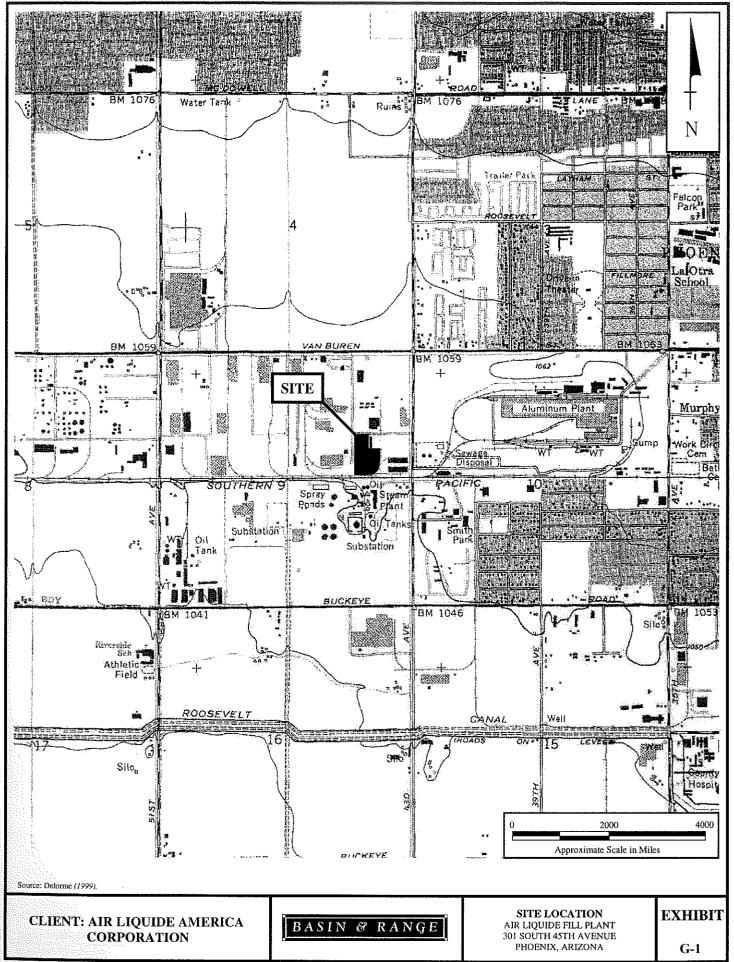
APPENDIX G TABLE OF CONTENTS

FIGURES


Figure G-1	Site Location
Figure G-2	Soil Gas Sample Locations
Figure G-3	Site Plan of Phoenix Plant
Figure G-4	Excavated Improvements Former Air Separation Unit - South Room
Figure G-5	Sample Locations and Transect Lines

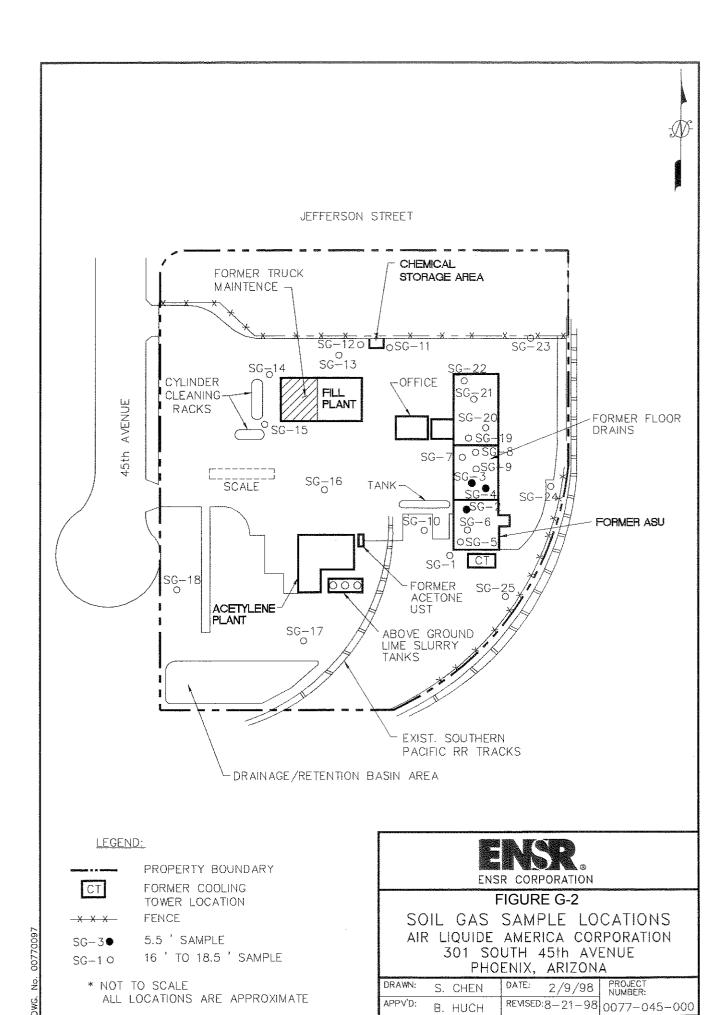
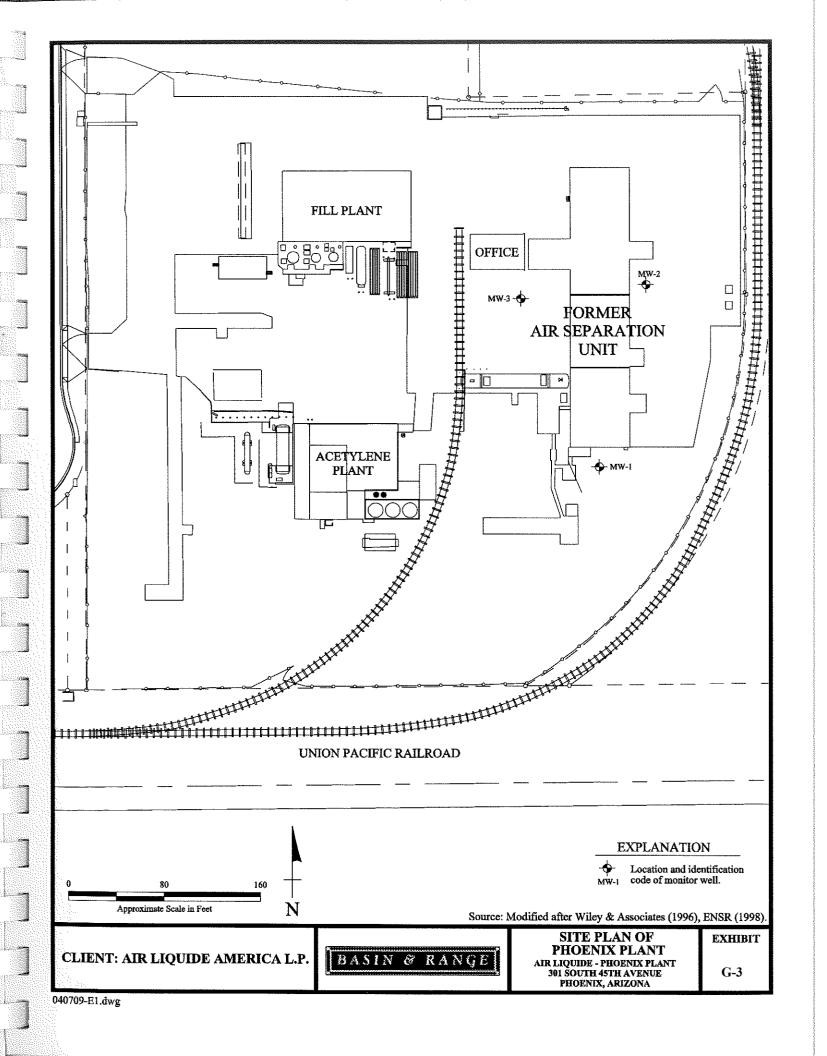
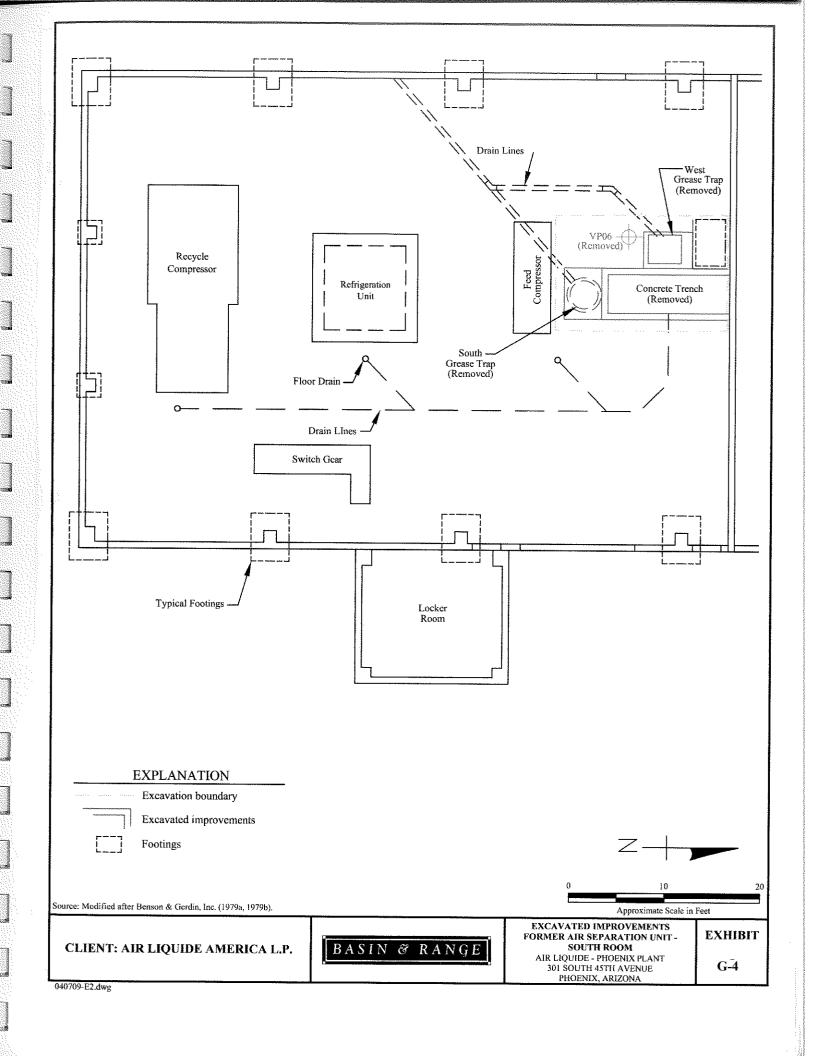
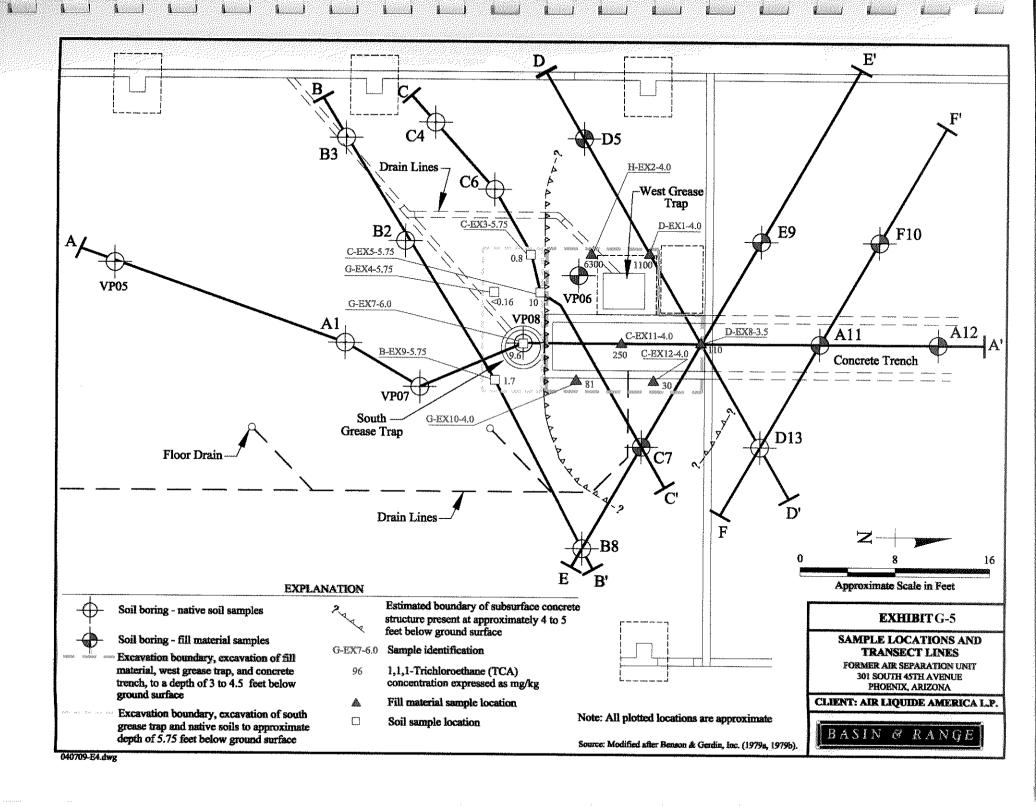

TABLES

Table G-1 Air Liquide America LLP Well Information


LABORATORY REPORTS


Tracer Research Corp. Soil Gas Analyses Precision Analytical Laboratories Soil Gas Analyses Aerotech Environmental Laboratories Soil Gas Analyses Del Mar Analytical Soil Sample Analyses



B. HUCH

Table G-1 Air Liquide America LLP Well Information West Van Buren WQARF Site

WVBA WELL ID	OWNER/FACILITY NAME	FACILITY WELL ID	ADWR #	TOTAL DEPTH (FT BTOC)	CASING DIAMETER (INCHES)	PERFORATED INTERVAL (FT BGS)	MEASURING POINT ELEVATION (FT AMSL)
MW-1	Air Liquide	MW-1	55-582869	130	2	55-130	1,051.71
MW-2	Air Liquide	MW-2	55-582870	130	2	55-130	1,052.41
MW-3	Air Liquide	MW-3	55-582871	130	2	55-130	1,052.11

Notes: FT BTOC - Feet Below Top Of Casing

FT BGS - Feet Below Ground Surface FT AMSL - Feet Above Mean Sea Level

Tracer Research Corp. Calibration Worksheet

Job#: 30418-000.S/Air Liquide/Phoenix, AZ

Date: 7/7-8/98
Analyist: J.Cook
Field Asst.: G Lizardi

Client/Site: ENSR

1,1-DCE	25
5 2208422 100.0 2.3E-16 5 2182502 100.0 2.3E-16	
5 2182502 100.0 2.3E-16 Compound Cet Inj Size A de C1 Cote Inj Si	Aco Ngo
Compound Earl Inj Size Area C1 One [gg] FE Ave RF cott x-RS 1,1-DCA ecd 5 555820 388.0 3.5E-15 3.5E-15 4E-17 1.24 5 543536 388.0 3.6E-15 3.5E-15 4E-17 1.24	Acc figs.
1,1-DCA ecd 5 555820 388.0 3.5E-15 3.5E-15 4E-17 1.24 5 543536 388.0 3.6E-15	
5 543536 388.0 3.6E-15	AND DESCRIPTION OF THE OWNER.
	25
5 544372 388.0 3.6E-15	
Compound Det in Size Area Ct. Done (45/1) PF Ave AP new MACS	A Constitution
T-1,2-DCE ecd 5 2265278 700.0 1.5E-15 1.6E-15 4E-17 2:50	eesemmeneesemmeneesemmeneesemmeneesem
5 2220342 700.0 1.6E-15	
5 2155773 700.0 1.6E-15	
Compound Det in Gize (Area C). Donc (1971) RF Ave. RF 6499 (%RS)	
1,2-DCA ecd 5 1287756 218.0 8.5E-16 8.5E-16 2E-17 2.19	25
5 1255616 218.0 8.7E-16	
5 1311605 218.0 8.3E-16	
Compound Det In Size Area Ct. Conc. [cg/l.] RF Asse RF sett 12/RSI	
TCA ecd 5 1790495 5.0 1.4E-17 1.4E-17 2E-19 1.25	25
5 1799211 5.0 1.4E-17	
5 1757107 5.0 1.4E-17	
Gompound Der in Size Ares Ct. Dong (1921) RF: Ave RF cent 153531	
TCE ecd 5 1883057 10.0 2.7E-17 2.6E-17 9E-19 3:33	25
5 2012779 10.0 2.5E-17	
5 1941977 10.0 2.6E-17	
Compound i Det in Size Azoe Ct. Done (1971) RF Ave BF earth MASS	
PCE ecd 5 4365910 5.0 5.7E-18 6.6E-18 9E-19 13.96	9999 999999999999999999999999999
5 3871557 5.0 6.5E-18	
5 3310600 5.0 7.6E-18	

ij	S/Air Liquide/	S/Air Liquide/Phoenix, AZ						
ij	86/8-2/2							
ANALYST: J.Cook	J.Cook							
FIELD ASS G Lizardi	G Lizardi				CAL CHECK #1	X # 1		
Cilent/Site:	ENSH				TIME:	0557am		
Compound	DET	RF	RUN TIME	CONC	AREA	BF	33IQ	ACC RGE
			ијш				%	%
1,1-DCE	рэө	2.25E-16		100.000	2116283	2,36E-16	4.9	25
1,1-DCA	рэө	3.54E-15		388.000	514717	3.77E-15	6.4	25
T-1,2-DCE	рэө	1.58E-15		700.000	2120482	2120482 1.65E-15	4.4	25
1,2-DCA	ppe	8.49E-16		218.000	1273309	8.56E-16	6.0	25
TCA	рэө	1.40E-17		5.000	1784903	1.40E-17	0.2	25
TCE	рэө	2.57E-17		10:000	1651119	3.03E-17	17.8	25
PCE	рэө	6.58E-18		5.000	3000000	8.33E-18	26.7	25

TRACER RESEARCH CORP

SOIL GAS SAMPLE WORK SHEET
Job: 30418-000.S/Air Liquide/Phoenix, AZ
Date: 7/7-8/98
Analyst: J.Cook

Sample ID: Injection Time:					NZ Blank			H2O BLANK 0925/7-7-98		S	ystem Blank	ᆂ,			AIR 0557am
	FID:		91830 31830		500			5							200
Injection Volume I			855 (1956) 857 (1957)		200			2							200
	Γ	OCK HERE													
COMPOUND	1 130	DE 7 DE 7		4.184	CONC	BEAN	AREA	CONC	AREA)	AREA				MEAN	HEAM AREA
	911	601 (03)	***	BLOOM	Jön	yfin	TUPOD	1,000	1.61	CONTRACT			igs ags	***	upt
1,1-DCE	0		0	-32000	-0.01442		-32000	-1.44173			₩	LUEI	LUEI		-32000
1,1-DCA	0		0	-32000	-0.22663		-32000	-22.66304			* \	LUEI	LUE!		-32000
T-1,2-DCE	0	y -	0	-40000	-0.12653		-40000	-12.65319			#VA	tVALUE!	UE!		-40000
1,2-DCA	0	,	0	-39000	-0.06618		-39000	-6.61850			#VALUE!	Ξ	UE! MERCENIA		-39000
TCA	0	,	0	-39000	-0.00109		-39000	-0.10942			#VALUE!	핔	JEI TER		. 0006E-
TCE	0	,	0	45000	-0.00231		-45000	-0.23142			#VALUE!	E	UE!		-45000
PCE	0	*	0	.74000	-0.00097		-74000	-0.09736			#VALUE	ΕË	nei 💮 🔝	UE! -74000	

		MEAN	1781	₽	<23	<13	/>	22	<.2	
5G4-5.5 1447PM 5 5 5		CONC	'y fan	-1.44173	-22.66304	-12.65319	-6.61850	21.87801	-0.23142	-0.09736
				-32000	-32000	-40000	-39000	7797696	-45000	-74000
		100	160	7	<u> </u>	8	^ 4	210	0.4	2
1428PW 8		2000	161	7.22712	-14.16440	-7.90824	-4.13656	207.97021	0.43223	1.74284
		THE		256656	-32000	-40000	-39000	118598600	134474	2119493
			- da	မ	<57	~35 ~	√ 16	310	9.0	4
5G3-5.5 1412PM 2 2 2			161	5.90129	-56.65759	-31.63297	-16.54625	314.96026	0.57187	4.33622
		AREA	moo	52393	-32000	-40000	-39000	44902880	44480	1318332
9.502.9		COMC MEAN	upt upt	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!
		4516.4	period					*******		
				₹0.0 4	9.0>	<0.3	<0.2	0.0	<0.006	<0.002
200 200 200 200 200 200		2000	1.64	-0.03604	-0.56658	-0.31633	-0.16546	0.03638	-0.00579	-0.00243
		AREA	the sec	-32000	-32000	-40000	-39000	518614	-45000	-74000
	SG3-REP 1412PM 1428PM 1	SG3-PE SG3-REP 1429PM 1429PM 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	SGI-718.5 SGI-5.5 SGI-5.5 SGI-7.5 SG	SG3-18.5 SG2-5.5 SG3-5.5 SG3-7.5 SG3-7.5 SG3-7.5 SG4-5.5 SG4	SGI-18.5 SU3-FE	SGI-18.5 SUZ-b: SUZ-b:	SGG-7-18.5 SGG-5-5 S	SGG1-18.5 SGG2-6 SGG2-5.5 SGG3-5.5 SGG3-HEP SGG3-HEP SGG4-5.5 SGG4-5.5	SGI-18.5 SGI-18.5	SGI-18.5 SGI-0.5 <

						MEAN	180	11	83	₹	' >	120	0.5	Q
	SG7-18'	1711PM	ទ	5	5	3400	1,60	10.78193	-22.66304	-12.65319	-6.61850	153.81766	0.46284	9.51626
							and the same				-39000	54823232	00006	7233018
						MEAN	160	28	4 33	<13	7∕	120	2	4
	SG6-DUP	1642PW	2	5	5	COME	1601	28.03034	-22.66304	-12.65319	-6.61850	117.38070	2.51760	3.78092
						AREA	tares	622149	-32000	-40000	-39000	41836480	489546	2873762
						MEAN	181	37	623	<13	<i>L</i> >	140	2	2
	SG6-17.5'	1626PM	5	5	S	3000	160	37 47737	-22.66304	-12.65319	-6.61850	143,79991	2.39046	2.42256
						AREA	moo	831831	-32000	-40000	-39000	51252736	464825	1841314
			0.00			MEAN	B	44	83	× 13	- 22	490	ო	4
	SG5-REP	1555PM	5	ഹ	2	00000	figu	44.00138	-22.66304	-12.65319	-6.61850	495.17791	2.68024	3.83851
						4.000	1	976635	-32000	-40000	-39000	176489840	521171	2917538
						MEAN	3	34	33	6,3	<.2 2.2	OLR	4	က
	SG5-18'	1533PM	200	200	200	0.100		ကြ	54.69152	-0.31633	-0.16546	#VALUE!	4.34694	2.61403
						AREA	Mes	30426480	3088957	-40000			33810464	79473728
energe.	nint states	000	in in the second	veniono		ggazzi.	*******	*****	-manyes-s	all towns	**********	es-Alive	di-onitree	

					MEAN	Tythen	9	<23	×13	<7	2	<.2	-
SG9-18.5'	1809PM	5	5	5	CONC	cg.r.	6.50256	-22.66304	-12.65319	-6.61850	69.80708	-0.23142	1.12407
					4.00	Mindo	144328	-32000	40000	-39000	24880432	-45000	854374
					MEAN	101	11	<23	<13	/ >	220	<.2	4
S	1744PM	5	5	5	3400	ij	11,15791	-22.66304	-12.65319	-6.61850	223.26170	-0.23142	3.74039
SG8-18.5	<u> </u>		<u> </u>	L			2				79574272		

4

Tracer Research Corp. Calibration Worksheet

Job#: 30418-000.S/Air Liquide/Phoenix, AZ

Date: 7/9/98 Analyist: J.Cook Field Asst.: G Lizardi Client/Site:

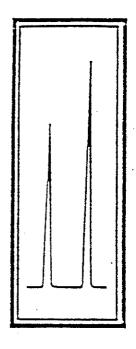
1,1-DCE							
S 2090219 100.0 2.4E-16						25565385598988988989999999	990900000000000000000000000000000000000
S	1,1-DCE	ecd	200000000000000000000000000000000000000			2.4E-16	2.4E-16 3E-18 1.28 25
1,1-DCA							
1,1-DCA ecd 5 514717 388.0 3.8E-15 4.1E-15 3E-16 6.73 25 450264 388.0 4.3E-15 5 471365 388.0 4.1E-15 388.0 4					decessors		
5	e and a position	Det				7.5	Ave if our MISE Archite
T-1_2-DCE	1,1-DCA	ecd	5	514717	388.0	3.8E-15	4.1E-15 3E-16 6.73 25
T-1,2-DCE ecd 5 2120482 700.0 1.7E-15 1.7E-15 2E-17 1.40 25 5 2066686 700.0 1.7E-15 1.7E-15 2E-17 1.40 25 6 2066686 700.0 1.7E-15 2E-17 1.40 25 6 2072818 700.0 1.7E-15 2E-17 1.40 25 1,2-DCA ecd 5 1273309 218.0 8.6E-16 8.9E-16 3E-17 3.57 25 1,2-DCA ecd 5 1220319 218.0 8.9E-16 3E-17 3.57 25 5 1185858 218.0 9.2E-16 3E-17 3.57 25 6 1220319 218.0 8.9E-16 3E-17 3.57 25 100 1.7E-15 1.4E-17 1.4E-17 1.4E-17 1.4E-17 1.4E-17 1.4E-17 2E-19 1.46 25 100 1.7E-15 1.7E-15 3.1E-17 9E-19			5	450264	388.0	4.3E-15	
T-1,2-DCE ecd 5 2120482 700.0 1.7E-15 1.7E-15 2E-17 1.40 25 5 2066686 700.0 1.7E-15 2E-17 1.40 25 composing Details 1.86 Acc. 1.2E-15 Execution 2.13 2.13 Acc. 16 1,2-DCA ecd 5 1273309 218.0 8.6E-16 8.9E-16 3E-17 3.57 25 5 1185858 218.0 9.2E-16 3E-16 3E-17 3.57 25 6 5 1220319 218.0 8.9E-16 3E-17 3.57 25 10mound Details Acc. 4.6 4.6 4.6 25 4.6 25 TCA ecd 5 1768347 5.0 1.4E-17 1.4E-17 2E-19 1.46 25 3 1819782 5.0 1.4E-17 3.1E-17 9E-19 2.86 25 4 6 5 1651119<			5	471365	388.0	4.1E-15	
5 206686 700.0 1.7E-15 5 2072818 700.0 1.7E-15 5 1.2F-15 6 6 70.0 1.7E-15 6 70.0 1.7E-16 6 70.0 1.7E-16 6 70.0 1.7E-16 6 8.9E-16 8.9E-16 8.9E-17 7 8.9E-19 1.46 25 7 8.9E-16 7 8.9E-16 7 8.9E-16 7 8.9E-17 7 8.9E-19 1.46 25 7 8.9E-17 7 8.9E-19 2.86 25 7 8.9E-18 7 8.9E-18 7 9E-19 2.86 25 7 8.9E-18 7 9E-19 2.86 25 7 8.9E-18 7 9E-19 2.86 25 7 8.9E-18 7 8.9E-18 7 9E-19 2.86 25	(8.0) (10.0)	7.01			2000 0 000	118	Ave fift perd 241SD Acc hige
S 2072818 700.0 1.7E-15	T-1,2-DCE	ecd	5	2120482	700.0	1.7E-15	1.7E-15 2E-17 1.40 25
Ompound Ext III Size Area CL One fig. RF Ave RF Set II CRSD Acc Pte 1,2-DCA ecd 5 1273309 218.0 8.6E-16 8.9E-16 3E-17 3.57 25 5 1185858 218.0 9.2E-16 5 1220319 218.0 8.9E-16 5 400 Pte 0mpound Del II Size Area Closed 5 1.4E-17 1.4E-17 2E-19 1.46 25 TCA ecd 5 1768347 5.0 1.4E-17 1.4E-17 2E-19 1.46 25 5 1819782 5.0 1.4E-17 2E-19 2.86 25 TCE ecd 5 1651119 10.0 3.0E-17 3.1E-17 9E-19 2.86 25 5 1574511 10.0 3.2E-17 3.1E-17 9E-19 2.86 25 6 1567132 10.0 3.2E-17 3.4E-17 3.569 3.569 3.569			5	2066686	700.0	1.7E-15	
1,2-DCA ecd 5 1273309 218.0 8.6E-16 8.9E-16 3E-17 3.57 25 5 1185858 218.0 9.2E-16 5 1220319 218.0 8.9E-16 2010 16 300 A 4 6 6 3 30 30 30 30 30 30 30 30 30 30 30 30 3			5	2072818	700.0	1.7E-15	
5 1185858 218.0 9.2E-16 5 1220319 218.0 8.9E-16 2010 cound	Composinc			100000			Ave. RF Lett. 261SD Acc Fige
TCA ecd 5 1784903 5.0 1.4E-17 1.4E-17 2E-19 1.46 25	1,2-DCA	ecd	5	1273309	218.0	8.6E-16	8.9E-16 3E-17 3.57 25
TCA ecd 5 1784903 5.0 1.4E-17 1.4E-17 2E-19 1.46 25 5 1768347 5.0 1.4E-17 2E-19 1.46 25 20mpound 5 1819782 5.0 1.4E-17 2E-19 1.46 25 20mpound 5 1819782 5.0 1.4E-17 2E-19 2.86 25 TCE ecd 5 1651119 10.0 3.0E-17 3.1E-17 9E-19 2.86 25 5 1574511 10.0 3.2E-17 3.2E-17 5 1567132 10.0 3.2E-17 3.1E-17 9E-19 2.86 25 PCE ecd 5 2943266 5.0 8.5E-18 8.6E-18 5E-19 5.69 25 5 2732304 5.0 9.1E-18 5E-19 5.69 25			5	1185858	218.0	9.2E-16	
TCA ecd 5 1784903 5.0 1.4E-17 1.4E-17 2E-19 1.46 25 5 1768347 5.0 1.4E-17 5 1819782 5.0 1.4E-17 5 1819782 5.0 1.4E-17 5 1.4E-17 6 6 6 6 6 6 6 6 6 6 6 6 6 6 7 6 1.651119 10.0 3.0E-17 3.1E-17 9E-19 2.86 25 5 1574511 10.0 3.2E-17 3.2E-17 5 1567132 10.0 3.2E-17 3.6E-18 6 6 25 45 150			5	1220319	218.0	8.9E-16	
5 1768347 5.0 1.4E-17 5 1819782 5.0 1.4E-17 Sompound Dof Ini Size Area 7 ord, light Area 17 3.1E-17 9E-19 2.86 25 TCE ecd 5 1651119 10.0 3.0E-17 3.1E-17 9E-19 2.86 25 5 1574511 10.0 3.2E-17 5 1567132 10.0 3.2E-17 ORDORAR Def Ini Size Area 3 ord, light Area 3 per 1	(20)31/03/11/11	2.11	(1) (2)	0.000	85035 (10.10)		Avo. RFI note 12/ASD Acc Age
5 1819782 5.0 1.4E-17 Sompound	TCA	ecd	5	1784903	5.0	1.4E-17	1.4E-17 2E-19 1.46 25
Compound Dot Ini Size Area CI Collegit SE Ave 6f Area CI Acc Fige TCE ecd 5 1651119 10.0 3.0E-17 3.1E-17 9E-19 2.86 25 5 1574511 10.0 3.2E-17			5	1768347	5.0	1.4E-17	
TCE ecd 5 1651119 10.0 3.0E-17 3.1E-17 9E-19 2.86 25 5 1574511 10.0 3.2E-17 5 1567132 10.0 3.2E-17 5 3.2E-17 5 400 Rg 600 Rg			5	1819782	5.0	1.4E-17	
5 1574511 10.0 3.2E-17 5 1567132 10.0 3.2E-17 20Inpoint Doc In Size Arca C. 20IL/19/5 FIF Ave RF cont 24650 Ace Res PCE ecd 5 2943266 5.0 8.5E-18 8.6E-18 5E-19 5.69 25 5 2732304 5.0 9.1E-18	(8) (1) (1) (1) (1) (1)	3.7					Ave Ge and Caron Accesso
5 1567132 10.0 3.2E-17 Supposed Let In Size Aros C. August H.F. August August August	TCE	ecd	5	1651119	10.0	3.0E-17	3.1E-17 9E-19 2.86 25
Office of the control of the			5	1574511	10.0	3.2E-17	
PCE ecd 5 2943266 5.0 8.5E-18 8.6E-18 5E-19 5.69 25 5 2732304 5.0 9.1E-18			5	1567132	10.0	3.2E-17	
PCE ecd 5 2943266 5.0 8.5E-18 8.6E-18 5E-19 5.69 25 5 2732304 5.0 9.1E-18 5E-19 5.69 25	80031492323443388						Ave RF som 2465D Ace Rec
 	PCE	ecd	5			8.5E-18	PS 95009798008800880088000 000080088008000000000 1000800600000000 x00000000000000000000000
			5	2732304	5.0	9.1E-18	
5 3052262 5.0 8.2E-18			5	3052262	5.0	8.2E-18	

CAL CHECK # 1 DASS G Lizardi TIME: 1128AM Ipound DET RF RUN TIME CONC AREA RF DIFF ACC RG Pound DET RP min ug/L RP min wg/L % % CCA ecd 2.39E-16 min 100.000 2162178 2.31E-16 % % CCA ecd 4.06E-15 388.000 500764 3.87E-15 4.7 CCA ecd 1.68E-15 700.000 2119429 1.65E-15 1.6 CCA ecd 1.40E-17 5.000 1365686 7.98E-16 1.0.3 CCA ecd 1.40E-17 5.000 1850564 1.35E-17 3.2 Ecd 3.13E-17 5.000 1513835 3.30E-17 5.10		86/6/2									
D ASS' G Lizardi CAL CHECK # 1 t/Site: ENSR TIME: 1128AM pound DET RF RUN TIME CONC AREA RF DIFF ACC RG CE ecd 2.39E-16 mln ug/L RF DIFF ACC RG CA ecd 2.39E-16 100.000 2162178 2.31E-16 % % CA ecd 4.06E-15 388.000 500764 3.87E-15 4.7 DCA ecd 1.68E-15 700.000 2119429 1.65E-15 1.6 CA ecd 1.40E-17 5.000 1855686 7.98E-16 10.3 DCA ecd 1.40E-17 5.000 1850564 1.35E-17 3.2 Ecd 3.13E-17 5.000 1513835 3.30E-17 5.10	TSZ Z Z Z	J.Cook									
Ipound DET RF RDIFF ACC RG Ipound DET RF DIFF ACC RG Ipound DET RF DIFF ACC RG Ipound DET RIN CONC AREA RF DIFF ACC RG Ipound Edd Light Light	FIELD ASS	G Lizardi				CAL CHE	CK # 1				CAL CHE
Ipound DET RE PIDIF CONC AREA RF DIFF ACC RG VCE ecd 2.39E-16 min ug/L 2.62178 2.31E-16 % % % VCA ecd 4.06E-15 388.000 500764 3.87E-15 4.7 4.7 V-DCE ecd 1.68E-15 700.000 2119429 1.65E-15 1.6 1.6 VCA ecd 8.89E-16 700.000 2119429 1.65E-15 1.6 1.6 NCA ecd 1.40E-17 5.000 1855686 7.98E-16 10.3 ecd 3.13E-17 10.000 1513835 3.30E-17 5.1 ecd 3.13E-17 5.000 1513835 3.30E-17 5.1	Client/Site:	ENSH				TIME:	1128AM				TIME:
CE ecd 2.39E-16 nin ug/L % % % % % CA ecd 2.39E-16 100.000 2162178 2.31E-16 3.4 CA ecd 4.06E-15 388.000 500764 3.87E-15 4.7 CA ecd 1.68E-15 700.000 2119429 1.65E-15 1.6 CA ecd 1.40E-17 218.000 1365686 7.98E-16 10.3 ecd 1.40E-17 5.000 1850564 1.35E-17 3.2 ecd 3.13E-17 5.000 1513835 3.30E-17 5.5	Compound	DET	RF	RUN TIME	CONC	AREA	RF	DIFF	ACC RGE	CONC	AREA
CE ecd 2.39E-16 100.000 2162178 2.31E-16 3.4 CA ecd 4.06E-15 388.000 500764 3.87E-15 4.7 CA ecd 1.68E-15 700.000 2119429 1.65E-15 1.6 CA ecd 8.89E-16 218.000 1365686 7.98E-16 10.3 ecd 1.40E-17 5.000 1850564 1.35E-17 3.2 ecd 3.13E-17 10.000 1513835 3.30E-17 5.5				ujш	ug/L			%	%	ug/L	
CA ecd 4.06E-15 388.000 500764 3.87E-15 4.7 *DCE ecd 1.68E-15 700.000 2119429 1.65E-15 1.6 CA ecd 1.40E-17 218.000 1365686 7.98E-16 10.3 ecd 1.40E-17 5.000 1850564 1.35E-17 3.2 ecd 3.13E-17 10.000 1513835 3.30E-17 5.5	1,1-DCE	poe	2.39E-16		100.000	2162178	2,31E-16	3.4	25	100.000	2034935
DCE ecd 1.68E-15 700.000 2119429 1.65E-15 1.6 DCA ecd 8.89E-16 218.000 1365686 7.98E-16 10.3 ecd 1.40E-17 5.000 1850564 1.35E-17 3.2 ecd 3.13E-17 10.000 1513835 3.30E-17 5.5 ecd 8.81E-18 5.000 3673600 681E-18 5.40	1,1-DCA	рэө	4.06E-15		388.000	500764		4.7	25	388.000	412475
ICA ecd 8.89E-16 218.000 1365686 7.99E-16 10.3 ecd 1.40E-17 5.000 1850564 1.35E-17 3.2 ecd 3.13E-17 10.000 1513835 3.30E-17 5.5 ecd 8.41E-18 5.000 3673600 5.5 5.10	T-1,2-DCE	poe	1.68E-15		700.000	2119429	1.65E-15	1.6	25	700.000	1982840
ecd 1.40E-17 5.000 1850564 1.35E-17 3.2 ecd 3.13E-17 10.000 1513835 3.30E-17 5.5 ecd 841E-18 5.10 5.10 5.10	[1,2-DCA	poe	8.89E-16		218.000	1365686	******	10.3	25	218.000	1162858
ecd 3.13E-17 10.000 1513835 3.30E-17 5.5	TCA	ecd	1.40E-17		5.000	1850564	1.35E-17	3.2	25	5.000	1654140
and 841E-18 5000 3673600 681E-18 210	TCE	ecd	3.13E-17		10.000	1513835	3.30E-17	5.5	25	10.000	1330658
	PCE	poe	8.61E-18		5.000	3673600	6.81E-18	21.0	25	5.000	3754086

30418-000.S/Air Liquide/Phoenix, AZ

9

CK: 2 1836PM


TRACER RESEARCH CORP

799000	00000							
		Ø	~24	<12	\$	7	9	130
	(5)	8.88186	-23.57381	-11.74279	-6.22629	6.69744	5.63175	128.95849
- 200	Home							
		⊽	<24	<12	œ	ဖ	0.7	71
		-1.43569	-23.57381	-11,74279	-6.22629	6.09689	0.67640	71.53387
		-30000	-29000	-32000	-35000	2183606	108000	41534080
			<24	<12	\$	4	0.7	8
		-1.43569	.23.57381	11.74279	-6.22629	3.77639	0.67640	85.21670
	1100	-30000	-29000	35000	-35000	1352517	108000	49478624
		7	<24	<12	ę	4	0.7	8
		-1.43569	-23,57381	.11.74279	-6.22629	3.82559	0.67640	99.13945
		9000ç-						
		9	<24	<12	æ	8	0.4	0.3
		5.74434	-23.57381	-11.74279	-6.22629	30.40834	0.45093	0.26312
		120033	-29000	-35000	-35000	10890778	72000	152771
		No.	22100000					

		_					***	_	_					
						MEAN	140	13	<24	<12	9	0.3	0.8	19
G-18-18.5	1220PM	5	Ŋ	D.		2000	ngit.	12.78359	-23.57381	-11.74279	-6.22629	0.27921	0.83099	18.88605
(A)							***				-35000	100000	132684	10965640
a						MEAN	160	⊽	<24	<12	8	9.0	40.2	_
317-16' DU	1158AM	5	ភ	ഹ		3	161	-1,43569	-23.57381	-11,74279	-6.22629	0.65017	-0.22547	1.47401
S						AREA	count	-30000	-29000	-35000	-35000	232859	-36000	855842
1000						HELAN	160	۲	~24	<12	9	73	<0.2	-
SG17-16'	1144AM	5	5	ĸ		3103	181	-1,43569	-23.57381	-11.74279	-6.22629	2.16303	-0.22547	1.14705
						AREA	11100	-30000	-29000	-35000	-35000	774692	-36000	666001
						100.00	775	69	424	<12	φ	8.0	5	150
G16-16.5°	1107AM	2	ည	5		3463	705	69.07398	-23.57381	-11.74279	-6.22629	0.84975	13,13360	150.35780
w						4884	person	1443360	-29000	-35000	-35000	304340	2097041	87300928
						MEAN	ş	14	<24	<12	\$	-	4.0	46
3G15-16.5	1024AM	2	3	2		3803	Ţ	14.14601	-23.57381	-11.74279	-6.22629	1.34135	0.45093	46.07068
O		L				AREA				-35000	-35000	480407	72000	26749616
	SG15-16.5' SG16-16.5' SG17-16' DUP SG-18-18.5'	SG16-16.5' SG17-16' DUP (1197AM 1195AM 1195A	SG16-16.5' SG17-16' DUP (11984W 11584W 5 5	SG16-16.5' SG17-16' DUP SG17-16	SG16-16.5' SG17-16' DUP SG17-16	SG16-16.5' SG17-16' DUP SG17-16	SG15-16.5¹ SG16-16.5² SG17-16¹ SG17-16¹ DUP SG-18-18.5² 1024AW 1195AW 11220PW 5	SG15-16.5' SG16-16.5 SG17-16' DUP SG1-18.5' SG17-16' DUP SG-18-18.5' SG17-16' DUP SG-18-18.5' SG	SG15-16.5¹ SG16-16.5² SG17-16. DUP SG17-16' DUP SG17-16' DUP SG17-16' DUP SG18-18.5²	SG15-16.5' SG17-16.5' SG17-16' DUP SG17-16' DUP SG17-18-18.5' 5 <td< th=""><th>SG15-16.5¹ SG17-16.5¹ SG17-16.5DUP SG17-16' DUP SG17-16' DUP SG17-18.5¹ 5</th><th>SG15-16.5¹ SG16-16.5¹ SG17-16¹ SG17-16¹ DUP SG17-16¹ SG17-16¹ SG17-16¹ DUP SG1-18-18.5¹ 5 <t< th=""><th>SG15-16.5's SG16-16.5's SG17-16's SG17-16's SG17-16's SG17-16's SG17-16's SG17-18's SG18-18.5's SG18-18.5's</th><th>SG15-16.5' SG16-16.5' SG17-16' DUP SG17-16' DUP SG17-16' DUP SG1-18.8' 5</th></t<></th></td<>	SG15-16.5¹ SG17-16.5¹ SG17-16.5DUP SG17-16' DUP SG17-16' DUP SG17-18.5¹ 5	SG15-16.5¹ SG16-16.5¹ SG17-16¹ SG17-16¹ DUP SG17-16¹ SG17-16¹ SG17-16¹ DUP SG1-18-18.5¹ 5 <t< th=""><th>SG15-16.5's SG16-16.5's SG17-16's SG17-16's SG17-16's SG17-16's SG17-16's SG17-18's SG18-18.5's SG18-18.5's</th><th>SG15-16.5' SG16-16.5' SG17-16' DUP SG17-16' DUP SG17-16' DUP SG1-18.8' 5</th></t<>	SG15-16.5's SG16-16.5's SG17-16's SG17-16's SG17-16's SG17-16's SG17-16's SG17-18's SG18-18.5's SG18-18.5's	SG15-16.5' SG16-16.5' SG17-16' DUP SG17-16' DUP SG17-16' DUP SG1-18.8' 5

2449085 4.21804 4
885
2446
92
94.58008
54915200
22
21.83909
12680240
16
15.88158
9221184
16
16.32671
9479635

	2.44 4.88 4.24 4.24 4.24 6.0 9.0 9.0 9.0
SG25-16' 1820PM 5 5 5	CONC 147.59714 -23.57381 -11.74279 -6.22629 9.42812 3.00003 5.95204
	AREA Count 994583 -29000 -35000 -35000 3376690 479014 3455880
۵	42 5 5 6 6 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.1
SG24 -17'DUP	1,43569 -1,43569 -23,57381 -11,74279 -6,22629 0,12202 -0,22547
Ø	######################################
	2 7 4 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
SG24-17' 1746PM 5 5 5	-1.43569 -2.3.57381 -11.74279 -6.22629 0.73387 -0.22547
	######################################

Tracer Research Corporation

3855 North Business Center Drive Tucson, Arizona 85705 (602) 888-9400

SOIL GAS LOG BOOK

Job Number:	30418-000.5
Client:	ENSR
Site:	Air liquide America Corp
Location:	301 45th Ave
Dates Worked:	7/7/18-7-10-98

JOB SUMMARY

TOTAL NUMBER COLLECTED SOIL GAS SAMPLES	25
TOTAL NUMBER COLLECTED WATER SAMPLES	Ø
DEPTH OF SHALLOWEST SAMPLE COLLECTED	6
DEPTH OF DEEPEST SAMPLE COLLECTED	18'
TOTAL NUMBER POINTS USED	25
TOTAL NUMBER 7' LENGTHS OF PROBES USED	90
HIGHEST SAMPLING VACUUM	14
LOWEST SAMPLING VACUUM	12
MAXIMUM VACUUM OF PUMP	21
	3

NOTES OF INTEREST

Project No.	30418	-000.	5	
-------------	-------	-------	---	--

UTILITY NOTIFICATION AND RELEASE AGREEMENT

This Agreement by and between Tracer Research "TRC") and FNSR Consulting 4 Eng of setting forth the responsibility of Client as it ruis located at 301 S. 45 A.E.	h Corporation, an Arizona corporation (herinafter acceptance) hereinafter "Client") is for the purpose elates to utilities on the subject property which
1. Client Responsibilities: Client shall be functions:	responsible for performance of the following
a. Locating and marking subsurface utilityb. Obtaining any necessary utility clearant	
2. Indemnification. Client hereby releases harmless from any and all liability, damage and/o	TRC and agrees to indemnify and hold TRC or responsibility for any of the following:
a. Damage or destruction to subsurface u or systems;b. Environmental damage or pollution of c. Acts of third parties;d. Liability to any third party.	tilities, pipelines or other subsurface structures every kind and description;
Client further promises and guarantees to TRO by any party for any reason arising out of or deal or should it be held liable with respect to any transathe subject matter of this Agreement, Client will a from and against any and all liability for damages, kind or nature. DATED: 7/1/98	action of any nature whatsoever connected with at all times indemnify and save TRC harmless
TRACER RESEARCH CORPORATION	CLIENT
By: Jun Call	By: Moht 7/26
Title: fje/g / RO	Title: Troject Munager

SOIL GAS INVESTIGATION B.	ACKGROUND INFORMATION
Job Number:	Van Number: 14
30418-000.5	Plate Number: 455-849
Site Name: Air Ligurde America Cop	1
Dates Of Investigation:	
Dates Of Investigation: 1/98- Client Name and Address: ENSR 3000 Richmond Ave. Siete 460 Phone Number: 7/3-520-976 s	Field Representative(s) For Client:
Phone Number: 7/3-520-976 3	Beb Hingh
Person To Whom Report And Questions Should Be Directed:	
Phone Number:	Fax Number:
CREW: Crew Leader: Sim Cook	Fleid Assistant: Gres Lizard
Report To Include (CHECK ONE):	Additional information to be included in report at client's
QA/QC - Procedures - Data Only	request:
Full Report With Contour Maps and Interpretation	
Purpose Of Investigation: POSSIBLE HISTORY OF CONTAMINATION	4 SoyleE.
POSSIBLE HISTORY OF CONTAMINATION Target VOCs: 1,10cf, 1,10cf, 1,210cf, 1 117ch, TCE, PCE	1,2DCA Client's signature of target vocis verification:
Groundwater Information (if available):	
Depth To Water:	Direction of flow:
SOURCES OF CONTAMINATION:	
Geologic Setting (e.g. soil type, subsurface geology, etc.):	
·	

DAILY SUMMARY						
DATE:	CLIENT:	JOB NUMBER:				
7-7-98	ENSR	30418-0005				
WEATHER:	,					

FIELD HOURS			
Time on Site:07.30	Lunch Hours /, O		
Time off Site:	Downtime Hours ¹		
1600	Standby Hours ² 3 hours		
Client's signature verifying time on and off site:			
Billable Hours (office use only): 7.5 hours			
NOTE: REPORT TIME TO NEAREST 0.25 HOURS			

DECONTAMINATION				
Probe Decontamination Syringe Decontamination				
Total Hours:	Total Hours:			
Signature of verification by GC Operator:	Signature of verification by Field Assistant:			

SAMPLING AND ANALYSIS								
Calibration	Sampling	Analysis						
Time Start:	Vacuum used (Check one): Diaphram Transducer	Total System Blanks:						
Time End: 0925	Max Vacuum: (in Hg)	Total Ambient Air Samples:						
Total Hours:	Probes Used:	Total Analytical Blanks:						
2.5	Points Used:	Total Water Blanks:						
2 hR DRIVE	Soil Gas Samples Collected:	Water Samples Collected:						

^{1 -} Downtime includes time spent repairing sampling & analytical equipment; note times and explanation on following field data pages

² - Standby includes time available for sampling but waiting for client; note times and explanation on following field data pages

							SA	M	PLING DATA		
Date:	7-	7-	98						Job Number 30418-000,5		
Locati			· • •			,	74.	/	Client:		
Liet R	AR LIOUIDE 3015. 45 HVE ENSR List Rental or Extra Equipment use on this Date:										
18:	Com	M	95S1	1R. 162	06	k\$ E	Rai	CKA	ORILL &STEEL		
TIME	SAMPLE NUMBER	D E P T H	P R O B E	P R O B E PUSH/ POUND	V A C U U M (in Hg)	E V A C C TIME	S A M P L E VOL (&)	P O I N T S USED	NOTES/ADD [*] L DATA REQUESTED BY CLIENT This includes, but is not limited to: describin of sampling location and general area, ground conditions, asphalt, concrete, soil appearance, odors, vegetation, backfill procedures and materials, etc.		
1											
						/	_		,,/(E)		
1					<u> </u>			A	7M V 7		
<u> </u>		1							1/190		
					<u> </u>	(// //		
	\			1							
		W_						-	No utiling clearance in Am		
<u> </u>									No citiciny clearance in Am		
<u> </u>									pulled holes in PM for Next pay. Also My compression i did calibration		
									DAY. Also Aly compression		
									i dio calibration		
								ļ.			
			-						•		
CONTRACTOR OF THE CONTRACTOR O			Tanaman de								
	NA PERMITTENE PARTY AND PROPERTY AND PROPERT	THE RESERVE AND ADDRESS OF THE PERSON ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON AD	opposite the second sec	т	nca-Orazintoto V soon	noare downto vividade			, a		

NOTES

7-8-98 ENSR 30418-000.

SG-2 Refusal at 6'- collected sample of liquid at SG2. Analyzed Head space for information only. No H.S. calibration done only collected and analyzed to satisfy myself.

	DAILY SUMM	IARY
DATE:	CLIENT:	JOB NUMBER:
7-8-9	8 ENSR	30418-000.5
WEATHER: Cloud	dy, hot	

FIELD	HOURS
Time on Site: Oboo	Lunch Hours 1.0
Time off Site:	Downtime Hours ¹
1845	Standby Hours ²
Client's signature verifying time on and off site:	Maybet Eldel
Billable Hours (office use only):	11.5 hours
NOTE: REPORT TIME	TO NEAREST 0.25 HOURS

DECONTAMINATION						
Probe Decontamination	Syringe Decontamination					
Total Hours:	Total Hours:					
Signature of verification by GC Operator:	Signature of verification by Field Assistant:					

SAMPLING AND ANALYSIS									
Calibration	Sampling	Analysis							
Time Start:	Vacuum used (Check one): Diaphram Transducer	Total System Blanks:							
Time End: 0900	Max Vacuum: (in Hg)	Total Ambient Air Samples:							
Total Hours:	Probes Used:	Total Analytical Blanks: # 3							
1.5 HRS	Points Used:	Total Water Blanks:							
	Soil Gas Samples Collected:	Water Samples Collected:							

^{1 -} Downtime includes time spent repairing sampling & analytical equipment; note times and explanation on following field data pages

Tracer Ressurch Corporation

²- Standby includes time available for sampling but waiting for client; note times and explanation on following field data pages

		<i>J</i> 64.					SA	M	PLING DATA
Date:	7/8/	198	,			ہمے			Job Number 30418-000,5
Locatio		<u>V</u>			- (-	PAR	WI	GA	(2.,) Client:
AI	RUC	PU,	100	= 301	15	45	11	VE	ENSR
	ental or E						te:		
TIME	SAMPLE NUMBER	D	PRO	PR	V A	E V	S	P O I	NOTES/ADD'L DATA REQUESTED BY CLIENT This includes, but is not limited to: description of sampling location and general area, ground conditions, asphalt, concrete, soil appearance, odors, vegetation, backfill
¥4		D E P T H	O B E	O B E	ממט	A C	A M P L E	N T S	ground conductors, aspaint, contract, soil appearance, onors, regelation, sactiffication procedures and materials, etc.
		FT	#	PUSH/ POUND	M (in Hg)	TIME (a)	VOL (œ)	USED	
	Si,		5	100			/	,	PIRT, GROVEL, ADED
9:37	//	18,5	<i>y</i>	1/80	//	60	6	/	,
1142	56 5th	6'	1	11	12	10	4	1	CONCRETE COVER, HERO FORMO (NESTREBURDINE) SOLVENT PRODUCT (66 BETUSAN (66
11.12	-/	مر		1.	3			,	CogCRETY CONEX FOUND (INSIPE)
14/1	563	35	1	16	2	30	8	/	KEFUSIOLEG'
1441	Sty	55	12	5.3/	42	30	8	1	CONCRETE COVER, FUSH 105.581.
		101	12	/	14	60	 	 	MEDIUM POUND INSIPE
1330	565	10.0		18.5	17	60	1	Į.	CONCRETE COVER, NOINE
162	566	17.5	1	195	6	45	8	7	FAS U (faundo
162	566	175	4	175	6	45	6	1	CONCRETE COVER, (NSIDE
		1	1	12/		19.		,	CONCRETE COVER, INSICE
1710	50-7	18.	July 1	16	5	30	6	/	ENSY JUST FROMNO
1740	568	18	11	16/25	13	60	8	1	ENSYFUSH & RAYNO
1.10	99	2010	1	8/	0	1/1	a	1	ENSTRUSH & BOUND CONCRETT COPER INSIDE HARDGOIND
1815	189	16,5	1/	7/0,5	17	100	1/	1/_	HOROGOMO
-								1	
<u> </u>		-	-		-		-	-	
	A	.							See notes for 7-7-98
									ners .
					To the same of the				
www.markensowwest									
					E CONTRACTOR OF THE PARTY OF TH			THE STREET STREET	
200	Ì	N		1				200000000000000000000000000000000000000	

DATE: JOB NUMBER:		DAILY SUMN	IARY
1-7-70 6105	DATE: 7-9-98	CLIENT: ENSR	JOB NUMBER: 304(8-000,5

FIELD	HOURS
Time on Site: 0600	Lunch Hours 15
Time off Site:	Downtime Hours ¹
1900	Standby Hours ²
Client's signature verifying time on and off site:	Sunful Ild
Billable Hours (office use only):	12,50 hours .
NOTE: REPORT TIME	E TO NEAREST 0.25 HOURS

DECONTA	MINATION
Probe Decontamination	Syringe Decontamination
Total Hours:	Total Hours:
Signature of verification by GC Operator:	Signature of verification by Field Assistant:

SAMPLING AND ANALYSIS								
Callbration	Sampling	Analysis						
Time Start: . 0630	Vacuum used (Check one): Diaphram Transducer	Total System Blanks:						
Time End: 07//	Max Vacuum: 2/ (in Hg)	Total Ambient Air Samples:						
Total Hours:	Probes Used:	Total Analytical Blanks: 3						
,75	Points Used: 15	Total Water Blanks:						
, , ,	Soil Gas Samples Collected: 15	Water Samples Collected:						

^{1 -} Downtime includes time spent repairing sampling & analytical equipment; note times and explanation on following field data pages

² - Standby includes time available for sampling but waiting for client; note times and explanation on following field data pages ·

SAMPLING DATA						
Date: 7-9-98	Job Number 3, 418 -000,5					
Location:	Client:					
AIRLIQUICE 3015, 45THAVE, GEORGYNAR.	ENSK					
I let Dontal on Futur Foreignment use on this Dates						

List Rental or Extra Equipment use on this Date:

TIME	SAMPLE	n	P	P	V	F	s	P	NOTES/ADD'L DATA REQUESTED BY CLIENT
- 11/115	SAMPLE NUMBER	DE P	P R O	P R O	Å C U	E V A	A M	P O I	This includes, but is not limited to: description of sampling location and general area, ground conditions, asphalt, concrete, soil appearance, odors, vegetation, backfill
	:	H	B E	B E	U	С	PLE	N	procedures and materials, etc.
1		FT	#	PUSH/ DOUND	M (s: (s:H	TIME (s)	VOL (œ)	USED USED	
		,]	,	15/_		1	<u> </u>	,	DIFTCOVER, OUTSIAE
0706	10	18,5	2	15.5	<i>1</i> 7	60	9	/	ENSY PUSH FROMP PLRT OOVER
10803	//	18.5	1	10/5	7	30	B	/	ENSY PUSH & BUND
838	12	16.0	/	12/4	۲>	30	\mathcal{E}	/	PIRT COVER EPSY P&F
	,		,	13/			8	1	PIRTCOVER
12905	13	jb,0	1	13/	5	30	0	/	E034 P&P.
Þ938	14	16.5	- /	8/8.5	5	30	7	1	CONCRETE COVER, OUTSIDE
1		, ,	,	/		0		- ,	EASY PUSH, EASY POUND CONCRETE OOVER
020	15		/		7	30	8	/	EBSYPER
1/00	16	165	1	12/5	9	45	8	1	ASPHALT COVER
1142	17	16.0	1	11/5	9	45	3	1	OIRT COVER EVEN PAP
1225	18	18.5	j	16/2.5		30	1	,	DIRTCOVER
			/		5	ال	6	/	EOSY Par
446	19	165	1	12/45	5	38	6	/	CONCRETE COVER INBIDE BUILDING EASY PEP
	-		,	12/			0	,	CONCRETE COVER, INSIDE
1810	20	165	1	145	10	43	8	/	cosy PFP
15:50	21	17	1	13/4	5	30	8	1	CONCRETE COVER, INSIDE EASY P&P
,	45	11 0	,	H/		222	8	,	CONCRETE COVER
1632	22	16.3	-	/5.5	-	30	-	'	ENSY PASH, HORD FOUND
17/2	2.3	17.0	1	16	5	36	Å	1	ENSY PAY
1714	23 sup	17,0	1	11/6	5	30	Я		" " Pup.
744	24.	17	1	15/2	8	60	7	1	DIRTCOVER ENSY PAP.
45	2404	17		15/2	8	60	7		DUP.
*19	25,	/6	/	14/2	7	60,	8	1	DIRT COVER ENGY RUSH, HORD POUND

Precision Analytical Laboratories addition of Aerotech Laboratories, Inc.

October 16, 2003

Basin & Range Hydrogeologists Phoenix, AZ 85008 2800 N 24th St Ray Craft

RECEIVED

BASIN & RANGE HYDROGEOLOGISTS

RE: Air Liquide/23018.016

Dear Ray Craft:

Order No.: 03091226

Precision Analytical Laboratories received 5 samples on 9/30/2003 for the analyses presented in the following report.

This report includes the following information:

- Analytical Report: includes test results, report limit (Limit), any applicable data qualifier (Qual), units, dilution factor (DF), and date analyzed.
 - QC Summary Report.

destroy this message and all attachments thereto. If you have any questions regarding these test applicable law. Dissemination, distribution, or copying of this communication by anyone other prohibited. If you have received this communication in error, please notify us immediately and contain information that is privileged, confidential, or otherwise exempt from disclosure under This communication is intended only for the individual or entity to whom it is directed. It may than the intended recipient, or a duly designated employee or agent of such recipient, is results, please do not hesitate to call.

Calibration

Marcia A. Smith
Vice President - Client Services

Precision Analytical Laboratories advisor of Aerotech Laboratories, Inc.

Precision Analytical Laboratories

Basin & Range Hydrogeologists Air Liquide/23018.016 CLIENT:

03091226

Lab Order:

Project:

Date: 17-0ct-03

CASE NARRATIVE

Samples were analyzed using methods outlined in references such as: Standard Methods for the Examination of Water and Wastewater, 19th Edition, 1995.

Methods for Chemical Analysis of Water and Wastes, EPA-600/4-79-020, Revised March 1983. Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW846, 3rd Edition.

40 CFR, Part 136, Revised 1995. Appendix A to Part 136 - Methods for Organic Chemical Analysis of Municipal and Industrial Wastewater.

NIOSH Manual of Analytical Methods, Fourth Edition, 1994. Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air, Second

Precision Analytical Laboratories (PAL) holds Arizona certification no. AZ0610 and PAL-Tucson holds Arizona certification no. AZ0609.

Industrial Hygiene Association (AIHA) in the industrial hygiene program for the analytical techniques noted on the scope of accreditation. PAL participates in the AIHA Environmental Lead Proficiency Aerotech Laboratories, Inc. (PAL division - Laboratory ID 154268) is accredited by the American Analytical Testing (ELPAT) program for lead in soil, paint chips and dust wipes.

Analytical Comments:

All method blanks and laboratory control spikes met EPA method and/or laboratory quality control objectives for the analyses included in this report.

Data Qualifiers:

Listed below are the data qualifiers used in your analytical report to explain any analytical or quality control issues. You will find them noted in your report under the column header "QUAL". Any quality control deficiencies that cannot be adequately described by these qualifiers will be addressed in the analytical comments section of this case narrative.

Sample required dilution due to high concentration of target analyte.

Precision Analytical Laboratories or division of Aerotech Laboratories, Inc.

Precision Analytical Laboratories, inc

Precision ,	Precision Analytical Laboratories	ries			Date:	Date: 16-Oct-03	-03
CLIENT	Basin & Range Hydrogeologists	prists			Client Samula ID - AT SG22,0603	A1.50	Offent Sample 10: A1 SG28-0603
Lab Order:	03091226	9			Tag Number: 00613	00613	
Project:	Air Liquide/23018,016				Collection Date:		9/30/2003 10:47:00 AM
Lab ID:	03091226-01A				Matrix: AIR	AIR	
Analyses	1	Result	Limit	Qual	Limit Qual Units	DF	Date Analyzed
VOLATILE OR	VOLATILE ORGANICS IN AIR	Τ	T015				Analyst: JG
1,1,1-Trichloroethane	athane	52	10	22	ngdd	30	10/1/2003
1,1,2,2-Tetrachloroethane	loroethane	< 10	10		nqdd	20	10/1/2003
1,1,2-Trichloroethane	sthane	< 10	49		ppbv	20	10/1/2003
1,1-Dichloroethane	ane	380	10	55	ndqqq	20	10/1/2003
1, 1-Dichloroethene	ene	1400	30	22	hpbv	90	10/1/2003
1,2,4-Trichlorobenzene	enzane	× 20	20		ppbv	20	10/1/2003
1,2,4-Trimethylbenzene	benzene	120	10	03	ppbv	20	10/1/2003
1,2-Dibromoethane	ane	< 10	10		hdpy	20	10/1/2003
1,2-Dichlorobenzene	zene	v 10	10		ydqq	20	10/1/2003
1,2-Dichloroethane	ane	4 10	10		v qdd	20	10/1/2003
1,2-Dichloropropane	рапе	۷ ب	10		ndqq	20	10/1/2003
1,3,5-Trimethylbenzene	benzene	27	10	23	yddg	20	10/1/2003
1,3-Butadiene		< 10	10		\qdd	20	10/1/2003
1,3-Dichlorobenzene	Izene	< 10	10		hdpd	20	10/1/2003
1,4-Dichlorobenzene	Izene	< 10	5		^qdd	20	10/1/2003
2,2,4-Trimethylpentane	pentane	11	10	2	,qdd	20	10/1/2003
2-Butanone (MEK)	EK)	150	20	05	hdpv	20	10/1/2003
2-Hexanone		< 20	8		yddd	20	10/1/2003
2-Propanol		< 20	20		ppbv	50	10/1/2003
4-Ethyltoluene		62	10	8	\ddd \ddd	20	10/1/2003
4-Methyl-2-pentanone	lanone	< 20	20		\qdd	20	10/1/2003
Acetone		< 100	100		ppbv	20	10/1/2003
Allyl chloride		o 10	10		ppbv	20	10/1/2003
Benzene		290	2	23	hpbv	20	10/1/2003
Benzył chloride		< 40	40		Aqdd	92	10/1/2003
Bromodichloromethane	nethane	< 10	10		hddd	50	10/1/2003
Brompethene(Vinyl Bromide)	fnyl Bromide)	× 10	2		hpóv	20	10/1/2003
Bromoform		× 10	10		ngdd	20	10/1/2003
Bromomethane		٠ 10	10		ndqq	50	10/1/2003
Carbon disuffide	n)	۲ 10	10		hphy	20	10/1/2003
Carbon tetrachloride	oride	× 10	10		ppbv	20	10/1/2003
Chlorobenzene		< 10	4		vdqq	20	10/1/2003
Chloroethane		4,10	\$		Aqdd	20	10/1/2003
Oblambana		,		1			

CLIENT	Basin & Range Hydrogeologists	ologiete		; \ :	Client Comple 10: 41 CG28 0003	A1 C.C.	1 8622 0002
Lab Order:	03091226			,	Tag Number: 00613	00613	00000
Project:	Air Liquide/23018.016				Collection Date: 9/30/2003 10:47:00 AM	9/30/20	103 10:47:00 AM
Lab D:	03091226-01A				Matrix: AIR	AIR	
Analyses		Result	Limit	Qual	Limit Qual Units	DF	Date Analyzed
VOLATILE ORGANICS IN AIR	SANICS IN AIR		T015				Analyst: JG
Dichlorotetrafluc	Dichlorotetrafluoroethane(F-114)	× 10	10		hpby	20	10/1/2003
Ethyl Acetate		× 10	10		Aqdd	20	10/1/2003
Ethylbenzene		200	10	20	Apdd	20	10/1/2003
Heptane		180	10	20	A qdd	20	10/1/2003
Hexachlorobutadiene	liene	× 20	8		Addd	50	10/1/2003
Hexane		120	10	2	Aqdd	20	10/1/2003
m&p-Xylene		999	82	8	Apdd	20	10/1/2003
Methyl tert-butyl ether	ether	66	8	22	ppbv	20	10/1/2003
Methylene chloride	de	× 10	10		Aqdd	20	10/1/2003
o-Xylene		150	5	22	Aqdd	20	10/1/2003
Propene (Propylene)	eue)	580	82	2	ndqq	20	10/1/2003
Slyrene		× 10	5		hddv	8	10/1/2003
Tetrachloroethene	Je	770	10	2	Aqdd	8	10/1/2003
Tetrahydrofuran		< 20	8		ppbv	20	10/1/2003
Toluene		990	10	22	лффd	20	10/1/2003
trans-1,2-Dichloroethene	oethene	< 10	5		ppbv	20	10/1/2003
trans-1,3-Dichloropropene	оргореле	¢ 10	10		hpbv	20	10/1/2003
Trichloroethene		280	10	25	hpbv	8	10/1/2003
Trichlorofluoromethane(F-11)	ethane(F-11)	270	10	2	Apdd	20	10/1/2003
Trichlorotrifluomethane(F-113)	ethane(F-113)	× 10	10		Aqdd	20	10/1/2003
Vinyl acetate		v 10	10		hpbv	20	10/1/2003
Vinyl chloride		4 10	10		^qdd	20	10/1/2003
Corn. d. Drom officershone							

5 - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

B - Analyte detected in the associated Method Blank) - Analyte detected below quantitation limits

ND - Not Detected at the Reporting Limit

Qualifiers:

Dichlorodifluoromethane(F-12)

10/1/2003

10/1/2003 10/1/2003 10/1/2003

8

10/1/2003 10/1/2003 10/1/2003

ឧឧឧឧឧឧឧ

ppbv ppbv ppbv ppbv ppbv ppbv

2 2 2 2 2 2 2

24 < 10 < 10 < 10 < 10 < 10 < 10

cis-1,3-Dichloropropene Dibromechloromethane

cis-1,2-Dichloroethene Chloromethane Chioroform

S - Spike Recovery outside accepted recovery limits R - RPD outside accepted recovery limits E - Value above quantitation range B - Analyte detected in the associated Method Blank i - Analyte detected below quantitation limits ND - Not Detected at the Reporting Limit Qualifiers:

B Corporate Address: 1501 W. Knutsken Drive, James Stoff Phones: 220.04.73.04.4500 Toll Free: 800.651.4802 Faz: 623.780.7865 www.aerbechster.com

R Main Laboratery, 4645 E. Coton Centre Roberterit Badding 3, Sufe 189 Phones, AZ 85940 Fhore: 602.437.3340 Toll Fire: 888.772.5227 Faz: 623.445.6192 www.palabas.com

R Tucson Fecility: 4455 S. Park Ans. Sie. 110 Tucson, AZ 86714 Fhone: 520.807.3801 Faz: 520.807.3807

^{*-} Value exceeds Maximum Contaminant Level opporable Address: 1501 W. Kondeste Drive, Press. Maximum Contaminant Level opporable Address: 1501 W. Kondeste Drive, Press. Address: 1501 W. Kondeste Drive, Press. Address: 1501 W. Kondeste Drive, Press. Address: Addres

Precision Analytical Laboratories adminor of Aerotech Laboratories, Inc.

P A L

Precision Analytical Laboratories and adminion of Aerotech Laboratories, Inc.

Date: 16-Oct-03

Precision Analytical Laboratories

Date: 16-Oct-03	Client Sample ID: AL-Air Field Blank-0903 Tag Number: 00222	Collection Date: 9/30/2003 11:45:00 AM Matrix: AIR	Limit Qual Units DF Date Analyzed
Date		Collection Date: 9/30/ Matrix: AIR	Limit Qual Units
Precision Analytical Laboratories	CLIENT: Basin & Range Hydrogeologists Client Sample ID: AL-Air Field Blank,0903 Lab Order: 03091226 Tag Number: 00222	Air Liquide/23018.016 03091226-02A	Result
Precision,	CLIENT: Lab Order:	Project: Lab ID:	Anulyses

VOLATILE ORGANICS IN AIR	ĭ	TO15			Analyst: 1G
f, f, f-Trichloroethane	< 0.50	0.50	Aqdd	γ -	10/1/2003
1,1,2,2-Tetrachloroethane	< 0.50	0.50	Addd	~	10/1/2003
1,1,2-Trichtoroethane	< 0.50	0.50	ppbv	-	10/1/2003
1,1-Dichloroethane	< 0.50	0.50	nqdd	4	10/1/2003
1,1-Dichloroethene	< 0.50	0.50	nqdd	-	10/1/2003
1,2,4-Trichlorobenzene	o.1.0	1.0	^qdd	-	10/1/2003
1,2,4-Trimethylbenzene	< 0.50	0.50	hpbv	•	10/1/2003
1,2-Dibromoethane	< 0.50	0.50	vdqq	•	10/1/2003
1,2-Dichlorobenzene	< 0.50	0.50	Apdd	-	10/1/2003
1,2-Dichloroethane	< 0.50	0.50	Addd	-	10/1/2003
1,2-Dichloropropane	< 0.50	0.50	\qdd	-	10/1/2003
1,3,5-Trimethylbenzene	< 0.50	0.50	^qdd	-	10/1/2003
1,3-Sutadiene	× 0.50	0.50	Aqdd	-	10/1/2003
1,3-Dichlorobenzene	< 0.50	0.50	hqdd	-	10/1/2003
1,4-Dichlorobenzene	> 0.56	0.50	Aqdd	-	10/1/2003
2,2,4-Trimethylpentane	< 0.50	0.50	Aqdd	-	10/1/2003
2-Butanone (MEK)	1.2	1.0	Aqdd	-	10/1/2003
2-Hexanone	< 1.0	1.0	vddq	-	10/1/2003
2-Propanol	< 1.0	٥.٢	ngdd		10/1/2003
4-Ethytlotuene	< 0.50	0.50	Addd		10/1/2003
4-Methyl-2-pentanone	< 1,0	1.0	Aqdd		10/1/2003
Acetone	19	5.0	۸qdd	4	10/1/2003
Allyl chlaride	× 0.50	0.50	nqdd	-	10/1/2003
Senzene	~ 0.50	0.50	Add d	-	10/1/2003
Benzyl chloride	< 2.0	2.0	nqdd	-	10/1/2003
Sromodichloromethane	< 0.50	0.50	hpp	-	10/1/2003
Sromoethene(Vinyl Bromide)	< 0.50	0.50	nqdd	-	10/1/2003
Bromoform	< 0.50	0.50	Aqdd .		10/1/2003
Bromomethane	< 0.50	0.50	ngdd	-	10/1/2003
Carbon disulfide	< 0.50	0.50	Addd	-	10/1/2003
Carbun tetrachloride	< 0.50	0.50	hppv	~	10/1/2003
Chlorobanzene	< 0.50	0.50	Agdd	-	10/1/2003
Chlaroethane	< 0.50	0.50	hpby	•	10/1/2003
Chloroform	< 0.50	0.50	Addd	-	10/1/2003
Chloramethane	0,74	0.50	\qdd	-	10/1/2003
cis-1,2-Dichloroethene	< 0.50	0.50	^qdd	۲	10/1/2003
cis1,3-Dichloropropene	< 0.50	0.50	\qdd	τ-	10/1/2003
Cyclohexane	< 0.50	0.50	vadq	-	10/1/2003
Dibromochtoromethane	< 0.50	0.50	ngdd	,-	10/1/2003
Dichlorodifluoromethane(F-12)	0.74	0.50	Addd	~	10/1/2003

S - Spike Recovery outside accepted recovery limits	ny outside acce	S - Spike Recove		Reporting Limit	ND - Not Detected at the Reporting Limit	Qualifiers:
					The second secon	
10/1/2003	~	ppbv	0.50	0.74	Dichlorodifluoromethane(F-12)	Dichlorodiflue
10/1/2003	,-	Aqdd	0.50	< 0.50	omethane	Dibromochioromethan
10/1/2003		ngdd	0.50	< 0.50		Cyclonexane

ate Address; 1501 W. Knudsen Diffe. Pressinum Contaminant Level and Toll Free: 800.651.4802 Fax: 623.780.7855 www.aerdechiabs.com aboratory: 4545 E. Cotton Center Boulevard, Building 3. State 198 Phoenix, AZ 8540 Phoenis, AZ 8540 Phoenis, AZ 8540 Phoenis, AZ 8540 Phoenis, AZ 8540 Phoenis 602.487.3340 Toll Free: 685.772.5227 Fax, 623.445.6192 www.peaths.com | Facility: 4455 S. Pafk Ave. Ste. 110 Tucson, AZ 85714 Phone: 520.807.3801 Fax: 620.807.3802

R - RPD outside accepted recovery limits

E - Value above quantitation range

B - Analyte detected in the associated Method Blank J - Analyte detected below quantitation limits

CLIENT: Lab Order:	Basin & Range Hydrogeologists	ologists		Client Sample ID:	nple ID:	AL-Air	Client Sample ID: AL-Air Field Blank-0903
Project:	Air Liquide/23018.016			Collection	lag number: 00222 Hection Date: 9/30/2	9/30/20	Lag Number: 00222 Collection Date: 9/30/2003 11:45:00 AM
Cab ID:	03091226-02A				Matrix: AIR	AIR	
۱		Result	Limit	Qual Units		DF	Date Analyzed
OLATILE OR	VOLATILE ORGANICS IN AIR		TO15				Analyst: JG
Dichlorotetraflu	Dichlorotetrafluoroethane(F-114)	< 0.50	0.50	vdqqq		-	10/1/2003
Ethyl Acetate		< 0.50	0.50	vdqqq		-	10/1/2003
Ethylbenzene		< 0.50	0.50	Aqdd			10/1/2003
Heptane		< 0.50	0.50	^qdd			10/1/2003
Hexachlorobutadiene	diene	× 1.0	1.0	vddd		-	10/1/2003
Hexane		0.63	0.50	vdqqq		,	10/1/2003
m&p-Xylene		o.1.o	1.0	yddd			10/1/2003
Methyl tert-butyl ether	l ether	1.2	1.0	vdqqq			10/1/2003
Methylene chloride	ide	< 0.50	0.50	oppo			10/1/2003
o-Xylene		< 0.50	0.50	v qdd			16/1/2003
Propene (Propylene)	(ene)	2.4	1.0	hpby		-	10/1/2003
Styrene		< 0.50	0.50	^qdd			10/1/2003
Tetrachloroethene	ne	< 0.50	0.50	hppv		_	10/1/2003
Tetrahydrofuran		× 1.0	1.0	pppv		-	10/1/2003
Toluene		2.0	0.50	Appl		_	10/1/2003
trans-1,2-Dichloroethene	roethene	< 0.50	0.50	ppbv		-	10/1/2003
trans-1,3-Dichloropropene	ropropene	< 0.50	0.50	nqdd		_	10/1/2003
Trichloroethene		< 0.50	0.50	Agdd		, -	10/1/2003
Trichlorofluoromethane(F-11)	ethane(F-11)	< 0.50	0.50	vqdd			10/1/2003
Trichlorotriffuoroethane(F-113)	sethane(F-113)	< 0.50	0.50	ngdd .			10/1/2003
Vinyl acetate		< 0.50	0.50	vdqqq		-	10/1/2003
Vinyl chloride		< 0.50	0.50	^qdd		,	10/1/2003
Corn A Demodiscrebonnes							

 S - Spike Recovery outside accepted recovery limits	R - RPD outside accepted recovery limits	E - Value above quantitation range
ers: ND - Not Detected at the Reporting Limit	J - Analyte detected below quantitation limits	B - Analyte detected in the associated Method Blank
Qualifie		

[©] Coporate Address: 1501 W. Knudsen Divel, Pubmid, Adjona Book Sept. 2018 10 Fee. 800 551.4802 Faz: 623.780,7805 www.aerbechtebas.com

■ Main Laboranopy, 4645 E. Cotton Center Boulevard, Builde 189 Phonesis, AZ 85449 Phones: 622.677.3546 101 Fines: 686.772.5227 Faz. 623.445.5192 www.pelabas.com

Precision Analytical Laboratories, Inc. a division of *Aerotech Laboratories*, Inc.

Precision Analytical Laboratories Inc.

Date: 16-Oct-03	Client Sample ID: AL-SG29-0903	Tag Number: 00734	Collection Date: 9/30/2003 12:36:00 PM	Matrix: AIR	DF Date Analyzed
	Client S	Tag	Collec		Limit Qual Units
					Limit Qual
	*** *** ***				Limit
Precision Analytical Laboratories	Basin & Range Hydrogeologists	03091226	Air Liquide/23018.016	03091226-03A	Result
Precision	CLENT	Lab Order:	Project:	Lab ID:	Analyses

Analyses	Result	Limit	Onal	Limit Qual Units	DF	Date Analyzed
VOLATILE ORGANICS IN AIR		TO15				Analyst: JG
1,1,1-Trichtoroethane	25	10	22	ngdd	50	10/1/2003
1,1,2,2-Tetrachioroethane	< 10	40		\qdd	20	10/1/2003
1,1,2-Trichloroethane	< 10	무		Addd	23	10/1/2003
1,1-Dichloroethane	430	9	55	hddq	20	10/1/2003
1,1-Dichloroethene	910	10	02	vddq	50	10/1/2003
1,2,4-Trichlarobenzene	× 50	20		v ddd	50	10/1/2003
1,2,4-Trimethylbenzene	49	10	22	yddd	20	10/1/2003
1,2-Dibromoethane	< 10	10		vqdd	82	10/1/2003
1,2-Dichlorobenzene	< 10	10		hpbv	20	10/1/2003
1,2-Dichloroethane	ot >	10		۸ qd d	20	10/1/2003
1,2-Dichloropropane	× 10	10		vdqq	20	10/1/2003
1,3,5-Trimethylbenzene	1	2	22	yddd	20	10/1/2003
1,3-Butadiene	× 10	10		hpbv	20	10/1/2003
1,3-Dichlorobenzene	< 10	22		yddd	8	10/1/2003
1,4-Dichlorobenzene	× 10	10		oppo	20	10/1/2003
2,2,4-Trimethylpentane	۷ ک	12		vdqqq	20	10/1/2003
2-Butanone (NEK)	< 20	50		Apdd	50	10/1/2003
2-Hexanone	< 20	20		App v	20	10/1/2003
2-Propanol	< 20	20		yddd	23	10/1/2003
4-Ethylioluene	23	10	D2	hpby	20	10/1/2003
4-Methyl-2-pentanone	< 20	20		ppbv	20	10/1/2003
Acetone	140	100	55	hqdd	20	10/1/2003
Allyl chloride	< 10	유		vdqq	50	10/1/2003
Benzene	10	10	05	yddd	50	10/1/2003
Benzyi chloride	< 40	40		hpbv	50	10/1/2003
Bromodichloromethane	< 10	10		\qdd	20	10/1/2003
Bromoethene(Vinyl Bromide)	< 10	40		∧qdd	20	10/1/2003
Bromoform	< 10	10		۸qdd	50	10/1/2003
Bromomethane	v 10	10		∆qdd	20	10/1/2003
Carbon disulfide	< 10	10		vdqq	20	10/1/2003
Carbon tetrachloride	v 10	10		ppbv	50	10/1/2003
Chlorobenzene	< 10	10		nddd	50	10/1/2003
Chloroethane	× 10	10		hpbv	50	10/1/2003
Chloreform	31	9	20	ppbv	8	10/1/2003
Chloromethane	< 10	19		ppbv	20	10/1/2003
cis-1,2-Dichloroethene	20	10	07	ppbv	50	10/1/2003
cis-1,3-Dichloropropene	v 10	10		yddd	20	10/1/2003
Cyclonexane	× 10	2		hpbv	50	10/1/2003
Olivomochloromethane	< 10	10		vdqqq	20	10/1/2003
Dichlorodifluoromethane(F-12)	< 10	10		∧qdd	8	10/1/2003

20 10/1/2003	cepted recovery limits	overy limits	5000
10 ppbv 20	S - Spike Recovery outside accepted recovery limits	R - RPD outside accepted recovery limits	E - Value above quantitation range
			يد
₽L >	e Reporting Limit	ow quantitation limits	B - Analyte detected in the associated Method Blank
JICHORODHILOROTHEBRAR(F-1.2)	ND - Not Detected at the Reporting Limit	 J - Analyte detected below quantitation limits 	B - Analyte detected in
Ulchaorodinuon	Qualifiers:		

a constant thing then Limbus atolics	•						
CLIENT:	Basin & Range Hydrogeologists	logists	1	. .	Client Sample ID: AL-SG29-0903	D: AL-S(Sample ID: AL-SG29-0903
Lab Order:	03091226				Tag Number: 00734	r: 00734	
Project:	Air Liquide/23018.016				Collection Dat	e: 9/30/2	Collection Date: 9/30/2003 12:36:00 PM
Cab D:	03091226-03A				Matri	Matrix: AJR	
Analyses		Result	Limit	Qua	Limit Qual Units	DF	Date Analyzed
VOLATILE OR	VOLATILE ORGANICS IN AIR		TO15				Analyst: JG
Dichlorotetrafiu	Dichlorotetrafluoroethane(F-114)	v 10	10		hppv	50	10/1/2003
Ethyl Acetate		< 10	10		Aqdd	50	10/1/2003
Ethylbenzene		40	5	22	Aqdd	20	10/1/2003
Heptane		5	0		vdqqq	50	10/1/2003
Hexachiorobutadiene	adiene	₹ 50	29		^qdd	50	10/1/2003
Hexane		۸ 10	10		Addd .	50	10/1/2003
m&p-Xylene		170	20	22	ppbv	20	10/1/2003
Methyl tent-butyl ether	l ether	< 20	20		Aqdd	50	10/1/2003
Methylene chloride	ride	× 10	유		hpbv	50	10/1/2003
o-Xylene		42	10	22	hdpv	20	10/1/2003
Propere (Propylene)	dene)	50	20	05	Addd	20	10/1/2003
Styrene		4 10	10		Aqdd	20	10/1/2003
Tetrachloroethene	ane ane	6000	100	ដ	nqdd	200	10/1/2003
Tetrahydrofuran	-	, 20 20	20		ngdd	20	10/1/2003
Toluene		110	0	05	nqdd	8	10/1/2003
trans-1,2-Dichloroethene	proethene	۸ 10	10		hpby	50	10/1/2003
trans-1,3-Dichloropropene	propropene	v 10	10		Addd	50	10/1/2003
Trichloroethene		670	5	2	Addd	50	10/1/2003
Trichlorofluoromethane(F-11)	nethane(F-11)	150	5	22	Agdd	20	10/1/2003
Trichlorotrifluon	richlorotrifluoroethane(F-113)	× 10	10		Apdd	50	10/1/2003
Vinyl acetate		× 10	10		Aqdd	50	10/1/2003
Vinyl chloride		< 10	10		\chiqdd	20	10/1/2003
Surr: 4-Brom	Surr: 4-Bromofluorobenzene	901	70-130		%REC	50	10/1/2003

S - Spike Recovery outside accepted recovery limits R - RPD outside accepted recovery limits E - Value above quantitation range \boldsymbol{B} - Analyte detected in the associated Method Blank J - Analyte detected below quantitation limits ND - Not Detected at the Reporting Limit Qualifiers:

Page 6 of 10

■ Corporate Address: 1501 W. Krustein Directories, Proceedings of the Control of Page 100 651 4802 Fear E02 578 778 578 Www.aerobachstein.com

■ Main Laboratory: 4445 E. Corton Center Bodaward, Building 3, Sulte 189 Phresis, AZ 8549 Phresis, 602 4573 5540 Toll Fres: 862,772 5227 Fax, 623 445,8192 www.paintas.com P. Value exceeds Maximum Contaminant Level opportunity of 10 Page 5 of 10 approaches Address: 1501 W. Knutsen Drive. Promise, Action 3627 Promer 527,1804,800 Toll Free: 800.651,4802 Face 623.780,1805 www.aerohechebs.com lain Laboratory; 4445 E. Cotan Center Boulevard, Building 3, Sufa 169 Proente, AZ 56040 Proner 602.487,3340 Toll Free: 869.772,2227 Far. 623,445,6192 www.palabs.com ucson Facility; 4455 S. Park Ave. Ste. 110 Tucson, AZ 65714 Phones: 520.807,3803 Fax. 520.807,3803

Precision Analytical Laboratories addition of Aeroteck Laboratories, Inc.

Client Sample ID: AL-Air Equipment Blank-0903

Basin & Range Hydrogeologists

Air Liquide/23018.016 03091226-04A

03091226

Lab Order:

Lab D:

Project.

Analyses

CLIENT:

Precision Analytical Laboratories

Date: 16-Oct-03

Collection Date: 9/30/2003 1:26:00 PM

Limit Qual Units

Result

TO15

/OLATILE ORGANICS IN AIR

1,1,2,2-Tetrachloroethane

1,1,2-Trichloroethane

1,1-Dichloroethane 1,1-Dichloroethene

Tag Number: 00235 Matrix: AIR ÐF

< 0.50 < 0.50 < 0.50 < 0.50 < 1.0 < 1.0 < 0.50

1,2.4-Trichlorobenzene 1.2.4-Trimethylbenzene

< 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50

1.3,5-Trimethylbenzene

1.2-Dichforopropane

1,2-Dichlorobenzene

1,2-Dibromoethane 1,2-Dichloroethane

Precision Analytical Laboratories, Inc.

Precision Analytical Lahoratories

Precision	Precision Analytical Laboratories	Date:	Date: 16-Oct-03
CLIENT:	Basin & Range Hydrogeologists	Client Sample ID:	Client Sample ID: AL-Air Equipment Blank
Lab Order:	03091226	Tag Number: 00235	00235
Project:	Air Liquide/23018.016	Collection Date:	Collection Date: 9/30/2003 1:26:00 PM
Lab ID:	03091226-04A	Matrix: AIR	AIR
Analyses	Result	Limit Qual Units	DF Date Analyzed

Date Analyzed	Analyses	Result	Limit Qual Units	nal Units	DF	Date Analyzed
Analyst: JG	VOLATILE ORGANICS IN AIR	-	TO15			Analyst IS
10/1/2003	Dichlorotetrafluoroethane(F-114)	< 0.50	0.50	Add d	•	10/1/2003
10/1/2003	Ethyl Acetate	< 0.50	05'0	hppv	-	10/1/2003
10/1/2003	Ethylbenzene	7	0.50	vdqq	-	10/1/2003
10/1/2003	Heptane	< 0.50	0.50	nqdd	-	10/1/2003
10/1/2003	Hexachlorobutadiene	< 1.0	1.0	hppv	,	10/1/2003
10/1/2003	Hexane	0.61	0.50	Aqdd	-	10/1/2003
10/1/2003	m&p-Хуlene	4.2	1.0	Addd	-	10/1/2003
10/1/2003	Methyl tert-butyl ether	1.5	1.0	v qdd	-	10/1/2003
10/1/2003	Methylene chloride	< 0.50	0.50	Aqdd	•	10/1/2003
10/1/2003	o-Xylene	1,4	0.50	Aqdd		10/1/2003
10/1/2003	Propene (Propylene)	3,1	1.0	Aqdd		10/1/2003
10/1/2003	Styrene	< 0.50	0.50	App	-	10/1/2003
10/1/2003	Tetrachloroethene	0.58	0.50	hpp	-	10/1/2003
19/1/2003	Tetrahydrofuran	< 1.0	1,0	Aqdd	-	10/1/2003
10/1/2003	Toluene	4.2	0.50	Agdd	-	10/1/2003
10/1/2003	trans-1,2-Dichloroethene	< 0.50	0.50	Aqdd	-	10/1/2003
10/1/2003	trans-1,3-Dichloropropene	< 0.50	0.50	ppbv	-	10/1/2003
10/1/2003	Trichloroethene	< 0.50	0.50	^qdd	-	10/1/2003
10/1/2003	Trichlorofluoromethane(F-11)	< 0.50	0.50	^qdd	-	10/1/2003
10/1/2003	Trichlorotrifluoroethane(F-113)	< 0.50	0.50	Addd .	-	10/1/2003
10/1/2003	Vinyl acetate	< 0.50	0.50	hpbv	-	10/1/2003
10/1/2003	Vinyl chloride	< 0.50	0.50	Addd		10/1/2003
10/1/2003	Surr, 4-Bromofluorobenzene	101	70-130	%REC	-	10/1/2003
10/1/2003						
10/1/2003						

ppbv

1.0 0.50 1.0 0.50

1.4 × 1.0 × 1.0 × 0.50

12 < 0.50

1,4-Dichlorabenzene 2,2,4-Trimethylpentanæ 2-Butanone (MEK)

1,3-Dichlorobenzene

1,3-Butadiene

10/1/2003 10/1/2003 10/1/2003 10/1/2003 10/1/2003

ppby yddq

0.50

22

× 1.0 59 × 0.50

1-thlethyl-2-pentanone

LEthyloquene

2-Hexanone 2-Propanol habby valqqq

Bromoethene(Vinyl Bromide)

Вготногоят

Bromodichloromethane

Benzyi chloride

Allyi chloride

Benzene

10/1/2003 10/1/2003 10/1/2003 10/1/2003 10/1/2003

Λqdd ppbv

0.96 - 2.0 - 2.0 - 0.50 -

Carbon tetrachloride

Chlorobenzene

Chloroethane

Carbon disulfide **Sromomethane**

10/1/2003 10/1/2003 10/1/2003 10/1/2003

10/1/2003 0/1/2003

Dichtorodifluoromethane(F-12)

cis-1,3-Dichloropropene Dibromochloromethane

Cyclohexane

cis-1,2-Dichloroethene

Chipromethane

S - Spike Recovery outside accepted recovery limits	R - RPD outside accepted recovery limits	E - Value above quantitation range
ND - Not Detected at the Reporting Limit	J - Analyte detected below quantitation limits	B - Analyre detected in the associated Method Blank
 Qualifiers:		

S - Spike Recovery outside accepted recovery limits R - RPD outside accepted recovery limits E - Value above quantitation range B - Analyte detected in the associated Method Blank I - Analyte detected below quantitation limits ND - Not Detected at the Reporting Limit Qualitiers:

Page 8 of 10

Copporate Address: 1501 W. Knutsen DAVA Backman Contaminant Lovel

Copporate Address: 1501 W. Knutsen DAVA, DAVA BACKTY Phone 237,780,4800 Toll Free: 800.651.4802 Face 623.780.7805 www.senteachabac.mom

R Main Laboratory: 4645 E. Cotton Center Boulevert, Blanking 3, Suhr May Brocent, A.2.8040 Proces: 602.437.3340 Toll Free: 868.772.5227 Fac. 622.448.6182 www.pelabac.com

R Tucson Facility: 4455 S. Park Ave. Sig. 110 Tucson, AZ 65714 Phone: 520.8973801 Fac. 520.8973803

Precision Analytical Laboratories advision of Aerotech Laboratories, Inc.

Precision Analytical Laboratories, Inc. a division of Aerotech Laboratories, Inc.

CLIENT: Be Lab Order: 03 Project: Ai Lab ID: 03 Analyses	Basin & Range Hydrogeologists	logists		0	Client Samula ID: A7 SG30 0003	AL-SC	G30-0903
roject: Ai ab ID: 03 Analyses	0//-				Tot Number	00100	77.70
Analyses	Air Liquide/23018.016				Collection Date:	9/30/2	9/30/2003 2:27:00 PM
Analyses	03091226-05A			- 1	Matrix:	AIR	
		Result	Limit	Qual	Units	DF	Date Analyzed
VOLATILE ORGANICS IN AIR	CS IN AIR		T015				Analyst: JG
1,1,1-Trichloroethane			10	D2	vdqq	20	10/1/2003
1,1,2,2-Tetrachloroethane	sane	< 10	10		yddd	20	10/1/2003
1,1,2-Trichloroethane		v 10	10		ndqq	20	10/1/2003
1,1-Dichloroethane		480	10	D2	Aqdd	20	10/1/2003
1,1-Dichloroethene		840	100	DZ	ppbv	200	10/1/2003
1,2,4-Trichlorobenzene	œ.	× 20	8	i	,qdd	50	10/1/2003
1,2,4-Inmelhylbenzene	96	٤ :	₽ :	22	, Addd	8 :	10/1/2003
1,2-Uibroimoethane		0 9	₽ ;		^qdd	8	10/1/2003
1 2-Dichlomethan		2 5	2 5		yapa	2 6	10/1/2003
1,2-Dichloropropane		. v	2 ₽		a dec	3 5	10/1/2003
1,3,5-Trimethylbenzene	ą.	. 2	2 2	D2	, add	2 2	10/1/2003
1,3-Butadiene		> 10	9		ngdd	20	10/1/2003
1,3-Dichlorobenzene		v 10	9		, addd	20	10/1/2003
1,4-Dichlorobenzene		< 10	10		^qdd	20	10/1/2003
2,2,4-Trimethylpentane	ø.	< 10	10		hpbv	30	10/1/2003
2-Butanone (MEK)		< 20	20		Add	50	10/1/2003
2-Mexanone		< 20	20		∧ qd d	20	10/1/2003
2-Propanol		< 20	50		v qdd	20	10/1/2003
4-Ethyltoluene		35	9	05	Addd	70	10/1/2003
4-Methyl-Z-pentanone		250	20		۸qdd	50	10/1/2003
Acetone		220	190	22	^qdd	20	10/1/2003
Allyl chlonde		2 1	₽ :	1	Agdd	20	10/1/2003
Senzene		90	₽ 9	D2	\ddd .	50	10/1/2003
oencyi cinoine		9	04		Agad	25	10/1/2003
Sromodicalorometriane	92	2 .	₽ :		مqdd .	8	10/1/2003
plomoentere (viry) blomide)	omide)	⊋ ;	2 :		, Agdd	200	10/1/2003
Diomontin		2 9	2 \$		Apdd	8 :	10/1/2003
promorpemane O-1-1-1-16-1-		<u>⊋</u> :	<u>P</u>		Agdd .	20	10/1/2003
Carbon distunde		2 :	2		Agdd	20	10/1/2003
Carbon tetrachionide		0 V	9		hqdd	20	10/1/2003
Chioropenzene		2 : V	₽ 9		, Addd	20	10/1/2003
Silving and an arrangement of the control of the co		2 8	2 :	1	vedq	50	10/1/2003
Chicatorina		Q :	2 :	22	Agdd	20	10/1/2003
Chloroffeedane		≘ : v	₽ :		Agdd	8	10/1/2003
zis-1,2-Dichleroethene		2 9	₽ 9		, Agdd	50	10/1/2003
cis-1,3-Dichloroproper	9	2 9	2 ;		, Agdd	202	10/1/2003
Cyclonexane		2 9	2 5		Agdd	20	10/1/2003
Coordinamentaliane	į	⊋ :	2		ngdd	03	10/1/2003
Dichlorodifluoromethane(F-12)	ne(F-12)	v 10	10		ngdd	20	10/1/2003

S - Spike Recovery outside accepted recovery limits	R - RPD outside accepted recovery limits	E. Vatue above quantitation range	Page 9 of 10 Toll Five: 802.651.4802 Fax: 622.780.7895 www.serotechialas.com Phone: 602.437.3340 Toll Five: 866.772.5227 Fax: 623.445.5192 www.palabs.com 520.807.3803
Qualiflers: ND - Not Detected at the Reporting Linut	 J - Analyte detected below quantitation limits 	\dot{B} - Analyte detected in the associated Method Blank	Page 9 of 10 superate Address: 1501 W. Knudsen Dive, Practical Maximum Contaminant Level 222,780.4800 Toll Free: 800.851.4802 Fax: 623.780.7865 www.aerotechnlabs.com slit Laboratory: 4845 E. Cotton Center Boulevard, Building 3, Suite 198 Phoenix, AZ 85040 Phone: 602.437.3340 Toll Free: 868.772.5227 Fax: 422.445.5182 www.palabs.com issen Fedility: 4455 S. Park Are. Ste. 110 Tucson, AZ 85714 Phone: 520.807.3801 Fax: 520.807.3803

*		į					
	Basin & Range Hydrogeologists	ologísts		. 0	Client Sample ID: AL-SG30-0903	AL SG3(0-0903
Lab Order:	03091226				Tag Number: 00189	68100	
Project:	Air Liquide/23018.016				Collection Date: 9/30/2003 2:27:00 PM	9/30/200	3 2:27:00 PM
Lab ID:	03091226-05A				Matrix: AIR	AIR	
Analyses		Result	Limit	Qual	Limit Qual Units	DF	Date Analyzed
OLATILE OR	VOLATILE ORGANICS IN AIR		T015				Analyst: JG
Dichlorotetraftu	Dichlorotetrasuccoethane(F-114)	< 10	10		Aqdd	50	10/1/2003
Ethyl Acetate		< 10	10		ndqq	50	10/1/2003
Ethylbenzene		8	10	22	Aqdd	50	10/1/2003
Heptane		49	5	22	ppbv	20	10/1/2003
Hexachlorobutadiene	diene	< 20	2		vdqq	20	10/1/2003
Hexane		32	10	ä	Aqdd	20	10/1/2003
måp-Xylene		370	20	8	yddd	8	10/1/2003
Methyl tert-butyl ether	iether	< 20	20		yddg	8	10/1/2003
Methylene chloride	ride	× 10	₽		, qdd	8	10/1/2003
o-Xylene		86	5	5	vdqq	50	10/1/2003
Propene (Propylene)	dene)	71	50	2	hpbv	8	10/1/2003
Styrene		× 10	10		nddd	50	10/1/2003
Tetrachloroethene	ine	4100	100	55	Addd	200	10/1/2003
Tetrahydrofuran	_	< 20	20		Add	29	10/1/2003
Toluene		470	9	77	^qdd	50	10/1/2003
trans-1,2-Dichloroethene	proethene	× 10	10		^qdd	20	10/1/2003
trans-1,3-Dichloropropene	oropropene	× 10	10		^qdd	50	10/1/2003
Trichtoroethene		640	5	22	ppbv	50	10/1/2003
Trichlorofluoromethane(F-11)	nethane(F-11)	400	5	8	vdqq	20	10/1/2003
Trichiorotrifluor	Trichtorotrifluoroethane(F-113)	× 10	9		ngdd	20	10/1/2003
Vinyl acetate		× 10	5		yddd	50	10/1/2003
Vinyt chloride		< 10	유		yddd	8	10/1/2003
Surr: 4-Brom	Surr: 4-Bromofluorobenzene	102	70-130		%REC	20	10/1/2003

S - Spike Recovery outside accepted recovery limits R - RPD outside accepted recovery limits E . Value above quantitation mage B - Analyte detected in the associated Method Blank J - Analyte detected below quantitation limits ND - Not Detected at the Reporting Limit Qualifiers:

[&]quot;. Value exceeds Maximum Contaminant Level

E coporate Address: 1501 W. Knisse Debests Assess Services Services

Precision Analytical Laboratories, Inc.

CLIENT:

Basin & Range Hydrogeologists

Work Order: 03091226

Project: Air Liquide/23018.016 ANALYTICAL QC SUMMARY REPORT

TestCode: TO15

Sample ID MB-R39641	SampType:	MBLK	TeslCo	de: TO15	Units: ppbv		Prep Da	ite:		Run ID: MS	05_0310014	4
Client ID: ZZZZZ	Batch ID:	R39641	Testi	No: TO15			Analysis Da	ile: 10/1/2	003	SeqNo: 460	3578	
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Bromoform		< 0.50	0.50		***************************************							
Bromomethane		< 0.50	0.50									
Carbon disuifide		< 0.50	0.50									
Carbon tetrachloride		< 0.50	0.50									
Chlorobenzene		< 0.50	0.50									
Chicrosthane		< 0.50	0.50									
Chloroform		< 0.50	0.50									
Chioromethane		< 0.50	0.50									
cis-1,2-Dichloroethene		< 0.50	0.50									
cis-1,3-Dichloropropene		< 0.50	0.50									
Cyclohexane		< 0.50	0.50									
Dibromochioromethane		< 0.50	0.50									
Dichlorodifluoromethane(F-12)		< 0.50	0.50									
Dichlorotetrafluoroethane(F-114)		< 0.50	0.50									
Ethyl Acetate		< 0.50	0.50									
Elhylbenzene		< 0.50	0.50									
Heptane		< 0.50	0.50									
Hexachlorobutadiene		< 1.0	1.0									
Hexane		< 0.50	0.50									
m&p-Xylene		< 1,0	1.0									
Methyl tert-butyl ether		< 1.0	1.0									
Methylene chloride		< 0.50	0.50		15							
o-Xylene		< 0.50	0.50									
Propene (Propylene)		< 1.0	1.0									
Styrene		< 0.50	0.50									
Tetrachioroethene		< 0.50	0.50									
Tetrahydrofuran		< 1.0	1.0									
Toluene		< 0.50	0.50									

Qualifiers:

ND - Not Detected at the Reporting Limit

S - Spike Recovery outside accepted recovery limits

B - Analyte detected in the associated Method Blank

J - Analyte detected below quantitation limits

R - RPD outside accepted recovery limits

Corporate Address: 1501 W. Knudsen Drive, Phoenix, Arizona 85027 Phone: 623.780.4800 Toll Free: 806.651.4802 Fax: 623.780.7695 www.aerotechlabs.com
Main Laboratory: 4645 E. Cotton Center Boulevard, Building 3, Suite 189 Phoenix, AZ 85040 Phone: 602.437.3340 Toll Free: 866.772.5227 Fax: 623.445.6192 www.palabs.com
Tucson Facility: 4455 S. Park Ave. Ste. 110 Tucson, AZ 85714 Phone: 520.807.3801 Fax: 620.807.3803

Precision Analytical Laboratories

Date: 16-Oct-03

Basin & Range Hydrogeologists 03091226

Work Order: Project:

Air Liquide/23018.016

ANALYTICAL QC SUMMARY REPORT

TestCode: TO15

Sample ID MB-R39641	SampType: MBLK	TestCo	de: TO15	Units: ppbv		Prep Da	ite:		Run ID: MS	605 <u>_</u> 031001 <i>A</i>	4
Client ID: ZZZZZ	Batch ID: R39641	Test	No: TO15			Analysis Da	ile: 10/1/2	003	SeqNo: 46	3578	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLImit	Qual
1,1,1-Trichloroothane	< 0.50	0.50									
1,1,2,2-Tetrachloroethane	< 0.50	0.50									
1,1,2-Trichloroethane	< 0.50	0.50									
1.1-Dichlaroethane	< 0.50	0.50									
1,1-Dichloroethene	< 0.50	0.50									
1,2,4-Trichlorobenzene	< 1.0	1.0									
1,2,4-Trimethylbenzene	< 0.50	0.50									
1,2-Dibromoethene	< 0.50	0.50									
1,2-Dichlorobenzene	< 0.50	0.50									
,2-Dichloroethane	< 0.50	0.50									
,2-Dichloropropane	< 0.50	0.50									
.3,5-Trimethylbenzene	< 0.50	0.50									
,3-Butadlene	< 0.50	0.50									
,3-Dichlorobenzene	< 0.50	0.50									
,4-Dichlorobenzene	< 0.50	0.50									
2,4-Trimethylpentane	< 0.50	0.50									
-Butanone (MEK)	< 1.0	1.0									
-Hexanone	< 1.0	1.0									
-Propanol	< 1.0	1.0									
-Ethyltoluene	< 0.50	0.50									
-Methyl-2-pentanone	< 1.0	1.0									
cetone	< 5.0	5.0									
lly) chloride	< 0.50	0.50									
enzene	< 0.50	0.50									
enzyl chloride	< 2.0	2.0									
romodichloromethane	< 0.50	0.50									
Bromoethene(Vinyl Bromide)	< 0.50	0.50									

ND - Not Detected at the Reporting Limit I - Analyte detected below quantitation limits

S - Spike Recovery outside accepted recovery limits

B - Analyte detected in the associated Method Blank

Page 1 of 8

Precision Analytical Laboratories

CLIENT: Project:

Basin & Range Hydrogeologists

Work Order: 03091226

Air Liquide/23018.016

ANALYTICAL QC SUMMARY REPORT

TestCode: TO15

Sample ID LCS-R39641	SampType: LCS	TestCo	de: TO15	Units: ppbv		Prep Dat	e:		Run ID: M8	05_031001A	١
Client ID: ZZZZZ	Batch ID: R39641	Testi	No: TQ15			Analysis Dat	e: 10/1/20	103	SecNo: 46	3580	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPOLimit	Qual
2,2,4-Trimethylpentane	11.34	0.50	10	0	113	65	135	0	0		
2-Butanone (MEK)	12.18	1.0	10	0	122	65	135	0	0		
2-Hexanone	11.16	1.0	10	0	112	55	135	0	0		
2-Propanol	9.66	1.0	10	0	96.6	65	135	0	0		
4-Ethyltoluene	12,06	0,50	10	0	121	65	135	0	0		
4-Methyl-2-pentanone	12,52	1.0	10	0	125	65	135	0	0		
Асетоле	9.25	5.0	10	0	92.5	65	135	0	0		
Allyl chloride	11.23	0.50	10	0	112	65	135	0	0		
Benzene	11.32	0.50	10	0	113	65	135	0	0		
Benzyl chiorida	11.86	2.0	10	0	119	65	135	0	0		
Bromodichloromethane	10.07	0.50	10	0	101	65	135	0	0		
Bromoethene(Vinyl Bromide)	10.17	0.50	10	0	102	65	135	0	0		
Bromoform	10.51	0.50	10	0	105	65	135	0	0		
Bromomethane	9.97	0.50	10	0	99.7	65	135	0	0		
Carbon disulfide	9,44	0.50	10	0	94.4	65	135	0	0		
Carbon tetrachloride	10.26	0.50	10	0	103	65	135	0	0		
Chlorobenzene	10.21	0.50	10	0	102	65	135	0	0		
Chloroethane	10.17	0.50	10	0	102	65	135	0	0		
Chloroform	10.13	0.50	10	0	101	65	135	Ð	0		
Chloromethane	10	0.50	10	0	100	65	135	0	0		
cis-1,2-Dichloraethene	11.09	0.50	10	0	111	65	135	0	0		
cis-1,3-Dichloropropene	11.95	0.50	10	0	120	65	135	0	0		
Cyclohexane	12.62	0,50	10	0	126	65	135	0	0		
Dibromochloromethane	10.04	0.50	10	0	100	65	135	0	0		
Dichlorodifluoromethane(F-12)	9.78	0.50	10	0	97.8	65	135	0	0		
Dichlorotetrafluoroethane(F-114)	9.97	0.50	10	0	99.7	65	135	0	0		
Ethyl Acetate	11.89	0.50	10	0	119	65	135	0	0		
Ethylbenzene	11.79	0.50	10	0	118	65	135	0	0		

Qualifiers:

ND - Not Detected at the Reporting Limit

S - Spike Recovery outside accepted recovery limits

B - Analyte detected in the associated Method Blank

J - Analyte detected below quantitation limits

R - RPD outside accepted recovery limits

■ Corporate Address: 1501 W. Knudsen Drive, Phoenix, Arizona 85027 Phone: 623.780.4800 Toll Free: 800.651.4802 Fax: 623.780.7695 www.aerotechlabs.com

Main Laboratory: 4645 E. Cotton Center Boulevard, Building 3, Suite 189 Phoenix, AZ 85040 Phone: 602.437.3340 Toll Free: 866,772.5227 Fax: 623.445.6192 www.palabs.com

Tucson Facility: 4455 S. Park Ave. Ste. 110 Tucson, AZ 85714 Phone: 520.807.3801 Fax: 520.807.3803

Precision Analytical Laboratories a division of Aerotech Laboratories, Inc.

CLIENT: Work Order: Basin & Range Hydrogeologists

03091226

Project: Air Liquide/23018.016

ANALYTICAL QC SUMMARY REPORT

TestCode: TO15

Sample ID MB-R39641	SampType: MBLK	TestCo	de: TO15	Units: ppbv		Prep Da	ate:		Run ID: MS	605_031001A	4
Client ID: 22222	Batch ID: R39641	Test	No: TO15			Analysis Da	ate: 10/1/2	003	SeqNo: 46	3578	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
trans-1,2-Dichloroethene	< 0.50	0.50									
trans-1,3-Dichloropropene	< 0.50	0.50									
Trichloroethene	< 0.50	0.50									
Trichlorofluoromethane(F-11)	< 0.50	0.50									
Trichlorotrifluoroethane(F-113)	< 0.50	0.50									
Vinyl acetate	< 0.50	0.50									
Vinyl chloride	< 0.50	0.50									
Surr: 4-Bromofluorobenzene	9.76	0.50	10	0	97.6	70	130	а	0		

Sample ID LCS-R39641 Client ID: ZZZZZ	SampType: LCS Batch ID: R39641		de: TO15 No: TO15	Units: ppbv		Prep Da Analysis Da		003	Run ID: MS SeqNo: 48	505_031001 <i>A</i> 3580	4
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,1,1-Trichlorgethane	10,24	0.50	10	0	102	55	135	0	0	70.70.6/	
1,1,2,2-Tetrachioroethane	9.94	0.50	10	0	99.4	65	135	Q	0		
1,1,2-Trichloroethane	10.25	0.50	10	0	103	65	135	0	0		
1,1-Dichloroethane	10,58	0.50	10	0	106	65	135	0	0		
1,1-Dichloroethene	10.62	0.50	10	0	106	65	135	0	0		
1,2,4-Trichlorobenzene	9.66	1.0	10	0	96.6	65	135	0	0		
1,2,4-Trimethylbenzene	12.05	0.50	10	0	120	65	135	0	0		
1,2-Dibromoethane	10.44	0.50	10	0	104	65	135	0	0		
1,2-Dichlorobenzene	10.42	0.50	10	0	104	65	135	0	0		
1,2-Dichloroethane	10.49	0.50	10	0	105	65	135	0	0		
1,2-Dichloropropane	19,81	0.50	10	0	308	65	135	0	0		
1,3,5-Trimethylbenzene	11.88	0.50	10	0	119	65	135	0	0		
1,3-Butadiene	10.58	0.50	10	0	106	65	135	0	0		
1,3-Dichlorobenzene	10.45	0.50	10	. 0	104	65	135	0	0		
1,4-Dichtorobenzene	10.78	0.50	10	0	108	65	135	0	0		

Oualifiers:

ND - Not Detected at the Reporting Limit J - Analyte detected below quantitation limits

S - Spike Recovery outside accepted recovery finits B - Analyte detected in the associated Method Blank

Page 3 of 8

Precision Analytical Laboratories, Inc.

CLIENT: Work Order: Basin & Range Hydrogeologists

03091226

Project: Air Liquide/23018.016 ANALYTICAL QC SUMMARY REPORT

TestCode: TO15

Sample ID LCSD-R39641	SampType: LCSD	TestCo	de: TO15	Units: ppbv		Prep Da	le:		Run ID: Ma	05_031001A	١.
Client ID: ZZZZZ	Batch ID: R39841	Test	No: TO15			Analysis Da	le: 10/1/2	003	SeqNo: 46	3582	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,1-Dichloroethane	10.47	0.50	10	0	105	65	135	10.58	1.05	25	
1,1-Dichloroethene	10.64	0.50	10	0	106	65	135	10.62	0.188	25	
1,2,4-Trichlorobenzene	9.83	1.0	10	0	98.3	65	135	9.66	1.74	25	
1,2,4-Trimethylbenzene	12.08	0.50	10	0	121	65	135	12.05	0.249	25	
1,2-Dibromoethane	10.43	0.50	10	0	104	65	135	10.44	0.0958	25	
1,2-Dichlorobanzene	10.28	0.50	10	0	103	65	135	10.42	1.35	25	
1,2-Dichloroethane	10.35	0.50	10	0	104	65	135	10.49	1.34	25	
1,2-Dichloropropane	10.94	0.50	10	0	109	65	135	10.81	1.20	25	
1,3,5-Trimethylbenzene	11.89	0.50	10	0	119	65	135	11.88	0.0841	25	
1,3-Buladiene	10.38	0,50	10	0	104	65	135	10.58	1,91	25	
1,3-Dichlorobenzene	10.47	0.50	10	0	105	65	135	10.45	0.191	25	
1,4-Dichlorobenzane	10.71	0.50	10	0	107	65	135	10.78	0.651	25	
2,2,4-Trimethylpentane	11.41	0.50	10	0	114	65	135	11.34	0.615	25	
2-Butanone (MEK)	12.1	1.0	10	0	121	65	135	12.18	0.659	25	
2-Hexanone	11.18	1.0	10	0	112	65	135	11.16	0.179	25	
2-Propanol	9.87	1.0	10	0	98.7	65	135	9.66	2.15	25	
4-Ethyltoluene	12.08	0.50	10	0	121	65	135	12.06	0	25	
4-Methyl-2-pentanone	12.73	1.0	10	ū	127	65	135	12.52	1.66	25	
Acetone	8.49	5.0	10	0	84.9	65	135	9.25	6.57	25	
Allyl chloride	11.36	0.50	10	0	114	65	135	11.23	1,15	25	
Benzene	11,37	0.50	10	0	114	65	135	11.32	0.441	25	
Benzyl chloride	11.96	2.0	10	0	120	65	135	11.86	0.840	25	
Bromodichloromethane	10.15	0.50	10	0	102	65	135	10.07	0.791	25	
Bromoethene(Vinyl Bromide)	9.93	0.50	10	0	99.3	65	135	10.17	2.39	25	
Bromoform	10.51	0.50	10	0	105	65	135	10.51	0	25	
Bromomethane	9.76	0.50	10	0	97.6	65	135	9.97	2.13	25	
Carbon disulfide	9.35	0.50	10	0	93.6	65	135	9.44	0.851	25	
Carbon tetrachloride	10.14	0.50	10	0	101	65	135	10.26	1.18	25	

Qualifiers:

ND - Not Detected at the Reporting Limit J - Analyte detected below quantitation limits

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

■ Corporate Address: 1501 W. Knudsen Drive, Phoenix, Arizona 85027 Phone: 623.780.4890 Toil Free: 800.651.4802 Fax: 623.780.7895 www.aerotechlabs.com
■ Main Laboratory: 4645 E. Cotton Center Boulevard, Building 3, Suite 189 Phoenix, AZ 85040 Phone: 602.437.3340 Toil Free: 866.772.5227 Fax. 623.445.6192 www.palabs.com
■ Tucson Facility: 4455 S. Park Ave. Ste. 110 Tucson, AZ 85714 Phone: 520.807.3801 Fax: 520.807.3803

Precision Analytical Laboratories

CLIENT:

Basin & Range Hydrogeologists

03091226 Work Order: Project:

Air Liquide/23018.016

ANALYTICAL OC SUMMARY REPORT

The second secon

TestCode: TO15

Sample ID LCS-R39641	SampType: LCS	TestCo	de: TO15	Units: ppbv		Prep Date	e:		Run ID: MS	305_031001 <i>A</i>	•
Client ID: ZZZZZ	Batch ID: R39641	Testi	lo: TO15			Analysis Date	: 10/1/20	003	SeqNo: 46	3580	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLlmlt	RPD Ref Val	%RPD	RPDLimit	Qua
Heptane	11.13	0.50	10	0	111	65	135	0	0		
Hexachlorobutadiene	9.41	1.0	10	0	94.1	65	135	O	0		
dexane	11.45	0.50	10	0	114	65	135	0	0		
n&p-Xylene	23.82	1.0	20	0	119	65	135	0	0		
Methyl tert-butyl ether	11.95	1.0	10	0	120	65	135	0	0		
vtethylene chloride	9.01	0.50	10	0	90.1	65	135	0	0		
-Xylene	11.75	0.50	10	0	118	65	135	O	0		
Propens (Propylene)	11.75	1.0	10	0	118	65	135	Ð	0		
Styrene	12.46	0.50	10	0	125	65	135	0	0		
etrachloroethene	10.37	0.50	10	0	104	65	135	0	0		
Tetrahydrofuran	11.98	1.0	10	0	120	65	135	0	0		
foluene	12.09	0.50	10	0	121	65	135	0	0		
rans-1,2-Dichloroethene	10.58	0.50	10	0	106	65	135	0	0		
rans-1,3-Dichloropropene	11.86	0.50	10	0	119	65	135	0	0		
richloroethene	10.31	0.50	10	0	103	65	135	0	0		
richlorofluoromethane(F-11)	10.32	0.50	10	0	103	65	135	0	0		
frichlorotrifluoroethane(F-113)	9.82	0.50	10	0	98.2	65	135	0	0		
/inyl acetate	12.26	0.50	10	0	123	65	135	0	0		
/inyl chloride	10.23	0.50	10	0	102	65	135	0	0		
Surr: 4-8romoßuorobenzene	10.44	0.50	10	0	104	70	130	0	0		

Sample ID LCSD-R39641 Client ID: ZZZZZ	SampType: LCSD Batch ID: R39641		de: TO15 No: TO15	Units: ppbv		Prep Da Analysis Da)03	Run ID: M5 SeqNo: 46	-	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,1,1-Trichloroethane	10.08	0.50	10	0	101	65	135	10.24	1.57	25	
1,1.2.2-Tetrachloroethane	9.91	0.50	10	0	99.1	65	135	9.94	0.302	25	
1,1,2-Trichloroethane	10.25	0.50	10	Q	103	65	135	10.25	0	25	

Qualifiers: ND - Not Detected at the Reporting Limit

S . Spike Recovery outside accepted recovery limits R - RPD outside accepted recovery limits

B - Analyte detected in the associated Method Black

Page 5 of 8

Precision Analytical Laboratories

CLIENT:

Basin & Range Hydrogeologists

03091226 Work Order:

Project: Air Liquide/23018.016

ANALYTICAL QC SUMMARY REPORT

TestCode: TO15

Sample ID LC8D-R39641 Client ID: ZZZZZ	SampType: LCSD Batch ID: R39641		de: TO15 No: TO15	Units: ppby		Prep Da Analysis Da		003	Run ID: MS SeqNo: 46	05_031001A 3582	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Quat
Trichtorotrifluoroethene(F-113)	9.84	0.50	10	0	98.4	85	135	9.82	0.203	25	
Vinyl acetate	12.28	0.50	10	0	123	65	135	12.26	0.163	25	
Vinyl chloride	10.23	0.50	10	0	102	65	135	10.23	0	25	
Surr: 4-Bromofluorobenzene	10.37	0.50	10	0	104	70	130	0	0		

Qualiflers:

ND - Not Detected at the Reporting Limit

S - Spike Recovery outside accepted recovery limits

B - Analyte detected in the associated Method Blank

R - RPD outside accepted recovery limits

Page 8 of 8

■ Corporate Address: 1501 W. Knudsen Drive, Phoenix, Arizona 85027 Phone: 623.780.4890 Toll Free: 800.651.4802 Fax: 623.780.7695 www.aerotechlabs.com
■ Main Laboratory: 4845 E. Cotton Center Boulevard, Building 3, Suite 189 Phoenix, AZ 85040 Phone: 602.437.3340 Toll Free: 886.772.5227 Fax: 623.445.6192 www.palabs.com
■ Tucson Facility: 4455 S. Park Ave. Ste. 110 Tucson, AZ 85714 Phone: 520.807.3801 Fax: 520.907.3803

Precision Analytical Laboratories

CLIENT: Work Order: Basin & Range Hydrogeologists

03091226

ANALYTICAL OC SUMMARY REPORT

Project:

Air Liquide/23018.016

TestCode: TO15

Sample ID LCSD-R39641	SampType: LCSD	TestCo	de: TQ15	Units: ppbv		Prep Da	te:		Run ID: MS	805_031001A	,
Client ID: ZZZZZ	Batch ID: R39641	Testi	Vo: TO15			Analysis Da	ite: 10/1/20	003	SeqNo: 46	3582	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Chlorobenzene	10.29	0.50	10	0	103	65	135	10.21	0.780	25	
Chloroethane	9.96	0.50	10	0	99.6	65	135	10.17	2.09	25	
Chloroform	10.1	0.50	10	0	101	65	135	10,13	0.297	25	
Chloromethane	9.76	0.50	10	0	97.6	65	135	10	2.43	25	
cis-1,2-Dichloraethene	10.94	0.50	10	0	109	65	135	11.09	1.36	25	
cis-1,3-Dichlerapropene	11.99	0.50	10	O	120	65	135	11.95	0.334	25	
Cyclohexane	12.55	0.50	10	O	126	65	135	12.62	0.556	25	
Dibromochtoromethane	10.14	0.50	10	0	101	65	135	10.04	0.991	25	
Olchlorodifluoromethane(F-12)	9.71	0.50	10	0	97.1	65	135	9.78	0.718	25	
Dichlorotetrafluoroethane(F-114)	9.86	0.50	10	Q	98.6	65	135	9.97	1.11	25	
Ethyl Acetale	11.94	0.50	10	0	119	65	135	11.89	0.420	25	
Ethylbenzene	11.8	0.50	10	0	118	65	135	11.79	0.0848	25	
Heptane	11.22	0.50	10	0	112	65	135	11,13	0.805	25	
Hexachlorobutadiene	9,4	1.0	10	a	94	65	135	9,41	0.106	25	
Hexane	11.39	0.50	10	0	114	65	135	11.45	0.525	25	
m&p-Xylene	23.74	1.0	20	0	119	65	135	23.82	0.336	25	
Methyl tert-butyl ather	11,9	1.0	10	0	119	65	135	11.95	0.419	25	
Methylene chloride	9.05	0.50	10	0	90.5	65	135	9.01	0.443	25	
o-Xylene	11,73	0.50	10	O O	117	65	135	11.75	0.170	25	
Propene (Propylene)	11.8	1.0	10	0	118	65	135	11.75	0.425	25	
Styrene	12.51	0.50	10	0	125	65	135	12.46	0.400	25	
Tetrachloroethene	10.38	0.50	10	0	104	65	135	10.37	0.0964	25	
Tetrahydrofuran	11.91	1.0	10	0	119	65	135	11.98	0.586	25	
Toluene	12.04	0.50	10	0	120	65	135	12.09	0.414	25	
trans-1,2-Dichloroethene	10.57	0.50	10	0	106	65	135	10.58	0.0946	25	
trans-1,3-Dichloropropene	12.06	0.50	10	0	121	65	135	11.86	1,67	25	
Trichloroethene	10,3	0.50	10	0	103	65	135	10.31	0.0970	25	
Trichlorofluoromethane(F-11)	10.04	0.50	10	0	100	65	136	10.32	2.75	25	

Qualifiers:

ND · Not Detected at the Reporting Limit 3 - Analyte detected helow quantitation limits S - Spike Recovery outside accepted recovery limits

B - Analyte detected in the associated Method Blank

R - RPD outside accepted recovery limits 👅 Corporate Address: 1501 W. Knudsen Drive, Phoenix, Arizona 95027 Phone: 623.780.4800 Toll Free: 800.651.4802 Fax: 623.780.7695 www.aerotechlabs.com

Page 7 of 8

Signature:

Date:

Time:

Signatu

Date:

Time:

Signature: 1. Macht

Date: 9-30-03 Time: 175

Time: 1753

Date: 9-30-03

62

Sample Rece	Sample Receipt Checklist	Project Checked By:	eked By:
Client Name Basin de Range Date a	Date and Time Received 9-30-03	9.30-03	5561
	Received by Tun		
Checklist completed by (- MAA Date 30 Containers: Signature / Date	Containers:	Brass Sleeves Glass Jars	*****
Matrix: A.V. Carrier name: Chvis H.	Thris H.	Kits	
Shipping container/cooler in good condition?	Yes X	No No	Not Present
Custody seals intact on shipping container/cooler?	Yes	No	Not Present
Custody seals intact on sample bottles?	Yes	No No	Not Present 大
Chain of custody present?	Yes 🛧	No No	
Chain of custody signed when relinquished and received?	Yes K	% %	
Chain of custody agrees with sample labels?	Yes X	ę S	
Samples in proper container/bottle?	Yes	No	
Sample containers intact?	y say	% %	
All samples received within holding time?	Yes	No.	
$\operatorname{D}\mathfrak{d}$ different containers of the same sample vary in appearance?	Yes (If yes, c	(If yes, contact PM) No	ንተ
Water - VOA vials have zero headspace? No VOA submitted	mitted K	Yes	Z _o
Number of sample bottles Sur'Acid Preserved: Dechlo	Dechlorinator: Unp	Unpreserved	NaOH:
Temperature of samples? Ambient oc Blue Ice	Wet Ice	Not Present	
Water – pK acceptable upon receipt?	Yes	ž	Not applicable
pH: Metals 413.1 Total P Cyanide 418.1 Total P Nutrients Sulfide Adjusted? Adjusted? Results?	Fotal Phenois		
nust be detailed in th			
Person/Client contacted: Date contacted:		Contacted by:	
Comments: (1) dn + tressive a grab saung	grob sevagler with Sample #5.	mple #5	
Conrective Action:	P		
The state of the s			

Acrotech Environmental Laboratories inc.

November 07, 2003

AMENDED REPORT

Basin & Range Hydrogeologists Phoenix, AZ 85008 2800 N 24th St Ray Craft

RECEIVED

BASIN & RANGE HYDROGEOLOGISTS

RE: Air Liquide/23018.016

Dear Ray Craft:

03091226 Order

This report has been amended to include Method TO-15 results in ug/m³ units.

Precision Analytical Laboratories received 5 samples on 9/30/2003 for the analyses presented in the following report.

This report includes the following information:

- Case Narrative.
- Analytical Report: includes test results, report limit (Limit), any applicable data qualifier
 - (Qual), units, dilution factor (DF), and date analyzed.
 - QC Summary Report.

This communication is intended only for the individual or entity to whom it is directed. It may contain information that is privileged, confidential, or otherwise exempt from communication in error, please notify us immediately and destroy this message and all attachments thereto. If you have any questions regarding these test results, please do communication by anyone other than the intended recipient, or a duly designated disclosure under applicable law. Dissemination, distribution, or copying of this employee or agent of such recipient, is prohibited. If you have received this not hesitate to call

Markey Maroja A. Smith

Vice President - Client Services

air Libonatory-debig E. Count Cerar Boulevard Building 3, Shife 189 Phoenix AZ 85040 Phone 804.73.4341 Toll Free: 866.772.8227 Fax: 823.445.5192 www.aeroamfrolate.com caon Fedility. 4455 S. Park Ave. Ste. 170 Tucsor AZ 26714 Phoenix 250.807.7361 Fax: 850.807.7381 Toll Free: 866.772.8227 Fax: 823.807.7381 Fax: 823.807

Aerotech Environmental Laboratories activity of strong str

Date: 07-Nov-03

Precision Analytical Laboratories

Lab Order:	03091226				Tag Number:		00613	
Project:	Air Liquide/23018.016	8.016		Ç	Collection Date:		/30/200	9/30/2003 10:47:00 AM
Lab ID:	03091226-01A				X	Matrix: A	AIR	
		dd	ppbv	2	hg/m²			
Analyses		Result	Limit	Result	Limit	Qual	Đ	Date Analyzed
VOLATILE ORGANICS IN AIR	ANI SOINA		704					Amelion
1,1,1-Trichioroethane	lane	52		041	52	6	8	10/1/2003
1,1,2,2-Tetrachloroethane	roethane	۸ 10	5	24	0.		8	10/1/2003
1,1,2-Trichloroethane	ane	c 10	10	s 55 55	55		8	10/1/2003
1,1-Dichloroethane	16	380	10	1600	14	D2	8	10/1/2003
1,1-Dichloroethene	99	1400	30	2000	120	02	8	10/1/2003
1,2,4-Trichlorobenzene	nzene	< 20	20	× 150	150		8	10/1/2003
1,2,4-Trimethylbenzene	anzene	120	5	009	20	20	20	10/1/2003
1,2-Dibromoethane	je J	< 10	10	s7.×	78		23	10/1/2003
1,2-Dichlorobenzene	өпе	o +0	10	× 61	5		8	10/1/2003
1,2-Dichloroethane	99	× 10	10	· 41	14		8	10/1/2003
1,2-Dichloropropane	ane	۸ 10	10	< 47	47		20	10/1/2003
1,3,5-Trimethylbenzene	ялгене	27	10	130	ន	70	20	10/1/2003
1,3-Butadiene		۸ ئ	0	22	8		8	10/1/2003
1,3-Dichlorobenzene	ene	× 10	10	, 64	5		8	10/1/2003
1,4-Dichlorobenzene	Bne	v 10	10	, 64	5		8	10/1/2003
2,2,4-Trimethylpentane	ntane	7	6	58	24	20	8	10/1/2003
2-Butanone (MEK)	c	150	20	450	9	20	8	10/1/2003
2-Нехапопе		02 V	20	8	ន		8	10/1/2003
2-Propanol		× 20	50	< 50	8		50	10/1/2003
4-Ethyltoluene		62	0,	270	4	22	50	10/1/2003
4-Methyl-2-pentanone	hone	× 20	20	8	23		20	10/1/2003
Acetone		× 100	100	< 240	240		20	10/1/2003
Allyl chloride		۰ ب	10	9 4	16		8	10/1/2003
Benzene		290	õ	940	83	D2	50	10/1/2003
Benzyl chloride		۸ 40	4	< 210	210		20	10/1/2003
Bromodichloromethane	thane	۰ ۱	5	89 >	88		8	10/1/2003

* Value exceeds Maximum Contaminant Level

** Main Laboratory, 4845 E. Cootin Coaste Businers, Building 3, Suits 198 Pricests, AZ 85040 Prices, 692,437,3340 Toll Free; 986,772,5227 Fez, 623,445,5192 vs.

** Tocam Facility, 445,5 S. Part Ave. Stat. 110 Tucson, AZ 5747 Prices, 500,807,3903 services, 500,807,3903

** Compasie Additions: 15611 W forsteen Their Pricests Advisors Advi E - Value above quantitation range B - Analyte detected in the associated Method Blank

J - Analyte detected below quantitation limits

S - Spike Recovery outside accepted recovery limits R - RPD outside accepted recovery limits

Aerotech Environmental Laboratories ne atinsion of Aerotech Laboratories, Inc.

Precision Analytical Laboratories

Date: 07-Nov-03

Tag Number: 00613 Collection Date: 9/30/2003 10:47:00 AM Client Sample ID: AL-SG28-0903 Matrix: AIR Basin & Range Hydrogeologists Air Lìquide/23018.016 03091226-01A 03091226 Lab Order: CLIENT: Project: Lub ID:

	vdan	Nq.	Zii	ug/m³			
Analyses	Result	Limit	Result	Limit	Qual	DF	Date Analyzed
VOLATILE ORGANICS IN AIR Bromoethene(Vinyl Bromide)	< 10	1015	c 22	22		20	Analyst: JG 10/1/2003
Bromaíom	v 10	10	< 100	100		20	10/1/2003
Bromomethane	< 10	10	× 40	3		20	10/1/2003
Carbon disulfide	> 10	10	< 32	32		50	10/1/2003
Carbon tefrachloride	v 10	10	۸ 49	2		20	10/1/2003
Chlorobenzene	< 10	10	< 47	47		50	10/1/2003
Chloroethane	< 10	10	< 27	27		20	10/1/2003
Chloroform	24	10	120	50	05	20	10/1/2003
Chloromethane	< 10	10	× 21	21		20	10/1/2003
cis-1,2-Dichioroethene	v 10	10	< 40	40		20	10/1/2003
cls-1,3-Dichloropropene	× 10	10	× 46	46		20	10/1/2003
Cyclohexane	< 10	ð	< 36	35		20	10/1/2003
Dibromochloromethane	< 10	9	> 86	986		20	10/1/2003
Dichlorod/fluoromethane(F-12)	< 10	10	< 50	50		20	10/1/2003
Dichlorotetrafluoroethane(F-114)	> 10	10	<71	7		20	10/1/2003
Ethyl Acetate	۸ 15	10	< 37	37		20	10/1/2003
Ethylbenzene	200	10	880	4	05	20	10/1/2063
Heptane	180	10	750	42	20	20	10/1/2003
Hexachlorobutadiene	< 20	50	< 220	220		50	10/1/2003
Нехапе	120	10	430	36	02	20	10/1/2003
m&p-Xylene	099	20	2900	63	2	20	10/1/2003
Methyl rert-butyl ether	8	20	360	73	22	20	10/1/2003
Methylene chloride	× 10	10	< 35	33		20	10/1/2003
o-Xylene	150	10	999	4	25	20	10/1/2003
Propene (Propylene)	580	20	1000	35	D2	20	10/1/2003
Styrene	× 10	10	× 4 3	43		20	10/1/2003

	S - Spike Recovery outside accepted recovery limits	R - RPD outside accepted recovery limits	E - Value above quantitation range
Application of the second of t	ND - Not Detected at the Reporting Limit	J - Analyte detected below quantitation limits	B - Analyte detected in the associated Method Blank
777	Qualifters:		

Page 2 of 15 indicates the exceeds Maximum Contaminant Level indicates the second of the exceeds Maximum Contaminant Level indicates the second secon

Aerotech Environmental Laboratories no activism of Aerotech Laboratories, Inc.

