	0.50	10	0	120	65	135	11.90	0.503	25	
Propene (Propylene)	11.25	0.50	10	0	112	65	135	10.29	8.91	25	
Styrene	12.97	0.50	10	0	130	65	135	12.73	1.87	25	
Tetrachloroethene	11.19	0.50	10	0	112	65	135	11.17	0.179	25	
Tetrahydrofuran	12.11	2.0	10	0	121	65	135	11.83	2.34	25	
Toluene	11.76	0.50	10	0	118	65	135	11.82	0.509	25	
trans-1,2-Dichloroethene	10.89	0.50	10	0	109	65	135	10.61	2.60	25	
trans-1,3-Dichloropropene	11.75	0.50	10	0	118	65	135	11.71	0.341	25	
Trichloroethene	11.29	0.50	10	0	113	65	135	11.36	0.618	25	
Trichlorofluoromethane(F-11)	10.03	0.50	10	0	100	65	135	10.02	0.0998	25	
Trichlorotrifluoroethane(F-113)	10.15	0.50	10	0	102	65	135	10.01	1.39	25	
Vinyl acetate	12.78	0.50	10	0	128	65	135	12.38	3.18	25	
Vinyl chloride	10.13	0.50	10	0	101	65	135	9.850	2.80	25	
Surr: 4-Bromofluorobenzene	10.24	0.50	10	0	102	70	130	10.07	0	0	
			-								

Page 16 of 16

ND Not Detected at the Reporting Limit

Value exceeds Maximum Contaminant Level

Qualifiers:

Aerotech E	nvironn	nental	Labor	atories	s Samp	le Red	ceipt Ch	necklis	t		Project Checked By:
Laborator	y Num	ber:	07	-10	-05	69				C	Completed By/On: Out
Client Nam	ie: ľ	Mac	toc		· .					D	Date/Time Rec'd: 10/12/07 10:25 By: AG-
Matrix: A	ir Soi	1 Ac	lueous	o Oil	Slud	lge S	Solid V	WW	DW	C	Carrier Name: Client
Temperatur	re		Cooler	#1 f	tonbo	CC	ooler #2	2	.°(C	Cooler #3 °C Cooler #4 °C
Temp. Read	d With]	Therm	ometer	r IR	T	hermon	neter	IR		Thermometer IR Thermometer IR
Client or Pl	Mmodo	011107	o ofto	mn 01	it of ro	nael	Vac	No	C	ircl	le one: Blue Ice Wet Ice Not Present
Chent of Pl	wi made	awai	e or le	mp. ot	11 01 14	inge:	1 05	110	C.		le one. Blue ice wei ice inor i resent
						1.1		Yes	No	* 1	Not Present Soil Containers:
Shipping cor	ntainer/c	ooler i	n good	condit	ion?			X			Brass Sleeve
Custody sea	als intact	on shi	pping	contain	er/cool	er?					Glass Jar
Custody sea	als intact	on sai	mple c	ontaine	ers?						K Methanol
Chain of Cu	stody pre	esent a	and reli	nquish	ed/rece	eived p	roperly?	X			Plastic Bag
Chain of Cu	stody ag	rees w	ith sar	nple la	bels?			X			Encore Samplers
Samples in	proper c	ontaine	ers/bot	tles?				X			Sterile Plastic
Sample con	tainers ir	ntact?						\propto		-	
All samples	received	d withir	n holdir	ng time	?			\propto			**See Comments about Chlorine and pH
Is there suff	icient sa	mple v	olume	to perf	form the	e tests'	?	\propto	<		
40mL vials f	for volati	les & S	SOCs r	eceive	d with z	ero he	adspace	e?	-		X
Total numbe	er of bott	les rec	eived:	S	, ,			IH sa	ample	e me	edia: 1 Liter can
If applicable	, how m	any sa	mple b	ottles	were sh	nipped	from AE	L-Tucs	son?		N/A x
											aples are rec'd, please continue on separate sheet(s)).
Preservative		1	2	3	4	5	6	7	8		9 10 *Any <u>No</u> response must be detailed in the comments section. Contact the PM
A-General	5										immediately to determine how to proceed.
B-HNO3											Refer to SOP 11-001 and continue on back if additional space is needed.
C-H2SO4											
D-HCI											**The holding time for pH and Total Residua Chlorine analysis is immediate. For the most
E-Na2S2O3											accurate results, the pH and Total Residual
F-NaOH										+	Chlorine should be taken in the field within 1 minutes of sampling.
G-Sulfide										+	minutes of sampling.
H-Na Sulfite											***The Simple box is only to be used when
J-Methanol											there is one bottle per preservative in equal sample sets.
K-HAA										+	
L-Other										1	
Water-pH a			n recei	nt?	Yes		No		N/A	X	
Preserva			1			inon	receip	t			uires adjustment, list sample number and reagent I.D. number.
Metals		<2	prio	- ourn							
H ₂ SO ₄		<2									
1664		<2									
Cyanide		>12					:				
Sulfide		>9									
Commen	nts:	- 0							J		
Comme											

Active and a second sec
--

a division of Aerotech Laboratories, Inc.

Lab Number:

0	L.
ò	D
T	-
C	C
11	5
-	÷
-	+
	-
5	2
2	N
9	-
>	<
<	I.
C	
V	÷
C	ò
C	0
	-
ò	0
5	£.
0	si
è	5
Q	ō
C	C.
5	1
S	2
-	2
	4
<	ť.
1 CO VA 010 CO 127 2340 EAV 623	-
	\leq
	_
Dhoo	Ð
	2
1	-
-	-
10 00	ñ
ŏ	ő
7	-
	12
-	2
-	3
C	0
0	
ç	2
1	T
-	Ĕ
1	
CITAL CONTRACT	_
C	
	-
	-i
	5
ī	ō
L	-
	1)
-	<u> </u>
	1
	ų
C	
	0
1	2
-	2
C)
	ر L
_ L	Ц
1	0
-	4
0	0
-	4
1	D
1	σ
-	
1	
-	B
-	
-	2
-	-
-	-

[] North Phoenix - 1501 W. Knudsen, Phoenix, AZ 85027 623.780.4800 - FAX 623.445.6216

[] Tucson - 445 www.aeroenviro	[] Tucson - 4455 S. Park Ave, Suite 110, Tucson, AZ www.aeroenvirolabs.com or call toll-free 866.772.5227	110, Tucson, AZ 8571 ee 866.772.5227	[] Tucson - 4455 S. Park Ave, Suite 110, Tucson, AZ 85714 520.807.3801 - FAX 520.807.3803 www.aeroenvirolabs.com or call toll-free 866.772.5227	7.3803						-10	07-10-0569	0S6	~
Customer Number:	imber:			Page \	of								
Customer:	Machec	a		Sampler:	SRK MILLE	0							
Address:	3630 £ 1	WIER ALE		Project Name:	ne: South	Vesa							
City, State, Zi	ZID: PHDEAUX	T-V		Project Number:	22517	-07-705	0						
Contact:	J.M. CLAPI	-1		P.O. Number:	er:								
Phone:	607.437.02	20	Fax: 3675	Fax Results:		٢	z						
E-Mail Address:	ss:			E-Mail Results:	ults:	8	Z						
	Sample Receipt	sipt	Turn Around Request	Request						Ana	Analyses Requested	uested	
Temperature	Amb	Ô	24 Hours	48 Hours									
Custody Seals:	Yes No X	J	72 Hours						<u>c</u>	9			
Custody Seals Intact:	Yes	No	5 working Day	ind Dave					31-01	GI-0.		~	
I otal # of Containers:	5		1 15	Ing Uays lity (surcharges apply)					T to t				
			Sample I	Sample Information	Ľ				siJ 41	teil ∂f VInO ∃			
Lab #	Canister Serial #		Model Sample Identification	ntification	Date	Time	Type	Final Re	Receipt TO-				
-	0291	6, 1	1, 0.4		10.12.04	8:42	AIR			9			
3	643	6, 1	1, 0.4 /NT			8:49				2			
3	1614	6, 1	1, 0.4	1.		8:55				2			
t	15 t	6, 1	1, 0.4 NW-5	20		30:6				8			
S	215	6, 1	1, 0.4 VW	-AC		9:13	~			2			
		6, 1	1, 0.4		p								
		6, 1,	, 0.4										-
		6, 1	1, 0.4										
		6, 1	1, 0.4				-						_
		6, 1	1, 0.4										
Instructions / Spi	Instructions / Special Requirements:												
						7							
Date:	Time:		Samples Relinqu	linquished By:	y:				Rece	Received By:			
10.21.01	10:25	E. M 11-					Y)	and the second s	Second and the second	 And the second seco			

Chain of Custody, Page 1 of 1, REV 02, 111803, VPQAS

Analysis performed is subject to the Terms & Conditions available at www.aeroenvirolabs.com or call 866.772.5227 to request a copy.

a division of Aerotech Laboratories, Inc.

Wednesday, December 05, 2007

Jim Clarke Mactec 3630 East Wier Avenue Phoenix, AZ 85040

TEL: (602) 437-0250 FAX (602) 437-3675

RE: South Mesa/4972-07-2050

Order No.: 07110717

Aerotech Environmental Laboratories received 1 sample(s) on 11/21/2007 for the analyses presented in the following report.

This report includes the following information:

- Case Narrative.

Dear Jim Clarke:

- Analytical Report: includes test results, report limit (Limit), any applicable data qualifier (Qual), units, dilution factor (DF), and date analyzed.
- QC Summary Report.

This communication is intended only for the individual or entity to whom it is directed. It may contain information that is privileged, confidential, or otherwise exempt from disclosure under applicable law. Dissemination, distribution, or copying of this communication by anyone other than the intended recipient, or a duly designated employee or agent of such recipient, is prohibited. If you have received this communication in error, please notify us immediately and destroy this message and all attachments thereto. If you have any questions regarding these test results, please do not hesitate to call.

Sincerely,

Tim Trestrail Project Manager

Main Laboratory: 4645 E. Cotton Center Boulevard, Building 3, Suite 189 Phoenix, AZ 85040 Phone: 602.437.3340 Toll Free: 866.772.5227 Fax. 623.445.6192 Tucson Facility: 4455 S. Park Ave. Ste. 110 Tucson, AZ 85714 Phone: 520.807.3801 Fax: 520.807.3803 www.aeroenvirolabs.com

 CLIENT:
 Mactec

 Project:
 South Mesa/4972-07-2050

 Lab Order:
 07110717

CASE NARRATIVE

Analyses included in this report were performed by Aerotech Environmental Laboratories (AEL), 4645 E. Cotton Center Boulevard, Building 3, Suite 189, Phoenix, AZ.

AEL is licensed through the State of Arizona (License No. AZ0610), and holds NELAC accreditation (OR100001) through the State of Oregon for the analytical techniques noted on the scope of accreditation.

AEL is also accredited by the American Industrial Hygiene Association (AIHA) in the industrial hygiene program for the analytical techniques noted on the scope of accreditation.

Samples were analyzed using methods outlined in references such as:

-Standard Methods for the Examination of Water and Wastewater, 20th Edition, 1998.

-40 CFR, Part 136, July 2006. Appendix A to Part 136 - Methods for Organic Chemical Analysis of Municipal and Industrial Wastewater.

-Methods for the Chemical Analysis of Water and Wastes, EPA/600/4-79-020, Revised March 1983. -Methods for the Determination of Organic Compounds in Drinking Water: Supplement III, August 1995, EPA/600/R-95/131.

-Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, EPA, 3rd Edition 1986, and Updates.

-Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air, EPA, Second Edition, 1999.

-NIOSH Manual of Analytical Methods, Fourth Edition, 1994.

Analytical Comments:

All method blanks and laboratory control spikes met method and/or laboratory quality control objectives for the analyses included in this report.

 CLIENT:
 Mactec

 Lab Order:
 07110717

 Project:
 South Mesa/4972-07-2050

 Lab ID:
 07110717-01A

Date: 05-Dec-07

Client Sample ID: IAQ-1 Tag Number: 5876 Collection Date: 11/21/2007 8:02:00 AM Matrix: AIR

	p	obv	μg/i	m ³			
Analyses	Result	Limit	Result	Limit	Qual	DF	Date Analyzed
VOLATILE ORGANICS IN AIR 1,1,1-Trichloroethane	< 0.50	TO15 0.50	< 2.8	2.8		1	Analyst: J.J. 11/27/2007
1,1,2,2-Tetrachloroethane	< 0.50	0.50	< 3.5	3.5		1	11/27/2007
1,1,2-Trichloroethane	< 0.50	0.50	< 2.8	2.8		1	11/27/2007
1,1-Dichloroethane	< 0.50	0.50	< 2.1	2.1		1	11/27/2007
1,1-Dichloroethene	< 0.50	0.50	< 2.0	2.0		1	11/27/2007
1,2,4-Trichlorobenzene	< 2.0	2.0	< 15	15		1	11/27/2007
1,2,4-Trimethylbenzene	< 0.50	0.50	< 2.5	2.5		1	11/27/2007
1,2-Dibromoethane	< 0.50	0.50	< 3.9	3.9		1	11/27/2007
1,2-Dichlorobenzene	< 0.50	0.50	< 3.1	3.1		1	11/27/2007
1,2-Dichloroethane	< 0.50	0.50	< 2.1	2.1		1	11/27/2007
1,2-Dichloropropane	< 0.50	0.50	< 2.4	2.4		1	11/27/2007
1,3,5-Trimethylbenzene	< 0.50	0.50	< 2.5	2.5		1	11/27/2007
1,3-Butadiene	< 0.50	0.50	< 1.1	1.1		1	11/27/2007
1,3-Dichlorobenzene	< 0.50	0.50	< 3.1	3.1		1	11/27/2007
1,4-Dichlorobenzene	< 0.50	0.50	< 3.1	3.1		1	11/27/2007
2,2,4-Trimethylpentane	5.1	0.50	24	2.4		1	11/27/2007
2-Butanone (MEK)	8.2	1.0	25	3.0		1	11/27/2007
2-Hexanone	< 1.0	1.0	< 4.2	4.2		1	11/27/2007
2-Propanol	< 2.0	2.0	< 5.0	5.0		1	11/27/2007
4-Ethyltoluene	< 0.50	0.50	< 2.2	2.2		1	11/27/2007
4-Methyl-2-pentanone	< 1.0	1.0	< 4.2	4.2		1	11/27/2007
Acetone	10	5.0	24	12		1	11/27/2007
Allyl chloride	< 0.50	0.50	< 0.80	0.80		1	11/27/2007
Benzene	2.2	0.50	7.2	1.6		1	11/27/2007
Benzyl chloride	< 2.0	2.0	< 11	11		1	11/27/2007
Bromodichloromethane	< 0.50	0.50	< 3.4	3.4		1	11/27/2007

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

* - Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

 CLIENT:
 Mactec

 Lab Order:
 07110717

 Project:
 South Mesa/4972-07-2050

 Lab ID:
 07110717-01A

Date: 05-Dec-07

Client Sample ID: IAQ-1 Tag Number: 5876 Collection Date: 11/21/2007 8:02:00 AM Matrix: AIR