Precision Analytical Laboratories

Date: 07-Nov-03

CLIENT: Lab Order: Project: Lab ID:	Basin & Range Hydrogeologists 03091226 Air Liquide/23018.016 03091226-01A	Hydrogeologis 18.016	S.	35	Client Sample ID: AL-SG28-0903 Tag Number: 00613 Collection Date: 9/30/2003 10:4: Matrix: AR	uple ID: AL-3 fumber: 0061 on Date: 9/30 Matrix: AIR	L-SG2 0613 /30/204	lieut Sample ID: AL-SG28-0903 Tag Number: 00613 Collection Date: 9/30/2003 10:47:00 AM Matrix: AIR
		Aqdd	*	ři	ng/m³			
Analyses		Result	Limit	Result	Limit	Qual	DF	Date Analyzed
VOLATILE ORGANICS IN AIR	ANICS IN AIR		T015					Analyst: JG
Tetrachiomethene	Đ.	770	9	5300	69	05	8	10/1/2003
Tetrahydrofuran		< 20	20	o v	90		20	10/1/2003
Toluene		980	10	3800	38	02	20	10/1/2003
trans-1,2-Dichlomethene	oethene	× 10	Đ	4.	4		20	10/1/2003
trans-1,3-Dichloropropene	opropene	۰ 1 0	5	< 46	9		20	10/1/2003
Trichlomethene		280	ę	1500	55	D2	23	10/1/2003
Trichlorofluoromethane(F-11)	sthane(F-11)	270	10	1500	27	05	50	10/1/2003
Trichlorotrifluoroethane (F-113)	sthane(F-113)	× 10	0 C	< 78	78		20	10/1/2003
Vinyt acetate		۰ 10	10	× 36	36		20	10/1/2003
Vinyl chloride		ot >	5	< 26	56		20	10/1/2003
Surr: 4-Bromofluorobenzene	luorobenzene	101 *REC	70-130		,		82	10/1/2003

S - Spike Recovery outside accepted recovery limits	R - RPD outside accepted recovery limits	E - Value above quantitation range
ND - Not Detected at the Reporting Limit	3 - Analyte detected below quantitation limits	B - Analyte detected in the associated Method Blank
Qualiffers:		

Page 3 of 15

* Value exceeds Maximum Contaminant Livel

Main Laboratory, 4645 E. Cotton Center Boulevard, Building 3, Sulle 189 Phone is 22 437 3340. Toll Free: 666.772.5227 Fax: 662.445.5192 www.aercenvirables.com

Tolcoon Facility, 4455 S. Petr Ave. 3in. 10 Tuscon, AZ 8574 Preprint 500 907.3901 Fax: 620.497 3540 Fax: 666.772.5227 Fax: 627.445.5192 www.aercenvirables.com

Commons advises 1501 W Scruicker Prue Bound, Advance 1977 Status 1741 Apr. 1741 Commons extension France Formation

Rerotech Environmental Laboratories fre.

Precision Analytical Laboratories

	The state of the s					
CLENT: E	Basin & Range Hydrogeologists	ts	Š	ent Sample I	P. AL	Client Sample ID: AL-Air Field Blank-0903
Lab Order: 0	03091226			Tag Number: 00222	er: 002	22
Project: A	Air Liquide/23018,016		Ç	ollection Da	te: 9/3(Collection Date: 9/30/2003 11:45:00 AM
Lab ID: 0)3091226-02A			Matr	Matrix: AIR	
	aqdd	ΔĆ	Sri	ug/m,		
Analyses	Result	Limit	Result	Limit Qual	_ lead	DF Date Analyzed

VOLATILE ORGANICS IN AIR	08.0	T015	a C V	c c	•	Analyst: JG
	9	20.0	0	0.7	-	10/1/2003
1,1,2,2-Tetrachloroethane	< 0.50	0.50	< 3.5	3.5	-	10/1/2003
1,1,2-Trichloroethane	< 0.50	0.50	< 2.8	2.8	٠-	10/1/2003
1,1-Dichloroethane	< 0.50	0.50	< 2.1	2.1	-	10/1/2003
1,1-Dichloroethane	< 0.50	0.50	< 2.0	2.0	-	10/1/2003
1,2,4-Trichtorobenzene	0,1 ^	1.0	< 7.5	7.5	-	10/1/2003
1,2,4-Trimethylbenzene	< 0.50	0.50	< 2.5	2.5	-	10/1/2003
1,2-Dibromoethans	< 0.50	0.50	v 3.9	3.9	-	10/1/2003
1,2-Dichlarobenzene	< 0.50	0.50	< 3.1	3.1	T	10/1/2003
f,2-Dichloroethane	< 0.50	0.50	< 2.1	2.1	Ψ-	10/1/2003
1,2-Dichloropropane	< 0.50	0.50	< 2.4	2.4	F	10/1/2003
1,3,5-Trimethylbenzene	< 0.50	0.50	< 2.5	2.5	₩	10/1/2003
1,3-Butadiene	< 0.50	0.50	< 1.1	1.1	**	10/1/2003
1,3-Dichlorobenzene	< 0.50	0.50	< 3.1	3.1	**	10/1/2003
1,4-Dichlorobenzene	< 0.50	0.50	< 3.1	3.1	•	10/1/2003
2,2,4-Trimethylpentane	< 0.50	0.50	< 1.2	건	T	10/1/2003
2-Butanone (MEK)	1.2	1.0	3.6	3.0	-	10/1/2003
2-Нехаполе	< 1.0	1.0	< 4.2	4.2	•	10/1/2003
2-Propanol	< 1.0	1.0	< 2.5	2.5	•	10/1/2003
4-Ethyltofuene	< 0.50	0.50	< 2.2	2.2	-	10/1/2003
4-Methyl-2-pentanone	4 1.0	1.0	< 4.2	4.2	-	10/1/2003
Acetone	95	5,0	46	12	-	10/1/2003
Allyl chloride	< 0.50	0.50	< 0.80	0.30	۴-	10/1/2003
Benzene	< 0.50	0.50	< 1.6	4.6		10/1/2003
Benzyl chloride	< 2.0	2.0	÷ +	£	-	10/1/2003
Bromodichloromethane	< 0.50	0.50	< 3.4	3,4	-	10/1/2003

	S - Spike Recovery outside accepted recovery limits	R - RPD outside accepted recovery limits	E - Value above quantitation range
- CONTENTS OF THE PERSON OF TH	ND - Not Detected at the Reporting Limit	J - Analyte detected below quantitation limits	B - Analyte detected in the associated Method Blank
The state of the s	Qualifiers:		

Page 4 of 15

* - Value exceeds Maximum Contaminant Lovel
in Laboratory, 4645 E. Coan-Centre Bouleaus, State 189 Present 189 Present 505.077.2527 Faz. 625.445.6192 www.aerosentriable.com
icson Facility. 4456 S. Park Nee, 58s. 110 Tusson, 22.8674 Phone. 50.0877.3803
icromite Addresser 1501 W Kruiden Neiss Bleasts Addresser 1501 W Kruiden Neiss Bleast Addresser 1501 W W Kruiden Neiss Bleast M Kr

Aerotech Environmental Laboratories

Precision Analytical Laboratories

Date: 07-Nov-03

Basin & Range Hydrogeologists

CLIENT:

Client Sample ID: AL-Air Field Blank-0903 Date: 07-Nov-03

Lab ID:	03091226-02A					Matrix: AIR	84	
		2	ppbv	Ħ.	ng/m,			
Analyses		Result	Limit	Result	Limit	Qual	DE	Date Analyzed
O TILE O	VOLATILE OBGANICS IN AIR		7045					OI today
Bromoethene	Bromoethene(Vinyl Bromide)	< 0.50	0.50	1.1	17		-	10/1/2003
Вготобот		< 0.50	0.50	< 5.2	5.2		-	10/1/2003
Bromomethane	94	< 0.50	0.50	< 2.0	2.0		-	10/1/2003
Carbon disulfide	ide	< 0.50	0.50	6.1.5	1.6			10/1/2003
Carbon tetrachloride	hloride	< 0.50	0.50	< 3.2	32		شه	10/1/2003
Chlorobenzene	<u>s</u>	< 0.50	0.50	< 2.4	2.4		-	10/1/2003
Chloroethane		< 0.50	0.50	<1.3	1,3			10/1/2003
Chloraform		< 0.50	0.50	< 2.5	2.5		-	10/1/2003
Chloromethane	Je	0.74	0.50	1,6	1.0		-	10/1/2003
cis-1,2-Dichloroethene	roethane	< 0.50	0.50	< 2.0	2.0			10/1/2003
cis-1,3-Dichloropropene	ropropene	< 0.50	0.50	< 2.3	2.3			10/1/2003
Cyclohexane		< 0.50	0.50	<1.7	1.7		***	10/1/2003
Dibromochioromethane	omethane	< 0.50	0.50	< 4.3	£.3		•	10/1/2003
Dichlorodifluo	Dichlorodifluoromethane(F-12)	0.74	0.50	3.7	2.5			10/1/2003
Dichlorotetrafi	Dichlorotetrafluoroethane(F-114)	< 0.50	0.50	< 3.6	3.6		-	10/1/2003
Ethyi Acetate		< 0.50	0.50	× 1.8	1.8		•	10/1/2003
Ethylbenzene		< 0.50	0.50	< 2.2	22		*	10/1/2003
Heptane		< 0.50	0.50	<2.1	2.1		_	10/1/2003
Hexachiorobutadiene	itadiene	c 1.0	1.0	, =	F		-	10/1/2003
Hexane		0.63	0.50	2:2	8.		-	10/1/2003
m&p-Xylene		< 1.0	1.0	4,4	4.4			10/1/2003
Methyl tert-butyl ether	tyl ether	12	1.0	4.4	3.7		-	10/1/2003
Methylene chloride	loride	< 0.50	0.50	s.1.8	1.8		-	10/1/2003
o-Xylene		< 0.50	0.50	<22	22		-	10/1/2003
Propens (Propylene)	pylene)	2.4	1.0	4.2	8:			10/1/2003
Styrene		< 0.50	0.50	<2.2	22		**	10/1/2003
Qualiflers	ND - Not Detected at the Reporting Limit	the Reporting L	imit	S	Spike Recon	ary outside	acocote	S - Spike Recovery outside accepted recovery limits
	 J - Analyte detected below quantitation limits 	elow quantitatio	n limits	ca.	R - RPD outside accepted recovery limits	accepted n	SOVERY	limits

Page 5 of 15

Main Laboratory 4645 E. Cotin Centre Boulevart, Bulding 3, Sust 198 Pricent, A 5540 Phone. 602.447, 3340 Tof Free. 865.772.5227 Foz. 622.445.5152 www.sage

Tutaon Fazilly, 4455 S. Part Ave. Str. 10 Tutaon, A.Z. 65714 Phone. 502.807.3801 For 503.807.3801

R Promote Addition of Action Page 10 Process 202.807.3801 For 503.807.3801

R Promote Addition of Action Page 10 Process 202.807.3801 For 503.807.3801

R Promote Addition of Action Page 10 Process 202.807.3801

R Promote Addition of Action Page 10 Process 202.807.3801

R Promote Addition of Action Page 10 Process 202.807.3801

R Promote Addition of Action Page 10 Process 202.807.3801

R Promote Addition of Action Page 10 Process 202.807.3801

R Process 202.807

Aerotech Environmental Laboratories and a division of Aerotech Laboratories. Inc.

Precision Analytical Laboratories

Date: 07-Nov-03

***************************************	Hent Sample ID: AL-Air Field Blank-0903	: 00222	Collection Date: 9/30/2003 11:45:00 AM	Aatrix: AIR
A THE PARTY OF THE	Client Sample ID	Tag Number: 00222	Collection Date	Matrix
TOTAL CONTRACTOR CONTR	Basin & Range Hydrogeologists	03091226	Air Liquide/23018.016	03091226-02A
2000	CLIENT:	Lab Order:	Project:	Lab ID:

	Aqdd	3 -	Sn/	mg/m³				
Analyses	Result	Limit	Result	Limit	Limit Qual	Ω̈́	Date Analyzed	
VOLATILE ORGANICS IN AIR		T015					Analyst: JG	
Tetrachloroethene	< 0.50	0.50	43.4	3.4		-	10/1/2003	
Tetrahydrofuran	< 1.0	1.0	< 3.0	3.0		-	10/1/2003	
Тоlиеле	2.0	0.50	7.7	г.		•	10/1/2003	
trans-1,2-Dichloroethene	< 0.50	0.50	< 2.0	2.0		-	10/1/2003	
trans-1,3-Dichloropropene	< 0.50	0.50	< 2.3	2.3		-	10/1/2003	
Trichlaroethene	< 0.50	0.50	< 2.8	2.8		-	10/1/2003	
Trichlorofluoromethane(F-11)	< 0.50	0.50	< 2.8	2.8		τ-	10/1/2003	
Trichlorotrifluoroethane(F-113)	< 0.50	0.50	o 3.9	9,6		•	10/1/2003	
Vinyl acetate	< 0.50	0.50	4.8	1.8		-	10/1/2003	
Viryl chioride	< 0.50	0.50	< 1.3	1.3		۳.	10/1/2003	
Surr: 4-Bromofluorobenzene	100 %REC	70-130					10/1/2003	

	S - Spike Recovery outside accepted recovery limits	R - RPD outside accepted recovery limits	E - Value above quantitation range
	ND - Not Detected at the Reporting Limit	3 - Analyte detected below quantitation limits	B - Analyte detected in the associated Method Blank
NYMANA	Qualifiers:		

2 - Value exceeds Maximum Contaminant Lovel
abundacy, 4646 E. Culton General Boulevach, Subdings, 3,314 Biblions, 242,815 Feet, 866,772,527 Feet, 622,445,6192 www.aencennintabas.com
in Additions 4610 to Veneral Process, AZ 8574 Prince, 520,807,4807 1807 1807 1807 20,807,4807

Aerotech Environmental Laboratories of activision of Aerotech Laboratories

Precision Analytical Laboratories

Date: 07-Nov-03

Air Liquide 2018 6 Tag Number: Oollection Date: 90734203 12.22 Air Liquide 2018 12.23 Collection Date: 9070003 12.23 12.23 Air Liquide 2018 12.24 Air Liquide 2019 12.24	CLIENT;	Basin & Range Hydrogeologists	Iydrogeologi	22	5	Cuteur Sample 1D.		;	
Air Liquide/23018.016 Paphy Paph	Lab Order:	03091226				Tag Nun		0734	
Paper Paper Hagittra Hagi	Project:	Air Liquide/230)	18.016		•	Collection 1		/30/20	03 12:36:00 PM
EORGANICS IN AIR Limit Result Limit Qual Dr. Date EORGANICS IN AIR 25 10 140 55 02 20 10/120 Elorechinen <10 10 <70 70 20 10/120 eferachioroethane <10 10 <70 70 20 10/120 eferachioroethane <10 10 <70 50 20 10/120 morethane <10 10 <70 40 0.0 20 10/120 morethane <10 10 <70 <70 0.0 10 10/120 morethane <10 10 <70 <70 <70 0.0 10/120 morethane <10 10 <70 <70 <70 <70 <70 <70 <70 <70 <70 <70 <70 <70 <70 <70 <70 <70 <70 <70 <70 <70 <70 <70	Lab ID:	03091226-03A				M		푘	
CONGANICS IN AIR Limit Result Limit Qual Limit Qual Display EORGANICS IN AIR 25 140 55 140 55 D2 20 141/120 altachloroethane <10 10 <70 70 20 141/120 charchloroethane <10 10 <55 55 20 141/120 choroethane <10 10 <56 55 20 141/120 choroethane <10 10 <50 41 D2 20 141/120 choroethane <10 10 <50 50 D2 20 141/120 choroethane <10 10 <50 50 D2 20 141/120 choroethane <10 <10 <50 <50 D2 20 141/120 choroethane <10 <10 <50 <50 D2 141/120 choroethane <10 <10 <50 <5			dd	фv	Ŧ	g/m³			
TOTA	Analyses		Result	Limit	Result	Limit	Qual	DF	Date Analyzed
10 140 55 52 101/120	VOLATIRE OR	GANICS IN AIR		TO46					Accelerate
ctrachloroethane <10	1,1,1-Trichlorae	ethane	52	? ?	140	55	02	20	70/1/2003
Atloncethane < 10 < 55 oroethane 430 10 < 55	1,1,2,2-Tetrach	iloroethane	> 10	10	< 70	22		8	10/1/2003
100 100	1,1,2-Trichlorox	ethane	ot >	10	, 89	ic.		8	10/1/2003
10 3700 37	1,1-Dichloroeth	iane	430	0	1800	14	D2	20	10/1/2003
100 100	1,1-Dichloroeth	ene	910	9	3700	\$	D3	50	10/1/2003
19 240 10 240 10 240 10 240 10 240	1,2,4-Trichloret	benzene	< 20	83	< 150	150		50	10/1/2003
c10 c78 coodentzere c10 c61 coodentzere c10 c61 coodentzere c10 c47 liebrylbentzene c10 10 c47 silone c10 10 c22 orobentzene c10 10 c61 orobentzene c20 20 c60 zoentzentzene c20 20 c60 zoentzene c10 10 c16 ode c20 20 c65 ode c10 c10 c16 ode c20 c60	1,2,4-Trimethy®	benzane	6.	10	240	20	05	20	10/1/2003
oroelbanzene < 10	1,2-Дібготоеth	тапе	< 10	10	< 78	78		20	10/1/2003
oroporpane < 10	1,2-Dichlorober	пзепе	< 10	9	, 61	19		20	10/1/2003
10 0.47	1,2-Dichloroeth	ane	< 10	5	^ 41	4		50	10/1/2003
11 10 55	1,2-Dichloropro	pane	× 10	10	< 47	47		20	10/1/2003
State Compensation Compensatio	1,3,5-Trimethyl	penzene	17	10	18	90	25	50	10/1/2003
Compensation	1,3-Butadiene		ot >	9	< 22	z		8	10/1/2003
NOTE	1,3-Dichlorober	91920	۸ 5	10	× 61	61		20	10/1/2003
No. Not. N	1,4-Dichlorober	1Z8ñe	ot >	10	× 61	61		20	10/1/2003
New Colon C 20 C 6	2,2,4-Trimethyl	pentane	< 10	9	< 24	54		20	10/1/2003
Comparison	2-Butanone (MI	EK)	< 20	20	09 >	09		20	10/1/2003
ol < 20	2-Hexanone		< 20	50	۷ 83	83		50	10/1/2003
10 100	2-Propanol		< 20	20	< 50	90		50	10/1/2003
2-pantanone < 20	4-Ethylloluene		23	5	100	4	20	20	10/1/2003
tide (10 340 340 340 340 340 340 340 340 340 34	4-Methyl-2-pent	tanone	< 20	20	× 83	833		50	10/1/2003
ide < 10 10 < 16 10 10 32 loride < 40 40 < 210 lidromethane < 10 10 < 68 ND - Not Detected at the Reporting Limit J. Analyte detected the Answerdentitisine limits	Acetone		140	100	340	240	02	50	10/1/2003
10 10 32	Allyf chloride		v 10	10	۰ 16	91		50	10/1/2003
ND - Not Detected at the Reporting Limit 1 Analyte detected by Indian Indian 1 Analyte detected by Indian Indian Indian 1 Analyte detected by Indian	Benzene		2	6	35	32	20	20	10/1/2003
High content	Benzyl chloride		< 40	40	< 210	210		50	10/1/2003
ND - Not Detected at the Reporting Limit J Analyte detected below monthshood limits	Bromodichloron	nethane	v 10	9	89 v	89		8	10/1/2003
	Qualifters:	ND - Not Detected at t	ne Reporting Li	mit	S	Spike Recove	ary outside	accente	d recovery limits
		Y Annahan Seneral St.							

Page 7 of 15

Whin Laboratory, 4846 E. Cotton Canter Contaminant Level

Tucson Facility, 4449 S. Park Ave. 384, 149 Tucson, AZ 28714 - Phone: 2008, 73801 - Page 700, 807, 3803

Committee Additional Activities The Tucson AZ 28714 - Phone: 2008, 73801 - Page 700, 807, 3803

Committee Additional Activities The Discourt Additional Story Contamination and Committee of the Committee

E - Value above quantitation range

B - Analyte detected in the associated Method Blank

Merotech Environmental Laboratories Inc.

Precision Analytical Laboratories

CLENT:	Basin & Range Hydrogeologists	Client Sa	mple ID:	Client Sample ID: AL-SG29-0903
Lab Order:	03091226	Tag	Tag Number:	00734
Project:	Air Liquide/23018.016	Collecti	ion Date:	Collection Date: 9/30/2003 12:36:00 PM
Lab ID:	03091226-03A		Matrix: AIR	AIR
	vdqq	,un/Bri		
Analyses	Result I	Limit Result Lin	nit Oua	Limit Oual DF Date Analyzed

VOLATILE ORGANICS IN AIR BromoethenerVinvi Bromide)		2					
Bromoathene(Vinvi Bromide)		5					Analyst: JG
(Samuel 16 11 11 11 11 11 11 11 11 11 11 11 11	< 10	2	< 22	22		20	10/1/2003
Bromoform	< 10	õ	< 100	100		50	10/1/2003
Bromomethane	o 10	10	× 40	40		20	10/1/2003
Carbon disulfide	< 10	10	< 32	32		20	10/1/2003
Carbon tetrachloride	< 10	10	^ 8	64		50	10/1/2003
Chlorobenzene	v 10	\$	< 47	47		53	10/1/2003
Chloroethane	< 10	우	< 27	22		50	10/1/2003
Chlaraform	31	10	150	90	05	20	10/1/2003
Chloromethane	< 10	10	^ 21	74		50	10/1/2003
cis-1,2-Dichloroethene	20	10	80	40	D2	50	10/1/2003
cis-1,3-Dichloropropene	o 10	10	× 46	94		20	10/1/2003
Cyclohexane	ot >	10	× 35	x		20	10/1/2003
Dibromochloromethane	× 10	40	98 >	98		20	10/1/2003
Olchlorodifluoromethane(F-12)	× 10	10	< 50	20		20	10/1/2003
Dichlorotetrafluoroethane(F-114)	< 10	10	<71	11		20	10/1/2003
Ethyl Acetate	< 10	10	< 37	37		20	10/1/2003
Ethylbenzene	40	5	180	4	8	20	10/1/2003
Нергале	< 10	40	< 42	45		50	10/1/2003
Hexachlorobutadiene	< 20	20	< 220	220		50	10/1/2003
Hexane	۸ 10	10	98 >	36		50	10/1/2003
m&p-Xylene	170	50	750	88	05	30	10/1/2003
Methyl tert-butyl ether	۷ 20	50	< 73	52		20	10/1/2003
Methylene chloride	× 10	2	< 36	32		70	10/1/2003
o-Xylene	42	5	180	4	ដ	50	10/1/2003
Propene (Propylene)	20	20	88	32	D2	20	10/1/2003
Styrene	۸ ۲0	10	× 43	43		20	10/1/2003

Qualiffers:	ND - Not Detected at the Reporting Limit	S - Spike Recovery outside accepted recovery limits
	J - Analyte detected below quantitation limits	R - RPD outside accepted recovery limits
	D Amphine Account to the constitute of the con-	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Aerotech Environmental Laboratories, Inc.

Precision Analytical Laboratories

Date: 07-Nov-03

Date: 07-Nov-03

CLIENT:	Basin & Range	Basin & Range Hydrogeologists	v	ð	Client Sample ID: AL-SG29-0903	e ID: A	L.SG2	9-0903
Lab Order:	03091226				Tag Number: 00734	aber: 0	0734	
Project:	Air Liquide/23018.016	18.016		Ĭ	Collection	Date: 9	/30/200	Collection Date: 9/30/2003 12:36:00 PM
Lab ID:	03091226-03A				Ä	Matrix: AIR	Ą	
		Aqdd	>	31	hg/m²			
Analyses		Result	Limit	Result	Limit	Limit Qual DF	DP	Date Analyzed
VOLATILE ORGA Tetrachionoethene	VOLATILE ORGANICS IN AIR Tetrachioroethene	0009	1015	41000	089	03	200	Analyst JG 10/1/2003
Tetrahydrofuran		< 20	8	9 >	09		8	10/1/2003
Toluene		110	9	450	88	05	8	10/1/2003
trans-1,2-Dichloroethene	гоефеле	× 10	10	o4.	4		50	10/1/2003
trans-1,3-Dichioropropene	ropropene	4 10	10	84.	46		30	10/1/2003
Trichlomethens		670	10	3700	33	05	8	10/1/2003
Trichlorofluoromethane(F-11)	nethane(F-11)	150	0	860	57	D2	20	10/1/2003
Trichlorotrifluoroethane(F-113)	oethane(F-113)	× 10	5	× 78	78		20	10/1/2003
Vinyl acetate		× 10	10	v 36	8		20	10/1/2003
Vinyl chloride		< 10	10	v 26	56		20	10/1/2003
Surr. 4-Brom	Surr. 4-Bromofluorobenzene	100 %REC	70-130				20	10/1/2003

S - Spike Recovery outside accepted recovery limits	R - RPD outside accepted recovery limits	E - Value above quantitation range	
ers: ND - Not Detected at the Reporting Limit	J - Analyze detected below quantitation limits.	B - Analyte detected in the associated Method Blank	
Qualiffers:			

Page 9 of 15

Industrian Contaminant Level

Nation Laboratory, 4445 E. Cotan Centre Budding 3, state 189 Process, 28 8940 Proces 902,457,3340 Toll Free 896,772,5227 Fazz, 622,445,5102 were

Tucknet Facility, 4455 S. Part Ave. Stat. 19 Tucknet, AZ 8474 Proces, 500,807,3807

Processed statement of the 19 Vertices The Court, Az 1974 Process, 500,807,3807

Processed statement of the 19 Vertices The Court, Az 1974 Process, 500,807,3807

Processed statement of the 19 Vertices The Court of the 1974 Process Son Statement of the 1974 Process Son Stateme

Aerotech Environmental Laboratories of a chaston Laboratories

Date: 07-Nov-03 Precision Analytical Laboratories

CLIENT:	Basin & Range Hydrogeologists	Client Sample ID:	Client Sample ID: AL-Air Equipment Blank-0903
Lab Order:	03091226	Tag Number: 00235	00235
Project:	Air Liquide/23018.016	Collection Date:	Collection Date: 9/30/2003 1:26:00 PM
Lab ID:	03091226-04A	Matrix: AIR	AIR
	vdqq	mg/m,	
A radiation	Donn'lt I imit	Bonnik Timis Branch Timis	· · · · · · · · · · · · · · · · · · ·

	ā	ppbv	Вп	нд/ш,			
Analyses	Result	Limit	Result	Limit	Qual	DF	Date Analyzed
VOLATILE ORGANICS IN AIR 1,1,1-Trichleroethane	< 0.50	TO15	< 2.8	2.8		-	Analyst: JG 10/1/2003
1,1,2,2-Tetrachloroethane	< 0.50	\$ 0.50	× 3.5	3.5		-	10/1/2003
1,1,2-Trichtoroethane	< 0.50	0.50	< 2.8	2.8			10/1/2003
1,1-Dichloroethane	< 0.50	0.50	< 2.1	2.1		-	10/1/2003
1,5-Dichloroethene	< 0.50	0.50	× 2.0	2.0			10/1/2003
1,2,4-Trichforobenzene	< 1.0	1.0	< 7.5	7.5		٧-	10/1/2003
1,2,4-Trimethylbenzene	2.0	0.50	10	2.5		4 ···	10/1/2003
1,2-Dibromoethane	< 0.50	0.50	< 3.9	3.9		-	10/1/2003
1,2-Dichlorobenzene	< 0.50	0.50	< 3.1	€,		-	10/1/2003
1,2-Dichloroethane	< 0.50	0.50	< 2.1	2.1			10/1/2003
1,2-Dichloropropane	< 0.50	0.50	< 2.4	2.4		~	10/1/2003
1,3,5-Trimethylbenzene	< 0.50	0.50	< 2.5	2.5		***	10/1/2003
1,3-Bulzdiene	< 0.50	0.50	41.1	[:		~	10/1/2003
1,3-Dichlarobenzene	< 0.50	0.50	۸ ښ	3.1		-	10/1/2003
1,4-Dichlorobenzene	12	0.50	73	3,1		-	10/1/2003
2,2,4-Trimethyipentane	< 0.50	0.50	<1.2	1.2		***	10/1/2003
2-Sutanone (MEK)	4.1	1.0	4.2	3.0		-	10/1/2003
2-Hexanone	< 1.0	1.0	< 4,2	4.2		-	10/1/2003
2-Propanol	د 1.0	1.0	< 2.5	2.5		-	10/1/2003
4-Ethyltoluene	< 0.50	0.50	< 2.2	2.2			10/1/2003
4-Methyl-2-pentanone	< 1.0	1.0	< 4.2	4.2		+	10/1/2003
Acetone	60	10	140	24	20	63	10/1/2003
Aliyi chloride	< 0.50	0.50	< 0.80	0.80		_	10/1/2003
Senzane	0.96	0.50	13	1,6		-	10/1/2003
Benzyi chloride	< 2.0	2.0	h 11	.			10/1/2003
Bromodichloromethane	< 0.50	0.50	× 3.4	3.4		-	10/1/2003

The state of the s	S - Spike Recovery outside accepted recovery limits	R - RPD outside accepted recovery limits	E - Value above quantitation range
- FARE	ND - Not Detected at the Reporting Limit	J - Analyte detected below quantitation limits	B - Analyte detected in the associated Method Blank
	Qualifiers:		

^{* -} Value exceeds Maximum Contaminant Level
Laboratory, 4945 E. Cotton Center Boulevair, Labiling 3, 1846 1949 Penetric 202437,3340 Tbit Feer 866,772,5227 Fax 633,445 6192 www.aeroanvirlotabe.com
in Foolity, 4455 S. Park Am. Sta. 110 Tucani, Az Labiling 3, 1940 Fax 633,445 6192 www.aeroanvirlotabe.com

Aerotech Environmental Laboratories Inc.

Precision Analytical Laboratories

Date: 07-Nov-03

Lab Order:	03091226				Tag Number:		00235	00235
Project:	Air Liquide/23018.016	918.016		J	Collection Date:		0/200	9/30/2003 1:26:00 PM
Lab ID:	03091226-04A				Matrix	rix: AIR	~	
		: R.	ppbv	Bri	ng/m,			
Analyses		Result	Limit	Result	Limit	Qual	DF	Date Analyzed
VOLATILE ORGANICS IN AIR	ANICS IN AIR		7					1
Bromoethene(Vinyl Bromide)	lyl Bromide)	< 0.50	85.	1.1	1.1		_	Arialyst: Jus 10/1/2003
Вготоботп		< 0.50	0.50	< 5.2	5.2			10/1/2003
Bromomethane		< 0.50	0.50	< 2.0	2.0		-	10/1/2003
Carbon disulfide		< 0.50	0.50	۸ 1.6	1.6			10/1/2003
Carbon tetrachloride	ide	< 0.50	0.50	< 3.2	3.2		-	10/1/2003
Chlorobenzene		< 0.50	09'0	< 2.4	2.4		-	10/1/2003
Chloroethane		< 0.50	0.50	c 1.3	6.			10/1/2003
Chloraform		< 0.50	0.50	< 2.5	2.5		·	10/1/2003
Chloromethane		0.59	0.50	12	9.0		,-	10/1/2003
cls-1,2-Dichloroethene	hene	< 0.50	0.50	< 2.0	2.0		-	10/1/2003
cis-1,3-Dichloropropene	euedo.	< 0.50	0.50	< 2.3	2.3		_	10/1/2003
Cyclohexane		< 0.50	0.50	< 1.7	1.7		_	10/1/2003
Dibromochioromethane	thane	< 0,50	0.50	۸ 4.	4.3		_	10/1/2003
Dichlorodifluoromethane (F-12)	ethane(F-12)	0.69	0.50	3.5	2.5		_	10/1/2003
Dichlorotetrafluoroethane(F-114)	bethane(F-114)	< 0.50	0.50	< 3.6	3.6			10/1/2003
Ethyl Acetate		< 0.50	0.50	× 1.8	1.8		τ-	10/1/2003
Ethylbenzene		7	0.50	8.4	2.2			10/1/2003
Heptane		< 0.50	0.50	< 2.1	2.1		_	10/1/2003
Hexachlorobutadiene	ene	0.1.0	1.0	, ,	=		-	10/1/2003
Hexans		0.61	0.50	2.2	6 .		-	10/1/2003
m&p-Xylene		4.2	1.0	\$	4.4		_	10/1/2003
Methyl tert-butyl ether	ther	ć. 5	1.0	5.5	3.7		_	10/1/2003
Methylene chloride	a	< 0.50	0.50	< 1.8	89:	•		10/1/2003
o-Xylene		4.1	0.50	6.2	2.2	Ì	_	10/1/2003
Propene (Propylene)	ie)	3.1	1.0	5.4	1.8	Ì	_	10/1/2003
Styrene		< 0.50	0.50	<2.2	2.2	•	_	10/1/2003

S - Spike Recovery outside accepted recovery limits R . RPD outside accepted recovery limits E - Value above quantitation range B - Analyte detected in the associated Method Blank J - Analyte detected below quantitation limits ND - Not Detected at the Reporting Limit

Plage 11 of 15

Main Laboratory, 4845 E. Coton Centre Busines, 2, Suite 189 Phoenix, 22, 85540 Phone, 802,437,3340 Toll Franc, 895,772,5227 Fast, 692,444,6192 wewent and included the state of the stat

Acrotech Environmental Laboratories activities

Precision Analytical Laboratories

Date: 07-Nov-03

AND THE PROPERTY OF THE PROPER	0.0000000000000000000000000000000000000		
CLENT	Basin & Range Hydrogeologists	Client Sample ID:	Client Sample ID: AL-Air Equipment Blank-0903
Lab Order:	03091226	Tag Number: 00235	00235
Project:	Air Liquide/23018.016	Collection Date:	Collection Date: 9/30/2003 1:26:00 PM
Lab ID:	03091226-04A	Matrix: AIR	AIR
	Addq	m/gri	
Analyses	Result Timit		Result Timit And DF Date Analyzed

Analyses	Result	Limit	Result	Limit	Qual	DF	Limit Qual DF Date Analyzed
VOLATILE ORGANICS IN AIR		T015					Analyst: JG
Tetrachloroethene	0.58	0.50	4.0	3.4		-	10/1/2003
Tetrahydrofuran	× 1.0	1,0	< 3.0	3.0		-	10/1/2003
Toluane	4.2	0.50	16	<u>6.</u>		-	10/1/2003
trans-1,2-Dichlongethene	< 0.50	0.50	< 2.0	2.0		-	10/1/2003
frans-1,3-Dichtoropropene	< 0.50	0.50	< 2.3	2.3		-	10/1/2003
Trichloroethene	< 0.50	0.50	< 2.8	2.8		_	10/1/2003
Trichlorofluoromethane(F-11)	< 0.50	0.50	^ 2.8	2.8		_	10/1/2003
Trichlorotrifluoroethane (F-113)	< 0.50	0.50	< 3.9	3.9		-	10/1/2003
Vinyl acetate	< 0.50	0.50	× 1.8	1.8		-	10/1/2003
Vinyl chloride	< 0.50	0.50	۸ دز	1.3		-	10/1/2003
Surr: 4-Bromoffuorobenzene	101 %REC	70-130	,			-	10/1/2003

S - Spike Recovery outside accepted recovery limits	R - RPD outside accepted recovery limits	E. Value about describition made
ND - Not Detected at the Reporting Limit	J - Analyte detected below quantitation limits	B - Analyte detected in the associated Method Blank
Qualifiers;		

Page 12 of 15 line exceeds Maximum Contaminant Level to the Level to the Leboratory, 4645 E. Cottor Center Education State 189 Procus, X2 BSO4 Proces 602,437,3340 Toll Free, 866,772,5227 Fez, 823,445,6192 www.aennenviriabt.com licean Fedility, 4455 S. Perit Arte, State 110 Turson, X2 BS74 Proces 503,897 Fez, 603,997,3930

Aerotech Environmental Laboratories

Precision Analytical Laboratories

Date: 07-Nov-03

CELENT:	Basin & Range Hydrogeologists	lydrogeolog	SIS	_	Client Sample ID:		7	AL-SG30-0903
Lab Order:	03091226				Tag Number:		00189	
Project:	Air Liquide/23018.016	8.016			Collection Date:		30/20	9/30/2003 2:27:00 PM
Lab ID:	03091226-05A	:			X	Matrix: /	AIR	
		id	Aqdd		hg/m²			
Analyses		Result	Limit	Result	Limit	Qua	DF	Date Analyzed
	!							
VOLATILE ORGANIN 1,1,1-Trichtoroethane	VOLLATILE ORGANICS IN AIR 1,1,1-Trichtoroethane	£	1015 10	19	55	02	8	Anatyst: JG 10/1/2003
1,1,2,2-Tetrachloroethane	loroethane	c 10	g Q	8	02		8	10/1/2003
1,1,2-Trichloroethane	трапе	01 0	10	v 55	55		8	10/1/2003
1,1-Dichlaroethane	908	480	5	2000	4	2	8	10/1/2003
1,1-Dichloroethene	ene	95	100	3400	400	20	200	10/1/2003
1,2,4-Trichlorobenzene	oenzene	¢ 20	8	< 150	150		20	10/1/2003
1,2,4-Trimethylbenzene	benzene	52	5	360	90	D2	20	10/1/2003
1,2-Dibromoethane	ane	۸ 10	\$	< 78	82		8	10/1/2003
1,2-Dichlorobenzene	1Z9De	× 10	\$	× 61	5		8	10/1/2003
1,2-Dichloroethane	ane	× 10	9	^ 14	14		20	10/1/2003
1,2-Dichloropropane	pane	v 10	5	< 47	47		82	10/1/2003
1,3,5-Trimethylbenzene	benzene	15	\$	80	20	2	20	10/1/2003
1,3-Butadiene		× 10	9	22 >	23		8	10/1/2003
1,3-Dichlorobenzene	zene	o 10	\$	× 64	2		50	10/1/2003
1,4-Dichlorobenzene	euez	× 10	₽	× 61	19		8	10/1/2003
2,2,4-Trimethylpentane	pentane	۰ 10	\$	× 24	5 5		8	10/1/2003
2-Butanone (MEK)	(XII	v 20	20	09 >	90		20	10/1/2003
2-Hexanone		× 20	83	8	8		20	10/1/2003
2-Propanol		< 20	8	< 50	ß		20	10/1/2003
4-Ethyltoluene		ĸ	õ	150	4	25	8	10/1/2003
4-Methyl-2-pentanone	anone	× 20	29	× 83	83		8	10/1/2003
Acetone		220	100	230	240	6	8	10/1/2003
Allyl chloride		o 10	9	v 16	16		8	10/1/2003
Benzene		90	10	200	35	05	50	10/1/2003
Benzyi chloride		, 4	4	< 210	210		8	10/1/2003
Bromodichloromethane	rethane	4 10	0	e 68 ×	8		8	10/1/2003
Qualifiers:	ND - Not Detected at the Reporting Limit	he Reporting L	imit		S - Spike Reco	rery outsid	c accepte	S - Spike Recovery outside accepted recovery limits
	J - Analyte detected below quantitation limits	low quantitatio	n limits		R - RPD outside accepted recovery limits	e accepted	recovery	Emits
	R - Anolide destanted in the associated betaline Dlank	the prepariety	Meeting Blank		F - Volue about ourseitsting mone	The state of	!	

Qualifiers:	ND - Not Detected at the Reporting Limit	S - Spilce Recovery outside accepted recovery limits
	J - Analyte detected below quantitation limits	R - RPD outside accepted recovery limits
	B - Analyte detected in the associated Method Blank	E - Value above quantitation range
	" - Value exceeds Maximum Contaminant I est-	Page 13 of 15

E Main Laboratory, 4645 E. Cotton Canier Bookward, Building 3, 248 and 18 Process 602, 2437, 3340 full Free: 666.772,5227 Faz. 523, 445, 5192 www.aeroen

Tutaton Feedilgr, 4455 S. Park Ans. Sta. 110 Tutaton, AZ 56714 Phone: 508.007,3801 Faz. 520,987,3803

E Promode Adminior 6604 to Vinctors Acts Demons Among Sentra Beans for the East stay. Sen acts 1800 East 1800 Tables.

Aerotech Environmental Laboratories a duision of Aerotech Laboratories

Precision Analytical Laboratories

Date: 07-Nov-03

CLIENT:	Basin & Range Hydrogeologists	Client Sample ID: AL-SG30-0903	AL-SG30-0903
Lab Order:	03091226	Tag Number: 00189	00189
Project:	Air Liquide/23018.016	Collection Date:	Collection Date: 9/30/2003 2:27:00 PM
Lab ID:	03091226-05A	Matrix: AIR	AIR
	The Address of the Ad		
	•	incitud.	

	đđ	Aqdd	Sit	hg/m²			***************************************
Analyses	Result	Limit	Result	Limit	Qual	DF	Date Analyzed
VOLATILE ORGANICS IN AIR		T015					Analyst: .IG
Bromoethene(Vinyl Bromide)	< 10	10	< 22	23		20	10/1/2003
Bromoform	۸ 10	10	< 100	100		20	10/1/2003
Gromomethane	< 10	10	× 40	40		20	10/1/2003
Carbon disulfide	< 10	10	< 32	32		29	10/1/2003
Carbon ietrachloride	× 10	10	× 64	49		20	10/1/2003
Chlorobenzene	< 10	10	< 47	47		20	10/1/2003
Chloroethane	o 10	4	< 27	27		50	10/1/2003
Chloreform	35	10	170	50	05	20	10/1/2003
Chloromethane	v 10	10	<21	21		50	10/1/2003
cis-1,2-Dichloroethene	v 10	10	< 40	40		20	10/1/2003
cis-1,3-Dichloropropene	o 10	10	46	84		50	10/1/2003
Cyclohexane	< 10	10	> 35	35		20	10/1/2003
Dibromochloromethane	< 10	10	> 86	98		20	10/1/2003
(Jichlorodifluoromethane(F-12)	< 10	10	< 50	20		20	10/1/2003
Dichlorotetrafluoroethane(F-114)	< 10	40	×71	7		20	10/1/2003
Ethyl Acetate	× 10	4	< 37	37		50	10/1/2003
Ethylbenzene	100	9	440	4	20	20	10/1/2003
Meptane	49	10	200	42	05	20	10/1/2003
riexachlorobutadiene	< 20	20	< 220	220		50	10/1/2003
Hexane	32	10	110	36	D2	20	10/1/2003
m&p-Xylene	370	20	1600	88	02	50	10/1/2003
Methyl tert-butyl ether	< 20	20	× 73	73		20	10/1/2003
Methylene chloride	o 10	0	< 35	35		20	10/1/2003
G-Xylene	98	5	380	4	D2	. 50	10/1/2003
Propene (Propylene)	7.	20	120	35	D2	50	10/1/2003
Styrene	× 10	10	۸ 43	8		83	10/1/2003

recovery limits	limits		Page 14 of 15 Fax. 623.445.6192 www.aeroenvirolabs.com
S - Spike Recovery outside accepted recovery limits	R - RPD outside accepted recovery limits	E - Value above quantitation range	hone: 602,437,3340 Toll Free: 866,772,5227 1,807,3803
ND - Not Detected at the Reporting Limit	J - Analyte detected below quantitation limits	B - Analyte detected in the associated Method Blank	* - Value exceeds Maximum Contaminant Level substitutive HSS E. Cotton Centra Boulevard, Budding 3, Safe 188 Phoenix AZ 86040 Phone: 602,437,3340 Toll Free: 866,772,5227 Faz. 823,445,6192 www.aeroenvirolaba.com Fucility: 4455 8, Purk Ave. Ste. 110 Turantu, AZ 86714 Phone: 503,047,047 Phone: 502,437,3340 Toll Free: 866,772,5227 Faz. 823,445,6192 www.aeroenvirolaba.com https://doi.org/10.1016/j.com/html.no.no.no.no.no.no.no.no.no.no.no.no.no.
Qualifiers:			Rioratory: 4645 E., Cotto Facility: 4455 S. Park A.

Aerotech Environmental Laboratories for a division of Aerotech Laboratories for.

Precision Analytical Laboratories

Date: 07-Nov-03

CLIENT;	Basin & Range Hydrogeologists	25	ð	lient Sample ID: AL-SG30-0903	Ä	L-SG3(-0903
Lab Order:	03091226			Tag Number: 00189) (i	6810	
Project:	Air Liquide/23018.016		0	ollection D	ate: 9/	30/200	Collection Date: 9/30/2003 2:27:00 PM
Lab ID:	03091226-05A			Mai	Matrix: AIR	Ħ	
-	aqdd		SH.	hg/m,			
Analyses	Result Limit	Limit	Result	Limit	Qual	DF	Result Limit Qual DF Date Analyzed

Analyst: JG 10/1/2003	10/1/2003	10/1/2003	10/1/2003	10/1/2003	10/1/2003	10/1/2003	10/1/2003	10/1/2003	10/1/2003	10/1/2003
200	ଯ	20	20	20	20	8	70	50	20	20
50		05			20	02				
069	99	38	\$	46	55	57	78	36	78	•
28000	> 60	1800	45	× 46	3500	2300	< 78	× 36	< 26	
TO15 100	20	10	õ	0	9	ţ	10	5	5	70-130
4100	< 20	470	o 10	v 10	640	400	× 10	× 10	< 10	102 KREC
VOLATILE ORGANICS IN AIR Tetrachioroethene	Tetrahydrofuran	Toluene	trans-1,2-Dichloroethene	trans-1,3-Dichloropropene	Trichlaroethene	Trichlorofluoromethane(F-11)	Trichlorotrifluoroethane(F-113)	Vinyl acetate	Vinyl chloride	Surr: 4-Bromofluorobenzene

S - Spike Recovery outside accepted recovery limits R - RPD outside accepted recovery limits E - Value above quantitation range B - Analyte detected in the associated Method Blank J - Analyte detected below quantitation limits ND - Not Detected at the Reporting Limit Qualifiers:

[■] Main Laboratory, 4645 E. Cotion Cariat Bouleman Lawel

Tage 15 of 15

Tage 15 of 15

Tueson Facility, 4455 F. Park Ave. Ste. 110 Tueson, Z. 2547 Phene: 502.437.3409

Tueson Facility, 4455 F. Park Ave. Ste. 110 Tueson, Z. 2547 Phene: 502.847.3809

Converse Adviced 1811 W. Fundeson Nike Diversity Adviced 261977 Diversity Adviced 271 Tab Advi. Fac Explain 271 Tab Advi. Tab Explain 240 F. Expla

Precision Analytical Laboratories advision of Aerotech Laboratories, Inc.

RECEIVED

BASIN & RANGE HYDROGEOLOGISTS

October 16, 2003

Basin & Range Hydrogeologists 2800 N 24th St Ray Craft

Phoenix, AZ 85008

Order No.: 03100461

RE: Air Liquide/23018.016

Dear Ray Craft:

Precision Analytical Laboratories received 5 samples on 10/1/2003 for the analyses presented in the following report.

This report includes the following information:

- Case Narrative.

- Analytical Report: includes test results, report limit (Limit), any applicable data qualifier (Qual), units, dilution factor (DF), and date analyzed.

· QC Summary Report.

destroy this message and all attachments thereto. If you have any questions regarding these test contain information that is privileged, confidential, or otherwise exempt from disclosure under prohibited. If you have received this communication in error, please notify us immediately and applicable law. Dissemination, distribution, or copying of this communication by anyone other This communication is intended only for the individual or entity to whom it is directed. It may than the intended recipient, or a duly designated employee or agent of such recipient, is results, please do not hesitate to call.

Sincerely,

Vice President - Client Services

0-308-1226

		•						
CH	ΔIN.	o	F-C	UST	מסז	Y R	ECO	RI

Sampler(s) Hame(s)

	CHAIN-OF-CUSTO	ODY RECOR	D 00	Electronic Data liverable Required?		х		Deadline for web/e-n Deadline for			0/15/03 0/17/03	Pas	ge <u>1</u>	ol .
	BASIN @		Com	Start Date:		0/03 0/03		Send Involce To: Company:	BASIN	& RANG	3		Attention	; D. Chapman
	HYDROGEO			Site Identification: act or Release No.:		r Liquide 3018.016		Address: Phone No.:	2800 No 602-840		treet, Phoe	nix, AZ	Fex No.	: 602-840-8011
	Send Analytical Report T BASIN & RANGE HYDR 2800 North 24 th Street, Ph Attention: Ray Craft	ROGEOLOGISTS		Phone: 6 Fax: 602 : rcraft@basin-and	-840-801	1	·	Environmental Labora Company: Address: Phone No.:	Precisio 4645 Ea	n Analyti ist Cotton	eal Labora Center Bl			noenix AZ 85040 : 623-445-6192
		T				Conte	alners	Laboratory ID	- 7	Analyses	Requested	1	Spe	cial Notes
	Sample Identification Code	Sarryle Onte	Semple Time	Cantaier Serial e	Katrix	No. of Entech Min-Car (1 liter)			TO-15 (250.00)					
0	AL-5G28-0903	9/30/03	10:47	00613	AIR	1			Х					
6)	AL-Air Field Blank-0903	9/30/03	11:45	00222	AIR	1			Х					
٥3	AL-5G29-0903	9/30/03	12:35	00734	AIR	1			X					
	AL-Air Equipment Biank-0903	9/30/03	13.26	00235	AIR	1			X					
65	AL-SG30-0903	9/30/03	14:27	00189	AIR		<u></u>		<u> </u>					

1. Relinquished By (Company Name):	2. Received By (Company Name):	3. Relinquished By (Company Name):	4. Received By (Company Name):
Print Name: Chris How cheen	Print Name: Tracey Mag Arthur	Print Name:	Print Name:
Signature: De De La	Signature: 1. Months	Signature:	Signature:
Date: 9-30-03 Time: 1753	Date: 9-30-53 Time: 1753	Date: Time:	Date: Time:

Data Quality Objectives or Additional instructions

Precision Analytical is authorized to charge a total of \$2650.00 (3 back up canisters @ \$50 a piece).

Please see attached table, TABLE 1 for target analytes and their appropriate PQLs.

One or more of the following compounds must be used as QC spikes: 1,1,1-Trichloroethane, 1,1-Dichloroethane, Trichloroethene, Tetrachloroethene.

■ Corporate Address: 1501 W Koudsen Diver, Phoenic KS217 Phone: RS21780,4800 TGF Free: RS0.6551,4902 Feec R321780,7835 www.senciachabac.com
Main Laboratory. 4464 E. Cotton Center Boulevard, Building S. Subir 189 Phoenic M.Z. 85040 Phoenic 802.457,3340 Toll Free: 886.772.5227 Fac: 623.445,6192
■ Thomas Examine Jazz e bound his Set at the Termine Transfer Press provided from the Set 272.5227 Fac: 623.445,6192

Precision Analytical Laboratoriesadvision of Aerotech Laboratories, Inc.

Precision Analytical Laboratories, inc.

Date: 16-Oct-03

Precision Analytical Laboratories

CASE NARRATIVE Date: 17-Oct-03 Basin & Range Hydrogeologists Precision Analytical Laboratories Air Liquide/23018.016 Lab Order: CLIENT

Standard Methods for the Examination of Water and Wastewater, 19th Edition, 1995. Samples were analyzed using methods outlined in references such as:

Methods for Chemical Analysis of Water and Wastes, EPA-600/4-79-020, Revised March 1983. Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW846, 3rd Edition.

40 CFR, Part 136, Revised 1995. Appendix A to Part 136 - Methods for Organic Chemical Analysis of

Municipal and Industrial Wastewater.

NIOSH Manual of Analytical Methods, Fourth Edition, 1994.

Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air, Second

Precision Analytical Laboratories (PAL) holds Arizona certification no. AZ0610 and PAL-Tucson holds Arizona certification no. AZ0609. Aerotech Laboratories, Inc. (PAL division - Laboratory ID 154268) is accredited by the American Industrial Hygiene Association (AIHA) in the industrial hygiene program for the analytical techniques noted on the scope of accreditation. PAL participates in the AIHA Environmental Lead Proficiency Analytical Testing (ELPAT) program for lead in soil, paint chips and dust wipes.

Analytical Comments:

All method blanks and laboratory control spikes met EPA method and/or laboratory quality control objectives for the analyses included in this report.

Data Qualifiers:

control issues. You will find them noted in your report under the column header "QUAL". Any quality Listed below are the data qualifiers used in your analytical report to explain any analytical or quality control deficiencies that cannot be adequately described by these qualifiers will be addressed in the analytical comments section of this case narrative.

Sample required dilution due to high concentration of target analyte.

	Corporate Add	com Wein Laborato	■ Timeon Facility
	Page 1 of 1 22 Fax: 623.780.7695 www.sen8techlabs.com	J Toll Free: 866.772.5227 Fax. 823.445.8192 www.palabs.c	
	Toll Frae: 800.651.480	Phone: 602.437.3340	30 BIT 3802
4	Page 1 of 1 Val Koudsen Crive, Phoenix, Artona 85027 Phone: 623.780.4800 Toll Frae: 800.651.4802 Fax: 623,780,7895 www.aerthechlabs.com	aboratory; 4645 E. Cotton Center Boulevard, Building 3, Suite 189 Phoenix, AZ 85040 Phone; 602.437.3340 Toll Free; 866.772.5227 Fax, 823.445.6192 www.palabs.com	- English sizes 5 back him the timen A7 offile thems 570 pA7 9804 East 500 RAY 3802

ORGA! oroelhar achloro oroelhar achloro oroelhar achloro oroelhar achloro oroelhar achloro oroelhar bythen bythen ne hythen ne ne ne hythen ne ne hythen ne ne ne hythen ne ne ne ne hythen ne n	Air Liquide/23018.016 03100461-01A Result ICS IN AIR 17000 Per Air Air Air Air Air Air Air Air Air Ai			ì	Tag Number: 00273	00271	00271 10/1/2003 8:26:00 AM
Project: Air Li Lab ID: 03100 Analyses VOLATILE ORGANICS I 1,1-Trichloroethane 1,1-2-Trichloroethane 1,1-Dichloroethane 1,2-4-Trichloroethane 1,2-4-Trichloroethane 1,2-4-Trichloroethane 1,2-0-Trichloroethane 1,2-0-Trichloroethane 1,2-0-Trichloroethane 1,2-0-Trichloroethane 1,2-0-Trichloroethane 1,2-0-Trichloroethane 1,2-0-Trichloroethane 1,2-0-Trichloroethane 1,2-0-Trichloroethane 1,3-0-Trichloroethane 1,3-0-Trichloroethane 1,3-0-Trichloroethane 1,3-0-Trichloroethane 1,3-0-Trichloroethane 1,3-0-Trichloroethane 1,3-0-Trichloroethane 2,3-4-Trichlorobertane 3,3-4-Trichlorobertane 3,3-4-Trichlorobertane 3,3-4-Trichlorobertane 3,3-4-Trichlorobertane 3,3-4-Trichlorobertane 3,3-4-Trichl	0461-01A				•	10/1/01	103 8:26:00 AM
Analyses Analyses VOLATILE ORGANICS I 1,1-Trichloroethane 1,1-2-Trichloroethane 1,1-Dichloroethane 1,2-4-Trichloroethane 1,2-4-Trichloroethane 1,2-4-Trichloroethane 1,2-4-Trichloroethane 1,2-Dichloroethane 2,2-4-Trimethylenzene 1,3-Dichloroberizene 2,2-4-Trimethylenzene 2	9461-01A				Collection Date:	24.1.5	
Analyses VOLATILE ORGANICS I 13.1-Trichloroethane 13.2-Trichloroethane 13.2-Trichloroethane 13.4-Trinablybenzene 12.4-Trinablybenzene 12.4-Trinablybenzene 12.0-trinablybenzene 12.0-trinablybenzene 13.0-trinablybenzene 14.0-trinablybenzene 13.0-trinablybenzene	IN AIR				Matrix:	AIR	
VOLATILE ORGANICS I 1,1-Trichloroethane 1,1-2-Tertachloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,3-S-Trimethylbenzene 1,3-Butadiene	IN AIR	Result	Limit	Oual	Units	DF	Date Analyzed
1,1,1-Trichloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,3-Butadiene 1,3-Butadiene 1,3-Butadiene 1,3-Butadiene 1,3-Butadiene 2,3-4-Trimethylbenzene		(T015				Analyst: JG
11.2.2-Tetrachloroethane 11.1-Dichloroethane 11-Dichloroethane 11-Dichloroethane 12.4-Tichloroethane 12.4-Tichloroethane 12Dichloroethane 12Dichloroethane 12Dichloroethane 13Dichloroethane 13Di		17000	1000	D2	ppbv	2000	10/3/2003
1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,2-A-Trichloroethane 1,2-A-Trichloroethane 1,2-Dichloroethane 1,2-Dichloroptopane 1,2-Dichloroptopane 1,2-Dichloroptopane 1,3-Butadiene 1,3-Butadiene 1,3-Butadiene 2,3-A-Trimethylentane 2,2-A-Trimethylentane 2,2-A-Trimethylentane 2,2-Butanone (MEK)		v_100	100		hphy	200	10/2/2003
1,1-Dichtorochtane 1,1-Dichtorochtane 1,1-Dichtorochtane 1,2-Trichtoporochtane 1,2-Dichtorochtane 1,2-Dichtorochtane 1,2-Dichtorochtane 1,2-Dichtorochtane 1,3-Dichtorochtane 2,2-4-Trinnebyberatene 2-Butanone (MEK) 2-Patanone (MEK)		× 100	100		Add	200	10/2/2003
1,1-Obtaloroethere 1,2-Obtaloroethere 1,2-Obtaloroethere 1,2-Obtaloroethere 1,2-Obtaloroethere 1,2-Obtaloroethere 1,2-Obtaloroethere 1,3-Obtaloroethere 2,2-4-Timethylpentane 2,2-4-Timethylpentane 2-Butanone (MEK)		9200	100	05	yddd	200	10/2/2003
1.2.4-Titathioroenzene 1.2-Obromoehane 1.2-Obromoehane 1.2-Obromoehane 1.2-Obrinoroenane 1.2-Obrinoroenane 1.3-Obrinoroenane 1.3-Orinoenybenzene 1.3-Butadiene 1.3-Butadiene 2.2.4-Timethybenzene 2.2.		8700	Ş	22	۸qdd	200	10/2/2003
1.2-Disconnections 1.2-Disconnections 1.2-Disconnections 1.2-Disconnections 1.2-Disconnections 1.2-Disconnections 1.3-Disconnections 1.3-Disconnec		× 200	500		vqdd.	200	10/2/2003
1.2-Dichloroberizene 1.2-Dichloropropane 1.3-Dichloropropane 1.3-Strimethylbenzene 1.3-Butudiene 1.4-Dichloroberizene 1.4-Dichloroberizene 2.2-4-Trimethylorotenizene 2.2-4-Trimethylorotenizene 2.2-4-Trimethylorotenizene		2 5	3 5		Agdd.	200	10/2/2003
1,2-Dichloroptopane 1,2-Dichloroptopane 1,3-Trimetrylbenzene 1,3-Butadiene 1,3-Dichlorobenzene 2,2-A-Trimetryloentne 2,2-A-Trimetryloentne 2-Butanne (MEK)		4 100	5 5		Agda	200	10/2/2003
1,2-Dichloropropane 1,3-5-Trinethylbenzene 1,3-Butadene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 2,2,4-Trimethylpentane 2-Butanone (MEK) 2-Hessanone		< 100	5		, dqqq	200	10/2/2003
1.3.5-Trimethylbenzene 1.3-Butardiene 1.3-Dichlorobenzene 1.4-Dichlorobenzene 2.2.4-Trimethylbentane 2-Butanone (MEK) 2-Hessanone		< 100	100		ngdd	200	10/2/2003
1,3-Butadiene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 2,2,4-Trimebtylpentane 2:Butanone (MEK) 2-Hexanone		< 100	108		,qdd	200	10/2/2003
1,3-Dichlorobenzene 1,4-Dichlorobenzene 2,2,4-Trimebylpentane 2-Butanone (MEK) 2-Hexanone		< 100	100		hpby	200	10/2/2003
1.4-Dichlorobenzene 2.2,4-Trimethylpentane 2-Butanone (MEK) 2-Hexanone.		< 100	100		ndqqq	200	10/2/2003
2,2,4-Trimethylpentane 2-Butanone (MEK) 2-Hexanone		× 100	100		ppbv	200	10/2/2003
2-Butanone (MEK) 2-Hexanone		< 100	100		nqdd	200	10/2/2003
2-Hexanone		< 200	200		nqdd	200	10/2/2003
1		< 200	200			200	10/2/2003
Z-Propanoi		< 200	200			200	10/2/2003
4-Ethyltoluene		v 100	100		^qdd	200	10/2/2003
4-Methyl-2-pentanone		< 200	200		^qdd	200	10/2/2003
Acetone		1000	1000		ngdd	500	10/2/2003
Allyl chlonde		× 100	199		nqdd	200	10/2/2003
Senzene		× 100	80 1		Aqdd	8	10/2/2003
denzyl chlonde		9 4	400		Add	200	10/2/2003
Brownest and April Brownide)	(9)	8 9	100		Andra d	3 8	102/2003
Bromeform	(20)	4 100	100		andd andd	3 5	10/2/2003
Bromomethane		× 100	5		Apdd	200	10/2/2003
Carbon disulfide		< 100	100		hddq	200	10/2/2003
Carbon tetrachloride		× 100	100		ndqq	200	10/2/2003
Chlorobenzene		× 100	100		Addd	200	10/2/2003
Chloroethane		× 100	100		hphy	200	10/2/2003
Chloroform		× 100	8		ppbv	200	10/2/2003
Chloromethane		< 100	100		ppbv	200	10/2/2003
cis-1,2-Dichloroethene		× 100	193		λqdd	200	10/2/2003
cis-1,3-Dichloropropene		× 100	100		ppbv	200	10/2/2003
Cyclohexane		v 100	100		ppbv	200	10/2/2003
Dibromochloromethane		v 100	100		Addd	200	10/2/2003
Dichlorodifluoromethane(F-12)	-12)	v 100	100		hppv	200	10/2/2003

B coporate Address: 1501 W. Koudsen Drive, Description of the Section of the Sec E - Value above quantitation range

B - Analyte detected in the associated Method Blank J - Analyze detected below quantitation limits

ND - Not Detected at the Reporting Limit

Qualifiers:

S - Spike Recovery outside accepted recovery limits R - RPD outside accepted recovery limits

Precision Analytical Laboratories, Inc. a division of Aerotech Laboratories, Inc.

Precision Analytical Laboratories or division of Aerotech Laboratories, Inc.

Precision Ar	Precision Analytical Laboratories	ories			Date:	Date: 16-Oct-03	-03
CLIENT: Lab Order: Project: Lab W:	Basin & Range Hydrogeologists 03160461 Air Liquide/23018.016 03100461-01A	slogists			Client Sample ID: AL-VP07A-0903 Tag Number: 00271 Collection Date: 10/1/2003 8:26:00 AM Matrix: AIR	AL-VP 00271 10/1/2(AIR	97A-6903 003 8:26:00 AM
Analyses		Result	Limit	Qual	Units	DF	Date Analyzed
VOLATILE ORGANICS IN AIR	NICS IN AIR		TO15				Analyst: JG
Dichlorotetrafluoroethane(F-114)	ethane(F-114)	< 100	100		hpbv	200	10/2/2003
Ethyl Acetate		< 100	100		nqdd	200	10/2/2003
Ethylbenzene		< 100	100		Addd	200	10/2/2003
Heptane		< 100	100		ngdd	200	10/2/2003
Hexachlorobutadiene	ine	< 200	200		Agdd	200	10/2/2003
Hexane		< 100	100		hddd	200	10/2/2003
m&p-Xylene		< 200	200		ngdd	200	10/2/2003
Methyl tert-butyl ether	ther	< 200	200		Apdd	200	10/2/2003
Methylene chloride	an an	< 100	100		Addd	200	10/2/2003
o-Xylene		< 100	100		Add	200	10/2/2003
Propene (Propylene)	ie)	< 200	200		Aqdd	200	10/2/2003
Styrene		× 100	100		yddd	200	10/2/2003
Tetrachloroethene		400	100	02	hddd	200	10/2/2003
Tetrahydrofuran		< 200	200		Aqdd	200	10/2/2003
Toluene		< 100	100		ppbv	200	10/2/2003
trans-1,2-Dichloroethene	ethene	× 100	100		Aqdd	200	10/2/2003
trans-1,3-Dichloropropene	propene	< 100	100		ppbv	200	10/2/2003
Trichloroethene		130	100	5	vdqqq	200	10/2/2003
Trichlorofluoromethane(F-11)	hane(F-11)	320	100	52	,qdd	200	10/2/2003
Trichlorotrifluoroethane(F-113)	hane(F-113)	< 100	100		yddd	200	10/2/2003
Vinyl acetate		× 100	100		Addd	200	10/2/2003
Vinyl chloride		× 58	100		hpbv	200	10/2/2003
Surr, 4-Bromoffuorobenzene	uorobenzene	97.8	70-130		%REC	200	10/2/2003

CLAENT: Lab Order: Project:				•			
Lab Order: Project:	Basin & Kange Hydrogeologists	cologists		پ	Client Sample ID: AL-VP07B-0903	AL VPO	7B-0903
Project:	03100461				Tag Number:		
	Air Liquide/23018.016				Conection Date:		10/1/2003 9:42:00 A.M.
Lab ID:	03100461-02A	1	:		Matrix:	AR	
Analyses		Result	Limit Qual	Quai	Units	DF	Date Analyzed
VOLATILE OR	VOLATILE ORGANICS IN AIR		TO15				Analyst: JG
1,1,1-Trichloroethane	ethane	47000	1000	05	hpby	2000	10/3/2003
1,1,2,2-Tetrachioroethane	iloroethane	< 100	100		Aqdd	200	10/2/2003
1,1,2-Trichloroethane	ethane	100	50,	8	Add	200	10/2/2003
1,1-Dichlaroethane	ane	8900	100	22	vdqq	200	10/2/2003
1,1-Dichloroethene	ene	8800	1000	20	Agdd	2000	10/3/2003
1,2,4-Trichlorobenzene	penzene	< 200	200		hddv	200	10/2/2003
1,2,4-Trimethyibenzene	benzene	< 100	100		Agdd	200	10/2/2003
1,2-Dibromoethane	ane	× 100	100		Aqdd	200	10/2/2003
1,2-Dichlorobenzene	nzene	ot >	100		Aqdd	200	10/2/2003
1,2-Dichloroethane	iane	, 100	100		hdpv	200	10/2/2003
1,2-Dichloropropane	pane	× 100	100		Addd	200	10/2/2003
1,3,5-Trimethylbenzene	benzene	۸ 100	100		Addq	200	10/2/2003
1,3-Butadiene		5	100		hddq	90	10/2/2003
1,3-Dichlorobenzene	nzene	۸ 108	100		hphy	200	10/2/2003
1,4-Dichlorobenzene	nzene	< 100	100		Agdd	200	10/2/2003
2,2,4-Trimethylpentane	pentane	× 100	‡00		hppv	200	10/2/2003
2-Butanone (MEK)	EK)	< 200	200		hpbv	200	10/2/2003
2-Hexanone		< 200	200		hphy	200	10/2/2003
2-Propanol		< 200	200		Aqdd	200	10/2/2003
4-Ethyltoluene		۰ 100	윤		ppbv	200	10/2/2003
4-Methyl-2-pentanone	lanone	< 200	200		ppbv	500	10/2/2003
Acetone		< 1000	1000		Addd	200	10/2/2003
Allyl chloride		v 108	100		hdpv	200	10/2/2003
Benzene		v 100	100		vdqq	200	10/2/2003
Benzył chloride		× 400	400		^qdd	200	10/2/2003
Bromodichloromethane	methane	× 18	100		yddd	50	10/2/2003
Bromoethene(Vinyl Bromide)	Vinyl Bromide)	× 180	100		ppbv	200	10/2/2003
Вготобот		, 8	100		ndqq	200	10/2/2003
Bromomethane	03	۸ 100	100		ppbv	200	10/2/2003
Carbon disulfide	<u> </u>	× 100	100		pptv	200	10/2/2003
Carbon tetrachloride	loride	× 100	100		ppbv	200	10/2/2003
Chlorobenzene		× 100	100		Aqdd .	200	10/2/2003
Chlomethane		× 100	100		Aqdd	200	10/2/2003
Chloroform		× 100	100		Aqdd	200	10/2/2003
Chloromethane		× 100	100		Aqdd	200	10/2/2003
cis-1,2-Dichloroethene	oethene	× 100	100		Apdd	200	10/2/2003
cis-1,3-Dichloropropene	opropene	× 100	100		Aqdd	200	10/2/2003
Cyclohexane		۸ 10	100		Aqdd	200	10/2/2003
Dibromochloromethane	methane	۸ 100	100		noby		40000000

Page 2 of 10
sportes Address: 1501 W. Knudsen Druk, Prench Contaminant Lovel
sit Laboratory, 4645 E. Cotton Center Boulevard, Building 3, State 169 Prenent, AZ 55,400 Prointe 602,437,3340 Toil Free: 665,772,5227 Fax. 623,446,5192 www.paisba.com R - RPD outside accepted recovery limits E - Value above quantitation range B - Analyte detected in the associated Method Blank J - Analyte detected below quantitation limits

■ Coponie Address, 1501 W. Knisken Direk, Johanska Marianum Contaminan Lavel

■ Coponie Address, 1501 W. Knisken Direk, Johansk Attoriek, Abs. 1501 Feb. 800 651 ABD. Fac. 623 780 7855 www.aerdechalan.com

■ Main Laboratory, 4445 C. Cotton Center Boulevard, Building 3, Safe 169 Phoenix A.Z. 65040 Phoenis 602 4577 3540 704 Febr. 663 772 5227 Fac. 623 445 6192 www.pelabot.com

S - Spike Recovery outside accepted recovery limits R + RPD outside accepted recovery limits

E - Value above quantitation range

 \boldsymbol{B} - Analyte detected in the associated Method Blank 1 - Analyte detected below quantitation limits ND - Not Detected at the Reporting Limit

Quadifiers:

S - Spike Recovery outside accepted recovery limits

ND - Not Detected at the Reporting Limit

Qualifiers:

Precision Analytical Laboratories, *advision of Aerotech Laboratories*, *Inc.*

Precision Analytical Laboratories and advision of Aerotech Laboratories, Inc.

Date: 16-Oct-03

Precision A	Precision Analytical Laboratories	ries			Date:	Date: 16-0c1-03	03	Precision A	Precision Analytical Laboratories	ories
CLIENT: Lab Order:	Basin & Range Hydrogeologists 03100461	logists		O	Client Sample ID: AL-VP07B-0903 Tag Number: 00175	AL-VP(/7B-0903	CLIENT: Lab Order:	Basin & Range Hydrogeologists	logists
Project;	Air Liquide/23018.016				Collection Date: 10/1/2003 9:42:00 AM	10/1/20	33 9:42:00 AM	Project:	Air Liquide/23018.016	
Lab ID:	03100461-02A				Matrix: AIR	AIR		Lab ID:	03100461-03A	
Analyses	is automorphic control of	Result	Limit	Limit Qual Units	Units	DF	Date Analyzed	Analyses		Result
VOLATILE ORGANICS IN AIR	ANICS IN AIR		7015				Analyst: JG	VOLATILE ORGANICS IN AIR	ANICS IN AIR	
Dichlarotetraffuo,	roethane(F-114)	÷ 100	100		/qdd	200	10/2/2003	1,1,1-Trichloroethane	ane	150000
Ethyl Acetate		< 100	100		yddq	200	10/2/2003	1,1,2,2-Tetrachlomethane	pethane	√ 100
Ethylbenzene		< 100	100		nqdd	200	10/2/2003	1,1,2-Trichloroethane	ane	× 100
Heptane		< 100	100		лфф	200	10/2/2003	1,1-Dichloroethane	83	23000
Hexachlorobutadiene	liene	< 200	200		hpbv	200	10/2/2003	1,1-Dichloroethene	40	10000
Hexane		< 100	100		Addd	200	10/2/2003	1,2,4-Trichlorobenzene	zene	< 200
m&p-Xylene		< 200	200		^qdd	200	10/2/2003	1,2,4-Trimethylbenzene	nzene	< 100
Methyl terk-butyl ether	ether	< 200	200		ndqq	200	10/2/2003	1,2-Dibromoethane	92	< 100
Methylene chloride	de	× 100	100		hpbv	200	10/2/2003	1,2-Dichlorobenzene	ine	× 100
o-Xylene		< 100	400		ppbv	200	10/2/2003	1,2-Dichloroethane	ev.	< 100
Propene (Propylene)	ene)	720	200	22	hpbv	200	10/2/2003	1,2-Dichloropropane	E .	< 100
Styrene		< 100	100		hpbv	200	10/2/2003	1,3,5-Trimethylbenzene	nzene	< 100
Tetrachloroethene		350	100	D2	ppbv	200	10/2/2003	1,3-Butadiene		× 100
Tetrahydrofuran		< 200	200		hddq	200	10/2/2003	1,3-Dichlorobenzene	eue	v 100
Toluene		< 100	100		bpbv	200	10/2/2003	1,4-Dichlorobenzene	the	× 100
trans-1,2-Dichloroethene	oethene	× 100	100		hddy	200	10/2/2003	2,2,4-Trimethylpentane	ntane	< 100
trans-1,3-Dichloropropene	оргорепе	< 100	100		Addd	200	10/2/2003	2-Butanone (MEK)	_	< 200
Trichloroethene		150	100	D2	hpby	200	10/2/2003	2-Hexanone		< 200
Trichlorofluoromethane(F-11)	ethane(F-11)	470	100	02	ndqq	200	10/2/2003	2-Propanol		< 200
Trichlorotrifluoroethane(F-113)	ethane(F-113)	× 100	100		ngdd	200	10/2/2003	4-Ethyltoluene		< 100
Vinyl acetate		× 100	100		ngdd	200	10/2/2003	4-Methyl-2-pentanone	ione	< 200
Vinys chloride		< 100	100		ngdd	200	10/2/2003	Acetone		< 1000
Surr. 4-Bromofluorobenzene	fluorobenzene	98.5	70-130		%REC	200	10/2/2003	Allyl chloride		× 100

Lab Order: (2100461) Tog Number: (0226) Lab Order: Air Liquide/23018.016 Result Limit Qual Units DF Date Analyzed Lab DI: (3100461-033A) Result Limit Qual Units DF Date Analyzed Atualyses Result Limit Qual Units DF Date Analyzed Atualyses Total Conference of the control of the con					į	Circui campie ID: AL-Vr0/C-0903		11111
Result	Lab Order:	03100461				Tag Number	: 00226	
Result Limit Qual Units Dr Date.	Project:	Air Liquide/23018.016			Ĭ	Collection Date		1003 10:15:00 AM
Result Limit Qual Units Dif	Lab ID:	03100461-03A				Matrix		
1016 1017 1018 1017	Analyses		Result	Limit	Ous			Date Analyzed
150000 150000 100	OLATILE OR	GANICS IN AIR	1.	015		1		Analyst: JG
Color Colo	1,1,1-Trichloroe	athane	150000	2000		- Addd	4000	10/2/2003
100 100 ppbv 200 200 100 ppbv 200 2000 100 ppbv 2000	1,1,2,2-Tetrach	Joroethane	√V V	100		hqdd	200	10/2/2003
23000 2000 D2 ppbv 4000 - (1000 2000 D2 ppbv 4000 - (1000 100 ppbv 2000 200 - (100 100 ppbv 200 200 - (100 ppbv 200 - (10	1,1,2-Trichloroe	sthane	× 100	100		ppbv	200	10/2/2003
10000 2000 D2 pptv 4000 200	1,1-Dichloroeth	ane	23000	2000		pppv	4000	10/2/2003
 <200 <100 <100<td>1,1-Dichloroeth</td><td>eue</td><td>10000</td><td>2000</td><td></td><td>hope</td><td>4000</td><td>10/2/2003</td>	1,1-Dichloroeth	eue	10000	2000		hope	4000	10/2/2003
100 100	1,2,4-Trichlorot	Senzene	< 200	200		A Q d d	200	15/2/2003
100 100	1,2,4-Trimethyl	benzene	< 100	100		Aqdd	200	10/2/2003
 (100 <li< td=""><td>1,2-Dibromoeth</td><td>iane</td><td>× 100</td><td>100</td><td></td><td>nqdd</td><td>200</td><td>10/2/2003</td></li<>	1,2-Dibromoeth	iane	× 100	100		nqdd	200	10/2/2003
100 100	1,2-Dichlorober	zene	× 100	100	-	vdqq	500	10/2/2003
100 100	1,2-Dichloroeth	ane	< 100	100	_	Adda	200	10/2/2003
100 100	1,2-Dichloropra	pane	< 100	100	_	,qdd	200	10/2/2003
100 ppbv 200	1,3,5-Trimethyli	benzene	× 100	100	_	^qdd	200	10/2/2003
100 ppbv 200	1,3-Butadiene		< 100	100		Aqdd.	200	10/2/2003
100 ppbv 200 200 c 200 200 c 200 2	1,3-Dichlorober	izene	× 100	100	_	ppbv	200	10/2/2003
100 100 ppbv 200	1,4-Dichlorober	nzene	× 100	100	_	hpbv	200	10/2/2003
 < 200 < 200 < 200 < 200 < 400 < 100 < 200 < 100 < 200 < 100 < 100	2,2,4-Trimethyl	pentane	< 100	100	_	ppbv	200	10/2/2003
 < 200 < 100 	2-Butanone (Mi	EK)	< 200	200	_	Agdd	200	10/2/2003
< 200	2-Hexanone		< 200	200	_	vdqq	200	10/2/2003
100 100	2-Propanol		< 200	200		Addo	500	10/2/2003
 4200 200 1000 1000 1000 1000 100 100<!--</td--><td>4-Ethyltoluene</td><td></td><td>× 100</td><td>100</td><td>_</td><td>ydqq</td><td>200</td><td>10/2/2003</td>	4-Ethyltoluene		× 100	100	_	ydqq	200	10/2/2003
1000 1000	4-Methyl-2-pen	tanone	× 200	200	-	\qdd	200	10/2/2003
100 100	Acetone		× 1000	1000	•	ngdd	200	10/2/2003
4100 100 ppbby 200 4400 4000 ppbby 200 4400 4000 ppbby 200 4100 4100 ppbby 200 4100 4100 ppbby 200 4100 4100 ppbby 200 4100 4	Allyl chloride		× 100	100	_	ppbv	200	10/2/2003
4400 410 ppbv 200 (100 100 ppbv 200 (100 ppbv 200	Benzene		× 100	100	_	hddo	200	10/2/2003
100 100	Benzyl chloride		< 400	400	_	ppbv	200	10/2/2003
100 100 ppbv 200 100	Bromodichloron	nethane	× 100	100	_	ngdd	200	10/2/2003
100 100 ppbv 200 100	Bromoethene(N	finyl Bromide)	× 100	100	_	Adde	200	10/2/2003
Color 100 ppbv 200 100 100 ppbv 200	Bromaform		× 100	100	_	Adde	88	10/2/2003
100 100	Bromomethane		< 100	100	-	Add c	200	10/2/2003
C 100	Carbon disulfide	th.	< 100	100		Agdo	200	10/2/2003
Color Colo	Carbon tetrachil	aride	< 100	100		Adde	200	10/2/2003
C 100 100 ppbv 200 100 100 ppbv 200 100 ppbv 2	Chlorobenzene		× 100	100	_	nddo	200	10/2/2003
 < 100 < 100 < 100 < 100 < 100	Chloroethane		۰ 100	100	_	vddo	200	10/2/2003
 < 100 	Chloroform		× 100	100	_	Adde	200	10/2/2003
 < 100 100 ppbv 200 < 100 100 ppbv < 200 < 100 < 100	Chloromethane		× 100	100	_	A ddc	200	10/2/2003
 < 100 100 ppbv 200 < 100 100 ppbv 200 < 100 100 mnhw mn 	cis-1,2-Dichloro	ethene	< 100	100	1	yook	200	10/2/2003
< 100 100 ppby 200 < 100 100 nntw 200	cis-1,3-Dichloro	ргорепе	× 100	100	,,,	yppv	200	10/2/2003
. 100 100 vdan 001 ×	Cyclohexane		< 100	100	14.	vdqx	200	10/2/2003
207	Dibromochloma	of the same	000	•		,		

Value exceeds Maximum Contaminant Livel
 ■ Coporate Address: 1501 W. Knutsen Different British Property, 25,000 E - Value above quantitation range

* - Value exceeds Maximum Contaminant Lavel
** - Value exceeds Max

B - Analyte detected in the associated Method Blank J - Analyte detected below quantitation limits

ND - Not Detected at the Reporting Limit

Qualifiers

S - Spike Recovery outside accepted recovery limits R - RPD outside accepted recovery limits

E - Value above quantitation range

B - Analyte detected in the associated Method Blank J - Analyte detected below quantitation limits

ND - Not Detected at the Reporting Limit

Quantiters

S - Spike Recovery outside accepted recovery limits R - RPD outside accepted recovery limits

Precision Analytical Laboratories, *inc.*

Date: 16-0ct-03

Precision Analytical Laboratories

Precision Analytical Laboratories, Inc. a division of Aerotech Laboratories, Inc.

Date: 16-Oct-03

Lab Order:	03100461				Tag Number:	00168	
Project:	Air Liquide/23018.016	9			Collection Date:	10/1/20	10/1/2003 11:22:00 AM
Lab ID:	03100461-04A				Matrix	AIR	
Analyses		Result	Limit	0	Units	DF	Date Analyzed
VOLATILE OR	VOLATILE ORGANICS IN AIR		TO15				Analyst: JG
1,1,1-Trichloroethane	ethane	40	₽	2	hpby	20	10/2/2003
1,1,2,2-Tetrachloroethane	lloroethane	< 10	10		Apdd	50	10/2/2003
1,1,2-Trichloroethane	ethane	× 10	10		∧qdd	50	10/2/2003
1,1-Dichloroethane	ane	140	5		\qdd	8	10/2/2003
1,1-Dichloroethene	ene	420	5	0	\qdd	20	10/2/2003
1,2,4-Trichlorobenzene	benzene	< 20	8		ppbv	20	10/2/2003
1,2,4-Trimethylbenzene	benzene	84	10	2	nqdd	8	10/2/2003
1,2-Dibromoethane	nane	< 10	Đ.		^qdd	20	10/2/2003
1,2-Dichlorobenzene	uzene	v 10	5		ngdd	20	10/2/2003
1,2-Dichlomethane	iane	< 10	2		April	20	10/2/2003
1,2-Dichloropropane	pane	۸ 10	5		hpby	20	10/2/2003
1,3,5-Trimethylbenzene	benzene	21	9	55	\qdd	50	10/2/2003
1,3-Butadiene		¢	5		\qdd	8	10/2/2003
1,3-Dichlorobenzene	nzene	or >	5	_	Addd	8	10/2/2003
1,4-Dichlorobenzena	nzena	F	0		nqdd	20	10/2/2003
2,2,4-Trimethylpentane	pentane	8	₽		,qdd	20	10/2/2003
2-Butanone (MEK)	EK)	160	20	05	obpv	8	10/2/2003
2-Hexanone		× 20	2	_	Apdd	50	10/2/2003
2-Propanol		54	8		Apdd	8	10/2/2003
4-Ethyltoluene	•	36	₽	25	pppv	50	10/2/2003
4-Methyl-2-pentanone	fanone	× 20	ଅ ଼		^qdd	8	10/2/2003
Acetone		1800	900	2	\cdd	3	10/2/2003
Allyl chloride		۸ 10	5		, Aqdd	8	10/2/2003
Benzene		DS 5	2 9	20	Agdd :	R 8	10/2/2003
Benzyl chloride	-	5 6	4 €		Andd Andd	8 8	10/2/2003
Promother of the pro-		2 \$	2 5		a de	3 8	COCCOCIO
Bromoform	valys blusside)	5 ¢	2 5		a Adu	3 8	10222003
Remomethana		, v	2		, da	1 8	1000003
Carbon distriffice	5	410	2		, dag	50	10/2/2003
Carbon tetrachloride	loride	× 10	10	_	Aque	20	10/2/2003
Chlorobenzene		× 10	5	_	Add	8	10/2/2003
Chloroethane		× 10	9	_	Add	20	10/2/2003
Chloraform		< 10	10	_	\ddd	20	10/2/2003
Chloromethane	ø	× 10	5	_	Apply	20	10/2/2003
cis-1,2-Dichloroethene	pethene	ot >	10	_	\qdd	20	10/2/2003
cis-1,3-Dichloropropene	оргореле	× 10	5	_	vdqqq	20	10/2/2003
Cyclohexane		ot >	5	_	vdqqq	8	10/2/2003
Dibromochloromethane	methane	۸ 10	40	_	vqdd	20	10/2/2003

* - Value exceeds Maximum Contaminant Level

Services Address: 1501 W. Krudssen Drive, Pressing Assign Phone 1272, 1501 Pressing Assign Pres

Page 7 of 10

W Coporate Address: 1501 W, Norstan Down Provine Art State Agos Tod Free: 800.551.4802 Fac 623.780.7805 www.aerbechale.com

Wain Laboratory, 4445 E. Cotton Center Bookerant Baiding 3, Suite 189 Procest, A.2 8540 Phone: 602.437.3340 Tall Free: 868.772.5227 Fac. 623.445.6192 www.palates.com

Triceno Earlier- Add C. Cotton Center Bookerant Baiding 3, Suite 189 Procest, A.2 8540 Phone: 602.4617.3340 Tall Free: 868.772.5227 Fac. 623.445.6192 www.palates.com

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

B - Analyte detected in the associated Method Blank J - Analyte detected below quantitation limits ND - Not Detected at the Reporting Limit

Qualifiers:

S - Spike Recovery outside accepted recovery limits R - RPD outside accepted recovery limits E - Value above quantitation range B - Analyte detected in the associated Method Blank J. Analyte detected below quantitation limits ND - Not Detected at the Reporting Limit Qualifiers:

Precision Analytical Laboratories

Precision Analytical Laboratories, Inc.

Date: 16-Oct-03

	AL-SG27-0903	00168	Collection Date: 10/1/2003 11:22:00 AM	AIR		
100	Client Sample ID: AL-SG27-0903	Tag Number: 00168	Collection Date:	Matrix: AIR	***************************************	Describe A vivie
	Basin & Range Hydrogeologists	03100461	Air Liquide/23018.016	03100461-04A		4
	CLIENT:	Lab Order:	Project:	Lab ID:		4 monthiology

Analyses	Result	Limit Qual Units	Qual	Units	DF	Date Analyzed
VOLATILE ORGANICS IN AIR	•	T015				Analyst: JG
Dichlorotetraftuoroethane(F-114)	< 10	10		ppbv	20	10/2/2003
Ethyl Acetate	< 10	10		ndqqq	20	10/2/2003
Ethylbenzene	150	10	65	ppbv	20	10/2/2003
Нертале	150	10	22	ndqq	20	10/2/2003
Hexachlorobutadiene	< 20	8		yddd	50	10/2/2003
Hexane	170	10	05	Apdd A	20	10/2/2003
m&p-Xylene	460	50	23	ppbv	20	10/2/2003
Methyi test-butyl ether	2300	100	路	ngdd	100	10/2/2003
Methylene chloride	< 10	10		ppbv	20	10/2/2003
o-Xylene	130	10	22	ppbv	20	10/2/2003
Propene (Propylene)	270	10	03	ndqq	20	10/2/2003
Styrene	ot >	10		hpbv	20	10/2/2003
Tetrachloroethene	300	10	22	ppbv	50	10/2/2003
Tetrahydrofuran	< 20	20		vdqq	50	10/2/2003
Toluene	800	10	22	ngdd	20	10/2/2003
trans-1,2-Dichloroethene	< 10	10		Agdd	50	10/2/2003
trans-1,3-Dichloropropene	< 10	₽		h p hv	20	10/2/2003
Trichloroethene	64	10	22	ndqqq	20	10/2/2003
Trichloraftuoramethane(F-11)	410	10	22	ndqqq	20	10/2/2003
Trichlorotrifluoroethane(F-113)	v 10	10		ppbv	50	10/2/2003
Vinyi acetate	v 10	10		hphy	20	10/2/2003
Vinyl chloride	× 10	10		ppbv	20	10/2/2003
Sun: 4-Bromofluorobenzene	94.4	70-130		%REC	20	10/2/2003

S - Spike Recovery outside accepted recovery limits	R - RPD outside accepted recovery limits	E - Value above quantitation range
 ND - Not Detected at the Reporting Limit	J - Analyte detected below quantitation limits	\mathbf{B} - Analyte detected in the associated Method Blank
Qualifiers:		

" - Value coceeds Maximum Contaminant Level
rate Address: 1901 W. Krutsken Dires, Prosente, Actions 2627 Propose 252.194.660 Told Free: 600.651,4802 Fax: 623.196.7955 www.aenteablabs.com
aboratory: 4645 E. Cotan Center Pauleing 3, Sales 198 Pricesing, AZ 65040 Prices: 602.457.3340 Toll Free; 866.172.5227 Fax: 823.445.6192 www.paiabs.com

Precision Analytical Laboratories Inc.

Date: 16-Oct-03

Precision Analytical Laboratories

		- 1	A MARKET
CLIENT:	Basın & Range Hydrogeologists	Client Sample ID: AL-VP06Z-0903	AL-VP06Z-0903
Lab Order:	03100461	Tag Number: 00203	00203
Project:	Air Liquide/23018.016	Collection Date:	Collection Date: 10/1/2003 1:26:00 PM
Lab ID:	03100461-05A	Matrix: AIR	AIR
Analyses	Result	Result Limit Qual Units DF Date A	DF Date Analyzed

VOLATILE ORGANICS IN AIR		1015				Anah	Analyst: 3G
1,1,1-Trichloroethane	0000066	200000	22	hpbv	400000	10/3/2003	
1,1,2,2. Telrachloroethane	< 5000	2000		ppbv	10000	10/2/2003	
1,1,2-Trichloroethane	< 5000	5000		Addd	10000	10/2/2003	
1,1-Dichloroethane	420000	2000	2	Aqdd	10000	10/2/2003	
1,1-Dichloroethene	110000	2000	8	Add	10000	10/2/2003	
1,2,4-Trichlorobenzene	< 10000	10000		hdpv	10000	10/2/2003	
1,2,4-Trimethylbenzene	< 5000	2000		ppbv	10000	10/2/2003	
1,2-Dibromoethane	< 5000	2000		hpby	10000	10/2/2003	
1,2-Dichlorobenzene	< 5000	2000		hpbv	10000	10/2/2003	
1,2-Dichloroethane	< 5000	2000		hpbv	10000	10/2/2003	
1,2-Dichloropropane	> 5000	2000		ngdd	10000	10/2/2003	
1,3,5-Trimethylbenzene	< 5000	2000		nqdd	10000	10/2/2003	
1,3-Butadiene	• 5000	2000		ppbv	10000	10/2/2003	
1,3-Dichlorobenzene	< 5000	2000		hpbv	10000	10/2/2003	
1,4-Dichlorobenzene	< 5000	2000		hpby	10000	10/2/2003	
2,2,4-Trimethylpentane	< 5000	2000		Addd	10000	10/2/2003	
2-Butanone (MEK)	< 10000	10000		bbpv	10000	10/2/2003	
2-Hexanone	< 10000	10000		ngdd	10000	10/2/2003	
2-Propanol	< 10000	10000		Addd	10000	10/2/2003	
4-Ethyltoluene	< 5000	5000		Add	10000	10/2/2003	
4-Methyl-2-pentanone	< 10000	10000		Addo	10000	10/2/2003	
Acetone	< 50000	50000		hpbv	10000	10/2/2003	
· Allyl chloride	< 5000	2000		,qdd	10000	10/2/2003	
Benzene	< 5000	2000		Addd v	10000	10/2/2003	
Benzyl chloride	< 20000	20000		\ddd \ddd	10000	10/2/2003	
Bromodichloromethane	< 5000	2000		Adda	10000	10/2/2003	
Bromoethene(Vinyl Bromide)	< 5000	2000		ngdd	10000	10/2/2003	
Вготобота	< 5000	2000		Addd	10000	10/2/2003	
Bromomethane	< 5000	2000		,qdd	10000	10/2/2003	
Carbon disulfide	< 5000	2000		hpby	10000	10/2/2003	
Carbon tetrachloride	× 5000	5000		Addd	10000	10/2/2003	
Chiorobenzene	× 5000	2000		Add d	10000	10/2/2003	
Chloroethane	< 5000	5000		vdqqq	10000	10/2/2003	
Chloroform	< 5000	2000		vdqq	10000	10/2/2003	
Chloromethane	< 5000	5000		Apdd	10000	10/2/2003	
cis-1,2-Dichloroethene	< 5000	5000		Apdd .	10000	10/2/2003	
cis-1,3-Dichloropropene	< 5000	2000		^qdd	10000	10/2/2003	
Cyclohexane	< 5000	2000		yddd	10000	10/2/2003	
Dibromochloromethane	< 2000	9009		Addd	10000	10/2/2003	
Dichlorodifluoromethane(F-12)	< 5000	2000		ppbv	10000	10/2/2003	

S - Spike Recovery outside accepted recovery limits	R - RPD outside accepted recovery limits	E - Value above quantitation range
ND - Not Detected at the Reporting Limit) - Analyte detected below quantitation limits	B - Analyte detected in the associated Method Blank
Qualifiers:		

*. Value exceeds Maximum Contaminant Livel

© Copporate Address: 1501 W. Kinidaten Drivel, Process 262707. Process 223,186.4800 Toll Free, 800,651,4802 Fax; 623,780,7805 www.aercentalease.com

Main Laboratory, 4445 E. Cotton Cohint Boulevert, Bullet 188 Phoenix, AZ 26540 Phones: 602,437,3340 Toll Free; 868,772,5277 Fax; 623,445,6192 www.palaba.com

In Treeve Earlith: 4465 C. Dark Jul. 918 Th. Treever 470 R07 9401 Ear-120 R07 9407

Precision Analytical Laboratories

Date: 16-Oct-03

Qualiflers:

CLIENT: Basin & Range Hydrogeologists

Work Order: 03100461

Air Liquide/23018.016 Project:

ANALYTICAL QC SUMMARY REPORT

TestCode: TO15

Sample ID MB-R39641	SampType: ME	BLK	TestCod	le: TO15	Units: ppbv		Prep Da	ite:		Run ID: MS	05_031001A	
Client ID: ZZZZZ	Batch ID: R3	9641	Testh	io: TQ15			Analysis Da	ile: 10/1/2	003	SeqNo: 46	3578	
Analyte	Re	esult	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLImit	Qual
1,1,1-Trichloroethane	<	0.50	0.50									
1,1,2,2-Tetrachicroethane	<	0.50	0.50									
1,1,2-Trichloroethane	<	0.50	0.50									
1,1-Dichloroethane	<	0.50	0.50									
1,1-Dichloroethene	<	0.50	0.50									
1,2,4-Trichlorobenzene		< 1.0	1.0									
1,2,4-Trimethylbenzene	<	0.50	0.50									
1,2-Dibromoelhane	<	0.50	0.50									
1,2-Dichlorobenzene	<	0.50	0.50									
1,2-Dichloroethane	<	0.50	0.50									
1,2-Dichloropropane	<	0,50	0.50									
1,3,5-Trimethylbenzene	<	0.50	0.50									
1,3-Butadiene	<	0.50	0.50									
1,3-Dichiorobenzene	<	0.50	0.50									
1,4-Dichlorobenzene	<	0.50	0.50									
2,2,4-Trimethylpentane	<	0.50	0.50									
2-Butanone (MEK)		< 1.0	1.0									
2-Hexanone		< 1.0	1.0									
2-Propanol		< 1.0	1.0									
4-Ethyltolüene	<	0.50	0.50									
4-Methyl-2-pentanone		< 1.0	1.0									
Acetone		< 5.0	5.0									
Allyl chloride	<	0.50	0.50									
Benzene	<	0.50	0.50									
Benzyl chloride		< 2.0	2.0									
Bromodichloromethane	<	0.50	0.50									
Bromoethene(Vinyl Bromide)	<	0.50	0.50									

ND - Not Detected at the Reporting Limit 3 - Analyte detected below quantitation limits S - Spike Recovery outside accepted recovery limits

B - Analyte detected in the associated Method Blank

R - RPD outside accepted recovery limits

Page I of 15

■ Corporate Address: 1501 W. Knudsen Drive, Phoenix, Arizona 85027 Phone: 623.780.4800 Toll Free: 800.651.4802 Fax: 623.780.7695 www.aarotechlabs.com
■ Main Laboratory: 4645 E. Cotton Center Boulevard, Building 3, Suite 189 Phoenix, AZ 85040 Phone: 602.437.3340 Toll Free: 866.772.5227 Fax: 623.445.6192 www.palabs.com
■ Tucson Facility: 4455 S. Park Ave. Ste. 110 Tucson, AZ 85714 Phone: 520.807.3801 Fax: 520.807.3803

Ethyl Acetate < 5000	Date: 16-Oct-03 Client Sample ID: AL-VP06Z-0903 Tag Number: 00203 Collection Date: 10/1/2003 1:26:00 PM Matrix: AIR 1 Units DF Date Analyzed Analyst: JG Pobby 10000 10222003
 < 5000 < 5000 < 5000 < 5000 < 6000 < 6000 < 6000 < 10000 < 10000 < 10000 < 6000 <	
 < 5000 < 10000 < 6000 < 6000 < 10000 < 10000 < 10000 < 10000 < 10000 < 5000 < 5000 < 5000 < 5000 < 5000 < 5000 < 5000 < 5000 < 5000 < 5000 <	10000 10/2/2003
 10000 6000 6000 10000 10000 10000 10000 10000 10000 10000 2000 2000	19000 10/2/2003
ef 6000 6000 et 710000 10000 et 710000 10000 et 5000 5000 et 5000 5000 et 5000 5000 et 5000 5000 et 6000 50	10000 10/2/2003
e 10000 10000 10000 10000	10000 10/2/2003
ef 10000 10000 10000 10000 5000 5000 10000 10000 100000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 100000 10000	10000 10/2/2003
110000 6000 D2 10 10 10 10 10 10 10 10 10 10 10 10 10	10000 10/2/2003
 < 5000 < 5000 < 10000 < 10000 < 5000 < 5000	10000 10/2/2003
 < 10000 < 5000 < 5000	10000 10/2/2003
 \$5000 \$1000 \$1000 \$1000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 \$2000 	10000 10/2/2003
 < 5000 	10000 10/2/2003
 < 10000 < 5000 	10000 10/2/2003
 < 5000 < 5000 < 5000 < 5000 < 5000 < 5000 	10000 10/2/2003
 < 5000 < 5000 < 5000 < 5000 	10000 10/2/2003
 4 5000 57100 57100 57200 <li< td=""><td>10000 10/2/2003</td></li<>	10000 10/2/2003
\$100	10000 10/2/2003
43000 5000 D2 45000 5000 5000 5000 6000	10000 10/2/2003
 4 5000 5000 5000 5000 5000 	10000 10/2/2003
< 5000 5000	10000 10/2/2003
COURT COOR	10000 10/2/2003
none ,	10000 10/2/2003
Surr, 4-Bromofluorobenzene 96.9 70-130 %REC	10000 10/2/2003

E - Value above quantitation range B - Analyte detected in the associated Method Blank

S - Spike Recovery outside accepted recovery limits R - RPD outside accepted recovery limits

J - Analyte detected below quantitation limits ND · Not Detected at the Reporting Limit

Qualifiers:

Precision Analytical Laboratories a division of Aerotech Laboratories, Inc.

CLIENT: Work Order:

Project:

Basin & Range Hydrogeologists

03100461

Air Liquide/23018.016

ANALYTICAL QC SUMMARY REPORT

.....

TestCode: TO15

Sample ID MB-R39641 Client ID: ZZZZZ	SampType: MBLK Batch ID: R39841	TestCode: TestNo: Test		Units: ppbv		Prep Da Analysis Da		202	Run ID: M8 SeqNo: 46	305_031001A	•
Client ID: ZZZZZ	Batch ID: N39941	FBSUNO: I	010			Anarysis Da	(8: 10/1/2	943	384140. 46	30/0	
Analyte	Result	PQL SP	K value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLImit	Qual
trans-1,2-Dichloroethene	< 0.50	0.50									
trans-1,3-Dichloropropene	< 0.50	0.50									
Trichloroethens	< 0.50	0.50									
Trichlorofluoromethane(F-11)	< 0.50	0.50									
Trichlorotrifluoroethane(F-113)	< 0.50	0.50									
Vinyl acelate	< 0.50	0.50									
Vinyl chlorids	< 0.50	0.50									
Surr: 4-Bromofluorobenzene	9.78	0.50	10	0	97.6	70	130	0	0		
Sample ID MB-R39732	SampType: MBLK	TestCode: Te	Q15	Units: ppbv		Prep Da	te:		Run ID: MS	04_031002A	
Client ID: ZZZZZ	Batch (D: R39732	TestNo: Te	015			Analysis Da	le: 10/2/2	003	SegNo: 46	5247	

Sample ID M8-R39732 Client ID: ZZZZZ	SampType: MBLK Batch (D: R39732		de: TO15 Vo: TO15	Units: ppbv		Prep Da Analysis Da		003	SeqNo: 46	i04_031002 <i>i</i> 5247	4
Analyle	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,1,1-Trichioroethane	< 0.50	0.50									
1,1,2,2-Tetrachloroethane	< 0.50	0.50									
1,1,2-Trichloroethane	< 0.50	0.50									
1,1-Dichloroethane	< 0.50	0.50									
1,1-Dichlorgethene	< 0.50	0.50									
1,2,4-Trichlorobenzene	< 1.0	1.0									
1,2,4-Trimethylbenzene	< 0.50	0.50									
1,2-Dibromoethane	< 0.50	0.50									
1,2-Dichlorobenzene	< 0.50	0.50									
1,2-Dichloroethane	< 0.50	0.50									
1,2-Dichloropropane	< 0.50	0.50									
1,3,5-Trimethylbenzene	< 0.50	0.50									
1,3-Butadiene	< 0.50	0.50									
1,3-Dichlorobenzene	< 0.50	0.50									
1,4-Dichlorobenzene	< 0.50	0.50									

Ouglifiers:

ND - Not Detected at the Reporting Limit

S - Spike Recovery outside accepted recovery limits

B - Analyte detected in the associated Method Blank

) - Analyte detected below quantitation limits

R - RPD outside accepted recovery limits

Page 3 of 15

■ Corporate Address: 1501 W. Knudsen Drive, Phoenix, Arizona 85027 Phone: 623.780.4800 Toll Free: 800.651.4802 Fax: 623.780.780.7695 www.aerotechlabs.com
■ Main Laboratory: 4645 E. Cotton Center Boulevard, Building 3, Sulte 189 Phoenix, AZ 85040 Phone: 602.437.3340 Toll Free: 866.772.5227 Fax: 623.445.8192 www.palabs.com
■ Tucson Facility: 4455 S. Park Ave. Ste. 110 Tucson. AZ 85714 Phone: 520.807.3801 Fax: 520.807.3803

Precision Analytical Laboratories

CLIENT:

Basin & Range Hydrogeologists

Work Order: 03100461 Project:

Air Liquide/23018.016

ANALYTICAL QC SUMMARY REPORT

TestCode: TO15

Sample ID MB-R39641 Client ID: ZZZZZ	SampType: MBLK Batch ID: R39641		de: TO15 No: TO15	Units: ppbv		Prep Da Analysis Da		002	Run ID: MS SeqNo: 46		4
Analyte	Result	PQL		SPK Ref Val	%REC	LowLimit		RPD Ref Val	%RPD	RPDLimit	01
			SPIK Value	SEV VELAN	MEG	COWLINE	⊔iðurauu	KPD Rei vai	76KPD	RPULIMIT	Qual
Bromoform	< 0.50	0.50									
Bromomethane	< 0.50	0.50									
Carbon disulfide	< 0.50	0.50									
Carbon tetrachloride	< 0.50	0.50									
Chlorobenzene	< 0.50	0.50									
Chloroethane	< 0.50	0,50									
Chloroform	< 0.50	0.50									
Chloromethane	< 0.50	0.50									
cis-1,2-Dichloroethene	< 0.50	0.50									
cls-1,3-Dichloropropene	< 0.50	0.50									
Cyclohexane	< 0.50	0.50									
Dibromochloromethane	< 0.50	0.50									
Dichlorodifluoromethane(F-12)	< 0.50	0.50									
Dichlorotetrafluoroethane(F-114)	< 0.50	0.50									
Ethyl Acetate	< 0.50	0,50									
Ethylbenzene	< 0.50	0.50									
Heptane	< 0,50	0.50									
Hexachlorobuladiene	< 1,0	1.0									
Hexane	< 0.50	0.50									
m&p-Xylene	< 1.0	1.0									
Methyl tert-butyl ether	< 1.0	1.0									
Methylene chloride	< 0.50	0.50									
o-Xylene	< 0.50	0.50									
Propene (Propylene)	< 1.0	1.0									
Styrene	< 0.50	0.50									
Tetrachloroethene	< 0.50	0.50									
Tetrahydrofuran	< 1.0	1.0									
Toluene	< 0.50	0.50									

Qualifiers:

ND - Not Detected at the Reporting Limit J - Analyte detected below quantitation limits S - Spike Recovery outside accepted recovery limits

B - Analyte detected in the associated Method Blank

CLIENT:

Besin & Range Hydrogeologists

Work Order: 03100461 Project:

Air Liquide/23018.016

ANALYTICAL OC SUMMARY REPORT

TestCode: TO15

Sample ID MB-R39732	SampType: MBLK	TestCod	de: TO15	Units: ppbv		Prep Da	ta:		Run ID: MS	304_031002/	4
Client ID: ZZZZZ	Batch ID: R39732	Testh	lo: TO15			Analysis Da	te: 10/2/2	003	SeqNo: 46	5247	
Analyte	Resuit	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLImit	Qual
Heptane	< 0.50	0.50									
Hexachlorobuladiene	< 1.0	1.0									
Hexane	< 0.50	0.50									
m&p-Xylene	< 1.0	1.0									
Methyl test-butyl ether	< 1.0	1.0									
Methylene chloride	< 0.50	0.50									
o-Xylene	< 0.50	0.50									
Propene (Propylene)	< 0.50	0.50									
Styrene	< 0.50	0,50									
Tetrachioroethene	< 0.50	0.50									
Tetrahydrofuran	< 1.0	1.0									
Toluene	< 0,50	0.50									
trans-1,2-Dichloroethene	< 0.50	0.50									
trans-1,3-Dichloropropene	< 0.50	0.50									
Trichloroethene	< 0.50	0.50									
Trichlorofluoromethane(F-11)	< 0.50	0.50									
Trichlorotrifluoroethane(F-113)	< 0.50	0.50									
Vinyl acetate	< 0.50	0.50									
Vinyl chloride	< 0.50	0.50									
Surr: 4-Bromofluorobenzene	8.9	0.50	10	0	89	70	130	0	0		
Sample ID LCS-R39641	SampType: LCS	TestCo	de: TO15	Units: ppbv		Prep Da	ite:		Run ID: Mi	305_031001	4
Client ID: ZZZZZ	Batch ID: R39641	Testi	io: TO15			Analysis Da	ite: 10/1/2	003	SeqNo: 46	3580	

Sample ID LCS-R39841 Client ID: ZZZZZ	SampType: LCS Batch ID: R39641	TestCode: TO15 Units: ppbv TestNo: TO15				Prep Da Analysis Da		103	Run ID: M805_031001A SeqNo: 463580		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,1,1-Trichloroethane	10.24	0.50	10	0	102	65	135	0	0		
1,1,2,2-Tetrachioroethane	9.94	0.50	10	0	99.4	65	135	a	0		
1,1,2-Trichloroethane	10.25	0.50	10	0	103	65	135	0	0		

Qualifiers:

- ND Not Detected at the Reporting Limit
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank

- R RPD outside accepted recovery limits

- Page 5 of 15
- Copporate Address: 1501 W. Knudsen Drive, Phoenix, Artzone 85027 Phone: 823.780.4800 Toll Free: 800.651.4802 Fax: 823.780.7685 www.aerotechiabs.com
 Main Laboratory: 4645 E. Cotton Center Boulevard, Building 3, Sulte 189 Phoenix, AZ 85040 Phone: 602.437.3340 Toll Free: 868.772.5227 Fax: 623.445.6192 www.palabs.com
 Tucson Facility: 4455 S. Park Ave. Ste. 110 Tucson, AZ 85714 Phone: 520.807.3801 Fax: 520.807.3803

Precision Analytical Laboratories

CLIENT:

Basin & Range Hydrogeologists

03100461

ANALYTICAL QC SUMMARY REPORT

Work Order:

Project: Air Liquide/23018.016 TestCode; TO15

Sample ID MB-R39732	SampType: MBLK	TestCod	te: TO15	Units: ppby		Prep Da	te:		Run ID: MS	04_031002A	
Client ID: ZZZZZ	Batch ID: R39732	Testh	lo: TO15			Analysis Da	te: 10/2/2	003	SeqNo: 46	5247	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPOLImit	Qual
2,2,4-Trimethylpentane	< 0.50	0.50									
2-Sutanone (MEK)	< 1.0	1.0									
2-Hexanone	< 1.0	1.0									
2-Propanol	< 1.0	1.0									
4-Ethyltoluene	< 0.50	0.50									
4-Methyl-2-pentanone	< 1.0	1,0									
Acetone	< 5.0	5.0									
Allyl chloride	< 0.50	0.50									
Benzene	< 0.50	0.50									
Benzyl chloride	< 2.0	2.0									
Bromodichioromethane	< 0.50	0.50									
Bromoethene(Vlnyl Bromide)	< 0.50	0.50									
Bromoform	< 0.50	0.50									
Bromomethane	< 0.50	0.50									
Carbon disulfide	< 0.50	0.50									
Carbon tetrachloride	< 0.50	0.50									
Chlorobenzene	< 0.50	0.50									
Chloroethane	< 0.50	0.50									
Chloroform	< 0.50	0.50									
Chloromethane	< 0.50	0.50									
cis-1,2-Dichloroethene	< 0.50	0.50									
cis-1,3-Dichloropropene	< 0.50	0.50									
Gyclohexane	< 0.50	0.50									
Dibromochloromethane	< 0,50	0.50									
Dichlorodifluoromethane(F-12)	< 0.50	0.50									
Dichlorotetrafluoroethane(F-114)	< 0.50	0.50									
Ethyl Acetate	< 0.50	0.50									
Ethylbenzene	< 0.50	0.50									
•											

Qualifiers:

ND - Not Detected at the Reporting Limit J - Analyte detected below quantitation limits S - Spike Recovery outside accepted recovery limits

B - Analyte detected in the associated Method Blank

Page 4 of 15

R - RPD outside accepted recovery limits

Precision Analytical Laboratories a division of Aerotech Laboratories, Inc.

CLIENT: Work Order:

Project:

Basin & Range Hydrogeologists

03100461

Air Liquide/23018.016

ANALYTICAL QC SUMMARY REPORT

TestCode: TO15

Sample ID LCS-R39641	SampType: LCS	TestCo	de: TO15	Units: ppbv		Prap Da	le:		Run ID: MS	05_031001A	4
Cilent ID: ZZZZZ	Batch ID: R39641	Test	Na: TO15			Analysis Da	ite: 10/1/20	003	SeqNo: 46	3580	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPOLimit	Qual
Chiorobenzene	10.21	0.50	10	0	102	65	135	0	0		
Chloroethane	10.17	0.50	10	0	102	65	135	0	0		
Chloroform	10.13	0.50	10	0	101	65	135	0	0		
Chloromethane	10	0.50	10	0	100	65	135	0	0		
cls-1,2-Dichloroethene	11.09	0.50	10	0	111	65	135	0	0		
cls-1,3-Dichloropropene	11.95	0.50	10	0	120	65	135	0	0		
Cyclohexane	12.62	0.50	10	0	126	65	135	0	0		
Dibromochloromethane	10.04	0.50	10	0	100	65	135	0	0		
Dichlorodifluoromethane(F-12)	9.78	0.50	10	0	97.8	65	135	0	0		
Dichlorotetrafluoroethane(F-114)	9.97	0.50	10	0	99.7	65	135	0	0		
Ethyl Acetate	11.89	0.50	10	0	119	65	135	0	0		
Ethylbenzene	11.79	0.50	10	0	118	65	135	0	O		
Heptane	11.13	0.50	10	0	111	65	135	0	0		
texachlorobutadiene	9.41	1.0	10	0	94.1	65	135	0	0		
+exane	11.45	0.50	10	0	114	65	135	0	0		
m&p-Xylene	23,82	1.0	20	0	119	65	135	0	0		
Methyl tert-butyl ether	11.95	1.0	10	0	120	65	135	0	0		
viethylene chloride	9.01	0.50	10	0	90.1	65	135	0	0		
o-Xylene	11.75	0.50	10	0	118	65	135	0	0		
Propene (Propylene)	11,75	1.0	10	0	116	65	135	0	0		
Styrene	12.46	0,50	10	0	125	65	135	0	0		
Tetrachloroethene	10.37	0.50	10	0	104	65	135	0	0		
Tetrahydrofuran	11.98	1.0	10	0	120	65	135	0	0		
Toluene	12.09	0.50	10	0	121	65	135	0	0		
rans-1,2-Dichloroethene	10.58	0.50	10	0	108	65	135	0	0		
rans-1,3-Dichloropropene	11.86	0.50	10	0	119	65	135	0	0		
Frichloroethene	10.31	0.50	10	0	103	65	135	0	0		
Trichlorofluoromethane(F-11)	10.32	0.50	10	0	103	65	135	0	0		

Qualifiers:

ND - Not Detected at the Reporting Limit J - Analyte detected below quantitation limits S - Spike Recovery outside accepted recovery limits

B - Analyte detected in the associated Method Blank

- R RPD outside accepted recovery limits
- Corporate Address: 1501 W. Knudsen Drive, Phoenix, Arizona 85027 Phone: 623.780.4800 Toli Free: 800.651.4802 Fax: 823.780.7695 www.aerotechlabs.com
 Main Laboratory: 4845 E. Cotton Center Boulevard, Building 3, Suite 199 Phoenix, AZ 85040 Phone: 802.437.3340 Toli Free: 865.772.5227 Fax. 623.445.6192 www.palabs.com
 Tucson Facility: 4455 S. Park Ave. Ste. 110 Tucson, AZ 85714 Phone: 520.807.3803 Fax: 520.807.3803

Precision Analytical Laboratories

CLIENT:

Basin & Range Hydrogeologists

Work Order: 03100461 Project:

Air Liquide/23018.016

ANALYTICAL QC SUMMARY REPORT

TestCode: TO15

Sample ID LCS-R39641	SampType: LCS	TestCo	de: TO15	Units: ppbv		Ргвр Da	te:		Run ID: MS	05_031001/	1
Client ID: ZZZZZ	Batch ID: R39641	Testi	No: TO15			Analysis Da	te: 10/1/20	03	SeqNo: 463	3580	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Quat
1,1-Dichloroethane	10,58	0.50	10	0	106	65	135	0	0		
1,1-Dichloroethene	10.62	0.50	10	0	106	65	135	0	0		
1,2,4-Trichlorobenzene	9.66	1.0	10	0	96.6	65	135	0	0		
1,2,4-Trimethylbenzene	12.05	0.50	10	0	120	65	135	0	0		
1,2-Dibromoethane	10.44	0.50	10	0	104	65	135	0	0		
1,2-Dichlorobenzene	, 10.42	0.50	10	0	104	65	135	0	0		
1,2-Dichloroethane	10.49	0.50	10	0	105	65	135	0	0		
1,2-Dichloropropane	10.81	0.50	10	0	108	65	135	0	0		
1,3,5-Trimethylbenzene	11.88	0.50	10	0	119	65	135	0	. 0		
I,3-Butadiene	10.58	0.50	10	0	106	65	135	0	Q		
,3-Dichlorobenzene	10.45	0.50	10	0	104	65	135	0	0		
,4-Dichlorobenzene	10.78	0.50	10	0	108	65	135	0	0		
.2,4-Trimethylpentane	11.34	0.50	10	0	113	65	135	0	0		
-Butanone (MEK)	12.18	1.0	10	0	122	65	135	0	0		
-Hexanone	11.16	1.0	10	0	112	65	135	0	0		
?-Propanol	9.66	1.0	10	0	96,6	65	135	0	0		
I-Ethyltoluene	12.06	0.59	10	0	121	65	135	0	0		
I-Methyl-2-pentanone	12,52	1.0	10	0	125	65	135	0	0		
Acetone	9.25	5.0	10	0	92.5	65	135	0	0		
My chloride	11.23	0.50	10	0	112	65	135	0	0		
Banzene	11.32	0.50	10	0	113	65	135	0	0		
Benzyl chłoride	11.86	2.0	10	0	119	65	135	0	0		
Bromodichloromethane	10.07	9.50	10	0	101	65	135	0	0		
tromoathene(Viny) Bromide)	10.17	9.50	10	0	102	66	135	0	0		
romoform	10.51	0.50	10	0	105	65	135	0	Ð		
Bromomethane	9.97	0.50	10	0	99.7	65	135	0	0		
Carbon disulfide	9.44	0.50	10	0	94.4	65	135	0	0		
Carbon tetrachtoride	10.26	0.50	10	0	103	65	135	o	0		

Qualifiers:

ND - Not Detected at the Reporting Limit

S - Spike Recovery outside accepted recovery limits

B - Analyte detected in the associated Method Blank

Page 6 of 15

J - Analyte detected below quantitation limits

R - RPD outside accepted recovery limits

Precision Analytical Laboratories

CLIENT:

Basin & Range Hydrogeologists

Work Order: 03100461 Project:

Air Liquide/23018.016

ANALYTICAL OC SUMMARY REPORT

TestCode: TO15

Sample ID LCS-R39732	SampType: LCB	TestCo	de: TO15	Units: ppbv					Run (D: MS	84_031002A	
Client ID: ZZZZZ	Batch ID: R39732	Test	No: TQ15			Analysis Dat	e: 10/2/20	03	SeqNo: 468	5248	•
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPOLimit	Qual
4-Ethyltoluene	11.96	0.50	10	0	120	65	135	0	0		
4-Methyl-2-pentanone	11.68	1,0	10	0	117	65	135	0	0		
Acatona	10.44	5.0	10	0	104	65	135	0	0		
Allyl chloride	10.76	0.50	10	0	108	65	135	0	0		
Benzene	10.54	0.50	10	0	105	65	135	0	0		
Benzyl chloride	11.4	2.0	10	0	114	65	135	0	0		
Bremodichloromethane	10.39	0.50	10	0	104	65	135	0	0		
Bromoethene(Vinyl Bromide)	10.48	0.50	10	0	105	65	135	0	0		
Bromoform	11.09	0.50	10	0	111	65	135	0	0		
Bromomethane	10.73	0.50	10	0	107	65	135	0	a		
Carbon disulfide	10.24	0.50	10	0	102	65	135	0	0		
Carbon tetrachloride	10.53	0.50	10	0	105	65	135	0	0		
Chlorobenzene	10.78	0.50	10	0	108	65	135	0	0		
Chloroethane	10.93	0.50	10	0	109	₽5	135	0	0		
Chloroform	10.44	0.50	10	0	104	65	135	0	0		
Chloromethane	10.69	0.50	10	0	107	65	135	0	0		
cls-1,2-Dichloroethene	10.58	0.50	10	0	108	65	135	0	0		
cis-1,3-Dichloropropene	11.09	0.50	10	0	111	65	135	a	0		
Cyclohexans	10.59	0.50	10	0	106	65	135	0	0		
Dibromochioromethane	11,21	0.50	10	0	112	65	135	0	0		
Dichlorodifluoromethane(F-12)	10.5	0.50	10	0	105	65	135	٥	0		
Dichlorotetrafluoroethane(F-114)	10.94	0.50	10	0	109	65	135	o	0		
Ethyl Acetate	10.95	0.50	10	0	110	65	135	0	0		
Ethylbenzene	11.26	0.50	10	0	113	65	135	Q	0		
Heptane	10.41	0.50	10	0	104	65	135	Ð	0		
Hexachlorobutadiene	10.77	1.0	10	0	108	65	135	0	0		
Hexane	10,79	0.50	10	0	108	65	135	0	0		
m&p-Xylene	22.35	1.0	20	0	112	65	135	0	0		

Qualiflers:

ND - Not Detected at the Reporting Limit

S - Spike Recovery outside accepted recovery limits

B - Analyte detected in the associated Method Blank

J - Analyte detected below quantitation limits

R - RPD outside accepted recovery limits

Page 9 of 15

Corporate Address: 1501 W. Knudsen Drive, Phoenix, Artzona 85027 Phone: 623,780,4800 Toll Free: 800,651,4802 Fax: 623,780,7695 www.aerotechlabs.com

Main Laboratory: 4645 E. Cotton Center Boulevard, Building 3, Suite 189 Phoenix, AZ 85040 Phone: 802,437,3340 Toll Free: 868,772,5227 Fax: 623,445,6192 www.palabs.com

Tucson Facility: 4455 S. Park Ave. Ste. 110 Tucson, AZ 85714 Phone: 520,807,3801 Fax: 520,807,3803

Precision Analytical Laboratories

CLIENT: Work Order: Basin & Range Hydrogeologists

03100461

Air Liquide/23018.016 Project:

ANALYTICAL QC SUMMARY REPORT

TestCode: TO15

Sample ID LCS-R39641	SampType: LCS	TestCo	de: TO15	Units: ppbv		Prep Da	te:		Run ID: MS	05_0310014	
Client ID: ZZZZZ	Batch ID: R39641	Test	No: TO15		Analysis Date: 10/1/2003			003	SeqNo: 46	3580	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Trichlorotrifluoroethane(F-113)	9.82	0.50	10	a	98.2	65	135	0	0		
Vinyl acetate	12,26	0.50	10	0	123	65	135	0	0		
Vinyl chloride	10.23	0.50	10	0	102	65	135	0	0		
Surr: 4-Bromofluorobenzene	10.44	0.50	10	0	104	70	130	0	0		

Surr: 4-Bromofluorobenzene	10.44	0.50	10	0	104	70	130	0	0		
Sample ID LCS-R39732	SampType: LC8		de: TO15	Units: ppbv		Prep Dat				804_031002A	
Client ID: ZZZZZ	Batch ID: R39732	Testi	ło: TO15			Analysis Dat	e: 10/2/20	103	SeqNo: 46	5248	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,1,1-Trichloroethane	10,7	0.50	10	0	107	65	135	0	0		
1,1,2,2-Tetrachloroethane	10,91	0.50	10	0	109	65	135	0	0		
1,1,2-Trichloroethane	10.49	0.50	10	0	105	65	135	0	0		
1,1-Dichleroethane	10.14	0.50	10	0	101	65	135	0	0		
1,1-Dichloroethene	10.53	0.50	10	0	105	65	135	0	0		
1,2,4-Trichlorobenzene	10.26	1.0	10	0	103	65	135	0	0		
1,2,4-Trimethylbenzene	12.53	0.50	10	0	125	65	135	0	0		
1,2-Dibromoethane	10.61	0,50	10	0	106	65	135	0	0		
1,2-Dichlorobenzene	11.36	0.50	10	0	114	65	135	0	0		
1,2-Dichloroethane	10	0.50	10	0	100	65	135	0	0		
1,2-Dichloropropane	10.4	0,50	10	0	104	65	135	0	0		
1,3,5-Trimethylbenzene	11.93	0.50	10	0	119	65	135	0	0		
1,3-Butadiene	10.41	0.50	10	Ū	104	65	135	0	0		
1,3-Dichlorobenzene	11.23	0.60	10	0	112	65	135	0	0		
1,4-Dichlorabenzene	11.14	0,50	10	0	111	65	135	0	0		
2,2,4-Trimothylpentane	10.51	0.50	19	0	105	65	135	0	0		
2-Butanone (MEK)	10.68	1.0	10	0	107	65	135	0	0		
2-Hexanone	12.01	1.0	19	0	120	65	135	0	0		
2-Propanol	10.42	1.0	10	0	104	65	135	0	0		

Qualiflers:

ND - Not Detected at the Reporting Limit J - Analyte detected below quantitation limits S - Spike Recovery outside accepted recovery limits R - RPD outside accepted recovery limits

B - Analyte detected in the associated Method Blank

Page 8 of 15

Precision Analytical Laboratories a division of Aerotech Laboratories, Inc.

CLIENT:

Project:

Basin & Range Hydrogeologists

Work Order: 03100461

Air Liquide/23018.016

ANALYTICAL QC SUMMARY REPORT

TestCode: TO15

Sample ID LCSD-R39641	SampType: LCSD	TestCo	de: TO15	Units: ppbv		Prep Da	e:		Run ID: MS	06_031001A	
Client ID: 22222	Balch ID: R39641	Test	No: TO15			Analysis Da	le: 10/1/20	103	SeqNo: 46	3582	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLImit	Qua
1,2-Dibromoethane	10.43	0.50	10	0	104	65	135	10.44	0.0958	25	
1,2-Dichlorobenzene	10.28	0.50	10	0	103	65	135	10.42	1.35	25	
1,2-Dichloroethane	10.35	0.50	10	0	104	65	135	10.49	1.34	25	
1,2-Dichloropropane	10.94	0.50	10	0	109	65	135	10.81	1.20	25	
1,3,5-Trimethylbenzene	11.89	0.50	10	0	119	65	135	11.88	0.0841	25	
1,3-Butadiene	10.38	0.50	10	0	104	65	135	10.58	1.91	25	
1,3-Dichlorobenzene	10.47	0.50	10	0	105	65	135	10.45	0,191	25	
1,4-Dichlorobenzene	10.71	0.50	10	0	107	65	135	10.78	0.651	25	
2,2,4-Trimethylpentane	11.41	0.50	10	0	114	65	135	11.34	0:615	25	
2-Butanone (MEK)	12.1	1.0	10	0	121	65	135	12.18	0.659	25	
2-Hexanone	11.18	1.0	10	0	112	65	136	11.16	0.179	25	
2-Propanol	9.87	1.0	10	0	98.7	65	135	9.86	2.15	25	
4-Ethyltoluene	12.06	0.50	10	0	121	65	135	12.06	0	25	
4-Methyl-2-pentanone	12.73	1.0	10	0	127	65	135	12.52	1.66	25	
Acetone	8.49	5.0	10	0	84.9	65	135	9.25	8.57	25	
Allyl chloride	11.36	0.50	10	0	114	65	135	11.23	1.15	25	
3enzene	11.37	0.50	10	0	114	65	135	11.32	0,441	25	
Benzyl chloride	11.96	2.0	10	0	120	65	135	11.86	0.840	25	
Bromodichloromethane	10.15	0,50	10	0	102	65	135	10.07	0.791	25	
Bromoethene(Vinyl Bromide)	9.93	0.50	10	0	99.3	65	135	10.17	2,39	25	
Bromoform	10.51	0.50	10	0	105	65	135	10.51	0	25	
Bromomethane	9.76	0.50	10	0	97.6	65	135	9.97	2.13	25	
Carbon disulfide	9.36	0,50	10	0	93,6	65	135	9.44	0.851	25	
Carbon tetrachloride	10.14	0.50	10	0	101	65	135	10.26	1,18	25	
Chlorobenzene	10.29	0.50	10	0	103	65	135	10.21	0.780	25	
Chloroethane	9.96	0.50	10	0	99.6	65	135	10.17	2.09	25	
Chloroform	10,1	0.50	10	0	101	65	135	10.13	0.297	25	
Chloromethane	9,76	0.50	10	0	97.6	65	135	10	2.43	25	

Qualifiers:

ND - Not Detected at the Reporting Limit

S - Spike Recovery outside accepted recovery limits

B - Analyte detected in the associated Method Blank

J - Analyte detected below quantitation limits

R - RPD outside accepted recovery limits

■ Corporate Address: 1501 W. Knudsen Orive, Phoenix, Arizona 85027 Phone: 623.780.4800 Toll Free: 800.651.4802 Fax: 623.780.780.7895 www.aerotechlabs.com
■ Main Laboratory: 4645 E. Cotton Center Boulevard, Building 3, Suite 189 Phoenix, AZ 85040 Phone: 602.437.3340 Toll Free: 866.772.5227 Fax: 623.445.6192 www.palabs.com
■ Tucson Facility: 4455 S. Park Ave. Ste. 110 Tucson, AZ 85714 Phone: 520.807.3801 Fax: 520.807.3803

Precision Analytical Laboratories

CLIENT:

Basin & Range Hydrogeologists

03100461 Work Order:

Project: Air Liquide/23018.016 ANALYTICAL OC SUMMARY REPORT

TestCode: TO15

Sample ID LCS-R39732 Client ID: ZZZZZ	SampType: LCS Batch ID: R39732		de: TO15 No: TO15	Units: ppbv		Prep Da Analysis Da		003	Run ID: MS SeqNo: 48		4
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit		RPD Ref Val	%RPD	RPDLImit	Qual
Methyl tert-butyl ether	11,16	1.0	10	0	112	65	135	0	0		
Methylene chloride	9,55	0.50	10	0	95.5	65	135	0	٥		
o-Xylene	11.06	0.50	10	O	111	65	135	0	0		
Propene (Propylene)	11.03	0.50	10	0	110	65	135	0	0		
Styrene	11.6	0.50	10	0	116	65	135	0	0		
Tetrachioroethene	11.1	0.50	10	0	111	65	135	0	0		
Tetrahydrofuran	11.02	1.0	10	0	110	65	135	0	0		
Toluene	11,1	0.50	10	0	111	65	135	0	٥		
trans-1,2-Dichloroethens	10.42	0.50	10	0	104	65	135	0	0		
trans-1,3-Dichloropropene	11.02	0.50	10	0	110	65	135	0	0		
Trichloroethene	10.91	0.50	10	0	109	65	135	0	0		
Trichlorofluoromethane(F-11)	10.73	0.50	10	0	107	65	135	0	0		
Trichlorotrifluoroethane(F-113)	10.11	0.50	10	0	101	65	135	0	0		
Vinyl acetate	10.86	0.50	10	0	109	65	135	0	0		
Vinyl chloride	11.21	0.50	10	0	112	65	135	0	0		
Surr: 4-Bromofluorobenzene	9.5	0.50	10	0	95	70	130	0	0		

Gain + Bramandor (Consolio	4.0	0.00		•	93	70	100	U	U		
Sample ID LCSD-R39641	SampType: LCSD	TestCode: TO15 Units: ppbv Prep Date:					Run ID: MS	305_0310014	١		
Client ID: ZZZZZ	Batch ID: R39641	Testl	No: TO15			Analysis Da	ite: 10/1/20	003	SeqNo: 46	3582	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,1,1-Trichloroethane	10.08	0.50	10	0	101	65	135	10.24	1,57	25	
1,1,2,2-Tetrachloroethane	9.91	0.50	10	O	99.1	55	135	9.94	0.302	25	
1,1,2-Trichtoroethane	10.25	0.50	10	0	103	65	135	10,25	0	25	
1,1-Dichloroethane	10.47	0.50	10	0	105	65	135	10.58	1.05	25	
t,1-Dichloroethene	10.64	0.50	10	0	106	65	135	19.62	0.188	25	
1,2,4-Trichlorobenzene	9.83	1.0	10	Q	98.3	65	135	9.66	1.74	25	
1,2,4-Trimethylbenzene	12.08	0.50	10	0	121	65	135	12.05	0.249	25	

Qualifiers:

NO - Not Detected at the Reporting Limit J - Analyte detected below quantitation limits S - Spike Recovery outside accepted recovery limits

B - Analyte detected in the associated Method $B \ln\! nk$

R - RPD outside accepted recovery limits

Page 10 of 15

Precision Analytical Laboratories

CLIENT:

Basin & Range Hydrogeologists

Work Order: 03100461

Project: Air Liquide/23018.016 ANALYTICAL QC SUMMARY REPORT

TestCode: TO15

Sample ID LCSD-R39732	SampType: LCSD		de: TO15	Units: ppbv		Prep Da				104_031002A	١.
Client ID: ZZZZZ	Batch ID: R39732	Testi	No: TO15			Analysis Da	le: 10/2/20	103	SagNo: 488	5249	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,1,1-Trichloroethane	10.69	0,50	10	O	107	65	136	10,7	0.0935	25	
1,1,2,2-Tetrachloroethane	10.86	0.50	10	0	109	65	135	10.91	0.459	25	
1,1,2-Trichioroethane	10.47	0.50	10	0	105	65	135	10.49	0.191	25	
1,1-Dichloroethane	10,36	0.50	10	0	104	65	135	10.14	2.15	25	
1,1-Dichloroethene	10.55	0.50	10	0	106	65	135	10.53	0.190	25	
1,2,4-Trichtorobenzene	11.53	1.0	10	0	115	65	135	10.26	11.7	25	
1,2,4-Trimethylbenzene	12.77	0.50	10	0	128	65	135	12.53	1.90	25	
1,2-Dibromoethane	10.72	0.50	10	0	107	65	135	10.61	1.03	25	
1,2-Dichlorobenzene	11,61	0.50	10	0	116	65	135	11.36	2.18	25	
1,2-Dichloroethane	10.12	0.50	10	0	101	65	135	10	1.19	25	
1,2-Dichloropropane	10.56	0.50	10	0	106	65	135	10.4	1.53	25	
1,3,5-Trimethylbenzene	12.08	0.50	10	0	121	65	135	11.93	1.08	25	
1,3-Butadiene	9.88	0.50	10	0	98.8	65	135	10.41	5.22	25	
1,3-Dichlorobenzene	11.41	0.50	10	0	114	65	135	11.23	1.59	25	
1,4-Dichlorobenzene	11.5	0.50	10	0	115	65	135	11.14	3.18	25	
2,2,4-Trimethylpentane	10.63	0.50	10	0	106	65	135	10.51	1.14	25	
2-Butanone (MEK)	10.79	1.0	10	0	108	65	135	10.68	1.02	25	
2-Hexanone	12.59	1.0	10	0	126	65	135	12.01	4.72	25	
2-Propanol	9.88	1.0	10	0	98.8	65	135	10,42	5.32	25	
4-Ethyltoluene	12,13	0.50	10	0	121	65	135	11.96	1.41	25	
4-Methyl-2-pentanone	11,98	1.0	10	0	120	65	135	11.68	2.54	25	
Acetone	10.53	5.0	10	ũ	105	65	135	10.44	0.858	25	
Allyl chloride	11,12	0.50	10	ũ	111	65	135	10.76	3.29	25	
Benzene	10.65	0.50	10	O O	106	65	135	10.54	1.04	25	
Benzyl chloride	11.81	2.0	10	0	118	65	135	11.4	3.53	25	
3romodichloromethane	10,46	0.50	10	0	105	65	135	10.39	0.671	25	
Bromoethene(Vinyl Bromide)	10.62	0.50	10	0	106	65	135	10.48	1.33	25	
Bromoform	11.23	0.50	10	0	112	65	135	11.09	1.25	25	

Qualifiers:

- ND Not Detected at the Reporting Limit
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank

- I Analyte detected below quantitation limits
- R RPD outside accepted recovery limits

- Page 13 of 15
- © Corporate Address: 1501 W. Knudsen Drive, Phoenix, Arlzona 65027 Phone; 623.760.4800 Toll Free; 800.651.4802 Fax: 623.780.7695 www.aerotechlabs.com

 Main-Laboratory: 4645 E. Cotton Center Boulevard, Building 3, Suite 189 Phoenix, AZ 85040 Phone; 602.437.3340 Toll Free: 866.772.5227 Fax: 623.445.6192 www.palabs.com

 Tucson Facility: 4455 S. Park Ave. Ste. 110 Tucson, AZ 85714 Phone: 520.807.3801 Fax: 520.807.3803

Precision Analytical Laboratories

CLIENT: Work Order:

Project:

Basin & Range Hydrogeologists

03100461

Air Liquide/23018.016

ANALYTICAL QC SUMMARY REPORT

TestCode: TO15

Sample ID LCSD-R39641 Client ID: ZZZZZ	SampType: LCSD Batch ID: R39641		de: TO15	Units: ppbv		Prep Da Analysis Da			Run ID: MS SegNo: 46	305_031001A	
Analyte	Result	PQL		SPK Ref Val	%REC	LowLimit		RPD Ref Val	%RPD	RPOLimit	Qual
cls-1,2-Dichloraethene	10.94	0,50	10	0	109	65	135	11.09	1.36	25	
cis-1,3-Dichloropropene	11,99	0.50	10	0	120	65	135	11.95	0.334	25	
Cyclohexane	12.55	0.50	10	0	126	65	135	12.62	0.556	25	
Dibromochloromethane	10.14	0.50	10	0	101	65	135	10.04	0.991	25	
Dichlorodifluoromethane(F-12)	9.71	0.50	10	0	97.1	65	135	9.78	0.718	25	
Dichlorotetrafluoroethane(F-114)	9.86	0.50	10	0	98.6	65	135	9.97	1,11	25	
Ethyl Acetate	11.94	0.50	10	0	119	65	135	11.89	0.420	25	
Ethylbenzene	11.8	0.50	10	0	118	65	135	11,79	0.0848	25	
Heptane	11.22	0.50	10	0	112	65	135	11.13	0.805	25	
Hexachlorobutadiene	9.4	1.0	10	0	94	65	135	9.41	0.106	25	
Hexane	11.39	0.50	10	0	114	65	135	11.45	0.525	25	
m&p-Xylene	23.74	1.0	20	0	119	65	135	23.82	0.336	25	
Methyl tert-butyl ether	11,9	1,0	10	0	119	65	135	11.95	0.419	25	
Methylene chloride	9.05	0.50	10	0	90.5	65	135	9.01	0.443	25	
o-Xylene	11.73	0.50	10	0	117	65	135	11.75	0.170	25	
Propene (Propylene)	11.8	1.0	10	0	118	65	135	11.75	0.425	25	
Styrene	12.51	0.50	10	0	125	65	135	12.46	0.400	25	
Tetrachloroethene	10.38	0.50	10	0	104	65	135	10.37	0.0964	25	
Tetrahydrofuran	11.91	1,0	10	0	119	65	135	11.98	0.586	25	
Toluene	12.04	0.50	10	0	120	65	135	12.09	0.414	25	
trans-1,2-Dichloroethene	10.57	0.50	10	0	106	65	135	10.58	0.0946	25	
trans-1,3-Dichloropropene	12.06	0.50	10	0	121	65	135	11.86	1.67	25	
Trichloroethene	10.3	0.50	10	0	103	65	135	10.31	0.0970	25	
Trichlorofluoromethane(F-11)	10.04	0.50	10	0	100	65	135	10.32	2.75	25	
Trichtorotrifluoroethane(F-113)	9.84	0.50	10	0	98.4	65	135	9.82	0,203	25	
Vinyl acetate	12.28	0.50	10	0	123	65	135	12.26	0.163	25	
Vinyl chloride	10.23	0.50	10	0	102	65	135	10.23	0	25	
Surr: 4-Bromofluorobenzene	10.37	0.50	10	0	104	70	130	0	0	20	

Qualiflers:

ND - Not Detected at the Reporting Limit J - Analyte detected below quantitation limits

S - Spike Recovery outside accepted recovery limits R - RPD outside accepted recovery limits

B - Analyte detected in the associated Method Blank

Precision Analytical Laboratories

CLIENT: Work Order: Project:

Basin & Range Hydrogeologists

03100461

Air Liquide/23018.016

ANALYTICAL QC SUMMARY REPORT

TestCode: TO15

Sample ID LCSD-R39732	SampType: LCSD		de: TO15	Units: ppbv		Prep Da	te:		Run ID: MS	04_031002A	4
Client ID: ZZZZZ	Batch ID: R39732	Test	No: TQ15			Analysis Da	te: 10/2/20	003	SegNo: 46	5249	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
trans-1,3-Dichloropropene	11.08	0.50	10	0	111	65	135	11,02	0.543	25	
Trichloroethene	11.08	0.50	10	0	111	65	135	10,91	1.55	25	
Trichiorofluoromethane(F-11)	10.79	0.50	10	0	108	65	135	10.73	0.558	25	
Trichlorotrifluoroethane(F-113)	10.19	0.50	10	0	102	65	135	10.11	0.788	25	
Vinyl acetate	10.97	0.50	10	0	110	65	136	10.86	1.01	25	
Vinyl chloride	10.86	0.50	10	0	107	65	135	11.21	5.03	25	
Surr: 4-Bromofluorobenzene	9.54	0.50	10	0	95.4	70	130	0	0		

Qualifiers:

ND - Not Detected at the Reporting Limit

S - Spike Recovery outside accepted recovery limits

B - Analyte detected in the associated Method Blank

J - Analyte detected below quantitation limits

R - RPD outside accepted recovery limits

Page 15 of 15

■ Corporate Address: 1501 W. Knudsen Drive, Phoenix, Arizona 85027 Phone: 623.780.4800 Toll Free: 800.651.4802 Fax: 623.780.7695 www.aarotechlabs.com

■ Main Laboratory: 4845 E. Cotton Center Boulevard, Building 3, Suite 189 Phoenix, AZ 85040 Phone: 602.437.3340 Toll Free: 866.772.5227 Fax. 623.445.6192 www.palabs.com

■ Tucson Facility: 4455 S. Park Ave. Ste. 110 Tucson, AZ 85714 Phone: 520.807.3801 Fax: 520.807.3803

Precision Analytical Laboratories

CLIENT:

Basin & Range Hydrogeologists

Work Order: 03100461 Project:

Air Liquide/23018.016

ANALYTICAL OC SUMMARY REPORT

TestCode: TO15

Sample ID LCSD-R39732	SampType: LCSD	TestCo	de: TO15	Units: ppbv		Prep Da	ite:		Run ID: MS	04_031002A	
Client ID: ZZZZZ	Batch ID: R39732	Test	No: TO15			Analysis Da	ite: 10/2/2	003	SeqNo: 469	5249	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Bromomethane	10.07	0.50	10	0	101	65	135	10,73	6.35	25	
Carbon disulfide	10.26	0.50	10	0	103	65	135	10,24	0.195	25	
Carbon tetrachloride	10.7	0.50	10	0	107	65	135	10.53	1.60	25	
Chlorobenzene	10.81	0.50	10	0	108	65	135	10.78	0.278	25	
Chloroethane	10.32	0.50	10	0	103	65	135	10.93	5.74	25	
Chloroform	10.6	0.50	10	0	106	65	135	10.44	1.52	25	
Chloromethane	10.28	0.50	10	0	103	65	135	10.69	4,11	25	
cis-1,2-Dichloroethene	10.8	0.50	10	0	106	65	135	10.56	0.378	25	
cis-1,3-Dichloropropene	11.19	0.50	10	0	112	65	135	11.09	0.898	25	
Cyclohexane	10.63	0.50	10	0	106	65	135	10.59	0.377	25	
Dibromochioromethane	11.28	0.50	10	0	113	65	135	11.21	0.622	25	
Dichlorodifluoromethane(F-12)	10,5	0.50	10	0	105	65	135	10,5	0	25	
Dichlorotetraffuoroethane(F-114)	10,5	0.50	10	0	105	65	135	10,94	4.10	25	
Ethyl Acetate	11.09	0.50	10	0	111	65	135	10.95	1.27	25	
Ethylbenzene	11.47	0.50	10	0	115	65	135	11.26	1.85	25	
Heptane	10.34	0.50	10	0	103	65	135	10.41	0.675	25	
Hexachlorobutadiene	11.09	1.0	10	0	111	65	135	10.77	2.93	25	
Hexane	10.8	0.50	10	0	108	65	135	10.79	0.0926	25	
n&p-Xylene	22.57	1.0	20	۵	113	65	135	22.35	0.980	25	
wethyl text-butyl ether	11.3	1.0	10	0	113	65	135	11,16	1.25	25	
vlethylene chloride	9.6	0.50	10	0	96	65	135	9,55	0.522	25	
-Xylene	11.06	0.50	10	0	111	65	135	11.06	0	25	
Propene (Propylene)	11.01	0.50	10	O O	110	65	135	11.03	0.181	25	
Styrene	11.79	0.50	10	0	118	65	135	11.6	1.62	25	
l'etrachloroethene	11.28	0.50	10	0	113	65	135	11.1	1,61	25	
letrahydrofuran	11.24	1.0	10	0	112	65	135	11.02	1.98	25	
foluene	11.07	0.50	10	0	111	65	135	11.1	0.271	25	
rans-1,2-Dichlorgethene	10.5	0.50	10	0	105	65	135	10,42	0.765	25	

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

S - Spike Recovery outside accepted recovery limits R - RPD outside accepted recovery limits

B - Analyte detected in the associated Method Blank

Page 14 of 15

0	-	3/	Ö	~	04	61

CHAIN-OF-CUSTO	ODY RECO	PD Del	Electronic Data iverable Required?		X	Deadline for web/o	e-mail results: or final report:		Page _	1 0461
BASIN & HYDROGEO	LOGISTS		Start Date: letion Date:	10/	01/03 01/03 ir Liquide	Send Involce To Company Address	r: BASIN &	RANGE		Attention: D. Chapman
Send Analytical Report To BASIN & RANGE HYDR	0;		ot or Release No.:	2 602-840-3	3018.016	Environmental Labo		***************************************		Fax No.; 602-840-801
2800 North 24 th Street, Ph Attention: Ray Craft			Fax: 603	2-840-801	1	Address	4645 East 602-437-3	Cotton Center Bir	vd. Bldg. 3 Suite	189, Phoenix AZ 8504 Fax No.: 623-445-619
Sample Mantification Code	Sample Date	Semple Time	Cardisher Serfal e	beet	Contains No of Sassets National (1884)	Laboratory ID	An GOTOSCI	slyses Requested		Special Notes
L-VP07A-0903	10/01/03	8.26	Q0Z71	AIR	1		Х			
VP07B-0903	10/01/03	9:42	00179	AIR	1		Х			
-VP07C-0903	10/01/03	10:15	oorve	AIR	1		X			
L-SG27-0903	10/01/03	11:22	80168	AIR	1		X			
L-VP06Z-0903	10/01/03	13:26	00203	AIR	<u> </u>		X		J	
empter(e) Name(e): This Hearlehsen	Please see a One or mor	attached table e of the follo	, TABLE 1 for tai	e a total rget anal must be	of \$2650.00 ytes and their used as QC s	dditional instructions 3 back up canisters @ appropriate PQLs, ikes: 1,1,1-Trichloroe	- '	-	oject.	
Relinquished By (Comp		2. Re	ceived By (Compar	y Name):		3, Relinquished By (Co	ompany Name): 4. R	teceived By (Co	npany Name):
asin & Range Hydrogeolo		-		. d.	Olvella	Print Name:		Dele		
	Sommers Sommez	X	gnature:	A lo	AL	Signature:			it Name:	

Not Present

Not Present

·| 2

Yes

Yes _____

Custody seals intact on shipping container/cooler?