	р	pbv	μg/i	m ³		8
Analyses	Result	Limit	Result	Limit	Qual DF	Date Analyzed
VOLATILE ORGANICS IN AIR Bromoethene(Vinyl Bromide)	< 0.50	TO15 0.50	< 1.1	1.1	1	Analyst: J.J. 11/27/2007
Bromoform	< 0.50	0.50	< 5.2	5.2	1	11/27/2007
Bromomethane	< 0.50	0.50	< 2.0	2.0	1	11/27/2007
Carbon disulfide	< 0.50	0.50	< 1.6	1.6	1	11/27/2007
Carbon tetrachloride	< 0.50	0.50	< 3.2	3.2	1	11/27/2007
Chlorobenzene	< 0.50	0.50	< 2.4	2.4	1	11/27/2007
Chloroethane	< 0.50	0.50	< 1.3	1.3	1	11/27/2007
Chloroform	< 0.50	0.50	< 2.5	2.5	1	11/27/2007
Chloromethane	0.60	0.50	1.3	1.0	1	11/27/2007
cis-1,2-Dichloroethene	< 0.50	0.50	< 2.0	2.0	1	11/27/2007
cis-1,3-Dichloropropene	< 0.50	0.50	< 2.3	2.3	1	11/27/2007
Cyclohexane	2.6	0.50	9.1	1.7	1	11/27/2007
Dibromochloromethane	< 0.50	0.50	< 4.3	4.3	1	11/27/2007
Dichlorodifluoromethane(F-12)	6.7	0.50	34	2.5	1	11/27/2007
Dichlorotetrafluoroethane(F-114)	< 0.50	0.50	< 3.6	3.6	1	11/27/2007
Ethyl Acetate	< 0.50	0.50	< 1.8	1.8	1	11/27/2007
Ethylbenzene	0.52	0.50	2.3	2.2	1	11/27/2007
Heptane	2.1	0.50	8.7	2.1	1	11/27/2007
Hexachlorobutadiene	< 1.0	1.0	< 11	11	1	11/27/2007
Hexane	3.5	0.50	12	1.8	1	11/27/2007
m&p-Xylene	1.5	1.0	6.6	4.4	1	11/27/2007
Methyl tert-butyl ether	< 1.0	1.0	< 3.7	3.7	1	11/27/2007
Methylene chloride	9.2	0.50	32	1.8	1	11/27/2007
o-Xylene	0.88	0.50	3.9	2.2	1	11/27/2007
Propene (Propylene)	4.8	0.50	8.4	0.88	1	11/27/2007
Styrene	< 0.50	0.50	< 2.2	2.2	1	11/27/2007

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

* - Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

 CLIENT:
 Mactec

 Lab Order:
 07110717

 Project:
 South Mesa/4972-07-2050

 Lab ID:
 07110717-01A

Date: 05-Dec-07

Client Sample ID: IAQ-1 Tag Number: 5876 Collection Date: 11/21/2007 8:02:00 AM Matrix: AIR

	ppby	v	μg/	m ³			
Analyses	Result	Limit	Result	Limit	Qual	DF	Date Analyzed
VOLATILE ORGANICS IN AIR Tetrachloroethene	0.85	TO15 0.50	5.9	3.4	1		Analyst: J.J. 11/27/2007
Tetrahydrofuran	< 2.0	2.0	< 6.0	6.0	1		11/27/2007
Toluene	7.2	0.50	28	1.9	1		11/27/2007
trans-1,2-Dichloroethene	< 0.50	0.50	< 2.0	2.0	. 1		11/27/2007
trans-1,3-Dichloropropene	< 0.50	0.50	< 2.3	2.3	1		11/27/2007
Trichloroethene	< 0.50	0.50	< 2.8	2.8	1		11/27/2007
Trichlorofluoromethane(F-11)	< 0.50	0.50	< 2.8	2.8	1		11/27/2007
Trichlorotrifluoroethane(F-113)	< 0.50	0.50	< 3.9	3.9	1		11/27/2007
Vinyl acetate	< 0.50	0.50	< 1.8	1.8	1		11/27/2007
Vinyl chloride	< 0.50	0.50	< 1.3	1.3	.1		11/27/2007
Surr: 4-Bromofluorobenzene	106 %REC	70-130	-	-	1		11/27/2007

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

* - Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

Aerot a division of A	Aerotech Environmental Laboratories a division of Aerotech Laboratories, Inc.	mental	Laboratorie	S	Date: 05-Dec-07
CLIENT: Mactec Work Order: 07110717	F			ANALYTICAL QC SUMMARY REPORT	UMMARY REPORT
	South Mesa/4972-07-2050			TestCode: TO15	T015
Sample ID MB-R93591	SampType: MBLK	TestCode: TO15	Units: ppbv	Prep Date:	RunNo: 93591
Client ID:	Batch ID: R93591	TestNo: T015		Analysis Date: 11/26/2007	SeqNo: 1107774
Analyte	Result	PQL SPK value	SPK Ref Val %REC	LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
1,1,1-Trichloroethane	<0.50	0.50			
1,1,2,2-Tetrachloroethane	<0.50	0.50			
1,1,2-Trichloroethane	<0.50	0.50			
1,1-Dichloroethane	<0.50	0.50			
1,1-Dichloroethene	<0.50	0.50			
1,2,4-Trichlorobenzene	<2.0	2.0			
1,2,4-Trimethylbenzene	<0.50	0.50			
1,2-Dibromoethane	<0.50	0.50			
1,2-Dichlorobenzene	<0.50	0.50			
1,2-Dichloroethane	<0.50	0.50			
1,2-Dichloropropane	<0.50	0.50			
1,3,5-Trimethylbenzene	<0.50	0.50			
1,3-Butadiene	<0.50	0.50			
1,3-Dichlorobenzene	<0.50	0.50			
1,4-Dichlorobenzene	<0.50	0.50			
2,2,4-Trimethylpentane	<0.50	0.50			
2-Butanone (MEK)	<1.0	1.0			
2-Hexanone	<1.0	1.0			
2-Propanol	<2.0	2.0			
4-Ethyltoluene	<0.50	0.50			
4-Methyl-2-pentanone	<1.0	1.0			
Acetone	<5.0	5.0			
Allyl chloride	<0.50	0.50			
Benzene	<0.50	0.50			
Benzyl chloride	<2.0	2.0			
Qualifiers: * Value excee	Value exceeds Maximum Contaminant Level	ND Not De	Not Detected at the Reporting Limit		

Page 1 of 8

Aerote a division of Aero	Aerotech Enviror a division of Aerotech Laboratories, Inc.	ımental	Aerotech Environmental Laboratories a division of Aerotech Laboratories, Inc.	S	Date: 05-Dec-07
CLIENT: Mactec Work Order: 07110717				ANALYTICAL QC SUMMARY REPORT	UMMARY REPORT
	South Mesa/4972-07-2050			TestCode: T015	T015
Sample ID MB-R93591	SampType: MBLK	TestCode: T015	Units: ppbv	Prep Date:	RunNo: 93591
Client ID:	Batch ID: R93591	TestNo: TO15		Analysis Date: 11/26/2007	SeqNo: 1107774
Analyte	Result	PQL SPK value	SPK Ref Val %REC	LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Bromodichloromethane	<0.50	0.50			
Bromoethene(Vinyl Bromide)	<0.50	0.50			
Bromoform	<0.50	0.50			
Bromomethane	<0.50	0.50			
Carbon disulfide	<0.50	0.50			
Carbon tetrachloride	<0.50	0.50			
Chlorobenzene	<0.50	0.50			
Chloroethane	<0.50	0.50			
Chloroform	<0.50	0.50			
Chloromethane	<0.50	0.50			
cis-1,2-Dichloroethene	<0.50	0.50			
cis-1,3-Dichloropropene	< 0.50	0.50			
Cyclohexane	<0.50	0.50			
Dibromochloromethane	<0.50	0.50			
Dichlorodifluoromethane(F-12)	<0.50	0.50			
Dichlorotetrafluoroethane(F-114)	<0.50	0.50			
Ethyl Acetate	<0.50	0.50			
Ethylbenzene	<0.50	0.50			
Heptane	<0.50	0.50			
Hexachlorobutadiene	<1.0	1.0			
Hexane	<0.50	0.50			
m&p-Xylene	<1.0	1.0			
Methyl tert-butyl ether	<1.0	1.0			
Methylene chloride	<0.50	0.50			
o-Xylene	<0.50	0.50			
Qualifiers: * Value exceeds	Value exceeds Maximum Contaminant Level	ND Not Do	Not Detected at the Reporting Limit		