Custody seals intact on sample bottles?

Chain of custody present?

Shipping container/cooler in good condition?

Maurix: Di

Yes X

K K K

Chain of custody signed when relinquished and received?

Chain of custody agrees with sample labels?

Samples in proper container/bottle?

Sample containers intact?

Not applicable £

€

Contacted by:

Date contacted:

Person/Client contacted:

Any No response must be detailed in the comments section below:

Results?

Adjusted?

413,1 418,1 Sulfide

pH: Metals Cyanide Nutrients Commence & Received our extra grab Samples.

Corrective Action:

NaOH:

Yes

No VOA submitted

Water - VOA vials have zero headspace?

°Z

大大 Ke Ke

All samples received within holding time?

Yes

Not Present

Wet Ice

Blue Ice

Temperature of samples? And beautiec

Water - pH acceptable upon receipt?

Do different containers of the same sample vary in appearance? Yes ___ (If yes, contact PM) No 😉

Number of sumple bottles: 5 3- Acid Preserved: Dechlorinator: Unpreserved:

Precision Analytical Laboratories

Project Checked By:

Sample Receipt Checklist

Date and Time Received 10-1-03 1733

Checklist completed by Containers:

Client Name Basin + Range

Brass Steeves Glass Jars Methanol Kits

Carrier name: EVIC Sommers

Rerotech Environmental Laboratories

November 07, 2003

AMENDED REPORT

Ray Craft

Basin & Range Hydrogeologists Phoenix, AZ 85008 2800 N 24th St

RE: Air Liquide/23018.016

Dear Ray Craft:

Order

03100461

This report has been amended to include Method TO-15 results in ug /m³ units.

Precision Analytical Laboratories received 5 samples on 10/01/2003 for the analyses presented in the following report.

This report includes the following information:

- Case Narrative. Analytical Report: includes test results, report limit (Limit), any applicable data qualifier

(Qual), units, dilution factor (DF), and date analyzed.

QC Summary Report.

This communication is intended only for the individual or entity to whom it is directed. communication in error, please notify us immediately and destroy this message and all It may contain information that is privileged, confidential, or otherwise exempt from attachments thereto. If you have any questions regarding these test results, please do communication by anyone other than the intended recipient, or a duly designated disclosure under applicable law. Dissemination, distribution, or copying of this employee or agent of such recipient, is prohibited. If you have received this not hesitate to call

Marcia A. Smith

Vice President - Client Services

bicontory 1454 E. Coton Center Boulding 3, Sala 199 Phoenis, AZ 65040 Phone: 602.437.3340 Toll Free. 968.772.5227 Fax, 823.445.6192 www.sensenviolabs.com Featily: 4465 S. Perk Ale, Se. 110 Tucson, AZ 65714 Finne: 520.907.3801 Fax: 520.807.3801

Aerotech Environmental Laboratories

Precision .	Precision Analytical Laboratories	ooratorie	ø		~	Date: (Date: 07-Now03	8
CLIENT:	Basin & Range Hydrogeologists	ydrogeologis	S.	ð	Client Sample ID:	11	AL-VP07A-0903	7A-0903
Lab Order:	03100461				Tag Number:		00271	
Project:	Air Liquide/23018.016	8.016			Collection Date:		0/1/200	10/1/2003 8:26:00 AM
Lab ID:	03100461-01A				M	Matrix: /	AIR	
		a qdd	<u> </u>	Bri	ид/ш,			
Analyses		Result	Limit	Result	Limit	Qua	DF	Date Analyzed
VOLATILE OR	VOLATILE ORGANICS IN AIR		TO15					Analyst JG
1,1,1-Trichloroethane	Chane	17000	1000	94000	2200	22	2000	10/3/2003
1,1,2,2-Tetrachloroethane	oroethane	< 100	100	× 700	700		200	10/2/2003
1,1,2-Trichloroethane	thane	< 100	100	< 550	550		200	10/2/2003
1,1-Dichloroethane	апе	5500	100	23000	410	05	500	10/2/2003
1,1-Dichloroethene	ane.	8700	8	35000	400	05	200	10/2/2003
1,2,4-Trichlorobenzene	enzene	< 200	200	< 1500	1500		200	10/2/2003
1,2,4-Trimethyibenzene	enzene	< 100	100	< 500	200		200	10/2/2003
1,2-Dibromoethane	ane	< 100	100	< 780	780		200	10/2/2003
1,2-Dichlorobenzene	euez	× 100	100	< 610	610		200	10/2/2003
1,2-Dichloroethane	ine	× 100	100	< 410	410		200	10/2/2003
1,2-Dichloropropane	zane	× 100	100	< 470	470		200	10/2/2003
1,3,5-Trimethylbenzene	enzene	< 100	100	< 500	500		200	10/2/2003
1,3-Butadiene		× 100	100	< 220	220		200	10/2/2003
1,3-Dichlorobenzene	zene	< 100	100	< 610	610		200	10/2/2003
1,4-Dichlorobenzene	zene	× 100	100	< 610	610		200	10/2/2003
2,2,4-Trimethylpentane	entane	× 100	100	< 240	240		200	10/2/2003
2-Butangne (MEK)	Ŷ	< 200	200	× 600	900		200	10/2/2003
2-Hexanone		< 200	200	< 830	830		200	10/2/2003
2-Propanol		< 200	200	< 500	200		200	10/2/2003
4-Ethyltoluene		< 100	50	× 440	\$		200	10/2/2003
4-Methyl-2-pentanone	попе	< 200	200	< 830	830		200	10/2/2003
Acetone		< 1000	1000	< 2400	2400		200	10/2/2003
Allyl chloride		× 100	100	< 160	160		200	10/2/2003
Вепzепе		< 100	100	< 320	320		200	10/2/2003
Benzyl chloride		< 400	400	< 2100	2100		200	10/2/2003
Bromodichloromethane	ethane	< 100	100	< 680	680		200	10/2/2003

2		
S - Spike Recovery outside accepted recovery limits	R - RPD outside accepted recovery limits	E - Value above quantitation range
S	æ	田
 ND - Not Detected at the Reporting Limit	J - Analyte detected below quantitation limits	B - Analyte detected in the associated Method Blank
Qualifiers:		

Page 1 of 15

What taborator, 4645 E. Coton Center Boulevard. Building 3. Sulla 189 Phoenix, 42 55949 Phone 602 437 3340 Toll Fine: 966.772.5227 Fax, 623.445.6192 www.

Turson Facility, 4455 S. Park Ava. 38. 110 Turson, AZ 85714 Phone: 520.807.3801 Fac 520.807.3803

Acrotech Environmental Laboratories inc

Precision Analytical Laboratories

Date: 07-Nov-03

Collection Date: 10/1/2003 8:26:00 AM Matrix: AIR Client Sample ID: AL-VP07A-0903 Tag Number: 00271 Basin & Range Hydrogeologists Air Liquide/23018.016 03100461-01A 03100461 Lab Order: CLIENT: Project: Lab ID:

	aqdd	Λ¢)Bri	ing/m³			
Analyses	Result	Limit	Result	Limit	Qual	DF.	Date Analyzed
							:
VOLATILE ORGANICS IN AIR Bromoethene(Vinyl Bromide)	× 100	1015	< 220	550	.,	200	Analyst: JG 10/2/2003
Bromoform	< 100	100	< 1000	1000	N	200	10/2/2003
Bromomethane	< 100	100	< 400	400	.,	200	10/2/2003
Carbon disulfide	< 100	2	< 320	320	**	200	10/2/2003
Carbon tetrachloride	۸ 100	100	< 640	640	.,	200	10/2/2003
Chlorobanzene	< 100	100	< 470	470	••	200	10/2/2003
Chloroethane	< 100	100	< 270	270	`*	200	10/2/2003
Chlaroform	< 100	100	< 500	200	.,	200	10/2/2003
Chloromethane	× 100	100	< 210	210	``	200	10/2/2003
cis-1,2-Dichloraethene	< 100	100	× 400	400	.,	200	10/2/2003
cis-1,3-Dichloropropene	< 100	100	× 460	460	•	200	10/2/2003
Cyclohexane	< 100	100	< 350	380	.,	200	10/2/2003
Dibromachloromethane	< 100	100	< 860	860		200	10/2/2003
Dichlorodifluoromethane(F-12)	× 100	100	< 500	200	••	200	10/2/2003
Dichlorotetrafluoroethane(F-114)	× 100	100	< 710	710	.,	200	10/2/2003
Ethyl Acetate	< 100	100	< 370	370	••	200	10/2/2003
Ethylbenzene	< 100	100	< 440	440	••	200	10/2/2003
Heptane	× 100	100	< 420	420	,,	200	10/2/2003
Hexachlorobutadiene	< 200	200	< 2200	2200	.,	200	10/2/2003
Нехапе	< 100	100	< 360	360	.,	200	10/2/2003
m&p-Xytene	< 200	200	> 880	880	``	200	10/2/2003
Methyl tert-butyl ether	< 200	200	< 730	730	,,	200	10/2/2003
Methylene chloride	× 100	100	< 350	350	.,	200	10/2/2003
o-Xylene	< 100	100	< 440	440	••	200	10/2/2003
Propene (Propylene)	< 200	200	< 350	350	,,	200	10/2/2003
Styrene	< 100	100	< 430	430	••	200	10/2/2003

10/2/2003

88

97.8 WREC 70-130

Surr: 4-Bromofluorobenzene

S - Spike Recovery outside accepted recovery limits	RPD outside accepted recovery limits	- Value above quantitation range
S - Spike Recor	R - RPD outsid	E - Value above
ND - Not Detected at the Reporting Limit	J - Analyte detected below quantitation limits	B - Analyte detected in the associated Method Blank
Qualifiers:		

Page 2 of 15 air Leboratory: 4645 E. Caton Center Boulevard. Building 3. Suite 189 Proceity, A. 2 85040 Prone. 502.457,3340 Toll Free: 866.772,5227 Fox. 623.445.6182 www.aenoemindabs.com

Aerotech Environmental Lahoratories

Precision .	Precision Analytical Laboratories	iboratorie	s			Date: 07-Nov-03	17-Nov-	33
CLIENT:	Basin & Range Hydrogeologists	Hydrogeologi	Sts	ð	Client Sample ID: AL-VP07A-0903	e ID:	L-VP0	7A-0903
Lab Order:	03100461				Tag Number: 00271	oper: 0	0271	
Project:	Air Liquide/23018.016	18,016		•	Collection 3	Date: 1	0/1/200	Collection Date: 10/1/2003 8:26:00 AM
Lab D:	03100461-01A				Ä	Matrix: AIR	Ħ	
		dd	ppbv	Î	m/ån			
Analyses		Result	Limit	Result	Limit		Đ.	Date Analyzed
VOLATILE ORGA Tetrachlomethene	VOLATILE ORGANICS IN AIR Tetrachlomethene	9	TO15	2800	969	6	88	Analyst: JG 10/2/2003
Tetrahydrofuran	-	< 200	200	× 600	900		200	10/2/2003
Toluene		× 100	100	< 380	380		200	10/2/2003
trans-1,2-Dichloroethene	proethene	× 100	100	× 400	400		200	10/2/2003
trans-1,3-Dichloropropene	propropene	× 100	100	< 480	460		200	10/2/2003
Trichtoroethene		130	90,	720	220	22	200	10/2/2003
Trichlorofluoromethane(F-11)	nethane(F-11)	320	100	1800	570	05	200	10/2/2003
Trichlorotrifluor	Trichlorotrifluoroethane(F-113)	× 100	Š	< 780	780		200	10/2/2003
Vinyl acetate		× 100	\$	< 360	360		500	10/2/2003
Vinyl chloride		v 100	5	< 260	280		200	10/2/2003

S - Spike Recovery outside accepted recovery limits R - RPD outside accepted recovery limits E - Value above quantitation range B - Analyte detected in the associated Method Blank J - Analyte detected below quantitation limits ND - Not Detected at the Reporting Limit Qualifiers:

Page 3 of 15

B Main Laboratory 4656 E Cotan Centre Boulevard, Building 3, Sales 169 Phoents, AZ 6540 Phoent, 622 437,3340 Toil Free, 866,772,5227 Fazz, 623,445,6192 www

I Lucaon Facility, 4455 S. Part Ann. Sto. 110 Tucaon, AZ 8574 Phoent 502,8073801 Fazz 502,8073801

I Lucaon Facility, 4455 S. Part Ann. Sto. 110 Tucaon, AZ 8574 Phoent 502,8073801

I Lucaon Facility Add 50 S. Part Ann. Sto. 110 Tucaon, AZ 8574 Phoent 502,8073801

I Lucaon Facility Add 50 S. Part Ann. Sto. 110 Tucaon, AZ 8574 Phoent 502,8073801

I Lucaon Facility Add 50 S. Part Ann. Sto. 110 Tucaon, AZ 8574 Phoent 502,8073801

I Lucaon Facility Add 50 S. Part Ann. Sto. 110 Tucaon, AZ 8574 Phoent 502,8073801

I Lucaon Facility Add 50 S. Part Ann. Sto. 110 Tucaon, AZ 8574 Phoent 502,8073801

I Lucaon Facility Add 50 S. Part Ann. Sto. 110 Tucaon, AZ 8574 Phoent 502,8073801

I Lucaon Facility Add 50 S. Part Ann. Sto. 110 Tucaon, AZ 8574 Phoent 502,8073801

I Lucaon Facility Add 50 S. Part Ann. Sto. 110 Tucaon, AZ 8574 Phoent 502,8073801

I Lucaon Facility Add 50 S. Part Ann. Sto. 110 Tucaon, AZ 8574 Phoent 502,8073801

I Lucaon Facility Add 50 S. Part Ann. Sto. 110 Tucaon, AZ 8574 Phoent 502,8073801

I Lucaon Facility Add 50 S. Part Ann. Sto. 110 Tucaon, AZ 8574 Phoent 502,8073801

I Lucaon Facility Add 50 S. Part Ann. Sto. 110 Tucaon, AZ 8574 Phoent 502,8073801

I Lucaon Facility Add 50 S. Part Ann. Sto. 110 Tucaon, AZ 8574 Phoent 502,8073801

I Lucaon Facility Add 50 S. Part Ann. Sto. 110 Tucaon, AZ 8574 Phoent 502,8073801

I Lucaon Facility AD 502,8074801

I Lucaon Facility AD 5

Aerotech Environmental Laboratories of acoosts to be addressed to be a design of Aerocet Laboratories, Inc.

Precision Analytical Laboratories

Date: 07-Nov-03

	Client Sample ID: AL-VP07B-0903	Tag Number: 00175	Collection Date: 10/1/2003 9:42:00 AM	Matrix: AIR	110/m3
The state of the s	Basin & Range Hydrogeologists	03100461	Air Liquide/23018.016	03100461-02A	
	CLIENT:	Lab Order:	Project:	Lab ID:	

	£	ppbv	टी _म	m/gn/			
Analyses	Result	Limit	Result	Limit	Qual	DF	Date Analyzed
VOLATILE ORGANICS IN AIR 1,1,1-Trichloroethane	47000	TO15	260000	5500	05	2000	Analyst: JG 10/3/2003
1,1,2,2-Tetrachloroethane	< 100	100	< 700	700		200	10/2/2003
1,1,2-Trichloroethane	100	100	550	550	05	200	10/2/2003
1,1-Dichloroethane	9800	100	37000	410	05	200	10/2/2003
1,1-Dichloroelhena	8800	1000	35000	4000	02	2000	10/3/2003
1,2,4-Trichlorobenzene	< 200	200	< 1500	1500		200	10/2/2003
1,2,4-Trimethylbanzene	> 100	100	< 500	900		200	10/2/2003
1,2-Dibromoethane	< 100	100	< 780	780		200	10/2/2003
1,2-Dichlorobenzene	< 100	100	< 610	610		200	10/2/2003
1,2-Dichloroethane	4 100	100	<410	410		200	10/2/2003
1,2-Dichloropropane	< 100	100	< 470	470		200	10/2/2003
1,3,5-Trimethylbenzene	< 100	100	< 500	200		200	10/2/2003
1,3-Butadiene	< 100	100	< 220	220		200	10/2/2003
1,3-Dichlorobenzene	× 100	100	< 610	610		200	10/2/2003
1,4-Díchlorobenzene	× 100	100	< 610	610		200	10/2/2003
2,2,4-Trimethylpentane	< 100	100	< 240	240		200	10/2/2003
2-Butanone (MEK)	< 200	200	009 ≥	9009		200	10/2/2003
2-Hexanone	< 200	200	< 830	830		200	10/2/2003
2-Propanol	< 200	200	< 500	500		200	10/2/2003
4-Ethyltoluene	× 100	100	۸ 440	440		200	10/2/2003
4-Methyl-2-pentanone	< 200	200	< 830	930		200	10/2/2003
Acetane	< 1000	1000	< 2400	2400		200	10/2/2003
Allyi chloride	< 100	100	< 160	160		200	10/2/2003
Benzene	< 100	100	< 320	320		200	10/2/2003
Benzyí chloride	< 400	400	< 2100	2100		200	10/2/2003
Bromodichioromethane	< 100	100	< 680	680		200	10/2/2003

S - Spike Recovery outside accepted recovery limits	R - RPD outside accepted recovery limits	E - Value above quantitation range	Page 4 of 15 aboratory, 4645 E. Cotton Center Building 3, Suffe 189 Phoneix, AZ 8644) Phone: 602,437,3340 Tell Free: 666,772,5277 Fax: 623,445,6192 www.aenneninblabs.com
ND - Not Detected at the Reporting Limit	5 - Analyze detected below quantitation limits	B - Analyte detected in the associated Method Blank	"- Value exceeds Maximum Contantinant Level bontony: 4645 E. Cotton Center Boulevard, Building 3, Suite 189 Phoenix, 22 85040 Phoens 602 Affacility: 4655 S. Park Ave. Ste. 110 Tucaca, AZ 85714 Phone; 520.807.3801 Fax: 520.807.3803
Qualifiers:			aboratory: 4645 E. C. Facility: 4455 S. Pari

Aerotech Environmental Laboratories of a division of Aerotech Environmental Laboratories

Precision Analytical Laboratories

Date: 07-Nov-03

Project: Air Liquide/23 Lab ID: 03100461-02A Analyses	Air Liquide/23018.016					006/1/01	
_	471 004		•	Collection Date:		3	10/1/2003 9:42:00 AM
Analyses	470-104			Ä	Matrix: AIR	nd.	
Analyses	đ	vdqq	H.	hg/m³			
	Result	Limit	Result	Limit	Qual	DF	Date Analyzed
VOLATILE ORGANICS IN AIR Bromoethene(Vinyl Bromide)	N AJR Je) < 100	25 ∞	< 220	220		200	Analyst: 3G 10/2/2003
Вготобот	< 100	5	< 1000	1000		200	10/2/2003
Вготометале	× 180	901	< 400	400		88	10/2/2003
Carbon disulfide	< 100	100	< 320	320		200	10/2/2003
Carbon tetrachloride	× 100	001	< 640	640		200	10/2/2003
Chlorobenzene	< 100	100	< 470	470		202	10/2/2003
Chloroethane	< 100	8	< 270	270		200	10/2/2003
Chloreform	< 100	100	< 500	200		200	10/2/2003
Chloromethane	< 100	100	< 210	210		200	10/2/2003
cls-1,2-Dichloroethene	< 100	100	× 400	400		200	10/2/2003
cis-1,3-Dichloropropene	< 100	100	< 460	460		200	10/2/2003
Сусютежане	< 100	100	< 350	350		200	10/2/2003
Dibromochloromethane	× 100	100	> 860	860		200	10/2/2003
Dichlorodifluoromethane(F-12)	-12) < 100	100	> 500	200		200	10/2/2003
Dichiorotetrafluoroethane(F-114)	=.114) < 100	100	< 710	017		200	10/2/2003
Ethyl Acetate	> 100	9	< 370	370		200	10/2/2003
Ethylbenzene	< 100	901	× 440	64		200	10/2/2003
Heptane	< 100	9	< 420	420		200	10/2/2003
Hexachlorobutadiene	< 200	200	< 2200	2200		200	10/2/2003
Hexane	< 100	100	< 360	360		200	10/2/2003
m&p-Xylene	< 200	200	× 880	880		200	10/2/2003
Methyl tert-butyl ether	< 200	200	< 730	730		200	10/2/2003
Methylene chloride	< 100	100	< 350	350		200	10/2/2003
o-Xylene	< 100	100	× 440	440		200	10/2/2003
Propane (Propylene)	720	200	1300	350	D2	200	10/2/2003
Styrene	× 100	92	< 430	430		200	10/2/2003
Oualifiers: ND - Not	ND - Not Detected at the Reporting Limit	rimit	S	Spike Recov	ery outside a	coepted	S. Spike Recovery outside accepted recovery limits
	J - Analyte detected below quantitation limits	on limits	· ~	R - RPD outside accepted recovery limits	accepted rec	covery.	imits
B - Analy	B - Analyte detected in the associated Method Blank	Method Blank	ш	E - Value above quantitation range	anantitation	Tunge	
		,	I			i	313. 3

Page 5 of 15

Main Laboratory 4645 E. Cotion Center Building 3, Suba 189 Phoneix AZ 85640 Phoneix 6X2437.3340 Toll Free: 866.772.5227 Fez. 625.445.6132 www.

Tucon Facility, 4455 S. Perk Ave. 38a. 110 Tucaon, AZ 85744 Phoneix 520.807.3807 Fez 620.807.3803

Acrotech Environmental Laboratories and advision of Aerotech Laboratories, Inc.

Precision Analytical Laboratories

Date: 07-Nov-03

Collection Date: 10/1/2003 9:42:00 AM Client Sample ID: AL-VP07B-0903 Tag Number: 00175 Matrix: AIR Basin & Range Hydrogeologists Air Liquide/23018.016 03100461-02A 03100461 Lab Order; CLIENT: Project: Lab ID:

Limit Qual DF Date Analyzed

Limit Aqdd

Result

Analyses

hg/m³ Result

VOLATILE ORGANICS IN AIR		T015					Analyst: JG
Tetrachloroethene	350	100	2400	690	02	200	10/2/2003
Tetrahydrofuran	< 200	200	> 600	900		200	10/2/2003
Toluene	< 100	100	< 380	380		200	10/2/2003
trans-1,2-Dichloroethene	× 100	100	< 400	400		200	10/2/2003
rans-1,3-Dichloropropene	< 100	100	< 460	460		200	10/2/2003
Trichtoroethene	150	100	830	550	05	200	10/2/2003
Trichlorofluoromethane(F-11)	470	100	2700	570	D2	200	10/2/2003
Trichlorairfiluoroethane(F-113)	× 100	100	< 780	780		200	10/2/2003
Vinyl acetate	< 100	100	< 360	360		200	10/2/2003
Vinyl chloride	× 100	100	< 260	260		200	10/2/2003
Surr: 4-Bromofluorobenzene	98.5 %REC	70-130		,		200	10/2/2003

	an interest i	The state of the s
Qualifiers:	ND - Not Detected at the Reporting Limit	S - Spike Recovery outside accepted recovery limits
	 Analyte detected below quantitation limits 	R - RPD outside accepted recovery limits
	B - Analyte detected in the associated Method Blank	E - Value above quantitation range

Page 6 of 15
ain Laboratory, 4646 E. Cotton Centre Boulevard, Budding 3, Suite 198 Phoenix, 22 8640 Phone, 602.437, 3340 Tell Free, 886,772.5227 Fax, 923.445.6192 www.secoemfinishx.com

Aerotech Environmental Laboratories ac dusion of Aerotech Laboratories, inc

Precision Analytical Laboratories

Date: 07-Nov-03

Tay Number: 03100461 Tay Number: 0710056 Tay Number: 0710061-03A Tay Number: 0710061-03A	CLIENT	Basin & Range Hydrogeologists	lydrogeologis	য	ð	Client Sample ID:		LVP07	AL-VP07C-0903
Paper Patient Patien	Lab Order:	03100461			,	Tag Nun		226	
Part	Project:	Air Liquide/2301	18.016		ن	ollection I		1/200	3 10:15:00 A.M.
Pobot Highmat Limit Result Limit Quad DF Date 150000 2000 830000 11000 52 4000 500 4000 500 <th></th> <th>USIU0401-U3A</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>1</th> <th></th>		USIU0401-U3A						1	
No. of the color No. of the			弦	ρĄ	Đ.	JE (
1900 100 10	Analyses		Result	Limit	Result	Limit	Ques	žć	Date Analyzed
150000									
strachlornethane < 100 < 700 770 700 200 strochlornethane < 100 < 550 550 550 500 200 rochlane 23000 2000 9500 8200 052 4000 stockhane < 2200 2000 6150 780 4000 200 4000 althylbenzane < 100 < 780 780 780 200 200 200 norothane < 100 < 700 < 778 780 200 200 200 norothane < 100 < 700 < 778 778 200 200 200 norothane < 100 < 610 < 440 < 440 < 470 < 200 <	VOLATILE OR(SANICS IN AIR thane	150000	1015 2000	830000	11000	50	4000	Analyst JG 10/2/2003
rocethane	1,1,2,2-Tetrachi	lomethane	v 100	400	× 700	700		200	10/2/2003
rocethane 10000 2000 4000 8500 820 02 4000 rocethane 10000 2000 2000 4000 8100 02 4000 02 4000 rocethane 10000 200 200 4100 020 8100 02 4000 rocethane 2000 200 200 200 200 200 200 200 200 2	1,1,2-Trichloroe	thane	× 100	100	< 550	550		200	10/2/2003
thorobeatzene 10000 2000 40000 8100 D2 4000 thorobeatzene < 2000	1,1-Dichloroetho	апе	23000	2000	95000	8200	5	4000	10/2/2003
reductibenzene < 200 < 150 < 1500 500 500 200	1,1-Dichloroeth	впе	10000	2000	40000	8100	05	4000	10/2/2003
nothylbentzane < 100 100 < 500 500 200 nothylbentzane < 100 < 610 610 500 200 200 nothbane < 100 < 610 610 610 200 200 nothylbentzane < 100 < 470 < 470 < 470 < 200 200 nothylbentzane < 100 < 60 < 500 < 500 < 500 < 200 nothylbentzane < 100 < 100 < 610 < 610 < 500 < 200 nothylbentzane < 100 < 60 < 610 < 610 < 500 < 200 < 200 nothertzane < 100 < 610 < 610 < 610 < 610 < 610 < 610 < 610 < 610 < 610 < 610 < 610 < 610 < 610 < 610 < 610 < 610 < 610 < 610 < 610 < 610 < 610 < 610 < 610 < 610 < 610 < 610 < 610 < 610	1,2,4-Trichlorob	enzene	< 200	200	< 1500	1500		200	10/2/2003
moethane < 100 < 780 780 200 mobilisarie < 100 < 610 610 610 200 probleare < 100 < 410 < 410 200 200 archiplarea < 100 < 470 < 470 < 800 200 200 problearea < 100 < 60 < 520 500 500 200 200 archiplacerzene < 100 < 610 < 610 < 610 < 520 200 200 200 archiplacerzene < 100 < 610 < 610 < 610 < 610 200 <t< td=""><td>1,2,4-Trimethylk</td><td>oenzene</td><td>× 100</td><td>100</td><td>< 500</td><td>200</td><td></td><td>200</td><td>10/2/2003</td></t<>	1,2,4-Trimethylk	oenzene	× 100	100	< 500	200		200	10/2/2003
rorbanzana < 100 610 610 610 200 rorbanzana < 100 < 410 410 200 sethlylberizana < 100 100 < 470 470 200 arobenzana < 100 100 < 610 500 200 200 arobenzana < 100 100 < 610 610 200 200 rorbanzana < 100 100 < 610 610 200 200 nethlylbertlana < 100 100 < 610 610 200 200 nethlylbertlana < 100 100 < 610 610 200 200 nethlylbertlana < 100 < 610 610 < 610 200 200 nethlylbertlana < 100 < 620 650 610 200 200 of < 200 < 620 620 620 200 200 2-pentanone < 100 < 240 < 240 240 200 200	1,2-Dibromoeth	ane	× 100	9	< 780	780		200	10/2/2003
roughbane < 100 < 410 410 410 200 propriopatinal < 100 < 470 470 200 200 neithlybenzane < 100 100 < 520 520 200 200 sitiene < 100 100 < 520 520 200 200 arcbenzane < 100 100 < 610 610 510 200 nearbylpentane < 100 100 < 610 610 200 200 200 nearbylpentane < 100 100 < 610 610 200 200 200 nearbylpentane < 100 < 610 610 610 200 200 200 of Plantanone < 200 < 200 650 650 650 200 200 2-pentanone < 100 < 240 < 240 < 240 200 200 200 200 2-pentanone < 100 < 240 < 240 < 240 < 200 2	1,2-Dichloroben	59119	× 100	99	< 610	610		200	10/2/2003
notproparie < 100 < 470 470 200 nethylbertzene < 100 < 500 500 500 500 liene < 100 < 500 500 500 500 500 arcbentzene < 100 < 610 610 610 200 200 arcbentzene < 100 < 610 610 610 200 200 archylpentzene < 100 < 610 610 610 200 200 nee (MEK) < 200 < 600 600 600 200 200 nee (MEK) < 220 < 620 600 600 200 200 or < 220 < 620 600 600 500 200 or < 220 < 620 600 600 500 200 churs < 200 < 620 < 620 600 500 200 200 2-pentranone < 100 < 100 < 160 < 160 200	1,2-Dichloroeth	ane	v 100	400	< 410	410		200	10/2/2003
Second Participation Company C	1,2-Dichloropro	pane	× 100	400	< 470	470		500	10/2/2003
listene < 100 620 220 200 200 nrobentzane < 100	1,3,5-Trimethylt	penzene	< 100	100	> 500	200		200	10/2/2003
rockentzene < 100 610 610 610 200 rockentzene < 100 610 610 610 200 200 nethylpentatie < 200 620 620 600 200 200 nne < 200 < 620 683 683 200 200 ol < 200 < 683 683 200 200 uone < 200 < 690 690 200 200 z-pentanone < 200 < 600 690 200 200 z-pentanone < 100 < 440 440 240 200 z-pentanone < 100 < 830 830 200 z-pentanone < 100 < 2400 < 2400 200 z-pentanone < 100 < 2400 < 2400 200 z-pentanone < 100 < 2400 < 200 200 z-pentanone < 100 < 2400 < 200 200 z-pentanone < 100 <td>1,3-Butadiene</td> <td></td> <td>× 100</td> <td>90,</td> <td>< 220</td> <td>022</td> <td></td> <td>200</td> <td>10/2/2003</td>	1,3-Butadiene		× 100	90,	< 220	022		200	10/2/2003
rock below retained below groundstates < 100 610 610 610 200 200 100 620 200	1,3-Dichloroberl	zane	× 100	8	< 610	610		200	10/2/2003
No. Not. Detected at the Reporting Limits 100 100 100 240 240 240 20	1,4-Dichlorober	izene	< 100	100	< 610	610		200	10/2/2003
No. Not. Detected at the Reporting Limits No. Not. Detected at the Reporting Limit No. Not. Detected at the Report No. Not. Detected at the Report No. Not. Detected	2,2,4-Trimethyl	pentane	< 100	100	< 240	240		200	10/2/2003
Companies Comp	2-Butanone (ME	EK)	< 200	200	009×	909		200	10/2/2003
Companies Comp	2-Hexanone		< 200	200	< 830	83		200	10/2/2003
Companies	2-Propanol		< 200	200	< 500	200		200	10/2/2003
2-pentlanone < 200	4-Ethyltoluene		< 100	100	× 440	440		200	10/2/2003
1000 1000 2400 2600	4-Methyl-2-pent	anone	< 200	200	< 830	830		200	10/2/2003
100 100 160 200	Acetone		< 1000	1000	< 2400	2400		200	10/2/2003
< 100	Allyl chloride		۸ 5	001	< 160	3		200	10/2/2003
1001de	Benzene		4 100	100	< 320	320		300	10/2/2003
Alloromethane	Benzyl chloride		× 400	400	< 2100	2100		500	10/2/2003
ND - Not Detected at the Reporting Limit 3 - Analyte detected below quantization limits	Bromodichloron	nethane	< 100	<u>6</u>	< 680	989		8	10/2/2003
	Qualifiers:	ND - Not Detected at	the Reporting Li	mit	s.	Spile Recov	ray outside	accepted	d recovery limits
	,	J - Analyte detected by	elow quantitation	ı limits	ρŹ	- RPD outsid	e accepted r	тоома	limits

Page 7 of 15

International Acts E Comm Centre Rouseway Building 3, Suite 189 Phoenix, AZ 85040 Phoenic 622.437,3340 Toil Free: 866.772.5277 Fac; 622.445,6152 www.

Tracen Fealing 4455 S, Pact Ave 38s, 110 trans, AZ 8774 Phoenix 520.807 Page 70.8030 Pear 520.807 3803

B - Analyte detected in the associated Method Blank

E - Value above quantitation range

Merotech Environmental Laboratories, Inc.

Precision Analytical Laboratories

		Contract of the last of the la						
CLIENT:	Basin & Range Hydrogeologists	Hydrogeologis	sts	Ö	Client Sample ID: AL-VP07C-0903	B. A	L-VP0	7C-0903
Lab Order:	03100461				Tag Number: 00226	ber: 00)226	
Project:	Air Líquide/23018.016	018.016		Ŭ	Ollection I	Jate: 10	0/1/200	Collection Date: 10/1/2003 10:15:00 AM
Lab ID:	03100461-03A				Ma	Matrix: AIR	띥	
		Addd	bv	gh	ng/m²			
Analyses	OMENSAGE - WITH MATERIAL	Result	Limit	Result	Limit	Qual	ă	Date Analyzed
VOLATILE ORGANICS IN AIR	SANICS IN AIR		T015					On the state of
Bromoethene(Vinyl Bromide)	inyl Bromide)	< 100	100	< 220	220		200	10/2/2003
Вгетоботп		< 100	100	< 1000	1000		200	10/2/2003
Бгатопефале		> 100	100	< 400	400		200	10/2/2003
Carbon disulfide		< 100	100	< 320	320		200	10/2/2003
Carbon tetrachloride	oride	< 100	100	× 640	640		200	10/2/2003
Chlorobenzene		× 100	100	< 470	470		200	10/2/2003
Chloroethane		× 100	100	< 270	270		200	10/2/2003
Chloroform		< 100	100	< 500	200		200	10/2/2003
Chloromethane		< 100	100	< 210	210		200	10/2/2003
cis-1,2-Dichloroethene	sthene	۸ 100	100	< 400	400		200	10/2/2003
cis-1,3-Dichloropropene	oropene	< 100	100	< 460	460		200	10/2/2003
Cartobevena		400	700	000	r.			

10/2/2003	10/2/2003	10/2/2003	10/2/2003	10/2/2003	10/2/2003	10/2/2003	10/2/2003	10/2/2003	10/2/2003	10/2/2003	10/2/2003	10/2/2003	10/2/2003	10/2/2003	10/2/2003	
200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	
														22		
460	320	860	900	710	370	40	420	2200	360	380	730	350	440	320	430	
< 460	< 350	< 860	× 500	< 710	< 370	< 440	< 420	< 2200	> 360	< 880	< 730	< 350	< 440	680	< 430	
100	100	100	100	100	100	100	100	200	100	200	200	100	100	200	100	
< 100	< 100	< 100	× 100	< 100	< 100	< 100	< 100	< 200	< 100	< 200	< 200	< 100	< 100	390	< 100	
cis-1,3-Dichloropropene	Cyclohexane	Dibramachloromethane	Dichlorodifluoromethane(F-12)	Dichtorotetrafluoroethane(F-114)	Ethyl Acetate	Ethylbenzene	Heptane	Hexachiorobutadiene	Hexane	m&p-XyJene	Methyl ten-butyl ether	Methylene chloride	o-Xylene	Propene (Propylene)	Styrene	

	S - Spike Recovery outside accepted recovery limits	R - RPD outside accepted recovery limits	E - Value above quantitation range	Dags 2 of 14
TAXABATA PARTE PAR	ND - Not Detected at the Reporting Limit	5 - Analyte detected below quantitation limits	B - Analyte detected in the associated Method Blank	* - Value exceeds Maximum Conteminant Level
	Qualifiers:			

Aboratory -4645 E. Cotton Center Boulevick State 169 Phone: 602.437.8340 Toll Free: 886,772.5227 Fax 823,445,6192 www.serrentvirible.com
1 Facility -4455 E. Cotton Center Boulevick State 189 Phone: 602.807.8937 Fax 823,445,6192 www.serrentvirible.com
1 Facility -4455 E. Patrick R. 10 Litson, AZ 8614 Phone: 620.807.8937 Fax 823,445,8192 www.serrentvirible.com

Aerotech Environmental Laboratories bac activisons of Aerotech Laboratories

Date: 07-Nov-03

Precision Analytical Laboratories

Date: 07-Nov-03

E ORGANICS IN AIR Timit Result Limit Qual DF E ORGANICS IN AIR 150 1001 1000 690 D2 200 robtinan < 100 < 600 600 D2 200 Dichloropropene < 100 < 440 400 200 Dichloropropene < 100 < 440 400 200 Strene < 100 < 440 400 200 Incorporabitane(F-11) < 100 < 440 400 200 Incorporabitane(F-11) < 100 < 550 550 200 Bale < 100 < 780 570 200 Alloroposture < 100 < 550 50 200 Alloroposture < 100 < 260 360 200 Bale < 100 < 260 360 200 Alloroposture < 100 < 260 360 200 Bale < 100 < 260 260 200 Bale <t< th=""><th>Lab Order: Project: Lab ID:</th><th>03100461 Air Liquide/23018.016 03100461-03A</th><th>18.016</th><th></th><th>J</th><th>Tag Number: 00226 Collection Date: 10/1/2003 10:15: Matrix: AIR</th><th>fumber: 0022 on Date: 10/1 Matrix: AIR</th><th>0226 0/1/200 JR</th><th>Tag Number: 00226 Collection Date: 10/1/2003 10:15:00 AM Matrix: AIR</th></t<>	Lab Order: Project: Lab ID:	03100461 Air Liquide/23018.016 03100461-03A	18.016		J	Tag Number: 00226 Collection Date: 10/1/2003 10:15: Matrix: AIR	fumber: 0022 on Date: 10/1 Matrix: AIR	0226 0/1/200 JR	Tag Number: 00226 Collection Date: 10/1/2003 10:15:00 AM Matrix: AIR
EORGANICS IN AIR Total			Įdd.	Δú	X	y/m/			
150 TO16 600 690 D2 < 2200 2200 6600 690 D2 < 100 100 6380 380 400 < 100 100 6460 400 70 < 100 100 6460 460 70 < 100 100 6550 550 550 < 100 100 6780 570 D2 < 100 100 6360 560 70 < 100 100 6260 260 70 < 100 100 6260 260 70	Analyses		Result	Limit	Result	Limit	o man	- 1	Date Analyzed
an	VOLATILE OR(Tetrachloroethe	SANICS IN AIR	150	TO15	1000	069	02	200	Analyst. JG 10/2/2003
< 100	Tetrahydrofuran		< 200	200	009 >	009		200	10/2/2003
loroproperte < 100 100 < 400 400 loroproperte < 100	Toluene		< 100	100	< 380	380		200	10/2/2003
No. No.	trans-1,2-Dichlo	roethene	< 100	100	× 400	400		200	10/2/2003
nethane(F-11) 610 100 < 550 550 rroethane(F-113) 610 100 3500 570 D2 rroethane(F-113) < 100	trans-1,3-Dichlo	ropropene	× 100	100	< 460	460		200	10/2/2003
mnethana(F-11) 610 100 3500 570 D2 roethana(F-113) < 100	Trichloroethene		> 100	100	< 550	280		200	10/2/2003
roethans(F-113) < 100	Trichlorofluorom	tethane(F-11)	610	100	3500	570	05	200	10/2/2003
<100 100 <360 360 <100 <100 < 260 260 noftworbenzene 97.8 MRSC 7C-130	Trichlorotrifluoro	oethane(F-113)	< 100	100	< 780	780		200	10/2/2003
< 100 100 260 260 noilinotherizene 97.8 MRSC 70-130	Vinyl acetate		< 100	901	< 360	360		200	10/2/2003
97,8 WREC 70-130 .	Vinyl chloride		× 100	100	< 260	260		200	10/2/2003
	Sur: 4-Bromo	ofluorobenzene	97,8 %REC		ą	,		200	10/2/2003

S - Spike Recovery outside accepted recovery limits R - RPD outside accepted recovery limits E - Value above quantitation range B - Analyte detected in the associated Method Blank J - Analyte detected below quantitation limits ND - Not Detected at the Reporting Limit Qualifiers:

Page 9 of 15

Main Laboratory, 4645 E. Cuban Centar Boulevard, Building 3, Suits 169 Procest, AZ 85540 Procest 602.453 73440 Tall Free: 666.772.5227 Fax; 623.445.6182 wees

Tucson Fedility: 4455 S. Park Ave. Set 171 Usson, AZ 8747 Procest, S2 850 Fez 520.8073 3003

Tucson Fedility: 4455 S. Park Ave. Set 171 Usson, AZ 8747 Procest, S2 830 Fez 520.8073 3003

Tucson Fedility: 4455 S. Park Ave. Set 171 Usson, AZ 8747 Procest 520.8073 4003

Tucson Fedility: 4455 S. Park Ave. Set 171 Usson, AZ 8747 Procest 520.8073 4003

Tucson Fedility: 4455 S. Park Ave. Set 171 Usson, AZ 8747 Procest 520.8073 4003

Tucson Fedility: 4455 S. Park Ave. Set 171 Usson, AZ 8747 Procest 520.8073 4003

Tucson Fedility: 4455 S. Park Ave. Set 171 Usson, AZ 8747 Procest 520.8073 4003

Tucson Fedility: 4455 S. Park Ave. Set 171 Usson, AZ 8747 Procest 520.8073 4003

Tucson Fedility: 4455 S. Park Ave. Set 171 Usson, AZ 8747 Procest 520.8073 4003

Tucson Fedility: 4455 S. Park Ave. Set 171 Usson, AZ 8747 Procest 520.8073 4003

Tucson Fedility: 4455 S. Park Ave. Set 171 Usson, AZ 8747 Procest 520.8073 4007 5007

Tucson Fedility: 4455 S. Park Ave. Set 171 Usson, AZ 8747 Procest 520.8073 4007

Tucson Fedility: 4455 S. Park Ave. Set 171 Usson, AZ 8747 Procest 520.807 5007

Tucson Fedility: 4455 S. Park Ave. Set 171 Usson, AZ 8747 Procest 520.807 5007

Tucson Fedility: 4455 S. Park Ave. Set 171 Usson, AZ 8747 Procest 520.807 5007

Tucson Fedility: 4455 S. Park Ave. Set 171 Usson, AZ 8747 Procest 520.807

Tucson Fedility: 4455 S. Park Ave. Set 171 Usson, AZ 8747 Procest 520.807

Tucson Fedility: 4455 S. Park Ave. Set 171 Usson, AZ 8747 Procest 520.807

Tucson Fedility: 4455 S. Park Ave. Set 171 Usson, AZ 8747 Procest 520.807

Tucson Fedility: 4455 S. Park Ave. Set 171 Usson, AZ 8747 Procest 520.807

Tucson Fedility: 4455 S. Park Ave. Set 171 Usson, AZ 8747 Procest 520.807

Tucson Fedility: 4455 S. Park Ave. Set 171 Usson, AZ 8747 Procest 520.807

Tucson Fedility: 4455 S. Park Ave. Set 171 Usson, AZ 8747 Procest 520.807

Tucson Fedility: 4455 S. Park Av

Aerotech Environmental Laboratories fra

Date: 07-Nov-03	AL-SG27-0903	00168	Collection Date: 10/1/2003 11:22:00 AM	AIR	
Date:	Client Sample ID: AL-SG27-0903	Tag Number: 00168	Collection Date:	Matrix: AIR	hg/m³
Precision Analytical Laboratories	Basin & Range Hydrogeologists	03100461	Air Liquide/23018.016	03100461-04A	Addd
Precision A	CLIENT:	Lab Order:	Project:	Lab D:	

Analyses	Result	Limit	Result	Limit	Qual	DF	Date Analyzed
VOLATILE ORGANICS IN AIR	!	TO15		:			Analyst: JG
1,1,1-Trichloroethane	04	5	220	52	05	50	10/2/2003
1,1,2,2-Tetrachloroethane	< 10	\$	< 70	70		50	10/2/2003
1,1,2-Trichloroethane	< 10	오	A 55	55		70	10/2/2003
1,1-Dichloroethane	140	10	580	14	D2	20	10/2/2003
1,1-Dichiaroethene	420	10	1700	0	05	70	10/2/2003
1,2,4-Trichlorobenzene	< 20	20	< 150	150		50	10/2/2003
1,2,4-Trimethylbenzene	84	10	420	20	27	20	10/2/2003
1,2-Dibromoethane	ot ^	10	<78	78		20	10/2/2003
1,2-Dichloroberzene	× 10	10	×61	61		8	10/2/2003
1,2-Dichloroethane	< 10	9	44	41		70	10/2/2003
1,2-Dichloropropane	v 10	ę	< 47	47		23	10/2/2003
1,3,5-Trimethylbenzene	27	9	100	50	05	20	10/2/2003
1,3-Butadiene	ot >	10	<22>	22		20	10/2/2003
1,3-Dichlarobenzene	v 10	10	× 61	61		70	10/2/2003
1,4-Dichlorobenzene	Ξ	9	29	61	D2	50	10/2/2003
2,2,4-Trimethylpentane	100	10	240	54	05	20	10/2/2003
2-Bufanone (MEK)	160	50	480	90	D2	50	10/2/2003
2-Hexanone	< 20	20	< 83	85		8	10/2/2003
2-Propanol	24	50	09	20	22	20	10/2/2003
4-Ethykoluene	36	9	160	4	20	20	10/2/2003
4-Methyl-2-pentanone	< 20	20	83	83		20	10/2/2003
Acetone	1800	200	4300	1200	22	100	10/2/2003
Allyi chloride	ot >	10	× 16	91		8	10/2/2003
Benzene	150	6	490	32	D2	50	10/2/2003
Benzyl chloride	× 40	40	< 210	210		20	10/2/2003
Sromodichioromethane	۸ 10	10	89 V	88		8	10/2/2003

S - Spike Recovery outside acopied recovery limits	R - RPD outside accepted recovery limits	E - Value above quantitation range	Page 10 of 15 1807.3803 457.3340 Toll Free, 898.772.5227 Fax, 823.445,6192 www.aeroenwindaba.com
Qualifiers: ND - Not Detected at the Reporting Limit	J - Analyte detected below quantitation limits	B - Analyte detected in the associated Method Blank	* - Value exceeds Maximum Contaminant Level isin Laboratory: 4645 E. Cotton Center Boulseaux, Buildings, Suffer 189 Present AZ 85049 Phones 602.437.3340 Toll Free; 869.772.5227 Fax; 623.445.5192 www.serventriabse.com receipt Facility, 4455 S. Pert Ave. Ste. 110 Tusson, AZ 85714 Phones 520.807.3801 Fax; 520.437.3340 Toll Free; 869.772.5227 Fax; 623.445.5192 www.serventriabse.com

Aerotech Environmental Laboratories

=	
7	
_	
V	
2	
9	
_	
ei	
3	
=	
Z	
J	
5	. t
_	_=
=	'n
	٠Ĕ
	욢
3	Ĕ
	<u>بخ</u>
_	-
₹	Ę
٥	충
6	£
=	۲.
	9
=	5
5	.8
=	4
•	ĕ

Precision Analytical Laboratories

Basin & Range Hydrogeologists 03100461 Air Liquide/23018.016

CLIENT: Lab Order: Project:

Collection Date: 10/1/2003 11:22:00 AM Client Sample ID: AL-SG27-0903 Tag Number: 00168

Date: 07-Nov-03

	ā	nahv	3	mg/m,			
Analyses	Result	Limit	Result	Limit	Qual	ğ	Date Ansiyzed
						l	
VOLATILE ORGANICS IN AIR Bromoethene(Vind Bromide)	v 10	T015	¢ 22	8		8	Analyst: JG
Romoform	,	ŧ	200	5		5	10/2/2003
- Components		? \$	3 4	3 4		3 8	0000000
	2	≘	₹	₽		3	10/2/2003
Carbon disustide	× 10	2	< 32	32		8	10/2/2003
Carbon tetrachloride	ot >	9	v 64	35		ଛ	10/2/2003
Chiorobenzane	v 10	0	< 47	47		20	10/2/2003
Chloroethane	× 10	9	v 27	27		20	10/2/2003
Chloroform	v 10	10	> 50	ន		8	10/2/2003
Chloromethane	× 10	9	^ 21	21		20	10/2/2003
cis-1,2-Dichlorcethene	۸ 10	10	o 4 ^	\$		20	10/2/2003
cis-1,3-Dichloropropene	o v	9	34.	46		8	10/2/2003
Cyclohexane	< 10	9	< 35	8		50	10/2/2003
Dibromochizromethane	or >	10	88	88		8	10/2/2003
Dichlorodifluoromethane(F-12)	د 10	10	> 20	20		8	10/2/2003
Dichlorotetrafluoroethane(F-114)	o 10	9	× 71	7		8	10/2/2003
Ethyl Acetate	o 10	\$	< 37	37		20	10/2/2003
Ethytbenzene	150	9	999	4	23	20	10/2/2003
Heptane	3	02	620	42	D2	8	10/2/2003
Hexachlorobutadiene	< 50 < 70	8	< 220	220		23	10/2/2003
Hexane	170	10	610	98	22	8	10/2/2003
m&p-Xylene	460	50	2000	88	ă	8	10/2/2003
Methyl tert-butyl ether	2300	100	8400	370	8	100	10/2/2003
Methylene chloride	× 10	9	× 35	x		8	10/2/2003
o-Xylene	130	9	920	4	05	50	10/2/2003
Propene (Propylene)	270	5	470	18	20	8	10/2/2003
Styrene	v 5	10	£	£3		8	10/2/2003
Qualiflers: ND - Not Detected	ND - Not Detected at the Reporting Limit	imit	rsi	Spike Recov	ery outside	accepte	S - Spike Recovery outside accepted recovery limits
T. Annahan Anahan							
	 Analyte detected below quantitation innits 	en Henrick	2	R - RPD outside accepted recovery fimits	arcepted r	VENOVE	fimik

Qualifiers:	ND - Not Detected at the Reporting Limit	S - Spike Recovery outside accepted recovery limits
	J - Analyte detected below quantitation limits	R . RPD outside accepted recovery limits
	B - Analyte detected in the associated Method Blank	E - Value above quantitation range
	• Mellin and Martin Control of the Control	Dage 11 of 16

Page 11 of 15

Main Laboratory 4645 E. Cottin Cerab Boulevard Building 2, State 1989 Phones, 652 647,3340 Toll Free: 896,772,5227 Fee. 552,446,6192 www.an

Whitehor Facility, 4445 S. Part Ave. Sta. 11 Tucanon, AZ 85714 Phones: 500,807,3801 Feer 502,807,3803

R Promotes Addressed and Addressed State Az 85714 Phones: 500,807,3801 Feer 502,807,3803

R Promotes Addressed Addressed Az 85714 Phones: 500,807,3801 Feer 502,807,3803

Aerotech Environmental Laboratories, no.

Date: 07-Nov-03

Precision Analytical Laboratories

Client Sample ID: AI-SG27-0903

Tag Number: 00168

Collection Date: 10/1/2003 11:22:00 AM
Matrix: AIR Basin & Range Hydrogeologists Air Liquide/23018.016 03100461-04A 03100461 Lab Order: CLIENT: Project: Lab ID;

and	, dag		611	ne/m²			
Analyses	PPE Result	Limit	Result	Limit	Qual	DF	Date Analyzed
		3					
Tetrachloroethene	300	<u></u> 5	2100	69	20	50	Analyst: JG 10/2/2003
Tetrahydrofuran	< 20	50	< 60	60		20	10/2/2003
Toluene	800	10	3100	38	D2	20	10/2/2003
trans-1,2-Dichloroethene	< 10	10	< 40	04		50	10/2/2003
trans-1,3-Dichloropropene	v 10	10	۸ 46	94		20	10/2/2003
Trichloroethese	25	10	350	55	D2	50	10/2/2003
Trichlorofluoromethane(F-11)	410	10	2300	57	.02	20	10/2/2003
Trichtorotriftuoroethane(F-113)	< 10	10	< 78	78		50	10/2/2003
Vinyi acetate	< 10	₽.	× 36	36		20	10/2/2003
Vinyi chloride	v 10	0,	< 26	56		20	10/2/2003
Surr: 4-Bromofluorobenzene	94.4 %REC	70-130	1			20	10/2/2003

	S - Spike Recovery outside accepted recovery limits	R - RPD outside accepted recovery limits	E - Value above quantitation range
1	ND - Not Detected at the Reporting Limit	J - Analyre detected below quantitation limits	B - Analyte detected in the associated Method Blank
	Qualifiers:		

^{* -} Value exceeds Maximum Contaminant Level abovestory 4545 E. Colson Centre Boulevard; Building 3, Solate 189 Phrenet, AZ 55140 Phone; 622,437,3340 Toll Fine; 666,772,5227 Fax, 623,445,6192 www.nencennicleabs.com Finally; 4455 S. Perk Ne. Ste. 10 Tuccon, AZ 65714 Phone; 620,843,817 Perk 620,847,875 Perk 620,847,847 Perk 620,847,875 Perk 620,847 Perk

Acrotech Environmental Laboratories

CLIENT:	Basin & Range Hydrogeologists	lydrogeologi	ists	ð	Client Sample ID:		AL-VP06Z-0903	-0903
Lab Order:	03100461	ı			Tag Number:		00203	<u> </u>
Project:	Air Liquide/23018.016	18.016		O	Collection Date:		0/1/2003	10/1/2003 1:26:00 PM
Lab ID:	03100461-05A				Mat	Matrix: A	AIR	
		Z	ppbv	ân	rib/an			
Analyses		Result	Limit	Result	Limit	Qual	DF	Date Analyzed
VOLATILE ORGANICS IN AIR 1,1,1-Trichlorethane	SANICS IN AIR Thane	0000066	TO15	5500000	1100000	22	400000	Anatyst JG 10/3/2003
1,1,2,2-Tetrachloroethane	oroethane	< 5000	2000	< 35000	35000		10000	10/2/2003
1,1,2-Trichforoethane	thane	< 5000	2000	< 28000	28000		10000	10/2/2003
1,1-Dichloroethane	ane	420000	2000	1700000	21000	22	10000	10/2/2003
1,1-Dichloroethene	ene	110000	2000	440000	20000	02	10000	10/2/2003
1,2,4-Trichlorobenzene	euzeue	< 10000	10000	< 75000	75000		1000	10/2/2003
1,2,4-Trimethylbenzene	enzene	> 5000	2000	< 25000	25000		10000	10/2/2003
1,2-Dibromoethane	ane	< 5000	9009	< 39000	39000		10000	10/2/2003
1,2-Dichlorobenzene	zene	< 5000	2000	< 31000	31000		10000	10/2/2003
1,2-Dichloroethane	100	< 5000	5000	< 21000	21000		10000	10/2/2003
1,2-Dichloropropane	pane	< 5000	5000	< 24000	24000		10000	10/2/2003
1,3,5-Trimethylbenzene	enzene	< 5000	2000	< 25000	25000		10000	10/2/2003
1,3-Butadiene		> 5000	2000	< 11000	11000		10000	10/2/2003
1,3-Dichlorobenzene	zene	< 5000	2000	< 31000	31000		10000	10/2/2003
1,4-Dichlorobenzene	euez	< 5000	2000	< 31000	31000		10000	10/2/2003
2,2,4-Trimethylpentans	entane	< 5000	5000	< 12000	12000		10000	10/2/2003
2-Butanone (MEK)	2	< 10000	10000	< 30000	30000		10000	10/2/2003
2-Hexanone		< 10000	10000	< 42000	42000		10000	10/2/2003
2-Propanoi		< 10000	10000	< 25000	25000		10000	10/2/2003
4-Ethyltoluene		< 5000	2000	< 22000	22000		10000	10/2/2003
4-Methyl-2-pentanone	anone	< 10000	10000	< 42000	42000		10000	10/2/2003
Acetone		< 50000	20000	< 12000	120000		10000	10/2/2003
Allyl chloride		< 5000	2000	< 8000	8000		10000	10/2/2003
Benzene		< 5000	2000	< 16000	16000		10000	10/2/2003
Benzył chloride		< 20000	20000	< 11000	110000		10000	10/2/2003
Bromodichloromethane	ethane	< 5000	2000	< 34000	34000		10000	10/2/2003

R - RPD outside accepted recovery limits E - Value above quantitation range B - Analyte detected in the associated Method Blank Analyte detected below quantitation limits

Page 13 of 15

• Value exceeds Maximum Centaminant Level

| Main Laboratory, 4645 E. Cottan Content Bouldings, Subta 168 Proposit AZ 85540, Phone 602 437 3340 Tol Free; 666 772 5227 Faz, 623 445,6192 www.aerconvirtable.com

Acrotech Environmental Laboratories, Inc.

Precision Analytical Laboratories

Date: 07-Nov-03

Date Analyzed Collection Date: 10/1/2003 1:26:00 PM Client Sample ID: AL. VP06Z-0903 DF Tag Number: 00203 Matrix: AIR Qual Limit μg/m² Result Limit ppbv Basin & Range Hydrogeologists Result Air Liquide/23018.016 03100461-05A 03100461 Lab Order: CLIENT Project Lab ID: Analyses

VOLATILE ORGANICS IN AIR Bromoethene(Vinyl Bromide)	< 5000	TO15	< 11000	11000	*	10000	Analyst: JG 10/2/2003
Bromoform	< 5000	9009	< 52000	52000	-	100001	10/2/2003
Bromomethane	< 5000	5000	< 20000	20000	-	10000	10/2/2003
Carbon disulfide	< 5000	5000	< 16000	16000	-	0000	10/2/2003
Carbon tetrachloride	< 5000	2000	< 32000	32000	-	0000	10/2/2003
Chlorobenzene	< 5000	2000	< 24000	24000	-	0000	10/2/2003
Chloroethane	< 5000	5000	< 13000	13000	Ť	10000	10/2/2003
Chleroform	< 5000	2000	< 25000	25000	-	10000	10/2/2003
Chloromethane	< 5000	2000	< 10000	10000	Ψ-	10000	10/2/2003
cis-1,2-Dichloroethene	< 5000	2000	< 20000	20000	F	10000	10/2/2003
cis-1,3-Dichloropropene	< 5000	2000	< 23000	23000	Ť	10000	10/2/2003
Cyclohexane	< 5000	2000	< 17000	17000	**	10000	10/2/2003
Dibromochloromethane	< 5000	2000	< 43000	43000	*-	10000	10/2/2003
Dichlorodifluoromethane(F-12)	< 5000	2000	< 25000	25000	+	10000	10/2/2003
Dichlorotetrafluoroethane(F-114)	< 5000	2000	< 36000	36000	+	10000	10/2/2003
Ethyl Acetate	< 5000	2000	< 18000	18000	-	10000	10/2/2003
Ethylbenzene	< 5000	2000	< 22000	22000	**	10000	10/2/2003
Heptane	< 5000	2000	< 21000	21000	-	10000	10/2/2003
Hexachforobutadiene	< 10000	10000	< 11000	110000	-	10000	10/2/2003
Hexane	< 5000	2000	< 18000	18000	-	10000	10/2/2003
т&р-Хујеве	< 10000	10000	< 44000	44000	-	10000	10/2/2003
Methyl tert-butyl ether	< 10000	10000	< 37000	37000	-	0000	10/2/2003
Methylene chloride	110000	2000	390000	18000	D2	00001	10/2/2003
o-Xyiana	< 5000	2000	< 22000	22000	Ŧ	10000	10/2/2003
Propene (Propylene)	< 10000	10000	< 18000	18000	-	10000	10/2/2003
Slyrene	< 5000	5000	< 22000	22000	=	10000	10/2/2003

S - Spike Recovery outside accepted recovery limits	R + RPD outside accepted recovery limits	E - Value above quantitation range
ND - Not Detected at the Reporting Limit	J - Analyte detected below quantitation limits	B - Analyte detected in the associated Method Blank
Qualifiers:		

Aerotech Environmental Laboratories, Inc.

Precision Analytical Laboratories

Date: 07-Nov-03

Lab Order: Project: Lab ID:	03100461 Air Liquide/23018.016 03100461-05A	18.016		Ö	Tag Number: 00203 ollection Date: 10/1/2 Matrix: AIR	iumber: 0020 na Date: 10/1 Matrix: AIR)203)/1/2003 IR	Tag Number: 00203 Collection Date: 10/1/2003 1:26:00 PM Matrix: AIR
		Aqdd	-	ВH	ng/m,			
Analyses		Result	Limit	Result	Limit	Queal	ä	Date Analyzed
VOLATILE ORGANICS IN AIR Tetrachloroethene	SANICS IN AIR	> 5000	TO15	< 34000	34000		10000	Analyst. JG 10/2/2003
Tetrahydrofuran		< 10000	10000	< 30000	30000		10000	10/2/2003
Toluene		< 5000	2000	< 19000	19000		10000	10/2/2003
trans-1,2-Dichloroethene	roethene	< 5000	2000	< 20000	20000		10000	10/2/2003
trans-1,3-Dichloropropene	iopropene	< 5000	2000	< 23000	23000		10000	10/2/2003
Trichloroethene		5100	2000	28000	28000	25	10000	10/2/2003
Trichlorofluoromethane(F-11)	sethane(F-11)	43000	2000	250000	28000	05	10000	10/2/2003
Trichlarotrifluoroethane(F-113)	sethane(F-113)	< 5000	2000	< 39000	39000		10000	10/2/2003
Vinyl acetate		< 5000	2000	< 18000	18000		10000	10/2/2003
Vinyl chloride		> 5000	2000	< 13000	13000		1000	10/2/2003
Sur: 4-Brom	Surr: 4-Bromofluorobenzene	96.9 %REC	70-130	,			10000	10/2/2003

S - Spike Recovery outside accepted recovery limits	R - RPD outside accepted recovery limits	E - Value above quantitation range	
ND - Not Detected at the Reporting Limit	J - Analyte detected below quantitation limits	B - Analyte detected in the associated Method Blank	
Qualifters:			

Page 15 of 15

Main Laboratory, 4645 E. Cotton Carine Statement Lavel

Main Laboratory, 4645 E. Cotton Carine Boulance & Salas 189 Phoesis, 250,907,3809

Michael Fedility, 4455 8, Park Ans. Sa. 110 Tutano, AZ 55714 Phoesis 500,007,3807 Fear 500,007,3807

Corporate Address: 1601 W. Knudsen Drive. Phoesis 250,007,3807 Phoesis 500,007,3807

Corporate Address: 1601 W. Knudsen Drive. Phoesis 250,007 Phoesis 500,007,3807

Main Corporate Address: 1601 W. Knudsen Drive. Phoesis 250,007

Main Corporate Address: 1601 W. Knudsen Drive. Phoesis 250,007

Main Corporate Address: 1601 W. Knudsen Drive. Phoesis 250,007

Main Corporate Address: 1601 W. Knudsen Drive. Phoesis 250,007

Main Corporate Address: 1601 W. Knudsen Drive. Phoesis 250,007

Main Corporate Address: 1601 W. Knudsen Drive. Phoesis 250,007

Main Corporate Address: 1601 W. Knudsen Drive. Phoesis 250,007

Main Corporate Address: 1601 W. Knudsen Drive. Phoesis 250,007

Main Corporate Address: 1601 W. Knudsen Drive. Phoesis 250,007

Main Corporate Address: 1601 W. Knudsen Drive. Phoesis 250,007

Main Corporate Address: 1601 W. Knudsen Drive. Phoesis 250,007

Main Corporate Address: 1601 W. Knudsen Drive. Phoesis 250,007

Main Corporate Address: 1601 W. Knudsen Drive. Phoesis 250,007

Main Corporate Address: 1601 W. Knudsen Drive. Phoesis 250,007

Main Corporate Address: 1601 W. Knudsen Drive. Phoesis 250,007

Main Corporate Address: 1601 W. Knudsen Drive. Phoesis 250,007

Main Corporate Address: 1601 W. Knudsen Drive. Phoesis 250,007

Main Corporate Address: 1601 W. Knudsen Drive. Phoesis 250,007

Main Corporate Address: 1601 W. Knudsen Drive. Phoesis 250,007

Main Corporate Address: 1601 W. Knudsen Drive. Phoesis 250,007

Main Corporate Address: 1601 W. Knudsen Drive. Phoesis 250,007

Main Corporate Address: 1601 W. Knudsen Drive. Phoesis 250,007

Main Corporate Address: 1601 W. Knudsen Drive. Phoesis 250,007

Main Corporate Address: 1601 W. Knudsen Drive. Phoesis 250,007

Main Corporate Address: 1601 W. Knudsen Drive. Phoesis 250,007

Main Corporate Address: 16 *-Value exceeds Maximum Contantinant Level in Laboratory. 4645 E. Cobro Activation Statement Statement Spage 14 of 15 united statements and statement Spage 14 of 15 united Spage 14 of 15 united political Spage 14 phone 50 g07 8807 Fazs 50 R67 3803 for 50 contains and statement Spage 14 phone 50 g07 8807 Fazs 500 R67 3803 for 50 contains and spage 14 phone 50 g07 Phone 50 g07 Fazes 1807 for 50 for 5

CHAIN-OF-CUS	TODY RECORD		Electronic Data rable Reguired?		x		or web/e-mall re		10/15/03 10/17/03	0 - 3/0 Page	- 04	61 ot
BASIN & HYDROGEO	DLOGISTS	Completi Site	art Date; on Date; Identification; r Release No.;	10/4 A	01/03 01/03 ir Liquide 3018.016	-		IN & RANG	Е	, AZ		D. Chapman
Send Analytical Report BASIN & RANGE HYD 2800 North 24 th Street, F Attention: Ray Craft	ROGEOLOGISTS, IN hoenix, Arizona, 8500	8	Phone: 6 Fax: 602 craft@basin-and	-840-801	1	Environment C	al Laboratory Incompany: Prec Address: 4645 one No.: 602-	iformation: ision Analytic East Cotton	cal Laboratori Center Blvd,	ies Bldg. 3 Suite	189, Phoe	
ilon Code					Contain	ys Laborat	ory ID	Analyses :	Requested			l Notes
Sampile identifica	Sample Date	Sample Time	Canister Sorial #	Matriz	No. of Entech Miss-Can (f bier)		TO-15 (250.00)					
AL-VP07A-0903 AL-VP07B-0903 AL-VP07C-0903	10/01/03 9	72 15	00271	AIR AIR AIR	1		X X X					
AL-SG27-0903 AL-VP06Z-0903		22 26	00203	AIR AIR	1		X					
Sampler(s) Name(s): Claris Henrichten	Precision Analyl Please see attach One or more of (1,1-Dichloroeths	he following	rized to charge BLE 1 for targe t compounds in	a total o et analyi ust be us	f \$2650.00 tes and their sed as OC sr	appropriate DOT				t.		
. Relinquished By (Comp Basin & Range Hydrogeole	any Name): ogists	2. Receive	By (Company	Name);		3. Relinquished i	By (Company N	ame):	4. Recei	ved By (Comp	any Name);
rint Name: Eric	Domners	Print Nat	me: Turces	Mac	Arthur	Print Name:			Print Na	me:		

Date: Time:

			1
•			
		·	
			:

February 15, 2005

Basin and Range Hydrogeologists 6155 E. Indian School Rd. Suite 100 Scottsdale, AZ 85251

Eric Zugay Artention:

PNK0837 Level IV Data Package

RE

Dear Mr. Zugay,

Upon review of the raw data associated with work order PNK0837 we identified an error with the double spiked. The calibration was immediately adjusted to exclude these two calibration points and the % RSD was re-calculated at 5% RSD. Please note that this issue only affects surrogate calibration for the surrogate Dibromofluoromethane on 12/09/04. The 9sRSD for the surrogate was 22% and above the 20% acceptance limits. When this error was found the raw data was investigated and it appears that the surregate for the first two calibration points may have been results. The target analyte 1,4-Dioxane has an acceptable %RSD of 15%.

surrogate Dibromofluoromethane was found to be high (139%) and outside of the 80-125% acceptance limits in the CCV on 12/11/04. The 1,4-Dioxane results for this CCV has not changed and still passes the CCV acceptance criteria. The surrogate results for all other QC and PNK0837 samples did not change significantly. These results were found to continue to pass criteria or still faited criteria and have already been flagged accordingly. In the Level IV data package sent to All raw data reported with the original calibration was reprocessed with the corrected curve. The LDC the corrected calibration curve has been provided. Also the original and corrected results for the samples requested have been provided.

It is the opinion of the laboratory that your 1,4-Dioxane sample results are not impacted by this error and therefore the report was not re-issued. However if you would like a revised report please contact your project manager and it will be re-issued. We sincerely apologize for any inconvenience that this may cause. If you have any questions or concerns regarding this matter please feel free to contact me at (480) 785-0043.

Sincerely,

Win Bruth

Quality Assurance Manager Kiera Hunter

Cc: Linda Eshelman, Project Manager.

Del Mar Analytical

Cc: Amy Wolkowinsky, Basin & Range Hydrologists Cc: Steve Ziliak, Laboratory Data Consultants

🔷 Del Mar Analytical

17461 Design Ave. Suite 100, Hume CA 92814 (949) 261-1027 FAX (949) 380-3297 VIV4 E. CORDO F. Suite 4. O. CHONIC, CA 92214 (969) 370-1464 FAX (949) 370-1464 9404 Chesappack Dr., Suite 600, San Diago, CA 92722 (969) 966-599 FAX (969) 966-599 FAX (969) 966-599 9690 Soill 5118 L. Suite B-120, Propert, A. Sedout, Radio Table 742 (949) 769-5921 Page 5421 (949) 769-7921 Page 5421 Page 5421

LABORATORY REPORT

Project:24018.004/Air Liquide

6155 E. Indian School Rd., Suite 100A Prepared For: Basin & Range Hydrogeologists

RECEIVED

BASIN & RANGE HYDROGEOLOGISTS FEB 2 2 2005

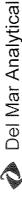
Attention: Amy Wolkowinsky Scottsdale, AZ 85251

Revised: 03/31/05 15:26 Sampled: 11/30/04 Received: 11/30/04

NELAP #01109CA Arizona DHS#AZ0426

The results listed within this Laboratory Report pertain only to the samples tested in the laboratory. The analyses contained in this report were performed in accordance with the applicable certifications as noted. As it is samples are reported on a wet weight basis unless otherwise noted in the report. This Laboratory Report is confidential and is intelled for the sole use of Del Mar Analytical and its client. This report shall not be reproduced, except in full, without written permission from Del Mar Analytical. The Chainty of Custody, 4 pages, are included and are an integral part of this report.

CASE NARRATIVE


This entire report was reviewed and approved for release

	CASE NAKKATIVE	VE	
LABORATORY ID	CLIENTID		MATRIX
PNK0837-01	Trip Blank		Water
PNK0837-02	Methanol Blank		Soil
PNK0837-03	CTD-01		Soil
PNK0837-04	CTD-02		Soil
PNK0837-05	WGT-01		Soil
PNK0837-06	SGT-01		Soil
PNK0837-07	WGT-02		Soil
PNK0837-08	SGT-02		Soil
PNK0837-09	D-EX1-4.0		Soil
PNK0837-10	H-EX2-4.0		Soil
PNK0837-11	C-EX3-5.75		Soil
PNK0837-12	G-EX4-5.75		Soil
PNK0837-13	G-EX4-5.75D		Soil
PNK0837-14	C-EX5-5.75		Soil
PNE0837-15	EB		Water
PNK0837-16	CCW-01		Soil
PNK0837-17	CCW-02		Soil
PNK0837-18	CCW-03		Soil
PNK0837-19	H-EX6-4.0	i i	Soil
PNK0837-20	G-EX7-6.0	KECEIVED	Soil
		APR 0 4 2005	

Del Mar Analytical - Phoenix Linda Eshelman

BASIN & HANGE HYDROGEOLOGISTS

Project Manager

Basin & Range Hydrogeologists

Attention: Amy Wolkowinsky SAMPLE RECEIPT:

Sconsdale, AZ 85251

Tel Cheller are Suller 100, I cyene CA 82514 (494) 56-1152 FX (549) 106-1250 (494) 64-1250 (494) 64-1250 (494) 64-1250 (494) 64-1250 (494) 64-1250 (494) 64-1250 (495) 64-

Project ID: 24018.004/Air Liquide Report Number: PNK0837 6155 E. Indian School Rd., Suite 100A

method specified holding time requirements.

The N1a flag on the pH and Temp, at Time of pH indicates that the holding time for this test is immediate.

The laboratory measurement, therefore, cannot be used for compliance purposes.

Not all holding times were met. Results were qualified where the sample analysis did not occur within

Samples were received intact, at 3°C, on ice and with chain of custody documentation.

requiring volatile analysis were received in Methanol Kits.

HOLDING TIMES:

Due to insufficient sample volume received the pH and Flashpoint analyses were not performed on sample

This report has been revised to reflect the correct units of µg/kg for Method 8260-1,4-Dioxane.

Results that fall between the MDL and RL are 'J' flagged.

All analyses met method criteria, except as noted in the report with data qualifiers.

QA/QC CRITERIA:

COMMENTS:

PRESERVATION:

Samples requiring preservation were verified prior to sample analysis.

H-EX2-4.0 (PNK.0837-10. Per the client's request, the pH and Flashpoint were analyzed on sample

WGT-02 (PNK0837-07).

Sampled: 11/30/04 Received: 11/30/04

Soil samples

Basin & Range Hydrogeologists 6155 E. Indian School Rd., Suite 100A Scottsdale, AZ 85251

1746/10erian Are., Suite 10) Invine: CA 92814 (849) 85-1312 FAX (849) 860-3297 VIVA E. Cholen, F. Suite A. Cholen. CA 92314 (849) 870-4467 FAX (849) 710-4467 FAX (849) 710-447 FAX (8 Sampled: 11/30/04 Received: 11/30/04 Project ID: 24018.004/Air Liquide

Report Number: PNK0837

Attention: Amy Wolkowinsky

Del Mar Analytical

EXTRACTABLE FUEL HYDROCARBONS (ADHS 8015AZR1)	EXTRACTABLE FUEL HYDROCARBONS (ADHS 8015AZR1)	JEL HY	DRO	CARBO	VS (AD	HS 80	15AZR1	(
Analyte	Method	Batch	MDL	MDL Reporting Sample Dilution Date Limit Limit Result Factor Extracted	Sample Result	Dilution Factor	Date Extracted		Date Data Analyzed Qualifiers
Sample ID: PNK0837-07 (WGT-02 - Soil) Reporting Units: mg/kg	02 - Soil)								
DRO (C10-C22)	ADHS 8015AZR1 P4L0604	P41,0604	A/N	009	2600	20	12/06/04 12/13/04	12/13/04	
ORO (C22-C32)	ADHS 8015AZR1 P4L0604	P4L0604	N/A	2000	36000	50	12/06/04	12/06/04 12/13/04	
Total (C10-C32)	ADHS 8015AZR1 P4L0604	P4L0604	X/A	2600	39000	20	12/06/04	12/06/04 12/13/04	
Surrogate: n-Docosane (70-130%)					368 %				NIC
Sample ID: PNK0837-08 (SGT-02 - Soil) Reporting Units: mg/kg	2 - Soil)								
DRO (C10-C22)	ADHS 8015AZR1 P4L0604	P4L0604	A/N	300	510	10	12/06/04 12/10/04	12/10/04	
ORO (C22-C32)	ADHS 8015AZR1 P4L0604	P4L0604	Z/A	1000	2200	10	12/06/04	12/06/04 12/10/04	
Total (C10-C32)	ADHS 8015AZR1 P4L0604	P4L0604	A/A	1300	2700	0	12/06/04	12/06/04 12/10/04	
Surrogate: n-Docosane (70-130%)					113 %				

BCONTRACTED: Refer to the last page for specific subcontract laboratory information included in this report.	DI - 8015AZ - Reporting limit raised due to high single peak analyte.
SUBCONTRACTED:	ADDITIONAL INFORMATION:

D1 - 8015AZ - Reporting limit raised due to high single peak analyre.
D1 - ICP Selenium - Reporting limit raised due to sample matrix effects.

D2 - 8266 - Sample required dilution due to high concentration of target analyte.
L3 - 8260 - Laboratory Control Sample recovery was above the method control limits. Analyte not detected, data not impacted.
N1 - 8260 - Concentration exceeds the calibration range and therefore result is semi-quantitative.
N1 - 8260 - Concentration exceeds the calibration range and therefore result is semi-quantitative.
N1 - 8260 - The MS and/or MSD were high for Chloromethane and Dichlorodifluoromethane. All

28

12/10/04 12/10/04 12/10/04

12/06/04 12/06/04 12/06/04

20 20

4600 12000 16000 *

1500 5000 6500

Y X X

ADHS 8015AZR1 P4L0604 ADHS 8015AZR1 P4L0604 ADHS 8015AZR1 P4L0604

Surrogate: n-Docosane (70-130%)

ORO (C22-C32) Total (C10-C32) DRO (C10-C22)

Sample ID: PNK0837-10 (H-EX2-4.0 - Soil)

Reporting Units: mg/kg

associated samples were ND for these compounds and should not be significantly impacted by the high bias. N1b - 8260 (1,4-Dioxane) - No MS/MSD was reported. We were unable to calculate the MS/MSD recoveries due to a failing internal standard in the source sample. The batch was accepted based on the recoveries and RPD between the LCS/LCSD.

\$10 - 8260 - Surrogate recovery was above acceptance limits. The source sample and the MSD as well as the LCS/LCSD at had acceptable surrogate recoveries. The batch was accepted based on these acceptable recoveries per ADEQ policy 154.

N1c - 8015AZ - Due to sample matrix effects, the surrogate recovery was outside the acceptance limits.

Reviewed By:

Oel-Mur'Amalytical - Phoenix

Linda Eshelman Project Manager The results pertain only to the samples tested in the taboratory. This report shall not be reproduced.

PNK0837 <Page 2 of 153>
except in full, without written permission from Del Mar Analytical.

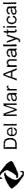
Del Mar Analytical - Phoenix Linda Eshelman Project Manager

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced. PNK0837 <Page 3 of 153> except in full, without written permission from Del Mar Anabytical.

1746 Design Ave., Suller DD, Tener CA K9214 (494) 551-1527 FX (949) 935-1529 TH 1941 FX (949) 1741-1648 FX (

Report Number: PNK0837 Basin & Range Hydrogeologists 6155 E. Indian School Rd., Suite 100A Scottsdale, AZ 85251 Actention: Any Wolkowinsky

Project ID: 24018.004/Air Liquide


11/30/04 Sampled: Received:

VOLATILE FUEL HYDROCARBONS (ADHS 8015AZR1)

Analyte	Method	Batch	MDL	MDL Reporting Sample Dilution Date Batch Limit Limit Result Factor Extracted	Sample Result	Dilution Factor I	Sample Dilution Date Result Factor Extracted	Date Data Anatyzed Qualifiers	Data Qualifiers
Sample ID: PNKU837-07 (WGT-02 - Soil) Reporting Units: mg/kg Volatile Fuel Hydrocarbons ADHS 8 Sinragate: +-BFB (FID) (70-130%)	.02 - Soil) ADHS 8015AZRI P4L0109 N/A 6)	P4L0109	ĕ,Z	20	86 146 %	-	12/01/04 12/06/04	12/06/04	NIc
Sample ID: PNK0837-08 (SGT-02 - Soil) Reporting Units: mg/kg Volatile Fuel Hydrocarbons ADHS Surrogane: 4-BFB (FID) (70-130%)	12 - Soil) ADHS 8015AZR1 P4L0109 6)	P4L0109	N/A	200	360	10	12/01/04 12/07/04	12/07/04	SS
Sample ID: PNK0837-10 (H-EX2-4.0 - Soil) Reporting Units: mg/kg Volatile Fuel Hydrocarbons ADHS 801 Surrogate: 4-BFB (FID) (70-130%)	2-4.0 - Soif) ADHS 8015AZR1 P4L0109 6)	P4L0109	N/A	1000	Q *	50	12/01/04 12/07/04	12/07/04	D1 S8

Del Mar Analytical - Phoenix Linda Eshelman Project Manager

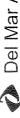
The results perialn only to the samples tested in the laboratory. This report shall not be reproduced PNKO837 <Page 4 of 133> except in full, without written permission from Det Mar Anatyrical.

17461 Derian Ave., Suile 100, Innine CA 92814 (944) 96-1102 FAX (949) 980-2037 (1744 E. Cholder), Shalie A. Cholder, CA 92224 (993) 373-4687 FAX (949) 373-1346 9484 Chesappaele Gr., Shalie Sold, Shali Dego, CA 92723 (983) 373-4687 FAX (949) 373-1346 983 SOld-9489 9484 Chesappaele Gr., Shali Bego, CA 92723 (983) 373-4687 FAX (949) 373-973-973 (983) 37

Report Number: PNK0837

Basın & Range Hydrogeologists 6155 E. Indian School Rd., Suite 100A Scottsdale, AZ 85251 Attention: Amy Wolkowinsky

Project ID: 24018.004/Air Liquide


Sampled: 11/30/04 Received: 11/30/04

VOLATILE ORGANICS BY GC/MS (EPA 5030B/8260B)

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Dilution Date Result Factor Extract	Dilution Factor	Dilution Date Factor Extracted	Date Data Analyzed Qualifiers	Data Qualifiers
Sample ID: PNK0837-01 (Trip Blank - Water) Reporting Units: ug/l	ank - Water)								
Acetone	EPA 8260B	P4L0910	6.4	30	Q.	_	12/09/04	12/09/04	
Benzene	EPA 8260B	P4L0910	0.15	1.0	ΩN		12/09/04	12/09/04	
Bromobenzene	EPA 8260B	P4L0910	0.11	1.0	Q.	,	12/09/04	12/09/04	
Bromochloromethane	EPA 8260B	P4L0910	0.13	1.0	S	,,,,,	12/09/04	12/09/04	
Bromodichloromethane	EPA 8260B	P4L0910	0.16	1.0	ջ	-	12/09/04	12/09/04	
Bromoform	EPA 8260B	P4L0910	4.	2.0	Q	-	12/09/04	12/09/04	
Bromomethane	EPA 8260B	P4L0910	0.56	4.0	g	_	12/09/04	12/09/04	
2-Butanone (MEK)	EPA 8260B	P4L0910	4.5	10	2	-	12/09/04	12/09/04	
n-Butylbenzene	EPA 8260B	P4L0910	0.18	1.0	2	-	12/09/04	12/09/04	
sec-Butylbenzene	EPA 8260B	P4L0910	0.12	1.0	S	-	12/09/04	12/09/04	
tert-Butylbenzene	EPA 8260B	P4L0910	0.15	1.0	g	,	12/09/04	12/09/04	
Carbon Disulfide	EPA 8260B	P4L0910	0.81	5.0	Q	_	12/09/04	12/09/04	
Carbon tetrachloride	EPA 8260B	P4L0910	0.19	1.0	9	-	12/09/04	12/09/04	
Chlorobenzene	EPA 8260B	P4L0910	0.073	1.0	N	-	12/09/04	12/09/04	
Chloroethane	EPA 8260B	P4L0910	2.0	4.0	S	-	12/09/04	12/09/04	
Chloroform	EPA 8260B	P4L0910	0.16	1.0	Ω		12/09/04	12/09/04	
Chloromethane	EPA 8260B	P4L0910	0.26	4.0	ΩŽ	-	12/09/04	12/09/04	
2-Chlorotoluene	EPA 8260B	P4L0910	0.092	1,0	Ω̈́	,4	12/09/04	12/09/04	
4-Chlorotoluene	EPA 8260B	P4L0910	0.12	1.0	2		12/09/04	12/09/04	
Dibromochloromethane	EPA 8260B	P4L0910	0.18	1.0	QX	-	12/09/04	12/09/04	
1,2-Dibromo-3-chloropropane	EPA 8260B	P4L0910	0.42	1.0	ΩN	-	12/09/04	12/09/04	
1,2-Dibromoethane (EDB)	EPA 8260B	P4L0910	0.16	1.0	S	-	12/09/04	12/09/04	
Dibromomethane	EPA 8260B	P4L0910	0.15	_	Ω	-	12/09/04	12/09/04	
1,2-Dichlorobenzene	EPA 8260B	P4L0910	0.12	_	S	-	12/09/04	12/09/04	
1,3-Dichlorobenzene	EPA 8260B	P4L0910	0.078	_	g	-	12/09/04	12/09/04	
1,4-Dichlorobenzene	EPA 8260B	P4L0910	0.13		Ŕ	-	12/09/04	12/09/04	
Dichlorodifluoromethane	EPA 8260B	P4L0910	_	4.0	Ω		12/09/04	12/09/04	
1,1-Dichloroethane	EPA 8260B	P4L0910	0.13	0.1	S		12/09/04	12/09/04	
1,2-Dichloroethane	EPA 8260B	P4L0910	0.15	1.0	ΩÑ		12/09/04	12/09/04	
1, I-Dichloroethene	EPA 8260B	P4L0910	0.28	2.0	NΩ	-	12/09/04	12/09/04	
cis-1,2-Dichloroethene	EPA 8260B	P4L0910	0.23	1.0	ΩN	-	12/09/04	12/09/04	
trans-1,2-Dichloroethene	EPA 8260B	P4L0910	0.33	1.0	QN	_	12/09/04	12/09/04	
I,2-Dichloropropane	EPA 8260B	P4L0910	0.15	1.0	Q		12/09/04	12/09/04	
1,3-Dichloropropane	EPA 8260B	P4L0910	0.16	1.0	9		12/09/04	12/09/04	
2,2-Dichloropropane	EPA 8260B	P4L0910	0.33	1.0	S		12/09/04	12/09/04	
1,1-Dichloropropene	EPA 8260B	P4L0910	_	1.0	2		12/09/04	12/09/04	
cis-1,3-Dichloropropene	EPA 8260B	P4L0910	_	1.0	R		12/09/04	12/09/04	
trans-1,3-Dichloropropene	EPA 8260B	P4L0910	0.19	1.0	9		12/09/04	12/09/04	
Ethylbenzene	EPA 8260B	P4L.0910	0.12	2.0	S	-	12/09/04	12/09/04	
Hexachlorobutadiene	EPA 8260B	P4L0910	0.24	1.0	2	-	12/09/04	12/09/04	
2-Hexanone	EPA 8260B	P4L0910	5.7	10	Š	-	12/09/04	12/09/04	

Del Mar Analytical - Phoenix Línda Eshelman Project Manager

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced PNK0837 <Page 5 of 153> except in full, writhout written permission from Del Mar Analytical.

Busin & Range Hydrogeologists 6155 E. Indian School Rd., Suite 100A

Attention: Amy Wolkowinsky

Scousdale, AZ 85251

Del Mar Analytical

Tacto Dentan Ave. Suite 100 (nine CA 9251 4 (495) 56-1522 FX (594) 50-5257 10-62 FX (594) 50-5259 10-62 FX (594) 510-510-67 FX (594) 510-510-67 FX (594) 510-510-67 FX (595) 510-667 FX (595) 510-506 FX (595) 510

Sampled: 11/30/04 Received: 11/30/04

Project ID: 24018.004/Air Liquide

Report Number: PNK0837

VOLATILE ORGANICS BY GC/MS (EPA 5030B/8260B)

Date Reporting Sample Dilution Date MDL

Analyzed Qualifiers 召 12/09/04 Result Factor Extracted 12/09/04 12/09/04 12/09/04 12/09/04 12/09/04 12/09/04 12/09/04 12/09/04 12/09/04 12/09/04 12/09/04 12/09/04 12/09/04 12/09/04 12/09/04 Limit Limit P4L0910
P4L0910 P4L0910 P4L0910 P4L0910 P4L0910 P4L0910 P4L0910 P4L0910 P4L0910 P4L0910 P4L0910 P4L0910 P4L0910 P41.0910 Batch Sample ID: PNK6837-01 (Trip Blank - Water) - cont. EPA 8260B **EPA 8260B** EPA 8260B **EPA 8260B EPA 8260B** Method Surrogate: Dibromofluoromethane (80-125%) Surrogate: Toluene-d8 (80-120%) Methyl-tert-butyl Ether (MTBE) 4-Methyl-2-pentanone (MIBK) 1.1, t.2-Tetrachloroethane 1.1,2,2-Tetrachloroethane Tetrachloroethene Reporting Units: ug/l Crichlorofluoromethane 1.2,4-Trimethylbenzene 1,3,5-Trimethylbenzene 1.2,3-Trichlorobenzene 1.2,4-Trichlorobenzene 1.2.3-Trichloropropane 1.1,2-Trichloroethane Trichloroethene 1,1.1-Trichloroethane Methylene chloride p-Isopropyltoluene Isopropyfbenzene n-Propylbenzene Vinyl chloride Xylenes, Total Naphthalene Styrene

Dei Mar Anafytical - Phoenix Linda Eshelman Project Manager

Surrogate: 4-Bromofluorobenzene (80-125%)

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced PNK0837 <Page 6 of 133> except in full, without written permission from Del Mar Analytical.

Sampled: 11/30/04 Received: 11/30/04 Project ID: 24018,004/Air Liquide Report Number: PNK0837 Del Mar Analytical Basin & Range Hydrogeologists 6155 E. Indian School Rd., Suite 100A Scottsdale, AZ 85251 Attention: Amy Wolkowinsky

$\overline{}$
00
=
~
Ó
\sim
00
-
22
5030B/
≖
=
LC.
-
₹.
۰
ΕĐ
jumi
(EP)
CO.
>
\leftarrow
5
·
(h
_
25/
<u>×</u>
BY (
BY (
SBY (
S BY (
CS BY (
Ξ.
NICS BY (
INICS BY (
ANICS BY (
SANICS BY (
GANICS BY (
RGANICS BY (
RGANICS BY (
ORGANICS BY (
ORGANICS BY
E ORGANICS BY (
LE ORGANICS BY
LATILE ORGANICS BY
LATILE ORGANICS BY
OLATILE ORGANICS BY
LATILE ORGANICS BY

-			1	2111)					
Analyte	Method	Batch	MDL	Reporting Limit	Sample Dilution Date Result Factor Extract	Dilution	Dilution Date Factor Extracted	Date Analyzed	Date Data Analyzed Qualiffers
Sample ID: PNK0837-15 (EB - Water) Renorting Units: uo/l	iter)						٠		
Acetone	EPA 8260B	P4L1104	6.4	20	R	_	12/11/04	12/11/04	
Benzene	EPA 8260B	P4L1104	0.15	0.1	Q	-	12/11/04	12/11/04	
Bromobenzene	EPA 8260B	P4L1104	0.11	0.1	Q		12/11/04	12/11/04	
Bromochloromethane	EPA 8260B	P4L1104	0.13	1.0	2		12/11/04	12/11/04	
Bromodichloromethane	EPA 8260B	P4L1104	0.16	1.0	Ω̈́	_	12/11/04	12/11/04	
Bromoform	EPA 8260B	P4L1104	4.	2.0	Ŝ	-	12/11/04	12/11/04	
Bromomethane	EPA 8260B	P4L1104	0.56	4.0	Ñ		12/11/04	12/11/04	
2-Butanone (MEK)	EPA 8260B	P4L1104	4.5	10	N Q	,	12/11/04	12/11/04	
n-Butylbenzene	EPA 8260B	P4L1104	0.18	1.0	S	,,	12/11/04	12/11/04	
sec-Butylbenzene	EPA 8260B	P4L1104	0.12	1.0	S	-	12/11/04	12/11/04	V1, L3
tert-Butylbenzene	EPA 8260B	P4L1104	0.15	1.0	S		12/11/04	12/11/04	
Carbon Disulfide	EPA 8260B	P4L1104	0.81	5.0	Ž	-	12/11/04	12/11/04	
Carbon tetrachloride	EPA 8260B	P4L1104	0.19	1.0	Q	-	12/11/04	12/11/04	
Chlorobenzene	EPA 8260B	P4L1104	0.073	1.0	g	-	12/11/04	12/11/04	
Chloroethane	EPA 8260B	P4L1104	2.0	4.0	ΩZ		12/11/04	12/11/04	
Chloroform	EPA 8260B	P4L1104	0.16	1.0	S	_	12/11/04	12/11/04	
Chloromethane	EPA 8260B	P4L1104	0.26	4.0	g	,	12/11/04	12/11/04	
2-Chlorotoluene	EPA 8260B	P4L1104	0.092	1.0	2	_	12/11/04	12/11/04	
4-Chlorotoluene	EPA 8260B	P4L1104	0.12	1.0	Ŕ	-	12/11/04	12/11/04	
Dibromochloromethane	EPA 8260B	P4L1104	0.18	1.0	R	-	12/11/04	12/11/04	
1,2-Dibromo-3-chloropropane	EPA 8260B	P4L1104	0.42	1.0	S	_	12/11/04	12/11/04	
1,2-Dibromoethane (EDB)	EPA 8260B	P4L1104	0.16	1.0	R		12/11/04	12/11/04	
Dibromomethane	EPA 8260B	P4L1104	0.15	1.0	S	-	12/11/04	12/11/04	
1,2-Dichlorobenzene	EPA 8260B	P4L1104	0.12	1.0	Ŋ		12/11/04	12/11/04	
1,3-Dichlorobenzene	EPA 8260B	P4L1104	0.078	1.0	S		12/11/04	12/11/04	
1,4-Dichlorobenzene	EPA 8260B	P4L1104	0.13	1.0	R	-	12/11/04	12/11/04	
Dichlorodifluoromethane	EPA 8260B	P4L1104	Ξ.	4.0	2	-	12/11/04	12/11/04	
1, I-Dichloroethane	EPA 8260B	P4L1104	0.13	1.0	2	,	12/11/04	12/11/04	
1,2-Dichloroethane	EPA 8260B	P4L1104	0.15	I.0	g	_	12/11/04	12/11/04	
1,1-Dichloroethene	EPA 8260B	P4L1104	0.28	2.0	2		12/11/04	12/11/04	
cis-1,2-Dichloroethene	EPA 8260B	P4L1104	0.23	1.0	2		12/11/04	12/11/04	
trans-1,2-Dichloroethene	EPA 8260B	P4L1104	0.33	1.0	S	-	12/11/04	12/11/04	
1,2-Dichloropropane	EPA 8260B	P4L1104	0.15	0.0	2	-	12/11/04	12/11/04	
1,3-Dichloropropane	EPA 8260B	P4E1104	0.16	1.0	9	_	12/11/04	12/11/04	
2,2-Dichloropropane	EPA 8260B	P4L1104	0.33	0.1	2	<u></u>	12/11/04	12/11/04	
1,1-Dichloropropene	EPA 8260B	P4L1104	0.12	1.0	2	_	12/11/04	12/11/04	Ľ3
cis-1,3-Dichloropropene	EPA 8260B	P4L1104	0.15	1.0	2		12/11/04	12/11/04	
trans-1,3-Dichloropropene	EPA 8260B	P4L1104	0.19	1.0	2		12/11/04	12/11/04	
Ethylbenzene	EPA \$260B	P4L1104	0.12	2.0	g	-	12/11/04	12/11/04	
Hexachlorobutadiene	EPA 8260B	P4L1104	0.24	1.0	2	_	12/11/04	12/11/04	
2-Hexanone	EPA 8260B	P4L1104	5.7	0	2	_	12/11/04	12/11/04	
D. I.M									

Del Mar Analytical - Phoenix Linda Eshelman Project Manager

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced PNK0837 <Page 7 of 1.53> except in full, without written permission from Del Mar Analytical.

Report Number: PNK0837 Basin & Range Hydrogeologists 6155 E. Indian School Rd., Suite 100A Sconsdale, AZ 85251 Attention: Any Wolkowinsky

Project ID: 24018.004/Air Liquide

Sampled: 11/30/04 Received: 11/30/04

Basin & Range Hydrogeologists 6155 E. Indian School Rd., Suite 100A Scottsdale, AZ 85251 Attention: Arry Wolkowinsky

Del Mar Analytical

PNK0837 Report Number:

Project ID: 24018.004/Air Liquide

Sampled: 11/30/04 Received: 11/30/04

VOLATILE ORGANICS BY GC/MS (EPA 5030B/8260B)

Analyte	Method	Batch	MDL Limít	Reporting Limit	Sample Resuft	Sample Dilution Date Result Factor Extract	Dilution Date Factor Extracted	Date Analyzed	Date Data Analyzed Qualifiers
Sample ID: PNK0837-15 (EB - Water) - cont.	iter) - cont.								
(adomethane	EPA 8260B	P4L1104	0.15	2.0	ΩŽ		12/11/04	12/11/04	
Isopropylbenzene	EPA 8260B	P4L1104	0.12	0.1	2	-	12/11/04	12/11/04	
p-Isopropyltoluene	EPA 8260B	P4L1104	0.11	0.1	Q	-	12/11/04	12/11/04	
Methylene chloride	EPA 8260B	P4L1104	0.80	5.0	Ŝ	-	12/11/04	12/11/04	
4-Methyl-2-pentanone (MIBK)	EPA 8260B	P4L1104	2.8	10	Q	-	12/11/04	12/11/04	
Methyl-tert-buryl Ether (MTBE)	EPA 8260B	P4L1104	0.26	5.0	QX	_	12/11/04	12/11/04	
Naphthalene	EPA 8260B	P4L1104	0.22	2.0	Ω̈́	-	12/11/04	12/11/04	
n-Propylbenzene	EPA 8260B	P4L1104	0.14	1.0	Ω	-	12/11/04	12/11/04	5
Styrene	EPA 8260B	P4L1104	0.12	0.1	Š	-	12/11/04	12/11/04	
1,1,1,2-Terrachloroethane	EPA 8260B	P4L1104	0.14	1.0	Q	_	12/11/04	12/11/04	
i, 1,2,2-Tetrachloroethane	EPA 8260B	P4L1104	0.22	2.0	N Q	-	12/11/04	12/11/04	
Tetrachloroethene	EPA 8260B	P4L1104	0.12	1.0	S	-	12/11/04	12/11/04	
Toluene	EPA 8260B	P4L1104	0.24	2.0	Š	_	12/11/04	12/11/04	
1,2,3-Trichlorobenzene	EPA 8260B	P4L1104	0.16	1.0	S	-	12/11/04	12/11/04	
1.2.4-Trichlorobenzene	EPA 8260B	P4L1104	0.13	0-1	2	-	12/11/04	12/11/04	
1,1,1-Trichloroethane	EPA 8260B	P4L1104	0.22	1.0	9 .		12/11/04	12/11/04	
1,1,2-Trichloroethane	EPA 8260B	P4L1104	0.14	1.0	g		12/11/04	12/11/04	
Trichforoethene	EPA 8260B	P4L1104	0.14	1.0	Ŋ		12/11/04	12/11/04	
Trichloroffuoromethane	EPA 8260B	P4L1104	0.13	4.0	S	-	12/11/04	12/11/04	
1,2,3-Trichloropropane	EPA 8260B	P4L1104	0.26	0.1	S	_	12/11/04	12/11/04	
1,2,4-Trimethylbenzene	EPA 8260B	P4L1104	0.17	0.1	QN	_	12/11/04	12/11/04	
1.3,5-Trimethylbenzene	EPA 8260B	P4L1104	0.15	0.1	S	,	12/11/04	12/11/04	
Vinyl acetate	EPA 8260B	P4L1104	9.1	5.0	Š	poort	12/11/04	12/11/04	
Vinyl chloride	EPA 8260B	P4L1104	0.18	1.0	g	_	12/11/04	12/11/04	
Xylenes, Total	EPA 8260B	P4L1104	0.38	3.0	ď	~	12/11/04	12/11/04	
Surrogute: Dibromofluoromethane (80-125%)	(80-125%)				% 16				
Surrogate: Tolnene-d8 (80-120%)					102 %				
Surrogae: 4-Bromafluorobenzene (80-125%)	80-125%)				95 %				

Del Mar Analytical - Phoenix Linda Eshelman Project Manager

The results pertain only to the samples texted in the laboratory. This report skall not be reproduced PNK0837 <Page 8 of 153> except in full, veithout written permission from Del Mar Analytical.

Date Data Analyzed Qualifiers 5 5 13 C 5 12/07/04 2/07/04 12/01/04 2/07/04 12/07/04 12/07/04 11/30/04 FactorExtracted 11/30/04 11/30/04 11/30/04 11/30/04 1/30/04 1/30/04 11/30/04 11/30/04 11/30/04 11/30/04 11/30/04 1/30/04 Reporting Sample Dilution Date Limit Result FactorExtract VOLATILE ORGANICS BY GC/MS (EPA 5035/8260B) MDL Limit P4L0807 Batch P4L0807 P4L0807 P4L0807 P4L0807 P4L0807 P4L0807 P4L0807 P4L0807 P4L0807 EPA \$260B EPA 8260B Sample ID: PNK0837-02 (Methanol Blank - Soil) EPA 8260B EPA 8260B EPA 8260B EPA 8260B Del Mar Analytical - Phoenix Linda Eshelman 1,2-Dibromo-3-chloropropane 1,2-Dibromoethane (EDB) Reporting Units: ug/kg trans-1,3-Dichloropropene Dichlorodifluoromethane trans-1,2-Dichloroethene cis-1,3-Dichloropropene Dibromochloromethane Bromodichloromethane cis-1,2-Dichloroethene Bromochloromethane Hexachlorobutadiene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,2-Dichloropropane 2,2-Dichloropropane 1,1-Dichloropropene Carbon tetrachloride 1,4-Dichlorobenzene 1,3-Dichloropropane 2-Butanone (MEK) 1,1-Dichloroethene 1,1-Dichloroethane ,2-Dichloroethane sec-Butylbenzene tert-Butylbenzene Dibromomethane Carbon Disulfide 2-Chlorotoluene 4-Chlorotoluene Chloroform Chloromethane n-Butylbenzene Bromomethane Chlorobenzene Bromobenzene Chloroethane Ethylbenzene 2-Hexanone Bromoform Acetone Benzene

The results perioln only to the samples tested in the laboratory. This report shall not be reproduced.

PNK0837 <Page 9 of 153>
except in full, without written permission from Del Mar Anabytcal.

Project Manager

2 FAX (949) 260-3297 FAX (949) 370-1046 5 FAX (858) 505-9689 8 FAX (480) 785-0851 7 FAX (702) 788-3621 (949) 251-1022 F (909) 370-4667 F (858) 505-8596 F (480) 785-0043 F (702) 798-3620 F 174B1Derfan Ave., Suite 100, Irvine, CA 92614 (1014 E. Cooley Dr., Suite A, Colton, CA 92224 (1014 Chesppake Dr., Suite 805, Son Disp., CA 92123 (1014 Chesppake Dr., Suite 805, Son Disp., CA 92123 (1014 Chesppake Dr.) Suite B-120, Protenty, AZ 9504 (1014 Chesp 120) Protenty, AZ 9504 (1014 Chesp 120) Protenty, AZ 9504 (1014 Chesp 120) CE. Sunset Rd. #3, Las Vegas. NV 89120 (1014 Chesp 120)

> Basin & Range Hydrogeologists 6155 E. Indian School Rd., Suite 100A Scousdale, AZ 85251 Attention: Amy Wolkowinsky

Project ID: 24018.004/Air Liquide Report Number: PNK0837

Sampled: 11/30/04 Received: 11/30/04

Del Mar Analytical

6) 261-1022 FAX (949) 260-3297 9) 37G-4657 FAX (949) 370-1046 9) 5G5-8596 FAX (856) 5D5-9689 0) 786-0043 FAX (480) 786-085 1 2) 798-3620 FAX (702) 798-3621 1746 Delina Aue, Suite 100, Invine, CA 9054 (449) 1014 E. Cordet Dir. Suite A. Conton, CA 82234 (499) 9484 Chesapeater Dr., Saite 803, San Dego, CA 82223 (499) 9393 DSAITH STI ST. SIMB E-120, Inviter, AZ 8044 (449) 2250 E. Suitser RCA. 35, Las Vegas, NV 8120 (1702)

Sampled: 11/30/04 Received: 11/30/04 Project ID: 24018.004/Air Liquide Report Number: PNK0837 Basin & Range Hydrogeologists 6155 E. Indian School Rd., Suite 100A Scottsdale, AZ 85251 Attention: Any Wolkowinsky

\sim
5035/8260B
F-1
and the last
C-3
$\overline{}$
7.00
W 1
_
-
~
- 2
r M
_
-
-
Ľ
_
()
~
r 7
ı
_
- 7
_
_
_
_
~4
1
_
_
T .
_
>
VOLATILE ORGANICS BY GC/MS (EPA
>
>
>

Analyzed Qualifiers

Date

MDL Reporting Sample Dilution Date Limit Limit Result Factor Extracted

Batch

Method

Sample ID: PNK0837-02 (Methanol Blank - Soil) - cont.

Reporting Units: ug/kg

VOLATILE ORGANICS BY GC/MS (EPA 5035/8260B)

5

12/07/04

12/07/04 12/07/04 12/07/04 12/07/04 12/07/04

P4L0807 P4L0807 P4L0807 P4L0807 P4L0807 P4L0807 P4L0807 P4L0807 P4L0807

4-Methyl-2-pentanone (MIBK) Methyl-terr-buryl Ether (MTBE)

p-lsopropylroluene Methylene chloride

Isopropylbenzene

lodomethane

12/07/04 12/07/04 12/07/04

11/30/04 11/30/04 11/30/04 11/30/04 11/30/04

12/07/04

12/07/04

11/30/04 11/30/04 11/30/04 11/30/04 11/30/04 11/30/04

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Sample Dilution Date Result Factor Extract	Dilution Date Factor Extracted	Date Analyzed	Date Data Analyzed Qualifiers
Sample ID: PNK0837-03 (CTD-01 - Soil) Reporting Units: ug/kg	- Soil)								
Acetone	EPA 8260B	P4L0807	2400	10000	N	8.37	11/30/04	12/07/04	ΙΛ
Benzene	EPA 8260B	P4L0807	140	500	S	8.37	11/30/04	12/07/04	
Bromobenzene	EPA 8260B	P4L0807	11	2500	g	8.37	11/30/04	12/07/04	
Bromochloromethane	EPA 8260B	P4L0807	62	2500	g	8.37	11/30/04	12/07/04	
Bromodichloromethane	EPA 8260B	P4L0807	92	1000	R	8 37	11/30/04	12/07/04	
Bromoform	EPA 8260B	P4L0807	83	2500	g	8.37	11/30/04	12/07/04	
Bromomethane	EPA 8260B	P4L0807	1100	2500	Ŋ	8.37	11/30/04	12/07/04	
2-Butanone (MEK)	EPA 8260B	P4L0807	2400	10000	S	8.37	11/30/04	12/07/04	V.1
n-Butylbenzene	EPA 8260B	P4L0807	180	2500	g	8.37	11/30/04	12/07/04	
sec-Butylbenzene	EPA \$260B	P4L0807	120	2500	S	8.37	11/30/04	12/07/04	
tert-Butylbenzene	EPA 8260B	P4L0807	110	2500	ND	8.37	11/30/04	12/07/04	
Carbon Disulfide	EPA 8260B	P4L0807	80	2000	N Q	8.37	11/30/04	12/07/04	
Carbon tetrachloride	EPA 8260B	P4L0807	62	2500	g	8.37	11/30/04	12/07/04	
Chlorobenzene	EPA 8260B	P4L0807	11	200	R	8.37	11/30/04	12/07/04	
Chloroethane	EPA 8260B	P4L0807	85	2500	Q.	8.37	11/30/04	12/07/04	
Chloroferm	EPA 8260B	P4L0807	83	1000	g	8.37	11/30/04	12/07/04	
Chloromethane	EPA 8260B	P4L0807	100	2500	S	8.37	11/30/04	12/07/04	L 3
2-Chlorotoluene	EPA 8260B	P4L0807	66	2500	S	8.37	11/30/04	12/07/04	
4-Chlorotoluene	EPA 8260B	P4L0807	98	2500	ΩN	8.37	11/30/04	12/07/04	
Dibromochloromethane	EPA 8260B	P4L0807	82	1000	ΩN	8.37	11/30/04	12/07/04	
1,2-Dibromo-3-chloropropane	EPA 8260B	P4L0807	650	2500	ND	8.37	11/30/04	12/07/04	
1,2-Dibromoethane (EDB)	EPA 8260B	P4L0807	11	1000	£	8.37	11/30/04	12/07/04	
Dibromomethane	EPA 8260B	P4L0807	83	1000	£	8.37	11/30/04	12/07/04	
1,2-Dichlorobenzene	EPA 8260B	P4L0807	35	1000	Q	8.37	11/30/04	12/07/04	
1,3-Dichlorobenzene	EPA 8260B	P4L0807	80	1000	g	8.37	11/30/04	12/07/04	
1,4-Dichlorobenzene	EPA 8260B	P4L0807	46	1000	S	8.37	11/30/04	12/07/04	
Dichlorodifluoromethane	EPA 8260B	P4L0807	110	2500	Ŕ	8.37	11/30/04	12/07/04	ដ
1,1-Dichloroethane	EPA \$260B	P4L0807	69	1000	8	8.37	11/30/04	12/07/04	
1,2-Dichloroethane	EPA 8260B	P4L0807	78	200	£	8.37	11/30/04	12/07/04	
1,1-Dichloroethene	EPA 8260B	P4L0807	75	2500	g	8.37	11/30/04	12/07/04	
cis-1,2-Dichloroethene	EPA 8260B	P4L0807	110	1000	g	8.37	11/30/04	12/07/04	
trans-1,2-Dichloroethene	EPA 8260B	P4L0807	110	1000	g	8.37	11/30/04	12/07/04	
I,2-Dichloropropane	EPA 8260B	P4L0807	73	1000	g	8.37	11/30/04	12/07/04	
1,3-Dichloropropane	EPA 8260B	P4L0807	84	1000	g	8.37	11/30/04	12/07/04	
2,2-Dichloropropane	EPA 8260B	P4L0807	130	1000	Q.	8.37	11/30/04	12/07/04	
1,1-Dichloropropene	EPA 8260B	P4L0807	69	1000	2	8.37	11/30/04	12/07/04	
cis-1,3-Díchloropropene	EPA 8260B	P4L0807	170	1000	Z	8.37	11/30/04	12/07/04	
trans-1,3-Dichloropropene	EPA 8260B	P4L0807	80	1000	S	8.37	11/30/04	12/07/04	
Ethylbenzene	EPA 8260B	P4L0807	80	1000	ND	8.37	11/30/04	12/07/04	
Hexachlorobutadiene	EPA 8260B	P4L0807	770	2500	R	8.37	11/30/04	12/07/04	•
2-Hexanone	EPA 8260B	P4L0807	1300	10000	Š	8.37	11/30/04	12/07/04	۷]
Del Mar Analytical - Phoenix									

盐

12/07/04 12/07/04

11/30/04 11/30/04 11/30/04 11/30/04

P4L0807

EPA \$260B EPA \$260B

Styrene
I. I. I. 2. Tetrachloroethane
I. I. 2. 2. Tetrachloroethane

n-Propylbenzene

Naphthalene

Ferrachloroethene

P4L0807 P4L0807 P4L0807 P4L0807 P4L0807

1.2.3-Trichlorobenzene

1,1,1-Trichloroethane 1,1,2-Trichloroethane P4L0807

Prichlorofluoromethane 1,2,3-Prichloropropane 1,2,4-Primethylbenzene 1,3,5-Primethylbenzene

Trichloroethene

P4L0807

12/07/04

12/07/04 12/07/04 12/07/04 12/07/04

11/30/04 11/30/04 12/07/04

11/30/04 11/30/04

P4L0807 P4L0807 P4L0807 P4L0807 P4L0807

EPA 8260B EPA 8260B EPA 8260B

Vinyl chloride Xylenes, Total Vinyl acetate

Survogate: Dibromofluoromethane (70-120%) Survogate: Tolnene-d8 (75-120%) Survogate: 4-Bromofluorobenzene (75-120%)

EPA 8260B EPA 8260B EPA 8260B

11/30/04 11/30/04 11/30/04

Linda Eshelman
Project Manager

The results pertain only to the sample tested in the laboratory. This report shall not be reproduced, PNKH837 <Page 11 of 153> except in full, withou written permission from Del Mar Analytical.

Del Mar Analytical - Phoenix Linda Eshelman Project Manager

The results periain only to the samples tested in the laboratory. This region shall not be repreduced.

except in full, without written permission from Del Mar Anabylical.

17461 Deltan Ave., Suite 100. Invine: CA 92814 (e44), 351-1022 EAX (949).
9484 Cheasapeake Dr., Suite 103, San Despo, A 27224 (e193), 374-4667 EAX (e193)
9484 Cheasapeake Dr., Suite 613, San Despo, A 27272 (e184) 605-6866 EAX (e196)
9493 Cheasapeake Dr., Suite 613, San Despo, A 27274 (e194)
9495 A. Paris A.

Sampled: 11/30/04 Received: 11/30/04

Project ID: 24018.004/Air Liquide

Report Number: PNK0837

Basin & Range Hydrogeologists 6155 E. Indian School Rd., Suite 100A Scottsdale, AZ 85251 Attention: Arry Wolkowinsky

VOLATILE ORGANICS BY GC/MS (EPA 5035/8260B)

Analyte	Method	Batch	MDL Linit	Reporting Limit	Sample Result	Sample Dilution Date Result Factor Extract	Dilution Date Factor Extracted	Date Analyzed	Date Data Analyzed Qualifiers
Sample 1D: PNK0837-03 (CTD-01 - Soil) - cont.	- Soil) - cont.								
lodomethane	EPA 8260B	P4L0807	250	2500	Q	8.37	11/30/04	12/07/04	
Sopropylbenzene	EPA 8260B	P4L0807	86	1000	ND	8.37	11/30/04	12/07/04	
p-fsopropyltoluene	EPA 8260B	P4L0807	130	1000	Ö	8.37	11/30/04	12/07/04	
Methylene chloride	EPA 8260B	P4L0807	009	5000	089	8.37	11/30/04	12/07/04	E4
4-Methyl-2-pentanone (MIBK)	EPA 8260B	P4L0807	1500	10000	Ź	8.37	11/30/04	12/07/04	>
Methyl-tert-butyl Ether (MTBE)	EPA 8260B	P4L0807	130	2500	Q	8.37	11/30/04	12/07/04	
Naphthalene	EPA 8260B	P4L0807	670	2500	R	8.37	11/30/04	12/07/04	
n-Propylbenzene	EPA 8260B	P4L0807	110	1000	Ñ	8.37	11/30/04	12/07/04	
Styrene	EPA 8260B	P4L0807	06	1000	S	8.37	11/30/04	12/07/04	
1,1,1,2.Tetrachloroethane	EPA 8260B	P4L0807	85	2500	QN	8.37	11/30/04	12/07/04	
f, 1,2,2-Tetrachloroethane	EPA:8260B	P4L0807	110	1000	Q	8.37	11/30/04	12/07/04	
Tetrachloroethene	EPA 8260B	P4L0807	011	1000	N	8.37	11/30/04	12/07/04	
Toluene	EPA 8260B	P4L0807	68	1000	Ω̈́	8.37	11/30/04	12/07/04	
1.2,3-Trichlorobenzene	EPA 8260B	P4L0807	909	2500	ΩX	8.37	11/30/04	12/07/04	
1.2,4-Trichlorobenzene	EPA 8260B	P4L0807	300	2500	N.	8.37	11/30/04	12/07/04	
1,1,1-Trichloroethane	EPA 8260B	P4L0807	62	1000	7500	8.37	11/30/04	12/07/04	
1,1,2-Trichloroethane	EPA 8260B	P4L0807	96	1000	ΩŽ	8.37	11/30/04	12/07/04	
Trichforoethene	EPA 8260B	P4L0807	110	1000	ď	8.37	11/30/04	12/07/04	
Trichforoffuoromethane	EPA 8260B	P4L0807	7.8	2500	S	8.37	11/30/04	12/07/04	
1,2,3-Trichtoropropane	EPA 8260B	P4L0807	100	5000	S	8.37	11/30/04	12/07/04	
1,2,4-Trimethylbenzene	EPA 8260B	P4L0807	26	1000	Š	8.37	11/30/04	12/07/04	
1,3,5-Trimethylbenzene	EPA 8260B	P4L0807	100	1000	2	8.37	11/30/04	12/07/04	
Vinyl acetate	EPA 8260B	P4L0807	100	12000	Ω	8.37	11/30/04	12/07/04	
Vinyl chloride	EPA 8260B	P4L0807	47	2500	2	8.37	11/30/04	12/07/04	
Xylenes, Total	EPA 8260B	P4L0807	180	1500	Q	8.37	11/30/04	12/07/04	
Surrogate: Dibromofluoromethane (70-120%)	70-120%)				97.8%				
Surrogute: Toluene-d8 (75-120%)					% 66				
Survogate: 4-Bromoftuorobenzene (75-120%)	75-120%)				% 101				

Del Mar Analytical - Phoenix Linda Eshelman Project Manager

260-3297 370-1046 505-9689 785-0851 798-3621

) 260-3297) 370-1046) 505-9689) 765-0851) 798-3621 FAX (949) 2 FAX (949) 3 FAX (858) 5 FAX (480) 7 FAX (702) 7 (949) 261-1022 F (909) 370-4667 F (858) 505-8596 F (480) 785-0043 F (702) 798-3620 F 17491Derlan Ave., Suite 100, Irvine, CA 92814 († 9484 Cheesprake P.), Suite A, Cotton, CA 92324 (§ 9484 Cheesprake P.), Suite 80, San Diego, CA 92123 (§ 9830 South Sits St., Suite 81-120, Phoenix, AZ 85044 (§ 9250 E. Suisect Rd. #3, Las Vegas, NV 98120 (

Del Mar Analytical

Scottsdale, AZ 82251 Report Number: PNK0837 Received: 11/50/04 Autention: Amy Wolkowinsky	Basin & Range Hydrogeologists 6155 E. Indian School Rd., Suite 100A	Project ID: 24018.004/Air Liquide	Sampled: 11/30/04	11/30/04
n: Amy Wolkowinsky	le, AZ 85251	Report Number: PNK0837	Received:	11/30/04
	n: Amy Wolkowinsky			

_
8
2
š
(1)
묾
∢
Ъ
Θ
S
Σ
0
٣
5
8
Ø
2
7
\overline{A}
Ö
-
0
LE
I
Ξ
LA
10
-5
-

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Dilution Date Result Factor Extract	Dilution Factor	Dilution Date Factor Extracted	Date Analyzed	Data Qualifiers
Sample ID; PNK0837-04 (CTD-02 - Soil) Reporting Units: ug/kg	- Soil)								
Acetone	EPA 8260B	P4L0807	240	1000	Ω	1.02	11/30/04	12/07/04	>
Benzene	EPA 8260B	P4L0807	7	50	Q N	1.02	11/30/04	12/07/04	
Bromobenzene	EPA 8260B	P4L0807	77	250	S	1.02	11/30/04	12/07/04	
Bromochloromethane	EPA 8260B	P4L0807	6.2	250	S	1.02	11/30/04	12/07/04	
Bromodíchloromethane	EPA 8260B	P4L,0807	9.2	100	Ω	1.02	11/30/04	12/07/04	
Bromoform	EPA 8260B	P4L0807	80 E)	250	N	1.02	11/30/04	12/07/04	
Bromomethane	EPA 8260B	P4L0807	110	250	R	1.02	11/30/04	12/07/04	
2-Butanone (MEK)	EPA 8260B	P4L0807	240	1000	S.	.02	11/30/04	12/07/04	>
n-Butylbenzene	EPA 8260B	P4L0807	18	250	Ω	1.02	11/30/04	12/07/04	
sec-Butylbenzene	EPA 8260B	P4L0807	12	250	ΩŽ	1.02	11/30/04	12/07/04	
tert-Butylbenzene	EPA 8260B	P4L0807	Ξ	250	2	1.02	11/30/04	12/07/04	
Carbon Disulfide	EPA 8260B	P4L0807	0.8	200	S	1.02	11/30/04	12/07/04	
Carbon tetrachloride	EPA 8260B	P41,0807	6.2	250	Q	1.02	11/30/04	12/07/04	
Chlorobenzene	EPA 8260B	P4L0807	7.7	50	2	1.02	11/30/04	12/07/04	
Chloroethane	EPA 8260B	P4L0807	8.5	250	2	1.02	11/30/04	12/07/04	
Chloroform	EPA 8260B	P4L0807	œ 30	100	g	1.02	11/30/04	12/07/04	
Chloromethane	EPA 8260B	P4L0807	10	250	Ñ	1.02	11/30/04	12/07/04	L3, N15
2-Chlorotoluene	EPA 8260B	P4L0807	6.6	250	Ω	1.02	11/30/04	12/07/04	
4-Chlorotoluene	EPA 8260B	P4L0807	8.6	250	g	1.02	11/30/04	12/07/04	
Dibromochloromethane	EPA 8260B	P4L0807	8.2	100	2	1.02	11/30/04	12/07/04	
1,2-Dibromo-3-chloropropane	EPA 8260B	P4L0807	65	250	S	.02	11/30/04	12/07/04	
1,2-Dibromoethane (EDB)	EPA 8260B	P4L0807	-	100	ΩN	1.02	11/30/04	12/07/04	
Dibromomethane	EPA 8260B	P4L0807	8.3	100	ΩÑ	.02	11/30/04	12/07/04	
1,2-Dichlorobenzene	EPA 8260B	P4L0807	9.3	100	Ω	1.02	11/30/04	12/07/04	
1,3-Dichlorobenzene	EPA 8260B	P4L0807	8.0	100	Q	1.02	11/30/04	12/07/04	
1,4-Dichlorobenzene	EPA 8260B	P4L0807	9.4	106	Ω̈́	1.02	11/30/04	12/07/04	
Dichlorodifluoromethane	EPA 8260B	P4L0807	_	250	ΩN	1.02	11/30/04	12/07/04	L3, N1b
1,1-Dichloroethane	EPA 8260B	P4L0807	6.9	100	110	1.02	11/30/04	12/07/04	
1,2-Dichloroethane	EPA 8260B	P4L0807	7.8	20	S	1.02	11/30/04	12/07/04	
1,1-Dichloroethene	EPA 8260B	P4L0807	7.5	250	49	1.02	11/30/04	12/07/04	£4
cís-1,2-Dichloroethene	EPA 8260B	P4L0807		100	ΩX	1.02	11/30/04	12/07/04	
trans-1,2-Dichloroethene	EPA 8260B	P4L0807	=	100	Q	1.02	11/30/04	12/07/04	
1,2-Dichloropropane	EPA 8260B	P4L0807	7.3	100	2	1.02	11/30/04	12/07/04	
1,3-Dichloropropane	EPA 8260B	P4L0807	8.4	100	Ω	1.02	11/30/04	12/07/04	
2,2-Dichloropropane	EPA 8260B	P4L0807	13	100	Ω̈́	1.02	11/30/04	12/07/04	
1.1-Dichloropropene	EPA 8260B	P4L0807	6.9	100	Q N	1.02	11/30/04	12/07/04	
cis-1,3-Dichloropropene	EPA 8260B	P4L0807	17	100	S	1.02	11/30/04	12/07/04	
trans-1,3-Dichloropropene	EPA 8260B	P4L0807	8.0	100	9	1.02	11/30/04	12/07/04	
Ethylbenzene	EPA 8260B	P41,0807	8.0	100	S	1.02	11/30/04	12/07/04	
Hexachlorobutadiene	EPA 8260B	P4L0807	77	250	Š	1.02	11/30/04	12/07/04	
2-Hexanone	EPA 8260B	P4L0807	130	1000	Ω	1.02	11/30/04	12/07/04	 >
Del Mar Anglytical - Phoenix									

Del Mar Analytical - Phoenix Linda Eshelman Project Manager

The results partiain only to the samples tested in the laborations. This report shall not be reproduced except in full, without written permission from Del Mar Anabricol.

1746 Dation Ave., Suite 100, Inner CA 92514, (949) 261-1022 FX (1649) 300-9229 101-1014 E, Cholle Dr., Suite 4, Clothor, CA 82224, (1909) 370-44667 FX (1949) 370-3409 9404 Chreatpacket On., Suite 8105, San Dago, CA 82725, (1809) 826-3359 FX (1809) 310-3409 9800 South 1918 62, Suite 8-102, Date 104, Date 1

Basin & Range Hydrogeologists 6155 E. Indian School Rd., Suite 100A Scottsdale, AZ 85251 Arrention: Amy Wolkowinsky

Project ID: 24018.004/Air Liquide Report Number: PNK0837

11/30/04 Sampled: Received:

Date Data Analyzed Qualifiers

Factor Extracted

Reporting Sample Dilution Date Limit Result Factor Extracte

VOLATILE ORGANICS BY GC/MS (EPA 5035/8260B)

MDL Limit

Batch

Method

₹ ₹

12/07/04 12/07/04 12/07/04

P4L0807 P4L0807 P4L0807 P4L0807

4-Methyl-2-pentanone (MIBK) Methyl-terr-buryl Ether (MTBE)

Methylene chloride p-fsopropyltoluene Isopropylbenzene

EPA \$260B EPA \$260B

Styrene
1, 1, 1, 2-Tetrachloroethane
1, 1, 2, 2-Tetrachloroethane

n-Propylbenzene

Naphthalene

Petrachloroethene

Coluene

1,2,3. Trichlorobenzene 1.2,4-Trichlorobenzene 1,1,1-Trichloroethane

P4L0807

P4L0807

P4L0807

Sample ID: PNK0837-04 (CTD-02 - Soil) - cont. Reporting Units: ug/kg

todomethane

11/30/04 11/30/04 11/30/04

12/07/04 12/07/04 12/07/04 12/07/04 12/07/04

11/30/04 11/30/04

11/30/04 11/30/04

12/07/04 12/07/04

11/30/04 11/30/04 11/30/04 11/30/04

P4L0807 P4L0807 P4L0807 P4L0807 P4L0807 P4L0807

12/07/04

12/07/04 12/07/04

11/30/04 11/30/04 11/30/04 11/30/04 11/30/04 11/30/04 11/30/04

P4L0807 P4L0807 P4L0807 P4L0807

EPA 8260B EPA 8260B EPA 8260B

12/07/04

12/07/04

12/07/04

11/30/04

12/07/04 12/07/04 12/07/04

P4L0807 P4L0807 P4L0807 P4L0807 P4L0807

EPA 8260B EPA 8260B EPA 8260B EPA 8260B EPA 8260B

1.2.3. Prichloropropane 1.2.4. Trimethylbenzene 1.3.5. Primethylbenzene Vinyl acetate Prichlorofluoromethane

Vinyl chloride Xylenes, Totai Surrogate: Dibromoftuoromethane (70-120%) Surrogate: Tolvene-d8 (75-120%) Surrogate: 4-Bromofluorobenzene (75-120%)

P4L0807

P4L0807

EPA 8260B EPA 8260B EPA 8260B

Frichloroethene

12/07/04

12/07/04

Sampled: 11/30/04 Received: 11/30/04

VOLATILE ORGANICS BY GC/MS (EPA 5035/8260B)

Del Mar Analytical

Project ID: 24018.004/Air Liquide	Report Number: PNK0837		SECURIO PER CONTRACTOR DE PROPERTIMINA DE PORTE DE CONTRACTOR DE CONTRAC
Basin & Range Hydrogeologists Project ID: 24018.004/Air Liquide 6155 E. Indian School Rd., Suite 100A	Scottsdale, AZ 85251 Report Nu	Attention: Amy Wolkowinsky	THE PROPERTY OF THE PROPERTY O

•			MDI	Renorting	Samule	Dilution Date	Date	Date	Data
Analyte	Method	Batch	Limit	Limit	Result		FactorExtracted	Analyzed	Analyzed Qualifiers
Sample ID: PNK0837-05 (WGT-01 - Soil) Reporting Units: ug/kg	- Soil)								
Acetone	EPA 8260B	P4L0807	240	1000	Q	0.952	11/30/04	12/07/04	٧.
Benzene	EPA 8260B	P4L0807	14	50	ND	0.952	11/30/04	12/07/04	
Bromobenzene	EPA 8260B	P4L0807	7.7	250	2	0.952	11/30/04	12/07/04	
Bromochloromethane	EPA 8260B	P4L0807	6.2	250	ND	0.952	11/30/04	12/07/04	
Bromodichloromethane	EPA 8260B	P4L0807	9.2	100	Q.	0.952	11/30/04	12/07/04	
Вготобот	EPA 8260B	P4L0807	8.3	250	N O	0.952	11/30/04	12/07/04	
Bromomethane	EPA 8260B	P4L0807	110	250	ND	0.952	11/30/04	12/07/04	
2-Butanone (MEK)	EPA 8260B	P4L0807	240	1000	N	0.952	11/30/04	12/07/04	١٨
n-Butylbenzene	EPA 8260B	P4L0807	90	250	ND	0.952	11/30/04	12/07/04	
sec-Butylbenzene	EPA 8260B	P4L0807	12	250	Q	0.952	11/30/04	12/07/04	
tert-Butylbenzene	EPA 8260B	P4L0807	Ξ	250	S	0.952	11/30/04	12/07/04	
Carbon Disulfide	EPA 8260B	P4L0807	8.0	200	ND	0.952	11/30/04	12/07/04	
Carbon tetrachloride	EPA 8260B	P4L0807	6.2	250	Q.	0.952	11/30/04	12/07/04	
Chlorobenzene	EPA 8260B	P4L0807	7.7	50	ΩN	0.952	11/30/04	12/07/04	
Chloroethane	EPA 8260B	P4L0807	8.5	250	ND	0.952	11/30/04	12/07/04	
Chloroform	EPA 8260B	P4L0807	6 .3	100	R	0.952	11/30/04	12/07/04	
Chloromethane	EPA 8260B	P4L0807	10	250	B	0.952	11/30/04	12/07/04	L3
2-Chlorotoluene	EPA 8260B	P4L0807	6.6	250	Ð	0.952	11/30/04	12/07/04	
4-Chioratoluene	EPA 8260B	P4L0807	8.6	250	ND	0.952	11/30/04	12/07/04	
Dibromochloromethane	EPA 8260B	P4L0807	8.2	100	Ð	0.952	11/30/04	12/07/04	
1,2-Dibromo-3-chloropropane	EPA 8260B	P4L0807	92	250	g	0.952	11/30/04	12/07/04	
1,2-Dibromoethane (EDB)	EPA 8260B	P4L0807	7.7	100	QZ.	0.952	11/30/04	12/07/04	
Dibromomethane	EPA 8260B	P4L0807	8.3	100	S	0.952	11/30/04	12/07/04	
1,2-Dichlorobenzene	EPA 8260B	P4L0807	9.2	100	Ω̈́	0.952	11/30/04	12/07/04	
1,3-Dichlorobenzene	EPA 8260B	P4L0807	8.0	100	ΩN	0.952	11/30/04	12/07/04	
1,4-Dichlorobenzene	EPA 8260B	P4L0807	4,6	100	ΝΩ	0.952	11/30/04	12/07/04	
Dichlorodifluoromethane	EPA 8260B	P4L0807	Ξ	250	g	0.952	11/30/04	12/07/04	Ľ
1,1-Dichloroethane	EPA 8260B	P4L0807	6.9	100	£	0.952	11/30/04	12/07/04	
1,2-Dichloroethane	EPA 8260B	P4L0807	7.8	20	£	0.952	11/30/04	12/07/04	
I, I - Dichloroethene	EPA 8260B	P4L0807	7.5	250	g	0.952	11/30/04	12/07/04	
cis-1,2-Dichloroethene	EPA 8260B	P4L0807	11	100	B	0.952	11/30/04	12/07/04	
trans-1,2-Dichloroethene	EPA 8260B	P4L0807	Ξ	100	2	0.952	11/30/04	12/07/04	
1,2-Dichloropropane	EPA 8260B	P4L0807	7.3	100	g	0.952	11/30/04	12/07/04	
1,3-Dichloropropane	EPA 8260B	P4L0807	4.0	100	2	0.952	11/30/04	12/07/04	
2,2-Dichloropropane	EPA 8260B	P4L0807	13	100	g	0.952	11/30/04	12/07/04	
1,1-Dichloropropene	EPA 8260B	P4L0807	6.9	100	Z	0.952	11/30/04	12/07/04	
cis-1,3-Dichloropropene	EPA 8260B	P4L0807	17	100	Ω	0.952	11/30/04	12/07/04	
trans-1,3-Dichloropropene	EPA 8260B	P4L0807	8.0	100	g	0.952	11/30/04	12/07/04	
Ethylbenzene	EPA 8260B	P4L0807	8.0	100	g	0.952	11/30/04	12/07/04	
Hexachlorobutadiene	EPA 8260B	P4L0807	11	250	2 !	0.952	11/30/04	12/07/04	į
Z-Hexanone	EPA 8260B	P4L0807	130	1000	R	0.952	11/30/04	12/07/04	>
Bel Mar Analytical - Phoenix									

Del Mar Analytical - Phoenix Linda Eshelman Project Manager

The results pertoin only to the samples tested in the laboratory. This report shall not be reproduced. PNK0837 <Page 15 of 1.53> except in full, without written permission from Del Mar Analytical.

The results pertain only to the samples tested in the laboratory. This regart shall not be reproduced. PNK0837 <Page 14 of 153> execpt in full, without written permission from Del Mar Analysical. Del Mar Analytical - Phoenix Linda Eshelman Project Manager

1745 Derian Ave. Suite 100 heire CA, 9824 (4449) 55-1025 FAX (949) 982-2029 1074 (449) 55-1025 FAX (949) 982-2029 1074 (449) 55-1024 (449) 57-

11/30/04

Sampled: Received:

Project ID: 24018.004/Air Liquide

Report Number: PNK0837

Basin & Range Hydrogeologists 6155 E. Indian School Rd., Suite 100A Sconsdate, AZ 85251 Attention: Arry Wolkowinsky

VOLATILE ORGANICS BY GC/MS (EPA 5035/8260B)

Analyte	Method	Batch	MDL	Reporting Limit	Sample Result	Sample Dilution Date Result Factor Extract	Dilution Date Factor Extracted	Date Analyzed	Date Data Analyzed Qualifiers
Sample ID: PNK0837-05 (WGT-01 - Soit) - cont Reporting Units: ug/kg	- Soil) - cont.								
lodomethane	EPA 8260B	P4L0807	25	250	N	0.952	11/30/04	12/07/04	
Isopropylbenzene	EPA 8260B	P4L0807	8-6	100	S	0.952	11/30/04	12/07/04	
p-isopropyltoluene	EPA 8260B	P41,0807	<u>; ^</u>	100	S	0.952	11/30/04	12/07/04	
Methylene chloride	EPA 8260B	P4L0807	09	500	120	0.952	11/30/04	12/07/04	亞
4-Methy4-2-pentanone (MIBK)	EPA 8260B	P41.0807	150	1000	2	0.952	11/30/04	12/07/04	<u>ر</u> ا
Methyl-tert-butyl Ether (MTBE)	EPA 8260B	P4L0807	13	250	Z	0.952	11/30/04	12/07/04	
Naphthalene	EPA 8260B	P4L0807	67	250	2	0.952	11/30/04	12/07/04	
n-Propylbenzene	EPA 8260B	P4L0807	1	100	S	0.952	11/30/04	12/07/04	
Styrene	EPA \$260B	P4L0807	0.6	100	ΩN	0.952	11/30/04	12/07/04	
1,1,1,2-Tetrachloroethane	EPA 8260B	P4L0807	8.5	250	2	0.952	11/30/04	12/07/04	
1,1,2,2-Tetrachloroethane	EPA 8260B	P4L0807	11	100	g	0.952	11/30/04	12/07/04	
Tetrachloroethene	EPA 8260B	P4L0807	Ξ	100	R	0.952	11/30/04	12/07/04	
Toluene	EPA 8260B	P4L0807	8.9	100	S	0.952	11/30/04	12/07/04	
1,2,3-Trichiorobenzene	EPA 8260B	P4L0807	09	250	ĝ	0.952	11/30/04	12/07/04	
1,2,4~Trichforobenzene	EPA 8260B	P4L0807	30	250	Î	0.952	11/30/04	12/07/04	
1,1,1-Trichloroethane	EPA 8260B	P4L0807	6.2	100	20	0.952	11/30/04	12/07/04	E4
1.1,2-Trichloroethane	EPA 8260B	P4L0807	9.6	100	Ê	0.952	11/30/04	12/07/04	
Trichloroethene	EPA 8260B	P4L0807	11	100	Q	0.952	11/30/04	12/07/04	
Trichforofluoromethane	EPA 8260B	P4L0807	7.8	250	Š	0.952	11/30/04	12/07/04	
1,2,3-Trichloropropane	EPA 8260B	P4L0807	01	500	S	0.952	11/30/04	12/07/04	
1.2.4-Trimethylbenzene	EPA 8260B	P4L0807	9.7	100	2	0.952	11/30/04	12/07/04	
1,3.5-Trimethylbenzene	EPA 8260B	P4L0807	10	100	2	0.952	11/30/04	12/07/04	
Vinyl acetate	EPA 8260B	P4L0807	10	1200	2	0.952	11/30/04	12/07/04	
Vinyl chloride	EPA 8260B	P4L0807	4.7	250	S	0.952	11/30/04	12/07/04	
Xylenes, Total	EPA 8260B	P4L0807	18	150	QN.	0.952	11/30/04	12/07/04	
Surrogate: Dibromofluoromethane (70-120%)	70-120%)				95 %				
Surrogate: Toluene-d8 (75-120%)					101%				
Surrogare: 4-Bromofluorobensene (75-130%)	5-130%)				% 26				

Del Mar Analytical - Phoenix Linda Eshelman Project Manager

The results pertain only to the samples tested in the laboration; This report shall not be reproduced.

PNK0837 <Page 16 of 153>
except in full, without written permission from Del Mar Analytical.

) 260-3297) 370-1046) 505-9689) 785-0851) 798-3521 (949) (949) (858) (480) (702) **\$**\$\$\$\$ 1746 (Dertan Ava., Suite 110, Ilvine, CA. 8244 (1949) 251-1027 | 1946 (1949) 251-1027 | 1946 (1949) 251-1027 | 1946 (1949) 251-1027 | 1946 (1949) 251-1027 | 1946 (1949) 251-1027 | 1946 (1949) 251-1027 | 1946 (1949) 2520 | 1946 (1949) 2520 | 1946 (1949) 2520 | 1946 (1949) 2520 | 1946 (1949) 2520 | 1946 (1949) 2520 | 1946 (1949) 2520 | 1946 (1949) 2520 | 1946 (1949) 2520 | 1946 (1949) 2520 | 1946 (1949) 2520 | 1946 (1949)

Del Mar Analytical

Basin & Range Hydrogeologists		Project ID: 24018.00	24018.0	Project ID: 24018.004/Air Liquide	ide				
50153 E. Indian School Kd., Sune 100A Scottsdale, AZ 85251 Attention: Amy Wolkowinsky	oua Repoi	Report Number: PNK0837	PNK08	37			Sampled: Received:	Sampled: 11/30/04 Received: 11/30/04	
VOLATILE O	VOLATILE ORGANICS BY	RGANIC	SBY	GC/MS	(EPA 5035/8260B)	035/82	60B)		
Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Sample Dilution Date Result FactorExtract	Dilution Date Factor Extracted	Date Analyzed	Date Data Analyzed Qualifiers
Sample ID: PNK0837-06 (SGT-01 - Soil)	- Soil)								
Reporting Units: ug/kg	G0708 V 03	TOOU LEG	240	1000	Ä	5	11/30/04	12/07/04	٧.
Acetone	ELA 8200B	P41 0807	7 7	90	5 5	5 5	11/30/04	12/07/04	*
Bromobenzene	EPA 8260B	P4L0807	7	250	2	0	11/30/04	12/07/04	
Bromochloromethane	EPA 8260B	P4L0807	6.2	250	Q.	1.01	11/30/04	12/07/04	
Bromodichloromethane	EPA 8260B	P41,0807	9.2	100	Q	1.01	11/30/04	12/07/04	
Вготобет	EPA 8260B	P4L0807	8.3	250	Ω̈́	1.01	11/30/04	12/07/04	
Bromomethane	EPA 8260B	P4L0807	011	250	2 5	0.5	11/30/04	12/07/04	į
Z-Butanone (MEK.)	EPA 8260B	P4L0807	740	9001	2 2	5 5	11/50/04	12/0//04	-
n-Butyloenzene	EFA \$200B	P4L0807	e £	027	2 2	5 5	11/30/04	12/07/04	
sec_Dutylochzene tert.Butylhenzene	EPA 8260B	P41.0807	2 =	250	Ş	5 5	11/30/04	12/07/04	
Carbon Disulfide	EPA 8260B	P4L0807	. 0.8	200	Ź	10.1	11/30/04	12/07/04	
Carbon tetrachloride	EPA 8260B	P4L0807	6.2	250	Ž	1.01	11/30/04	12/07/04	
Chlorobenzene	EPA 8260B	P4L0807	7.7	50	Ŋ	1.0.1	11/30/04	12/07/04	
Chloroethane	EPA 8260B	P4L0807	8.5	250	S	1.0]	11/30/04	12/07/04	
Chloroform	EPA 8260B	P4L0807	8.3	100	Ω	1.01	11/30/04	12/07/04	
Chloromethane	EPA 8260B	P4L0807	01	250	2	[0]	11/30/04	12/07/04	E
2-Chlorotoluene	EPA 8260B	P4L0807	6.0	720	2 (0.	11/50/04	12/07/04	
4-Chlorotoluene	EPA 8260B	P4L0807	9.0	750	2 2	5 5	11/30/04	12/07/04	
2.Dibromo.3.chloromonana	EFA 6200B	P4L0807	3. %	250	2 5	5	11/30/04	12/07/04	
1,2-Dibromoethane (EDB)	EPA 8260B	P4L0807	7.7	100	9	1.01	11/30/04	12/07/04	
Dibromomethane	EPA 8260B	P4L0807	8.3	100	ΩN	1.0.1	11/30/04	12/07/04	
1,2-Dichlorobenzene	EPA 8260B	P4L0807	9.2	100	QZ	1.01	11/30/04	12/07/04	
1,3-Dichlorobenzene	EPA 8260B	P4L0807	8.0	100	2 !	1.01	11/30/04	12/07/04	
J,4-Dichlorobenzene Dichlorodiffuoromethene	EPA 8260B	P4L0807	- -	90.05	2 5	5 5	11/30/04	12/07/04	~
1.1-Dichloroethane	EPA \$260B	P4L0807	6.9	100	200	10.1	11/30/04	12/07/04	3
1,2-Dichloroethane	EPA 8260B	P4L0807	7.8	20	Š	1.01	11/30/04	12/07/04	
1,1-Dichloroethene	EPA 8260B	P4L0807	7.5	250	230	1.01	11/30/04	12/07/04	E4
cis-1,2-Dichloroethene	EPA 8260B	P4L0807		100	Ŕ	1.01	11/30/04	12/07/04	
trans-1,2-Dichloroethene	EPA \$260B	P4L0807	Ξ	100	P	10.1	11/30/04	12/07/04	
1,2-Dichloropropane	EPA 8260B	P4L0807	£	9 5	2 !	1.01	11/30/04	12/07/04	
1,3-Dichloropropane	EPA 8260B	P4L0807	4.00	100	2 !	i i	11/30/04	12/07/04	
2,2-Dichloropropane	EPA 8260B	P4L0807	Ξ (100	2 5	[6]	11/30/04	12/07/04	
t, t-Dichloropropene	EFA 8260B	P41.0807	7,0	9 5	2 5	9 5	11/20/04	10/0/2/04	
trans-1 3-Dichloromonene	EPA 8260B	P41.0807	- 08	901	2 2	0	11/30/04	12/07/04	
Ethylbenzene	EPA 8260B	P4L0807	8.0	001	2	10.	11/30/04	12/07/04	
Hexachlorobutadiene	EPA 8260B	P4L0807	77	250	S	1.01	11/30/04	12/07/04	
2-Hexanone	EPA 8260B	P4L0807	130	1000	N N	1.01	11/30/04	12/07/04	۷]

Del Mar Analytical - Phoenix Linda Eshelman 2-Hexanone

Project Manager

The results perion only to the samples tested in the Laboratory. This report shall not be reproduced. PNK 0837 <Page 17 of 153> except in full, without written permission from Del Mar Andytical.

370-1046 370-1046 505-9689 785-0851 798-3621 9) 281-1022 FAX (949) 2 9) 370-4667 FAX (949) 3 8) 505-8596 FAX (858) 5 0) 795-0043 FAX (480) 7 2) 798-3620 FAX (702) 7

17461 Detain Ave., Suite 100, Invine, CA 92514 (1948); 1044 E. Cooley V., Suite A. Colley, CA. Serger (1908) 9484 Cheesapende Dr., Suite 805, San Diego, CA 9272 (1988) 9830 South 1818 St., Suite 1710, Photology, A. C. Serger (1909) 2220 E. Suitesel Par, Rai, Las Vegas, NV 89720 (1791)

Report Number: Basin & Range Hydrogeologists 6155 E. Indian School Rd., Suite 100A Scottsdale, AZ 85251 Attention: Amy Wolkowinsky

Project ID: 24018.004/Air Liquide

PNK0837

Sampled: 11/30/04 Received: 11/30/04

Analyzed Qualifiers Data

Factor Extracted

Result

Limit

Batch

Method

Sample 1D: PNK0837-06 (SGT-01 - Soil) - cont.

Reporting Units: ug/kg

lodomethane

Reporting Sample Dilution Date

VOLATILE ORGANICS BY GC/MS (EPA 5035/8260B)

MDL Limit

Date

2 2

12/07/04 12/07/04 12/07/04

11/30/04 11/30/04 11/30/04 11/30/04

P4L0807 P4L0807 P4L0807 P4L0807

EPA 8260B EPA 8260B

4-Methyl-2-pentanone (MIBK) Methyl-tert-butyl Ether (MTBE)

n-Propylbenzene

Styrene

Naphthalene

Methylene chloride p-Isopropyltoluene Isopropylbenzene

P41,0807

P4L0807

P4L0807

12/07/04

11/30/04 11/30/04

12/07/04 12/07/04 12/07/04 12/07/04

11/30/04 11/30/04 11/30/04

PNK0837

Sampled: 11/30/04 Received: 11/30/04

14 (949) 261-1022 FAX (949) 260-3297 24 (969) 370-4667 FAX (949) 370-1046 5 (868) 505-8566 FAX (858) 505-6689 14 (460) 785-0043 FAX (480) 785-0851 20 (702) 798-3820 FAX (702) 798-3621 17481Derian Ave., Suite 100, Invine, CA 92614 (1014 E. Cooley Dr., Suite A. Cotton, CA 92724 (1014 E. Cooley Dr., Suite A. Cotton, CA 92128 (1982) South 5131 St., Suite 801, 200 Proenty, AZ 8504 (1982) South 5131 St., Suite B-170 Proenty, AZ 8504 (1982) E. Surset Rd. #3, Las Vegas, NV 89120 (1982)

Report Number: Basin & Range Hydrogeologists 6155 E. Indian School Rd., Suite 100A Scottsdale, AZ 85251 Attention: Amy Wolkowinsky

Project ID: 24018.004/Air Liquide

9830 Sol	CONTRACTOR AND PROPERTY OF THE
/tical	personal supplies and supplies
Anal)	CONTRACTOR CONTRACTOR
Del Mar Analytica	
<u>e</u>	SANA VARION NOTICE SANA SANA SANA SANA SANA SANA SANA SAN
_	3

2520 E. Su	CONTROL OF SECURITION OF SECUR
ב ב	
Jei Mai Allaiyiical	E2013489254000000000000000000000000000000000000
<u>8</u> ≥ 0	SCALABORACE SOLVES NOT SERVICE SAN

0A	VOLATILE ORGANICS BY GC/MS (EPA 5035/8260B)	RGAINIC	SBY	GC/MS	(EPA 5	035/82	60B)		
Analyte	Method	Batch	MDL	Reporting Limit	Sample Dilution Date Result Factor Extract	Dilution Factor I	Sample Dilution Date Result FactorExtracted	Date Analyzed	Date Data Analyzed Qualifiers
Sample ID: PNK0837-07 (WGT-02 - Soil) Reporting Units: ug/kg	· Soil)								
Acetone	EPA 8260B	P4L0807	4800	20000	S	20.2	11/30/04	12/07/04	۱۸
Benzene	EPA 8260B	P4L0807	280	1000	g	20.2	11/30/04	12/07/04	
Bromobenzene	EPA 8260B	P4L0807	150	5000	9	20.2	11/30/04	12/07/04	
Bromochloromethane	EPA 8260B	P4L0807	120	5000	2	20.2	11/30/04	12/07/04	
Bromodichloromethane	EPA 8260B	P4L0807	180	2000	g	20.2	11/30/04	12/07/04	
Bromoform	EPA 8260B	P4L0807	170	2000	R	20.2	11/30/04	12/07/04	
Bromomethane	EPA 8260B	P4L0807	2200	5000	S	20.2	11/30/04	12/07/04	
2-Butanone (MEK)	EPA \$260B	P4L0807	4900	20000	S	20.2	11/30/04	12/07/04	ΙN
n-Butylbenzene	EPA 8260B	P4L0807	360	2000	g	20.2	11/30/04	12/07/04	
sec-Butylbenzene	EPA 8260B	P4L0807	250	2000	g	20.2	11/30/04	12/07/04	
tert-Butylbenzene	EPA 8260B	P4L0807	220	2000	g	20.2	11/30/04	12/07/04	
Carbon Disulfide	EPA 8260B	P4L0807	160	10000	£	20.2	11/30/04	12/07/04	
Carbon tetrachloride	EPA \$260B	P4L0807	120	2000	Q	20.2	11/30/04	12/07/04	
Chlorobenzene	EPA 8260B	P4L0807	150	1000	Q	20.2	11/30/04	12/07/04	
Chloroethane	EPA 8260B	P4L0807	170	2000	58000	20.2	11/30/04	12/07/04	
Chloroform	EPA 8260B	P4L0807	170	2000	R	20.2	11/30/04	12/07/04	
Chloromethane	EPA 8260B	P4L0807	200	5000	Q.	20.2	11/30/04	12/07/04	I
2-Chlorotoluene	EPA 8260B	P4L0807	200	2000	g	20.2	11/30/04	12/07/04	
4-Chlorotoluene	EPA 8260B	P4L0807	170	2000	2	20.2	11/30/04	12/07/04	
Dibromochloromethane	EPA 8260B	P4L0807	160	2000	2	20.2	11/30/04	12/07/04	
1,2-Dibromo-3-chloropropane	EPA 8260B	P4L0807	1300	2000	2	20.2	11/30/04	12/07/04	
1,2-Dibromoethane (EDB)	EPA 8260B	P4L0807	150	2000	2	20.2	11/30/04	12/07/04	
Dibromomethane	EPA 8260B	P4L0807	170	2000	2	20.2	11/30/04	12/07/04	
1,2-Dichlorobenzene	EPA 8260B	P4L0807	180	2000	ď	20.2	11/30/04	12/07/04	
1,3-Dichlorobenzene	EPA 8260B	P4L0807	160	2000	g	20.2	11/30/04	12/07/04	
1,4-Dichlorobenzene	EPA 8260B	P4L0807	190	2000	Ê	20.2	11/30/04	12/07/04	
Dichlorodifluoromethane	EPA 8260B	P4L0807	210	2000	R	20.2	11/30/04	12/07/04	ដ
I,1-Dichloroethane	EPA 8260B	P4L0807	140	2000	16000	20.2	11/30/04	12/07/04	
1,2-Dichloroethane	EPA \$260B	P4L0807	160	1000	R	20.2	11/30/04	12/07/04	
1,1-Dichloroethene	EPA 8260B	P4L0807	150	2000	550	20.2	11/30/04	12/07/04	72
cis-1,2-Dichloroethene	EPA 8260B	P4L0807	220	2000	g	20.2	11/30/04	12/07/04	
trans-1,2-Dichloroethene	EPA 8260B	P4L0807	220	2000	2	20.2	11/30/04	12/07/04	
1,2-Dichloropropane	EPA 8260B	P4L0807	150	2000	S	20.2	11/30/04	12/07/04	
1,3-Dichloropropane	EPA 8260B	P4L0807	170	2000	Q.	20.2	11/30/04	12/07/04	
2,2-Dichloropropane	EPA 8260B	P4L0807	250	2000	S.	20.2	11/30/04	12/07/04	
1,1-Dichloropropene	EPA 8260B	P4L0807	140	2000	2	20.2	11/30/04	12/07/04	
cis-1,3-Dichloropropene	EPA 8260B	P4L0807	340	2000	ĝ	20.2	11/30/04	12/07/04	
trans-1,3-Dichloropropene	EPA 8260B	P4L0807	160	2000	S	20.2	11/30/04	12/07/04	
Ethylbenzene	EPA 8260B	P4L0807	160	2000	QN	20.2	11/30/04	12/07/04	
Hexachlorobutadiene	EPA 8260B	P4L0807	1500	2000	Q.	20.2	11/30/04	12/07/04	
2-Hexanone	EPA 8260B	P4L0807	2600	20000	Ø	20.2	11/30/04	12/07/04	ΙN
Del Mar Analytical - Phoenix Linda Febelman									

12/07/04 12/07/04 12/07/04

11/30/04

11/30/04 11/30/04 11/30/04

P4L0807 P4L0807 P4L0807 P4L0807 P4L0807

EPA 8260B EPA 8260B EPA 8260B

1,1,1-Trichloroethane 1,1,2-Trichloroethane Trichloroethene Prichlorofiuoromethane

2.3~Trichforobenzene ,2,4-Trichlorobenzene

Coluene

EPA 8260B EPA 8260B

12/07/04 12/07/04 12/07/04 12/07/04

11/30/04 11/30/04 11/30/04

P4L0807 P4L0807 P4L0807 P4L0807 P4L0807

EPA 8260B EPA 8260B

1.2,4-Trimethylbenzene 1.3,5-Trimethylbenzene Vinyl acetate Vinyl chloride

.2,3-Trichloropropane

EPA 8260B EPA 8260B

Surrogate: Dibromafluoromethane (70-120%) Surrogate: Tolnene-d8 (75-120%) Surrogate: 4-Bromofluorobenzene (75-120%)

Xylenes, Total

EPA 8260B

11/30/04 11/30/04

12/07/04

12/07/04

12/07/04 12/07/04 12/07/04

11/30/04

11/30/04 11/30/04 11/30/04 11/30/04

12/07/04 12/07/04

255 9.88 1150 60 60 67 111 111 111 111 110 10 10 10 118

P4L0807 P4L0807

P4L0807

EPA 8260B

P4L0807 P4L0807

P4L0807

EPA \$260B EPA \$260B EPA \$260B EPA \$260B EPA \$260B

1,1,2,2-Tetrachloroethane 1,1,2,2-Tetrachloroethane Tetrachloroethene

P41,0807

P4L0807

12/07/04

Linda Eshelman Project Manager

The results pertain only to the samples tested in the laborators. This report shall not be reproduced PNK0837 <Page 19 of 153> except in full, without written permission from Del Mar Analytical.

The results perioin only to the samples tested in the Laboratory. This report shall not be reproduced. PNK0837 <Page 18 of 153> except in full, without written permission from Del Mar Analytical. Nel Mar Analytical - Phoenix Linda Eshelman Project Manager

9) 261-1022 FAX (949) 28 9) 370-4667 FAX (949) 37 8) 505-8596 FAX (859) 51 0) 785-0043 FAX (480) 71 2) 798-3620 FAX (702) 71 1745 Design Ave. Suite 100, Intel. CA 95614 (1949) Z. 1014 E. Cooley Dr., Suite A. Chiele, CA 92122 (1939) 9494. Chesaporder Dr., Suite 805, San Diego, CA 92122 (1939) 9805 Could fist St., Z. Brothe E-170, Phropatal. AZ 85104 (1907) 2220 E. Suites Rol, R3, Lav Vegae, NV 98120 (1707)

Project ID: 24018.004/Air Liquide Basin & Range Hydrogeologists 6155 E. Indian School Rd., Suite 100A

Report Number: PNK0837

Attention: Amy Wolkowinsky

Scottsdale, AZ 85251

11/30/04 Sampled: Received: Analyzed Qualifiers

Result Factor Extracted

Limit

Limit

Batch

Method

Sample 1D: PNK0837-07 (WGT-02 - Soil) - cont

Reporting Units: ug/kg

P4L0807

Reporting Sample Dilution Date

VOLATILE ORGANICS BY GC/MS (EPA 5035/8260B)

MDL

Date

₩ ≥

12/07/04 12/07/04 12/07/04 12/07/04

11/30/04 11/30/04 11/30/04 11/30/04

P4L0807 P4L0807 P4L0807 P4L0807 P4L0807 P4L0807 P4L0807

EPA 8260B EPA 8260B

4-Methyl-2-pentanone (MIBK) Methyl-tert-buryl Ether (MTBE)

n-Propyibenzene

Naphthalene Styrene

p-Isopropyltoluene Methylene chloride Isopropyibenzene

12/07/04 12/07/04 12/07/04 12/07/04 12/07/04 12/07/04 12/07/04 12/07/04 12/07/04 12/07/04

11/30/04 11/30/04 11/30/04

12/07/04

P4L0807 P4L0807 P4L0807 P4L0807 P4L0807 P4L0807 P4L0807 P4L0807

EPA 8260B EPA 8260B EPA 8260B EPA 8260B EPA 8260B

1,1,1,2-Tetrachloroethane 1,1,2,2-Tetrachloroethane Tetrachloroethene

11/30/04 11/30/04 1/30/04

2 FAX (949) 260-3297 7 FAX (949) 370-1046 6 FAX (858) 505-9689 3 FAX (480) 785-0851 0 FAX (702) 798-3621 (949) 261-1022 F. (909) 370-4667 F. (858) 505-8596 F. (480) 785-0043 F. (702) 798-3620 F. 174e1Derlan Ave., Sulte 100, Ivvine, CA 92814 1014 E. Cooley Dr., Sulte A., Colton, CA 92224 9846 Chrespreake Dr., Sulte Bot, Son Diego, CA 92123 9850 South Strist St., Sulte Br.120, Protenty, AZ 8504 2520 E. Sunsel Rd. #3, Las Vegas, NV 89120 i

(**** 260-3297 370-1046 505-9669 785-0851 798-3621

Project ID: 24018.004/Air Liquide Basin & Range Hydrogeologists

6155 E. Indian School Rd., Suite 100A			Sampled: 11/30/(11/30/0
Scottsdale, AZ 85251	Report Number: PNK0837	VK0837	Received: 11/30/0	11/30/0
Attention: Amy Wolkowinsky				
	Charles of the Control of the Contro	ACCINEO DISPATA DE PARTICIO DE LA CONTRACTOR DE LA CONTRA	ON CONTRACTOR DESCRIPTION OF THE PERSON OF T	STATES OF STATES

VOLATILE ORGANICS BY GC/MS (EPA 5035/8260B)

22

Analytical	
<u>~</u>	
┖	
_	
ਲ	
⊏	
_	
•	
<u></u>	
ത	
=	
_	
Del Mar	
~	
•	
•	
- 37	

)				i ;			,	ś	í
Anaiyte	Method	Batch	MDL	Keporting Limit	Sample Dilution Date Result Factor Extract	Factor	Dilution Date Factor Extracted	Date Analyzed	Date Data Analyzed Qualifiers
Sample ID: PNK0837-08 (SGT-02 - Soil) Reporting Unite: no/ke	Seil)								
Acetone	EPA 8260B	P4L1007	4800	20000	2600	20.4	11/30/04	12/10/04	E4
Велгене	EPA 8260B	P4L1007	280	1000	S	20.4	11/30/04	12/10/04	
Bromobenzene	EPA 8260B	P4L1007	150	5000	2	20.4	11/30/04	12/10/04	
Bromochloromethane	EPA 8260B	P4L1007	120	5000	2	20.4	11/30/04	12/10/04	
Bromodichloromethane	EPA 8260B	P4L1007	180	2000	2	20.4	11/30/04	12/10/04	
Bromoform	EPA 8260B	P4L1007	170	5000	Ð	20.4	11/30/04	12/10/04	
Bromomethane	EPA 8260B	P4L1007	2200	5000	Q	20.4	11/30/04	12/10/04	
2-Butanone (MEK)	EPA 8260B	P4L1007	4900	20000	QN	20.4	11/30/04	12/10/04	
n-Burylbenzene	EPA 8260B	P4L1007	360	5000	Q	20.4	11/30/04	12/10/04	
sec-Butylbenzene	EPA 8260B	P4L1007	250	5000	Q	20.4	11/30/04	12/10/04	
tert-Butylbenzene	EPA 8260B	P4L1007	220	5000	ΩN	20.4	11/30/04	12/10/04	
Carbon Disulfide	EPA 8260B	P4L1007	160	10000	Ω	20.4	11/30/04	12/10/04	
Carbon tetrachloride	EPA 8260B	P4L1007	120	5000	ΩÑ	20.4	11/30/04	12/10/04	
Chlorobenzene	EPA 8260B	P4L1007	150	1000	QZ	20.4	11/30/04	12/10/04	
Chloroethane	EPA 8260B	P4L1007	170	2000	g	20.4	11/30/04	12/10/04	
Chloroform	EPA 8260B	P4L1007	170	2000	570	20.4	11/30/04	12/10/04	E4
Chloromethane	EPA 8260B	P4L1007	200	5000	Q.	20.4	11/30/04	12/10/04	
2-Chlorotoluene	EPA 8260B	P4L1007	200	2000	Q	20.4	11/30/04	12/10/04	
4-Chlorotoluene	EPA 8260B	P4L,1007	170	2000	S	20.4	11/30/04	12/10/04	
Dibromochloromethane	EPA 8260B	P4L1007	160	2000	Q	20.4	11/30/04	12/10/04	
1,2-Dibromo-3-chloropropane	EPA 8260B	P4L1007	1300	2000	9	20.4	11/30/04	12/10/04	
1,2-Dibromoethane (EDB)	EPA 8260B	P4L1007	150	2000	g	20.4	11/30/04	12/10/04	
Dibromomethane	EPA 8260B	P41_1007	170	2000	2	20.4	11/30/04	12/10/04	
1,2-Dichlorobenzene	EPA 8260B	P4L1007	180	2000	Q	20.4	11/30/04	12/10/04	
1,3-Dichlorobenzene	EPA 8260B	P4L1007	160	2000	ΩN	20.4	11/30/04	12/10/04	
1,4-Dichlorobenzene	EPA 8260B	P4L1007	190	2000	Q.	20.4	11/30/04	12/10/04	
Dichlorodifluoromethane	EPA 8260B	P4L1007	210	2000	Q.	20,4	11/30/04	12/10/04	
1,2-Dichloroethane	EPA 8260B	P4L1007	160	1000	820	20,4	11/30/04	12/10/04	E4
1,1-Dichloroethene	EPA 8260B	P4L1007	150	2000	120000	20,4	11/30/04	12/10/04	
cis-1,2-Dichloroethene	EPA 8260B	P4L1007	220	2000	Q.	20.4	11/30/04	12/10/04	
trans-1,2-Dichloroethene	EPA 8260B	P4L1007	770	2000	a Z	70.4	1750/04	12/10/04	
1,2-Dichloropropane	EPA 8260B	P4L1007	150	2000	Q !	20.4	11/30/04	12/10/04	
1,3-Dichloropropane	EPA 8260B	P4L1007	170	2000	n Z	20.4	11/30/04	12/10/04	
2,2-Dichloropropane	EPA 8260B	P4L1007	250	2000	QN	20.4	11/30/04	12/10/04	
1, I-Dichloropropene	EPA \$260B	P41.1007	140	2000	S	20.4	11/30/04	12/10/04	
cis-1,3-Dichloropropene	EPA 8260B	P4L1007	340	2000	9	20.4	11/30/04	12/10/04	
trans-1,3-Dichloropropene	EPA 8260B	P4L1007	99	2000	QZ Q	20.4	11/30/04	12/10/04	
Ethylbenzene	EPA 8260B	P4L1007	160	2000	2	20.4	11/30/04	12/10/04	
Hexachlorobutadiene	EPA 8260B	P4L1007	1500	2000	Q	20.4	11/30/04	12/10/04	
2-Hexanone	EPA 8260B	P41,1007	2600	20000	S	20.4	11/30/04	12/10/04	
Iodomethane	EPA 8260B	P4L1007	200	2000	Ω	20.4	11/30/04	12/10/04	

12/07/04 12/07/04 12/07/04

11/30/04

P4L0807 P4L0807 P4L0807 P4L0807 P4L0807

EPA 8260B EPA 8260B EPA 8260B EPA 8260B EPA 8260B

11/30/04

12/07/04

11/30/04 11/30/04 11/30/04

P4L0807 P4L0807 P4L0807

EPA \$260B EPA \$260B EPA \$260B EPA \$260B EPA \$260B

Prichforoffuoromethane i.2,4-Trimethylbenzene 1.3.5-Trimethytbenzene Vinyl acetate

Trichloroethene

.2.3-Trichloropropane

EPA 8260B

.2.3-Trichlorobenzene 2,4-Trichlorobenzene 1,1,1-Trichloroethane

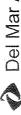
11/30/04 11/30/04 11/30/04

12/07/04 12/07/04 12/07/04

% 101 % 101 % 201 %

Surrogate: Dibromofluoromethane (70-120%) Surrogaie: Toluene-d8 (75-120%) Surrogaie: 4-Bromofluorobenzene (75-120%)

vinył chloride Kylenes, Total


Del Mar Analytical - Phoenix Linda Eshelman lodomethane

Project Manager

results pertain only to the samples uested in the taboratory. This report shall not be reproduced PNK0837 <Page 21 of 153> except in full, without written permission from Del Mar Analytical. The 1

Del Mar Analytical - Phoenix Linda Eshelman Project Manager

The results pertain only to the samples tested in the Indonstient. This report shall not be reproduced, PNKOB37 <Page 20 of 153> except in full, without written permission from Del Mar Analynical.

17461 Derian Ave., Suite 100, Invine. CA 92814 (1949) 285-1702 FAX (1949) 286-2297 (1946) CAN (1940) FAX (1940

Report Number: PNK0837 Basin & Range Hydrogeologists 6155 E. Indian School Rd., Suite 100A Scottsdale, AZ 85251 Attention: Amy Wolkowinsky

Project ID: 24018.004/Air Liquide

Sampled: 11/30/04 Received: 11/30/04

🔷 Del Mar Analytical

1745 Decia Ave. Sale 100, Ivene CA 49214 (949) 561-1227 FAX (949) 569-12297 1014 E. Chooler Dr. Salle 4. Chalm. CA 492214 (169) 370-4667 FAX (949) 770-1046 9464 Chesispaeke Dr. Sula 615, San Dégra, CA 87123 (168) 366-569 FAX (859) 565-569 9600 Chesispaeke Dr. Sula 615, San Dégra, CA 87123 (168) 366-569 FAX (859) 565-569 9600 Chesispaeke Dr. Sula 615, San Dégra, Na 18170 (172) 780-5821 PAX (172) PAX

Project ID: 24018.004/Air Liquide Basin & Range Hydrogeologists 6155 E. Indian School Rd., Suite 100A Scottsdale, AZ 85251

Report Number: PNK0837

Attention: Amy Wolkowinsky

VOLATILE ORGANICS BY GC/MS (EPA 5035/8260B)

Sampled: 11/30/04 Received: 11/30/04

Date Data Analyzed Qualifiers

MDL Reporting Sample Dilution Date Limit Limit Result Factor Extracted

Batch

Method

Analyte

Sample ID: PNK0837-08RE1 (SGT-02 - Soil) - cont.

Reporting Units: ug/kg 1,1-Dichloroethane

11/30/04 12/11/04

204

20000

P4L1301 1400

EPA 8260B

Surrogate: Dibromofluoromethane (70-120%) Surrogate: Toluane-d8 (75-120%) Surrogate: 4-Bromofluorobenzene (75-120%)

510000 100 % 103 % 102 %

VOLATILE ORGANICS BY GC/MS (EPA 5035/8260B)

				2			(
Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Dilution Date Result Factor Extract	Dilution Factor!	Dilution Date Factor Extracted	Date Analyzed	Date Data Analyzed Qualifiers	
Sample ID: PNK0837-08 (SGT-02 - Soil) - cont Reporting Units: ug/kg	Soil) - cont.									
isopropylbenzene	EPA 8260B	P4L1007	200	2000	ΩN	20.4	11/30/04	12/10/04		
p-IsopropyItoluene	EPA 8260B	P4L1007	270	2000	ΩN	20.4	11/30/04	12/10/04		
Methylene chloride	EPA 8260B	P4L1007	1200	10000	6300	20.4	11/30/04	12/10/04	E4	
4-Methyl-2-pentanone (MIBK)	EPA 8260B	P4L1007	2900	20000	Ŕ	20.4	11/30/04	12/10/04		
Methyl-terr-butyl Ether (MTBE)	EPA 8260B	P4L1007	260	2000	S	20.4	11/30/04	12/10/04		
Naphthalene	EPA 8260B	P4L1007	1300	2000	ΩN	20.4	11/30/04	12/10/04		
n-Propylbenzene	EPA 8260B	P4L1007	210	2000	ΩN	20.4	11/30/04	12/10/04		
Styrene	EPA 8260B	P4L1007	180	2000	Q	20.4	11/30/04	12/10/04		
1,1,1,2-Terrachloroethane	EPA 8260B	P4L1007	170	2000	Q	20.4	11/30/04	12/10/04		
1.1,2,2-Tetrachloroethane	EPA 8260B	P4L1007	210	2000	R	20.4	11/30/04	12/10/04		
Tetrachioroethene	EPA 8260B	P4L1007	210	2000	Ω	20.4	11/30/04	12/10/04		
Toluene	EPA 8260B	P4L1007	180	2000	ΩN	20.4	11/30/04	12/10/04		
1,2.3-Trichlorobenzene	EPA 8260B	P4L1007	1200	2000	ΩN	20.4	11/30/04	12/10/04		
1,2,4-Trichlorobenzene	EPA 8260B	P4L,1007	900	2000	N Q	20.4	11/30/04	12/10/04		
1,1,2.Trichloroethane	EPA 8260B	P4L,1007	190	2000	1500	20,4	11/30/04	12/10/04	E4	
Trichlorvethene	EPA 8260B	P4L1007	220	2000	S	20.4	11/30/04	12/10/04		
Trichloroffuoromethane	EPA 8260B	P4L1007	160	2000	860	20.4	11/30/04	12/10/04	E4	
1,2,3-Trichforopropane	EPA 8260B	P4L1007	200	10000	ND	20.4	11/30/04	12/10/04		
1.2,4-Trimethylbenzene	EPA 8260B	P4L1007	190	2000	N	20.4	11/30/04	12/10/04		
1.3,5-Trimethylbenzene	EPA 8260B	P4L1007	210	2000	ND	20.4	11/30/04	12/10/04		
Vinyl acetate	EPA 8260B	P4L1007	200	24000	ND	20.4	11/30/04	12/10/04		
Vinyl chloride	EPA \$260B	P4L1007	94	2000	ΩN	20.4	11/30/04	12/10/04		
Xylenes, Total	EPA 8260B	P4L1007	370	3000	S	20.4	11/30/04	12/10/04		
Surrogate: Dibromafluoromethane (70-120%)	0-120%)				105 %					
Surrogate: Toluene-d8 (75-120%)					102 %					
Surrogate: 4-Bromoftuorobenzene (75-120%)	5-120%)				102 %					

Del Mar Analytical - Phoenix Linda Eshelman Project Manager

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced.

**Procept in full, without written permission from Del Mar Analytical.

Del Mar Analytical - Phoenix Linda Eshelman Project Manager

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced.

ONK0837 <Page 22 of 153>
except in full, without written permission from Del Mar Analytical.

17481Derian Ave., Suite 100, Innine, CA 62814 (949) 361-1722 FAX (949) 398-12997 (1414 E. Ouder) C. Suite 4, Ondon, CA 62724 (1499) 370-1464 (

Report Number: PNK0837

Basin & Range Hydrogeologists 6155 E. Indian School Rd., Suite 100A Sconsdale, AZ 85251 Attention: Amy Wolkowinsky

Project ID: 24018.004/Air Liquide

Sampled: 11/30/04 Received: 11/30/04

VOLATILE ORGANICS BY GC/MS (EPA 5035/8260B)

			WDL.	MDL Reporting Sample Dilution Date	Sample	Dilution	Date	Date	Data	
Analyte	Method	Batch			Kesun	racion	xaracieu	Allalyzet Vuannens	Quantities	
Sample 1D: PNK0837-08RE2 (SGT-02 - Soil) - cont.	T-02 - Soil) - cont	.,								
Reporting Units: ug/kg										
1,1,1-Frichloroethane	EPA 8260B P4L1311 12000	P4L1311	12000		3800000	2040	200000 3800000 2040 11/30/04 12/13/04	12/13/04		
Surregate: Dibromofluoromethane (70-120%)	70-120%)				100 %					
Surrogate: Toluene-d8 (75-120%)					102 %					
Surrogate: 4-Bromofluorobenzene (75-120%)	75-120%)				% 66					

Del Mar Analytical

			240101	Project iD: 24018.004/Air Liquide	2				
6155 E. Indian School Rd., Suite 100A Scottsdale, AZ 85251 Attention: Amy Wolkowinsky	00A Repo	Report Number: PNK0837	PNK08.	37			Sample Receive	Sampled: 11/30/04 Received: 11/30/04	
Emperatural control of the Control o	VOLATILE ORGANICS BY GC/MS (EPA 5035/8260B)	RGANIC	2S BY	GC/MS	(EPA 5	035/820	60B)		
Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Sample Dilution Result FactorE	Dilution Date Factor Extracted	Date Analyzed	Date Data Analyzed Qualifiers
Sample ID: PNK0837-09 (D-EX1-4.0 - Soil) Renorting Units: ug/kg	4.0 - Soil)								
Acetone	EPA 8260B	P4L0807	240	1000	N Q	1.02	11/30/04	12/07/04	ΙΛ
Benzene	EPA 8260B	P4L0807	14	20	ND	1.02	11/30/04	12/07/04	
Bromobenzene	EPA 8260B	P4L0807	7.7	250	ON C	1.02	11/30/04	12/07/04	
Bromochloromethane	EPA 8260B	P4L0807	6.2	250	2	1.02	11/30/04	12/07/04	
Bromodichloromethane	EPA 8260B	P4L0807	9.2	100	2	1.02	11/30/04	12/07/04	
Bromoform	EPA 8260B	P4L0807		250	2 5	20.	11/30/04	12/07/04	
Stomomermane 2. Buranone (MEK)	EPA 8260B	P4L0807	240	0001	2 2	2 6	11/30/04	12/07/04	7
n-Butylbenzene	EPA 8260B	P4L0807	; <u>so</u>	250	2	1.02	11/30/04	12/07/04	
sec-Butylbenzene	EPA 8260B	P4L0807	12	250	N	1.02	11/30/04	12/07/04	
tert-Buty/benzene	EPA 8260B	P4L0807	Ξ	250	S	1.02	11/30/04	12/07/04	
Carbon Disulfide	EPA 8260B	P4L0807	8.0	200	S	1.02	11/30/04	12/07/04	
Carbon tetrachloride	EPA 8260B	P4L0807		220	2 3	1.02	11/30/04	12/07/04	
Chlorobenzene	EPA 8260B	P4L0807	7.7	50	99	1.02	11/30/04	12/07/04	
Chloroethane	EPA 8260B	P4LU8U/		067	Ş	70.	11/20/04	12/07/04	ū
Chloromothone	EFA 8260B	P4E0807		250	0° C	1 02	11/30/04	12/07/04	2 S
2-Chlorotoluene	EPA 8260B	P4L0807		250	Ž	1.02	11/30/04	12/07/04	ĺ
4-Chlorotoluene	EPA 8260B	P4L0807	9.8	250	Q.	1.02	11/30/04	12/07/04	
Dibromochloromethane	EPA 8260B	P4L0807		100	9	1.02	11/30/04	12/07/04	
1,2-Dibromo-3-chloropropane	EPA 8260B	P4L0807		250	9	1.02	11/30/04	12/07/04	
1,2-Dibromoethane (EDB)	EPA 8260B	P4L0807		90 :	2	1.02	11/30/04	12/07/04	
Dibromomethane	EPA 8260B	P4L0807	en e	00.5	9 5	1.02	11/30/04	12/07/04	
1,2-Dichloropenzene	ErA \$200B	7 DOU'THA		8 5	2 6	20,1	11/20/04	12/07/04	Ü
1,3-t0rcmorpobenzene 1,4-Dichlorobenzene	EPA 8260B	P4L0807		100	9	1.02	11/30/04	12/07/04	į
Dichlorodifluoromethane	EPA 8260B	P4L0807		250	QN	1.02	11/30/04	12/07/04	L3
1,2-Dichloroethane	EPA 8260B	P4L0807		20	ΩN	1.02	11/30/04	12/07/04	
cís-1,2-Dichloroethene	EPA 8260B	P4L0807		100	g	1.02	11/30/04	12/07/04	
trans-1,2-Dichloroethene	EPA 8260B	P4L0807		00 5	2	20.5	11/30/04	12/07/04	
1,2-Dichloropropane	EPA 8260B	P4L0807		90	Z !	70.	11/30/04	12/07/04	
1,3-Dichloropropane	EPA 8260B	P4L0807	φ, 4,	100	2 5	7,07	11/30/04	12/07/04	
2,2-Dichloropropane	EPA 8260B	74L08U7		901	S S	20.1	11/20/04	12/07/04	
i, 1-Dienioropropene	EFA 8260D	P4L0007		901	Ş	1 0.2	11/30/04	12/07/04	
trans-1 3-Dichloromonene	EPA 8260B	P41,0807		100	9	1.02	11/30/04	12/07/04	
Ethylbenzene	EPA 8260B	P4L0807		100	68	1.02	11/30/04	12/07/04	Ŧ3
Hexachlorobutadiene	EPA 8260B	P4L0807		250	N	1.02	11/30/04	12/07/04	
2-Hexanone	EPA 8260B	P4L0807		1000	ΩŽ	1,02	11/30/04	12/07/04	\ \
Iodomethane	EPA 8260B	P4L0807		250	2	1.02	11/30/04	12/07/04	
Isopropylbenzene	EPA 8260B	P4L0807	8.6	100	991	1.02	11/30/04	12/07/04	
Del Mar Analytical - Phoenix									

Dei Mar Allaiyuc Linda Eshelman Project Manager

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced PNK0837 <Puge 25 of 153> except in full, without written permission from Del Mar Analytical.

Del Mar Analytical - Phoenix Linda Eshelman Project Manager

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced, PNK0837 <Page 24 of 153> except in full, without written permission from Del Mar Anabytical.

Test Direct Annex Sulter 100 Invine CA 19314 (1449) 55-11025 FFX (849) 510-1029 (145) 110-1029 (

Report Number: PNK0837 Basin & Range Hydrogeologists 6155 E. Indían School Rd., Suite 100A Scottsdale, AZ 85251 Attention: Anny Wolkowinsky

Project ID: 24018,004/Air Liquide

Sampled: 11/30/04 Received: 11/30/04

Basin & Range Hydrogeologists 6155 E. Indian School Rd., Suite 100A Scottsdale, AZ 85251

Attention: Amy Wolkowinsky

Del Mar Analytical

17461 Derian Ave., Suite 100, Invitee, CA 90514 (448) 361-1422. FAX (648) 962-3297 VOI 4 E. CORNER, Salvie A. CHORUC, CA 82227 (859) 370-44667 FAX (849) 370-1446 9484 Chesapaske Dr., Salvie Bob, San Dépo, CA 92721 (859) 600-5866 FAX (859) 600-5869 9590 South 518 51. Salvie Br.J., Shan Br.J., Promir A. 2 Bod, et al. (849) 75-00-6866 FAX (859) 750-6961 950-9696 PAX (859) 750-6961 950-6961 PAX (879) 750-6961 950-

Report Number: PNK0837

VOLATILE ORGANICS BY GC/MS (EPA 5035/8260B)

Sampled: 11/30/04 Received: 11/30/04 Project ID: 24018.004/Air Liquide

Date Data Analyzed Qualifiers

MDL Reporting Sample Dilution Date Limit Limit Result Factor Extracted

Ĺ

Batch

Method

Sample ID: PNK0837-09RE1 (D-EXI-4.0 - Soil) - cont.

Reporting Units: ug/kg 1,1-Dichloroethane

11/30/04 12/10/04 11/30/04 12/10/04

20.4

2000

140 150

P4L1007 P4L1007

1,1-Dichloroethane EPA 8260B
1,1-Dichloroethane EPA 8260B
Surrogate: Dikromojluromethane (70-120%)
Surrogate: Tohrene-d8 (75-120%)
Surrogate: 4-Bromojluorobenzene (75-120%)

13000 15000 102 % 103 %

VOLATILE ORGANICS BY GC/MS (EPA 5035/8260B)

Annivio	Method	Ratch	MDL	Reporting Limit	Sample Dilution Date	Dilution	Dilution Date	Date	Date Data	
71.000	10000	Date			MESH		ייינו שכובח	Allalyzeu	Zuanniel s	
Sample 1D: PNK0837-09 (D-EX1-4.0 - Soil) - cont. Reporting Units: ug/kg	0 - Soil) - cont.									
p-Isopropyltoluene	EPA 8260B	P4L0807	13	100	300	1.02	11/30/04	12/07/04		
Methylene chloride	EPA 8260B	P4L0807	99	200	4400	1.02	11/30/04	12/07/04		
4-Methyl-2-pentanone (MIBK)	EPA 8260B	P4L0807	150	1000	Q	1.02	11/30/04	12/07/04	V1	
Mediyl-tert-buryl Ether (MTBE)	EPA 8260B	P4L0807	13	250	2	1.02	11/30/04	12/07/04		
Naplithalene	EPA 8260B	P4L0807	67	250	S	1.02	11/30/04	12/07/04		
n-Propylbenzene	EPA 8260B	P4L0807	11	100	S	1.02	11/30/04	12/07/04		
Styrene	EPA 8260B	P4L0807	0.6	100	S	1.02	11/30/04	12/07/04		
i,i,i,2~Tetrachloroethane	EPA 8260B	P4L0807	8.5	250	S	1.02	11/30/04	12/07/04		
1,1,2,2-Tetrachloroethane	EPA 8260B	P4L0807	=	100	S	1.02	11/30/04	12/07/04		
Tetrachloroethene	EPA 8260B	P4L0807	-	100	180	1.02	11/30/04	12/07/04		
Toluciae	EPA 8260B	P4L0807	8.9	100	99	1.02	11/30/04	12/07/04	E4	
1.2.3-Trichlorobenzene	EPA 8260B	P4L0807	9	250	QN	1.02	11/30/04	12/07/04		
1.2.4-Trichtorobenzene	EPA 8260B	P4L0807	30	250	Q.	1.02	11/30/04	12/07/04		
f.1,2-Trichloroethane	EPA 8260B	P4L0807	9.6	100	ΩN	1.02	11/30/04	12/07/04		
Trichloroethene	EPA 8260B	P4L0807	=	100	740	1.02	11/30/04	12/07/04		
Trichloroffuoromethane	EPA 8260B	P4L0807	7.8	250	1000	1.02	11/30/04	12/07/04		
1,2,3-Trichloropropane	EPA 8260B	P4L0807	10	200	QN	1.02	11/30/04	12/07/04		
1,2,4-Trimethylbenzene	EPA 8260B	P4L0807	2.6	100	140	1.02	11/30/04	12/07/04		
1,3,5-Trimethylbenzene	EPA 8260B	P4L0807	10	100	25	1.02	11/30/04	12/07/04	E4	
Vinyl acetate	EPA 8260B	P4L0807	10	1200	ΩN	1.02	11/30/04	12/07/04		
Vinyl chloride	EPA 8260B	P4L0807	4.7	250	S	1.02	11/30/04	12/07/04		
Xylenes, Total	EPA 8260B	P4L0807	3.8	150	320	1.02	11/30/04	12/07/04		
Surrogate: Dibromofluoromethane (70-120%)	0-120%)				95 %					
Surrogate: Toluene-d8 (75-120%)					102 %					
Surrogate: 4-Bromoftworobenzene (75-120%)	-120%)				102 %					

Del Mar Analytical - Phoenix Linda Eshelman Project Manager

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced. PNK0837 <Page 27 of 153> except in full, without written permission from Del Mar Analytical.

Del Mar Analytical - Phoenix Linda Eshelman Project Manager

The results pertain only to the samples tested to the Laboratory. This report shall not be reproduced.

PNK0837 <Page 26 of 153>
except in full, without verticen permission from Del Mar Analytical.

Project ID: 24018.004/Air Liquide Basin & Range Hydrogeologists 6155 E. Indian School Rd., Suite 100A Scottsdate, AZ 85251 Attention: Amy Wolkowinsky

Report Number: PNK0837

Sampled: 11/30/04 Received: 11/30/04

VOLATILE ORGANICS BY GC/MS (EPA 5035/8260B)

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	MDL Reporting Sample Dilution Date Date Data Limit Limit Result Factor-Extracted Analyzed Qualifiers	Date I Analyzed	Data Qualifiers
09RE2 (D-EX g/kg	(I-4.0 - Soil) -	cont.						
1,1,1-Trichloroethane	EPA 8260B	P4L1301 1200	1200	20000	1100000	204 11/30/04 12/11/04	12/11/04	
Survogate: Dibromofluoromethane (70-120%)	0-120%)				% 901			
Surrogate: Toluene-d8 (75-120%)					102 %			
Surrogate: 4-Bromoftuorobenzene (75-120%)	-120%)				105 %			

K (949) 260-3297 K (949) 370-1046 K (958) 505-9689 K (480) 785-0851 K (702) 798-3621 17401 Derian Ave., Salte 100, Ivine: CA 92814, (949) 381-1027 FAX (1946) CONTO E. Salte 5, Obinic CA 9239 4 (1993) 372-4689 FAX (1994) 96040 F

Del Mar Analytical

Sampled: 11/30/04 Received: 11/30/04 Project ID: 24018.004/Air Liquide Report Number: PNK0837 Basin & Range Hydrogeologists 6155 E. Indian School Rd., Suite 100A Scottsdale, AZ 85251 Attention: Amy Wolkowinsky

(0B)	Date
5035/826	Dilution
(EPA 5	Sample
GC/MS	Reporting
ANICS BY GC/MS	MDL
LE ORGANI	
VOLATIL	

MDL Reporting Sample Dilution

Data

Date

Analyte	Method	Batch	Limit	Limit	Result	Factor	FactorExtracted	Analyzed	Analyzed Qualifiers
Sample ID: PNK6837-10 (H-EX2-4.0 - Soil) Reporting Units: ug/kg	(,0 - Soil)								
Acetone	EPA 8260B	P4L0807	2400	10000	Q.	8.44	11/30/04	12/07/04	. N 1
Benzene	EPA 8260B	P4L0807	140	200	Q.	8.44	11/30/04	12/07/04	
Bromobenzene	EPA 8260B	P4L0807	77	2500	R	8.44	11/30/04	12/07/04	
Bromochloromethane	EPA 8260B	P4L0807	62	2500	S	8.4	11/30/04	12/07/04	
Bromodichloromethane	EPA 8260B	P4L0807	92	1000	S	8.44	11/30/04	12/07/04	
Bromoform	EPA 8260B	P4L0807	83	2500	g	8.44	11/30/04	12/07/04	
Bromomethane	EPA 8260B	P4L0807	1100	2500	g	8.44	11/30/04	12/07/04	
2-Butanone (MEK)	EPA 8260B	P4L0807	2400	10000	g	8.44	11/30/04	12/07/04	۲.
n-Butylbenzene	EPA 8260B	P4L0807	180	2500	S	8.44	11/30/04	12/07/04	
sec-Butylbenzene	EPA 8260B	P4L0807	120	2500	S	8.44	11/30/04	12/07/04	
tert-Butylbenzene	EPA 8260B	P4L0807	110	2500	S	8.44	11/30/04	12/07/04	
Carbon Disulfide	EPA 8260B	P4L0807	80	2000	g	8.44	11/30/04	12/07/04	
Carbon tetrachloride	EPA 8260B	P4L0807	62	2500	Q	8.44	11/30/04	12/07/04	
Chlorobenzene	EPA 8260B	P4L0807	11	200	2	8.44	11/30/04	12/07/04	
Chloroethane	EPA 8260B	P41.0807	85	2500	N	8.44	11/30/04	12/07/04	
Chloroform	EPA 8260B	P4L0807	83	1000	ΩN	8.44	11/30/04	12/07/04	
Chloromethane	EPA 8260B	P4L0807	100	2500	Q	8.44	11/30/04	12/07/04	L3
2-Chlorotoluene	EPA 8260B	P4L0807	66	2500	N	8.44	11/30/04	12/07/04	
4-Chlorotoluene	EPA 8260B	P4L0807	98	2500	2	8.44	11/30/04	12/07/04	
Dibromochloromethane	EPA 8260B	P4L0807	82	1000	Q.	8.44	11/30/04	12/07/04	
1,2-Dibromo-3-chloropropane	EPA 8260B	P4L0807	650	2500	£	8.44	11/30/04	12/07/04	
1,2-Dibromoethane (EDB)	EPA 8260B	P4L0807	77	1000	Q.	4.8	11/30/04	12/07/04	
Dibromomethane	EPA 8260B	P4L0807	83	1000	Ω	8.44	11/30/04	12/07/04	
1,2-Dichlorobenzene	EPA 8260B	P4L0807	62	1000	QN.	8.44	11/30/04	12/07/04	
I,3-Dichlorobenzene	EPA 8260B	P4L0807	80	0001	S	8.44	11/30/04	12/07/04	
1,4-Dichlorobenzene	EPA 8260B	P4L0807	94	0001	Ŝ	8,44	11/30/04	12/07/04	
Dichlorodifluoromethane	EPA 8260B	P4L0807	110	2500	Q	8.44	11/30/04	12/07/04	ដ
1,2-Dichloroethane	EPA 8260B	P4L0807	. 78	200	QN	8.44	11/30/04	12/07/04	
cis-1,2-Dichloroethene	EPA 8260B	P4L0807	110	1000	Q	8.4	11/30/04	12/07/04	
trans-1,2-Dichloroethene	EPA 8260B	P4L0807	110	1000	Q Q	8.44	11/30/04	12/07/04	
1,2-Dichloropropane	EPA 8260B	P4L0807	73	1000	Q	8.44	11/30/04	12/07/04	
1,3-Dichloropropane	EPA 8260B	P4L0807	84	1000	g	8,44	11/30/04	12/07/04	
2,2-Dichloropropane	EPA 8260B	P4L0807	130	1000	S	8.44	11/30/04	12/07/04	
1,1-Dichloropropene	EPA 8260B	P4L0807	69	1000	QN	8.44	11/30/04	12/07/04	
cis-1,3-Dichloropropene	EPA 8260B	P4L0807	170	1000	Q	8,44	11/30/04	12/07/04	
trans-1,3-Dichloropropene	EPA 8260B	P4L0807	80	1000	S	8.44	11/30/04	12/07/04	
Ethylbenzene	EPA 8260B	P4L0807	80	1000	R	8.44	11/30/04	12/07/04	
Hexachlorobutadiene	EPA 8260B	P41_0807	770	2500	R	8.44	11/30/04	12/07/04	
2-Hexanone	EPA 8260B	P4L0807	1300	10000	2	8.44	11/30/04	12/07/04	5
Iodomethane	EPA 8260B	P4L0807	250	2500	S	8.44	11/30/04	12/07/04	
Isopropylbenzene	EPA 8260B	P4L0807	86	1000	N N	8.44	11/30/04	12/07/04	
Del Mar Analytical - Phoenix									

Del Mar Analytical - Phoenix Linda Eshelman Project Manager

The results pertain only to the samples rested in the laboratory. This report shall not be reproduced PNK0837 <Page 29 of 153> except in fall, without written permission from Del Mar Anabrical.

Basin & Range Hydrogeologists 6155 E. Indian School Rd., Suite 100A Scottsdale, AZ 85251

Attention: Amy Wolkowinsky

Del Mar Analytical

17461 Defian Ave., Suite 100, Invine, CA 82814 (649) 56-1122 F.XX (949) 530-1040 (1014 E. Occasion, F.X. Suite 100, Invining CA 82814 (1993) 370-4466 (1993) 370-4466 (1993) 370-4466 (1993) 370-4466 (1993) 370-4466 (1993) 370-4469 (1993) 3

Del Mar Analytical

Project ID: 24018.004/Air Liquide Report Number: PNK0837

Basin & Range Hydrogeologists 6155 E. Indian School Rd., Suite 100A Scottsdale, AZ 85251 Attention: Amy Wolkowinsky

14 (949) 281-1022 FAX (949) 260-3297 42 (999) 370-4667 FAX (949) 370-1046 23 (869) 505-8596 FAX (859) 505-8989 14 (480) 795-0043 FAX (480) 795-0851 20 (702) 798-3620 FAX (702) 796-3621

Sampled: 11/30/04 Received: 11/30/04

Analyzed Qualifiers

MDL Reporting Sample Dilution Date Limit Limit Result FactorExtracted

Batch

Method

Analyte

Analyzed Qualifiers

VOLATILE ORGANICS BY GC/MS (EPA 5035/8260B)

11/30/04 1

84.4

10000

690

P4L1007 P4L1007

EPA 8260B EPA 8260B

Surrogate: Dibromofluoromethane (70-120%) Surrogate: Toluene-d8 (75-120%) Surrogate: 4-Bromofluorobenzene (75-120%)

Sample ID: PNK0837-10RE1 (H-EX2-4.0 - Soil) - cont. Reporting Units: ug/kg

1,1-Dichloroethane 1,1-Dichloroethene

100000 100000 105 % 104 %

Sampled: 11/30/04 Received: 11/30/04 Project ID: 24018.004/Air Liquide Report Number: PNK0837

Date MDL Reporting Sample Dilution Date Limit Limit Result Factor Extracted VOLATILE ORGANICS BY GC/MS (EPA 5035/8260B)

Batch

Method

Analyte

Sample ID: PNK0837-16 (H-EX2-4.0 - Soil) - cont Reporting Units: ug/kg	4.0 - Seil) - cont.								
p-fsopropyftoluene	EPA 8260B	P4L0807	130	1000	280	8.44	11/30/04	12/07/04	E4
Methylene chloride	EPA 8260B	P4L0807	009	2000	49000	8,44	11/30/04	12/07/04	
4-Methyl-2-pentanone (MIBK)	EPA 8260B	P4L0807	1500	10000	ď	8.44	11/30/04	12/07/04	٧I
Methyl-tert-buryl Ether (MTBE)	EPA 8260B	P4L0807	130	2500	g	8.44	11/30/04	12/07/04	
Naphthalene	EPA 8260B	P4L0807	670	2500	2	8.44	11/30/04	12/07/04	
n-Propylbenzene	EPA 8260B	P4L0807	110	1000	Q	8.44	11/30/04	12/07/04	
Styrene	EPA 8260B	P4L0807	06	1000	g	8.44	11/30/04	12/07/04	
1,1,1,2-Tetrachioroethane	EPA 8260B	P4L0807	85	2500	Q	8.44	11/30/04	12/07/04	
1,1,2,2-Tetrachloroethane	EPA 8260B	P4L0807	110	1000	Q	8.44	11/30/04	12/07/04	
Tetrachloroethene	EPA 8260B	P4L0807	110	1000	360	8.44	11/30/04	12/07/04	益
Toluene	EPA 8260B	P41,0807	68	1000	230	8.44	11/30/04	12/07/04	E4
1,2,3-Trichlorobenzene	EPA 8260B	P4L0807	909	2500	ΩN	8.44	11/30/04	12/07/04	
1,2,4-Trichlorobenzene	EPA 8260B	P4L0807	300	2500	ΩZ	8.44	11/30/04	12/07/04	
1,1,2-Trichloroethane	EPA 8260B	P4L0807	96	1000	ΩN	8,44	11/30/04	12/07/04	
Trichloroethene	EPA 8260B	P4L0807	110	1000	3000	8,44	11/30/04	12/07/04	
Trichlorofluoromethane	EPA 8260B	P4L0807	78	2500	20000	8,44	11/30/04	12/07/04	
1,2,3-Trichloropropane	EPA 8260B	P4L0807	100	2000	Q	8.44	11/30/04	12/07/04	
1,2,4-Trimethylbenzene	EPA 8260B	P41,0807	26	1000	230	8.44	11/30/04	12/07/04	E4
1.3,5-Trimethylbenzene	EPA 8260B	P41.0807	100	1000	S	8.44	11/30/04	12/07/04	
Vinyl acetate	EPA 8260B	P41,0807	901	12000	S	8.44	11/30/04	12/07/04	
Vinyl chloride	EPA 8260B	P4L0807	47	2500	S	8.44	11/30/04	12/07/04	
Xylenes, Total	EPA 8260B	P41,0807	180	1500	510	8.44	11/30/04	12/07/04	E4
Surrogate: Dibromoftworomethane (70-120%)	(70-120%)				% 76				
Surrogate: Toluene-d8 (75-120%)					102 %				
Surrogate: 4-Bromofluorobenzene (75-120%)	75-120%)				103 %				

Del Mar Analytical - Phoenix Linda Eshelman Project Manager

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced PNK0837 <Page 31 of 153> except in full, without written permission from Del Mar Anabrical.

Del Mar Analytical - Phoenix

Project Manager

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced. PNK0837 <Page 30 of 153> except in full, withou written permission from Det Mar Analyticad.

Report Number: PNK0837 Basin & Range Hydrogeologists 6155 E. Indian School Rd., Suite 100A Scottsdale, AZ 85251 Attention: Amy Wolkowinsky

Project ID: 24018.004/Air Liquide

Sampled: 11/30/04 Received: 11/30/04

VOLATILE ORGANICS BY GC/MS (EPA 5035/8260B)

Analyte	Method	Batch	MDL	Keporting Limit	Sample Result	Factor I	Date Extracted	MDL Keporting Sample Dilution Date Date Data Limit Limit Result Factor Extracted Analyzed Qualifiers	Data Qualifiers	
Sample ID: PNK0837-10RE2 (H-EX2-4.0 - Soil) - cont.	X2-4.0 - Soil) - c	ont.								
Reporting Units: ug/kg										
1,1,1-Trichloroethane	EPA 8260B P4L1311 12000	P4L1311	12000	200000	6300000	1690	200000 6300000 1690 11/30/04 12/13/04	12/13/04		
Surrogate: Dibromofluoromethane (70-120%)	70-120%)				3001					
Surrogate: Toluene-d8 (75-120%)					104 %					
Surrogate: 4-Bromofluorobenzene (75-120%)	5-120%)				% 00 !					

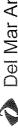
Del Mar Analytical

Project ID: 24018.004/Air Liquide Report Number: PNK0837

Basin & Range Hydrogeologists 6155 E. Indian School Rd., Suite 100A Scottsdale, AZ 85251 Attention: Amy Wolkowinsky

Sampled: 11/30/04 Received: 11/30/04

VOLATILE ORGANICS BY GC/MS (EPA 5035/8260B)


Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Sample Dilution Date Result Factor Extract	Dilution Date Factor Extracted	Date Analyzed	Date Data Analyzed Qualifiers
Sample ID: PNK0837-11 (C-EX3-5.75 - Soil) Reporting University	.75 - Soil)								
Acetone	EPA 8260B	P4L0807	240	1000	9	[]	11/30/04	12/07/04	Λ1
Benzene	EPA 8260B	P4L0807	14	20	Q	Ξ.	11/30/04	12/07/04	
Bromobenzene	EPA 8260B	P4L0807	7.7	250	ΩN	<u></u>	11/30/04	12/07/04	
Bromochloromethane	EPA 8260B	P4L0807	6.2	250	Z	1.1	11/30/04	12/07/04	
Bromodichloromethane	EPA 8260B	P4L0807	9.3	100	Ω̈́	Ξ	11/30/04	12/07/04	
Bromoform	EPA 8260B	P4L0807	8.3	250	Ω̈́	1.1	11/30/04	12/07/04	
Bromomethane	EPA 8260B	P4L0807	110	250	Ž	Ξ	11/30/04	12/07/04	
2-Butanone (MEK)	EPA 8260B	P4L0807	240	1000	S	1.	11/30/04	12/07/04	Γ .
n-Butylbenzene	EPA 8260B	P4L0807	8	250	Q	1.1	11/30/04	12/07/04	
sec-Butylbenzene	EPA 8260B	P4L0807	12	250	Ω	1.1	11/30/04	12/07/04	
tert-Butylbenzene	EPA 8260B	P4L0807	Ξ	250	ΩŽ	Ξ	11/30/04	12/07/04	
Carbon Disulfide	EPA 8260B	P4L0807	8.0	500	Q	1.1	11/30/04	12/07/04	
Carbon tetrachloride	EPA 8260B	P4L0807	6.2	250	S	Γ.	11/30/04	12/07/04	
Chlorobenzene	EPA 8260B	P4L0807	7.7	90	S	Ξ.	11/30/04	12/07/04	
Chloroethane	EPA 8260B	P4L0807	8.5	250	2	Ε:	11/30/04	12/07/04	
Chloroform	EPA 8260B	P4L0807	8.3	100	Q	Ξ.	11/30/04	12/07/04	
Chloromethane	EPA 8260B	P4L0807	0.1	250	Q	1.1	11/30/04	12/07/04	Ľ3
2-Chlorotoluene	EPA 8260B	P4L0807	6.6	250	Q	Ξ	11/30/04	12/07/04	
4-Chlorotoluene	EPA 8260B	P4L0807	8,6	250	S		11/30/04	12/07/04	
Dibromochloromethane	EPA 8260B	P4L0807	8.2	100	2		11/30/04	12/07/04	
I,2-Dibromo-3-chloropropane	EPA 8260B	P4L0807	65	250	g	1.1	11/30/04	12/07/04	
1,2-Dibromoethane (EDB)	EPA 8260B	P4L0807	11	100	g	1.1	11/30/04	12/07/04	
Dibromomethane	EPA 8260B	P4L0807	8.3	100	9	1.1	11/30/04	12/07/04	
1,2-Dichlorobenzene	EPA 8260B	P4L0807	9.2	100	Ð	-:	11/30/04	12/07/04	
1,3-Dichlorobenzene	EPA 8260B	P4L0807	8.0	100	Q.	Ξ	11/30/04	12/07/04	
1.4-Dichlorobenzene	EPA 8260B	P4L0807	9.4	100	£	Ξ	11/30/04	12/07/04	
Dichlorodifluoromethane	EPA 8260B	P4L0807	=	250	ΩŽ		11/30/04	12/07/04	Ľ
1,1-Dichloroethane	EPA 8260B	P4L0807	6.9	100	29	Ξ	11/30/04	12/07/04	E4
1,2-Dichloroethane	EPA 8260B	P4L0807	7.8	20	g		11/30/04	12/07/04	
1,1-Dichloroethene	EPA 8260B	P4L0807	7.5	250	37	Γ.	11/30/04	12/07/04	72
cis-1,2-Dichloroethene	EPA 8260B	P4L0807	-	100	Q.	1.1	11/30/04	12/07/04	
trans-1,2-Dichloroethene	EPA 8260B	P4L0807	Ξ	100	Q	Ξ	11/30/04	12/07/04	
1,2-Dichloropropane	EPA 8260B	P4L0807	7.3	100	2	Ξ.	11/30/04	12/07/04	
1,3-Dichloropropane	EPA 8260B	P4L0807	8.4	100	Q	1.1	11/30/04	12/07/04	
2,2-Dichloropropane	EPA 8260B	P4L0807	2	100	g	Ξ	11/30/04	12/07/04	
1,1-Dichloropropene	EPA 8260B	P4L0807	6.9	100	Q	1.1	11/30/04	12/07/04	
cis-1,3-Dichloropropene	EPA 8260B	P4L0807	17	100	Q	1.	11/30/04	12/07/04	
trans-1,3-Dichloropropene	EPA 8260B	P4L0807	8.0	100	S	Ξ:	11/30/04	12/07/04	
Ethylbenzene	EPA 8260B	P4L0807	8.0	100	2	Ξ	11/30/04	12/07/04	
Hexachlorobutadiene	EPA 8260B	P4L0807	77	250	B	Ξ	11/30/04	12/07/04	
2-Hexanone	EPA 8260B	P4L0807	130	1000	Ω	Ξ	11/30/04	12/07/04	
Del Mar Analytical - Phoenix									

Del Mar Analytical - Phoenix Linda Eshelman Project Manager

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced PNK0837 <Page 33 of 153> except in full, without written permission from Del Mar Analytical.

Del Mar Analytical - Phoenix Linda Eshefman Project Manager

The results pertain only to the samples seried in the laboratory. This report shall not be reproduced, PNK0837 <Page 32 of 133> except in full, without written permission from Del Mar Analytical.

17461 Derian Ave., Suite 101, Inner CA 20514. (949) 261-1727. FAX (949) 261-2397 (1014 E. Condor), Joulie 4, Ohmin CA 20214. (103) 370-4697. FAX (949) 370-1046 9484. Chesspeake Dr., Suite 605, San Dega; CA 22123 (869) 606-8699. FAX (959) 366-8697 (809) 606-8699. (809) 560-8699. (809) 560-8699. (809) 560-8699. (809) 560-8699. (809) 560-8699. (809) 560-8699. (809) 560-8699. (800) 5

Report Number: PNK0837 Basin & Range Hydrogeologists 6155 E. Indian School Rd., Suite 100A Scottsdale, AZ 85251 Attention: Anny Wolkowinsky

Project ID: 24018.004/Air Liquide

Sampled: 11/30/04 Received: 11/30/04

Basin & Range Hydrogeologists 6155 E. Indian School Rd., Suite 100A Scottsdale, AZ 85251 Attention: Amy Wolkowinsky

VOLATILE ORGANICS BY GC/MS (EPA 5035/8260B)

Analyte	Method	Batch	MDL	Reporting Limit	Sample Dilution Date Result FactorExtract	Dilution Factor	Dilution Date Factor Extracted	Date Analyzed	Date Data Analyzed Qualifiers
Sample ID: PNK0837-11 (C-EX3-5.75 - Soil) - cont Reporting Unirs: ug/lg	.75 - Soil) - cont.								
Iodomethane	EPA 8260B	P4L0807	25	250	S	Ξ	11/30/04	12/07/04	
isopropyibenzene	EPA 8260B	P4L0807	8.6	100	R	Ξ	11/30/04	12/07/04	
p-Isopropy toluene	EPA 8260B	P4L0807	2	100	g	Ξ	11/30/04	12/07/04	
Methylene chloride	EPA 8260B	P4L0807	09	500	130	-	11/30/04	12/07/04	£4
4-Methyl-2-pentanone (MIBK)	EPA 8260B	P4L0807	150	1000	2	1.7	11/30/04	12/07/04	
Methyl-tert-buryl Ether (MTBE)	EPA 8260B	P4L0807	2	250	S	Ξ	11/30/04	12/07/04	
Naphthalene	EPA 8260B	P4L0807	29	250	N	1.1	11/30/04	12/07/04	
n-Propyibenzene	EPA 8260B	P4L0807	11	100	S	1.1	11/30/04	12/07/04	
Styrene	EPA 8260B	P4L0807	0.6	100	R	-	11/30/04	12/07/04	
1, L.1.2-Tetrachioroethane	EPA 8260B	P4L0807	8.5	250	£	1.1	11/30/04	12/07/04	
1,1.2.2-Tetrachloroethane	EPA 8260B	P4L0807	11	100	Ñ	Ξ:	11/30/04	12/07/04	
Tetrachloroethene	EPA 8260B	P4L0807	Ξ	100	R	1.1	11/30/04	12/07/04	
Toluene	EPA 8260B	P41,0807	6.8	100	R	1.1	11/30/04	12/07/04	
1,2,3-Trichlorobenzene	EPA 8260B	P4L0807	09	250	g	Ξ	11/30/04	12/07/04	
1,2,4-Trichlorobenzene	EPA 8260B	P4L0807	30	250	£	1.1	11/30/04	12/07/04	
I, I, I. Trichloroethane	EPA 8260B	P4L0807	6.2	100	800	1.1	11/30/04	12/07/04	
1, 1, 2-Trichloroethane	EPA 8260B	P4L0807	9.6	100	QN.	1.1	11/30/04	12/07/04	
Trichloroethene	EPA 8260B	P4L0807	Ξ	100	ND	1.1	11/30/04	12/07/04	
Trichlorofluoromethane	EPA 8260B	P4L0807	7.8	250	ΩN	-:	11/30/04	12/07/04	
1,2,3-Trichloropropane	EPA 8260B	P4L0807	01	500	Š	-	11/30/04	12/07/04	
1.2,4-Trinnethyfbenzene	EPA 8260B	P4L0807	6.7	100	QN	-:	11/30/04	12/07/04	
1,3,5-Trimethylbenzene	EPA 8260B	P4L0807	10	100	S	1.1	11/30/04	12/07/04	
Vinyl acetate	EPA 8260B	P4L0807	10	1200	2	Ξ.	11/30/04	12/07/04	
Vinyl chloride	EPA 8260B	P4L0807	4.7	250	Q.	7	11/30/04	12/07/04	
Xylenes, Total	EPA 8260B	P4L0807	18	150	ND	1:	11/30/04	12/07/04	
Surrogute: Dibromoftuoromethane (70-120%)	70-120%)				93 %				
Surrogate: Toluene-d8 (75-120%)					% 66				
Surrogate: 4-Bromofluorobenzene (75-120%)	5-120%)				% 26				

Del Mar Analytical - Phoenix Linda Eshelman Project Manager

The resolts pertain only to the samples tested in the laboratory. This report shall not be reproduced, PNK0837 <Page 34 of 133> except in full, without written permission from Del Mar Analytical.

1746/Detrin Ave. Suler 10b, hence CA 42514, q19) 251-4025. ACK (949) 203-0329 11014 E. Choley (D. Softe A. Collon, CA 82234, (1999) 371-4867 F.ACK (1999) 371-1046 9484 Chesapcate D. J. Sulte A. Cholon, CA 82234 (1999) 371-4867 F.ACK (1999) 371-1046 9484 Chesapcate D. J. Sulte 405, and Dego. CA 82722 (1999) 371-4867 F.ACK (1999) 850-6881 9509 Sept. Ack (1999) 780-6871 9709 782-0481 PARK (1999) 780-9881 2520 E. Suntael Fold 183, Last Vegats. N. 987100 7702) 789-6820 F.ACK (1007) 78

Del Mar Analytical

Project ID: 24018.004/Air Liquide Report Number: PNK0837

Sampled: 11/30/04 Received: 11/30/04

VOLATILE ORGANICS BY GC/MS (EPA 5035/8260B)

,	· ·		}	}	_		,		
Analyte	Method	Batch	MDL	Reporting Limit		Sample Dilution Date Result Factor Extract	Dilution Date Factor Extracted	Date Analyzed	Data Qualifiers
Sample ID: PNK0837-12 (G-EX4-5.75 - Soil) Renorting Units: ueffe	5.75 - Soil)								
Acetone	EPA 8260B	P4L0807	240	1000	QN	1.01	11/30/04	12/07/04	1/
Benzene	EPA 8260B	P4L0807	14	20	QN	1.01	11/30/04	12/07/04	
Bromobenzene	EPA 8260B	P4L0807	7.7	250	QV	1.01	11/30/04	12/07/04	
Bromochloromethane	EPA 8260B	P4L0807	6.2	250	S	1.0.1	11/30/04	12/07/04	
Bromodichloromethane	EPA 8260B	P4L0807	9.2	100	g	1.01	11/30/04	12/07/04	
Вготобот	EPA 8260B	P4L0807	8,3	250	ΩN	1.01	11/30/04	12/07/04	
Bromomethane	EPA 8260B	P4L0807	110	250	ΩN	1.01	11/30/04	12/07/04	
2-Butanone (MEK)	EPA 8260B	P4L0807	240	1000	Q	1.01	11/30/04	12/07/04	١٨
n-Butylbenzene	EPA 8260B	P4L0807	90	250	Q	1.01	11/30/04	12/07/04	
sec-Butylbenzene	EPA 8260B	P4L0807	12	250	2	1.01	11/30/04	12/07/04	
tert-Butylbenzene	EPA 8260B	P4L0807	Ξ	250	S	1.01	11/30/04	12/07/04	
Carbon Disulfide	EPA 8260B	P4L0807	8.0	200	2	1.01	11/30/04	12/07/04	
Carbon tetrachloride	EPA 8260B	P41,0807	6.2	250	2	1.01	11/30/04	12/07/04	
Chlorobenzene	EPA 8260B	P4L0807	7.7	90	물	1.01	11/30/04	12/07/04	
Chloroethane	EPA 8260B	P4L0807	8,5	250	g	1.01	11/30/04	12/07/04	
Chloroform	EPA 8260B	P4L0807	8,3	100	2	1.01	11/30/04	12/07/04	
Chloromethane	EPA 8260B	P4L0807	10	250	S	1.01	11/30/04	12/07/04	F3
2-Chlorotoluene	EPA 8260B	P4L0807	6.6	250	S	1.01	11/30/04	12/07/04	
4-Chlorotoluene	EPA 8260B	P41.0807	8.6	250	Ŝ	1.01	11/30/04	12/07/04	
Dibromochloromethane	EPA 8260B	P4L0807	80	100	g	1.01	11/30/04	12/07/04	
1,2-Dibromo-3-chloropropane	EPA 8260B	P4L0807	92	250	R	1.01	11/30/04	12/07/04	
1,2-Dibromoethane (EDB)	EPA 8260B	P4L0807	7.7	100	S	1.01	11/30/04	12/07/04	
Dibromomethane	EPA 8260B	P4L0807	8.3	100	2	1.01	11/30/04	12/07/04	
1,2-Dichlorobenzene	EPA 8260B	P4L0807	9.2	100	g	1.01	11/30/04	12/07/04	
1,3-Dichlorobenzene	EPA 8260B	P4L0807	8.0	100	Ð	1.01	11/30/04	12/07/04	
I,4-Dichlorobenzene	EPA 8260B	P4L0807	9.4	100	R	1.01	11/30/04	12/07/04	
Dichlorodifluoromethane	EPA 8260B	P4L0807	Ξ	250	g	1.01	11/30/04	12/07/04	2
1,1-Dichloroethane	EPA 8260B	P4L0807	6.9	100	35	1.01	11/30/04	12/07/04	弘
1,2-Dichloroethane	EPA 8260B	P4L0807	7.8	20	g	1.01	11/30/04	12/07/04	
1,1-Dichloroethene	EPA 8260B	P4L0807	7.5	250	S	1.01	11/30/04	12/07/04	
cis-1,2-Dichloroethene	EPA 8260B	P4L0807	=	100	ND	1.01	11/30/04	12/07/04	
trans-1,2-Dichloroethene	EPA 8260B	P4L0807	1	100	2	1.01	11/30/04	12/07/04	
1,2-Dichloropropane	EPA 8260B	P4L0807	7.3	100	S	1.01	11/30/04	12/07/04	
1,3-Dichloropropane	EPA 8260B	P4L0807	8.4	100	9	1.01	11/30/04	12/07/04	
2,2-Dichloropropane	EPA 8260B	P4L0807	13	100	g	1.01	11/30/04	12/07/04	
1,1-Dichloropropene	EPA 8260B	P4L0807	6.9	100	S	1.01	11/30/04	12/07/04	
cis-1,3-Dichloropropene	EPA 8260B	P4L0807	17	100	R	1.01	11/30/04	12/07/04	
trans-1,3-Dichloropropene	EPA 8260B	P4L0807	8.0	100	g	1.01	11/30/04	12/07/04	
Ethylbenzene	EPA 8260B	P4L0807	8.0	100	g	1.01	11/30/04	12/07/04	
Hexachlorobutadiene	EPA 8260B	P4L0807	11	250	R	1.01	11/30/04	12/07/04	
2-Hexanone	EPA 8260B	P4L0807	130	1000	S	1.01	11/30/04	12/07/04	[/
Del Mar Analytical - Phoenix									

Linda Eshelman Project Manager

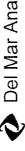
The results pertain only to the samples tested in the laboratory. This report shall not be reproduced.

PNK0837 <Page 35 of 153>
except in full, without written permission from Del Mar Analytical.

17461 Derian Ave., Sulle 100, Invine CA 92814 (949) 281-1027 FAX (949) 580-40297 (104 E. CADRO) CASURA (104 C. CASUR

Project ID: 24018.004/Air Liquide Report Number: PNK0837

Sampled: 11/30/04 Received: 11/30/04


VOLATILE ORGANICS BY GC/MS (EPA 5035/8260B) Basin & Range Hydrogeologists 6155 E. Indian School Rd., Suite 100A Scorxdale, AZ 85251 Attention: Arry Wolkowinsky

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Sample Dilution Date Result Factor Extract	Dilution Date Factor Extracted	Date Analyzed	Data Qualifiers
Sample ID: PNK0837-12 (G-EX4-5.75 - Soil) - cont Reporting Units: ug/kg	5.75 - Soil) - cont	ی							
lodomethane	EPA 8260B	P4L0807	25	250	N O	1.01	11/30/04	12/07/04	
Isopropylbenzene	EPA 8260B	P4L0807	8.6	100	ND	1.01	11/30/04	12/07/04	
p-!sopropy@oluene	EPA 8260B	P4L0807	13	100	ď	1.01	11/30/04	12/07/04	
Methylene chloride	EPA 8260B	P4L0807	9	200	130	1.01	11/30/04	12/07/04	E4
4-Methyl-2-pentanone (MIBK)	EPA 8260B	P4L0807	150	1000	ΩN	1.01	11/30/04	12/07/04	^!
Methyl-tert-butyl Ether (MTBE)	EPA 8260B	P4L0807	13	250	Q	1.01	11/30/04	12/07/04	
Naphthalene	EPA 8260B	P4L0807	67	250	Q	1.01	11/30/04	12/07/04	
n-Propylbenzene	EPA 8260B	P4L0807	Ξ	100	N	1.01	11/30/04	12/07/04	
Styrene	EPA 8260B	P4L0807	0.6	100	g	1.01	11/30/04	12/07/04	
1,1,1,2-Tetrachloroethane	EPA 8260B	P4L0807	8.5	250	2	1.01	11/30/04	12/07/04	
1,1,2,2-Tetrachloroethane	EPA 8260B	P4L0807	Ξ	100	Q	1.01	11/30/04	12/07/04	
Terrachloroethene	EPA 8260B	P4L0807	Ξ	100	Š	1,01	11/30/04	12/07/04	
Toluene	EPA \$260B	P4L0807	8.9	100	ď	1.01	11/30/04	12/07/04	
1,2,3-Trichtorobenzene	EPA 8260B	P4L0807	99	250	Q	1,01	11/30/04	12/07/04	
1,2,4-Trichlorobenzene	EPA 8260B	P4L0807	30	250	Q	1.01	11/30/04	12/07/04	
1,1,1-Trichloroethane	EPA 8260B	P4L0807	6.2	100	160	1.01	11/30/04	12/07/04	
l, l, 2-Trichloroethane	EPA 8260B	P4L0807	9.6	100	ΝΩ	1.01	11/30/04	12/07/04	
Trichloroethene	EPA 8260B	P4L0807	Ξ	100	R	1.01	11/30/04	12/07/04	
Trichlorofluoromethane	EPA 8260B	P4L0807	7.8	250	Ŝ	1.01	11/30/04	12/07/04	
1.2,3-Trichloropropane	EPA 8260B	P4L0807	10	200	9	10.	11/30/04	12/07/04	
1,2,4-Trimethylbenzene	EPA 8260B	P4L0807	6.3	100	Q.	1.01	11/30/04	12/07/04	
1.3,5-Trimethylbenzene	EPA \$260B	P4L0807	10	100	8	10.	11/30/04	12/07/04	
Vinyl acetate	EPA 8260B	P4L0807	10	1200	Q.	1.01	11/30/04	12/07/04	
Víny) chloride	EPA 8260B	P4L0807	4,7	250	Z	1.01	11/30/04	12/07/04	
Xylenes, Total	EPA 8260B	P4L0807	18	150	Š	1.01	11/30/04	12/07/04	
Surrogate: Dibromofluoromethane (70-120%)	(70-120%)				92 %				
Surrogate: Toluene-d8 (75-120%)					8 %				
Surrogate: 4-Bromofluorobenzene (75-120%)	75-120%)				93 %				

Del Mar Analytical - Phoenix Linda Eshelman

Project Manager

The results pertain only to the samples rested in the laboratory. This report shall not be reproduced. PNK0837 <Page 36 of 153> except in full, without written pertussion from Del Mar Analytical.

2 FAX (949) 260-3297 77 FAX (949) 370-1046 16 FAX (858) 505-9689 13 FAX (480) 785-9851 10 FAX (702) 798-3621 TAETDenia Aus. Suite 100, Invine CA 60344 (954) 91-1027 1014 E. Copel Pri. Suite A. Calhor. CA 80344 (954) 9174-958 1014 C. Chenc. CA 8034 (959) 974-958 1014 Chesapacke Dr., Suite 8016, Sain Deigo, CA 80773 (959) 975-958 9630 South Stefs. Suite B. Chi. Phorenz, L. Social B. 1017 918-9104 2020 E. Suites R. A. Las Vegas, Ivv 94120 (179) 798-3400

Del Mar Analytical

Basin & Range Hydrogeologists		Project ID:	24018.0	Project ID: 24018.004/Air Liquide	ide		Sampled	d- 11/30/04	_
winsky		Report Number: PNK0837	PNK08				ce iv	sd: 11/30/04	
ΟΛ	VOLATILE ORGANICS BY GC/MS	RGANIC	SBY	GC/MS	//MS (EPA 5035/8260B)	035/82			
Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Dilution Result FactorE	Dilution Factor	Dilution Date Factor Extracted	Date Analyzed	Date Data Analyzed Qualifiers
Sample ID: PNK0837-13 (G-EX4-5.75D - Soil) Reporting Units: ug/kg	5.75D ~ Soil)								
Acetone	EPA 8260B	P4L0807	240	1000	Ñ	1.02	11/30/04	12/07/04	< >
Benzene	EPA 8260B	P4L0807	7	50	Ð	.02	11/30/04	12/07/04	
Bromobenzene	EPA 8260B	P4L0807	7.7	250	S	1.02	11/30/04	12/07/04	
Bromochloromethane	EPA 8260B	P4L0807	6.2	250	2	7.02	11/30/04	12/07/04	
Bromodichloromethane	EPA 8260B	P4L0807	27.0	100	2 5	20.1	11/30/04	12/07/04	
Bromomethans	EPA 8260B	P4L0807	2	250	2 2	1.02	11/30/04	12/07/04	
2-Butanone (MEK)	EPA 8260B	P4L0807	240	1000	2	1.02	11/30/04	12/07/04	[>
n-Butylbenzene	EPA 8260B	P4L0807	18	250	2	1.02	11/30/04	12/07/04	
sec-Butylbenzene	EPA 8260B	P4L0807	12	250	Q Z	1.02	11/30/04	12/07/04	
tert-Butylbenzene	EPA 8260B	P4L0807	Ξ;	250	Q ;	1.02	11/30/04	12/07/04	
Carbon Disulfide	EPA 8260B	P4L0807	0.0	2000	2 5	707	11/30/04	12/07/04	
Carbon tetrachloride	EPA 8260B	P4L0807	7.0	0 2 2 2 3	2 2	70.1	11/30/04	12/07/04	
Chloroethane	EPA 8260B	P41.0807	8	250	2 2	1.02	11/30/04	12/07/04	
Chloroform	EPA 8260B	P41.0807	8.3	100	£	1.02	11/30/04	12/07/04	
Chloromethane	EPA 8260B	P41.0807	10	250	ND	1.02	11/30/04	12/07/04	L3
2-Chlorotoluene	EPA 8260B	P4L0807	6.6	250	ND	1.02	11/30/04	12/07/04	
4-Chlorotoluene	EPA 8260B	P4L0807	8,6	250	2	1.02	11/30/04	12/07/04	
Dibromochloromethane	EPA 8260B	P4L0807	80 Y	90 5	2 :	1.02	11/30/04	12/07/04	
1,2-Dibromo-3-chloropropane	EPA 8260B	P4L0807	7 6	100	2 2	50.0	11/30/04	12/07/04	
1,z-Diblomoethane Dibromomethane	EPA 8260B	P4L0807	. 80	001	2 2	1.02	11/30/04	12/07/04	
1,2-Dichlorobenzene	EPA 8260B	P4L0807	9.2	100	ŝ	1.02	11/30/04	12/07/04	
1,3-Dichlorobenzene	EPA 8260B	P4L0807	8.0	100	Q	1.02	11/30/04	12/07/04	
1,4-Dichlorobenzene	EPA 8260B	P4L0807	4.6	90 S	99	1.02	11/30/04	12/07/04	r
Dienopountion one dans 11-Dichloroethane	EFA 8260B	P41.0807	6 9	100	Ş	20.	11/30/04	12/07/04) H
1,2-Dichloroethane	EPA 8260B	P4L0807	7.8	20	Ω	1.02	11/30/04	12/07/04	
1,1-Dichloroethene	EPA 8260B	P4L0807	7.5	250	Ω	1.02	11/30/04	12/07/04	
cis-1,2-Dichloroethene	EPA 8260B	P4L0807	=	100	S	1.02	11/30/04	12/07/04	
trans-1,2-Dichloroethene	EPA 8260B	P4L0807	=	100	S.	1.02	11/30/04	12/07/04	
1,2-Dichloropropane	EPA 8260B	P4L0807	5	00 5	2 ;	1.02	11/30/04	12/07/04	
1,3-Dichloropropane	EPA 8260B	P4L0807	20	001	9 9	1.02	11/30/04	12/07/04	
2,2-Dichloropropane	EPA \$260B	74L0807	C 9	901	2 2	20.1	11/20/04	12/07/04	
t, L-Dichloropropene	EFA \$250D FPA \$760B	P4L0807	5.0	901	2 2	20.	11/30/04	12/07/04	
trans-1.3-Dichloropropene	EPA 8260B	P4L0807	8.0	901	g	1.02	11/30/04	12/07/04	
Ethylbenzene	EPA 8260B	P4L0807	8.0	100	ΩN	1.02	11/30/04	12/07/04	
Flexachlorobutadiene	EPA 8260B	P4L0807	77	250	2	1.02	11/30/04	12/07/04	
2-Hexanone	EPA 8260B	P4L0807	130	1000	Ω	1.02	11/30/04	12/07/04	5
Del Mar Analytical - Phoenix									

Linda Eshelman Project Manager

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced. PNK0837 <Page 37 of 153> except in full, without written permission from Del Mar Analytical.

THETE DESIGN ARE, SUITE 101 NAME CA 9251 (1949) 55-1125 F.X (549) 56-3250T (114 E, COPIE) F. SUIRE A, COUNT CA 8224 (1991) 371-4160T F.X (1991) 371-4160T F.

Project ID: 24018.004/Air Liquide Report Number: PNK0837 Basin & Range Hydrogeologists 6155 E. Indian School Rd., Suite 100A Scottsdale, AZ 85253

Attention: Amy Wolkowinsky

Sampled: 11/30/04 Received: 11/30/04

VOLATILE ORGANICS BY GC/MS (EPA 5035/8260B)

Analyte	Method	Batch	MDL Limit	Reporting Sample Dilution Date Limit Result FactorExtract	Sample Resuft	Dilution Factor	Dilution Date Factor Extracted	Date Analyzed	Date Data Analyzed Qualifiers	
Sample 1D: PNK0837-13 (G-EX4-5,75D - Soil) - cont. Reporting Units: ug/kg	.75D - Soil) - co	at.								
Jodonnethane	EPA 8260B	P4L0807	25	250	ND	1.02	11/30/04	12/07/04		
Isopropylbenzene	EPA 8260B	P4L0807	8.6	100	Ω	1.02	11/30/04	12/07/04		
p-fsopropyltoluene	EPA 8260B	P4L0807	<u>e</u>	100	ð	1.02	11/30/04	12/07/04		
Methylene chloride	EPA 8260B	P4L0807	99	200	140	1.02	11/30/04	12/07/04	E4	
4-Methyl-2-pentanone (MIBK)	EPA 8260B	P4L0807	150	1000	9	1.02	11/30/04	12/07/04	VI	
Methyl-tert-butyl Ether (MTBE)	EPA 8260B	P4L0807	13	250	2	1.02	11/30/04	12/07/04		
Naphthalene	EPA 8260B	P4L0807	67	250	Ω	1.02	11/30/04	12/07/04		
n-Propylbenzene	EPA 8260B	P4L0807	=	100	Ω	1.02	11/30/04	12/07/04		
Styrene	EPA 8260B	P4L0807	0.6	100	Q	1.02	11/30/04	12/07/04		
1.1,1.2-Tetrachloroethane	EPA 8260B	P4L0807	8.5	250	Q	1.02	11/30/04	12/07/04		
1,1,2,2-Tetrachloroethane	EPA 8260B	P4L0807	_	100	Ω	1.02	11/30/04	12/07/04		
Tenachloroethene	EPA 8260B	P4L0807	_	100	S	1.02	11/30/04	12/07/04		
Toluene	EPA 8260B	P4L0807	8.9	100	ΩN	1.02	11/30/04	12/07/04		
1,2,3-Trichlorobenzene	EPA 8260B	P4L0807	9	250	Ω	1.02	11/30/04	12/07/04		
1,2,4-Trichlorobenzene	EPA 8260B	P4L0807	30	250	g	1.02	11/30/04	12/07/04		
1,1,1-Trichloroethane	EPA 8260B	P4L0807	6.2	100	270	1.02	11/30/04	12/07/04		
1,1.2-Trichloroethane	EPA 8260B	P4L0807	9.6	100	2	1.02	11/30/04	12/07/04		
Trichforoethene	EPA 8260B	P4L0807		100	Q	1.02	11/30/04	12/07/04		
Trichlorofluoromethane	EPA 8260B	P4L0807	7.8	250	R	1.02	11/30/04	12/07/04		
1,2,3-Trichloropropane	EPA 8260B	P4L0807	10	909	2	1.02	11/30/04	12/07/04		
1,2,4-Trimethylbenzene	EPA 8260B	P4L0807	6.7	100	Q.	1.02	11/30/04	12/07/04		
1,5,5-TrimethyBhenzene	EPA 8260B	P4L0807	10	100	ΩN	1,02	11/30/04	12/07/04		
Vinyl acetate	EPA 8260B	P4L0807	10	1200	2	1.02	11/30/04	12/07/04		
Vinyl chloride	EPA 8260B	P4L0807	4.7	250	QN.	1.02	11/30/04	12/07/04		
Xylenes, Total	EPA 8260B	P4L0807	8	150	S	1.02	11/30/04	12/07/04		
Surrogate: Dibromofluoromethane (70-120%)	70-120%)				64 %					
Surrogate: Toluene-d8 (75-120%)					% 66					
Surrogate: 4-Bromofluorobenzene (75-120%)	5-120%)				% 96					

Del Mar Analytical - Phoenix Linda Eshelman Project Manager

The results pertain only to the samples texted in the laboratory. This report shall not be reproduced. PNK0837 <Page 38 of 153> except in full, without written permission from Del Mar Analytical.

1745 Defina Ave., Sule 110, five CA 2524, quigo 36-102, CAX, quigo 362, 252 1014 E Cooley D. Sale A. Collen CA 2522, que par 26-487 F.A. (quigo 370-1486) 9484. Chespapale D. L. dule 695, Sale A. Diego CA 2522, que pos 105-487 F.A. (quigo 370-1486) 950 Sale Sale S. Sale F. Sale F. Sale F. Sale A. (quigo 370-1486) 950 Sale S. Sale F. Sale F.

Del Mar Analytical

permaneransensensensensensensensensensensensensen	REGIONALISMANIATION PROPERTY ID:	инивестивентивентири у 24018.004/Air Liquide	nort gradustype goethalanderse en vergenskreaf som gradustype gradustype goethalanderse en som gradustype goeth
6155 E. Indian School Rd., Suite 100A			Sampled: 11/30/04
Scottsdale, AZ 85251	Report Number: PNK0837	PNK0837	Received: 11/30/04
Attention: Amy Wolkowinsky			
hen verialise derivine et en	PARAMETER CONTRACTOR CONTRACTOR CONTRACTOR	SANTERENTANDE ELECTRONICA DE L'ANTERIOR CONTRANTE DAN L'ALBORT TOTAL MAINE DE L'ANTERIOR DE L'ANTERIOR DE L'AN	ener den verten en den det den

VOLATILE ORGANICS BY GC/MS (EPA 5035/8260B) MDI. Reporting Sample Dilution Date

				}			()	,	
Analyte	Method	Batch	MDL	Keporting Limit	Sample Result	Sample Duution Date Result FactorExtract	Factor Extracted	Date	Date Data Analyzed Qualifiers
Sample (D: PNK0837-14 (C-EX5-5.75 - Soil) Reporting lights: ng/kg	.75 - Soil)								
Acetone	EPA 8260B	P4L0807	240	1000	ΩN	1.05	11/30/04	12/07/04	۱۸
Benzene	EPA 8260B	P4L0807	14	20	R	1.05	11/30/04	12/07/04	
Bromobenzene	EPA 8260B	P4L0807	7.7	250	g	1.05	11/30/04	12/07/04	
Bromochloromethane	EPA 8260B	P4L0807	6.2	250	Q	1.05	11/30/04	12/07/04	
Bromodichloromethane	EPA 8260B	P4L0807	9.2	100	R	1.05	11/30/04	12/07/04	
Вготобот	EPA 8260B	P4L0807	8.3	250	g	1.05	11/30/04	12/07/04	
Bromomethane	EPA 8260B	P4L0807	110	250	Ŕ	1.05	11/30/04	12/07/04	
2-Butanone (MEK)	EPA 8260B	P4L0807	240	1000	g	1.05	11/30/04	12/07/04	٨ì
n-Butylbenzene	EPA 8260B	P4L0807	. 18	250	CZ.	1.05	11/30/04	12/07/04	
sec-Butylbenzene	EPA 8260B	P4L0807	12	250	g	1.05	11/30/04	12/07/04	
tert-Butylbenzene	EPA 8260B	P4L0807	11	250	9	1.05	11/30/04	12/07/04	
Carbon Disulfide	EPA 8260B	P4L0807	8.0	500	S	1.05	11/30/04	12/07/04	
Carbon tetrachloride	EPA 8260B	P4L0807	6.2	250	Z	1.05	11/30/04	12/07/04	
Chlorobenzene	EPA 8260B	P4L0807	7.7	20	S	1.05	11/30/04	12/07/04	
Chloroethane	EPA 8260B	P4L0807	8.5	250	ΩN	1.05	11/30/04	12/07/04	
Chloroform	EPA 8260B	P4L0807	8.3	100	R	1.05	11/30/04	12/07/04	
Chloromethane	EPA 8260B	P4L0807	10	250	9	1.05	11/30/04	12/07/04	EJ.
2-Chlorotoluene	EPA 8260B	P4L0807	6.6	250	g	1.05	11/30/04	12/07/04	
4-Chlorotoluene	EPA 8260B	P4L0807	8.6	250	Q	1.05	11/30/04	12/07/04	
Dibromochloromethane	EPA 8260B	P4L0807	8 5	100	g	1.05	11/30/04	12/07/04	
1,2-Dibromo-3-chloropropane	EPA 8260B	P4L0807	65	250	g	1.05	11/30/04	12/07/04	
I,2-Dibromoethane (EDB)	EPA 8260B	P4L0807	7.7	100	R	1.05	11/30/04	12/07/04	
Dibromomethane	EPA 8260B	P4L0807	8.3	100	g	1.05	11/30/04	12/07/04	
1,2-Dichlorobenzene	EPA 8260B	P4L0807	9.2	100	g	1.05	11/30/04	12/07/04	
1,3-Dichlorobenzene	EPA 8260B	P4L0807	8.0	100	S	1.05	11/30/04	12/07/04	
1,4-Dichlorobenzene	EPA 8260B	P4L0807	9.4	100	N	1.05	11/30/04	12/07/04	
Dichlorodifluoromethane	EPA 8260B	P4L0807	11	250	9	1.05	11/30/04	12/07/04	L3
1,1-Dichloroethane	EPA 8260B	P4L0807	6.9	100	400	1.05	11/30/04	12/07/04	
1,2-Dichloroethane	EPA 8260B	P4L0807	7.8	20	2	1.05	11/30/04	12/07/04	
1,1-Dichloroethene	EPA 8260B	P4L0807	7.5	250	260	1.05	11/30/04	12/07/04	
cis-1,2-Dichloroethene	EPA 8260B	P4L0807	=	100	g	1.05	11/30/04	12/07/04	
trans-1,2-Dichloroethene	EPA 8260B	P4L0807	=	100	g	1.05	11/30/04	12/07/04	
1,2-Dichloropropane	EPA 8260B	P4L0807	7.3	100	S	1.05	11/30/04	12/07/04	
I,3-Dichloropropane	EPA 8260B	P4L0807	86 4.	100	g	1.05	11/30/04	12/07/04	
2,2-Dichloropropane	EPA 8260B	P4L0807	13	100	S	1.05	11/30/04	12/07/04	
1,1-Dichloropropene	EPA 8260B	P4L0807	6.9	100	Q	1.05	11/30/04	12/07/04	
cis-1,3-Dîchloropropene	EPA 8260B	P4L0807	17	100	N Q	1.05	11/30/04	12/07/04	
trans-1,3-Dichloropropene	EPA 8260B	P4L0807	8.0	100	2	1.05	11/30/04	12/07/04	
Ethylbenzene	EPA 8260B	P4L0807	8.0	100	2	1.05	11/30/04	12/07/04	
Hexachlorobutadiene	EPA 8260B	P4L0807	11	250	2 !	1,05	11/30/04	12/07/04	;
2-Hexanone	EPA 8260B	P4L0807	130	1000	2	1.05	11/30/04	12/07/04	-
Del Mar Analytical - Phoenix									

Del Mar Analytical - Phoenix Linda Esheiman Project Manager

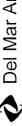
The results pertain only to the samples tested in the laboratory. This report shall not be reproduced PNK0837 <Page 39 of 153> except in full, without written permission from Del Mar Analytical.

Basin & Range Hydrogeologists 6155 E. Indian School Rd.. Suite 100A Scottsdale, AZ 85251 Attention: Amy Wolkowinsky

Del Mar Analytical

17461Derian Ave., Suite 130, Invine, CA 92614 (949) 2561-1022 FAX (949) 230-3297 TUTA E. Cooley Dr. Suite A. Collen, CA 92227 (1993) 370-16667 FAX (949) 370-1668 9484 Cheagpeale Av., Suite 815, Suit

Sampled: Received: Project ID: 24018.004/Air Liquide Report Number: PNK0837


11/30/04

VOLATILE ORGANICS BY GC/MS (EPA 5035/8260B)

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Dilution Date Result Factor Extract	Dilution Factor E	Dilution Date Factor Extracted	Date Analyzed	Date Data Analyzed Qualifiers
Sample 1D: PNK0837-14 (C-EX5-5.75 - Soll) - cont. Remeting Units: us/ks	3,75 - Soil) - cont.								
iodomethane	EPA 8260B	P4L0807	25	250	Q	1.05	11/30/04	12/07/04	
Isopropylbenzene	EPA 8260B	P4L0807	8.6	100	g	1.05	11/30/04	12/07/04	
p-isopropy)toluene	EPA 8260B	P4L0807	13	100	S	1.05	11/30/04	12/07/04	
Methylene chloride	EPA 8260B	P4L0807	9	500	150	1.05	11/30/04	12/07/04	E4
4-Methyl-2-pentanone (MIBK)	EPA 8260B	P4L0807	150	1000	g	1.05	11/30/04	12/07/04	
Methyl-rert-baryl Ether (MTBE)	EPA 8260B	P4L0807	13	250	Ω	1.05	11/30/04	12/07/04	
Naphthalene	EPA 8260B	P4L0807	49	250	Ω	1.05	11/30/04	12/07/04	
n-Propylbenzene	EPA 8260B	P4L0807	_	100	Ê	1.05	11/30/04	12/07/04	
Styrene	EPA 8260B	P4L0807	0.6	100	Q.	1.05	11/30/04	12/07/04	
1.1.1.2-Tetrachioroethane	EPA 8260B	P4L0807	8.5	250	Q.	1.05	11/30/04	12/07/04	
1.1.2.2-Tetrachloroethane	EPA 8260B	P4L0807	=	100	2	1.05	11/30/04	12/07/04	
Tetrachloroethene	EPA 8260B	P4L0807	=	100	QN	1.05	11/30/04	12/07/04	
Toluene	EPA 8260B	P4L0807	6.8	100	ND	1.05	11/30/04	12/07/04	
1,2,3-Trichlorobenzene	EPA 8260B	P4l.0807	09	250	S	1.05	11/30/04	12/07/04	
1,2,4-Trichlorobenzene	EPA 8260B	P4L0807	30	250	R	1.05	11/30/04	12/07/04	
1,1,1-Trichloroethane	EPA 8260B	P4L0807	6.2	100	10000	1.05	11/30/04	12/07/04	
f.1.2-Trichloroethane	EPA 8260B	P4L0807	9.6	100	g	1.05	11/30/04	12/07/04	
Trichloroethene	EPA 8260B	P4L0807	Ξ	100	g	1.05	11/30/04	12/07/04	
Trichlorofluoromechane	EPA 8260B	P4L0807	7.8	250	28	1.05	11/30/04	12/07/04	E4
1.2,3-Trichloropropane	EPA 8260B	P4L0807	01	200	9	1.05	11/30/04	12/07/04	
1,2,4-Trimethylbenzene	EPA 8260B	P4L0807	2.6	100	S	1.05	11/30/04	12/07/04	
1,3.5-Trimethylbenzene	EPA 8260B	P4L0807	10	100	2	1.05	11/30/04	12/07/04	
Vinyl acetate	EPA 8260B	P4L0807	10	1200	9	1.05	11/30/04	12/07/04	
Vinyl chloride	EPA 8260B	P4L0807	4.7	250	Q	1.05	11/30/04	12/07/04	
Xylenes, Total	EPA 8260B	P4L0807	18	150	Q	1.05	11/30/04	12/07/04	
Surrogate: Dibromofluoromethane (70-120%)	70-120%)				93 %				
Surrogate; Toluene-d8 (75-120%)					% 86				
Surrogate: 4-Bromofluorobenzene (75-120%)	75-120%)				% %				

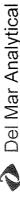
Del Mar Analytical - Phoenix Linda Eshelman Project Manager

The results pertum only to the complex tested in the laboratory. This report shall not be reproduced, PNK0837 <Page 40 of 153> except in full, without written permission from Del Mar Analytical.

Del Mar Analytical

Project ID: 24018.004/Air Liquide Report Number: PNK0837

Basin & Range Hydrogeologists 6155 E. Indian School Rd., Suite 100A Scottsdale, AZ 85251 Attention: Anny Wolkowinsky


Sampled: 11/30/04 Received: 11/30/04

VOLATILE ORGANICS BY GC/MS (EPA 5035/8260B)

	OLA ILLE CINGALI		2			(2000)	(200		
Analyte	Method	Ratch	MDL	Reporting Limit	Sample Dilution Date Result ExctorExtract	Dilution Factor	Dilution Date Factor Extracted	Date Analyzed	Date Data Analyzed Oualifiers
77.6									,
Sample 1D: PNK0837-16 (CCW-01 - Soil)	- Soil)								
Reporting Chils: ug/kg		4	•	*	į	70.	110000	to c	122
Acetone	EPA 8250B	P4L0807	740	1000	٦ <u>(</u>	00.1	11/50/04	12/07/04	1 ^
Benzene	EPA 8200B	P4L0887	4 1	20	2 2	9 5	11/20/04	12/07/04	
Bromobenzene	EPA 8260B	P4L0807		007	Ž ;	5.	11/20/04	40//0/71	
Bromochloromethane	EPA 8260B	P4L0807	7.9	720	<u> </u>	9 ?	11/50/04	12/0 //04	
Bromodichloromethane	EPA 8260B	P4L0807	5.5	90	Ž,	8	11/30/04	2/07/04	
Bromoform	EPA 8260B	P4L0807	8,3	250	Ž	1.06	11/30/04	12/07/04	
Bromomethane	EPA 8260B	P4L0807	110	250	Q Q	1.06	11/30/04	12/07/04	
2-Butanone (MEK)	EPA 8260B	P4L0807	240	1000	2	1.06	11/30/04	12/07/04	
n-Butylbenzene	EPA 8260B	P4L0807	18	250	Q.	1.06	11/30/04	12/07/04	
sec-Butylbenzene	EPA 8260B	P4L0807	걸	250	2	1.06	11/30/04	12/07/04	
tert-Butylbenzene	EPA 8260B	P4L0807	Ξ	250	OZ.	1.06	11/30/04	12/07/04	
Carbon Disulfide	EPA 8260B	P4L0807	8.0	200	9	1.06	11/30/04	12/07/04	
Carbon tetrachloride	EPA 8260B	P4L0807	6.2	250	R	1.06	11/30/04	12/07/04	
Chlorobenzene	EPA 8260B	P4L0807	7.7	50	2	1.06	11/30/04	12/07/04	
Chloroethane	EPA 8260B	P4L0807	8.5	250	9	1.06	11/30/04	12/07/04	
Chloroform	EPA 8260B	P4L0807	8.3	100	2	1.06	11/30/04	12/07/04	
Chloromethane	EPA 8260B	P4L0807	10	250	S	1.06	11/30/04	12/07/04	L3
2-Chlorotoluene	EPA 8260B	P4L0807	6.6	250	N	1.06	11/30/04	12/07/04	
4-Chlorotoluene	EPA 8260B	P4L0807	8.6	250	R	1.06	11/30/04	12/07/04	
Dibromochloromethane	EPA 8260B	P4L0807	8.2	100	2	1.06	11/30/04	12/07/04	
1,2-Dibromo-3-chloropropane	EPA 8260B	P4L0807	65	250	Q N	1.06	11/30/04	12/07/04	
1,2-Dibromoethane (EDB)	EPA 8260B	P4L0807	7.7	100	g	1.06	11/30/04	12/07/04	
Dibromomethane	EPA 8260B	P4L0807	8.3	100	ΩŽ	1.06	11/30/04	12/07/04	
I,2-Dichlorobenzene	EPA 8260B	P4L0807	9.2	100	ΩN	1.06	11/30/04	12/07/04	
1,3-Dichlorobenzene	EPA 8260B	P4L0807	8.0	100	R	1.06	11/30/04	12/07/04	
1,4-Dichlorobenzene	EPA 8260B	P4L0807	9.4	100	S	1.06	11/30/04	12/07/04	
Dichlorodifluoromethane	EPA 8260B	P4L0807	Ξ	250	N N	1.06	11/30/04	12/07/04	ជ
1,1-Dichloroethane	EPA 8260B	P4L0807	6.9	100	100	1.06	11/30/04	12/07/04	
1,2-Dichloroethane	EPA 8260B	P4L0807	7.8	50	Ω.	1.06	11/30/04	12/07/04	
1,1-Dichloroethene	EPA 8260B	P4L0807	7.5	250	110	1.06	11/30/04	,	E4
cis-1,2-Dichloroethene	EPA 8260B	P4L0807	11	100	2	1.06	11/30/04	land.	
trans-1,2-Dichloroethene	EPA 8260B	P4L0807	Ξ	100	Q	1.06	11/30/04	12/07/04	
1,2-Dichloropropane	EPA 8260B	P4L0807	7.3	100	g	1.06	11/30/04	12/07/04	
1,3-Dichloropropane	EPA 8260B	P4L0807	8.4	100	2	1.06	11/30/04	12/07/04	
2,2-Dichloropropane	EPA 8260B	P4L0807	E	100	g	1.06	11/30/04	12/07/04	
1,1-Dichloropropene	EPA 8260B	P4L0807	6.9	100	S	1.06	11/30/04	_	
cis-1,3-Dichloropropene	EPA 8260B	P4L0807	17	100	R	90.1	11/30/04	-	
trans-1,3-Dichloropropene	EPA 8260B	P4L,0807	8.0	100	2	90.1	11/30/04	12/07/04	
Ethylbenzene	EPA 8260B	P4L0807	8.0	901	R	1.06	11/30/04	12/07/04	
Hexachlorobutadiene	EPA 8260B	P4L0807	77	250	2	1.06	11/30/04	12/07/04	į
2-Hexanone	EPA 8260B	P4L0807	130	1000	S	1.06	11/30/04	12/07/04	5
Del Mar Analytical - Phoenix									

Del Mar Analytical - Phoenix Linda Eshelman Project Manager

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced PNK0837 <Page 41 of 153> except it fult, without written permission from Del Mar Analytical.

Sampled: 11/30/04 Received: 11/30/04

Project ID: 24018.004/Air Liquide

Report Number: PNK0837

Basin & Range Hydrogeologists 6155 E. Indian School Rd., Suite 100A Scottsdale, AZ 85251 Arrention: Arry Wolkowinsky

VOLATILE ORGANICS BY GC/MS (EPA 5035/8260B)

Analyte	Method	Batch	MDL	Reporting Limit	Sample Result	Sample Dilution Date Result Factor Extract	Dilution Date Factor Extracted	Date Analyzed	Date Data Analyzed Qualifiers
Sample ID: PNK0837-16 (CCW-01 - Soil) - cont Reporting Units: ug/kg	- Soil) - cont.								
fodomethane	EPA 8260B	P4L0807	25	250	ΩN	1.06	11/30/04	12/07/04	
Esopropy/benzene	EPA 8260B	P4L0807	8.6	100	ΩN	1.06	11/30/04	12/07/04	
p-Isopropyitoluene	EPA 8260B	P4L0807	9	100	QN	1.06	11/30/04	12/07/04	
Methylene chloride	EPA 8260B	P4L0807	99	200	180	1.06	11/30/04	12/07/04	臣4
4-Methyl-2-pentanone (MIBK)	EPA 8260B	P4L0807	150	1000	ΩN	1.06	11/30/04	12/07/04	١,
Methyl-terr-buryl Ether (MTBE)	EPA 8260B	P4L0807	13	250	2	1.06	11/30/04	12/07/04	
Naphthalene	EPA 8260B	P4L0807	63	250	Q.	1.06	11/30/04	12/07/04	
n-Propyfbenzene	EPA 8260B	P4L0807	Ξ	100	Q.	1.06	11/30/04	12/07/04	
Siyrene	EPA 8260B	P4L0807	9.0	100	Q	1.06	11/30/04	12/07/04	
1.1.1,2-Terrachloroethane	EPA 8260B	P4L0807	8.5	250	2	1.06	11/30/04	12/07/04	
1,1,2,2-3'etrachloroethane	EPA 8260B	P4L0807	Ξ	100	Q.	1.06	11/30/04	12/07/04	
Tetrachloroethene	EPA 8260B	P4L0807	11	100	Ω	1.06	11/30/04	12/07/04	
Toluene	EPA 8260B	P4L0807	8.9	100	QV.	1.06	11/30/04	12/07/04	
1,2,3-Trichlorobenzene	EPA 8260B	P4L0807	09	250	R	1.06	11/30/04	12/07/04	
1,2,4-Trichlorobenzene	EPA 8260B	P4L0807	30	250	g	1.06	11/30/04	12/07/04	
1,3,1-Trichloroethane	EPA 8260B	P4L0807	6.2	100	3800	1.06	11/30/04	12/07/04	
1,1.2-Trichloroethane	EPA 8260B	P4L0807	9.6	100	Q	1.06	11/30/04	12/07/04	
Trichloroethene	EPA 8260B	P4L0807	Ξ	100	Q	1.06	11/30/04	12/07/04	
Trichlorofluoromethane	EPA 8260B	P4L0807	7.8	250	ΩN	1.06	11/30/04	12/07/04	
1,2,3-Trichloropropane	EPA 8260B	P4L0807	10	200	Q	90'1	11/30/04	12/07/04	
1,2,4-Trimethylbenzene	EPA 8260B	P4L0807	6.7	100	Ŕ	90'1	11/30/04	12/07/04	
1,3,5.Trimethylbenzene	EPA 8260B	P4L.0807	01	100	R	1.06	11/30/04	12/07/04	
Vinyl acetate	EPA 8260B	P4L0807	01	1200	Ω	1.06	11/30/04	12/07/04	
Viny) chloride	EPA 8260B	P4L0807	4.7	250	2	1.06	11/30/04	12/07/04	
Xylenes, Total	EPA 8260B	P4L0807	8.	150	Q	1.06	11/30/04	12/07/04	
Surrogate: Dibromofinoromethane (70-120%)	0-120%)				92%				
Surrogate: Toluene-d8 (75-130%)					% 66				
Surrogate: 4-Bromoftuorobenzene (75-120%)	5-120%)				% 86				

Dei Mar Analytical - Phoenix Linda Eshelman Project Manager

The results pertain only to the samples tested in the biboratory. This report shall not be reproduced.

PNK0837 <Page 42 of 153>
except in full, without verticen permission from Del Mor Analytical.

1745 Dednin Ave., Sallet LDD, Invine CA KOSTA (149) 56-1752. FAX (1649) 506-1752. FAX (1649) 506-1752. FAX (1649) 506-1752. FAX (1649) 506-1752. FAX (1649) 506-1754. FAX (1649) 506-1764. FAX (1649) 56-1764. FAX (1649) 56

		THE RESERVE OF THE PROPERTY OF
Basin & Range Hydrogeologists	Project ID:	Project ID: 24018.004/Air Liquide
6155 E. Indian School Rd., Suite 100A		
Scottsdale, AZ 85251	Report Number: PNK0837	PNK0837
Attention: Amy Wolkowinsky	•	

Sampled: 11/30/04 Received: 11/30/04

5035/8260B)
(EPA
GC/MS
BY
ORGANICS
VOLATILE

		,	MDL	Reporting	Sample Dilution Date	Dilution	Date	Date	Data
Analyte	Memod	Batch			Kesuit	ractor	ractor extracted	Analyzeo	Analyzeo Quamiters
Sample ID: PNK0837-17 (CCW-02 - Soil) Reporting Units: ug/kg	2 - Soil)								
Acetone	EPA 8260B	P4L1007	2400	10000	2400	10.1	11/30/04	12/10/04	£4
Benzene	EPA 8260B	P4L1007	140	200	ND	10.1	11/30/04	12/10/04	
Bromobenzene	EPA 8260B	P4L1007	77	2500	B	10.1	11/30/04	12/10/04	
Bromochloromethane	EPA 8260B	P4L1007	62	2500	2	10.1	11/30/04	12/10/04	
Bromodichloromethane	EPA 8260B	P4L1007	35	1000	g	10.1	11/30/04	12/10/04	
Bromoform	EPA 8260B	P4L1007	83	2500	Š	10.1	11/30/04	12/10/04	
Bromomethane	EPA 8260B	P4L1007	1100	2500	S.	10.1	11/30/04	12/10/04	
2-Butanone (MEK)	EPA 8260B	P4L1007	2400	10000	ΩN	10.1	11/30/04	12/10/04	
n-Butylbenzene	EPA 8260B	P4L1007	180	2500	Q.	10.1	11/30/04	12/10/04	
sec-Butylbenzene	EPA 8260B	P4L1007	120	2500	QN.	10.1	11/30/04	12/10/04	
tert-Butylbenzene	EPA 8260B	P4L1007	110	2500	S	10.1	11/30/04	12/10/04	
Carbon Disulfide	EPA 8260B	P4L1007	80	2000	ND	10.1	11/30/04	12/10/04	
Carbon tetrachloride	EPA 8260B	P4L1007	62	2500	N	10.1	11/30/04	12/10/04	
Chlorobenzene	EPA 8260B	P4L1007	11	200	ND	10.1	11/30/04	12/10/04	
Chloroethane	EPA 8260B	P4L1007	85	2500	Ω	10.1	11/30/04	12/10/04	
Chloroform	EPA 8260B	P4L1007	83	1000	S	10.1	11/30/04	12/10/04	
Chloromethane	EPA 8260B	P4L1007	100	2500	QN	10.1	11/30/04	12/10/04	
2-Chlorotoluene	EPA 8260B	P4L1007	66	2500	Q.	10.1	11/30/04	12/10/04	
4-Chlorotoluene	EPA 8260B	P4L1007	98	2500	N	10.1	11/30/04	12/10/04	
Dibromochloromethane	EPA 8260B	P4L1007	83	1000	ND	10.1	11/30/04	12/10/04	
1,2-Dibromo-3-chloropropane	EPA 8260B	P4L1007	650	2500	R	10.1	11/30/04	12/10/04	
1,2-Dibromoethane (EDB)	EPA 8260B	P4L1007	11	1000	R	10.1	11/30/04	12/10/04	
Dibromomethane	EPA 8260B	P4L1007	83	1000	R	10.1	11/30/04	12/10/04	
1,2-Dichlorobenzene	EPA 8260B	P4L1007	92	1000	Q	10.1	11/30/04	12/10/04	
1,3.Dichlorobenzene	EPA 8260B	P4L1007	80	1000	Q	10.1	11/30/04	12/10/04	
1,4-Dichlorobenzene	EPA 8260B	P4L1007	46	1000	ď	10.1	11/30/04	12/10/04	
Dichlorodifluoromethane	EPA 8260B	P4L1007	110	2500	2	10.1	11/30/04	12/10/04	
1,2-Dichloroethane	EPA 8260B	P41.1007	78	200	Q	10.1	11/30/04	12/10/04	
L,1-Dichloroethene	EPA 8260B	P4L1007	52	2500	97000	10.1	11/30/04	12/10/04	
cis-1,2-Dichloroemene	EFA \$200B	F4L100/	011	0001	2 9	2 9	11/30/04	12/10/04	
trans-1,z-Dichloroemene 1 2-Dichloroemana	EPA \$260B	P4L1007	2 2	000	2 2	10.1	11/30/04	12/10/04	
1.3-Dichloronropane	EPA 8260B	P41.1007	. 2	000	Ē		11/30/04	12/10/04	
2.2-Dichloropropane	EPA 8260B	P4L1007	130	1000	2	10.1	11/30/04	12/10/04	
1.1-Dichloropropene	EPA 8260B	P4L1007	69	1000	2	10.1	11/30/04	12/10/04	
cis-1,3-Dichloropropene	EPA 8260B	P4L1007	170	1000	Ž	10.1	11/30/04	12/10/04	
trans-1,3-Dichloropropene	EPA 8260B	P4L1007	80	1000	ΩN	10.1	11/30/04	12/10/04	
Ethylbenzene	EPA 8260B	P4L1007	80	1000	Š	10.1	11/30/04	12/10/04	
Hexachlorobutadiene	EPA 8260B	P4L1007	770	2500	R	10.1	11/30/04	12/10/04	
2-Hexanone	EPA 8260B	P4L1007	1300	10000	P	10.1	11/30/04	12/10/04	
Iodomethane	EPA 8260B	P4L1007	250	2500	ĝ	10.1	11/30/04	12/10/04	
Del Mar Analytical - Phoenix									

Linda Eshelman Project Manager

The results pertuin only to the samples nested in the laboratory: This report shall not be reproduced PNK0837 <Page 43 of 133> except in full, without written permission from Del Mar Analytical.