Page 2 of 8

Aero a division of	Aerotech Environm a division of Aerotech Laboratories, Inc.		al La	ental Laboratories	orie	S		Date	Date: 05-Dec-07	
CLIENT: Mactec Work Order: 07110717	: 717					ANALY	ANALYTICAL QC SUMMARY REPORT	SUMMA	RY REP	ORT
	South Mesa/4972-07-2050						TestCode:	: T015		
Sample ID MB-R93591	SampType: MBLK	TestCode: T015		Units: ppbv		Prep Date:		RunNo: 93591	93591	
Client ID:	Batch ID: R93591	TestNo: T015	5		4	Analysis Date:	11/26/2007	SeqNo:	SeqNo: 1107774	
Analyte	Result	PQL SPK value		SPK Ref Val	%REC	LowLimit F	HighLimit RPD Ref Val	al %RPD	D RPDLimit	Qual
Propene (Propylene)	<0.50	0.50								
Styrene	<0.50	0.50								
Tetrachloroethene	<0.50	0.50								
Tetrahydrofuran	<2.0	2.0								
Toluene	<0.50	0.50								
trans-1,2-Dichloroethene	<0.50	0.50								
trans-1,3-Dichloropropene	<0.50	0.50								
Trichloroethene		0.50								
Trichlorofluoromethane(F-11)	<0.50	0.50								
Trichlorotrifluoroethane(F-113)		0.50								
Vinyl acetate	<0.50	0.50								
Vinyl chloride	<0.50	0.50								
Surr: 4-Bromofluorobenzene	le 10.49	0.50	10	0	105	70	130			
Sample ID LCS-R93591	SampType: LCS	TestCode: T015		Units: ppbv		Prep Date:		RunNo: 93591	93591	
Client ID:	Batch ID: R93591	TestNo: T015	IJ		A	Analysis Date:	11/26/2007	SeqNo:	SeqNo: 1107792	
Analyte	Result	PQL SPK value		SPK Ref Val	%REC	LowLimit H	HighLimit RPD Ref Val	al %RPD	D RPDLimit	Qual
1,1,1-Trichloroethane	0.960	0.50	10	0	99.6	65	135			
1,1,2,2-Tetrachloroethane	8.910	0.50	10	0	89.1	65	135			
1,1,2-Trichloroethane	10.37	0.50	10	0	104	65	135			
1,1-Dichloroethane	10.01	0.50	10	0	100	65	135			
1,1-Dichloroethene	10.22	0.50	10	0	102	65	135			
1,2,4-Trichlorobenzene	9.320	2.0	10	0	93.2	65	135			
1,2,4-Trimethylbenzene	9.670	0.50	10	0	96.7	65	135			
Qualifiers: * Value exc	Value exceeds Maximum Contaminant Level	ND	Not Detected	Not Detected at the Reporting Limit	Limit					

Page 3 of 8

a divisio	a division of Aerotech Laboratories, Inc.								
CLIENT: Ma	Mactec					LIVNY	S JU IVJILA	ANALVTICAL OC SUMMARY BEPORT	Tac
Work Order: 071	07110717								INI
Project: Sou	South Mesa/4972-07-2050						TestCode: T015	T015	
Sample ID LCS-R93591	SampType: LCS	TestCod	TestCode: TO15	Units: ppbv		Prep Date:		RunNo: 93591	
Client ID:	Batch ID: R93591	TestN	TestNo: T015		4	Analysis Date:	11/26/2007	SeqNo: 1107792	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit H	HighLimit RPD Ref Val	%RPD RPDLimit	Qual
1,2-Dibromoethane	10.82	0.50	10	0	108	65	135		
1,2-Dichlorobenzene	9.950	0.50	10	0	99.5	65	135		
1,2-Dichloroethane	9.930	0.50	10	0	99.3	65	135		
1,2-Dichloropropane	10.53	0.50	10	0	105	65	135		
1,3,5-Trimethylbenzene	9.550	0.50	10	0	95.5	65	135		
1,3-Butadiene	9.750	0.50	10	0	97.5	65	135		
1,3-Dichlorobenzene	10.14	0.50	10	0	101	65	135		
1,4-Dichlorobenzene	9.920	0.50	10	0	99.2	65	135		
2,2,4-Trimethylpentane	11.06	0.50	10	0	111	65	135		
2-Butanone (MEK)	10.14	1.0	10	0	101	65	135		
2-Hexanone	10.42	1.0	10	0	104	65	135		
2-Propanol	8.850	2.0	10	0	88.5	65	135		
4-Ethyltoluene	9.560	0.50	10	0	95.6	65	135		
4-Methyl-2-pentanone	10.35	1.0	10	0	104	65	135		
Acetone	9.370	5.0	10	0	93.7	65	135		
Allyl chloride	10.71	0.50	10	0	107	65	135		
Benzene	10.67	0.50	10	0	107	65	135		
Benzyl chloride	9.340	2.0	10	0	93.4	65	135		
Bromodichloromethane	10.30	0.50	10	0	103	65	135		
Bromoethene(Vinyl Bromide)	de) 9.510	0.50	10	0	95.1	65	135		
Bromoform	8.720	0.50	10	0	87.2	65	135		
Bromomethane	9.430	0.50	10	0	94.3	65	135		
Carbon disulfide	9.770	0.50	10	0	97.7	65	135		
Carbon tetrachloride	9.740	0.50	10	0	97.4	65	135		
Chlorobenzene	8.890	0.50	10	0	88.9	65	135		
Qualifiers: * Value	Value exceeds Maximum Contaminant Level		ND Not Det	Not Detected at the Reporting Limit	g Limit				

Aerotech Environmental Laboratories

Page 4 of 8

a div	erote vision of Aero	Aerotech Environmental Laboratories a division of Aerotech Laboratories, Inc.	nme	ntal	Labora	torie	S		Date: 05-Dec-07
CLIENT: Work Order:	Mactec 07110717						ANAL	VTICAL QC	ANALYTICAL QC SUMMARY REPORT
Project:	South Mesa	South Mesa/4972-07-2050						TestCode:	T015
Sample ID LCS-R93591	3591	SampType: LCS	TestCod	TestCode: TO15	Units: ppbv		Prep Date:		RunNo: 93591
Client ID:		Batch ID: R93591	TestN	TestNo: T015			Analysis Date:	e: 11/26/2007	SeqNo: 1107792
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RPD Ref Val	%RPD RPDLimit Qual
Chloroethane		9.460	0.50	10	0	94.6	65	135	
Chloroform		9.830	0.50	10	0	98.3	65	135	
Chloromethane		9.630	0.50	10	0	96.3	65	135	
cis-1,2-Dichloroethene	le	10.63	0.50	10	0	106	65	135	
cis-1,3-Dichloropropene	sne	10.33	0.50	10	0	103	65	135	
Cyclohexane		10.43	0.50	10	0	104	65	135	
Dibromochloromethane	ne	10.27	0.50	10	0	103	65	135	
Dichlorodifluoromethane(F-12)	ane(F-12)	9.350	0.50	10	0	93.5	65	135	
Dichlorotetrafluoroethane(F-114)	1ane(F-114)	9.700	0.50	10	0	97.0	65	135	
Ethyl Acetate		10.92	0.50	10	0	109	65	135	
Ethylbenzene		9.230	0.50	10	0	92.3	65	135	
Heptane		10.81	0.50	10	0	108	65	135	
Hexachlorobutadiene		8.800	1.0	10	0	88.0	65	135	
Hexane		10.19	0.50	10	0	102	65	135	
m&p-Xylene		18.66	1.0	20	0	93.3	65	135	
Methyl tert-butyl ether	_	10.19	1.0	10	0	102	65	135	
Methylene chloride		9.460	0.50	10	0	94.6	65	135	
o-Xylene		10.03	0.50	10	0	100	65	135	
Propene (Propylene)		9.800	0.50	10	0	98.0	65	135	
Styrene		9.260	0.50	10	0	92.6	65	135	
Tetrachloroethene		11.09	0.50	10	0	111	65	135	
Tetrahydrofuran		10.64	2.0	10	0	106	65	135	
Toluene		11.67	0.50	10	0	117	65	135	
trans-1,2-Dichloroethene	ene	10.21	0.50	10	0	102	65	135	
trans-1,3-Dichloropropene	pene	9.850	0.50	10	0	98.5	65	135	
Qualifiers: * V	Value exceeds l	Value exceeds Maximum Contaminant Level		ND Not De	Not Detected at the Reporting Limit	g Limit			