TAST/Derian Ave., Suite 100, heire CA, 9054, (1942) 25-1027. EXV, (1949) 93-2027. 1014 E. Choller, Suite A, Ochen CA, 80204, (1940) 25-104. EXV, (1949) 303-1014. 1014. EXV, (1949) 303-1014. 1014. EXV, (1949) 303-1014. 1014

Project ID; 24018.004/Air Liquide Report Number: PNK0837

Basin & Range Hydrogeologists 6155 E. Indian School Rd., Suite 100A

Attention: Amy Wolkowinsky

Scortsdale, AZ 85251

11/30/04 Sampled: Received: Analyzed Qualifiers

Date

VOLATILE ORGANICS BY GC/MS (EPA 5035/8260B)

MDL

亞

12/10/04 12/10/04 12/10/04 12/10/04

11/30/04

12/10/04 12/10/04 12/10/04 12/10/04 12/10/04 12/10/04 12/10/04 12/10/04

11/30/04 11/30/04 11/30/04 11/30/04 11/30/04 11/30/04 11/30/04 11/30/04 11/30/04 11/30/04 11/30/04

12/10/04

12/10/04

12/10/04

Del Mar Analytical

Basin & Range Hydrogeologists 6155 E. Indian School Rd., Suite 100A

Scottsdale, AZ 85251

2 FAX (949) 260-3297 7 FAX (949) 370-1046 6 FAX (958) 505-9689 3 FAX (480) 785-0851 0 FAX (702) 796-3621 (949) 261-1022 F (909) 370-4667 F (858) 505-8596 F (480) 785-0043 F (702) 798-3620 F 17461Derfan Ave., Sulle 100, Irvine, CA 92814 1914 E. Cobley Dr., Sulle A, Cothon, CA 92224 9494 Chesapeake Dr., Sulte 805, San Diego, CA 92123 9930 South Stist St., Sulte 81-70, Properity AZ 86044 2520 E. Sunset Rd. #3, Les Vegas. NV 89120

Project ID: 24018.004/Air Liquide

Sampled: 11/30/04 Received: 11/30/04

Report Number: PNK0837

VOLATILE ORGANICS BY GC/MS (EPA 5035/8260B)

Attention: Amy Wolkowinsky

			MDL	Reporting	Sample	Dilution	Date	Date	Data
Analyte	Method	Batch	Limit	Limit Limit Result Factor Extracted	Result	Factor	Extracted	Analyzed Qualifiers	Qualifiers
Sample ID: PNK0837-17RE1 (CCW-02 - Soil) - cont.	CW-62 - Soil) - co	ii.							
Reparting Units: ug/kg									
1,1-Dichloroethane	EPA 8260B	P4L1301	069	10000	97000	101	11/30/04 12/11/04	12/11/04	
Surrogate: Dibromoftuoromethane (70-120%)	(70-120%)				106 %				
Surrogate: Toluene-d8 (75-120%)					105 %				
Surrogate: 4-Bromofluorobenzene (75-120%)	(75-120%)				103 %				

Factor Extracted Reporting Sample Dilution Date Result Limit Limit P4L1007 Batch EPA 8260B Sample ID: PNK0837-17 (CCW-02 - Soil) - cont. Method Methyl-rerchutyl Ether (MTBE) 4-Methyl-2-pentanone (MIBK) Reporting Units: ug/kg i. i. 2.2-Tetrachloroethane 1,3,1,2-Terrachloroethane

Methylene chloride p-Isopropyitoluene

Isopropylhenzene

P4L1007 P4L1007 P4L1007 EPA 8260B EPA 8260B Surrogate: Dibromofluoromethane (70-120%) Surrogate: Toluene-d8 (75-120%) Surrogate: 4-Bromofluorobenzene (75-120%) Xylenes, Total

98 % 101 % 101 %

<u>E</u> 吾

11/30/04 11/30/04 11/30/04 11/30/04

12/10/04

7

12/10/04

苕

12/10/04 12/10/04 12/10/04 12/10/04 12/10/04

11/30/04

P4L1007 P4L1007

EPA 8260B EPA 8260B

Frichlorofluoromethane

Unchloroethene

1.2,3-Trichlorobenzene

Ferrachloroethene

n-Propylbenzene

Styrene

Naphthalene

1,1,2-Trichloroethane

1,2,4-Trimethylbenzene

1.2.3-Trichloropropane

1,3,5-Trimethylbenzene

Vinyl chloride

Vinyl acetate

EPA 8260B

11/30/04 11/30/04 11/30/04

Del Mar Analytical - Phoenix Linda Eshelman Project Manager

The results pertain only to the samples nested in the laboratory. This report shall not be reproduced PNK0837 <Page 44 of 153> except in fall, without written permission from Del Mar Anabiteal.

Del Mar Analytical - Phoenix Linda Eshelman Project Manager

The results periodin only to the samples tested in the laboration; This report shall not be reproduced PNK0837 <Page 45 of 133> except in full, without vertilen permission from Del Mar Anabytical.

174E(Desize Ave., Suee 10) frine CA 0254 (498) 64-1027 E-XX (594) 305-207 1014 E. Choel Dr. Suller A. Chilm CA 0254 (498) 64-1027 E-XX (594) 317-1105 9484. Chresipaeke Dr., Sulle 805, San Dégo, CA 92128 (695) 955-8559 FAX (685) 362-8699 9805 050416 515 64. List B-102, Part Suller, X. B 654, Desize R-XX (687) 785-1051 780-202 E. Sulhert Rd. #1, Las Vegas, Ny 95120 (702) 796-502 FXX (702) 796-502 D.

Basin & Range Hydrogeologists 6155 E. Indian School Rd., Suite 100A Scottsdale, AZ 85251 Attention: Amy Wolkowinsky

Project ID: 24018.004/Air Liquide

Sampled: 11/30/04 Received: 11/30/04

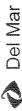
Report Number: PNK0837

VOLATILE ORGANICS BY GC/MS (EPA 5035/8260B)

			MDL	Reporting	Sample	Dilution	Date	MDL Reporting Sample Dilution Date Data	Data	
Analyte	Method	Batch	Limit	Limit	Result	Factor	xtracted	Analyzed	Qualifiers	
Sample ID: PNK0837-17RE2 (CCW-02 - Soil) - cont. Reporting Units: ug/kg	v-02 - Soil) - con	u;								
1,1,1-Trichloroethane	EPA 8260B	P4L1424	6200	100000	\$500000	1010	100000 \$500000 1010 11/30/04 12/14/04	12/14/04		
Surrogate: Dibromofluoromethane (70–120%) Surrogate: Tohtene-A8 (75–120%) Surrogate: 4-Bromofluorobenzene (75–120%)	0-120%) 5-120%)				98 % 103 % 98 %					

Del Mar Analytical

1746 TDetlan Ave., Suite 100 Inviter CA 22514 (1949) 261-1012 FAX (649) 200-2027 FAX (649) 260-2027 FAX (649


Project ID: 24018.004/Air Liquide

Basin & Range Hydrogeologists		Project ID:	24018.0	Project ID: 24018.004/Air Liquide	de		Compled	11/20/07	
Scottsdale, AZ 85251 Attention: Amy Wolkowinsky	Repor	Report Number: PNK0837	PNK08	37			Received	d: 11/30/04	
VOLATILE ORGANICS BY GC/MS (EPA 5035/8260B)	VOLATILE ORGANICS BY GC/MS (EPA 5035/8260B)	RGANIC	SBY	GC/MS	EPA 5	035/820	50B)		
Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result		Dilution Date Factor Extracted	Date Analyzed	Date Data Analyzed Qualifiers
Sample ID: PNK0837-18 (CCW-63 - Soil) Reporting Units: ug/kg	3 - Soil)								
Acetone	EPA 8260B	P4L1007	2400	10000	3000	10.6	11/30/04	12/10/04	<u>E</u> 4
Benzene	EPA 8260B	P4L1007	140	200	Ø	9.01	11/30/04	12/10/04	
Bromobenzene	EPA 8260B	P4L1007	11	2500	Q.	9.01	11/30/04	12/10/04	
Bromochloromethane	EPA 8260B	P4L1007	62	2500	2 9	9.01	11/30/04	12/10/04	
Bromodichloromethane Bromoform	EPA 8260B FDA 8260B	P4L1007	26.8	2500	2 5	10.6	11/30/04	12/10/04	
Bromomethane	EPA 8260B	P4L1007	1100	2500	2	10.6	11/30/04	12/10/04	
2-Butanone (MEK)	EPA 8260B	P4L1007	2400	10000	Q.	10.6	11/30/04	12/10/04	
n-Butylbenzene	EPA 8260B	P4L1007	180	2500	Q	10.6	11/30/04	12/10/04	
sec-Butylbenzene	EPA 8260B	P4L1007	120	2500	2	10.6	11/30/04	12/10/04	
tert-Butylbenzene	EPA 8260B	P4L1007	110	2500	2 5	10.6	11/30/04	12/10/04	
Carbon Disulinde	EFA 8260B	P4L1007	3 6	2500	2 5	10.0	11/30/04	12/10/04	
Chlorobenzene	EPA 8260B	P4I.1007	7.5	500	Ē	10.6	11/30/04	12/10/04	
Chloroethane	EPA 8260B	P4L1007	\$2	2500	2	10.6	11/30/04	12/10/04	
Сывогогот	EPA 8260B	P4L1007	83	1000	Q	10.6	11/30/04	12/10/04	
Chloromethane	EPA 8260B	P4L1007	100	2500	Ž	10.6	11/30/04	12/10/04	
2-Chlorotoluene	EPA 8260B	P4L1007	66	2500	2	10.6	11/30/04	12/10/04	
4-Chlorotoluene	EPA 8260B	P4L1007	98	2500	Q (10.6	11/30/04	12/10/04	
Dibromochloromethane	EPA \$260B	P4L1007	78	0001	Z Z	9.01	11/30/04	12/10/04	
1,2-Dibromo-5-chioropropane	EPA 8200B	P4L1007	050	0007	2 Z	0,01	11/30/04	12/10/04	
Dibromomethane	EFA 8200B	P41 1007	. 5	1000	2 5	9.01	11/30/04	12/10/04	
1.2-Dichlorobenzene	EPA 8260B	P4L1007	3 6	1000	9	10.6	11/30/04	12/10/04	
1,3-Dichlorobenzene	EPA 8260B	P4L1007	80	1000	QN	10.6	11/30/04	12/10/04	
1,4-Dichlorobenzene	EPA 8260B	P4L1007	94	1000	Q Q	10.6	11/30/04	12/10/04	
Dichlorodifluoromethane	EPA 8260B	P4L1007	110	2500	2	10.6	11/30/04	12/10/04	
I,1-Dichloroethane	EPA 8260B	741.1007	90	1000	26006	10.6	11/50/04	12/10/04	
1,2-Dichlorouthen	Era 6200D FPA 8260B	74C1007	75	2500	4606	10.6	11/30/04	12/10/04	
cis-1 2-Dichloroethene	EPA 8260B	P41.1007	5 [1000	Ē	10.6	11/30/04	12/10/04	
trans-1,2-Dichloroethene	EPA 8260B	P4L1007	110	1000	2	10.6	11/30/04	12/10/04	
1,2-Dichloropropane	EPA 8260B	P4L1007	73	1000	Š	10.6	11/30/04	12/10/04	
1,3-Dichloropropane	EPA 8260B	P4L1007	84	1000	ΩN	9.01	11/30/04	12/10/04	
2,2-Dichloropropane	EPA 8260B	P4L1007	130	1000	N	10.6	11/30/04	12/10/04	
1,1-Dichloropropene	EPA 8260B	P4L1007	69	1000	£	10.6	11/30/04	12/10/04	
cis-1,3-Dichloropropene	EPA 8260B	P4L1007	170	1000	2	10.6	11/30/04	12/10/04	
trans-1,3-Dichloropropene	EPA 8260B	P4L1007	08	1000	2 :	10.6	11/30/04	12/10/04	
Ethylbenzene	EPA 8260B	P4L1007	08	1000	2	10.6	11/30/04	12/10/04	
Hexachlorobutadiene	EPA 8260B	P4L1007	0//	2500	2 5	9.01	11/30/04	12/10/04	
Z-rexanone	EFA \$200B	L4F100/	1300	10000	2	10.0	11/50/04	12/10/04	
Del Mar Analytical - Phoenix Linda Echelman									
Project Manager									
		-			1				

Del Mar Analytical - Phoenix Linda Eshelman Project Manager

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced PNK0837 <Page 46 of 153> except in Jult, without written permission from Del Mar Analytical.

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced PNK0837 <Page 47 of 153> except in full, without written permission from Del Mar Andytical.

Basin & Range Hydrogeologists 6155 E. Indian School Rd., Suite 100A Scotradate, AZ 85251 Attention: Anny Wolkowinsky

Del Mar Analytical

Traft Deata Ave. Sulte 100, ferie CA 9254 (49) 69-1702 FX (949) 370-1202 (1912) 91-912

17461Derian Aez., Suate 100, Invine CA 98914 (949) 96-12027 FAX (949) 980-12097 (1041 E. CD09147 - Sulfa A. COMINIC, CA 82291 (1093) 370-1046

Sampled: 11/30/04 Received: 11/30/04

Project ID: 24018.004/Air Liquide

Del Mar Analytical

Report Number: PNK0837

Basin & Range Hydrogeologists 6155 E. Indian School Rd., Suite 100A Scottsdale, AZ 85251 Attention: Amy Wolkowinsky

Date Data Analyzed Qualifiers

MDL Reporting Sample Dilution Date Limit Limit Result Factor Extracted

Batch

Method

Analyte

VOLATILE ORGANICS BY GC/MS (EPA 5035/8260B)

106 11/30/04 12/11/04

10000

EPA 8260B P4L1301 620

Surrogate: Dibromofluoromethane (70-120%) Surrogate: Toluene-d8 (75-120%) Surrogate: 4-Bromofluorobenzene (75-120%)

Sample ID: PNK0837-18RE1 (CCW-03 - Soil) - cont.

Reporting Units: ug/kg 1,1,1-Trichloroethane

430000 98 % 103 % 100 %

Project ID: 24018.004/Air Liquide

Sampled: 11/30/04 Received: 11/30/04 Report Number: PNK0837

VOLATILE ORGANICS BY GC/MS (EPA 5035/8260B)

Analyte	Method	Batch	MDL	Reporting Limit	Sample Dilution Date Result Factor Extract	Dilution Factor!	Vilution Date Factor Extracted	Date Analyzed	Date Data Analyzed Qualifiers
Sample ID: PNK0837-18 (CCW-03 - Soil) - cont Reporting Units: ug/kg	- Soil) - cont.								
fodomethane	EPA 8260B	P4L1007	250	2500	Q	9.01	11/30/04	12/10/04	
Isopropylbenzene	EPA 8260B	P4L1007	86	1000	Š	10.6	11/30/04	12/10/04	
p-isopropyltoluene	EPA 8260B	P4LJ007	130	1000	2 N	10.6	11/30/04	12/10/04	
Methylene chloride	EPA 8260B	P4L1007	909	5000	1000	10.6	11/30/04	12/10/04	E4
4-Methyl-2-pentanone (MfBK)	EPA 8260B	P4L1007	1500	10000	S	10.6	11/30/04	12/10/04	
Methyl-tert-buryl Ether (MTBE)	EPA 8260B	P4L1007	130	2500	2	10.6	11/30/04	12/10/04	
Naphthalene	EPA 8260B	P4L1007	670	2500	Ω̈́	9.01	11/30/04	12/10/04	
n-Propyibenzene	EPA 8260B	P4L1007	110	1000	Q	9.01	11/30/04	12/10/04	
Siyrene	EPA 8260B	P4L1007	96	1000	S	9.01	11/30/04	12/10/04	
1.1.1,2.Tetrachloroethane	EPA 8260B	P4L1007	8	2500	S	9.01	11/30/04	12/10/04	
i, l, 2, 2-Tetrachloroethane	EPA 8260B	P4L1007	110	1000	S	9.01	11/30/04	12/10/04	
Terrachloroethene	EPA 8260B	P4L1007	011	1000	Ω	10.6	11/30/04	12/10/04	
Toluene	EPA 8260B	P4L1007	68	1000	9	9.01	11/30/04	12/10/04	
i,2,3-Trichlorobenzene	EPA 8260B	P4L1007	009	2500	R	10.6	11/30/04	12/10/04	
i,2,4-Trichlorobenzene	EPA 8260B	P4L1007	300	2500	R	9.01	11/30/04	12/10/04	
1, f, 2-Trichloroethane	EPA 8260B	P4L1007	96	1000	2	10.6	11/30/04	12/10/04	
Trichloroethene	EPA 8260B	P4L1007	110	1000	g	10.6	11/30/04	12/10/04	
Trichlorofluoromethane	EPA 8260B	P4L1007	78	2500	R	10.6	11/30/04	12/10/04	
1.2,3-Trichloropropane	EPA 8260B	P4L1007	100	5000	ND	9.01	11/30/04	12/10/04	
1,2,4-Trimethylbenzene	EPA 8260B	P4L1007	6	1000	Q	10.6	11/30/04	12/10/04	
i.3,5-Trimethylbenzene	EPA 8260B	P4L1007	100	1000	Ω̈́	10.6	11/30/04	12/10/04	
Vinyl acetate	EPA 8260B	P4L1007	90	12000	Q	10.6	11/30/04	12/10/04	
Vinyl chloride	EPA 8260B	P4L1007	47	2500	QN	10.6	11/30/04	12/10/04	
Xylenes, Total	EPA 8260B	P4L1007	180	1500	Ø	9.01	11/30/04	12/10/04	
Surrogate: Dibromofluoromethane (70-120%)	70-120%)				104%				
Surrogate: Toluene-d8 (75-120%)					15%				
Surrogaie: 4-Bromofluorobenzene (75-120%)	5-120%)				104%				

Del Mar Analytical - Phoenix Linda Eshelman Project Manager

The results pertain only to the samples tested in the laboration. This report shall not be reproduced. PNK0837 <Page 48 of 153> except in full, without virtuen permission from Del Mar Anabytical.

The restrits pertain only to the samples tested in the leboratory. This report shall not be reproduced, PNK0837 <Page 49 of 153> except in full, without vertien permission from Del Mar Analytical.

Del Mar Analytical - Phoenix Linda Eshelman Project Manager

Basin & Range Hydrogeologists 6155 E. Indian School Rd., Suite 100A

Scottsdale, AZ 85251 Attention: Amy Wolkowinsky

Del Mar Analytical

Tract Design Ave. Suite 100, Irvine CA 20214 (494) 56-10275 FTX (849) 180-1027 1914 Cardon Ave. Suite 100, Irvine CA 20214 (494) 56-1026 FTX (849) 3770-1046 9484 Chieszpacke But. Suite 800, San Dego, CA 202125 (856) 505-8356 FTX (858) 505-8859 8305 Coull 511 612, Irvine 810, San Dego, CA 202125 (856) 505-8356 FTX (858) 505-8859 8305 Coull 511 612, Irvine 810, San Dego, CA 202125 (858) 505-8359 FTX (859) 505-8859 5

17461 Derian Ave., Sale 100, Inne. CA 9934 (1949) 95-1107. P.X (1949) 9304-9394 (1945) 94-1107 E.X (1949) 9304-9484 (1945) 9304-9484 (1949) 9304-9484 (1948) 93

Del Mar Analytical

Basin & Range Hydrogeologists 6155 E, Indían School Rd., Suite 100A

Attention: Amy Wolkowinsky

Scottsdale, AZ 85251

Project ID: 24018.004/Air Liquide Report Number: PNK0837

Sampled: 11/30/04 Received: 11/30/04

Analyzed Qualifiers Data

Factor Extracted

Result

Limit

Limit

Batch

Method

Analyte

Data

Date

MDL Reporting Sample Dilution Date

VOLATILE ORGANICS BY GC/MS (EPA 5035/8260B)

Sample ID: PNK0837-19 (H-EX6-4.0 - Soil) - cont.

MDL Reporting Sample Dilution Date

VOLATILE ORGANICS BY GC/MS (EPA 5035/8260B)

Date

E E

12/10/04 12/10/04 12/10/04 12/10/04

11/30/04

P4L1007

1,1,1,2-Tetrachloroethane

n-Propylbenzene

Naphthalene

1, 1, 2, 2-Tetrachloroethane

Tetrachloroethene

Toluene

1,2,3-Trichlorobenzene 1,2,4-Trichlorobenzene

12/10/04 12/10/04

11/30/04 11/30/04

12/10/04

11/30/04 11/30/04 11/30/04

P4L1007 P4L1007 P4L1007 P4L1007 P4L1007

EPA 8260B EPA 8260B EPA 8260B

4-Methyl-2-pentanone (MIBK) Methyl-tert-butyl Ether (MTBE)

Reporting Units: ug/kg

E4

12/10/04 12/10/04

12/10/04

12/10/04 12/10/04 12/10/04

11/30/04 11/30/04 11/30/04 11/30/04 11/30/04

12/10/04

11/30/04

22222222222222222222

EPA 8260B EPA 8260B

P4L1007

EPA 8260B EPA 8260B **EPA 8260B**

Trichlorofluoromethane

1, 1, 2-Trichloroethane

Frichloroethene

1,2,3-Trichloropropane 1,2,4-Trimethylbenzene

I,3,5-Trimethylbenzene

12/10/04

11/30/04 11/30/04 11/30/04

<u>E</u>4

12/10/04 12/10/04 12/10/04

11/30/04 11/30/04 11/30/04 11/30/04

EPA 8260B EPA 8260B EPA 8260B

Surrogate: Dibromoftuoromethune (70-120%) Surrogate: 4-Bromoftworobenzene (75-120%)

Xylenes, Total Vinyl chloride Vinyl acetate

Surrogate: Toluene-d8 (75-120%)

103 % 104 % 104 %

11/30/04 11/30/04 Project ID: 24018.004/Air Liquide

Sampled: 1 Received: 1 Report Number: PNK0837

Analyte	Method	Batch	Limit	Limit	Result	Factor	FactorExtracted	Analyzed Qualifiers	Qualifiers	
Sample 1D: PNK0837-19 (H-EX6-4.0 - Soil) Reporting Units: ug/kg	.0 - Soil}									
Acetone	EPA 8260B	P4L1007	2400	10000	2900	10	11/30/04	12/10/04	E4	
Benzene	EPA 8260B	P4L1007	140	200	S	10	11/30/04	12/10/04		
Bromobenzene	EPA 8260B	P4L1007	11	2500	S	10	11/30/04	12/10/04		
Bromochloromethane	EPA 8260B	P4L1007	62	2500	S	10	11/30/04	12/10/04		
Bronnodichloromethane	EPA 8260B	P4L1007	92	1000	QX	10	11/30/04	12/10/04		
Bromoform	EPA 8260B	P4L1007	83	2500	ND	10	11/30/04	12/10/04		
Bromomethane	EPA 8260B	P4L1007	1100	2500	ND	10	11/30/04	12/10/04		
2-Butanone (MEK)	EPA 8260B	P4L1007	2400	10000	QX	10	11/30/04	12/10/04		
n-Butylbenzene	EPA 8260B	P4L1007	180	2500	ND	10	11/30/04	12/10/04		
sec-Butylbenzene	EPA 8260B	P4L1007	120	2500	ΩN	10	11/30/04	12/10/04		
terr-Butytbenzene	EPA 8260B	P4L1007	110	2500	ΩN	10	11/30/04	12/10/04		
Carbon Disulfide	EPA 8260B	P4L1007	80	2000	Ω	10	11/30/04	12/10/04		
Carbon tetrachloride	EPA 8260B	P4L1007	62	2500	ΩN	10	11/30/04	12/10/04		
Chlorobenzene	EPA 8260B	P4L1007	11	200	QX	10	11/30/04	12/10/04		
Chloroethane	EPA 8260B	P4L1007	85	2500	g	10	11/30/04	12/10/04		
Chloroform	EPA 8260B	P4L1007	83	1000	g	10	11/30/04	12/10/04		
Chloromethane	EPA 8260B	P4L1007	100	2500	S	10	11/30/04	12/10/04		
2-Chlorotoluene	EPA 8260B	P4L1007	66	2500	Ω	10	11/30/04	12/10/04		
4-Chlorotoluene	EPA 8260B	P4L1007	98	2500	Ω	10	11/30/04	12/10/04		
Dibromochloromethane	EPA 8260B	P4L1007	82	1000	Ê	10	11/30/04	12/10/04		
1,2-Dibromo-3-chforopropane	EPA 8260B	P4L1007	650	2500	Q	10	11/30/04	12/10/04		
(,2-Dibromoethane (EDB)	EPA 8260B	P4L1007	77	1000	R	01	11/30/04	12/10/04		
Dibromomethane	EPA 8260B	P4L1007	83	1000	g	0	11/30/04	12/10/04		
1.2-Dichlorobenzene	EPA 8260B	P4L1007	92	1000	S	01	11/30/04	12/10/04		
f,3-Dichlorobenzene	EPA 8260B	P4L1007	80	1000	ΩN	10	11/30/04	12/10/04		
f.4-Dichlorobenzene	EPA 8260B	P4L1007	6	1000	g	10	11/30/04	12/10/04		
Dichlorodiffuoromethane	EPA 8260B	P4L1007	110	2500	S	9	11/30/04	12/10/04		
1,2-Dichloroethane	EPA 8260B	P4L1007	78	200	520	10	11/30/04	12/10/04		
cis-1.2-Dichloroethene	EPA 8260B	P4L1007	110	1000	2	10	11/30/04	12/10/04		
trans-1,2-Dichloroethene	EPA 8260B	P4L1007	110	1000	Ŕ	10	11/30/04	12/10/04		
1,2-Diehloropropane	EPA 8260B	P4L1007	73	1000	Q	10	11/30/04	12/10/04		
1,3-Dichloropropane	EPA 8260B	P4L1007	84	1000	2	10	11/30/04	12/10/04		
2.2-Dichloropropane	EPA 8260B	P4L1007	130	1000	S	10	11/30/04	12/10/04		
i,f-Dichloropropene	EPA 8260B	P4L1007	69	1000	S	10	11/30/04	12/10/04		
cis-1,3-Dichloropropene	EPA 8260B	P4L1007	170	1000	S	10	11/30/04	12/10/04		
trans-1,3-Dichloropropene	EPA 8260B	P4L1007	80	1000	Ω	01	11/30/04	12/10/04		
Ethylbenzene	EPA 8260B	P4L1007	80	1000	310	10	11/30/04	12/10/04	E4	
Hexachlorobutadiene	EPA 8260B	P4L1007	770	2500	ΩN	10	11/30/04	12/10/04		
2-Hexanone	EPA 8260B	P4L1007	1300	10000	Q	10	11/30/04	12/10/04		
Isopropylbenzene	EPA 8260B	P4L1007	86	1000	ΩN	10	11/30/04	12/10/04		
p-Isopropyholuene	EPA 8260B	P4L1007	130	1000	2	01	11/30/04	12/10/04	E4	

Del Mar Analytical - Phoenix Linda Eshelman Project Manager

The results pertain only to the samples tested in the laboratory. This report shall not be reproducted. PNK0837 <Page 51 of 133> except in full, without veritien permission from Del Mar Analysical.

The restaits periationly to the samples tested in the laboratory. This report shall not be reproduced. PNK0837 <Page 50 of 153> except in full, without written permission from Del Mar Analytical.

Del Mar Analytical - Phoenix Linda Eshelman

Project Manager

1745/Devian Ave., Suite: 100 Innier DA 02941 (949) 181-1027 FFX (949) 980-1029 1014 E. Dougle 100 Innier DA 02941 (949) 181-1467 FFX (949) 181-1466 1014 (949) 181-1467 FFX (949) 181-1467 FFX (949) 181-1467 FFX (949) 181-1467 (949) 181-1467 FFX (949) 181-1467 FFX (949) 181-1467 (949) 181-1467 FFX (949) 181-1467 (949) 181-1467 FFX (949)

Project ID: 24018.004/Air Liquide

Report Number: PNK0837

Basin & Range Hydrogeologists 6155 E. Indían School Rd., Suite 100A Scottsdale, AZ 85251 Attention: Amy Wolkowinsky

Sampled: 11/30/04 Received: 11/30/04

Del Mar Analytical

Rasin & Rane Hydrogenhouses Rasin & Rane Hydrogenhouses		Project ID:	24018.0	Project ID: 24018,004/Air Liouide	de				The same of the sa
6155 E. Indian School Rd Suite 100A	00A			•			Sample	Sampled: 11/30/04	
Scottsdale, AZ 85251		Report Number: PNK0837	PNK08	13			Receive	Received: 11/30/04	
Attention: Amy Wolkowinsky	•								
50.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.	ekalenarijansiddinostock	amintoiside et Benitare	STATE STATE OF THE PARTY OF THE	Trespending property to	newporkskie och och	ogen inspector	Section of the sectio	dielempeelikkeinde	HANDERS OF THE PROPERTY OF THE PARTY OF THE
OA	VOLATILE ORGANICS BY GC/MS (EPA 5035/8260B)	RGANIC	SBY	GC/MS ((EPA 5	035/826	0B)		
			MDL	MDL Reporting Sample Dilution Date	Sample	Dilution	Date	Date	Date Data
Analyte	Method	Batch	Limit	Limit Limit Result Factor Extracted	Result	FactorE	xtracted	Analyzed Qualifiers	Qualifiers
Sample ID: PNK0837-19RE2 (H-EX6-4.0 - Soil) - cont.	(X6-4.0 - Soil) -	cont.							
Reporting Units: ug/kg									
1,1,1-Trichloroethane	EPA 8260B	P4L1424 62000	62000		9400000	10000	1000000 9400000 10000 11/30/04 12/14/04	12/14/04	
Surrogate: Dibromofluoromethane (70-120%)	70-120%)				% 16				
Surrogate: Toluene-d8 (75-120%)					106%				
Surrogate: 4-Bromofluorobenzene (75-120%)	75-120%)				102 %				

MDL Reporting Sample Dilution Date Date Data Limit Limit Result Factor Extracted Analyzed Qualifiers

VOLATILE ORGANICS BY GC/MS (EPA 5035/8260B)

Batch

Method

Sample ID: PNK0837-19RE1 (H-EX6-4.0 - Soil) - cont.

Reporting Units: ug/kg

1.1-Dichloroethane 1,1-Dichloroethene Iodomethane

E 52

11/30/04 12/11/04 11/30/04 12/11/04 11/30/04 12/11/04 11/30/04 12/11/04

8888

120000 160000 ND 41000

10000 25000 25000 50000

690 750 2500 6000

P4L1301 P4L1301 P4L1301 P4L1301

EPA 8260B EPA 8260B EPA 8260B EPA 8260B

105 % 102 % 104 %

Surrogate: Dibromofluoromethone (70-120%) Surrogate: Toluene-d8 (75-120%) Surrogate: 4-Bromofluorobenzene (75-120%)

Methylene chloride

Del Mar Analytical - Phoenix Linda Eshelman Project Manager

The results partialn only to the samples ussted in the laborations. This report shall not be reproduced.

PNROB37 <Page 52 of 153>
except in full, without written permission from Del Mar Anafytical.

Del Mar Analytical - Phoenix Linda Eshelman

Project Manager

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced PNK0837 <Page 53 of 153> except in full, without written permission from Del Mar Analytical.

Basin & Range Hydrogeologists 6155 E. Indian School Rd., Suite 100A

Attention: Amy Wolkowinsky

Scottsdale, AZ 85251

Del Mar Analytical

11461 Defan Ave., Suite 100, heire, CA 92814 (949) 56-1027 FAX (949) 356-2027 TAV (140) 356-2027 TAV (140) 356-2027 TAV (140) 356-2027 TAV (140) 356-3029 TAV (140) 370-1046 9494 Cheaspleake Dr., Suite 205, Sain Dego, CA 92723 (185) 905-805-805 TAV (140) 3105-809 9800 South 1818 E., Suite B-102, Photos, A. & Sedar (140) 785-0050 TAV (140) 785-0051 S200 E. Suinest Ref. #21, Las Vegas, NV 98170 (102) 196-9020 FAX (102) 196-9020

Project ID: 24018.004/Air Liquide

Report Number: PNK0837

Sampled: 11/30/04 Received: 11/30/04

Del Mar Analvtical

Triatipation Am. Suite follo frome CA 9021 (499) 571-1022 (194 E. Cropergo Fr. Suite A. Cathor CA 90214 (99) 370-4687 (194 E. Crosepacie Dr., Suite & Cathor CA 90212 (1959) 513-6256 9500 (500) 514. Suite Roth Orbenta, A. Saide Maria President at 2020 E. Suite Roth 31, Lata Vegas (N.) 981-071 (1969) 5202 E. Suite Roth 31, Lata Vegas (N.) 981-071 (1969)

Project ID: 24018.004/Air Liquide Report Number: PNK0837

Sampled: 11/30/04 Received: 11/30/04

2 FAX (949) 260-3297 77 FAX (949) 370-1046 66 FAX (658) 505-9689 3 FAX (460) 785-0851 10 FAX (702) 798-3621

Basin & Range Hydrogeologists 6155 E. Indian School Rd., Suite 100A Scottsdale, AZ 85251

Attention: Amy Wolkowinsky

Analyzed Qualifiers

Factor Extracted

Reporting Sample Dilution Date Limit Result Factor Extract

VOLATILE ORGANICS BY GC/MS (EPA 5035/8260B)

MDL Limit

Batch

Method

4.nuivte

Sample 1D: PNK0837-20 (G-EX7-6.0 - Soil)

Reporting Units: ug/kg

Acetone

Date

VOLATILE ORGANICS BY GC/MS (EPA 5035/8260B)

Data

Date

MDL Reporting Sample Dilution Date

Analyte	Method	Batch	Cimit	Limit	Result	Factor	Factor Extracted	Analyzed	Analyzed Qualifiers
Sample ID: PNK0837-20 (G-EX7-6.0 - Soil) - cont Reporting Units: ug/kg	.0 - Soil) - cont.								
lodomethane	EPA 8260B	P4L1007	25	250	g	1.02	11/30/04	12/10/04	
Isopropylbenzene	EPA 8260B	P4L1007	8.6	100	Q	1.02	11/30/04	12/10/04	
p-lsopropyltoluene	EPA 8260B	P4L1007	13	100	S	1.02	11/30/04	12/10/04	
Methylene chloride	EPA 8260B	P4L1007	9	200	87	1.02	11/30/04	12/10/04	E4
4-Methyl-2-pentanone (MIBK)	EPA 8260B	P4L1007	150	1000	Q.	1.02	11/30/04	12/10/04	
Methyl-tert-butyl Ether (MTBE)	EPA 8260B	P4L1007	13	250	Z	1.02	11/30/04	12/10/04	
Naphthalene	EPA 8260B	P4L1007	29	250	Z	1.02	11/30/04	12/10/04	
n-Propylbenzene	EPA 8260B	P4L1007	Ξ	001	g	1.02	11/30/04	12/10/04	
Styrene	EPA 8260B	P4L1007	0.6	100	g	1.02	11/30/04	12/10/04	
1,1,1,2-Tetrachloroethane	EPA 8260B	P4L1007	8.5	250	Z	1.02	11/30/04	12/10/04	
1,1,2,2-Tetrachloroethane	EPA 8260B	P4L1007	11	100	S	1.02	11/30/04	12/10/04	
Tetrachloroethene	EPA 8260B	P4L1007	11	100	S	1.02	11/30/04	12/10/04	
Toluene	EPA 8260B	P4L1007	8.9	100	g	1.02	11/30/04	12/10/04	
I,2,3-Trichlorobenzene	EPA 8260B	P4L1007	99	250	2	1.02	11/30/04	12/10/04	
1,2,4-Frichlorobenzene	EPA 8260B	P4L1007	30	250	2	1.02	11/30/04	12/10/04	
1,1,1-Trichloroethane	EPA 8260B	P4L1007	6.2	001	0096	1.02	11/30/04	12/10/04	M3
1,1,2-Trichloroethane	EPA 8260B	P4L1007	9.6	100	Š	1.02	11/30/04	12/10/04	
Trichloroethene	EPA 8260B	P4L1007	11	100	2	1.02	11/30/04	12/10/04	
Trichlorofluoromethane	EPA 8260B	P4L1007	7.8	250	ΩZ	1.02	11/30/04	12/10/04	
1,2,3-Trichloropropane	EPA 8260B	P4L1007	10	200	Ω	1.02	11/30/04	12/10/04	
1,2,4-Trimethylbenzene	EPA 8260B	P4L1007	6.7	100	Š	1.02	11/30/04	12/10/04	
1,3,5-Trimethylbenzene	EPA 8260B	P4L1007	10	100	S	1.02	11/30/04	12/10/04	
Vinyl acetate	EPA 8260B	P4L1007	10	1200	g	1.02	11/30/04	12/10/04	
Vinyl chloride	EPA 8260B	P4L1007	4.7	250	QN	1.02	11/30/04	12/10/04	
Xylenes, Total	EPA 8260B	P41,1007	18	150	g	1.02	11/30/04	12/10/04	
Surrogate: Dibromofluoromethane (70-120%)	70-120%)				101 %				
Surrogate: Toluene-d8 (75-120%)					103 %				
Surrogate: 4-Bromofluorobenzene (75-120%)	5-120%)				104 %				

12/10/04

11/30/04

P4L1007 P4L1007 P4L1007 P4L1007

Carbon tetrachloride Chlorobenzene

Carbon Disulfide

P4L1007 P4L1007

12/10/04

11/30/04

12/10/04 12/10/04 12/10/04 12/10/04

11/30/04 11/30/04 11/30/04

P4L1007 P4L1007 P4L1007 P4L1007

EPA 8260B EPA 8260B

Bromodichloromethane

2-Butanone (MEK)

Bromomethane

Вготоботп

sec-Burylbenzene eπ-Burylbenzene

n-Butylbenzene

Bromochloromethane

Bromobenzene

P4L1007 P4L1007

12/10/04 12/10/04

11/30/04 11/30/04 11/30/04 11/30/04

12/10/04 12/10/04

11/30/04 11/30/04 11/30/04

12/10/04

11/30/04

12/10/04 12/10/04 12/10/04

11/30/04 11/30/04

12/10/04

12/10/04

11/30/04 11/30/04 11/30/04 12/10/04 12/10/04

11/30/04 11/30/04

EPA \$260B

1.2-Dibromo-3-chloropropane 1.2-Dibromoethane (EDB)

Dibromochloromethane

2-Chlorotoluene 4-Chlorotoluene

Chloromethane Chioroethane

Chloroform

P4L1007
P4L1007
P4L1007
P4L1007
P4L1007
P4L1007
P4L1007

12/10/04

12/10/04 12/10/04

11/30/04 11/30/04 11/30/04 11/30/04 11/30/04 11/30/04 11/30/04

12/10/04

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced PNK0837 <Page 54 of 153> except in full, without written permission from Del Mar Anabrical.

Del Mar Analytical - Phoenix Linda Eshelman

Project Manager

召

12/10/04 12/10/04 12/10/04

12/10/04 12/10/04 12/10/04

1/30/04 11/30/04 11/30/04 11/30/04 11/30/04

P4L1007 P4L1007

EPA 8260B EPA 8260B

P4L1007

cis-1,2-Dichloroethene trans-1,2-Dichloroethene

1,2-Dichloropropane 1,3-Dichloropropane 1.2-Dichloropropane t,1-Dichloropropene

12/10/04 12/10/04

11/30/04

P4L1007
P4L1007
P4L1007
P4L1007
P4L1007
P4L1007
P4L1007
P4L1007

Dichlorodifluoromethane

i,i-idichiorocthane 1,1-Dichloroethene

1,2-Dichloroethane

1.2-Dichlorobenzene 1.3-Dichlorobenzene 4-Dichlorobenzene

Dibromomethane

12/10/04

12/10/04 12/10/04 12/10/04

12/10/04

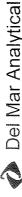
11/30/04 11/30/04

P4L1007 P4L1007 P4L1007 P4L1007 P4L1007 P4L1007

trans-1,3-Dichloropropene

-Texachloroburadiene

Ethylbenzene


cis-1,3-Dichloropropene

EPA 8260B EPA 8260B EPA 8260B EPA 8260B

11/30/04

Del Mar Analytical - Phoenix Linda Eshelman Project Manager

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced PNK0837 <Page 55 of 133> except in full, without written permission from Del Mar Analytical.

Taffoeian Ave, Suie 10. Invene CA 92814 (949) 261-1022 FAX (949) 256-3297 10-14 E Conder : Safe A. Ordino CA 92324 (949) 370-146 FAX (949)

Factor Extrac

8.37

ND 790 %

840

∀/Z

P4L1315

EPA 8260B

1.4-Diovane Surrogute: Dibromofluoromethane (80-125%)

Sample ID: PNK0837-04 (CTD-02 - Soil)

Reporting Units: 11g/kg

Sample 1D: PNK0837-03 (CTD-01 - Soil)

Reporting Units: ug/kg

MDL Reporting Sample Dilution Limit Limit Result FactorE

Batch

Method

1,4-DIOXANE BY GC/MS (EPA 5035/8260B)

Project ID: 24018.004/Air Liquide

Report Number: PNK0837

Basin & Range Hydrogeologists 6155 E. Indian School Rd., Suite 100A Scottschile, AZ 85251

Attention: Amy Wolkowinsky

17451 Detain Aus. Suite 100, Inner CA 0284 (449) 65-11025 FX (1949) 95-1026 94-94 94-1026 94-94 94-1026 94-94 94-1026 94-94 94

Del Mar Analytical

Camples	Samulad: 11/30/04	en e	Basin & Range Hydrogeologists		Project ID: 24018.004/Air Liquide	24018.00	4/Air Liqui	*		Samula	Samulad: 11/30/04	
Receiver	Samptett 1730/04 Received: 11/30/04		Scottsdale, AZ 85251 Attention: Any Wolkowinsky	Repor	Report Number: PNK0837	PNK083	_	Section 100 Plants	200	Received	Received: 11/30/04	A CONTRACTOR OF THE CONTRACTOR
		And and the state of the state	NO VANAZA LAGOVARNIMAMAJORRANO VANDONA VANDANA EN VRONDA TOF GALLANDO S	1,4-DIOXANE BY GC/MS (EPA 5035/8260B)	ANE BY	CCIM	S (EPA	5035/82	60B)			
on Date rExtracted	Date Data Analyzed Qualifiers	Data ualifiers	Analyte	Method	Batch	MDL I Limit	MDL Reporting Limit Limit	Sample Dilution Date Result Factor Extracted	Hution Factor	Date Extracted	Date Data Analyzed Qualifiers	Data Qualifiers
			Sample ID: PNK0837-11 (C-EX3-5.75 - Soil) Reporting Units: ug/kg	.75 - Soil)								
11/30/04 12/11/04	12/11/04		1,4-Dioxane Surrogate: Dibromoftuoromethane (80-125%)	EPA 8260B 80-125%)	P4L1315	N/A	100	ND 203 %	Ξ	11/30/04 12/11/04	12/11/04	84
20/21/C1 20/05/11	201110		Sample ID: PNK0837-12 (G-EX4-5.75 - Soil) Reporting Units: ug/kg	.75 - Soil)	ALC: TAG	2	901	Š	10	20011/CL 2000011	80/11/03	
11/20/04	#0/11/77		1,4-Dioxane Surrogate: Dibromoftuoromethane (80-125%)	EFA 8200B 30-125%)	r40.010	¥ Ž	3	184%	5	F0/00/11	* 0/11/71	24
			Sample ID: PNK0837-13 (G-EX4-5.75D - Soil) Reporting Units: ug/kg	.75D - Soil)								
11/30/04 12/11/04		<i>‡S</i>	1,4-Dioxane EPA 82 Surrogate: Dibromoftuoromethane (80-125%)	EPA 8260B 30-125%)	P4L1315	N/A	100	ND 156 %	1.02	1.02 11/30/04 12/11/04	12/11/04	<i>PS</i>
			Sample ID: PNK0837-14 (C-EX5-5.75 - Soil) Reporting Units: ug/kg	.75 - Soil)								
11/30/04 12/12/04	2/12/04		1,4-Dioxane Surrogate: Dibromoftuoromethane (80-125%)	EPA 8260B 30-125%)	P4L1315	N/A	100	ND 143 %	1.05	11/30/04 12/11/04	12/11/04	24
			Sample ID: PNK0837-16 (CCW-01 - Soil) Reporting Units: ug/kg	- Soil)								
11/30/04 12/13/04	2/13/04		1,4-Dioxane Surrogaie: Dibromafluoromethane (70-130%)	EPA 8260B 70-130%)	P4L.1404	A/N	001	330 93 %	1.06	11/30/04 12/13/04	12/13/04	
-			Sample ID: PNK0837-17 (CCW-02 - Soil) Reporting Units: ug/kg	- Soil)								
11/30/04 12/14/04	2/14/04		1,4-Dioxane EPA 82 Surrogate: Dibromoftuoromethane (80-125%)	EPA 8260B 80-125%)	P4L1315	N/A	0001	4300 85 %	10.1	11/30/04 12/11/04	12/11/04	
			Sample ID: PNK0837-18 (CCW-03 - Soil) Reporting Units: ug/kg	- Soil)								
11/30/04 12/11/04	2/11/04		1, +Dioxane Surrogate: Dibromofluoromethane (80-125%)	EPA 8260B 80-125%)	P4L1315	N/A	1000	1800 90 %	10.6	11/30/04 12/11/04	12/11/04	
			Sample ID: PNK0837-19 (H-EX6-4.0 - Soil) Reporting Units: ug/kg	r.0 - Soif)								
11/30/04 12/11/04	2/11/04		1,4-Dioxane EPA 82 Surrogate: Dibromofluoromethane (80-125%)	EPA 8260B 80-125%)	P4L1315	N/A	1000	2900 86 %	10	11/30/04 12/11/04	12/11/04	

0.952

ND 128 %

100

Ϋ́Z

P4L1315

EPA 8260B

Surrogate: Dibromofinoromethane (80-125%)

Sample ID: PNK0837-06 (SGT-01 - Soil)

Reporting Units: ug/kg

1,4-Dioxane

1.02

ND % 1%

100

N/A

P4L1315

1.4-Dioxane EPA 8260B Surrogate: Dibromofluoromethane (80-125%)

Sample ID: PNK0837-05 (WGT-01 - Soil)

Reporting Units: ug/kg

1.4.Dioxane

20.1

4600 81 %

2000

X/X

P4L1315

EPA 8260B

Surrogate: Dibromofluoromethane (80-125%)

Sample ID: PNK0837-07 (WGT-02 - Soil)

Reporting Units: ug/kg

i,4-Dioxane

10.1

ND 84 %

1000

Ϋ́

P4L1404

EPA 8260B

Survogate: Dibromafluoromethane (70-130%)

Sample 1D: PNK9837-08 (SGT-02 - Soil)

Reporting Units: ug/kg

f,4-Dioxane

102

37000 91 %

10000

Y.Y

P4L1319

EPA 8260B

Surrogate: Dibromofluoromethane (70-120%)

Sample 1D: PNK0837-09 (D-EXI-4.0 - Soil)

Reporting Units: ng/kg

I,4-Dioxane

10.2

4300 101 %

1000

N/A

P4L1315

EPA 8260B

Surrogute: Dibromofluoromethane (80-125%)

Sample ID: PNK0837-10 (H-EX2-4.0 - Soil)

Reporting Units: ug/kg

1,4-Dioxane

8.44

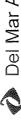
100 101 %

840

P4L1315 N/A

EPA 8260B

Surrogate: Dibromoftuoromethane (80-125%)


Del Mar Analytical - Phoenix Linda Eshelman Project Manager

The results pertoin only to the samples tested in the laboratory. This report shall not be reproduced.

Greetyt in full, without written permission from Del Mar Anabytical.

Del Mar Analytical - Phoenix Linda Eshelman Project Manager

The results pertain only to the samples tested in the loboration. This report shall not be reproduced. PNK0837 <Page 57 of 153> except in full, without virtuen permission from Del Mar Anabytical.

1746 Design Ave. Suite 100, Invine CA 6054 (449) 64-1025 F.K. (549) 580-2059 104-104 E. Chole Dr. Suite A. Cholm CA 82212 (169) 104-4687 F.K. (549) 310-1046 9484 Chresapacke Dr. Suite 805, Sain Dego, CA 82212 (169) 505-8256 F.K. (549) 500-8859 9600 South 611 812, State 8105, Sain Dego, CA 82212 (169) 505-8256 F.K. (160) 705-8259 F.K. (160) 705-

Project ID: 24018.004/Air Liquide Report Number: PNK0837 Basin & Range Hydrogeologists 6155 E. Indian School Rd., Suite 100A Scottsdale, AZ 85251 Attention: Amy Wolkowinsky

Sampled: 11/30/04 Received: 11/30/04

Analyzed Qualifiers Data

5.08 11/30/04 12/13/04

ND % \$2

200

P4L1404 N/A

1,4-Dioxane EPA 8260B Surrogate: Dibromofluoromethane (70-130%)

Sample ID: PNK0837-20 (G-EX7-6.0 - Soil)

Reporting Units: ug/kg

Date

MDL Reporting Sample Dilution Date Limit Limit Result FactorExtracted

Batch

Method

Analyte

1,4-DIOXANE BY GC/MS (EPA 5035/8260B)

1745 Derian Ave., Suite 100 home. CA 92514 (949) 361-1022 FAX (949) 560-0297 (1746) Conder Dr., Suite 4, Coldin, CA 82224 (1963) 700-068 (1963) 760-0048 (1963) 760-068 (1963) 760-0048 (1963) 760-068 (1963) 760-068 (1963) 760-068 (1963) 760-069 (1

ġ ar Analytical

Ĕ
Del
\(\psi\)

Basin & Range Hydrogeologists	*	Project ID:	24018.0	Project 1D: 24018.004/Air Liquide	ide		Constitution	11/20/04	
Scottsdale, AZ 85251 Attention: Amy Wolkowinsky		Report Number: PNK0837	PNK08	37			Sampled. Received:		
	Mod Goods of Forest State of Should	Atatelysenymeat	derinability (40	SERVICE CONTRACTOR	CONTRACTOR DESCRIPTION	manumoreteas	zydożań obstatowa w	OSTATION TO THE PERSON NAMED IN	estanies establishment de la constante
		TOT	ALM	TOTAL METALS					
Anokrto	Mothod	Batch	MDL	Reporting Timit	Sample Dilution Date	Dilution	Dilution Date	Date	Date Data
Sample ID: PNK0837-07 (WGT-02 - Soil)	Soil)								ļ
Reporting Units: mg/kg			:		1		. 01 001 01	0000	
Arsenic	EPA 6010B	P4L0320	Ϋ́	5.0	6	 ,	12/05/04	12/08/04	
Barium	EPA 6010B	P4L0320	V/A	1.0	240		12/03/04	12/08/04	
Cadmium	EPA 6010B	P4L0320	N/A	0.50	7.7	,	12/03/04	12/08/04	
Chromium	EPA 6010B	P4L0320	N/A	1.0	1700		12/03/04	12/08/04	
Lead	EPA 6010B	P4L0320	Z/A	5.0	240		12/03/04	12/08/04	
Mercury	EPA 7471A	P4L0721	Y/Z	0.020	09.0	-	12/07/04	12/08/04	
Selenium	EPA 6010B	P4L0320	Y/A	5.0	ND	_	12/03/04	12/08/04	
Silver	EPA 6010B	P4L0320	N/A	0.50	9.1	-	12/03/04	12/08/04	
Sample ID: PNK0837-08 (SGT-02 - Soil) Reporting Units: mg/kg	- Soil)								
Arsenic	EPA 6010B	P4L0320	N/A	5.0	8.7		12/03/04	12/08/04	
Barium	EPA 6010B	P4L0320	ν/V	1.0	<u>2</u>		12/03/04	12/08/04	
Cadmium	EPA 6010B	P4L0320	A/A	0.50	2.1		12/03/04	12/15/04	
Chromium	EPA 6010B	P4L0320	N/A	1.0	99	-	12/03/04	12/08/04	
Lead	EPA 6010B	P4L0320	N/A	5.0	9 8	-	12/03/04	12/08/04	
Mercury	EPA 7471A	P4L0721	A/A	0.020	0.042	-	12/07/04	12/08/04	
Selenium	EPA 6010B	P4L0320	N/A	10	g	2	12/03/04	12/09/04	۵
Silver	EPA 6010B	P4L0320	N/A	0.50	0.59	-	12/03/04	12/08/04	
Sample ID: PNK0837-10 (H-EX2-4.0 - Soil) Reporting Units: mg/kg	4.0 - Soil)								
Arsenic	EPA 6010B	P4L0320	N/A	5.0	g	_	12/03/04	12/08/04	
Barium	EPA 6010B	P4L0320	N/A	1.0	29	_	12/03/04	12/08/04	
Cadmium	EPA 6010B	P4L0320	N/A	0.50	Ñ	-	12/03/04	12/08/04	
Chromium	EPA 6010B	P4L0320	N/A	1.0	17		12/03/04	12/08/04	
Lead	EPA 6010B	P4L0320	A/N	5.0	N	Ţrrrrd	12/03/04	12/15/04	
Mercury	EPA 7471A	P4L0721	ΥX	0.020	S	****	12/07/04	12/08/04	
Selenium	EPA 6010B	P4L0320	A/N	5.0	9	_	12/03/04	12/08/04	
Silver	EPA 6010B	P4L0320	Ϋ́	0.50	QN	_	12/03/04	12/08/04	

Del Mar Analytical - Phoenix Linda Eshelman Project Manager

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced, PNK0837 <Page 58 of 153> except in full, without written permission from Del Mar Anabytical.

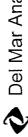
Del Mar Analytical - Phoenix Linda Eshelman Project Manager

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced PNK0837 <Puge 59 of 133> except in full, without written permission from Del Mar Analytical.

17461 Derinn Ave., Suite 100, Invine: CA 02024 (649) 56-1222 FAX (649) 580-3237 (144) C. CORESTON CAS (649) 370-4604 (145) 5804 640 (145) 570-4604 (145) 370-4604 (145) 370-4604 (145) 370-4604 (145) 370-4604 (145) 370-404

Sampled: 11/30/04 Received: 11/30/04

Project ID: 24018.004/Air Liquide Del Mar Analytical Basin & Range Hydrogeologists 6155 E. Indian School Rd., Suite 100A Scottsdale, AZ 85251 Attention: Anny Wolkowinsky

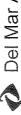

Report Number: PNK0837

INORGANICS

Res	DOICH LIGHT DING NESTIN FACO EXIGURES
	P4L0824 N/A NA Not Ignitable 1
4	P4L1016 N/A NA
4	N/A

Del Mar Analytical - Phoenix Linda Eshelman Project Manager

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced PNK0837 <Page 60 of 153> except in full, without written permission from Del Mar Analytical.


17461 Derian Ave., Sulte 100, Invine CA 92814 (946) 281-1027 FAX (949) 380-3237 (104 E. CO995 C. Sulte 4, Obmic CA 82381 (1969) 370-1046 (1969) 470-1046 (1969

Analytical	
()	
.≚	
_	
_	
<u>~</u>	
ŢŪ.	
\Box	
_	
<u> </u>	
α	
/ar	
>	
_	

De	
\cap	
ш	
A	
$ \overline{} $	
$oldsymbol{\cup}$	
\blacksquare	

Secretable, A.Z. §5251 Report Number PAKOR37 Received: 115004 Adentifiers Any Wolkowinkly Report Number PAKOR37 Control of the National Parts	TILE ORGANICS BY GC/MS (EPA 3545/8270C) MDL Reporting Sample Dilution Date MDL Batch Limit Limit Result Factor Extracted 4L03031 N/A 3300 ND 10 12/03/04 11 70C 4L03031 N/A 3300 ND 10 12/03/0	Basin & Range Hydrogeologists	40	Project ID:	24018.0	Project ID: 24018.004/Air Liquide	ide		Sample	Sampled: 11/30/04	
SEMIL-VOLATILE ORGANICS BY CC/MS (EPA 3545/8270C) Analyte Barth Lint Lint Lanit Reporting Small Date Date Sample Districts Method Barth Lint Lint Lint Lint Lint Lint Lint Lint Lint Rest Date Date Date Respective bills with the compliance EPA 8270C 41,0301 NA 3300 ND 10 1205/04 Lost/04 Bernof, bill broardsteel EPA 8270C 41,0301 NA 3300 ND 10 1205/04 Lost/04 Bernof, bill broardsteel EPA 8270C 41,0301 NA 3300 ND 10 1205/04 1209/04 Bernof, bill broardsteel EPA 8270C 41,0301 NA 3300 ND 10 1205/04 1209/04 Bernof, bill broardsteel EPA 8270C 41,0301 NA 3300 ND 10 1205/04 1209/04 Bernof, bill broardsteel EPA 8270C 41,0301 NA 3300 ND<	SEMILYOLATILE ORGANICS BY GC/MS (EPA 3545/8270C) Analyte Barch Limit Limit Reparting Sample Dilation Date Date Date Date Date Date Date Date Date Date Dilation Date Date Date Dilation Date Dilation Date Dilation Date Date Date	Scottsdale, AZ 85251 Attention: Amy Wolkowinsky	Repoi	т Number:	PNK08	37			Receive	d: 11/30/04	A STATE OF THE STA
MDL Reporting Sample Dilution Date Extracted 70C 4.03301 N/A 3300 ND 10 12/03/04 70C 4.03031 N/A 3300 ND 10 12/03/04 <th> Match Limit Limit Result Factor Extracted </th> <th>SEMI</th> <th>VOLATILI</th> <th>ORGA</th> <th>NICS</th> <th>BY GC/</th> <th>AS (EP</th> <th>A 3545</th> <th>5/8270C)</th> <th></th> <th></th>	Match Limit Limit Result Factor Extracted	SEMI	VOLATILI	ORGA	NICS	BY GC/	AS (EP	A 3545	5/8270C)		
70C 41,03031 N/A 3300 ND 10 12,03/04 170C 12,03/04 170C 41,03031 N/A 3300 ND 10 12,03/04 170C 12,03/04 170C 41,03031 N/A 3300 ND 10 12,03/04 170C 12,03/04 170C 41,03031 N/A 3300 ND 10	70C 41,03031 N/A 3300 ND 10 12,03,04 170C 12,03,04 170C 41,03031 N/A 3300 ND 10 12,03,04 170C 12,03,04 170C	Analyte	Method	Batch	MDL	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
EPA 8270C 4L03031 N/A 3300 ND 10 12/03/04 EPA 8270C 4L03031	EPA 8270C 4L03031 N/A 3300 NB 10 12/03/04 EPA 8270C 4L03031	Sample ID: PNK0837-10 (H-EX2-4 Reporting Unite: motto	.0 - Soit)								
EPA 8270C 4L03031 N/A 3300 ND 10 12/03/04 EPA 8270C 4L03031	EPA 8270C 4L03031 N/A 3300 ND 10 12/03/04 EPA 8270C 4L03031	Acenaphthene	EPA 8270C	4L03031	N/A	3300	S	01	12/03/04	12/09/04	
EPA 8270C 4L03031 N/A 3300 ND 10 12/03/04 EPA 8270C 4L03031	EPA 8270C 4L03031 N/A 3300 ND 10 12/03/04 EPA 8270C 4L03031	Acenaphthylene	EPA 8270C	4L03031	N/A	3300	Q.	10	12/03/04	12/09/04	
EPA 8270C 41,03031 N/A 8300 ND 10 12,03704 EPA 8270C 41,03031 N/A 3300 ND 10 12,03704 EPA 8270C 41,03	EPA 8270C 41,03031 N/A 8300 ND 10 12,03/04 EPA 8270C 41,03031 N/A 3300 ND 10 12/03/04 EPA 8270C 41,03	Anthracene	EPA \$270C	4L03031	N/A	3300	ð	10	12/03/04	12/09/04	
EPA 8270C 41,03031 N/A 3300 NID 12,035/04 EPA 8270C 41,03031 N/A 3300 NID 10 12/03/04 EPA 8270C 41,03031	EPA 8270C 41,03031 N/A 3300 ND 10 12,03/04 EPA 8270C 41,03031 N/A 3300 ND 10 12/03/04 EPA 8270C 41,03	Benzoic acid	EPA 8270C	4L03031	N/A	8300	Q	10	12/03/04	12/09/04	
EPA 8270C 4L03031 N/A 3300 ND 10 1203/04 EPA 8270C 4L03031 N/A 3300 ND 10 1203	EPA 8270C 4L03031 N/A 3300 ND 10 1203/04 EPA 8270C 4L03031 N/A 3300 ND 10 1203	Benzo(a)anthracene	EPA 8270C	4L03031	N/A	3300	Q :	10	12/03/04	12/09/04	
EPA 8270C 4L03031 N/A 3300 ND 10 12/03/04 EPA 8270C 4L03031 N/A 3300 ND	EPA 8270C 4L03051 N/A 3300 ND 10 1203/04 EPA 8270C 4L03051 N/A 3300 ND 10 1203	Benzo(b,k)fluoranthene	EPA 8270C	4L03031	Ý.	3000	Q (0.5	12/03/04	12/09/04	
EPA 8270C 4L03031 N/A 3300 ND 10 1203/04 EPA 8270C 4L03031 N/A 3300 ND 10 1203	EPA 8270C 4L03031 N/A 3300 ND 10 1203/04 EPA 8270C 4L03031 N/A 3300 ND 10 1203	Benzo(g,h,i)perylene	EPA 8270C	41,02031	Y :	9955	2 E	2 5	12/03/04	12/09/04	
EPA 8270C 41,03031 N/A 3300 ND 10 12,035/04 EPA 8270C 41,03031 N/A	EPA 8270C 4L03031 N/A 3300 ND 10 12/03/04 EPA 8270C 4L03031 N/A 3300 ND	Senzo(a)pyrene Borrad elechel	EPA 8270C	41.03031	2 2	3300	ž	2 5	12/03/04	12/09/04	
EPA 8270C 4L03031 N/A 1700 ND 10 12/03/04 EPA 8270C 4L03031 N/A 3300 ND 10 12/03/04 EPA 8270C 4L03031	EPA 8270C 4L03031 N/A 1700 ND 10 12/03/04 EPA 8270C 4L03031 N/A 3300 ND 10 12/03/04 EPA 8270C 4L03031	Bis(2-chloroethoxy)methane	EPA 8270C	4L03031	Z	3300	2	2 2	12/03/04	12/09/04	
EPA 8270C 4L03031 N/A 3300 ND 10 12/05/04 EPA 8270C 4L03031 N/A 3300 ND 10 12/03/04 EPA 8270C 4L03031	EPA 8270C 4L03031 N/A 3300 ND 10 12/03/04 EPA 8270C 4L03031	Bis(2-chloroethyl)ether	EPA 8270C	4L03031	A/A	1700	ΩN	10	12/03/04	12/09/04	
EPA 8270C 41,03031 N/A 3300 ND 10 12,03/04 EPA 8270C 41,03031 N/A 3300 ND 10 12/03/04 EPA 8270C 41,03	EPA 8270C 41,03031 N/A 3300 ND 10 12,03/04 EPA 8270C 41,03031 N/A 3300 ND 10 12/03/04 EPA 8270C 41,03	Bis(2-chloroisopropyl)ether	EPA 8270C	4L03031	N/A	3300	Ŋ	10	12/03/04	12/09/04	
EPA 8270C 41,03051 N/A 3300 ND 10 12,03/04 EPA 8270C 41,03051 N/A 33	EPA 8270C	Bis(2-ethylhexyl)phthalate	EPA 8270C	4L03031	N/A	3300	Q	30	12/03/04	12/09/04	
EPA 8270C 4L03031 N/A 3300 ND 10 12020/04 S270C 4L03031 N/A 3300 ND 10	EPA 8270C	4-Bromophenyl phenyl ether	EPA 8270C	4L03031	Ϋ́Z.;	3300	g :	10	12/03/04	12/09/04	
EPA 8270C	EPA 8270C 4L03031 N/A 3300 ND 10 12/03/04 EPA 8270C 4L03	Bulyt penzyt phurarare	EPA 8270C	41.03031	€ 7/2 2. /2	3300	2 5	2 5	12/03/04	12/09/04	
EPA 8270C 4L03031 N/A 3300 ND 10 12/03/04 fier EPA 8270C 4L03031 N/A 3300 ND 10 12/03/04 EPA 8270C	EPA 8270C 4L03031 N/A 3300 ND 10 12/03/04 EPA 8270C 4L	2-Chloronaphhalene	EPA 8270C	4L03031	×	3300	2 2	10	12/03/04	12/09/04	
PA 8270C 4L03031 N/A 3300 ND 10 12/03/04 EPA 8270C 4L0	PPA 8270C 4L03031 N/A 3300 ND 10 12/03/04 EPA 8270C 4L03031 N/A 3300 ND 10 12/03/04 EPA 8270C 4L03031 N/A 4200 ND 10 12/03/04 EPA 8270C 4L03031 N/A 3300 ND 10 12/03/04 EPA 8270C 4L	4-Chloro-3-methylphenoi	EPA 8270C	4L03031	X/A	3300	Q.	10	12/03/04	12/09/04	
EPA 8270C 41,03631 N/A 3300 ND 10 12,035/04 EPA 8270C 41,03031 N/A 3300 ND 10 12,035/04 EPA 8270C 41,033031 N/A 3300 ND 10 12,035/04 EPA 8270C 41,033031 N/A 3300 ND 10 12,035/04 EPA 8270C 41,03031 N/A 3300 ND 10 12,035/04 EPA 8270C 41,03031 N/A 3300 ND 10 12,037/04 EPA 8270C 41,03031 N/A 3300 ND 10 12,037/04 EPA 8270C 41,03031 N/A 3300 ND 10 12,037/04 EPA 8270C	EPA 8270C 41,03631 N/A 3300 ND 10 12,03704 EPA 8270C 41,03631 N/A 3300 ND 10 12,03704 EPA 8270C 41,03631 N/A 3300 ND 10 12,03704 EPA 8270C 41,03031 N/A 3300 ND 10 12,03704 EPA 8270C 41,03	2-Chlorophenoi	EPA 8270C	4L03031	A/A	3300	Ŋ	10	12/03/04	12/09/04	
EPA 8270C 44.03031 N/A 3300 ND 10 12/03/04 thyanthracene EPA 8270C 44.03031 N/A 3300 ND 10 12/03/04 1 phthalate EPA 8270C 44.03031 N/A 3300 ND 10 12/03/04 1 pothalate EPA 8270C 44.03031 N/A 3300 ND 10 12/03/04 orobenzene EPA 8270C 44.03031 N/A 3300 ND 10 12/03/04 orobenzidine EPA 8270C 44.03031 N/A 3300 ND 10 12/03/04 orobenzidine EPA 8270C 44.03031 N/A 3300 ND 10 12/03/04 orobenzidine EPA 8270C 44.03031 N/A 3300 ND 10 12/03/04 dryphenol EPA 8270C 44.03031 N/A 3300 ND 10 12/03/04 orbenol EPA 8270C 44.03031 N/A 3300 ND 10 <td< td=""><td>EPA 8270C 44.03031 N/A 3300 ND 10 12/03/04 hjanthracene EPA 8270C 44.03031 N/A 3300 ND 10 12/03/04 1 phthalate EPA 8270C 44.03031 N/A 3300 ND 10 12/03/04 1 phthalate EPA 8270C 44.03031 N/A 3300 ND 10 12/03/04 orobenzene EPA 8270C 44.03031 N/A 3300 ND 10 12/03/04 orobenzidine EPA 8270C 44.03031 N/A 8300 ND 10 12/03/04 orobenzidine EPA 8270C 44.03031 N/A 8300 ND 10 12/03/04 orophenol EPA 8270C 44.03031 N/A 3300 ND 10 12/03/04 o-2-methylphenol EPA 8270C 44.03031 N/A 3300 ND 10 12/03/04 o-2-methylphenol EPA 8270C 44.03031 N/A 3300 ND 10</td><td>4-Chlorophenyl phenyl ether</td><td>EPA 8270C</td><td>4L03031</td><td>V/N</td><td>3300</td><td>2</td><td>00</td><td>12/03/04</td><td>12/09/04</td><td></td></td<>	EPA 8270C 44.03031 N/A 3300 ND 10 12/03/04 hjanthracene EPA 8270C 44.03031 N/A 3300 ND 10 12/03/04 1 phthalate EPA 8270C 44.03031 N/A 3300 ND 10 12/03/04 1 phthalate EPA 8270C 44.03031 N/A 3300 ND 10 12/03/04 orobenzene EPA 8270C 44.03031 N/A 3300 ND 10 12/03/04 orobenzidine EPA 8270C 44.03031 N/A 8300 ND 10 12/03/04 orobenzidine EPA 8270C 44.03031 N/A 8300 ND 10 12/03/04 orophenol EPA 8270C 44.03031 N/A 3300 ND 10 12/03/04 o-2-methylphenol EPA 8270C 44.03031 N/A 3300 ND 10 12/03/04 o-2-methylphenol EPA 8270C 44.03031 N/A 3300 ND 10	4-Chlorophenyl phenyl ether	EPA 8270C	4L03031	V/N	3300	2	00	12/03/04	12/09/04	
EPA 8270C 41,03031 N/A 4230 ND 10 12,023/04 EPA 8270C 41,03031 N/A 3300 ND 10 12,033/04 EPA 8270C 41,03031 N/A	EPA 8270C 44.03031 N/A 4200 ND 10 12.023/04 EPA 8270C 44.03031 N/A 3300 ND 10 12.03/04	Chrysene	EPA 8270C	41.03031	Z :	3300	9 !	9 9	12/03/04	12/09/04	
EPA 8270C 41,03031 N/A 3300 ND 10 12,03/04 EPA 8270C 41,03031 N/A 33	EPA 8270C 4L03031 N/A 3300 ND 10 12/03/04	Dibenz(a,h)anthracene	EPA 8270C	41,03031	Y Z	4200	2 2	01	12/03/04		
EPA 8270C 4L03031 N/A 3300 ND 10 12/03/04	EPA 8270C 4L03031 N/A 3300 ND 10 12/03/04	Disenzoluran Disensuryi shthalare	EFA 82/0C	41.03031	₹ Z	3300	2 2	2 2	12/03/04		
EPA 8270C 4L03031 N/A 3300 ND 10 12/03/04	EPA 8270C 41,03031 N/A 3300 ND 10 12,03/04 EPA 8270C 41,03031 N/A 4200 ND 10 12,03/04 EPA 8270C 41,03031 N/A 3300 ND	1.3-Dichlorobenzene	EPA 8270C	4L03031	V Z	3300	2	30	12/03/04	12/09/04	
EPA 8270C 4L03031 N/A 3300 ND 10 12/03/04 EPA 8270C 4L03031 N/A 8300 ND 10 12/03/04 EPA 8270C 4L03031 N/A 3300 ND 10 12/03/04	EPA 8270C 41,03031 N/A 3300 ND 10 12/03/04 EPA 8270C 41,03031 N/A 8300 ND 10 12/03/04 EPA 8270C 41,03031 N/A 3300 ND 10 12/03/04 EPA 8270C 41,03031 N/A 3300 ND 10 12/03/04 EPA 8270C 41,03031 N/A 3300 ND 10 12/03/04 EPA 8270C 41,03031 N/A 4300 ND 10 12/03/04 EPA 8270C 41,03031 N/A 3300 ND 10 12/03/04 EPA 8270C 41,03	1,4-Dichlorobenzene	EPA 8270C	4L03031	N/A	3300	Ω	10	12/03/04	,	
EPA 8270C 41.03031 N/A 8300 ND 10 12/03/04 EPA 8270C 41.03031 N/A 3300 ND 10 12/03/04 EPA 8270C 41.03031 N/A 4200 ND 10 12/03/04 EPA 8270C 41.03031 N/A 3300 ND 10 12/03/04	EPA 8270C 41,03031 N/A 8300 ND 10 12,03,044 EPA 8270C 41,03031 N/A 3300 ND 10 12,03,044	1,2-Dichlorobenzene	EPA 8270C	4L03031	Z/A	3300	B	10	12/03/04	12/09/04	
EPA 8270C 4L03031 N/A 3300 ND 10 12/03/04 EPA 8270C 4L03031 N/A 3300 ND 10 12/03/04	EPA 8270C 4L03031 N/A 3300 ND 10 12/03/04	3,3-Dichlorobenzidine	EPA 8270C	41,03031	∀ ;	8300	2 5	10	12/03/04	12/09/04	
EPA 8270C 4L03031 N/A 3300 ND 10 12/03/04 EPA 8270C 4L03031 N/A 3300 ND 10 12/03/04 EPA 8270C 4L03031 N/A 3300 ND 10 12/03/04 EPA 8270C 4L03031 N/A 4200 ND 10 12/03/04 EPA 8270C 4L03031 N/A 3300 ND 10 12/03/04	EPA 8270C 4L03031 N/A 3300 ND 10 12/03/04 EPA 8270C 4L03031 N/A 3300 62000 10 12/03/04 EPA 8270C 4L03031 N/A 3300 ND 10 12/03/04	2.4-Dichlorophenol	EPA 8270C	41.00001	₹ :	3300	2 9	2 5	12/03/04	12/09/04	
EPA 8270C 41.03031 N/A 3300 ND 10 12.03.04 EPA 8270C 41.03031 N/A 4200 ND 10 12.03.04 EPA 8270C 41.03031 N/A 4200 ND 10 12.03.04 EPA 8270C 41.03031 N/A 3300 ND 10 12.03.04	EPA 8270C 4L036031 N/A 3300 ND 10 12/03/04 EPA 8270C 4L036031 N/A 4200 ND 10 12/03/04 EPA 8270C 4L036031 N/A 4200 ND 10 12/03/04 EPA 8270C 4L03631 N/A 5300 ND 10 12/03/04 EPA 8270C 4L03631 N/A 3300 ND 10 12/03/04	Diethyl phthalate	EPA 8270C	41.02031	Y 2	3300	ON 2	2 2	12/03/04		
EPA 8270C 41.03031 N/A 3300 ND 10 12.035/04 EPA 8270C 41.03031 N/A 6600 ND 10 12.035/04 EPA 8270C 41.03031 N/A 3300 ND 10 12.035/04	EPA 82/0C 4L03031 N/A 3300 ND 10 12/03/04 EPA 8270C 4L03031 N/A 6600 ND 10 12/03/04 EPA 8270C 4L03031 N/A 5300 ND 10 12/03/04 EPA 8270C 4L03031 N/A 3300 ND 10 12/03/04	2,4-Dimetnyiphenoi	EFA 62/0C	4L05031	2 2	3300	00070	2 5	10/00/21	- r	
EPA 8270C 4L03031 N/A 5300 ND 10 12/03/04 EPA 8270C 4L03031 N/A 3300 ND 10 12/03/04	EPA 8270C 4L03031 N/A 5300 ND 10 12/03/04 EPA 8270C 4L03031 N/A 3300 ND 10 12/03/04	Dimetry) prinalate 4.6-Dinitro-2-methylphonol	EFA 82/0C	4L05031	ζ <u>γ</u>	4200	ŞŞ	2 2	12/03/04	12/09/04	
EPA 8270C 41.03031 N/A 3300 ND 10 12/03/04 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	EPA 8270C 41.03031 N/A 3300 ND 10 12/03/04 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2.4-Dinitronhenol	EPA 8270C	4L03031	Z	0099	2	20	12/03/04	12/09/04	
EPA 8270C 4L.03031 N/A 3300 ND 10 12/05/04 1	e EPA 8270C 4L03031 N/A 3300 ND 10 12/03/04 1	2.4-Dinitrotoluene	EPA 8270C	4L03031	N/A	3300	ă	10	12/03/04	12/09/04	
e EPA 8270C 4L03031 N/A 3300 ND 10 12/03/04 1	te EPA 8270C 4L03031 N/A 3300 ND 10 12/03/04 1 lazine/Azobenzene EPA 8270C 4L03031 N/A 3300 ND 10 12/03/04 1 lazine/Azobenzene EPA 8270C 4L03031 N/A 3300 ND 10 12/03/04 lie EPA 8270C 4L03031 N/A 3300 ND 10 12/03/04 lie EPA 8270C 4L03031 N/A 3300 ND 10 12/03/04 lie ical-Phoenix	2.6-Dinitrotoluene	EPA 8270C	4L03031		3300	QN	10	12/03/04	12/09/04	
E EFA 8270C 4L03031 N/A 3300 ND 10 12/03/04 1 EPA 8270C 4L03031 N/A 3300 ND 10 12/03/04 1 EPA 8270C 4L03031 N/A 3300 ND 10 12/03/04 1 EPA 8270C 4L03031 N/A 3300 ND 10 12/03/04 1	nzine/Azobenzene EFA 8270C 41.03031 N/A 3300 ND 10 12.03/04 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Di-n-octyl phthalate	EPA 8270C	4L03031		3300	Q	10	12/03/04	12/09/04	
EPA 8270C 4L03031 N/A 3300 ND 10 12.03/04 I EPA 8270C 4L03031 NA 3300 ND 10 12.03/04 I EPA 8270C 4L03031 N/A 3300 ND 10 12/03/04 I	EPA 8270C 41,03031 N/A 3300 ND 10 12,03/04 1 EPA 8270C 41,03031 N/A 3300 ND 10 12,03/04 1 to EPA 8270C 41,03031 N/A 3300 ND 10 12,03/04 1 ical - Phoenix	1,2-Diphenylhydrazine/Azobenzene	EPA 8270C	4L03031	Z K	3300	Q	10	12/03/04	12/09/04	
EPA 8270C 4L03031 N/A 3300 ND 10 12/03/04 1EPA 8270C 4L03031 N/A 3300 ND 10 12/03/04 1	EPA 8270C 44,03031 NA 5300 ND 10 12/03/04 10 ical - Phoenix	Fluoranthene	EPA 8270C	41.03031	K.	3380	9	01	12/03/04	12/09/04	
י דטיבטיבו טו שאו טעננ מאין ונטנטבר טטיבט מינן	ical - Phoenix	Fluorene	EPA 8270C	4L05031	¥ 5 2. 2	3300	2 5	2 2	12/03/04	12/09/04	
	Del Mar Analytical - Phoenix	riexachiorobenzene	2FA 82/00	4502031	Y X	2200	Š	2	\$0.00.7T	12/02/04	

Linda Eshelman Project Manager

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced PNK0837 <Page 61 of 153> except in full, without written permission from Del Max Analytical.

Trist Oreian para, Sulter 100, Innies CA 9054 (1940) 55-1025 - EXV, (949) 59-02597 - Innie 100 59-03597 - Innie 100 59-0397 - Innie 100 59-03980 - Innie 100 58-0399 - Innie 100 58-039 - Innie 100 58-0399 -

Basin & Range H. 6155 E. Indian Sc Scottsdale, AZ 85 Attention: Amy V

Del Mar Analytical

17461 Derica Ave. Suite 100, hivre CA 9284 (440) 54-1027 FXV (949) 930-3297 TO 14 E. Congo, F., Suite A. Coleno, CA 62204 (1901) 910-4687 FXV (1903) 970-1048 9464 Chreaspeake D., Suite 605, Sain Floqo, CA 92722 (1955) 926-8596 FXX (1953) 950-9699 1903 900-9699 FXV (1907) PSS-6997 980-900 PX (1907) 190-900 FXV (1907) 190-900 FXV (1907) PSS-6997 980-900 FXV (1907) 190-900 FXV (1907) PSS-6999 1900 FXV (1907) 190-900 FXV (1907) PSS-6999 1900 FXV (1907) 190-900 FXV (1907) PSS-6999 1900 FXV (1907) PSS-699 1900 FXV (1907) PSS-

Sampled: 11/30/04 Received: 11/30/04

Project ID: 24018.004/Air Liquide

Report Number: PNK0837

Control of the Contro			
e Hydrogeologists	Project ID: 24018.004/Air Liquide	in the min	g Basin & Range Hydrogeologists
School Rd., Suite 100A		Sampled: 11/30/04	6155 E. Indian School Rd., Suite 100A
85251	Report Number: PNK0837	Received: 11/30/04	Scottsdale, AZ 85251
ny Wolkowinsky		ereti u	Attention: Amy Wolkowinsky
Supprendictly producted boardsupprendictions of the		A STOCK SERVICE CONTRACTOR SERVICES SER	CONTROL OF THE PROPERTY OF THE

SEMI-VOLATILE ORGANICS BY GC/MS (EPA 3545/8270C)

Analyte	Method	Batch	MDL	Reporting Limit		Sample Dilution Date Result Factor Extract	Dilution Date Factor Extracted	Date Analyzed	Date Data Analyzed Qualifiers
Sample ID: PNK0837-10 (H-EX2-4.0 - Soil) - cont Reporting Units: ug/kg	0 - Soil) - cont.								
Hexachlorobutadiene	EPA 8270C	4L03031	A/N	3300	N N	01	12/03/04	12/09/04	
Hexachlorocyclopentadiene	EPA 8270C	4L03031	N/A	8300	Q.	10	12/03/04	12/09/04	
Hexachloroethane	EPA 8270C	4L03031	N/A	3300	ΩN	10	12/03/04	12/09/04	
Indeno(1,2,3-cd)pyrene	EPA 8270C	4L03031	N.A	3300	QN	10	12/03/04	12/09/04	
Isophurone	EPA 8270C	4L03031	Y/A	3300	2	10	12/03/04	12/09/04	
2-Methylnaphthalone	EPA 8270C	4L03031	N/A	3300	9	10	12/03/04	12/09/04	
2-Methylphenof	EPA 8270C	4L03031	Y/A	3300	Q	10	12/03/04	12/09/04	
4-Methylphenol	EPA 8270C	4L03031	Y/A	3300	16000	10	12/03/04	12/09/04	
Naphthalene	EPA 8270C	4L03031	N/A	3300	Q	10	12/03/04	12/09/04	
Nitrobenzene	EPA 8270C	4L03031	N/A	3300	S	10	12/03/04	12/09/04	
2-Nimophenol	EPA 8270C	4L03031	N/A	3300	R	10	12/03/04	12/09/04	
4-Nitrophenol	EPA 8270C	4L03031	N/A	8300	R	10	12/03/04	12/09/04	
N-Nitrosodíphenylamine	EPA 8270C	4L03031	N/A	3300	2	10	12/03/04	12/09/04	
N-Nitroso-di-n-propylamine	EPA 8270C	4L03031	N/A	2500	Q	10	12/03/04	12/09/04	
Pentachlorophenol	EPA 8270C	4L03031	N/A	8300	2	10	12/03/04	12/09/04	
Phenanthrene	EPA 8270C	41.03031	Y/N	3300	R	10	12/03/04	12/09/04	
Phenol	EPA 8270C	41.03031	N/A	3300	31000	10	12/03/04	12/09/04	
Pyrene	EPA 8270C	4L03031	٧/ <u>٧</u>	3300	9	10	12/03/04	12/09/04	
1,2,4-Trichlorobenzene	EPA 8270C	4L03031	∀/Z.	3300	Q	0	12/03/04	12/09/04	
2,4,6-Trichlorophenol	EPA 8270C	4L03031	K/N	3300	Ω̈́	10	12/03/04	12/09/04	
Surrogate: 2-Fluorophenol (25-120%)					7.4%				S12
Surrogate: Phenol-d6 (35-120%)					3 %				S12
Surrogate: 2,4,6-Tribromophenol (40-125%)	-125%)				11%				512
Surrogate: Nitrobenzene-d5 (30-120%)	(9)				*				S12
Surrogate: 2-Fluorobiphenyl (35-120%)	(%)				*				812
Surrogate: Terphenyl-d14 (40-150%)					75 %				

Del Mar Analytical - Phoenix Linda Eshelman Project Manager

oNK0837 <page 153="" 62="" of=""></page>	
The results peruin only to the samples tested in the laboratory. This report shall not be reproduced, exactly in full, without written permission from Del Max Analytical.	

Ейнал го выпочита их политическую паражений правическую политическую	OLD TIME DE	CENTRALES OF MATERIALISM REPORTED TIME DETAIL REPORT	che ell'interritational desertationes deservations des
Hold Time (in days)	Date/Time Sampled	Date/Time Received	Date/Time Extracted
Methanol Blank (PNK0837-02) -	•		
EPA 8260B 2	11/30/2004 08:00	11/30/2004 17:41	11/30/2004 08:00
Sample ID: CTD-01 (PNK0837-03) - Soil FPA 8260B	11/30/2004 07-40	11/30/2004 17:41	11/30/2004 07:40
CTD-02 (PNK0837-04) - Soil			
EPA 8260B	11/30/2004 07:50	11/30/2004 17:41	11/30/2004 07:50
Sample ID: WGT-01 (PNK0837-05) - Soil EPA 8260B	11/30/2004 08:05	11/30/2004 17:41	11/30/2004 08:05
SGT-01 (PNK0837-06) - Soil			
EPA 8260B 2	11/30/2004 08:15	11/30/2004 17:41	11/30/2004 08:15
-02 (PNK0837-07) - Soil		1	
ADHS 8015AZRI	11/30/2004 08:40	11/30/2004 17:41	12/01/2004 11:30
EFA 8200B EPA 90457	11/30/2004 08:40	11/30/2004 17:41	12/09/2004 08:40
Sample ID: SGT-02 (PNK0837-08) - Soil			
ADHS 8015AZRI	11/30/2004 09:50	11/30/2004 17:41	12/01/2004 11:30
EPA 8260B 2	11/30/2004 09:50	11/30/2004 17:41	11/30/2004 09:50
SGT-02 (PNK0837-08REI) - Soil			
EPA 8260B	11/30/2004 09:50	11/30/2004 17:41	11/30/2004 09:50
SGT-02 (PNK0837-08RE2) - Soil	03.00 1000,00,11	11.71 1000000000000000000000000000000000	03.00 1000,00,11
EPA 8260B Semala ID: D-FV1-4 0 (PNV6837-60) - Seil	11/50/2004 09:50	11/30/2004 17:41	00060 4007/06/11
Sauple ID: D-EA1-4.0 (FINANS) /-09) - 500 EPA 8260B	11/30/2004 10:40	11/30/2004 17:41	11/30/2004 10:40
D-EX1-4.0 (PNK0837-09RE1) - S			
EPA 8260B 2	11/30/2004 10:40	11/30/2004 17:41	11/30/2004 10:40
D-EX1-4.0 (PNK0837-09RE2) - S		1	
EPA 8260B	11/30/2004 10:40	11/30/2004 17:41	11/30/2004 10:40
2-4.0 (PNK0837-10) - Soil	30,11,000,000,11	14.54 400000011	00,01,000,000,000
ADHS 8015AZKI 2	11/30/2004 11:35	11/30/2004 17:41	11/20/2004 11:30
S CLEAN TO WARREST TOPEN S	21/30/2004 11:33	14:77 4007/06/11	00.11 +004.00.11
	11/30/2004 11:35	11/30/2004 17:41	11/30/2004 11:35
H-EX2-4.0 (PNK0837-10RE2) - S			
EPA 8260B 2	11/30/2004 11:35	11/30/2004 17:41	11/30/2004 11:35
C-EX3-5.75 (PNK0837-11) - Soil			:
EPA 8260B	11/30/2004 12:00	11/30/2004 17:41	11/30/2004 12:00
Sample ID: G-EX4-5.75 (PNK0837-12) - Soil FP4 8260B	01/30/2004 12:10	11/30/2004 17-41	11/30/2004 12:10
G-EX4-5.75D (PNK0837-13) - Sol	11/30/2021 14:10	11/20/20/20/11	11/20/2004 12:20
EPA 8260B	11/30/2004 12:15	11/30/2004 17:41	11/30/2004 12:15
C-EX5-5.75 (PNK0837-14) - Soil		19.000.000.00	
EPA 8260B Samula ID: CCW-01 (PNK0837-16) - Soil	11/30/2004 (2:55	11/50/2004 17:41	11/50/2004 12:55
Del Mar Analytical - Phoenix			
Linda Eshelman			
Project Manager			

12/07/2004 12:16 12/10/2004 14:06

12/11/2004 14:02 12/13/2004 18:52 12/07/2004 16:46 12/10/2004 14:37 12/11/2004 14:34

12/07/2004 15:44 12/09/2004 10:53

12/07/2004 13:10

12/07/2004 14:43 12/07/2004 15:14 12/06/2004 15:50

12/07/2004 11:58 12/07/2004 12:38

Date/Time Analyzed

12/07/2004 13:46 12/07/2004 17:17

12/10/2004 15:09

12/13/2004 19:23

12/07/2004 17:48 12/07/2004 18:19 12/07/2004 18:50 12/07/2004 19:21

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced PNK0837 <Page 63 of 153> except in full, without written permission from Del Mor Analysical.

7/461Derian Auc., Suite 190, Irvine, CA 92514 (949) 251-1022 FAX (949) 250-3297 (946) 1014 E. Cooley Dr., Suite A, Collon, CA 9234 (909) 370-4557 FAX (949) 370-455 FAX (949) 370-955 FAX (949)

SHORT HOLD TIME DETAIL REPORT

Report Number: PNK0837

Sampled: 11/30/04 Received: 11/30/04

	DataTima	Pate/Time	Data Timo	P
(in days)	Sampled	Received	Extracted	Analyzed
Sample ID: CCW-01 (PNK0837-16) - Soil				
EPA 8260B 2	11/30/2004 14:10	11/30/2004 17:41	11/30/2004 14:10	12/07/2004 19:52
Sample ID: CCW-02 (PNK0837-17) - Soil				
EPA 8260B 2	11/30/2004 14:20	11/30/2004 17:41	11/30/2004 14:20	12/10/2004 17:15
Sample ID: CCW-02 (PNK0837-17RE1) - Soil				
EPA 8260B 2	11/30/2004 14:20	11/30/2004 17:41	11/30/2004 14:20	12/11/2004 15:05
Sample ID: CCW-02 (PNK0837-17RE2) - Soil				
EPA 8260B 2	11/30/2004 14:20	11/30/2004 17:41	11/30/2004 14:20	12/14/2004 [11:30
Sample ID: CCW-03 (PNK0837-18) - Soil				
EPA 8260B 2	11/30/2004 14:30	11/30/2004 17:41	11/30/2004 14:30	12/10/2004 17:47
Sample ID: CCW-03 (PNK0837-18RE1) - Soil				
EPA 8260B . 2	11/30/2004 14:30	11/30/2004 17:41	11/30/2004 14:30	12/11/2004 15:37
Sample ID: H-EX6-4.0 (PNK0837-19) - Soil				
EPA 8260B 2	11/30/2004 15:05	11/30/2004 17:41	11/30/2004 15:05	12/10/2004 18:18
Sample ID: H-EX6-4.0 (PNK0837-19RE1) - Soil				
EPA 8260B 2	11/30/2004 15:05	11/30/2004 17:41	11/30/2004 15:05	12/11/2004 16:08
Sample ID: H-EX6-4.0 (PNK0837-19RE2) - Soil			1	
EPA 8260B 2	11/30/2004 15:05	11/30/2004 17:41	11/30/2004 15:05	12/14/2004 15:09
Sample ID: G-EX7-6.0 (PNK0837-20) - Soil				
EPA 8260B 2	11/30/2004 15:25	11/30/2004 17:41	11/30/2004 15:25	12/10/2004 15:40

Del Mar Analytical - Phoenix Linda Eshelman Project Manager

Report Number: PNK0837 Basin & Range Hydrogeologists 6155 E. Indian School Rd., Suite 100A Scottsdale, AZ 85251 Attention: Amy Wolkowinsky

Project ID: 24018.004/Air Liquide

Sampled: 11/30/04 Received: 11/30/04

Del Mar Analytical

Project ID: 24018.004/Air Liquide

Report Number: PNK0837

Basin & Range Hydrogeologists 6155 E. Indian School Rd., Suite 100A Scottsdate, AZ 85251 Attention: Amy Wolkowinsky

TA61 Derian Ave. Sule 100 Invine CA 9814 (4404) Es-15 EX (949) 980-2027 (174 E. CO990 F. Sulle 100 Invine CA 9814 (1949) 51-46 EX (949) 980-380 (1949) 52-50 (1949) 51-46 EX (949) 980-380 (1949) 52-50 (1949) 52-

11/30/04

Sampled: 1 Received: 1

METHOD BLANK/QC DATA

VOLATILE FUEL HYDROCARBONS (ADHS 8015AZR1)

Qualifiers Data

RPD Limit

Source %REC Result %REC Limits RPD

Spike Level

MDL Units

Reporting

Limit

Result

EXTRACTABLE FUEL HYDROCARBONS (ADHS 8015AZR1)

METHOD BLANK/QC DATA

Analyte Batch: P4L0109 Extracted: 12/01/04	Result 12/01/04	Reporting Limit	MDL	MDL Units	Spike Level		%REC	Source %REC Result %REC Limits	RPD	RPD Limit	Data Qualifiers
Blank Analyzed: 12/01/2004 (P4L0109-BLK1) Volatile Fuel Hydrocarbons Surrogate: 4-8FB (FID) 4.13	4L0109-BLK1) ND 4.13	20	N/A	т <u>е</u> /ке тв/ке	4.00		103	70-130			
LCS Analyzed: 12/01/2004 (P4L0109-BSI) Volatile Fuel Hydrocarbons 20.4 Surrogate: 4-BFB (FID) 4.30	L0109-BSI) 20.4 4.30	20	N/A	mg/kg mg/kg	25.0		82 108	70-130 70-130			
LCS Dup Analyzed: 12/01/2004 (P4L0109-BSD1) Volatile Fuel Hydrocarbons Surrogate: 4-BFB (FID) 4.28	4 (P4L0109-BSE 20.4 4.28	20	N/A	тр/кд тр/кд	25.0		82 107	70-130 70-130	Ģ.	35	
Matrix Spike Analyzed: 12/01/2004 (P4L0109-MS1) Volatile Fuel Hydrocarbons Surrogate: ←6FB (FID) 3.97	2004 (P4L0109- 19.1 3.97	MS1) 20	N/A	mg/kg mg/kg	25	Source: PNK0835-01 .0 ND 76 3 90 99 7	76	01 50-130 70-130			
Matrix Spike Dup Analyzed: 12/01/2004 (P4L0109-MSD1) Volatile Fuel Hydrocarbons Surrogate: 4-BFB (F1D) 4.04	2/01/2004 (P4LC 19.3 4.04	1109-MSD1) 20	N/A	mg/kg mg/kg	25	Source: PNK0835-01 .0 ND 77 :	\$0835-0 77 101	50-130 70-130	-	35	

R6

9

70-130 70-130 70-130

96 106 *100*

250 250 700

mg/kg mg/kg mg/kg

¥ × ×

39 29

240 266 700

LCS Dup Analyzed: 12/09/2004 (P4L0604-BSD1)

Хиггода*те: п-*Досохапе

ORO (C22-C32)

DRO (C10-C22)

70-130 70-130 70-130

8 8 5

250 250

mg/kg mg/kg

A A

30

222 247 96.7

LCS Analyzed: 12/09/2004 (P4L0604-BS1)

Surrogate: n-Docosane

70-130

75

001

mg/kg mg/kg mg/kg mg/kg

Y Z Z Z

30 130 130

8 8 8 8 8.5 8 8

Blank Analyzed: 12/09/2004 (P4L0604-BLKI)

DRO (C10-C22) ORO (C22-C32) Total (C10-C32)

Batch: P4L0604 Extracted: 12/06/04

70-130 70-130 70-130

93 E

99

250 250 700

mg/kg mg/kg mg/kg

4 × ×

36 166

253 253 85.8

Matrix Spike Analyzed: 12/16/2004 (P4L0604-NISI)

Surragate: n-Docosane

DRO (C10-C22) ORO (C22-C32) 98

Source: PNL0135-01

20

2 2

70-130 70-130 70-130

105 116 105

22

22.00

mg/kg mg/kg mg/kg

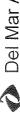
X X

263 289 705

Matrix Spike Dup Analyzed: 12/10/2004 (P4L0604-MSD1)

DRO (C10-C22) ORO (C22-C32) Sarrogate: n-Doc

Sarrogete: n-Docasane


DRO (C10-C22) ORO (C22-C32) Source: PNL0135-01

Del Mar Analytical - Phoenix Unda Eshelman Project Manager

results pertoin only to the samples nested in the laboratory. This report shall not be reproduced except in full without written permission from Del Mar Andritical. The 1

Del Mar Analytical - Phoenix Linda Eshelman Project Manager

The results pertain only to the samples tested in the taboratory. This report shall not be reproduced PNK0837 <Puge 66 of 153> except in full, without written permission from Del Mar Anabitcal.

1746 Derien Ave., Suite 100, Irvine, CA 90314 (949) 285-1022 FAX (948) 285-2297 (14 E. Condor, Suite 4, Colonic, CA 8029 (199) 370-4464 (14 E. Colonic, Suite 4, Colonic, CA 80212) (1993) 370-4464 (14 E. Suite 90), San 1980; CA 81213 (1993) 863-8159 FAX (1993) 800-8159 (1903) 800-1819 (14 E. Suite 1910) (14 E. Suite

Project ID: 24018.004/Air Liquide PNK0837 Report Number:

Basin & Range Hydrogeologists 6155 E. Indian School Rd., Suite 100A Scorxdale, AZ 85251 Attention: Any Wolkowinsky

11/30/04 Sampled: Received:

Del Mar Analytical

4

TAGIDerian Ave., Soite 100, Invine. CA 92514 (949) 281-1022 FAX (949) 280-3237 1044 (949) 280-3237 1044 (949) 280-3237 (949) 1044 (949) 280-3237 (949) 280-327 (949) 280-327 (949) 280-327 (949) 280-327 (949) 280-327 (949) 280-327 (949) 280-327 (949) 280-327 (949) 280-327 (949)

Project ID: 24018.004/Air Liquide

Sampled: 11/30/04 Received: 11/30/04

METHOD BLANK/QC DATA

VOLATILE ORGANICS BY GC/MS (EPA 5030B/8260B)

		Reporting			Spike	Source "REC		RPD	Data	
Analyte	Result	Limit	MDL	Units	Level	Level Result %REC Limits	RPD	Limit	Qualifiers	
Batch: P41,0910 Extracted: 12/09/04	1: 12/09/04									
Blank Analyzed: 12/09/2004 (P4L0910-BLKI)	P4L0910-BLK1)									
Acetone	Ð	20	6.4	l/gu						
Benzene	Q	0.1	0.15	ng/J						
Bromobenzene	QX	1.0	0.11	l/gn						
Bromochloromethane	Q	1.0	0.13	ug/l						
Bromodichloromethane	Q	1.0	91.0	119/3						

Blank Analyzed: 12/09/2004 (P4L0910-BLKI)	HO-BEKI)			
Acctone	QZ QZ	20	6.4	l/gn
Benzune	QX	0.1	0.15	l/an
Bromobenzene	ND	0.1	0.11	ug/l
Bromochloromethane	CN	0.1	0.13	ug/l
Bromodichloromethane	Q	0.1	91.0	l/an
Вголиаѓетт	CN	2.0	1.4	l/gu
Bromomethane	Ŝ	4.0	0.56	ng/l
2-Butanone (MEK.)	CZ.	0	4.5	Vân
n-Butylbenzene	ND	1.0	0.18	I/8n
sec-Butylbenzene	CN	1.0	0.12	l/gu
sert-Butylbenzene	ND ON	1.0	0.15	J/dn
Carbon Disulfide	GN	5.0	0.81	l/gu
Carbon tetrachloride	SZ	1.0	0.19	J/8n
Chlorobenzene	ΩN	1.0	0.073	l/gu
Chloroethane	QN	4.0	2.0	1/8n
Chlorofòrm	QZ.	1.0	0.16	l/s̄n
Chloromethane	S	4.0	0.26	l/8n
2-Chiorotoluene	Q	1.0	0.092	l/gu
4-Chlorotoluene	2	0.1	0.12	l/ān
Dibromothloromethane	Q	1.0	0.18	l/gu
L.2-Dibromo-3-chloropropane	Q.	1.0	0.42	l/ẩn
1.2-Dibromoethane (EDB)	Q	0.1	91.0	ug/l
Dibromomethanc	Q	0.1	0.15	l/gn
1.2-Dichlorobenzene	Q.	0.1	0.12	ug/l
1.3-Dichlorobenzene	Ź	1.0	0.078	l/gn
L4-Dichlorobenzene	2	1.0	0.13	l/an
Dichlonodifluoromethane	Q	0.4	1.1	l/fin
1.1-Dichtoroethane	£	0.1	0.13	ng/l
1.2-Dichtoroethane	Q	1.0	0.15	ug/!
1.i-Dichloraethene	Î	2.0	0.28	ng/i
cis-1,2-Dichloraethene	S	1.0	0.23	1/ฮิก
trans-1,2-Dichloroethene	9	1.0	0.33	l/ān
1,2-Dichloropropane	Q	1.0	0.15	l/gu
1.3-Dichloropropane	Ω	1.0	0.16	1/gn
2,2-Dichteropropane	ND Q	1.0	0.33	1/au

Def Mar Analytical - Phoenix Linda Eshelman

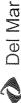
Project Manager

The results partian only to the samples teased in the laboratory. This report shall not be reproduced.

except in full, without written permission from Del Mar Analytical.

METHOD BLANK/QC DATA

Report Number: PNK0837


Basin & Range Hydrogeologists 6155 E. Indian School Rd., Suite 100A Scottsdale, AZ 85251 Attention: Amy Wolkowinsky

VOLATILE ORGANICS BY GC/MS (EPA 5030B/8260B)

Analyte	Result	Reporting Limit	MDL	MDL Units	Spike Level	Source %REC Result %REC Limits	%REC C Limits	RPD	RPD Limit	Data Oualifiers
Batch: P4L0910 Extracted: 12/09/04	709/04									,
Blank Analyzed: 12/09/2004 (P4L0910-BLK1)	0910-BLK1)									
I, I-Dichloropropene	N ON	1.0	0.12	LEZ/						
cis-1.3-Dichloropropene	NO	1.0	0.15	ng/						
trans-1,3-Dichloropropene	N	1.0	0.19	/gu						
Ethylbenzene	g	2.0	0.12	/dn						
Hexachlorobutadiene	N ON	0.1	0.24	/gn						
2-Нехалопс	2	2	5.7	10g/						
Iodomethane	S S	2.0	0.15	/dn						
Isopropylbenzene	S	1.0	0.12	ng/l						
p-Isopropyltoluene	Q.	1.0	0.11	ng/l						
Methylene chloride	1.35	5.0	08.0	/an						E4
4-Mcthyl-2-pentanone (MIBK)	Q Q	10	2.8	/an						
Methyl-tert-butyl Ether (MTBE)	S.	5.0	0.26	/dn						
Naphthalene	2	2.0	0.22	lig/						
n-Propylbenzene	ON	0.1	0.14	ug/]						
Styrene	QN	1.0	0.12	ug/1						
1,1,1,2-Tetrachloroethane	QN	1.0	0.14	ng/J						
1,1,2,2-Tetrachloroethane	Q.	2.0	0,22	ng/						
Tetrachloroethene	ND	1.0	0.12	/an						
Toluene	Ñ	2.0	0.24	/gn						
1,2,3-Trichlorobenzene	NO	0.1	0.16	l/gn						
1.2, 4-Trichlorobenzene	Ð.	1.0	0.13	[/din						
I.1,1-Trichloroethane	QN	0.1	0.22	ug/]						
I, I, 2-Trichloroethane	N	0.1	0.14	/Sin						
Trichloroethene	Q.	1.0	0.14	/Sin						
Trichlorofluoromethane	Q	4.0	0.13	l/gu						
1.2,3-Trichloropropane	g	1.0	0.26	l/∂n						
1,2,4-Trimethylbenzene	QN	1.0	0.17	l/ān						
1,3.5-Trimethylbenzene	QN	1.0	0.15	l/šn						
Vinyl acetate	S.	5.0	9.1	ug/l						
Vinyl chloride	2	0.1	0.18	l/gn						
Xylenes, Total	Ð	3.0	0.38	ng/J						
Surrogate: Dibromofluoromethaue	24.6			ng/l	25.0	88	80-125			
Surrogate: Toluene-d8	24.8			l/Sn	25.0	66	80-120			
Surrogate: 4-Bromoftuorobenzene	25.2			l/ân	25.0	101	80-125			

Del Mar Analytical - Phoenix Linda Eshelman Project Manager

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced, PNKO837 <Page 68 of 153> execpt in full, without written permission from Del Mar Analytical.

Tafe Deale Ave. 2 ule 100, Inner CA 12314 (649) 551-1022 FX (1949) 515-10287 (1946) 515-10287 (1946) 516-1049 (1946) 514-1049

Report Number: PNK0837 Basin & Range Hydrogeologists 6155 E. Indian School Rd., Suite 100A Scottsdale, AZ 85251 Attention: Amy Wolkowinsky

Project ID: 24018.004/Air Liquide

11/30/04 Sampled: Received:

Basin & Range Hydrogeologists 6155 E. Indian School Rd., Suite 100A Scottsdale, AZ 85251

Attention: Amy Wolkowinsky

Del Mar Analytical

1746 Defram Aue. Sulte 100 Inviting. CA 9254 (1949).
9484 Chrespanele D., Sulte 805, San Diego, CA 92723 (1959).
9894 Chrespanele D., Sulte 805, San Diego, CA 92723 (1959).
9893 Santher Sti. S., Salte B. 175). Propare, X. Bisbert (1480).
2520 E., Sultres P. R., Salte Segas, NV 97270 (1959).

Project ID: 24018.004/Air Liquide Report Number: PNK0837

11/30/04 Sampled: Received:

260-3297 370-1046 505-969 785-0851

(949) (858) (702) \$\$\$\$\$

) 261-1022 F) 370-4667 F) 505-8596 F) 785-0043 F) 798-3620 F

METHOD BLANK/QC DATA

VOLATILE ORGANICS BY GC/MS (EPA 5030B/8260B)

Qualifiers

Data

RPD Limit

RPD

40-150 80-120 80-120 80-120 80-125 75-120

80-135 65-150

80-125 80-120 80-125 80-125 80-130

|/am |/am l/gu

Carbon tetrachloride Chlorobenzane

cert-Butylbenzene sec-Butylbenzene Carbon Disulfade 1.2.Uibronw-3-chloropropane 1.2-Dibromoethane (EDB)

Othromochloromethane

2-Cliforotoluene 4-Chiorotoluene Chloromethane Chloroethane

Chloraform

75-120 80-125 80-125

Dichlorodiffuoromethane

i.f-Dichloroethane 1.2-Dichloroethane i.1-Dichloraethene

1.4-Dichlorobenzene

1.2-Dietilerobenzene 1.3-Dietilerebenzene

Dibromomethane

cis-L,2-Dichloroethene trans-1,2-Dichloroethene

i.2-Dichloropropane 1.3-Dichloropropane 2.2-Dichloropropane

75-130 80-120 80-120 70-145

Spike Source %REC Level Result %REC Limits

Units

MDL

Limit

Result

Analyte

LCS Analyzed: 12/09/2004 (P4L0910-BS1) Batch: P4L0910 Extracted: 12/09/04

Bromodichloromethane

Brozneform

Bromomethane 2-Butanone (MEK) n-Butylbenzene

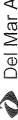
Bromobenzene Bromochloromethane

Benzene

Reporting

VOLATILE ORGANICS BY GC/MS (EPA 5030B/8260B)

METHOD BLANK/QC DATA


A months	Doggan	Y imit	MIN	Ulmiten	- 1	The state of the state of		Coo	 O. O. E. C.
Batch: P4L/0910 Extracted: 12/09/04	709/04				į			<u> </u>	y
1 CS Analyzed: 12/09/2004 (P41 0910-BS)	910-851)								
1,1-Dichloropropene	28.2	1.0	0.12	ug/l	25.0	113	80-120		
cis-1,3-Dichloropropene	26.7	0.1	0.15	ug/1	25.0	101	80-120		
trans-1.3-Dichloropropene	26.4	1.0	0.19	ug/l	25.0	901	80-120		
Ethylbenzene	25.2	2.0	0.12	ug/l	25.0	101	80-120		
Hexachlorobutadiene	27.4	1.0	0.24	ug/l	25.0	110	80-130		
2-Hexanone	26.0	10	5.7	ug/l	25.0	104	60-150		
Iodomethane	26.8	2.0	0.15	ug/l	25.0	107	80-130		
Isopropylbenzene	25.0	1.0	0.12	ug/l	25.0	100	80-120		
p-Isopropyltoluene	26.3	1.0	0.11	ug/l	25.0	105	80-120		
Methylene chloride	24.4	5.0	08.0	γån	25.0	86	80-120		
4-Methyl-2-pentanone (MIBK)	26.6	10	2.8	ng/I	25.0	106	70-130		
Methyl-tert-butyl Ether (MTBE)	26.8	5.0	0.26	ug/I	25.0	107	70-130		
Naphthalene	26.3	2.0	0.22	l/an	25.0	105	75-125		
n-Propylbenzene	27.4	1.0	0.14	l∕gu	25.0	110	80-125		
Styrene	26.2	1.0	0.12	l∕gu	25.0	105	80-130		
1.1,1,2-Tetrachloroethane	26.4	1.0	0.14	ng√	25.0	106	80-125		
1,1,2,2-Tetrachloroethane	27.6	2.0	0.22	ug/4	25.0	110	80-125		
Tetrachloroethene	25.2	1.0	0.12	ng/l	25.0	101	80-125		
Toluene	25.6	2.0	0.24	ug∕l	25.0	102	80-125		
1,2.3-Trichlorobenzene	26.6	1.0	91.0	ug/l	25.0	106	80-125		
1,2,4-Trichlorobenzene	27.4	1.0	0.13	/gn	25.0	110	80-125		
1,1,1-Trichloroethane	25.5	1.0	0.22	ng/l	25.0	102	80-125		
1,1,2-Trichforoethane	26.7	1.0	0.14	ng/l	25.0	107	80-120		
Trichloroethene	25.7	1.0	0.14	l/gu	25.0	103	80-120		
Trichlorofluoromethane	26.6	4.0	0.13	NgU	25.0	106	75-140		
I,2,3-Trichloropropane	26.6	1.0	97.0	ng∕l	25.0	901	75-120		
1,2,4-Trimethythenzene	26.3	0.1	0.17	ng/J	25.0	105	80-120		
1,3,5-Trimethylbenzene	26.7	0.1	0.15	ug/l	25.0	101	80-120		
Vinyl acetate	26.8	5.0	9.1	/Sn	25.0	101	75-130		
Vinyl chloride	28.2	1.0	0.18	[∕gn	25.0	113	75-130		
Xylenes, Total	80.6	3.0	0.38	[/din	75.0	107	80-125		
Surrogate: Dibromofluoromethane	26.2			$\mu S \pi$	25.0	105	80-125		
Surrogate: Toluene-d8	26.0			LSn	25.0	101	80-120		

Del Mar Analytical - Phoenix Linda Eshelman Project Manager

The results pertoin only to the somples tested in the laboratory. This report shall not be reproduced PNK0837 <Page 70 of 153> except in full, without written permission from Del Mar Anabáscal.

Project Manager Linda Eshelman

The results perion only to the samples uested in the laboratory. This report shall not be repreduced, PNK0837 <Page 69 of 133> except ta full, without written permission from Del Mar Anabetical.

17451 Dwinn Are, Suile 10), Invine CA (19814 (1449) 181-1025. FAX (1442) 940-53297 1014. E.Conello, F.Suile 4-0. Fax (1440) 191-104697 FAX (1440) 170-1046 1444 Chiesapaskie 01. Suile 803. San Dago, CA (1400) 170-104697 FAX (1440) 170-10469 1650 100-54099 1650 100-01409 100-10

Basin & Range Hydrogeologists 6155 E. Indian School Rd., Suite 100A Scottsdale, AZ 85251 Attention: Any Wolkowinsky

Project ID: 24018.004/Air Liquide

PNK0837

Report Number:

11/30/04 Sampled: Received:

*** CATEGO PORTING SURFACE OF ACTION CATEGORY (1997) BE1-1275 FFX (1994) 910-1275 FFX (1994) 910-0257 FFX (1995) 910-0257 FFX

Del Mar Analytical

Project ID: 24018.004/Air Liquide Report Number: PNK0837

Basin & Range Hydrogeologists 6155 E. Indian School Rd., Suite 100A Scottsdale, AZ 85251 Attention: Army Wolkowinsky

Sampled: 11/30/04 Received: 11/30/04

METHOD BLANK/QC DATA

VOLATILE ORGANICS BY GC/MS (EPA 5030B/8260B)

Anaiyte	Result	Reporting Limit	MDL	Units	Spike Level	Source %REC Result %REC Limits	%REC	RPD	RPD Limit	Data Qualifiers
Batch: P4L0910 Extracted: 12/09/04	2/09/04									
LCS Dup Analyzed: 12/09/2004 (P4L0916-BSD1)	P4L0910-BS	(IC								
I.I-Dichloropropene	28.4	1.0	0.12	ug/l	25.0	<u></u>	80-120	-	15	
cis-1,3-Dichloropropene	27.3	1.0	0.15	ug/l	25.0	109	80-120	2	10	
trans-1.3-Dichloropropene	27.4	1.0	0.19	ng/	25.0	110	80-120	4	15	
Ethylbenzene	25.4	2.0	0.12	/ān	25.0	102	80-120	-	1.5	
Hexachlorobutadiene	27.2	1.0	0.24	/Sn	25.0	601	80-130	_	20	
2-Hexanone	29.7	10	5.7	/ān	25.0	611	60-150	13	35	
Iodomethane	27.0	2.0	0.15	/Sin	25.0	108	80-130		15	
Isopropylbenzene	24.8	1.0	0.12	l/gu	25.0	66	80-120	-	15	
p-Isopropyltoluene	26.2	1.0	0.11	/gn	25.0	105	80-120	0	15	
Methylene chloride	25,2	5.0	08.0	//Bin	25.0	101	80-120	3	15	
4-Methyl-2-pentanone (MIBK)	30.0	91	2.8	ug/]	25.0	120	70-130	13	35	
Methyl-tert-butyl Ether (MTBE)	29.0	5.0	0.26	(Bn	25.0	116	70-130	œ	25	
Naphthalene	28.5	2.0	0.22	[/Sn	25.0	114	75-125	œ	25	
n-Propylbenzene	27.0	1.0	0.14	n6/	25.0	108	80-125	,	15	
Styrene	26.2	1.0	0.12	ug/l	25.0	105	80-130	0	15	
1,1,1,2-Tetrachloroethane	27.0	1.0	0.14	l/gu	25.0	108	80-125	ď	15	
1,1,2,2-Tetrachloroethane	30.0	2.0	0.22	ug/l	25.0	120	80-125	∞	25	
Tetrachloroethene	25.2	1.0	0.12	ng/	25.0	101	80-125	0	15	
Toluene	25.4	2.0	0.24	/gn	25.0	102	80-125	-	15	
1,2,3-Trichlorobenzene	27.2	1.0	0.16	ug/l	25.0	601	80-125	2	15	
1,2,4-Trichlorobenzene	28.0	1.0	0.13	l/gu	25.0	112	80-125	7	15	
1,1,1-Trichloroethane	25.5	1.0	0.22	ng/l	25.0	102	80-125	0	15	
1,1,2-Trichloroethane	28.0	1.0	0.14	ug/3	25.0	112	80-120	S	20	
Trichloroethene	25.6	1.0	0.14	n6/j	25.0	102	80-120	0	2	
Trichlorofluoromethane	27.1	4.0	0.13	/din	25.0	108	75-140	7	20	
1,2,5-Trichloropropane	28.8	1.0	0.26	/dn	25.0	115	75-120	œ	25	
1,2,4-Trimethylbenzene	26.4	1.0	0.17	l/dn	25.0	901	80-120	0	15	
1,3,5-Trimethy Benzene	26.5	1.0	0.15	ug/l	25.0	901	80-120	-	15	
Vinyl acetate	29.2	5.0	1.6	ng/l	25.0	117	75-130	6	25	
Vinyl chloride	28.1	1.0	0.18	ug/l	25.0	112	75-130	0	50	
Xylenes, Total	81.5	3.0	0.38	1/3n	75.0	109	80-125	-	15	
Surrogate: Dibromofluoromethane	26.8			l/Sn	25.0	101	80-125			
Surrogate: Toluene-d8	26.0			l/Sn	25.0	104	80-120			
Surrogate: 4-Bromofluorobenzene	26.6			l/Sn	25.0	106	80-125			

Del Mar Analytical - Phoenix Linda Eshelman Project Manager

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced. PNK0837 <Page 72 of 153> except in full, withou written permission from Del Mar Analytical.

	Апа	Bate
Data	RPD Limit Qualifiers	
RPD	Limit	
	RPD	
Source %REC	Result %REC Limits	
Spike 5	Level	
	MDL Units	
Reporting	Limit	
	Result	xtracted: 12/09/04
	Analyte	Batch: P41.0910 E

VOLATILE ORGANICS BY GC/MS (EPA 5030B/8260B)

METHOD BLANK/QC DATA

LCS Dup Analyzed: 12/09/2004 (P4L0910-BSD1)	(P4L0910-BSD	=						
Acetone	23.4	20	6.4	/sin	25.0	94	40-150	9
Benzene	25.2	1.0	0.15	ug/l	25.0	101	80-120	0
Braniobenzene	26.9	1.0	0.11	l/gu	25.0	108	80-120	0
Bromochloromethane	26.7	1.0	0.13	ng/l	25.0	107	80-120	m
Bromodichforomethane	26.6	1.0	0.16	[∕gn	25.0	106	80-125	_
Bromoferm	25.8	2.0	7	[/Sin	25.0	103	75-120	W)
Bromomethane	27.7	4.0	0.56	l/gu	25.0	Ξ	80-135	_
2-Butanone (MEK)	28.2	10	4.5	l/gu	25.0	113	65-150	13
u-Butylbenzene	25.3	0.1	0.18	[∕ãn	25.0	101	80-125	0
sec-Butylbenzene	27.1	1.0	0.12	ng/l	25.0	108	80-120	_
tert-Butylbenzene	26.7	1.6	0.15	[∕∂n	25.0	107	80-125	_
Carbon Disulfide	26.7	5.0	0.81	[/Sn	25.0	107	8(F125	
Carbon tetrachloride	26.1	1.0	0.19	[6]	25.0	101	80-130	0
Chforobenzene	26.3	0.1	0.073	[/3]	25.0	105	80-120	2
Chforoethane	26.7	4.0	2.0	LgJ.	25.0	107	80-125	0
Chloroform	25.7	1.0	91.0	Ngu V	25.0	103	80-125	'n
Chlocamethane	28.4	4.0	0.26	Ngu	25.0	114	75-125	_
2-Chierotoluene	26.2	0.1	0.092	[:Sn	25.0	105	80-120	0
4-Chlorotoluene	26.8	1.0	0.12	[/sin	25.0	107	80-120	_
Dibromochloromethane	25.2	1.0	0.18	l/gu	25.0	101	80-125	9
f.2-Dibromo-3-chloropropane	26.1	0.1	0.42	िंडींग	25.0	3	75-130	6
t,2-Dibromoethane (EDB)	28.6	0.1	91.0	ugv]	25.0	114	80-120	o,
Dibromomethane	28.0	1.0	0.15	[/dsn	25.0	112	80-120	9
(.2-Dichlorobenzene	27.1	0.1	0.12	ug/	25.0	108	80-120	7
1.3-Dichlorobenzene	27.1	1.0	0.078	ug/l	25.0	108	80-120	
1,4-Dichlorobenzene	26.4	1.0	0.13	1/gn	25.0	106	80-120	_
Dichlorodifluoromethane	30.5	4.0	1.1	ug/J	25.0	122	55-150	_
E.1-Dichloroethane	26.2	0.1	0.13	ug/l	25.0	105	80-120	N
L.2-Dichleroethane	26.7	0.1	0.15	l∕gu	25.0	107	75-120	9
L.3-Dichloroethene	25.7	2.0	0.28	ug/J	25.0	103	80-125	,
cis-1,2-Dichloroethene	26.8	0.1	0.23	ug/l	25.0	107	80-125	3
trans-1,2-Dichloroethene	25.9	0.1	0.33	l∕gu	25.0	104	75-130	4
f.2-Dichloropropane	26.5	0.1	0.15	η Π	25.0	106	80-120	0
(,3-Dichloropropane	27.2	0.1	0.16	l/an	25.0	109	80-120	9
2.2-Dichleropropane	25.3	0.1	0.33	ng/J	25.0	101	70-145	0

Del Mar Analytical - Phoenix Linda Eshelman

Project Manager

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced. PNK0837 <Page 71 of 153> except in full, without vertien permission from Del Mar Analytical.

(994) 261-1022 F (909) 370-4667 F (858) 505-8596 F (480) 785-0043 F (702) 798-3620 F 17461Derfan Ave., Suite 100, Ivvine, CA 92814 1014 E. Cooley Dt. Suite A, Collon, CA 92224 9484 Chesapeake Dt., Suite 805, San Diego, CA 92123 9530 South 51st St., Suite B-120, Properit, AZ 85044 2500 E. Surrset Rd. #3, Las Vegas, NV 89120

2 FAX (949) 260-3297 7 FAX (949) 370-1046 5 FAX (858) 505-9689 3 FAX (460) 785-0851 0 FAX (702) 798-3621

260-3297 370-1046 605-9689 785-0851 796-3621 1748-Derian Ave. Salas 190 (ruine CA 25214 (gels) 261-1022 FXX (s49) 27 (104 E. Chooley Dr.; Jank A. Cholor. CA 25224 (sep) 70-4667 FXX (s49) 19484 Cheanapadele Dr., Salar Berg, CA 25128 (sep) (sep) 20465 FXX (s49) 999 South 5124 (s.) Salar Berg, CA 25128 (sep) 5125 Cape 4 (sep) 2520 F. Euster St. Chooley Cape 5 (sep) 4 (sep) 2520 F. Euster St. R. R. Fala Vegas NV 89120 (702) 796-562 FXX (sep)

Del Mar Analvtical

Project ID: 24018.004/Air Liquide PNK0837 Report Number:

Basin & Range Hydrogeologists 6155 E. Indian School Rd., Suite 100A Scottsdale, AZ 85251 Attention: Amy Wolkowinsky

Sampled: 11/30/04 Received: 11/30/04

Project ID: 24018.004/Air Liquide

PNK0837

Report Number:

Basin & Range Hydrogeologisis 6155 E. Indian School Rd.. Suite 100A Scousdale, AZ 85251

Attention: Amy Wolkowinsky

11/30/04 Sampled: Received:

METHOD BLANK/QC DATA

	_
- 6	_
- 5	=
- 5	پ
٠	•
	~1
Ġ	
- ;	~
	- 3
- 6	-
Ċ	-
- 1	$\bar{}$
- 1	_
٩	⇁
	n
	•
	_~
4	٦.
	~1
ı	-
•	_
(
	//
3	ᠸ
ŧ	~
t	$\overline{}$
4	- 1
•	w
ć	٠,
	·
,	
,	,-
,	-
- 1	n
1	20
	2
4	Ń
	2
4	
	ANICSE
	VANICSE
22.5	GANICSE
2	CANICSE
22.5	SYCAN COR
2	CKGAZICS B
4	CKCANICSE
4	CONCADICAB
4	E OKCANICS B
4	LE CEGAZICS B
4	LE OKCANICS B
	LE OKCANICS B
4	HE OKCANICS B
	LE OKCANICS B
4	A LILE ORGANICS B
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	A HEE ORGANICS B
4	LATILE ORGANICS B
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	JEATHER ORGANICS B
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	OLA HEE OKGANICS B
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	VOLATILE OKCANICS B
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	VOLATILE ORGANICS B
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	VOLATILE ORGANICS B
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	VOLATILE ORGANICS B

25-140 80-125 80-125 80-135

Source: PNK0822-02

Matrix Spike Analyzed: 12/09/2004 (P4L0910-MS1)

Bromodichloromethane

2-Butanone (MEK)

Bromoform Bromomethane

sec-Butyfbenzene tert-Buty/benzene

n-Butythenzene

Втогноствогопиставе

Втоторендеве

Batch: P4L0910 Extracted: 12/09/04

80-130 70-125 80-130 30-140 80-130

80-125 80-125 80-130 80-135

80-130 80-130

80-135

2.0 0.16 0.26 0.092 0.12 0.15 0.15 0.15

1.2-Dibrome-3-chloropropane 1.2-Dibromoethane (EDB)

Dibromochloromothane

4-Chiorotoluene

Chloromethane 2-Chforotoluene

Carbon tetrachloride

Chlorobenzene Chloroedhane Chloroform

Carbon Disulfide

Dichlorodifluoromethane

i.i.Dichlorocthane 1.2-Dichloroethane L.1-Dichloroettene

1.3-Dichlorobenzene 1.4-Dichlorobenzene

1,2-Dichlorobenzene

Dibrospomethane

trans-1.2-Dichloraethene

i.2-Dichloropropane 1.3-Dichloropropane

cis-1,2-Dichloroethene

65-130 80-125 75-130 70-135 80-130 80-125 80-120 80-120 80-120 80-120 80-120 80-120

RPD

Source %REC Result %REC Limits

Spike Level

MDL Units

Limit

Result

Anniyte

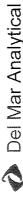
VOLATILE ORGANICS BY GC/MS (EPA 5030B/8260B)

METHOD BLANK/QC DATA

Data Qualifiers	Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	Source %REC Result %REC Limits	RPD	RPD Limit	Data Qualifiers
	Batch: P4L0910 Extracted: 12/09/04	9/04										
	Matrix Spike Analyzed: 12/09/2004 (P4L0910-MS1)	(P4L0910-	MSI)			Son	Source: PNK0822-02	<0825-(12			
F.4	1, 1-Dichloropropene	27.3	1.0	0.12	J/gu	25.0	S	601	80-120			
ì	cis-1,3-Dichloropropene	24.6	1,0	0.15]/fin	25.0	Ω	50 20	80-125			
	trans-1,3-Dichloropropene	23.9	0.1	0.19	i/gu	25.0	Ω	96	80-130			
	Ethylbenzene	24.6	2.0	0.12]/ซิก	25.0	g	86	80-130			
	Hexachlorobutadiene	56.6	1.0	0.24	1/Sn	25.0	Š	106	80-125			
	2-Hexanone	21.3	10	5.7	l/∂n	25.0	Ŝ	85	40-135			
	Iodomethane	25.9	2.0	0.15	ug/J	25.0	N	104	80-135			
	Isopropylbenzene	24.9	1.0	0.12	l/gu	25.0	N	100	80-125			
	p-Isopropyfioluene	25.6	1.0	0.11	l/ān	25.0	ND	102	80-125			
	Methylene chloride	23.5	5.0	0.80	η η	25.0	1.8	87	75-120			
	4-Methyl-2-pentanone (MIBK)	21.6	10	2.8	l∕gu	25.0	ď	86	60-140			
	Methyl-tert-butyl Ether (MTBE)	22.9	5.0	0.26	l/gu	25.0	Š	35	65-155			
	Naphthalene	22.8	2.0	0.22	l∕gu	25.0	ŭ	16	75-135			
	n-Propylbenzene	27.0	1.0	0.14	ľĝn	25.0	S	108	80-125			
	Styrene	25.2	1.0	0.12	l/ân	25.0	Ñ	101	55-135			
	1.1,1,2-Tetrachloroethane	25.5	1.0	0.14	l'ān	25.0	S	102	80-130			
	1,1,2,2-Tetrachloroethane	23.9	2.0	0.22	l/Bn	25.0	2	8	75-130			
	Tetrachloroethene	24.9	1.0	0.12	l/gn	25.0	Ω	100	80-130			
	Toluene	24.7	2.0	0.24	l/gu	25,0	ΩN	66	80-130			
	1,2,3-Trichlorobenzene	23.9	1.0	0.16	ug/l	25.0	ΩZ	96	80-135			
	1,2,4-Trichtorobenzene	25.5	1.0	0.13	l/ān	25.0	g	102	80-130			
	1,1,1-Trichloroethane	24.6	1.0	0.22	ng∕l	25.0	ΩŽ	85	80-125			
	1,1,2-Trichtoroethane	23.5	1.0	0.14	ng/l	25.0	g	94	80-125			
	Trichloroethene	24.6	0.1	0.14	/ān	25.0	2	88	80-125			
	Trichlorofluoromethane	26.1	4.0	0.13	1g√	25.0	ΩŽ	104	75-140			
	1,2,3-Trichloropropane	23.2	1.0	0.26	ug/l	25.0	g	93	70-130			
	I,2,4-Trimethythenzene	25.5	0.1	0.17	ug/]	25.0	S	102	80-120			
	1,3,5-Trimethylbenzene	26.1	0.1	0.15	l/gu	25.0	9	104	80-125			
	Vinyl acetate	24.1	5.0	9.1	[/gi]	25.0	9	96	55-150			
	Vinyl chloride	27.3	0.1	0.18	ug/l	25.0	Ω̈́	109	70-130			
	Xylenes, Total	79.9	3.0	0.38	ug/J	75.0	S	107	80-130			
	Surrogate: Dibromofluoremethane	36.1			μSn	25.0		104	80-125			
	Surrogate: Toluene-d8	25.9			ng/I	25.0		104	80-120			
	Surrogate: 4-Bromofluorobenzene	26.0			ng/l	25.0		101	80-125			

Del Mar Analytical - Phoenix Linda Eshelman

75-135 75-130 80-130 70-135 80-130 70-130


Project Manager

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced PNK0837 <Page 74 of 133> except in fall, without written permission from Del Mor Analytical.

Del Mar Analytical - Phoenix Linda Eshelman Project Manager

The

esulta pertain only to the samples texted in the laboratory. This report shall not be repreduced "PNK0837 <Page 73 of 153> except in Jult, without written permission from Det Mar Andlytical.

Project ID: 24018.004/Air Liquide

Report Number: PNK0837

Basin & Range Hydrogeologists 6155 E. Indian School Rd., Suite 100A Scottsdale, AZ 85251 Attention: Amy Wolkowinsky

1745 Derian Are, Suite 100, have CA 62514 (649) 561-102 FAX (649) 562-2597 1014 E. Choelle Dir. Suite A. Cholm CA 62214 (109) 1741-6467 FAX (1949) 170-1048 9494 Chesapacke Di., Suite 610, San Dago, CA 82723 (109) 171-74687 FAX (1949) 170-1048 9494 Chesapacke Di., Suite 610, San Dago, CA 82723 (109) 171-74687 FAX (199) 170-1049 170-104

Del Mar Analytical

1745 Dezian Ave. Suite 100, Inner CA 0254 (49) 65-1027 FX (1949) 950-0297 1014 E. Chough In., Suite 4, Calmor, CA 02244 (1993) 771-046 9464 Chenasparke CD., Suite 1015, San Dago, CA 22128, (1959) 505-6896 FXX (1959) 7710-1046 9803 050-0499 1700, Value 1015, Saite 1015, San Dago, CA 22128, (1959) 505-6899 1900, Saite 1115, Saite

Project ID: 24018.004/Air Liquide Report Number: PNK0837

METHOD BLANK/QC DATA

Sampled: 11/30/04 Received: 11/30/04

VOLATILE ORGANICS BY GC/MS (EPA 5030B/8260B)

Matrix Sp				10822-02	Source: PNK0822-02	Soc			.0910-MSD1)	Jatrix Spike Dup Analyzed: 12/09/2004 (P4L0910-MSD)	Matri
Batch: P.										Satch: P4L0910 Extracted: 12/09/04	Bate
Analyte	Qualifiers	Limit	RPD	Limit MDL Units Level Result %REC Limits RPD Limit Qualifiers	Result	Level	Units	MDL	Limit	yte Result	Anal
	Data	RPD		%REC	Spike Source	Spike			Reporting		

		9			e	,		ļ			
Materix Spike Dup Analyzed: 12/09/2004 (P4L0910-IMSD1)	19/2004 (P4DE	110-M3D1)			200	Source: PNKU822-02	-775A	2			
Acetone	17.1	20	6.4	1/8/1	25.0	Ź	89	25-140	10	32	E#
Benzene	25.1	1.0	0.15	ug/l	25.0	Q N	100	80-125	य	15	
Bromobenzene	25.9	1.0	0.11	l/gu	25.0	Ŋ	10	80-125	_	15	
Bromochloromethane	23,4	1.0	0.13	ng√i	25.0	Ņ	94	80-135	61	50	
Bromodichloromethane	24,3	1.0	91.0	ug/l	25.0	ΩN	46	80-130	'n	15	
Bromvíem	21.7	2.0	1.4	ng∕l	25.0	Q	87	70-125		25	
Вгетопефале	26.8	4.0	95.0	ng/l	25.0	Ñ	107	80-130	0	20	
2-Butanone (MEK)	20.0	10	4.5	ug/i	25.0	N Q	80	30-140	9	35	
n-Butytbenzene	27.0	1.0	0.18	υg/I	25.0	Ŋ	108	80-130	7	15	
sec-Butylbenzene	28.7	1.0	0.12	ug/l	25.0	S	115	80-125	œ	15	
tert-Burybenzene	28.1	1.6	0.15	ng∕l	25.0	O.	112	80-125	છ	15	
Curtson Disulfide	26.4	5.0	0.81	ηĝη	25.0	Z	901	80-130	-	15	
Carbon terrachloride	26.3	1.0	61.0	ug/I	25.0	O.	105	80-135	ব	15	
Chlorobenzene	26.4	1.0	0.073	ng/l	25.0	ΩN	106	80-130	K)	15	
Chloroethane	26.3	4.0	2.0	ug/l	25.0	N Q	105	80-130	CI	20	
Chloroform	24.6	0.1	9.16	ng/l	25.0	Ω	86	80-135	61	15	
Chloromethane	27.4	4.6	0.26	ng/J	25.0	ΩN	0	65-130	-	25	
2-Chlorotoluene	27.3	1.0	0.092	ug/l	25.0	ND	601	80-125	9	15	
4-Chlorotoluene	27.7	1.6	0.12	ug/J	25.0	ΩN	=	80-125	'n	15	
Dibromothloromethane	22.2	1.0	0.18	ug/J	25.0	Ν̈́	68	. 75-130	61	20	
1.2-Dibrame-3-chloropropane	21.6	1.0	0.42	ug/I	25.0	ΩN	98	70-135	10	35	
1,2-Dibromoethane (EDB)	24.4	1.0	0.16	ug/l	25.0	ΩN	86	80-130	cı	20	
Dibromomethane	23.5	1.0	0.15	ng/l	25.0	ΩN	64	80-130	ъ	20	
1.2-Dichlorobenzene	26.5	1.0	0.12	√gn	25.0	Q	901	80-125	4	15	
t,3-Diefilorobenzene	27.0	1.0	870.0	ug/l	25.0	g	801	80-125	9	15	
L.4-Dichlorobenzene	26.1	1.0	0.13	ug/l	25.0	Q	5	80-120	অ	5	
Dictiforedifluoromethane	29.9	4.0		₩.	25.0	Q	120	50-150	-	20	
L.1-Dichlaroethane	25.5	1.0	0.13	₽ān	25.0	S	102	80-130	7	20	
E.2-Elichlarocthane	23.4	1.0	0.15	<u>1/2π</u>	25.0	Ω Z	7,	75-135	٥	50	
1,1-Dichloroethene	25.4	2.0	0.28	ug/l	25.0	Q	102	75-130	9	15	
cis-1,2-Dichloroethene	25.6	1.0	0.23	₽/ān	25.0	ΩŽ	102	80-130	cı	15	
crus-1,2-Diclyloroethene	25.2	1.0	0.33	ng√l	25.0	g	101	70-135	м	20	
1,2-Elichloropropane	25.2	1.0	0.15	1/gπ	25.0	S	101	80-130	-	15	
1,3-Dichloropropane	24.2	1.0	91.0	l/gu	25.0	S	26	80-130	ы	20	
2.2-Dichloropropane	26.2	1.0	0.33	ng/l	25.0	ΩN	105	70-150	m)	15	

Del Mar Analytical - Phoenix Linda Eshelman Project Manager

The results periam only to the samples tested in the laboratory. This report shall not be reproduced, PNK0837 <Puge 75 of 153> except in full, withou written permission from Del Mar Andststeal.