Page 5 of 8

Aerot a division of Ae	Aerotech Environmental Laboratories a division of Aerotech Laboratories, Inc.	Jme	ntal	Labora	torie	S			Date: 05-Dec-07	5-Dec-07	
CLIENT: Mactec Work Order: 07110717						ANAL	YTICA	L QC SI	ANALYTICAL QC SUMMARY REPORT	Y REPC	DRT
	South Mesa/4972-07-2050						L	TestCode:	T015		
Sample ID LCS-R93591	SampType: LCS	TestCod	TestCode: TO15	Units: ppbv		Prep Date:			RunNo: 93591	91	
Client ID:	Batch ID: R93591	TestN	TestNo: T015			Analysis Date:	: 11/26/2007	07	SeqNo: 1107792	1792	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Trichloroethene	10.90	0.50	10	0	109	65	135				
Trichlorofluoromethane(F-11)	9.670	0.50	10	0	96.7	65	135				
Trichlorotrifluoroethane(F-113)	9.720	0.50	10	0	97.2	65	135				
Vinyl acetate	11.52	0.50	10	0	115	65	135				
Vinyl chloride	9.600	0.50	10	0	96.0	65	135				
Surr: 4-Bromofluorobenzene	11.01	0.50	10	0	110	20	130				
Sample ID LCSD-R93591	SampType: LCSD	TestCod	TestCode: T015	Units: ppbv		Prep Date:			RunNo: 93591	91	
Client ID:	Batch ID: R93591	TestN	TestNo: T015			Analysis Date:	: 11/26/2007	07	SeqNo: 1107793	7793	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,1,1-Trichloroethane	9.880	0.50	10	0	98.8	65	135	9.960	0.806	25	
1,1,2,2-Tetrachloroethane	8.870	0.50	10	0	88.7	65	135	8.910	0.450	25	
1,1,2-Trichloroethane	10.21	0.50	10	0	102	65	135	10.37	1.55	25	
1,1-Dichloroethane	9.980	0.50	10	0	99.8	65	135	10.01	0.300	25	
1,1-Dichloroethene	10.35	0.50	10	0	104	65	135	10.22	1.26	25	
1,2,4-Trichlorobenzene	9.150	2.0	10	0	91.5	65	135	9.320	1.84	25	
1,2,4-Trimethylbenzene	9.580	0.50	10	0	95.8	65	135	9.670	0.935	25	
1,2-Dibromoethane	10.57	0.50	10	0	106	65	135	10.82	2.34	25	
1,2-Dichlorobenzene	066.6	0.50	10	0	99.9	65	135	9.950	0.401	25	
1,2-Dichloroethane	9.900	0.50	10	0	99.0	65	135	9.930	0.303	25	
1,2-Dichloropropane	10.45	0.50	10	0	104	65	135	10.53	0.763	25	
1,3,5-Trimethylbenzene	9.450	0.50	10	0	94.5	65	135	9.550	1.05	25	
1,3-Butadiene	10.00	0.50	10	0	100	65	135	9.750	2.53	25	
1,3-Dichlorobenzene	10.08	0.50	10	0	101	65	135	10.14	0.593	25	
Qualifiers: * Value exceed	Value exceeds Maximum Contaminant Level		ND Not De	Not Detected at the Reporting Limit	ıg Limit						

Page 6 of 8

Aerotech Environmental Laboratories Inc.

CLIENT: Mactec Work Order: 07110717						ANALY	VTICA	ANALYTICAL QC SUMMARY REPORT	JMMAR	Y REPC	IRT
	South Mesa/4972-07-2050						L	TestCode:	T015		
Sample ID LCSD-R93591	SampType: LCSD	TestCo	TestCode: TO15	Units: ppbv		Prep Date:			RunNo: 93591	591	
Client ID:	Batch ID: R93591	Test	TestNo: T015			Analysis Date:	11/26/2007	07	SeqNo: 1107793	17793	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit H	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,4-Dichlorobenzene	9.850	0.50	10	0	98.5	65	135	9.920	0.708	25	
2,2,4-Trimethylpentane	10.95	0.50	10	0	110	65	135	11.06	1.00	25	
2-Butanone (MEK)	10.13	1.0	10	0	101	65	135	10.14	0.0987	25	
2-Hexanone	10.46	1.0	10	0	105	65	135	10.42	0.383	25	
2-Propanol	9.280	2.0	10	0	92.8	65	135	8.850	4.74	25	
4-Ethyltoluene	9.500	0.50	10	0	95.0	65	135	9.560	0.630	25	
4-Methyl-2-pentanone	10.45	1.0	10	0	104	65	135	10.35	0.962	25	
Acetone	9.710	5.0	10	0	97.1	65	135	9.370	3.56	25	
Allyl chloride	11.04	0.50	10	0	110	65	135	10.71	3.03	25	
Benzene	10.67	0.50	10	0	107	65	135	10.67	0	25	
Benzyl chloride	9.380	2.0	10	0	93.8	65	135	9.340	0.427	25	
Bromodichloromethane	10.12	0.50	10	0	101	65	135	10.30	1.76	25	
Bromoethene(Vinyl Bromide)	9.580	0.50	10	0	95.8	65	135	9.510	0.733	25	
Bromoform	8.670	0.50	10	0	86.7	65	135	8.720	0.575	25	
Bromomethane	9.530	0.50	10	0	95.3	65	135	9.430	1.05	25	
Carbon disulfide	9.770	0.50	10	0	97.7	65	135	9.770	0	25	
Carbon tetrachloride	9.550	0.50	10	0	95.5	65	135	9.740	1.97	25	
Chlorobenzene	8.880	0.50	10	0	88.8	65	135	8.890	0.113	25	
Chloroethane	9.760	0.50	10	0	97.6	65	135	9.460	3.12	25	
Chloroform	9.750	0.50	10	0	97.5	65	135	9.830	0.817	25	
Chloromethane	9.690	0.50	10	0	96.9	65	135	9.630	0.621	25	
cis-1,2-Dichloroethene	10.77	0.50	10	0	108	65	135	10.63	1.31	25	
cis-1,3-Dichloropropene	10.25	0.50	10	0	103	65	135	10.33	0.777	25	
Cyclohexane	10.41	0.50	10	0	104	65	135	10.43	0.192	25	
Dibromochloromethane	10.11	0.50	10	0	101	65	135	10.27	1.57	25	
Qualifiers: * Value excee	Value exceeds Maximum Contaminant Level	i i	ND Not De	Not Detected at the Reporting Limit	g Limit						

Page 7 of 8

a division of Aerotech Laboratories, Inc.

Date: 05-Dec-07

CLIENT: Mactec Work Order: 07110717	2					ANAL	YTICA	L QC SI	ANALYTICAL QC SUMMARY REPORT	Y REPC	RT
	South Mesa/4972-07-2050						Te	TestCode:	T015		
Sample ID LCSD-R93591	SampType: LCSD	TestCo	TestCode: TO15	Units: ppbv		Prep Date			RunNo: 93591	591	
Client ID:	Batch ID: R93591	Test	TestNo: T015			Analysis Date:	: 11/26/2007	7	SeqNo: 1107793	07793	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit R	RPD Ref Val	%RPD	RPDLimit	Qual
Dichlorodifluoromethane(F-12)	9.280	0.50	10	0	92.8	65	135	9.350	0.751	25	
Dichlorotetrafluoroethane(F-114)) 9.590	0.50	10	0	95.9	65	135	9.700	1.14	25	
Ethyl Acetate	10.81	0.50	10	0	108	65	135	10.92	1.01	25	
Ethylbenzene	9.150	0.50	10	0	91.5	65	135	9.230	0.871	25	
Heptane	10.56	0.50	10	0	106	65	135	10.81	2.34	25	
Hexachlorobutadiene	8.830	1.0	10	0	88.3	65	135	8.800	0.340	25	
Hexane	10.28	0.50	10	0	103	65	135	10.19	0.879	25	
m&p-Xylene	18.61	1.0	20	0	93.0	65	135	18.66	0.268	25	
Methyl tert-butyl ether	10.22	1.0	10	0	102	65	135	10.19	0.294	25	
Methylene chloride	9.470	0.50	10	0	94.7	65	135	9.460	0.106	25	
o-Xylene	9.950	0.50	10	0	99.5	65	135	10.03	0.801	25	
Propene (Propylene)	10.40	0.50	10	0	104	65	135	9.800	5.94	25	
Styrene	9.230	0.50	10	0	92.3	65	135	9.260	0.324	25	
Tetrachloroethene	10.90	0.50	10	0	109	65	135	11.09	1.73	25	
Tetrahydrofuran	10.73	2.0	10	0	107	65	135	10.64	0.842	25	
Toluene	11.50	0.50	10	0	115	65	135	11.67	1.47	25	
trans-1,2-Dichloroethene	10.44	0.50	10	0	104	65	135	10.21	2.23	25	
trans-1,3-Dichloropropene	9.840	0.50	10	0	98.4	65	135	9.850	0.102	25	
Trichloroethene	10.77	0.50	10	0	108	65	135	10.90	1.20	25	
Trichlorofluoromethane(F-11)	9.570	0.50	10	0	95.7	65	135	9.670	1.04	25	
Trichlorotrifluoroethane(F-113)	9.750	0.50	10	0	97.5	65	135	9.720	0.308	25	
Vinyl acetate	11.81	0.50	10	0	118	65	135	11.52	2.49	25	
Vinyl chloride	9.690	0.50	10	0	96.9	65	135	9.600	0.933	25	
Surr: 4-Bromofluorobenzene	10.84	0.50	10	0	108	20	130	11.01	0	0	
		C									

Page 8 of 8

ND Not Detected at the Reporting Limit

Value exceeds Maximum Contaminant Level

Qualifiers:

LaDoralo	ry Nur	nber	:07	-11-	-07	117			-			ted By/On:	an	* .	-	
Client Nar	ne: m	19c	tec				1. J. C. 1					e Rec'd: 11/2	10	8:31 By	TI	
Matrix: (Air So	il A	Aqueou	s Oi	l Slu	dge S	Solid	WW	DW	Car	rier N	ame: Client				
Temperatu	ire		Coole	r #1 P	Inh	°C (Cooler #	<i>‡</i> 2	°,(CC	ooler	#3 °C	Coole	er #4	°C	
Temp. Rea	ad With		Therm		11		hermon	meter	IR	T	hermo	ometer IR	Therr	nometer	IR	
Client or H	°M mad	e awa	ire of te	emp. o	ut of r	ange?	Yes	No	Ci	rcle o	one:	Blue Ice Wet	Ice (1	Not Preser		
								Yes	s No*	No	t Prese	ent		Soil Conta	ainers:	
Shipping co	ontainer/c	cooler	in good	d condi	tion?			×			1.1			Brass Sleev	'e	
Custody se	als intac	t on st	nipping	contair	ner/coo	ler?				X				Glass Jar		
Custody se	als intact	t on sa	ample c	ontaine	ers?		110 ×			C	× -			Methanol	· · · ·	
Chain of Cu	ustody pr	resent	and rel	inquist	ned/rec	eived p	roperly	? \	(Plastic Bag		
Chain of Cu	ustody ag	grees	with sar	mple la	ibels?	in Ita		×						Encore San	nplers	
Samples in	proper c	contair	ners/bot	tles?			de Nylan T	×						Sterile Plas	tic	
Sample cor	ntainers i	ntact?	,			19	and and a second	×								
All samples	receive	d withi	in holdir	ng time	?	in the		X	- 30	**S	ee Com	ments about Chlorine	e and pH			
Is there suf	ficient sa	Imple	volume	to per	form th	e tests'	?	1	<	E						
40mL vials	for volati	les &	SOCs r	eceive	d with :	zero he	adspace	e?		1	×			_		
Total numb	er of both	tles re	ceived:		1.4.5		Vilop M	IH s	ample	media	a: (, L				
If applicable	e, how m	any sa	ample b	ottles	were s	hipped	from AE	EL-Tuc	son?				A so there	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4	
and the second second	1 States and	×	1.2.1	1	and by si	1	And and the design of the	more th							n the	
Preservative	Simple***	1										ict the PM	1			
A-General			100.00.0				at internet		comments section. Contact the PM immediately to determine how to proce Refer to SOP 11-001 and continue on b							
B-HNO3	~		12 4 2 4 2 1 1									additional space i			I DACK II	
C-H2SO4								-				+++		T 1 T 1	The states of	
	1											**The holding tir		H and 1 otal		
			1				1	L., 1.4							the most	
E-Na25203										iyadi a Marina		Chlorine analysis accurate results, t	is imme he pH a	ediate. For nd Total Re	sidual	
E-Na25203 F-NaOH			al									Chlorine analysis accurate results, t -Chlorine should b	is imme he pH a be taken	ediate. For nd Total Re	sidual	
E-Na2s203 F-NaOH G-Sulfide			ni .									Chlorine analysis accurate results, t -Chlorine should t minutes of samply	is imme he pH a be taken ing.	ediate. For nd Total Re in the field	sidual within 15	
E-Na2s203 F-NaOH G-Sulfide H-Na Sulfite												Chlorine analysis accurate results, t Chlorine should t minutes of sampl ****The Simple b	is imme he pH a be taken ing. ox is on	ediate. For nd Total Re in the field ly to be use	sidual within 15 d when	
E-Na2S203 F-NaOH G-Sulfide H-Na Sulfite												Chlorine analysis accurate results, t -Chlorine should t minutes of samply	is imme he pH a be taken ing. ox is on	ediate. For nd Total Re in the field ly to be use	sidual within 15 d when	
E-Na2S203 F-NaOH G-Sulfide H-Na Sulfite I-MCAA J-Methanol												Chlorine analysis accurate results, t Chlorine should t minutes of sampl ****The Simple b there is one bottle	is imme he pH a be taken ing. ox is on	ediate. For nd Total Re in the field ly to be use	sidual within 15 d when	
E-Na2S203 F-NaOH G-Sulfide H-Na Sulfite I-MCAA J-Methanol K-HAA												Chlorine analysis accurate results, t Chlorine should t minutes of sampl ****The Simple b there is one bottle	is imme he pH a be taken ing. ox is on	ediate. For nd Total Re in the field ly to be use	sidual within 15 d when	
D-HCI E-Na2S203 F-NaOH G-Sulfide H-Na Sulfite I-MCAA J-Methanol K-HAA L-Other Water-pH a	-	e upoi			Yes		No		N/A	×.		Chlorine analysis accurate results, t Chlorine should t minutes of sampl ****The Simple b there is one bottle	is imme he pH a be taken ing. ox is on	ediate. For nd Total Re in the field ly to be use	sidual within 15 d when	
E-Na2S203 F-NaOH G-Sulfide H-Na Sulfite I-MCAA J-Methanol K-HAA L-Other Water-pH a	acceptabl		1		1						adjustn	Chlorine analysis accurate results, t Chlorine should t minutes of sampl ****The Simple b there is one bottle	is imme he pH a be taken ing. ox is on e per pre	ediate. For nd Total Re in the field ly to be use servative in	sidual within 15 d when equal	
E-Na2S203 F-NaOH G-Sulfide H-Na Sulfite -MCAA J-Methanol K-HAA L-Other Water-pH a Preserva	acceptabl		1		1		No				adjustm	Chlorine analysis accurate results, t Chlorine should b minutes of sampl ****The Simple b there is one bottle sample sets.	is imme he pH a be taken ing. ox is on e per pre	ediate. For nd Total Re in the field ly to be use servative in	sidual within 15 d when equal	
E-Na2S203 F-NaOH G-Sulfide H-Na Sulfite I-MCAA J-Methanol K-HAA L-Other Water-pH a Preserva Metals	acceptabl	рН	1		1	Jpon I					adjustn	Chlorine analysis accurate results, t Chlorine should b minutes of sampl ****The Simple b there is one bottle sample sets.	is imme he pH a be taken ing. ox is on e per pre	ediate. For nd Total Re in the field ly to be use servative in	sidual within 15 d when equal	
E-Na2S203 F-NaOH G-Sulfide H-Na Sulfite I-MCAA J-Methanol K-HAA	acceptabl	рН <2	1		1			-t			adjustm	Chlorine analysis accurate results, t Chlorine should b minutes of sampl ****The Simple b there is one bottle sample sets.	is imme he pH a be taken ing. ox is on e per pre	ediate. For nd Total Re in the field ly to be use servative in	sidual within 15 d when equal	
E-Na2S203 F-NaOH G-Sulfide H-Na Sulfite I-MCAA J-Methanol K-HAA L-Other Water-pH a Preserva Metals H ₂ SO ₄ 1664	acceptabl	рН <2 <2	1		1	Jpon I		·f			adjustn	Chlorine analysis accurate results, t Chlorine should b minutes of sampl ****The Simple b there is one bottle sample sets.	is imme he pH a be taken ing. ox is on e per pre	ediate. For nd Total Re in the field ly to be use servative in	sidual within 15 d when equal	
E-Na2S203 F-NaOH G-Sulfide H-Na Sulfite -MCAA J-Methanol K-HAA L-Other Water-pH a Preserva Metals H ₂ SO ₄	acceptabl	pH <2 <2 <2	1		1	лроп I					adjustm	Chlorine analysis accurate results, t Chlorine should b minutes of sampl ****The Simple b there is one bottle sample sets.	is imme he pH a be taken ing. ox is on e per pre	ediate. For nd Total Re in the field ly to be use servative in	sidual within 15 d when equal	