Basin & Range Hydrogeologists 6155 E. Indian School Rd., Suite 100A Scottsdale, AZ 85251 Attention: Amy Wolkowinsky

Sampled: 11/30/04 Received: 11/30/04

METHOD BLANK/QC DATA

VOLATILE ORGANICS BY GC/MS (EPA 5030B/8260B)

Analyte	Result	Reporting Limit	MDL	MDL Units	Spíke Level	Source Result	%REC	Source %REC Result %REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: P4L0910 Extracted: 12/09/04	7/09/04										
Matrix Spike Dup Analyzed: 12/09/2004 (P4L0910-MSD1)	9/2004 (P4I	.0910-MSD1)			Sen	Source: PNK0822-02	K0822-	20			
I, I-Dichloropropene	28.5	0.1	0.12	ng/}	25.0	£	4	80-120	শ	1.5	
cis-1,3-Dichloropropene	24.5	0.1	0.15	l/gn	25.0	9	86	80-125	0	15	
trans-1,3-Dichloropropene	23.0	0.1	0.19	[/gn	25.0	Š	92	80-130	4	20	
Еthylbenzene	26.3	2.0	0.12	ng/	25.0	ΩŽ	105	80-130	7	15	
Hexachlorobutadiene	28.7	1.0	0.24	ug/]	25.0	Q	115	80-125	90	15	
2-Нехапопе	20.5	01	5.7	ug/l	25.0	ND	82	40-135	♥	35	
lodomethane	26.5	2.0	0.15	ug/l	25.0	Ŋ	106	80-135	rı	15	
Isopropythenzene	25.9	1.0	0.12	ng∕l	25.0	2	104	80-125	=1	15	
p-Isopropyitoluene	27.7	1.0	0.11	ng/}	25.0	2	Ξ	80-125	90	13	
Methylene chloride	24.1	5.0	0.80	ng/	25.0	1.8	68	75-120	3	15	
4-Methyl-2-pentanone (MIBK)	20.7	01	2,8	/an	25.0	g	83	60-140	4	35	
Methyl-tert-butyl Ether (MTBE)	21.6	5.0	0.26	ug/	25.0	QN.	86	65-155	9	30	
Naphthalene	24.2	2.0	0.22	[/din	25.0	R	76	75-135	9	30	
n-Propylbenzene	28.3	0.1	0.14	[/din	25.0	9	113	80-125	S	15	
Styrene	26.0	0.1	0.12	ug/l	25.0	Š	104	55-135	m	20	
1,1,1,2-Tetrachloroethane	26.4	0.1	0.14	[∕ân	25.0	Q.	106	80-130	m	01	
I.I.2,2-Tetrachlorochane	24.2	2.0	0.22	ug/l	25.0	Š	62	75-130	-	30	
Tetrachloroethene	26.4	0.1	0.12	ug/l	25.0	Š	106	80-130	9	2	
Toluene	25.3	2.0	0.24	ug/l	25.0	Q.	101	80-130	2	15	
1,2,3-Trichlorobenzene	25.0	0.1	0.16	ug/]	25.0	Š	100	80-135	4	50	
1,2,4-Trichlorobenzene	26.4	0.1	0.13	(/ân	25.0	ΩŽ	106	80-130	ľή	15	
1,1,1-Trichloroethane	25.6	0.1	0.22	[/gn	25.0	Ω̈́	102	80-125	4	12	
1,1,2-Trichloroethane	22.8	1.0	0.14	ug/l	25.0	ND	91	80-125	'n	50	
Trichloroethene	25.8	1.0	0.14	ug/l	25.0	QN	103	80-125	5	51	
Trichlorofluoromethane	26.8	4.0	0.13	ug/l	25.0	R	107	75-140	٣	15	
1.2,3-Trichloropropane	23.5	1.0	0.26	1/gn	25.0	g	94	70-130	-	30	
1.2.4-Trimethylbenzene	27.1	1.0	0.17	ug/)	25.0	2	108	80-120	9	15	
1,3,5-Trimethylbenzene	27.8	1.0	0.15	/sa	25.0	2	111	80-125	9	15	
Vinyl acetate	23.6	5.0	9.1	[/gn	25.0	ND	94	55-150	2	30	
Vinyl chloride	28.7	1.0	0.18	/gu	25.0	Q	115	70-130	Ş	20	
Xylenes, Total	83.5	3.0	0.38	/Sn	75.0	Q	111	80-130	₹	15	
Surrogate: Dibromostuoromethane	25.4			ng.	25.0		102	80-125			
Surrogate: Toluene-d8	25.6			l/Sn	25.0		102	80-120			
Surrogate: 4-Bromofluorobenzene	25.6			l/Sn	25.0		102	80-125			

Del Mar Analytical - Phoenix Linda Eshelman Project Manager

The results pertian only to the samples tested in the laboratory. This report shall not be reproduced. PNK0837 <Page 76 of 153> except in full, without written permission from Del Mar Analytical.

1746 Design Ave. Sullet 402 former CA 6254 (645) 26-1027 FAX (645) 26-2257 1014 FAX (645) 26-2257 1014 EAX (645) 26-2257 1014 EAX (645) 313-6457 FAX (645) 317-1016 EAX (645) 317-616 EAX (645) 317-616 EAX (645) 317-616 EAX (645) 317-616 EAX (645) 317-1016 EAX (645) 317-616 EAX (645)

Basin & Range Hydrogeologists 6155 E. Indian School Rd., Suite 100A Scottsdale, AZ 85251 Artention: Arry Wolkowinsky

Project 1D; 24018,004/Air Liquide Report Number: PNK0837

11/30/04 Sampled: Received:

Del Mar Analytical 4

17451 Derlon Ave., Suile 100, Inne CA 2024 (499) 591-1025. FX (949) 590-1029 114 E. Chouley, Dev. A. Cudin: CA 2024 (199) 371-4687 FX (1949) 371-1046 1949 Chouseparker Dr., Suite 693, San Dego, CA 62212 (1959) 505-6159 FXX (199) 371-1046 1949 Choule 519, Suite 693, San Dego, CA 62212 (1959) 505-6159 FXX (199) 795-6201 1949 Choule 519, Suite 619, Suit

11/30/04

Sampled: Received:

Project ID: 24018.004/Air Liquide

Report Number: PNK0837

Basin & Range Hydrogeologists 6155 E. Indian School Rd., Suite 100A Scottsdale, AZ 85251 Attention: Amy Wolkowinsky

METHOD BLANK/QC DATA

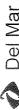
VOLATILE ORGANICS BY GC/MS (EPA 5030B/8260B)

Analyte	Result	Reporting Limit	MDL	MDL Units	Spike Level	Source Result	Source %REC Result %REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: P4L1104 Extracted: 12/11/04	11/04									
Blank Analyzed: 12/11/2004 (P4L1104-BLK1)	104-BLK1)									
Acetone	Q.	30	6.4	l/gu						
Вепгене	8	0.1	0.15	l/gu						
Bromobenzene	S	1.0	0.11	l/gu						
Bromochloromethane	S	0.1	0.13	[/dj						
Bromodichloromethane	9	0.1	0.16	[/dn						
Browoform	Q.	2.0	<u>막.</u>	l/∄n						
Bromethane	9	4.0	0.56	l/gu						
2-Butanone (MEK)	ΩN	10	4.5	l/gu						
n-Butysbenzene	Q	1.0	0.18	l/gu						
see-Butylbenzene	S	1.0	0.12	l/gu						FJ
tert-Butylbenzene	S	1.0	0.15	[ji]						
Carbon Disulfide	9	5.0	18.0	[jā]						
Carbon tetrachloride	2	1.0	0.19	l/gii						
Chlorobenzene	S	0.1	0.073	ug/l						
Chloroethane	QN	4.0	2.0	l'gu						
Chloroform	QN.	1.0	91.0	ug/J						
Chloromethane	SZ	4.0	0.26	ug/J						
2-Chtorocoluese	Ð	1.0	0.092	/ān						
4-Chlorosoluene	9 P	0.1	0.12	/ân					,	
Dibromochloromethane	Q	1.0	0.18	ng/l						
1.2-Dibromo-3-chleropropane	SZ.	1.0	0.42	ng/l						
1.2-Dibromoethane (EDB)	Ž	0.1	0.16	di di						
Dibromothane	£	0.1	0.15	/gn						
1,2-Dichlerobenzene	2	0.1	0.12	/ott						
L.3-Dichterobenzene	S	1.0	0.078	ug/]						
i.4-Dichlorobenzene	Q	0.1	0.13	l/an						
Dichlorodifluoromedane	ΩÑ	4.0	Ξ.	1 <u>0</u> 2/3						
), I -Dieliloroethane	QN	0.1	0.13	/an						
1.2-Dichtoroeshune	Q	0.1	0.15	An						
i.i-Didilloroethene	S.	2.0	0.28) (60 (10)						
cis-1,2-Dichloroethene	Q.	0.1	0.23	n6/						
trans-1,2-Dichtoroethene	Q.	0.1	0.33	l/gti						
1,2-Dichloropropane	2	0.1	0.15	ng/l						
1.3-Dichloreprepane	NO	0.1	0.16	ng/l						
2,2-Dichforopropane	QN	0.1	0.33	/ŝn						

Del Mar Analytical - Phoenix Linda Eshelman Project Manager

The results pertain only to the samples tessed in the laboratory. This report shall not be reproduced. PNK0837 <Page 77 of 153> except in full, without written premission from Del Mar Analytical.

METHOD BLANK/QC DATA


VOLATILE ORGANICS BY GC/MS (EPA 5030B/8260B)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source %REC Result %REC Limits	%REC C Limits	RPD	RPD Limit	Data Qualifiers
Batch: P4L1104 Extracted: 12/11/04	/11/04									
Blank Analyzed: 12/11/2004 (P4L1104-BLK1)	1104-BLK1)									
1,1-Dichloropropene	QN	0.1	0.12	l∕ān						
cis-1.3-Dichloropropene	Q	1.0	0.15	ug∕l						
trans-1,3-Dichloropropene	QZ	0.1	61.0	l/gu						
Ethylbenzene	g	2.0	0.12	ng/l						
Hexachiorobutadiene	ND	0.1	0.24	ug/l						1.4
2-Hexanone	Q	10	5.7	ug/l						
Iodomethane	S	2.0	0.15	ng/l						
Isopropylhenzene	QN	1.0	0.12	J∕gn						
p-lsopropyltoluene	QZ	1.0	0.11	ηĝη.						
Methylene chloride	ND	5.0	0.80	ug/l						
4-Methyl-2-pentanone (MIBK)	ΩN	2	3.8	ng/J						
Methyl-tert-butyl Ether (MTBE)	S	5.0	0.26	ng/J						
Naphthalene	QN.	2.0	0.22	ng√l						
n-Propylbenzene	2	0.7	0.14	1/gu						M
Slyrene	Ŋ	1.0	0.12	1/Bn						
1,1,1,2-Tetrachloroethane	ΩN	0.1	0.14	ug/l						
I.1,2,2-Tetrachloroethane	ND	2.0	0,22	ng/l						
Tetrachloroethene	N O	0.1	0.12	ng/l						
Toluene	ND	2.0	0.24	ng/l						
1,2,3-Trichlerobenzene	CIN	1.0	0.16	1/ān						
1,2,4-Trichlorobenzene	Q	1.0	0.13	1∕gu						
1,1,1-Trichloroethane	Ν̈́	1.0	0.22	ng/l						
1,1,2-Trichloroethane	NO	1.0	0.14	ug/3						
Trichloroethene	QN.	1.0	0.14	ug/I						
Trichlorofluoromethane	g	4.0	0.13	ng√						
1,2,3-Trichloropropane	2	0.1	0.26	l/gu						
1,2,4-Trimethylbenzene	Q.	0.1	0.17	1/gn						
1,3,5-Trimethylbenzene	N N	0.1	0.15	l/gu						
Vinyl acetate	Ŋ	5.0	9.1	l/gu						
Vinyl chloride	QN	0.1	0.18	ng/l						
Xylenes, Total	Q.	3.0	0.38	1/gu						
Surrogate: Dibromafluoromethane	25.8			l/gu	25.0	103				
Surrogate: Toluene-d8	26.9			l/Sn	25.0	108	80-120			
Surrogate: 4-Bromofinorobenzene	26.5			l/Sn	25.0	106	80-125			

Del Mar Analytical - Phoenix Linda Eshelman Project Manager

The results periain only to the samples tested in the taboratory. This report shall not be reproduced.

PNK0837 <Page 78 of 153> except in full, without written permission from Del Mor Analytical.

Trief Dusia Ave., Suite 100, Irvine CA 02814 (949) 181-1027 FAX (949) 969-2327 1014 E. Choelle Ori Suites A., Colbrin CA 02821 (959) 370-464 FAX (949) 970-1046 9484 Chresspeake 0.1., Suite 690, Sain Dego, CA 92723 (959) 985-369 FAX (959) 950-5699 9805 5001h 511 E.), Lotte 0.10, Suite 0.10, Promin, A. B. God, Hagy 185-040 FAX (192) 195-950 FAX (192) 195-950 PAX (192) 195

Project ID: 24018.004/Air Liquide Report Number: PNK0837 Basin & Range Hydrogeologists 6155 E. Indian School Rd., Suite 100A Scottsdale, AZ 85251 Attention: Amy Wolkowinsky

Sampled: 11/30/04 Received: 11/30/04

METHOD BLANK/QC DATA

VOLATILE ORGANICS BY GC/MS (EPA 5030B/8260B)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result %R	Source %REC Result %REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: P4L1104 Extracted: 12/11/04	1/04									
LCS Analyzed: 12/11/2004 (P4L1104-BSI)	4-BSI)									
Acetone	20.0	20	6.4	ng/l	25.0	80	0 40-150			
Benzene	24.8	1.0	0.15	l/gu	25.0	66	9 80-120			
Bromobenzene	27.7	0.1	0.11	ug/j	25.0	111	1 80-120			
Bromochloromethane	26.5	1.0	0.13	l/gu	25.0	2	06 80-120			
Bromedichloromethane	26.8	1.0	0.16	l/gu	25.0	31				
Bremaform	27.8	2.0	1.4	l/gu	25.0	Ξ	1 75-120			
Bromomethane	24.6	4.0	95.0	1/an	25.0	86	3 80-135			
2-Butanone (MEK)	21.1	10	4.5	ug/l	25.0	84	65-150			
n-Butylbenzene	2,62	1.0	0.18	ug/l	25.0	117	7 80-125			
sec-Butylbenzene	30.9	1.0	0.12	цgп	25.0	21	124 80-120			FT, L3
terr-Bog-lbenzene	29.3	1.0	0.15	l/gu	25.0	117	7 80-125			
Carbon Disalfide	25.6	5.0	0.81	1/20	25.0	H	102 80-125			
Carbon tetrachloride	27.5	1.0	0.19	l/gu	25.0		110 80-130			
Chlorobenzene	26.5	1.0	0.073	ng/]	25.0	91	106 80-120			
Chloraethane	25.0	4.0	2.0	/gn	25.0	011	00 80-125			
Chloroform	25.2	0.1	0.16	Ën	25.0	101	1 80-125			
Chloromethane	24.8	4.0	0.26	Ën	25.0	66	75-125			
2-Chlorotoluene	28.6	0.1	0.092	ngn	25.0	114	4 80-120			
4-Chiorotoluene	29.0	1.0	0.12	ug⁄l	25.0	116	6 80-120			
Dibromochloromethane	28.1	1.0	0.18	Lgu L	25.0	112	2 80-125			
1,2-Dibronto-3-chloropropane	25.3	0.1	0.42	ng/l	25.0	101	1 75-130			
1.2-Dibromochane (EDB)	25.9	0.1	91.0	Ën	25.0	10	104 80-120			
Dibranomethane	26.6	1.0	0.15	∫⁄gn	25.0	10				
1.2-Dichlorobenzene	27.0	1.0	0.12	∫/Ĝ⊓	25.0	10				
1,3-Dichlorobenzene	27.9	0.1	0.078	ηď	25.0	11				
1,4-Dichlorobenzene	27.2	0.1	0.13	ug/J	25.0	109	9 80-120			
Dichlorodifluoromethane	30.9	4.0	Ξ	ng√l	25.0	124	4 55-150			
1.1-Dichlorocthane	25.2	1.0	0.13	/Sn	25.0	101	1 80-120			
1.2-Dichloroethane	25.0	0.1	0.15	l⁄gu	25.0	100	0 75-120			
1. I-Dichloroethene	26.1	2.0	0.28	ng√l	25.0	104	4 80-125			
cis-1.2-Dichloroethene	26.2	1.0	0.23	l∕⊴n	25.0	105	35			
trans-1,2-Dichlorgethene	26.5	1.0	0.33	l/g/l	25.0	01	06 75-130			
1.2-Dichloropropane	25.4	1.0	0.15	ug/l	25.0	01	.02 80-120			
1.3-Elichloropropane	26.1	1.0	0.16	ng/J	25.0	104	4 80-120			
2.2-Dichloropropane	29.8	0′1	0.33	ng∕i	25.0	611	9 70-145			

Del Mar Analytical - Phoenix Linda Eshelman

Project Manager

The results pertain only to the samples tested in the Indorotory. This report shall not be reproduced, PNK0837 <Page 79 of 133> except or full, without written permission from Del Mar Analytical.

1746 Defina Aue. Sulas 100 Initia. CA 05514, (1994) 36-1025. CAK (1994) 320-3297 14014 E. Coolar O. Laber A. Culton, CA 22324, (1995) 370-4877 EAV. (1993) 370-587 EAV. (1993) 370-5

Report Number: PNK0837

Basin & Range Hydrogeologists 6155 E. Indian School Rd., Suite 100A Scottsdale, AZ 85251 Attention: Amy Wolkowinsky

Project ID: 24018.004/Air Liquide

Sampled: 11/30/04 Received: 11/30/04

METHOD BLANK/QC DATA

VOLATILE ORGANICS BY GC/MS (EPA 5030B/8260B)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source %REC Result %REC Limits		RPD	RPD Limit	Data Qualifiers
Batch: P4L1104 Extracted: 12/11/04	/11/04									
LCS Analyzed: 12/11/2004 (P4L1104-BSI)	104-BSI)									
I.1-Dichloropropene	29.5	1.0	0.12	ng/l	25.0	118	80-120			
cis-1,3-Dichloropropene	26.0	1.0	0.15	l/gu	25.0	104	80-120			
trans-1,3-Dichloropropene	23.1	1.0	61.0	ng∕l	25.0	92	80-120			
Ethylbenzene	27.6	2.0	0.12	ng∕1	25.0	110	80-120			
Hexachlorobutadiene	31.0	1.0	0.24	ug/J	25.0	124	80-130			M
2-Hexanone	25.3	10	5.7	ug/l	25.0	101	60-150			
lodomethane	26.1	2.0	0.15	/Sn	25.0	104	80-130			
Isopropylbenzene	27.8	1.0	0.12	ug/l	25.0	11	80-120			
p-Isopropyttoluene	29.1	1.0	0.11	l∕gu	25.0	116	80-120			
Methylene chloride	23.6	5.0	0.80	ug/J	25.0	94	80-120			
4-Methyl-2-pentanone (MIBK)	25.5	10	2.8	/gn	25.0	102	70-130			
Methyl-tert-butyl Ether (MTBE)	27.2	5.0	0.26	ng/	25.0	109	70-130			
Naphthalene	26.9	2.0	0.22	ug/l	25.0	108	75-125			
n-Propylhenzene	30.8	1.0	0.14	ug/l	25.0	123	80-125			III
Styrene	26.9	1.0	0.12	ug/l	25.0	108	80-130			
1,1,1,2-Tetrachloroethane	25.7	1.0	0.14	ug/l	25.0	103	80-125			
1,1,2,2-Tetrachloroethane	27.6	2.0	0.22	ug/l	25.0	110	80-125			
Tetrachloroethene	27.1	1.0	0.12	ug/l	25.0	108	80-125			
Toluene	24.9	2.0	0.24	l/gu	25.0	100	80-125			
1,2,3-Trichforobenzene	29.1	1.0	0.16	ug/l	25.0	116	80-125			
1.2,4-Trichlorobenzene	29.8	1.0	0.13	ug/l	25.0	119	80-125			
1,1,1-Trichloroethane	26.1	1.0	0.22	ug/l	25.0	104	80-125			
1,1,2-Trichloroethane	25.6	1.0	0.14	ug/l	25.0	102	80-120			
Trichloroethene	26.7	1.0	0.14	[/Sn	25.0	107	80-120			
Trichlorofluoromethane	26.9	4.0	0.13	[/ŝn	25.0	108	75-140			
1,2,3-T'richloropropane	26.5	1.0	0.26	1/gu	25.0	106	75-120			
1,2,4-Trimethylbenzene	29.1	1.0	0.17	l/gu	25.0	116	80-120			
I.3,5-Trimethylbenzene	29.7	0.1	0.15	[/gn	25.0	119	80-120			
Vinyl acetate	26.9	5.0	9.1	ug/l	25.0	108	75-130			
Vinyl chloride	27.8	1.0	0.18	ug/]	25.0	III	75-130			
Xylenes, Total	82.9	3.0	0.38	ug/l	75.0	, mag	80-125			
Surrogate: Dibromofluoromethane	26.0			l/Sn	25.0	104	80-125			
Surrogate: Toluene-d8	26.7			l/Sn	25.0	107	80-120			
Surrogate: 4-Bromofluorobenzene	26.7			B_{gu}	25.0	107	80-125			

Del Mar Analytical - Phoenix Linda Eshelman Project Manager

The results pertain only to the samples tested in the laboratory. This repart shall not be reproduced, PNK0837 <Page 80 of 153> except in full, without written permission from Del Mar Analytical.

17461 Derian Ave. Suite 100 Innie CA, 62814 (649) 56:11027 FAX (949) 58:02927 1114 E. COMBO, Suite 100, Innie CA, 62814 (699) 370-4667 FAX (149) 370-10469 FAX (149) 370-10467 FAX (149) 3

11/30/04 Sampled: Received:

Project ID: 24018.004/Air Liquide PNK0837

Report Number:

Basin & Range Hydrogeologists 6155 E. Indian School Rd., Suite 100A Scottsdale, AZ 85251 Attention: Any Wolkowinsky

Del Mar Analytical

260-3297 370-1046 505-9689 785-0851 798-3521

Basin & Range Hydrogeologists 6155 E. Indian School Rd., Suite 100A Scottsdale, AZ 85251

24018.004/Air Liquide Report Number: PNK0837 Project ID:

Attention: Amy Wolkowinsky

11/30/04

Sampled: Received:

METHOD BLANK/QC DATA

VOLATILE ORGANICS BY GC/MS (EPA 5030B/8260B)

Qualifiers

Limit

RPD

Spike Source %REC Level Result %REC Limits

MDL Units

Reporting Limit

Result

LCS Dup Analyzed: 12/11/2004 (P4L1104-BSD1)

Bromodichloromethane Bromochloromethane

Bromobenzene

Benzene Acetone

2-Buttanone (MEK) n-Butylbenzene

Втопнотефане Взопобоя

Batch: P4L1104 Extracted: 12/11/04

VOLATILE ORGANICS BY GC/MS (EPA 5030B/8260B)

METHOD BLANK/QC DATA

72

40-150 80-120 80-120 80-120 80-125 75-120 80-135

Anafyte	R Result	Reporting Limit	MDL	Units	Spike Level	 Source %REC Result %REC Limits	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: P4L1104 Extracted: 12/11/04	2/11/04									
LCS Dup Analyzed: 12/11/2064 (P4L1164-BSD1)	P4L1104-BSD1)									
1,1-Dichloroptropene	30.3	1.0	0.12	l/gu	25.0	121	80-120	٣	15	£7
cis-1,3-Dichloropropene	26.8	1.0	0.15	υg/l	25.0	107	80-120	m	10	
trans-1,3-Dichloropropene	24.1	1.0	61.0	ug/l	25.0	96	80-120	4	15	
Ethylbenzene	28.0	2.0	0.12	ug/l	25.0	112	80-120	provide	15	
Hexachlorobutadiene	31.2	1.0	0.24	l/gu	25.0	125	80-130	-	20	IA
2-Hexanone	26.8	0	5.7	l/gu	25.0	107	60-150	9	35	
Іодопієталь	26.5	2.0	0.15	1/211	25.0	106	80-130	71	15	
Isopropylbenzene	27.7	1.0	0.12	l/gu	25.0	Ξ	80-120	0	15	
p-lsopropyltoluene	29.3	0.1	0.11	1/3n	25.0	1117	80-120	1	15	
Methylene chloride	23.6	5.0	0.80	l/gu	25.0	46	80-120	0	15	
4-Methyl-2-pentanone (MIBK)	27.6	10	2.8	ug/l	25.0	011	70-130	90	35	
Methyl-tert-butyl Ether (MTBE)	27.9	5.0	0.26	l/gu	25.0	13	70-130	3	33	
Naphthalene	27.3	2.0	0.22	l/ŝn	25.0	601	75-125	-	25	
n-Propylbenzene	30.4	1.0	0.14	j/∄n	25.0	122	80-125	-	15	Z
Siyrene	27.7	1.0	0.12	l/gu	25.0	Ξ	80-130	m	13	
1,1,1,2-Tetrachloroethane	25.7	1.0	0.14	l/gu	25.0	103	80-125	Φ	15	
1,1,2,2-Tetrachloroethane	28.0	2.0	0.22	I/ān	25.0	112	80-125	-	25	
Tetrachloroethene	27.9	0.1	0.12	[/ān	25.0	=======================================	80-125	۲O	15	
Toluene	25.8	2.0	0.24	ľg'n	25.0	103	80-125	ব	15	
1,2,3-Trichlorobenzene	29.0	0.1	0.16	l∕gu	25.0	116	80-125	0	15	
1,2,4-Trichlorobenzene	30.5	1.0	0.13	I/ਰੋn	25.0	122	80-125	N	15	
1,1.1-Trichforoethane	25.4	1.0	0.22	[∕ān	25.0	102	80-125	m	15	
I, I.2-Trichloroethane	26.9	1.0	0.14	ug/l	25.0	108	80-120	v,	20	
Trichloroethene	27.2	1.0	0.14	∫⁄ān	25.0	109	80-120	C)	15	
Trichlorofluoromethane	26.4	4.0	0.13	l/Sin	25.0	901	75-140	cı	50	
1,2,3-Trichloropropane	26.3	1.0	0.26	∥ån	25.0	105	75-120		25	
1.2,4-Trimethylbenzene	28.9	1.0	0.17	ng/l	25.0	116	80-120	-	13	
1,3,5-Trimethylbenzene	29.5	1.0	0.15	l∕ĝn	25.0	118	80-120	-	15	
Vinyl acetate	27.4	5.0	9.1	ng/J	25.0	110	75-130	(1	25	
Vinyl chloride	27.8	1.0	0.18	ng/J	25.0	11	75-130	0	20	
Xylenes, Total	84.6	3.0	0.38	ug/J	75.0	113	80-125	61	15	
Surrogate: Dibromofluoromethane	25.4			I/Sn	25.0	102	80-125			
Surrogate: Toluene-d8	27.1			HSH	25.0	108	80-120			
Surrogate: 4-Bromofluorobenzene	27.1			l/Sn	25.0	108	80-125			

73

 $\begin{array}{c} \mathbf{5} \\ \mathbf{5} \\ \mathbf{5} \\ \mathbf{5} \\ \mathbf{5} \\ \mathbf{6} \\ \mathbf{7} \\ \mathbf{$

1.2-Dibromo-3-chloropropane L2-Dibromoethane (EDB)

Dibromomethane

Dibromochloromethane

4-Chlorotoluene 2-Chlorotoluene Chloromethane

Carbon tetrachloride

Chlorobenzene Chloroethane

Chloroform

tert-Batyfbenzene sec-Bucybenzene Carbon Disulfide 80-150 80-125 80-125 80-125 80-125 80-125 80-125 80-120 80-120 80-120 80-120 80-120 80-120 80-120 80-120 80-120 80-120

0.12 0.18 0.14 0.15 0.15 0.13 0.13 0.13 0.13 0.28 0.23 0.23 0.15 0.15

Dichlorodifluoromethane

1.1-Diehloroethane i.2-Dichloroethane i.i.-Dichtorocthene

3.3-Dichlorobenzene 1.4-Dichlorobenzene 1.2-Dichlorobenzene

cis-1,2-Dichloroethene trans-1,2-Dichloroethene

1,2-Dichloropropare 1.3-Dichloropropane 2,2-Dichloropropane

Del Mar Analytical - Phoenix Linda Eshelman

776

Project Manager

80-120

results pertain only to the samplex tested in the Laboratory. This report shall not be reproduced. PNK0837 <Page 81 of 153> except in full, without written permission from Del Mar Analytical.

Del Mar Analytical - Phoenix Linda Eshelman

results pertain only to the samples ussied in the laboratory. This report shall not be reproduced PNK0837 <Page 82 of 133> except in full, withou written permission from Del Mar Analytical. TheProject Manager

1746/Destan Ave., Sube 100, Invine. CA 92814 (949) 281-1022 FAX (949) 280-12937 (1014 E. CADOPT, CAURe A. Destan CA 92014 (1993) \$70-1404 (1014 E. CADOPT, CAURe A. Destan Capture, CAR 92120 (1993) \$70-1404

Project ID: 24018.004/Air Liquide

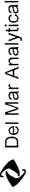
PNK0837

Report Number:

Basin & Range Hydrogeologists 6155 E. Indian School Rd., Suite 100A Scottsdale, AZ 85251 Arrention: Amy Wolkowinsky

Sampled: 11/30/04 Received: 11/30/04

METHOD BLANK/QC DATA


VOLATILE ORGANICS BY GC/MS (EPA 5030B/8260B)

Analyte	Result	Reporting Limit	MDL	MDL Units	Spike Level	Source Result	%REC	Source %REC Result %REC Limits	RPD	RPD Limit	Data Qualifiers	
Batch: P4L1104 Extracted: 12/11/04	11/04											,(i
Matrix Spike Analyzed: 12/11/2004 (P4L1104-MS1)	(P4L1104	MS1)			Sou	Source: PNL0155-20	.0155-2	0				Min
Acetone	37.0	20	6,4	[/Sn	25.0	g	148	25-140			IM.	
Benzene	47.3	0.1	0.15	[/gn	25.0	<u>«</u>	117	80-125				3
Bromobenzene	27.9	0.1	0.11	/gn	25.0	ΩZ	112	80-125				5
Bromochloromethane	27.4	0'1	0.13	ug/l	25.0	g	110	80-135				ш
Bromodichloromethane	27.8	1.0	0.16	l/gu	25.0	0.81	108	80-130				_
Bramofeyin	28.3	2.0	**	l/gu	25.0	Q	113	70-125				CI
Bromomethane	23.7	4.0	0.56	l/gu	25.0	S	95	80-130				
2-Butanone (MEK)	22.0	10	5.5	ug/l	25.0	2	88	30-140				hand
n-Butylbenzene	30.0	1.0	0.18	ug/J	25.0	1.5	114	80-130				Д
sec-Butylbenzene	30.7	1.0	0.12	ng/l	25.0	Q	123	80-125			Z	- ~
tert-Butylbenzene	28.8	1.0	0.15	∥∕an	25.0	S	115	80-125				73
Carbon Disablide	22.3	5.0	0.81	ng∕l	25.0	2	68	80-130				~
Carbon tetrachloride	27.8	1.0	61.0	ng/J	25.0	S	Ξ	80-135				_
Chlorobenzene	27.3	1.0	0.073	l/gu	25.0	Q	109	80-130				-
Chloroethane	22.0	4.0	2.0	l/gu	25.0	Q	88	80-130				93
Chloroform	24.7	1.0	91.0	l/gu	25.0	0.71	96	80-135				
Chloromethane	22.4	4.0	0.26	/Sn	25.0	Ω	8	65-130				_
2-Chlorotoluene	30.4	1.0	0.092	∫/ān	25.0	2	132	80-125				_
4-Chlorotoluene	29.7	1.0	0.12	1/3n	25.0	Q.	119	80-125				1
Dibromochloromethane	29.3	1.0	0.18	ng/l	25.0	1.3	112	75-130				_
1.2-(Dibromo-3-chloropropane	73.6	0.0	0.42	l∕gu	25.0	S	94	70-135				1
1.2-Dibromocthane (EDB)	56.9	0.1	0.16	l∕gu	25.0	Ω	801	80-130				-
Dibromonethane	27.1	0.1	0.15	ug/l	25.0	ND	108	80-130				
f.2-Dichlorobenzene	28.2	1.0	0.12	ng/l	25.0	QN	13	80-125				
1.3-Dichlorobenzene	28.4	1.0	0.078	,Sn	25.0	ΩŽ	<u>+</u>	80-125				_
(.4-Dichlorobenzene	37.9	1.0	6.13	ng/I	25.0	0.55	601	80-120				Т
Dichlorodifluoromethane	27.8	0.4	1.1	1/Sn	25.0	Z	Ξ	50-150				
1.1-Dichloroethane	22.8	1.0	0.13	ug/	25.0	ΩZ	91	80-130				
1,2-Dichioroethane	27.2	1.0	6.15	l/gu	25.0	2.8	86	75-135				
L.t-Dichloroethene	24.4	2.0	0.28	/Sn	25.0	Ω	86	75-130				
cis-{.2-Dichloroethene	25.6	1.0	0.23	US)	25.0	Q Z	103	80-130				Ŷ
trans-1,2-Dichteroethene	25.2	1.0	0.33]/ān	25.0	Š	101	70-135				ν,
1,2-Dichloropropane	24.9	0.1	0.15	ng/l	25.0	Ω	100	80-130				٠,
[,5-E)schloropropane	25.5	0,1	0.16	l∕gu	25.0	ND	102	80-130				υ,
2,2-Dichloropropane	26.5	0.1	0.33]/ J an	25.0	ΩN	901	70-150				

Del Mar Analytical - Phoenix Linda Eshelman Project Manager

The results perion only to the samples tested in the laboratory. This report shall not be reproduced.

PNK0837 <Page 83 of 153>
except in full, without written permission from Del Mar Analytical.

1748 Detain Alex, Sular 105 Inner CA 82544 (949) 281-1022 EAX (949) 282-329 TH 1014 E. Cooley Or, Sulae A, Cottino CA 822224 (1993) 310-4887 FAX (949) 310-1048 9494 Chespaciale Dr., Sulie ed St., San Diego, CA 82122 (1993) 310-8859 FAX (949) 310-1048 9490 Sanh 513 St., Sanh 6490 CA 82125 (859) 510-8859 FAX (859) 510-8869 PAX (859) 510-8869 510

Project ID: 24018.004/Air Liquide Report Number: PNK0837

Basin & Range Hydrogeologists 6155 E. Indian School Rd., Suite 100A Scottsdale, AZ 85251 Attention: Amy Wolkowinsky

Sampled: 11/30/04 Received: 11/30/04

METHOD BLANK/QC DATA

VOLATILE ORGANICS BY GC/MS (EPA 5030B/8260B)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	Source %REC Result %REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: P4L1104 Extracted: 12/11/04	11/04										
Matrix Spike Analyzed: 12/11/2004 (P4LJ104-MS1)	(P4L)102	-)MSI)			Sou	Source: PNL0155-20	.0155-2	0			
1.1-Dichloropropene	28.8	1.0	0.12	ug/l	25.0	QN	115	80-120			
cis-1,3-Dichloropropene	26.1	1.0	0.15	ng/l	25.0	Q	104	80-125			
trans-1,3-Dichloropropene	22.8	1.0	0.19	ug/J	25.0	QN	16	80-130			
Ethylbenzene	33.7	2.0	0.12	ng/J	25.0	4.9	115	80-130			
Hexachlorobutadiene	32.4	1.0	0.24	l/gu	25.0	S	130	80-125			V1, MI
2-Hexanone	29.9	10	5.7	[/sin	25.0	Q	120	40-135			
Iodomediane	26.9	2.0	0.15	l/gu	25.0	S	108	80-135			
Isopropylbenzene	28.5	1.0	0.12	ug/l	25.0	0.65	Ξ	80-125			
p-Isopropyitoluene	29.0	1.0	0.11	[/dn	25.0	g	911	80-125			
Methylene chloride	22.1	5.0	0.80	l/gu	25.0	ND	88	75-120			
4-Methyl-2-pentanone (MIBK)	22.9	10	2.8	ug/l	25.0	R	35	60-140			
Methyl-tert-butyl Ether (MTBE)	9.59	5.0	0.26	ng/l	25.0	33	130	65-155			
Naphthalene	30.3	2.0	0.22	ug/l	25.0	2.7	110	75-135			
n-Propylbenzene	32.3	0.1	0.14	ug/l	25.0	1.7	122	80-125			IA
Styrene	27.5	1.0	0.12	ug/l	25.0	2	110	55-135			
1,1,1,2. Tetrachloroethane	56.6	1.0	0.14	l∕ĝn	25.0	Ž	106	80-130			
1,1,2,2-Tetrachloroethane	25.5	2.0	0.22	ηñη	25.0	S	102	75-130			
Tetrachioroethene	28.1	0,1	0.12	ng/J	25.0	S	112	80-130			
Toluene	76.5	2.0	0.24	ug/J	25.0	4	142	80-130			V_{M}
1,2,3-Trichlorobenzene	30.2	1.0	0.16	ng∕l	25.0	Š	121	80-135			
1,2,4-Trichlorobenzene	31.7	0.1	0.13	ug/J	25.0	S	127	80-130			
1,1,f-Trichloroethanc	24.4	1.0	0.22	ng∕l	25.0	S	86	80-125			
1,1,2-Trichloroethane	27.2	0.1	0.14	/gn	25.0	Ŕ	109	80-125			
Trichloroethene	27.1	1.0	0.14	ug/J	25.0	R	108	80-125			
Trichlorofluoromethane	23.0	4.0	0.13	ng/l	25.0	g	65	75-140			
I.2,3-Trichloropropane	23.9	1.0	0.26	[/ān	25.0	g	96	70-130			
1,2,4-'l'rimethylbenzene	48.8	1.0	0.17	1/3n	25.0	17	127	80-120			IM
1,3,5-Trimethylbenzene	42.5	1.0	0.15	l/gn	25.0	11	126	80-125			IPV
Vinyl acetate	23.7	5.0	9.1	l/gu	25.0	Q	95	55-150			
Vinyl chloride	23.8	1.0	0.18	րե/յ	25.0	ND	66	70-130			
Xylenes, Total	163	3.0	0.38	l/gu	75.0	89	127	80-130			
Surrogate: Dibromofluoromethane	25.3			ngA	25.0		101	80-125			
Surrogate: Toluene-d8	27.0			ng/d	25.0		108	80-130			
Surrogate: 4-Bromoftworobenzene	26.2			l/Bn	25.0		105	80-125			

Del Mar Analytical - Phoenix Linda Eshelman Project Manager

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced PNK0837 <Page 84 of 153> except in full, without written permission from Del Mar Analytical.

Trist Derian Ave. Sules 400, Inne CA 90514 (4940) 54-107-7 EAK (949) 95-1059-1174 (1949) 95-1059-1174 (1949) 97-10460 1174 (1949) 97-10

Project ID: 24018.004/Air Liquide Report Number: PNK0837 Basin & Range Hydrogeologists 6155 E. Indian School Rd., Suite 100A Scousdale, AZ 85251 Attention: Arny Wolkowinsky

Sampled: 11/30/04 Received: 11/30/04

Del Mar Analytical

4

Ta61 Oprian Ave. Sule 100 Inine CA 9281 (949) 361-3297
1014 E. Chole Pric, Sules A. Calano, CA 92321 (981) 371-4667
9484 Chesapeake Br., Sule 805, San Tago, CA 97221 (985) 266-5956
9505 Coull 614 St., Sule 805, San Tago, CA 9722 (985) 266-5956
9505 Coull 614 St., Sule 805, San Tago, CA 9722 (985) 266-5956
9505 Coull 614 St., Sule 8105, San Tago, CA 9722 (985) 267-957
9505 Coull 614 St., San St.,

Sampled: 11/30/04 Received: 11/30/04

METHOD BLANK/QC DATA

VOLATILE ORGANICS BY GC/MS (EPA 5030B/8260B)

Anahte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	Source %REC Result %REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: P4L1104 Extracted: 12/11/04	11/04										
Matrix Spike Dup Analyzed: 12/11/2004 (P4L1104-MSD1)	/2004 (P41	.1104-MSD1)			Son	Source: PNL0155-20	.0155-2	0			
Acetone	42.7	20	6.4	l/gu	25.0	Ñ	17.	25-140	14	35	IW.
Benzene	42.6	0.1	0.15	l/gu	25.0	18	86	80-125	10	15	
Bromobenzene	26.4	0.1	0.11	ug/l	25.0	QX	901	80-125	9	15	
Bromochloromediane	26.2	0.1	0.13	ug/l	25.0	Q	105	80-135	4	50	
Bromodichloromethane	26.2	0.1	91.0	/ 6 11	25.0	0.81	102	80-130	9	15	
Bronssum	29.7	2.0	7	/dn	25.0	Š	611	70-125	S	25	
Bromomethane	20.6	4.0	0.56	ng/J	25.0	S	\$2	80-130	7	20	
2-Butanone (MEK)	21.9	10	4.5	ug/l	25.0	S	88	30-140	-	35	
n-Butylbenzene	56.9	1.0	0.18	ng/	25.0	1.5	102	80-130	=	<u></u>	
sec-Butylbenzene	27.4	1.0	0.12	/an	25.0	QN	110	80-125	=	5	M
tert-Butylbenzene	25.9	1.0	0.15)/šn	25.0	Q	104	80-125	Ξ	5	
Carbon Disalfide	30.4	5.0	0.81	l/gu	25.0	Ñ	82	80-130	6	5	
Carbon tetrachloride	25.1	1.0	0.19	/3n	25.0	ΩŽ	100	80-135	01	15	
Chforobenzene	25.8	1.0	0.073	l/gu	25.0	QV.	103	80-130	9	5	
Chloroethane	19.8	4.0	2.0	/ 3 n	25.0	QN	79	80-130	Ξ	20	ZFV
Chloroforn	22.4	0.1	0.16	/sin	25.0	0.71	87	80-135	10	15	
Chforomethane	18.7	4.0	0.26	ug/]	25.0	R	7.5	65-130	18	52	
2-Chlarotoluene	27.1	0.1	0.092	/Gin	25.0	ND	108	80-125	Ξ	51	
4-Chloratolucne	26.4	0.1	0.12	ug/l	25.0	2	106	80-125	2	15	
Dibromochloromethane	29.4	0.1	0.18	l/ān	25.0	<u>"</u>	12	75-130	0	20	
1,2-Dibromo-3-chloropropane	24.7	0.1	0.42	ug/]	25.0	g	66	70-135	40	35	
1,2-(Dibromoethane (EDB)	26.6	1.0	0.16	ng/J	25.0	g	106	80-130	_	20	
Dibromomediane	27.3	1.0	0.15	/ān	25.0	Ω	109	80-130	-	50	
1.2-Dichlorabenzene	26.9	1.0	0.12	/gu	25.0	S	108	80-125	w	15	
1.3Dichlorobenzene	26.6	1.0	0.078	ng/l	25,0	S	106	80-125	ı~	35	
).4-Dichlorobenzene	25.8	1.0	0.13	₽/ān	25.0	0.55	101	80-120	œ	5	
Dichlorodiffuoromethane	24.4	4.0	11	ng∕!	25.0	S	86	50-150	Ξ	20	
1.1-Dichloroethane	20.4	1.0	0.13	J/gu	25.0	g	82	80-130	Ξ	20	
1.2-Dichiorocthune	25.4	1.0	0.15	ng/j	25.0	2.8	8	75-135	۲-	20	
!_i_(Dichtorocthene	22.1	2.0	0.28	l/gu	25.0	R	88	75-130	01	13	
cis-1.2-Dichloroethene	23.5	0.1	0.23	្រទីព	25.0	g	94	80-130	6	2	
trans-L2-Dichloroethene	23.1	1.0	0.33	 -	25.0	2	35	70-135	6	20	
1,2-Dichtoropropane	22.9	1.0	0.15	/sin	25.0	S	95	80-130	00	15	
1,3-Dichloropropane	24.7	1.0	0.16	ug/l	25.0	S	66	80-130	m	20	
2,2-f7ichteropropane	24.2	1.0	0.33	ug/l	25.0	N	26	70-150	5	13	

Del Mar Analytical - Phoenix Linda Eshelman Project Manager

The results pertain only to the samples rested in the laboratory. This report shall not be reproduced.

PNKB37 <Page 85 of 153>
except in full, without vertien permission from Del Mar Analytical.

Basin & Range Hydrogeologists 6155 E. Indian School Rd., Suite 100A Scottsdale, AZ 85251 Attention: Amy Wolkowinsky

Project ID: 24018.004/Air Liquide Report Number: PNK0837

METHOD BLANK/QC DATA

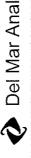
VOLATILE ORGANICS BY GC/MS (EPA 5030B/8260B)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	Source %REC Result %REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: P4L1104 Extracted: 12/11/04	2/11/04										
Matrix Spike Dup Analyzed: 12/11/2004 (P4L1104-MSD1)	11/2004 (P4L	1104-MSD1)			Sou	Source: PNL0155-20	.0155-2				
1,1-Dichloropropene	25.4	1.6	0.12	ug/I	25.0	ΩN	102	80-120	<u></u>	5	
cis-1,3-Dichloropropene	24.2	1.0	0.15	l/gn	25.0	S.	76	80-125	∞	15	
trans-1,3-Dichloropropene	22.2	1.0	0.19	ng/l	25.0	QN.	68	80-130	ro	20	
Ethylbenzene	30.5	2.0	0.12	ug/l	25.0	4.9	102	80-130	10	15	
Hexachlorobutadiene	29.3	1.0	0.24	νâη	25.0	ND	117	80-125	01	15	1/1
2-Нсхаполе	24.7	10	5.7	ng/l	25.0	QN	66	40-135	61	35	
Iodomethane	25.5	2.0	0.15	ng/l	25.0	S	102	80-135	'n	15	
Isopropylbenzene	25.2	1.0	0.12	υg/l	25.0	0.65	86	80-125	12	15	
p-tsopropyltoluene	26.3	1.0	0.11	ug/l	25.0	N	105	80-125	9	5	
Methylene chloride	20.5	5.0	0.80	l∕an .	25.0	N	82	75-120	œ	15	
4-Methyl-2-pentanone (MIBK)	25.5	10	2.8	l/gu	25.0	Ŋ	102	60-140	=	35	
Methyl-tert-buryl Ether (MTBE)	66.3	5.0	0.26	1/gn	25.0	33	133	65-155	,	30	
Naphthalene	31.1	2.0	0.22	l/gu	25.0	2.7	7	75-135	'n	30	
n-Propylhenzene	28.6	1.0	0.14	l/gu	25.0	1.7	108	80-125	2	13	7.7
Styrene	25.5	1.0	0.12	l/gu	25.0	Q.	102	55-135	20	20	
1,1,1,2-Tetrachloroethane	25.4	1.0	0,14	l∕gu	25.0	QN.	102	80-130	s	2	
1,1,2,2-Tetrachloroethane	26.6	2.0	0.22	[/dn	25.0	Ŋ	106	75-130	4	30	
Tetrachloroethene	26.0	0.1	0.12	ng/l	25.0	Q	104	80-130	×	15	
Toluene	9.69	2.0	0,24	l/ån	25.0	4	114	80-130	\$	15	
1,2.3-Trichlorobenzene	29.7	1.0	0.16	[/Sn	25.0	ΩN	119	80-135	C1	50	
1,2,4-Trichforobenzene	30.2	1.0	0.13	/gn	25.0	Ŋ	121	80-130	S	15	
1.1,1-Trichloroethane	21.7	1.0	0.22	[/ 8 n	25.0	S	87	80-125	12	15	
1,1,2-Trichloroethane	27.5	1.0	0.14	l∕gu	25.0	Ñ	110	80-125	_	20	
Trichloroethene	25.4	1.0	0.14	ng/J	25.0	9	102	80-125	9	1.5	
Trichlorofluoromethane	21.0	4.0	0.13	[/Sn	25.0	S	84	75-140	6	15	
1,2,3-Trichloropropane	24.6	1.0	0.26	1/gn	25.0	2	86	70-130	m	30	
1,2,4-Trimethylbenzene	44.2	1.0	0.17	[/dn	25.0		109	80-120	30	15	
1,3,5-Trimethylbenzene	38.0	1.0	0.15	1/2n	25.0	Ξ	108	80-125	Ξ	12	
Vinyl acetate	23.8	5.0	9.1	√gn	25.0	2	9.5	55-150	0	30	
Vinyl chloride	20.3	1.0	0.18	₽/Sn	25.0	g	81	70-130	16	20	
Xylenes, Total	150	3.0	0.38	ug/i	75.0	89	601	80-130	00	15	
Surrogate: Dibromofluoromethane	25.3			ng/l	25.0		101	80-125			
Surrogate: Toluene-d8	27.1			1/8/1	25.0		108	80-120			
Surrogate: 4-Brontofluorobenzene	26.2			ng/l	25.0		105	80-125			

Del Mar Analytical - Phoenix Linda Eshelman Project Manager

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced PNK0837 <Page 86 of 153> except in jult, without written permission from Del Mar Analysical.

Take Design Ave. Salter 10 chein CA 52514 (949) 56-1722 FAX (949) 580-3297 1014 E 1014 E 1010 FAX (949) 970-1046 1014 E 1010 FAX (949) 970-1046 9484 Chesapearle Dir, Shile BHS, San Dago, Ax 92723 (959) 56-5566 FAX (959) 95-5869 950 500-001 516. L. Las Vegas, IV 98170 (102) 798-5927 FAX (950) 795-5927 2520 E 5 lones Ref. at 1, 148 Vegas, IV 98170 (102) 798-5920 FAX (702) 798-5920


METHOD BLANK/QC DATA

VOLATILE ORGANICS BY GC/MS (EPA 5035/8260B)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	Source %REC Result %REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: P4L0807 Extracted: 11/30/04	30/04									
Blank Analyzed: 12/07/2004 (P4L0807-BLK1)	807-BLK1)									
Acetone	SZ	1000	240	ue/ke						14
Benzene	SIN	50	7	ug/kg						•
Bromobenzene	Q	250	7.7	ug/kg						
Bromochloromethane	ND	250	6.2	ug/kg						
Bromadichloromethane	ΩN	100	9.2	ga/gu						
Bronoforns	Q	250	8.5	ug/kg						
Bromomethane	ΩN	250	110	ug/kg						
2-Butanone (MEK)	N	1000	240	ug/kg						14
n-Burylbenzene	QN.	250	2	ña∕kg						
sec-Butylbenzene	S.	250	12	ug/kg						
ten-Butyfhenzene	Z	250	_	ug/kg						
Carbon Disultide	R	500	8.0	19/kg						
Carbon tetrachloride	ĝ	250	6.2	ug/kg						
Chłorobenzene	QN	50	7.7	ug/kg						
Chloroethane	Ω	250	8.5	ng/kg						
Chloroform	QN Q	100	8.3	ug/kg						
Chloromethane	ND ND	250	2	ug/kg						
2-Chlorotoluene	9	250	6.6	ug/kg						
4.Chlorotoluene	2	250	8.6	ug/kg						
Dibromochloromethane	Q.	100	8.2	ug/kg						
1.2.Dibrome-3-chloropropane	ΩX	250	65	ug/kg						
1,2-Dibromoethane (EDB)	NO	100	7.7	ug/kg						
Diframomethane	S	001	<u>د</u> . د.	ug/kg						
1,2-Dichtorobenzene	g	100	9.2	ug/kg						
1,3-Dichlorohenzene	9	90	8.0	ug/kg						
1,4-Dichlorohenzene	S S	100	9.4	ug/kg						
Dichlorodiffuoromethune	QZ	250	=	ug/kg						
f. E-Dichloroethane	QN	100	6.9	ug/kg						
f.2-Dichloroethane	QN	50	7.8	ug/kg						
L.F.Dichloroethene	QN	250	7.5	ag/kg						
cis-1,2-Dichloroethene	GZ.	100	=	ฮีพูฮิก						
trans-1.2-Dichloroethene	Q	100	Ξ	ug/kg						
1.2-Dictiforopropane	ND	100	7.3	ng/kg						
1.3-Elichioropropane	ND	100	8.4	ug/kg						
2,2-Dichloropropane	N Q	001	13	ng/kg						

Del Mar Analytical - Phoenix Linda Eshelman Project Manager

The results partein only to the xemples tested in the laboration;. This report shall not be reproduced. PNK0837 <Page 87 of 133> except in full, without vertion permission from Dol Mar Arabytical.

17461 Derian Ave., Suite 100 Invine CA 2024 (494) 86-1125. FAX (Hall) 982-2527 (1746 C Dordan F. Suite A. Culturi. CA 2024 (499) 379-4467 FAX (949) 373-1406 (1746) 274-1406 (

Del Mar Analytical

Project ID: 24018.004/Air Liquide Report Number: PNK0837

Basin & Range Hydrogeologists 6155 E. Indian School Rd., Suite 100A Scottsdale, AZ 85251 Attention: Amy Wolkowinsky

Sampled: 11/30/04 Received: 11/30/04

Project (D: 24018.004/Air Liquide PNK0837

Report Number:

Basin & Range Hydrogeologists 6155 E. Indian School Rd., Suire 100A Scottsdale, AZ 85251 Attention: Any Wolkowinsky

Sampled: 11/30/04 Received: 11/30/04

METHOD BLANK/QC DATA

VOLATILE ORGANICS BY GC/MS (EPA 5035/8260B)

Analyte	Result	Reporting Limit	MDL	MDL Units	Spike Level	Source %REC Result %REC Limits	%REC	RPD	RPD Limit	Data Qualifiers
Batch: P4L0807 Extracted: 11/30/04	1/30/04									
Blank Analyzed: 12/07/2004 (P4L0807-BLK1)	0807-BLK1)									
1,1-Dichloropropene	QN	100	6.9	ug/kg						
cis-1,3-Dichloropropene	g	001	11	ug/kg						
trans-1,3-Dichloropropene	Ŋ	001	8.0	ug/kg						
Ethylbenzene	Q.	100	0.8	ug/kg						
Hexachlorobutadiene	ΩN	250	77	ug/kg						
2-Mexanone	QN	1000	130	ug/kg						171
Iodomethane	Ω	250	25	ug/kg						
Isopropylbenzene	S	001	8.6	ug/kg						
p-Isopropyltoluene	ΩN	100	13	ug/kg						
Methylene chloride	N Q	500	09	ay/an						
4-Methyl-2-pentanone (MIBK)	ΩN	1000	150	gy/gu						1.4
Methyl-tert-butyl Ether (MTBE)	N ON	250	13	वह/स्ड						
Naphthalene	NO	250	67	ug/kg						
n-Propylbenzene	ΝΩ	100	Ξ	ug/kg						
Styrene	NO.	100	0.6	ug/kg						
I, I, I, 2-Tetrachloroethane	ΩN	250	8.5	ug/kg						
I, I, 2, 2- Fetrachlorocthane	ND	001	=	ug/kg						
Tetrachloroethene	QN	001	=	ug/kg						
Toluene	S S	100	6.8	ng/kg						
1,2,3-Trichlorobenzene	ΩN	250	99	ug/kg						
1,2,4-Trichlorobenzene	S	250	30	ug/kg						
1,1,1-Trichloroethane	44.5	100	6.2	ug/kg						E4
1,1,2-Trichloroethane	S	100	9.6	ug/kg						
Trichloroethene	Q	100	1	ug/kg						
Trichlorofluoromethane	2	250	7.8	ug/kg						
1,2,3-Trichloropropane	QN.	500	10	ug/kg						
1,2,4-Trimethylbenzene	OZ.	100	2.6	ug/kg						
1,3,5-Trimethylbenzene	Q	100	10	це/ке						
Vinyl acetate	Ω̈́	1200	10	ug/kg						
Vinyl chloride	QN	250	4.7	11g/kg						
Xylenes, Total	QN	150	18	ug/kg						
Surrogote: Dibromofluoromethane	1210			ng/kg	1250	26	70-120			
Surrogate: Toluene-d8	1200			Sy/Sn	1250	96	75-120			
Surrogate: 4-Bromofluarobenzene	1270			3y/3n	1250	102	75-120			

Del Mar Analytical - Phoenix Linda Eshelman Project Manager

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced PNK0837 <Page 88 of 153> except in full, without written permission from Del Mar Anabrical.

Del Mar Analytical

17481Derian Am., Sante 100, Irvine: CA 929514 (946) 281-1022 FAX (948) 2961-297 (104 E. CORON, CABRe, A. CHONIC CA 92327 (1040) 370-457 (1040) 370-456 (1040) 370-457 (1040

11/30/04 Sampled: Received:

Project ID: 24018.004/Air Liquide PNK0837

Report Number:

Basin & Range Hydrogeologists 6155 E. Indian School Rd., Suite 100A Scottsdale, AZ 85251 Attention: Amy Wolkowinsky

Report Number: PNK0837 Basin & Range Hydrogeologists 6155 E. Indian School Rd., Suite 100A Scottsdale, AZ 85251 Attention: Amy Wolkowinsky

11/30/04 Sampled: Received:

Project ID: 24018.004/Air Liquide

METHOD BLANK/QC DATA

VOLATILE ORGANICS BY GC/MS (EPA 5035/8260B)

Analyte Result		Reporting Limit	MDL Units	Units	Spike Level	Source %REC Result %REC Limits	EC Li	%REC Limits RPD	RPD Limit	Data Qualifiers	
Batch: P4L0807 Extracted: 11/30/04											
LCS Analyzed: 12/07/2004 (P4L0807-BS1)	_										
Acetone 640	_	1000	240	ığ/kg	1250	\$	1 15	5-120		V1, E4	
Burzene 1330	0	50	4	ng/kg	1250	Ξ	90 80	\$0-120			
Bromobenzene 1330	٥	250	7.7	ag/kg	1250	<u> </u>	90 80	10-120			
Bromochloromethane 1240	0	250	6.2	ug/kg	1250	6	08 66	80-120			
Scottodickloromethane 1240	0	100	9.2	ug/kg	1250	Φv	08 66	80-120			
Bromoform 1070	0	250	8.3	ga/gu	1250	∞	86 65	65-120			
Stomomethane 1410	0	250	011	ug/kg	1250	,,,,,	113 25	25-120			
2-Butanone (MBK) 844		1000	240	ug/kg	1250	9	68 45	45-125		FJ. E4	
n-Butylbenzene 1440	0	250	18	ug/kg	1250	-	115 80	86-130			
see-Butylbenzene 1490	٠	250	12	ព្យទីកិច្ច	1250	1	08 611	80-130			
tvrt-Butythenzene 1450	0	250	=	នូវ/ខ្មីរា	1250	-	116 80	80-130			
Carbon Disulfide 1360	0	500	8.0	ฮีฟูฮีก	1250	=	109 50	50-120			
Carbon tetrachloride 1340	0	250	6.2	g/kg	1250	_	107 80	80-125			
Chorebenzene 1340	0	50	7.7	ug/kg	1250	=	107 80	80-120			
Chloroethane 1370	0	250	8.5	ug/kg	1250	-	110 20	20-120			
Chloroform 1280	0	100	8.3	ug/kg	1250	-	02 80	80-120			
Chloromethane 1560	0	250	01	ug/kg	1250		125 45	45-120		27	
2-Chierotoluene 1380	0	250	6.6	ug/kg	1250	****	110 80	80-120			
4-Cklonotoluene 1390	0	250	8.6	១៩ ¹ ៥១	1250		111 80	80-125			
Dibromochloromethane 1220	0	901	8.2	ug/kg	1250	6	27 86	75-120			
1,2-Dibromo-3-chtoropropane 1080	0	250	65	ug/kg	1250	20	86 50	50-120			
1.2-Dibrornoethane (EDB) 1340	0	100	7.7	ug/kg	1250	=	•	75-125			
Disromomethane 1260	0	100	œ. Э	ug/kg	1250	-		80-120			
1.2-Diehlorobenzene 1360	0	100	9.2	ug/kg	1250	Ĩ		80-120			
1.3-Dichlorebenzene 1380	0	601	8.0	ug/kg	1250	1		80-120			
1.4-Dichlorobenzene 1370	0	100	6.4	ug/kg	1250	1	110 80	80-120			
Etichloredifluoremethane 1840	0	250	=	ug/kg	1250	÷	147 20	20-120		1.3	
L.1-Dickloroethane 1350	0	001	6.9	ug/kg	1250	Ä	08 80	80-120			
1.2.(Diehloroethane 1240	0	50	3.7	ug/kg	1250	5	99 75	75-120			
U.E-Dichlorochene 1410	0	250	3.5	ug/kg	1250	-	113 65	65-120			
cis-1,2-Dichtoroethene 1360	0	100	_	ug/kg	1250	-	38 601	80-120			
trans-1,2-Dichloroethene 1390	0	100	=	ug/kg	1250		38 111	80-120			
	0	100	7.3	ng/kg	1250	=		80-120			
1.3-Dichloropropane 1320	0	00	8,4	ug/kg	1250	-	38 90	80-120			
2,2-Dichloropropane 1400	0	100	13	ug/kg	1250	****	112 80	80-120			

Del Mar Analytical - Phoenix Linda Eshelman Project Manager

The results pertain only to the samples tested in the laboratory. This report shall not he reproduced, PNK0837 <Page 89 of 153> except in fielt, without written permission from Del Mar Analytical.

METHOD BLANK/QC DATA

VOLATILE ORGANICS BY GCMS (FPA 5035/8260R)
FPA 5
Z Z
SUL
A.
OR
LII E
7
⋝

Anakyte	Result	Reporting Limit	MDL	MDL Units	Spike Level	Source %REC Result %REC Limits	%REC	RPD	RPD Limit	Data Qualifiers
Batch: P4L0807 Extracted: 11/30/04	1/30/04									
LCS Analyzed: 12/07/2004 (P4L0807-BS)	807-BS1)									
I, I-Dichloropropene	1500	001	6.9	ug/kg	1250	120	80-120			
cis-1,3-Dichloropropene	1290	001	17	ug/kg	1250	103	80-120			
trans-1,3-Dichloropropene	1220	001	8.0	ug/kg	1250	86	80-120			
Ethylbenzene	1350	100	8.0	ng/kg	1250	108	80-120			
Hexachlorobutadiene	1520	250	11	ug/kg	1250	122	80-140			
2-Hexanone	1020	1000	130	ug/kg	1250	82	50-120			M
lodomethane	1350	250	25	ug/kg	1250	108	60-120			
Isopropylbenzene	1340	001	8.6	ug/kg	1250	101	80-125			
p-Isopropyltoluene	1450	001	13	ug/kg	1250	116	80-130			
Methylene chloride	1250	500	09	ug/kg	1250	100	60-120			
4-Methyl-2-pentanone (MIBK)	896	1000	150	ug/kg	1250	77	50-120			V1, E4
Methyl-tert-butyl Ether (MTBE)	1130	250	13	ug/kg	1250	06	75-120			
Naphthalene	1160	250	29	ug/kg	1250	93	60-120			
n-Propylbenzene	1460	100	Ξ	ug/kg	1250	117	80-130			
Styrene	1380	001	0.6	ug/kg	1250	110	80-125			
1.1,1,2-Tetrachloroethane	1300	250	8.5	ug/kg	1250	104	80-120			
1,1,2,2-Tetrachloroethane	1230	001	Ξ	ug/kg	1250	86	60-120			
Tetrachloroethene	1480	001	Ξ	ug/kg	1250	118	80-120			
Toluene	1370	100	6.8	ug/kg	1250	110	80-120			
1,2,3-Trichlorobenzene	1250	250	09	ug/kg	1250	001	70-130			
1,2,4-Trichlorobenzene	1360	250	30	ug/kg	1250	601	75-135			
1.1,1-Trichloroethane	1420	100	6.2	ug/kg	1250	114	80-120			
I, I, 2-Trichloroethane	1210	100	9.6	ug/kg	1250	76	75-120			
Trichloroethene	1290	001	=	ug/kg	1250	103	80-120			
Trichlorofluoromethane	1530	250	7.8	ug/kg	1250	122	30-130			
1,2.3-Trichloropropane	1170	500	10	ug/kg	1250	94	60-120			
1,2,4-Trimethylbenzene	1380	100	6.7	ug/kg	1250	110	80-120			
1,3,5-Trimethy/benzene	1450	100	10	ug/kg	1250	911	80-130			
Vinyl acetate	1120	1200	01	ug/kg	1250	96	30-120			E4
Vinyl chloride	8()4	250	4.7	ug/kg	1250	64	10-120			
Xylenes, Total	4290	150	18	ug/kg	3750	114	80-120			
Surrogate: Dibromofluoromethane	1260			By/Bn	1250	101	70-120			
Surrogate: Toluene-d8	1260			ng/kg	1250	101	75-120			
Surrogate: 4-Bromoftuorobenzene	1250	٠		ga/gn	1250	100	75-120			

Del Mar Analytical - Phoenix Linda Eshelman Project Manager

The results pertain only to the samples tested in the labaratery. This report shall not be reproduced except in full, without written permission from Del Mar Analytical.

1745/Doilin Ave. Sulle 100, frene CA 62814. (849) 581-1022. FAX (849) 580-2297. 1744 E. Cinolle Pr. Sulle A. Chour CA 62914. (309) 370-4646. FAX (849) 370-3468. 409 570-4646. 370-3468. 409 570-4646. 409) 470-4646. FAX (849) 580-3499. 409 570-346. 409 5

Project ID: 24018.004/Air Liquide Basin & Range Hydrogeologists 6155 E. Indian School Rd., Suire 100A

Sampled: 11/30/04 Received: 11/30/04

PNK0837

Report Number:

Atrention: Amy Wolkowinsky

Scottsdale, AZ 85251

Basin & Range Hydrogeologists 6155 E. Indian School Rd., Suite 100A Scottsdale, AZ 85251

Del Mar Analytical

Tell Delian Ave. Sulte 0.01 there CA 0.0314 (49) 55-1027 FX (949) 500-0237 (174) ED 0.040 ED Project ID: 24018.004/Air Liquide

Report Number: PNK0837

Attention: Amy Wolkowinsky

Sampled: 11/30/04 Received: 11/30/04

METHOD BLANK/QC DATA

VOLATILE ORGANICS BY GC/MS (EPA 5035/8260B)

Qualifiers

RPD Limit

RP3

Source %REC Result %REC Limits

Spike Level

Units

MDL

Limit

LCS Dup Analyzed: 12/07/2004 (P4L0807-BSD1)

Bromodichloromethane

2-Batanone (MEK) n-Butylbenzene

Втогногиставе

Влоснойови

sec-Burylbenzene ert-Butyfbenzene

Bromochioromethane

Batch: P4L0807 Extracted: 11/30/04

VOLATILE ORGANICS BY GC/MS (EPA 5035/8260B)

METHOD BLANK/QC DATA

V1, E4

V1. R6 86

LIGYKG LIGYK LIGY

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	Source %REC Result %REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: P4L0807 Extracted: 11/30/04	1/30/04										
LCS Dup Analyzed: 12/07/2004 (P4L0807-BSD1)	P4L0807-BSD	_									
1.1-Dichloropropene	1490	100	6.9	ng/kg	1250		911	80-120	-	15	
cis-1,3-Dichloropropene	1320	100	11	ug/kg	1250		106	80-120	2	15	
trans-1,3-Dichloropropene	1340	100	8.0	ug/kg	1250		107	80-120	6	15	
Ethylbenzene	1340	100	8.0	ug/kg	1250		107	80-120	-	15	
Hexachlorobutadiene	1500	250	11	ag/kg	1250		120	80-140	-	5	
2-Hexanone	1390	1000	130	ug/kg	1250		Ξ	50-120	31	35	M
Iodomethane	1350	250	32	ug/kg	1250		108	60-120	0	20	
Isopropylbenzene	1290	100	8.6	ug/kg	1250		103	80-125	4	5	
p-fsopropyltoluene	1400	100	13	ug/kg	1250		112	80-130	4	15	
Methylene chloride	1230	200	9	ug/kg	1250		86	60-120	7	15	
4-Methyl-2-pentanone (MIBK)	1300	1000	150	ug/kg	1250		104	50-120	23	30	N
Methyl-tert-butyl Ether (MTBE)	1320	250	13	ug/kg	1250		901	75-120	16	20	
Naphthalene	1420	250	19	ug/kg	1250		14	60-120	20	30	
n-Propylbenzene	1430	100	=	ug/kg	1250		114	80-130	2	15	
Styrene	1390	100	0.6	ug/kg	1250		Ξ	80-125	-	15	
1,1,1,2-Tetrachloroethane	1310	250	8.5	ug/kg	1250		105	80-120	-	15	
1,1,2,2-Tetrachloroethane	1500	100	Ξ	ид/кд	1250		120	60-120	20	20	
Tetrachloroethene	1450	100	=	ug/kg	1250		116	80-120	7	15	
Toluene	1350	100	6.8	ug/kg	1250		108	80-120	****	15	
1,2,3-Trichlorobenzene	1390	250	3	ug/kg	1250		Ξ	70-130	=	15	
1,2,4-Trichlorobenzene	1420	250	30	ug/kg	1250		114	75-135	77	15	
1,1,1-Trichloroethane	1390	100	6.2	ug/kg	1250		111	80-120	7	15	
1,1,2-Trichloroethane	1390	100	9.6	ир/ке	1250		111	75-120	4	15	
Trichloroethene	1290	100	=	ug/kg	1250		103	80-120	0	5	
Trichlorofluoromethane	1490	250	7.8	ag/kg	1250		119	30-130	'n	20	
1,2,3-Trichluropropane	1420	500	10	ug/kg	1250		14	60-120	6	30	
1,2,4-Trimethylbenzene	1360	100	5.4	ug/kg	1250		109	80-120		15	
1,3,5-Trimethylbenzene	1410	100	10	ug/kg	1250		113	80-130	3	15	
Vinyl acetate	1300	1200	10	ug/kg	1250		104	30-120	5	35	
Vinyl chloride	743	250	4.7	ug/kg	1250		59	10-120	×	35	
Xylenes, Total	4260	150	8	ng/kg	3750		114	80-120	,	15	
Surrogate: Dibromofluoromethane	1280			ng/kg	1250		102	70-120			
Surrogate: Tolnene-d8	1250			ng/kg	1250		100	75-120			
Surrogate: 4-Bromoftworobenzene	1300			ng/kg	1250		104	75-120			

8

35

1,2-Dibromo-3-chloropropane 1,2-Dibromoethane (EDB)

Dibromochloromethune

2-Chiorotoluene 4-Chiorotoluene

Caloromethane

Chloroforn

Carbon extrachloride Chlorobenzene Chloroethane

Carbon Disulfide

igkg igkg igkg igkg

ig/kg ig/kg ig/kg

IENE IENE IENE IENE IENE

Dichlorodiffuoromethane

1,1-Dichforoethane 1,2-Dichloroethane

.4-Dichlorobenzene

1,2-Dichforobenzene 1.3-Dichtorobenzene

Dibromomethane

cis-1,2-Dichloroethene urans-1,2-Dichloroethene

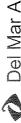
1,1-Dichloroethene

1.2-Dichloropropane

1,3-Dichloropropane 1.2-Dichloropropane

15-120
88-120
88-120
88-120
88-120
88-120
88-120
88-120
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88-130
88

73


80-120 80-120 80-120

Del Mar Analytical - Phoenix Linda Eshelman Project Manager

The results pertain only to the samples sessed in the laboratory. This report shall not be reproduced PNK0837 <Page 92 of 153> except in full, without written permission from Del Mar Anabutca!.

Del Mar Analytical - Phoenix Project Manager Linda Eshelman

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced. PNK0837 <Puge 91 of 153> except in full, without written permission from Del Mar Analytical.

1746 Decian Ave. Sale 100 Inner CA 02514 (949) 26-1027 FAX (949) 380-3297 Int 4 E. Chooler, Sallie A. Chathur, CA 82214 (99) 370-467 FAX (949) 350-467 FAX (949) 370-470 FAX (949) 370-970 FAX (

Project ID: 24018,004/Air Liquide Basin & Range Hydrogeologists 6155 E. Indian School Rd., Suite 100A Scottsdale, AZ 85251 Attention: Arry Wolkowinsky

METHOD BLANK/QC DATA

VOLATILE ORGANICS BY GC/MS (EPA 5035/8260B)

Del Mar Analytical - Phoenix Unda Eshelman Project Manager

The results periation only to the samples tested in the Jaboratory. This report shall not be reproduced, PNK0837 <Page 93 of 153> except to full, without verticen permission from Del Mar Analytical.

Basin & Range Hydrogeologists 6155 E. Indian School Rd., Suite 100A Scottsdale, AZ 85251 Attention: Amy Wolkowinsky

Sampled: 11/30/04 Received: 11/30/04

Report Number: PNK0837

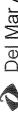
174610eries Aw., Sune 10b, hvine CA, 8584 (649) \$51-1027. FAX (949) 80-2029 TO VIVE C. Donello T. Sules A, Callon, CA, 82234 (899) \$67-14687 FAX (949) \$101-1040. CA 82234 (899) \$67-14687 FAX (949) \$101-1040 CA 8229 CACH \$101-1040 CA 8229 CACH \$101-1040 CA 8220 CACH \$101-1040 CACH \$101-1040

Report Number: PNK0837

Project ID: 24018.004/Air Liquide

Sampled: 11/30/04 Received: 11/30/04

METHOD BLANK/QC DATA


VOLATILE ORGANICS BY GC/MS (EPA 5035/8260B)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	Source %REC Result %REC Limits	RPD	RPD Limit	Data · Qualifiers
Batch: P4L0807 Extracted: 11/30/04	1/30/04										
Matrix Spike Analyzed: 12/07/2004 (P4L0807-MS1)	04 (P4)L0807	-MSI)			Son	Source: PNK0837-04	K0837-1	7			
1,1-Dichloropropene	1490	100	6.9	ga/gu	1280	Q	116	70-125			
cis-1,3-Dichloropropene	1310	100	1.1	ug/kg	1280	S	102	75-120			
trans-1,3-Dichloropropene	1270	100	8.0	ug/kg	1280	QN	66	70-120			
Ethylbenzene	1290	100	8.0	ug/kg	1280	ΩN	101	75-120			
Hexachlorobutadiene	1470	250	11	ng/kg	1280	ΩN	115	70-135			
2-Hexanone	1160	1000	130	ug/kg	1280	R	16	40-120			1.1
Iodomethane	1330	250	25	ug/kg	1280	S	104	50-120			
Isopropylbenzene	1290	100	8 6	ug/kg	1280	ΩN	101	75-120			
p-Isopropyltoluene	1390	001	13	ug/kg	1280	Ŋ	601	75-125			
Methylene chloride	1430	200	09	ug/kg	1280	110	103	50-120			
4-Methyl-2-pentanone (MIBK)	1150	1000	150	ug/kg	1280	N	96	45-135			1.1
Methyl-ten-butyl Ether (MTBE)	1290	250	3	ug/kg	1280	N O	103	60-120			
Naphthalene	1300	250	67	ug/kg	1280	ON ON	102	50-120			
n-Propylbenzene	1430	100	=	ug/kg	1280	Z	112	70-125			
Styrene	1290	100	9.0	ug/kg	1280	g	101	75-120			
I, I, I, 2-Tetrachloroethane	1310	250	8.5	ug/kg	1280	S	102	75-120			
1,1,2,2-Tetrachloroethane	1410	001	Ξ	ug/kg	1280	Š	110	60-120			
Tetrachloroethene	1340	001	Ξ	ลัง ธิก	1280	R	105	70-120			
Toluene	1330	100	8.9	ეგ/სგ	1280	R	104	75-120			
1,2,3-Trichlorobenzene	1350	250	9	ug/kg	1280	£	105	60-125			
1,2,4-Trichlorobenzene	1370	250	30	ug/kg	1280	S	107	65-130			
1,1.1-Trichlorocthane	2750	100	6.2	ug/kg	1280	1400	105	70-120			
1,1,2-Trichloroethane	1290	001	9.6	ug/kg	1280	N Q	<u>=</u>	70-120			
Trichloroethene	1280	100	=	ug/kg	1280	2	100	70-125			
Trichlorofluoromethane	1490	250	7.8	ug/kg	1280	Q.	911	25-120			
1,2,3-Trichloropropane	1340	500	01	ug/kg	1280	2	105	55-130			
1.2,4-Trimethylbenzene	1380	100	6.3	ug/kg	1280	9	108	75-120			
1,3,5-Trimethylbenzene	1390	100	01	ug/kg	1280	S	109	75-125			
Vinyl acetate	1220	1200	10	ug/ Kg	1280	g	95	25-130			
Vinyl chloride	804	250	4.7	98 Kg	1280	Ŕ	8	10-120			
Xylenes, Total	4140	150	81	ug/kg	3830	Ñ	108	75-120			
Surrogate: Dibromoftuoromethane	1320			Sy/Sn	1280		103	70-120			
Surrogate: Toluene-d8	06₹1			ng/kg	1280		101	75-120			
Surrogate: 4-Bromofluorobenzene	1210			ng/kg	1280		9.5	75-120			

Del Mar Analytical - Phoenix Linda Eshelman Project Manager

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced.

**PNK0837 < Page 94 of 153>
except in fall, without written permission from Del Mar Anabúcal.

Telf Delian Are, Sulte 100, Iwine CA 00541 (644) 26-11027 FAX (949) 302-1207 (104 E 10-004) D. Sulte 100, Sult

Project ID: 24018.004/Air Liquide Report Number: PNK0837

Basin & Range Hydrogeologists 6155 E. Indian School Rd., Suite 100A Scottsdale, AZ 85251 Attention: Any Wolkowinsky

Del Mar Analytical

1746/Detain Ave, Suiter 40, Inner CA 92514, 6499, 381-1022, 544, (set) 280-3829 1014 E. Croding Dr., Suite A., Cotton. CA 82224 (999) 370-4867 FAX (set) 370-1046 948 Chesapeake Dr., Suite 80, San Diego CA 82223 (869) 370-8596 FAX (set) 565-889 940 South Inst Ris, Island B-170, Prentin, AZ 8044 (197) 781-9819 (AA) (set) 580-981 2520 E., Suixeel Fd., Ris, Leav Vegas, NV 98120 (702) 789-9820 FAX (102) 789-9821

Report Number: PNK0837

Project ID: 24018.004/Air Liquide

Basin & Range Hydrogeologists 6155 E. Indían School Rd., Suite 100A Scottsdale, AZ 85251 Attention: Amy Wolkowinsky

Sampled: 11/30/04 Received: 11/30/04

Sampled: 11/30/04 Received: 11/30/04

METHOD BLANK/QC DATA

VOLATILE ORGANICS BY GC/MS (EPA 5035/8260B)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source %REC Result %REC Limits	REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: P4L0807 Extracted: 11/30/04	1/30/04										
Matrix Spike Dup Analyzed: 12/07/2004 (P4L.0807-MSDI)	07/2004 (P4L	0807-MSD1)			Son	Source: PNK0837-04	0837-0	ঘ			
Acetane	682	1000	240	មន្ត/ <u>(</u> ខ្មែ	1280	S	83	15-120	6	30	F1. E4
Benzene	1270	50	14	ug/kg	1280	2	66	70-120	8	2	
Bromobenzene	1320	250	t~;	ug/kg	1280	ΔN	103	70-120	-	<u>~</u>	
Bromochloromethane	1260	250	6.2	ug/kg	1280	ND	86	70-120	m	5	
Bremodichloromethane	1220	100	9.2	ug/kg	1280	ND	95	70-120	7	15	
Bronodorm	1180	250	8.3	ug/kg	1280	QN	55	55-120	10	15	
Bromomethane	1320	250	110	ug/kg	1280	GN	103	20-120	1-	30	
2-Butanone (MEK.)	186	1000	240	ug/kg	1280	QN	77	40-120	,	35	F.I. E4
n-Butylbenzene	1270	250	8.	ag/kg	1280	QN	86	75-130	2	15	
sec-Buylbenzene	(330	250	Ը	ug/kg	1280	g	104	75-125	œ	15	
tert-Butylbunzene	1310	250	=	ug/kg	1280	R	102	75-125	9	15	
Carbon Disulfide	1210	500	8.0	ក្នុង/ជួប	1280	R	92	45-120	r-	15	
Carbon tetrachloride	1200	250	6.2	ug/kg	1280	Q	1 6	75-120	Ξ	15	
Chlorobenzene	1280	50	7.7	ug/kg	1280	g	901	75-120	rs	15	
Chloroethane	1250	250	5.5	āx∕ān	1280	Q	86	20-120	=	35	
Chloroform	1230	100	œ.3	ay/gu	1280	Ω	96	70-120	rδ	15	
Chloromethane	1390	250	2	ug/kg	1280	Ŕ	601	35-120	ĭ	20	
2-Chlomtoluene	1300	250	6.6	ay/au	1280	Q.	102	75-120	4	5	
4-Chlorotoluene	1320	250	8.6	สิง/สิก	1280	Q	103	75-120	বা	13	
Dibromochloromethane	1190	100	8.2	ga/gu	1280	Q.	93	70-120	_	Ÿ.	
1.2-Dibromo-3-chloropropane	1170	250	65	ay/gu	1280	ND	91	50-130	ж	30	
1,2-Dibromoethane (EDB)	1300	100	7.7	ng/kg	1280	Ω	102	65-125	Ν	15	
Dibromomethane	1310	001	8.3	រដ្ឋ/ភ្លិព	1280	ND	102	70-120	-	15	
t,2-E)ichlarobenzene	1290	100	9.2	ug/kg	1280	Q.	101	75-120	4	13	
1,3-Dichlarobenzene	1330	001	8.0	ng/kg	1280	QN	104	75-120	rł	15	
L.4-Dichlarobenzene	1290	100	9.4	ug/kg	1280	Q	101	80-120	'n	15	
Dich!orodilluoromethane	1590	250	Ξ	ug/kg	1280	Q.	124	10-120	13	25	NIB
i, t-Dichloroethane	1400	001	6.9	ug/kg	1280	110	101	70-120	4	15	
L.2-Dichloroethane	1260	20	 %	ug/kg	1280	ΩN	86	70-120	61	15	
L. IDichlorouthene	1300	250	7.5	ug/kg	1280	49	86	50-120	13	50	
cis-1,2-Dichleroethene	1320	901	_	ug/kg	1280	Q	103	70-120	4	15	
trans-1.2-Dichloroethene	1310	100	=	ug/kg	1280	2	102	65-120	4	15	
1,2-Dichloropropane	1270	100	7.3	ug/kg	1280	Ω	6	75-120	c)	15	
1.3-Dichloropropane	1270	100	8,4	ng/kg	1280	S	66	65-120	33	15	
2.2-Dichloropropane	1260	001	=	fly/fin	1280	Ω	86	60-120		15	

Del Mar Analytical - Phoenix Linda Eshelman

Project Manager

The results pertuin only to the samplex tessed in the Indoortiory. This report shall not be reproduced. PNKW837 <Page 95 of 153> except in full, without written permission from Del Mar Anabytecal.

METHOD BLANK/QC DATA

VOLATILE ORGANICS BY GC/MS (EPA 5035/8260B)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	Source %REC Result %REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: P4L0807 Extracted: 11/30/04	1/30/04										
Matrix Spike Dup Analyzed: 12/07/2004 (P4L0807-MSD1)	17/2004 (P4L)	0867-MSD1)			Sou	Source: PNK0837-04	K0837-1	7			
1,1-Dichloropropene	1360	100	6.9	ug/kg	1280	Q	106	70-125	6	5	
cis-1,3-Dichloropropene	1260	100	17	ug/kg	1280	Š	86	75-120	4	51	
trans-1,3-Dichloropropene	1240	100	8.0	ug/kg	1280	Ŕ	76	70-120	7	15	
Ethylbenzene	1230	100	8.0	ng/kg	1280	g	96	75-120	ç	15	
Hexachlorobutadiene	1320	250	11	ug/kg	1280	QZ.	103	70-135	Ξ	15	
2-Hexanone	1020	1000	130	ga/gn	1280	Q.	80	40-120	5	35	Z
lodomethane	1290	250	25	ug/kg	1280	2	101	50-120	10	15	
Isopropylbenzene	1210	100	8.6	ug/kg	1280	Ω	95	75-120	9	15	
p-fsopropyltoluene	1290	100	23	ug/kg	1280	N N	101	75-125	7	15	
Methylene chloride	1390	500	09	ug/kg	1280	110	100	50-120	ĸ	20	
4-Methyl-2-pentanone (MHK)	1030	1000	150	ng/kg	1280	Q.	80	45-135	=	35	IA
Methyl-tert-butyl Ether (MTBE)	1210	250	<u>:</u>	ug/kg	1280	S	55	60-120	9	15	
Naphthalene	1200	250	19	ug/kg	1280	S	4	50-120	œ	25	
n-Propylbenzene	1330	100	=	ug/kg	1280	Ŋ	104	70-125	7	15	
Styrene	1260	100	9.0	ug/kg	1280	g	86	75-120	c	15	
1,1,1,2.Tetrachloroethane	1280	250	8.5	ug/kg	1280	Ω	100	75-120	73	15	
1,1,2,2-Tetrachforoethane	1240	100		ug/kg	1280	Š	46	60-120	13	30	
Tetrachloroethene	1240	100	_	ug/kg	1280	S	66	70-120	8	15	
Toluene	1270	100	8.9	18/kg	1280	g	66	75-120	S	15	
1,2,3-Trichlorobenzene	1250	250	99	ug/kg	1280	Q	86	60-125	20	15	
1,2,4-Trichlorobenzene	1320	250	30	ug/kg	1280	Ω	103	65-130	4	15	
1,1,1-Trichloroethane	2750	100	6.2	ug/kg	1280	1400	105	70-120	0	15	
1,1,2-Trichloroethane	1250	100	9.6	ug/kg	1280	Z	86	70-120	'n	15	
Trichloroethene	1190	100	-	ug/kg	1280	2	93	70-125	7	15	
Trichlorofluoromethane	1360	250	7.8	ug/kg	1280	Z	901	25-120	6	25	
1,2,3-Trichloropropane	1200	200	10	ug/kg	1280	S	25	55-130	Ξ	25	
1,2,4-Trimethylbenzene	1280	100	2.5	ug/kg	1280	g	100	75-120	œ	15	
1,3,5-1'rimethylbenzene	1310	100	10	ug/kg	1280	N	102	75-125	9	13	
Vinyl acetate	1140	1200	10	ug/kg	1280	Ð	68	25-130	7	35	154
Vinyl chloride	705	250	4.7	ug/kg	1280	2	55	10-120	13	30	
Xylenes, Total	4050	150	18	ug/kg	3830	S	106	75-120	71	15	
Survogate: Dibromofluoromethane	1320			Sy/Sn	1280		103	70-120			
Surrogate: Toluene-d8	1270			By/Sn	1280		66	75-120			
Surrogate: 4-Bromoftworobenzene	1220			ng/kg	1280		95	75-120			

Del Mar Analytical - Phoenix Linda Eshelman Project Manager

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced PNK0837 <Page 96 of 153> except in Jult, without virtuen permission from Del Mar Analysical,

1745 Derian Ave., Suite 100 Teine, CA 9254 (1949) 261-1022 FAX (1949) 260-0297 1014 E. Chopie, N. Suite A. Chelin, CA 82254 (1969) 310-4674 FAX (1949) 310-4674 1949 (1949) 310-4674 FAX (1949) 310-4674 1949 (1949) 310-4674 1949 (1949) 310-4674 1949 (1949) 310-4674 1949 (1949) 310-474 (1949)

Report Number: PNK0837 Basin & Range Hydrogeologists 6155 E. Indian School Rd., Suite 100A Scottsdale, AZ 85251 Attention: Amy Wolkowinsky

Project ID: 24018.004/Air Liquide

11/30/04 Sampled: Received:

Basin & Range Hydrogeologists 6155 E. Indian School Rd., Suite 100A Scottsdale, AZ 85251 Attention: Amy Wolkowinsky

Del Mar Analytical

1745 Design Ave., Suite 100, home, CA 02014. (949) 261-1027. FAX (949) 363-2297. 1014. E. CONDO, CA 02014. (949) 317-1046. Suite 100, Suite 900, Suite 900

Sampled: 11/30/04 Received: 11/30/04

Report Number: PNK0837

Project ID: 24018.004/Air Liquide

METHOD BLANK/QC DATA

VOLATILE ORGANICS BY GC/MS (EPA 5035/8260B)

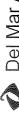
Analyte	Result	Reporting Limit	MDL	MDL Units	Spike Level	Source %REC Result %REC Limits	%REC C Limits	RPD	RPD Limit	Data Qualifiers
Batch: P4L1007 Extracted: 12/01/04	/01/04									
Blank Analyzed: 12/10/2004 (P4L1007-BLK1)	(007-BLK1)									
1.1-Dichloropropene	QN	100	6.9	ug/kg						
cis-1,3-Dichloropropene	QN	100	11	ug/kg						
trans-1,3-Dichloropropene	QN	100	8.0	ug/kg						
Ethylbenzene	ΩN	100	8.0	gy/gn						
Hexachlorobutadiene	g N	250	11	ug/kg						
2-Hexanone	S	1000	130	ug/kg						
Iodomethane	Ω	250	25	ug/kg						
Isopropylbenzene	Ð	100	8.6	ug/kg						
p-Isopropyltoluene	g	100	13	ug/kg						
Methylene chloride	67.2	500	99	ug/kg						E4
4-Methyl-2-pentanone (MIBK)	QN	1000	150	ug/kg						
Methyl-tert-butyl Ether (MTBE)	QN	250	13	ug/kg						
Naphthalene	QN	250	29	ug/kg						
n-Propylbenzene	Q	001	=	115/kg						
Styrene	Ω	001	0.6	ug/kg						
1,1,1,2-Tetrachloroethane	Q	250	8.5	gy/gu						
I,1,2,2-Tetrachloroethanc	QX	100	-	ug/kg						
Tetrachloroethene	ΩN	100	11	ng/kg						
Toluene	S	100	8.9	ug/kg						
1,2,3-Trichlorobenzene	NO	250	9	ug/kg						
1,2,4-Trichlorobenzene	QZ	250	30	ug/kg						
1,1,1-Trichloroethune	46.5	100	6.2	ug/kg						E4
1,1,2-Trichloroethane	QN	100	9.6	ug/kg						
Trichloroethene	Q	100	11	ug/kg						
Trichlorofluoromethane	2	250	7.8	ng/kg						
1.2.3-Trichloropropane	QN	200	10	តិវ/តិក						
1,2,4-Trimethylbenzene	QN	100	6.3	ng/kg						
1,3.5-Trimethylbenzene	QN	100	10	ug/kg						
Vinyl acetate	QN	1200	10	ag vg						
Vinyl chloride	QN	250	4.7	ng/kg						
Xylenes, Total	Q	150	82	ug/kg						
Surrogate: Dibromofluoromethane	1210			Sk/Sn	1250	76	70-120			
Surrogate: Toluene-d8	1280			ng/kg	1250	102	75-120			
Surrogate: 4-Bromoftworbenzene	1270			ng/kg	1250	103				

Del Mar Analytical - Phoenix Linda Eshelman Project Manager

The results pertain only to the samples tested in the laborators. This report shall not be reproduced PNK0837 <Page 98 of 153> except in full, without written permission from Del Mar Analytical.

Ë	
Ξ.	
RPI	
Limits	
%REC	
Result '	
Level	
Units	
MDL	
Limit	
Result	1: 12/01/04
tnalyte	:b: P4L1007 Extracted: 12/01/04
	Result Limit MDL

VOLATILE ORGANICS BY GC/MS (EPA 5035/8260B)


METHOD BLANK/QC DATA

Qualifiers

(VALLE COLLEGE	(1400)				
Acetoric	8	1000	240	ព <i>ខ្/</i> kg	
Вепzепе	OZ.	20	#	ug/kg	
Bromobenzene	ON	250	7.7	ug/kg	
Втогоосийогопреднять	ON O	250	6.2	ug/kg	
Sromodichloromethane	QN QN	100	9.2	ug/kg	
ຄີກຄາຍວັນລະກາ	QN.	250	8.3	ug/kg	
Bromomethane	QN	250	110	ug/kg	
2-Butapone (MEK)	Q.	1000	240	ug/kg	
n-Butylbenzene	QN ON	250	20	ग ु∕ ४	
sec-Bugybenzene	QN O	250	13	ug/kg	
tem-Butylhenzene	Q.	250	=	ប <i>ន្ទ/</i> kg	
Carbon Disuifide	QN.	500	8.0	ug/kg	
Carbon tetrachloride	QN ON	250	6.2	ug/kg	
Chlorobenzene	QN	20	7.7	υg/kg	
Chloroethane	QN	250	\$.5	ug/kg	
Chloraform	g	100	×3	ug/kg	
Chloromethane	Q.	250	01	ug/kg	
2-Chiarolohuen¢	Q N	250	6'6	ug/kg	
4-Citionotoluene	Q.	250	9.8	गड़∕\हु	
Dibromochloromethane	9	100	8,2	ងមូ/៤០	
1.2-Dibrama-3-chloropropane	ND	250	65	11g/kg	
L.2-Dibromoerhane (EDB)	Q.	100	7.7	ng/kg	
Dibromanethane	QN ON	100	۲ <u>۲</u> کو	ug/kg	
1,2-Dichlerobenzene	Q	001	9.2	ug/kg	
L3-Dichlorokenzene	Q	001	8.0	ug/kg	
1.4-Dichlorohenzene	Q.	8	1.6	ug/kg	•
Dictilorodifluoromethane	Q.	250	=	ng/kg	
(.) -Dichloroethane	S	<u>00</u>	6.9	ug/kg	
(.2-Dichloroethane	QN QN	50	3¢.	ug/kg	
1.1-Dichloroethene	Q.	250	7.5	ug/kg	
eis-1.2-Diehloroethene	Q.	100	-	นฐ/kg	
traus-1.2-Dichlorecthene	Î	100	=	ug/kg	
1.2-Dichloropropane	OZ.	90	<u>در</u>	ug/kg	
1,3-Dichloropropane	ON.	001	∞	ug/kg	
2 3_Dishbaronesoses	0.7	001	,	2	

Del Mar Analytical - Phoenix Linda Eshelman Project Manager

The results pertain only to the samples tested in the laboratory. This report shall not he reproduced, PNKOB37 <Puge 97 of 153> except in full, without written permission from Del Mar Analysicad.

17461 Deriam Ave., Sulle 100, Innier CA 82814 (1949) 281-1022 FAX (1949) 286-2287 (1949) 4E. Cholon, C., Sulle 4, Olon, CA 82297 (1969) 370-4596 (1949) 270-1046 (1949) 270-4596 (1949) 270-1046 (1949) 270-10

Report Number: PNK0837 Basin & Range Hydrogeologists 6155 E. Indian School Rd., Suite 100A Scottsdale, AZ 85251 Attention: Amy Wolkowinsky

Project ID: 24018.004/Air Liquide

Sampled: 11/30/04 Received: 11/30/04

Del Mar Analytical

1745/Derian Ave., Suite 100, Innin CA, 02814 (1649), SE1-1827, KK 1949, SE3-2527 (1645), CAMPA, CAUTH, CANSTON, GOSTON, GOSTON

Project ID: 24018.004/Air Liquide Basin & Range Hydrogeologists 6155 E. Indian School Rd., Suite 100A Scottsdale, AZ 85251 Attention: Amy Wolkowinsky

Report Number: PNK0837

Sampled: 11/30/04 Received: 11/30/04

METHOD BLANK/QC DATA

VOLATILE ORGANICS BY GC/MS (EPA 5035/8260B)

ers	Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source %REC Result %REC Limits	%REC Limits	RPD	RPD Limit	Data Qualifiers
	Batch: P4L1007 Extracted: 12/01/04	01/04									
	LCS Analyzed: 12/10/2004 (P4L1007-BS1)	17-BS1)									
	I.1-Dichloropropene	1390	100	6.9	ug/kg	1250	11	80-120			
	cis-1,3-Dichloropropene	1260	100	17	ug/kg	1250	101	80-120			
	trans-1,3-Dichloropropene	1200	100	8.0	ug/kg	1250	96	80-120			
	Ethylbenzene	1260	100	8.0	ug/kg	1250	101	80-120			
	Hexachlorobutadiene	1410	250	11	ug/kg	1250	113	80-140			
	2-Hexanone	1110	1000	130	ug/kg	1250	68	50-120			
	lodomethane	1290	250	25	ug/kg	1250	103	60-120			
	Isopropylbenzene	1290	100	8.6	ng/kg	1250	103	80-125			
	p-Isopropyltoluene	1350	100	13	ug/kg	1250	108	80-130			
	Methylene chloride	1180	500	99	ug/kg	1250	94	60-120			
	4-Methyl-2-pentanone (MIBK)	1150	1000	150	ng/kg	1250	92	50-120			
	Methyl-tert-butyl Ether (MTBE)	1230	250	2	ug/kg	1250	86	75-120			
	Naphthalene	1260	250	67	ug/kg	1250	101	60-120			
	n-Propylbenzene	1400	001	=	ug/kg	1250	113	80-130			
	Styrene	1300	001	9.0	ug/kg	1250	104	80-125			
	1,1,1,2-Tetrachloroethane	1330	250	8,5	ug/kg	1250	106	80-120			
	1,1,2,2.Tetrachloroethane	1250	100	Ξ	ug/kg	1250	100	60-120			
	Tetrachloroethene	1250	100	=	ng/kg	1250	100	80-120			
	Toluene	1260	100	8.9	ug/kg	1250	101	80-120			
	1,2,3-Trichlorobenzene	1290	250	09	ug/kg	1250	103	70-130			
	1,2,4-Trichlorobenzene	1380	250	30	ug/kg	1250	110	75-135			
	1,1,1-Trichloroethane	1300	100	6.2	ug/kg	1250	104	80-120			
	1,1,2-Trichloroethane	1200	100	9.6	ag/gu	1250	96	75-120			
	Trichloraethene	1270	100	Ξ	gx/gu	1250	102	80-120			
	Trichlorofluoromethane	1270	250	7.8	ug/kg	1250	102	30-130			
	1,2,3-Trichloropropane	1210	200	10	ug/kg	1250	16	60-120			
	1,2,4-Trimethylbenzene	1350	100	7.6	ug/kg	1250	108	80-120			
	1,3,5-Trimethylbenzene	1370	100	9	ug/kg	1250	110	80-130			,
	Vinyl acetate	1240	1200	10	ug/kg	1250	66	30-120			
	Vinyl chloride	605	250	4.7	ug/kg	1250	48	10-120			
	Xylenes, Total	4030	150	38	ug/kg	3750	107	80-120			
	Surrogate: Dibromaftuoromethane	1290			ng/kg	1250	103	70-120			
	Surrogate: Toluene-d8	1290			ag/kg	1250	103	75-120			
	Surrogate: 4-Bromofluorobenzene	1290			ng/kg	1250	103	75-120			

Del Mar Analytical - Phoenix Linda Eshelman Project Manager

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced PNK0837 <Page 100 of 153> except in full, without written permission from Del Mar Analytical.

METHOD BLANK/QC DATA

VOLATILE ORGANICS BY GC/MS (EPA 5035/8260B)

Analyte	Resuft	Reporting Limit	MDL	Units	Spike Level	Source "REC Result %REC Limits		RPD	RPD Limit	Data Qualifiers	
Batch: P4L1007 Extracted: 12/01/04	2/01/04										
LCS Analyzed: 12/10/2004 (P4L1007-BS1	(007-BS1)										
Асеюне	1020	1000	240	ug/kg	1250	82	15-120				
Benzene	1240	50	4	ug/kg	1250	66	80-120				
Bromobenzene	1340	250	7.7	ug/kg	1250	107	80-120				
Bromochloromethane	1260	250	6.2	ug/kg	1250	101	80-120				
Bronodichloromethane	1230	100	5.2	ug/kg	1250	86	80-120				
Bromoform	1120	250	8.3	ug/kg	1250	8	65-120				
Bromomethane	1030	250	91	ug/kg	1250	28	25-120				
2-Butanone (MEK)	1160	1000	240	ng/kg	1250	93	45-125				
n-Butylbenzene	1300	250	81	ug/kg	1250	104	80-130				
sec-Burybenzene	1410	250	12	ug/kg	1250	113	80-130				
tert-Butylbenzene	1380	250	Ξ	ug/kg	1250	110	80-130				
Carbon Disuffide	1250	500	8.0	ug/kg	1250	100	50-120				
Carbon tetrachloride	1260	250	6.2	ug/kg	1250	101	80-125				
Chlorobenzene	1280	50	7.7	gy/gu	1250	102	80-120				
Chloroethane	1070	250	5.5	ug/kg	1250	98	20-120				
Chloroform	1240	100	8.3	ug/kg	1250	86	80-120				
Chloromethane	1280	250	0	ug/kg	1250	102	45-120				
2-Chiomoluene	1340	250	6.6	ug/kg	1250	107	80-120				
4-Chlorotoluene	1360	250	8.6	ug/kg	1250	109	80-125				
Dibromochloromethane	1130	100	8.2	ug/kg	1250	8	75-120				
1,2-Dibromo-3-chloropropane	1010	250	65	ug/kg	1250	81	50-120				
1,2-Dibromoethane (EDB)	1220	100	7.7	ug/kg	1250	86	75-125				
Dibromomethane	1230	100	8.3	ug/kg	1250	86	80-120				
1,2-Dichlarobenzene	1310	100	5.6	ug/kg	1250	105	80-120				
1.3-Elichlorobenzene	1340	90 =	8.0	ug/kg	1250	107	80-120				
1.4-Dichlarobenzene	1300	100	₽'6	ug/kg	1250	104	80-120				
Dicklorocliffuoromethane	1390	250	Ξ	ug/kg	1250	1111	20-120				
1.1-Dichlorochane	1270	100	6.9	ug/kg	1250	102	80-120				
1.2-Dichloroethane	1200	50	3.7	ug/kg	1250	96	75-120				
1.1-Diehloroethene	1220	250	7.5	ug/kg	1250	86	65-120				
cis-1.2-Dichloroethene	1280	100	_	ug/kg	1250	102	80-120				
truns-1,2-Dieblorgethene	1260	100	=	ug/kg	1250	101	80-120				
l,2-Dichlorogropane	1280	100	7.3	ug/kg	1250	102	80-120				
1.3-Dichloropropane	1200	100	¥.%	ug/kg	1250	96	80-120				
2.2-Dichloropropane	1210	100	2	ug/kg	1250	46	80-120				

Del Mar Analytical - Phoenix Linda Eshelman

Project Manager

The results pertain only to the xamples tested in the laboratory. This report shall not be reproduced. PNKIB37 <Page 99 of 153> except in full, without written permission from Del Mar Analysical.

1745 Design Ave. Suite: 100, Innie CA 02814. (949) 96-1727. FAX (949) 980-3297. 1014. E. Corpel Pr. Suite: A. Coeton: CA 82314. (949) 370-4646. FAX (949) 370-4646. 993 370-4646. 993 370-4646. 993 370-4646. 993 370-4646. 993 370-4646. 993 370-4646. 993 370-467. 993 370-4746. 993 370

Project ID: 24018.004/Air Liquide PNK0837 Report Number:

Basin & Range Hydrogeologists 6153 E. Indian School Rd.. Suite 100A Scottsdale, AZ 85251 Attention: Amy Wolkowinsky

Sampled: 11/30/04 Received: 11/30/04

Del Mar Analytical 4

Project ID: 24018,004/Air Liquide Basin & Range Hydrogeologists 6155 E. Indian School Rd., Suite 100A Scottsdale, AZ 85251 Attention: Amy Wolkowinsky

Report Number: PNK0837

11/30/04 11/30/04 Sampled: Received:

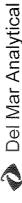
METHOD BLANK/QC DATA

VOLATILE ORGANICS BY GC/MS (EPA 5035/8260B)

Analyte	R Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	Source %REC Result %REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: P4L1007 Extracted: 12/01/04	701/04										
LCS Dup Analyzed: 12/10/2004 (P4L1007-BSD1)	24L1007-BSD1)										
1,1-Dichloropropene	1400	001	6.9	ug/kg	1250		112	80-120		51	
cis-1,3-Dichloropropene	1280	100	11	ug/kg	1250		102	80-120	d	15	
trans-1,3-Dichloropropene	1240	001	0.8	ug/kg	1250		66	80-120	٤٦	15	
Ethylbenzene	1260	001	8.0	ug/kg	1250		101	80-120	0	15	
Hexachlorobutadiene	1420	250	77	ug/kg	1250		114	80-140	,	15	
2-Hexanone	1130	1000	130	ug/kg	1250		06	50-120	C1	35	
Iodomethane	1310	250	25	ug/kg	1250		105	60-120	CI	20	
Isopropylbenzene	1290	100	8.6	ug/kg	1250		103	80-125	0	15	
p-Isopropyltoluene	1330	001	13	ug/kg	1250		901	80-130	-	15	
Methylene chloride	1190	200	09	ug/kg	1250		95	60-120		15	
4-Methyl-2-pentanone (MIBK)	1180	1000	150	ug/kg	1250		64	50-120	45	30	
Methyl-tort-butyl Ether (MTBE)	1260	250	2	ug kg	1250		101	75-120	7	20	
Naphthalene	1220	250	67	ug/kg	1250		86	60-120	m	20	
n-Propylbenzene	1380	001	_	ug/kg	1250		0	80-130		15	
Styrene	1290	001	9.0	ug/kg	1250		103	80-125		15	
1,1,1,2-Tetrachloroethane	1290	250	8.5	ug/kg	1250		103	80-120	m	51	
1.1,2,2-Tetrachloroethane	1250	100	=	ug/kg	1250		100	60-120	0	20	
Tetrachloroethene	1250	100	=	ag/kg	1250		100	80-120	0	51	
Toluene	1270	100	6.8	ug/kg	1250		105	80-120	-	<u></u>	
1.2,3-Trichlorobenzene	1280	250	9	ug/kg	1250		102	70-130	-	15	
1,2,4.Trichlorobenzene	1370	250	30	ug/kg	1250		110	75-135	-	15	
1,1,1-Trichloroethane	1300	100	6.2	ug/kg	1250		104	80-120	0	12	
I,1,2-Trichloroethane	1240	100	9.6	ug/kg	1250		66	75-120	3	13	
Trichloroethene	1270	100	Ξ	ug/kg	1250		102	80-120	0	15	
Trichlorofluoromethane	1290	250	3,5	ug/kg	1250		103	30-130	ы	50	
1.2.3-Trichloropropane	1220	500	10	ug/kg	1250		86	60-120	-	50	
1,2,4-Trimethy/benzene	1320	001	6.7	ug/kg	1250		106	80-120	cı	15	
1,3,5-Trimethytbenzene	1350	100	10	ug/kg	1250		801	80-130	-	15	
Vinyl acetate	0611	1200	01	ug/kg	1250		56	30-120	7	35	E4
Vinyl chloride	396	250	4.7	ug/kg	1250		32	10-120	42	35	R6
Xylenes, Total	4030	150	38	ng/kg	3750		107	80-120	0	15	
Surrogate: Dibromofluoromethane	1290			gy/gu	1250		103	70-120			
Surrogate: Toluene-d8	1300			Sy/Sn	1250		104	75-120			
Surrogate: 4-Bromofluorobenzene	1280			8y/8n	1250		102	75-120			

Del Mar Analytical - Phoenix Linda Eshelman Project Manager

The results pertain only to the samples tested in the loboratory. This report shall not he repruduced, PNK0837 <Page 102 of 153> except in fall, without written permission from Del Mar Analytical.


VOLATILE ORGANICS BY GC/MS (EPA 5035/8260B)

METHOD BLANK/QC DATA

Analyte	Result	Reporting Limit	MDE	MDE. Units	Spike Level	Source %REC Result %REC Limits	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: P4L1007 Extracted: 12/01/04	/01/04									
LCS Dup Analyzed: 12/10/2004 (P4L1007-BSD1)	4E1007-BSI	01)								
Acetone	1040	0001	240	និង/ផ្ទា	1250	83	15-120	a	35	
Benztee	1240	50	7	ug/kg	1250	66	80-120	0	15	
Bromobenzene	1330	250	7.7	ug/kg	1250	901	80-120	_	15	
Bromochioromethane	1250	250	6.2	ug/kg	1250	001	80-120	-	15	
Bromodichloromethane	1240	100	9.2	ug/kg	1250	66	80-120	1	15	
Bronsban	1110	250	8	ug/kg	1250	68	65-120	_	15	
Bromemethane	1230	250	911	ug/kg	1250	86	25-120	38	35	
2-Butanone (MEK)	1160	0001	240	ug/kg	1250	93	45-125	0	30	
9-Botylhenzene	1300	250	8	ug/kg	1250	104	80-130	Ó	15	
sec-Buy/fenzene	1380	250	17	ug/kg	1250	110	80-130	2	15	
sert-Butytbenzene	1380	250		ជូនខ្មែរ	1250	011	80-130	0	15	
Carbon Disulfide	1280	200	8.0	ug/kg	1250	102	50-120	3	53	
Carbon tetrachloride	1240	250	6.2	ug/kg	1250	66	80-125	2	Ž,	
Chlorobenzene	1290	50	r	ug/kg	1250	103	80-120		15	
Chloroethane	1260	250	8.5	ug/kg	1250	101	20-120	91	35	
Chloroform	1230	100	8.3	ug/kg	1250	86	80-120	_	15	
Chtoromethane	1370	250	10	ugykg	1250	110	45-120	7	20	
2-Chlorotohiene	1340	250	6.6	ug/kg	1250	107	80-120	0	15	
4-Chlorotoluene	1360	250	8.6	ug/kg	1250	109	80-125	c	13	
Dibromochloromethane	1110	100	8.2	ug/kg	1250	68	75-120	r-t	15	
1.2-Dibromo-3-chloropropane	1050	250	59	ug/kg	1250	84	50-120	1	25	
1.2-Dibromoethane (EDB)	1240	100	7.7	ng/kg	1250	66	75-125	ᇅ	5	
Oibromomethane	1250	100	83	ug/kg	1250	100	80-120	7	<u>v</u>	
1.2-Dichlorobenzene	1320	90	9.3	ug/kg	1250	106	80-120	,	<u>vo</u>	
L3-Dichlorobenzene	1330	100	8.0	ug/kg	1250	106	80-120		5	
L.4-Dichlorobenzene	1300	100	† .6	ng/kg	1250	104	80-120	0	5	
DichloradiDuoromethane	1460	250	Π	ng/kg	1250	1117	20-120	c	50	
1.1-Dichloroethane	1270	901	6.9	ug/kg	1250	102	80-120	٥	15	
3.2-Divisionocthane	1210	50	۲. ئ	ug/kg	1250	2.6	75-120	-	15	
(. I-Dichloroethene	1240	250	7.5	ug/kg	1250	56	65-120	CI	20	
cis-1,2-Dichtorocthene	1280	001	=	ug/kg	1250	102	80-120	0	15	
trans-1,2-Dichloroethene	1260	001	=	ug/kg	1250	0	80-120	0	15	
1.2-Dichloropropane	1290	001	7.3	ng/kg	1250	103	80-120	-	15	
1,5-Dichloropropane	1210	100	œ	ug/kg	1250	76	80-120	-	15	
2.2-Dichloropropane	1210	001	<u></u>	ng/kg	1250	16	80-120	0	15	

Del Mar Analytical - Phoenix Linda Eshelman Project Manager

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced. PNK0837 <Page 101 of 133> except in full, without written permission from Del Mar Analytical.

Del Mar Analytical

1745 Devian Ave., Suite 110, Ivine CA 02514 (949) 261-1622 FX (1949) 500-0221 (1046) 261-0221 (1046) 261-0221 (1046) 261-0221 (1046) 261-021

Project ID: 24018.004/Air Liquide

Report Number: PNK0837

Basin & Range Hydrogeologists 6155 E. Indian School Rd., Suite 100A Scottsdale, AZ 85251 Attention: Arny Wolkowinsky

Sampled: 11/30/04 Received: 11/30/04

Sampled: 11/30/04 Received: 11/30/04 Project ID: 24018.004/Air Liquide

Report Number: PNK0837

Basin & Range Hydrogeologists 6155 E. Indian School Rd., Suite 100A Scottsdale, AZ 85251 Attention: Arry Wolkowinsky

METHOD BLANK/QC DATA

VOLATILE ORGANICS BY GC/MS (EPA 5035/8260B)

Sale of the color of t	Analyte	Result	Reporting Limit	MDL	MDL Units	Spike Level	Source Result	%REC	Source %REC Result %REC Limits	RPD	RPD Limit	Data Qualifiers	
Analyzed: [2/10/2004 (P4L1007-MSI)] Sontrer PNK0837-22 Analyzed: [2/10/2004 (P4L1007-MSI)] 100 240 ug/kg 1270 ND 91 Bance 120 250 7.7 ug/kg 1270 ND 92 Chance 120 250 7.7 ug/kg 1270 ND 93 Chance 1250 250 140 ug/kg 1270 ND 93 List 250 160 9.2 ug/kg 1270 ND 93 K.) 1380 250 11 ug/kg 1270 ND 93 A.) 1380 250 14 ug/kg 1270 ND 93 A.) 1320 250 14 ug/kg 1270 ND 94 A.) 1320 250 12 ug/kg 120 ND 93 A.) 1320 250 12 ug/kg 120 ND 93 A.)	Batch: P4L1007 Extracted: 11	/30/04											
1150 1600 240 ug/kg 1270 ND 91 1200 250 14 ug/kg 1270 ND 95 1280 255 7.7 ug/kg 1270 ND 95 1280 256 6.2 ug/kg 1270 ND 95 1380 250 10 ug/kg 1270 ND 95 1380 2500 18 ug/kg 1270 ND 95 1380 2500 18 ug/kg 1270 ND 95 1380 2500 11 ug/kg 1270 ND 95 1280 2500 11 ug/kg 1270 ND 95 1290 250 11 ug/kg 1270 ND 95 1290 250 11 ug/kg 1270 ND 95 1200 250 10 ug/kg 1270 ND 95 1200 250 10 ug/kg 1270 ND 95 1210 250 8.5 ug/kg 1270 ND 95 1210 250 8.5 ug/kg 1270 ND 95 1210 250 8.5 ug/kg 1270 ND 95 1220 250 9.5 ug/kg 1270 ND 95 1220 250 9.5 ug/kg 1270 ND 95 1220 250 9.5 ug/kg 1270 ND 102 1220 250 9.5 ug/kg 1270 ND 103 1220 250 9.5 ug/kg 1270 ND 103 1220 250 10 ug/kg 1270 ND 103 1220 250 10 ug/kg 1270 ND 99 1220 250 10 ug/kg 1270 ND 99 1220 250 11 ug/kg 1270 ND 99 1220 250 21 ug/kg 1270 ND 90 1220 250 21 ug/kg 1270 ND 90 1220 250 21 ug/kg 1270 ND 90 1220 250 21 ug/kg 1270 ND	Matrix Spike Analyzed: (2/10/200	4 (P4L1007	-MSI)			Sou	rce: PNJ	K0837-;	e				
1210 350 14 ug/kg 1270 ND 95 1280 250 6.7 ug/kg 1270 ND 95 1280 250 6.7 ug/kg 1270 ND 95 1380 250 110 ug/kg 1270 ND 95 1200 250 12 ug/kg 1270 ND 95 1201 250 12 ug/kg 1270 ND 95 1202 250 12 ug/kg 1270 ND 95 1203 250 12 ug/kg 1270 ND 95 1204 250 12 ug/kg 1270 ND 95 1205 250 25 ug/kg 1270 ND 97 1210 250 8.3 ug/kg 1270 ND 97 1210 250 8.5 ug/kg 1270 ND 97 1210 250 9.5 ug/kg 1270 ND 97 1210 250 9.5 ug/kg 1270 ND 97 1220 250 100 11 ug/kg 1270 ND 97 1220 250 100 11 ug/kg 1270 ND 97 1220 250 100 11 ug/kg 1270 ND 97 1220 250 250 250 ug/kg 1270	Acetone	1150	1000	240	ug/kg	1270	ΩŽ	16	15-120				
1280 250 7.7 ug/kg 1270 ND D1 1260 250 ug/kg 1270 ND 99 1260 250 ug/kg 1270 ND 99 1380 250 110 ug/kg 1270 ND 91 1380 250 110 ug/kg 1270 ND 91 1380 250 110 ug/kg 1270 ND 91 1290 250 12 ug/kg 1270 ND 91 1290 250 11 ug/kg 1270 ND 91 1290 250 11 ug/kg 1270 ND 91 1290 250 11 ug/kg 1270 ND 91 1290 250 80 ug/kg 1270 ND 91 1200 250 80 ug/kg 1270 ND 91 1210 250 80 ug/kg 1270 ND 91 1210 250 80 ug/kg 1270 ND 91 1210 250 80 ug/kg 1270 ND 91 1220 250 250 ug/kg 1270 ND 91	Benzene	1210	50	<u></u>	ug/kg	1270	S	95	70-120				
triance 1260 250 612 ug/kg 1270 ND 99 1250 1150 250 ug/kg 1270 ND 91 1250 1250 133 ug/kg 1270 ND 91 1340 250 110 ug/kg 1270 ND 91 1320 250 11 ug/kg 1270 ND 105 1250 250 250 ug/kg 1270 ND 93 1250 250 250 ug/kg 1270 ND 94 1250 250 250 ug/kg 1270 ND 95 1250 250 250 ug/kg 1270 ND 95 1250 250 250 ug/kg 1270 ND 95 1250 250 250 ug/kg 1270 ND 105 1250 250 ug/kg 1270 ND 105 1250 100 250 ug/kg 1270 ND 105 1	Bromobenzene	1280	250	7.7	ug/kg	1270	Ŋ	5	70-120				
chance 1250 100 9.2 ug/kg 1270 ND 98 1150 230 1150 230 183 ug/kg 1270 ND 91 1180 230 1180 240 ug/kg 1270 ND 95 1180 230 1180 240 ug/kg 1270 ND 95 1220 120 ug/kg 1270 ND 95 1220 230 12 ug/kg 1270 ND 95 1220 230 8.0 ug/kg 1270 ND 95 1220 230 8.0 ug/kg 1270 ND 95 1220 230 8.5 ug/kg 1270 ND 95 1220 1220 1220 1220 1220 1220 1220 122	Bromochloromethane	1260	250	6.2	ug/kg	1270	ND	66	70-120				
1150 250 8.3 ug/kg 1270 ND 91 1180 250 110 ug/kg 1270 ND 93 1180 250 110 ug/kg 1270 ND 105 1230 250 12 ug/kg 1270 ND 105 1230 250 12 ug/kg 1270 ND 105 1230 250 11 ug/kg 1270 ND 105 1230 250 11 ug/kg 1270 ND 105 1230 250 8.1 ug/kg 1270 ND 105 1230 250 8.2 ug/kg 1270 ND 95 1230 250 8.3 ug/kg 1270 ND 95 1230 250 8.3 ug/kg 1270 ND 95 1240 255 8.5 ug/kg 1270 ND 95 1250 250 8.5 ug/kg 1270 ND 105 1250 250 8.5 ug/kg 1270 ND 105 1260 250 8.5 ug/kg 1270 ND 105 1270 250 8.5 ug/kg 1270 ND 105 1280 100 8.2 ug/kg 1270 ND 105 1280 100 8.3 ug/kg 1270 ND 105 1280 100 8.5 ug/kg 1270 ND 95 1280 100 11 ug/kg 1270 ND 95 1280 120 120 120 120 1280 120 120 120 120 120 1280 120 120 120 120 120 1280 120 120 120 120 1280 120 120 120 120 120 1280 120 120 120 120 1280 120 120 120 120 120 1280 120 120 120 120 120 1280 120 120 120 120 120 1280 120 120 120 120 120 1280 120 120 120 120 1280 120 120 120 120 1280 120 120 120 120 1280 120 120 120 120 1280 120 120 120 120 1280 120 120 120 120	Bromodíchtoromethane	1250	100	9.2	ug/kg	1270	ND	86	70-120				
Ki) 180 250 110 op/kg 1270 ND 95 :: 1230 1500 240 ug/kg 1270 ND 96 :: 1290 250 12 ug/kg 1270 ND 96 :: 1290 250 11 ug/kg 1270 ND 96 :: 1290 250 11 ug/kg 1270 ND 102 :: 1230 250 6.2 ug/kg 1270 ND 96 :: 1270 50 17 ug/kg 1270 ND 96 :: 1270 250 6.2 ug/kg 1270 ND 97 :: 1270 250 9.9 ug/kg 1270 ND 97 :: 1270 250 10 ug/kg 1270 ND 10 :: 1270 250 10 ug/kg 1270 ND <td< td=""><td>Вготойотп</td><td>1150</td><td>250</td><td>8.3</td><td>ug/kg</td><td>1270</td><td>N Q</td><td>16</td><td>55-120</td><td></td><td></td><td></td><td></td></td<>	Вготойотп	1150	250	8.3	ug/kg	1270	N Q	16	55-120				
K.) 133.0 1000 240 ug/kg 1270 ND 195 1.2.0 2.50 1.8 ug/kg 1270 ND 10. 1.2.0 2.50 1.1 ug/kg 1270 ND 10. 1.2.0 2.50 1.1 ug/kg 1270 ND 97 1.2.0 2.50 2.5 ug/kg 1270 ND 97 1.2.0 2.50 5.2 ug/kg 1270 ND 97 1.2.0 2.50 1.1 ug/kg 1270 ND 97 1.2.0 2.50 1.0 ug/kg 1270 ND 97 1.2.0 2.5 ug/	Bronsomethane	1180	250	110	ug/kg	1270	Ω	93	20-120				
1220 250 18 apkg 1270 ND 96	2-Butanone (MEK)	1330	0001	340	ug/kg	1270	Q.	105	40-120				
1290 250 11 ug/kg 1270 ND 102	n-Butylbenzene	1220	250	81	ug/kg	1270	ΩX	96	75-130				
ticke (1290 250 11 aykg 1270 ND 102 (1230 250 6.2 aykg 1270 ND 97 (1230 250 6.2 aykg 1270 ND 97 (1230 250 6.2 aykg 1270 ND 98 (1230 250 6.2 aykg 1270 ND 98 (1230 250 250 6.2 aykg 1270 ND 97 (1230 1230 1230 1230 1230 1230 1230 1230	sec-Burylbenzene	1290	250	2	ug/kg	1270	ΩŽ	102	75-125				
High 1230 50 8.0 ug/kg 1270 ND 98 ride 1250 250 6.2 ug/kg 1270 ND 98 1210 250 7.7 ug/kg 1270 ND 97 1210 250 10 ug/kg 1270 ND 97 1210 250 10 ug/kg 1270 ND 97 Inhoropropane 1270 250 9 ug/kg 1270 ND 97 Inhoropropane 1260 250 8.6 ug/kg 1270 ND 99 Inhoropropane 1260 250 9 ug/kg 1270 ND 99 Inhoropropane 1260 250 65 ug/kg 1270 ND 99 Inhoropropane 1260 250 65 ug/kg 1270 ND 10 Inhoropropane 1260 100 8.2 ug/kg 1270 ND	ten-Barylbenzene	1290	250	=	ug/kg	1270	ΩZ	102	75-125				
right 1250 250 6.2 ug/kg 1270 ND 98 1270 50 7 ug/kg 1270 ND 95 1210 50 8.5 ug/kg 1270 ND 95 1210 1230 100 8.5 ug/kg 1270 ND 95 1410 250 11 ug/kg 1270 ND 98 1240 250 9.9 ug/kg 1270 ND 101 1250 250 8.6 ug/kg 1270 ND 98 niceBall 1170 100 8.2 ug/kg 1270 ND 10 niceBall 1170 100 8.2 ug/kg 1270 ND 10 niceBall 1170 100 9.2 ug/kg 1270 ND 10 niceBall 110 8.2 ug/kg 1270 ND 10 10 cene 1280	Carbon Disuffide	1230	200	8.0	ug/kg	1270	Q	65	45-120				
1270 250 1270 ND 190 190 191 1210 250 1230 ND 1240 ND ND ND ND ND ND ND N	Carbon tetrachloride	1250	250	6.2	ug/kg	1270	Q	86	75-120				
1210 250 8.5 49/kg 1270 ND 95 1230 1230 1010 8.3 49/kg 1270 ND 97 1410 250 9.9 49/kg 1270 ND 111 1250 250 9.9 49/kg 1270 ND 111 1270 250 8.6 49/kg 1270 ND 111 1270 250 8.5 49/kg 1270 ND 111 1270 250 6.5 49/kg 1270 ND 100 1270 250 6.5 49/kg 1270 ND 100 1280 100 8.3 49/kg 1270 ND 102 1290 100 8.3 49/kg 1270 ND 102 1280 100 8.3 49/kg 1270 ND 101 1280 100 8.4 49/kg 1270 ND 101 1280 100 8.4 49/kg 1270 ND 101 1280 100 6.9 49/kg 1270 ND 101 1280 100 6.9 49/kg 1270 ND 101 1280 100 6.9 49/kg 1270 ND 101 1280 100 11 49/kg 1270 ND 99 1280 1290 110 49/kg 1270 ND 99 1280 1290 11 49/kg 1270 ND 99 1280 1290 11 49/kg 1270 ND 99 1280 1290 11 49/kg 1270 ND 99 1280 1290 130 140 140 1280 130 130 140 140 140 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130	Chlorobenzene	1270	50	7.7	ug/kg	1270	2	100	75-120				
1230 100 8.3 ug/kg 1270 ND 97 1410 256 10 ug/kg 1270 ND 91 1250 256 9.9 ug/kg 1270 ND 98 1270 256 8.6 ug/kg 1270 ND 98 1270 256 8.6 ug/kg 1270 ND 98 1270 256 6.5 ug/kg 1270 ND 99 1280 100 7.7 ug/kg 1270 ND 105 1290 100 8.3 ug/kg 1270 ND 105 1290 100 8.3 ug/kg 1270 ND 105 1280 100 8.1 ug/kg 1270 ND 105 1280 100 8.1 ug/kg 1270 ND 101 1280 100 8.1 ug/kg 1270 ND 110 1280 100 8.1 ug/kg 1270 ND 110 1280 100 6.9 ug/kg 1270 ND 110 1280 100 11 ug/kg 1270 ND 100 1280 100 11 ug/kg 1270 ND 99 1280 1260 13 ug/kg 1270 ND 99 1280 1260 11 ug/kg 1270 ND 99 1280 1290 13 ug/kg 1270 ND 99 1280 1290 13 ug/kg 1270 ND 99 1280 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130	Chloroethane	1210	250	8.5	กg/kg	1270	QN	95	20-120				
1410 250 10 ug/kg 1270 ND 111 1250 250 9.9 ug/kg 1270 ND 111 1270 250 8.6 ug/kg 1270 ND 98 1270 250 8.6 ug/kg 1270 ND 99 1270 250 8.5 ug/kg 1270 ND 99 1280 100 8.2 ug/kg 1270 ND 99 1280 100 8.3 ug/kg 1270 ND 102 1280 100 8.3 ug/kg 1270 ND 102 1280 100 8.0 ug/kg 1270 ND 102 1280 100 9.4 ug/kg 1270 ND 103 1280 100 8.0 ug/kg 1270 ND 113 1280 100 6.9 ug/kg 1270 ND 103 1280 100 6.9 ug/kg 1270 ND 103 1280 100 6.9 ug/kg 1270 ND 103 1280 100 11 ug/kg 1270 ND 99 1280 100 13 ug/kg 1270 ND 99 1280 100 100 8.4 ug/kg 1270 ND 99 1280 100 13 ug/kg 1270 ND 99 1280 100 13 ug/kg 1270 ND 99 1280 100 13 ug/kg 1270 ND 99 1280 1280 120 ND 99 1280 1280 ND 100 100 1280 1280 ND ND 100 1280 1280 ND 100 1280 ND 100 ND 1280 ND 100 ND 1280 ND 100 ND	Chloroform	1230	901	8.3	ug/kg	1270	Ω	26	70-120				
1250 250 9.9 ug/kg 1270 ND 98	Chforomethane	1410	250	10	ug/kg	1270	S	Ξ	35-120				
1270 250 8.6 ug/kg 1270 ND 100	2-Chlorotoinene	1250	250	6.6	ng/kg	1270	Ω	86	75-120				
170 100 8.2 ug/kg 1270 ND 92	4-Chlorotofuene	1270	250	9.8	fly/fin	1270	S	100	75-120				
pame 1260 250 65 ug/kg 1270 ND 99 1 1290 100 7.7 ug/kg 1270 ND 105 1290 100 8.3 ug/kg 1270 ND 102 1280 100 8.2 ug/kg 1270 ND 101 1280 100 9.4 ug/kg 1270 ND 101 1260 100 9.4 ug/kg 1270 ND 101 1260 100 9.4 ug/kg 1270 ND 101 1260 100 9.4 ug/kg 1270 ND 101 1270 100 9.4 ug/kg 1270 ND 100 1280 100 1.8 ug/kg 1270 ND 99 1280 100 1.1 ug/kg 1270 ND 99 1280 100 1.1 ug/kg 1270 ND <t< td=""><td>Dibramochioromethane</td><td>1170</td><td>001</td><td>8.2</td><td>ug/kg</td><td>1270</td><td>S</td><td>6</td><td>70-120</td><td></td><td></td><td></td><td></td></t<>	Dibramochioromethane	1170	001	8.2	ug/kg	1270	S	6	70-120				
1330 100 7.7 ug/kg 1270 ND 105 1290 100 9.3 ug/kg 1270 ND 105 1290 100 9.4 ug/kg 1270 ND 102 1290 100 9.4 ug/kg 1270 ND 102 1260 100 9.4 ug/kg 1270 ND 101 1240 256 11 ug/kg 1270 ND 113 1270 ND 113 1270 ND 113 1270 ND 1250 100 11 ug/kg 1270 ND 101 1250 100 11 ug/kg 1270 ND 98 1270 ND 99 1270 100 11 ug/kg 1270 ND 99 1300 100 130 130	1,2-Dibromo-3-chloropropane	1260	250	59	ug/kg	1270	Q	66	50-130				
1290 100 8.3 ug/kg 1270 NID 102 1290 100 9.2 ug/kg 1270 NID 102 1280 100 8.4 ug/kg 1270 NID 101 1260 100 8.4 ug/kg 1270 NID 101 1240 256 11 ug/kg 1270 NID 113 1270 56 7.8 ug/kg 1270 NID 113 1270 56 7.8 ug/kg 1270 NID 101 1280 250 7.5 ug/kg 1270 NID 99 1250 100 11 ug/kg 1270 NID 98 1250 100 11 ug/kg 1270 NID 97 1270 100 8.4 ug/kg 1270 NID 97 1270 100 13 ug/kg 1270 NID 97 130 100 8.4 ug/kg 1270 NID 190 130 100 8.4 ug/kg 1270 NID 190 130 101 13 ug/kg 1270 NID 190 130 102 8.4 ug/kg 1270 NID 190 130 103 13 ug/kg 1270 NID 190 130 104 8.4 ug/kg 1270 NID 190 130 105 8.5 ug/kg 1270 NID 130 105 8.5 ug/kg 130 105 8.5 ug/kg 130 105 8.5 ug/kg 130 105 8.5 ug/	1,2-Dibromoethane (EDB)	1330	001	7.7	ug/kg	1270	S	105	65-125				
1290 100 9.2 ug/kg 1270 NID 102 1280 100 8.0 ug/kg 1270 NID 101 1260 100 9.4 ug/kg 1270 NID 101 1240 2.50 11 ug/kg 1270 NID 113 1270 50 7.8 ug/kg 1270 NID 101 1270 50 7.8 ug/kg 1270 NID 100 1280 2.50 7.3 ug/kg 1270 NID 99 1250 100 11 ug/kg 1270 NID 99 1270 100 7.3 ug/kg 1270 NID 97 1270 100 8.4 ug/kg 1270 NID 97 130 100 8.4 ug/kg 1270 NID 100 130 100 8.4 ug/kg 1270 NID 100 130 100 8.4 ug/kg 1270 NID 100 130 100 13 ug/kg 1270 NID 99 130 100 13 ug/kg 1270 NID 100 130 130 130 ug/kg 1270 NID 99 130 130 130 ug/kg 1270 NID 89	Dibromomethane	1290	100	8.3	ug/kg	1270	Š	102	70-120				
1280 100 8.0 ug/kg 1270 ND 101 1260 101 9.4 ug/kg 1270 ND 101 102 10	1,2-Dichlorobenzene	1290	100	5.5	ug/kg	1270	S	102	75-120				
1260 100 9.4 ug/kg 1270 NID 99 1440 236 11 ug/kg 1270 NID 113 2030 106 6.9 ug/kg 1270 750 101 1270 56 7.8 ug/kg 1270 NID 100 1280 256 7.5 ug/kg 1270 NID 100 1250 106 11 ug/kg 1270 NID 98 1270 106 7.1 ug/kg 1270 NID 97 1270 100 7.1 ug/kg 1270 NID 100 1300 100 8.4 ug/kg 1270 NID 100 1130 100 13 ug/kg 1270 NID 100 1280 1280 1380 1380 1380 1380 1380 1380 1380 1380 1380 1380 1380 1380 1380 1380 1380 1380 1380 1380 1380 1380 1380 1380 1380 1380 1380 1380 1380 1380 1380 1380 1380 1380 1380 1380 1380 1380 1380 1380 1380 1380 1380 1380 1380 1380 1380 1380 1380 1380 1380 1380 1380 1380 1380 1380 1380 1380 1380 1380 1380 1380 1380 1380 1380 1380 1380 1380 1380 1380 1380 1380 1380 1380 1380 1380 1380 1380 1380 1380 1380 1380 1380 1380 1380 1380 1380 1380 1380 1380 1380 1380 1380 1380 1380 1380 1380 1380 1380 1380 1380 1380 1380 1380 1380 1380 1380 1380 1380 1380 1380 1380 1380 1380 1380 1380 1380 1380 1380 1380 1380 1380 1380 1380 1380 1380 1380 1380 1380 1380 1380 1380 1380 1380 1	1,3-E)ichlorobenzene	1280	100	8.0	ug/kg	1270	Q	[0]	75-120				
1440 250 11 195 1270 ND 113 2030 100 6.9 195 1270 750 101 1270 50 7.8 195 1270 750 101 1380 250 7.5 195 1270 ND 190 1250 100 11 195 1270 ND 98 1270 100 7.3 195 1270 ND 97 1270 100 7.3 195 1270 ND 97 1300 100 8.4 195 1270 ND 190 130 100 13 195 1270 ND 97 130 130 13 13 13 13 13 130 130 13 13 13 13 13 130 140 15 15 15 15 140 15 15 15 15 15 15 15	1,4-10ichierobenzene	1260	100	9.4	บยให้ย	1270	S	66	80-120				
2030 100 6.9 ug/kg 1270 750 101 1270 50 7.8 ug/kg 1270 10 1380 250 7.5 ug/kg 1270 120 99 1250 100 11 ug/kg 1270 ND 99 1270 100 7.3 ug/kg 1270 ND 97 1270 100 7.3 ug/kg 1270 ND 97 1300 100 8.4 ug/kg 1270 ND 100 130 100 13 ug/kg 1270 ND 102	Diefslorodifluoromethane	1440	250	11	ug/kg	1270	S	113	10-120				
1270 50 7.8 ug/kg 1270 ND 100 1380 2.50 7.5 ug/kg 1270 120 99 1250 100 11 ug/kg 1270 ND 98 1270 100 7.3 ug/kg 1270 ND 97 1270 100 7.3 ug/kg 1270 ND 190 1300 100 8.4 ug/kg 1270 ND 190 1150 100 13 ug/kg 1270 ND 89	1.1-Dichloroethane	2030	100	6.9	ug/kg	1270	750	101	70-120				
1380 256 7.5 ug/kg 1270 120 99 1250 100 11 ug/kg 1270 ND 98 1270 100 11 ug/kg 1270 ND 97 1270 100 7.3 ug/kg 1270 ND 190 1300 100 8.4 ug/kg 1270 ND 102 1130 100 13 ug/kg 1270 ND 99 1130 100 13 ug/kg 1270 ND 99 100	3.2-Erichloroethane	1270	50	7.8	ng/kg	1270	2	901	70-120				
1250 100 11 ug/kg 1270 ND 98 1220 100 11 ug/kg 1270 ND 97 1270 ND 97 1270 ND 97 1270 ND 100 1300 100 8.4 ug/kg 1270 ND 102 1130 100 13 ug/kg 1270 ND 99 1130 100 13 ug/kg 1270 ND 99 1290 ND 99 ND 99 1290 ND 99 ND 99 1290 ND 99 ND 99 1290 ND 99 1290 ND 99 1290 ND 99 ND 9	1.1-Eichlonachene	1380	250	7.5	ng/kg	1270	120	66	50-120				
1250 109 11 1264 1270 ND 97 1270 100 7.3 1264 1270 ND 100 100 8.4 1270 ND 102 1130 100 13 1264 1270 ND 102 1130 100 13 1265 ND 89 1270 ND 89 1270 ND 89 1270 ND 89 1270 ND 102	cis-i,2-Dichloroethene	1250	100	=	ug/kg	1270	Ŕ	86	70-120				
1270 100 7.3 ug/kg 1270 ND 100 7 1300 100 8.4 ug/kg 1270 ND 102 6 1130 100 13 ug/kg 1270 ND 89 6	trans-1,2-Dichloroethene	1230	901	=	ug/kg	1270	Ω	76	65-120				
1300 100 8.4 ug/kg 1270 ND 102 (1130 100 13 ug/kg 1270 ND 89 (1,2-Dichloropropane	1270	100	7.3	ug/kg	1270	Š	100	75-120				
1130 100 13 ug/kg 1270 ND 89 (1.3-Dichloropropane	1300	100	30 4.	ug/kg	1270	Q	102	65-120				
	2.2-Dichloropropane	1130	100	13	ug/kg	1270	ΩN	68	60-120				

Del Mar Analytical - Phoenix Linda Eshelman Project Manager

The results paratin only to the samples rested in the laboratory. This report shall not be reproduced PNK0837 <Puge 103 of 133> except in Juli, without vertien permission from Del Mar Analytical.

METHOD BLANK/QC DATA

VOLATILE ORGANICS BY GC/MS (EPA 5035/8260B)

Analyte	Result	Reporting Limit	MDE	Units	Spike Level	Source Result	%REC	Source %REC Result %REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: P4L1007 Extracted: 11/30/04	/30/04										
Matrix Spike Analyzed: 12/10/2004 (P4L1007-MS1)	14 (P4L1007	-MSI)			Son	Source: PNK0837-20	C0837-C	93			
I, I-Dichloropropene	1360	100	6.9	ug/kg	1270	Q	107	70-125			
cis-1,3-Dichloropropene	1280	100	13	ug/kg	1270	Ž	101	75-120			
trans-1,3-Dichloropropene	1290	100	8.0	ug/kg	1270	Š	102	70-120			
Ethylbenzene	1240	100	8.0	ug/kg	1270	ΩN	86	75-120			
Hexachlorobutadiene	1270	250	11	ug/kg	1270	S	001	70-135			
2-Hexanone	1360	1000	130	ug/kg	1270	ΩŽ	107	40-120			
Indomethane	1290	250	25	ug/kg	1270	QN.	102	50-120			
Isopropylbenzene	1190	100	8.6	ug/kg	1270	g	94	75-120			
p-Isopropyltoluene	1260	100	13	ug/kg	1270	Ž	66	75-125			
Methylene chloride	1230	200	99	ug/kg	1270	87	96	50-120			
4-Methyl-2-pentanone (MIBK)	1360	1000	150	ug/kg	1270	Q.	107	45-135			
Methyl-tert-butyl Ether (MTBE)	1340	250	13	ug/kg	1270	N _D	106	60-120			
Naphthalene	1260	250	69	ug/kg	1270	Q	66	50-120			
n-Propy/benzene	1300	100	Ξ	ug/kg	1270	2	102	70-125			
Styrene	1270	001	0.6	ug/kg	1270	2	100	75-120			
I, I, I, 2-Tetrachloroethane	1310	250	8.5	ад/қа	1270	ΩZ	103	75-120			
1,1,2,2-Tetrachloroethane	1340	100	Ξ	ıg√kg	1270	Ž	106	60-120			
Tetrachloroethene	1280	100	11	ug/kg	1270	2	101	70-120			
Toluene	1250	100	8.9	ug/kg	1270	g	86	75-120			
1,2,3-Trichforobenzene	1220	250	09	ug/kg	1270	Š	96	60-125			
1,2,4-Trichlorobenzene	1280	250	30	ug∕kg	1270	Ω	101	65-130			
1,1,1-Trichforoethane	11200	001	6.2	ug/kg	1270	9600	126	70-120			NI, M3
1,1,2-Trichloroethane	1290	001	9.6	ug/kg	1270	Q	102	70-120			
Trichloroethene	1260	100	,	ug/kg	1270	g	66	70-125			
Trichlorofluoromethane	1280	250	7,00	ā√ān	1270	S	101	25-120			
1,2,3-Trichloropropane	1310	200	10	18/kg	1270	S	103	55-130			
1.2,4-Trimethylbenzene	1250	100	9.7	ug/kg	1270	g	86	75-120			
1,3,5-Trimethylbenzene	1260	100	9	ug/kg	1270	g	66	75-125			
Vinyl acetate	1340	1200	9	ug/kg	1270	Ð	901	25-130			
Vinyl chloride	385	250	4.7	ug/kg	1270	R	30	10-120			
Xylenes, Total	3960	150	18	ug/kg	3810	2	104	75-120			
Surrogate: Dibromofluoromethane	1340			ng/kg	1270		106	70-120			
Surrogate: Toluene-d8	1330			Sy/Sn	1270		105	75-120			
Surrogate: 4-Bromofluorobenzene	1320			gy/gn	1270		104	75-120			
Surrogate: Toluene-d8 Surrogate: 4-Bromoftworobenzene	1330 1320			ng/kg ng/kg	1270 1270		105 104	7 7	75-120 75-120	5-120	5-120 5-120

Del Mar Analytical - Phoenix Linda Eshelman Project Manager

The results partain only to the samples tested in the laboratory. This report sholl not be reproduced PNK0837 <Page 104 of 153> except in full, without written permission from Del Mar Analytical.

1746 Derian Ava. Suite 10), hane: CA 12914. (649) 181-1127. PAX (949) 283-0297. (1014. E. COROLE), Shalife, A. Chunic, CA 12921. (109) 370-4687. (1993) 370-1016. (1993) 283-0499. (1993) 370-1016. (1993) 283-0499. (1993) 283-049

Report Number: Basin & Range Hydrogeologists 6155 E. Indian School Rd., Suite 100A Scottsdale, AZ 85251 Attention: Any Wolkowinsky

Project ID: 24018.004/Air Liquide

PNK0837

Sampled: 11/30/04 Received: 11/30/04

Del Mar Analytical **4**

174d Defina Aee, Sulie 100, Innex CA 02514, 640, 361-1022, CK, 6494, 260-3237 1114 E. Cooley Dr., Sale A. Collen CA 20224, 6909) 370-4877 FAX, (849) 370-1046 9484 Chesapaste Dr., Sulie et Sr., San Diegor, CA 2012, (869) 500-5696 FAX, (849) 650-5869 9500 Soulis 1514, S., San Berra, A. 28 60-44, 1007) 750-3696 FAX, (849) 150-5687 2200, E. Sulies Red. R., Lisa Vegas, NV 84170 (702) 798-3620 FAX (702) 799-3621

Project ID: 24018.004/Air Liquide Basin & Range Hydrogeologists 6155 E. Indian School Rd., Suite 100A Scottsdale, AZ 85251 Attention: Amy Wolkowinsky

Report Number: PNK0837

11/30/04 Sampled: Received:

METHOD BLANK/QC DATA

VOLATILE ORGANICS BY GC/MS (EPA 5035/8260B)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	Source %REC Result %REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: P4L1007 Extracted: 11/30/04	30/04										
Matrix Spike Dup Analyzed: 12/10/2004 (P4L1007-MSDI)	/2004 (P4L	1007-MSD1)			Son	Source: PNK0837-20	K0837-2	÷			
Acctone	1180	1000	240	ug/kg	1270	Ω	93	15-120	6	30	
Вепхопе	1280	50	7	ug/kg	1270	S	101	70-120	9	15	
Bramabenzene	1330	250	7.7	ug/kg	1270	N	105	70-120	4	2	
Bromochloromethane	1330	250	6.2	ug/kg	1270	QN	105	70-120	5	15	
Ekromedichforomethane	1300	100	6.7	ug/kg	1270	S	102	70-120	TIJ.	35	
Вкатоїоти	1180	250	ξ	ug/kg	1270	Ø	66	55-120	ŗŗ.	~	
Bromorathane	1180	250	110	ug/kg	1270	ΩN	93	20-120	0	30	
2-Butasone (MEK)	1350	1000	240	ug/kg	1270	Q.	106	40-120	_	35	
ก-เริ่นเพียงตระกอ	1300	250	18	ug/kg	1270	ΩN	102	75-130	છ	15	
sec-Buryfbenzene	1380	250	13	ug/kg	1270	Q	109	75-125	7	15	
ien-Butylbenzene	1360	250	11	ng/kg	1270	QN	107	75-125	5	15	
Carbon Disulfide	1280	500	8.0	ugykg	1270	Ω	101	45-120	ঘ	15	
Carbon tetrachloride	1320	250	6.2	ug/kg	1270	Ð	104	75-120	5	15	
Chlorobenzene	1320	50	7.7	हें3∕हेंग	1270	Ω	104	75-120	ঝ	15	
Chloroethane	1220	250	8.5	ug/kg	1270	Ð	96	20-120	-	35	
Оптогойын	1280	001	8.3	ug/kg	1270	Ð	101	70-120	4	15	
Chforomethane	1430	250	10	ug/kg	1270	g	13	35-120	-	20	
2-Chioratoluene	1340	250	6.6	ug/kg	1270	g	106	75-120	~	15	
4-Chloretoluene	1370	250	9.8	इश्रहत	1270	2	108	75-120	8	15	
Dibromochloromethane	1220	100	8.2	ug/kg	1270	g	96	70-120	4	15	
1.2-(Dibromo-3-chloropropane	1280	250	65	ug/kg	1270	S	101	50-130	C1	30	
3.2-Dibromoethane (EDB)	1350	100	7.7	ug/kg	1270	Q.	901	65-125	-	13	
Dibromonethane	1340	100	6. (3)	និង/ជិព	1270	Q.	106	70-120	4	53	
1,2-Diehlorobenzene	1350	100	6	ព្រះស្ន	1270	9	306	75-120	2	15	
1.3-Dichlorobenzene	1370	100	8.0	ag/kg	1270	g	108	75-120	t	51	
1.4-Dictilorobenzene	1340	100	9.4	ลิง/สิก	1270	g	106	80-120	9	15	
Dichlorodifluoromethane	1460	250	=	ug/kg	1270	g	115	10-120	_	25	
1.1-Dickloroethane	2090	100	6.9	ոե/kg	1270	750	106	70-120	m	15	
i.2-Dichloroethane	1290	50	7.8	ug/kg	1270	S	102	70-120	ы	15	
1.1-Dichloroethese	1430	250	5	ug/kg	1270	120	103	50-120	4	50	
cis-1,2-Oichlerochene	1330	100	=	ug/kg	1270	2	105	70-120	9	13	
trans-1,2-Dichloroethene	1280	100	=	ug/kg	1270	2	101	65-120	77	15	
1.2-Dichloropropane	1340	100	7.3	पट्ट√ रष्ट	1270	Ñ	901	75-120	5	15	
L.3 -Dichloropropane	13.40	100	8.4	ug/kg	1270	Q	106	65-120	33	15	
2.2-Dichloropropane	1,580	100	13	ug/kg	1270	S	93	60-120	4	22	

Def Mar Analytical - Phoenix Linda Eshelman Project Manager

The results pertain only to the samples tested in the laboratory. This report shall not be repreduced. PNKO837 <Page 105 of 133> except in fall, without written permission from Del Mar Analytical.

METHOD BLANK/QC DATA

VOLATILE ORGANICS BY GC/MS (EPA 5035/8260B)

Anakyte	Result	Reporting Limit	МВТ	Units	Spike Level	Source Result	%REC	Source %REC Result %REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: P4L1007 Extracted: 11/30/04	1/30/04										
Matrix Spike Dup Analyzed: 12/10/2004 (P4L1007-MSD1)	0/2004 (P4L	1007-MSD1)			Son	Source: PNK0837-20	0837-2	93			
1,1-Dichloropropene	1450	100	6.9	ug/kg	1270	Š	114	70-125	9	15	
cis-1,3-Dichloropropene	1330	100	17	ug/kg	1270	Ω	105	75-120	4	15	
trans-1,3-Dichloropropene	1320	100	8.0	ug/kg	1270	QN	104	70-120	ы	15	
Ethylbenzene	1290	100	8.0	ug/kg	1270	N	102	75-120	4	15	
Hexachlorobutadiene	1340	250	11	ug/kg	1270	R	901	70-135	'n	15	
2-Hexanone	1370	1000	130	ug/kg	1270	N.	108	40-120	-	35	
Iodomethane	1340	250	25	ug/kg	1270	Q.	106	50-120	4	15	
Isopropylbenzene	1260	100	8.6	ug/kg	1270	N N	66	75-120	9	5	
p-Isopropyltoluene	1340	100	13	ug/kg	1270	R	106	75-125	9	<u>8</u>	
Methylene chloride	1270	500	99	ug/kg	1270	87	63	50-120	m	50	
4-Methyl-2-pentanone (MIBK)	1380	1000	150	ug/kg	1270	S	109	45-135	-	35	
Methyl-terr-butyl Ether (MTBE)	1380	250	13	ug/kg	1270	ND	109	60-120	e	15	
Naphthalene	1320	250	19	ug/kg	1270	ND	104	50-120	S	25	
n-Propylbenzene	1380	100	Ξ	ug/kg	1270	R	109	70-125	9	15	
Styrene	1330	001	0.6	ug/kg	1270	B	105	75-120	۲,	13	
1,1.1.2-Tetrachlorocthane	1370	250	8.5	ភ្នំ <u>/</u> /ភ្នំរា	1270	Q.	108	75-120	4	15	
1,1,2,2-Tetrachloroethane	1380	100	Ξ	gy/gu	1270	2	109	66-120	(tr)	30	
Tetrachloroethene	1340	100	=	gy/gu	1270	9	106	70-120	'n	15	
Toluene	1310	100	8.9	ug/kg	1270	9	103	75-120	47	15	
1,2,3-Trichlorobenzene	1270	250	9	ug/kg	1270	9	100	60-125	4	15	
1,2,4-Trichlorobenzene	1340	250	30	ug/kg	1270	Ñ	106	65-130	60	15	
1, 1, 1-Trichloroethane	11000	001	6.2	ug/kg	1270	0096	110	70-120	4	15	N1. M3
1, 1,2-frichtoroethane	1330	100	9.6	ug/kg	1270	Ω̈́	105	70-120	m	15	
Trichloroethene	1310	100	,	ug/kg	1270	Ŕ	103	70-125	च	15	
Trichlorofluoromethane	1320	250	7.8	ភ3/ភិព	1270	S	104	25-120	ŧŲ	25	
1,2,3-Trichloropropane	1360	500	10	gλ∕gu	1270	Ω	107	55-130	4	25	
1.2,4-Trimethylbenzene	1330	100	2.6	ug/kg	1270	Q	105	75-120	9	15	
1,3,5-Trimethylbenzene	1340	100	10	ag/kg	1270	Ŋ	106	75-125	9	15	
Vinyl acetate	1370	1200	10	ug/kg	1270	R	108	25-130	7	35	
Vinyl chloride	426	250	4.7	ug/kg	1270	Q	34	10-120	20	30	
Xylenes, Fotal	4140	150	<u>8</u> 2	ug/kg	3810	QN	109	75-120	ঘ	15	
Surrogate: Dibromofluoromethane	1330			Sy/Sn	1270		105	70-120			
Surrogate: Toluene-d8	1320			ng/kg	1270		104	75-130			
Surrogate: 4-Bromoftnorobenzene	1290			ng/kg	1270		102	75-120			

Del Mar Analytical - Phoenix Linda Eshelman Project Manager

The results pertain only to the samples useed in the laboratory. This report shall not be reproduced PNK0837 <Page 106 of 153> except in full, without written permission from Del Mar Analytical.

Basin & Range Hydrogeologists 6155 E. Indian School Rd., Suite 100A Scottsdate, AZ 85251 Atrention: Anny Wolkowinsky

Del Mar Analytical

1745 Detian Ave., Suite 10, hories CA 20514 (949) 281-1022 FAX (949) 280-2937 1014 E. Dougle 10, Suite 4, Cinton, CA 62229 (1993) 170-4040 FAX (949) 170-1040 1014 (1993) 170-4040 FAX (949) 170-1040 1014 (1993) 170-4040 1014 (1993) 170-1040

Project ID: 24018.004/Air Liquide

Sampled: 11/30/04 Received: 11/30/04

Report Number: PNK0837

METHOD BLANK/QC DATA

VOLATILE ORGANICS BY GC/MS (EPA 5035/8260B)

Analyte	Result	Reporting Limit	MDL	MDL. Units	Spike Level	Source %REC Result %REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: P4L1301 Extracted: 12/01/04	1/04								
Blank Analyzed: 12/31/2004 (P4L1301-BLK1)	(01-BLK1)								
Acetone	2	1000	240	ug/kg					
Benzene	S	50	<u> </u>	ng/kg					
Bromobenzene	S S	250	7.7	មិន/ខ្មីព					
Bronochloromediane	S	250	6.2	ug/kg					
Broraodichloromethane	R	100	9.2	ug/kg					
Bromofam	Q.	250	8.3	ng/kg					
Bromonethane	2	250	110	ug/kg					
2-Butanone (MEK)	Q N	1000	240	ug/kg					
n-Butylbenzene	Q.	250	81	ug/kg					
sec-Bury/bergene	QN	250	12	Lg/kg					
tert-Buty/benzene	Q Z	250	Ξ	ug/kg					
Carbon Disulfide	ΩN	200	8.0	ug/kg					
Carbon tetrachloride	S	250	6.2	ug/kg					
Chforobenzene	Q	20	7.7	ug/kg					
Chloroethane	Q Q	250	8.5	ug/kg					
Chioreform	ND	001	8.3	ug/kg					
Chforomethane	Ŕ	250	01	ug/kg					
2-Chlorotoluene	N Q	250	6.6	ug/kg					
4-Chlorotoluene	Ŝ	250	8.6	បន្ទ/មុខ					
Dibromochloromethane	ON	901	8.2	ug/kg					
1.2-Dibrome-3-chloropropanc	2	250	9	ug/kg					
1,2-Dibromoethane (EDB)	Q.	100	7.7	ug/kg					
Dibromonethane	Q.	100	8,3	ug/kg					
1,2-Dichlorobenzene	S	100	9,3	ng/kg					
1,3-Dichforobenzene	Ŝ	100	8.0	ug/kg					
1.4-Dichlorobenzene	2	100	9.4	ug/kg					
Dichlorodifluoromethane	2	250		ug/kg					
1,1-Dichloroethane	QZ Q	100	6.9	ug/kg					
1.2-Dichtoroethane	Q.	50	7.8	ug/kg					
4.1-Dichforoethene	Q	250	7.5	ug/kg					
cis-1,2-Dichloroethene	Q	001	11	ug/kg					
trans-1,2-Dichloroethane	Û	100	11	ពន្ធ/វិទ					
1,2-Dichtoropropane	R	100	7.3	ug/kg					
1,3-Dichloropropane	£	100	30 4	ug/kg					
2,2-Dichtoropropane	8	100	22	ug/kg					

Del Mar Analytical - Phoenix Linda Eshelman Project Manager

The results pertain only to the samples tested in the laboratory. This report shall not be repredicted.

PNK0837 < Puge 107 of 133>
except in Jult, without written permission from Del Mar Analytical.

1746 'Derien Ave., Suite 100 Innire CA 02914. (949) 28:14227 FAX (949) 295-2927 (144 E. Conder), Suite 64, Obinir CA 62291. (1903) 370-1464 (1

Project ID: 24018.004/Air Liquide Report Number: PNK0837 Basin & Range Hydrogeologists 6155 E. Indian School Rd., Suite 100A Scottsdale, AZ 85251 Attention: Amy Wolkowinsky

Sampled: 11/30/04 Received: 11/30/04

METHOD BLANK/QC DATA

VOLATILE ORGANICS BY GC/MS (EPA 5035/8260B)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source %REC Result %REC Limits	%I REC Li		RPD	RPD Limit	Data Qualifiers
Batch: P4L1301 Extracted: 12/01/04	2/01/04										
Blank Analyzed: 12/11/2004 (P4L1301-BLK1)	L1301-BLK1)										
1,1-Dichloropropene	ND	100	6.9	ug/kg							
cis-1,3-Dichloropropene	QN	100	17	ag/kg							
trans-1,3-Dichloropropene	Q	100	8.0	ug/kg							
Ethylbenzene	ΩN	100	8.0	ug/kg							
Hexachlorobutadiene	ΩN	250	11	ug/kg							
2-Hexanone	2	1000	130	ug/kg							
Iodomethane	S	250	25	ug/kg							
Isopropylbenzene	S	100	8.6	ag/kg							
p-Isopropyltoluene	QN.	100	13	ug/kg							
Methylene chloride	ΩN	500	99	ug/kg							
4-Methyl-2-pentanone (MIBK)	QN QN	1000	150	ug/kg							
Methyl-tert-butyl Ether (MTBE)	Q.	250	13	ug/kg							
Naphthalene	QN	250	67	ug/kg							
n-Propylbenzene	Q.	100	Ξ	ug/kg							
Styrene	Ω	100	0.6	ug/kg							
1.1,1,2-Tetrachloroethane	Ŋ	250	8.5	ug/kg							
I.1,2,2-Tetrachloroethane	Q Q	100	Ξ	ng/kg							
Tetrachloroethene	Q	100	Ξ	па/кд							
Toluene	Q.	100	6.8	83/gn							
1,2,3-Trichlorobenzene	QN	250	99	ug/kg							
1.2,4-Trichlorohenzene	QN	250	30	ug/kg							
I, I, I-Trichloroethane	7.07	100	6.2	ug/kg							Εŧ
I, I, 2-Trichloroethane	ΩN	100	9.6	ug/kg							
Trichlomethene	N	100	=	ug/kg							
Trichlorofluoromethane	N Q	250	7.8	ug/kg							
1,2,3-Trichtoropropane	S Q	500	20	ug/kg							
1,2,4-Trimethylbenzene	Q	100	7.6	ug/kg							
1.3,5-Trimethylbenzene	Ω	100	2	ug/kg							
Vinyl acetate	QN	1200	01	ug/kg							
Vinyl chloride	Q	250	4.7	ug/kg							
Xylenes, Total	QN	150	8	ag/kg							
Surrogate: Dibromoftuoromethane	1270			gy/gu	1250		102 70	70-120			
Surrogate: Toluene-d8	1290			8y/8n	1250		103 75	75-120			
Surrogate: 4-Bromoftuorobenzene	1300			ng/kg	1250	7	104 75	75-120			

Del Mar Analytical - Phoenix Linda Eshelman Project Manager

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced. PNK0837 <Page 108 of 153> except in full, without written permission from Del Mar Analysical.

17461 Derian Ave., Suite 100, Invine: CA 49814 (949) 56-11027 FAX (949) 596-1297 (144 E. DOUBLY, SAURE A, OMERC, CA 82324 (169) 370-4667 FAX (949) 370-1046 9464 Chestapaske Dr., Saure 605, San Degor, CA 97128 (985) 906-599 FAX (949) 306-5999 9693 Count Site 51, Saure 6105, San Degor, CA 97128 (1885) 906-599 FAX (949) 786-5851 9693 Count Site 51, Saure 1205, Saure

Basin & Range Hydrogeologists 6155 E. Indian School Rd., Suite 100A Scottsdale, AZ 85251 Attention: Amy Wolkowinsky

Project ID: 24018.004/Air Liquide

PNK0837

Report Number:

11/30/04 Sampled: Received:

261-1022 F 370-4667 F 505-8596 F 785-0543 F 798-3620 F 1746 Detrain Aue. Suite 100 Invine, CA 9054 (1949).
1014 E. Chodarb, "Suite A. Control (2022) 4999)
19494 C'hresponate Dr., Suite 805, Sain Dego, CA 92729 (1999)
1950 Sould (1989).
2220 E. Suiteel Port, Parkey N. Weger, N. Barzo (1991).

260-3297 370-1046 505-9689 785-0851 798-3621

FAX (949) 2 FAX (949) 3 FAX (858) 5 FAX (480) 7 FAX (702) 7

Del Mar Analytica Basin & Range Hydrogeologists 6155 E. Indian School Rd., Suite 100A Scottsdale, AZ 85251 Attention: Amy Wolkowinsky

24018.004/Air Liquide Project ID: Report Number:

PNK0837

11/30/04 Sampled: Received:

METHOD BLANK/QC DATA

VOLATILE ORGANICS BY GC/MS (EPA 5035/8260B)

Qualifiers

RPD Limit

RPD

Source %REC Result %REC Limits

Spike Level

MDL Units

Reporting Limit

Result

LCS Analyzed: 12/11/2004 (P4L1301-BS1) Barch: P4L1301 Extracted: 12/01/04

Bromodichleromethane

Bromotorm

Bromomethane 2-Butanone (MEK) n-Butylbenzene

sec-Baryibenzene

tert-Butylbenzene

Carbon Disuitide

Carbon tetracistoride Chforobenzene

Bromochloromethane

Bromobenzene

Acetone Benzene

VOLATILE ORGANICS BY GC/MS (EPA 5035/8260B)

METHOD BLANK/QC DATA

Ü

15-120 80-120 80-120

80-120 80-120

Ēţ

Analyte	Result	Reporting Limit	MDL	MDL Units	Spike Level	Source %REC Result %REC Limits	%REC	RPD	RPD Limit	Data Qualifiers
Batch: P4L1301 Extracted: 12/01/04	12/01/04									
LCS Analyzed: 12/11/2004 (P4L/1301-BS1	1301-BS1)									
1,1-Dichloropropene	1290	100	6.9	ug/kg	1250	103	80-120			
cis-1,3-Dichloropropene	1150	100	17	ug/kg	1250	92	80-120			
trans-1,3-Dichloropropene	1100	100	8.0	ug/kg	1250	88	80-120			
Ethylbenzone	1200	100	8.0	ga/gn	1250	96	80-120			
Hexachlorobutadiene	1330	250	11	ug/kg	1250	106	80-140			
2-Hexanone	1000	1000	130	ug/kg	1250	80	50-120			
Indomethane	1220	250	25	ug/kg	1250	86	60-120			
Isopropylhenzene	1190	100	8.6	ng kg	1250	95	80-125			
p-Isopropyltoluene	1270	100	2	ug kg	1250	102	80-130			
Methylene chloride	1070	200	60	ug/kg	1250	98	60-120			
4-Methyl-2-pentanone (MIBK)	166	1000	150	ug/kg	1250	79	50-120			E4
Methyl-tert-butyl Ether (MTBE)	1100	250	13	ng/kg	1250	88	75-120			
Naphthalene	1060	250	67	ug/kg	1250	85	60-120			
n-Propylbenzene	1290	100	Ξ	ag/gu	1250	103	80-130			
Styrene	1210	100	0.6	gy/gu	1250	66	80-125			
1,1,1,2-Tetrachloroethane	1220	250	\$.5	ug/kg	1250	86	80-120			
1,1,2,2-Tetrachloroethane	1100	100	=	ug/kg	1250	88	60-120			
Tetrachloroethene	1220	100	Ξ	១៩/ខ្មីព	1250	86	80-120			
Toluene	1180	100	8.9	ug/kg	1250	94	80-120			
1,2,3-Trichlorobenzene	1170	250	9	ug/kg	1250	94	70-130			
1,2,4-Trichlorobenzene	1240	250	30	ug/kg	1250	66	75-135			
1,1,1-Trichloroethane	1250	100	6,2	ug/kg	1250	100	80-120			
1,1,2-Trichloroethane	1070	100	9.6	ug/kg	1250	86	75-120			
Trichloroethene	1180	100	=	ug/kg	1250	94	80-120			
Trichlorofluoromethane	1210	250	7.8	ug/kg	1250	76	30-130			
1.2.3-Trichloropropane	0901	500	10	ug/kg	1250	85	60-120			
1,2,4-Trimethylbenzene	1240	100	6.1	ug/kg	1250	66	80-120			
1,3,5-Trimethylhengene	1270	100	10	ug kg	1250	102	80-130			
Vinyl acetate	0601	1200	91	ug/kg	1250	87	30-120			E4
Vinyl chloride	470	250	4.7	ug/kg	1250	38	10-120			
Xylenes, Total	3860	150	18	ug/kg	3750	103	80-120			
Surrogate: Dibromofluoromethane	1270			ng/kg	1250	102	70-120			
Surrogate: Toluene-d8	1280			Sy/Sn	1250	102	75-120			
Surrogate: 4-Bromofluorobenzene	1290			Sy Sn	1250	103	75-120			

2.40 4.40

1.2-Dibronno-3-chloropropane .2-Dibromoethane (EDB)

Dibromochforomethane

2-Chlorotoluene 4-Chlorotoluene

Chloromethane Chloroethane Chierotom

Dichtorodifluoremethane

i.1-Dictilorsethane

1.4-Dichlorobenzene

1.2-Diehlorobenzene 1.3-Diehlorobenzene

Ойвтопволисивале

trans-1,2-Dichloroethere

1.2-Dichloropropane

i.3-Dichloropropane 2.2-Dichloropropane

els-1.2-Diehloroethene

1.2-Dichforoethane i.1-Dichloroethene

ugyka ug

Del Mar Analytical - Phoenix Linda Eshelman Project Manager

80-120 80-120 80-120

80-120

The exults pertain only to the samples tested in the laboratory. This report shall not be repreduced pNKG837 <Page 189 of 153> except in full, without written parmission from Del Mar Analytical.

Del Mar Analytical - Phoenix Linda Eshelman

Project Manager

results partam only to the samples tested in the laboratory. This report shall not be reproduced.

PNK0837 <Page 110 of 153>
except in full, without written permission from Del Mor Analytical.

17431Derian Ave., Sulle 10, Invine, CA 22514 (349) 251-1022 FAX (949) 260-2027 1014 E. CORRY D. Sulle A. Collon, CA 22324 (959) 370-4667 FAX (949) 370-1046 9484 Chesapeake D., Sulle 805, San Diego, CA 4227 1893 562-563 665-5689 9830 Sount Stat. St., Sulle 9130, Phoenix, AZ 85044 (481) 785-5043 FAX (481) 919-785-785 2520 E. Sunsell Rd #3, Las Vegas, NV 89120 (702) 796-3620 FAX (702) 796-3521

Project ID: 24018.004/Air Liquide Report Number: PNK0837 Basin & Range Hydrogeologists 6155 E. Indian School Rd., Suite 100A Scottsdale, AZ 85251 Aftention: Amy Wolkowinsky

11/30/04 Sampled: Received:

Basin & Range Hydrogeologists 6155 E. Indian School Rd., Suite 100A Scottsdale, AZ 85251 Attention: Amy Wolkowinsky

1746f Delim Auer, Suller 100, henre CA 6254 (459) 55-1025 (454) 50-3297 1614 E Choely Caller A. Caller CA 82524 (959) 570-4667 PAX (949) 570-1046 PAX (549) 570-4667 PAX (949) 570-1046 PAX (549) 570-1046 PAX (540) 570-1046

Del Mar Analytical

Project ID: 24018.004/Air Liquide

Sampled: 11/30/04 Received: 11/30/04

Report Number: PNK0837

METHOD BLANK/QC DATA

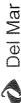
VOLATILE ORGANICS BY GC/MS (EPA 5035/8260B)

Analyte	Result	Reporting Limit	MDL	MDL Units	Spike Level	Source %REC Result %REC Limits	%REC	RPD	RPD Limit	Data Oualifiers
Batch: P4L1301 Extracted: 12/01/04	/01/04									
LCS Dup Analyzed: 12/11/2004 (P4L1301-BSD1)	4L1301-BSI	(10								
Acetone	196	1000	240	ug/kg	1250	77	15-120	Y	5.	F
Benzene	1200	50	7	ug/kg	1250	96	80-120	च	: :	. 1
Bromobenzene	1260	250	7.7	ug/kg	1250	101	80-120	٠ ٠	2	
Bromochiozomethane	1240	250	6.2	ug/kg	1250	8	80-120	٥	: <u>:</u>	
Bromodichloromethane	1200	100	9.2	ug/kg	1250	96	80-120	. 1	: :2	
Evomotorm	1020	250	5.3	हुअ/द्वा	1250	82	65-120	· vo	12	
Bromtomethane	0 110	250	110	ug/kg	1250	68	25-120	- 41	35	
2-Butanone (MEK.)	1040	1000	240	ng/kg	1250	83	45-125	7	30	
n-Butylbenzene	1240	250	<u>%</u>	gλ/gu	1250	66	80-130	0	5	
sec-Butylbenzene	1330	250	12	ug/kg	1250	106	80-130	r×	15	
icri-Butyibenzene	1300	250	Ξ	ug/kg	1250	104	80-130	-	15	
Carbon Disulfide	1220	500	8.0	ug/kg	1250	86	50-120	寸	15	
Carbon tetrachloride	1240	250	6.2	ug/kg	1250	66	80-125	₹	15	
Chlorobenzene	1260	20	7.7	ga/gu	1250	101	80-120	च	5	
Chloroethane	1160	250	8.5	ug/kg	1250	93	20-120	7	35	
Chloroform	1200	100	8.3	äy/≌n	1250	96	80-120	4	15	
Chloromethane	1350	250	01	ug/kg	1250	108	45-120	4	20	
2-Chtorotoluene	1260	250	6.6	ng/kg	1250	101	80-120	0	15	
4-Chlorotoluene	1280	250	9.8	ង/ភិព	1250	102	80-125	7	5	
Dibremechloromechane	1100	100	8.2	ug/kg	1250	88	75-120	9	15	
L.2-Dibromo-3-chloropropane	000	250	99	ug/kg	1250	80	50-120	6	25	
1.2-Libromoethane (EDB)	1330	100	7.7	ug/kg	1250	86	75-125	S	15	
Listromomethase	1220	100	ro oo	ng/kg	1250	86	80-120	2	5	
(LJChlondoenzene	1270	100	9.2	ភ3/ <i>វ</i> ភព	1250	102	80-120	ıç	15	
F. Jean Groben Zene	1290	90.	8.0	ng/kg	1250	103	80-120	ŧIJ	13	
L.9-Luchlorobenzene	1260	100	9.4	ga/gu	1250	101	80-120	£1	51	
Dichlarodiffuoromethane	1380	250	=	ug/kg	1250	110	20-120	٣	20	
i.j-Litchforoethune	1230	100	6.9	ng/kg	1250	86	80-120	145	15	
1.2-Dichtoroethane	1180	20	×.	ug/kg	1250	46	75-120	r~	5	
1.1-Dichloroethene	1220	250	7.5	ug/kg	1250	86	65-120	**	20	
cas-4.2-Dichloroethene	1260	<u>00</u>	=	ug/kg	1250	101	80-120	4	15	
irans-1,2-Dichloroethene	1220	001	=	ug/kg	1250	86	80-120	ťΩ	15	
1.2-Dichloropropane	1250	100	7.3	ug/kg	1250	100	80-120	9	15	
1,3-L)ichloropropune	1210	100	8.4	ay/gu	1250	76	80-120	9	15	
Z.Z-Dichloropropane	1190	001	13	ug/kg	1250	35	80-120	4	15	

Del Mar Analytical - Phoenix Linda Eshelman Project Manager

The results periatin only to the samples tested in the labaratory. This raport shall not be reproduced.

PAK0837 < Page 111 of 153>
except in full, without written permission from Del Mar Analytical.


METHOD BLANK/QC DATA

VOLATILE ORGANICS BY GC/MS (EPA 5035/8260B)

	٥	an interest			5,11,0	3	, ne.		9	ć
Analyte	Result	Limit	MDL	Units	Level	Source 70 REC Limits	Series.	RPD	Limit	Data Qualifiers
Batch: P4L1301 Extracted: 12/01/04	/01/04									
LCS Dup Analyzed: 12/11/2004 (P4L1301-BSD1)	4L1301-BSD1)									
1,1-Dichloropropene	1370	100	6.9	ug/kg	1250	110	80-120	9	15	
cis-1,3-Dichloropropene	1230	100	11	ug/kg	1250	86	80-120	7	15	
trans-1,3-Dichloropropene	1190	100	8.0	ug/kg	1250	95	80-120	20	15	
Ethylbenzene	1240	100	8.0	ug/kg	1250	66	80-120	m	15	
Hexachlorobutadiene	1350	250	11	ug/kg	1250	108	80-140	-	15	
2-Hexanone	1150	1000	130	ug/kg	1250	92	50-120	7	35	
Jodonichane	1260	250	25	ug/kg	1250	101	60-120	ľΛ	50	
Isopropylbenzene	1190	100	8.6	ug/kg	1250	95	80-125	0	2	
p-Isopropyltoluene	1280	100	2	ug/kg	1250	102	80-130	-	15	
Methylene chloride	1130	200	99	ug/kg	1250	90	60-120	S	15	
4-Methyl-2-pentanone (MIBK)	1160	1000	150	ug/kg	1250	93	50-120	16	30	
Methyl-tert-butyl Ether (MTBE)	1200	250	13	ug/kg	1250	96	75-120	6	20	
Naphthalene	1200	250	19	ug/kg	1250	96	60-120	디	50	
n-Propylbenzene	1300	100	Ξ	ug/kg	1250	104	80-130	-	15	
Styrene	1260	100	0.6	ug/kg	1250	101	80-125	73	15	
1,1,1,2-Tetrachlorocthane	1250	250	8.5	ga/gu	1250	100	80-120	7	13	
I, I, 2, 2. Tetrachloroethane	1210	100	Ξ	ug/kg	1250	46	60-120	10	20	
Tetrachloroethene	1250	100	Ξ	ug/kg	1250	100	80-120	7	13	
Toluene	1230	001	8.9	ug/kg	1250	86	80-120	4	1.5	
1,2,3-Trichlorobenzene	1250	250	99	ug/kg	1250	100	70-130	7	13	
1,2,4-Trichlorobenzene	1320	250	30	ug/kg	1250	106	75-135	9	15	
1,1,1-Trichloroethane	1300	100	6.2	ug/kg	1250	104	80-120	4	15	
1,1,2-Trichloroethane	1190	100	9.6	ug/kg	1250	95	75-120	Ξ	15	
Trichloroethene	1260	001	Ξ	ug/Kg	1250	101	80-120	7	13	
Trichlorofluoromethane	1260	250	7.8	ug/kg	1250	101	30-130	4	20	
1,2,3-Trichloropropane	1190	500	10	ug/kg	1250	95	60-120	감	20	
1,2,4-Trimethylbenzene	1260	100	5.7	ug/kg	1250	101	80-120	Сł	15	
1,3,5-Trimethylbenzene	1300	100	10	ug/kg	1250	104	80-130	6	15	
Vinyl acetate	1220	1200	10	ug/kg	1250	86	30-120	Ξ	35	
Vinyl chloride	416	250	4.7	ug/kg	1250	33	10-120	디	35	
Xylenes, Total	3960	150	18	ug/kg	3750	106	80-120	m	13	
Surrogate: Dibromofluoromethane	1300			Sy/Sn	1250	104	70-120			
Surrogate: Toluene-d8	1300			3y/8n	1250	104	75-120			
Surrogate: 4-Bromostuorobenzene	1300			ng/kg	1250	104	75-120			

Del Mar Analytical - Phoenix Linda Eshelman Project Manager

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced PNK0837 <Page 112 of 153> except in Juli, without written permission from Del Mar Analysical.

Sampled: 11/30/04 Received: 11/30/04

Project ID: 24018.004/Air Liquide

Report Number: PNK0837

Basin & Range Hydrogeologists 6155 E. Indian School Rd., Suite 100A Scottsdale, AZ 85251 Attention: Amy Wolkowinsky

1746/1Dertlan Ave., Suite 100, Irvine, CA 928/4. (949); 281-1.012; FAX (949); 280-328/7. (944); 281-1.012; FAX (949); 280-328/7. (941); 281-1.012; FAX (949); 781-1046; 9484. Chresspoale Or., Suite 201; 281-181;

METHOD BLANK/QC DATA

VOLATILE ORGANICS BY GC/MS (EPA 5035/8260B)

Analy	Batch
RPD Data RPD Limit Qualifiers	
RPD Limit	
RPD	
Spike Source %REC MDL Units Level Result %REC Limits F	
Source Result %	
Spike Level	
Units	
MDL	
Reporting Limit	
Result	702/04
	th: P4L1301 Extracted: 12/02/0-
	Extra
	41.1301
Analyte	Batch: P

Acetanet 942 1000 244 ug/kg 1140 ND 85 15-120 E7 Bronnoberrache 1105 56 14 ug/kg 1140 ND 92 70-120 Bronnoberrache 1120 256 67 ug/kg 1140 ND 93 70-120 Bronnoberrache 1120 256 67 ug/kg 1140 ND 93 70-120 Bronnoberrache 1120 256 83 ug/kg 1140 ND 94 70-120 Bronnoberrache 1170 256 11 ug/kg 1140 ND 94 70-120 Bronnoberrache 1170 256 12 ug/kg 1140 ND 94 75-120 Ca-barbithenzone 11150 256 12 ug/kg 1140 ND 95 75-120 Ca-barbithenzone 11160 250 11 ug/kg 1140 ND 95 75-120	Matrix Spike Analyzed: 12/11/2004 (P4L1301-MS1)	004 (P4L1301-	MS1)			Sou	Source: PNL0081-03	7800	50	
1550 550 14 ug/kg 1140 ND 92 1110 250 57.7 ug/kg 1140 ND 94 1120 250 6.2 ug/kg 1140 ND 94 1070 1060 9.2 ug/kg 1140 ND 94 1070 250 110 ug/kg 1140 ND 94 1080 250 110 ug/kg 1140 ND 94 1090 250 12 ug/kg 1140 ND 94 1090 250 12 ug/kg 1140 ND 96 1090 250 11 ug/kg 1140 ND 96 1090 250 12 ug/kg 1140 ND 96 1090 250 8.3 ug/kg 1140 ND 96 1080 250 8.4 ug/kg 1140 ND 96 1080 250 8.4 ug/kg 1140 ND 96 1120 1000 8.3 ug/kg 1140 ND 96 1120 1000 8.3 ug/kg 1140 ND 96 1120 1000 8.4 ug/kg 1140 ND 96 1120 1000 9.4 ug/kg 1140 ND 96 1120 1000 9.4 ug/kg 1140 ND 96 1120 1000 10 ug/kg 1140 ND 96 1120 1000 11 ug/kg 1140 ND 96 1120 1000 12 ug/kg 1140 ND 96 1120 1000 13 ug/kg 1140 ND 96 1120	4.cetene	942	1000	240	ag/kg	1140	QV.	83	15-120	Et
1110 220 7.7 ug/kg 1140 ND 97 1120 230 6.2 ug/kg 1140 ND 98 1140 ND 99 1150 Ug/kg 1140 ND 94 1150 250 1100 ug/kg 1140 ND 94 1140 ND 94 1140 ND 94 1140 ND 95 1140 ND 95 1140 ND 95 1140 ND 96 1140 ND 96 1140 ND 97 1140 ND 98 1140 ND 99 1140 ND 98 1140 ND	Benzene	1050	50	4	ug/kg	1140	Q	92	70-120	
1120 250 612 19/kg 1140 ND 98 1440 ND 98 1440 ND 94 982 250 1140 1440 ND 94 1440 ND 94 1440 ND 94 1440 ND 1050 1050 1240 1240 1240 ND 94 1440 ND 1050 1250 11 1260 1240 1240 ND 94 1240 ND ND ND ND ND ND ND N	Bromobenzene	1110	250	7.7	ug/kg	1140	ΩZ	76	70-120	
1070 106 9.2 ug/kg 1140 ND 94 1070 250 1170 ug/kg 1140 ND 95 1170 1050 1100 240 ug/kg 1140 ND 95 1170 1050 1100 240 ug/kg 1140 ND 95 1170 1170 250 11 ug/kg 1140 ND 96 1170 ug/k	Bromochloromediane	1120	250	6.2	ug/kg	1140	ΩN	86	70-120	
982 250 110 ag/kg 1140 ND 86 1100 1070 250 1110 ag/kg 1140 ND 94 11050 1090 240 ag/kg 1140 ND 94 1150 250 110 ag/kg 1140 ND 94 1140 250 1150 250 11 ag/kg 1140 ND 96 1100 1070 250 11 ag/kg 1140 ND 96 1100 ND 96 N	Bromodichloromethane	1070	100	9.2	មន្ទ/វិទ្ធ	1140	g	35	70-120	
1970 256 116 116 117 ND 94 117 ND 115	Bromeform	982	250	8.3	បន្ទាវខ្ម	1140	S	98	55-120	
1956 1900 240 1948, 1440 ND 92 1440 1950 1250 12 1269 1440 ND 94 1140 1250 12 1369 1440 ND 94 1440 1440 1500 1440 1500 1450 1450 1460 ND 94 1460 ND 95 1460	Sromomethane	1070	250	110	ลีฟ/ซีก	1140	ΩŽ	94	20-120	
1090 250 18 ug/kg 1140 ND 96 1150 256 11 ug/kg 1140 ND 101 1140 256 11 ug/kg 1140 ND 91 1140 250 8.0 ug/kg 1140 ND 94 1080 250 8.2 ug/kg 1140 ND 95 1080 250 8.3 ug/kg 1140 ND 95 1080 250 8.3 ug/kg 1140 ND 95 1120 256 9.9 ug/kg 1140 ND 98 1120 256 9.9 ug/kg 1140 ND 98 1120 256 0.9 ug/kg 1140 ND 98 1120 256 0.9 ug/kg 1140 ND 98 1120 250 0.9 ug/kg 1140 ND 99 1120 250 0.9 ug/kg 1140 ND 99 1120 1000 8.3 ug/kg 1140 ND 99 1120 1000 8.3 ug/kg 1140 ND 99 1120 1000 8.1 ug/kg 1140 ND 99 1120 1200 250 11 ug/kg 1140 ND 98 1120 1200 250 11 ug/kg 1140 ND 98 1120 1000 13 ug/kg 1140 ND 98 1120 1200 13 ug/kg 1140 ND 98 1120 1200 1300 1300 1300 1300 1300 1120 1300 1300 1300 1300 1300 1300	2-Butanone (MEK)	1050	1000	240	ฮิฟริก	1140	S	92	40-120	
1150 250 11 1150 1150 1150 1140 1150 1140 1150 1140 1150 1140 1150 1140 1150 1140 1150 1140 1140 1150 1140 115	-Butylbenzene	1090	250	22	ยูฟัญ	1140	Ω	96	75-130	
the control of the co	ec-Butylbenzene	1150	250	2	ug/kg	1140	g	101	75-125	
1970 250 8.5 1987, 140 ND 94 1980 520 8.5 1982, 140 ND 95 1080 520 8.5 1982, 140 ND 95 1080 250 8.3 1982, 140 ND 95 1080 100 8.3 1982, 140 ND 95 1120 250 10 1982, 140 ND 95 1130 250 9.9 1982, 140 ND 98 1130 250 8.5 1982, 140 ND 98 1130 250 8.5 1982, 140 ND 98 1130 1090 8.2 1982, 140 ND 98 1120 100 8.3 1982, 140 ND 98 1120 100 8.3 1982, 140 ND 98 1120 100 9.4 1982, 140 ND 98 1120 100 10 10 10 1120 100 11 1984, 140 ND 98 1120 100 11 1984, 140 ND 98 1120 100 11 1984, 140 ND 98 1120 100 10 10 10 10 1120 100 10 10 10 10 1120 100 10 10 10 10 1120 100 10 10 10 1120 100 10 10 10 1120 100 10 10 10 1120 100 10 10 10 1120 100 10 10 10 1120 100 10 10 10 1120 100 10 10 1120 100 10 10 10 1120 100 10 10 1120 100 10 10 10 1120 100 10 10 10 1120 100 10 10 10 1120 100 10 10 10 1120 100 10 10 10 1120 100 10 10 10 1120 100 10 10 10 1120 100 10 10 10 1120 100 10 10 10 1120 1120 1120 1140 1150 1120 1120 1120 1140 1150 1120 1120 1120 1140 1150 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 120 120 120 120 1120 120 120 120 120 120 1120 120 120 120 120 120 1120 120 120 120 120 120 1120 120 120 120 120 120 1120 120 120 120 120 120 1120 120 120 120 120 120 1120 12	en-Butylbenzene	1140	250	Ξ	១១/៥១	1140	S	001	75-125	
1990 250 6,2 98/kg 1140 ND 96 1180 1980 250 6,2 98/kg 1140 ND 95 1180 1180 250 3,7 98/kg 1140 ND 95 1180 250 3,9 98/kg 1140 ND 95 1130 250 3,9 98/kg 1140 ND 98 1130 250 3,9 98/kg 1140 ND 98 250 250 98/kg 1140 ND 98 250 250 26/kg 1140 ND 98 250 250 26/kg 1140 ND 99 250 25	Parbon Disulfide	1070	200	8.0	ug/kg	1140	g	6	45-120	
1080 50 7.7 1987kg 1140 ND 95 1140 ND 96 1140 ND	Zarbon terrachforide	1090	250	6.2	ug/kg	1140	N Q	96	75-120	
1080 250 8,5 19,0 kg 1140 ND 95 1180 250 10 19,0 kg 1140 ND 95 1120 250 10 10 10 98 1130 250 9,9 10,0 kg 1140 ND 98 1130 250 8,6 10,0 kg 1140 ND 98 1130 250 8,2 10,0 kg 1140 ND 98 1130 1090 7,7 10,0 kg 1140 ND 98 1120 100 8,1 10,0 kg 1140 ND 95 1120 100 8,1 10,0 kg 1140 ND 98 1120 100 8,1 10,0 kg 1140 ND 98 1120 100 9,1 10,0 kg 1140 ND 99 1120 100 9,1 10,0 kg 1140 ND 98 1120 100 9,1 10,0 kg 1140 ND 98 1120 100 9,1 10,0 kg 1140 ND 98 1120 100 10 10,0 kg 1140 ND 98 1120 100 11 10,0 kg 1140 ND 98 1120 100 10 10 10,0 kg 1140 ND 98 1120 100 10 10 10,0 kg 1140 ND 98 1120 100 10 10 10 10,0 kg 1140 ND 98 1120 100 10 10 10 10,0 kg 1140 ND 98 1120 100 100 100 100 100 100 100 1120 100 100 100 100 100 100 1120 100 100 100 100 100 1120 100 100 100 100 100 1120 100 100 100 100 100 1120 100 100 100 100 100 1120 100 100 100 100 100 1120 100 100 100 100 100 1120 100 100 100 100 100 1120 100 100 100 100 100 1120 100 100 100 100 100 1120 100 100 100 100 100 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 120 1120 1120 120 120 120 120 1120 120 120 120 120 120 1120 120 120 120 120 120 1120 120 120 120 120 120 1120 120 120 120 120 120 1120 120 120 120 120 120 1120 120 120 120 120 120 1120 120 120 120 120 120 120 1120 120 120 120 120 120 120 11	Allorofrenzene	1080	50	7.7	ug/kg	1140	2	95	75-120	
1080 100 8.3 1976 1140 ND 95 1210 250 10 1978 1140 ND 106 1130 250 8.6 1978 1140 ND 106 1130 250 8.6 1978 1140 ND 99 1130 250 8.5 1978 1140 ND 99 1130 1090 100 8.2 1978 1140 ND 88 1130 1090 100 8.3 1978 1140 ND 98 1120 100 9.2 1978 1140 ND 99 1120 100 9.4 1978 1140 ND 99 1120 100 9.4 1978 1140 ND 99 1120 250 11 1978 1140 ND 99 1120 250 11 1978 1140 ND 99 1120 250 11 1978 1140 ND 99 1120 250 7.3 1978 1140 ND 95 1120 250 7.3 1978 1140 ND 95 1120 100 7.3 1978 1140 ND 95 1120 100 7.3 1978 1140 ND 95 1120 100 11 1978 1140 ND 95 1120 100 11 1978 1140 ND 95 1000 100 13 1978 1140 ND 98 1000 100 13 1978 1140 ND 98 1000 100 100 100 100 100 100 1000 100 100 100 100 100 100 1000 100 100 100 100 100 100 1000 100 100 100 100 100 100 1000 100 100 100 100 100 100 1000 100 100 100 100 100 1000 100 100 100 100 100 1000 100 100 100 100 100 1000 1000 100 100 100 100 1000 1000 1000 100 100 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000	hlemethane	1080	250	8.5	ug/kg	1140	2	9.5	20-120	
1210 256 10 1976 1140 ND 106 1130 250 959 1976 1140 ND 98 1130 250 8.5 1140 ND 98 1130 250 8.5 1140 ND 98 1100 250 6.5 1976 1140 ND 85 1100 250 6.5 1976 1140 ND 88 1112 1080 100 8.3 1978 1140 ND 98 1120 100 9.2 1978 1140 ND 99 1120 100 9.4 1978 1140 ND 99 1120 100 9.4 1976 1140 ND 99 1120 100 9.4 1978 1140 ND 99 1120 1200 250 11 1978 1140 ND 95 1120 1200 120 1278 1140 ND 95 1120 100 11 1978 1140 ND 95 1120 100 8.4 1978 1140 ND 95 1120 100 8.4 1978 1140 ND 95 1120 100 8.4 1978 1140 ND 95 1120 100 100 100 100 100 100 100 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120	hloroform	1080	100	8.3	ug/kg	1140	g	95	70-120	
1120 250 9,9 19/kg 1140 ND 98 1130 250 8,6 19/kg 1140 ND 99 1130 250 8,6 19/kg 1140 ND 99 1130 1090 100 6,2 19/kg 1140 ND 85 1130 1090 100 7,7 19/kg 1140 ND 95 1130 100 9,2 19/kg 1140 ND 95 1130 100 9,4 19/kg 1140 ND 98 1120 100 9,4 19/kg 1140 ND 98 1220 250 11 19/kg 1140 ND 99 1280 100 9,4 19/kg 1140 ND 97 1080 50 10 10 10/kg 1140 ND 97 1130 250 7,3 19/kg 1140 ND 98 1130 250 7,3 19/kg 1140 ND 98 1130 100 11 19/kg 1140 ND 98 1130 100 11 19/kg 1140 ND 98 1140 100 11 19/kg 1140 ND 98 1150 100 13 19/kg 1140 ND 98 1100 100 13 10/kg 1140 ND 98 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100	bloromethane	1210	250	10	ug/kg	1140	Š	106	35-120	
1134 256 8.6 ug/kg 1140 ND 99 1970 100 8.2 ug/kg 1140 ND 85 1980 190 27 ug/kg 1140 ND 88 1980 100 8.1 ug/kg 1140 ND 96 1120 100 8.1 ug/kg 1140 ND 95 1120 100 8.1 ug/kg 1140 ND 95 1120 100 8.1 ug/kg 1140 ND 99 1120 100 9.4 ug/kg 1140 ND 99 1220 250 11 ug/kg 1140 ND 97 1280 100 6.9 ug/kg 1140 ND 97 1280 100 7.3 ug/kg 1140 ND 97 1120 100 11 ug/kg 1140 ND 98 1120 100 13 ug/kg 1140 ND 98 1120 100 100 100 100 100 1120 100 100 100 100 100 1120 1120 1120 1120 1120 ND 1120 1120 1120 ND 1120 1120 1120 ND 1120 1120 1120 ND 1120 1120 ND 98 1120 N	-Chianotoluene	1120	250	6.6	ug/kg	1140	Ð	86	75-120	
970 190 8.2 ug/kg 1140 ND 85 opane 1900 120 65 ug/kg 1140 ND 88 1140 ND 98 11	-Chierotoluene	1130	250	9.6	ug/kg	1140	Z	8	75-120	
1000 256 65 ug/kg 1140 ND 88 118) 1090 100 7.7 ug/kg 1140 ND 96 1120 100 8.3 ug/kg 1140 ND 95 1120 100 9.2 ug/kg 1140 ND 99 1120 100 9.4 ug/kg 1140 ND 99 1080 100 6.9 ug/kg 1140 ND 95 1130 250 7.8 ug/kg 1140 ND 95 1100 100 11 ug/kg 1140 ND 95 1100 100 8.4 ug/kg 1140 ND 96	Obromochloromethane	970	100	65 55	ug/kg	1140	g	85	70-120	
DB) 1090 1000 7.7 ug/kg 1140 ND 96 100 1100 1100 1100 1100 1100 1100 11	.2-Dibronso-3-chloropropane	1000	250	99	ug/kg	1140	g	88	50-130	
1080 100 8.3 ug/kg 1140 ND 95 1120 1120 100 8.4 ug/kg 1140 ND 98 1120 1120 100 8.4 ug/kg 1140 ND 98 1120 1120 100 9.4 ug/kg 1140 ND 98 1120 1220 250 11 ug/kg 1140 ND 97 1280 100 6.9 ug/kg 1140 ND 107 1130 250 7.3 ug/kg 1140 ND 95 1120 1000 11 ug/kg 1140 ND 95 1120 1000 110 ug/kg 1140 ND 98 1120 1000 110 ug/kg 1140 ND 98 1100 1000 110 ug/kg 1140 ND 98 11000 Ug/kg 1140 ND 98	.2-Dibromoethane (EDB)	1090	100	7.7	គូវ/ខ្មីរា	1140	Ω	96	65-125	
1120 100 9,2 ug/kg 1140 ND 98 71 1120 1120 1120 ug/kg 1140 ND 99 71 1120 1120 1120 1120 1120 1120 1120 1	libromounethane	1080	100	8.3	สมสา	1140	g	95	70-120	
1131) 100 8.6 1976 1140 ND 99 1120 100 9,4 1976 1140 ND 98 1280 250 11 1976 1140 ND 97 1080 50 7.8 1976 1140 ND 97 1130 256 7.3 1976 1140 ND 95 1120 100 11 1976 1140 ND 95 1120 100 11 1976 1140 ND 98 1130 100 11 1976 1140 ND 98 1140 100 11 1976 1140 ND 98 1150 100 11 1976 1140 ND 98	2-Dichlorobenzene	1120	001	5.6	ยู่หัฐม	1140	N Q	86	75-120	
THE TO THE	.3-Dichlorobenzene	1130	<u>0</u>	8.0	ng/kg	1140	9	66	75-120	
1220 256 11 bg/kg 1140 ND 107 11 1280 1100 6.9 bg/kg 1140 ND 97 11 1130 250 7.8 bg/kg 1140 ND 97 11 1130 250 7.8 bg/kg 1140 ND 95 11 1130 1100 110 bg/kg 1140 ND 98 11 1130 1100 110 bg/kg 1140 ND 98 11 1100 1100 11 bg/kg 1140 ND 95 11 1100 1100 8.4 bg/kg 1140 ND 95 11 1100 1100 8.4 bg/kg 1140 ND 95 11 1100 1100 110 bg/kg 1140 ND 95 11 1100 ND 95 1	.4-Dichlorabenzene	1120	8	9.4	ug/kg	140	2	86	80-120	
1280 100 6.9 hg/kg 1140 170 97 180 180 250 7.8 hg/kg 1140 ND 95 1130 250 7.8 hg/kg 1140 ND 95 1130 180 110 hg/kg 1140 ND 98 1140 ND 98 1100 100 7.3 hg/kg 1140 ND 98 1100 100 8.4 hg/kg 1140 ND 95 1100 100 8.4 hg/kg 1140 ND 95 1100 100 100 8.4 hg/kg 1140 ND 95 1100 100 100 13 hg/kg 1140 ND 98 1100	Mehlorodilluoromethane	1220	250	Ξ	ug/kg	1140	Q.	107	10-120	
1080 50 7.8 ug/kg 1140 ND 95 1130 250 7.5 ug/kg 1140 ND 95 1120 1120 11 ug/kg 1140 ND 98	. I-Diehloroethane	1280	8	6.9	ng/kg	1140	170	6	70-120	
1130 250 7.5 ug/kg 1140 52 95 1170 1120 100 11 ug/kg 1140 ND 98 1170 100 11 ug/kg 1140 ND 98 1170 100 7.3 ug/kg 1140 ND 95 1170 100 8.4 ug/kg 1140 ND 95 1170 100 8.4 ug/kg 1140 ND 95 1170	.2-Diebloroethune	1080	50	7.8	ug/kg	1140	Q	95	70-120	
H20 100 11 ug/kg 1140 ND 98 7 110 ug/kg 1140 ND 98 7 110 1100 100 11 ug/kg 1140 ND 95 6 1100 1100 100 8.4 ug/kg 1140 ND 96 7 1100 100 100 13 ug/kg 1140 ND 94 6 1100 100 100 13 ug/kg 1140 ND 88 6	i-Dichlomethene	1130	250	7.5	ag/kg	1140	\$2	95	50-120	
1080 100 11 ug/kg 1140 ND 95 1140 ND 95 1140 ND 96 1140 ND 96 1140 ND 96 1140 ND 96 1140 ND 94 1140 ND 94 1140 ND 94 1140 ND 98 1140	is-1,2-Dichleroethene	1120	100	_	ug/kg	1140	Q	86	70-120	
1100 100 7.3 ug/kg 1140 ND 96 7 1070 100 8.4 ug/kg 1140 ND 94 6 1000 100 13 ug/kg 1140 ND 88 6	rans-1,2-Dichloroethene	1080	100	11	तह/kg	1140	ΩZ	56	65-120	
1070 100 8.4 ug/kg 1140 ND 94 6 1000 100 13 ug/kg 1140 ND 88 6	.2-Dichloropropane	1100	100	7.3	ug/kg	1140	R	96	75-120	
1000 100 13 ug/kg 1140 ND 88 (.3-Dichloropropane	1070	100	8.4	ug/kg	1140	S	94	65-120	
	2-Diehloropropane	1000	100	13	ug/kg	1140	Q	88	60-120	

Phoenix	
Analytical -	Calvelance
el Mar	100
33	. 3

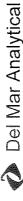
Del Mar Analytic Linda Eshelman Project Manager

The restolts pertons only to the samples tested to the laboratory. This report shall not be reproduced PNK0837 <Page 113 of 133> except in full, without written permission from Del Mar Analytical.

Del Mar Analytical Basin & Range Hydrogeologists 6155 E. Indian School Rd., Suite 100A Scottsdale, AZ 85251 Attention: Amy Wolkowinsky

Project ID: 24018.004/Air Liquide Report Number: PNK0837

METHOD BLANK/QC DATA


Sampled: 11/30/04 Received: 11/30/04

VOLATILE ORGANICS BY GC/MS (EPA 5035/8260B)

Analyte	Result	Reporting Limit	MDL	MDL Units	Spike Level	Source Result	%REC	Source %REC Result %REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: P4L1301 Extracted: 12/02/04	2/02/04										
Matrix Spike Analyzed: 12/11/2004 (P4L1301-MS1)	04 (P4L1301	-MSI)			Sor	Source: PNL0081-03	-1800	13			
1.1-Dichloropropene	1180	100	6.9	ug/kg	1140	ΩN	104	70-125			
cis-1.3-Dichloropropene	1080	100	17	∂y/∂n	1140	N	93	75-120			
trans-1.3-Dichloropropene	1060	100	8.0	gy/gu	1140	ΩN	63	70-120			
Ethylbenzene	1060	100	8.0	ug/kg	1140	Q.	93	75-120			
Hexachlorobutadiene	1070	250	1	ug/kg	140	N O	6	70-135			
2-Hexanone	1110	1000	130	ng/kg	1140	Z	76	40-120			
Indomethane	1130	250	25	ng/kg	1140	S	66	50-120			
Isopropylbenzene	1090	100	8.6	ug/kg	140	ND	96	75-120			
p-Isopropyttoluene	1120	100	13	ug/kg	1140	Ŋ	86	75-125			
Methylene chloride	1000	500	99	gy/gu	1140	R	88	50-120			
4-Methyl-2-pentanone (MIBK)	1080	1000	150	ug/kg	1140	S	95	45-135			
Methyl-tert-butyl Ether (MTBE)	1140	250	13	ga/gu	1140	S	100	60-120			
Naphthalene	1060	250	19	ug/kg	140	S	93	50-120			
n-Propylbenzene	1160	100		ug/kg	1140	Q	102	70-125			
Styrene	1080	100	0.6	ug/kg	1140	Q	95	75-120			
I.1, I.2-Tetrachloroethane	1120	250	8.5	ត្ត អ ុក្ខព	1140	g	86	75-120			
I, I, 2, 2-Tetrachloroethane	0011	100	_	ug/kg	1140	S	96	60-120			
Tetrachloroethene	1100	100		ga/gu	1140	29	94	70-120	,		
Toluene	1080	100	8.9	ag/kg	1140	g	95	75-120			
1,2,3-Trichlorobenzene	966	250	99	ug/kg	1140	g	87	60-125			
1,2,4-Trichlorobenzene	1070	250	30	ug/kg	1140	Q	94	65-130			
I.I.I-Trichloroethane	4890	100	6.2	ug/kg	1140	3700	104	70-120			
I,I,2-frichloroethane	0601	100	9.6	ng/kg	1140	S	96	70-120			
Trichloroethene	0	001	Ξ	ug/kg	1140	R	46	70-125			
Trichlorofluoromethane	0111	250	7.8	ag/kg	1140	g	46	25-120			
1,2,3-Trichloropropane	1120	500	91	ug/kg	1140	S	86	55-130			
1,2,4-Trimethylbenzene	1100	100	7.6	ug/kg	1140	S	96	75-120			
1.3,5-Trimethylbenzene	1120	001	10	ug/kg	1140	R	86	75-125			
Vinyl acetate	765	1200	10	ug/kg	1140	Ŋ	67	25-130			E4
Vinyl chloride	328	250	4.7	ag/kg	1140	S	29	10-120			
Xylenes, Fotal	3390	150	81	ng/kg	3420	S	66	75-120			
Surrogate: Dibronofluoromerhane	1200			8y/Sn	1140		105	70-120			
Surrogate: Toluene-d8	1180			84/8n	1140		104	75-120			
Surrogate: 4-Bromofluorobenzene	1150			8y/8n	1140		101	75-120			

Del Mar Analytical - Phoenix Linda Eshelman Project Manager

The results pertain only to the samples sested in the laboratory. This report shall not be reproduced PNK0837 <Page 114 of 153> except in full, without written permission from Del Mar Analysteal.

1745 Derian Ave., Suite 100, Inche; CA 62614. (449) 191-11027. PAX (949) 265-3297 1014. E. CADIO, CA

METHOD BLANK/QC DATA

VOLATILE ORGANICS BY GC/MS (EPA 5035/8260B)

Analyte	Result	Reporting Límit	MDL	Units	Spike Level	Source %REC Result %REC Limits	6REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: P4L1301 Extracted: 12/02/04	02/04										
Marrix Spike Dup Analyzed: 12/11/2004 (P4L1301-MSD1)	/2004 (P4L	1301-MSD1)			Seu	Source: PNL0081-03	0-1800	8			
Acelone	1020	1000	240	ug/kg	1140	QN.	68	15-120	∞	30	
Benzene	1130	50	7	ug/kg	1140	Q	66	70-120	1	15	
Bromohenzene	1220	250	7.7	ug/kg	1140	Q	107	70-120	9	15	
Bromochloromethane	1170	250	6.2	ug/kg	1140	Q	103	70-120	ক	15	
Bromodichioromethane	1150	100	9.2	ug/kg	1140	ΩN	101	70-120	<u>r</u>	15	
Bromoform	1040	250	8.3 8.3	ug/kg	1140	Q.	16	55-120	S	2	
Brencenethane	1120	250	011	ug/kg	1140	QN	88	20-120	¥n	30	
2-Butanone (MEK)	1110	0001	240	ug/kg	1140	g	7.6	40-120	9	35	
n-Butylbenzene	1150	250	<u>~</u>	ug/kg	1140	Ω	101	75-130	'n	15	
sec-Butylbenzene	1240	250	12	ng/kg	1140	ND	109	75-125	×	15	
ten-Butylbenzene	1250	250	=	ug/kg	1140	Q	110	75-125	¢	15	
Carbon Disulfide	1140	200	8.0	ug/kg	1140	ΩN	100	45-120	9	15	
Carbon setrachloride	1170	250	6.2	ug/kg	1140	Ω̈́	103	75-120	7	15	
Chlorobenzene	1200	90	7.7	ug/kg	1140	Ð	105	75-120		15	
Chloroethane	1170	250	8.5	ug/kg	1140	2	103	20-120	×	35	
Chioroform	1140	100	8.3	ng/kg	1140	Q	100	70-120	40	13	
Chforonethane	1280	250	10	ug/kg	1140	g	112	35-120	9	20	
2-Chlorotoluene	1210	250	6.6	ug/kg	1140	Q.	901	75-120	∞	15	
4-Ctslenotoluene	1230	250	8.6	18/kg	1140	R	80	75-120	œ	15	
Dibrornochloromethane	1070	100	8.2	ng/kg	1140	Q.	25	70-120	10	15	
1,2-Dibramo-3-chforopropane	110	250	65	og/kg	1140	Q.	26	50-130	10	30	
1.2-Dibromoethane (EDB)	0611	100	7.7	ng/kg	140	Ω	5	65-125	6	15	
Dibromomethane	081	100	8.3	gA/gu	140	Q.	2	70-120	6	15	
1.2-Dichlorobanzene	1210	100	9.5	ug/kg	140	S	901	75-120	×	15	
1.3-Dichlorobenzene	1230	100	0.8	53/Sn	140	g	108	75-120	œ	15	
1.4-Dichlorobenzene	1200	100	9,4	ลิง/สิก	140	Q.	105	80-120	ŗ-	2	
Dichlorodifluoromethane	1320	250	Ξ	∂3/gn	1140	Q	911	10-120	90	25	
1,1-Dichforoethane	1370	100	6.9	gy/gu	1140	170	105	70-120	۲	15	
1,2-Dichtoroethane	1140	20	7,8	ug/kg	1140	S	9	70-120	ю.	15	
1,1-Dichforoethere	1210	250	7.5	ug/kg	1140	52	102	50-120	۲	20	
cis-1,2-Dichloroethene	1200	001	Ξ	ฮิฟู/ฮิก	1140	ę	105	70-120	t~	15	
trans-1.2-Dichloroethene	1150	901	Ξ	ក្នុង/ដូប	1140	g	101	65-120	9	50	
1,2-Dichloropropane	1200	100	7.3	ug/kg	1140	Q	105	75-120	6	2	
1,3-Dichtoropropune	1170	100	8. 4.	ug/kg	1140	Ŋ	103	65-120	6	15	
2,2-Dichtoropropune	0901	100	2	ug/kg	1140	N Q	93	60-120	9	22	

Del Mar Analytical - Phoenix Linda Eshelman Project Manager

The results pertain only to the samples teated in the laboratory. This report shall not be reproduced PNK0837 <Page 115 of 155> except in full, without written permission from Del Mar Analytical.

1746 Detent Ave. Suite 100 Prine CA 2014 (sep.) 251-1022 FAX (sel.) 250-23297 1014 E. Choley Di, Satte A. Cholino CA 2024 (sep.) 370-4667 FAX (sel.) STD 1046 9481 Chesaposie Di, Saite A. Cholino CA 2024 (sep.) 570-4667 FAX (sel.) STD 1046 9481 Chesaposie Di, Saite Sof. Saite A. Saite Sof. Saite Saite Sof. S

Del Mar Analytical

Report Number: PNK0837

Basin & Range Hydrogeologists 6155 E. Indian School Rd., Suite 100A Scottsdale, AZ 85251 Attention: Amy Wolkowinsky

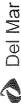
Sampled: 11/30/04 Received: 11/30/04

Project ID: 24018.004/Air Liquide

Report Number: PNK0837

Basin & Range Hydrogeologists 6155 E. Indian School Rd., Suite 100A Scottsdale, AZ 85251 Attention: Amy Wolkowinsky

Sampled: 11/30/04 Received: 11/30/04 Project ID: 24018.004/Air Liquide


METHOD BLANK/QC DATA

VOLATILE ORGANICS BY GC/MS (EPA 5035/8260B)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	Source %REC Result %REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: P4L1301 Extracted: 12/02/04	/02/04										
Matrix Spike Dup Analyzed: 12/11/2004 (P4L1301-MSDI)	1/2004 (P4L	1301-MSD1)			Sot	Source: PNL0081-03	.0081-(13			
1.1-Dichloropropene	1280	100	6.9	ug/kg	1140	S	112	70-125	00	15	
cis-1,3-Dichloropropena	1160	100	11	ug/kg	1140	S	102	75-120	7	5	
trans-1,3-Dichloropropene	1150	001	8.0	ug/kg	1140	Q	10)	70-120	×	15	
Ethylbenzene	1170	001	8.0	ug/kg	1140	S	103	75-120	10	15	
Hexachlorobutadiene	1120	250	11	ug/kg	1140	ΩN	86	70-135	5	15	
2-Hexanone	1200	1000	130	ga/gu	1140	R	105	40-120	8	35	
Iodomethane	1220	250	25	ug/kg	1140	g	107	50-120	×	51	
Isopropylbenzene	1150	100	8.6	ug/kg	1140	Q.	101	75-120	2	15	
p-Isopropyltoluene	1210	100	13	ug/kg	1140	ΩN	106	75-125	8	15	
Methylene chloride	1070	200	09	ug/kg	1140	S	9.4	50-120	7	20	
4-Methyl-2-pentanone (MIBK)	1170	1000	150	ug/kg	1140	ΩŽ	103	45-135	90	35	
Methyl-tert-butyl Ether (MTBE)	1210	250	13	ug/kg	1140	Ŋ	106	60-120	9	15	
Naphthalene	1120	250	67	ug/kg	1140	S	86	50-120	9	52	
n-Propylbenzene	1250	100	=	ug/kg	1140	2	110	70-125	7	15	
Styrene	1210	001	9.0	ug/kg	1140	2	106	75-120	11	15	
1,1.1.2-Tetrachloroethane	1240	250	8,5	ug/kg	1140	QN	109	75-120	10	15	
1,1,2,2-Tetrachloroethane	1170	100	Ξ	ug/kg	1140	ND	103	60-120	9	30	
Tetrachloroethene	1210	100	Ξ	83/gn	1140	29	104	70-120	<u>o</u>	15	
Toluene	1150	100	8.9	ug/kg	1140	ΩN	101	75-120	9	1.5	
1,2,3-Trichlorobenzene	1050	250	99	ug/kg	1140	Q	92	60-125	5	15	
1,2,4-Trichlorobenzene	1140	250	30	ug/kg	1140	QN	100	65-130	9	15	
I, I, I-Trichloroethane	5130	100	6.2	ug/kg	1140	3700	125	70-120	5	15	MI
1,1,2-Trichloroethane	1170	100	9.6	ug/kg	1140	Z	103	70-120	7	15	
Trichloroethene	1200	100	Π	ug/kg	1140	R	105	70-125	90	15	
Trichlorofluoromethane	1190	250	7.8	ug/kg	1140	g	104	25-120	7	25	
1,2,3-Trichloropropane	1220	200	10	ug/kg	1140	2	107	55-130	6	25	
1,2,4-Trimethylbenzene	1210	100	6.7	ug/kg	1140	S	106	75-120	01	15	
1,3.5-Trimethylbenzene	1220	100	10	ng/kg	1140	ΩN	107	75-125	6	15	
Vinyi acetate	817	1200	10	ug/kg	1140	S	72	25-130	7	35	£4
Vinyl chloride	355	250	4.7	ug/kg	1140	Ž	31	10-120	×	30	
Xylenes, Total	3760	150	81	ug/kg	3420	ΩN	110	75-120	10	35	
Surragate: Dibromofluoromethane	1190			ug/kg	0+11		101	70-120			
Surrogate: Toluene-d8	1180			3y/Sn	1140		104	75-120			
Surrogate: 4-Bromoftuorobenzene	1220			8a/8n	1140		107	75-120			

Del Mar Analytical - Phoenix Linda Eshelman Project Manager

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced PNK0837 <Puge 116 of 133> except in full, without written permission from Del Max Andysteal.

Project ID: 24018.004/Air Liquide

Report Number: PNK0837

Busin & Range Hydrogeologists 6155 E. Indian School Rd., Suite 100A Scottsdale, AZ 85251 Attention: Arry Wolkowinsky

11/30/04 Sampled: Received:

METHOD BLANK/QC DATA

VOLATILE ORGANICS BY GC/MS (EPA 5035/8260B)

Analyte	Result	Reporting Limit	MDL	MDL Units	Spike Level	Source %REC Result %REC Limits	%REC Limits RPD	RPD Limit (Data Qualifiers
Batch: P4L1311 Extracted: 11/30/04	30/04								
Blank Analyzed: 12/13/2004 (P4L1311-BLKI)	311-BUKI)								
Accione	2	0001	240	ភូវ/ខ្មីរា					
Benzene	S	50	7	ug/kg					
Bromohenzene	N Q	250	7.7	ug/kg					
Enomochioromethane	2	250	6.3	ug/kg					
Bromodichloromethane	2	100	5.6	ug/kg					
Вкотобрин	9	250		ug/kg					
Bromomethane	Q.	250	110	ga/gu					
2-Butanone (MEK)	Q.	0001	240	ug/kg					
n-Butylhenzene	Q.	250	18	ug/kg					
sec-Barylbenzene	2	250	12	ug/kg					
tert-Butylbenzene	R	250	=	ug/kg					
Carbon Disuifide	2	500	8.0	ug/kg					
Carbon tefrachlogide	2	250	6.2	ng/kg					
Chlorohenzene	S	50	7.7	ug/kg					
Chloroethane	Q.	250	8.5	ug/kg					
Chloroform	Ω	100	8.3	ug/kg					
Chloromethane	Q.	250	10	ug/kg					
2-Chiorotoluene	Q.	250	6.6	ug/kg					
4-Chlorotofuene	2	250	8.6	ug/kg					
Dibromochloromethane	N Q	100	8 7	ng/kg					
l_2-Dibromo-3-chloropropune	S	250	9	ug/kg					
(.2-Dibromoethane (EDB)	2	100	7.3	ug/kg					
Dibromomethane	£	901		ug/kg					
1.2-Dichlorobenzene	£	001	9.3	ng/kg					
i.3-Dichlorobenzene	2	8	8.0	ug/kg					
1,4-Dichlorobenzene	2	100	9.4	ug/kg					
Dieblorsdifbuoromethane	Q.	250	Ξ	ug/kg					
U.I-Dichloroethane	Q	100	6.9	ug/kg					
U.2-Dichloraethane	ĝ	50	7.8	ng/kg					
L.1+Dichloroethene	S	250	7.5	ug/kg					
cis-1.2-Dichloroethene	QN	100	Ξ	ug/kg					
mans-1,2-Dichloroethene	9	100	=	ng/kg					
1.2-Dichleropropane	g	100	7.3	ng/kg					
L.3-Dichloropropune	ΩŽ	100	8,4	ng/kg					
2.2-Dichloropropane	Q.	001	13	ug/kg					

222222222222222 Del Mar Analytical - Phoenix Linda Eshelman Project Manager trans-1,2-Dichloroethene 1,2-Dichloropropane cis-1.2-Dichloroethene 2.2-Dichloropropane 1.3-Dichloropropane

The results pertain only to the samples tested in the Jabormory. This report shall not be reproduced. PNK0837 < Page 117 of 153> except in full, without vertuen permission from Del Mar Analytical.

Basin & Range Hydrogeologists 6155 E. Indian School Rd., Suite 100A Scottsdale, AZ 85251

Attention: Amy Wolkowinsky

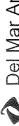
260-3297 370-1046 505-9889 785-0851 798-3621 1746 Denim Ava., Sulla 100, Ivine CA 620514. (1946) 294-1022. FAX (1946) 2. 1014 E. Couche Pin, Sillada A. Collenc CA 82024. (1969) 970-462. FAX (1949) 9850 South Sits, Sulla 695, Sain Dego, CA 82023. (1969) 970-4659. FAX (1859) 9850 South Sits, Sulla 695, Sain Dego, CA 82024. (1969) 850-6569. FAX (1859) 9850 South Sits, Sulla Paris, Trans. Resolut 4670 Resolute FAX (1859) 2. 2202. E. Sunset Rix #3, Las Vegass, IV 891/20 (1902) 795-9520. FAX (1909)

11/30/04 Sampled: Received:

Project ID: 24018.004/Air Liquide

Report Number: PNK0837

METHOD BLANK/QC DATA


VOLATILE ORGANICS BY GC/MS (EPA 5035/8260B)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source %REC Result %REC Limits	"S" REC LI		RPD	RPD Limit	Data Qualifiers
Batch: P4L1311 Extracted: 11/30/04	/30/04										
Blank Analyzed: 12/13/2004 (P4L1311-BLK1)	1311-BLK1)										
1,1-Dichloropropene	S	100	6.9	ug/kg							
cis-1,3-Dichlorapropene	ΩŽ	100	17	ug/kg							
trans-1,3-Dichloropropene	Ŋ	100	8.0	ug/kg							
Ethylbenzene	S	100	8.0	ug/kg							
Hexachlorobutadiene	N Q	250	11	ug/kg							
2-Hexanone	S	1000	130	ug/kg							
Indonethane	Ŋ	250	25	ug/kg							
Isopropylbenzene	Q.	100	8.6	ug/kg							
p-Isopropyitoluene	Q.	100	13	ug/kg							
Methylene chloride	63.4	500	99	ug/kg							£4
4-Methyl-2-pentanone (MIBK)	S	1000	150	ug/kg							
Methyl-tert-butyl Ether (MTBE)	2	250	13	ug/kg							
Naphthalene	Q	250	29	ug/kg							
n-Propylbenzene	QZ	100	Ξ	ug/kg							
Styrene	Q.	100	0.6	ug/kg							
1,1,1,2-Tetrachloroethane	QN	250	8.5	ag/kg							
1.1,2,2-Tetrachloroethane	S	100	Ξ	ag/kg							
Tetrachloroethene	g	001	=	ug/kg							
Toluene	S	100	8.9	ug/kg							
1.2,3-Trichlorobenzene	ND	250	99	ug/kg							
1,2,4-Trichlorobenzene	ON	250	30	ug/kg							
1,1,1-Trichloroethane	QN	100	6.2	ug/kg							
1,1,2-Trichloroethane	QZ	100	9.6	ug/kg							
Trichloroethene	S	100	11	ug/kg							
Trichlorofluoromethane	g	250	7.8	ug/kg							
1.2,3-Trichloropropane	Ö	500	10	हुअ/हुध							
1,2,4-Trimethylbenzene	S	100	6.7	ug/kg							
1,3,5-Trimethylbenzene	Q	001	10	និមុខិព							
Vinyl acetate	S	1200	91	ug/kg							
Vinyl chloride	S	250	4.7	ug/kg							
Xylenes, Total	S	150	82	ug/kg							
Surrogate: Dibromofluoromethane	1220			ng/kg	1250			0-120			
Surrogate: Toluene-d8	1280			gg/gn	1250			75-120			
Surrogate: 4-Bromoftuorohenzene	1270			84/Sn	1250		102 72	5-120			

Del Mar Analytical - Phoenix Linda Eshelman

Project Manager

The results pertrain only to the samples tested in the laboratory. This report shall not be reproduced PNK0837 <Page 118 of 133> except in full, without written permission from Del Mar Analytical.

174 Challe Paris Ave. Sullet 100, Innie CA 9021 (499) 69-170-77 (549) 970-227 (149) 970-227 (149) 970-227 (149) 970-970 (149)

Report Number: PNK0837 Basin & Range Hydrogeologists 6155 E. Indian School Rd., Suite 100A Scottsdale, AZ 85251 Attention: Amy Wolkowinsky

Project ID: 24018.004/Air Liquide

Sampled: 11/30/04 Received: 11/30/04

Del Mar Analytical

17451 Derian Ave., Suite 100, heiner CA, 00944 (1649), 861-1027. FAX (1649) 862-3037 1014 E, Condon F, Sullie A, Chimir, CA 82240 (1899) 370-44687 FAX (1649) 770-1468 9440 Chiesaparke Dr., Suite 840, San Dego, CA 82728 (1899) 370-44687 FAX (1649) 770-14687 9540 South 614 EL, Suite 840, San Dego, CA 82728 (1899) 370-4687 FAX (1649) 785-5687 2520 E, Suines K R, Las Vegata, NV 81250 (1782) 786-3820 FAX (1787) 786-3821

Sampled: 11/30/04 Received: 11/30/04

METHOD BLANK/QC DATA

VOLATILE ORGANICS BY GC/MS (EPA 5035/8260B)

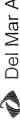
Batch; P4L1311 Extracted: 11/30/04 LCS Analyzed: 12/13/2004 (P4L1311-BS1) Actions 839 1000 Benzene 1190 50 Benzene 1200	Limit MDL Units		1	Result %REC Limits	2	imits KPD	CIMIN.	Qualifiers	Analyt
<u> </u>									Batch:
- '									LCS A
·	0 240	ug/kg	1250	9	1 69	5-120		Ε¥	1,1-Dich
,		ng/kg	1250	6	95 8	30-120			cis-1,3-
		ug/kg	1250	_	_	30-120			trans-1,3
190 250		ug/kg	1250	2	8 56	30-120			Ethylben
001 081		ug/kg	1250	5	•	30-120			Hexachle
		gy/gu	1250	S.		65-120			2-Hexan
090 250	0110	gy/gu	1250	×	• •	25-120			lodomet
0001 066	0 240	ug/kg	1250		79 4	45-125		E4	Isopropy
		वंश/हंत	1250			80-130			p-lsopro
460 250	17	ug/kg	1250		117 8	80-130			Methyle
1400 250	= 0	ug/kg	1250	1	112 8	80-130			4-Methy
1170 500	0.8	ug/kg	1250	20	94 5	50-120			Methyl-t
	6.2	हैं भुति त	1250	7	101	80-125			Naphtha
270 50		ga/gu	1250	7		80-120			n-Propyl
		ਰੇਕ/ਫ਼ਿਰ	1250	ΣΛ.	96 2	20-120			Styrene
	-	ug/kg	1250	57.		80-120			1.1,1,2-1
		ug/kg	1250	Ω.	98 4	45-120			1,1,2,2-1
		34/3n	1250	=	108 8	80-120			Tetrachl
		हें4∕हें⊓	1250	-	•	80-125			Toluene
		ក្នុងស្វា	1250	55	7 26	75-120			1,2,3-17
		ug/kg	1250	3 0		50-120			1.2.4-17
		त्रश्∕हेंग	1250	20		75-125			1,1,1-17
		प्रकृ/द्वा	1250	5	8 56	30-120			1,1,2-Tri
	9.2	ฮิฟูฮิก	1250	6		80-120			Trichlor
		និង្ហ/និព	1250	-		30-120			Trichion
	•	त्रुश/तिग	1250	=		80-120			1.2.3-Tri
		3y/∄n	1250	-	112 2	20-120			1.2.4-Tri
_		हें भृतित	1250	6		80-120			1,3,5-Tri
120 50	7.8	ug/kg	1250	6	7 06	75-120			Vinyl ac
260 250		ug/kg	1250	=	9 10	55-120			Vinyl ch
260 100	==	ug/kg	1250	_	01 8	80-120			Xylenes,
		ug/kg	1250		0.1	80-120			Surroga
100	7.3	ug/kg	1250	5	95 8	80-120			Surroga
_		ug/kg	1250	55		80-120			Surroga
310 100	13	ug/kg	1250	=	8 8	30-120			

Del Mar Analytical - Phoenix Linda Eshelman Project Manager

Del Mar Analytical - Phoenix Linda Eshelman Project Manager

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced PNK0837 <Page 119 of 133> except in full, without vertion permission from Del Mar Analytical.

Project ID: 24018.004/Air Liquide Report Number: PNK0837


Basin & Range Hydrogeologists 6155 E. Indian School Rd., Suite 100A Scottsdale, AZ 85251 Attention: Amy Wolkowinsky

METHOD BLANK/QC DATA

VOLATILE ORGANICS BY GC/MS (EPA 5035/8260B)

Analyte	Result	Reporting Limit	MDL	MDL Units	Spike Level	Source %REC Result %REC Limits	REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: P4L1311 Extracted: 11/30/04	30/04										
LCS Analyzed: 12/13/2004 (P4L1311-BSI)	11-BS1)										
1,1-Dichloropropene	1390	100	6.9	ug/kg	1250		Ξ	80-120			
cis-1,3-Dichloropropene	1200	100	1	ug/kg	1250		96	80-120			
trans-1,3-Dichloropropene	1050	100	8.0	ug/kg	1250		*	80-120			
Ethylbenzene	1300	100	8.0	ug/kg	1250		104	80-120			
Hexachlorobutadiene	1350	250	11	ug/kg	1250		108	80-140			
2-Hexanone	1040	1000	130	ug/kg	1250		83	50-120			
Iodomethane	1250	250	25	ug/kg	1250		8	60-120			
Isopropylbenzene	1290	100	8.6	ug/kg	1250		103	80-125			
p-lsopropyitoluene	1410	001	13	ug/kg	1250		113	80-130			
Methylene chloride	1120	200	09	ug/kg	1250		96	60-120			
4-Methyl-2-pentanone (MfBK)	1120	1000	150	ng/kg	1250		96	50-120			
Methyl-tert-butyl Ether (MTBE)	1220	250	13	ug/kg	1250		86	75-120			
Naphthalene	1130	250	67	ug/kg	1250		96	60-120			
n-Propylbenzene	1470	100	_	ug/kg	1250		3118	80-130			
Styrene	1290	001	0.6	ug/kg	1250		103	80-125			
1.1,1,2-Tetrachloroethane	1150	250	% .5	ug/kg	1250		92	80-120			
1,1,2,2-Tetrachloroethane	1200	100	=	ug/kg	1250		96	60-120			
Tetrachloroethene	1290	100	Ξ	ug/kg	1250		103	80-120			
Toluene	1230	100	6.8	ug/kg	1250		86	80-120			
1,2,3-Trichlorobenzene	1120	250	09	ug/kg	1250		90	70-130			
1.2.4-Trichlorobenzene	1260	250	30	ug/kg	1250		101	75-135			
1,1,1-Trichforoethane	1190	001	6.2	ug/kg	1250		98	80-120			
I, 1, 2-Trichloroethane	1180	100	9.6	ug/kg	1250		54	75-120			
Trichloroethene	1250	100	_	ug/kg	1250		100	80-120			
Trichiorofluoromethane	1270	250	7.8	ug/kg	1250		102	30-130			
1.2.3-Trichtoropropane	1180	5 00	10	ug/kg	1250		94	60-120			
1,2,4-Trimethylbenzene	1370	100	7.6	ug/kg	1250		0	80-120			
1,3,5-Trimethylbenzene	1390	100	10	ug/kg	1250		Ξ	80-130			
Vinyl acetate	1180	1200	10	ug/kg	1250		54	30-120			E4
Vinyl chloride	829	250	4.7	ug/kg	1250		54	10-120			
Xylenes, Total	4050	150	8	ug/kg	3750		108	80-120			
Surrogate: Dibromofluoromethane	1280			8y/8n	1250		102	70-120			
Surrogate: Toluene-d8	1320			ng/kg	1250		106	75-120			
Surrogate: 4-Bromofluorobenzene	1330			Sy/Sn	1250		106	75-120			

The results pertain only to the samples usued in the laboratory. This report shall not be reproduced PNK0837 <Page 120 of 153> except in full, without written permission from Del Mar Analytical.

Basin & Range Hydrogeologists 6155 E. Indian School Rd., Suite 100A Scottsdale, AZ 85251

Artention: Army Wolkowinsky

Project ID: 24018.004/Air Liquide

PNK0837

Report Number:

Sampled: Received:

11/30/04

(949) (949) (658) (480) (702) \$**\$**\$\$\$ (949) 261-1022 F (909) 370-4667 F (858) 505-8596 F (480) 785-0043 F (702) 798-3620 F 17461Derian Ave., Suite 100, Irvine, CA 92614 (1014. E. Colon, CA 92224 (1014. E. Colon, CA 92224 (1014. E. Colon, CA 9222 (1014. Chespeake Dr., Suite 805, San Diego, CA 9223 (1014. Chespeake Dr., Suite Br.) Suneway, AZ 8504 (1014. St.) Suite Br.) Disperix, AZ 8504 (1014. St.) Suite Br.) AS 9250 E. Sunsel Rd. #3, Las Vegas, NV 89170 (1014. St.)

) 260-3297) 370-1046) 505-9589) 785-0851) 798-3621

Del Mar Analytical

Project ID: 24018.004/Air Liquide Report Number: PNK0837

Basin & Range Hydrogeologists 6155 E. Indian School Rd., Suite 100A Scottsdale, AZ 85251

Attention: Amy Wolkowinsky

Sampled: 11/30/04 Received: 11/30/04

METHOD BLANK/QC DATA

VOLATILE ORGANICS BY GC/MS (EPA 5035/8260B)

Qualifiers Data

RPD Limit

RPD

Source %REC Result %REC Limits

Spike Level

Units

MDE

Limit

Result

LCS Dup Analyzed: 12/13/2004 (P4L1311-BSD1)

Bromodichloromethane

Bronsdom

Bromomethane 2-Butanone (MEK) n-Butyfbenzene

ec-Butylbenzene ert-Buty/benzerse Carbon tetrachloride

Chlorobenzene Chloroethane

Carbon Disulfide

Bromochloromethane

Втогновстигеле

Benzene

Batch: P4L1311 Extracted: 11/30/04

VOLATILE ORGANICS BY GC/MS (EPA 5035/8260B)

METHOD BLANK/QC DATA

Ė

i.

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source %REC Result %REC Limits	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: P4L1311 Extracted: 11/30/04	/30/04										
LCS Dup Analyzed: 12/13/2004 (P4L1311-BSD1)	4L1311-BS	01)									
1.1-Dichloropropene	1390	100	6.9	ug/kg	1250		Ξ	80-120	0	15	
cis-1,3-Dichloropropene	1200	100	17	ug/kg	1250		96	80-120	0	15	
trans-1.3-Dichloropropene	1030	100	8.0	ug/kg	1250		82	80-120	CI	15	
Ethylbenzene	1300	100	8.0	ug/kg	1250		104	80-120	0	15	
Hexachlorobutadiene	1530	250	77	ug/kg	1250		122	80-140	드	15	
2-Hexanone	934	1000	130	ug/kg	1250		75	50-120	_	35	E
lodomethane	1270	250	25	ug/kg	1250		102	60-120	2	20	
Isopropylbenzene	1300	001	8.6	ug/kg	1250		101	80-125	-	15	
p-IsopropyItoluene	0.54-1	100	13	ug/kg	1250		7	80-130	,_	15	
Methylene chloride	1120	500	09	ug/kg	1250		90	60-120	0	15	
4-Methyl-2-pentanone (MIBK)	958	1000	150	ug/kg	1250		11	50-120	16	30	£3
Methyl-tert-butyl Ether (MTBE)	1160	250	2	ug/kg	1250		93	75-120	S	20	
Naphthalene	1120	250	29	ug/kg	1250		96	60-120	-	20	
n-Propylhenzene	1460	100	=	ug/kg	1250		117	80-130	-	15	
Styrene	1290	001	0.6	ug/kg	1250		103	80-125	0	13	
I.1,1,2-Tetrachloroethane	1160	250	8.5	ug/kg	1250		93	80-120	-	15	
1,1,2,2-Tetrachloroethane	1130	100	Ξ	ug, kg	1250		90	60-120	9	20	
Tetrachloroethene	1290	100	=	п8/кв	1250		103	80-120	0	15	
Toluene	1230	100	8.9	ug/kg	1250		86	80-120	0	15	
1,2,3-Trichlorobenzene	1250	250	69	ug/kg	1250		100	70-130	1	15	
1,2,4-Trichlorobenzene	1390	250	30	ug/kg	1250		111	75-135	10	51	
I, I, I-Trichloroethane	1180	100	6.2	ug/kg	1250		94	80-120	-	15	
I, I, 2-Trichloroethane	1160	001	9.6	ng/kg	1250		93	75-120	ч	15	
Trichloroethene	1260	160	, ,	ug/kg	1250		101	80-120	_	15	
Trichlorofluoromethane	1260	250	7.8	ug/kg	1250		101	30-130	,	20	
1.2,3-Trichloropropane	1070	500	9	ng/kg	1250		86	60-120	10	20	
1,2,4-Trimethylbenzene	1380	100	7.6	ug/kg	1250		110	80-120		5	
1,3,5-Trimethylbenzene	1400	100	0.1	157/En	1250		112	80-130	_	15	
Vinyl acetate	1166	1200	01	ug/Kg	1250		88	30-120	۲-	35	54
Vinyl chloride	687	250	4.7	និង/និព	1250		55	10-120	-	35	
Xylenes, Total	4050	150	18	ug/kg	3750		108	80-120	0	<u>m</u>	
Surrogate: Dibromofluoromethane	1260			84/8n	1250		101	70-120			
Surrogate: Toluene-d8	1290			84/8n	1250		103	75-120			

740
1190
11190
11190
11190
11190
11190
11190
11190
11190

1.2-Dibromo-3-chloropropane 1.2-Dibromoethune (EDB)

Dibromochleromethane

2-Clitorotofuene 4-Chilorotofuene

Chloromethane

Chlorotòrm

Diehlorodifinoromethane

1,1-Dichlorwethane 1.2-Dichlorosthane L.3-Dichloroethene

1.2-Dichlorobenzene 1.3-Dichlerobenzene L.4-Dichlorobenzene

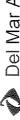
Dibromomethane

trans-1,2-Dichleroethene

1.2-Dichloropropane

i.3-Dichloropropune 2,2-Dichforopropane

cis-1.2-Dichloroothene


Del Mar Analytical - Phoenix Linda Eshelman Project Manager

80-120 80-120 80-120

The results pertain only to the samples tosted in the laboratory. This report shall not be reproduced, PNK0837 <Page 122 of 153> except in full, without written permission from Del Mar Analytical.

Del Mar Analytical - Phoenix

Linda Eshelman Project Manager results pertain only to the samples tested in the laboratory. This report shalt not be reproduced. PNK0837 <Page 121 of 133> except in full, without written permission from Del Mar Anabytical. Ě

1745 Darán Ave. Sulle 100 Inéne, CA 62514 (846) 253-1022 FAX (846) 280-2237 1014 E. Collegi Dr. Sulle A. Ollom CA 62324 (196) 570-4646 FAX (849) 570-4046 1014 E. Collegi Dr. Sulle A. Ollom CA 62324 (196) 570-4646 FAX (849) 570-4046 1014 E. Collegi Dr. Sulle B. Ollom CA 62324 (196) 570-6463 1014 E. Collegi Dr. Sulle B. Ollomeri, A 2500 E. Gold Galle FAX (840) 785-0593 (196) 570-570 (196) 570-

Busin & Range Hydrogeologists 6155 E. Indian School Rd., Suite 100A Scottsdale, AZ 85251 Attention: Amy Wolkowinsky

Project ID: 24018.004/Air Liquide

Report Number: PNK0837

Sampled: 11/30/04 Received: 11/30/04

1745 Derian Ave. Sule 100 Inline CA 0954 (1949) 365-1727 FAX (949) 380-3297 1014 E. Doddor F. Sulle A. Cumur. CA 82524 (1959) 370-486 FAX (1949) 370-486 9484 Chesspace G.L. Sulle 816, San Dego, CA 27275 (1959) 365596 FAX (1959) 395-8859 9800 South 151 61, Sulle 810, Sulle 170, Short, X 27275 (1959) 365596 FAX (1959) 395-8851 9800 South 151 62, Sunsel RG, RJ, Las Vegas (N. 98170) (172) 796-3520 E. Sunsel RG, RJ, Las Vegas (N. 98170) (172) 796-3520 E. Sunsel RG, RJ, Las Vegas (N. 98170) (172) 796-3520 E. Del Mar Analytical

Project ID: 24018.004/Air Liquide

Sampled: 11/30/04 Received: 11/30/04

METHOD BLANK/QC DATA

Report Number: PNK0837

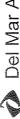
Basin & Range Hydrogeologists 6155 E. Indian School Rd., Suite 100A Scottsdale, AZ 85251 Attention: Amy Wolkowinsky

VOLATILE ORGANICS BY GC/MS (EPA 5035/8260B)

1 3	Kesult	Ľ.	MDL	Units	Level	Result	%REC	Result %REC Limits	RPD	Limit	Qualifiers
Batch: P4L1311 Extracted: 12/01/04	/01/04										
Matrix Spike Analyzed: 12/13/2004 (P4L1311-MS1)	4 (P4L1311-	MS1)			Sou	Source: PNL0043-04	L0043-	40			
1.1-Dichloropropene	1410	100	6.9	ug/kg	1310	QN.	801	70-125			
cis-1,3-Dichloropropene	1210	100	11	ug/kg	1310	QV.	6	75-120			
trans-1,3-Dichloropropene	1020	100	8.0	ug/kg	1310	Z	28	70-120			
Ethylbenzene	1310	100	8.0	ug/kg	1310	Z	100	75-120			
Hexachlorobutadiene	1490	250	11	ug/kg	1310	Ν̈́	114	70-135			
2-Hexanone	953	1000	130	ag/kg	1310	S	7.3	40-120			E.
lodomethane	1270	250	25	ug/kg	1310	Z	76	50-120			
Isopropylbenzene	1310	100	8.6	ga/gu	1310	N	100	75-120			
p-Isopropyltoluene	1400	100	13	ug/kg	1310	S	107	75-125			
Methylene chloride	1160	500	9	ug/kg	1310	80	87	50-120			
4-Methyl-2-pentanone (MIBK)	696	1000	150	ng/kg	1310	QZ	74	45-135			73
Methyl-tert-butyl Ether (MTBE)	1190	250	2	ug/kg	1310	QN	16	60-120			
Naphthalene	1050	250	29	ug/kg	1310	ΩX	80	50-120			
n-Propylbenzene	1440	100	_	ug/kg	1310	2	110	70-125			
Styrene	1280	100	0.6	ug/kg	1310	ΩN	86	75-120			
1,1,1,2-Tetrachloroethane	1170	250	8.5	ug/kg	1310	ΩN	68	75-120			
1,1,2,2-Tetrachloroethane	1090	100	Ξ	ug/kg	1310	ΩN	83	60-120			
Tetrachloroethene	1280	100	II	gy/gu	1310	S Q	86	70-120			
Toluene	1260	001	8.9	ug/kg	1310	2	96	75-120			
1,2,3-Trichlorobenzene	1190	250	99	ug/kg	1310	2	16	60-125			
1.2.4-Trichlorobenzene	1330	250	30	ыд/кв	1310	Ω	102	65-130			
I, I, I-Trichloroethane	2890	001	6.2	ug/kg	1310	1700	91	70-120			
I, I, 2-Trichloroethane	1140	100	9.6	ug/kg	1310	2	87	70-120			
Trichloroethene	1280	100	Π	ug/kg	1310	ΩN	86	70-125			
Trichlorofluoromethane	1260	250	7.8	ug/kg	1310	S	96	25-120			
1.2.3-Trichloropropane	1060	500	10	ug/kg	1310	g	8	55-130			
1,2,4-Trimethylbenzene	1380	100	7.6	ug/kg	1310	Q	105	75-120			
1,3,5-Trimethylbenzene	1380	100	91	ug/kg	1310	S	105	75-125			
Viryl acetate	596	1200	10	ug/kg	1310	g	74	25-130			E#
Vinyi chloride	718	250	4.7	ug/kg	1310	Q	25	10-120			
Xylenes, Total	4060	150	81	ug/kg	3930	Š	103	75-120			
Surrogate: Dibromoftuoromethane	1330			Sy/Sn	1310		102	70-120			
Surrogate: Toluene-d8	1350			ug/kg	1310		103	75-120			

Del Mar Analytical - Phoenix Linda Eshelman Project Manager

The results partain only to the samples texted in the laboratory. This report shall not be reproduced PNK0837 < Page 124 of 153> except in Juli, without written permission from Del Mor Analytical.


METHOD BLANK/QC DATA

VOLATILE ORGANICS BY GC/MS (EPA 5035/8260B)

Sate than the part of the part	Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source "REC Result %REC Limits	"REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
44.13.12.2004 (P4L1311-MS1) Somewise in the profession of the profes	Batch: P4L1311 Extracted	12/01/04										
8.38 1000 240 ug/kg 1310 ND 64 15-120 1270 250 14 ug/kg 1310 ND 64 15-120 1170 250 62 ug/kg 1310 ND 99 70-120 1180 100 92 ug/kg 1310 ND 99 70-120 1180 100 92 ug/kg 1310 ND 89 70-120 1100 250 110 ug/kg 1310 ND 89 70-120 1410 250 110 ug/kg 1310 ND 89 70-120 1410 250 110 ug/kg 1310 ND 107 75-130 1410 250 11 ug/kg 1310 ND 117 75-130 1150 250 12 ug/kg 1310 ND 117 75-130 1150 250 12 ug/kg 1310 ND 117 75-130 1150 250 12 ug/kg 1310 ND 99 75-120 1150 250 11 ug/kg 1310 ND 99 75-120 1150 250 10 ug/kg 1310 ND 99 75-120 1150 250 11 ug/kg 1310 ND 99 75-120 1150 1150 ND 99 75-120 1150 1150 ND 99 75-120 1150 ND 91 ug/kg 1310 ND 98 75-120	Matrix Spike Analyzed: 12/13	/2004 (P4L1311	-MSI)			Sou	rce: PNL	0043-0				
1240 55	Acetone	838	1000	240	ug/kg	1310	QN	64				£4
1270 250 7.7 104/kg 1310 ND 97 70-120 1180 100 6.2 104/kg 1310 ND 89 70-120 1180 100 6.2 104/kg 1310 ND 89 70-120 1180 250 110 104/kg 1310 ND 89 70-120 1180 250 110 104/kg 1310 ND 89 20-120 1400 250 110 104/kg 1310 ND 69 40-120 1410 250 11 104/kg 1310 ND 107 75-120 1410 250 11 104/kg 1310 ND 103 75-120 150 250 25 11 104/kg 1310 ND 88 45-120 150 250 8.5 104/kg 1310 ND 88 75-120 150 250 8.5 104/kg 1310 ND 89 75-120 150 250 8.5 104/kg 1310 ND 89 75-120 150 250 8.5 104/kg 1310 ND 99 75-120 150 8.5 104/kg 1310 ND 89 75-120 150 8.5 104/kg 1310 ND 90 75-120 150 8.5 104/kg 1310 ND 90 75-120 150 9.4 104/kg 1310 ND 90 75-120 150 9.4 104/kg 1310 ND 90 75-120 150 9.5 104/kg 1310 ND 90 75-120 150 9.5 104/kg 1310 ND 90 70-120 150 9.5 104/kg 1310	Венкене	1240	50	#	ลิง/สิถ	1310	30	92	70-120			i
1170 256 6.2 19/kg 1310 ND 89 70-120 1180 190 9.2 19/kg 1310 ND 90 70-120 1160 256 110 19/kg 1310 ND 85 55-120 1400 256 110 19/kg 1310 ND 85 55-120 1400 250 12 19/kg 1310 ND 107 75-130 1410 250 13 19/kg 1310 ND 107 75-130 1410 250 11 19/kg 1310 ND 107 75-130 1180 250 8.0 19/kg 1310 ND 107 75-120 1180 250 8.0 19/kg 1310 ND 91 75-120 1180 250 8.1 19/kg 1310 ND 91 75-120 1180 250 8.2 19/kg 1310 ND 92 75-120 1180 250 8.2 19/kg 1310 ND 92 75-120 1180 100 8.2 19/kg 1310 ND 92 75-120 1180 100 8.2 19/kg 1310 ND 92 75-120 1180 100 8.3 19/kg 1310 ND 92 75-120 1180 100 8.3 19/kg 1310 ND 92 75-120 1180 100 8.3 19/kg 1310 ND 92 75-120 1180 250 110 19/kg 1310 ND 92 75-120 1180 250 110 19/kg 1310 ND 93 75-120 1180 250 110 19/kg 1310 ND 94 75-120 1180 250 110 19/kg 1310 ND 94 75-120 1180 250 11 19/kg 1310 ND 96 50-120 1260 100 11 19/kg 1310 ND 96 50-120 1260 100 11 19/kg 1310 ND 96 50-120 1270 1270 190 8.4 19/kg 1310 ND 98 65-120 1280 100 12 13 13/kg 1310 ND 98 65-120 1280 1280 1280 1380 1380 60-120 1280 1280 1280 1380 1380 60-120 1280 1280 1380 1380 1380 60-120 1280 1280 1280 1380	Bromohenzene	1270	250	7.7	ay/gu	1310	ΩN	26	70-120			
1180 100 9.2 ug/kg 1310 ND 85 55-170 1120 256 119 ug/kg 1310 ND 85 55-170 11400 256 119 ug/kg 1310 ND 85 55-170 14100 256 119 ug/kg 1310 ND 107 75-130 14100 256 11 ug/kg 1310 ND 117 75-130 14100 256 11 ug/kg 1310 ND 117 75-130 14100 256 11 ug/kg 1310 ND 117 75-130 14100 250 11 ug/kg 1310 ND 107 75-130 14100 250 8.0 ug/kg 1310 ND 98 45-120 14100 250 8.2 ug/kg 1310 ND 98 75-120 14100 250 8.3 ug/kg 1310 ND 98 75-120 14100 250 10 ug/kg 1310 ND 98 75-120 14100 250 10 ug/kg 1310 ND 98 75-120 14100 250 10 ug/kg 1310 ND 103 75-120 14100 250 10 ug/kg 1310 ND 75-120 14100 250 11 ug/kg 1310 ND 75-120 14100 250 11 ug/kg 1310 ND 98 75-120 14100 250 11 ug/kg 1310 ND 99 75-120 14100 250 11 ug/kg 1310 ND 99 75-120 14100 250 11 ug/kg 1310 ND 99 75-120 1500 110 09 9-4 ug/kg 1310 ND 99 75-120 1500 100 11 ug/kg 1310 ND 99 75-120 1500 100 11 ug/kg 1310 ND 98 65-120 1500 110 ug/kg 1310 ND 98 65-120 1500 150 ug/kg 1310 ND 98 65	Bromochloromethane	1170	250	6,2	ug/kg	1310	N.	68	70-120			
1120 256 8.3 ug/kg 1310 ND 85 55-120 1160 256 110 ug/kg 1310 ND 85 55-120 1400 256 110 ug/kg 1310 ND 89 20-120 1410 256 12 ug/kg 1310 ND 107 75-130 1410 256 12 ug/kg 1310 ND 101 75-125 1410 256 12 ug/kg 1310 ND 108 75-125 1580 250 25 ug/kg 1310 ND 98 45-120 1580 250 25 ug/kg 1310 ND 98 75-120 1580 250 0.0 ug/kg 1310 ND 103 75-120 1580 250 0.0 ug/kg 1310 ND 103 75-120 1580 100 8.2 ug/kg 1310 ND 103 75-120 1580 100 8.2 ug/kg 1310 ND 103 75-120 1580 100 8.3 ug/kg 1310 ND 85 55-120 1580 100 8.3 ug/kg 1310 ND 85 55-120 1580 100 8.3 ug/kg 1310 ND 80 75-120 1580 100 6.9 ug/kg 1310 ND 80 75-120 1580 100 8.3 ug/kg 1310 ND 80 75-120 1580 100 6.9 ug/kg 1310 ND 80 75-120 1580 100 11 ug/kg 1310 ND 80 75-120 1580 100 11 ug/kg 1310 ND 80 75-120 1580 100 11 ug/kg 1310 ND 80 55-120 1580 100 8.4 ug/kg 1310 ND 80 55-120 1580 100 13 ug/kg 1310 ND 80 55-120 1580 100 13 ug/kg 1310 ND 80 55-120 1580 1580 1580 1580 1580 55-120 1580 1580 1580 1580 1580 55-120 1580 1580 1580 1580 1580 55-120 1580 1580 1580 1580 1580 1580	Bromodichloromethane	1180	001	9.2	ug/kg	1310	ΩN	96	70-120			
1460 250 110 ug/kg 1310 ND 69 20-120 1400 250 11 ug/kg 1310 ND 69 40-120 1400 250 12 ug/kg 1310 ND 107 75-130 1410 250 11 ug/kg 1310 ND 107 75-132 1410 250 11 ug/kg 1310 ND 108 75-120 1570 250 62 ug/kg 1310 ND 88 45-120 1580 250 85 ug/kg 1310 ND 98 75-120 1580 250 85 ug/kg 1310 ND 98 75-120 1590 250 85 ug/kg 1310 ND 88 70-120 1500 250 85 ug/kg 1310 ND 89 75-120 1500 250 86 ug/kg 1310 ND 89 75-120 1500 250 86 ug/kg 1310 ND 98 75-120 1500 250 86 ug/kg 1310 ND 98 75-120 1500 250 ug/kg 1310 ND 91 75-120 1500 250 ug/kg 1310 ND 95 75-120 1500 250 11 ug/kg 1310 ND 95 75-120 1500 250 11 ug/kg 1310 ND 96 92 70-120 1500 250 11 ug/kg 1310 ND 96 52-120 1500 150 151 ug/kg 1310 ND 96 52-120 1500 150 150 ug/kg 1310 ND 96 52-120 1500 150 ug/kg 1310 ND 96 52-120 1500	Bromoloum	1120	250	8.3	ng/kg	1310	ND	85	55-120			
902 1000 240 ug/kg 1310 ND 64 40-120 1400 230 18 ug/kg 1310 ND 107 75-130 1450 250 11 ug/kg 1310 ND 107 75-130 1150 250 11 ug/kg 1310 ND 98 75-120 1170 250 62 ug/kg 1310 ND 97 75-120 1180 50 8.5 ug/kg 1310 ND 97 75-120 1180 250 8.5 ug/kg 130 ND 97 75-120 1180 140 250 18 ug/kg 130 ND 97 75-120 1180 150 8.3 ug/kg 130 ND 97 75-120 1180 100 8.2 ug/kg 130 ND 97 75-120 1180 100 8.2 ug/kg 131	Bromomethane	0911	250	116	ug/kg	1310	ND	68	20-120			
1400 250 18 ug/kg 1310 ND 117 75-135 1410 250 11 ug/kg 1310 ND 111 75-125 1410 250 11 ug/kg 1310 ND 111 75-125 1410 250 12 ug/kg 1310 ND 81 45-120 1280 250 8.5 ug/kg 1310 ND 98 75-120 1380 250 8.5 ug/kg 1310 ND 98 75-120 1410 250 10 ug/kg 1310 ND 98 75-120 1410 250 10 ug/kg 1310 ND 92 75-120 1410 250 10 ug/kg 1310 ND 103 75-120 1410 250 20 ug/kg 1310 ND 20 75-120 1410 250 20 ug/kg 1310 ND 25 75-120 1410 250 20 ug/kg 1310 ND 25 75-120 1410 250 11 ug/kg 1310 ND 25 75-120 1410 250 11 ug/kg 1310 ND 25 75-120 1410 250 11 ug/kg 1310 ND 26 75-120 1410 250 11 ug/kg 1310 ND 86 5-120 150 150 11 ug/kg 1310 ND 86 5-120 150 250 20 ug/kg 1310 ND 86 5-120 150 250 250 250 250 150 250 250 250 250 150 250 250 250 250 150 250 250 250 250 150 250 250 250 250 150 250 250 250 250 250 250 250 250 250 250 250 250 250 250 250 250 250 250 250 250 250 250 250 250 250 250 250 250 250 250 250 250 250 250 250 250 250 250 250 250 250 250 250 250 250 250 250 250 250 250 250 250	2-Butanone (MEK)	902	1000	240	ng/kg	1310	QN	69	40-120			E4
1450 250 11 1968 1310 ND 111 1410 250 11 1968 1310 ND 108 150 500 8.0 1968 1310 ND 93 1270 250 6.2 1968 1310 ND 94 1190 250 8.3 1968 1310 ND 94 1150 100 8.3 1968 1310 ND 94 1210 250 8.4 1968 1310 ND 94 1350 250 8.5 1968 1310 ND 103 1370 250 8.5 1968 1310 ND 103 1370 250 8.5 1968 1310 ND 103 1370 250 8.5 1968 1310 ND 97 1370 100 8.2 1968 1310 ND 97 1370 100 8.4 1968 1310 ND 97 1370 250 9.4 1968 1310 ND 97 1370 250 9.4 1968 1310 ND 97 1370 250 14 1968 1310 ND 97 1370 250 14 1968 1310 ND 97 1370 250 14 1968 1310 ND 98 1380 100 6.9 1968 1310 ND 98 1280 100 8.4 1968 1310 ND 98 1280 100 1280 1310 ND 98 1280 100 1280 1310 ND 98 1280 1280 1280 1310 ND 98 1280 1280 1310 ND 98 1280 1280 1310 ND 98 1280 1300 1310 ND 98 1300 1300 1300 1300 1300 1300 1300 1300 1300 1300 1300 1300 1300 1300 1300 1300 1300 1300 1300 1300 1300 1300 1300 1300 1300 1300 1300 1300 1300 1300 1300 1300 1300 1300 1300 1300 1300 1300 1300 1300 1300 1300 1300 1300 1300 1300 1300 1300 1300 1300 1300 1300 1300 1300 1300 1300 1300 1300 130	n-Butylbenzene	1400	250	18	ug/kg	1310	S	107	75-130			
1410 250 11 195/42 1310 ND 108 115/40 250 6.2 105/42 1310 ND 88 115/40 1370 250 6.2 105/42 1310 ND 97 1280 250 6.2 105/42 1310 ND 98 115/40 1210 250 8.3 105/42 1310 ND 92 1310 250 250 105 1340 ND 105 1370 250 250 105 1370 ND 105 1370 250 250 105 1370 ND 105 1370 250 2	sec-Butylbenzene	1450	250	12	ug/kg	1310	S	Π	75-125			
150 500 8.0 ug/kg 1310 ND 85 1270 250 6.2 ug/kg 1310 ND 97 1280 50 7.7 ug/kg 1310 ND 97 1180 250 8.3 ug/kg 1310 ND 98 1150 250 10 ug/kg 1310 ND 91 1370 250 10 ug/kg 1310 ND 103 1370 250 9.9 ug/kg 1310 ND 103 1370 250 8.5 ug/kg 1310 ND 103 1370 250 8.5 ug/kg 1310 ND 103 1370 250 8.2 ug/kg 1310 ND 103 1370 100 8.2 ug/kg 1310 ND 85 1310 100 8.3 ug/kg 1310 ND 85 1310 100 8.4 ug/kg 1310 ND 97 1370 100 8.4 ug/kg 1310 ND 97 1370 250 11 ug/kg 1310 ND 97 1370 250 11 ug/kg 1310 ND 97 1260 100 11 ug/kg 1310 ND 98 1260 100 11 ug/kg 1310 ND 98 1270 100 8.4 ug/kg 1310 ND 98 1280 100 12 ug/kg 1310 ND 98 1280 100 8.4 ug/kg 1310 ND 98 1280 100 8.4 ug/kg 1310 ND 98 1280 100 12 ug/kg 1310 ND 98 1280 1280 120 120 120 120 1280 1280 120 120 120 120 1280 1280 120 120 120 120 1280 1280 120 120 120 1280 1280 120 120 120 1280 1280 120 120 120 1280 1280 120 120 120 1280 1280 120 120 1280 1280 120 120 1280 1280 120 120 1280 1280 120 120 1280 1280 120 120 1280 1280 120 120 1280 1280 120 120 1280 120 120 120 1280 120 120 120 1280 120 120 120 1280 120 120 120 1280 120 120 120 1280 120 120 120 1280 120 120 120 1280 120 120 120 1280 120 120 120 1280 120 120 120	terr-Butylbenzene	1410	250	Ξ	ug/kg	1310	QX	108	75-125			
1270 250 6.2 1310 ND 97 1280 250 8.3 1310 ND 98 1190 250 8.3 140kg 1310 ND 98 1110 250 8.3 140kg 1310 ND 91 1210 250 9.9 140kg 1310 ND 92 1350 250 9.9 140kg 1310 ND 92 1370 250 8.5 140kg 1310 ND 91 1370 250 8.5 140kg 1310 ND 91 1370 100 8.2 140kg 1310 ND 75 1370 100 8.2 140kg 1310 ND 75 1250 100 8.3 140kg 1310 ND 95 1270 100 8.0 140kg 1310 ND 95 1370 100 9.2 140kg 1310 ND 95 1370 100 9.2 140kg 1310 ND 96 1360 100 10 140kg 1310 ND 96 1360 100 11 140kg 1310 ND 96 1360 100 11 140kg 1310 ND 96 1260 100 11 140kg 1310 ND 96 1270 100 7.3 140kg 1310 ND 96 1280 100 8.4 140kg 1310 ND 98 1280 100 8.4 140kg 1310 ND 98 1280 100 8.4 140kg 1310 ND 98 1280 100 13 140kg 1310 ND 98 1280 1280 130 130 ND 98 1280 130 ND 98 1280 130 130 ND	Carbon Disulfide	1150	\$00	8.0	ug/kg	1310	QN Q	88	45-120			
1286 50 7.7 1286 1310 ND 98 1190 1290 259 8.5 1286 1310 ND 91 1310 1320 259 286 1310 ND 91 1310 1320 250 299 1286 1310 ND 91 1310 1320 250 299 1286 1310 ND 103 1310 ND 1320 130 ND 130 ND 1320 130 ND 1320 130 ND 1320 130 ND 1330 130 ND 1320 130 ND 1330 1330 ND 1330 N	Carbon terrachloride	1270	250	6.2	ug/kg	1310	Q.	45	75-120			
1190 250 8.5 ug/kg 1310 ND 91 1210 250 8.3 ug/kg 1310 ND 92 1210 250 9.9 ug/kg 1310 ND 92 1370 250 9.9 ug/kg 1310 ND 103 1370 250 8.2 ug/kg 1310 ND 103 1370 250 6.5 ug/kg 1310 ND 105 1370 100 8.3 ug/kg 1310 ND 91 1370 100 8.3 ug/kg 1310 ND 85 1310 100 8.3 ug/kg 1310 ND 95 1310 100 8.4 ug/kg 1310 ND 95 1310 100 8.4 ug/kg 1310 ND 108 1300 250 11 ug/kg 1310 ND 108 1300 250 11 ug/kg 1310 ND 91 1260 100 11 ug/kg 1310 ND 91 1260 100 11 ug/kg 1310 ND 91 1270 100 8.4 ug/kg 1310 ND 91 1280 100 8.4 ug/kg 1310 ND 91 1280 100 8.4 ug/kg 1310 ND 98 1320 100 8.4 ug/kg 1310 ND 98 1280 100 11 ug/kg 1310 ND 98 1280 1280 1280 1280 ND 98 1280 ND 98 1280 ND 98 1280 ND 98 1280	Chlorobenzene	1280	50	2.7	Sy/Sn	1310	R	86	75-120			
1150 160 8.3 ug/kg 1310 ND 83 1310 ND ND ND 1310 ND ND ND ND ND ND ND N	Chloroethane	1190	250	8.5	ug/kg	1310	g	16	20-120			
1210 256 10 ug/kg 1310 ND 92 1350 258 9.9 ug/kg 1310 ND 103 1370 258 8.6 ug/kg 1310 ND 105 1370 258 8.6 ug/kg 1310 ND 105 1310 100 8.2 ug/kg 1310 ND 75 1310 100 8.3 ug/kg 1310 ND 85 1250 100 9.2 ug/kg 1310 ND 87 1270 100 9.2 ug/kg 1310 ND 97 1270 100 9.4 ug/kg 1310 ND 108 1300 100 6.9 ug/kg 1310 ND 108 1300 100 6.9 ug/kg 1310 ND 108 1300 100 6.9 ug/kg 1310 ND 95 1260 100 11 ug/kg 1310 ND 96 1280 100 8.4 ug/kg 1310 ND 98 1280 100 8.4 ug/kg 1310 ND 98 1280 100 8.4 ug/kg 1310 ND 98 1280 100 13 ug/kg 1310 ND 98 1280 1280 1280 1280 1280 1310 ND 1280 1280 1280 1280 1280 1310 ND 1280 1280 13	Chloroform	1150	100	8.3	ug/kg	1310	N	88	70-120			
1350 250 9.9 ug/kg 1310 ND 103 1370 250 8.6 ug/kg 1310 ND 105 1190 100 8.2 ug/kg 1310 ND 105 1110 100 8.2 ug/kg 1310 ND 75 1110 100 8.3 ug/kg 1310 ND 87 1250 100 9.2 ug/kg 1310 ND 87 1210 100 8.4 ug/kg 1310 ND 95 1210 100 8.4 ug/kg 1310 ND 105 1210 100 6.9 ug/kg 1310 ND 105 1300 100 6.9 ug/kg 1310 ND 105 1300 250 11 ug/kg 1310 ND 84 1270 1270 109 11 ug/kg 1310 ND 95 1280 100 11 ug/kg 1310 ND 95 1280 100 13 ug/kg 1310 ND 95 1280 100 8.4 ug/kg 1310 ND 98 1280 100 8.4 ug/kg 1310 ND 98 1280 100 13 ug/kg 1310 ND 98 1280 1280 1280 1280 1280 ND 98 1280 1280 1280 1280 1280 ND 98 1280 1280 1280 ND 98 1280 1280 1280 ND 98 1280 1280 ND	Chloromethane	1210	250	10	ug/kg	1310	ΩN	92	35-120			
1370 250 8.6 ug/kg 1310 ND 105	2-Chlorotolaene	1350	250	6.6	ug/kg	1310	Q	103	75-120			
1199 1100 8.2 ug/kg 1310 ND 91	4-Chlorotoluene	1370	250	9.6	ug/kg	1310	SP	105	75-120			
pane 978 250 65 ug/kg 1310 ND 75 1110 100 7.7 ug/kg 1310 ND 85 1140 100 8.3 ug/kg 1310 ND 87 1250 100 8.2 ug/kg 1310 ND 97 1310 100 8.0 ug/kg 1310 ND 97 1340 250 11 ug/kg 1310 ND 97 1360 100 6.9 ug/kg 1310 ND 84 1360 100 6.9 ug/kg 1310 ND 84 1360 100 6.9 ug/kg 1310 ND 96 1260 100 11 ug/kg 1310 ND 96 1280 100 11 ug/kg 1310 ND 98 1280 100 84 ug/kg 1310 ND 98	Dibromochloromethane	1190	100	8.2	ug/kg	1310	Ñ	16	70-120			
1110 100 7.7 ug/kg 1310 ND 87 1250 100 9.2 ug/kg 1310 ND 87 1251 100 9.2 ug/kg 1310 ND 95 1310 100 8.4 ug/kg 1310 ND 100 1270 100 9.4 ug/kg 1310 ND 100 1340 100 6.9 ug/kg 1310 ND 108 1360 100 6.9 ug/kg 1310 ND 108 1370 2.50 7.8 ug/kg 1310 ND 84 1260 100 11 ug/kg 1310 ND 96 1270 100 11 ug/kg 1310 ND 96 1280 100 8.4 ug/kg 1310 ND 91 1280 100 8.4 ug/kg 1310 ND 91 1280 100 13 ug/kg 1310 ND 91 1280 100 13 ug/kg 1310 ND 98 1280 100 100 100 1280 100 100 100 1280 100 100 100 1280 100 100 100 1280 100 100 100 1280 100 100 100 1280 100 100 100 1280 100 100 100 1280 100 100 1280 100 100 100 1280 100 100 100 1280 100 100 100 1280 100 100 100 1280 100 100 1280 100 100 100 1280	1,2-Dibromo-3-chloropropane	826	250	92	āy∕ān	1310	ND ND	75	50-130			
140 100 8.3 ug/kg 1310 ND 87 1250 100 9.2 ug/kg 1310 ND 95 1310 100 8.4 ug/kg 1310 ND 100 1270 100 9.4 ug/kg 1310 ND 97 1410 250 11 ug/kg 1310 ND 97 1300 100 6.9 ug/kg 1310 ND 97 1300 250 7.5 ug/kg 1310 ND 84 1370 250 7.5 ug/kg 1310 ND 96 1260 100 11 ug/kg 1310 ND 96 1220 1900 7.5 ug/kg 1310 ND 98 150 100 8.4 ug/kg 1310 ND 98 1280 100 13 ug/kg 1310 ND 98 1280 1280 1280 1280 1280 1280 1300 1300 1300 1300 ND 98 1400 1400 1400 1300 1310 ND 1500 1500 1300 1310 ND 1500 1300 1300 1300 ND 1500	1.2-Dibromoethane (EDB)	1110	100	7.7	∄γ/ān	1310	QN	85	65-125			
1250 100 9.2 ug/kg 1310 ND 95 1310 ND 97 1310 ND 98 1310 ND	Dibromornethane	1140	100	8.3	មន្ទ/វិញ	1310	ΩN	87	70-120			
1310 190 8.0 ug/kg 1310 ND 100 1270 190 9.4 ug/kg 1310 ND 97 1340 ND 1410 ND ND 1410 ND ND 1410 ND ND ND 1410 ND ND ND ND ND ND ND N	f.2-Dichlorobenzene	1250	100	9.3	ug/kg	1310	Q.	95	75-120			
1270 106 9.4 ug/kg 1310 ND 97 1410 236 11 ug/kg 1310 ND 108 1300 100 6.9 ug/kg 1310 ND 108 1370 256 7.8 ug/kg 1310 NB 84 1260 100 11 ug/kg 1310 ND 96 1280 100 11 ug/kg 1310 ND 96 1201 100 7.3 ug/kg 1310 ND 98 1201 100 8.4 ug/kg 1310 ND 98 1280 100 13 ug/kg 1310 ND 98 1280 1280 130 ND 98 1280 1280 1280 130 ND 1280 ND 1280 ND 1280 ND 1280 ND 1280 ND 1280 N	1.3-Dichlorobenzene	1310	100	8.0	ug/kg	1310	S	100	75-120			
1410 250 11 19f/kg 1310 ND 108 1340 108 108 108 108 1340 ND 108 1340 ND 108 1340 ND 1350 ND	L.4-Dichlorobenzene	1270	100	9.4	ug/kg	1310	S	6	80-120			
1300 100 6.9 ug/kg 1310 96 92 1310 1300 1100 84 1370 250 7.5 ug/kg 1310 ND 84 1260 100 11 ug/kg 1310 ND 99 1260 100 11 ug/kg 1310 ND 96 1220 100 7.3 ug/kg 1310 ND 98 1310 100 13 ug/kg 1310 ND 89 1280 100 13 ug/kg 1310 ND 88 1280 100 13 ug/kg 1310 ND 98 1280 100 13 ug/kg 1310 ND 98 1310 ND 98 1310 ND 13 ug/kg	Dichlorodifluoromethane	1410	250	Ξ	11g/kg	1310	S	108	10-120			
1100 50 7.8 ug/kg 1310 ND 84 1370 220 7.5 ug/kg 1310 68 99 1260 100 11 ug/kg 1310 ND 96 1280 1120 100 11 ug/kg 1310 ND 98 1120 100 8.4 ug/kg 1310 ND 99 1280 100 13 ug/kg 1310 ND 99 1280 100 13 ug/kg 1310 ND 99 1280 100 13 ug/kg 1310 ND 98 1280 100 13 ug/kg 1310 ND 98 1280	1.1-Dichloroethane	1300	100	6.9	១៩/៥៩	1310	96	92	70-120			
1370 250 7.5 ug/kg 1310 68 99 1260 100 11 ug/kg 1310 ND 96 1280 100 11 ug/kg 1310 ND 98 1220 100 7.3 ug/kg 1310 ND 93 1150 100 84 ug/kg 1310 ND 98 1280 100 13 ug/kg 1310 ND 98 1280 1310 ND 98 1280 1310 ND 98 1310 Ug/kg 1310 Ug/kg 1310 Ug/kg 1310 Ug/kg 1310 Ug/kg Ug/k	1,2-Dichloroethane	1100	\$0	7.8	ug/kg	1310	QN	84	70-120			
1760 100 11 ug/kg 1310 ND 96 1280 100 11 ug/kg 1310 ND 98 1220 100 7.3 ug/kg 1310 ND 99 1150 100 8.4 ug/kg 1310 ND 88 1280 100 13 ug/kg 1310 ND 98 1280 100 13 ug/kg 1310 ND 98 1280 100 13 ug/kg 1310 ND 98 1280	1,1-Dichlorocthene	1370	250	7.5	33/Sn	1310	89		50-120			
1280 100 11 ug/kg 1310 ND 98 1220 100 7.3 ug/kg 1310 ND 93 1150 100 8.4 ug/kg 1310 ND 88 1280 100 13 ug/kg 1310 ND 98	cis-1,2-Dichloroethene	1260	100	=	ug/kg	1310	QN	96	70-120			
1220 100 7.3 tg/kg 1310 ND 93 7 1150 100 8.4 tg/kg 1310 ND 88 6 1280 100 13 tg/kg 1310 ND 98 6	trans-1.2-Dichloroethene	1280	901	=	ug/kg	1310	ΩN		65-120			
1150 1040 8.4 ug/kg 1310 ND 88 4 1280 104 13 ug/kg 1310 ND 98 4	1.2-Dichloropyropane	1220	100	7.3	ug/kg	1310	S	93	75-120			
1280 100 13 ug/kg 1310 ND 98	(,3-E)ichloropropane	1150	100	8.4	ug/kg	1310	QN	88	65-120			
	2.2-Dichloropropane	1280	100	13	ng/kg	1310	ΔN	86	60-120			

Del Mar Analytical - Phoenix Linda Eshelman Project Manager

The results pertain only to the samples tested in the laboratury. This report shall not be repreduced. PNKIN37 < Fage 123 of 133> except in full, without written permission from Del Mar Analytical.