NTAL VEROE CH-ENVIRC BORATOR!

Aerotech Environmental Laboratories, Inc.

Lab Number:		0 - 1 - 0 - 1 - 0								Analysee Remineted					tsil & Isil & I VInO	1-01	9												Received By:	How the summer of the second	
																Final	1212										-	1	1/1/	C line	
				20	Merce	www. C. T. C.		N	N							Time Type	17.028.02 CAN														
- FAX 623.445.6192			1_ of	IL Sc. M.II	Salla	Project Number: 4937		sults:	E-Mail Results:		2			0	tion	Date	1 / £0.02.11												hed By:		
 Main Lab - 4645 E. Cotton Center Blvd., Building 3, Suite 189, Phoenix, AZ 85040 602,437.3340 - FA North Phoenix - 1501 W. Knudsen. Phoenix, AZ 85027 623 780 4800 - FAX 623 445 6216 	[] Tucson - 4455 S. Park Ave, Suite 110, Tucson, AZ 85714 520.807.3801 - FAX 520.807.3803		Page	Sampler:	Project Name:	Project	P.O. Number:	- 3675 Fax Results:	E-Mail F	Turn Around Request	24 Hours 48 Hours	72 Hours	5 working Day	Subject to scheduling and availability (surcharges apply)	Sample Information	Sample Identification	TAO -1												Samples Relinquished		
Building 3, Suite 189, Ph anix: AZ 85027 623 780	ucson, AZ 85714 520.80	6.772.5227			il Ave	(¥)		Fax:						Sub		Model	6, 1, 0.4	6, 1, 0.4	6, 1, 0.4	6, 1, 0.4	6, 1, 0.4	6, 1, 0.4	6, 1, 0.4	6, 1, 0.4	6, 1, 0.4	6, 1, 0.4				N. A.U.	
 Main Lab - 4645 E. Cotton Center Blvd., Building 3, Suit North Phoenix - 1501 W. Knudsen. Phoenix, AZ 85027 	S. Park Ave, Suite 110, T	www.aeroenvirolabs.com or call toll-free 866.772.5227	ber:	Macter	1. 1		FRIC MILLOR	1224.4242		Sample Receipt	or Chief	YesNo	ct: YesNo			Canister Serial #	587 L										l Requirements:		Time:	12:8	
[] Main Lab - 464. [] North Phoenix -	[] Tucson - 4455 (www.aeroenvirolat	Customer Number:	Customer:	Address:	City, State, Zip:	Contact:	Phone: US	E-Mail Address:		Temperature	Custody Seals: Y	Custody Seals Intact: Total # of Containers:			Lab #											Instructions / Special Requirements:		Date:	+0.12.1	

- -14 sis performed is subject to the Terms & Conditions available at www.aeroenvirolabs.com or call 866.772.5227 to request a copy.

Chain of Custody, Page 1 of 1, REV 02, 111803, VPQAS

APPENDIX O

RESPONSIVENESS SUMMARY

 \bigcirc

RESPONSIVENESS SUMMARY' DRAFT REMEDIAL INVESTIGATION REPORT SOUTH MESA WQARF SITE PHOENIX, ARIZONA

<u> 75</u> 💩

STRUKSEKI

January 24, 2012

COMMENT

This report presents a responsiveness summary to comments received on the *Draft Remedial Investigation Report, South Mesa WQARF Site, Phoenix, Arizona* (RI Report). The Remedial Projects Unit (RPU) has prepared this Responsiveness Summary for all comments received regarding the RI Report. Comments were received from two parties, Ms. Karol Wolf (hydrogeologist) with the Salt River Project (SRP) and Mr. Scott Bouchie (Deputy Director) with the City of Mesa.

SPECIFIC COMMENTS FROM THE CITY OF MESA-

Comment 1: The Draft Report states on page 110, that "Considering the minimal usage of the UAU in the area as a water supply aquifer and that the PCE plume is apparently stable, further investigation does not appear to be warranted at this time."

The City does not agree with this statement. The original contaminant Tetrachloroethylene (PCE) is a very mobile contaminant within both the groundwater and soil systems moving easily in groundwater and unsaturated soils as a dissolved compound or vapor. The original PCE mother contaminant has/will undergo dehalogenation processes that will cause the compound of PCE to change into different daughter products of which some may be more toxic than the mother contaminant. PCE has several potential daughter products that consist of Trichloroethylene (TCE), Dichloroethylene (DCE), Vinyl Chloride (VC), Ethene, Ethane, Dichloroethane (DCA), and Chloroethane (CA).

Amounts of TCE have been detected within the SMWRS even though TCE was never used as a chemical at the original site indicating that amounts of PCE potentially have chemically dehalogenated into daughter products. However, the radial extent or plume of initial TCE or other daughter product(s) are not known nor have they been aerially and temporally mapped at this time. Beyond the City's water production wells which are tested regularly for these known contaminants, it is not known where some daughter products, if any, could have migrated.

In addition, the regional groundwater flow direction at the SMWRS was originally northeastern from the 1990s to 2004. However, due to reduced groundwater pumping and increased recharge and river flow events occurring together from 2005 - 2011, the groundwater table at the SMWRS has increased significantly and altered the original groundwater flow direction to the Southwest. This change in groundwater flow along with the fact that much of data used to delineate the PCE plume in the report was collected years ago may not represent current/actual conditions at the Site. It is concerning that no groundwater data more recent than September 2008 was presented in the report.

Response 1: The RI has defined the nature and extent of PCE impact in the UAU within the boundaries of the South Mesa WQARF Registry Site. Therefore, no additional investigation, such as installation of additional monitoring wells, is planned as part of the RI. There will be

future groundwater monitoring events of existing wells in support of the FS and the Record of Decision.

Dissolved PCE concentrations in the SM wells that have historically been detected with PCE have been steadily decreasing with time. This is attributed to the Early Response Actions that have been performed to remove dissolved and vapor phase PCE mass and natural attenuation by physical processes. The only monitoring wells recently detected with PCE above the AWQS of 5.0 μ g/L are Applied Metallics Inc. (AMI) wells MW-AM-8S, MW-9-130, MW-9-175, MW-9-235, MW-10-130, and MW-11-200 and regional monitoring wells MW-5D and MW-7D, with PCE concentrations less than 12 μ g/L. The dissolved PCE plume in the UAU has been demonstrated to be actually shrinking, possibly related to the change in groundwater flow direction. Nested well MW-14 was installed south of the AMI site to monitor any migration of PCE in this direction.

The City of Mesa's concern regarding PCE 'dehalogenation' to daughter products such as TCE, DCE, VC, ethene, ethane, DCA, and chloroethane is noted. However, under anaerobic conditions where hydrogen from organic carbon is present, certain electron acceptors are present (i.e. nitrate, sulfate, ferrous iron, manganese, or carbon dioxide), and naturally occurring anaerobic reducing bacteria are present, PCE has been shown to dehalogenate to TCE, TCE to c-1,2-DCE, c-1,2-DCE to VC, and VC to ethene. In Arizona where subsurface soils contain minimal naturally occurring organic carbon, these conditions are generally associated locally with landfills or petroleum releases where anthropogenic organic carbon is available. The only wells where TCE has ever been detected above AWQSs is in the early 1990's at SRP Well 28E-0N prior to the early response action (ERA) at that well and in Applied Metallics Inc. (AMI) well MW-AM-8S. TCE has not been detected above the AWQS in SRP well 28E-0N since 1990 (includes depth-specific sampling) and in well MW-AM-8S since March 2001. TCE was detected at a concentration of 5.7 µg/L in well MW-9-175 on September 10, 2008. C-1,2-DCE has never been detected above the AWQS of 70 µg/L and if it is detected it is at concentrations less than 10 µg/L. The highest concentrations have been detected in wells MW-10-130 and MW-10-170, which are located next to a septic tank and in a localized area where anaerobic reductive dehalogenation may be occurring. C-1.2-DCE is not extensive and is not considered a compound of potential concern (COPC). VC has never been detected in groundwater samples and is not listed in the summary analytical tables. Additionally, natural attenuation studies performed as part of the RI concluded that reductive dechlorination was not occurring on a regional basis and if it was occurring, it was only occurring locally near the AMI septic tank. Additionally, PCE is not known to dehalogenate to DCA, chloroethane, and ethane. These "daughter compounds" are typically associated with trichlorethane and 1,2-DCA was used as a lead scavenger in gasoline and is typically associated with older gasoline releases. Therefore, DCA, chloroethane, and ethane are not COPCs.

Comment 2: The Draft Report states on page 111, "Mesa Well No. 14 is a municipal drinking water supply well and vertical contaminant profile sampling has been proposed. If PCE is not detected in the well, the exposure pathway for Mesa Well No. 14 will be considered incomplete. If PCE is detected in the well, the exposure pathway will be considered complete and additional assessment will be required."

The City does not agree that a non-detection of PCE would indicate an incomplete exposure pathway. The City of Mesa reviewed Water Quality sampling records of drinking water wells in the area. This review revealed detectable levels of PCE and TCE. The levels of PCE and TCE detected were below the Maximum Contaminant levels, but this could suggest that TCE, a potential daughter product of PCE, originating from the SMWRS could have migrated to City wells due to the change in the groundwater flow direction. There are no other documented contaminants. Therefore, all known degradation compounds of PCE should be analyzed to determine presence/absence and concentration of these chemical of concern (COCs).

Response 2: The City of Mesa's comment is noted. ADEQ has requested sampling access to or analytical results from Mesa well CW14. The City of Mesa has not granted sampling access to the well or provided analytical results for sampling performed by the City.

Comment 3: The Draft Report refers to the City wells primarily as back-up water supply wells. While one function of the City's groundwater wells is to provide back-up for canal dry-up or surface water treatment plant outage events, they become one of the principal sources of potable water for the City during extended periods of surface water shortages caused by the Colorado River and/or Salt River shortages.

Response 3: This language has been added to the report.

Comment 4: Metals were detected in groundwater at the SMWRS that exceeded the Aquifer Water Quality Standards (AWQS) that included: arsenic, chromium, manganese, and nickel. Some of these metals are extensively used in metal plating practices. Metals should continue to be monitored at the site.

Response 4: Comment noted. Analysis for arsenic, chromium, iron, manganese, and nickel was performed for seven sampling events from October 1998 until December 2001. Historic results indicate that metals do not pose a risk to groundwater and no further analysis is warranted. Based on this, these metals were eliminated through risk assessment as COPCs and no further analysis of groundwater samples was warranted.

Comment 5: It is important to note that Draft Report indicates analyses for vinyl chloride is not warranted, the City of Mesa does not agree with this statement. PCE is likely to degrade into vinyl chloride which has an even more stringent AWQS level of 2.0 μ g/L. Sampling and analyses for vinyl chloride should be included in all groundwater sampling events.

Response 5: As indicated previously, there is no evidence of extensive reductive dehalogenation occurring at the SMWRS. Groundwater samples that are collected are analyzed for full list VOCs by EPA Method 8260B (low), which reports VC to a detection limit of 1.0 μ g/L. Analysis for VC will continue. However, VC has never been detected in groundwater samples collected from the SMWRS wells.

Comment 6: There are several private and SRP groundwater wells located in and around the estimated extent of PCE plume. The City of Mesa also has several groundwater wells located in close proximity to the estimated extent of the PCE plume. Therefore, the City requests comprehensive groundwater monitor well sampling be performed to complete delineation of the PCE plume and its daughter products. Groundwater monitoring should then be performed on a regular basis until clean up goals are achieved.

Response 6: Groundwater monitoring will be a component of the selected remedy that meets the requirements of the remedial objectives.

SPECIFIC COMMENTS FROM THE SALT RIVER PROJECT (Karol O. Wolf)

Comment 1: Section 10.0, second bullet states that 'Remedial actions may not be necessary for the UAU groundwater because UAU groundwater is not currently used for drinking water.' SRP expects to retain and operate its production wells located within or near the South Mesa WQARF Site to provide water for its share holders. Some of the SRP wells draw water from the Upper Alluvial Unit (UAU) and are at risk as long as it is contaminated. While currently the wells provide water for irrigation, SRP anticipates that the wells will transition to drinking water supply in the reasonably foreseeable future, either by directly connecting the wells to municipal water distribution systems or piping to municipal water treatment plants located on the SRP canal system as a drought supply. Therefore, it is critical that contamination in the UAU be addressed.

Response 1: SRP's future use of wells has been noted in the Land & Water Use report and will be taken into consideration when developing ROs.

Comment 2: The Final RI Report should include the current water quality data for the SRP wells, 28E0N and 28.5E1N, located within the site. For 2009, PCE concentrations at both wells were less than 5 μ g/L.

Response 2: ADEQ appreciates D data and will add it to the final RI report.

Vinyl choose (VC) has never been detected in any sample collected at South Mesa. If it hasn't been detected, it is not a compound of potential concern (COPC) and has not been discussed. The conditions for VC to be generated aren't present at the South Mesa WQARF site. If a massive release of petroleum occurred there, then the conditions for generation of VC may exist.

VOCs that have been detected are COPCs. Since only PCE and TCE have been detected and have exceeded the AWQS, they are the only compounds of interest.