1746 (Derian Ave., Suite 100, Invine: CA 93314, (949) 381-1022, FAX (949) 585-2937 (1941) CD040-1, Suite 4, Chounc, CA 82314, (189) 370-4646 (189) 370-4646 (189) 370-4646 (189) 370-4646 (189) 370-4646 (189) 370-4646 (189) 370-4646 (189) 370-4646 (189) 370-4646 (189) 370-4646 (189) 370-4646 (189) 370-4647

Basin & Range Hydrogeologists 6155 E. Indian School Rd., Suite 100A Scottsdale, AZ 85253 Attention: Amy Wolkowinsky

Project ID: 24018.004/Air Liquide

Report Number: PNK0837

11/30/04 Sampled: Received:

Del Mar Analytical

((949) 260-3297 ((949) 370-1046 ((858) 505-9889 ((480) 785-9851 ((702) 798-3621 \$3555 \$3 (949) 261-1022 F (909) 370-4667 F (858) 505-8596 F (480) 785-0043 F (702) 799-3620 F 17481Derian Ava., Sulte 100, Irvine, CA 92514 (1914 E. Cooley Dr., Sulte A, Colton, CA 92224 (9484 Chesapeale Dr., Sulte Bol, Ston Diego, CA 92125 (950) South 51st St., Suize B-170, Phoenix, AZ 8504 (2520 E. Sunset Rd. #3, Las Vegas, NV 88120 (

Basin & Range Hydrogeologists

Project ID: 24018.004/Air Liquide Report Number: PNK0837

Sampled: 11/30/04 Received: 11/30/04

6155 E. Indian School Rd., Suite 100A Scottsdale, AZ 85251 Attention: Amy Wolkowinsky

METHOD BLANK/QC DATA

VOLATILE ORGANICS BY GC/MS (EPA 5035/8260B)

Qualifiers

RPD

Level Result %REC Limits

MDL Units

Reporting

Limit

Result

Source

Source: PNL0043-04

Matrix Spike Dup Analyzed: 12/13/2004 (P4L1311-MSDI)

Bromochloromethane Bromodichloromethane

Втогновениеве

Benzene Acetone

2-Buttanone (MEK)

Stomomethane

Bromoform

n-Butylbenzene

Batch: P4L1311 Extracted: 12/01/04

VOLATILE ORGANICS BY GC/MS (EPA 5035/8260B)

METHOD BLANK/QC DATA

PD PD

ď

15-120 70-120 70-120 70-120 55-120 20-120 40-120 75-130 75-125 75-125 75-120

1310 1310 1310

Carbon retrachloride

Сидогобелдене

Chloroethane

Chloroform

tert-Butylbenzene ser-Butylbenzene

Carbon Disulfide

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	"REC	Source %REC Result %REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: P4L1311 Extracted: 12/01/04	2/01/04										
Matrix Spike Dup Analyzed: 12/13/2004 (P4L1311-MSD1)	3/2004 (P4L	1311-MSD1)			Son	Source: PNL0043-04	L0043-C	4			
1, I-Dichloropropene	1470	100	6.9	ug/kg	1310	C.N.	112	70-125	4	15	
cis-1,3-Dichloropropene	1300	100	17	ug/kg	1310	ΩX	66	75-120	7	15	
trans-1,3-Dichloropropene	1140	100	8.0	ug/kg	1310	N N	87	70-120	Ξ	13	
Ethythenzene	1390	100	8.0	34/5n	1310	N	106	75-120	9	15	
Hexachlorobutadiene	1560	250	77	ug/kg	1310	Q.	119	70-135	Ś	15	
2-Hexanone	1230	1000	130	ug/kg	1310	2	94	40-120	25	35	
Iodomethane	1330	250	25	ug/kg	1310	2	103	50-120	5	15	
Isopropylbenzene	1370	001	8.6	ug/kg	1310	ΩN	105	75-120	4	15	
p-tsopropytoluene	1480	100	13	ug/kg	1310	QN	13	75-125	9	15	
Methylene chloride	1220	200	99	ug/kg	1310	80	87	50-120	ζ1	20	
4-Methyl-2-pentanone (MBK)	1210	1000	150	ug/kg	1310	S	65	45-135	22	35	
Methyl-tert-butyl Ether (MTBE)	1370	250	13	ug/kg	1310	S	105	60-120	14	<u>~</u>	
Naphthalene	1290	250	29	ug/kg	1310	ď	86	50-120	21	25	
n-Propylbenzene	1530	001	Ξ	ug/kg	1310	S	-	70-125	9	12	
Styrene	1390	100	0.6	ug/kg	1310	Q	901	75-120	8	5	
1,1,1,2-Tetrachloroethane	1250	250	8.5	ug/kg	1310	Q	95	75-120	7	15	
1.1,2,2-Tetrachloroethane	1300	100	=	រាម្លា/ខន្	1310	Q	66	60-120	8	30	
Tetrachloroethene	1390	100	Ξ	ug/kg	1310	Q Z	106	70-120	90	15	
Toluene	1320	100	8.9	ug/kg	1310	Ω	101	75-120	9	15	
1,2,3-Trichlerobenzene	1380	250	9	ug/kg	1310	Q N	105	60-125	15	15	
1,2,4-Trichlorobenzene	1480	250	30	មន្ត្រី/ខ្មែ	1310	ΩN	113	65-130	=	15	
1,1,1-Trichloroethane	3000	100	6.2	និ//និព	1310	1700	66	70-120	4	15	
1, 1, 2-Trichloroethane	1320	100	9.6	ug/kg	1310	Q	101	70-120	15	15	
Trichloroethene	1310	100	Ξ	ug/kg	1310	ΩŽ	100	70-125	ы	15	
Trichlerofluoromethane	1360	250	7.8	ug/kg	1310	Q	104	25-120	8	2.5	
1,2,3-Trichloropropane	1290	200	10	ug/kg	1310	ΩN	86	55-130	50	25	
1,2,4-Trimethylbenzene	1430	100	5.7	ug/kg	1310	S	601	75-120	4	15	
1,3,5-Trimothylbenzene	1440	100	10	វិទ្ធាវិទ្ធា	1310	ND	110	75-125	***	15	
Vinyl acetate	1100	1200	10	ug/kg	1310	N N	%	25-130	5	35	Ę
Vinyl chloride	695	250	4.7	ug/kg	1310	N O	53	10-120	33	30	
Xylenes, Total	4360	150	82	ug/kg	3930	ΩN	Ξ	75-120	ţ~	15	
Surrogate: Dibromofluoromethane	1350			84/8n	1310		103	70-120			
Surrogate: Toluene-d8	1350			Sy/Sn	1310		103	75-120			
Surrogate: 4-Bromofluorobenzene	1380			Sy/Sn	1310		105	75-120			

×

75-120 20-120 35-120 35-120 76-120 76-120 50-130 65-125 76-120 75-120 75-120 75-120 75-120 76

1310 1310 1310 1310

ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg

1310 1310 1310 1310

1.2-Dibromo-3-chloropropune 1.2-Dibrornoethune (EDB)

Dibromochloromethane

2-Chlorotoluene -Chlorotolucae

Chiloromethane

1310

65-120 75-120 65-120

Del Mar Analytical - Phoenix Linda Eshelman Project Manager

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced PNK0837 <Page 125 of 133> except in full, without written permission from Del Mar Analytical.

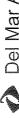
Del Mar Analytical - Phoenix Linda Eshelman

Project Manager

trans-1,2-Dichloroethene 1,2-Dichloropropane

2.2-Dichloropropane L3-Dichloropropane

cis-1.2-Dichloroethene


Dichlorodifluoromethane

1,1-Dichforoethane 1,2-Dichloroethane i. I-Dichiovethene

1.2-Dichierobenzene L3-Dichiorobenzene I,4-Dichtorobenzene

Othromomethane

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced PNK0837 <Page 126 of 133> except in full, without written permission from Del Mar Analystical.

Teff Drein Ave. Suite 100 Invise CA 90514 (949) 36-1027 FAX (949) 565-3597 1014 E. Covello fr. Suite A. Cultur. CA 92214 (99) 370-4667 FAX (949) 370-1069 9484. Chresspeake 01., Suite 905, San Dago, CA 92125 (98) 366-5599 FAX (949) 370-5069 1990 South 514 EA; Las Pagas (AV 9012) 910-910 (102) 796-3921 (102

Report Number: PNK0837 Basin & Range Hydrogeologists 6155 E. Indian School Rd., Suite 100A Scorsdale, AZ 85251 Attention: Any Wolkowinsky

Project ID: 24018.004/Air Liquide

Sampled: 11/30/04 Received: 11/30/04

Basin & Range Hydrogeologists 6155 E. Indian School Rd., Suite 100A Scottsdale, AZ 85251 Attention: Arry Wolkowinsky

Del Mar Analytical

1745 Distan Ave. Sollet UII brine: CA 92914 (949) 281-1022 FAX (849) 280-3297 1104 E. Coley Vir. Suite A. Chanc, CA 82921 (949) 274-487 FAX (1949) 270-1048 1104 E. Coley Vir. Suite A. Chanc, CA 82723 (1959) 370-6539 FAX (1959) 850-6539 SIGN SOLID SUITE A. Suite B-120 Faxini, A. S. Bodo, Cale Suite B-120 Fa

Sampled: 11/30/04 Received: 11/30/04

Project ID: 24018.004/Air Liquide

Report Number: PNK0837

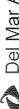
METHOD BLANK/QC DATA

VOLATILE ORGANICS BY GC/MS (EPA 5035/8260B)

Analyte	Result	Reporting Limit	MDE	MDE Units	Spike Level	Source %REC Result %REC Limits	%R REC Lin	%REC Limits RPD	RPD Limit	D Data of Onsliffers
Batch: P4L.1424 Extracted: 11/30/04	1/30/04									
Blank Analyzed: 12/14/2004 (P4L1424-BLK1)	L1424-BLK1)									
1.1-Dichloropropene	ND	100	6.9	ug/kg						
cis-1.3-Dichloropropene	ND	100	17	ug/kg						
trans-1,3-Dichloropropene	N	100	8.0	ug/kg						
Ethylbenzene	QN	100	8.0	ug/kg						
Hexachlorobuadiene	QN	250	77	ug/kg						
2-Hexanone	Q	1000	130	ug/kg						
Iodomethane	Q.	250	25	ug/kg						
Isopropylbenzene	Q.	100	8 6	ug/kg						
p-Isopropyltoluene	ND	001	13	ug/kg						
Methylene chloride	Q	200	09	ug/kg						
4-Methyl-2-pentanone (MIBK)	QX	1000	150	ug/kg						
Methyl-tert-butyl Ether (MTBE)	ΩN	250	13	ug/kg						
Naphthalene	Q.	250	29	ug/kg						
n-Propylbenzene	S	100	Ξ	ug/kg						
Styrene	ΩZ	100	0.6	ug/kg						
1.1,1,2-Tetrachloroethane	QN ON	250	8.5	ug/kg						
1,1,2,2-Tetrachioroethane	ND	100	Ξ	ug/kg						
Tetrachloroethene	QN	100	Ξ	ug/kg						
Toluene	Q	100	8.9	ug/kg						
1,2,3-Trichlorobenzene	Q.	250	99	ug/kg						
1,2,4-Trichlorobenzene	Q.	250	30	ug/kg						
1,1,1-Trichforoethane	ΩN	100	6.2	ug/kg						
1,1,2-Trichloroethane	N Q	100	9.6	ug/kg						
Trichloroethene	S	100	=	ug/kg						
Trichlorofluoromethane	Ê	250	7.8	ug/kg						
1,2,3-Trichloropropane	QV OX	500	0	ug/kg						
1,2,4-Trimethy!benzene	S	100	7.6	ug/kg						
1.3,5-Trimethylbenzene	Ω	100	오	ug/kg						
Vinyl acetate	QN	1200	10	ug/kg						
Vînyl chloride	Ŋ	250	4.7	ug/kg						
Xylenes, Total	Q.	150	18	ug/kg						
Surrogate: Dibromofluoromethane	1230			ng/kg	1250	•	98 70-120	20		
Surrogute: Tolnene-d8	1310			sa/kg	1250	I	105 75-120	20		
Surrogate: 4-Bromofluorobenzene	1270			34/Sn	1250	I		20		

Del Mar Analytical - Phoenix Linda Eshelman Project Manager

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced. PNK0837 <Page 128 of 153> except in full, without written permission from Del Mar Analytical.


METHOD BLANK/QC DATA

VOLATILE ORGANICS BY GC/MS (EPA 5035/8260B)

Analyte	Result	Reporting Limit	MDL	MDL Units	Spike Level	Source %REC Result %REC Limits RF	RPD L	RPD Limit	Data Qualifiers
Batch: P4L1424 Extracted: 11/30/04	30/04								
Blank Analyzed: 12/14/2004 (P4L.1424-BLK1)	424-BLK1)								
Acetone	ND	1000	240	ug/kg					
Benzene	ND	\$0	14	ug/kg					
Bromobenzene	Q.	250	7.7	ug/kg					
Bromochloromethane	NO	250	6.2	ug/kg					
Branodichlaromethane	QN	100	9.2	ug/Rg					
Bromoform	9	250	8.3	ug/kg					
Bronsomethane	S	250	110	ug/kg					
2-Butanone (MEK)	Q	1000	240	ag/kg					
n-Butyfhenzene	ND	250	81	ag//gu					
sec-Buty/benzene	NO	250	13	ag/kg					
tert-Butylbenzene	ΩN	250	=	ug/kg					
Carbon Disutfide	Ê	200	8.0	ug/kg					
Carbon tetrachloride	Ê	250	6.2	នុវ/ភិព					
Chlorobenzene	S	20	7.7	ug/kg					
Chloroethane	QN	250	5.5	មន្ត/វិទ					
Chloroform	ON	001	8.3	ug/kg					
Chloromethane	QN	250	10	ug/kg					
2-Chforetoluene	S	250	6.6	ug/kg					
4-Chforatoluene	QN	250	9.8	ug/kg					
Dibromochloromethane	N Q	100	8.2	пу/ка					
1.2-Dibromo-3-chloropropane	ND	250	65	ug/kg					
1,2-Dibromoethane (EDB)	Q.	100	7.7	ug/kg					
Dibromomethane	S	100	8.3	ug/kg					
1,2-Dichiorobenzene	Q	100	9.3	ug/kg					
L.3-Dichlorobenzene	Î	100	8.0	ug/kg					
L.4-Dichlorobenzene	Î	100	9,4	ug/kg					
Dichlorodifluoromethane	S	250	11	ug/kg					
I, f-f)ichloroethane	NO	100	6.9	пу/ка					
L.2-Dichloroethane	ND	50	7.8	ug/kg					
L. 8-Dichlorvethene	ND	50	7.5	ug/kg					
cis-1.2-Dichloroethene	ΩN	100	Ξ	ពន្ធាវិទ្					
trans-1,2-Dichloroethene	g	901	=	ga/gu					
L2-Dicfiloropropane	Q	901	7.3	สีฟ/ฮีก					
1.3-Dichloropropane	Ŝ	100	00 44	ជ្វγ∕ដ្ឋព					
2.2-Dichloropropanc	Q.	001	13	ug/kg					

Del Mar Analytical - Phoenix Linda Eshelman Project Manager

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced PNKOB37 <Page 127 of 153> except in full, without virtuen permission from Del Mar Andytical.

14 (949) 261-1022 FAX (949) 260-3297 44 (909) 370-4667 FAX (949) 370-1046 29 (859) 505-8598 FAX (859) 505-6689 14 (480) 785-0043 FAX (480) 785-0851 20 (702) 798-3620 FAX (702) 798-3621

92324 92324 92123 85044 89120 17481Derian Ave., Suite 100, Irvine, CA E 1014 E, Cooley Dr., Suite A, Colton, CA 8 9484 Chesapeate Dr., Suite 805, San Diego, CA 9 9840 South 51st St., Suite 8-120, Phoefix, AZ 8 2520 E, Sunset Rd, #5, Las Vegas, NV 8

Project ID: 24018.004/Air Liquide PNK0837

Report Number:

Basin & Range Hydrogeologists 6155 E. Indian School Rd., Suite 100A Scottsdale, AZ 85251

Attention: Amy Wolkowinsky

11/30/04 Sampled: Received:

Del Mar Analytical

(949) (949) (480) (702) **3**3333 261-1022 F 370-4667 F 505-8596 F 785-0043 F 796-3620 F 1746 Detan Ave. Suite 100, Ivine, CA 9264 (1949); 1074 E. Codey C. Suite A. Codey CA 52624 (1969); 9484 Chesspone D., Suite 805, San Dego, CA 9273 (1969); 9830 South 1951 St., Suite B.710, Protest, AZ 65644 (1860); 2250 E. Suixes HC 43, Las Vegas, NV 98120 (1792).

260-3297 370-1046 505-9689 785-0851 796-3621

Project ID: 24018.004/Air Liquide

Report Number: PNK0837

Basin & Range Hydrogeologists 6155 E. Indian School Rd., Suite 100A Scottsdale, AZ 85251

Attention: Amy Wolkowinsky

11/30/04 Sampled: Received: Data Qualifiers

RPD Limit

RPD

Source %REC Result %REC Limits

Spike Level

Units

MDL

Reporting Limit

Result

LCS Analyzed: 12/14/2004 (P4L1424-BS1) Batch: P4L1424 Extracted: 11/30/04

trans-1,3-Dichloropropene

-fexachlorobutadiene

Sthylbenzene

cis-1,3-Dichloropropene

1,1-Dichloropropene

VOLATILE ORGANICS BY GC/MS (EPA 5035/8260B)

METHOD BLANK/QC DATA

11/30/04

METHOD BLANK/QC DATA

VOLATILE ORGANICS BY GC/MS (EPA 5035/8260B)

LCS Analyzed: 12/14/2004 (P4L)1424-BSI) 240 ug/kg 1250 69 15-120 Coctore 858 1000 240 ug/kg 1250 69 15-120 Benzone 1240 250 14 ug/kg 1250 99 80-120 Benzone 1240 250 14 ug/kg 1250 99 80-120 Benzone/buromechane 1270 256 62 ug/kg 1250 90-120 Benzone/buromechane 1270 256 62 ug/kg 1250 90-120 Benzone/buromechane 1170 256 110 ug/kg 1250 90-120 Benzone/buromechane 1170 256 110 ug/kg 1250 90-120 Benzone/buromechane 1180 250 11 ug/kg 1250 91-120 Benzone/buromechane 1180 250 12 ug/kg 1250 91-120 Carbon Disalifice 1140 250 12 ug/kg <	Anulyte	Result	Reporting Limit	MDL	MDL Units	Spike Level	Source %REC Result %REC Limits	%REC	RPD	RPD Limit	Data Qualifiers
1000 240 ug/kg 1250 69 15-120 250 7.7 ug/kg 1250 99 88-120 250 7.7 ug/kg 1250 103 80-120 250 6.2 ug/kg 1250 103 80-120 250 6.2 ug/kg 1250 100 80-120 250 110 ug/kg 1250 10 80-120 250 11 ug/kg 1250 11 80-130 250 12 ug/kg 1250 11 80-130 250 11 ug/kg 1250 11 80-130 250 12 ug/kg 1250 11 80-130 250 13 ug/kg 1250 10 80-120 250 8.5 ug/kg 1250 10 80-120 250 8.5 ug/kg 1250 94 45-120 250 8.5 ug/kg 1250	arch: P4L1424 Extracted: 1	1/30/04									
858 1000 240 ug/kg 1250 69 15-120 anne 1240 36 14 ug/kg 1250 99 15-120 1240 250 7.7 ug/kg 1250 103 80-120 thane 1270 250 ug/kg 1250 103 80-120 1120 250 110 ug/kg 1250 100 80-120 1120 250 110 ug/kg 1250 10 80-120 1120 250 110 ug/kg 1250 10 80-120 1140 250 11 ug/kg 1250 10 80-120 4c 1480 250 11 ug/kg 1250 11 80-120 4c 1340 250 11 ug/kg 1250 91 45-125 4c 1340 250 11 ug/kg 1250 91 45-125 1110 120 10	.CS Analyzed: 12/14/2004 (P4L)	1424-BSI)									
1240 50 14 ug/kg 1250 99 80-120 ante 1290 250 74 ug/kg 1250 99 80-120 ante 1270 250 6.7 ug/kg 1250 102 80-120 thane 1200 250 11 ug/kg 1250 96 65-120 130 250 110 ug/kg 1250 96 65-120 130 250 110 ug/kg 1250 96 65-120 1480 250 11 ug/kg 1250 91 65-120 1480 250 12 ug/kg 1250 91 65-120 1480 250 12 ug/kg 1250 91 65-120 4 250 12 ug/kg 1250 91 65-120 4 250 12 ug/kg 1250 91 65-120 4 250 12 ug/kg <	cotone	858	0001	240	ug/kg	1250	69	15-120			E4
anne 1290 250 7,7 ug/kg 1250 109 1250 1270 1	enzene	1240	50	4	ug/kg	1250	66	80-120			
ante 1270 256 6.2 ug/kg 1250 102 80-120 thane 1250 1050 8 1250 8.2 ug/kg 1250 106 80-120 80-1	roniobenzene	1290	250	7.7	ug/kg	1250	103	80-120			
thante 1236 100 9.2 ag/kg 1250 100 80-120 1200 1200 230 ag/kg 1250 90 12-120 1200 230 110 ag/kg 1250 90 12-120 230 110 ag/kg 1250 90 12-120 230 110 ag/kg 1250 90 12-120 230 1450 236 110 ag/kg 1250 111 81-130 230 11480 236 112 ag/kg 1250 114 81-130 230 11480 236 114 ag/kg 1250 114 81-130 230 1140 230 1250 114 81-130 230 1140 230 1250 114 81-130 230 1140 230 120 ag/kg 1250 114 81-130 230 1140 230 120 ag/kg 1250 114 81-130 1140 230 120 ag/kg 1250 114 81-130 1140 230 120 ag/kg 1250 110 81-130 1140 230 120 ag/kg 1250 110 81-130 1140 230 120 ag/kg 1250 110 81-130 1140 230 230 ag/kg 1250 110 81-130 110 ag/kg 1250 110 81-130 110 ag/kg 1250 ag/kg 1250 ag/kg 1250 ag/kg 1250 ag/kg 12	romochioromethane	1270	250	79	ug/kg	1250	102	80-120			
1200 250 8.3 ug/kg 1250 96 65-120 98 96 95 95 95 95 95 95 95	nomogichloromethane	1250	001	56	ng/kg	1250	100	80-120			
1130 250 110 ug/kg 1250 90 25-120 1450 2540 ug/kg 1250 116 45-125 1450 2540 ug/kg 1250 116 45-125 1480 2550 11 ug/kg 1250 114 80-130 1480 2550 11 ug/kg 1250 114 80-130 1480 250 25 ug/kg 1250 114 80-130 1480 250 25 ug/kg 1250 114 80-130 1490 250 25 ug/kg 1250 107 80-120 1210 250 25 ug/kg 1250 107 80-120 1210 250 25 ug/kg 1250 26 27 80-120 25 ug/kg 1250 25 20 27 20 20 25 20 20 20 25 20 20	romotorm	1200	250	8.3	ug/kg	1250	96	65-120			
(1) 986 1000 240 ug/kg 1250 79 45-125 1450 250 18 ug/kg 1250 116 80-130 1480 256 11 ug/kg 1250 116 80-130 de 1140 500 8.0 ug/kg 1250 114 80-130 de 1140 500 8.0 ug/kg 1250 91 50-120 de 1140 500 8.0 ug/kg 1250 94 50-120 de 1140 500 8.0 ug/kg 1250 94 50-120 de 1170 250 8.5 ug/kg 1250 94 50-120 de 1270 100 8.2 ug/kg 1250 94 50-120 de 1270 100 8.2 ug/kg 1250 94 50-120 de 1270 100 8.2 ug/kg 1250 101	romomethane	1130	250	0	ug/kg	1250	06	25-120			
1450 250 18 ug/kg 1550 11 69,430 1480 250 11 ug/kg 1550 11 80-130 1480 250 11 ug/kg 1550 11 80-130 1490 250 11 ug/kg 1550 11 80-130 140 250 6.2 ug/kg 1550 10 81-120 1300 250 8.2 ug/kg 1550 94 50-120 1210 100 8.3 ug/kg 1550 97 80-120 1210 100 8.3 ug/kg 1550 97 45-120 1240 250 9.9 ug/kg 1550 97 45-120 1240 250 9.9 ug/kg 1550 97 45-120 1280 150 0.0 8.2 ug/kg 1550 10 80-120 1280 150 10 ug/kg 1250 10	Butanone (MEK)	986	0001	240	ug/kg	1250	79	45-125			E4
480 250 12 ug/kg 1250 118 80-130 4430 250 11 ug/kg 1550 114 80-130 de 1340 509 8.0 ug/kg 1550 91 36-120 de 1340 250 6.2 ug/kg 1550 91 80-120 1170 250 8.2 ug/kg 1250 94 80-120 1170 250 8.2 ug/kg 1250 97 80-120 1170 250 8.2 ug/kg 1250 97 80-120 1180 250 9.9 ug/kg 1250 97 45-120 1180 250 8.2 ug/kg 1250 97 57-120 1180 250 9.9 ug/kg 1250 100 80-120 1180 1250 10 ug/kg 1250 10 80-120 1180 10 10 0 25	-Вигувьевжеве	1450	250	8	ug/kg	1250	116	80-130			
4430 256 11 ug/kg 1250 114 80-130 de 1340 250 6.2 ug/kg 1250 19 50-130 de 1340 256 6.2 ug/kg 1250 107 80-120 1300 50 7.7 ug/kg 1250 104 80-120 1170 250 8.5 ug/kg 1250 94 20-120 1180 250 10 ug/kg 1250 99 40-120 1180 250 10 ug/kg 1250 99 40-120 1180 250 10 ug/kg 1250 99 40-120 1180 250 10 ug/kg 1250 90 40-120 1180 250 10 ug/kg 1250 90 40-120 1180 10 10 8.2 ug/kg 1250 90 40-120 11 10 10 10	o-Butylbenzene	1480	250	2	ug/kg	1250	118	80-130			
1440 550 8.5 1250 91 50-120 1340 250 6.2 1876 1250 91 50-120 1340 250 7.2 1876 1250 94 50-120 1370 250 8.5 18/6 1250 94 50-120 1380 250 10 18/6 1250 97 84-120 1380 250 10 18/6 1250 110 80-120 1380 250 8.6 18/6 1250 110 80-120 1380 250 8.6 18/6 1250 110 80-120 1380 250 8.6 18/6 1250 110 80-120 1370 100 8.2 18/6 1250 100 10-120 1300 100 8.3 18/6 1250 100 10-120 1300 100 8.3 18/6 1250 100 80-120 1300 100 8.3 18/6 1250 100 80-120 1300 100 8.3 18/6 1250 100 80-120 1300 100 8.3 18/6 1250 100 100 1300 250 11 18/6 1250 100 80-120 1300 250 11 18/6 1250 100 80-120 1300 250 11 18/6 1250 100 80-120 1300 100 9.4 18/6 1250 100 80-120 1300 100 10 10 18/6 1250 100 80-120 1300 100 11 18/6 1250 100 80-120 1300 100 100 100 80-120 1300 100 100 80-120 1300 100 100 80-120 1300 100 80-120 1300 100 80-120 1300 100 80-120 1300 100 80-120 1300 100 80-120 1300 100 80-120 1300 100 80-120 1300 100 80-120 1300 100 80-120 1300 100 80-120 130	m-Butylbenzene	1430	250	=	ug/kg	1250	7	80-130			
1340 250 6.2 tg/kg 1250 107 80-125 1300 250 7.7 tg/kg 1250 107 80-125 1300 250 8.2 tg/kg 1250 94 20-120 1240 250 8.3 tg/kg 1250 94 20-120 1240 250 8.3 tg/kg 1250 99 245-120 1240 250 97 tg/kg 1250 97 80-120 1240 250 97 tg/kg 1250 97 80-120 1240 250 97 tg/kg 1250 97 80-120 1250 120 120 120 120 120 120 120 120 120 12	arbon Disutfice	1140	500	0.8	ug/kg	1250	16	50-120			
1300 50 7.7 ug/kg 1250 104 80-120 1170 250 8.5 ug/kg 1350 94 20-120 1240 250 9.9 ug/kg 1250 94 26-120 1380 250 9.9 ug/kg 1250 96 45-120 1380 250 9.9 ug/kg 1250 10 86-120 1380 250 8.6 ug/kg 1250 10 86-120 1380 250 8.6 ug/kg 1250 10 86-120 1300 100 8.2 ug/kg 1250 10 75-120 1300 100 8.3 ug/kg 1250 10 86-120 1300 100 8.0 ug/kg 1250 10 86-120 1310 100 8.0 ug/kg 1250 10 86-120 1300 100 9.4 ug/kg 1250 10 86	arbon tetrachloride	1340	250	6.2	ug/kg	1250	107	80-125			
1170 250 8.5 ug/kg 1250 94 20-120 1210 190 8.5 ug/kg 1250 97 80-120 1240 150 18.3 ug/kg 1250 99 45-120 1380 250 9.9 ug/kg 1250 110 80-120 1380 250 8.6 ug/kg 1250 110 80-120 1570 1600 8.2 ug/kg 1250 92 120 151 1600 8.2 ug/kg 1250 92 120 1500 160 8.2 ug/kg 1250 10 80-120 1500 160 8.2 ug/kg 1250 10 80-120 1500 190 8.2 ug/kg 1250 10 80-120 1500 190 8.2 ug/kg 1250 10 80-120 1500 100 9.4 ug/kg 1250 10 80-1	hlorobenzene	1300	50	7.7	ug/kg	1250	104	80-120			
1210 100 8.3 ug/kg 1250 97 84-120 1240 2550 10 ug/kg 1250 99 45-120 1380 250 99 ug/kg 1250 110 86-120 110 86-1	alordethane	1170	250	8.5	ug/kg	1250	25	20-120			
1240 250 10 ug/kg 1250 110 8-1-120 1380 250 250 250 ug/kg 1250 110 8-1-120 1380 250 250 ug/kg 1250 110 80-125 110	กโษรด์เริ่มม	1210	100	8 .3	ug/kg	1250	16	80-120			
1380 250 9.9 ug/kg 1250 110 86-120 1380 250 8.6 ug/kg 1250 110 86-120 120 250 8.6 ug/kg 1250 110 86-120 120 250 8.6 ug/kg 1250 102 86-120 120 120 120 86-120 120 120 120 120 120 120 120 120 120	slorometiane	1240	250	10	បន្ទ/៤g	1250	66	45-120			
1380 250 8.6 ug/kg 1250 110 86-125 1270 100 8.2 ug/kg 1250 102 75-120 11 1250 160 7.7 ug/kg 1250 100 75-120 15 1500 160 7.7 ug/kg 1250 104 80-120 1500 160 8.3 ug/kg 1250 104 80-120 1500 160 9.4 ug/kg 1250 105 80-120 1540 160 9.4 ug/kg 1250 105 80-120 1540 160 5.0 ug/kg 1250 10 80-120 1540 160 5.0 ug/kg 1250 95 80-120 1530 250 7.5 ug/kg 1250 10 80-120 1530 100 11 ug/kg 1250 10 80-120 1540 100 11 ug/kg <td< td=""><td>Chlorotofuere</td><td>1380</td><td>250</td><td>6.6</td><td>ug/kg</td><td>1250</td><td>110</td><td>80-120</td><td></td><td></td><td></td></td<>	Chlorotofuere	1380	250	6.6	ug/kg	1250	110	80-120			
1270 100 8.2 lig/kg 1250 102 75-120 1150 1250 65 lig/kg 1250 100 77-120 1200 100 7.7 lig/kg 1250 104 80-120 1300 100 8.3 lig/kg 1250 104 80-120 1300 100 9.2 lig/kg 1250 104 80-120 1300 100 9.4 lig/kg 1250 105 80-120 1340 100 9.4 lig/kg 1250 101 80-120 1240 100 6.9 lig/kg 1250 105 80-120 1300 250 11 lig/kg 1250 99 80-120 1500 100 6.9 lig/kg 1250 106 80-120 1500 100 11 lig/kg 1250 106 80-120 1500 100 11 lig/kg 1250 101	-Chlorotoluene	1380	250	9.8	ug/kg	1250	310	80-125			
type 150 250 65 ag/kg 1250 19.2 59.2 59.2 11 1250 100 7.7 ag/kg 1250 100 75.1 1300 100 8.3 ag/kg 1250 104 80.120 1300 100 8.3 ag/kg 1250 104 80.120 1300 100 8.0 ug/kg 1250 105 80.120 1310 100 9.4 ug/kg 1250 105 80.120 1340 100 6.9 ug/kg 1250 10 80.120 1350 100 5.0 1250 10 80.120 12.12 1500 100 1.1 ug/kg 1250 10 80.120 1500 100 1.1 ug/kg 1250 10 80.120 1240 100 1.1 ug/kg 1250 10 80.120 1250 100 1.1 ug	ibromoefiloromethane	1270	100	8.2	ਰੂਮ/ਬੁਸ਼	1250	102	75-120			
1) 1,250 100 7,7 ug/kg 1250 100 75-12 1500 100 8,3 ug/kg 1550 104 80-120 1500 100 9,4 ug/kg 1550 104 80-120 1500 100 9,4 ug/kg 1250 105 80-120 1500 100 9,4 ug/kg 1250 105 80-120 1500 250 11 ug/kg 1250 99 80-120 1500 50 7.8 ug/kg 1250 99 80-120 1530 250 7.5 ug/kg 1250 99 80-120 1530 100 11 ug/kg 1250 104 80-120 1540 100 12 ug/kg 1250 104 80-120 1540 100 12 ug/kg 1250 101 80-120 1540 100 12 ug/kg 1250	2-Dibromo-3-chloropropane	1150	250	65	ug/kg	1250	92	50-120			
1500 1400 8.5 125.6 104 84-120 15300 1400 8.7 125.6 104 84-120 15300 1400 8.7 125.6 105 104 84-120 15310 1400 8.4 125.6 1530 105 86-120 15400 1500 2.5 11 125.6 125.6 11 20-120 15400 1500 2.5 125.6 125.6 11 20-120 1530 2.5 7.5 125.6 2.5 155.6 2.5 155.6	2-Dibromoethane (EDB)	1250	00	1.7	ug/kg	1250	100	75-125			
1300 100 9.2 qg/kg 1250 104 80-120 1360 100 8.0 qg/kg 1250 109 80-120 1310 100 9.4 qg/kg 1250 105 80-120 1340 126 11 qg/kg 1250 111 20-120 130 250 11 qg/kg 1250 95 80-120 130 250 7.8 qg/kg 1250 95 80-120 130 250 7.8 qg/kg 1250 104 80-120 1360 100 11 qg/kg 1250 104 80-120 1260 100 7.3 qg/kg 1250 101 80-120 1260 100 8.4 qg/kg 1250 101 80-120 1260 100 8.4 qg/kg 1250 101 80-120 1260 100 8.4 qg/kg 1250 101 80-120 1260 100 13 qg/kg 1250 108 80-120 1360 130 130 130 130 130 80-120 1360 130 130 130 130 130 130 1360 130 130 130 130 130 130 1360 1360 130 130 130 130 130 1360 1360 130 130 130 130 1360 1360 130 130 130 130 1360 1360 130 130 130 130 1360 1360 130 130 130 130 1360 1360 130 130 130	ibromomethane	1300	001	8.3	ug/kg	1250	104	80-120			
1560 1900 8.50 1826 1250 109 80-120 1310 100 9.4 109 86.120 1390 2550 111 2550 25	2-Dichlorobenzene	1300	001	5.6	63//6n	1250	104	80-120			
1310 100 9.4 112 Kg 1250 105 80-120 1390 250 11 100 11 100 120 111 20-120 110	3-Dichlorobenzene	1360	100	8.0	वंत्र/वंत	1250	109	80-120			
1340 250 11 198/kg 1250 111 20-120 1240 160 160 6,9 188/kg 1250 131 20-120 130 250 7,5 198/kg 1250 95 80-120 1330 250 7,5 198/kg 1250 106 65-120 1350 100 11 198/kg 1250 104 80-120 1260 100 7,1 198/kg 1250 101 80-120 1260 100 7,3 198/kg 1250 101 80-120 1240 100 8,4 198/kg 1250 101 80-120 1350 1350	A-Dichlorohenzenc	1310	100	4.6	ug/kg	1250	105	80-120			
1240 169 6.9 18/Kg 1250 99 86-120 1199 30 7.8 18/Kg 1250 99 86-120 1300 130 250 7.8 18/Kg 1250 106 65-120 1550 100 11 18/Kg 1250 104 80-120 1560 100 7.3 18/Kg 1250 101 80-120 1240 100 8.4 18/Kg 1250 99 80-120 1570 100 13 18/Kg 1250 99 80-120	ichtorodiffuoromethane	1390	250	=	ng/kg	1250	==	20-120			
1190 50 7.8 ug/kg 1250 95 75-120 1310 250 7.5 ug/kg 1250 106 65-120 1500 190 11 ug/kg 1250 108 80-120 1260 100 7.3 ug/kg 1250 101 80-120 1240 100 8.4 ug/kg 1250 99 80-120 1350 109 13 ug/kg 1250 99 80-120	I-Dichloroethane	1240	100	6.9	ug/kg	1250	66	80-120			
1330 250 7.5 ug/kg 1250 106 65-120 1500 101 ug/kg 1250 104 80-120 1550 108 120 101 1 ug/kg 1250 108 80-120 1250 108 80-120 1240 109 8.4 ug/kg 1250 108 80-120 1350 109 1350 101 80-120 1350 101 80-120 1350 101 80-120 1350 101 80-120 1350 101 80-120 1350 101 80-120 1350 101 80-120 1350 101 80-120 1350 101 80-120 1350 101 80-120 1350	2-Dichleroethane	0611	æ	2.8	ug/kg	1250	95	75-120			
1500 100 11 ug/kg 1250 104 80-120 1350 100 11 ug/kg 1250 101 80-120 1260 100 1.3 ug/kg 1250 101 80-120 1260 100 8.4 ug/kg 1250 101 80-120 1350 101 80-120 1350 101 80-120 1350 101 80-120 1350 101 80-120 1350 101 80-120 1350 101 80-120 1350 101 80-120 1350 1	1-Dicklonoethene	1330	250	7.5	ug/kg	1250	106	65-120			
1550 100 11 10g/kg 1250 108 1260 100 7.3 10g/kg 1250 101 1240 100 8.4 10g/kg 1250 99 1350 108 1250 108 100 13 10g/kg 1250 108	s-1,2-[Nichloroethene	1300	100	Ξ	ug/kg	1250	104	80-120	:		
1260 1400 7.3 ug/kg 1250 101 1240 1400 8.4 ug/kg 1250 99 1350 1400 13 ug/kg 1250 108	uss-1,2-Dichloroethene	1350	100	=	ug/kg	1250	108	80-120			
1240 100 8.4 ug/kg 1250 99 6 1350 100 13 ug/kg 1250 108 8	2.Dichloropropane	1260	001	7.3	ug/kg	1250	101	80-120			
1350 100 13 ug/kg 1250 108 t	3-Dichloropropane	1240	001	8,4	ng/kg	1250	66	80-120			
	2-Dichleropropane	1350	100	2	ug/kg	1250	108	80-120			

I.I.1,2-Tetrachloroethane 1,1,2,2-Tetrachlorocthane

n-Propylbenzene

Naphthalene Styrene 1,2,3-Trichlorobenzene 1,2,4-Trichlorobenzene

Tetrachloroethene

Foluene

4-Methyl-2-pentanone (MIBK) Methyl-tert-butyl Ether (MTBE)

Methylene chloride p-Isopropyltoluene

Isopropyłbenzene

odomethane 2-Hexanone

Del Mar Analytical - Phoenix Linda Eshelman Project Manager

The results pertuin only to the samples rested in the laboratory. This report shall not be reproduced PNK0837 <Page 129 of 153> except in Juli, without written permission from Del Mar Analytical.

7777	THOUSE THE	2)	1	(dead and defined by GC/MS (Et A 36296264)	(day		
Result	Reporting Limit	MDL	Units	Spike Level	Source Result %REC	%REC Limits	RPD	RPD Limit
Extracted: 11/30/04								
14/2004 (P4L1424-BS1)								
828	000	240	ug/kg	1250	69	15-120		
1240	50	4	ug/kg	1250	66	80-120		
1290	250	7.7	ug/kg	1250	103	80-120		
1270	250	2'9	из/ке	1250	102	80-120		
1250	901	₹6	ug/kg	1250	100	80-120		
1200	250	8.3	ug/kg	1250	96	65-120		
1130	250	0	ug/kg	1250	06	25-120		
986	0001	240	ug/kg	1250	79	45-125		
1450	250	8	ug/kg	1250	116	80-130		
1480	250	77	ug/kg	1250	118	80-130		
1430	250	_	ug/kg	1250	114	80-130		
114 0	500	0.8	ug/kg	1250	16	50-120		
1340	250	6.7	ug/kg	1250	107	80-125		
1300	20	7.7	ug/kg	1250	104	80-120		
1170	250	8.5	ug/kg	1250	94	20-120		
1210	100	8.3	ng/kg	1250	76	80-120		
1240	250	10	15/kg	1250	66	45-120		
1380	250	6.6	ugkg	1250	110	80-120		
1380	250	9.8	ug/kg	1250	110	80-125		
1270	100	8.2	ug/kg	1250	102	75-120		
1150	250	92	ug/kg	1250	92	50-120		
1250	90	7.7	ug/kg	1250	100	75-125		
1300	961	8.3	ug/kg	1250	104	80-120		
1300	99	5.6	ug/kg	1250	104	80-120		
1360	100	8.0	ng/kg	1250	109	80-120		
1310	001	6.4	ug/kg	1250	105	80-120		
1390	250	=	ng/kg	1250	Ξ	20-120		
1240	100	6.9	ng/kg	1250	66	80-120		
0611	39	7.8	ug/kg	1250	95	75-120		
1330	250	7.5	ug/kg	1250	901	65-120	-	
500	100	=	ug/kg	1250	104	80-120		
1350	100	=	ng/kg	1250	108	80-120		
1260	90	7.3	ug/kg	1250	101	80-120		
1240	961	8,4	ng/kg	1250	66	80-120		
	Result (2004) (2004) (2004) (2004) (2004) (2005) (2	= 0	Reporting MDL Limit MDL	Reporting MDL Limit MDL MDL Limit MDL MDL	Reporting MDL Units Limit MDL Units	Reporting ADL Units Level Limit MDL Units Level Long Long	Neporting Spike Source Limit MDL Units Level Result %REC Source So	Neporting Spike Source New Park New Park Source New Park New

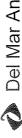
Del Mar Analytical - Phoenix Linda Eshelman Project Manager

Surrogate: Dibromofluoromethane

Vinyl chloride Xylenes, Total

Vinyl acctate

Surrogate: Toluene-d8


Frichlorofluoromethane 1,2,4-Trimethylbenzene 1,3.5-Trimethylbenzene

1,1,2-Trichloroethane Trichloroethene 1.1,1-Trichloroethane

1,2,3-Trichloropropane

Surrogate: 4-Bromofluorobenzene

The results periation only to the samples tested in the laboratory. This report shall not be reproduced. PNK0837 <Page 130 of 153> except in full, without stritten permission from Del Mar Analytical.

Report Number: PNK0837

Basin & Range Hydrogeologists 6155 E. Indian School Rd., Suite 100A Scottsdale, AZ 85251

Attention: Amy Wolkowinsky

Project ID: 24018.004/Air Liquide

Sampled: 11/30/04 Received: 11/30/04

Basin & Range Hydrogeologists 6155 E. Indian School Rd., Suite 100A

Del Mar Analytical

Project ID: 24018.004/Air Liquide

Report Number: PNK0837

Attention: Amy Wolkowinsky Scottsdale, AZ 85251

Sampled: 11/30/04 Received: 11/30/04

TAST Deals Ave. Sules 0.01 inne CA 62644 (644) 96-1227 FXX (649) 960-1227 (1014 E. 1000 P. Sulhe A. Calano, CA 22224 (699) 370-4667 FXX (649) 730-41064 (644) Checaspaske Dr., Sule 805, San Dago, CA 82723 (865) 960-8699 FXX (869) 805-8699 9893 Soulh 618 E.S., Laine B-LO, Phorent, A. E. Sod, et al. (861) 860-6699 FXX (869) 760-8691 5270 E. Sunes Ro, 25, Las Vegas, NV 89120 (702) 780-8691 (702) 780-8691

METHOD BLANK/QC DATA

VOLATILE ORGANICS BY GC/MS (EPA 5035/8260B)

Qualifiers

RPD Limit

RPD

Source %REC Result %REC Limits

Spike Level

Units

MDL

Limit

Result

LCS Dup Analyzed: 12/14/2004 (P4L1424-BSD1)

Satch: P4L1424 Extracted: 11/30/04

Reporting

VOLATILE ORGANICS BY GC/MS (EPA 5035/8260B)

METHOD BLANK/QC DATA

ä

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source %REC Result %REC Limits	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: P4L1424 Extracted: 11/30/04	1/30/04										ı
LCS Dup Analyzed: 12/14/2004 (P4L1424-BSDI)	P4L1424-BSE	(1)									
1,1-Dichleropropene	1420	100	6.9	ug/kg	1250		114	80-120	4	15	
cis-1,3-Dichloropropene	1290	100	17	ug/kg	1250		103	80-120	-	15	
trans-1,3-Dichloropropene	1130	100	8.0	ug/kg	1250		8	80-120	-	15	
Ethylbenzene	1310	100	8.0	ug/kg	1250		105	80-120		15	
Hexachlorobutadiene	1540	250	11	ug/kg	1250		123	80-140	3	15	
2-Нехапове	1150	000	130	ug/kg	1250		25	50-120	0	35	
lodomethane	1240	250	25	ug/kg	1250		66	60-120	es	20	
Isopropylbenzene	1300	100	8.6	ug/kg	1250		104	80-125	-	15	
p-Isopropyltoluene	1440	100	13	ug/kg	1250		115	80-130	-	15	
Methylene chloride	1140	200	09	ug/kg	1250		16	60-120	-	15	
4-Methyl-2-pentanone (MIBK)	1140	1000	150	ug/kg	1250		16	50-120	7	30	
Methyl-terr-butyl Ether (MTBE)	1300	250	2	ug/kg	1250		104	75-120	0	20	
Naphthalene	1270	250	29	g/kgu	1250		102	60-120	2	20	
n-Propylbenzene	1460	100	Ξ	ug/kg	1250		117	80-130	-	5	
Styrene	1310	100	0.6	ug/kg	1250		105	80-125	0	15	
I,I,I,2-Tetrachloroethane	1200	250	5.5	18/kg	1250		96	80-120	-	15	
I.1,2,2-Tetrachloroethane	1280	001	Ξ	ug/kg	1250		102	60-120	0	20	
Tetrachloroethene	1340	00 1	,	ug/kg	1250		107	80-120	,	15	
Toluene	1270	001	6.8	ug/kg	1250		102	80-120	7	<u></u>	
1,2,3-Trichlorobenzene	1380	250	09	ug/kg	1250		110	70-130	_	15	
1,2,4-Trichlorobenzene	1460	250	30	ug/kg	1250		113	75-135	-	15	
1,1,1-Trichloroethane	1220	100	6.2	ug/kg	1250		86	80-120	0	15	
1,1,2-Trichloroethane	1280	100	9.6	ug/kg	1250		102	75-120	-	15	
Trichloroethene	1280	100	=	ug/kg	1250		102	80-120	-	15	
Trichlorofluoromethane	1200	250	7.8	ug/kg	1250		96	30-130		20	
1,2,3-Trichloropropane	1260	200	10	ug/kg	1250		101	60-120	2	20	
1,2,4-Trimethylbenzene	1390	100	7.6	ug/kg	1250		111	80-120	0	15	
1,3,5-Trimethylbenzene	1420	100	10	ug/kg	1250		114	80-130	0	15	
Vinyl acetate	1230	1200	10	ug/kg	1250		86	30-120	-	35	
Vinyl chloride	626	250	4.7	ug/kg	1250		20	10-120	_	35	
Xylenes, Total	4100	150	18	ug/kg	3750		109	80-120	0	15	
Surrogate: Dibromofluoromethane	1290			sy/sn	1250		103	70-120			
Surrogate: Toluene-d8	1280			84/8n	1250		102	75-120			
Surrogate: 4-Bromofluorobenzene	1270			ng/kg	1250		102	75-120			

25.0 (2.5

1.2-Dibromo-3-chloropropure 1.2-Dibramoethane (EDB)

Dibromochloromethane

2-Chlorotoluene 4-Chiorotoluene

Chloromethane Chloroethane

Chloroform

ig/kg ig/kg ig/kg ig/kg ig/kg ig/kg

15-120
880-120
880-120
880-120
880-120
880-130
880-130
880-130
880-130
880-130
880-130
880-130
880-130
880-130
880-130
880-130
880-130
880-130
880-130
880-130
880-130
880-130
880-130
880-130
880-130
880-130
880-130
880-130
880-130
880-130
880-130
880-130
880-130
880-130
880-130
880-130
880-130
880-130
880-130
880-130
880-130
880-130
880-130
880-130
880-130
880-130
880-130
880-130
880-130
880-130
880-130
880-130
880-130
880-130
880-130
880-130
880-130
880-130
880-130
880-130
880-130
880-130
880-130
880-130
880-130
880-130
880-130
880-130
880-130
880-130
880-130
880-130
880-130
880-130
880-130
880-130
880-130
880-130
880-130
880-130
880-130
880-130
880-130
880-130
880-130
880-130
880-130
880-130
880-130
880-130
880-130
880-130
880-130
880-130
880-130
880-130
880-130
880-130
880-130
880-130
880-130
880-130
880-130
880-130
880-130
880-130
880-130
880-130
880-130
880-130
880-130
880-130
880-130
880-130
880-130
880-130
880-130
880-130
880-130
880-130
880-130
880-130
880-130
880-130
880-130
880-130
880-130
880-130
880-130
880-130
880-130
880-130
880-130
880-130
880-130
880-130
880-130
880-130
880-130
880-130
880-130
880-130
880-130
880-130
880-130
880-130
880-130
880-130
880-130
880-130
880-130
880-130
880-130
880-130
880-130
880-130
880-130
880-130
880-130
880-130
880-130
880-130
880-130
880-130
880-130
880-130
880-130
880-130
880-130
880-130
880-130
880-130
880-130
880-130
880-130
880-130
880-130
880-130
880-130
880-130
880-130
880-130
880-130
880-130
880-130
880-130
880-130
880-130
880-130
880-130
880-130
880-130
880-130
880-130
880-130
880-130
880-130
880-130
880-130
880-130
880-130
880-130
880-130
880-130
880-130
880-130
880-130
880-130
880-130
880-130
880-130
880-130
880-130
880-130
880-130
880-130
880-130
880-130
880-130
880-130
880-130
880-130
880-130
880-130
880-130
880-130
880-130
880-130
880-130
880-130
880-130
880-130
880-130

ig/kg ig/kg ig/kg ig/kg ig/kg

Carbon tetrachloride

Shlorohenzene

Carbon Disulfide

sec-Burylbenzene tert-Burylbenzene

ıg/kg

ig/kg ig/kg ig/kg ig/kg ig/kg ig/kg

Bromodichloromethane

2-Butanone (MEK)

Bromomethane

Bremotorm

n-Buty/benzene

Bromochioromethane

Bromohenzene

Benzene Acetone

80-120 80-120

ig/kg ig/kg ig/kg

Dichlorodifluoromethane L.f.-Dichloroethane

..3-Dichlorobenzene

1,2-Dichlarobenzene 1,4-Dichlorobenzene rans-1,2-Dichloroethene

1,2-Dichloropropane L.3-Dichloropropane 2.2-Dichlerepropage

cis-1.2-Dichloroethene

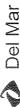
L, f-Elichloroethene

L2-Dichloroethane

ıg/kg

80-120 80-120 80-120

ig/kg ig/kg ig/kg


Del Mar Analytical - Phoenix Linda Eshelman

Project Manager

Del Mar Analytical - Phoenix Linda Eshelman Project Manager

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced PNK0837 <Page 131 of 153> except in full, without written permission from Del Mer Andytical.

The results pertain outs to the samples tessed in the laboratory. This report shall not be reproduced. PNK0837 <Page 132 of 133> except in full, without written permission from Del Mar Analytical.

17461 Defan Ave., Suite 110, Irvine, CA 92814 (949) 281-1022 FAX (949) 280-2297 (949) 280-2297 (949) 280-2297 (949) 280-2497 (949) 280-2497 (949) 270-4697 FAX (949) 770-1406 (949) Chespital Chespi

Report Number: Basin & Range Hydrogeologists 6155 E. Indian School Rd., Suite 100A Scottsdale, AZ 85251 Auention: Amy Wolkowinsky

Project ID: 24018.004/Air Liquide

PNK0837

11/30/04 Sampled: Received:

1746 Detain Awe, Sake 100, Invito CA 02544, 6496, 328-1202, CAK, 6499, 320-1202, CAK, 6499, 320-3209, Total E. Cooley, DX, Sinke A. Collenn CA 92242, (990) 370-46677 FAX, (949) 370-1446, 9484 Chesapoake DJ., Sulte allo, Sinke A. Collenn CA 92242, (990) 370-64589 FAX, (959) 580-5839 9809 0500 070-6468 FAX, (959) 580-5839 9809 0500 070-6468 FAX, (950) 780-5827 FAX, (950) 780-3827 FAX,

Del Mar Analytical

Project ID: 24018.004/Air Liquide

Sampled: 11/30/04 Received: 11/30/04

METHOD BLANK/QC DATA

VOLATILE ORGANICS BY GC/MS (EPA 5035/8260B)

Analyte	Result	Reporting Limit	MDL	MDL Units	Spike Level	Source Result	%REC	Source %REC Result %REC Limits	RPD	RPD Limit	Data Quajifiers
Batch: P4L1424 Extracted: 12/02/04	/02/04										
Matrix Spike Analyzed; 12/14/2004 (P4L1424-MSI)	4 (P41.1424	-MSI)			Son	Source: PNL0081-04	F0081-0	3			
Acclone	727	1000	240	ug/kg	1030	ΩN	7.1	15-120			F+1
Benzene	1020	50	**	ug/kg	1030	ΩN	8	70-120			
Bramohenzene	1120	250	7.7	ug/kg	1030	S	109	70-120			
Bromochloromethane	1020	250	6.2	ug/kg	1030	Ω	66	70-120			
Bromodichloromethane	1040	001	5.6	ug/kg	1030	ΩX	101	70-120			
Вголюботи	1100	250	8.3	ug/kg	1030	S	107	55-120			
Bromomethane	964	250	011	ug/kg	1030	2	8	20-120			
2-Butanone (MEK)	818	0001	240	ug/kg	1030	S	79	40-120			E4
n-Bulyibeazene	0611	250	8.	ug/kg	1030	Ω	116	75-130			
sec-Butyfbenzene	1270	250	12	ug/kg	1030	2	123	75-125			
tert-Buryfbenzene	1220	250		និងស្រីវា	1030	S	118	75-125			
Carbon Disuffide	952	300	8.0	ug/kg	1030	S	65	45-120			
Carbon tetrachloride	1130	250	5.2	ug/kg	1030	g	110	75-120			
Chlorobeszene	1070	50	7.7	ug/kg	1030	2	104	75-120			
Chloroethane	973	250	8.5	ug/kg	1030	Q Z	76	20-120			
Chloreform	876	001	8.3	ug/kg	0£01	2	95	70-120			
Chloromothane	973	250	10	ug/kg	1030	Q	94	35-120			
2-Chiarotoluene	280	250	676	धुर्भेष्ट्र	1030	9	115	75-120			
-{-Chlorotoluene	1190	250	9.8	ng/kg	1030	g	911	75-120			
Dibromochlorogethane	1050	001	8.2	āy/ān	1030	2	102	70-120			
1,2+Dibronto-3-chloropropane	1100	250	65	u⊵/kg	1030	2	107	50-130			
1.2.Dibromoethane (EDB)	1000	001	7.7	ag/kg	1030	Š	6	65-125			
Dibromomethane	1040	100	8.3	ug/kg	1030	Š	101	70-120			
1.2-Dichlorobenzene	1060	100	9.3	ag/kg	1030	S	103	75-120			
1.3-Dichtorobenzene	1160	100	8.0	ga/gu	1030	ΩŽ	E.	75-120			
1.4-Dichlorobenzene	1090	100	4.6	ug/kg	1030	QZ	106	80-120			
Dichlorodifluoromethane	1140	250	Ξ	ug/kg	1030	Ω	Ξ	10-120			
i.l-Dichloroethane	1370	100	6.9	ugkg	1030	390	65	70-120			
1.2-Dichloroethane	996	50	2.8	ng/kg	1030	S	5	70-120			
i.1-Dichlorochene	1360	250	7.5	ug/kg	1030	300	103	50-120			
eis-1,2-Dichforoethene	1050	100	Ξ	ug/kg	1030	Ω	102	70-120			
trans-1,2-Dichloroethene	1080	100	=	ug/kg	1030	2	105	65-120			
L.2-Dichleropropane	1040	100	7.3	ug/kg	1030	2	101	75-120			
1,3-Dichloropropane	666	100	4.8	ug/kg	1030	S	76	65-120			
2,2-Dichloropropane	1090	100	3	ug/kg	1030	g	106	60-120			

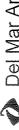
Del Mar Analytical - Phoenix Linda Eshelman Project Manager

 T_{k}

results pertain only to the samples texted in the laboratory. This report shall not be reproduced, PNK0837 <Page 133 of 153> except in full, without written permission from Del Mar Anabyteal.

4

Report Number: PNK0837 Basin & Range Hydrogeologists 6155 E. Indian School Rd., Suite 100A Scottsdale, AZ 85251 Attention: Amy Wolkowinsky


METHOD BLANK/QC DATA

VOLATILE ORGANICS BY GC/MS (EPA 5035/8260B)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	Source %REC Result %REC Limits	RPD	RPD Cimit	Data Qualifiers
Batch: P4L1424 Extracted: 12/02/04	1/02/04										
Matrix Spike Analyzed: 12/14/2004 (P4L1424-MS1)	H (P4L1424	-MS1)			Sou	Source: PNL0081-04)-1800	¥			
1,1-Dichloropropene	1240	100	6.9	ug/kg	1030	Š	120	70-125			
cis-1,3-Dichluropropene	1040	100	13	ug/kg	1030	S	101	75-120			
trans-1,3-Dichloropropene	932	001	8.0	ug/kg	1030	Ñ	90	70-120			
Ethylbenzene	1090	100	8.0	ug/kg	1030	Ñ	106	75-120			
Hexachlorobutadiene	1140	250	11	ug/kg	1030	Ð	11	70-135			
2-Hexanone	816	1000	130	ug/kg	1030	S	68	40-120			E4
Indomethane	1050	250	25	ug/kg	1030	Q.	102	50-120			
Isopropylbenzene	1170	100	8.6	ug/kg	1030	S	114	75-120			
p-Isopropyltoluene	1230	100	13	ug/kg	1030	S	119	75-125			
Methylene chloride	686	500	99	ug/Kg	1030	P	16	50-120			
4-Methyl-2-pentanone (MIBK)	928	1000	150	ug/kg	1030	Ñ	96	45-135			£4
Methyl-tert-butyl Ether (MTBE)	1060	250	13	ng/kg	1030	Š	103	60-120			
Naphthalene	993	250	67	ug/kg	1030	86	87	50-120			
n-Propylhenzene	1280	100	Ξ	ug/kg	1030	Ñ	124	70-125			
Styrene	0801	100	6.6	ug/Kg	1030	ND	105	75-120			
I.I.1.2-Tetrachloroethane	1030	250	8.5	ug/Kg	1030	7	95	75-120			
1, I.2, 2-Tetrachloroethane	1080	100	=	93/ga	1030	N N	105	60-120			
Tetrachloroethene	1380	100	11	ug/kg	1030	280	107	70-120			
Toluene	1050	100	8.9	ug/kg	1030	S	102	75-120			
1,2,3-Trichlorobenzene	842	250	9	ug/kg	1030	N	82	60-125			
1,2,4-Trichlorobenzene	586	250	30	ng/kg	1030	NO	56	65-130			
1.1,1-Trichloroethane	7690	100	6.2	ug/kg	1030	7300	38	70-120			M3
1,1,2-Trichloroethane	1150	100	9.6	ug/kg	1030	85	103	70-120			
Trichloroethene	100	100	<u></u>	ag/kg	1030	2	107	70-125			
Trichtorofluoromethane	886	250	7.8	ng/kg	1030	S	96	25-120			
1,2,3-Trichloropropane	1050	500	01	ug/kg	1030	2	102	55-130			
1,2.4-Trimethylbenzene	1190	100	6.7	ug/kg	1030	Q	911	75-120			
1,3,5-Trimethylbenzene	1210	100	10	ug/kg	1030	Ω	117	75-125			
Vinyl acetate	932	1200	10	ug/kg	1030	N N	96	25-130			E4
Vinyl chloride	537	250	4.7	ug/kg	1030	g	52	10-120			
Xylenes, Total	3350	150	<u>82</u>	ng/kg	3100	g	108	75-120			
Surrogate: Dibronofluoromethane	1050			ag/kg	1030		102	70-120			
Surrogate: Toluene-d8	1050			ng/kg	1030		103	75-120			
Surrogate: 4-Bromofluorobenzene	0+01			84/Sn	1030		101	75-120			

Del Mar Analytical - Phoenix Linda Eshelman Project Manager

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced PNK0837 <Page 134 of 133> except in full, without vertien permission from Del Mar Analytical.

List Display Ass., Site B 100, Prine CA 92514 (1940) 24-102-5-FX (1949) 270-1029 1014 E. Cooley Dr. Suite 805, Sen Diego, OA 82720 (1991) 370-4-968 9484 Chesupearle Dr., Suite 805, Sen Diego, OA 82720 (1991) 370-4-968 8850 South St 18 L. Liste F 170; Prinest, X. B 5564 (1991) 756-1059 2200 E. Suinert Rui, A.L. Las Vegala, IW 89170, (702) 786-6351 FXX (1801) 779-8-321

Report Number: PNK0837 Basin & Range Hydrogeologists 6155 E. Indian School Rd., Suite 100A Scottsdate, AZ 85251 Attention: Amy Wolkowinsky

Project ID: 24018.004/Air Liquide

Sampled: 11/30/04 Received: 11/30/04

1745 Doutin Ave. Sulte 100, Invine CA 9354, (949) 99-1027 FAX (949) 390-3297 1104 E. Coley Dr. Sulte A, Oshor CA 8324, (949) 370-406 1104 E. Coley Dr. Sulte 107, Sun Dego, CA 8212 (989) 370-485 FAX (949) 360-4859 990 Good 514 GA. Sulte 107, Sun Dego, CA 8212 (989) 360-4859 FAX (849) 360-4859 990 Good 514 GA. Las Pages, Inv 99120 (702) 786-8821 789-8821 789-8821 Del Mar Analytical

Project ID: 24018.004/Air Liquide Report Number: PNK0837

Sampled: 11/30/04 Received: 11/30/04

Basin & Range Hydrogeologists 6155 E. Indian School Rd., Suite 100A Scottsdale, AZ 85251 Attention: Amy Wolkowinsky

METHOD BLANK/QC DATA

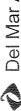
	VOLATILE ORGANICS BY GC/MS (EPA 5035/8260B)	ORGAN	ICS B	Y GC	OMS ()	EPA 50	35/8260B)				
Anslyte	P, court	Reporting	M	Iluite	Spike	Spike Source	Reporting Spike Source %REC RPD Data	uaa	RPD	Data	Analyte
Batch; P4L1424 Extracted: 12/02/04					5	Hogaw	SIMPO PINIS			Zugunei 3	Batch: P4L142

Marrix Spike Dup Analyzed: 12/14/2004 (P4L.1424-MSDI)	/14/2004 (P4L1	424-MSDI)			Sou	Source: PNL0081-04	-1800	7			
Acetone	818	1000	240	មន្ទ/ខ្មែរ	1030	Q.	79	15-120	2	30	E4
Веплепе	1040	50	Ξ	ug/kg	1030	S	0	70-120	C)	15	
Bromobenzene	1100	250	7.7	ug/kg	1030	Ŋ	107	70-120	C 1	15	
Brontochloremethane	1070	250	6.2	មន្ត/kg	1030	S	8	70-120	ķ	15	
Bromadichloromethane	1040	100	9.2	ug/kg	1030	QN	10	70-120	0	15	
Sconoforas	1040	250	8.3	ug/kg	1030	2	101	55-120	9	15	
Bromomethane	626	250	110	ug/kg	1030	S	16	20-120	'n	30	
2-Butanone (MEK.)	506	1000	240	ug/kg	1030	2	88	40-120	10	35	E4
n-Butytbenzene	1180	250	20	ug/kg	1030	S	115	75-130	1	15	
sec-Butyfbenzene	1260	250	17	ug/kg	1030	g	122	75-125	-	12	
rerr-Burylbenzene	1210	250	=	ug/kg	1030	Ŋ	113	75-125	н	15	
Carbon Disulfide	166	500	8.0	ព្ធទាំវិទ្	1030	ΩN	96	45-120	ᆟ	15	
Carbon terretiloride	1120	250	6.2	និង/និព	1030	ΩN	109	75-120	-	15	
Chlorobenzene	1090	50	7.7	ug/kg	1030	Ŝ	106	75-120	c٠i	15	
Chloroethane	1050	250	8.5	ag/kg	1030	Ñ	102	20-120	œ	35	
Chlerotorm	1030	100	8.3	ug/kg	1030	Ø	100	70-120	S	15	
Chloromethane	1040	250	01	ug/kg	1030	Q	101	35-120	~	50	
2-Chlorotoluene	1180	250	6.6	ង្វ/ខ្មែរ	1030	Q	115	75-120	0	15	
4-Chlorotoluene	1190	250	8.6	āy∕ān	1030	g	116	75-120	0	15	
Dibromochionomethane	1050	100	8.2	ga/gu	1030	2	102	70-120	0	15	
1.2-Dibromo-3-chloropropane	1080	250	9	ug/kg	1030	S	105	50-130	2	30	
1,2-Dibromoethane (EDB)	1020	100	7.7	ng/kg	1030	g	66	65-125	C1	15	
Dibromomethane	1050	100	8.3	ug/kg	1030	Ω	102	70-120	-	15	
L2-Dichlorobenzene	1050	100	9.3	สูล/ฮิก	1030	Ω	102	75-120	-	15	
1.3-Dichlorobenzene	07-11	00	8.0	ម្រាស់ក្មខ្ម	1030	Ŕ	Ξ	75-120	ы	13	
1.4-Dichlorobenzene	1130	001	4,6	ug/kg	1030	g	108	80-120	~	15	
Dictilorodifluoromethane	1200	250	11	ug/kg	1030	S	117	10-120	'n	25	
1.1-Dichloroethane	1470	001	6.9	ug/kg	1030	390	105	70-120	~	15	
1.2-Dichloroethane	1020	20	7.8	ug/kg	1030	g	66	70-120	5	15	
1.1-Dichioroethene	1460	250	7.5	ug/kg	1030	300	113	50-120	t ~	20	
cis-1,2-Dichtonochene	1110	100	Ξ	ug/kg	1030	g	108	70-120	9	5	
trans-1,2-Dichloroethene	1160	00	=	ug/kg	1030	g	113	65-120	r~	15	
L.2-Dichloropropane	0901	001	.3	ug/kg	1030	Ŕ	103	75-120	7	5	
1.3-Dichloropropane	1040	001	×.	ug/kg	1030	g	101	65-120	ष	15	
2.2-Dichloropropane	0111	001	13	ag/gu	1030	S	108	60-120	7	15	

Del Mar Analytical - Phoenix Linda Eshelman Project Manager

The results pertuin only to the samples tested in the laboratory. This report shall not be reproduced PNKI0837 <Puge 135 of 133> except in fall, without written permission from Del Mar Analytical.

METHOD BLANK/QC DATA


VOLATILE ORGANICS BY GC/MS (EPA 5035/8260B)

Analyte	Result	Reporting Limít	MDL	Units	Spike Level	Source Result	%REC	Source %REC Result %REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: P4L1424 Extracted: 12/02/04	2/02/04										
Matrix Spike Dup Analyzed: 12/14/2004 (P41.1424-MSD1)	4/2004 (P4L	.1424-MSD1)			Sou	Source: PNL0081-04	-0081-	4			
1,1-Dichloropropene	1250	100	6.9	ug/kg	1030	N Q	121	70-125		15	
cis-1,3-Dichloropropene	1050	100	17	ug/kg	1030	S	102	75-120	-	13	
trans-1,3-Dichloropropene	921	100	8.0	ug/kg	1030	Ω	88	70-120	_	13	
Ethylbenzene	1120	001	8.0	ug/kg	1030	S	109	75-120	æ	13	
Hexachiorobutadiene	1090	250	11	ug/kg	1030	Q	106	70-135	4	5	
2-Hexanone	930	1000	130	ug/kg	1030	9	96	40-120	-	35	E4
Iodomethane	1080	250	25	ug/kg	1030	S	105	50-120	m	15	
Isopropylbenzene	1150	100	8.6	ug/kg	1030	ď	112	75-120	2	13	
p-Isopropy itoluene	1220	100	13	ug/kg	1030	S	118	75-125	-	15	
Methylene chloride	1020	200	09	ug/kg	1030	S	66	50-120	90	20	
4-Methyl-2-pentanone (MIBK)	949	1000	150	ug/kg	1030	ΩX	6	45-135	7	35	£3
Methyl-tert-butyl Ether (MTBE)	1100	250	13	ug/kg	1030	QN	107	60-120	4	15	
Naphthalene	993	250	67	ug/kg	1030	86	87	50-120	0	25	
n-Propylhenzene	1260	100	Ξ	ng/kg	1030	N Q	122	70-125	2	15	
Styrene	1090	100	0.6	ug/kg	1030	S	106	75-120	-	15	
1,1,1,2-Fetrachloroethane	1010	250	8.5	ug/kg	1030	54	63	75-120	7	15	
1,1,2,2-Fetrachloroethane	1080	901	=	ug/kg	1030	g	105	60-120	0	30	
Tetrachloroethene	1410	001	=	ug/kg	1030	280	110	70-120	7	15	
Toluene	1080	100	6.8	ug/kg	1030	g	105	75-120	es	15	
1,2,3-Trichlorobenzene	808	250	09	ug/kg	1030	2	78	60-125	4	15	
1,2,4-Trichlorobenzene	975	250	30	ug/kg	1030	S	95	65-130	_	15	
I, I, I-Trichloroethane	8020	100	6.2	ug/kg	1030	7300	20	70-120	4	15	M3
I, I, 2-Trichloroethane	1140	100	9.6	ug/kg	1030	85	102	70-120	1	5	
Trichloroethene	1140	100	=	ag/kg	1030	R	Ξ	70-125	ফা	15	
Trichlorofluoromethane	1050	250	7.8	ug/kg	1030	g	102	25-120	9	25	
1,2.3-Trichloropropane	1040	200	10	ug/kg	1030	S	101	55-130	_	25	
I,2,4-Trimethylbenzene	1170	100	7.6	ug/kg	1030	QN	114	75-120	Çŧ	15	
1,3.5-Trimethylbenzene	1210	100	10	ug/kg	1030	S	117	75-125	0	15	
Vinyl acetate	629	1200	10	ug/kg	1030	N Q	19	25-130	39	35	R4, E4
Vinyl chloride	547	250	4.7	ug/kg	1030	QN	53	10-120	2	30	
Xylenes, Total	3470	150	18	gy/gu	3100	Š	112	75-120	귝	15	
Surrogate: Dibromoftuoromethane	1070			sa/kg	1030		104	70-120			
Surragate: Toluene-d8	1060			34/8n	1030		103	75-120			
Surrogate: 4-Bromofluarobenzene	1090			ng/kg	1030		901	75-120			

Del Mar Analytical - Phoenix Linda Eshelman

Project Manager

The results pertain only to the samples sessed in the taboratory. This report shall not be reproduced. PNK0837 <Page 136 of 153> except in full, without written permission from Del Mar Analytical.

12461 Derien Ave. Suite 100, heire CA 19914 (649) 561-1027. FXX (649) 510-5102. FXX (649) 510-5102. FXX (649) 510-510. FXX (649) 510-1046. FXX (649) 510-510. F

Basin & Range Hydrogeologists 6155 E. Indian School Rd., Suite 100A Scottsdale, AZ 85251 Attention: Any Wolkowinsky

Project ID: 24018.004/Air Liquide PNK0837 Report Number:

Basin & Range Hydrogeologists 6155 E. Indian School Rd., Suite 100A Scottsdale, AZ 85251 Attention: Amy Wolkowinsky

11/30/04

Sampled: Received:

11/30/04

Sampled: Received:

Project ID: 24018.004/Air Liquide

Report Number: PNK0837

Qualifiers Data

RPD Limit

RPD

Source %REC Result %REC Limits

Spike Level

MDL Units

Reporting Limit

Result

1,4-DIOXANE BY GC/MS (EPA 5035/8260B)

METHOD BLANK/QC DATA

23

3

70-150

76

28

844

ug/kg ug/kg

Ϋ́χ

84

atrix Spike Dup Analyzed: 12/14/2004 (P4L1319-MSD1)

Source: PNL0081-09

260-3297 370-1046 505-9689 785-0851 798-3621 9) 261-1022 FAX (949) 26 9) 370-4667 FAX (949) 37 9) 505-8596 FAX (858) 50 0) 765-0043 FAX (480) 78 2) 798-3620 FAX (702) 79 1748-Deltan Ave., Sule 100, Iurine, CA 92614 (849) Z. 1074 E. Cooley V. Sulte A. Cooley Cooley (849) Z. 8484 Chesaposee Dr., Sule stof, San Diego, CA 9272 (850) 9830 Soulin 1851 St., Sule B. 1730 (1809) W. 2020 E. Sunsel Rd. 43, Las Vegas, NY 83120 (1702) E.

Del Mar Analytical

METHOD BLANK/QC DATA

1,4-DIOXANE BY GC/MS (EPA 5035/8260B)

Analvie	Result	Reporting Limit		Units	Spike Level	Spike Source %REC MDL Units Level Result %REC Limits RPD	%REC Limits	EC its RPD	RPD Limit	Data Oualifiers	Analyte Result
Batch: P4L1315 Extracted: 12/11/04	11/04										Batch: P4L1319 Extracted: 12/02/04
Blank Analyzzed: 12/11/2004 (P4L.1315-BLKI) 1.4-Dioxane ND Narvogene Dibromofinovemethane 193	315-BLK1) ND 103	100	Z/A	ug/kg ug/kg	100		103 80-125	25			Matrix Spike Dup Analyzed: 12/14/2004 (P 1.4-Divxanc 698 Surrogate: Dibromofluoromethane 96.2
LCS Analyzed: 12/11/2004 (P4L/315-BSI) 1.4-Dioxune 759 Nurrogate: Dibromofluoromethone 103	15 -BSI) 759 103	100	N/A	ug/kg ng/kg	0001 1000		76 70-130 103 80-125	30 25		N1b	L <u>1404 Extracted: 12/13/</u> yzed: 12/13/2004 (P4L1404
LCS Dup Analyzed: 12/11/2004 (P4L:1315-BSD1) 1.4-Dioxare Surrogene: Dibromoflaoromethane 104	4L1315-BSE 726 104	. 1 .) 100	N/A	ug/kg ug/kg	0001 1000		73 70-130 104 80-125	30 4	20		1.4-Dioxane ND Suragute: Dibromofluoromethane Suragute: Dibromofluoromethane LCS Amalyzed: 12/13/2004 (P4L1404-BS1)
Batch: P4L1319 Extracted: 12/14/04	14/04										1,4-Dioxane Surrogate: Dibromofluoromethane 97.0
Blank Analyzed: 12/14/2004 (P4L1319-BLK1) 14-bloxanc ND Surrogate: Dibromofluoromethane 101	319-BLK1) ND 101	100	N/A	ug/kg ug/kg	100		101 70-120	20			LCS Dup Analyzed: 12/13/2004 (P4L1404- 1.4-Dioxane Surrogate: Dibramofluoromathane 95.0
LCS Analyzed: 12/14/2004 (P4L.1319-BS1) 1.4-Diaxane 801 Servogac: Dibronofluoromethane 104	801 801 104	001	N/A	ug/kg ug/kg	1000		80 70-130 104 70-120	30			Matrix Spike Analyzed: 12/13/2004 (P4L14 1.4-Dioxane Surrogate: Dibromofluoromethane 96.3
LCS Dup Analyzed: 12/14/2004 (P4L.1319-BSD1) i.4-Dixane Surregate: Dibromofhoromethane 86.0	4L1319-BSI 738 86.0	100	N/A	ug/kg ug/kg	0001		74 70-130 86 70-120	30 8	20		Matrix Spike Dup Analyzed: 12/13/2004 (P 1,4-Dioxane Surrogate: Dibromofluoromethane 108
Matrix Spike Analyzed: 12/14/2004 (P4L1319-MS1) 1.4-Dioxum Surragou: Dibromotharomethane 134	t (P4L1319- 720 /3≠	MS1) 84	X/A	ug/kg ug/kg	Sou 844 84.4	Source: PNL0081-09 4 58 78 78 78 79	1081-09 78 70-150 159 70-120	.50		810	

Del Mar Analytical - Phoenix Linda Eshelman Project Manager

The results pertuin only to the samples nested in the laboratory. This report shall not be reproduced. PNK0837 <Page 137 of 133> except in fall, without written permission from Del Mar Anabytical.

The results partain only to the samples usued in the laboratory. This report shall not be reproduced PNK0837 <Page 138 of 133> except in full, without written permission from Del Mar Analytical.

25

ď

70-150 70-130

73

330

995

ug/kg ug/kg

ΝĄ

8

8

atrix Spike Dup Analyzed: 12/13/2004 (P4L1404-MSD1)

Source: PNK0837-16

50

Ξ

70-130 70-130

8 3

0007

ıg/kg sg/kg

Ϋ́A

8

US Dup Analyzed: 12/13/2004 (P4L1404-BSD1)

70-150

23

330

1060

ug/kg ug/kg

ž

100

1120

atrix Spike Analyzed: 12/13/2004 (P4L1404-MS1)

Source: PNK0837-16

70-130

5

70-130 70-130

88

1000

X/A

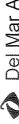
8

70-120

ક્ષ

90/

ng/kg ug/kg Sy St


ug/kg

Ϋ́Z

100

ank Analyzed: 12/13/2004 (P4L1404-BLK1)

Del Mar Analytical - Phoenix Linda Eshelman Project Manager

1246 Deain Ave., Sulte 100, home, CA 65514. (949) 761-1027. FAX (949) 780-10297. 1014 6. (149) 780-1046. 1014 6. (149) 780-1046. 1014 6. (149) 780-1046. 1014 6. (149) 780-1046. 1014 6. (149) 780-1046. 1014 6. (149) 780-1046. 1014 6. (149) 780-1046. 1014 6. (149) 780-1046. 1014 6. (149) 780-1046. 1014 6. (149) 780-1047. 1014 6. (149) 780-104

Project ID: 24018.004/Air Liquide Report Number: PNK0837 Basin & Range Hydrogeologists 6155 E. Indian School Rd., Suite 100A Scottsdale, AZ 85251 Attention: Anny Wolkowinsky

Sampled: 11/30/04 Received: 11/30/04

METHOD BLANK/QC DATA

Del Mar Analytical

Project ID: 24018.004/Air Liquide Report Number: PNK0837

Basin & Range Hydrogeologists 6155 E. Indian School Rd., Suite 100A Scottsdale, AZ 85251 Attention: Arry Wolkowinsky

Sampled: 11/30/04 Received: 11/30/04

METHOD BLANK/QC DATA

TOTAL METALS

Data Qualifiers

RPD Limit

Result %REC Limits RPD

%REC

Source

Spike Level

Units

MDL

Limit

Blank Analyzed: 12/08/2004 (P4L0320-BLKI)

Batch: P4L0320 Extracted: 12/03/04

Reporting

TOTAL METALS

Analyte	Result	Limit	MDL	MDL Units	Level	Result	%REC	Result %REC Limits	RPD	Limit	Qualifiers
Batch: P4L0320 Extracted: 12/03/04	2/03/04										
Matrix Spike Dup Analyzed: 12/08/2004 (P4L0320-MSD1)	38/2004 (P4L	0320-MSD1)			Son	Source: PNL0057-01	L0057-(1			
Arsenic	109	5.0	K/X	mg/kg	100	2.4	107	75-125	I ~	20	
Barium	459	0.1	N/A	स्त्रहे/इंड	100	380	79	75-125	5	20	
Cadmium	92.8	0.50	N/A	mg/kg	100	0.56	92	75-125	5	20	
Chromium	116	1.0	N/A	пр/ке	100	18	86	75-125	٣	20	
Pead	110	5.0	N/A	mg/kg	100	13	26	75-125	4	20	
Selenium	6.66	5.0	N/A	ттр/ке	901	Ð	001	75-125	Ξ	20	
Silver	106	0.50	N/A	тру/ке	100	0.12	106	75-125	2	20	
Blank Analyzed: 12/08/2004 (P4I Mercury	.0721-BLK1) ND	0.020	N/A	mg/kg							
Blank Analyzed: 12/08/2004 (P4L0721-BLK1)	.0721-BLK1)		į	,							
LCS Analyzed: 12/08/2004 (P4L0721-BS1) Mercury 0.704	721-BS1) 0.704	0.020	K/N	mg/kg	199.0		106	85-115			
LCS Dup Analyzed: 12/08/2004 (P4L,0721-BSD1) Mercury 0,692	P4L.0721-BSI 0.692	0.020	N/A	mg/kg	0.667		104	85-115	61	15	
Matrix Spike Analyzed: 12/08/2004 (P4L0721-MS1) Mercury 0.713 0.0	04 (P4L0721. 0.713	.MS1)	Z/A	mg/kg	Sou 0.667	Source: PNL0169-05 67 ND 107 8	101 69- 0	85-115			
Matrix Spike Dup Analyzed: 12/08/2004 (P4L0721-MSD1)	08/2064 (P4L)	0721-MSD1)	Y.Y	ma/ka	Sou 1667	Source: PNL0169-05	0.0169-0	85.115	c	ž	

BI

ng/kg ng/kg ng/kg ng/kg ng/kg ng/kg

5.0 1.0 0.50 1.0 5.0 5.0 0.50

9999959

Chromium

Selenium

Silver

Sadmium

Arsenic

LCS Analyzed: 12/08/2004 (P4L0320-BS1)

Arsenic

80-120 80-120 80-120 80-120 80-120 80-120 80-120

118 104 104 119 119 119

222222

mg/kg mg/kg mg/kg mg/kg mg/kg

5.0 1.0 0.50 1.0 5.0 5.0 0.50

118 104 108 104 104 119 119

Chromium Barium Cadmium

Selenium

Silver ead

2222222

80-120 80-120 80-120 80-120 80-120

8888888

mg/kg mg/kg mg/kg

5.0 1.0 0.50 1.0 5.0 5.0

Chromium Lend Selenium

Cadreium

Arsenie Bariam

LCS Dup Analyzed: 12/08/2004 (P4L0320-BSD1)

mg/kg

PNL0057-01

Source:

Matrix Spike Apalyzed: 12/08/2004 (P4L0320-MS1)

75-125 75-125 75-125 75-125 75-125 75-125

88 88 97 101 102 112 118

2.4 380 0.56 1.8 1.3 ND

222222

mg/kg

468 97.5 119 115 112 108

Chromium Lead Selenium

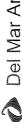
Cadmium

Arsenic Barnun

1.0

mg/kg mg/kg mg/kg

1.0 5.0 5.0 0.50


80-120 80-120

Del Mar Analytical - Phoenix Linda Eshelman Project Manager

The results pertain only to the samples tested in the laburatory. This report shall not be reproduced PNK0837 <Page 139 of 135> except in full, without written permission from Del Mar Anabuteal.

Del Mar Analytical - Phoenix Linda Eshelman Project Manager

The results partain only to the samples tested in the laboratory. This report shall not be reproduced PNK0837 <Puge 140 of 133> except in full, without written permission from Del Mar Analytical.

Teff Dean ave. Suite 10th Invine CA 90514 (499) 69-1025 F.K. (949) 950-1025 4F. (949) 950-2027 (1014 E. DORDH P. Suite R. Chinn, A 62124 (609) 97144667 F.K. (1949) 9714 (1946

Project ID: 24018.004/Air Liquide

Report Number: PNK0837

Basin & Range Hydrogeologists 6155 E. Indian School Rd., Suite 100A Scottsdale, AZ 85251 Atention: Any Wolkowinsky

METHOD BLANK/QC DATA

INORGANICS

Sampled: 11/30/04 Received: 11/30/04

Basin & Range Hydrogeologists 6155 E. Indian School Rd., Suite 100A Scottsdale, AZ 85251 Attention: Amy Wolkowinsky

1746 (Darian Ave., Salas tOs Jevia, CA 2094 (1995) 55-102 (1974) 260-3297 (1974) 260-3297 (1974) 260-3297 (1974) 260-3297 (1974) 260-3297 (1974) 260-3297 (1974) 270-326 (1

Del Mar Analytical

Report Number: PNK0837

Project ID: 24018.004/Air Liquide

Sampled: 11/30/04 Received: 11/30/04

METHOD BLANK/QC DATA

SEMI-VOLATILE ORGANICS BY GC/MS (EPA 3545/8270C)

Qualifiers Data

RPD Limit

RPD

Source %REC Result %REC Limits

Spike Level

MDL Units

Limit

Result

Analyte

Batch: P4L1016 Extracted: 12/09/04

Reporting

10

'n

Source: PNK0837-07

6.89

N/A N/A

Ϋ́ ž

Reference Analyzed: 12/09/2004 (P4L1016-SRM1) Duplicate Analyzed: 12/09/2004 (P4L1016-DUP1)

포

7.02

95-105

901

7.00

pH Units pH Units

Analyte	Result	Reporting Limit	MDL	MDL Units	Spike Level	Source %REC Result %REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 4L03031 Extracted: 12/03/04	12/03/04								
Biank Analyzed: 12/06/2004 (4L03031-BLKI)	L03031-BLK1)								
Acenaphthene	QZ.	330	N/A	ug/kg					
Acenaphthylene	QN.	330	N/A	ug/kg					
Anthracene	QN.	330	N/A	ug/kg					
Benzoic acid	S	830	V/N	ag/kg					
Benzo(a)anthracene	R	330	N/A	ug/kg					
Benzo(b,k)fluoranthene	Q.	300	N/A	ug/kg					
Benzo(g,h,i)perylene	2	330	V/V	ug/kg					
Benzo(a)pyrene	Q	330	N/A	ug/kg					
Benzyl alcohol	Q.	330	N/A	ug/kg					
Bis(2-chloroethoxy)methane	N.	330	N/A	ug/kg					
Bis(2-chloroethyl)ether	S	170	N/A	ug/kg					
Bis(2-chloroisopropyt)ether	8	330	N/A	ug/kg					
Bis(2-ethylhexyl)phthalate	S.	330	N/A	ug/kg					
4-Bromophenyl phenyl ether	Q.	330	V/V	ug/kg					
Butyi benzyl pluhalate	R	330	N/A	ug/kg					
4-Chloroaniline	Q.	330	N'A	ug/kg					
2-Chloronaphthalene	QN.	330	V/V	ug/kg					
4-Chloro-3-methylphenol	2	330	N/A	गहें/ <u>१</u> ड					
2-Chlorophenol	9	330	N/A	ug/kg					
4-Chlorophenyl phenyl ether	QN.	330	N/N	ពង្វ/kg					
Chrysene	N N	330	V.X	ug/kg					
Dibenz(a,h)anthracene	Ø.	420	N/X	ug/Kg					
Dibenzofuran	QX	330	V.Z	ug/kg					
Di-n-butyl phthalate	QN	330	N/A	ng/kg					
1,3-Dichlorobenzene	2	330	N/A	ug/kg					
1,4-Dichlorobenzene	QN	330	V/A	ug/kg					
1,2-Dichlorobenzene	Q.	330	N/A	ug/kg					
3,3-Dichlorobenzidine	QX	830	K/X	ug/kg					
2,4-Dichlorophenol	QN	330	N/A	ug/kg					
Diethyl phthalate	QN	330	N/A	ug/kg					
2.4-Dimethylphenol	Q.	330	V/V	ug/kg					
Dimethyl phthalate	QX	330	N/A	ng/kg					
4,6-Dinitro-2-methylphenol	QN	420	N/A	ug/kg					
2,4-Dinitrophenol	QN	660	N/A	ug/kg					
2,4-Dinitrotoluene	QX	330	N/A	ug/kg					

Del Mar Analytical - Phoenix Linda Eshelman Project Manager

The results pertain only to the samples tasted in the laboratory. This report shall not be reproduced PNK0837 <Page 142 of 153> except in full, without written permission from Del Mar Analytical.

The results pertuin only to the samples resed in the laboratory. This report shall not be reproduced. PNK0837 <Page 141 of 153> except it fall, without written permission from Del Mar Analytical.

Def Mar Analytical - Phoenix Unda Eshelman Project Manager

17461Derian Ava., Suite 100, Invine. CA 92614 (949) 281-1022 FAX (949) 280-3297 (104 E. CORO) CAMBA (100) 500-6307 (104 E. CORO) 500-6308 FAX (1949) 2500-1040 (104 E. CORO) 500-6308 FAX (1949) 300-5908 (1940) 500-6308 (194

Project ID: 24018.004/Air Liquide Basin & Range Hydrogeologists 6155 E. Indian School Rd., Suite 100A Scottsdale, AZ 85251 Attention: Any Wolkowinsky

Basin & Range Hydrogeologists 6155 E. Indian School Rd., Suite 100A Scottsdale, AZ 85251 Attention: Amy Wolkowinsky

Sampled: 11/30/04 Received: 11/30/04

PNK0837

Report Number:

1745/Detan Aue, Salae 100, hive CA 60514 (949) 581-1022 KK (949) 260-3927 1114 E. Cooley Dr., Salte A Cothor CA 82244 (993) 370-4667 FAX (949) 370-1046 9484 Chesapadate Dr., Salte A Chan Dato, CA 82222 (893) 370-4867 FAX (949) 370-1046 9800 Section 151 St., Salae Paris, A 251 Section 161 St., Salae 1051 Section 161 St., Salae 1051 Section 161 Section 161 St., Salae 1051 Section 161 Secti Del Mar Analytical

Project ID: 24018.004/Air Liquide Report Number: PNK0837

Sampled: 11/30/04 Received: 11/30/04

METHOD BLANK/QC DATA

SEMI-VOLATILE ORGANICS BY GC/MS (EPA 3545/8270C)

Analyte	Result	Reporting Limit	MDL	MDL Units	Spike Level	Source %REC Result %REC Limits	%REC EC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 4L03031 Extracted: 12/03/04	03/04									
LCS Analyzed: 12/06/2004 (4L03031-BSI)	31-BS1)									
Acenaphthene	2200	330	N/A	ug/kg	3330	99	55-120			
Acenaphthylene	2340	330	Z/A	ug/kg	3330	70	55-120			
Anthracene	2270	330	N/A	ug/kg	3330	89	55-120			
Benzoic acid	1970	830	N/A	ug/kg	3330	59	25-125			
Benzo(a)anthracene	2300	330	N/A	ug/kg	3330	69	65-120			
Benzo(g.h,i)perylene	2640	330	N/A	ug/kg	3330	79	30-160			
Benzo(a)pyrene	2390	330	Z/A	ug/kg	3330	72	55-125			
Benzyl alcohol	1840	330	N/A	ug/kg	3330	55	40-130			
Bis(2-chloroethoxy)methane	2090	330	N/A	ug/kg	3330	63	50-120			
Bis(2-chloroethyl)ether	1790	170	N/A	ug/kg	3330	54	40-120			
Bis(2-chloroisopropyl)ether	1940	330	N/A	ug/kg	3330	58	40-120			
Bis(2-ethylhexyl)phthalate	2260	330	Y.Z	ug/kg	3330	89	60-125			
4-Bromophenyl phenyl ether	2070	330	N/A	ug/kg	3330	62				
Buryl benzyl phthalate	2240	330	N/A	ug/kg	3330	19	60-125			
4-Chloroaniline	841	330	Ϋ́	ug/kg	3330	25	20-120			
2-Chloronaphthalene	2170	330	N/A	ug/kg	3330	65				
4-Chloro-3-methylphenol	2330	330	Υ/A	ug/kg	3330	70				
2-Chlorophenol	1900	330	Y.Y	ug/kg	3330	57				
4-Chlorophenyl phenyl ether	2200	330	N/A	ug/kg	3330	99	55-120			
Chrysene	2290	330	N/A	ug/kg	3330	69				
Dibenz(a,h)anthracene	2640	420	Z/A	ug/kg	3330	79	30-160			
Dibenzofuran	2300	330	N.A	ug/kg	3330	69				
Di-n-butyl phthalate	2170	330	N/A	ug/kg	3330	65				
I,3-Dichlorobenzene	1830	330	Ϋ́Z.	ug/kg	3330	55				
1,4-Dichlorobenzene	1800	330	X/A	ug/kg	3330	54	35-120			
1,2-Dichterobenzene	1830	330	N/A	ug/kg	3330	55	35-120			
3.3-Dichlorobenzidine	1300	830	K/X	ug/kg	3330	39				
2,4-Dichlorophenol	2200	330	Y/Z	ng/kg	3330	99	50-120			
Diethy! phthalate	2430	330	Ϋ́Z	ug/kg	3330	73	55-120			
2,4-Dimethylphenol	1900	330	A/Z	ug/kg	3330	57	40-120			
Dimethyl phthalate	2390	330	N/A	ug/kg	3330	72	60-120			
4,6-Dinitro-2-methylphenol	2280	420	N/A	ug/kg	3330	89	45-120			
2,4-Dinitrophenol	3820	099	A/N	ng/kg	3330	115				
2,4-Dinitrotoluene	2640	330	V/A	ng/kg	3330	79	60-140			
2,6-Dinitrotoluene	23.70	330	Y/X	ug/kg	3330	17	60-125			

Del Mar Analytical - Phoenix Linda Eshelman Project Manager

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced PNK0837 < Page 144 of 153> except in full, without written permission from Del Mar Analytical.

METHOD BLANK/QC DATA

SEMI-VOLATILE ORGANICS BY GC/MS (EPA 3545/8270C)

Analyte	Result	Reporting Limit	MDL	MDL Units	Spike Level	Source %REC Result %REC Limits	%REC	RPD	RPD Limit	Data Qualifiers
Batch: 4L03031 Extracted: 12/03/04	2/03/04									
Blank Analyzed: 12/06/2004 (4L03031-BLKI)	3031-BLKI)									
2.6-Dinitrotoluene	g	330	N/A	ag/kg						
Di-n-octyl phthulate	Ö	330	N/A	ay/gu						
1.2-Diphenylhydrazine/Azobenzene	Q.	330	V/N	ug/kg						
Pluoramhene	Q.	330	< Z	ugikg						
Pluorene	QN ON	330	N/A	ug/kg						
Hexachlorobenzene	g	330	K/N	ug/kg						
Flexachlorobutadiene	Q.	330	۷,۷	ug/kg						
Flexachlorocyclopentadiene	N Q	830	K/Z	ag/kg						
Hexachloroethane	Š	330	Y/A	บย/หย						
Indeno(1,2,3-cd)pyrene	ă	330	N/A	ay/an						
lsophorone	2	330	N/A	ug/kg						
2-Mediyinaphthalene	S	330	N/A	ug/kg						
2-Methylphenol	9	330	N/A	ug/kg						
4-Methylphenol	N Q	330	N/A	ug/kg						
Naphthalene	Q.	330	Z/A	ug/kg						
Nitrobenzene	g	330	N/A	ត់ង/ផ្ទាព						
2-Nitraphenol	Š	330	ΝA	ug/kg						
4-Nitrophenol	g	830	K.Z.	មន្ទាំកំនុ						
N-Nitrosodiyhenylamine	Q	330	N/A	មន្ត្រ/ខ្មែ						
N-Nitroso-di-p-propylamine	g	250	V.	ug/kg						
Pentachiorophenal	Q.	830	A/N	ពន្ធ√kg						
Phenanthrene	QN	330	N/A	ug/kg						
Phenal	QN.	330	A.	ug/kg						
Pyrene	2	330	X/X	ug/kg						
1.2.4-Trichlerobenzene	2	330	K/Z	ug/kg						
2,4,6-Trichlorophenol	2	330	N/A	ug/kg						
Surrogate: 2-Fluorophenol	3090			ag/kg	0299	9#	25-120			
Surregate: Phenol-d6	3810			ng/kg	0299	57	35-120			
Surrogate: 2,4,6-Tribromophenol	3720			ng/kg	0299	56	40-125			
Surrogate: Nitrobenzene-d5	1890			ug/kg	3330	57	30-120			
Surrogate: 2-Fluorobiphenyl	2120			84.8n	3330	19	35-120			
Surrogate: Terphenyl-d14	2230			Sy/Sn	3330	29	40-150			

Dei Mar Analytical - Phoenix Linda Eshelman

Project Manager

The results pertain only to the samples tessed in the laboratory. This report shell not be reproduced PNK0837 <Page 143 of 153> except in full, without written permission from Del Mar Anobrical.

Basin & Range Hydrogeologists 6155 E. Indian School Rd., Suite 100A Scottsdale, AZ 85251 Attention: Amy Wolkowinsky

Project ID: 24018.004/Air Liquide

Report Number: PNK0837

Sampled: 11/30/04 Received: 11/30/04

Del Mar Analytical

270-1046 570-1046 505-9689 785-0851

FAX (949) 2 FAX (949) 3 FAX (858) 6 FAX (480) 7 FAX (702) 7

261-1022 F 370-4667 F 505-8596 F 785-0043 F 798-3620 F

Project ID: 24018.004/Air Liquide

Report Number: PNK0837

Basin & Range Hydrogeologists 6155 E. Indian School Rd., Suite 100A Scottsdale, AZ 85251 Attention: Any Wolkowinsky

Sampled: 11/30/04 Received: 11/30/04

METHOD BLANK/QC DATA

SEMI-VOLATILE ORGANICS BY GC/MS (EPA 3545/8270C)

Qualifiers Data

RPD Limit

RPD

Source %REC Result %REC Limits

Spike Level

MDL Units

Reporting Limit

Result

LCS Analyzed: 12/06/2004 (4L03031-BS1) Batch: 4L03031 Extracted: 12/03/04

1.2-Diphenylhydrazine/Azobenzene

Fluoranthene

Di-n-octyl phthalate

Hexachlorocyclopentadiene Elexachloroethane Indeno(1,2,3-cd)pyrene Isophorone

Hexachleroburadiene

Hexachlorobenzene

2-Methyinaphthalene

2-Methylphenol 4-Methylphenol

SEMI-VOLATILE ORGANICS BY GC/MS (EPA 3545/8270C)

METHOD BLANK/QC DATA

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source %REC Result %REC Limits	%REC C Limits	RPD	RPD Limit	Data Qualifiers
Batch: 4L03031 Extracted: 12/03/04	03/04									
LCS Dup Analyzed: 12/06/2004 (4L03031-BSD1)	L03031-BSD1	_								
Acenaphthene	2360	330	X/X	ug/kg	3330	71	55-120	۲	20	
Acenaphthylene	2500	330	N/A	ug/kg	3330	7.5	55-120	-1	20	
Anthracene	2380	330	N/A	ag/kg	3330	7.1	55-120	'n	20	
Benzoic acid	1810	830	Y/N	ug/kg	3330	54	25-125	∞	30	
Benzo(a)anthracene	2410	330	N/A	និង/និព	3330	77	65-120	5	20	
Benzo(g,h,i)perylene	2620	330	N/A	ga/gu	3330	79	30-160	-	25	
Benzo(a)pyrene	2470	330	N/A	ug/kg	3330	74	55-125	٣	20	
Benzyl alcohol	1880	330	N/A	ug/kg	3330	26	40-130	CI	25	
Bis(2-chloroethoxy)methane	2190	330	N/A	ug/kg	3330	99	50-120	50	20	
Bis(2-chloroethyl)ether	1790	170	N/A	ug/kg	3330	54	40-120	0	25	
Bis(2-chloroisopropyl)ether	1950	330	N/A	ug/kg	3330	59	40-120		20	
Bis(2-ethylhexyl)phthalate	2280	330	N/A	ug/kg	3330	89	60-125	-	50	
4-Bromophenyl phenyl ether	2190	330	N/A	ug/kg	3330	99	50-125	9	20	
Butyl benzył phthalate	2320	330	N/A	ug/kg	3330	70	60-125	च	50	
4-Chloroaniline	586	330	N/A	ug/kg	3330	30	20-120	16	30	
2-Chloronaphthalene	2370	330	N/A	ug/kg	3330	71	50-120	6.	50	
4-Chloro-3-methylphenol	2450	330	N/A	ug/kg	3330	7.4	50-126	'n	20	
2-Chlorophenol	0961	330	V _N	ug/kg	3330	59	45-120	'n	20	
4-Chlorophenyl phenyl ether	2310	330	N/A	ug/kg	3330	69	55-120	'n	20	
Chrysene	2360	330	X/X	ug/kg	3330	71		14	20	
Dibenz(a,h)anthracene	2630	420	N/A	ug/kg	3330	79		0	25	
Dibenzofuran	2430	330	N/N	ug/kg	3330	73	55-120	ıЛ	20	
Di-n-butyl phthalate	2250	330	ΥZ	ug/kg	3330	89	60-125	ব্য	20	
1,3-Dichlorobenzene	1800	330	Ϋ́	ga/gu	3330	54	35-120	C-I	25	
1,4-Dichlorobenzene	1800	330	V/V	ភិង/ចិព	3330	54	35-120	0	25	
1,2-Dichlorobenzene	1820	330	Ϋ́	∄y/ãn	3330	55	35-120	-	20	
3,3-Dichlorobenzidine	1470	830	N/A	ug/kg	3330	44	20-170	12	25	
2,4-Dichlorophenol	2330	330	Ϋ́Х	Sy/Sn	3330	70	50-120	9	20	
Diethyl phthalase	2460	330	N/A	65//gu	3330	74	55-120	-	50	
2,4-Dimethylphenol	1980	330	Ν̈́Α	ng/kg	3330	59		₹	50	
Dimethyl phthalate	2450	330	N/A	ug/kg	3330	74	60-120	7	20	
4,6-Dinitro-2-methylphenol	2290	420	Z/A	ug/kg	3330	69	45-120	0	25	
2,4-Dinitrophenoi	3740	099	N/A	ug/kg	3330	112	20-140	r4	25	
2.4-Dinitrotoluene	2690	330	N.A	ug/kg	3330	æ	66-140	r-t	2	
2.6-Dinitratoluene	2440	330	N/A	ug/kg	3330	73	60-125	ra	50	

660-135 55-130 55-130 56-132 56-130 56-130 56-130 76-130 76-12

Nicrobenzene 2-Nicrophenol 1-Ninophenol

Nuphthalene

N-Nitrosodiphenyianine
N-Nitroso-di-n-propylamine
Pentachlorophenol
Phenanthrene

0299

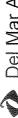
Surrogate: 2.4.6-Tribramophenal

Surrogate: 2-Fluoraphenol

Surrogete: Phenol-d6 2.4.6-Trichlorophenot

.2.4-Trichloroberzene

Phenol


Surrogane: Nitrobenzene-dő Surrogane: 2-Fluorobíphenyl Surrogane: Perphenyl-d14

3330 3330 3330

Del Mar Analytical - Phoenix Linda Eshelman Project Manager

The results pertain only to the somples usued in the laharatory. This report shell not be reproduced PNKOR37 <Page 146 of 133> except in full, without writen permission from Del Mar Andsstical.

Del Mar Analytical - Phoenix Linda Eshelman Project Manager The results pertoin only to the samples ussed in the laboratory. This report shall not be reproduced PNK0837 <Page 145 of 133> except in full, without written permission from Det Mar Andyticat.

T4451Dealan Are, Sulte (10), brine CA 10311, (144) 05:11027 FXX (549) 555-2297 1014 E. LOODED DI, Sulte A, Colorn CA 10324, (109) 370-467 FXX (146) 310-1049 49484 Chreatpeake Dr., Sulte 805, San Diago, CA 20123 (109) 370-4567 FXX (146) 310-5869 980 South Stit 81, Sulte 810, San Diago, CA 20123 (108) 362-569 FXX (146) 170-509 100-500

Project 1D: 24018.004/Air Liquide Report Number: PNK0837

Basin & Range Hydrogeologists 6155 E. Indian School Rd., Suite 100A Scottsdale, AZ 85251 Attention: Amy Wolkowinsky

Sampled: 11/30/04 Received: 11/30/04

Basin & Range Hydrogeologists 6155 E. Indian School Rd., Suite 100A Scottsdale, AZ 85251

TAST Darian Ave., Sues 100, Invine CA 62914. (649) 381-1027. FXX (849) 370-1048 (1014 E. Chole Dr., Sullie A, Chilmo, CA 62234. (699) 371-4667 FXX (849) 371-1048 9454. Chreaspearle Dn., Sullie Bios, Sain Daejo, CA 62723. (689) 362-6396 FXX (849) 375-1058 6803 South 514 St., Sullie Bios, Sain Daejo, CA 62723 (689) 362-6396 FXX (849) 785-6363 5604 5604 574. (849) 785-6373 (849) 785-6373 (849) 785-637 (849)

Sampled: 11/30/04 Received: 11/30/04

Del Mar Analytical

Report Number: PNK0837

Attention: Amy Wolkowinsky

Project ID: 24018.004/Air Liquide

METHOD BLANK/QC DATA

SEMI-VOLATILE ORGANICS BY GC/MS (EPA 3545/8270C)

Qualifiers Data

RPD Limit

RPD

Result %REC Limits

%REC

Source

Spike Level

Reporting

Limit

LCS Dup Analyzed: 12/06/2004 (4L03031-BSD1)

2-Diphenythydrazine/Azobenzene

Fluoranthene

Fluorene

Di-n-actyl phthalate

Hexachlorocyclopentadiene

Hexachiorobutadiene

Hexachiorobenzene

Indeno(1,2,3-ed)pyrene

Rexachlornelhane

Isophorone 2-Methylnaphthalone

2-Methylphenol 4-Methytphenol

Batch: 4L03031 Extracted: 12/03/04

MDL Units

SEMI-VOLATILE ORGANICS BY GC/MS (EPA 3545/8270C)

METHOD BLANK/QC DATA

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	Source %REC Result %REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 4L.03031 Extracted: 12/03/04	03/04										
Matrix Spike Analyzed: 12/06/2004 (4L03031-MS1)	(4L03031-	MS1)			Son	Source: INL0188-05	0.188-0	ıc			
Acenaphthene	2350	330	X/X	ug/kg	3330	Ð	7	45-120			
Acenaphthylene	2410	330	N/A	ug/kg	3330	Ž	72	45-120			
Anthracene	2340	330	N/A	ug/kg	3330	Š	70	55-120			
Benzoic acid	1530	830	K/Z	ug/kg	3330	Š	94	15-125			
Benzo(a)anthracene	2450	330	V/V	ug/kg	3330	Š	74	50-120			
Benzo(g,h,i)perylene	2210	330	Z/A	ug/kg	3330	Ñ	99	20-160			
Benzo(a)pyrene	2480	330	A/A	ug/kg	3330	Ž	75	55-125			
Benzyl alcohol	2170	330	A/N	ug/kg	3330	Š	65	35-130			
Bis(2-chloroethoxy)methane	2380	330	V/Z	ug/kg	3330	Ŋ	71	45-120			
Bis(2-chloroethyl)ether	1960	170	Y/Z	ug/kg	3330	Š	59	40-120			
Bis(2-chloroisopropyl)ether	2100	330	∀/Z	ug/kg	3330	N Q	63	40-120			
Bis(2-ethylhexyl)phthalate	2470	330	N/A	ug/kg	3330	Q.	74	55-150			
4-Bromophenyi phenyi ether	2200	330	N/A	ng/kg	3330	S	99	50-125			
Butyl benzył phthalate	2540	330	N/A	ug/kg	3330	ND	76	55-145			
4-Chloroaniline	1440	330	A/Z	ug/kg	3330	ND	43	15-120			
2-Chloronaphthalene	2290	330	A/A	ug/kg	3330	ΩN	69	50-120			
4-Chloro-3-methylphenol	2690	330	A/A	ug/kg	3330	Ñ	81	50-125			
2-Chlorophenol	2070	330	N/A	ng/kg	3330	ΩN	62	40-120			
4-Chlorophenyl phenyl ether	2370	330	N/A	ug/kg	3330	Ω̈́	71	55-120			
Chrysene	2470	330	N/A	ug/kg	3330	ΩŽ	74	55-120			
Dibenz(a,h)anthracene	2350	420	N/A	ug/kg	3330	2	7.	20-160			
Dibenzofuran	2450	330	Ä/Ä	ug/kg	3330	Q	74	55-120			
Di-n-butyl phthalate	2210	330	N/A	ug/kg	3330	Q	99	55-125			
1.3-Dichlorobenzene	1920	330	N/A	ng/kg	3330	Q	28	35-120			
1,4-Dichforobenzene	1880	330	N/A	18//Bn	3330	g	99	35-120			
1.2-Dichlorobenzene	1900	330	Ϋ́	ng/kg	3330	g	23	35-120			
3,3-Dichlorobenzidine	1430	830	X/X	ug/kg	3330	S	43	10-170			
2,4-Dichlorophenol	2450	330	N/A	ug/kg	3330	g	7.4	45-120			
Diethyl phthalate	2550	330	N/A	ug/kg	3330	g	77	55-120			
2,4-Dimethylphenol	1920	330	N/A	ug/kg	3330	R	28	35-120			
Dimethyl phthalate	2480	330	N/A	ug/kg	3330	R	77	50-120			
4,6-Dinitro-2-methylphenol	2350	420	N/A	ug/kg	3330	g	71	10-125			
2,4-Dinitrophenol	3770	099	N/A	ug/kg	3330	Ø	13	10-140			
2,4-Dinitrotoluene	2830	330	A/A	ug/kg	3330	g	82	55-140			
2,6-Dinitrotoluene	2540	330	Υ/Z	ng/kg	3330	S	76	55-125			

660-135 66-125 55-120 40-120 40-120 45-120 4

N-Nimoso-di-a-propylamine

Pentachlorophenol

Phenanthrene

Phenol

2-Nitrophenol 4-Nitrophenol N-Nitrosodiphenylamine

Nitrobenzene

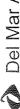
Naphthalene

Del Mar Analytical - Phoenix Linda Eshelman Project Manager

The results pertain only to the somplex uested in the taboratory. This report shall not be reproduced PNK0837 <Page 148 of 153> except in full, without written permission from Del Mar Analytical.

Del Mar Analytical - Phoenix Linda Eshelman Project Manager

Surrogate: 2,4,6-Fribromophenol Surrogate: Nitrobenzene-d5 Surrogaue: 2-Fluorobiphenyi Surrogaue: Terphenyl-d14


Surrogate: 2-Fluorophenol

Surrogate: Phenol-d6

.2,4. Trieldorobenzene

2,4,6-Trichlocophenol

The results pertuin only to the samples tested in the laboratory. This report shall not be reproduced PNK0837 < Page 147 of 133> except in full, without written permission from Let Mar Analytical.

) 370-4667 FAX (9) 370-4667 FAX (10) 505-8596 FAX (10) 785-0043 FAX (10) 798-3620 FAX (10) 1746/Defina Ave. Sales 100, horne, CA 20514 (1949). 2464 Chrestpelle Dr., Salize A, Collon, CA 82234 (1909). 9464 Chrestpelle Dr., Suire 8105, San Diego, CA 8212 (1909). 9810 Salize 1918; S., Salize 1910, Salize 1918; S., Salize 1910, Paper 4 (1810). 2221 E, Suirest RP 421, Les Veges, RV 98120 (1702).

X (949) 260-3297 X (949) 370-1046 X (558) 505-9689 X (480) 785-0851 X (702) 798-3621

2 FAX (948) 260-3297 FAX (949) 370-1046 FAX (858) 505-9689 FAX (460) 785-0851 FAX (702) 796-3621) 261-1022 F) 370-4667 F) 505-8596 P) 785-0043 F) 798-3620 P 1746 Derjan Ave., Sulie 100, Invine, CA 95514 (949); Met. C. Condey Caule A. Sulie A. Control. CA 92534 (959) 9484 Chespenela Di., Sulie a Control. CA 92534 (959) 9895 Octobril 1915, Sulie B. 1710 Properto, CA 92544 (450) 9250, Sulie Sulie H. A. B. 1854 (450)

Project ID: 24018.004/Air Liquide Del Mar Analytical Basin & Range Hydrogeologists 6155 E. Indian School Rd., Suite 100A Scottsdale, AZ 85251

Report Number: PNK0837

Attention: Amy Wolkowinsky

11/30/04

Sampled: Received:

Project ID: 24018.004/Air Liquide

PNK0837

Report Number:

Basin & Range Hydrogeologists 6153 E. Indian School Rd., Suite 100A Scottsdale, AZ 85251 Attention: Any Wolkowinsky

Sampled: 11/30/04 Received: 11/30/04

METHOD BLANK/QC DATA

SEMI-VOLATILE ORGANICS BY GC/MS (EPA 3545/8270C)

		Reporting			Spike	Source	%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result %REC Limits	Limits	RPD	Limit	Qualifiers
Batch: 4L03031 Extracted: 17	2/03/04									

Qualifiers Data

RPD Limit

RPD

Source %REC Result %REC Limits

Spike Level

MDL Units

Reporting Limit

Result

Barch: 4L03031 Extracted: 12/03/04

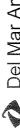
SEMI-VOLATILE ORGANICS BY GC/MS (EPA 3545/8270C)

METHOD BLANK/QC DATA

Marketin Coulty Print A major de 1900/0000 A MCD11	Source: 1N1 6188
	Matrix Coile Due 4 noticed: 12 (06/2004 /41 03021 MCD1)

Matrix Spike Analyzed: 12/06/2004 (4L03031-MSI)	04 (4L03031-)	MS1)			Son	Source: INL0188-05	.0188-(ጭ	Matrix Spike Dup Analyzed: 12/06
Di-n-octyl phthalate	2520	330	A/N	ug/kg	3330	Ø	76	45-140	Acenaphthene
1,2-Diphenylbydrezine/Azobenzene	2640	330	K/N	ug/kg	3330	Q.	79	55-125	Acenaphthylene
Fluoranthene	2350	330	N/A	ug/kg	3330	Q.	71	45-130	Anthracene
Fluorenc	2420	330	N/A	ug/kg	3330	S	73	55-120	Benzoic acid
Hexachlorobenzene	2110	330	XX	agy kg	3330	Š	63	40-120	Вепго(а)апthrасепе
Hexachlorobutadiene	2060	330	N/A	ug/kg	3330	Ŋ	62	40-120	Benzo(g.h.i)perylene
Hexachlorocyclopentadiene	2220	830	A/A	ug/kg	3330	S	67	25-140	Вепzо(а)рутепс
Hexachloroethane	1800	330	Y/Z	ug/kg	3330	S	54	35-120	Benzyl alcohol
Indena(1,2,3-ed)pyrene	2330	330	N/A	ug/kg	3330	N	70	20-155	Bis(2-chloroethoxy)methane
Isophorone	2060	330	N/A	ug/kg	3330	Z	62	40-120	Bis(2-chloroethyf)ether
2-Methyfnaphilialene	2000	330	N/A	ugkg	3330	S	62	45-120	Bis(2-chloroisapropyl)cther
2-Methylphenol	2130	330	N/A	ug/kg	3330	QN	64	40-120	Bis(2-cthylhexyl)phthalate
4-Methylphonol	2270	330	Y/Z	ug/kg	3330	Ø	89	40-120	4-Bromophenyl phenyl ether
Naphthalene	2180	330	N/A	ug/kg	3330	Q	65	40-120	Butyl benzyl pluhalate
Nitrobenzene	2250	330	N/A	ug/kg	3330	Ñ	89	45-120	4-Chloroaniline
2-Nitraphenol	2230	330	N/A	ug/kg	3330	Ñ	67	40-120	2-Chloronaphthalene
4-Nitrophenol	2660	830	N/A	त्रुं, हिंद	3330	Ŋ	80	35-140	4-Chloro-3-næthylphenol
N-Nirosodiphenylamine	2200	330	SZ	ng/kg	3330	S	99	55-120	2-Chlorophenol
N-Nisroso-di-a-propylamine	1960	250	V.N	ಪ್ರಸ್ತಿಸ್ಟ್	3330	R	59	45-120	4-Chlorophenyl phenyl ether
Pentachiorophenol	2530	830	Y.Z	ភ្នង/ភិព	3330	9	92	30-125	Chrysene
Phenanthrene	2266	330	×,×	ug/kg	3330	8	89	55-120	Dibenz(a,h)anthracene
Phenol	2080	330	Ϋ́	ug/kg	3330	N N	62	40-120	Dibenzofuran
Pyrene	2590	330	V/A	ug/kg	3330	N N	78	50-125	Di-n-butyl phthalare
1,2,4-3 richlorobenzene	2140	330	K/Z	ug/kg	3330	QN.	64	45-120	1.3-Dichlorobenzene
2,4,6-Trichlorophenel	2470	330	¥.	ay/gu	3330	B	74	40-120	1,4-Dichlorobenzene
Surrogate: 2-Fluorophenol	3360			ng/kg	0299		50	25-120	1,2-Dichlorohenzene
Surrogase: Plunol-d6	4110			ng/kg	0299		62	35-120	3.3-Dichlorobenzidine
Surragate: 2,4,6-Tribromophenol	4240			3X/Sn	0299		70	40-125	2.4-Dichlorophenol
Surragate: Nitrobenzene-d5	2120			SySn	3330		64	30-120	Diethył phthalate
Surragate: 2-Fluorobiphenyl	22.70			SySn	3330		8	35-120	2,4-Dimethylphenol
Surrogate: Terphenyl-d14	2800			ug/kg	3330		84	40-150	Dimethyl phthalate
				ı					4 6-Dinitro-2-methylphenol

Matrix Spike Dup Analyzed: 12/06/2004 (4L03031-MSD1)	/06/2004 (4L03	031-MSD1)			Sou	Source: INL0188-05	0-8810	S.	
Acenaphthene	2210	330	K/Z	ug/kg	3330	ΩZ	99	45-120	9
Acenaphthylene	2310	330	Ϋ́Z	ug/kg	3330	Ω̈́	69	45-120	4
Anthracene	2230	330	K/Z	ug/kg	3330	S	29	55-120	4°s
Benzoic acid	1220	830	N/A	ក្នុកន្ទុ	3330	Š	37	15-125	23
Вепzo(а)апthracene	2290	330	K/X	ug/kg	3330	ΩN	69	50-120	! ~
Benzo(g,h,i)perylene	2210	330	N/A	ug/kg	3330	N	99	20-160	0
Benzo(a)pyrene	2370	330	K/X	ug/kg	3330	S	7	55-125	'n
Benzyl alcohol	0681	330	Ϋ́Z	ug/kg	3330	S	57	35-130	7
Bis(2-chloroethoxy)methane	2170	330	Ϋ́Х	ភូវ/ជួប	3330	S	65	45-120	6
Bis(2-chloroethyf)ether	1810	170	N/A	ug/kg	3330	S	54	40-120	×
Bis(2-chloroisopropyl)cther	1980	330	N/A	तर्भ/ति	3330	Š	59	40-120	ç
Bis(2-ethylhexyl)phthalate	2300	330	V/X	ug/kg	3330	ΩN	69	55-150	r ~
4-Bromophenyl phenyl ether	2050	330	N/A	ug/kg	3330	ΩN	62	50-125	۲-
Butyl benzyl phthalate	2270	330	N/A	ug/kg	3330	QN	89	55-145	=
4. Chloroaniline	1300	330	N/A	ug/kg	3330	Š	39	15-120	2
2-Chloronaphthalene	2210	330	N/A	ug/kg	3330	Ω	99	50-120	4
4-Chtoro-3-methylphenol	2440	330	N/A	ug/kg	3330	Ŋ	73	50-125	2
2-Chlorophenol	1870	330	X.A	ug/kg	3330	ΩN	99	40-120	0.
4-Chlorophenyl phenyl ether	2220	330	Ž.	ng/kg	3330	S	67	55-120	r
Chrysene	2300	330	Ϋ́Х	ug/kg	3330	Ω	69	55-120	-
Dibenz(a,h)anthracene	2300	420	N/A	37/8n	3330	Q	69	20-160	N
Dibenzofuran	2320	330	Υ/X	និង/និព	3330	R	70	55-120	S
Di-n-butyl phthalare	2120	330	N/A	ពន្ ^រ /ន្ទ	3330	Q	64	55-125	73
1.3-Dichlorobenzene	1780	330	N/A	ag/kg	3330	Ž	53	35-120	×
1,4-Dichlorobenzene	1730	330	N/A	ug/kg	3330	S	52	35-120	æ
1,2-Dichlorohenzene	1760	330	N/A	ug/kg	3330	S	53	35-120	œ
3.3-Dichlorobenzidine	1380	830	N/A	пg/кв	3330	Ω	4	10-170	च
2.4-Dichlorophenol	2200	330	Z/A	ug/kg	3330	S	99	45-120	=
Diethyf phthalare	2440	330	X/A	ug/kg	3330	Ñ	73	55-120	*3
2,4-Dimethylphenol	1710	330	Z/A	ug/kg	3330	S	5	35-120	7
Dimethyl phthalate	2340	330	Z/A	ug/kg	3330	Ω	70	50-120	9
4,6-Dinitro-2-methylphenol	2170	420	K/Z	ug/kg	3330	S.	65	10-125	o c
2,4-Dinitrophenol	3300	099	N/A	ug/kg	3330	Ω	66	10-140	13
2.4-Dinitrotoluene	2630	330	V.X	ag/kg	3330	Z	4	55-140	~1
2,6-Dinitrotoluene	2380	330	Ν̈́N	ug/kg	3330	ΩŽ	7.1	55-125	r


Del Mar Analytical - Phoenix Linda Eshelman

Project Manager

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced PNK0837 <Page 149 of 153> except in full, without written permission from Del Mar Analytical.

Del Mar Analytical - Phoenix Linda Eshelman Project Manager

The results pertain only to the samples usued in the laboratory. This report shall not be reproduced. PNK0837 <Page 159 of 153> except in full, without written permission from Del Mor Analytical.

1746/ Defort Ave. Suite 100, Ivene CA 65514 (eds) 514.027 FAX (849) 510-0297 1014 (1949) 514.027 FAX (849) 510-0299 1014 (1949) 517-048

Basin & Range Hydrogeologists 6155 E. Indian School Rd., Suite 100A Scoutsdale, AZ 85251

Attention: Amy Wolkowinsky

Project ID: 24018.004/Air Liquide Report Number: PNK0837

Sampled: 11/30/04 Received: 11/30/04

Tartis Death are, Salter MD, Inne CA 6264 (494) 56-1927 FX (649) 58-1927 1949 195-1929 195-195

Del Mar Analytical

Project ID: 24018.004/Air Liquide

Basin & Range Hydrogeologists 6155 E. Indian School Rd., Suite 100A

Attention: Amy Wolkowinsky

Scottsdale, AZ 8525

Report Number: PNK0837

Sampled: 11/30/04 Received: 11/30/04

METHOD BLANK/QC DATA

SEMI-VOLATILE ORGANICS BY GC/MS (EPA 3545/8270C)

Analyte	Result	Reporting Limit	MDL Units	Units	Spike Level	Source Result	%REC	Source %REC Result %REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 4L03031 Extracted: 12/03/04	/03/04										
Matrix Spike Dup Analyzed: 12/06/2004 (4L03031-MSD1)	5/2004 (4L0	3031-MSD1)			Sou	Source: INL0188-05	0188-0	ñ			
Di-n-octyl phthalate	2540	330	N/S	94/2n	3330	N	76	45-140		25	
1.2-Diphenythydrazine/Azobenzene	2520	330	N/A	ug/kg	3330	Q	76	55-125	'n	25	
Plassauhene	2260	330	N/A	ыд/кв	3330	Q	89	45-130	4	30	
Fluorene	2280	330	√/Z	ug/kg	3330	S	89	55-120	9	25	
Plexachlorobenzene	2010	330	V/N	ug/kg	3330	Ω	99	40-120	'n	22	
Hexachlorobundiene	0561	330	N/A	ug/kg	3330	ΩN	59	40-120	M	52	
Hexachiorocyclopentadiene	3060	830	N/A	ug/kg	3330	Ω	62	25-140	۲	30	
Hexachloroethane	1690	330	N/A	ug/kg	3330	R	51	35-120	9	30	
Indeno(1,2.3-ed)pyrene	2280	330	N/A	ug/kg	3330	Q.	89	20-155	2	30	
Isophorone	0161	330	√X	п⊈Лкв	3330	2	57	40-120	×	25	
2-Methylnaphthalene	0161	330	K/X	ug/kg	3330	QN	57	45-120	×	20	
2-Methylphenol	1830	330	V/X	ug/kg	3330	2	55	40-120	51	25	
4-Methylphenol	2120	330	N/A	ug/kg	3330	2	64	40-120	r~	25	
Nuphthallene	1980	330	N/A	គូវ/ខ្មុំរ	3330	Q	59	40-120	10	25	
Nitrobenzene	2040	330	Y/N	ng⁄kg	3330	S	6	45-120	10	25	
2-Nitropheno!	2050	330	N/A	ug/kg	3330	2	62	40-120	90	25	
-L-Nitropheno?	2430	830	N/A	ಚಿತ್ರ/ಭಾ	3330	2	73	35-140	6	30	
N-Nitrosodiphenylamine	2050	330	Y.Z	ыд/ке	3330	Q	62	55-120	t~	25	
N-Nitroso-di-a-propylardine	1850	250	N/S	ug/kg	3330	Q	56	45-120	9	25	
Pentachlorophenol	2320	830	₹ Z	ga/gu	3330	9	70	30-125	6	25	
Phenonthrene	2100	330	X/X	ug/kg	3330	2	63	55-120	7	25	
Phenol	1900	330	N/A	ជន/និព	3330	S.	57	40-120	6	25	
Pyrene	2180	330	N/A	ug/kg	3330	Ω	65	50-125	17	30	
L.2,4-Trichlorobenzene	2000	330	K/N	ಪ್ರಸ್ತಿಪೆಗ	3330	N	99	45-120	٢	52	
2.4.6-Trichlorophenol	2330	330	K/X	gy/gu	3330	ΩŅ	70	40-120	9	52	
Storrogate: 2-Fluorophenol	0±0£			ng/kg	0299		95	25-120			
Surrogate: Phenol-d6	3700			ng/kg	0299		55	35-120			
Surrogate: 2, 4,6-Tribromophenol	3860			ng/kg	0299		58	40-125			
Surregate: Nitrobenzene-d5	1910			ng/kg	3330		22	30-120			
Surrogate: 2-Fluorobiphenyl	3140			Sy/Sn	3330		1 9	35-120			
Sarrogate: Turphenyl-d14	2+00			Sy/Sn	3330		77	40-150			

Del Mar Analytical - Phoenix Linda Eshelman Project Manager

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced. PNK0837 <Page 151 of 153> except in full, without written permission from Del Mar Anabrical.

DATA QUALIFIERS AND DEFINITIONS

Target analyte detected in method blank at or above the method reporting limit. B1 D1 D2 D2 M2 M2

Sample required dilution due to high concentration of target analyte. Sample required dilution due to matrix.

Concentration estimated. Analyte was detected below laboratory minimum reporting level (MRL).

The associated blank spike recovery was above method acceptance limits.

Matrix spike recovery was high, the method control sample recovery was acceptable.

Matrix spike recovery was low, the method control sample recovery was acceptable.

The accuracy of the spike recovery value is reduced since the analyre concentration in the sample is disproportionate MI3

to spike level. The method control sample recovery was acceptable.

See case narrative.

MS/MSD RPD exceeded the method control limit. Recovery met acceptance criteria. R # 8

LFB/LFBD RPD exceeded the method control limit. Recovery met acceptance criteria.

Surrogate recovery was above laboratory and method acceptance limits. See case narrative. $_{\rm SI0}$

Surrogate recovery was low. Data reported per ADEQ policy 0154,000.

Surrogate recovery was above Jaboratory and method acceptance limits. No target analytes were detected in the Š

The analysis of the sample required a dilution such that the surrogate recovery calculation does not provide any useful information. The method control sample recovery was acceptable.

CCV recovery was above method acceptance limits. This target analyte was not detected in the sample. 88

7

Analyre NOT DETECTED at or above the reporting limit or MDL, if MDL is specified.

Relative Percent Difference

ADDITIONAL COMMENTS

For 1,2-Diphenylhydrazine:

The result for 1,2-Diphenylhydrazine is based upon the reading of its breakdown product, Azobenzene.

For Extractable Fuel Hydrocarbons (EFH, DRO, ORO):

Unless otherwise noted, Extractable Fuel Hydrocarbons (EFH, DRO, ORO) are quantitated against a Diesel Fuel Standard.

Del Mar Analytical - Phoenix Linda Eshelman Project Manager

The results pertain only to the samples sested in the Indoratory. This report shall not be reproduced, PNK0837 < Page 152 of 133> except in full, without vertiten permission from Del Mar Analytical.

Analytical
Mar
Del

Sampled: Received: Project 1D: 24018.004/Air Liquide PNK0837 Report Number: Basin & Range Hydrogeologists 6155 E. Indian School Rd., Suire 100A Scottsdate, AZ 85251 Attention: Amy Wolkowinsky

11/30/04 261-1022 370-4667 505-8596 786-0043 798-3620 (949) (858) (480) (702) 92614 92324 92123 85044 89120 17461 Denian Ave., Suite 100, Irvine, CA 5 1014 E. Codely Dr., Suite A. Collon, CA 9 9464 Chespeeke Dr., Suite 805, San Diego, CA 9 9930 South 51s St., Suite B-170, Phoensy, AZ 5 2500 E. Sunset Rd, #3, Las Vegas, NV F

X (949) 260-3297 X (949) 370-1046 X (858) 505-9689 X (460) 785-0851 X (702) 798-3621

\$\$**\$**\$\$

CHAIN-OF-CUSTODY RECORD BASIN & RANGE HYDROGEOLOGISTS

6155 E. Indian School Rd., Ste 100A, Scottsdale, AZ 85251

Š

Sample

11/23/09 3800

11/22/04 0800

11/30/04 0740

11/3:104 0750

11/30/04 0805

11/30/04 0815

11/32/04 0840

11/30/04 0950

11/30/04 1040

11/30/04 1135

11/30/04 1320

1200

1210

1215

SAMPLE TEMPERATURE UPON RECEIPT AT LAB SAMPLE CONTROL FACILITY:

11/30/04

11/30/04

Send Analytical Report To: BASIN & RANGE HYDROGEOLOGISTS, INC.

Amy Wolkowinsky

Code

Sample Identifik

Metimus 1016.

CTD-01

CTD-02

WGT-01

S6-T-01

WGT-02

36T-02

D-6×1-4.0

H-EX2-4.0

C-EX3-5.75

B-EL4-5.75

6-EX4-5.750 11/30/04

C-EX5-5.75 11/30/04 1255

Trip Blank

Electronic Data

Email: amy@basin-and-range.com

No

114

Phone: 602-840-3333 Fax: 602-840-8011

Methanol preserved giass vials

1

ł

١

ţ

Air Liquide

Deliverable Requiredo

Site Identification :

Start Date:

Project or Release No.:

Matrix

Water

MOUH

Concrete

9011

8011

301

Soul

301

Soil

Toil

Spil

500

901

WATER

501

Completion Date:

Time

Certification Summary

Del Mar Analytical - Phoenix

XXXXXXX ×××××× Soil Soil Soil Soil Soil ADHS 8015AZR1 EPA 6010B EPA 7471A EPA 8260B EPA 8260B EPA 9045C SW-846 7.1.2

Analyte specific information for Del Mar Analytical may be obtained by contacting the laboratory or visiting our website at www.dmalabs.com Verada and NELAP provide analyte specific accreditations.

Subcontracted Laboratories

Del Mar Analytical NELAC Cert #01108CA, Arizona Cert #420671

17461 Derian Ave. Suite 100 - Irvine, CA 92614

Method Performed: EPA 8270C Samples: PNK0837-10

Del Mar Analytical - Phoenix Linda Eshelman Project Manager

75

This report shall not be reproduced. Del Mar Analysical. tested in the laboratory. written permission from esults pertain only to the except in full,

11.

٦5

23 /12

Attention: A. Wolkowinsky

 Company:
 Del Mar Analytical

 Address:
 9830 South 51st St., Suite B-120, Phoenix, Arizona

 Fax No.:
 480-785-0043
 623-445-6192 Analyses Requested PH & Flush Paint 40 ml glass jars, unpreserved BOIS agentic 8260B -- 1,4-Dioxane 3 puen Warde 5035/8260B (List) 8270 138 х Ţ \circ * 11 7 L X 03 х X 1 6-8 X х Į х х 55 х х ريا ت ļ high OVA recount х х χ ~ ن~ Х X high ova waining Х х - ن į Х Х <u>د ج</u>ر X × Х Х Х Paga OVA reading Х Х 11

х

х

* 11/30

Page

6155 E. Indian School Rd., Ste 100A, Scottsdale, AZ 85251 602-840-3333 Fax No.: 602-840-8011

Х ٦. 3 ° ←

х

X

х

Deadline for web results

Deadline for final report

Сотрапу:

Phone No.:

Environmental Laboratory Information:

BASIN & RANGE

send Invoice To:

EXC_Sell

CHAIN-OF-CUSTODY RECORD								for web	results:]	Page	3	_ of	3	
CAA				Start Date: plation Date:	11/30/0	1	Instructio	ns:	Perform let QAPP and	services in a ADEQ policy	nos 01	ice witi 54.000	h 20 Sep and 01	stember 20 55.000.	00	
			│ 	Site Identificat ect or Release		1. Air Liquide 24018.004	VP08 Soil I	nvestiga	tion					_		_
	TA OHIA ITV OI	HECTURE	نـــا													
A pr m D S	ATA QUALITY OF a documented in the roject - Method Re ag/kg), cis-1,2-Dich blehleropropane (0, tyrene (36 mg/kg), otal (6.8 mg/kg), 1, (ylenes-Total (2200)	e Quality A porting Lim loroethylene 28 mg/kg), I Tetrachloro 1,1-Trichlor	ssurance l its that ar (4.9 mg/k thylbenze ethylene (e less than (0. 1g), trans-1,2- ene (120 mg/k 1.3 mg/kg). T	,21 mg/kg). Dichloroet g), Monoc oluene (40	, I,1-Dichloro hylene (8.4 m hlorobenzene 0 mg/kg), Tril	ethylene (U.) g/kg), 1,2- (22 mg/kg), palomethan	51	Sampler's N	ame: Amy V						_
	inquished By (Compar & Range Hydrogeolog		2. F	leceived By (Co	трапу Мал	ie):	3. Relinqui	shed By	(Сотрвпу Нате	4	, Receiv	ed By (Compan	y Name):		=
Print 1	Names Muy Wo	lkonins	kg Pri	nt Name:		· · · · · · · · · · · · · · · · · · ·	Print Nan	ie:			Print Nat	me				
Sign	when hoel	600148	rig s	Signature:		104	Signatu	re:			Sìgnah	nre:				-
	Date: 1/30/04	Time: 5:3	Spr	Date:	TI CYLES	lme:	,Da	le:	Time:			ale:		_ Time: .		_
5. Re	linquished By (Compa	any Name):	القرار	eccived By (Co	ompany Nan	ne):	7. Relinqu	ished By	(Company Nam	e): 8	l. Receiv	red By ((Compan	y Name):		
Print	Name:		Pr	int Name:			Print Nac	ne:		1	Print Na	me: xx	ما ۵٬۱ کس میشاند	W 00	162	- >
Sign	nature:			Signature:			Signatu	re:			Signat	ure: 🔌	سلم	,2 0.	m	_
	Date:	Time:		Date:	T	ime:	Di	ite:	Time:		D	ate:\ <u>\\</u>	<u>^ </u>	<u>√</u> Time:	7 2,	5
											_					
CHA	AIN-OF-CUSTO	DY RECO	RD	Electronic Data Yes X Deliverable Required? No			Deadline for web results: Deadline for final report:				Page 2 of 3					
	BASIN & R TYDROGEOL		Cor	Start Date: 11 3 14 Completion Date: 11 3 04				Send Invoice To: Company: BASIN & RANG!: Attention: A. Wolkowinsky								
	117/(0/11/0/1		Pro	Site Identification: Air Liquide Project or Release No.: 24018.004				Address: 6155 E, Indian School Rd, Ste 100A, Scottsdale, AZ 85251 Phone No.: 602-840-3333 Fax No.: 602-840-80						0-8011		
BASE	Analytical Report To N & RANGE HYDRO E. Indian School Rd., tion: Amy Wolko	OGEOLOGIST Ste 100A, Sco	ttsdale, AZ	IC. Phone: 602-840-3333 e. AZ 85251 Fax: 602-840-8011 Email: amy@basin-and-range.com				Environmental Laboratory Information: Company: Del Mar Analytical Address: 9830 South 51st St., Su Fax No.: 480-785-0043				site B-120, Phoenix, Arizona Fax No.: <u>623-445-6192</u>				
7111111				1		Container		1		Analyses Requi	equested Laboratory 1D					-
	Sampic Identification Code	Sample Date	Sample Time	Matrix	Methanol preserved glass vials	40 mt glass jars, unpreserved			5035/8260B (AZ List)	8260B - 1,4- Dioxanc						-
	25 44	11 35 04	1410	concrete	į	1			Х	×χ				900	C F 3.	<u>1</u> - 11,
17.	LW-02	i1 30 04	1420	concrete	<u> </u>	1		-	X	X X	-		-			- 143 - 143
18.		11/30/04	1430	constate	1	-			X	X			<u> </u>	,	\	– ر در - ر در
30 H		11/30/04 11/30/04	1505 1525	Soil	1	1			×	х					1	_ _ ბა
21.	-EX7-6.0	1,194,04	· ,]	2 ** 1					х	Х						_
22.									X	X	 	-		 		_
23.				1			-/··-	\dashv	X	X	-			<u> </u>		
25.		ļ		-					x	х						
26.									Х	Х						
27.									X	X	1	<u> </u>	-	}		
2R.		ļ							X	X	 	\vdash	ļ	-		_

3.3 €

SAMPLE TEMPERATURE UPON RECEIPT AT LAB SAMPLE CONTROL FACILITY: