

July 16, 2003

Chuck Gordon BE&K Terranext 9830 S. 51st Street, Suite A-127 Phoenix, AZ 85044

Re: WVBA / Project #03103154

Dear Chuck:

Enclosed are the amended result pages for the samples submitted to our laboratory on March 18, 2003. The samples were analyzed for Total & Dissolved Chromium by our Canoga Park, CA facility (L2300617). For your reference, the 8260 analyses have been assigned our service request number X2300234.

All analyses were performed according to our laboratory's quality assurance program. All results are intended to be considered in their entirety, and Columbia Analytical Services, Inc. (CAS) is not responsible for use of less than the complete report. Results apply only to the samples analyzed. Columbia Analytical Services, Inc. is certified for environmental analyses by the Arizona Department of Health Services (Certificate #AZ0136; and #AZ0497).

Please call if you have any questions. My extension is 223.

Respectfully submitted,

Columbia Analytical Services, Inc.

Tracy L. Dutton
Laboratory Director

Education y Brice

TLD/lm

Page 1 of <u>62</u>

Client:

BE&K Terranext

Service Request No.:

X2300234

Project:

WVB / #03103154

Date Received:

3/18/03

Sample Matrix:

Water

CASE NARRATIVE

All analyses were performed consistent with the quality assurance program of Columbia Analytical Services, Inc. (CAS). This report contains analytical results for sample(s) designated for Tier II data deliverables. When appropriate to the method, method blank results have been reported with each analytical test. Surrogate recoveries have been reported for all applicable organic analyses. Additional quality control analyses reported herein include: Matrix/Duplicate Matrix Spike (MS/DMS) and Laboratory Control Sample (LCS).

All EPA recommended holding times have been met for analyses in this sample delivery group.

The following difficulties were experienced during analysis of this batch:

The associated blank spike (XWG0300417-3 and XWG0300417-4) recovery of Bromochloromethane and Dibromomethane, Method 8260B, was above laboratory acceptance limits. These compounds were not detected in any of the samples analyzed in this batch.

The associated blank spike (XWG0300410-3 and XWG0300410-4) recovery of Bromochloromethane, Dibromomethane, and 1,2,3-Trichloropropane Method 8260B, was above laboratory acceptance limits. These compounds were not detected in any of the samples analyzed in this batch.

Sample AVB14-0100-18102 (X2300234-004) required dilution of Trichloroethene, Method 8260B, due to high concentration of target analyte.

Matrix spike (XWG0300410-1 and XWG0300410-2) recovery of Dichlorodifluoromethane, Chloromethane, and Vinyl Chloride, Method 8260B, was low. The method control sample recovery was acceptable.

Matrix spike (XWG0300410-1 and XWG0300410-2) recovery of Trichloroethene, 1,2-Dichloropropane and Hexachlorobutadiene, Method 8260B, was high. The method control sample recovery was acceptable.

The accuracy of the spike (XWG0300410-1) recovery value of Tetrachloroethene, Method 8260B, is reduced since the analyte concentration in the sample is disproportionate to spike level. The method control sample recovery was acceptable.

Matrix spike (XWG0300417-1 and XWG0300417-2) recovery of several analytes for Method 8260B was low. The method control sample recovery was acceptable.

MS/DMS (XWG0300417-1 and XWG0300417-2) RPD for Chloroethane and Acetone, Method 8260B, exceeded the laboratory control limit. Recovery met acceptance criteria.

		000002
Approved by	JAJ Date	4-7-03

ARIZONA DATA QUALIFIERS

Method	Blank:
B1	Target analyte detected in method blank at or above the method reporting limit.
B2	Non-target analyte detected in method blank and sample, producing interference.
В3	Target analyte detected in calibration blank at or above the method reporting limit.
B4	Target analyte detected in blank at/above method acceptance criteria.
Confirm	nation:
C1	Confirmatory analysis not performed as required by the method.
C2	Confirmatory analysis not performed. Confirmation of analyte presence established by site historical data.
C3	Qualitative confirmation performed. See case narrative.
C4	Confirmatory analysis was past holding time.
C5	Confirmatory analysis was past holding time. Original result not confirmed.
Dilution	<u>.</u>
D1	Sample required dilution due to matrix interference. See case narrative.
D2	Sample required dilution due to high concentration of target analyte.
D3	Sample dilution required due to insufficient sample.
D4	Minimum reporting level (MRL) adjusted to reflect sample amount received and analyzed.
<u>Estimate</u>	ed concentration:
E1	Concentration estimated. Analyte exceeded calibration range. Reanalysis not possible due to insufficient sample.
E2	Concentration estimated. Analyte exceeded calibration range. Reanalysis not performed due to sample matrix.
E3	Concentration estimated. Analyte exceeded calibration range. Reanalysis not performed due to holding time requirements.
E4	Concentration estimated. Analyte was detected below laboratory minimum reporting level (MRL).
E5	Concentration estimated. Analyte was detected below laboratory minimum reporting level (MRL), but not confirmed by alternate analysis.
E6	Confirmation estimated. Internal standard recoveries did not meet method acceptance criteria.
E7	Confirmation estimated. Internal standard recoveries did not meet laboratory acceptance criteria.
Hold Tiı	me:
H1	Sample analysis performed past holding time. See case narrative.
H2	Initial analysis within holding time. Reanalysis for the required dilution was past holding time.
Н3	Sample was received and analyzed past holding time.
H4	Sample was extracted past required extraction holding time, but analyzed within analysis holding time. See case narrative.
BOD:	
K1	The sample dilutions set-up for the BOD analysis did not meet the oxygen depletion criteria of at least 2mg/L.
	Any reported result is an estimated value.
K2	The sample dilutions set up for the BOD analysis did not meet the criteria of a residual dissolved oxygen of at
	least 1 mg/L. Any reported result is an estimated value.
КЗ	The seed depletion was outside the method acceptance limits.

K4	The seed depletion was outside the method and laboratory acceptance limits. The reported result is an estimated value.
K5	The dilution water D.O. depletion was >0.2 mg/L.
K6	Glucose/glutamic acid BOD was below method acceptance criteria.
K7	The discrepancy between the BOD and COD results has been verified by reanalysis of the sample for COD.
	, , , , , , , , , , , , , , , , , , , ,
Laborator	y fortified blank/blank spike:
L1	The associated blank spike recovery was above laboratory acceptance limits. See case narrative.
L2	The associated blank spike recovery was below laboratory acceptance limits. See case narrative.
L3	The associated blank spike recovery was above method acceptance limits. See case narrative.
L.4	The associated blank spike recovery was below method acceptance limits. See case narrative.
	Note: The L1, L2, L3, & L4 footnotes need to be added to all corresponding analytes for a sample.
Matrix sp	ilen.
M1	Matrix spike recovery was high, the method control sample recovery was acceptable.
M2	Matrix spike recovery was low, the method control sample was acceptable.
M3	The accuracy of the spike recovery value is reduced since the analyte concentration in the sample is
	disproportionate to spike level. The method control sample recovery was acceptable.
M4	The analysis of the spiked sample required a dilution such that the spike concentrations was diluted below
	the reporting limit. The method control sample recovery was acceptable.
M5	Analyte concentration was determined by the method of standard addition (MSA).
General:	
N1	See case narrative
N2	See corrective action report.
Sample qu	
Q1	Sample integrity was not maintained. See case narrative.
Q2	Sample received with head space.
Q3	Sample received with improper chemical preservation.
Q4	Sample received and analyzed without chemical preservation.
Q5	Sample received with inadequate chemical preservation, but preserved by the laboratory.
Q6	Sample was received above recommended temperature.
Q7	Sample inadequately dechlorinated. Insufficient sample received to meet QC requirements. QC requirements satisfy ADEQ policies 0154 and 0155.
Q8 Q9	Insufficient sample received to meet QC requirements.
Q9 Q10	Sample received in inappropriate sample container.
QH QH	Sample is heterogeneous. Sample homogeneity could not be readily achieved using routine laboratory practices.
Duplicates	
R1	RPD exceeded the method control limit. See case narrative.
R2	RPD exceeded the laboratory control limit. See case narrative.
R3	Sample RPD between the primary and confirmatory analysis exceeded 40%. Per Method 8000B, the higher
D.4	value was reported.
R4	MS/MSD RPD exceeded the method control limit. Recovery met acceptance criteria.
R5	MS/MSD RPD exceeded the laboratory control limit. Recovery met acceptance criteria.
R6	LFB/LFBD RPD exceeded the method control limit. Recovery met acceptance criteria.
R7	LFB/LFBD RPD exceeded the laboratory control limit. Recovery met acceptance criteria.

Sample RPD exceeded the laboratory control limit. R9 Surrogate: Surrogate recovery was above laboratory acceptance limits, but within method acceptance limits. S1Surrogate recovery was above laboratory and method acceptance limits. S2Surrogate recovery was above laboratory acceptance limits, but within method acceptance limits. No target S3analytes were detected in the sample. Surrogate recovery was above laboratory and method acceptance limits. No target analytes were detected in the S4 sample. Surrogate recovery was below laboratory acceptance limits, but within method acceptance limits. S5 Surrogate recovery was below laboratory and method acceptance limits. Reextraction and/or reanalysis confirms **S6** low recovery caused by matrix effect. Surrogate recovery was below laboratory and method acceptance limits. Unable to confirm matrix effect. **S7** The analysis of the sample required a dilution such that the surrogate concentration was diluted below the method **S8** acceptance criteria. The method control sample recovery was acceptable. The analysis of the sample required a dilution such that the surrogate concentration was diluted below the S9 laboratory acceptance criteria. The method control sample recovery was acceptable. Surrogate recovery was above laboratory and method acceptance limits. See case narrative. S10 Method/analyte discrepancies: Method promulgated by EPA, but not ADHS at this time. T1 Cited ADHS licensed method does not contain this analyte as part of method compound list. T2 Method not promulgated either by EPA or ADHS. T3 Tentatively identified compound. Concentration is estimated and based on the closest internal standard. Т4 Calibration verification: CCV recovery was above method acceptance limits. This target analyte was not detected in the sample V1CCV recovery was above method acceptance limits. This target analyte was detected in the sample. The sample V2 could not be reanalyzed due to insufficient sample. CCV recovery was above method acceptance limits. This target analyte was detected in the sample, but the V3 sample was not reanalyzed. See case narrative. CCV recovery was below method acceptance limits. The sample could not be reanalyzed due to insufficient V4 CCV recovery after a group of samples was above acceptance limits. This target analyte was not detected in the V5

Sample RPD exceeded the method control limit.

sample. Acceptable per EPA Method 8000B.

R8

Inorganic Data Qualifiers

- The result is an outlier. See case narrative.
- The control limit criteria is not applicable. See case narrative. #
- The analyte was found in the associated method blank at a level that is significant relative to the sample result. В
- The result is an estimate amount because the value exceeded the instrument calibration range. Ē
- The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL. J
- The compound was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL. U
- The MRL/MDL has been elevated due to a matrix interference. į
- See case narrative. Χ

Metals Data Qualifiers

- The control limit criteria is not applicable. See case narrative.
- The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL. В
- The reported value is estimated because of the presence of matrix interference. E
- The duplicate injection precision was not met. M
- The Matrix Spike sample recovery is not within control limits. See case narrative. N
- The reported value was determined by the Method of Standard Additions (MSA). S
- The compound was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- The post-digestion spike for furnace AA analysis is out of control limits, while sample absorbance is less than 50% of spike U
- The MRL/MDL has been elevated due to a matrix interference. i
- X See case narrative.
- The duplicate analysis not within control limits. See case narrative.
- The correlation coefficient for the MSA is less than 0.995.

Organic Data Qualifiers

- The result is an outlier. See case narrative.
- The control limit criteria is not applicable. See case narrative.
- A tentatively identified compound, a suspected aldol-condensation product. A
- The analyte was found in the associated method blank at a level that is significant relative to the sample result. В
- The analyte was qualitatively confirmed using GC/MS techniques, pattern recognition, or by comparing to historical data. C
- The reported result is from a dilution. D
- The result is an estimate amount because the value exceeded the instrument calibration range. Ε
- The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.
- The result is presumptive. The analyte was tentatively identified, but a confirmation analysis was not performed. J N
- The GC or HPLC continuation criteria was exceeded. The relative percent difference is greater than 40% between the two analytical results (25% for CLP Pesticides). Р
- The compound was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL. U
- The MRL/MDL has been elevated due to a chromatographic interference
- X See case narrative.

Additional Petroleum Hydrocarbon Specific Qualifiers

- The chromatographic fingerprint of the sample matches the elution pattern of the calibration standard.
- The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a F greater amount of lighter molecular weight constituents than the calibration standard. L
- The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of heavier molecular weight constituents than the calibration standard Η
- The chromatographic fingerprint of the sample resembles an oil, but does not match the calibration standard.
- The chromatographic fingerprint of the sample resembles a petroleum product eluting in approximately the correct carbon Ο
- range, but the elution pattern does not match the calibration standard. Υ
- The chromatographic fingerprint does not resemble a petroleum product. Z

00000£

Client: Project: BE&K Terranext WVB/#03103154 **Service Request:**

X2300234

Cover Page - Organic Analysis Data Package **Volatile Organic Compounds**

		Date	Date
Sample Name	Lab Code	Collected	Received
AVB112-0100-02129	X2300234-001	03/18/2003	03/18/2003
AVB18-0100-19101	X2300234-002	03/18/2003	03/18/2003
AVB12-0100-19102	X2300234-003	03/18/2003	03/18/2003
AVB14-0100-18102	X2300234-004	03/18/2003	03/18/2003
AVB14-0104-1000	X2300234-005	03/18/2003	03/18/2003
AVB14-0102-1000	X2300234-006	03/18/2003	03/18/2003
AVB112-0100-02129MS	XWG0300417-1	03/18/2003	03/18/2003
AVB112-0100-02129DMS	XWG0300417-2	03/18/2003	03/18/2003

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed in the case narrative. Release of the data contained in this hardcopy data package and in the computer-readable data submitted on floppy diskette has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signature.

Cover Page - Organic

Page

Analytical Results

Client: Project: BE&K Terranext WVB/#03103154

Sample Matrix:

Water

Service Request: X2300234

Date Collected: 03/18/2003

Date Received: 03/18/2003

Volatile Organic Compounds

Sample Name:

AVB112-0100-02129

Lab Code:

X2300234-001

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

			Dilution	Date	Date	
Result	Q	MRL	Factor			Arizona Qualifier
ND	U	3.0	1			
ND	U	2.0	1			
ND	U	1.0	1	03/28/03		
ND	U	1.0	1	03/28/03		
ND	U	1.0	1			
ND	U	1.0	1	03/28/03		
ND	U	1.0	1	03/28/03		
ND	U	1.0	1			
21		10	1	03/28/03	03/28/03	
ND	U	2.0	1	03/28/03	03/28/03	
ND	U	2.0	1			
ND	U	1.0	1	03/28/03	03/28/03	
17		1.0	1	03/28/03	03/28/03	
	U	0.50	1	03/28/03		
		0.50	1	03/28/03	03/28/03	
ND	U	3.0	1	03/28/03	03/28/03	
		2.0	1	03/28/03		
10		8.0	1	03/28/03	03/28/03	
0.58		0.50	1	03/28/03		
		0.50	1			L1
1.1		1.0	1	03/28/03	03/28/03	
ND	U	0.50	1	03/28/03	03/28/03	
		0.50	1	03/28/03	03/28/03	
ND	U	0.50	1	03/28/03	03/28/03	
16		0.50	1	03/28/03	03/28/03	
		0.50	1	03/28/03		
		0.50	1	03/28/03	03/28/03	
ND	U	0.50	1	03/28/03	03/28/03	
		0.50	1	03/28/03	03/28/03	
		0.50	1	03/28/03	03/28/03	
ND	U	0.50	1	03/28/03	03/28/03	
		8.0	1	03/28/03	03/28/03	
		0.50	1	03/28/03	03/28/03	
	ND N	ND U ND U ND U 17 ND U ND U ND U ND U ND U 10 0.58 ND U	ND U 3.0 ND U 1.0 ND U 2.0 ND U 2.0 ND U 2.0 ND U 3.0 ND U 0.50 ND U 3.0 ND U 3.0 ND U 2.0 ND U 2.0 ND U 3.0 ND U 2.0 ND U 3.0 ND U 3.0 ND U 0.50	NE sult Q MRL Factor	Result Q MRL Factor Extracted ND U 3.0 1 03/28/03 ND U 2.0 1 03/28/03 ND U 1.0 1 03/28/03 ND U 2.0 1 03/28/03 ND U 2.0 1 03/28/03 ND U 1.0 1 03/28/03 ND U 0.50 1 03/28/03 ND U 0.50 1 03/28/03 ND U 3.0 1 03/28/03 ND U 3.0 1 03/28/03 ND U 2.0 1 03/28/03 ND U 0.50 1 03/28/03 <td>Result Q MRL Factor Extracted Analyzed ND U 3.0 1 03/28/03 03/28/03 ND U 2.0 1 03/28/03 03/28/03 ND U 1.0 1 03/28/03 03/28/03 ND U 2.0 1 03/28/03 03/28/03 ND U 2.0 1 03/28/03 03/28/03 ND U 2.0 1 03/28/03 03/28/03 ND U 0.50 1 03/28/03 03/28/03 ND U 0.50 1 03/28/03 03/28/03 ND U</td>	Result Q MRL Factor Extracted Analyzed ND U 3.0 1 03/28/03 03/28/03 ND U 2.0 1 03/28/03 03/28/03 ND U 1.0 1 03/28/03 03/28/03 ND U 2.0 1 03/28/03 03/28/03 ND U 2.0 1 03/28/03 03/28/03 ND U 2.0 1 03/28/03 03/28/03 ND U 0.50 1 03/28/03 03/28/03 ND U 0.50 1 03/28/03 03/28/03 ND U

Comments:

Printed: 04/02/2003 14:30:41 L:\STEALTH\CRYSTAL.RPT\Form\m.rpt

Merged

Form 1A - Organic

000008

Page 1 of 3

SuperSet Reference: RR3145

Analytical Results

Client: Project:

BE&K Terranext WVB/#03103154

Sample Matrix:

Water

Service Request: X2300234
Date Collected: 03/18/2003

Date Collected: 03/18/2003 **Date Received:** 03/18/2003

Volatile Organic Compounds

Sample Name:

AVB112-0100-02129

Lab Code:

X2300234-001

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

		_		Dilution	Date Extracted	Date	Arizona Qualifier_
Analyte Name	Result		MRL	Factor		03/28/03	Alizona Quanner
trans-1,3-Dichloropropene	ND		1.0	1	03/28/03	03/28/03	
1,1,2-Trichloroethane	ND	U	1.0	1	03/28/03 03/28/03	03/28/03	
Tetrachloroethene	6.3		0.50	1			
2-Hexanone	ND		5.0	1	03/28/03	03/28/03	
1,3-Dichloropropane	ND	U	1.0	1	03/28/03	03/28/03	
Dibromochloromethane	0.90		0.50	1	03/28/03	03/28/03	
1,2-Dibromoethane	ND	U	0.50	1	03/28/03	03/28/03	
Chlorobenzene	ND	U	0.50	1	03/28/03	03/28/03	
1,1,1,2-Tetrachloroethane	ND	U	0.50	1	03/28/03	03/28/03	
Ethylbenzene	2.8		0.50	1	03/28/03	03/28/03	
m,p-Xylenes	2.8		1.0	1	03/28/03	03/28/03	
o-Xylene	2.3		0.50	1	03/28/03	03/28/03	
Styrene	ND	IJ	0.50	1	03/28/03	03/28/03	
Isopropylbenzene	ND		0.50	1	03/28/03	03/28/03	
Bromobenzene	ND		0.50	1	03/28/03	03/28/03	
	ND	IJ	1.0	1	03/28/03	03/28/03	
1,2,3-Trichloropropane n-Propylbenzene	ND		0.50	1	03/28/03	03/28/03	
2-Chlorotoluene	ND		0.50	1	03/28/03	03/28/03	
4-Chlorotoluene	ND		0,50	1	03/28/03	03/28/03	
1,3,5-Trimethylbenzene	0.57		0.50	1	03/28/03	03/28/03	
tert-Butylbenzene	ND		0.50	1	03/28/03	03/28/03	
1,2,4-Trimethylbenzene	2.0		0.50	1	03/28/03	03/28/03	
sec-Butylbenzene		U	0.50	1	03/28/03	03/28/03	
1,3-Dichlorobenzene		Ū	0.50	1	03/28/03	03/28/03	
4-Isopropyltoluene		U	0.50	1	03/28/03	03/28/03	
Bromoform		U	0.50	1	03/28/03	03/28/03	
1,1,2,2-Tetrachloroethane		U	1.0	1	03/28/03	03/28/03	
1,4-Dichlorobenzene		U	0.50	1	03/28/03	03/28/03	
1,4-Dichlorobenzene		U	0.50	1	03/28/03	03/28/03	
n-Butylbenzene		U	0.50	1	03/28/03	03/28/03	
1,2-Dibromo-3-chloropropane		U U	5.0	1	03/28/03	03/28/03	
1,2,4-Trichlorobenzene		U	0.50	1	03/28/03	03/28/03	
Hexachlorobutadiene		U	0.50	1	03/28/03	03/28/03	
nexacilloroullaurenc	111		***				

Comments:

J1)0009

Merged

Page

Analytical Results

Client:

BE&K Terranext

Project:

WVB/#03103154

Sample Matrix:

Water

Service Request: X2300234

Date Collected: 03/18/2003

Date Received: 03/18/2003

Volatile Organic Compounds

Sample Name:

AVB112-0100-02129

Lab Code:

X2300234-001

Units: ug/L Basis: NA

Extraction Method:

EPA 5030B

Level: Low

8260B

Analysis Method:

			Dilution	Date	Date	
Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed	Arizona Qualifier
Naphthalene	ND U	3.0	1	03/28/03	03/28/03	
1,2,3-Trichlorobenzene	ND U	0.50	1	03/28/03	03/28/03	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Arizona Qualifier	
Dibromofluoromethane	103	84-113	03/28/03		
Toluene-d8	101	68-126	03/28/03		
4-Bromofluorobenzene	94	79-113	03/28/03		

Comments:

Printed. 04/02/2003 14:30:41

Merged

Form 1A - Organic

000010

3 of 3 Page

RR3145

SuperSet Reference:

Analytical Results

Client: Project: BE&K Terranext WVB/#03103154

Sample Matrix:

Water

Service Request: X2300234

Date Collected: 03/18/2003 **Date Received:** 03/18/2003

Volatile Organic Compounds

Sample Name:

AVB18-0100-19101

Lab Code:

X2300234-002

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

				Dilution	Date	Date	
Analyte Name	Result	Q	MRL	Factor	Extracted	-	Arizona Qualifier
Dichlorodifluoromethane	ND	U	3.0	1	03/28/03	03/28/03	
Chloromethane	ND	U	2.0	1	03/28/03	03/28/03	
Vinyl Chloride	ND	U	1.0	1	03/28/03	03/28/03	
Bromomethane	ND	U	1.0	1	03/28/03	03/28/03	
Chloroethane	ND	U	1.0	1	03/28/03	03/28/03	
Trichlorofluoromethane	ND	\mathbf{U}	1.0	1	03/28/03	03/28/03	
1,1,2-Trichlorotrifluoroethane	ND	U	1.0	1	03/28/03	03/28/03	
1,1-Dichloroethene	3.1		1.0	1	03/28/03	03/28/03	
Acetone	ND	U	10	1	03/28/03	03/28/03	
Iodomethane	ND	U	2.0	1	03/28/03	03/28/03	
Carbon Disulfide	ND	U	2.0	1	03/28/03	03/28/03	
Methylene Chloride	ND	U	1.0	1	03/28/03	03/28/03	
Methyl tert-Butyl Ether	ND	U	1.0	1	03/28/03	03/28/03	
trans-1,2-Dichloroethene	ND	U	0.50	1	03/28/03	03/28/03	
1,1-Dichloroethane	2.2		0.50	1	03/28/03	03/28/03	
Vinyl Acetate	ND	U	3.0	1	03/28/03	03/28/03	
2,2-Dichloropropane	ND	U	2.0	. 1	03/28/03	03/28/03	
2-Butanone (MEK)	ND	U	8.0	1	03/28/03	03/28/03	
cis-1,2-Dichloroethene	1.2		0.50	1	03/28/03	03/28/03	
Bromochloromethane	ND		0.50	1	03/28/03	03/28/03	L1
Chloroform	ND	U	1.0	1	03/28/03	03/28/03	
1,1,1-Trichloroethane	ND	U	0.50	1	03/28/03	03/28/03	
Carbon Tetrachloride	ND	U	0.50	1	03/28/03	03/28/03	
1,1-Dichloropropene	ND	U	0.50	1	03/28/03	03/28/03	
Benzene	ND	U	0.50	1	03/28/03	03/28/03	
1,2-Dichloroethane	ND	U	0.50	1	03/28/03	03/28/03	
Trichloroethene	6.7		0.50	1	03/28/03	03/28/03	
1,2-Dichloropropane	ND	U	0.50	1	03/28/03	03/28/03	
Dibromomethane	ND	U	0.50	1	03/28/03	03/28/03	L1
Bromodichloromethane	ND	U	0.50	1	03/28/03	03/28/03	_
cis-1,3-Dichloropropene	ND	U	0.50	1	03/28/03	03/28/03	
4-Methyl-2-pentanone (MIBK)	ND	U	8.0	1	03/28/03	03/28/03	
Toluene	ND	U	0.50	1	03/28/03	03/28/03	
trans-1,3-Dichloropropene	ND	U	1.0	1	03/28/03	03/28/03	

Comments:

110000

Form 1A - Organic

Page 1 of 3

Merged

SuperSet Reference: RR3145

Analytical Results

Client: **Project:** BE&K Terranext WVB/#03103154

Sample Matrix:

Water

Service Request: X2300234

Date Collected: 03/18/2003 **Date Received:** 03/18/2003

Volatile Organic Compounds

Sample Name:

AVB18-0100-19101

Lab Code:

X2300234-002

Extraction Method: Analysis Method:

EPA 5030B

Units: ug/L Basis: NA

Level: Low

8260B

			Dilution	Date	Date	
Analyte Name	Result Q	MRL	Factor	Extracted	-	Arizona Qualifier
1,1,2-Trichloroethane	ND U	1.0	1	03/28/03	03/28/03	
Tetrachloroethene	2.3	0.50	1	03/28/03	03/28/03	
2-Hexanone	ND U	5.0	1	03/28/03	03/28/03	
1,3-Dichloropropane	ND U	1.0	1	03/28/03	03/28/03	
Dibromochloromethane	ND U	0.50	1	03/28/03	03/28/03	
1,2-Dibromoethane	ND U	0.50	1	03/28/03	03/28/03	
Chlorobenzene	ND U	0.50	1	03/28/03	03/28/03	
1,1,1,2-Tetrachloroethane	ND U	0.50	1	03/28/03	03/28/03	
Ethylbenzene	ND U	0.50	1	03/28/03	03/28/03	
m,p-Xylenes	ND U	1.0	1	03/28/03	03/28/03	
o-Xylene	ND U	0.50	1	03/28/03	03/28/03	
Styrene	ND U	0.50	1	03/28/03	03/28/03	
Isopropylbenzene	ND U	0.50	1	03/28/03	03/28/03	
Bromobenzene	ND U	0.50	1	03/28/03	03/28/03	
1,2,3-Trichloropropane	ND U	1.0	1	03/28/03	03/28/03	L1
n-Propylbenzene	ND U		1	03/28/03	03/28/03	
2-Chlorotoluene	ND U	0.50	1	03/28/03	03/28/03	
4-Chlorotoluene	ND U	0.50	1	03/28/03	03/28/03	
1,3,5-Trimethylbenzene	ND U	0.50	1	03/28/03	03/28/03	
tert-Butylbenzene	ND U	0.50	1	03/28/03	03/28/03	
1,2,4-Trimethylbenzene	ND U	0.50	1	03/28/03	03/28/03	
sec-Butylbenzene	ND U	0.50	1	03/28/03	03/28/03	
1,3-Dichlorobenzene	ND U	0.50	1	03/28/03	03/28/03	
4-Isopropyltoluene	ND U	0.50	1	03/28/03	03/28/03	
Bromoform	ND U	0.50	1	03/28/03	03/28/03	
1,1,2,2-Tetrachloroethane	ND U	1.0	1	03/28/03	03/28/03	
1,4-Dichlorobenzene	ND U	0.50	1	03/28/03	03/28/03	
1,2-Dichlorobenzene	ND U	0.50	1	03/28/03	03/28/03	
n-Butylbenzene	ND U	0.50	1	03/28/03	03/28/03	
1,2-Dibromo-3-chloropropane	ND U		1	03/28/03	03/28/03	
1,2,4-Trichlorobenzene	ND U	0.50	1	03/28/03	03/28/03	
Hexachlorobutadiene	ND U	0.50	. 1	03/28/03	03/28/03	
Naphthalene	ND U	3.0	1	03/28/03	03/28/03	
1,2,3-Trichlorobenzene	ND U	0.50	1	03/28/03	03/28/03	

Comments:

000012

Form 1A - Organic

Page 2 of 3

RR3145 SuperSet Reference:

Analytical Results

Client: Project: BE&K Terranext WVB/#03103154

Sample Matrix:

Water

Service Request: X2300234

Date Collected: 03/18/2003 **Date Received:** 03/18/2003

Volatile Organic Compounds

Sample Name:

AVB18-0100-19101

Lab Code:

X2300234-002

Umits:	ug/1
Basis:	NA

Surrogate Name	%Rec	Control Limits	Date Analyzed	Arizona Qualifier	
Dibromofluoromethane	102	84-113	03/28/03		
Toluene-d8	101	68-126	03/28/03		
4-Bromofluorobenzene	98	79-113	03/28/03		

Comments:

Form 1A - Organic

SuperSet Reference:

Analytical Results

Client: Project: BE&K Terranext WVB/#03103154

Sample Matrix:

Water

Service Request: X2300234

Date Collected: 03/18/2003

Date Received: 03/18/2003

Volatile Organic Compounds

Sample Name: Lab Code: AVB12-0100-19102 X2300234-003

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

Analyte Name	Result Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Arizona Qualifier
Dichlorodifluoromethane	ND U	3.0	1	03/28/03	03/28/03	
Chloromethane	ND U	2.0	1	03/28/03	03/28/03	
Vinyl Chloride	ND U	1.0	1	03/28/03	03/28/03	
Bromomethane	ND U	1.0	1	03/28/03	03/28/03	
Chloroethane	ND U	1.0	1	03/28/03	03/28/03	
Trichlorofluoromethane	ND U	1.0	1	03/28/03	03/28/03	
1,1,2-Trichlorotrifluoroethane	ND U	1.0	1	03/28/03	03/28/03	
1,1-Dichloroethene	ND U	1.0	1	03/28/03	03/28/03	
Acetone	ND U	10	1	03/28/03	03/28/03	
Iodomethane	ND U	2.0	1	03/28/03	03/28/03	
Carbon Disulfide	ND U	2.0	1	03/28/03	03/28/03	
Methylene Chloride	ND U	1.0	1	03/28/03	03/28/03	
Methyl tert-Butyl Ether	ND U	1.0	1	03/28/03	03/28/03	
trans-1,2-Dichloroethene	ND U	0.50	1	03/28/03	03/28/03	
1,1-Dichloroethane	ND U	0.50	1	03/28/03	03/28/03	
Vinyl Acetate	ND U	3.0	1	03/28/03	03/28/03	
2,2-Dichloropropane	ND U	2.0	1	03/28/03	03/28/03	
2-Butanone (MEK)	ND U	8.0	1	03/28/03	03/28/03	
cis-1,2-Dichloroethene	0.85	0.50	1	03/28/03	03/28/03	
Bromochloromethane	ND U	0.50	1	03/28/03	03/28/03	L1
Chloroform	1.0	1.0	1	03/28/03	03/28/03	
1,1,1-Trichloroethane	ND U	0.50	1	03/28/03	03/28/03	
Carbon Tetrachloride	ND U	0.50	1	03/28/03	03/28/03	
1,1-Dichloropropene	ND U	0.50	1	03/28/03	03/28/03	
Benzene	ND U	0.50	1	03/28/03	03/28/03	
1,2-Dichloroethane	ND U	0.50	1	03/28/03	03/28/03	
Trichloroethene	53	0.50	1	03/28/03	03/28/03	
1,2-Dichloropropane	ND U	0.50	1	03/28/03	03/28/03	
Dibromomethane	ND U	0.50	1	03/28/03	03/28/03	L1
Bromodichloromethane	ND U	0.50	1	03/28/03	03/28/03	
cis-1,3-Dichloropropene	ND U	0.50	1	03/28/03	03/28/03	
4-Methyl-2-pentanone (MIBK)	ND U	8.0	. 1	03/28/03	03/28/03	
Toluene	ND U	0.50	1	03/28/03	03/28/03	
trans-1,3-Dichloropropene	ND U	1.0	1	03/28/03	03/28/03	

Comments:

Form 1A - Organic

Analytical Results

Client: Project: BE&K Terranext WVB/#03103154

Sample Matrix:

Water

Service Request: X2300234

Date Collected: 03/18/2003 **Date Received:** 03/18/2003

Volatile Organic Compounds

Sample Name: Lab Code:

AVB12-0100-19102 X2300234-003

Extraction Method:

EPA 5030B

Units: ug/L Basis: NA

Level: Low

Analysis Method: 8260B

			Dilution	Date	Date	
Analyte Name	Result Q	MRL	Factor	Extracted	-	Arizona Qualifier
1,1,2-Trichloroethane	ND U	1.0	1	03/28/03	03/28/03	
Tetrachloroethene	19	0.50	1	03/28/03	03/28/03	
2-Hexanone	ND U	5.0	1	03/28/03	03/28/03	
1,3-Dichloropropane	ND U	1.0	1	03/28/03	03/28/03	
Dibromochloromethane	ND U	0.50	1	03/28/03	03/28/03	
1,2-Dibromoethane	ND U	0.50	1	03/28/03	03/28/03	
Chlorobenzene	ND U	0.50	1	03/28/03	03/28/03	
1,1,1,2-Tetrachloroethane	ND U	0.50	1	03/28/03	03/28/03	
Ethylbenzene	ND U	0.50	1	03/28/03	03/28/03	
m,p-Xylenes	ND U	1.0	1	03/28/03	03/28/03	
o-Xylene	ND U	0.50	1	03/28/03	03/28/03	
Styrene	ND U	0.50	1	03/28/03	03/28/03	
Isopropylbenzene	ND U	0.50	1	03/28/03	03/28/03	
Bromobenzene	ND U	0.50	1	03/28/03	03/28/03	
1,2,3-Trichloropropane	ND U	1.0	1	03/28/03	03/28/03	L1
n-Propylbenzene	ND U	0.50	1	03/28/03	03/28/03	
2-Chlorotoluene	ND U	0.50	1	03/28/03	03/28/03	
4-Chlorotoluene	ND U	0.50	1	03/28/03	03/28/03	
1,3,5-Trimethylbenzene	ND U	0.50	1	03/28/03	03/28/03	
tert-Butylbenzene	ND U	0.50	1	03/28/03	03/28/03	
1,2,4-Trimethylbenzene	ND U	0.50	1	03/28/03	03/28/03	
sec-Butylbenzene	ND U	0.50	1	03/28/03	03/28/03	
1,3-Dichlorobenzene	ND U	0.50	1	03/28/03	03/28/03	
4-Isopropyltoluene	ND U	0.50	1	03/28/03	03/28/03	
Bromoform	ND U	0.50	1	03/28/03	03/28/03	
1,1,2,2-Tetrachloroethane	ND U	1.0	1	03/28/03	03/28/03	
1,4-Dichlorobenzene	ND U	0.50	1	03/28/03	03/28/03	
1,2-Dichlorobenzene	ND U	0.50	1	03/28/03	03/28/03	
n-Butylbenzene	ND U	0.50	1	03/28/03	03/28/03	
1,2-Dibromo-3-chloropropane	ND U	5.0	. 1	03/28/03	03/28/03	
1,2,4-Trichlorobenzene	ND U	0.50	1	03/28/03	03/28/03	
Hexachlorobutadiene	ND U	0.50	. 1	03/28/03	03/28/03	·
Naphthalene	ND U	3.0	1	03/28/03	03/28/03	
1,2,3-Trichlorobenzene	ND U	0.50	1	03/28/03	03/28/03	

Comments:

000015

Form 1A - Organic

Page 2 of 3

Printed: 07/17/2003 14:01:34 L:\STEALTH\CRYSTAL.RPT\Form1m.rpt

Analytical Results

Client:

BE&K Terranext

Project:

WVB/#03103154

Sample Matrix:

Water

Service Request: X2300234

Date Collected: 03/18/2003

Date Received: 03/18/2003

Volatile Organic Compounds

Sample Name:

AVB12-0100-19102

Lab Code:

X2300234-003

Units: ug/L

Basis: NA

Surrogate Name	%Rec	Control Limits	Date Analyzed	Arizona Qualifier	
Dibromofluoromethane	103	84-113	03/28/03		
Toluene-d8	104	68-126	03/28/03		
4-Bromofluorobenzene	99	79-113	03/28/03		

Comments:

Form 1A - Organic

Analytical Results

Client: **Project:** BE&K Terranext WVB/#03103154

Sample Matrix:

Water

Service Request: X2300234

Date Collected: 03/18/2003 **Date Received:** 03/18/2003

Volatile Organic Compounds

Sample Name:

AVB14-0100-18102

Lab Code:

X2300234-004

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

			Dilution	Date	Date	
Analyte Name	Result Q	MRL	Factor	Extracted		Arizona Qualifier
Dichlorodifluoromethane	ND U	3.0	1	03/28/03	03/28/03	
Chloromethane	ND U	2.0	1	03/28/03	03/28/03	
Vinyl Chloride	ND U	1.0	1	03/28/03	03/28/03	
Bromomethane	ND U	1.0	1	03/28/03	03/28/03	
Chloroethane	ND U	1.0	1	03/28/03	03/28/03	
Trichlorofluoromethane	ND U	1.0	1	03/28/03	03/28/03	·
1,1,2-Trichlorotrifluoroethane	ND U	1.0	1	03/28/03	03/28/03	
1,1-Dichloroethene	14	1.0	1	03/28/03	03/28/03	
Acetone	ND U	10	1	03/28/03	03/28/03	
Iodomethane	ND U	2.0	1	03/28/03	03/28/03	
Carbon Disulfide	ND U	2.0	1	03/28/03	03/28/03	
Methylene Chloride	ND U	1.0	1	03/28/03	03/28/03	
Methyl tert-Butyl Ether	ND U	1.0	1	03/28/03	03/28/03	
trans-1,2-Dichloroethene	ND U	0.50	1	03/28/03	03/28/03	
1,1-Dichloroethane	· 17	0.50	1	03/28/03	03/28/03	
Vinyl Acetate	ND U	3.0	1	03/28/03	03/28/03	
2,2-Dichloropropane	ND U	2.0	1	03/28/03	03/28/03	
2-Butanone (MEK)	12	8.0	1	03/28/03	03/28/03	
cis-1,2-Dichloroethene	22	0.50	1	03/28/03	03/28/03	
Bromochloromethane	ND U	0.50	1	03/28/03	03/28/03	L1
Chloroform	2.6	1.0	1	03/28/03	03/28/03	
1,1,1-Trichloroethane	ND U	0.50	1	03/28/03	03/28/03	
Carbon Tetrachloride	ND U	0.50	1	03/28/03	03/28/03	
1,1-Dichloropropene	ND U	0.50	1	03/28/03	03/28/03	
Benzene	0.80	0.50	1	03/28/03	03/28/03	
1,2-Dichloroethane	ND U	0.50	1	03/28/03	03/28/03	
Trichloroethene	87 D	5.0	10	03/28/03	03/28/03	D2
1,2-Dichloropropane	ND U	0.50	1	03/28/03	03/28/03	
Dibromomethane	ND U	0.50	1	03/28/03	03/28/03	L1
Bromodichloromethane	0.99	0.50	1	03/28/03	03/28/03	·
cis-1,3-Dichloropropene	ND U	0.50	1	03/28/03	03/28/03	
4-Methyl-2-pentanone (MIBK)	ND U	8.0	1	03/28/03	03/28/03	
Toluene	ND U	0.50	1	03/28/03	03/28/03	
trans-1,3-Dichloropropene	ND U	1.0	1	03/28/03	03/28/03	

Comments:

Printed: 07/17/2003 14:01:46

Form 1A - Organic

1 of 3 Page

RR3145

Analytical Results

Client: Project: BE&K Terranext WVB/#03103154

Sample Matrix:

Water

Service Request: X2300234

Date Collected: 03/18/2003 **Date Received:** 03/18/2003

Volatile Organic Compounds

Sample Name: Lab Code: AVB14-0100-18102

Extraction Method:

X2300234-004

Analysis Method:

EPA 5030B 8260B Units: ug/L Basis: NA

Level: Low

			Dilution	Date	Date	
Analyte Name	Result Q	MRL	Factor	Extracted	-	Arizona Qualifier
1,1,2-Trichloroethane	ND U	1.0	1	03/28/03	03/28/03	
Tetrachloroethene	3.5	0.50	1	03/28/03	03/28/03	
2-Hexanone	ND U	5.0	1	03/28/03	03/28/03	
1,3-Dichloropropane	ND U	1.0	1	03/28/03	03/28/03	
Dibromochloromethane	0.59	0.50	1	03/28/03	03/28/03	
1,2-Dibromoethane	ND U	0.50	1	03/28/03	03/28/03	
Chlorobenzene	ND U	0.50	1	03/28/03	03/28/03	
1,1,1,2-Tetrachloroethane	ND U	0.50	1	03/28/03	03/28/03	
Ethylbenzene	ND U	0.50	1	03/28/03	03/28/03	
m,p-Xylenes	ND U	1.0	1	03/28/03	03/28/03	
o-Xylene	ND U	0.50	1	03/28/03	03/28/03	
Styrene	ND U	0.50	1	03/28/03	03/28/03	
Isopropylbenzene	ND U	0.50	1	03/28/03	03/28/03	
Bromobenzene	ND U	0.50	1	03/28/03	03/28/03	
1,2,3-Trichloropropane	ND U	1.0	1	03/28/03	03/28/03	L1
n-Propylbenzene	ND U	0.50	1	03/28/03	03/28/03	
2-Chlorotoluene	ND U	0.50	1	03/28/03	03/28/03	
4-Chlorotoluene	ND U	0.50	1	03/28/03	03/28/03	
1,3,5-Trimethylbenzene	ND U	0.50	1	03/28/03	03/28/03	
tert-Butylbenzene	ND U	0.50	1	03/28/03	03/28/03	
1,2,4-Trimethylbenzene	ND U	0.50	1	03/28/03	03/28/03	
sec-Butylbenzene	ND U	0.50	1	03/28/03	03/28/03	
1,3-Dichlorobenzene	ND U	0.50	1	03/28/03	03/28/03	
4-Isopropyltoluene	ND U	0.50	1	03/28/03	03/28/03	
Bromoform	ND U	0.50	1	03/28/03	03/28/03	
1,1,2,2-Tetrachloroethane	ND U	1.0	1	03/28/03	03/28/03	
1,4-Dichlorobenzene	ND U	0.50	1	03/28/03	03/28/03	
1,2-Dichlorobenzene	ND U	0.50	1	03/28/03	03/28/03	
n-Butylbenzene	ND U	0.50	1	03/28/03	03/28/03	
1,2-Dibromo-3-chloropropane	ND U	5.0	1	03/28/03	03/28/03	
1,2,4-Trichlorobenzene	ND U	0.50	. 1	03/28/03	03/28/03	
Hexachlorobutadiene	ND U	0.50	1	03/28/03	03/28/03	
Naphthalene	ND U	3.0	1	03/28/03	03/28/03	
1,2,3-Trichlorobenzene	ND U	0.50	. 1	03/28/03	03/28/03	
		•				

Comments:

000018

Form 1A - Organic

Page 2 of 3

Printed: 07/17/2003 14:01:46 L:\STEALTH\CRYSTAL.RPT\Formim.rpt

Merged

SuperSet Reference: RR3145

Analytical Results

Client: Project: BE&K Terranext WVB/#03103154

Sample Matrix:

Water

Service Request: X2300234

Date Collected: 03/18/2003

Date Received: 03/18/2003

Volatile Organic Compounds

Sample Name:

AVB14-0100-18102

Lab Code:

X2300234-004

Units: ug/L

Basis: NA

Surrogate Name	%Rec	Control Limits	Date Analyzed	Arizona Qualifier	
Dibromofluoromethane	106	84-113	03/28/03		
Toluene-d8	105	68-126	03/28/03		
4-Bromofluorobenzene	97	79-113	03/28/03		

Comments:

Analytical Results

Client: Project: BE&K Terranext WVB/#03103154

Sample Matrix:

Water

Service Request: X2300234

Date Collected: 03/18/2003

Date Received: 03/18/2003

Volatile Organic Compounds

Sample Name: Lab Code: AVB14-0104-1000 X2300234-005

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

				Dilution	Date	Date	
Analyte Name	Result	Q	MRL	Factor	Extracted		Arizona Qualifier
Dichlorodifluoromethane	ND	U	3.0	1	03/28/03	03/28/03	
Chloromethane	ND	U	2.0	1	03/28/03	03/28/03	
Vinyl Chloride	ND	U	1.0	1	03/28/03	03/28/03	
Bromomethane	ND	U	1.0	1	03/28/03	03/28/03	
Chloroethane	ND	U	1.0	1	03/28/03	03/28/03	
Trichlorofluoromethane	ND	U	1.0	1	03/28/03	03/28/03	
1,1,2-Trichlorotrifluoroethane	ND		1.0	1	03/28/03	03/28/03	
1,1-Dichloroethene	ND	U	1.0	1	03/28/03	03/28/03	
Acetone	ND	U	10	1	03/28/03	03/28/03	
Iodomethane	ND	U	2.0	1	03/28/03	03/28/03	
Carbon Disulfide	ND	U	2.0	1	03/28/03	03/28/03	
Methylene Chloride	ND	U	1.0	1	03/28/03	03/28/03	
Methyl tert-Butyl Ether	ND	U	1.0	1	03/28/03	03/28/03	
trans-1,2-Dichloroethene	ND	U	0.50	1	03/28/03	03/28/03	
1,1-Dichloroethane	ND	U	0.50	1	03/28/03	03/28/03	
Vinyl Acetate	ND	U	3.0	1	03/28/03	03/28/03	
2,2-Dichloropropane	ND	U	2.0	1	03/28/03	03/28/03	
2-Butanone (MEK)	ND	U	8.0	1	03/28/03	03/28/03	
cis-1,2-Dichloroethene	ND	U	0.50	1	03/28/03	03/28/03	
Bromochloromethane	ND	U	0.50	1	03/28/03		L1
Chloroform	ND	U	1.0	1	03/28/03	03/28/03	
1,1,1-Trichloroethane	ND	U	0.50	1	03/28/03	03/28/03	
Carbon Tetrachloride	ND	U	0.50	1	03/28/03	03/28/03	
1,1-Dichloropropene	ND	U	0.50	1	03/28/03	03/28/03	
Benzene	ND	U	0.50	1	03/28/03	03/28/03	
1,2-Dichloroethane	ND	U	0.50	1	03/28/03	03/28/03	
Trichloroethene	ND	\cdot Ω	0.50	1	03/28/03	03/28/03	
1,2-Dichloropropane	ND	U	0.50	1	03/28/03	03/28/03	
Dibromomethane	ND	U	0.50	1	03/28/03	03/28/03	L1
Bromodichloromethane	ND	U	0.50	1	03/28/03	03/28/03	
cis-1,3-Dichloropropene	ND	U	0.50	1	03/28/03	03/28/03	
4-Methyl-2-pentanone (MIBK)	ND		8.0	. 1	03/28/03	03/28/03	
Toluene	ND		0.50	1	03/28/03	03/28/03	
trans-1,3-Dichloropropene	ND	U	1.0	1	03/28/03	03/28/03	
			•.				

Comments:

000020

Form 1A - Organic

Page 1 of 3

SuperSet Reference: RR3145

Analytical Results

Client: Project: BE&K Terranext WVB/#03103154

Sample Matrix:

Water

Service Request: X2300234

Date

Date Collected: 03/18/2003

Date Received: 03/18/2003

Volatile Organic Compounds

Dilution

Date

Sample Name: Lab Code: AVB14-0104-1000 X2300234-005

Extraction Method:

EPA 5030B

Units: ug/L Basis: NA

Level: Low

L'Atlaction internous	
Analysis Method:	8260B

				Dilution	Date	Date	
Analyte Name	Result	Q	MRL	Factor	Extracted		Arizona Qualifier
1,1,2-Trichloroethane	ND	Ú	1.0	1	03/28/03	03/28/03	
Tetrachloroethene	ND	U	0.50	1	03/28/03	03/28/03	
2-Hexanone	ND	Ū	5.0	1	03/28/03	03/28/03	
1,3-Dichloropropane	ND		1.0	1	03/28/03	03/28/03	
Dibromochloromethane	ND	U	0.50	1	03/28/03	03/28/03	
1,2-Dibromoethane	ND	U	0.50	1	03/28/03	03/28/03	
Chlorobenzene	ND		0.50	. 1	03/28/03	03/28/03	
1,1,1,2-Tetrachloroethane	ND	U	0.50	1	03/28/03	03/28/03	
Ethylbenzene	ND	U	0.50	1	03/28/03	03/28/03	
m,p-Xylenes	ND		1.0	1	03/28/03	03/28/03	
o-Xylene	ND		0.50	1	03/28/03	03/28/03	
Styrene	ND	U	0.50	1	03/28/03	03/28/03	
Isopropylbenzene	ND		0.50	1	03/28/03	03/28/03	
Bromobenzene	ND		0.50	1	03/28/03	03/28/03	
1,2,3-Trichloropropane	ND	U	1.0	1	03/28/03	03/28/03	L1
n-Propylbenzene	ND		0.50	1	03/28/03	03/28/03	
2-Chlorotoluene	ND		0.50	1	03/28/03	03/28/03	
4-Chlorotoluene	ND	U	0.50	1	03/28/03	03/28/03	
1,3,5-Trimethylbenzene	ND		0.50	1	03/28/03	03/28/03	
tert-Butylbenzene	ND		0.50	1	03/28/03	03/28/03	
1,2,4-Trimethylbenzene	ND	U	0.50	1	03/28/03	03/28/03	
sec-Butylbenzene	ND		0.50	1	03/28/03	03/28/03	
1,3-Dichlorobenzene	ND		0.50	1	03/28/03	03/28/03	
4-Isopropyltoluene	ND	Ū	0.50	1	03/28/03	03/28/03	
Bromoform	ND		0.50	1	03/28/03	03/28/03	
1,1,2,2-Tetrachloroethane	ND	U	1.0	1	03/28/03	03/28/03	
1,4-Dichlorobenzene	ND	U	0.50	1	03/28/03	03/28/03	
1,2-Dichlorobenzene	ND		0.50	1	03/28/03	03/28/03	
n-Butylbenzene	ND		0.50	1	03/28/03	03/28/03	
1,2-Dibromo-3-chloropropane	ND	U	5.0	1	03/28/03	03/28/03	
1.2.4-Trichlorobenzene	ND		0.50	1	03/28/03	03/28/03	
Hexachlorobutadiene	ND		0.50	1	03/28/03	03/28/03	
Naphthalene	ND		3.0	1	03/28/03	03/28/03	
1,2,3-Trichlorobenzene	ND		0.50	1	03/28/03	03/28/03	
-,-,-			•				

Comments:

000021

Form 1A - Organic

Page 2 of 3

Merged

SuperSet Reference: RR3145

Analytical Results

Client: Project: BE&K Terranext WVB/#03103154

Sample Matrix:

Water

Service Request:

Service Request: X2300234

Date Collected: 03/18/2003

Date Received: 03/18/2003

Volatile Organic Compounds

Sample Name:

AVB14-0104-1000

Lab Code:

X2300234-005

Units: ug/L

Basis: NA

Surrogate Name	%Rec	Control Limits	Date Analyzed	Arizona Qualifier
Dibromofluoromethane	106	84-113	03/28/03	
Toluene-d8	105	68-126	03/28/03	
4-Bromofluorobenzene	99	79-113	03/28/03	

Comments:

000022

Form 1A - Organic

Page 3 of 3

Analytical Results

Client: Project: BE&K Terranext WVB/#03103154

Sample Matrix:

Water

C .

Service Request: X2300234

Date Collected: 03/18/2003

Date Received: 03/18/2003

Volatile Organic Compounds

Sample Name: Lab Code: AVB14-0102-1000 X2300234-006

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

				Dilution	Date	Date	
Analyte Name	Result	Q	MRL	Factor	Extracted	Analyzed	Arizona Qualifier
Dichlorodifluoromethane	ND	U	3.0	1	03/28/03	03/28/03	
Chloromethane	ND	U	2.0	1	03/28/03	03/28/03	
Vinyl Chloride	ND	U	1.0	1	03/28/03	03/28/03	
Bromomethane	ND	U	1.0	1	03/28/03	03/28/03	
Chloroethane	ND	U	1.0	1	03/28/03	03/28/03	
Trichlorofluoromethane	ND	U	1.0	1	03/28/03	03/28/03	
1,1,2-Trichlorotrifluoroethane	ND	U	1.0	1	03/28/03	03/28/03	
1,1-Dichloroethene	ND		1.0	1	03/28/03	03/28/03	
Acetone	ND	U	10	1	03/28/03	03/28/03	
Iodomethane	ND	Ū	2.0	1	03/28/03	03/28/03	
Carbon Disulfide	ND		2.0	1	03/28/03	03/28/03	
Methylene Chloride	ND		1.0	1	03/28/03	03/28/03	
Methyl tert-Butyl Ether	ND	IJ	1.0	1	03/28/03	03/28/03	
trans-1,2-Dichloroethene	ND		0.50	1	03/28/03	03/28/03	
1,1-Dichloroethane	ND		0.50	1	03/28/03	03/28/03	
Vinyl Acetate	ND		3.0	1	03/28/03	03/28/03	
2,2-Dichloropropane	ND		2.0	1	03/28/03	03/28/03	
2-Butanone (MEK)	ND		8.0	1	03/28/03	03/28/03	
cis-1,2-Dichloroethene	ND		0.50	1	03/28/03	03/28/03	
Bromochloromethane	ND		0.50	1	03/28/03	03/28/03	L1
Chloroform	ND		1.0	1	03/28/03	03/28/03	
	ND		0.50	1	03/28/03	03/28/03	
1,1,1-Trichloroethane Carbon Tetrachloride	ND ND		0.50	1	03/28/03	03/28/03	
1,1-Dichloropropene	ND		0.50	1	03/28/03	03/28/03	
	ND		0.50	1	03/28/03	03/28/03	
Benzene	ND ND		0.50	î	03/28/03	03/28/03	
1,2-Dichloroethane Trichloroethene	ND		0.50	1	03/28/03	03/28/03	
	ND		0.50	1	03/28/03	03/28/03	
1,2-Dichloropropane	ND ND		0.50	1	03/28/03	03/28/03	
Dibromomethane	ND ND		0.50	î	03/28/03	03/28/03	
Bromodichloromethane			0.50	1	03/28/03	03/28/03	
cis-1,3-Dichloropropene		U U	8.0	1	03/28/03	03/28/03	
4-Methyl-2-pentanone (MIBK)		U	0.50	1	03/28/03	03/28/03	
Toluene	IND		0.50				

Comments:

 $\begin{array}{llll} Printed: & 04/02/2003 & 14:31:38 \\ \text{L:} \text{L:} \text{STEALTH:} \text{CRYSTAL:RPT:} \text{Form:} \text{Im:} \text{pt} \end{array}$

Merged

Form 1A - Organic

000023

Page 1 of 3

Analytical Results

Client: Project: BE&K Terranext WVB/#03103154

Sample Matrix:

Water

Service Request: X2300234

Date Collected: 03/18/2003

Date Received: 03/18/2003

Volatile Organic Compounds

Sample Name: Lab Code:

AVB14-0102-1000 X2300234-006

Extraction Method: Analysis Method:

EPA 5030B 8260B

Units: ug/L Basis: NA

Level: Low

			Dilution	Date	Date	0 110
Analyte Name	Result Q	MRL	Factor	Extracted		Arizona Qualifier
trans-1,3-Dichloropropene	ND U	1.0	1	03/28/03	03/28/03	•
1,1,2-Trichloroethane	ND U	1.0	1	03/28/03	03/28/03	
Tetrachloroethene	ND U	0.50	1	03/28/03	03/28/03	
2-Hexanone	ND U	5.0	1	03/28/03	03/28/03	
1,3-Dichloropropane	ND U	1.0	1	03/28/03	03/28/03	
Dibromochloromethane	ND U	0.50	1	03/28/03	03/28/03	
1,2-Dibromoethane	ND U	0.50	1	03/28/03	03/28/03	
Chlorobenzene	ND U	0.50	1	03/28/03	03/28/03	
1,1,1,2-Tetrachloroethane	ND U	0.50	1	03/28/03	03/28/03	
Ethylbenzene	ND U	0.50	1	03/28/03	03/28/03	
m,p-Xylenes	ND U	1.0	1	03/28/03	03/28/03	
o-Xylene	ND U	0.50	1	03/28/03	03/28/03	
Styrene	ND U	0.50	1	03/28/03	03/28/03	
Isopropylbenzene	ND U	0.50	1	03/28/03	03/28/03	
Bromobenzene	ND U	0.50	1	03/28/03	03/28/03	
1,2,3-Trichloropropane	ND U	1.0	1	03/28/03	03/28/03	
n-Propylbenzene	ND U	0.50	1	03/28/03	03/28/03	
2-Chlorotoluene	ND U	0.50	1	03/28/03	03/28/03	
4-Chlorotoluene	ND U	0.50	1	03/28/03	03/28/03	
1,3,5-Trimethylbenzene	ND U	0.50	1	03/28/03	03/28/03	
tert-Butylbenzene	ND U	0.50	1	03/28/03	03/28/03	
1,2,4-Trimethylbenzene	ND U	0.50	1	03/28/03	03/28/03	
sec-Butylbenzene	ND U	0.50	1	03/28/03	03/28/03	
1,3-Dichlorobenzene	ND U	0.50	1	03/28/03	03/28/03	
4-Isopropyltoluene	ND U	0.50	1	03/28/03	03/28/03	
Bromoform	ND U	0.50	1	03/28/03	03/28/03	
1,1,2,2-Tetrachloroethane	ND U	1.0	1	03/28/03	03/28/03	
1,4-Dichlorobenzene	ND U	0.50	1	03/28/03	03/28/03	
1,2-Dichlorobenzene	ND U	0.50	1	03/28/03	03/28/03	
n-Butylbenzene	ND U	0.50	1	03/28/03	03/28/03	
1,2-Dibromo-3-chloropropane	ND U	5.0	1	03/28/03	03/28/03	
1,2,4-Trichlorobenzene	ND U	0.50	1	03/28/03	03/28/03	
Hexachlorobutadiene	ND U	0.50	1	03/28/03	03/28/03	
- Italion of dualone						

Comments:

Form 1A - Organic

000024

2 of 3 Page

RR3145

Analytical Results

Client: Project: BE&K Terranext WVB/#03103154

Sample Matrix:

Water

Service Request: X2300234

Date Collected: 03/18/2003 **Date Received:** 03/18/2003

Volatile Organic Compounds

Sample Name: Lab Code:

AVB14-0102-1000 X2300234-006

Extraction Method: EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

			Dilution	Date	Date	
Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed	Arizona Qualifier
Naphthalene	ND U	3.0	1	03/28/03	03/28/03	
1,2,3-Trichlorobenzene	ND U	0.50	1	03/28/03	03/28/03	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Arizona Qualifier	
Dibromofluoromethane	102	84-113	03/28/03		
Toluene-d8	107	68-126	03/28/03		
4-Bromofluorobenzene	95	79-113	03/28/03		

Comments:

Printed: 04/02/2003 14:31:38 L:\STEALTH\CRYSTAL.RPT\Formlm.rpt

Merged

Form 1A - Organic

000025

Page 3 of 3

SuperSet Reference: RR3145

Analytical Results

Client: Project: BE&K Terranext WVB/#03103154

Sample Matrix:

Water

Service Request: X2300234

Date Collected: NA Date Received: NA

Volatile Organic Compounds

Sample Name: Lab Code:

Method Blank XWG0300410-5

Extraction Method: Analysis Method:

EPA 5030B

8260B

Units: ug/L Basis: NA

Level: Low

				Dilution	Date	Date	
Analyte Name	Result	Q	MRL	Factor	Extracted		Arizona Qualifier
Dichlorodifluoromethane	ND	U	3.0	1	03/27/03	03/27/03	
Chloromethane	ND	U	2.0	1	03/27/03	03/27/03	
Vinyl Chloride	ND	U	1.0	1	03/27/03	03/27/03	
Bromomethane	ND	U	1.0	1	03/27/03	03/27/03	
Chloroethane	ND	U	1.0	1	03/27/03	03/27/03	
Trichlorofluoromethane	ND	U	1.0	1	03/27/03	03/27/03	
1,1,2-Trichlorotrifluoroethane	ND	U	1.0	1	03/27/03	03/27/03	
1,1-Dichloroethene	ND	U	1.0	1	03/27/03	03/27/03	
Acetone	ND	U	10	1	03/27/03	03/27/03	
Iodomethane	ND	U	2.0	1	03/27/03	03/27/03	
Carbon Disulfide	ND	U	2.0	1	03/27/03	03/27/03	
Methylene Chloride	ND	U	1.0	1	03/27/03	03/27/03	
Methyl tert-Butyl Ether	ND	U	1.0	1	03/27/03	03/27/03	
trans-1,2-Dichloroethene	ND		0.50	1	03/27/03	03/27/03	
1,1-Dichloroethane	ND		0.50	1	03/27/03	03/27/03	
Vinyl Acetate	ND	U	3.0	1	03/27/03	03/27/03	
2,2-Dichloropropane	ND		2.0	1	03/27/03	03/27/03	
2-Butanone (MEK)	ND		8.0	1	03/27/03	03/27/03	
cis-1,2-Dichloroethene	ND	U	0.50	1	03/27/03	03/27/03	
Bromochloromethane	ND		0.50	1	03/27/03	03/27/03	L1
Chloroform	ND	U	1.0	1	03/27/03	03/27/03	
1,1,1-Trichloroethane	ND	U	0.50	1	03/27/03	03/27/03	
Carbon Tetrachloride	ND		0.50	1	03/27/03	03/27/03	
1,1-Dichloropropene	ND		0.50	1	03/27/03	03/27/03	
Benzene	ND	U	0.50	1	03/27/03	03/27/03	
1,2-Dichloroethane	ND		0.50	1	03/27/03	03/27/03	
Trichloroethene	ND		0.50	1	03/27/03	03/27/03	
1,2-Dichloropropane	ND	IJ	0.50	1	03/27/03	03/27/03	
Dibromomethane	ND		0.50	1	03/27/03	03/27/03	L1
Bromodichloromethane	ND		0.50	1	03/27/03	03/27/03	
cis-1,3-Dichloropropene	ND		0.50	1	03/27/03	03/27/03	
4-Methyl-2-pentanone (MIBK)	ND		8.0	1	03/27/03	03/27/03	
Toluene	ND		0.50	1	03/27/03	03/27/03	
1 010010							

Comments:

000026

Analytical Results

Client: Project: BE&K Terranext WVB/#03103154

Sample Matrix:

Water

Service Request: X2300234

Date Collected: NA Date Received: NA

Volatile Organic Compounds

Sample Name: Lab Code:

Method Blank XWG0300410-5

Extraction Method: Analysis Method:

EPA 5030B 8260B

Units: ug/L Basis: NA

Level: Low

				Dilution	Date	Date	
Analyte Name	Result	Q	MRL	Factor_	Extracted		Arizona Qualifier
trans-1,3-Dichloropropene	ND	U	1.0	1	03/27/03	03/27/03	
1,1,2-Trichloroethane	ND	U	1.0	1	03/27/03	03/27/03	
Tetrachloroethene	ND	U	0.50	1	03/27/03	03/27/03	
2-Hexanone	ND	U	5.0	1	03/27/03	03/27/03	
1,3-Dichloropropane	ND	U	1.0	1	03/27/03	03/27/03	
Dibromochloromethane	ND	U	0.50	1	03/27/03	03/27/03	
1,2-Dibromoethane	ND	U	0.50	1	03/27/03	03/27/03	
Chlorobenzene	ND		0.50	1	03/27/03	03/27/03	
1,1,1,2-Tetrachloroethane	ND	U	0.50	1	03/27/03	03/27/03	
Ethylbenzene	ND	IJ	0.50	1	03/27/03	03/27/03	
m,p-Xylenes	ND		1.0	1	03/27/03	03/27/03	
o-Xylene	ND		0.50	1	03/27/03	03/27/03	
Styrene	ND	IJ	0.50	1	03/27/03	03/27/03	
Isopropylbenzene	ND		0.50	1	03/27/03	03/27/03	
Bromobenzene	ND		0.50	1	03/27/03	03/27/03	
1,2,3-Trichloropropane	ND	IT	1.0	1	03/27/03	03/27/03	L1
n-Propylbenzene	ND		0.50	1	03/27/03	03/27/03	
2-Chlorotoluene	ND		0.50	1	03/27/03	03/27/03	
4-Chlorotoluene	ND		0.50	1	03/27/03	03/27/03	
1,3,5-Trimethylbenzene	ND		0.50	1	03/27/03	03/27/03	
tert-Butylbenzene	ND		0,50	1	03/27/03	03/27/03	
	ND		0.50	1	03/27/03	03/27/03	
1,2,4-Trimethylbenzene sec-Butylbenzene	ND ND		0.50	î	03/27/03	03/27/03	
1,3-Dichlorobenzene	ND		0.50	1	03/27/03	03/27/03	
4-Isopropyltoluene	ND		0.50	1	03/27/03	03/27/03	
Bromoform	ND		0.50	1	03/27/03	03/27/03	
1,1,2,2-Tetrachloroethane	ND		1.0	1	03/27/03	03/27/03	
	ND		0.50	1	03/27/03	03/27/03	
1,4-Dichlorobenzene 1,2-Dichlorobenzene	ND ND		0.50	î	03/27/03	03/27/03	
n-Butylbenzene	ND		0.50	ī	03/27/03	03/27/03	
1,2-Dibromo-3-chloropropane	ND		5.0	1	03/27/03	03/27/03	
	ND ND		0.50	1	03/27/03	03/27/03	
1,2,4-Trichlorobenzene Hexachlorobutadiene	ND ND		0.50	1	03/27/03	03/27/03	
riexaciiiofouttautette	1115		0.50	_			

Comments:

000027

Analytical Results

Client: Project: BE&K Terranext WVB/#03103154

Sample Matrix:

Water

Service Request: X2300234

Date Collected: NA Date Received: NA

Volatile Organic Compounds

Sample Name:

Method Blank

Units: ug/L Basis: NA

Lab Code:

XWG0300410-5

Level: Low

Extraction Method: Analysis Method:

EPA 5030B

8260B

			Dilution	Date	Date	
Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed	Arizona Qualifier
Naphthalene	ND U	3.0	1	03/27/03	03/27/03	
1,2,3-Trichlorobenzene	ND U	0.50	1	03/27/03	03/27/03	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Arizona Qualifier	
Dibromofluoromethane Toluene-d8	103 101	84-113 68-126	03/27/03 03/27/03		
4-Bromofluorobenzene	96	79-113	03/27/03		

Comments:

Printed: 04/02/2003 14:31:50

Merged

Form 1A - Organic

000028

Page 3 of 3

SuperSet Reference:

Analytical Results

Client: Project: BE&K Terranext WVB/#03103154

Sample Matrix:

Water

Service Request: X2300234

Date Collected: NA Date Received: NA

Volatile Organic Compounds

Sample Name: Lab Code:

Method Blank XWG0300417-5

Extraction Method: EPA 5030B **Analysis Method:**

8260B

Units: ug/L Basis: NA

Level: Low

			Dilution	Date	Date	
Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed	Arizona Qualifier
Dichlorodifluoromethane	ND U	3.0	1	03/28/03	03/28/03	
Chloromethane	ND U	2.0	1	03/28/03	03/28/03	
Vinyl Chloride	ND U	1.0	1	03/28/03	03/28/03	
Bromomethane	ND U	1.0	1	03/28/03	03/28/03	
Chloroethane	ND U	1.0	1	03/28/03	03/28/03	
Trichlorofluoromethane	ND U	1.0	1	03/28/03	03/28/03	
1,1,2-Trichlorotrifluoroethane	ND U	1.0	1	03/28/03	03/28/03	
1,1-Dichloroethene	ND U	1.0	1	03/28/03	03/28/03	
Acetone	ND U	10	1	03/28/03	03/28/03	
Iodomethane	ND U	2.0	1	03/28/03	03/28/03	
Carbon Disulfide	ND U	2.0	1	03/28/03	03/28/03	
Methylene Chloride	ND U	1.0	1	03/28/03	03/28/03	
Methyl tert-Butyl Ether	ND U	1.0	1	03/28/03	03/28/03	
trans-1,2-Dichloroethene	ND U	0.50	1	03/28/03	03/28/03	
1,1-Dichloroethane	ND U	0.50	1	03/28/03	03/28/03	
Vinyl Acetate	ND U	3.0	1	03/28/03	03/28/03	
2,2-Dichloropropane	ND U	2.0	1	03/28/03	03/28/03	
2-Butanone (MEK)	ND U	8.0	1	03/28/03	03/28/03	
cis-1,2-Dichloroethene	ND U	0.50	1	03/28/03	03/28/03	
Bromochloromethane	ND U	0.50	1	03/28/03		L1
Chloroform	ND U	1.0	1	03/28/03	03/28/03	
1.1.1-Trichloroethane	ND U	0.50	1	03/28/03	03/28/03	
Carbon Tetrachloride	ND U	0.50	1	03/28/03	03/28/03	
1,1-Dichloropropene	ND U	0.50	1	03/28/03	03/28/03	
Benzene	ND U	0.50	1	03/28/03	03/28/03	
1,2-Dichloroethane	ND U	0.50	1	03/28/03	03/28/03	
Trichloroethene	ND U	0.50	1	03/28/03	03/28/03	
1,2-Dichloropropane	ND U	0.50	1	03/28/03	03/28/03	
Dibromomethane	ND U	0.50	1	03/28/03	03/28/03	
Bromodichloromethane	ND U	0.50	1	03/28/03	03/28/03	
cis-1,3-Dichloropropene	ND U	0.50	1	03/28/03	03/28/03	
4-Methyl-2-pentanone (MIBK)	ND U	8.0	1	03/28/03	03/28/03	
Toluene	ND U	0.50	1	03/28/03	03/28/03	

Comments:

Printed: 04/02/2003 14:32:02 L:\STEALTH\CRYSTAL.RPT\Form1m.rpt

Merged

Form 1A - Organic

000029

Page 1 of 3

SuperSet Reference:

RR3145

Analytical Results

Client: Project: BE&K Terranext WVB/#03103154

Sample Matrix:

Water

Service Request: X2300234

Date Collected: NA

Date Received: NA

Volatile Organic Compounds

Sample Name: Lab Code:

Method Blank XWG0300417-5

Extraction Method: EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

	D 14	0	MRL	Dilution Factor	Date Extracted	Date	Arizona Qualifier
Analyte Name	Result				03/28/03	03/28/03	Mileona Quantier
trans-1,3-Dichloropropene	ND		1.0	1 1	03/28/03	03/28/03	
1,1,2-Trichloroethane	ND		1.0	1	03/28/03	03/28/03	
Tetrachloroethene	ND		0.50				
2-Hexanone	ND		5.0	1	03/28/03	03/28/03	
1,3-Dichloropropane	ND		1.0	1	03/28/03	03/28/03 03/28/03	
Dibromochloromethane	ND		0.50	1	03/28/03		
1,2-Dibromoethane	ND		0.50	1	03/28/03	03/28/03	
Chlorobenzene	ND		0.50	1	03/28/03	03/28/03	
1,1,1,2-Tetrachloroethane	ND	U	0.50	1	03/28/03	03/28/03	
Ethylbenzene	ND	U	0.50	1	03/28/03	03/28/03	
m,p-Xylenes	ND	U	1.0	1	03/28/03	03/28/03	
o-Xylene	ND	U	0.50	1	03/28/03	03/28/03	
Styrene	ND	U	0.50	1	03/28/03	03/28/03	
Isopropylbenzene	ND		0.50	1	03/28/03	03/28/03	
Bromobenzene	ND		0.50	1	03/28/03	03/28/03	
1,2,3-Trichloropropane	ND		1.0	1	03/28/03	03/28/03	
n-Propylbenzene	ND		0.50	1	03/28/03	03/28/03	
2-Chlorotoluene	ND		0.50	1	03/28/03	03/28/03	
4-Chlorotoluene	ND		0.50	1	03/28/03	03/28/03	
1,3,5-Trimethylbenzene	ND		0.50	1	03/28/03	03/28/03	
tert-Butylbenzene	ND		0.50	1	03/28/03	03/28/03	
1,2,4-Trimethylbenzene	ND		0.50	1	03/28/03	03/28/03	
sec-Butylbenzene	ND		0.50	ī	03/28/03	03/28/03	
1,3-Dichlorobenzene	ND		0.50	1	03/28/03	03/28/03	
4-Isopropyltoluene	ND		0.50	1	03/28/03	03/28/03	
Bromoform	ND		0.50	1	03/28/03	03/28/03	
1,1,2,2-Tetrachloroethane	ND		1.0	1	03/28/03	03/28/03	
	ND		0.50	1	03/28/03	03/28/03	
1,4-Dichlorobenzene	ND ND		0.50	1	03/28/03	03/28/03	
1,2-Dichlorobenzene	ND ND		0.50	1	03/28/03	03/28/03	
n-Butylbenzene					03/28/03	03/28/03	
1,2-Dibromo-3-chloropropane	ND		5.0	1	03/28/03	03/28/03	
1,2,4-Trichlorobenzene	ND		0.50	1 1	03/28/03	03/28/03	
Hexachlorobutadiene	ND	· U	0.50	1	03/26/03	03/26/03	

Comments:

Printed: 04/02/2003 14:32:02 L:\STEALTH\CRYSTAL.RPT\Form1m.rpt

Merged

Form 1A - Organic

000030

Page 2 of 3

SuperSet Reference:

RR3145

Analytical Results

Client:

BE&K Terranext WVB/#03103154

Project: Sample Matrix:

Water

Service Request: X2300234

Date Collected: NA Date Received: NA

Volatile Organic Compounds

Sample Name: Lab Code:

Method Blank XWG0300417-5

Extraction Method:

EPA 5030B

Units: ug/L

Basis: NA

Level: Low

Analysis Method:

8260B

Date Dilution Date Analyzed Arizona Qualifier **Factor** Extracted MRL Result Q **Analyte Name** 03/28/03 03/28/03 1 3.0 Naphthalene ND U 03/28/03 03/28/03 1 ND U 0.50 1,2,3-Trichlorobenzene

Surrogate Name	%Rec	Control Limits	Date Analyzed	Arizona Qualifier	
Dibromofluoromethane	103	84-113	03/28/03		
Toluene-d8	103	68-126	03/28/03		
4-Bromofluorobenzene	99	79-113	03/28/03		

Comments:

000031

QA/QC Report

Client:

BE&K Terranext WVB/#03103154

Project: Sample Matrix:

Water

Service Request: X2300234

Surrogate Recovery Summary Volatile Organic Compounds

Extraction Method: Analysis Method:

EPA 5030B 8260B

Units: PERCENT

Level: Low

Sample Name	Lab Code	Sur1	Sur2	Sur3
AVB112-0100-02129	X2300234-001	103	101	94
AVB18-0100-19101	X2300234-002	102	101	98
AVB12-0100-19102	X2300234-003	103	104	99
AVB14-0100-18102	X2300234-004	106	105	97
AVB14-0104-1000	X2300234-005	106	105	99
AVB14-0102-1000	X2300234-006	102	107	95
Method Blank	XWG0300410-5	103	101	96
Method Blank	XWG0300417-5	103	103	99
Batch QC	X2300224-001	102	105	95
Batch QCMS	XWG0300410-1	106	105	100
Batch QCDMS	XWG0300410-2	100	100	94
AVB112-0100-02129MS	XWG0300417-1	101	107	100
AVB112-0100-02129DMS	XWG0300417-2	102	104	96
Lab Control Sample	XWG0300410-3	106	105	105
Duplicate Lab Control Sample	XWG0300410-4	101	101	98
Lab Control Sample	XWG0300417-3	105	96	102
Duplicate Lab Control Sample	XWG0300417-4	100	102	98

Surrogate Recovery Control Limits (%)

Sur1	=	Dibromofluoromethane	84-113
Sur2	=	Toluene-d8	68-126
Sur3	=	4-Bromofluorobenzene	79-113

Results flagged with an asterisk (*) indicate values outside control criteria. Results flagged with a pound (#) indicate the control criteria is not applicable.

000032

OA/OC Report

Client: **Project:** BE&K Terranext WVB/#03103154

Sample Matrix:

Water

Service Request: X2300234 Date Extracted: 03/27/2003

Date Analyzed: 03/27/2003

Matrix Spike/Duplicate Matrix Spike Summary Volatile Organic Compounds

Sample Name:

Batch QC

Lab Code:

X2300224-001

Extraction Method:

8260B **Analysis Method:**

EPA 5030B

Units: ug/L Basis: NA

Level: Low Extraction Lot: XWG0300410

Batch QCMS XWG0300410-1

Batch QCDMS XWG0300410-2

	Sample	XWG0300410-1 Matrix Spike				VG0300410-2 cate Matrix S _l	%Rec		RPD	
Analyte Name	Result	Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit
Dichlorodifluoromethane	ND	4.10	10.0	41 M2	3.93	10.0	39 M2	78-207	4	20
Chloromethane	ND	7.16	10.0	72	6.09	10.0	61 M2	70-157	16	20
Vinyl Chloride	ND	7.85	10.0	79	7.19	10.0	72 M2	79-174	9	20
Bromomethane	ND	9.14	10.0	91	7.68	10.0	77	44-150	17	20
Chloroethane	ND	11.1	10.0	111	9.52	10.0	95	74-150	16	20
Trichlorofluoromethane	ND	9.32	10.0	93	8.52	10.0	85	80-134	9	20
1,1,2-Trichlorotrifluoroethane	ND	11.2	10.0	112	10.2	10.0	102	67-128	9	20
1,1-Dichloroethene	ND	9.83	10.0	98	9.12	10.0	91	71-142	7	20
Acetone	ND	30.8	40.0	77	26.0	40.0	65	1-155	17	20
Iodomethane	ND	38.6	40.0	97	35.6	40.0	89	47-120	8	20
Carbon Disulfide	ND	43.2	40.0	108	39.6	40.0	99	77-126	9	20
Methylene Chloride	ND	10.5	10.0	105	9.43	10.0	94	83-106	10	20
Methyl tert-Butyl Ether	ND	9.32	10.0	93	8.58	10.0	86	70-118	8	20
trans-1,2-Dichloroethene	ND	10.8	10.0	108	9.89	10.0	99	86-115	9	20
1,1-Dichloroethane	ND	11.8	10.0	118	10.9	10.0	109	77-127	8	20
Vinyl Acetate	ND	46.0	40.0	115	41.2	40.0	103	8-187	11	20
2,2-Dichloropropane	ND	11.2	10.0	112	10.4	10.0	104	25-154	8	20
2-Butanone (MEK)	ND	35.9	40.0	90	36.9	40.0	92	90-112	3	20
cis-1,2-Dichloroethene	ND	10.3	10.0	103	10.0	10.0	100	69-118	3	20
Bromochloromethane	ND	11.0	10.0	110	10.6	10.0	106	47-136	4	20
Chloroform	ND	11.2	10.0	112	10.5	10.0	105	48-143	6	20
1,1,1-Trichloroethane	ND	9.68	10.0	97	9.02	10.0	90	84-122	7	20
Carbon Tetrachloride	ND	9.98	10.0	100	9.60	10.0	96	79-120	4	20
1,1-Dichloropropene	ND	10.7	10.0	107	9.97	10.0	100	85-117	7	20
Benzene	ND	10.3	10.0	103	9.67	10.0	97	88-114	6	20
1,2-Dichloroethane	ND	10.6	10.0	106	9.94	10.0	99	75-112	6	20
Trichloroethene	1.4	13.5	10.0	121 M1	12.6	10.0	112	76-115	7	20
1,2-Dichloropropane	ND	11.0	10.0	110 M1	10.3	10.0	103	85-107	7	20
Dibromomethane	ND	9.97	10.0	100	9.85	10.0	99	82-106	1	20
Bromodichloromethane	ND	9.78	10.0	98	9.01	10.0	90	83-107	8	20
cis-1,3-Dichloropropene	ND	11.1	10.0	111	9.94	10.0	99	70-114	11	20
4-Methyl-2-pentanone (MIBK)	ND	36.1	40.0	90	35.0	40.0	87	54-129	3	20
Toluene (Massa)	ND	10.5	10.0	105	9.84	10.0	98	86-114	6	20

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 04/02/2003 14:32:28 L:\STEALTH\CRYSTAL.RPT\Form3DMS.rpt Form 3A - Organic

000033 SuperSet Reference:

1 of 3 Page

RR3145

QA/QC Report

Client: Project: BE&K Terranext WVB/#03103154

Sample Matrix:

Water

Service Request: X2300234

Date Extracted: 03/27/2003 **Date Analyzed:** 03/27/2003

Matrix Spike/Duplicate Matrix Spike Summary Volatile Organic Compounds

Sample Name: Lab Code:

Batch QC X2300224-001

Extraction Method: Analysis Method:

EPA 5030B

8260B

Units: ug/L

Basis: NA

Level: Low

Extraction Lot: XWG0300410

Sample		Batch QCMS XWG0300410-1 Matrix Spike			Batch QCDMS XWG0300410-2 Duplicate Matrix Spike			%Rec		RPD
Analyte Name	Result	Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit
trans-1,3-Dichloropropene	ND	10.6	10.0	106	9.61	10.0	96	73-112	10	20
1,1,2-Trichloroethane	ND	9.73	10.0	97	9.03	10.0	90	79-112	7	20
Tetrachloroethene	47	60.5	10.0	131 M3	56.0	10.0	86	78-130	8	20
2-Hexanone	ND	39.7	40.0	99	34.4	40.0	86	77-112	14	20
1,3-Dichloropropane	ND	9.92	10.0	99	9.30	10.0	93	45-133	6	20
Dibromochloromethane	ND	9.73	10.0	97	8.78	10.0	88	74-108	10	20
1,2-Dibromoethane	ND	10.1	10.0	101	9.24	10.0	92	73-113	8	20
Chlorobenzene	ND	10.4	10.0	104	9.75	10.0	98	84-111	6	20
1,1,1,2-Tetrachloroethane	ND	9.79	10.0	98	9.32	10.0	93	84-119	5	20
	ND	10.9	10.0	109	10.3	10.0	103	47-136	6	20
Ethylbenzene	ND	21.5	20.0	107	20.7	20.0	104	84-120	4	20
m,p-Xylenes	ND	10.2	10.0	102	9.76	10.0	98	47-143	5	20
o-Xylene	ND	10.8	10.0	108	9.93	10.0	99	72-121	8	20
Styrene	ND	10.4	10.0	104	9.87	10.0	99	63-108	5	20
Isopropylbenzene	ND	10.6	10.0	106	10.2	10.0	102	80-113	4	20
Bromobenzene	ND	9.74	10.0	97	9.99	10.0	100	78-119	3	20
1,2,3-Trichloropropane	ND	10.9	10.0	109	10.3	10.0	103	76-117	6	20
n-Propylbenzene	ND	10.5	10.0	105	9.88	10.0	99	79-121	6	20
2-Chlorotoluene	ND	10.7	10.0	107	10.2	10.0	102	70-133	5	20
4-Chlorotoluene		10.7	10.0	107	9.97	10.0	100	79-118	5	20
1,3,5-Trimethylbenzene	ND		10.0	104	9.83	10.0	98	77-120	5	20
tert-Butylbenzene	ND	10.3	10.0	105	9.89	10.0	99	68-127	6	20
1,2,4-Trimethylbenzene	ND	10.5	10.0	99	9.45	10.0	95	78-123	5	20
sec-Butylbenzene	ND	9.93		100	9.43	10.0	94	78-127	6	20
1,3-Dichlorobenzene	ND	10.0	10.0 10.0	100	9.42	10.0	99	79-142	5	20
4-Isopropyltoluene	ND	10.4		95	8.92	10.0	89	83-111	6	20
Bromoform	ND	9.46	10.0		10.6	10.0	106	66-133	5	20
1,1,2,2-Tetrachloroethane	ND	11.2	10.0	112		10.0	97	48-139	4	20
1,4-Dichlorobenzene	ND	10.1	10.0	101	9.72	10.0	93	64-109	6	20
1,2-Dichlorobenzene	ND	9.82	10.0	98	9.27	10.0	105	69-122	3	20
n-Butylbenzene	ND	10.8	10.0	108	10.5			54-160	9	20
1,2-Dibromo-3-chloropropane	ND	10.1	10.0	101	9.18	10.0	92	39-145	1	20
1,2,4-Trichlorobenzene	ND	9.41	10.0	94	9.36	10.0	94	39-143 74 - 113	0	20
Hexachlorobutadiene	ND	11.4	10.0	114 M1	11.4	10.0	114 M1	/4-113	U	20

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 04/02/2003 14:32:28 L:\STEALTH\CRYSTAL.RPT\Form3DMS.rpt Form 3A - Organic

000034

2 of 3 Page

SuperSet Reference: RR3145

QA/QC Report

Client:

BE&K Terranext WVB/#03103154

Project: Sample Matrix:

Water

Service Request: X2300234

Date Extracted: 03/27/2003

Date Analyzed: 03/27/2003

Matrix Spike/Duplicate Matrix Spike Summary **Volatile Organic Compounds**

Sample Name:

Batch QC

Lab Code:

X2300224-001

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

Extraction Lot: XWG0300410

Batch QCMS

XWG0300410-1

Batch QCDMS

XWG0300410-2

Analyte Name	Sample Result	Matrix Spike			Duplicate Matrix Spike			%Rec		RPD
		Result	Expected	%Rec	Result	Expected	%Rec	Limits RI	RPD	Limit
Naphthalene	ND	8.51	10.0	85	8.48	10.0	85	44-167	0	20
1,2,3-Trichlorobenzene	ND	10.3	10.0	103	10.3	10.0	103	37-158	1	20

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 04/02/2003 14:32:28

QA/QC Report

Client: Project: BE&K Terranext WVB/#03103154

Sample Matrix:

Water

Service Request: X2300234 **Date Extracted:** 03/28/2003

Date Analyzed: 03/28/2003

Matrix Spike/Duplicate Matrix Spike Summary Volatile Organic Compounds

Sample Name:

AVB112-0100-02129

Lab Code:

X2300234-001

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L

Basis: NA

Level: Low

Extraction Lot: XWG0300417

AVB112-0100-02129MS

XWG0300417-1

AVB112-0100-02129DMS

XWG0300417-2

	Sample Result	Matrix Spike			Duplicate Matrix Spike			%Rec		RPD
Analyte Name		Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit
Dichlorodifluoromethane	ND	3.80	10.0	38 M2	4.00	10.0	40 M2	78-207	5	20
Chloromethane	ND	6.95	10.0	70	6.67	10.0	67 M2	70-157	4	20
Vinyl Chloride	ND	7.40	10.0	74 M2	7.60	10.0	76 M2	79-174	3	20
Bromomethane	ND	7.35	10.0	74	6.03	10.0	60	44-150	20	20
Chloroethane	ND	18.5	10.0	185 M2	14.9	10.0	149	74-150	21 R5	
Trichlorofluoromethane	ND	8.99	10.0	90	8.68	10.0	87	80-134	4	20
1,1,2-Trichlorotrifluoroethane	ND	10.5	10.0	105	10.9	10.0	109	67-128	4	20
1,1-Dichloroethene	ND	9.48	10.0	95	10.4	10.0	104	71-142	9	20
Acetone	21	54.2	40.0	82	75.2	40.0	134	1-155	32 R5	
Iodomethane	ND	36.7	40.0	92	36.2	40.0	91	47-120	1	20
Carbon Disulfide	ND	41.9	40.0	105	43.7	40.0	109	77-126	4	20
Methylene Chloride	ND	10.0	10.0	100	10.7	10.0	107 M1	83-106	6	20
Methyl tert-Butyl Ether	17	29.8	10.0	126 M1	31.9	10.0	146 M1	70-118	7	20
trans-1,2-Dichloroethene	ND	10.5	10.0	105	11.0	10.0	110	86-115	5	20
1,1-Dichloroethane	ND	11.2	10.0	112	11.6	10.0	116	77-127	4	20
Vinyl Acetate	ND	49.4	40.0	124	50.4	40.0	126	8-187	2	20
2,2-Dichloropropane	ND	10.8	10.0	108	10.6	10.0	106	25-154	2	20
2-Butanone (MEK)	10	51.2	40.0	103	51.4	40.0	103	90-112	0	20
cis-1,2-Dichloroethene	0.58	11.0	10.0	104	11.1	10.0	105	69-118	1	20
Bromochloromethane	ND	11.7	10.0	117	11.0	10.0	110	47-136	6	20
Chloroform	1.1	12.3	10.0	112	12.3	10.0	112	48-143	0	20
1,1,1-Trichloroethane	ND	9.39	10.0	94	9.25	10.0	93	84-122	2	20
Carbon Tetrachloride	ND	10.1	10.0	101	9.84	10.0	98	79-120	2	20
1,1-Dichloropropene	ND	10.3	10.0	103	10.3	10.0	103	85-117	1	20
Benzene	16	24.1	10.0	80 M2	23.3	10.0	73 M2	88-114	3	20
1,2-Dichloroethane	ND	11.2	10.0	112	10.9	10.0	109	75-112	3	20
Trichloroethene	2.9	15.0	10.0	121 M1	14.4	10.0	114	76-115	4	20
1,2-Dichloropropane	ND	11.2	10.0	112 M1	10.6	10.0	106	85-107	6	20
Dibromomethane	ND	11.6	10.0	116 M1	10.8	10.0	108 M1	82-106	7	20
Bromodichloromethane	0.93	11.3	10.0	103	10.9	10.0	100	83-107	3	20
cis-1,3-Dichloropropene	ND	11.8	10.0	118 M1	11.1	10.0	111	70-114	6	20
4-Methyl-2-pentanone (MIBK)	ND	55.3	40.0	138 M1	55.0	40.0	138 M1	54-129	0	20
Toluene	2.8	13.4	10.0	106	12.9	10.0	101	86-114	4	20

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 04/02/2003 14:32:35 L:\STEALTH\CRYSTAL.RPT\Form3DMS.rpt Form 3A - Organic

000036

Page 1 of 3

SuperSet Reference: RR3145

QA/QC Report

Client: Project: BE&K Terranext WVB/#03103154

Sample Matrix:

Water

Service Request: X2300234

Date Extracted: 03/28/2003

Date Analyzed: 03/28/2003

Matrix Spike/Duplicate Matrix Spike Summary Volatile Organic Compounds

Sample Name:

AVB112-0100-02129

Lab Code:

X2300234-001

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L

Basis: NA

Level: Low

Extraction Lot: XWG0300417

AVB112-0100-02129MS XWG0300417-1

AVB112-0100-02129DMS

XWG0300417-2

	Commis		Matrix Spike	ı	Duplic	ate Matrix S	pike	%Rec		RPD
Analyte Name	Sample Result	Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit
trans-1,3-Dichloropropene	ND	12.0	10.0	120 M1	11.1	10.0	111	73-112	8	20
1,1,2-Trichloroethane	ND	10.4	10.0	104	10.6	10.0	106	79-112	2	20
Tetrachloroethene	6.3	16.5	10.0	102	16.2	10.0	99	78-130	2	20
2-Hexanone	ND	50.0	40.0	125 M1	50.0	40.0	125 M1	77-112	0	20
1,3-Dichloropropane	ND	11.0	10.0	110	10.8	10.0	108	45-133	2	20
Dibromochloromethane	0.90	11.6	10.0	107	11.6	10.0	107	74-108	1	20
1,2-Dibromoethane	ND	10.7	10.0	107	10.7	10.0	107	73-113	0	20
Chlorobenzene	ND	10.3	10.0	103	9.83	10.0	98	84-111	5	20
1,1,1,2-Tetrachloroethane	ND	9.91	10.0	99	9.75	10.0	98	84-119	2	20
Ethylbenzene	2.8	13.1	10.0	103	12.7	10.0	99	47-136	3	20
m,p-Xylenes	2.8	24.1	20.0	107	22.9	20.0	101	84-120	5	20
o-Xylene	2.3	12.7	10.0	104	12.2	10.0	99	47-143	4	20
Styrene	ND	10.9	10.0	109	10.5	10.0	105	72-121	4	20
Isopropylbenzene	ND	9.85	10.0	99	9.46	10.0	95	63-108	4	20
Bromobenzene	ND	11.1	10.0	111	10.9	10.0	109	80-113	2	20
1,2,3-Trichloropropane	ND	11.6	10.0	116	12.2	10.0	122 M1	78-119	5	20
n-Propylbenzene	ND	10.2	10.0	102	9.91	10.0	99	76-117	3	20
2-Chlorotoluene	ND	9.94	10.0	99	9.67	10.0	97	79-121	3	20
4-Chlorotoluene	ND	10.3	10.0	103	10.0	10.0	100	70-133	3	20
1,3,5-Trimethylbenzene	0.57	10.3	10.0	98	10.1	10.0	95	79-118	2	20
tert-Butylbenzene	ND	9.49	10.0	95	9.10	10.0	91	77-120	4	20
1,2,4-Trimethylbenzene	2.0	12.3	10.0	103	11.9	10.0	99	68-127	3	20
sec-Butylbenzene	ND	8.54	10.0	85	8.16	10.0	82	78-123	5	20
1,3-Dichlorobenzene	ND	10.0	10.0	100	9.61	10.0	96	78-127	4	20
4-Isopropyltoluene	ND	8.96	10.0	90	8.70	10.0	87	79-142	3	20
Bromoform	ND	10.8	10.0	108	10.4	10.0	104	83-111	4	20
1,1,2,2-Tetrachloroethane	ND	12.7	10.0	127	12.4	10.0	124	66-133	3	20
1,4-Dichlorobenzene	ND	9.65	10.0	97	9.22	10.0	92	48-139	5	20
1,4-Dichlorobenzene	ND	9.90	10.0	99	9.59	10.0	96	64-109	3	20
*	ND	8.64	10.0	86	8.04	10.0	80	69-122	7	20
n-Butylbenzene 1,2-Dibromo-3-chloropropane	ND	11.6	10.0	116	10.8	10.0	108	54-160	7	20
	ND	9.83	10.0	98	9.56	10.0	96	39-145	3	20
1,2,4-Trichlorobenzene Hexachlorobutadiene	ND	7.85	10.0	79	6.64	10.0	66 M2	74-113	17	20

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

000037

Page 2 of 3

QA/QC Report

Client: Project: BE&K Terranext WVB/#03103154

Sample Matrix:

Water

Service Request: X2300234

Date Extracted: 03/28/2003 **Date Analyzed:** 03/28/2003

Matrix Spike/Duplicate Matrix Spike Summary Volatile Organic Compounds

Sample Name:

AVB112-0100-02129

Lab Code:

X2300234-001

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L

Basis: NA

Level: Low

Extraction Lot: XWG0300417

AVB112-0100-02129MS

XWG0300417-1

AVB112-0100-02129DMS

XWG0300417-2

Duplicate Matrix Spike Matrix Spike RPD %Rec Sample **RPD** Limit %Rec Limits **Expected** Result %Rec Result Expected Result **Analyte Name** 1 20 145 44-167 14.5 10.0 143 14.3 10.0 NDNaphthalene 20 37-158 3 10.0 118 122 11.8 10.0 ND 12.2 1,2,3-Trichlorobenzene

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 04/02/2003 14:32:35 L:\STEALTH\CRYSTAL.RPT\Form3DMS.rpt Form 3A - Organic

000038

SuperSet Reference:

Page

RR3145

3 of 3

QA/QC Report

Client: Project: BE&K Terranext WVB/#03103154

Sample Matrix:

Water

Service Request: X2300234 Date Extracted: 03/27/2003 **Date Analyzed:** 03/27/2003

Lab Control Spike/Duplicate Lab Control Spike Summary Volatile Organic Compounds

Extraction Method: Analysis Method:

EPA 5030B

8260B

Units: ug/L

Basis: NA Level: Low

Extraction Lot: XWG0300410

Lab Control Sample XWG0300410-3

Duplicate Lab Control Sample XWG0300410-4

		Control Spik		Duplicate Lab Control Spike			%Rec		RPD
Analyte Name	Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit
Dichlorodifluoromethane	3,98	10.0	40	4.08	10.0	41	1-233	2	20
Chloromethane	6.92	10.0	69	7.23	10.0	72	46-156	4	20
Vinyl Chloride	7.49	10.0	75	7.40	10.0	74	51-158	1	20
Bromomethane	8.51	10.0	85	8.50	10.0	85	37-149	0	20
Chloroethane	9.33	10.0	93	9.41	10.0	94	56-146	1	20
Trichlorofluoromethane	8.46	10.0	85	7.91	10.0	79	69-139	7	20
1,1,2-Trichlorotrifluoroethane	10.9	10.0	109	10.6	10.0	106	83-130	3	20
1,1-Dichloroethene	9.50	10.0	95	9.60	10.0	96	65-112	1	20
Acetone	38.9	40.0	97	43.3	40.0	108	68-128	11	20
Iodomethane	37.4	40.0	93	36.9	40.0	92	68-144	1	20
Carbon Disulfide	42.4	40.0	106	41.5	40.0	104	67-140	2	20
Methylene Chloride	11.0	10.0	110	10.6	10.0	106	70-113	4	20
Methyl tert-Butyl Ether	10.1	10.0	101	9.90	10.0	99	75-115	2	20
trans-1,2-Dichloroethene	10.1	10.0	109	10.4	10.0	104	73-118	5	20
1,1-Dichloroethane	11.7	10.0	117	11.1	10.0	111	77-127	5	20
,	47.8	40.0	120	48.2	40.0	120	51-202	1	39
Vinyl Acetate	10.7	10.0	107	10.0	10.0	100	75-132	6	20
2,2-Dichloropropane 2-Butanone (MEK)	47.5	40.0	119	40.5	40.0	101	72-122	16	20
cis-1,2-Dichloroethene	10.2	10.0	102	9.86	10.0	99	81-118	3	20
Bromochloromethane	12.0	10.0	120 L1	12.2	10.0	122 L1	82-114	2	20
	11.4	10.0	114	10.6	10.0	106	78-119	7	20
Chloroform	9.49	10.0	95	8.95	10.0	90	71-125	6	20
1,1,1-Trichloroethane	9,55	10.0	96	9.16	10.0	92	69-130	4	20
Carbon Tetrachloride	10.3	10.0	103	9.99	10.0	100	77-114	3	20
1,1-Dichloropropene	10.3	10.0	103	9.50	10.0	95	81-117	8	20
Benzene	11.3	10.0	113	10.7	10.0	107	67-122	6	20
1,2-Dichloroethane	10.6	10.0	106	10.1	10.0	101	79-114	5	20
Trichloroethene	11.1	10.0	111	10.5	10.0	105	78-114	6	20
1,2-Dichloropropane	11.1	10.0	114 L1	11.5	10.0	115 L1	78-113	2	20
Dibromomethane	10.4	10.0	104	10.2	10.0	102	79-122	2	20
Bromodichloromethane	10.4	10.0	115	11.1	10.0	111	82-118	3	20
cis-1,3-Dichloropropene	40.4	40.0	101	42.9	40.0	107	75-115	6	20
4-Methyl-2-pentanone (MIBK)	10.3	10.0	101	10.1	10.0	101	85-118	2	20
Toluene	10.3	10.0	112	11.1	10.0	111	79-121	0	20
trans-1,3-Dichloropropene	11.2	10.0	105	10.2	10.0	102	79-116	3	20
1,1,2-Trichloroethane	10.3	10.0	103	10.2	10.0	- · ·			

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

000039

Printed: 04/02/2003 14:32:42 L:\STEALTH\CRYSTAL.RPT\Form3DLC.rpt Form 3C - Organic

Page

1 of 2

RR3145 SuperSet Reference:

QA/QC Report

Client: Project: BE&K Terranext WVB/#03103154

Sample Matrix:

Water

Service Request: X2300234 Date Extracted: 03/27/2003

Date Analyzed: 03/27/2003

Lab Control Spike/Duplicate Lab Control Spike Summary Volatile Organic Compounds

Extraction Method: EPA 5030B

8260B **Analysis Method:**

Units: ug/L Basis: NA

Level: Low

Extraction Lot: XWG0300410

Lab Control Sample XWG0300410-3

Duplicate Lab Control Sample XWG0300410-4

	Lab Control Spike			Duplicate Lab Control Spike			%Rec		RPD
Analyte Name	Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit
Tetrachloroethene	9.53	10.0	95	9.31	10.0	93	76-127	2	20
2-Hexanone	44.0	40.0	110	46.3	40.0	116	65-120	5	20
1,3-Dichloropropane	10.3	10.0	103	10.7	10.0	107	81-116	4	20
Dibromochloromethane	9.91	10.0	99	10.0	10.0	100	77-119	1	20
1,2-Dibromoethane	10.5	10.0	105	10.3	10.0	103	79-116	2	20
Chlorobenzene	10.2	10.0	102	9.72	10.0	97	84-114	5	20
1,1,1,2-Tetrachloroethane	9.81	10.0	98	9.46	10.0	95	78-118	4	20
Ethylbenzene	10.8	10.0	108	10.2	10.0	102	79-124	6	20
m,p-Xylenes	21.4	20.0	107	20.3	20.0	101	75-131	6	20
o-Xylene	10.4	10.0	104	9.83	10.0	98	78-122	5	20
Styrene	10.8	10.0	108	10.2	10.0	102	80-126	5	20
Isopropylbenzene	10.5	10.0	105	9.60	10.0	96	75-126	8	20
Bromobenzene	11.1	10.0	111	10.2	10.0	102	82-122	8	20
1,2,3-Trichloropropane	12.2	10.0	122 L1	10.7	10.0	107	77-118	13	20
n-Propylbenzene	11.0	10.0	110	10.2	10.0	102	75-129	. 7	20
2-Chlorotoluene	10.8	10.0	108	9.94	10.0	99	77-126	8	20
4-Chlorotoluene	11.1	10.0	111	10.4	10.0	104	82-120	7	20
1,3,5-Trimethylbenzene	10.8	10.0	108	9.86	10.0	99	75-130	9	20
tert-Butylbenzene	10.4	10.0	104	9.68	10.0	97	73-130	7	20
1,2,4-Trimethylbenzene	10.8	10.0	108	9.97	10.0	100	60-137	8	20
sec-Butylbenzene	10.1	10.0	101	9.32	10.0	93	68-131	8	20
1,3-Dichlorobenzene	10.2	10.0	102	9.60	10.0	96	71-137	6	20
4-Isopropyltoluene	10.5	10.0	105	9.69	10.0	97	68-134	8	20
Bromoform	9.86	10.0	99	9.68	10.0	97	70-118	2	20
1,1,2,2-Tetrachloroethane	12.1	10.0	121	12.0	10.0	120	72-122	1	20
1,4-Dichlorobenzene	10.1	10.0	101	9.60	10.0	96	82-114	5	20
1,2-Dichlorobenzene	10.2	10.0	102	9.54	10.0	95	81-118	7	20
n-Butylbenzene	10.7	10.0	107	10.0	10.0	100	71-125	7	20
1,2-Dibromo-3-chloropropane	9,68	10.0	97	11.1	10.0	111	55-131	14	20
1,2,4-Trichlorobenzene	10.4	10.0	104	9.75	10.0	98	75-123	6	20
Hexachlorobutadiene	10.4	10.0	109	10.1	10.0	101	63-140	7	20
	10.7	10.0	107	9.73	10.0	97	67-125	10	20
Naphthalene 1,2,3-Trichlorobenzene	11.9	10.0	119	11.5	10.0	115	72-124	3	20

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

000040

QA/QC Report

Client: Project: BE&K Terranext WVB/#03103154

Sample Matrix:

Water

Service Request: X2300234 Date Extracted: 03/28/2003

Date Analyzed: 03/28/2003

Lab Control Spike/Duplicate Lab Control Spike Summary Volatile Organic Compounds

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L

Basis: NA Level: Low

Extraction Lot: XWG0300417

Lab Control Sample XWG0300417-3

Duplicate Lab Control Sample XWG0300417-4

	Lab Control Spike			Duplicate Lab Control Spike			%Rec		RPD
Analyte Name	Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit
Dichlorodifluoromethane	4.00	10.0	40	4.01	10.0	40	1-233	0	20
Chloromethane	6.90	10.0	69	6.45	10.0	65	46-156	7	20
Vinyl Chloride	7.43	10.0	74	7.32	10.0	73	51-158	1	20
Bromomethane	7.20	10.0	72	7.76	10.0	78	37-149	7	20
Chloroethane	8.87	10.0	89	10.1	10.0	101	56-146	. 13	20
Trichlorofluoromethane	8.06	10.0	81	8.96	10.0	90	69-139	11	20
1,1,2-Trichlorotrifluoroethane	11.4	10.0	114	10.7	10.0	107	83-130	6	20
1,1-Dichloroethene	9.92	10.0	99	9.59	10.0	96	65-112	3	20
Acetone	41.3	40.0	103	49.6	40.0	124	68-128	18	20
Iodomethane	37.3	40.0	93	35.5	40.0	89	68-144	5	20
Carbon Disulfide	43.1	40.0	108	41.0	40.0	102	67-140	5	20
Methylene Chloride	11.1	10.0	111	10.3	10.0	103	70-113	8	20
Methyl tert-Butyl Ether	9.88	10.0	99	9.73	10.0	97	75-115	2	20
trans-1,2-Dichloroethene	11.0	10.0	110	10.4	10.0	104	73-118	5	20
1,1-Dichloroethane	11.6	10.0	116	11.1	10.0	111	77-127	5	20
Vinyl Acetate	49.6	40.0	124	45.8	40.0	115	51-202	8	39
2,2-Dichloropropane	10.9	10.0	109	10.0	10.0	100	75-132	9	20
2-Butanone (MEK)	38.8	40.0	97	35.8	40.0	89	72-122	8	20
cis-1,2-Dichloroethene	10.4	10.0	104	9.69	10.0	97	81-118	7	20
Bromochloromethane	11.9	10.0	119 L1	11.2	10.0	112	82-114	5	20
Chloroform	10.9	10.0	109	10.4	10.0	104	78-119	5	20
1,1,1-Trichloroethane	9.40	10.0	94	8.90	10.0	89	71-125	5	20
Carbon Tetrachloride	10.1	10.0	101	9.71	10.0	97	69-130	4	20
1,1-Dichloropropene	10.4	10.0	104	9.89	10.0	99	77-114	5	20
Benzene	10.0	10.0	100	9.64	10.0	96	81-117	4	20
1,2-Dichloroethane	11.2	10.0	112	10.3	10.0	103	67-122	8	20
Trichloroethene	10.1	10.0	101	10.5	10.0	105	79-114	4	20
1,2-Dichloropropane	10.4	10.0	104	11.0	10.0	110	78-114	5	20
Dibromomethane	10.4	10.0	104	11.6	10.0	116 L1	78-113	10	20
Bromodichloromethane	9.67	10.0	97	10.3	10.0	103	79-122	6	20
cis-1,3-Dichloropropene	10.9	10.0	109	11.5	10.0	115	82-118	5	20
4-Methyl-2-pentanone (MIBK)	41.1	40.0	103	43.3	40.0	108	75-115	5	20
Toluene	9.91	10.0	99	10.6	10.0	106	85-118	7	20
trans-1,3-Dichloropropene	10.4	10.0	104	11.3	10.0	113	79-121	8	20
1,1,2-Trichloroethane	9.69	10.0	97	10.8	10.0	108	79-116	10	20

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

000041

QA/QC Report

Client: Project:

BE&K Terranext WVB/#03103154

Sample Matrix:

Water

 Service Request:
 X2300234

 Date Extracted:
 03/28/2003

 Date Analyzed:
 03/28/2003

Lab Control Spike/Duplicate Lab Control Spike Summary Volatile Organic Compounds

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

Extraction Lot: XWG0300417

Lab Control Sample XWG0300417-3

Duplicate Lab Control Sample XWG0300417-4

	Lab Control Spike			Duplicate Lab Control Spike			%Rec		RPD
Analyte Name	Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit
Tetrachloroethene	9.76	10.0	98	10.6	10.0	106	76-127	9	20
2-Hexanone	41.8	40.0	105	47.5	40.0	119	65-120	13	20
1,3-Dichloropropane	9.97	10.0	100	11.1	10.0	111	81-116	11	20
Dibromochloromethane	9.78	10.0	98	10.9	10.0	109	77-119	11	20
1,2-Dibromoethane	9.56	10.0	96	11.1	10.0	111	79-116	15	20
Chlorobenzene	9.98	10.0	100	9.90	10.0	99	84-114	1	20
1,1,1,2-Tetrachloroethane	9.79	10.0	98	9.70	10.0	97	78-118	1	20
Ethylbenzene	10.4	10.0	104	10.4	10.0	104	79-124	0	20
m,p-Xylenes	21.1	20.0	106	20.8	20.0	104	75-131	1	20
o-Xylene	10.3	10.0	103	9.98	10.0	100	78-122	3	20
Styrene Styrene	10.8	10.0	108	10.5	10.0	105	80-126	3	20
Isopropylbenzene	10.3	10.0	103	10.1	10.0	101	75-126	2	20
Bromobenzene	11.4	10.0	114	11.2	10.0	112	82-122	2	20
1,2,3-Trichloropropane	11.8	10.0	118	10.6	10.0	106	77-118	10	20
n-Propylbenzene	10.7	10.0	107	10.5	10.0	105	75-129	2	20
2-Chlorotoluene	10.7	10.0	107	10.2	10.0	102	77-126	4	20
4-Chlorotoluene	11.0	10.0	110	10.4	10.0	104	82-120	6	20
1,3,5-Trimethylbenzene	10.7	10.0	107	10.4	10.0	104	75-130	3	20
tert-Butylbenzene	10.7	10.0	107	10.2	10.0	102	73-130	4	20
1,2,4-Trimethylbenzene	10.8	10.0	108	10.2	10.0	102	60-137	5	20
sec-Butylbenzene	10.1	10.0	101	9.67	10.0	97	68-131	4	20
1,3-Dichlorobenzene	11.0	10.0	110	10.2	10.0	102	71-137	7	20
4-Isopropyltoluene	10.9	10.0	109	10.4	10.0	104	68-134	5	20
Bromoform	9.90	10.0	99	10.3	10.0	103	70-118	3	20
1,1,2,2-Tetrachloroethane	11.4	10.0	114	11.8	10.0	118	72-122	4	20
1,4-Dichlorobenzene	10.0	10.0	100	10.2	10.0	102	82-114	1	20
1,2-Dichlorobenzene	9.88	10.0	99	9.59	10.0	96	81-118	3	20
n-Butylbenzene	10.2	10.0	102	10.1	10.0	101	71-125	1	20
1,2-Dibromo-3-chloropropane	12.2	10.0	122	10.5	10.0	105	55-131	15	20
1,2,4-Trichlorobenzene	10.2	10.0	102	9.92	10.0	99	75-123	3	20
Hexachlorobutadiene	10.7	10.0	107	10.8	10.0	108	63-140	1	20
Naphthalene	10.7	10.0	101	9.87	10.0	99	67-125	2	20
1,2,3-Trichlorobenzene	11.4	10.0	114	11.4	10.0	114	72-124	0	20

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

000042

Printed: 04/02/2003 14:32:49 L:\STEALTH\CRYSTAL.RPT\Form3DLC.rpt

Form 3C - Organic

Page

ge 2 of 2

April 2, 2003

Chuck Gordon BE & K Terranext 9830 S. 51st A-127 Phoenix, AZ 85044

Re: WVB/Project #03103154

Dear Chuck:

Enclosed are the results of the samples submitted to our laboratory on March 18, 2003. For your reference, these analyses have been assigned our service request number L2300617.

All analyses were performed in accordance with our laboratory's quality assurance program. Results are intended to be considered in their entirety and apply only to the samples analyzed. Columbia Analytical Services is not responsible for use of less than the complete report.

Columbia Analytical Services - is certified for environmental analyses by the Arizona Department of Health Services (certificate number: AZ0544 and AZ0136, expiration: May 23, 2003).

If you have any questions, please call me at (818) 587-5550, extension 309.

Respectfully submitted,

Columbia Analytical Services, Inc.

me Judests

Sue Anderson Project Chemist

SA

Page 1 of /8

000043

Columbia Analytical Services, Inc.

Acronyms

California DHS LUFT Method 8015M American Society for Testing and Materials **ASTM** Biochemical Oxygen Demand BOD Benzene/Toluene/Ethylbenzene/Xylenes BTEX California Assessment Metals **CAM** Chemical Abstract Service Registry Number **CAS Number** Chlorofluorocarbon **CFC** COD Chemical Oxygen Demand **CRDL** Contract Required Detection Limit Detected: result must be greater than zero. n Detected: result must be greater than the detection limit. DL **Duplicate Laboratory Control Sample DLCS** Duplicate Matrix Spike **DMS** Department of Health Services **DOH or DHS** Environmental Laboratory Accreditation Program **ELAP** U.S. Environmental Protection Agency **EPA** Gas Chromatography GC Gas Chromatography/Mass Spectrometry GC/MS Ion Chromatography IC Initial Calibration Blank sample **ICB** Inductively Coupled Plasma atomic emission spectrometry **ICP** Initial Calibration Verification sample **ICV** Laboratory Control Sample LCS Leaking Underground Fuel Tank LUFT Modified M Methylene Blue Active Substances **MBAS** Method Detection Limit **MDL** Method Reporting Limit MRL Matrix Spike MS Methyl-tert-Butyl Ether **MTBE** Not Applicable NA NC Not Calculated None Detected at or above the Method Reporting/Detection Limit (MRL/MDL) ND Nephelometric Turbidity Units NTU Parts Per Billion ppb Parts Per Million ppm **Practical Quantitation Limit** POL Quality Assurance/Quality Control QA/QC Resource Conservation and Recovery Act **RCRA** Relative Percent Difference RPD Selected Ion Monitoring SIM Standard Methods for the Examination of Water and Wastewater, 18th Ed., 1992. SM Solubility Threshold Limit Concentration STLC Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW-846, SWThird Edition, 1986 and as amended by Updates I, II, IIA, and IIB. **TCLP** Toxicity Characteristics Leaching Procedure TDS Total Dissolved Solids Total Petroleum Hydrocarbons **TPH** Total Recoverable Petroleum Hydrocarbons TRPH Total Suspended Solids **TSS Total Threshold Limit Concentration** TTLC Volatile Organic Analyte(s) VOA **Oualifiers** U Undetected at or above MDL/MRL. Estimated concentration. Analyte detected above MDL but below MRL. J Hit above MRL also found in Method Blank. В Analyte concentration above high point of ICAL. E Presumptive evidence of compound. N Result from dilution. D

See case narrative.

 \mathbf{X}

- Cover Page - INORGANIC ANALYSIS DATA PACKAGE

Client:

BE&K Terranext, LLC

AVB12-0100-19102

AVB14-0100-18102

AVB14-0104-1000

Project Name: Project No.:

WVB

03103154

Service Request: L2300617

L2300617-003

L2300617-004

L2300617-005

Sample Name :	<u>Lab Code :</u>
Laboratory Control Sample	L2300324-LCS
Method Blank	L2300324-MB
AVB112-0100-02129	L2300617-001
AVB112-0100-02129	L2300617-001S
AVB112-0100-02129	L2300617-001SD
AVB18-0100-19101	L2300617-002

Approved By: See Shells Date: Date:

Analytical Report

Client:

BE&K Terranext, LLC

Project Name : Project No. :

WVB 03103154

Matrix:

Water

Service Request: L2300617

Date Collected: 03/18/03

Date Received: 03/18/03

Date Extracted: 03/24/03

Total Metals

Sample Name:

AVB112-0100-02129

Lab Code:

L2300617-001

Units: ug/L (ppb)

Basis: NA

Analyte Analysis Method MRL Date Analyzed Result Notes

Chromium 6010B 10 03/27/03 375

Analytical Report

Client:

BE&K Terranext, LLC

Project Name: Project No.:

WVB 03103154

Matrix:

Water

Service Request: L2300617

Date Collected: 03/18/03

Date Received: 03/18/03

Date Extracted: 03/24/03

Dissolved Metals

Sample Name:

AVB112-0100-02129

Lab Code:

L2300617-001

Units: ug/L (ppb)

Analyte	Analysis Method	MRL	Date Analyzed	Sample Result	Result Notes
Chromium	6010B	10	03/27/03	ND	

Analytical Report

Client:

BE&K Terranext, LLC

Project Name : Project No. : WVB 03103154

Matrix:

Water

Service Request: L2300617

Date Collected: 03/18/03 **Date Received:** 03/18/03

Date Extracted: 03/24/03

Total Metals

Sample Name:

AVB18-0100-19101

Lab Code:

L2300617-002

Units: ug/L (ppb)

Analyte	Analysis Method	MRL	Date Analyzed	Sample Result	Result Notes
Chromium	6010B	10	03/27/03	ND	

Analytical Report

Client:

BE&K Terranext, LLC

Project Name: Project No.:

WVB 03103154

Matrix:

Water

Service Request: L2300617 **Date Collected:** 03/18/03

Date Received: 03/18/03

Date Extracted: 03/24/03

Dissolved Metals

Sample Name:

AVB18-0100-19101

Lab Code:

L2300617-002

Units: ug/L (ppb)
Basis: NA

Analyte	Analysis Method	MRL	Date Analyzed	Sample Result	Result Notes
Chromium	6010B	10	03/27/03	ND	

Analytical Report

Client:

BE&K Terranext, LLC

Project Name : Project No. :

WVB 03103154

Matrix:

Water

Service Request: L2300617

Date Collected: 03/18/03

Date Received: 03/18/03 **Date Extracted:** 03/24/03

Total Metals

Sample Name:

AVB12-0100-19102

Lab Code :

L2300617-003

Units: ug/L (ppb)

Basis: NA

Analyte Analysis Method MRL Date Analyzed Sample Result Notes

Chromium 6010B 10 03/27/03 ND

Analytical Report

Dissolved Metals

Client:

BE&K Terranext, LLC

Project Name: Project No.:

WVB 03103154

Matrix:

Water

Service Request: L2300617

Date Collected: 03/18/03

Date Received: 03/18/03

Date Extracted: 03/24/03

Sample Name:

AVB12-0100-19102

Lab Code:

L2300617-003

Units: ug/L (ppb)

Basis: NA

Result Sample Result Notes **Analysis Method** MRL **Date Analyzed** Analyte ND 03/27/03 10 6010B Chromium

Analytical Report

Client:

BE&K Terranext, LLC

Project Name : Project No. :

WVB 03103154

Matrix:

Water

Service Request: L2300617

Date Collected: 03/18/03 **Date Received:** 03/18/03

Date Extracted: 03/24/03

Total Metals

Sample Name:

AVB14-0100-18102

Lab Code:

L2300617-004

Units: ug/L (ppb)

Analyte	Analysis Method	MRL	Date Analyzed	Sample Result	Result Notes
Chromium	6010B	10	03/27/03	ND	

Analytical Report

Client:

BE&K Terranext, LLC

Project Name: Project No.:

WVB 03103154

Matrix:

Water

Service Request: L2300617 **Date Collected:** 03/18/03 Date Received: 03/18/03

Date Extracted: 03/24/03

Dissolved Metals

Sample Name:

AVB14-0100-18102

Lab Code:

L2300617-004

Units: ug/L (ppb)
Basis: NA

Analyte	Analysis Method	MRL	Date Analyzed	Sample Result	Result Notes
Chromium	6010B	10	03/27/03	ND	

Analytical Report

Client:

BE&K Terranext, LLC

Project Name : Project No. :

WVB 03103154

Matrix:

Water

Service Request: L2300617

Date Collected: 03/18/03 **Date Received:** 03/18/03

Date Extracted: 03/24/03

Total Metals

Sample Name:

AVB14-0104-1000

Lab Code:

L2300617-005

Units: ug/L (ppb)

Basis: NA

Analyte Analysis Method MRL Date Analyzed Result Notes

Chromium 6010B 10 03/27/03 ND

Analytical Report

Client:

BE&K Terranext, LLC

Project Name : Project No. :

WVB 03103154

Matrix:

Water

Service Request: L2300617

Date Collected: 03/18/03 **Date Received:** 03/18/03

Date Extracted: 03/24/03

Dissolved Metals

Sample Name:

AVB14-0104-1000

Lab Code:

L2300617-005

Units: ug/L (ppb)

Analyte	Analysis Method	MRL	Date Analyzed	Sample Result	Result Notes
Chromium	6010B	10	03/27/03	ND	

Analytical Report

Client:

BE&K Terranext, LLC

Project Name: Project No.:

WVB

Matrix :

03103154

Water

Service Request: L2300617

Date Collected: NA
Date Received: NA

Date Extracted: 03/24/03

Total Metals

Sample Name:

Method Blank

Lab Code :

L2300324-MB

Units: ug/L (ppb)

Analyte	Analysis Method	MRL	Date Analyzed	Sample Result	Result Notes
Chromium	6010B	10	03/27/03	ND	

QA/QC Report

Client:

BE&K Terranext, LLC

Project Name: Project No.:

WVB 03103154

Matrix:

Water

Service Request: L2300617

Date Collected: NA

Date Received: NA **Date Extracted:** 03/24/03

Date Analyzed: 03/27/03

Laboratory Control Sample Summary

Total Metals

Sample Name:

Laboratory Control Sample

Lab Code:

L2300324-LCS

Units: ug/L (ppb)

Analyte	Analysis Method	True Value	Result	Percent	CAS Percent Recovery Acceptance Limits	Result Notes
Chromium	6010B	500	512	102	87-111	

Analytical Report

Client:

BE&K Terranext, LLC

Project Name: Project No.:

WVB 03103154

Matrix:

Water

Service Request: L2300617

Date Collected: 03/18/03

Date Received: 03/18/03

Date Extracted: 03/24/03

Date Analyzed: 03/27/03

Matrix Spike/Duplicate Matrix Spike Summary

Total Metals

Sample Name : Lab Code : AVB112-0100-02129

L2300617-001S

L2300617-001SD

Units: ug/L (ppb)

Analyte	Prep Method	Analysis Method	MRL	Spike MS	Level DMS	Sample Result	Spike MS	Result DMS	MS	DMS	CAS Acceptance Limits	Relative Percent Difference	Result Notes
Chromium	3010A	6010B	10	500	500	375	817	814	88	88	87-105	<1	

Analytical Services INC. Columbia

RUSH TAT - Surcharges Apply REMARKS ANALYSIS TAT (Circle One) Lab No: X230023% SAMPLE RECEIPT: □ 72 Hours □ 24 Hours ☐ 48 Hours STANDARD Shipping #: Condition: Date/Time 3 **ANALYSIS REQUESTED** INVOICE INFORMATION: Date/Time 3.78.03 Date/Time Organization Organization Organization (BS) P.O.# K II. Report (includes DUP.MS. MSD, as required, may be charged as samples) REPORT REQUIREMENTS III. Data Validation Report (includes All Raw Data) IV. CLP Deliverable Report Routine Report Loli May Received By (Signature) Received By (Signature) Regettyed By (Signature) Portex NUMBER OF CONTAINERS វ<u>ិន</u> 6 PRESER-VATION Date/Time 3-79-03 Date/Time 1 #13103164 ? 007 003 888 900 Organization 100 75 Organization Organization LAB I.D. SYJ \$ 7 PHONE/FAX 56 9.35 IME 3.18.03 1.20 SPECIAL INSTRUCTIONS/COMMENTS: COMPANY/ADDRESS BREIK DATE 7 É racio May PROJECT NAME NV PS Relinquished By (Signature) Relinquished By (Signature) Relinquished By (Signature) SAMPLER'S SIGNATURE AMB112-0100-02129 4VBig - 0102 - 1000 4v814-0104-1000 PROJECT MANAGER 4VB 18-0100-19101 AV812-0100-19102 AVBI4-0100-18102 SAMPLE I.D. 000059

DISTRIBUTION: WHITE - return to originator; YELLOW - lab; PINK - retained by originator

SAMPLE RECEIPT FORM

Service Request No: L2300617 Client: BE+K
Sample(s) delivered by: Client CAS Emp After Hours DHL
Golden State Overnight Fed X V UPS 7902 3661 0259 Other Courier
Chain of Custody filled out accurately? Yes No (See Comments)
Appropriate sample volume and containers? Yes No(See Comments)
Sufficient labeling on container(s)? Yes No(See Comments)
Container(s) supplied by CAS? Yes No(See Comments)
Custody seal(s) intact? N/A / Yes No(See Comments)
Trip Blank(s) received Yes No
If Trip Blank was supplied by CAS, record serial #
Temperature of sample(s)/cooler3 °C Temp Blank(Y) or N (Circle One)
Voa's Marked Preserved? Yes No Filled Properly? Yes No (See Comments)
Preserved Bottles Requiring pH check(s)? Yes
RUSH Turn around time? Yes NotifiedDate & Time
Short Hold-Time Analysis (check all that apply)
ASAP Res Cl D.O Flash Diss S2- Ferrous Fe 24HR pH Odor Cr+6 48HR BOD Color MBAS Nitrate Nitrite O-PO4 Sett Sol Turbidity 72HR Vapors Vapors
Notified Date & Time
Container(s) received and their preservative(s): $-1 \rightarrow -5 = 1-500 \text{ml Pl (NP)} \text{A}$ $1-500 \text{ml Pl (HN03)} \text{B}$
Comments Filter a presence diss metals bottle in lab
Initials, Date, Time LE 3/20/03 18/15 risr_forms\cooler.doc Rev. 1/17/02

Analytical Services INC.

CHAIN OF CUSTODY/LABORATORY ANALYSIS REQUEST FORM

3902 East University Drive, Suite 4 • Phoenix, AZ 85034 • (602) 437-2001 • (800) 695-7222 x09 • FAX (602) 437-5308

DATE 5-18-63

PAGE

RUSH TAT - Surcharges Apply ANALYSIS TAT (Circle One) REMARKS **T9**0000 Lab No: X2300238 SAMPLE RECEIPT: ☐ 48 Hours ☐ 72 Hours □ 24 Hours STANDARD Shipping VIA: Shipping #:_ Condition: **ANALYSIS REQUESTED** INVOICE INFORMATION: Date/Time 3-78-03 Date/Time Date/Time Dretila inied DHa Organization Organization Organization P.O.# II. Report (includes DUP.MS. MSD, as required, may be charged as samples) REPORT REQUIREMENTS III. Data Validation Report (includes All Raw Data) IV. CLP Deliverable Report Routine Report Halogenated & Aromatic Volatiles Low May Received By (Signature) Received By (Signature) Received By (Signature) 3 a b S NUMBER OF CONTAINERS PRESER-VATION 7 Date/Time Date/Time 1 1 200 Organization B 000 Organization 100-450 Organization LAB I.D. PHONE/FAX 55 TIME 3.18.03 1.20 9.35 SPECIAL INSTRUCTIONS/COMMENTS: SAMPLER'S SIGNATURE XX COMPANY/ADDRESS BOCK DATE > 3 É Relinquished By (Signature) Relinquished By (Signature) Relinguished By (Signature) PROJECT NAME NVB ANB112-0100-02129 AVBI4-0102-1000 PROJECT MANAGER 40814-0104-1000 AVB 18-0100-19101 AV812-0100-19102 AVB14-0100-18102 SAMPLE I.D.

Columbia Analytical Services, Inc. Phoenix, AZ

Sample Receipt and Preservation Form

Client:	BEKK			Project Name: _	WUBA	
Sample(s) R VOA's Z	Received on: 3-10 Glass Bottle	β <u>-03</u> d s□	ate/2.3 Plastic Bottles 🗵			
MATRE	X: SOIL 🗆	WATER	Z			
First Ext	raction Holding T	ime Expiration	a:	date	time (soils only)	
Is first e	xtraction/analysis	holding time e	xpiration LESS 7	THAN 24 HOURS	S(soil)/7 DAYS (water)? Ye	es 🗆 No
If YES,	chemist notified or	n:	date	time	Chemist's Initials	
1 Rush or s	tandard turn-a-rou	ınd time?			RUSH (ST	ANDARI
	ustody seals prese				_	→ □
3. Are the si4. Did all co5. Are all co6. Were the7. Have VO8. Temperat	w many and when ignature and date ontainers arrive in ontainer labels concorrect containers A's been checked ture of sample(s) un of discrepancies	good conditional good conditional good conditional good for the top of the presentation of the presentatio	n? servation, sample ests indicated? ce of air bubbles?	ID)? (note problems i	Yes No No	oU o□ N/∄
					(Tested After Analysis	
	YES NO		NO	hal	☐ All Samples pH ≤ 2☐ Following Samples Exhibite	
pН	Reagent					
12	NaOH					
2	HNO ₃	\				
2	H ₂ SO ₄					
Comments:						
		For	m Completed a	and Sample(s)	Received by (initials): Z	m

r:\common\forms\samprev.doc Revised: 09/27/02 4:19 PM

April 18, 2003

Chuck Gordon BE&K Terranext 9830 S. 51st Street, Suite A-127 Phoenix, AZ 85044

Re: WVBA / Project #03103154

Dear Chuck:

Enclosed are the revised Total Chromium and Dissolved Chromium report pages for the samples originally submitted to our laboratory on March 19, 2003. The samples were analyzed for Total & Dissolved Chromium by our Canoga Park, CA facility (L2300634). For your reference, the 8260 analyses have been assigned our service request number X2300240.

All analyses were performed according to our laboratory's quality assurance program. All results are intended to be considered in their entirety, and Columbia Analytical Services, Inc. (CAS) is not responsible for use of less than the complete report. Results apply only to the samples analyzed. Columbia Analytical Services, Inc. is certified for environmental analyses by the Arizona Department of Health Services (Certificate #AZ0136; and #AZ0497).

Please call if you have any questions. My extension is 223.

Respectfully submitted,

Columbia Analytical Services, Inc.

Tracy L. Dutton
Laboratory Director

TLD/lm

Page 1 of <u>54</u>

Client:

BE&K Terranext

Project:

WVB / #03103154

Sample Matrix:

Water

Service Request No.:

Date Received:

X2300240

3/19/03

CASE NARRATIVE

All analyses were performed consistent with the quality assurance program of Columbia Analytical Services, Inc. (CAS). This report contains analytical results for sample(s) designated for Tier II data deliverables. When appropriate to the method, method blank results have been reported with each analytical test. Surrogate recoveries have been reported for all applicable organic analyses. Additional quality control analyses reported herein include: Matrix/Duplicate Matrix Spike (MS/DMS) and Laboratory Control Sample (LCS).

All EPA recommended holding times have been met for analyses in this sample delivery group.

The following difficulties were experienced during analysis of this batch:

Matrix spike (XWG0300420-1 and XWG0300420-2) recovery of Dichlorodifluoromethane, Chloromethane, and Vinyl Chloride, Method 8260B, was low. The method control sample recovery was acceptable.

Matrix spike (XWG0300420-1 and XWG0300420-2) recovery of Dibromomethane and Hexachlorobutadiene, Method 8260B, was high. The method control sample recovery was acceptable.

LCS/DLCS (XWG0300420-3 and XWG0300420-4) RPD for 2-Butanone (MEK) and 1,2-Dibromo-3-chloropropane, Method 8260B, exceeded the laboratory control limit. Recovery met acceptance criteria.

Approved by Date 4-7-03

ARIZONA DATA QUALIFIERS

Method Bl	
B1	Target analyte detected in method blank at or above the method reporting limit.
B2	Non-target analyte detected in method blank and sample, producing interference.
В3	Target analyte detected in calibration blank at or above the method reporting limit.
B4	Target analyte detected in blank at/above method acceptance criteria.
Confirmat	ion:
C1	Confirmatory analysis not performed as required by the method.
C2	Confirmatory analysis not performed. Confirmation of analyte presence established by site historical data.
C3	Qualitative confirmation performed. See case narrative.
C4	Confirmatory analysis was past holding time.
C5	Confirmatory analysis was past holding time. Original result not confirmed.
Dilution:	
D1	Sample required dilution due to matrix interference. See case narrative.
D2	Sample required dilution due to high concentration of target analyte.
D3	Sample dilution required due to insufficient sample.
D4	Minimum reporting level (MRL) adjusted to reflect sample amount received and analyzed.
Estimated	concentration:
E1	Concentration estimated. Analyte exceeded calibration range. Reanalysis not possible due to insufficient
	sample.
E2	Concentration estimated. Analyte exceeded calibration range. Reanalysis not performed due to sample matrix.
E3	Concentration estimated. Analyte exceeded calibration range. Reanalysis not performed due to holding time
	requirements.
E4	Concentration estimated. Analyte was detected below laboratory minimum reporting level (MRL).
E5	Concentration estimated. Analyte was detected below laboratory minimum reporting level (MRL), but not confirmed by alternate analysis.
E6	Confirmation estimated. Internal standard recoveries did not meet method acceptance criteria.
E7	Confirmation estimated. Internal standard recoveries did not meet laboratory acceptance criteria.
Hold Tim	
H1	Sample analysis performed past holding time. See case narrative.
H2	Initial analysis within holding time. Reanalysis for the required dilution was past holding time.
H3	Sample was received and analyzed past holding time.
H4	Sample was extracted past required extraction holding time, but analyzed within analysis holding time. See cas narrative.
BOD:	
K1	The sample dilutions set-up for the BOD analysis did not meet the oxygen depletion criteria of at least 2mg/L. Any reported result is an estimated value.
V2	The sample dilutions set up for the BOD analysis did not meet the criteria of a residual dissolved oxygen of at
K2	least 1 mg/L. Any reported result is an estimated value.
K3	The seed depletion was outside the method acceptance limits.
18.0	THE COUNTY CONTRACTOR

The seed depletion was outside the method and laboratory acceptance limits. The reported result is an estimated K4 value. The dilution water D.O. depletion was >0.2 mg/L. K5 Glucose/glutamic acid BOD was below method acceptance criteria. K6 The discrepancy between the BOD and COD results has been verified by reanalysis of the sample for COD. K7 Laboratory fortified blank/blank spike: The associated blank spike recovery was above laboratory acceptance limits. See case narrative. L1 The associated blank spike recovery was below laboratory acceptance limits. See case narrative. 1.2 The associated blank spike recovery was above method acceptance limits. See case narrative. 1.3 The associated blank spike recovery was below method acceptance limits. See case narrative. L4 Note: The L1, L2, L3, & L4 footnotes need to be added to all corresponding analytes for a sample. Matrix spike: Matrix spike recovery was high, the method control sample recovery was acceptable. M1 Matrix spike recovery was low, the method control sample was acceptable. M2The accuracy of the spike recovery value is reduced since the analyte concentration in the sample is M3 disproportionate to spike level. The method control sample recovery was acceptable. The analysis of the spiked sample required a dilution such that the spike concentrations was diluted below M4 the reporting limit. The method control sample recovery was acceptable. Analyte concentration was determined by the method of standard addition (MSA). M5 General: See case narrative. N1 See corrective action report. N2Sample quality: Sample integrity was not maintained. See case narrative. Q1 Sample received with head space. Q2Sample received with improper chemical preservation. Q3 Sample received and analyzed without chemical preservation. Q4 Sample received with inadequate chemical preservation, but preserved by the laboratory. **Q5** Sample was received above recommended temperature. O6 Sample inadequately dechlorinated. 07 Insufficient sample received to meet QC requirements. QC requirements satisfy ADEQ policies 0154 and 0155. O8 Insufficient sample received to meet QC requirements. Q9 Sample received in inappropriate sample container. Q10 Sample is heterogeneous. Sample homogeneity could not be readily achieved using routine laboratory practices. Q11 **Duplicates:** RPD exceeded the method control limit. See case narrative. R1 RPD exceeded the laboratory control limit. See case narrative. R2 Sample RPD between the primary and confirmatory analysis exceeded 40%. Per Method 8000B, the higher R3 value was reported. MS/MSD RPD exceeded the method control limit. Recovery met acceptance criteria. R4 MS/MSD RPD exceeded the laboratory control limit. Recovery met acceptance criteria. R5LFB/LFBD RPD exceeded the method control limit. Recovery met acceptance criteria. R6 LFB/LFBD RPD exceeded the laboratory control limit. Recovery met acceptance criteria. R7

140	bumple for the exceeded the method sounds in the
R9	Sample RPD exceeded the laboratory control limit.
Surroga	ate:
S1	Surrogate recovery was above laboratory acceptance limits, but within method acceptance limits.
S2 .	Surrogate recovery was above laboratory and method acceptance limits.
S3	Surrogate recovery was above laboratory acceptance limits, but within method acceptance limits. No target
	analytes were detected in the sample.
S4	Surrogate recovery was above laboratory and method acceptance limits. No target analytes were detected in the
e3.5	sample.
S5	Surrogate recovery was below laboratory acceptance limits, but within method acceptance limits.
S6	Surrogate recovery was below laboratory and method acceptance limits. Reextraction and/or reanalysis confirms low recovery caused by matrix effect.
S7	Surrogate recovery was below laboratory and method acceptance limits. Unable to confirm matrix effect.
S8	The analysis of the sample required a dilution such that the surrogate concentration was diluted below the method acceptance criteria. The method control sample recovery was acceptable.
S9	The analysis of the sample required a dilution such that the surrogate concentration was diluted below the
	laboratory acceptance criteria. The method control sample recovery was acceptable.
S10	Surrogate recovery was above laboratory and method acceptance limits. See case narrative.
Method	l/analyte discrepancies:
T1	Method promulgated by EPA, but not ADHS at this time.
T2	Cited ADHS licensed method does not contain this analyte as part of method compound list.
T3	Method not promulgated either by EPA or ADHS.
Т4	Tentatively identified compound. Concentration is estimated and based on the closest internal standard.
Calibra	ation verification:
V1	CCV recovery was above method acceptance limits. This target analyte was not detected in the sample.
V2	CCV recovery was above method acceptance limits. This target analyte was detected in the sample. The sample
	could not be reanalyzed due to insufficient sample.
V3	CCV recovery was above method acceptance limits. This target analyte was detected in the sample, but the
	sample was not reanalyzed. See case narrative.
V4	CCV recovery was below method acceptance limits. The sample could not be reanalyzed due to insufficient

CCV recovery after a group of samples was above acceptance limits. This target analyte was not detected in the

Sample RPD exceeded the method control limit.

R8

V5

sample.

sample. Acceptable per EPA Method 8000B.

Inorganic Data Qualifiers

- The result is an outlier. See case narrative.
- The control limit criteria is not applicable. See case narrative. #
- The analyte was found in the associated method blank at a level that is significant relative to the sample result. В
- The result is an estimate amount because the value exceeded the instrument calibration range. Ε
- The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL. J
- The compound was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL. U
- The MRL/MDL has been elevated due to a matrix interference.
- X See case narrative.

Metals Data Qualifiers

- The control limit criteria is not applicable. See case narrative.
- The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL. В
- The reported value is estimated because of the presence of matrix interference. E
- The duplicate injection precision was not met. M
- The Matrix Spike sample recovery is not within control limits. See case narrative. N
- The reported value was determined by the Method of Standard Additions (MSA). S
- The compound was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- The post-digestion spike for furnace AA analysis is out of control limits, while sample absorbance is less than 50% of spike absorbance.
- The MRL/MDL has been elevated due to a matrix interference. i
- X See case narrative.
- The duplicate analysis not within control limits. See case narrative.
- The correlation coefficient for the MSA is less than 0.995.

Organic Data Qualifiers

- The result is an outlier. See case narrative.
- The control limit criteria is not applicable. See case narrative. #
- A tentatively identified compound, a suspected aldol-condensation product. Α
- The analyte was found in the associated method blank at a level that is significant relative to the sample result. В
- The analyte was qualitatively confirmed using GC/MS techniques, pattern recognition, or by comparing to historical data. C
- The reported result is from a dilution. D
- The result is an estimate amount because the value exceeded the instrument calibration range. Е
- The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL. J
- The result is presumptive. The analyte was tentatively identified, but a confirmation analysis was not performed. Ň
- The GC or HPLC confirmation criteria was exceeded. The relative percent difference is greater than 40% between the two P analytical results (25% for CLP Pesticides).
- The compound was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL. U
- The MRL/MDL has been elevated due to a chromatographic interference.
- Χ See case narrative.

Additional Petroleum Hydrocarbon Specific Qualifiers

- The chromatographic fingerprint of the sample matches the elution pattern of the calibration standard. F
- The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of lighter molecular weight constituents than the calibration standard.
- The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of heavier molecular weight constituents than the calibration standard. Η
- The chromatographic fingerprint of the sample resembles an oil, but does not match the calibration standard. 0
- The chromatographic fingerprint of the sample resembles a petroleum product eluting in approximately the correct carbon
- range, but the elution pattern does not match the calibration standard. Y
- The chromatographic fingerprint does not resemble a petroleum product.

000006

Client: Project: BE&K Terranext WVBA/#0310-3154 **Service Request:**

X2300240

Cover Page - Organic Analysis Data Package Volatile Organic Compounds

		Date	Date
Sample Name	Lab Code	Collected	Received
AVB10-0102-1000	X2300240-001	03/19/2003	03/19/2003
AVB10-0100-19115	X2300240-002	03/19/2003	03/19/2003
AVB10-0104-1000	X2300240-003	03/19/2003	03/19/2003
AVB10-0200-18280	X2300240-004	03/19/2003	03/19/2003
AVB61-0100-14450	X2300240-005	03/19/2003	03/19/2003
AVB61-0101-14450	X2300240-006	03/19/2003	03/19/2003
AVB10-0104-1000MS	XWG0300420-1	03/19/2003	03/19/2003
AVB10-0104-1000DMS	XWG0300420-2	03/19/2003	03/19/2003

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed in the case narrative. Release of the data contained in this hardcopy data package and in the computer-readable data submitted on floppy diskette has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signature.

Signature: Mary Lutton

Name: Tracy Dutton

00000

00007

Page 1 of 1

Analytical Results

Client: Project:

BE&K Terranext WVBA/#0310-3154

Sample Matrix:

Water

Service Request: X2300240

Date Collected: 03/19/2003 **Date Received:** 03/19/2003

Volatile Organic Compounds

Sample Name: Lab Code: AVB10-0102-1000 X2300240-001

Extraction Method:

EPA 5030B

Units: ug/L Basis: NA

Level: Low

CAU HOUSE	/XX 11100110 ttv	
Analysis	Method:	8260B

	Dogulé	0	MRL	Dilution Factor	Date Extracted	Date Analyzed	Arizona Qualifier
Analyte Name	Result			1	03/29/03	03/29/03	Arrizona Quantier
Dichlorodifluoromethane	ND		3.0 2.0	1	03/29/03	03/29/03	
Chloromethane	ND ND		1.0	1	03/29/03	03/29/03	
Vinyl Chloride						03/29/03	
Bromomethane	ND		1.0	1	03/29/03 03/29/03	03/29/03	
Chloroethane	ND		1.0	1 1	03/29/03	03/29/03	
Trichlorofluoromethane	ND		1.0				
1,1,2-Trichlorotrifluoroethane	ND		1.0	1	03/29/03	03/29/03	
1,1-Dichloroethene	ND		1.0	1	03/29/03	03/29/03	
Acetone	ND	U	10	. 1	03/29/03	03/29/03	100
Iodomethane	ND	U	2.0	1	03/29/03	03/29/03	
Carbon Disulfide	ND	U	2.0	1	03/29/03	03/29/03	
Methylene Chloride	ND	U	1.0	1	03/29/03	03/29/03	
Methyl tert-Butyl Ether	ND	U	1.0	1	03/29/03	03/29/03	
trans-1,2-Dichloroethene	ND		0.50	1	03/29/03	03/29/03	
1,1-Dichloroethane	ND		0.50	1	03/29/03	03/29/03	
Vinyl Acetate	ND	U	3.0	1	03/29/03	03/29/03	
2,2-Dichloropropane	ND		2.0	1	03/29/03	03/29/03	
2-Butanone (MEK)	ND		8.0	1	03/29/03	03/29/03	
cis-1,2-Dichloroethene	ND	U	0.50	1	03/29/03	03/29/03	
Bromochloromethane	ND	U	0.50	1	03/29/03	03/29/03	
Chloroform	ND	U	1.0	1	03/29/03	03/29/03	
1,1,1-Trichloroethane	ND	U	0.50	1	03/29/03	03/29/03	
Carbon Tetrachloride	ND	U	0.50	1	03/29/03	03/29/03	
1,1-Dichloropropene	ND	U	0.50	1	03/29/03	03/29/03	
Benzene	ND	U	0.50	1	03/29/03	03/29/03	
1,2-Dichloroethane	ND	U	0.50	1	03/29/03	03/29/03	
Trichloroethene	ND	U	0.50	1	03/29/03	03/29/03	
1,2-Dichloropropane	ND	U	0.50	1	03/29/03	03/29/03	
Dibromomethane	ND		0.50	1	03/29/03	03/29/03	
Bromodichloromethane	ND	U	0.50	1	03/29/03	03/29/03	
cis-1,3-Dichloropropene	ND	U	0.50	1	03/29/03	03/29/03	
4-Methyl-2-pentanone (MIBK)	ND		8.0	1	03/29/03	03/29/03	
Toluene	ND	U	0.50	1	03/29/03	03/29/03	

Comments:

 $\begin{array}{llll} Printed: & 04/02/2003 & 11:07:09 \\ \text{L:} \text{STEALTH} \text{CRYSTAL.RPT} \text{Form} \text{Im.rpt} \end{array}$

Merged

Form 1A - Organic

300000

Page 1 of 3

SuperSet Reference:

RR3141

Analytical Results

Client: **Project:** BE&K Terranext WVBA/#0310-3154

Sample Matrix:

Water

Service Request: X2300240

Date Collected: 03/19/2003 **Date Received:** 03/19/2003

Volatile Organic Compounds

Sample Name: Lab Code:

AVB10-0102-1000 X2300240-001

Extraction Method: EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

Angleta Noma	Result	0	MRL	Dilution Factor	Date Extracted	Date Analyzed	Arizona Qualifier
Analyte Name trans-1,3-Dichloropropene	ND		1.0	1	03/29/03	03/29/03	
1.1,2-Trichloroethane	ND		1.0	1	03/29/03	03/29/03	
Tetrachloroethene	ND		0.50	1	03/29/03	03/29/03	
2-Hexanone	ND		5.0	1	03/29/03	03/29/03	
1,3-Dichloropropane	ND		1.0	1	03/29/03	03/29/03	
Dibromochloromethane	ND		0.50	1	03/29/03	03/29/03	
1.2-Dibromoethane	ND	U	0.50	1	03/29/03	03/29/03	
Chlorobenzene	ND		0.50	1	03/29/03	03/29/03	
1,1,1,2-Tetrachloroethane	ND		0.50	1	03/29/03	03/29/03	
Ethylbenzene	ND	U	0.50	1	03/29/03	03/29/03	
m,p-Xylenes	ND		1.0	1	03/29/03	03/29/03	
o-Xylene	ND		0.50	1	03/29/03	03/29/03	
Styrene	ND		0.50	1	03/29/03	03/29/03	
Isopropylbenzene	ND		0.50	1	03/29/03	03/29/03	
Bromobenzene	ND		0.50	1	03/29/03	03/29/03	
1,2,3-Trichloropropane	ND	U	1.0	1	03/29/03	03/29/03	
n-Propylbenzene	ND		0.50	1	03/29/03	03/29/03	
2-Chlorotoluene	ND		0.50	1	03/29/03	03/29/03	
4-Chlorotoluene	ND	U	0.50	1	03/29/03	03/29/03	
1,3,5-Trimethylbenzene	ND		0.50	1	03/29/03	03/29/03	
tert-Butylbenzene	ND		0.50	1	03/29/03	03/29/03	
1,2,4-Trimethylbenzene	ND	U	0.50	1	03/29/03	03/29/03	
sec-Butylbenzene	ND		0.50	1	03/29/03	03/29/03	
1,3-Dichlorobenzene	ND		0.50	1	03/29/03	03/29/03	
4-Isopropyltoluene	ND	U	0.50	1	03/29/03	03/29/03	
Bromoform	ND	U	0.50	1	03/29/03	03/29/03	
1,1,2,2-Tetrachloroethane	ND	U	1.0	1	03/29/03	03/29/03	
1,4-Dichlorobenzene	ND	U	0.50	1	03/29/03	03/29/03	
1,2-Dichlorobenzene	ND		0.50	1	03/29/03	03/29/03	
n-Butylbenzene	ND		0.50	1	03/29/03	03/29/03	
1.2-Dibromo-3-chloropropane	ND	U	5.0	1	03/29/03	03/29/03	
1,2,4-Trichlorobenzene		U	0.50	1	03/29/03	03/29/03	
Hexachlorobutadiene	ND	U	0.50	1	03/29/03	03/29/03	

Comments:

Printed: 04/02/2003 11:07:09 L:\STEALTH\CRYSTAL.RPT\Formlm.rpt

Merged

Form 1A - Organic

000009

2 of 3 Page

SuperSet Reference:

Analytical Results

Client: Project:

BE&K Terranext WVBA/#0310-3154

Sample Matrix:

Water

Service Request: X2300240

Date Collected: 03/19/2003 **Date Received:** 03/19/2003

Volatile Organic Compounds

Sample Name: Lab Code: AVB10-0102-1000 X2300240-001

Extraction Method:

EPA 5030B

71250021000

Analysis Method: 8260B

Units: ug/L Basis: NA

Level: Low

			Dilution	Date	Date	
Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed	Arizona Qualifier
Naphthalene 1,2,3-Trichlorobenzene	ND U ND U	3.0 0.50	1 1	03/29/03 03/29/03	03/29/03 03/29/03	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Arizona Qualifier
Dibromofluoromethane	102	84-113	03/29/03	
Toluene-d8	100	68-126	03/29/03	
4-Bromofluorobenzene	96	79-113	03/29/03	

Comments:

Printed: 04/02/2003 11:07:09 L:\STEALTH\CRYSTAL.RPT\Formlm.rpt

Merged

Form 1A - Organic

000010

Page 3 of 3

Analytical Results

Client: Project: BE&K Terranext WVBA/#0310-3154

Sample Matrix:

Water

Service Request: X2300240

Date Collected: 03/19/2003

Date Received: 03/19/2003

Volatile Organic Compounds

Sample Name:

AVB10-0100-19115

Lab Code:

X2300240-002

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

A . N / N7	Result Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Arizona Qualifier
Analyte Name	ND U	3.0	1	03/29/03	03/29/03	
Dichlorodifluoromethane	ND U	2.0	1	03/29/03	03/29/03	
Chlorida	ND U	1.0	î	03/29/03	03/29/03	
Vinyl Chloride	ND U	1.0	1	03/29/03	03/29/03	
Bromomethane	ND U ND U	1.0	1	03/29/03	03/29/03	
Chloroethane	ND U	1.0	1	03/29/03	03/29/03	
Trichlorofluoromethane			1	03/29/03	03/29/03	
1,1,2-Trichlorotrifluoroethane	ND U	1.0	1	03/29/03	03/29/03	
1,1-Dichloroethene	2.3	1.0 10	1	03/29/03	03/29/03	
Acetone	ND U				03/29/03	
Iodomethane	ND U	2.0	1	03/29/03 03/29/03	03/29/03	
Carbon Disulfide	ND U	2.0	1	03/29/03	03/29/03	
Methylene Chloride	ND U	1.0	1			
Methyl tert-Butyl Ether	ND U	1.0	1	03/29/03	03/29/03	
trans-1,2-Dichloroethene	ND U	0.50	1	03/29/03	03/29/03	
1,1-Dichloroethane	ND U	0.50	11	03/29/03	03/29/03	
Vinyl Acetate	ND U	3.0	1	03/29/03	03/29/03	
2,2-Dichloropropane	ND U	2.0	1	03/29/03	03/29/03	
2-Butanone (MEK)	ND U	8.0	1	03/29/03	03/29/03	
cis-1,2-Dichloroethene	1.7	0.50	1	03/29/03	03/29/03	
Bromochloromethane	ND U	0.50	1	03/29/03	03/29/03	
Chloroform	1.1	1.0	1	03/29/03	03/29/03	
1,1,1-Trichloroethane	ND U	0.50	1	03/29/03	03/29/03	
Carbon Tetrachloride	ND U	0.50	1	03/29/03	03/29/03	
1,1-Dichloropropene	ND U	0.50	1	03/29/03	03/29/03	
Benzene	ND U	0.50	1	03/29/03	03/29/03	
1,2-Dichloroethane	ND U	0.50	1	03/29/03	03/29/03	
Trichloroethene	6,6	0.50	1	03/29/03	03/29/03	
	ND U	0.50	1	03/29/03	03/29/03	
1,2-Dichloropropane Dibromomethane	ND U	0.50	1	03/29/03	03/29/03	
Bromodichloromethane	ND U	0.50	1	03/29/03	03/29/03	
	ND U	0.50	1	03/29/03	03/29/03	
cis-1,3-Dichloropropene 4-Methyl-2-pentanone (MIBK)	ND U	8.0	1	03/29/03	03/29/03	
	ND U	0,50	1	03/29/03	03/29/03	
Toluene	ND 0	5.50				

Comments:

Printed: 04/02/2003 11:07:19 L:\STEALTH\CRYSTAL.RPT\Formlm.rpt

Merged

Form 1A - Organic

1 of 3 Page

SuperSet Reference:

RR3141

Analytical Results

Client: **Project:** BE&K Terranext WVBA/#0310-3154

Sample Matrix:

Water

Service Request: X2300240 **Date Collected:** 03/19/2003

Date Received: 03/19/2003

Volatile Organic Compounds

Sample Name:

AVB10-0100-19115

Lab Code:

X2300240-002

Extraction Method: Analysis Method:

EPA 5030B

8260B

Units: ug/L Basis: NA

Level: Low

				Dilution	Date	Date	
Analyte Name	Result	Q	MRL	Factor	Extracted	Analyzed	Arizona Qualifier
trans-1,3-Dichloropropene	ND	U	1.0	1	03/29/03	03/29/03	
1,1,2-Trichloroethane	ND	U	1.0	1	03/29/03	03/29/03	
Tetrachloroethene	47		0.50	1	03/29/03	03/29/03	
2-Hexanone	ND	U	5.0	1	03/29/03	03/29/03	
1,3-Dichloropropane	ND	U	1.0	1	03/29/03	03/29/03	
Dibromochloromethane	ND		0.50	1	03/29/03	03/29/03	
1.2-Dibromoethane	ND	U	0,50	1	03/29/03	03/29/03	
Chlorobenzene	ND		0.50	1	03/29/03	03/29/03	
1,1,1,2-Tetrachloroethane	ND		0.50	1	03/29/03	03/29/03	
Ethylbenzene	ND	U	0.50	1	03/29/03	03/29/03	
m,p-Xylenes	ND		1.0	1	03/29/03	03/29/03	
o-Xylene	ND		0,50	1	03/29/03	03/29/03	
Styrene	ND	U	0.50	1	03/29/03	03/29/03	
Isopropylbenzene	ND		0.50	1	03/29/03	03/29/03	
Bromobenzene	ND		0.50	1	03/29/03	03/29/03	
1,2,3-Trichloropropane	ND	U	1.0	1	03/29/03	03/29/03	
n-Propylbenzene	ND		0.50	1	03/29/03	03/29/03	
2-Chlorotoluene	ND		0.50	1	03/29/03	03/29/03	
4-Chlorotoluene	ND	U	0.50	1	03/29/03	03/29/03	
1,3,5-Trimethylbenzene	ND		0.50	1	03/29/03	03/29/03	
tert-Butylbenzene	ND		0.50	1	03/29/03	03/29/03	
1,2,4-Trimethylbenzene	ND	U	0.50	1	03/29/03	03/29/03	
sec-Butylbenzene	ND		0.50	1	03/29/03	03/29/03	
1,3-Dichlorobenzene	ND		0.50	1	03/29/03	03/29/03	
4-Isopropyltoluene	ND		0.50	1	03/29/03	03/29/03	
Bromoform	ND		0.50	1	03/29/03	03/29/03	
1,1,2,2-Tetrachloroethane	ND		1.0	1	03/29/03	03/29/03	
1,4-Dichlorobenzene	ND	U	0.50	1	03/29/03	03/29/03	
1,2-Dichlorobenzene	ND		0.50	1	03/29/03	03/29/03	
n-Butylbenzene	ND		0.50	1	03/29/03	03/29/03	
1,2-Dibromo-3-chloropropane	ND		5.0	1	03/29/03	03/29/03	
1,2,4-Trichlorobenzene	ND		0.50	1	03/29/03	03/29/03	
Hexachlorobutadiene	ND		0.50	1	03/29/03	03/29/03	

Comments:

000012

Page 2 of 3

Merged

Analytical Results

Client:

BE&K Terranext WVBA/#0310-3154

Project: Sample Matrix:

Water

Service Request: X2300240

Date Collected: 03/19/2003

Date Received: 03/19/2003

Volatile Organic Compounds

Sample Name:

AVB10-0100-19115

Lab Code:

X2300240-002

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

			Dilution	Date	Date	
Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed	Arizona Qualifier
Naphthalene 1,2,3-Trichlorobenzene	ND U ND U	3.0 0.50	1 1	03/29/03 03/29/03	03/29/03 03/29/03	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Arizona Qualifier
Dibromofluoromethane	99	84-113	03/29/03	
Toluene-d8	106	68-126	03/29/03	
4-Bromofluorobenzene	. 91	79-113	03/29/03	

Comments:

Merged

Analytical Results

Client: Project: BE&K Terranext WVBA/#0310-3154

Sample Matrix:

Water

Service Request: X2300240

Date Collected: 03/19/2003

Date Received: 03/19/2003

Volatile Organic Compounds

Sample Name: Lab Code:

AVB10-0104-1000 X2300240-003

Extraction Method: EPA 5030B

Units: ug/L Basis: NA

Level: Low

Analysis Method:	8260B

				Dilution	Date	Date	A i a constition
Analyte Name	Result	Q	MRL	Factor	Extracted		Arizona Qualifier
Dichlorodifluoromethane	ND	U	3.0	1	03/29/03	03/29/03	
Chloromethane	ND		2.0	1	03/29/03	03/29/03	
Vinyl Chloride	ND	U	1.0	1	03/29/03	03/29/03	
Bromomethane	ND	U	1.0	1	03/29/03	03/29/03	
Chloroethane	ND		1.0	1	03/29/03	03/29/03	
Trichlorofluoromethane	ND	U	1.0	1	03/29/03	03/29/03	
1,1,2-Trichlorotrifluoroethane	ND	U	1.0	1	03/29/03	03/29/03	
1,1-Dichloroethene	ND	U	1.0	1	03/29/03	03/29/03	
Acetone	ND	U	10	1	03/29/03	03/29/03	
Iodomethane	ND	U	2.0	1	03/29/03	03/29/03	
Carbon Disulfide	ND		2.0	1	03/29/03	03/29/03	
Methylene Chloride	ND	U	1.0	1	03/29/03	03/29/03	
Methyl tert-Butyl Ether	ND	U	1.0	1	03/29/03	03/29/03	
trans-1,2-Dichloroethene	ND		0.50	1	03/29/03	03/29/03	
1,1-Dichloroethane	ND		0.50	1	03/29/03	03/29/03	
Vinyl Acetate	ND	IJ	3.0	1	03/29/03	03/29/03	
2,2-Dichloropropane	ND		2.0	1	03/29/03	03/29/03	
2-Butanone (MEK)	ND		8.0	1	03/29/03	03/29/03	
cis-1,2-Dichloroethene	ND	U	0.50	1	03/29/03	03/29/03	
Bromochloromethane	ND	U	0.50	1	03/29/03	03/29/03	
Chloroform	ND	U	1.0	1	03/29/03	03/29/03	
1,1,1-Trichloroethane	ND	U	0.50	1	03/29/03	03/29/03	
Carbon Tetrachloride	ND	U	0.50	1	03/29/03	03/29/03	
1,1-Dichloropropene	ND	U	0.50	1	03/29/03	03/29/03	
Benzene	ND	U	0.50	1	03/29/03	03/29/03	
1,2-Dichloroethane	ND	U	0.50	1	03/29/03	03/29/03	
Trichloroethene	ND	U	0.50	1	03/29/03	03/29/03	
1,2-Dichloropropane	ND	U	0.50	1	03/29/03	03/29/03	
Dibromomethane	ND		0.50	1	03/29/03	03/29/03	
Bromodichloromethane	ND	U	0.50	1	03/29/03	03/29/03	
cis-1,3-Dichloropropene	ND	U	0.50	1	03/29/03	03/29/03	
4-Methyl-2-pentanone (MIBK)	ND	U	8.0	1	03/29/03	03/29/03	
Toluene	ND	U	0.50	1	03/29/03	03/29/03	

Comments:

000014

Analytical Results

Client: Project: BE&K Terranext WVBA/#0310-3154

Sample Matrix:

Water

Service Request: X2300240

Date Collected: 03/19/2003

Date Received: 03/19/2003

Volatile Organic Compounds

Sample Name: Lab Code:

AVB10-0104-1000 X2300240-003

E

EDA 5030B

Units: ug/L Basis: NA

Level: Low

Extraction Method:	EPA 3030B
Analysis Method:	8260B

			Dilution	Date	Date	
Analyte Name	Result Q	MRL	Factor	Extracted		Arizona Qualifier
trans-1,3-Dichloropropene	ND U	1.0	1	03/29/03	03/29/03	
1.1,2-Trichloroethane	ND U	1.0	1	03/29/03	03/29/03	•
Tetrachloroethene	ND U	0.50	1	03/29/03	03/29/03	
2-Hexanone	ND U	5.0	1	03/29/03	03/29/03	
1,3-Dichloropropane	ND U	1.0	1	03/29/03	03/29/03	
Dibromochloromethane	ND U	0.50	1	03/29/03	03/29/03	
1,2-Dibromoethane	ND U	0.50	1	03/29/03	03/29/03	
Chlorobenzene	ND U	0.50	1	03/29/03	03/29/03	
1,1,1,2-Tetrachloroethane	ND U	0.50	1	03/29/03	03/29/03	
	ND U	0.50	1	03/29/03	03/29/03	
Ethylbenzene Vylanas	ND U	1.0	1	03/29/03	03/29/03	
m,p-Xylenes o-Xylene	ND U	0.50	1	03/29/03	03/29/03	
	ND U	0.50	1	03/29/03	03/29/03	
Styrene	ND U	0.50	1	03/29/03	03/29/03	
Isopropylbenzene Bromobenzene	ND U	0.50	1	03/29/03	03/29/03	
	ND U	1.0	1	03/29/03	03/29/03	
1,2,3-Trichloropropane n-Propylbenzene	ND U	0.50	1	03/29/03	03/29/03	
2-Chlorotoluene	ND U	0.50	1	03/29/03	03/29/03	
4-Chlorotoluene	ND U	0.50	1	03/29/03	03/29/03	
1,3,5-Trimethylbenzene	ND U	0.50	1	03/29/03	03/29/03	
tert-Butylbenzene	ND U	0.50	1	03/29/03	03/29/03	
1,2,4-Trimethylbenzene	ND U	0.50	1	03/29/03	03/29/03	
sec-Butylbenzene	ND U	0.50	1	03/29/03	03/29/03	
1,3-Dichlorobenzene	ND U	0.50	1	03/29/03	03/29/03	
4-Isopropyltoluene	ND U	0.50	1	03/29/03	03/29/03	
Bromoform	ND U	0.50	1	03/29/03	03/29/03	
1,1,2,2-Tetrachloroethane	ND U	1.0	1	03/29/03	03/29/03	
	ND U	0.50	1	03/29/03	03/29/03	
1,4-Dichlorobenzene	ND U	0.50	1	03/29/03	03/29/03	
1,2-Dichlorobenzene	ND U	0.50	1	03/29/03	03/29/03	
n-Butylbenzene	ND U	5.0	1	03/29/03	03/29/03	
1,2-Dibromo-3-chloropropane	ND U	0.50	1	03/29/03	03/29/03	
1,2,4-Trichlorobenzene	ND U	0.50	î	03/29/03	03/29/03	
Hexachlorobutadiene	1412 0	0.50				

Printed: 04/02/2003 11:07:29

Merged

Form 1A - Organic

Page

Analytical Results

Client:

BE&K Terranext

Project:

WVBA/#0310-3154

Sample Matrix:

Water

Service Request: X2300240

Date Collected: 03/19/2003

Date Received: 03/19/2003

Volatile Organic Compounds

Sample Name:

AVB10-0104-1000

Lab Code:

X2300240-003

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

			Dilution	Date	Date	
Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed	Arizona Qualifier
Naphthalene 1,2,3-Trichlorobenzene	ND U ND U	3.0 0.50	1 1	03/29/03 03/29/03	03/29/03 03/29/03	
1,2,3-111cmorobenzene	142 0	0.50				

Surrogate Name	%Rec	Control Limits	Date Analyzed	Arizona Qualifier	
Dibromofluoromethane	101	84-113	03/29/03		
Toluene-d8	102	68-126	03/29/03		
4-Bromofluorobenzene	93	79-113	03/29/03		

Comments:

Printed: 04/02/2003 11:07:29 L:\STEALTH\CRYSTAL.RPT\Form1m.rpt

Merged

Form 1A - Organic

000016

SuperSet Reference:

Page 3 of 3

RR3141

Analytical Results

Client: Project: BE&K Terranext WVBA/#0310-3154

Sample Matrix:

Water

Service Request: X2300240

Date Collected: 03/19/2003 **Date Received:** 03/19/2003

Volatile Organic Compounds

Sample Name: Lab Code:

AVB10-0200-18280 X2300240-004

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

Analyte NameResult QMRLDichlorodifluoromethaneND U3.0ChloromethaneND U2.0Vinyl ChlorideND U1.0BromomethaneND U1.0	Factor 1	Extracted	Analyzed	A vigana Ovalifian
DichlorodifluoromethaneND U3.0ChloromethaneND U2.0Vinyl ChlorideND U1.0	1			Arizona Qualifier
Chloromethane ND U 2.0 Vinyl Chloride ND U 1.0		03/29/03	03/29/03	
Vinyl Chloride ND U 1.0	1	03/29/03	03/29/03	
	1	03/29/03	03/29/03	
	1	03/29/03	03/29/03	
Chloroethane ND U 1.0	1	03/29/03	03/29/03	
Trichlorofluoromethane ND U 1.0	1	03/29/03	03/29/03	
1,1,2-Trichlorotrifluoroethane ND U 1.0	1	03/29/03	03/29/03	
1,1-Dichloroethene 13 1.0	1	03/29/03	03/29/03	
Acetone ND U 10	1	03/29/03	03/29/03	
Iodomethane ND U 2.0	1	03/29/03	03/29/03	
Carbon Disulfide ND U 2.0	1	03/29/03	03/29/03	
Methylene Chloride ND U 1.0	1	03/29/03	03/29/03	
Methyl tert-Butyl Ether ND U 1.0	1	03/29/03	03/29/03	
trans-1,2-Dichloroethene ND U 0.50	1	03/29/03	03/29/03	
1,1-Dichloroethane 0.76 0.50	1	03/29/03	03/29/03	
Vinyl Acetate ND U 3.0	1	03/29/03	03/29/03	
2,2-Dichloropropane ND U 2.0	1	03/29/03	03/29/03	
2-Butanone (MEK) ND U 8.0	1	03/29/03	03/29/03	
cis-1,2-Dichloroethene 0.73 0.50	1	03/29/03	03/29/03	
Bromochloromethane ND U 0.50	1	03/29/03	03/29/03	
Chloroform ND U 1.0	1	03/29/03	03/29/03	
1.1,1-Trichloroethane ND U 0.50	1	03/29/03	03/29/03	
Carbon Tetrachloride ND U 0.50	1	03/29/03	03/29/03	
1,1-Dichloropropene ND U 0.50	1	03/29/03	03/29/03	
Benzene ND U 0.50	1	03/29/03	03/29/03	
1,2-Dichloroethane ND U 0.50	1	03/29/03	03/29/03	
Trichloroethene 16 0.50	1	03/29/03	03/29/03	
1,2-Dichloropropane ND U 0.50	1	03/29/03	03/29/03	
Dibromomethane ND U 0.50	1	03/29/03	03/29/03	
Bromodichloromethane ND U 0.50	1	03/29/03	03/29/03	
cis-1,3-Dichloropropene ND U 0.50	1	03/29/03	03/29/03	
4-Methyl-2-pentanone (MIBK) ND U 8.0	1	03/29/03	03/29/03	
Toluene ND U 0.50	1	03/29/03	03/29/03	

Comments:

000017

1 of 3

Analytical Results

Client: Project:

BE&K Terranext WVBA/#0310-3154

Sample Matrix:

Water

Service Request: X2300240

Date Collected: 03/19/2003 **Date Received:** 03/19/2003

Volatile Organic Compounds

Sample Name:

AVB10-0200-18280

Lab Code:

X2300240-004

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

Analyte Name Result Q MRL Factor Extracted Analyzed Arizona Qualifier trans-1,3-Dichloropropene ND U 1.0 1 03/29/03 03/29/03 1,1,2-Trichlorocthane ND U 1.0 1 03/29/03 03/29/03 2-Hexanone ND U 5.0 1 03/29/03 03/29/03 1,3-Dichloropropane ND U 1.0 1 03/29/03 03/29/03 1,3-Dichloropropane ND U 0.50 1 03/29/03 03/29/03 1,2-Dibromoethane ND U 0.50 1 03/29/03 03/29/03 Chiorobenzene ND U 0.50 1 03/29/03 03/29/03 Chiorobenzene ND U 0.50 1 03/29/03 03/29/03 Ethylbenzene ND U 0.50 1 03/29/03 03/29/03 Ethylbenzene ND U 0.50 1 03/29/03 03/29/03 Styrene ND U 0.50 1 03/29/03 03/29/03					Dilution	Date	Date	
trans-1,3-Dichloropropene ND U 1.0 1 03/29/03 03/29/03 03/29/03 1,1,2-Trichloroethane ND U 1.0 1 03/29/03	Analyte Name	Result	Q	MRL	Factor			Arizona Qualifier
1,1,2-Trichloroethane		ND	U	1.0	1			
Tetrachloroethene 49 0.50 1 03/29/03 03/29/03 2-Hexanone ND U 5.0 1 03/29/03 03/29/03 1,3-Dichloropropane ND U 1.0 1 03/29/03 03/29/03 Dibromochloromethane ND U 0.50 1 03/29/03 03/29/03 1,2-Dibromoethane ND U 0.50 1 03/29/03 03/29/03 Chlorobenzene ND U 0.50 1 03/29/03 03/29/03 Chlorobenzene ND U 0.50 1 03/29/03 03/29/03 Hitylbenzene ND U 0.50 1 03/29/03 03/29/03 Bitylene ND U 0.50 1 03/29/03 03/29/03 Styrene ND U 0.50 1 03/29/03 03/29/03 Isopropylbenzene ND U 0.50 1 03/29/03 03/29/03 Isopropylbenzene <td< td=""><td></td><td>ND</td><td>U</td><td>1.0</td><td>1</td><td></td><td></td><td></td></td<>		ND	U	1.0	1			
2-Hexanone	, ,	49		0.50	1	03/29/03	03/29/03	
1,3-Dichloropropane		ND	U	5.0	1	03/29/03		
Dibromochloromethane				1.0	1	03/29/03		
1,2-Dibromoethane				0.50	1	03/29/03	03/29/03	
ND U		ND	IJ	0.50	1	03/29/03	03/29/03	
1,1,1,2-Tetrachloroethane					1	03/29/03	03/29/03	
Styrene					1	03/29/03	03/29/03	
ND U 1.0 1 03/29/03 03/29/03 03/29/03 05/				0.50	1	03/29/03	03/29/03	
ND U 0.50 1 03/29/03 03/29/03	•				1	03/29/03	03/29/03	
Styrene	· •				1	03/29/03	03/29/03	
Styferic ND U 0.50					1	03/29/03	03/29/03	
Bromobenzene ND U 0.50 1 03/29/03 03/29/03 03/29/03 1,2,3-Trichloropropane ND U 0.50 1 03/29/03						03/29/03	03/29/03	
1,2,3-Trichloropropane ND U 1.0 1 03/29/03 03/29/03 n-Propylbenzene ND U 0.50 1 03/29/03 03/29/03 2-Chlorotoluene ND U 0.50 1 03/29/03 03/29/03 4-Chlorotoluene ND U 0.50 1 03/29/03 03/29/03 1,3-5-Trimethylbenzene ND U 0.50 1 03/29/03 03/29/03 1,2,4-Trimethylbenzene ND U 0.50 1 03/29/03 03/29/03 1,3-5-Trimethylbenzene ND U 0.50 1 03/29/03 03/29/03 1,2-4-Trimethylbenzene ND U 0.50 1 03/29/03 03/29/03 <t< td=""><td>1 17</td><td></td><td></td><td></td><td></td><td>03/29/03</td><td>03/29/03</td><td></td></t<>	1 17					03/29/03	03/29/03	
1,2,3-Frichloropropane					1	03/29/03	03/29/03	
2-Chlorotoluene ND U 0.50 1 03/29/03 03/29/03 4-Chlorotoluene ND U 0.50 1 03/29/03 03/29/03 1,3,5-Trimethylbenzene ND U 0.50 1 03/29/03 03/29/03 tert-Butylbenzene ND U 0.50 1 03/29/03 03/29/03 1,2,4-Trimethylbenzene ND U 0.50 1 03/29/03 03/29/03 sec-Butylbenzene ND U 0.50 1 03/29/03 03/29/03 1,3-Dichlorobenzene ND U 0.50 1 03/29/03 03/29/03 4-Isopropyltoluene ND U 0.50 1 03/29/03 03/29/03 Bromoform ND U 0.50 1 03/29/03 03/29/03 1,1,2,2-Tetrachloroethane ND U 1.0 1 03/29/03 03/29/03 1,4-Dichlorobenzene ND U 0.50 1 03/29/03 03/29/03 1,4-Dichlorobenzene ND U 0.50 1 03/29/03 03/29/03 1,2-Dichlorobenzene ND U 0.50 1 03/29/03 03/29/03 1,2-Dibromo-3-chloropropane ND U 5.0 1 03/29/03 03/29/03 1,2-Trichlorobenzene ND U 0.50 1 03/29/03 03/29/03 1,2-Dibromo-3-chloropropane ND U 0.50 1 03/29/03 03/29/03 1,2-Trichlorobenzene ND U 0.50 1 03/29/03 03/29/03								
4-Chlorotoluene ND U 0.50 1 03/29/03 03/29/03 1,3,5-Trimethylbenzene ND U 0.50 1 03/29/03 03/29/03 1,2,4-Trimethylbenzene ND U 0.50 1 03/29/03 03/29/03 1,2,4-Trimethylbenzene ND U 0.50 1 03/29/03 03/29/03 1,2,4-Trimethylbenzene ND U 0.50 1 03/29/03 03/29/03 1,3-Dichlorobenzene ND U 0.50 1 03/29/03 03/29/03 1,3-Dichlorobenzene ND U 0.50 1 03/29/03 03/29/03 1,3-Dichlorobenzene ND U 0.50 1 03/29/03 03/29/03 1,1,2,2-Tetrachloroethane ND U 0.50 1 03/29/03 03/29/03 1,1,2,2-Tetrachloroethane ND U 1.0 1 03/29/03 03/29/03 1,4-Dichlorobenzene ND U 0.50 1 03/29/03 03/29/03 1,2-Dichlorobenzene ND U 0.50 1 03/29/03 03/29/03 1,2-Dichlorobenzene ND U 0.50 1 03/29/03 03/29/03 03/29/03 1,2-Dichlorobenzene ND U 0.50 1 03/29/03 03/29/03 03/29/03 1,2-Dibromo-3-chloropropane ND U 0.50 1 03/29/03 03/29/03 1,2-Dibromo-3-chloropropane ND U							03/29/03	
4-Chlorotoluene ND U 0.50 1 03/29/03 03/29/03 1,3,5-Trimethylbenzene ND U 0.50 1 03/29/03 03/29/03 1,2,4-Trimethylbenzene ND U 0.50 1 03/29/03 03/29/03 sec-Butylbenzene ND U 0.50 1 03/29/03 03/29/03 1,3-Dichlorobenzene ND U 0.50 1 03/29/03 03/29/03 4-Isopropyltoluene ND U 0.50 1 03/29/03 03/29/03 Bromoform ND U 0.50 1 03/29/03 03/29/03 1,1,2,2-Tetrachloroethane ND U 1.0 1 03/29/03 03/29/03 1,4-Dichlorobenzene ND U 0.50 1 03/29/03 03/29/03 1,2-Dichlorobenzene ND U 0.50 1 03/29/03 03/29/03 n-Butylbenzene ND U 0.50 1 03/29/03 03/29/03 1,2-Dibromo-3-chloropropane ND U 5.0 1 03/29/03 03/29/03 1,2,4-Trichlorobenzene ND U 0.50 1 03/29/03					1	03/29/03	03/29/03	
tert-Butylbenzene ND U 0.50 1 03/29/03 03/29/03 1,2,4-Trimethylbenzene ND U 0.50 1 03/29/03 03/29/03 sec-Butylbenzene ND U 0.50 1 03/29/03 03/29/03 1,3-Dichlorobenzene ND U 0.50 1 03/29/03 03/29/03 4-Isopropyltoluene ND U 0.50 1 03/29/03 03/29/03 Bromoform ND U 0.50 1 03/29/03 03/29/03 1,1,2,2-Tetrachloroethane ND U 1.0 1 03/29/03 03/29/03 1,4-Dichlorobenzene ND U 0.50 1 03/29/03 03/29/03 1,4-Dichlorobenzene ND U 0.50 1 03/29/03 03/29/03 1,2-Dichlorobenzene ND U 0.50 1 03/29/03 03/29/03 1,2-Dibromo-3-chloropropane ND U 0.50 1 03/29/03 03/29/03 1,2-Dibromo-3-chloropropane ND U 0.50 1 03/29/03 03/29/03 1,2,4-Trichlorobenzene ND U 0.50 1 03/29/03 03/29/03 1,2,4-Trichlorobenzene ND U 0.50 1 03/29/03 03/29/03								
1,2,4-Trimethylbenzene	•							
1,2,4-Trimethylbenzene							03/29/03	
1,3-Dichlorobenzene ND U 0.50 1 03/29/03 03/29/03					_			
1,3-Dichlorobenzene ND U 0.50 1 03/29/03 03/29/03 4-Isopropyltoluene ND U 0.50 1 03/29/03 03/29/03 Bromoform ND U 0.50 1 03/29/03 03/29/03 1,1,2,2-Tetrachloroethane ND U 0.50 1 03/29/03 03/29/03 1,4-Dichlorobenzene ND U 0.50 1 03/29/03 03/29/03 1,2-Dichlorobenzene ND U 0.50 1 03/29/03 03/29/03 1,2-Dibromo-3-chloropropane ND U 5.0 1 03/29/03 03/29/03 1,2,4-Trichlorobenzene ND U 0.50 1 03/29/03 03/29/03 1,2,4-Trichlorobenzene ND U 0.50 1 03/29/03 03/29/03					_			
4-Isopropyltotuene IND U 0.50 1 03/29/03 03/29/03 Bromoform ND U 0.50 1 03/29/03 03/29/03 1,1,2,2-Tetrachloroethane ND U 0.50 1 03/29/03 03/29/03 1,4-Dichlorobenzene ND U 0.50 1 03/29/03 03/29/03 1,2-Dichlorobenzene ND U 0.50 1 03/29/03 03/29/03 1,2-Dibromo-3-chloropropane ND U 5.0 1 03/29/03 03/29/03 1,2,4-Trichlorobenzene ND U 0.50 1 03/29/03 03/29/03								
Bromoform ND U 1.0 1 03/29/03 03/29/03 1,4-Dichlorobenzene ND U 0.50 1 03/29/03 03/29/03 1,2-Dichlorobenzene ND U 0.50 1 03/29/03 03/29/03 n-Butylbenzene ND U 0.50 1 03/29/03 03/29/03 1,2-Dibromo-3-chloropropane ND U 5.0 1 03/29/03 03/29/03 1,2,4-Trichlorobenzene ND U 0.50 1 03/29/03 03/29/03	1 1							
1,1,2,2-1etrachloroethane ND U 0.50 1 03/29/03 03/29/03 1,4-Dichlorobenzene ND U 0.50 1 03/29/03 03/29/03 1,2-Dichlorobenzene ND U 0.50 1 03/29/03 03/29/03 n-Butylbenzene ND U 0.50 1 03/29/03 03/29/03 1,2-Dibromo-3-chloropropane ND U 5.0 1 03/29/03 03/29/03 1,2,4-Trichlorobenzene ND U 0.50 1 03/29/03 03/29/03								
1,4-Dichlorobenzene ND U 0.50 1 03/29/03 03/29/03 1,2-Dichlorobenzene ND U 0.50 1 03/29/03 03/29/03 n-Butylbenzene ND U 0.50 1 03/29/03 03/29/03 1,2-Dibromo-3-chloropropane ND U 5.0 1 03/29/03 03/29/03 1,2,4-Trichlorobenzene ND U 0.50 1 03/29/03 03/29/03	1,1,2,2-Tetrachloroethane							
1,2-Dichlorobenzene ND U 0.50 1 03/29/03 03/29/03 n-Butylbenzene ND U 0.50 1 03/29/03 03/29/03 1,2-Dibromo-3-chloropropane ND U 5.0 1 03/29/03 03/29/03 1,2,4-Trichlorobenzene ND U 0.50 1 03/29/03 03/29/03	1,4-Dichlorobenzene							
1,2-Dibromo-3-chloropropane ND U 5.0 1 03/29/03 03/29/03 1,2,4-Trichlorobenzene ND U 0.50 1 03/29/03 03/29/03	1,2-Dichlorobenzene							
1,2-Dioromo-s-emoropropane ND U 0.50 1 03/29/03 03/29/03 1,2,4-Trichlorobenzene ND U 0.50 1 03/29/03 03/29/03	n-Butylbenzene							
1,2,4-1 richlorobenzene ND 0 0.30	1,2-Dibromo-3-chloropropane							
	1,2,4-Trichlorobenzene							
		ND	U	0.50	1	03/29/03	03/29/03	

Comments:

Printed: 04/02/2003 11:07:39 L:\STEALTH\CRYSTAL.RPT\Form\m.rpt

Merged

Form 1A - Organic

000018

Page 2 of 3

SuperSet Reference: RR3141

Analytical Results

Client:

BE&K Terranext

Project: Sample Matrix: WVBA/#0310-3154 Water

Service Request: X2300240

Date Collected: 03/19/2003

Date Received: 03/19/2003

03/29/03

Volatile Organic Compounds

Sample Name:

AVB10-0200-18280

ND U

Lab Code:

X2300240-004

Units: ug/L Basis: NA

Extraction Method:

EPA 5030B

Level: Low

Analysis Method:

1,2,3-Trichlorobenzene

8260B

Analyte Name	Result Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Arizona Qualifier
Nanhthalene	ND U	3.0	1	03/29/03	03/29/03	

0.50

1

03/29/03

Surrogate Name	%Rec	Control Limits	Date Analyzed	Arizona Qualifier	
Dibromofluoromethane	98	84-113	03/29/03		
Toluene-d8	106	68-126	03/29/03		
4-Bromofluorobenzene	92	79-113	03/29/03		

Comments:

Printed: 04/02/2003 11:07:39

Form 1A - Organic

000019

3 of 3 Page

SuperSet Reference:

RR3141

Merged

Analytical Results

Client: **Project:** BE&K Terranext WVBA/#0310-3154

Sample Matrix:

Water

Service Request: X2300240 **Date Collected:** 03/19/2003

Date Received: 03/19/2003

Volatile Organic Compounds

Sample Name: Lab Code:

AVB61-0100-14450 X2300240-005

Extraction Method: Analysis Method:

EPA 5030B 8260B

Units: ug/L Basis: NA

Level: Low

			Dilution	Date	Date	
Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed	Arizona Qualifier
Dichlorodifluoromethane	ND U	3.0	1	03/29/03	03/29/03	
Chloromethane	ND U	2.0	1	03/29/03	03/29/03	
Vinyl Chloride	ND U	1.0	1	03/29/03	03/29/03	
Bromomethane	ND U	1.0	1	03/29/03	03/29/03	
Chloroethane	ND U	1.0	1	03/29/03	03/29/03	
Trichlorofluoromethane	ND U	1.0	1	03/29/03	03/29/03	
1,1,2-Trichlorotrifluoroethane	ND U	1.0	1	03/29/03	03/29/03	
1,1-Dichloroethene	ND U	1.0	1	03/29/03	03/29/03	
Acetone	ND U	10	1	03/29/03	03/29/03	
Iodomethane	ND U	2.0	1	03/29/03	03/29/03	
Carbon Disulfide	ND U	2.0	. 1	03/29/03	03/29/03	
Methylene Chloride	ND U	1.0	1	03/29/03	03/29/03	
Methyl tert-Butyl Ether	ND U	1.0	1	03/29/03	03/29/03	
trans-1,2-Dichloroethene	ND U	0.50	1	03/29/03	03/29/03	
1,1-Dichloroethane	ND U	0.50	1	03/29/03	03/29/03	
Vinyl Acetate	ND U	3.0	1	03/29/03	03/29/03	
2,2-Dichloropropane	ND U	2.0	1	03/29/03	03/29/03	
2-Butanone (MEK)	ND U	8.0	1	03/29/03	03/29/03	
cis-1,2-Dichloroethene	ND U	0.50	1	03/29/03	03/29/03	
Bromochloromethane	ND U	0.50	1	03/29/03	03/29/03	
Chloroform	ND U	1.0	1	03/29/03	03/29/03	
1,1,1-Trichloroethane	ND U	0.50	1	03/29/03	03/29/03	
Carbon Tetrachloride	ND U	0.50	1	03/29/03	03/29/03	
1,1-Dichloropropene	ND U	0.50	1	03/29/03	03/29/03	
Benzene	ND U	0.50	1	03/29/03	03/29/03	
1,2-Dichloroethane	ND U	0.50	1	03/29/03	03/29/03	
Trichloroethene	ND U	0.50	1	03/29/03	03/29/03	
1,2-Dichloropropane	ND U	0.50	1	03/29/03	03/29/03	
Dibromomethane	ND U	0.50	1	03/29/03	03/29/03	
Bromodichloromethane	ND U	0.50	1	03/29/03	03/29/03	
cis-1,3-Dichloropropene	ND U	0.50	1	03/29/03	03/29/03	
4-Methyl-2-pentanone (MIBK)	ND U	8.0	1	03/29/03	03/29/03	
Toluene	ND U	0.50	1	03/29/03	03/29/03	

Comments:

Printed: 04/02/2003 11:07:49

Merged

Form 1A - Organic

000020

1 of 3 Page

SuperSet Reference:

Analytical Results

Client: Project: BE&K Terranext WVBA/#0310-3154

Sample Matrix:

Water

Service Request: X2300240
Date Collected: 03/19/2003

Date Collected: 03/19/2003 **Date Received:** 03/19/2003

Volatile Organic Compounds

Sample Name:

AVB61-0100-14450

Lab Code:

X2300240-005

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

Result Q MRL Factor Extractical Analyses Artona Quantitarians-1,3-Dichloropropene ND U 1.0 1 03/29/03 03/29/03 03/29/03 1,12-Trichloroethane ND U 0.50 1 03/29/03					Dilution	Date Extracted	Date	Arizona Qualifier
trans-1,3-Dienioroproprie ND U 1.0 1 03/29/03 03/	Analyte Name			MRL	Factor			Arizona Quantier
1,1,2-Trichloroethane								
Tetrachloroetchene ND U 5.0 1 03/29/03 03/29/03 2-Hexanone ND U 1.0 1 03/29/03 03/29/03 Ja-Dichloropropane ND U 0.50 1 03/29/03 03/29/03 L)2-Dibromochlane ND U 0.50 1 03/29/03 03/29/03 Chlorobenzene ND U 0.50 1 03/29/03 03/29/03 Chlorobenzene ND U 0.50 1 03/29/03 03/29/03 Litylbenzene ND U 0.50 1 03/29/03 03/29/03 Ethylbenzene ND U 0.50 1 03/29/03 03/29/03 Mp-Xylenes ND U 0.50 1 03/29/03 03/29/03 Styrene ND U 0.50 1 03/29/03 03/29/03 Styrene ND U 0.50 1 03/29/03 03/29/03 Isopropylbenzene ND U 0.50 1 03/29/03 03/29/03 Bromobenzene ND U								
2-Hexanone ND U 1.0 1 03/29/03 03/29/03 1,3-Dichloropropane ND U 0.50 1 03/29/03 03/29/03 1,2-Dibromoethane ND U 0.50 1 03/29/03 03/29/03 1,1,1,2-Tetrachloroethane ND U 0.50 1 03/29/03 03/29/03 1,2-Dibromoethane ND U 0.50 1 03/29/03 03/29/03 1,2-	Tetrachloroethene							
1,3-Dichloropropane	2-Hexanone							
Dibromochloromethane	1.3-Dichloropropane							
1,2-Dibromoethane		ND	U	0.50	1			
Chlorobenzene	1.2-Dibromoethane	ND	U	0.50	1			
1,1,2-Tetrachloroethane	,	ND	U	0.50	1			
Ethylbenzene		ND	U	0.50	1	03/29/03		
ND U 1.0 1 03/29/03 03/		ND	U	0.50	1			
o-Xylene ND U 0.50 1 03/29/03 03/29/03 Styrene ND U 0.50 1 03/29/03 03/29/03 Isopropylbenzene ND U 0.50 1 03/29/03 03/29/03 Bromobenzene ND U 0.50 1 03/29/03 03/29/03 1,2,3-Trichloropropane ND U 0.50 1 03/29/03 03/29/03 n-Propylbenzene ND U 0.50 1 03/29/03 03/29/03 2-Chlorotoluene ND U 0.50 1 03/29/03 03/29/03 4-Chlorotoluene ND U 0.50 1 03/29/03 03/29/03 4-Chlorotoluene ND U 0.50 1 03/29/03 03/29/03 1,3,5-Trimethylbenzene ND U 0.50 1 03/29/03 03/29/03 1,2,4-Trimethylbenzene ND U 0.50 1 03/29/03 03/29/03				1.0	1			
Styrene				0.50	1	03/29/03	03/29/03	
Sopropylbenzene ND U 0.50 1 03/29/03 03/29/				0.50	1	03/29/03	03/29/03	
Soprophysication Signostration Signostra					1	03/29/03	03/29/03	
1,2,3-Trichloropropane ND U 1.0 1 03/29/03 03/29/03 n-Propylbenzene ND U 0.50 1 03/29/03 03/29/03 2-Chlorotoluene ND U 0.50 1 03/29/03 03/29/03 4-Chlorotoluene ND U 0.50 1 03/29/03 03/29/03 1,3,5-Trimethylbenzene ND U 0.50 1 03/29/03 03/29/03 1,3,5-Trimethylbenzene ND U 0.50 1 03/29/03 03/29/03 1,2,4-Trimethylbenzene ND U 0.50 1 03/29/03 03/29/03 1,2,4-Trimethylbenzene ND U 0.50 1 03/29/03 03/29/03 1,3-Dichlorobenzene ND U 0.50 1 03/29/03 03/29/03 1,3-Dichlorobenzene ND U 0.50 1 03/29/03 03/29/03 4-Isopropyltoluene ND U 0.50 1 03/29/03 03/29/03 1,1,2,2-Tetrachloroethane ND U 0.50 1 03/29/03 03/29/03 1,4-Dichlorobenzene ND U 0.50 1 03/29/03 03/29/03 1,2-Dichlorobenzene ND U 0.50 1 03/29/03 03					1	03/29/03	03/29/03	
1,2,4-Trientorpropane					1	03/29/03	03/29/03	
2-Chlorotoluene ND U 0.50 1 03/29/03 03/29/03 4-Chlorotoluene ND U 0.50 1 03/29/03 03/29/03 1,3,5-Trimethylbenzene ND U 0.50 1 03/29/03 03/29/03 tert-Butylbenzene ND U 0.50 1 03/29/03 03/29/03 1,2,4-Trimethylbenzene ND U 0.50 1 03/29/03 03/29/03 sec-Butylbenzene ND U 0.50 1 03/29/03 03/29/03 1,3-Dichlorobenzene ND U 0.50 1 03/29/03 03/29/03 4-Isopropyltoluene ND U 0.50 1 03/29/03 03/29/03 Bromoform ND U 0.50 1 03/29/03 03/29/03 1,1,2,2-Tetrachloroethane ND U 1.0 1 03/29/03 03/29/03 1,4-Dichlorobenzene ND U 0.50 1 03/29/03 03/29/03 1,4-Dichlorobenzene ND U 0.50 1 03/29/03 03/29/03 1,2-Dichlorobenzene ND U 0.50 1 03/29/03 03/29/03							03/29/03	
4-Chlorotoluene ND U 0.50 1 03/29/03 03/29/03 1,3,5-Trimethylbenzene ND U 0.50 1 03/29/03 03/29/03 1,2,4-Trimethylbenzene ND U 0.50 1 03/29/03 03/29/03 1,2,4-Trimethylbenzene ND U 0.50 1 03/29/03 03/29/03 1,3-Dichlorobenzene ND U 0.50 1 03/29/03 03/29/03 1,1,2,2-Tetrachloroethane ND U 0.50 1 03/29/03 03/29/03 1,1,2,2-Tetrachloroethane ND U 1.0 1 03/29/03 03/29/03 1,4-Dichlorobenzene ND U 0.50 1 03/29/03 03/29/03 1,2-Dichlorobenzene ND U 0.50 1 03/29/03 03/29/03 1,2-Dichlorobenzene ND U 0.50 1 03/29/03 03/29/03 1,2-Dichlorobenzene ND U 0.50 1 03/29/03 03/29/03 1,2-Dibromo-3-chloropropane ND U 5.0 1 03/29/03 03/29/03 1,2-Dibromo-3-chloropropane ND U 5.0 1 03/29/03 03/29/03 1,2,4-Trichlorobenzene ND U 0.50 1 03/29/03 03/29/03					1	03/29/03	03/29/03	
4-Chlorotoluene ND U 0.50 1 03/29/03 03/29/03 1,3,5-Trimethylbenzene ND U 0.50 1 03/29/03 03/29/03 1,2,4-Trimethylbenzene ND U 0.50 1 03/29/03 03/29/03 sec-Butylbenzene ND U 0.50 1 03/29/03 03/29/03 1,3-Dichlorobenzene ND U 0.50 1 03/29/03 03/29/03 4-Isopropyltoluene ND U 0.50 1 03/29/03 03/29/03 Bromoform ND U 0.50 1 03/29/03 03/29/03 1,1,2,2-Tetrachloroethane ND U 1.0 1 03/29/03 03/29/03 1,4-Dichlorobenzene ND U 0.50 1 03/29/03 03/29/03 1,2-Dichlorobenzene ND U 0.50 1 03/29/03 03/29/03 1,2-Dibromo-3-chloropropane ND U 5.0 1 03/29/03 03/29/03 1,2,4-Trichlorobenzene ND U 0.50 1 03/29/03 03/29/03 1,2,4-Trichlorobenzene ND U 0.50 1 03/29/03<					1	03/29/03	03/29/03	
1,3,5-Trimethylbenzene ND U 0.50 1 03/29/03 03/29/03 1,2,4-Trimethylbenzene ND U 0.50 1 03/29/03 03/29/03 sec-Butylbenzene ND U 0.50 1 03/29/03 03/29/03 1,3-Dichlorobenzene ND U 0.50 1 03/29/03 03/29/03 4-Isopropyltoluene ND U 0.50 1 03/29/03 03/29/03 Bromoform ND U 0.50 1 03/29/03 03/29/03 1,1,2,2-Tetrachloroethane ND U 1.0 1 03/29/03 03/29/03 1,4-Dichlorobenzene ND U 0.50 1 03/29/03 03/29/03 1,2-Dichlorobenzene ND U 0.50 1 03/29/03 03/29/03 1,2-Dibromo-3-chloropropane ND U 5.0 1 03/29/03 03/29/03 1,2,4-Trichlorobenzene ND U 0.50 1 03/29/03 03/29/03 1,2,4-Trichlorobenzene ND U 0.50 1 03/29/03 03/29/								
tert-Butylbenzene ND U 0.50 1 03/29/03 03/29/03 sec-Butylbenzene ND U 0.50 1 03/29/03 03/29/03 1,3-Dichlorobenzene ND U 0.50 1 03/29/03 03/29/03 4-Isopropyltoluene ND U 0.50 1 03/29/03 03/29/03 Bromoform ND U 0.50 1 03/29/03 03/29/03 1,1,2,2-Tetrachloroethane ND U 0.50 1 03/29/03 03/29/03 1,4-Dichlorobenzene ND U 0.50 1 03/29/03 03/29/03 1,2-Dichlorobenzene ND U 0.50 1 03/29/03 03/29/03 1,2-Dibromo-3-chloropropane ND U 5.0 1 03/29/03 03/29/03 1,2,4-Trichlorobenzene ND U 0.50 1 03/29/03 03/29/03 1,2,4-Trichlorobenzene ND U 0.50 1 03/29/03 <	* *				_			
1,2,4-Trimethylbenzene ND U 0.50 1 03/29/03 03/29/03 sec-Butylbenzene ND U 0.50 1 03/29/03 03/29/03 1,3-Dichlorobenzene ND U 0.50 1 03/29/03 03/29/03 4-Isopropyltoluene ND U 0.50 1 03/29/03 03/29/03 Bromoform ND U 0.50 1 03/29/03 03/29/03 1,1,2,2-Tetrachloroethane ND U 0.50 1 03/29/03 03/29/03 1,4-Dichlorobenzene ND U 0.50 1 03/29/03 03/29/03 1,2-Dichlorobenzene ND U 0.50 1 03/29/03 03/29/03 1,2-Dibromo-3-chloropropane ND U 5.0 1 03/29/03 03/29/03 1,2,4-Trichlorobenzene ND U 0.50 1 03/29/03 03/29/03 1,2,4-Trichlorobenzene ND U 0.50 1 03/29/03 03/29/03								
sec-Butylbenzene ND U 0.50 1 03/29/03 03/29/03 1,3-Dichlorobenzene ND U 0.50 1 03/29/03 03/29/03 4-Isopropyltoluene ND U 0.50 1 03/29/03 03/29/03 Bromoform ND U 0.50 1 03/29/03 03/29/03 1,1,2,2-Tetrachloroethane ND U 0.50 1 03/29/03 03/29/03 1,4-Dichlorobenzene ND U 0.50 1 03/29/03 03/29/03 1,2-Dichlorobenzene ND U 0.50 1 03/29/03 03/29/03 1,2-Dibromo-3-chloropropane ND U 5.0 1 03/29/03 03/29/03 1,2,4-Trichlorobenzene ND U 0.50 1 03/29/03 03/29/03 1,2,4-Trichlorobenzene ND U 0.50 1 03/29/03 03/29/03								
1,3-Dichlorobenzene ND U 0.50 1 03/29/03 03/29/03 4-Isopropyltoluene ND U 0.50 1 03/29/03 03/29/03 Bromoform ND U 0.50 1 03/29/03 03/29/03 1,1,2,2-Tetrachloroethane ND U 0.50 1 03/29/03 03/29/03 1,4-Dichlorobenzene ND U 0.50 1 03/29/03 03/29/03 1,2-Dichlorobenzene ND U 0.50 1 03/29/03 03/29/03 1,2-Dibromo-3-chloropropane ND U 5.0 1 03/29/03 03/29/03 1,2,4-Trichlorobenzene ND U 0.50 1 03/29/03 03/29/03								
4-Isopropyltoluene ND U 0.50 1 03/29/03 03/29/03 Bromoform ND U 0.50 1 03/29/03 03/29/03 1,1,2,2-Tetrachloroethane ND U 1.0 1 03/29/03 03/29/03 1,4-Dichlorobenzene ND U 0.50 1 03/29/03 03/29/03 1,2-Dichlorobenzene ND U 0.50 1 03/29/03 03/29/03 n-Butylbenzene ND U 0.50 1 03/29/03 03/29/03 1,2-Dibromo-3-chloropropane ND U 5.0 1 03/29/03 03/29/03 1,2,4-Trichlorobenzene ND U 0.50 1 03/29/03 03/29/03	1,3-Dichlorobenzene							
Bromoform ND U 0.50 1 03/29/03 03/29/03 1,1,2,2-Tetrachloroethane ND U 1.0 1 03/29/03 03/29/03 1,4-Dichlorobenzene ND U 0.50 1 03/29/03 03/29/03 1,2-Dichlorobenzene ND U 0.50 1 03/29/03 03/29/03 n-Butylbenzene ND U 0.50 1 03/29/03 03/29/03 1,2-Dibromo-3-chloropropane ND U 5.0 1 03/29/03 03/29/03 1,2,4-Trichlorobenzene ND U 0.50 1 03/29/03 03/29/03	4-Isopropyltoluene							
1,1,2,2-Tetrachloroethane ND U 1.0 1 03/29/03 03/29/03 1,4-Dichlorobenzene ND U 0.50 1 03/29/03 03/29/03 1,2-Dichlorobenzene ND U 0.50 1 03/29/03 03/29/03 n-Butylbenzene ND U 0.50 1 03/29/03 03/29/03 1,2-Dibromo-3-chloropropane ND U 5.0 1 03/29/03 03/29/03 1,2,4-Trichlorobenzene ND U 0.50 1 03/29/03 03/29/03								
1,4-Dichlorobenzene ND U 0.50 1 03/29/03 03/29/03 1,2-Dichlorobenzene ND U 0.50 1 03/29/03 03/29/03 n-Butylbenzene ND U 0.50 1 03/29/03 03/29/03 1,2-Dibromo-3-chloropropane ND U 5.0 1 03/29/03 03/29/03 1,2,4-Trichlorobenzene ND U 0.50 1 03/29/03 03/29/03		ND	U	1.0	1			
1,2-Dichlorobenzene ND U 0.50 1 03/29/03 03/29/03 n-Butylbenzene ND U 0.50 1 03/29/03 03/29/03 1,2-Dibromo-3-chloropropane ND U 5.0 1 03/29/03 03/29/03 1,2,4-Trichlorobenzene ND U 0.50 1 03/29/03 03/29/03		NE	U	0.50	1			
n-Butylbenzene ND U 0.50 1 03/29/03 03/29/03 1,2-Dibromo-3-chloropropane ND U 5.0 1 03/29/03 03/29/03 1,2,4-Trichlorobenzene ND U 0.50 1 03/29/03 03/29/03		NE	U					
1,2-Dibromo-3-chloropropane ND U 5.0 1 03/29/03 03/29/03 1,2,4-Trichlorobenzene ND U 0.50 1 03/29/03 03/29/03		NE	U	0.50	11			
1,2,4-Trichlorobenzene ND U 0.50 1 03/29/03 03/29/03 1,2,4-Trichlorobenzene ND U 0.50 1 03/29/03 03/29/03		NE	U	5.0	1			
1,2,4 111011101000112011	,			0.50	1			
				0.50	1	03/29/03	03/29/03	

Printed: 04/02/2003 11:07:49 L:\STEALTH\CRYSTAL.RPT\Form\m.rpt

Merged

Form 1A - Organic

000021

Page 2 of 3

SuperSet Reference: RR3141

Analytical Results

Client: Project: BE&K Terranext WVBA/#0310-3154

Sample Matrix:

Water

Service Request: X2300240

Date Collected: 03/19/2003

Date Received: 03/19/2003

Volatile Organic Compounds

Sample Name:

AVB61-0100-14450

Lab Code:

X2300240-005

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

			Dilution	Date	Date	
Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed	Arizona Qualifier
Naphthalene 1,2,3-Trichlorobenzene	ND U ND U	3.0 0.50	1 1	03/29/03 03/29/03	03/29/03 03/29/03	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Arizona Qualifier	
Dibromofluoromethane	101	84-113	03/29/03		
Toluene-d8	102	68-126	03/29/03		
4-Bromofluorobenzene	91	79-113	03/29/03		

Comments:

Merged

Analytical Results

Client: Project:

BE&K Terranext WVBA/#0310-3154

Sample Matrix:

Water

Service Request: X2300240

Date Collected: 03/19/2003 **Date Received:** 03/19/2003

Volatile Organic Compounds

Sample Name:

AVB61-0101-14450

Lab Code:

X2300240-006

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

	D14	0	MRL	Dilution Factor	Date Extracted	Date Analyzed	Arizona Qualifier
Analyte Name	Result			1	03/29/03	03/29/03	THEODIE Quantities
Dichlorodifluoromethane	ND		3.0	1	03/29/03	03/29/03	
Chloromethane	ND		2.0	1	03/29/03	03/29/03	
Vinyl Chloride	ND		1.0				
Bromomethane	ND		1.0	1	03/29/03	03/29/03 03/29/03	
Chloroethane	ND		1.0	1	03/29/03	03/29/03	
Trichlorofluoromethane	ND	U	1.0	1	03/29/03		
1,1,2-Trichlorotrifluoroethane	ND		1.0	1	03/29/03	03/29/03	
1,1-Dichloroethene	ND		1.0	1	03/29/03	03/29/03	
Acetone	ND	U	10	1	03/29/03	03/29/03	
Iodomethane	ND	U	2.0	1	03/29/03	03/29/03	
Carbon Disulfide	ND	U	2.0	1	03/29/03	03/29/03	
Methylene Chloride	ND	U	1.0	1	03/29/03	03/29/03	
Methyl tert-Butyl Ether	ND		1.0	1	03/29/03	03/29/03	
trans-1,2-Dichloroethene	ND		0.50	1	03/29/03	03/29/03	
1,1-Dichloroethane	ND		0.50	1	03/29/03	03/29/03	
	ND		3.0	1	03/29/03	03/29/03	
Vinyl Acetate	ND ND		2.0	1	03/29/03	03/29/03	
2,2-Dichloropropane	ND ND		8.0	1	03/29/03	03/29/03	
2-Butanone (MEK)				1	03/29/03	03/29/03	
cis-1,2-Dichloroethene	ND		0.50	1	03/29/03	03/29/03	
Bromochloromethane	ND		0.50	1	03/29/03	03/29/03	
Chloroform	ND		1.0				
1,1,1-Trichloroethane	ND		0.50	1	03/29/03	03/29/03	
Carbon Tetrachloride	ND		0.50	1	03/29/03	03/29/03	
1,1-Dichloropropene	ND	U	0.50	1	03/29/03	03/29/03	
Benzene	ND	U	0.50	1	03/29/03	03/29/03	
1,2-Dichloroethane	ND	U	0.50	1	03/29/03	03/29/03	
Trichloroethene	ND	U	0.50	1	03/29/03	03/29/03	
1,2-Dichloropropane	NE	U	0.50	1	03/29/03	03/29/03	
Dibromomethane		Ŭ	0.50	1	03/29/03	03/29/03	
Bromodichloromethane		Ū	0.50	1	03/29/03	03/29/03	
		U	0.50	1	03/29/03	03/29/03	
cis-1,3-Dichloropropene 4-Methyl-2-pentanone (MIBK)		U	8.0	1	03/29/03	03/29/03	
		U	0.50	1	03/29/03	03/29/03	
Toluene	INL		V.5V	_			

Comments:

Printed: 04/02/2003 11:07:59 L:\STEALTH\CRYSTAL.RPT\Formlm.rpt

Merged

Form 1A - Organic

000023

Page 1 of 3

SuperSet Reference: RR3141

Analytical Results

Client: Project: BE&K Terranext WVBA/#0310-3154

Sample Matrix:

Water

Service Request: X2300240 **Date Collected:** 03/19/2003

Date Collected: 03/19/2003 **Date Received:** 03/19/2003

Volatile Organic Compounds

Sample Name: Lab Code: AVB61-0101-14450 X2300240-006

Extraction Method:

X2300240-000

Analysis Method:

EPA 5030B 8260B Units: ug/L Basis: NA

Level: Low

			Dilution	Date	Date	
Analyte Name	Result Q	MRL	Factor	Extracted		Arizona Qualifier
trans-1,3-Dichloropropene	ND U	1.0	1	03/29/03	03/29/03	
1,1,2-Trichloroethane	ND U	1.0	1	03/29/03	03/29/03	
Tetrachloroethene	ND U	0.50	1	03/29/03	03/29/03	
	ND U	5.0	1	03/29/03	03/29/03	
2-Hexanone	ND U	1.0	1	03/29/03	03/29/03	
1,3-Dichloropropane Dibromochloromethane	ND U	0.50	1	03/29/03	03/29/03	
	ND U	0.50	1	03/29/03	03/29/03	
1,2-Dibromoethane	ND U	0.50	1	03/29/03	03/29/03	
Chlorobenzene	ND U	0.50	î	03/29/03	03/29/03	
1,1,1,2-Tetrachloroethane			1	03/29/03	03/29/03	
Ethylbenzene	ND U	0.50	1	03/29/03	03/29/03	
m,p-Xylenes	ND U	1.0	1	03/29/03	03/29/03	
o-Xylene	ND U	0.50				
Styrene	ND U	0.50	1	03/29/03	03/29/03	
Isopropylbenzene	ND U	0.50	1	03/29/03	03/29/03	
Bromobenzene	ND U	0.50	1	03/29/03	03/29/03	
1,2,3-Trichloropropane	ND U	1.0	1	03/29/03	03/29/03	
n-Propylbenzene	ND U	0.50	1	03/29/03	03/29/03	
2-Chlorotoluene	ND U	0.50	1	03/29/03	03/29/03	
4-Chlorotoluene	ND U	0.50	1	03/29/03	03/29/03	
	ND U	0.50	1	03/29/03	03/29/03	
1,3,5-Trimethylbenzene tert-Butylbenzene	ND U	0.50	1	03/29/03	03/29/03	
	ND U	0.50	1	03/29/03	03/29/03	
1,2,4-Trimethylbenzene	ND U	0.50	1	03/29/03	03/29/03	
sec-Butylbenzene	ND U	0.50	1	03/29/03	03/29/03	
1,3-Dichlorobenzene		0.50	1	03/29/03	03/29/03	
4-Isopropyltoluene	ND U		1	03/29/03	03/29/03	
Bromoform	ND U	0.50 1.0	1	03/29/03	03/29/03	
1,1,2,2-Tetrachloroethane	ND U			03/29/03	03/29/03	
1,4-Dichlorobenzene	ND U	0.50	1	03/29/03	03/29/03	
1,2-Dichlorobenzene	ND U	0.50	1	03/29/03	03/29/03	
n-Butylbenzene	ND U	0.50	11			
1,2-Dibromo-3-chloropropane	ND U	5.0	1	03/29/03	03/29/03	
1.2.4-Trichlorobenzene	ND U	0.50	1	03/29/03	03/29/03	
Hexachlorobutadiene	ND U	0.50	1	03/29/03	03/29/03	

Comments:

Printed: 04/02/2003 11:07:59 L:\STEALTH\CRYSTAL.RPT\Formlm.rpt

Merged

Form 1A - Organic

000024

Page 2 of 3

Analytical Results

Client:

BE&K Terranext

Project:

WVBA/#0310-3154

Sample Matrix:

Water

Service Request: X2300240

Date Collected: 03/19/2003

Date Received: 03/19/2003

Volatile Organic Compounds

Sample Name:

AVB61-0101-14450

Lab Code:

X2300240-006

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L

Basis: NA

Level: Low

			Dilution	Date	Date	
Analyte Name	Result O	MRL	Factor	Extracted	Analyzed	Arizona Qualifier
Naphthalene 1,2,3-Trichlorobenzene	ND U ND U	3.0 0.50	1 1	03/29/03 03/29/03	03/29/03 03/29/03	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Arizona Qualifier
Dibromofluoromethane Toluene-d8 4-Bromofluorobenzene	100 102 93	84-113 68-126 79-113	03/29/03 03/29/03 03/29/03	

Comments:

Printed: 04/02/2003 11:07:59 L:\STEALTH\CRYSTAL.RPT\Form1m.rpt

Merged

Form 1A - Organic

000025

Page 3 of 3

SuperSet Reference:

RR3141

Analytical Results

Client: Project: BE&K Terranext WVBA/#0310-3154

Sample Matrix:

Water

Service Request: X2300240

Date

Date

Date Collected: NA Date Received: NA

Volatile Organic Compounds

Dilution

Sample Name: Lab Code:

Method Blank XWG0300420-5

EPA 5030B

Units: ug/L Basis: NA

Level: Low

Extraction Method:	EPA SUSUE
Analysis Method:	8260B

				Ditution	Date	Date	
Analyte Name	Result	Q	MRL	Factor	Extracted	Analyzed	Arizona Qualifier
Dichlorodifluoromethane	ND		3.0	1	03/29/03	03/29/03	
Chloromethane	ND		2.0	1	03/29/03	03/29/03	
Vinyl Chloride	ND		1.0	1	03/29/03	03/29/03	
Bromomethane	ND	U	1.0	1	03/29/03	03/29/03	
Chloroethane	ND		1.0	1	03/29/03	03/29/03	
Trichlorofluoromethane	ND		1.0	1	03/29/03	03/29/03	
1,1,2-Trichlorotrifluoroethane	ND	U	1.0	1	03/29/03	03/29/03	
1,1-Dichloroethene	ND		1.0	1	03/29/03	03/29/03	
Acetone	ND	U	10	1	03/29/03	03/29/03	
Iodomethane	ND	U	2.0	1	03/29/03	03/29/03	
Carbon Disulfide	ND	U	2.0	1	03/29/03	03/29/03	
Methylene Chloride	ND		1.0	1	03/29/03	03/29/03	
Methyl tert-Butyl Ether	ND	U	1.0	1	03/29/03	03/29/03	
trans-1,2-Dichloroethene	ND		0.50	1	03/29/03	03/29/03	
1,1-Dichloroethane	ND	U	0.50	1	03/29/03	03/29/03	
Vinyl Acetate	ND	U	3.0	1	03/29/03	03/29/03	
2,2-Dichloropropane	ND	U	2.0	1	03/29/03	03/29/03	
2-Butanone (MEK)	ND	U	8.0	1	03/29/03	03/29/03	
cis-1,2-Dichloroethene	ND	U	0.50	1	03/29/03	03/29/03	
Bromochloromethane	ND	U	0.50	1	03/29/03	03/29/03	
Chloroform	ND	U	1.0	1	03/29/03	03/29/03	
1,1,1-Trichloroethane	ND	U	0.50	1	03/29/03	03/29/03	
Carbon Tetrachloride	ND		0.50	1	03/29/03	03/29/03	
1,1-Dichloropropene	ND	U	0.50	1	03/29/03	03/29/03	
Benzene	ND	U	0.50	1	03/29/03	03/29/03	
1,2-Dichloroethane	ND		0.50	1	03/29/03	03/29/03	
Trichloroethene	ND		0.50	1	03/29/03	03/29/03	
1,2-Dichloropropane	ND	U	0.50	1	03/29/03	03/29/03	
Dibromomethane	ND		0.50	1	03/29/03	03/29/03	
Bromodichloromethane	ND		0.50	1	03/29/03	03/29/03	
cis-1,3-Dichloropropene	ND	U	0.50	1	03/29/03	03/29/03	
4-Methyl-2-pentanone (MIBK)	ND		8.0	1	03/29/03	03/29/03	
Toluene	ND		0.50	1	03/29/03	03/29/03	

Comments:

Printed: 04/02/2003 11:08:09 L:\STEALTH\CRYSTAL.RPT\Form1m.rpt

Merged

Form 1A - Organic

Page 1 of 3

Analytical Results

Client: Project: BE&K Terranext WVBA/#0310-3154

Sample Matrix:

Water

Service Request: X2300240

Date Collected: NA
Date Received: NA

Volatile Organic Compounds

Sample Name: Lab Code: Method Blank XWG0300420-5

Extraction Method: Analysis Method:

EPA 5030B 8260B Units: ug/L Basis: NA

Level: Low

				Dilution	Date	Date	
Analyte Name	Result	Q N	IRL	Factor	Extracted		Arizona Qualifier
trans-1,3-Dichloropropene	ND	U	1.0	1	03/29/03	03/29/03	
1,1,2-Trichloroethane	ND	U	1.0	1	03/29/03	03/29/03	
Tetrachloroethene	ND	Π (0.50	1	03/29/03	03/29/03	
2-Hexanone	ND	U	5.0	1	03/29/03	03/29/03	
1,3-Dichloropropane	ND	U	1.0	1	03/29/03	03/29/03	
Dibromochloromethane	ND	U (0.50	1	03/29/03	03/29/03	
1.2-Dibromoethane	ND	U	0.50	1	03/29/03	03/29/03	
Chlorobenzene	ND	U (0.50	1	03/29/03	03/29/03	
1,1,1,2-Tetrachloroethane	ND	U	0.50	1	03/29/03	03/29/03	
Ethylbenzene	ND	U	0.50	1	03/29/03	03/29/03	
m,p-Xylenes	ND		1.0	1	03/29/03	03/29/03	
o-Xylene	ND		0.50	1	03/29/03	03/29/03	
Styrene	ND	U	0.50	1	03/29/03	03/29/03	
Isopropylbenzene	ND		0.50	1	03/29/03	03/29/03	
Bromobenzene	ND		0.50	1	03/29/03	03/29/03	
1,2,3-Trichloropropane	ND	U	1.0	1	03/29/03	03/29/03	
n-Propylbenzene	ND		0.50	1	03/29/03	03/29/03	
2-Chlorotoluene	ND		0.50	1	03/29/03	03/29/03	
4-Chlorotoluene	ND	U	0.50	1	03/29/03	03/29/03	
1,3,5-Trimethylbenzene	ND		0.50	1	03/29/03	03/29/03	
tert-Butylbenzene	ND		0.50	1	03/29/03	03/29/03	
1,2,4-Trimethylbenzene			0.50	1	03/29/03	03/29/03	
sec-Butylbenzene	ND	_	0.50	1	03/29/03	03/29/03	
1,3-Dichlorobenzene	ND	_	0.50	1	03/29/03	03/29/03	
4-Isopropyltoluene	ND		0.50	1	03/29/03	03/29/03	
Bromoform	ND		0.50	1	03/29/03	03/29/03	
1,1,2,2-Tetrachloroethane	ND		1.0	1	03/29/03	03/29/03	
1,4-Dichlorobenzene	ND		0.50	1	03/29/03	03/29/03	
1,2-Dichlorobenzene	ND	-	0.50	1	03/29/03	03/29/03	
n-Butylbenzene	ND	=	0.50	1	03/29/03	03/29/03	
1,2-Dibromo-3-chloropropane	ND		5.0	1	03/29/03	03/29/03	
1,2,4-Trichlorobenzene	ND		0.50	1	03/29/03	03/29/03	
Hexachlorobutadiene	ND		0.50	1	03/29/03	03/29/03	

Comments:

Printed: 04/02/2003 11:08:09 L:\STEALTH\CRYSTAL.RPT\Formlm.rpt

Merged

Form 1A - Organic

000027

Page 2 of 3

SuperSet Reference: RR3141

Analytical Results

Client:

BE&K Terranext WVBA/#0310-3154

Project: Sample Matrix:

Water

Service Request: X2300240

Date Collected: NA Date Received: NA

Volatile Organic Compounds

Sample Name:

Method Blank

Lab Code:

XWG0300420-5

Extraction Method: Analysis Method:

EPA 5030B

8260B

Units: ug/L Basis: NA

Level: Low

Analyte Name	Result Q	MRL	Dilution Factor	Extracted	Analyzed Arizona Qualifier
Naphthalene	ND U	3.0	1	03/29/03	03/29/03
1,2,3-Trichlorobenzene	ND U	0.50		03/29/03	03/29/03

Surrogate Name	%Rec	Control Limits	Date Analyzed	Arizona Qualifier	
Dibromofluoromethane Toluene-d8 4-Bromofluorobenzene	101 105 94	84-113 68-126 79-113	03/29/03 03/29/03 03/29/03		

Comments:

Printed: 04/02/2003 11:08:09 L:\STEALTH\CRYSTAL.RPT\Form1m.rpt

Merged

Form 1A - Organic

000028

Page 3 of 3

SuperSet Reference:

QA/QC Report

Client:

BE&K Terranext

Project:

WVBA/#0310-3154

Sample Matrix:

Water

Service Request: X2300240

Surrogate Recovery Summary Volatile Organic Compounds

Extraction Method: Analysis Method:

EPA 5030B

8260B

Units: PERCENT

Level: Low

Sample Name	Lab Code	<u>Sur1</u>	Sur2	Sur3
AVB10-0102-1000	X2300240-001	102	100	96
AVB10-0100-19115	X2300240-002	99	106	91
AVB10-0104-1000	X2300240-003	101	102	93
AVB10-0200-18280	X2300240-004	98	106	92
AVB61-0100-14450	X2300240-005	101	102	91
AVB61-0101-14450	X2300240-006	100	102	93
Method Blank	XWG0300420-5	101	105	94
AVB10-0104-1000MS	XWG0300420-1	101	109	97
AVB10-0104-1000DMS	XWG0300420-2	101	99	98
Lab Control Sample	XWG0300420-3	100	103	95
Duplicate Lab Control Sample	XWG0300420-4	101	105	98

Surrogate Recovery Control Limits (%)

84-113 Sur1 = Dibromofluoromethane 68-126 Sur2 = Toluene-d879-113 Sur3 = 4-Bromofluorobenzene

Results flagged with an asterisk (*) indicate values outside control criteria. Results flagged with a pound (#) indicate the control criteria is not applicable.

Printed: 04/02/2003 11:08:23 L:\STEALTH\CRYSTAL.RPT\Form2.rpt

Form 2A - Organic

000029

Page 1 of 1

SuperSet Reference: RR3141

QA/QC Report

Client: Project: BE&K Terranext WVBA/#0310-3154

Sample Matrix:

Water

Service Request: X2300240

Date Extracted: 03/29/2003

Date Analyzed: 03/29/2003

Matrix Spike/Duplicate Matrix Spike Summary Volatile Organic Compounds

Sample Name:

AVB10-0104-1000

Lab Code:

X2300240-003

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

Extraction Lot: XWG0300420

AVB10-0104-1000MS

XWG0300420-1

AVB10-0104-1000DMS

XWG0300420-2

	Sample	XWG0300420-1 Matrix Spike		l 	XV Dupli o		%Rec		RPD	
Analyte Name	Result	Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit
Dichlorodifluoromethane	ND	3.56	10.0	36 M2	3.30	10.0	33 M2	78-207	8	20
Chloromethane	ND	5.95	10.0	60 M2	5.19	10.0	52 M2	70-157	14	20
Vinyl Chloride	ND	7.09	10.0	71 M2	6.37	10.0	64 M2	79-174	11	20
Bromomethane	ND	6.60	10.0	66	5.98	10.0	60	44-150	10	20
Chloroethane	ND	9.17	10.0	92	8.67	10.0	87	74-150	6	20
Trichlorofluoromethane	ND	8.75	10.0	88	8.23	10.0	82	80-134	6	20
1,1,2-Trichlorotrifluoroethane	ND	10.3	10.0	103	9.94	10.0	99	67-128	4	20
1,1-Dichloroethene	ND	9.09	10.0	91	8.95	10.0	90	71-142	2	20
Acetone	ND	40.6	40.0	102	36.2	40.0	90	1-155	12	20
Iodomethane	ND	33.1	40.0	83	31.4	40.0	78	47-120	5	20
Carbon Disulfide	ND	39.8	40.0	100	38.6	40.0	97	77-126	3	20
Methylene Chloride	ND	9.55	10.0	96	9.55	10.0	96	83-106	0	20
Methyl tert-Butyl Ether	ND	8.56	10.0	86	8.85	10.0	89	70-118	3	20
trans-1,2-Dichloroethene	ND	10.2	10.0	102	10.3	10.0	103	86-115	0	20
1,1-Dichloroethane	ND	10.8	10.0	108	10.7	10.0	107	77-127	1	20
Vinyl Acetate	ND	41.8	40.0	105	44.0	40.0	110	8-187	5	20
2	ND	10.3	10.0	103	10.2	10.0	102	25-154	1	20
2,2-Dichloropropane	ND	37.6	40.0	94	38.0	40.0	95	90-112	1	20
2-Butanone (MEK)	ND	9.80	10.0	98	9.67	10.0	97	69-118	1	20
cis-1,2-Dichloroethene	ND	10.8	10.0	108	10.6	10.0	106	47-136	1	20
Bromochloromethane	ND	10.6	10.0	106	10.4	10.0	104	48-143	2	20
Chloroform	ND	8.91	10.0	89	8.84	10.0	88	84-122	1	20
1,1,1-Trichloroethane	ND	9.82	10.0	98	9.62	10.0	96	79-120	2	20
Carbon Tetrachloride	ND	9.75	10.0	98	9.77	10.0	98	85-117	0	20
1,1-Dichloropropene	ND	9.84	10.0	98	9.46	10.0	95	88-114	4	20
Benzene	ND	10.3	10.0	103	10.3	10.0	103	75-112	0	20
1,2-Dichloroethane	ND	10.3	10.0	103	10.2	10.0	102	76-115	2	20
Trichloroethene	ND ND	10.3	10.0	104	10.4	10.0	104	85-107	0	20
1,2-Dichloropropane		10.4	10.0	106	10.7	10.0	107 M1	82-106	1	20
Dibromomethane	ND	9.63	10.0	96	9.30	10.0	93	83-107	3	20
Bromodichloromethane	ND	9.63 10.9	10.0	109	10.6	10.0	106	70-114	3	20
cis-1,3-Dichloropropene	ND		40.0	103	34.8	40.0	87	54-129	17	20
4-Methyl-2-pentanone (MIBK)	ND	41.3		103	9.81	10.0	98	86-114	8	20
Toluene	ND	10.6	10.0	100	7.01	10.0	70	00-117	Ü	20

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 04/02/2003 11:08:29 L:\STEALTH\CRYSTAL.RPT\Form3DMS.rpt

000030 Form 3A - Organic

1 of 3 Page

SuperSet Reference: RR3141

QA/QC Report

Client: **Project:** BE&K Terranext WVBA/#0310-3154

Sample Matrix:

Water

Service Request: X2300240

Date Extracted: 03/29/2003

Date Analyzed: 03/29/2003

Matrix Spike/Duplicate Matrix Spike Summary Volatile Organic Compounds

Sample Name:

AVB10-0104-1000

Lab Code:

X2300240-003

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low Extraction Lot: XWG0300420

AVB10-0104-1000MS

XWG0300420-1

AVB10-0104-1000DMS

XWG0300420-2

	Comple		Matrix Spike		Duplicate Matrix Spike			%Rec		RPD
Analyte Name	Sample Result	Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit
trans-1,3-Dichloropropene	ND	10.4	10.0	104	10.1	10.0	101	73-112	3	20
1,1,2-Trichloroethane	ND	10.1	10.0	101	9.23	10.0	92	79-112	9	20
Tetrachloroethene	ND	10.4	10.0	104	9.49	10.0	95	78-130	10	20
2-Hexanone	ND	37.7	40.0	94	36.5	40.0	91	77-112	3	20
1,3-Dichloropropane	ND	10.1	10.0	101	9.43	10.0	94	45-133	7	20
Dibromochloromethane	ND	10.3	10.0	103	9.49	10.0	95	74-108	8	20
1,2-Dibromoethane	ND	9.58	10.0	96	9.43	10.0	94	73-113	2	20
Chlorobenzene	ND	10.2	10.0	102	9.97	10.0	100	84-111	2	20
1,1,1,2-Tetrachloroethane	ND	9.84	10.0	98	9.75	10.0	98	84-119	1	20
Ethylbenzene	ND	10.8	10.0	108	10.3	10.0	103	47-136	4	20
m,p-Xylenes	ND	21.6	20.0	108	20.8	20.0	104	84-120	4	20
o-Xylene	ND	10.3	10.0	103	9.87	10.0	99	47-143	4	20
Styrene	ND	10.5	10.0	105	10.6	10.0	106	72-121	0	20
Isopropylbenzene	ND	10.3	10.0	103	10.1	10.0	101	63-108	1	20
Bromobenzene	ND	10.7	10.0	107	11.1	10.0	111	80-113	4	20
1,2,3-Trichloropropane	ND	9.50	10.0	95	10.6	10.0	106	78-119	11	20
n-Propylbenzene	ND	10.7	10.0	107	10.6	10.0	106	76-117	1	20
2-Chlorotoluene	ND	10.2	10.0	102	10.4	10.0	104	79-121	2	20
4-Chlorotoluene	ND	10.6	10.0	106	10.7	10.0	107	70-133	0	20
1,3,5-Trimethylbenzene	ND	10.4	10.0	104	10.7	10.0	107	79-118	3	20
tert-Butylbenzene	ND	10.4	10.0	104	10.5	10.0	105	77-120	1	20
1,2,4-Trimethylbenzene	ND	10.4	10.0	104	10.7	10.0	107	68-127	3	20
sec-Butylbenzene	ND	9.85	10.0	99	10.0	10.0	100	78-123	2	20
1,3-Dichlorobenzene	ND	10.2	10.0	102	10.5	10.0	105	78-127	3	20
4-Isopropyltoluene	ND	10.4	10.0	104	10.9	10.0	109	79-142	4	20
Bromoform	ND	9.67	10.0	97	9.63	10.0	96	83-111	0	20
1,1,2,2-Tetrachloroethane	ND	10.6	10.0	106	10.8	10.0	108	66-133	2	20
1,4-Dichlorobenzene	ND	9.83	10.0	98	10.2	10.0	102	48-139	3	20
1,2-Dichlorobenzene	ND	9.51	10.0	95	9.79	10.0	98	64-109	3	20
n-Butylbenzene	ND	10.4	10.0	104	10.4	10.0	104	69-122	0	20
1,2-Dibromo-3-chloropropane	ND	10.9	10.0	109	12.1	10.0	121	54-160	10	20
1,2,4-Trichlorobenzene	ND	9.96	10.0	100	10.0	10.0	100	39-145	1	20
Hexachlorobutadiene	ND	11.4	10.0	114 M1	11.6	10.0	116 M1	74-113	2	20

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 04/02/2003 11:08:29 L:\STEALTH\CRYSTAL.RPT\Form3DMS.rpt Form 3A - Organic

000031

2 of 3 Page

RR3141 SuperSet Reference:

QA/QC Report

Client:

BE&K Terranext WVBA/#0310-3154

Project: Sample Matrix:

Water

Service Request: X2300240

Date Extracted: 03/29/2003

Date Analyzed: 03/29/2003

Matrix Spike/Duplicate Matrix Spike Summary Volatile Organic Compounds

Sample Name:

AVB10-0104-1000

Lab Code:

X2300240-003

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L

Basis: NA

Level: Low

Extraction Lot: XWG0300420

AVB10-0104-1000MS

XWG0300420-1

AVB10-0104-1000DMS

XWG0300420-2

Duplicate Matrix Spike Matrix Spike %Rec **RPD** Sample RPD Limit Limits %Rec %Rec Result Expected Result Expected Result **Analyte Name** 20 8 44-167 103 10.3 10.0 9.51 10.0 95 ND Naphthalene 20 37-158 3 10.0 115 111 11.5 10.0 ND 11.1 1,2,3-Trichlorobenzene

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

000032

Printed: 04/02/2003 11:08:29 L:\STEALTH\CRYSTAL.RPT\Form3DMS.rpt Form 3A - Organic

SuperSet Reference:

3 of 3 Page

RR3141

QA/QC Report

Client: Project: BE&K Terranext WVBA/#0310-3154

Sample Matrix:

Water

Service Request: X2300240 **Date Extracted:** 03/29/2003

Date Analyzed: 03/29/2003

Lab Control Spike/Duplicate Lab Control Spike Summary Volatile Organic Compounds

Duplicate Lab Control Sample

Lab Control Sample

Extraction Method: Analysis Method:

EPA 5030B

8260B

Units: ug/L Basis: NA

Level: Low

Extraction Lot: XWG0300420

	XWG0300420-3 Lab Control Spike			XWG0300420-4 Duplicate Lab Control Spike			%Rec	DDD	RPD
Analyte Name	Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit
Dichlorodifluoromethane	3.61	10.0	36	3.37	10.0	34	1-233	7	20
Chloromethane	6.22	10.0	62	6.32	10.0	63	46-156	2	20
Vinyl Chloride	6.98	10.0	70	7.13	10.0	71	51-158	2	20
Bromomethane	6.53	10.0	65	7.01	10.0	70	37-149	7	20
Chloroethane	8.97	10.0	90	9.32	10.0	93	56-146	4	20
Trichlorofluoromethane	8.72	10.0	87	8.55	10.0	86	69-139	2	20
1,1,2-Trichlorotrifluoroethane	10.5	10.0	105	10.4	10.0	104	83-130	1	20
1,1-Dichloroethene	9.23	10.0	92	9.22	10.0	92	65-112	0	20
Acetone	42.0	40.0	105	42.5	40.0	106	68-128	1	20
Iodomethane	32.4	40.0	81	34.6	40.0	87	68-144	6	20
Carbon Disulfide	40.2	40.0	101	40.5	40.0	101	67-140	1	20
Methylene Chloride	10.2	10.0	102	10.5	10.0	105	70-113	3	20
Methyl tert-Butyl Ether	9.03	10.0	90	9.31	10.0	93	75-115	3	20
trans-1,2-Dichloroethene	10.1	10.0	101	10.1	10.0	101	73-118	1	20
1,1-Dichloroethane	10.6	10.0	106	10.7	10.0	107	77-127	1	20
Vinyl Acetate	43.7	40.0	109	42.6	40.0	107	51-202	3	39
2,2-Dichloropropane	10.0	10.0	100	9.90	10.0	99	75-132	1	20
2-Butanone (MEK)	35.5	40.0	89	47.3	40.0	118	72-122	28 R7	
cis-1,2-Dichloroethene	9.71	10.0	97	9.69	10.0	97	81-118	0	20
Bromochloromethane	10.8	10.0	108	11.4	10.0	114	82-114	6	20
Chloroform	10.6	10.0	106	10.5	10.0	105	78-119	0	20
1,1,1-Trichloroethane	8.96	10.0	90	8.72	10.0	87	71-125	3	20
Carbon Tetrachloride	9.37	10.0	94	9.35	10.0	94	69-130	0	20
1,1-Dichloropropene	9.91	10.0	99	9.77	10.0	98	77-114	1	20
Benzene	9.59	10.0	96	9.53	10.0	95	81-117	1	20
1,2-Dichloroethane	10.2	10.0	102	10.4	10.0	104	67-122	3	20
Trichloroethene	10.0	10.0	100	10.3	10.0	103	79-114	3	20
1,2-Dichloropropane	10.4	10.0	104	10.4	10.0	104	78-114	0	20
1,2-171011010propulie	10.0	10.0	100	10.0	10.0	100	78_113	Λ	20

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

10.0

10.0

10.0

40.0

10.0

10.0

10.0

10.9

9.67

11.2

43.9

10.5

11.3

10.1

109

97

112

110

105

113

101

000033

109

98.

115

102

104

109

101

SuperSet Reference:

10.0

10.0

10.0

40.0

10.0

10.0

10.0,

10.9

9.77

11.5

41.0

10.4

10.9

10.1

78-113

79-122

82-118

75-115

85-118

79-121

79-116

0

1

3

7

1

3

0

Printed: 04/02/2003 11:08:36 L:\STEALTH\CRYSTAL.RPT\Form3DLC.rpt

Dibromomethane

Toluene

Bromodichloromethane

cis-1,3-Dichloropropene

4-Methyl-2-pentanone (MIBK)

trans-1,3-Dichloropropene

1,1,2-Trichloroethane

Form 3C - Organic

Page

RR3141

1 of 2

20

20

20

20

20

20

20

QA/QC Report

Client: Project: BE&K Terranext WVBA/#0310-3154

Sample Matrix:

Water

Service Request: X2300240 Date Extracted: 03/29/2003

Date Analyzed: 03/29/2003

Lab Control Spike/Duplicate Lab Control Spike Summary Volatile Organic Compounds

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L

Basis: NA

Level: Low

Extraction Lot: XWG0300420

Lab Control Sample XWG0300420-3

Duplicate Lab Control Sample XWG0300420-4

	Lab Control Spike			Duplicate Lab Control Spike			%Rec		RPD
Analyte Name	Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit
Tetrachloroethene	10.3	10.0	103	10.3	10.0	103	76-127	0	20
2-Hexanone	40.8	40.0	102	41.1	40.0	103	65-120	1	20
1,3-Dichloropropane	10.2	10.0	102	10.4	10.0	104	81-116	2	20
Dibromochloromethane	10.2	10.0	102	10.7	10.0	107	77-119	5	20
1,2-Dibromoethane	10.4	10.0	104	10.7	10.0	107	79-116	3	20
Chlorobenzene	10.1	10.0	101	9.90	10.0	99	84-114	2	20
1,1,1,2-Tetrachloroethane	9.60	10.0	96	9.68	10.0	97	78-118	1	20
Ethylbenzene	10.4	10.0	104	10.3	10.0	103	79-124	0	20
m,p-Xylenes	20.9	20.0	105	21.0	20.0	105	75-131	1	20
o-Xylene	10.3	10.0	103	10.2	10.0	102	78-122	0	20
Styrene	10.6	10.0	106	10.5	10.0	105	80-126	1	20
Isopropylbenzene	10.2	10.0	102	10.2	10.0	102	75-126	0	20
Bromobenzene	11.1	10.0	111	11.3	10.0	113	82-122	2	20
1,2,3-Trichloropropane	10.4	10.0	104	11.0	10.0	110	77-118	6	20
n-Propylbenzene	10.6	10.0	106	10.5	10.0	105	75-129	1	20
2-Chlorotoluene	10.1	10.0	101	10.4	10.0	104	77-126	3	20
4-Chlorotoluene	10.5	10.0	105	10.7	10.0	107	82-120	2	20
1,3,5-Trimethylbenzene	10.2	10.0	102	10.5	10.0	105	75-130	3	20
tert-Butylbenzene	10.4	10.0	104	10.6	10.0	106	73-130	1	20
1,2,4-Trimethylbenzene	10.3	10.0	103	10.7	10.0	107	60-137	3	20
sec-Butylbenzene	9.65	10.0	97	9.92	10.0	99	68-131	3	20
1,3-Dichlorobenzene	10.2	10.0	102	10.7	10.0	107	71-137	5	20
4-Isopropyltoluene	10.1	10.0	101	10.6	10.0	106	68-134	4	20
Bromoform	10.1	10.0	101	10.1	10.0	101	70-118	0	20
1,1,2,2-Tetrachloroethane	11.3	10.0	113	11.1	10.0	111	72-122	1	20
1,4-Dichlorobenzene	9.94	10.0	99	9.96	10.0	100	82-114	0	20
1,2-Dichlorobenzene	9.74	10.0	97	10.0	10.0	100	81-118	3	20
n-Butylbenzene	10.0	10.0	100	10.0	10.0	100	71-125	0	20
1,2-Dibromo-3-chloropropane	9.23	10.0	92	12.0	10.0	120	55-131	26 R7	
1,2,4-Trichlorobenzene	9.65	10.0	97	9.92	10.0	99	75-123	3	20
Hexachlorobutadiene	10.3	10.0	103	10.6	10.0	106	63-140	2	20
Naphthalene	9.64	10.0	96	10.2	10.0	102	67-125	5	20
1,2,3-Trichlorobenzene	10.9	10.0	109	11.1	10.0	111	72-124	2	20

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

000034

Page 2 of 2

April 2, 2003

Chuck Gordon BE & K Terranext 9830 S. 51st A-127 Phoenix, AZ 85044

Re: WVBA/Project #0310-3154

Dear Chuck:

Enclosed are the results of the samples submitted to our laboratory on March 19, 2003. For your reference, these analyses have been assigned our service request number L2300634.

All analyses were performed in accordance with our laboratory's quality assurance program. Results are intended to be considered in their entirety and apply only to the samples analyzed. Columbia Analytical Services is not responsible for use of less than the complete report.

Columbia Analytical Services - is certified for environmental analyses by the Arizona Department of Health Services (certificate number: AZ0544 and AZ0136, expiration: May 23, 2003).

If you have any questions, please call me at (818) 587-5550, extension 309.

Respectfully submitted,

Columbia Analytical Services, Inc.

Sue Anderson Project Chemist

SA

April 11, 2003

Chuck Gordon BE & K Terranext 9830 S. 51st A-127 Phoenix, AZ 85044

Re: WVBA/Project #0310-3154

Dear Chuck:

Enclosed are the revised report pages for the samples submitted to our laboratory on March 19, 2003. The sample ID has been revised as per the COC. Please add this cover page and replace the initial report pages 4 & 5 with 4R & 5R. For your reference, these analyses have been assigned our service request number L2300634.

All analyses were performed in accordance with our laboratory's quality assurance program. Results are intended to be considered in their entirety and apply only to the samples analyzed. Columbia Analytical Services is not responsible for use of less than the complete report.

Columbia Analytical Services - is certified for environmental analyses by the Arizona Department of Health Services (certificate number: AZ0544 and AZ0136, expiration: May 23, 2003).

If you have any questions, please call me at (818) 587-5550, extension 309.

Respectfully submitted,

Columbia Analytical Services, Inc.

Sue Anderson Project Chemist

SA

1R

000035

Columbia Analytical Services, Inc.

Acronyms

California DHS LUFT Method 8015M American Society for Testing and Materials **ASTM** Biochemical Oxygen Demand BOD Benzene/Toluene/Ethylbenzene/Xylenes BTEX California Assessment Metals CAM Chemical Abstract Service Registry Number **CAS Number** Chlorofluorocarbon CFC COD Chemical Oxygen Demand Contract Required Detection Limit **CRDL** Detected; result must be greater than zero. Detected; result must be greater than the detection limit. DL **Duplicate Laboratory Control Sample** DLCS Duplicate Matrix Spike **DMS** DOH or DHS Department of Health Services Environmental Laboratory Accreditation Program **ELAP** U.S. Environmental Protection Agency **EPA** Gas Chromatography GC Gas Chromatography/Mass Spectrometry GC/MS Ion Chromatography IC Initial Calibration Blank sample **ICB** Inductively Coupled Plasma atomic emission spectrometry **ICP** Initial Calibration Verification sample **ICV** Laboratory Control Sample LCS Leaking Underground Fuel Tank LUFT Modified M Methylene Blue Active Substances **MBAS** Method Detection Limit MDL Method Reporting Limit MRL MS Matrix Spike **MTBE** Methyl-tert-Butyl Ether Not Applicable NA Not Calculated NC None Detected at or above the Method Reporting/Detection Limit (MRL/MDL) ND Nephelometric Turbidity Units NTU Parts Per Billion ppb Parts Per Million ppm Practical Quantitation Limit **PQL** Quality Assurance/Quality Control QA/QC Resource Conservation and Recovery Act **RCRA** Relative Percent Difference RPD Selected Ion Monitoring SIM Standard Methods for the Examination of Water and Wastewater, 18th Ed., 1992. SM Solubility Threshold Limit Concentration **STLC** Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW-846, SW Third Edition, 1986 and as amended by Updates I, II, IIA, and IIB. Toxicity Characteristics Leaching Procedure **TCLP** Total Dissolved Solids TDS Total Petroleum Hydrocarbons TPH Total Recoverable Petroleum Hydrocarbons **TRPH Total Suspended Solids** TSS **Total Threshold Limit Concentration** TTLC VOA Volatile Organic Analyte(s) **Qualifiers** Undetected at or above MDL/MRL. \mathbf{U} Estimated concentration. Analyte detected above MDL but below MRL. .3 Hit above MRL also found in Method Blank. В Analyte concentration above high point of ICAL. E Presumptive evidence of compound. N

Result from dilution.

See case narrative.

D X

- Cover Page -INORGANIC ANALYSIS DATA PACKAGE

Client:

BE&K Terranext, LLC

Project Name: Project No.:

WVBA

0310-3154

Service Request: L2300634

Sample Name:

Laboratory Control Sample Method Blank Batch QC Batch QC AVB10-0102-19115 AVB10-0104-1000 AVB10-0200-18280 AVB61-0100-14450 AVB61-0101-14450

Lab Code:

L2300324-LCS L2300324-MB L2300617-001S L2300617-001SD L2300634-001 L2300634-002 L2300634-003 L2300634-004 L2300634-005

ne anders

Analytical Report

Client:

BE&K Terranext, LLC

Project Name:
Project No.:

WVBA

Matrix:

0310-3154 Water Service Request: L2300634

Date Collected: 03/19/03 **Date Received:** 03/19/03

Date Extracted: 03/24/03

Total Metals

Sample Name:

AVB10-0100-19115

Lab Code:

L2300634-001

Units: ug/L (ppb)

Analyte	Analysis Method	MRL	Date Analyzed	Sample Result	Result Notes
Chromium	6010B	10	03/27/03	33	

Analytical Report

Client:

BE&K Terranext, LLC

Project Name : Project No. : WVBA 0310-3154

Matrix:

Water

Service Request: L2300634

Date Collected: 03/19/03
Date Received: 03/19/03

Date Extracted: 03/24/03

Dissolved Metals

Sample Name :

AVB10-0100-19115

Lab Code:

L2300634-001

Units: ug/L (ppb)

Analyte	Analysis Method	MRL	Date Analyzed	Sample Result	Result Notes
Chromium	6010B	10	03/27/03	ND	

Analytical Report

Client:

BE&K Terranext, LLC

Project Name : Project No. :

WVBA 0310-3154

Matrix:

Water

Service Request: L2300634

Date Collected: 03/19/03

Date Received: 03/19/03

Date Extracted: 03/24/03

Total Metals

Sample Name:

AVB10-0104-1000

Lab Code:

L2300634-002

Units: ug/L (ppb)

Analyte	Analysis Method	MRL	Date Analyzed	Sample Result	Result Notes
Chromium	6010B	10	03/27/03	ND	

Analytical Report

Client:

BE&K Terranext, LLC

Project Name: Project No.:

WVBA 0310-3154

Matrix:

Water

Service Request: L2300634

Date Collected: 03/19/03 **Date Received:** 03/19/03

Date Extracted: 03/24/03

Dissolved Metals

Sample Name:

AVB10-0104-1000

Lab Code:

L2300634-002

Units: ug/L (ppb)

Analyte	Analysis Method	MRL	Date Analyzed	Sample Result	Result Notes
Chromium	6010B	10	03/27/03	ND	

Analytical Report

Client:

BE&K Terranext, LLC

Project Name: Project No.:

WVBA 0310-3154

Matrix:

Water

Service Request: L2300634 Date Collected: 03/19/03 **Date Received:** 03/19/03

Date Extracted: 03/24/03

Total Metals

Sample Name:

AVB10-0200-18280

Lab Code:

L2300634-003

Units: ug/L (ppb)

Analyte	Analysis Method	MRL	Date Analyzed	Sample Result	Result Notes
Chromium	6010B	10	03/27/03	ND	

Analytical Report

Client:

BE&K Terranext, LLC

Project Name: Project No.:

WVBA 0310-3154

Matrix:

Water

Service Request: L2300634

Date Collected: 03/19/03

Date Received: 03/19/03 **Date Extracted:** 03/24/03

Dissolved Metals

Sample Name:

AVB10-0200-18280

Lab Code:

L2300634-003

Units: ug/L (ppb)

Basis: NA

Analyte Analysis Method MRL Date Analyzed Result Notes

Chromium 6010B 10 03/27/03 ND

Analytical Report

Client:

BE&K Terranext, LLC

Project Name: Project No.:

WVBA 0310-3154

Matrix:

Water

Service Request: L2300634

Date Collected: 03/19/03

Date Received: 03/19/03

Date Extracted: 03/24/03

Total Metals

Sample Name:

AVB61-0100-14450

Lab Code:

L2300634-004

Units: ug/L (ppb)

Analyte	Analysis Method	MRL	Date Analyzed	Sample Result	Result Notes
Chromium	6010B	10	03/27/03	168	

Analytical Report

Client:

BE&K Terranext, LLC

Project Name : Project No. :

WVBA 0310-3154

Matrix:

Water

Service Request: L2300634

Date Collected: 03/19/03

Date Received: 03/19/03

Date Extracted: 03/24/03

Dissolved Metals

Sample Name:

AVB61-0100-14450

Lab Code:

L2300634-004

Units: ug/L (ppb)

Basis: NA

Analyte Analysis Method MRL Date Analyzed Result Notes

Chromium 6010B 10 03/27/03 ND

Analytical Report

Client:

BE&K Terranext, LLC

Project Name: Project No.:

WVBA 0310-3154

Matrix:

Water

Service Request: L2300634

Date Collected: 03/19/03 **Date Received:** 03/19/03

Date Extracted: 03/24/03

Total Metals

Sample Name:

AVB61-0101-14450

Lab Code:

L2300634-005

Units: ug/L (ppb)

Basis: NA

Analyte	Analysis Method	MRL	Date Analyzed	Sample Result	Result Notes
Chromium	6010B	10	03/27/03	293	

Analytical Report

Client:

BE&K Terranext, LLC

Project Name : Project No. :

WVBA 0310-3154

Matrix:

Water

Service Request: L2300634

Date Collected: 03/19/03 **Date Received:** 03/19/03

Date Extracted: 03/24/03

Dissolved Metals

Sample Name:

AVB61-0101-14450

Lab Code:

L2300634-005

Units: ug/L (ppb)

Basis: NA

Analyte	Analysis Method	MRL	Date Analyzed	Sample Result	Result Notes
Chromium	6010B	10	03/27/03	ND	

Analytical Report

Client:

Matrix:

BE&K Terranext, LLC

Project Name: Project No.:

WVBA 0310-3154

Water

Service Request: L2300634

Date Collected: NA Date Received: NA

Date Extracted: 03/24/03

Total Metals

Sample Name:

Method Blank

Units: ug/L (ppb)

Basis: NA

Lab Code:

L2300324-MB

Result Sample **Date Analyzed** Result Notes MRL **Analysis Method** Analyte ND 03/27/03 10 6010B Chromium

QA/QC Report

Client:

BE&K Terranext, LLC

Project Name : Project No. :

WVBA 0310-3154

Matrix:

Water

Service Request: L2300634

Date Collected: NA
Date Received: NA
Date Extracted: 03/24/03

Date Analyzed: 03/27/03

Laboratory Control Sample Summary

Total Metals

Sample Name:

Laboratory Control Sample

Lab Code:

L2300324-LCS

Units: ug/L (ppb)

Basis: NA

Analyte	Analysis Method	True Value	Result	Percent	CAS Percent Recovery Acceptance Limits	Result Notes
Chromium	6010B	500	512	102	87-111	

Analytical Report

Client:

BE&K Terranext, LLC

Project Name: Project No.:

WVBA 0310-3154

Matrix:

Water

Service Request: L2300634

Date Collected: NA

Date Received: NA

Date Extracted: 03/24/03

Date Analyzed: 03/27/03

Matrix Spike/Duplicate Matrix Spike Summary

Total Metals

Sample Name : Lab Code : Batch QC

L2300617-001S

L2300617-001SD

Units: ug/L (ppb)

Basis: NA

Analyte	Prep Method	Analysis Method	MRL	Spike MS	Level DMS	Sample Result	Spike MS	Result DMS	MS	DMS	CAS Acceptance Limits	Relative Percent Difference	Result Notes
Chromium	3010A	6010B	10	500	500	375	817	814	88	88	87-105	<1	

CHAIN OF CUSTODY/LABORATORY ANALYSIS REQUEST FORM 22302 East University Drive, Suite 4 • Phoenix, AZ 85034 • (602) 437-2001 • (800) 695-7222 x09 • FAX (602) 437-5308

DATE 3-19-03 PAGE

	Dissela C.	REMARKS				•			SAMPLE RECEIPT:	Shipping VIA: # LEX Shipping #: Condition:	Lab No: X3300240	ANALYSIS TAT (Circle One) STANDARD	HUSH IAI - Surcharges Apply 24 Hours 48 Hours	☐ 72 Hours
REQUESTED	D of Se Gasoline Color Filler D Color Filler D Color D Se No D Color D	180 180	X	× >	\ \ \ \	XX			MANOICE INCODMATION:			Date/Time 3-19-03 16 25	Date/Time	Date/Time 3/21/63
ANALYSIS RE	Melals Int	₽ ₀₇							1	P.O.#		Organization	Organization	Organization
AN	Wile Organies A18.1 / 418.1 Wile Organics Sozi A18.1 Wile Organics Sozi	1907 Hair Hair Hair Hair Hair Hair Hair Hair	· X						2	I. Routine Report N. Report (includes DUP.MS. MSD, as required, may be charged as samples) III. Data Validation Report (includes All Raw Data)	IV. CLP Deliverable Report	Received By (Signature)	BW(Signature)	Reoeived By (Signature)
	1 - 008	178 509			50	5.7						Received I	Received B	Reoelived
カジ		PRESER- VATION		7			,			30		Date/Time 3-15-03	Date/Time 3-20-03	Dáte/Time
1315-015A	FAX	LAB I.D. MATRIX	7 +00 0/K	M CODE (I)		(5) OC!				56 Folten		Organization J	Organization	tion
	1/3 3/1	TIME	20	10:00	11,30	12.4V	3 - C			AENTS:				
11/18/4	Gerden BEak R	DATE	0	= 2	7.7	200	<u> </u>			ONS/COM		nature)	nature)	nature)
	PROJECT NAME TO VE PROJECT MANAGER COMPANY/ADDRESS SAMPLER'S SIGNATURE.	SAMPLE I.D.	AV810-010-018115	AV810-0104-1000	AVB10-0200-18280	HV861-0100-14450	CLL 1010 10 014		-	SPECIAL INSTRUCTIONS/COMMENTS: Dissolved Cr tegines 196 Folthery		Relinquished By (Signature)	Relinquished By (Signature)	Relinquished By (Signature)

0702

SAMPLE RECEIPT FORM

Service Request No: L2300634 Client: BE+K
Sample(s) delivered by: Client CAS Emp After Hours DHL
Golden State Overnight Fed X UPS Other Courier
Chain of Custody filled out accurately? Yes _/ No(See Comments)
Appropriate sample volume and containers? Yes No(See Comments)
Sufficient labeling on container(s)? Yes No(See Comments)
Container(s) supplied by CAS? Yes No (See Comments)
Custody seal(s) intact? N/A / Yes No (See Comments)
Trip Blank(s) received Yes No
If Trip Blank was supplied by CAS, record serial #TB
Temperature of sample(s)/cooler °C Temp Blank? Yer N (Circle One)
Voa's Marked Preserved? Yes No Filled Properly? Yes No (See Comments)
Preserved Bottles Requiring pH check(s)? Yes Notified
RUSH Turn around time? Yes Notified Date & Time
Short Hold-Time Analysis (check all that apply)
ASAP Res Cl D.O Flash Diss S2- Ferrous Fe 24HR pH Odor Cr+6 48HR BOD Color MBAS Nitrate Nitrite O-PO4 Sett Sol Turbidity 72HR Vapors
Notified Date & Time
Container(s) received and their preservative(s): $-1 \rightarrow -5 = 1-560 \text{ml} PI(NP) \text{A}$ $1-500 \text{ml} PI(HN03) \text{B}$
Comments
Initials, Date, Time Lt 3/21/03 1000 r:\sr_forms\cooler.doc Rev. 1/17/02

CHAIN OF CUSTODY/LABORATORY ANALYSIS REQUEST FORM

Columbia Analytical Services NG.

3902 East University Drive, Suite 4 • Phoenix, AZ 85034 • (602) 437-2001 • (800) 695-7222 x09 • FAX (602) 437-5308

DATE 3-19-03 PAGE 1 OF 1

ESOÜO RUSH TAT - Surcharges Apply ANALYSIS TAT (Circle One) REMARKS Lab No: X2300240 SAMPLE RECEIPT: □ 24 Hours ☐ 48 Hours ☐ 72 Hours STANDARD Shipping VIA: Shipping #: _ Condition: ANALYSIS REQUESTED 3-19-03 INVOICE INFORMATION: 0158 Date/Time Date/Time Date/Time HAY DHO Paint Filter D Diniod Asela Organization Organization Organization Total D Total Bill 70 P.O.# MSD, as required, may be charged as samples) REPORT REQUIREMENTS IV. CLP Deliverable Report (includes All Raw Data) III. Data Validation Report I. Routine Report Volatile Organics Received By (Signature) Received B**W**(Signature) Received By (Signature) fONUMBER OF CONTAINERS PRESER-VATION Date/Time Date/Time Date/Time Dissolved Cr togaines 196 Filtering MATRIX 007 COP 400 340-001 SCS Organization Organization Organization . P AB -:-11:30 12:40 PHONE/FAX 15.4 15.14 TIME 19.00 10:00 Mark SPECIAL INSTRUCTIONS/COMMENTS: 3-60 DATE = PROJECT NAME LUCH Relinquished By (Signature) Relinquished By (Signature) Relinquished By (Signature) AV810-010-100 9116-010-018115 911810-020-1838 AVB61-0000-14450 asttl-1010-1981H SAMPLER'S SIGNATURE AVB10-0104-1000 PROJECT MANAGER COMPANY/ADDRESS_ SAMPLE I.D.

DISTRIBUTION: WHITE - return to originator; YELLOW - lab; PINK - retained by originator

2070

Columbia Analytical Services, Inc. Phoenix, AZ

Sample Receipt and Preservation Form

Client:	BE+ K	t	Project Name: WVBH						
Sample(s)/Ke VOA's []	eceived on:Glass Bottle	$\frac{3}{19} \left \frac{19}{03} \right _{ds}$	ate 1675 Plastic Bottles	time 	Sleeves				
First Exti	traction/analysis	WATER ime Expiration holding time e	n:da	ite AN 24 HOURS	time (soils only) S(soil)/7 DAYS (water)? Yes □ Nol Chemist's Initials				
					RUSH STANDARI Yes □ NoØ				
If yes, how 3. Are the si 4. Did all co 5. Are all co		e? correct? good conditionable (i.e. presented for the formula and conditional	servation, sample ${ m I\! L}$		Yes				
	n of discrepancies								
		and the second s			VOA Vial pH Verification				
					(Tested After Analysis)				
					☐ All Samples $pH \le 2$				
		YES	NO		☐ Following Samples Exhibited pH > 2				
рН	Reagent								
12	NaOH								
2	HNO ₃	<u>\</u>							
2	H ₂ SO ₄								
Comments:									
		Ear	m Completed and	d Sample(s)	Received by (initials): 700				

r:\common\forms\samprev.doc Revised: 09/27/02 4:19 PM

April 9, 2003

Chuck Gordon BE&K Terranext 9830 S. 51st Street, Suite A-127 Phoenix, AZ 85044

Re: WVBA / Project #0310-3154

Dear Chuck:

Enclosed are the results of the samples submitted to our laboratory on March 21, 2003. The samples were analyzed for Total and Dissolved Chromium by our Canoga Park, CA facility (L2300647). For your reference, the 8260 analyses have been assigned our service request number X2300260.

All analyses were performed according to our laboratory's quality assurance program. All results are intended to be considered in their entirety, and Columbia Analytical Services, Inc. (CAS) is not responsible for use of less than the complete report. Results apply only to the samples analyzed. Columbia Analytical Services, Inc. is certified for environmental analyses by the Arizona Department of Health Services (Certificate #AZ0136; and #AZ0497).

Please call if you have any questions. My extension is 223.

Respectfully submitted,

Columbia Analytical Services, Inc.

Tracy L. Dutton

Laboratory Director

TLD/lm

Page 1 of <u>49</u>

Client:

BE&K Terranext

Project:

WVBA / #0310-3154

Sample Matrix:

Water

Service Request No.:

X2300260

Date Received:

3/21/03

CASE NARRATIVE

All analyses were performed consistent with the quality assurance program of Columbia Analytical Services, Inc. (CAS). This report contains analytical results for sample(s) designated for Tier II data deliverables. When appropriate to the method, method blank results have been reported with each analytical test. Surrogate recoveries have been reported for all applicable organic analyses. Additional quality control analyses reported herein include: Matrix/Duplicate Matrix Spike (MS/DMS) and Laboratory Control Sample (LCS).

All EPA recommended holding times have been met for analyses in this sample delivery group.

The following difficulties were experienced during analysis of this batch:

CCV recovery of Dichlorodiflluoromethane, Method 8260B, was below method acceptance limits on 4/1/03. This compound ws seen in the method reporting limit standard that was analyzed with this batch of samples. This verifies that the compound would be detected if present in the samples.

The associated blank spike (XWG0300433-1) recovery of 1,1,2-Trichlorotrifluoroethane and 1,1-Dichloropropene, Method 8260B was aboe labortory acceptance limits. These compounds were not detected in any of the samples analyzed in this atch.

Surrogate recovery of Dibromofluoromethane, Method 8260, was above laboratory acceptance limits for sample AVB77-0200-07210 (X2300260-004), but within method acceptance limits. No target analytes were detected in the sample.

Matrix spike (XWG0300433-4 and XWG0300433-5) recovery of several analytes for Method 8260B was high. The method control sample recovery was acceptable.

ARIZONA DATA QUALIFIERS

Method Bla	ank:									
B1	Target analyte detected in method blank at or above the method reporting limit.									
B2	Non-target analyte detected in method blank and sample, producing interference.									
В3	Target analyte detected in calibration blank at or above the method reporting limit.									
B4	Target analyte detected in blank at/above method acceptance criteria.									
B5	Target analyte detected in method blank at or above the method reporting limit, but below trigger level or MCL.									
В6	Target analyte detected in calibration blank at or above the method reporting limit, but below trigger level or MCL									
В7	Target analyte detected in method blank at or above method reporting limit. Concentration found in the sample									
	was 10 times above the concentration found in the method blank.									
Confirmati	on:									
C1	Confirmatory analysis not performed as required by the method.									
C2	Confirmatory analysis not performed. Confirmation of analyte presence established by site historical data.									
C3	Qualitative confirmation performed. See case narrative.									
C4	Confirmatory analysis was past holding time.									
C5	Confirmatory analysis was past holding time. Original result not confirmed.									
Dilution:										
D1	Sample required dilution due to matrix interference. See case narrative.									
D2	Sample required dilution due to high concentration of target analyte.									
D3	Sample dilution required due to insufficient sample.									
D4	Minimum reporting level (MRL) adjusted to reflect sample amount received and analyzed.									
Estimated of	concentration:									
E1	Concentration estimated. Analyte exceeded calibration range. Reanalysis not possible due to insufficient									
	sample.									
E2	Concentration estimated. Analyte exceeded calibration range. Reanalysis not performed due to sample matrix.									
E3	Concentration estimated. Analyte exceeded calibration range. Reanalysis not performed due to holding time									
	requirements.									
E4	Concentration estimated. Analyte was detected below laboratory minimum reporting level (MRL).									
E5	Concentration estimated. Analyte was detected below laboratory minimum reporting level (MRL), but not									
m z	confirmed by alternate analysis.									
E6	Confirmation estimated. Internal standard recoveries did not meet method acceptance criteria.									
E7	Confirmation estimated. Internal standard recoveries did not meet laboratory acceptance criteria.									
Hold Time	•									
H1	Sample analysis performed past holding time. See case narrative.									
H2	Initial analysis within holding time. Reanalysis for the required dilution was past holding time.									
H3	Sample was received and analyzed past holding time.									
H4	Sample was extracted past required extraction holding time, but analyzed within analysis holding time. See case									
117	narrative.									

Laboratory fortified blank/blank spike:

The associated blank spike recovery was above laboratory acceptance limits. See case narrative.

The associated blank spike recovery was below laboratory acceptance limits. See case narrative. 1.2 The associated blank spike recovery was above method acceptance limits. See case narrative. L3 The associated blank spike recovery was below method acceptance limits. See case narrative. L4 Note: The L1, L2, L3, & L4 footnotes need to be added to all corresponding analytes for a sample. Matrix spike: Matrix spike recovery was high, the method control sample recovery was acceptable. М1 Matrix spike recovery was low, the method control sample recovery was acceptable. M2The accuracy of the spike recovery value is reduced since the analyte concentration in the sample is M3disproportionate to spike level. The method control sample recovery was acceptable. The analysis of the spiked sample required a dilution such that the spike concentrations was diluted below M4the reporting limit. The method control sample recovery was acceptable. Analyte concentration was determined by the method of standard addition (MSA). M5 Matrix spike recovery was high. Data reported per ADEQ policy 0154,000. М6 Matrix sipke recovery was low. Data reported per ADEQ policy 0154,000. M7 General: See case narrative. N1See corrective action report. N2Sample quality: Sample integrity was not maintained. See case narrative. Q1 Sample received with head space. Q2 Sample received with improper chemical preservation. O3 Sample received and analyzed without chemical preservation. 04 Sample received with inadequate chemical preservation, but preserved by the laboratory. O5 Sample was received above recommended temperature. 06 Sample inadequately dechlorinated. Q7 Insufficient sample received to meet QC requirements. QC requirements satisfy ADEQ policies 0154 and 0155. Q8 Insufficient sample received to meet QC requirements. Q9 Sample received in inappropriate sample container. Q10 Sample is heterogeneous. Sample homogeneity could not be readily achieved using routine laboratory practices. 011 **Duplicates:** RPD exceeded the method control limit. See case narrative. R1RPD exceeded the laboratory control limit. See case narrative. R2 Sample RPD between the primary and confirmatory analysis exceeded 40%. Per Method 8000B, the higher R3 value was reported. MS/MSD RPD exceeded the method control limit. Recovery met acceptance criteria. R4 MS/MSD RPD exceeded the laboratory control limit. Recovery met acceptance criteria. R5 LFB/LFBD RPD exceeded the method control limit. Recovery met acceptance criteria. R6 LFB/LFBD RPD exceeded the laboratory control limit. Recovery met acceptance criteria. R7 Sample RPD exceeded the method control limit. R8 Sample RPD exceeded the laboratory control limit. R9 Surrogate: Surrogate recovery was above laboratory acceptance limits, but within method acceptance limits.

Surrogate recovery was above laboratory and method acceptance limits.

S1

S2

Surrogate recovery was above laboratory acceptance limits, but within method acceptance limits. No target 83 analytes were detected in the sample. Surrogate recovery was above laboratory and method acceptance limits. No target analytes were detected in the S4 sample Surrogate recovery was below laboratory acceptance limits, but within method acceptance limits. 85 Surrogate recovery was below laboratory and method acceptance limits. Reextraction and/or reanalysis confirms 86 low recovery caused by matrix effect. Surrogate recovery was below laboratory and method acceptance limits. Unable to confirm matrix effect. S7 The analysis of the sample required a dilution such that the surrogate concentration was diluted below the method S8acceptance criteria. The method control sample recovery was acceptable. The analysis of the sample required a dilution such that the surrogate concentration was diluted below the S9 laboratory acceptance criteria. The method control sample recovery was acceptable. Surrogate recovery was above laboratory and method acceptance limits. See case narrative. S10Surrogate recovery was high. Data reported per ADEQ policy 0154.000. S11 Surrogate recovery was low. Data reported per ADEQ policy 0154.000.

Method/analyte discrepancies:

S12

- Method promulgated by EPA, but not ADHS at this time. T1
- Cited ADHS licensed method does not contain this analyte as part of method compound list. T2
- Т3 Method not promulgated either by EPA or ADHS.
- Tentatively identified compound. Concentration is estimated and based on the closest internal standard. Т4

Calibration verification:

- CCV recovery was above method acceptance limits. This target analyte was not detected in the sample. V1
- CCV recovery was above method acceptance limits. This target analyte was detected in the sample. The sample V2could not be reanalyzed due to insufficient sample.
- CCV recovery was above method acceptance limits. This target analyte was detected in the sample, but the V3 sample was not reanalyzed. See case narrative.
- CCV recovery was below method acceptance limits. The sample could not be reanalyzed due to insufficient V4sample.
- CCV recovery after a group of samples was above acceptance limits. This target analyte was not detected in the V5 sample. Acceptable per EPA Method 8000B.
- Data reported from one-point calibration criteria per ADEQ policy 0155.000. V6
- Calibration verification recovery was above the method control limit for this analyte however the average V7 % difference or % drift for all the analytes met method criteria.
- Calibration verification recovery was below the method control limit for this analyte however the average V8 % difference or % drift for all the analytes met method criteria.

Calibration:

The % RSD for this compound was above 15%. The average % RSD for all compounds in the calibration met W1the 15% criteria as specified in EPA method 8000B.

Inorganic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.
- U The compound was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL
- i The MRL/MDL has been elevated due to a matrix interference.
- X See case narrative.

Metals Data Qualifiers

- # The control limit criteria is not applicable. See case narrative.
- B The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.
- E The reported value is estimated because of the presence of matrix interference.
- M The duplicate injection precision was not met.
- N The Matrix Spike sample recovery is not within control limits. See case narrative.
- S The reported value was determined by the Method of Standard Additions (MSA).
- U The compound was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- W The post-digestion spike for furnace AA analysis is out of control limits, while sample absorbance is less than 50% of spike absorbance.
- i The MRL/MDL has been elevated due to a matrix interference.
- X See case narrative.
- * The duplicate analysis not within control limits. See case narrative.
- + The correlation coefficient for the MSA is less than 0.995.

Organic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- A A tentatively identified compound, a suspected aldol-condensation product.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result.
- C The analyte was qualitatively confirmed using GC/MS techniques, pattern recognition, or by comparing to historical data.
- D The reported result is from a dilution.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.
- N The result is presumptive. The analyte was tentatively identified, but a confirmation analysis was not performed.
- P The GC or HPLC confirmation criteria was exceeded. The relative percent difference is greater than 40% between the two analytical results (25% for CLP Pesticides).
- U The compound was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- i The MRL/MDL has been elevated due to a chromatographic interference.
- X See case narrative.

Additional Petroleum Hydrocarbon Specific Qualifiers

- F The chromatographic fingerprint of the sample matches the elution pattern of the calibration standard.
- L The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of lighter molecular weight constituents than the calibration standard.
- H The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of heavier molecular weight constituents than the calibration standard.
- O The chromatographic fingerprint of the sample resembles an oil, but does not match the calibration standard.
- Y The chromatographic fingerprint of the sample resembles a petroleum product eluting in approximately the correct carbon range, but the elution pattern does not match the calibration standard.
- Z The chromatographic fingerprint does not resemble a petroleum product.

Client: Project: BE&K Terranext WVBA/#0310-3154 Service Request:

X2300260

Cover Page - Organic Analysis Data Package **Volatile Organic Compounds**

Sample Name	Lab Code	Date Collected	Date Received
AVB69-0102-1000	X2300260-001	03/21/2003	03/21/2003
AVB69-0100-07270	X2300260-002	03/21/2003	03/21/2003
AVB69-0104-1000	X2300260-003	03/21/2003	03/21/2003
AVB77-0200-07210	X2300260-004	03/21/2003	03/21/2003
AVB68-0400-06270	X2300260-005	03/21/2003	03/21/2003

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed in the case narrative. Release of the data contained in this hardcopy data package and in the computer-readable data submitted on floppy diskette has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signature.

Cover Page - Organic

Page

RR3169

Analytical Results

Client: Project:

BE&K Terranext WVBA/#0310-3154

Sample Matrix:

Water

Service Request: X2300260

Date Collected: 03/21/2003 **Date Received:** 03/21/2003

Volatile Organic Compounds

Sample Name: Lab Code: AVB69-0102-1000 X2300260-001

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

Name					Dilution	Date	Date	
Dichlorodifluoromethane	Analyte Name	Result	Q	MRL	Factor	Extracted		
Description		ND	U	3.0	1			N1V4
Vinyl Chloride ND U 1.0 1 04/01/03 04/01/03 Bromomethane ND U 1.0 1 04/01/03 04/01/03 Chloroethane ND U 1.0 1 04/01/03 04/01/03 Trichloroftinoromethane ND U 1.0 1 04/01/03 04/01/03 1,1,2-Trichloroethane ND U 1.0 1 04/01/03 04/01/03 1,1,2-Trichloroethane ND U 1.0 1 04/01/03 04/01/03 Acetone ND U 1.0 1 04/01/03 04/01/03 Iodomethane ND U 2.0 1 04/01/03 04/01/03 Carbon Disulfide ND U 2.0 1 04/01/03 04/01/03 Methylene Chloride ND U 1.0 1 04/01/03 04/01/03 Methyl tert-Butyl Ether ND U 1.0 1 04/01/03 04/01/03 Vinyl Acetae ND U 0.50 1 04/01/03 04/01/03 Vinyl Acetate		ND	U	2.0	1			
Bromomethane		ND	U	1.0	1	04/01/03	04/01/03	
Chloroethane ND U 1.0 1 04/01/03 04/01/03 Trichlorofluoromethane ND U 1.0 1 04/01/03 04/01/03 1,1,2-Trichlorotifluoroethane ND U 1.0 1 04/01/03 04/01/03 1,1-Dichloroethene ND U 1.0 1 04/01/03 04/01/03 Acetone ND U 1.0 1 04/01/03 04/01/03 Iodomethane ND U 2.0 1 04/01/03 04/01/03 Carbon Disulfide ND U 2.0 1 04/01/03 04/01/03 Methylene Chloride ND U 1.0 1 04/01/03 04/01/03 Methyl tert-Butyl Ether ND U 1.0 1 04/01/03 04/01/03 Methyl tert-Butyl Ether ND U 0.50 1 04/01/03 04/01/03 Methyl tert-Butyl Ether ND U 0.50 1 04/01/03 04/01/03	Bromomethane	ND	U	1.0	1	04/01/03	04/01/03	
1,1-2-Trichlorocthane		ND	U	1.0				
	Trichlorofluoromethane	ND	U	1.0	1	04/01/03		
	1,1,2-Trichlorotrifluoroethane	ND	U	1.0	1			L1
Acetone	1.1-Dichloroethene	ND	U	1.0	1			
Carbon Disulfide	·	ND	U	10	1	04/01/03	04/01/03	
Carbon Disulfide ND U 2.0 1 04/01/03 04/01/03 Methylene Chloride ND U 1.0 1 04/01/03 04/01/03 Methyl tert-Butyl Ether ND U 1.0 1 04/01/03 04/01/03 Irans-1,2-Dichloroethene ND U 0.50 1 04/01/03 04/01/03 Vinyl Acetate ND U 3.0 1 04/01/03 04/01/03 2,2-Dichloropropane ND U 2.0 1 04/01/03 04/01/03 2-Butanone (MEK) ND U 8.0 1 04/01/03 04/01/03 2-Butanone (MEK) ND U 8.0 1 04/01/03 04/01/03 2-Butanone (MEK) ND U 8.0 1 04/01/03 04/01/03 2-Butanone (MEK) ND U 0.50 1 04/01/03 04/01/03 3-Cibiloroethene ND U 0.50 1 04/01/03 04/01/03	Iodomethane	ND	U	2.0	1			
Methylene Chloride ND U 1.0 1 04/01/03 04/01/03 Methyl tert-Butyl Ether trans-1,2-Dichloroethene ND U 0.50 1 04/01/03 04/01/03 1,1-Dichloroethane ND U 0.50 1 04/01/03 04/01/03 1,1-Dichloroethane ND U 0.50 1 04/01/03 04/01/03 Vinyl Acetate ND U 3.0 1 04/01/03 04/01/03 2,2-Dichloropropane ND U 2.0 1 04/01/03 04/01/03 2-Butanone (MEK) ND U 8.0 1 04/01/03 04/01/03 2-Buthoroethene ND U 0.50 1 04/01/03 04/01/03 2-Buthoroethene ND U 0.50 1 04/01/03 04/01/03 2-Buthoroethene ND U 0.50 1 04/01/03 04/01/03 3-Bromochloroethene ND U 0.50 1 04/01/03 04/01/03 1,1-1-Tichloroethane ND U 0.50 1 04/01/03 04/01/03		ND	U	2.0	1			
Methyl tert-Butyl Ether ND U 1.0 1 04/01/03 04/01/03 trans-1,2-Dichloroethene ND U 0.50 1 04/01/03 04/01/03 1,1-Dichloroethane ND U 0.50 1 04/01/03 04/01/03 Vinyl Acetate ND U 3.0 1 04/01/03 04/01/03 2,2-Dichloropropane ND U 2.0 1 04/01/03 04/01/03 2-Butanone (MEK) ND U 8.0 1 04/01/03 04/01/03 2-Butanone (MEK) ND U 8.0 1 04/01/03 04/01/03 2-Butanone (MEK) ND U 0.50 1 04/01/03 04/01/03 2-Butanone (MEK) ND U 0.50 1 04/01/03 04/01/03 Bromochloromethane ND U 0.50 1 04/01/03 04/01/03 1,1-Trichloroethane ND U 0.50 1 04/01/03 04/01/03		ND	U	1.0	1	04/01/03	04/01/03	
trans-1,2-Dichloroethene ND U 0.50 1 04/01/03 04/01/03 1,1-Dichloroethane ND U 0.50 1 04/01/03 04/01/03 Vinyl Acetate ND U 3.0 1 04/01/03 04/01/03 2,2-Dichloropropane ND U 2.0 1 04/01/03 04/01/03 2-Butanone (MEK) ND U 8.0 1 04/01/03 04/01/03 2-Butanone (MEK) ND U 0.50 1 04/01/03 04/01/03 2-Butanone (MEK) ND U 0.50 1 04/01/03 04/01/03 3-Butanone (MEK) ND U 0.50 1 04/01/03 04/01/03 4-Incomposition (MEK) ND U 0.50 1 04/01/03 04/01/03 1,1-Trichloroethane ND U 0.50 1 04/01/03 04/01/03 1,1-Dichloropropene ND U 0.50 1 04/01/03 04/01/03		ND	U	1.0	1			
1,1-Dichloroethane		ND	U	0.50	1			
Vinyl Acetate ND U 3.0 1 04/01/03 04/01/03 2,2-Dichloropropane ND U 2.0 1 04/01/03 04/01/03 2-Butanone (MEK) ND U 8.0 1 04/01/03 04/01/03 2-Butanone (MEK) ND U 8.0 1 04/01/03 04/01/03 2-Butanone (MEK) ND U 0.50 1 04/01/03 04/01/03 2-Butanone (MEK) ND U 0.50 1 04/01/03 04/01/03 3-Carbon Tetrachloride ND U 0.50 1 04/01/03 04/01/03 1,1-Dichloropropene ND U 0.50 1 04/01/03 04/01/03 1,1-Dichloropropene ND U 0.50 1 04/01/03 04/01/03 1,1-Dichloropropene ND U 0.50 1 04/01/03 04/01/03 1,2-Dichloropropene ND U 0.50 1 04/01/03 04/01/03 <		ND	U	0.50	1	04/01/03	04/01/03	
2,2-Dichloropropane ND U 2.0 1 04/01/03 04/01/03 2-Butanone (MEK) ND U 8.0 1 04/01/03 04/01/03 cis-1,2-Dichloroethene ND U 0.50 1 04/01/03 04/01/03 Bromochloromethane ND U 0.50 1 04/01/03 04/01/03 Chloroform ND U 1.0 1 04/01/03 04/01/03 Chloroform ND U 0.50 1 04/01/03 04/01/03 1,1,1-Trichloroethane ND U 0.50 1 04/01/03 04/01/03 Carbon Tetrachloride ND U 0.50 1 04/01/03 04/01/03 1,1-Dichloropropene ND U 0.50 1 04/01/03 04/01/03 1,2-Dichloroethane ND U 0.50 1 04/01/03 04/01/03 1,2-Dichloropropane ND U 0.50 1 04/01/03 04/01/03 1,2-Dichloropropane ND U 0.50 1 04/01/03 04/01/03	Vinyl Acetate	ND	U	3.0	1			
2-Butanone (MEK) ND U 8.0 1 04/01/03 04/01/03 cis-1,2-Dichloroethene ND U 0.50 1 04/01/03 04/01/03 Bromochloromethane ND U 0.50 1 04/01/03 04/01/03 Chloroform ND U 1.0 1 04/01/03 04/01/03 1,1,1-Trichloroethane ND U 0.50 1 04/01/03 04/01/03 Carbon Tetrachloride ND U 0.50 1 04/01/03 04/01/03 1,1-Dichloropropene ND U 0.50 1 04/01/03 04/01/03 Benzene ND U 0.50 1 04/01/03 04/01/03 1,2-Dichloroethane ND U 0.50 1 04/01/03 04/01/03 Trichloroethene ND U 0.50 1 04/01/03 04/01/03 1,2-Dichloropropane ND U 0.50 1 04/01/03 04/01/03 Trichloroethene ND U 0.50 1 04/01/03 04/01/03 Cis-1,3-Dichloropropene ND U 0.50 1 04/01/03 04/01/03 Bromodichloromethane ND U 0.50 1 04/01/03 04/01/03 Cis-1,3-Dichloropropene ND U 0.50 0 1 04/01/03 04/01/03		ND	U	2.0	1			
Cis-1,2-Diction deficient ND U 0.50 1 04/01/03 04/01/03 Chloroform ND U 1.0 1 04/01/03 04/01/03 1,1,1-Trichloroethane ND U 0.50 1 04/01/03 04/01/03 Carbon Tetrachloride ND U 0.50 1 04/01/03 04/01/03 1,1-Dichloropropene ND U 0.50 1 04/01/03 04/01/03 1,2-Dichloropropene ND U 0.50 1 04/01/03 04/01/03 1,2-Dichloropropane ND U 0.50 1 04/01/03 04/01/03 Bromodichloromethane ND U 0.50 1 04/01/03	·	ND	U	8.0	1	04/01/03		
Bromochloromethane ND U 0.50 1 04/01/03 04/01/03 Chloroform ND U 1.0 1 04/01/03 04/01/03 1,1,1-Trichloroethane ND U 0.50 1 04/01/03 04/01/03 Carbon Tetrachloride ND U 0.50 1 04/01/03 04/01/03 1,1-Dichloropropene ND U 0.50 1 04/01/03 04/01/03 L1 Benzene ND U 0.50 1 04/01/03 04/01/03 04/01/03 1,2-Dichloroethane ND U 0.50 1 04/01/03 04/01/03 1,2-Dichloropropane ND U 0.50 1 04/01/03 04/01/03 1,2-Dichloropropane ND U 0.50 1 04/01/03 04/01/03 Dibromomethane ND U 0.50 1 04/01/03 04/01/03 Bromodichloromethane ND U 0.50 1 04/01/03 04/01/03 4-Methyl-2-pentanone (MIBK) ND U 8.0 1 04/01/03	cis-1.2-Dichloroethene	ND	U	0.50	1			
1,1,1-Trichloroethane		ND	U	0.50	1			
Carbon Tetrachloride ND U ND	Chloroform	ND	U	1.0	1	04/01/03		
Carbon Tetrachloride ND U 0.50 1 04/01/03 04/01/03 1,1-Dichloropropene ND U 0.50 1 04/01/03 04/01/03 L1 Benzene ND U 0.50 1 04/01/03 04/01/03 04/01/03 1,2-Dichloroethane ND U 0.50 1 04/01/03 04/01/03 Trichloropropane ND U 0.50 1 04/01/03 04/01/03 1,2-Dichloropropane ND U 0.50 1 04/01/03 04/01/03 Dibromomethane ND U 0.50 1 04/01/03 04/01/03 Bromodichloromethane ND U 0.50 1 04/01/03 04/01/03 cis-1,3-Dichloropropene ND U 0.50 1 04/01/03 04/01/03 4-Methyl-2-pentamone (MIBK) ND U 8.0 1 04/01/03 04/01/03	1.1.1-Trichloroethane	ND	U	0.50	1			
1,1-Dichloropropene ND U 0.50 1 04/01/03 04/01/03 L1 Benzene ND U 0.50 1 04/01/03 04/01/03 1,2-Dichloroethane ND U 0.50 1 04/01/03 04/01/03 Trichloroethene ND U 0.50 1 04/01/03 04/01/03 1,2-Dichloropropane ND U 0.50 1 04/01/03 04/01/03 Dibromomethane ND U 0.50 1 04/01/03 04/01/03 Bromodichloromethane ND U 0.50 1 04/01/03 04/01/03 cis-1,3-Dichloropropene ND U 0.50 1 04/01/03 04/01/03 4-Methyl-2-pentanone (MIBK) ND U 8.0 1 04/01/03 04/01/03		ND	U	0.50	1	04/01/03		
Instruction		ND	U	0.50	1	04/01/03		L1
1,2-Dichloroethane ND U 0.50 1 04/01/03 04/01/03 Trichloroethene ND U 0.50 1 04/01/03 04/01/03 1,2-Dichloropropane ND U 0.50 1 04/01/03 04/01/03 Dibromomethane ND U 0.50 1 04/01/03 04/01/03 Bromodichloromethane ND U 0.50 1 04/01/03 04/01/03 cis-1,3-Dichloropropene ND U 0.50 1 04/01/03 04/01/03 4-Methyl-2-pentanone (MIBK) ND U 8.0 1 04/01/03 04/01/03	Benzene	ND	U	0.50	1			
Trichloroethene ND U 0.50 1 04/01/03 04/01/03 1,2-Dichloropropane ND U 0.50 1 04/01/03 04/01/03 Dibromomethane ND U 0.50 1 04/01/03 04/01/03 Bromodichloromethane ND U 0.50 1 04/01/03 04/01/03 cis-1,3-Dichloropropene ND U 0.50 1 04/01/03 04/01/03 4-Methyl-2-pentanone (MIBK) ND U 8.0 1 04/01/03 04/01/03		ND	U	0.50	1			
Dibromomethane	,	ND	U	0.50	1	04/01/03	04/01/03	
Dibromomethane ND U 0.50 1 04/01/03 04/01/03 Bromodichloromethane ND U 0.50 1 04/01/03 04/01/03 cis-1,3-Dichloropropene ND U 0.50 1 04/01/03 04/01/03 4-Methyl-2-pentanone (MIBK) ND U 8.0 1 04/01/03 04/01/03	1.2-Dichloropropane	ND	U	0.50	1			
Bromodichloromethane ND U 0.50 1 04/01/03 04/01/03 cis-1,3-Dichloropropene ND U 0.50 1 04/01/03 04/01/03 4-Methyl-2-pentanone (MIBK) ND U 8.0 1 04/01/03 04/01/03		ND	U	0.50	1			
4-Methyl-2-pentanone (MIBK) ND U 8.0 1 04/01/03 04/01/03	Bromodichloromethane	ND	U	0.50	1	04/01/03	04/01/03	
4-Methyl-2-pentanone (MIBK) ND U 8.0 1 04/01/03 04/01/03	cis-1,3-Dichloropropene	ND	U		1			
0.70 1 0.4/01/02 0.4/01/02		ND	U	8.0	1			
		ND	U	0.50	1	04/01/03	04/01/03	

Comments:

000008

Analytical Results

Client: Project:

BE&K Terranext WVBA/#0310-3154

Sample Matrix:

Water

Service Request: X2300260

Date Collected: 03/21/2003 **Date Received:** 03/21/2003

Volatile Organic Compounds

Sample Name: Lab Code: AVB69-0102-1000 X2300260-001

Extraction Method: Analysis Method:

EPA 5030B 8260B Units: ug/L Basis: NA

Level: Low

		_	3.677	Dilution	Date Extracted	Date	Arizona Qualifier
Analyte Name	Result		MRL	Factor		04/01/03	Alizona Quantici
trans-1,3-Dichloropropene	ND		1.0	1	04/01/03	04/01/03	
1,1,2-Trichloroethane	ND		1.0	1	04/01/03	04/01/03	
Tetrachloroethene	ND	U	0.50	1	04/01/03		
2-Hexanone	ND		5.0	1	04/01/03	04/01/03	
1,3-Dichloropropane	ND	U	1.0	1	04/01/03	04/01/03	
Dibromochloromethane	ND	U	0.50	1	04/01/03	04/01/03	
1,2-Dibromoethane	ND	U	0.50	1	04/01/03	04/01/03	
Chlorobenzene	ND		0.50	1	04/01/03	04/01/03	
1,1,1,2-Tetrachloroethane	ND	U	0.50	1	04/01/03	04/01/03	
Ethylbenzene	ND	IJ	0.50	1	04/01/03	04/01/03	
m,p-Xylenes	ND		1.0	1	04/01/03	04/01/03	
o-Xylene	ND		0.50	1	04/01/03	04/01/03	
	ND		0.50	1	04/01/03	04/01/03	
Styrene	ND		0.50	1	04/01/03	04/01/03	
Isopropylbenzene Bromobenzene	ND		0.50	1	04/01/03	04/01/03	
	ND		1.0	1	04/01/03	04/01/03	
1,2,3-Trichloropropane	ND ND		0.50	1	04/01/03	04/01/03	
n-Propylbenzene	ND ND		0.50	î	04/01/03	04/01/03	
2-Chlorotoluene			0.50	1	04/01/03	04/01/03	
4-Chlorotoluene	ND		0.50	1	04/01/03	04/01/03	
1,3,5-Trimethylbenzene	ND		0.50	1	04/01/03	04/01/03	
tert-Butylbenzene	ND				04/01/03	04/01/03	
1,2,4-Trimethylbenzene	ND		0.50	1		04/01/03	
sec-Butylbenzene		U	0.50	1	04/01/03 04/01/03	04/01/03	
1,3-Dichlorobenzene		U	0.50	l			
4-Isopropyltoluene		U	0.50	1	04/01/03	04/01/03	
Bromoform		U	0.50	1	04/01/03	04/01/03	
1,1,2,2-Tetrachloroethane	NE	U	1.0	1	04/01/03	04/01/03	
1,4-Dichlorobenzene	NE	U	0.50	1	04/01/03	04/01/03	
1,2-Dichlorobenzene		U	0.50	1	04/01/03	04/01/03	
n-Butylbenzene	NE	U	0.50	1	04/01/03	04/01/03	
1,2-Dibromo-3-chloropropane	NT	U	5.0	1	04/01/03	04/01/03	
1,2,4-Trichlorobenzene		Ŭ	0.50	1	04/01/03	04/01/03	
Hexachlorobutadiene		Ù	0.50	1	04/01/03	04/01/03	
Tiexaciiiofoutautene	111						

Comments:

000009

Merged

Analytical Results

Client:

BE&K Terranext WVBA/#0310-3154

Project: **Sample Matrix:**

Water

Service Request: X2300260

Date Collected: 03/21/2003

Date Received: 03/21/2003

Volatile Organic Compounds

Sample Name: Lab Code:

AVB69-0102-1000 X2300260-001

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

			Dilution	Date	Date	
Analyte Name	Result O	MRL	Factor	Extracted	Analyzed	Arizona Qualifier
Naphthalene	ND U ND U	3.0 0.50	1	04/01/03 04/01/03	04/01/03 04/01/03	
1,2,3-Trichlorobenzene	ND 0	0.50	_			

Surrogate Name	%Rec	Control Limits	Date Analyzed	Arizona Qualifier	
Dibromofluoromethane Toluene-d8 4-Bromofluorobenzene	113 113 103	84-113 68-126 79-113	04/01/03 04/01/03 04/01/03		

Comments:

000010

Merged

Page

Analytical Results

Client: Project: BE&K Terranext WVBA/#0310-3154

Sample Matrix:

Water

Service Request: X2300260

Date Collected: 03/21/2003

Date Received: 03/21/2003

Volatile Organic Compounds

Sample Name: Lab Code:

AVB69-0100-07270 X2300260-002

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

				Dilution	Date	Date	
Analyte Name	Result	Q	MRL	Factor	Extracted		Arizona Qualifier
Dichlorodifluoromethane	ND	U	3.0	1	04/01/03	04/01/03	N1V4
Chloromethane	ND	U	2.0	. 1	04/01/03	04/01/03	
Vinyl Chloride	ND	U	1.0	1	04/01/03	04/01/03	
Bromomethane	ND	U	1.0	1	04/01/03	04/01/03	
Chloroethane	ND	U	1.0	1	04/01/03	04/01/03	
Trichlorofluoromethane	ND	U	1.0	1	04/01/03	04/01/03	
1,1,2-Trichlorotrifluoroethane	ND	U	1.0	1	04/01/03		L1
1,1-Dichloroethene	ND	U	1.0	1	04/01/03	04/01/03	
Acetone	ND	U	10	1	04/01/03	04/01/03	
Iodomethane	ND	U	2.0	1	04/01/03	04/01/03	
Carbon Disulfide	ND	U	2.0	1	04/01/03	04/01/03	
Methylene Chloride	ND	U	1.0	1	04/01/03	04/01/03	
Methyl tert-Butyl Ether	ND	U	1.0	1	04/01/03	04/01/03	
trans-1,2-Dichloroethene	ND		0.50	1	04/01/03	04/01/03	
1,1-Dichloroethane	ND		0.50	1	04/01/03	04/01/03	
Vinyl Acetate	ND	U	3.0	1	04/01/03	04/01/03	
2,2-Dichloropropane	ND		2.0	1	04/01/03	04/01/03	
2-Butanone (MEK)	ND		8.0	1	04/01/03	04/01/03	
cis-1,2-Dichloroethene	ND	U	0.50	1	04/01/03	04/01/03	
Bromochloromethane	ND		0.50	1	04/01/03	04/01/03	
Chloroform	ND		1.0	1	04/01/03	04/01/03	
1,1,1-Trichloroethane	ND	U	0.50	1	04/01/03	04/01/03	
Carbon Tetrachloride	ND		0.50	1	04/01/03	04/01/03	
1,1-Dichloropropene	ND		0.50	1	04/01/03	04/01/03	Ll
Benzene	ND		0.50	1	04/01/03	04/01/03	
1,2-Dichloroethane	ND		0.50	1	04/01/03	04/01/03	
Trichloroethene	ND		0.50	1	04/01/03	04/01/03	
1,2-Dichloropropane	ND		0.50	1	04/01/03	04/01/03	
Dibromomethane	ND		0.50	1	04/01/03	04/01/03	
Bromodichloromethane	ND		0.50	1	04/01/03	04/01/03	
cis-1,3-Dichloropropene	ND		0.50	1	04/01/03	04/01/03	
4-Methyl-2-pentanone (MIBK)	ND		8.0	1	04/01/03	04/01/03	
Toluene	ND		0.50	1	04/01/03	04/01/03	
10140110							

Comments:

Printed: 04/09/2003 08:37:28 L:\STEALTH\CRYSTAL.RPT\Formlm.rpt

Merged

Form 1A - Organic

000011

Page 1 of 3

Analytical Results

Client: **Project:** BE&K Terranext WVBA/#0310-3154

Sample Matrix:

Water

Service Request: X2300260

Date Collected: 03/21/2003

Date Received: 03/21/2003

Volatile Organic Compounds

Sample Name:

AVB69-0100-07270

Lab Code:

X2300260-002

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

Analyte Name Result Q MRL Factor Extracted Analyzed Arizona Q trans-1,3-Dichloropropene ND U 1.0 1 04/01/03 04/01/03 04/01/03 1,1,2-Trichloroethane ND U 1.0 1 04/01/03 04/01/03 Tetrachloroethene ND U 0.50 1 04/01/03 04/01/03 2-Hexanone ND U 5.0 1 04/01/03 04/01/03 1 2 Dichloropropose ND U 1.0 1 04/01/03 04/01/03	ualifier
trans-1,3-Dichloropropene ND U 1.0 1 04/01/03 04/01/03 1,1,2-Trichloroethane ND U 1.0 1 04/01/03 04/01/03 Tetrachloroethene ND U 0.50 1 04/01/03 04/01/03 04/01/03 2-Hexanone ND U 5.0 1 04/01/03 04/01/03	
1,1,2-Trichloroethane ND U 1.0 1 04/01/03 04/01/03 Tetrachloroethene ND U 0.50 1 04/01/03 04/01/03 2-Hexanone ND U 5.0 1 04/01/03 04/01/03	
Tetrachloroethene ND U 0.50 1 04/01/03 04/01/03 2-Hexanone ND U 5.0 1 04/01/03 04/01/03	
2-Hexanone ND U 5.0 1 04/01/03 04/01/03	
2-Hexanone	
1,3-Dichloropropane ND U 1.0 1 04/01/03 04/01/03	
Dibromochloromethane ND U 0.50 1 04/01/03 04/01/03	
1,2-Dibromoethane ND U 0.50 1 04/01/03 04/01/03	
Chlorobenzene ND U 0.50 1 04/01/03 04/01/03	
1,1,1,2-Tetrachloroethane ND U 0.50 1 04/01/03 04/01/03	
Ethylbenzene ND U 0.50 1 04/01/03 04/01/03	
m,p-Xylenes ND U 1.0 1 04/01/03 04/01/03	
o-Xylene ND U 0.50 1 04/01/03 04/01/03	
Styrene ND U 0.50 1 04/01/03 04/01/03	
Isopropylbenzene ND U 0.50 1 04/01/03 04/01/03	
Bromobenzene ND U 0.50 1 04/01/03 04/01/03	
1,2,3-Trichloropropane ND U 1.0 1 04/01/03 04/01/03	
n-Propylbenzene ND U 0.50 1 04/01/03 04/01/03	
2-Chlorotoluene ND U 0.50 1 04/01/03 04/01/03	
4-Chlorotoluene ND U 0.50 1 04/01/03 04/01/03	
1,3,5-Trimethylbenzene ND U 0.50 1 04/01/03 04/01/03	
tert-Butylbenzene ND U 0.50 1 04/01/03 04/01/03	
1 04/01/02 04/01/02	
1,2,4-1 milethyloenzene	
sec-Butylbenzene ND U 0.50 I 04/01/03 04/01/03 1,3-Dichlorobenzene ND U 0.50 I 04/01/03 04/01/03	
1,5 District Contract (1,5 District Contract (
4-Isopropylloluelle 14D 0 0.50	
PLOHIOTOLIII	
1,1,2,2-1 et a chioi o et a a chioi o et a a chioi o et a	
1,4-Dictiorogenzene	
1,2-Dictilioropenzene	
II-Butyloenzene 140 0 0.00	
1,2-Dibromo-3-chloropropane ND U 5.0 1 04/01/03 04/01/03	
1,2,4-Trichlorobenzene ND U 0.50 1 04/01/03 04/01/03	
Hexachlorobutadiene ND U 0.50 1 04/01/03 04/01/03	

Comments:

Printed: 04/09/2003 08:37:28 L:\STEALTH\CRYSTAL.RPT\Form1m.rpt

Merged

Form 1A - Organic

000012

2 of 3 Page

SuperSet Reference:

RR3169

Analytical Results

Client: Project:

BE&K Terranext WVBA/#0310-3154

Sample Matrix:

Water

arytical Results

Service Request: X2300260

Date Collected: 03/21/2003

Date Received: 03/21/2003

Volatile Organic Compounds

Sample Name:

AVB69-0100-07270

Lab Code:

X2300260-002

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

			Dilution	Date	Date	
Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed A	Arizona Qualifier
Naphthalene 1,2,3-Trichlorobenzene	ND U ND U	3.0 0.50	1 1	04/01/03 04/01/03	04/01/03 04/01/03	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Arizona Qualifier	
Dibromofluoromethane	111	84-113	04/01/03		
Toluene-d8	112	68-126	04/01/03		
4-Bromofluorobenzene	103	79-113	04/01/03		

Comments:

000013

Merged

SuperSet Reference:

Analytical Results

Client: Project:

BE&K Terranext WVBA/#0310-3154

Sample Matrix:

Water

Service Request: X2300260

Date Collected: 03/21/2003

Date Collected: 03/21/2003 **Date Received:** 03/21/2003

Volatile Organic Compounds

Sample Name: Lab Code: AVB69-0104-1000 X2300260-003

Extraction Method: Analysis Method:

EPA 5030B 8260B Units: ug/L Basis: NA

Level: Low

			Dilution	Date	Date	
Analyte Name	Result Q	MRL	Factor	Extracted		Arizona Qualifier
Dichlorodifluoromethane	ND U	3.0	1	04/01/03	.,	N1V4
Chloromethane	ND U	2.0	1	04/01/03	04/01/03	
Vinyl Chloride	ND U	1.0	1	04/01/03	04/01/03	
Bromomethane	ND U	1.0	1	04/01/03	04/01/03	
Chloroethane	ND U	1.0	1	04/01/03	04/01/03	
Trichlorofluoromethane	ND U	1.0	1	04/01/03	04/01/03	
1,1,2-Trichlorotrifluoroethane	ND U	1.0	1	04/01/03	04/01/03	L1
1,1-Dichloroethene	ND U	1.0	1	04/01/03	04/01/03	
Acetone	ND U	10	1	04/01/03	04/01/03	
Iodomethane	ND U	2.0	1	04/01/03	04/01/03	
Carbon Disulfide	ND U	2.0	1	04/01/03	04/01/03	
Methylene Chloride	ND U	1.0	1	04/01/03	04/01/03	
Methyl tert-Butyl Ether	ND U	1.0	1	04/01/03	04/01/03	
trans-1,2-Dichloroethene	ND U	0.50	1	04/01/03	04/01/03	
1,1-Dichloroethane	ND U	0.50	1	04/01/03	04/01/03	
Vinyl Acetate	ND U	3.0	1	04/01/03	04/01/03	
2,2-Dichloropropane	ND U	2.0	1	04/01/03	04/01/03	
2-Butanone (MEK)	ND U	8.0	1	04/01/03	04/01/03	
cis-1,2-Dichloroethene	ND U	0.50	1	04/01/03	04/01/03	
Bromochloromethane	ND U	0.50	1	04/01/03	04/01/03	
Chloroform	ND U	1.0	1	04/01/03	04/01/03	
1,1,1-Trichloroethane	ND U	0.50	1	04/01/03	04/01/03	
Carbon Tetrachloride	ND U	0.50	1	04/01/03	04/01/03	
1,1-Dichloropropene	ND U	0.50	1	04/01/03	04/01/03	Ll
Benzene	ND U	0.50	1	04/01/03	04/01/03	
1,2-Dichloroethane	ND U	0.50	1	04/01/03	04/01/03	
Trichloroethene	ND U	0.50	1	04/01/03	04/01/03	
1,2-Dichloropropane	ND U	0.50	1	04/01/03	04/01/03	
Dibromomethane	ND U	0.50	1	04/01/03	04/01/03	
Bromodichloromethane	ND U	0.50	1	04/01/03	04/01/03	
cis-1,3-Dichloropropene	ND U	0.50	1	04/01/03	04/01/03	
4-Methyl-2-pentanone (MIBK)	ND U	8.0	1	04/01/03	04/01/03	
Toluene	ND U	0.50	1	04/01/03	04/01/03	
Totalio						

Comments:

Printed: 04/09/2003 08:37:38 L:\STEALTH\CRYSTAL.RPT\Form\m.rpt

Merged

Form 1A - Organic

000014

Page 1 of 3

Analytical Results

Client: Project: BE&K Terranext WVBA/#0310-3154

Sample Matrix:

Water

Service Request: X2300260

Date Collected: 03/21/2003 **Date Received:** 03/21/2003

Volatile Organic Compounds

Sample Name: Lab Code:

AVB69-0104-1000 X2300260-003

Extraction Method:

EPA 5030B

Units: ug/L Basis: NA

Level: Low

8260B **Analysis Method:**

				Dilution	Date	Date	
Analyte Name	Result	Q	MRL	Factor	Extracted		Arizona Qualifier
trans-1,3-Dichloropropene	ND	U	1.0	1	04/01/03	04/01/03	
1,1,2-Trichloroethane	ND	U	1.0	1	04/01/03	04/01/03	
Tetrachloroethene	ND	U	0.50	1	04/01/03	04/01/03	
2-Hexanone	ND	U	5.0	1	04/01/03	04/01/03	
1,3-Dichloropropane	ND	U	1.0	1	04/01/03	04/01/03	
Dibromochloromethane	ND	U	0.50	1	04/01/03	04/01/03	
1,2-Dibromoethane	ND	U	0.50	1	04/01/03	04/01/03	
Chlorobenzene	ND	U	0.50	1	04/01/03	04/01/03	
1,1,1,2-Tetrachloroethane	ND	U	0.50	1	04/01/03	04/01/03	
Ethylbenzene	ND	U	0.50	1	04/01/03	04/01/03	
m,p-Xylenes	ND		1.0	1	04/01/03	04/01/03	
o-Xylene	ND		0.50	1	04/01/03	04/01/03	
Styrene	ND	IJ	0.50	1	04/01/03	04/01/03	
Isopropylbenzene	ND		0.50	1	04/01/03	04/01/03	
Bromobenzene	ND		0.50	1	04/01/03	04/01/03	
1,2,3-Trichloropropane	ND		1.0	1	04/01/03	04/01/03	
n-Propylbenzene	ND		0.50	1	04/01/03	04/01/03	
2-Chlorotoluene	ND		0.50	1	04/01/03	04/01/03	
4-Chlorotoluene	ND		0.50	1	04/01/03	04/01/03	
1,3,5-Trimethylbenzene	ND		0.50	1	04/01/03	04/01/03	
tert-Butylbenzene	ND		0.50	1	04/01/03	04/01/03	
1,2,4-Trimethylbenzene	ND		0.50	1	04/01/03	04/01/03	
sec-Butylbenzene	ND		0.50	1	04/01/03	04/01/03	
1,3-Dichlorobenzene	ND		0.50	1	04/01/03	04/01/03	
4-Isopropyltoluene	ND		0.50	1	04/01/03	04/01/03	
Bromoform	ND		0.50	1	04/01/03	04/01/03	
1,1,2,2-Tetrachloroethane	ND		1.0	1	04/01/03	04/01/03	
	ND		0.50	1	04/01/03	04/01/03	
1,4-Dichlorobenzene	ND		0.50	1	04/01/03	04/01/03	
1,2-Dichlorobenzene	ND		0.50	1	04/01/03	04/01/03	
n-Butylbenzene	ND		5.0	1	04/01/03	04/01/03	
1,2-Dibromo-3-chloropropane	ND ND		0.50	1	04/01/03	04/01/03	
1,2,4-Trichlorobenzene		U	0.50	1	04/01/03	04/01/03	
Hexachlorobutadiene	NL	, 0	0.50		0 1/ 0 1/ 0 3	J J Z. O J	

Comments:

Printed: 04/09/2003 08:37:38 L:\STEALTH\CRYSTAL.RPT\Form1m.rpt

Merged

Form 1A - Organic

000015

2 of 3 Page

Analytical Results

Client:

BE&K Terranext

Project:

WVBA/#0310-3154

Sample Matrix:

Water

Service Request: X2300260

Date Collected: 03/21/2003

Date Received: 03/21/2003

Volatile Organic Compounds

Sample Name: Lab Code:

AVB69-0104-1000

Extraction Method:

X2300260-003 EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

			Dilution	Date	Date	
Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed	Arizona Qualifier
Naphthalene	ND U	3.0	1	04/01/03	04/01/03	
1,2,3-Trichlorobenzene	ND U	0.50	1	04/01/03	04/01/03	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Arizona Qualifier	
Dibromofluoromethane	111	84-113	04/01/03		
Toluene-d8	114	68-126	04/01/03		
4-Bromofluorobenzene	105	79-113	04/01/03		

Comments:

Printed: 04/09/2003 08:37:38 L:\STEALTH\CRYSTAL.RPT\Formlm.rpt

Merged

Form 1A - Organic

000016

SuperSet Reference:

Page 3 of 3

RR3169

Analytical Results

Client: **Project:** BE&K Terranext WVBA/#0310-3154

Sample Matrix:

Water

Service Request: X2300260 **Date Collected:** 03/21/2003

Date Received: 03/21/2003

Volatile Organic Compounds

Sample Name: Lab Code:

AVB77-0200-07210 X2300260-004

Extraction Method:

EPA 5030B

Units: ug/L Basis: NA

Level: Low

Extraction Memou.	
Analysis Method:	8260B

			Dilution	Date	Date	Arizona Qualifier
Analyte Name	Result Q	MRL	Factor	Extracted		N1V4
Dichlorodifluoromethane	ND U	3.0	1	04/01/03	04/01/03 04/01/03	N1 V4
Chloromethane	ND U	2.0	1	04/01/03	04/01/03	
Vinyl Chloride	ND U	1.0	1	04/01/03		
Bromomethane	ND U	1.0	1	04/01/03	04/01/03	
Chloroethane	ND U	1.0	1	04/01/03	04/01/03	
Trichlorofluoromethane	ND U	1.0	1	04/01/03	04/01/03	
1.1.2-Trichlorotrifluoroethane	ND U	1.0	1	04/01/03		Ll
1,1-Dichloroethene	ND U	1.0	1	04/01/03	04/01/03	
Acetone	ND U	10	1	04/01/03	04/01/03	
Iodomethane	ND U	2.0	1	04/01/03	04/01/03	
Carbon Disulfide	ND U	2.0	1	04/01/03	04/01/03	
Methylene Chloride	ND U	1.0	1	04/01/03	04/01/03	
Methyl tert-Butyl Ether	ND U	1.0	1	04/01/03	04/01/03	
trans-1,2-Dichloroethene	ND U	0.50	1	04/01/03	04/01/03	
1,1-Dichloroethane	ND U	0.50	1	04/01/03	04/01/03	
Vinyl Acetate	ŅD U	3.0	1	04/01/03	04/01/03	
2,2-Dichloropropane	ND U	2.0	1	04/01/03	04/01/03	
2-Butanone (MEK)	ND U	8.0	1	04/01/03	04/01/03	
cis-1,2-Dichloroethene	ND U	0.50	1	04/01/03	04/01/03	
Bromochloromethane	ND U	0.50	1	04/01/03	04/01/03	
Chloroform	ND U	1.0	1	04/01/03	04/01/03	
	ND U	0.50	1	04/01/03	04/01/03	
1,1,1-Trichloroethane	ND U	0.50	1	04/01/03	04/01/03	
Carbon Tetrachloride 1,1-Dichloropropene	ND U	0.50	1	04/01/03	04/01/03	L1
<u> </u>	ND U	0.50	1	04/01/03	04/01/03	
Benzene	ND U	0.50	1	04/01/03	04/01/03	
1,2-Dichloroethane	ND U	0.50	1	04/01/03	04/01/03	
Trichloroethene		0.50	1	04/01/03	04/01/03	
1,2-Dichloropropane	ND U	0.50	1	04/01/03	04/01/03	
Dibromomethane	ND U ND U	0.50	1	04/01/03	04/01/03	
Bromodichloromethane			1	04/01/03	04/01/03	
cis-1,3-Dichloropropene	ND U	0.50	1	04/01/03	04/01/03	
4-Methyl-2-pentanone (MIBK)	ND U	8.0	1	04/01/03	04/01/03	
Toluene	ND U	0.50	1	07/01/03	0-7/01/03	

Comments:

000017

SuperSet Reference:

Merged

Page

Analytical Results

Client: **Project:** BE&K Terranext WVBA/#0310-3154

Sample Matrix:

Water

Service Request: X2300260

Date Collected: 03/21/2003

Date Received: 03/21/2003

Volatile Organic Compounds

Sample Name:

AVB77-0200-07210

Lab Code:

X2300260-004

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

		0	MDI	Dilution Factor	Date Extracted	Date Analyzed	Arizona Qualifier
Analyte Name	Result		MRL		04/01/03	04/01/03	THE VIEW OF THE PROPERTY OF TH
trans-1,3-Dichloropropene	ND		1.0	1 1	04/01/03	04/01/03	
1,1,2-Trichloroethane	ND		1.0	1	04/01/03	04/01/03	
Tetrachloroethene	ND		0.50			04/01/03	
2-Hexanone	ND		5.0	1	04/01/03		
1,3-Dichloropropane	ND		1.0	1	04/01/03 04/01/03	04/01/03 04/01/03	
Dibromochloromethane	ND		0.50	1			
1,2-Dibromoethane	ND		0.50	1	04/01/03	04/01/03	
Chlorobenzene	ND		0.50	1	04/01/03	04/01/03	
1,1,1,2-Tetrachloroethane	ND	U	0.50	1	04/01/03	04/01/03	
Ethylbenzene	ND	U	0.50	1	04/01/03	04/01/03	
m,p-Xylenes	ND		1.0	1	04/01/03	04/01/03	
o-Xylene	ND	U	0.50	1	04/01/03	04/01/03	
Styrene	ND	IJ	0.50	1	04/01/03	04/01/03	
Isopropylbenzene	ND		0.50	1	04/01/03	04/01/03	
Bromobenzene	ND		0.50	1	04/01/03	04/01/03	
	ND		1.0	1	04/01/03	04/01/03	
1,2,3-Trichloropropane	ND		0.50	1	04/01/03	04/01/03	
n-Propylbenzene 2-Chlorotoluene	ND		0.50	1	04/01/03	04/01/03	
	ND		0.50	1	04/01/03	04/01/03	
4-Chlorotoluene	ND ND		0.50	1	04/01/03	04/01/03	
1,3,5-Trimethylbenzene	ND		0.50	1	04/01/03	04/01/03	
tert-Butylbenzene			0.50	1	04/01/03	04/01/03	
1,2,4-Trimethylbenzene	ND		0.50	1	04/01/03	04/01/03	
sec-Butylbenzene	ND ND		0.50	1	04/01/03	04/01/03	
1,3-Dichlorobenzene				1	04/01/03	04/01/03	
4-Isopropyltoluene	ND		0.50	1	04/01/03	04/01/03	
Bromoform	ND		0.50	1	04/01/03	04/01/03	
1,1,2,2-Tetrachloroethane	ND		1.0				
1,4-Dichlorobenzene		U	0.50	1	04/01/03	04/01/03	
1,2-Dichlorobenzene		U	0.50	1	04/01/03	04/01/03	
n-Butylbenzene	ND	U	0.50	1	04/01/03	04/01/03	
1,2-Dibromo-3-chloropropane	NE	U	5.0	1	04/01/03	04/01/03	
1,2,4-Trichlorobenzene	NE	U	0.50	1	04/01/03	04/01/03	
Hexachlorobutadiene	NE	U	0.50	1	04/01/03	04/01/03	

Comments:

Printed: 04/09/2003 08:37:48 $L: \label{lem:lem:lem:rpt} L: \label{lem:lem:rpt} L: \label{lem:lem:lem:rpt} L: \label{lem:lem:rpt} L: \label{lem:rpt} L:$

Merged

Form 1A - Organic

320000

2 of 3 Page

SuperSet Reference:

RR3169

Analytical Results

Client:

BE&K Terranext WVBA/#0310-3154

Project: Sample Matrix:

Water

Sarvice Remes

Service Request: X2300260 Date Collected: 03/21/2003

Date Received: 03/21/2003

Volatile Organic Compounds

Sample Name:

AVB77-0200-07210

Lab Code:

X2300260-004

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

			Dilution	Date	Date	
Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed	Arizona Qualifier
Naphthalene	ND U	3.0	1	04/01/03	04/01/03	
1,2,3-Trichlorobenzene	ND U	0.50	1	04/01/03	04/01/03	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Arizona Qualifier
Dibromofluoromethane	114	84-113	04/01/03	S3
Toluene-d8	114	68-126	04/01/03	
4-Bromofluorobenzene	105	79-113	04/01/03	

Comments:

Merged

Analytical Results

Client: Project: BE&K Terranext WVBA/#0310-3154

Sample Matrix:

Water

Service Request: X2300260

Date Collected: 03/21/2003 **Date Received:** 03/21/2003

Volatile Organic Compounds

Sample Name:

AVB68-0400-06270

Lab Code:

X2300260-005

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

				Dilution	Date	Date	
Analyte Name	Result	Q	MRL	Factor	Extracted		Arizona Qualifier
Dichlorodifluoromethane	ND	U	3.0	1	04/01/03	04/01/03	N1V4
Chloromethane	ND	U	2.0	1	04/01/03	04/01/03	
Vinyl Chloride	ND	U	1.0	1	04/01/03	04/01/03	
Bromomethane	ND	U	1.0	1	04/01/03	04/01/03	
Chloroethane	ND	U	1.0	1	04/01/03	04/01/03	
Trichlorofluoromethane	ND	U	1.0	1	04/01/03	04/01/03	
1,1,2-Trichlorotrifluoroethane	ND	U	1.0	1	04/01/03	,	L1
1,1-Dichloroethene	ND		1.0	1	04/01/03	04/01/03	
Acetone	ND	U	10	1	04/01/03	04/01/03	
Iodomethane	ND	IJ	2.0	1	04/01/03	04/01/03	
Carbon Disulfide	ND		2.0	1	04/01/03	04/01/03	
Methylene Chloride	ND		1.0	1	04/01/03	04/01/03	
Methyl tert-Butyl Ether	ND	IJ	1.0	1	04/01/03	04/01/03	
trans-1,2-Dichloroethene	ND		0.50	1	04/01/03	04/01/03	
1.1-Dichloroethane	ND		0.50	1	04/01/03	04/01/03	
	ND		3.0	1	04/01/03	04/01/03	
Vinyl Acetate 2,2-Dichloropropane	ND		2.0	1	04/01/03	04/01/03	
2-Butanone (MEK)	ND		8.0	1	04/01/03	04/01/03	
cis-1,2-Dichloroethene	ND		0.50	1	04/01/03	04/01/03	
Bromochloromethane	ND		0.50	1	04/01/03	04/01/03	
Chloroform	ND		1.0	1	04/01/03	04/01/03	
	ND		0.50	1	04/01/03	04/01/03	
1,1,1-Trichloroethane Carbon Tetrachloride	ND		0.50	1	04/01/03	04/01/03	
1.1-Dichloropropene	ND		0.50	1	04/01/03	04/01/03	L1
	ND		0.50	1	04/01/03	04/01/03	
Benzene		U	0.50	1	04/01/03	04/01/03	
1,2-Dichloroethane Trichloroethene		U	0.50	1	04/01/03	04/01/03	
		U	0.50	1	04/01/03	04/01/03	
1,2-Dichloropropane) U	0.50	1	04/01/03	04/01/03	
Dibromomethane		U	0.50	1	04/01/03	04/01/03	
Bromodichloromethane) U	0.50	1	04/01/03	04/01/03	
cis-1,3-Dichloropropene) U	8.0	1	04/01/03	04/01/03	
4-Methyl-2-pentanone (MIBK)) U	0.50	1	04/01/03	04/01/03	
Toluene	INL	, 0	0.50				

Common	400
Commen	us.

Printed: 04/09/2003 08:37:58 L:\STEALTH\CRYSTAL.RPT\Form1m.rpt

Merged

Form 1A - Organic

000020

1 of 3 Page

SuperSet Reference:

RR3169

Analytical Results

Client: Project: BE&K Terranext WVBA/#0310-3154

Sample Matrix:

Water

Service Request: X2300260

Date Collected: 03/21/2003 **Date Received:** 03/21/2003

Volatile Organic Compounds

Sample Name: Lab Code: AVB68-0400-06270 X2300260-005

Extraction Method:

EPA 5030B

Units: ug/L Basis: NA

Level: Low

Analysis Method: 8260B

				Dilution	Date	Date	A 1101-
Analyte Name	Result	Q	MRL	Factor	Extracted		Arizona Qualifier
trans-1,3-Dichloropropene	ND	U	1.0	1	04/01/03	04/01/03	
1,1,2-Trichloroethane	ND		1.0	1	04/01/03	04/01/03	
Tetrachloroethene	ND	U	0.50	1	04/01/03	04/01/03	
2-Hexanone	ND	U	5.0	1	04/01/03	04/01/03	
1,3-Dichloropropane	ND	U	1.0	1	04/01/03	04/01/03	
Dibromochloromethane	ND	U	0.50	1	04/01/03	04/01/03	
1,2-Dibromoethane	ND	U	0.50	1	04/01/03	04/01/03	
Chlorobenzene	ND	U	0.50	1	04/01/03	04/01/03	
1,1,1,2-Tetrachloroethane	ND	U	0.50	1	04/01/03	04/01/03	
Ethylbenzene	ND	U	0.50	1	04/01/03	04/01/03	
m,p-Xylenes	ND	U	1.0	1	04/01/03	04/01/03	
o-Xylene	ND	U	0.50	1	04/01/03	04/01/03	
Styrene	ND	U	0.50	1	04/01/03	04/01/03	
Isopropylbenzene	ND		0.50	1	04/01/03	04/01/03	
Bromobenzene	ND		0.50	1	04/01/03	04/01/03	
	ND		1.0	1	04/01/03	04/01/03	
1,2,3-Trichloropropane n-Propylbenzene	ND		0.50	1	04/01/03	04/01/03	
2-Chlorotoluene	ND		0.50	1	04/01/03	04/01/03	
4-Chlorotoluene	ND		0.50	1	04/01/03	04/01/03	
1,3,5-Trimethylbenzene	ND		0.50	1	04/01/03	04/01/03	
tert-Butylbenzene	ND		0.50	1	04/01/03	04/01/03	
	ND		0.50	1	04/01/03	04/01/03	
1,2,4-Trimethylbenzene sec-Butylbenzene	ND		0.50	1	04/01/03	04/01/03	
1,3-Dichlorobenzene	ND		0.50	1	04/01/03	04/01/03	
·	ND		0.50	1	04/01/03	04/01/03	
4-Isopropyltoluene Bromoform	ND		0.50	1	04/01/03	04/01/03	
1,1,2,2-Tetrachloroethane	ND		1.0	1	04/01/03	04/01/03	
	ND		0.50	1	04/01/03	04/01/03	
1,4-Dichlorobenzene	ND ND		0.50	1	04/01/03	04/01/03	
1,2-Dichlorobenzene	ND ND		0.50	1	04/01/03	04/01/03	
n-Butylbenzene			5.0	1	04/01/03	04/01/03	
1,2-Dibromo-3-chloropropane	ND ND		0.50	1	04/01/03	04/01/03	
1,2,4-Trichlorobenzene		U	0.50	1	04/01/03	04/01/03	
Hexachlorobutadiene	ND	· U	0.50		0 1,01,03	0 0 1, 00	

Comments:

Printed: 04/09/2003 08:37:58 L:\STEALTH\CRYSTAL.RPT\Formlm.rpt

Merged

Form 1A - Organic

000021 SuperSet Reference: Page 2 of 3

Analytical Results

Client: Project: BE&K Terranext WVBA/#0310-3154

Sample Matrix:

Water

Service Request: X2300260 **Date Collected:** 03/21/2003

Date Received: 03/21/2003

Volatile Organic Compounds

Sample Name: Lab Code:

AVB68-0400-06270 X2300260-005

Extraction Method:

EPA 5030B

Analysis Method:

1,2,3-Trichlorobenzene

8260B

Units: ug/L Basis: NA

Level: Low

Analyte Name	Result O	MRL	Dilution Factor	Date Extracted	Date Analyzed	Arizona Qualifier
Naphthalene 1.2.3-Trichlorobenzene	ND U ND U	3.0 0.50	1 1	04/01/03 04/01/03	04/01/03 04/01/03	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Arizona Qualifier
Dibromofluoromethane	112	84-113	04/01/03	
Toluene-d8	112	68-126	04/01/03	
4-Bromofluorobenzene	104	79-113	04/01/03	

Comments:

Merged

Analytical Results

Client: Project: BE&K Terranext WVBA/#0310-3154

Sample Matrix:

Water

Service Request: X2300260

Date Collected: NA Date Received: NA

Volatile Organic Compounds

Sample Name: Lab Code:

Method Blank XWG0300433-3

Extraction Method: Analysis Method:

EPA 5030B

8260B

Units: ug/L Basis: NA

Level: Low

				Dilution	Date	Date	0 110
Analyte Name	Result	Q	MRL	Factor	Extracted		Arizona Qualifier
Dichlorodifluoromethane	ND	U	3.0	1	04/01/03	04/01/03	N1V4
Chloromethane	ND	U	2.0	1	04/01/03	04/01/03	
Vinyl Chloride	ND	U	1.0	1	04/01/03	04/01/03	
Bromomethane	ND	U	1.0	1	04/01/03	04/01/03	
Chloroethane	ND	U	1.0	1	04/01/03	04/01/03	
Trichlorofluoromethane	ND	U	1.0	1	04/01/03	04/01/03	
1,1,2-Trichlorotrifluoroethane	ND	U	1.0	1	04/01/03		L1
1,1-Dichloroethene	ND	U	1.0	1	04/01/03	04/01/03	
Acetone	ND	U	10	1	04/01/03	04/01/03	
Iodomethane	ND	U	2.0	1	04/01/03	04/01/03	
Carbon Disulfide	ND	U	2.0	1	04/01/03	04/01/03	
Methylene Chloride	ND	U	1.0	1	04/01/03	04/01/03	
Methyl tert-Butyl Ether	ND	U	1.0	1	04/01/03	04/01/03	
trans-1,2-Dichloroethene	ND		0.50	1	04/01/03	04/01/03	
1,1-Dichloroethane	ND		0.50	1	04/01/03	04/01/03	
Vinyl Acetate	ND	U	3.0	1	04/01/03	04/01/03	
2,2-Dichloropropane	ND		2.0	1	04/01/03	04/01/03	1
2-Butanone (MEK)	ND	U	8.0	1	04/01/03	04/01/03	
cis-1,2-Dichloroethene	ND	U	0.50	1	04/01/03	04/01/03	
Bromochloromethane	ND		0.50	1	04/01/03	04/01/03	
Chloroform	ND	U	1.0	1	04/01/03	04/01/03	
1,1,1-Trichloroethane	ND	U	0.50	1	04/01/03	04/01/03	
Carbon Tetrachloride	ND		0.50	1	04/01/03	04/01/03	
1,1-Dichloropropene	ND	U	0.50	1	04/01/03	04/01/03	L1
Benzene	ND	U	0.50	1	04/01/03	04/01/03	
1,2-Dichloroethane	ND		0.50	1	04/01/03	04/01/03	
Trichloroethene	ND	U	0.50	1	04/01/03	04/01/03	
1,2-Dichloropropane	ND	U	0.50	1	04/01/03	04/01/03	
Dibromomethane	ND		0.50	1	04/01/03	04/01/03	
Bromodichloromethane	ND	U	0.50	1	04/01/03	04/01/03	
cis-1,3-Dichloropropene	ND	U	0.50	1	04/01/03	04/01/03	
4-Methyl-2-pentanone (MIBK)	ND		8.0	1	04/01/03	04/01/03	
Toluene	ND		0.50	1	04/01/03	04/01/03	

Comments:

Printed: 04/09/2003 08:38:08 L:\STEALTH\CRYSTAL.RPT\Form\lm.rpt

Form 1A - Organic

000023

1 of 3 Page

Merged

Analytical Results

Client: Project: BE&K Terranext WVBA/#0310-3154

Sample Matrix:

Water

Service Request: X2300260

Date Collected: NA Date Received: NA

Volatile Organic Compounds

Sample Name: Lab Code:

Method Blank XWG0300433-3

Extraction Method: EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

Analyte Name Result Q MRL Factor Extracted Analyzed Arizona Qualiffer trans-1,3-Dichloropropene ND U 1.0 1 04/01/03 04/01/03 1,1,2-Trichlorocthane ND U 0.50 1 04/01/03 04/01/03 2-Hexanone ND U 5.0 1 04/01/03 04/01/03 2-Hexanone ND U 1.0 1 04/01/03 04/01/03 1,3-Dichloropropane ND U 0.50 1 04/01/03 04/01/03 1,2-Dibromocthane ND U 0.50 1 04/01/03 04/01/03 1,2-Dibromocthane ND U 0.50 1 04/01/03 04/01/03 1,1,2-Tetrachlorocthane ND U 0.50 1 04/01/03 04/01/03 Ethyltenzere ND U 0.50 1 04/01/03 04/01/03 Ethyltenzere ND U 0.50 1 04/01/03 04/01/03 Styrene ND U 0.50 1 04/01/03 04/01/03					Dilution	Date	Date	
1,1,2-Trichloroethane	Analyte Name	Result	Q	MRL	Factor	Extracted	Analyzed	Arizona Qualifier
1,1,2-Trichloroethane	trans-1,3-Dichloropropene	ND	U	1.0	1			
2-Hexanone		ND	U	1.0	1			
1,3-Dichloropropane ND U 1.0 1 04/01/03 04/01/03 1,2-Dibromochloromethane ND U 0.50 1 04/01/03 04/01/03 1,2-Dibromochlane ND U 0.50 1 04/01/03 04/01/03 1,1,1,2-Tetrachloroethane ND U 0.50 1 04/01/03 04/01/03 1,1,2,3-Trichloropropane ND U 0.50 1 04/01/03 04/01/03 1,2,3-Trichloropropane ND U 0.50 1 04/01/03 04/01/03 1,2,4-Trimethylbenzene ND U 0.50 1 04/01/03 04/01/03 1,2,4-Trimethylbenzene ND U 0.50 1 04/01/03 04/01/03 1,3-Dichlorobenzene ND U 0.50 1 04/01/03 04/01/03 1,4-Dichlorobenzene ND U 0.50 1 04/01/03 04/01/03 1,4-Dichlorobenzene ND U 0.50 1 04/01/03 04/01/03 1,2-Dichlorobenzene ND U 0.50 1 04	* *	ND	U	0.50	1	04/01/03	04/01/03	
Dibromochloromethane	2-Hexanone	ND	U	5.0	1			
1,2-Dibromoethane	1,3-Dichloropropane	ND	U	1.0	1			
Chlorobenzene ND U 0.50 1 04/01/03 04/01/03 1,1,2-Tetrachloroethane ND U 0.50 1 04/01/03 04/01/03 1,1,1,2-Tetrachloroethane ND U 0.50 1 04/01/03 04/01/03 1,1,2-Tetrachloroethane ND U 0.50 1 04/01/03 04/01/03 1,1,2-Tetrachloroethane ND U 0.50 1 04/01/03 04/01/03 1,1,2-Tetrachloroethane ND U 0.50 1 04/01/03 04/01/03 1,2,3-Trichloroptopane ND U 0.50 1 04/01/03 04/01/03 1,3,5-Trimethylbenzene ND U 0.50 1 04/01/03 04/01/03 1,3,5-Trimethylbenzene ND U 0.50 1 04/01/03 04/01/03 1,2,4-Trichlorobenzene ND U 0.50 1 04/01/03 04/01/03 1,3-Dichlorobenzene ND U 0.50 1 04/01/03 04/01/03 1,3-Dichlorobenzene ND U 0.50 1 04/01/03 04/01/03 1,4-Dichlorobenzene ND U 0.50 1 04/01/03 04/01/03 1,2-Dichlorobenzene ND U 0.50 1 04/01/03 04/01/03 1,2-Dichloro		ND	U	0.50	1	04/01/03	04/01/03	
Chlorobenzene	1,2-Dibromoethane	ND	U	0.50	1	04/01/03		
The product of the		ND	U	0.50	1	04/01/03		
ND U	1,1,1,2-Tetrachloroethane	ND	U	0.50	1	04/01/03	04/01/03	
m,p-Xylenes ND U 1.0 1 04/01/03 04/01/03 c-Xylene ND U 0.50 1 04/01/03 04/01/03 Styrene ND U 0.50 1 04/01/03 04/01/03 Isopropylbenzene ND U 0.50 1 04/01/03 04/01/03 Bromobenzene ND U 0.50 1 04/01/03 04/01/03 1,2,3-Trichloropropane ND U 1.0 1 04/01/03 04/01/03 1-2,3-Trichloropropane ND U 0.50 1 04/01/03 04/01/03 2-Chlorotoluene ND U 0.50 1 04/01/03 04/01/03 2-Chlorotoluene ND U 0.50 1 04/01/03 04/01/03 4-Chlorotoluene ND U 0.50 1 04/01/03 04/01/03 1,3,5-Trimethylbenzene ND U 0.50 1 04/01/03 04/01/03 1etr-Butylbenzene ND U 0.50 1 04/01/03 04/01/03 1,2,4-Trimethylbenzene ND U 0.50 1 04/01/03 04/01/03 1,3-Dichlorobenzene ND U 0.50 <td>Ethylbenzene</td> <td>ND</td> <td>U</td> <td>0.50</td> <td>1</td> <td>04/01/03</td> <td>04/01/03</td> <td></td>	Ethylbenzene	ND	U	0.50	1	04/01/03	04/01/03	
o-Xylene ND U 0.50 1 04/01/03 04/01/03 Styrene ND U 0.50 1 04/01/03 04/01/03 Isopropylbenzene ND U 0.50 1 04/01/03 04/01/03 Bromobenzene ND U 0.50 1 04/01/03 04/01/03 1,2,3-Trichloropropane ND U 0.50 1 04/01/03 04/01/03 1,2,3-Trichloropropane ND U 0.50 1 04/01/03 04/01/03 2-Chlorotoluene ND U 0.50 1 04/01/03 04/01/03 4-Chlorotoluene ND U 0.50 1 04/01/03 04/01/03 4-Chlorotoluene ND U 0.50 1 04/01/03 04/01/03 1,3,5-Trimethylbenzene ND U 0.50 1 04/01/03 04/01/03 tert-Butylbenzene ND U 0.50 1 04/01/03 04/01/03 1,2,4-Trimethylbenzene ND U 0.50 1 04/01/03 04/01/03 1,3-Di	•	ND	U	1.0	1	04/01/03	04/01/03	
Sopropylbenzene ND U 0.50 1 04/01/03 04/01/03 Bromobenzene ND U 0.50 1 04/01/03 04/01/03 1,2,3-Trichloropropane ND U 1.0 1 04/01/03 04/01/03 1,2,3-Trichloropropane ND U 0.50 1 04/01/03 04/01/03 1,2,3-Trichloropropane ND U 0.50 1 04/01/03 04/01/03 1,2,4-Chlorotoluene ND U 0.50 1 04/01/03 04/01/03 1,3,5-Trimethylbenzene ND U 0.50 1 04/01/03 04/01/03 1,2,4-Trimethylbenzene ND U 0.50 1 04/01/03 04/01/03 1,2,4-Trimethylbenzene ND U 0.50 1 04/01/03 04/01/03 1,3-Dichlorobenzene ND U 0.50 1 04/01/03 04/01/03 1,3-Dichlorobenzene ND U 0.50 1 04/01/03 04/01/03 1,3-Dichlorobenzene ND U 0.50 1 04/01/03 04/01/03 1,1,2,2-Tetrachloroethane ND U 0.50 1 04/01/03 04/01/03 1,4-Dichlorobenzene ND U 0.50 1 04/01/03 04/01/03 1,2-Dichlorobenzene ND U 0.50 1 04/01/03 04/01/03		ND	U	0.50	1	04/01/03	04/01/03	
Isopropylbenzene	Styrene	ND	U	0.50	1	04/01/03	04/01/03	
Bromobenzene ND U 0.50 1 04/01/03 04/01/03 1,2,3-Trichloropropane ND U 1.0 1 04/01/03 04/01/03 n-Propylbenzene ND U 0.50 1 04/01/03 04/01/03 2-Chlorotoluene ND U 0.50 1 04/01/03 04/01/03 4-Chlorotoluene ND U 0.50 1 04/01/03 04/01/03 1,3,5-Trimethylbenzene ND U 0.50 1 04/01/03 04/01/03 tert-Butylbenzene ND U 0.50 1 04/01/03 04/01/03 1,2,4-Trimethylbenzene ND U 0.50 1 04/01/03 04/01/03 1,2-Hrimethylbenzene ND U 0.50 1 04/01/03 04/01/03 1,2-Jeithorobenzene ND U 0.50 1 04/01/03 04/01/03 1,3-Dichlorobenzene ND U 0.50 1 04/01/03 04/01/03 4-Isopropyltoluene ND U 0.50 1 04/01/03 04/01/03 <		ND	U	0.50	1	04/01/03	04/01/03	
n-Propylbenzene ND U 0.50 1 04/01/03 04/01/03 4-Chlorotoluene ND U 0.50 1 04/01/03 04/01/03 4-Chlorotoluene ND U 0.50 1 04/01/03 04/01/03 1,3,5-Trimethylbenzene ND U 0.50 1 04/01/03 04/01/03 tert-Butylbenzene ND U 0.50 1 04/01/03 04/01/03 1,2,4-Trimethylbenzene ND U 0.50 1 04/01/03 04/01/03 sec-Butylbenzene ND U 0.50 1 04/01/03 04/01/03 1,3-Dichlorobenzene ND U 0.50 1 04/01/03 04/01/03 4-Isopropyltoluene ND U 0.50 1 04/01/03 04/01/03 4-Isopropyltoluene ND U 0.50 1 04/01/03 04/01/03 Bromoform ND U 0.50 1 04/01/03 04/01/03 1,1,2,2-Tetrachloroethane ND U 1.0 1 04/01/03 04/01/03 1,4-Dichlorobenzene ND U 0.50 1 04/01/03 04/01/03 1,2-Dichlorobenzene ND U 0.50 1 04/01/03 04/01/03 1,2-Dibromo-3-chloropropane ND U 5.0 1 04/01/03 04/01/03 1,2-Trichlorobenzene ND U 0.50 1 04/01/03 04/01/03		ND	U	0.50	1	04/01/03	04/01/03	
n-Propylbenzene ND U 0.50 1 04/01/03 04/01/03 2-Chlorotoluene ND U 0.50 1 04/01/03 04/01/03 4-Chlorotoluene ND U 0.50 1 04/01/03 04/01/03 1,3,5-Trimethylbenzene ND U 0.50 1 04/01/03 04/01/03 tert-Butylbenzene ND U 0.50 1 04/01/03 04/01/03 1,2,4-Trimethylbenzene ND U 0.50 1 04/01/03 04/01/03 sec-Butylbenzene ND U 0.50 1 04/01/03 04/01/03 1,3-Dichlorobenzene ND U 0.50 1 04/01/03 04/01/03 1,3-Dichlorobenzene ND U 0.50 1 04/01/03 04/01/03 4-Isopropyltoluene ND U 0.50 1 04/01/03 04/01/03 Bromoform ND U 0.50 1 04/01/03 04/01/03 1,2-2-Tetrachloroethane ND U 0.50 1 04/01/03 04/01/03	1.2.3-Trichloropropane	ND	U	1.0	1	04/01/03	04/01/03	
2-Chlorotoluene ND U 0.50 1 04/01/03 04/01/03 4-Chlorotoluene ND U 0.50 1 04/01/03 04/01/03 1,3,5-Trimethylbenzene ND U 0.50 1 04/01/03 04/01/03 tert-Butylbenzene ND U 0.50 1 04/01/03 04/01/03 1,2,4-Trimethylbenzene ND U 0.50 1 04/01/03 04/01/03 sec-Butylbenzene ND U 0.50 1 04/01/03 04/01/03 1,3-Dichlorobenzene ND U 0.50 1 04/01/03 04/01/03 4-Isopropyltoluene ND U 0.50 1 04/01/03 04/01/03 Bromoform ND U 0.50 1 04/01/03 04/01/03 1,1,2,2-Tetrachloroethane ND U 0.50 1 04/01/03 04/01/03 1,4-Dichlorobenzene ND U 0.50 1 04/01/03 04/01/03 1,2-Dichlorobenzene ND U 0.50 1 04/01/03 04/01/03		ND	U	0.50	1	04/01/03	04/01/03	
1,3,5-Trimethylbenzene ND U 0.50 1 04/01/03 04/01/03 tert-Butylbenzene ND U 0.50 1 04/01/03 04/01/03 1,2,4-Trimethylbenzene ND U 0.50 1 04/01/03 04/01/03 sec-Butylbenzene ND U 0.50 1 04/01/03 04/01/03 1,3-Dichlorobenzene ND U 0.50 1 04/01/03 04/01/03 4-Isopropyltoluene ND U 0.50 1 04/01/03 04/01/03 Bromoform ND U 0.50 1 04/01/03 04/01/03 1,1,2,2-Tetrachloroethane ND U 1.0 1 04/01/03 04/01/03 1,4-Dichlorobenzene ND U 0.50 1 04/01/03 04/01/03 1,2-Dichlorobenzene ND U 0.50 1 04/01/03 04/01/03 1,2-Dibromo-3-chloropropane ND U 5.0 1 04/01/03 04/01/03 1,2,4-Trichlorobenzene ND U 0.50 1 04/01/03 04/01/03 1,2,4-Trichlorobenzene ND U 0.50 1 04/01/0		ND	U	0.50	1	04/01/03	04/01/03	
tert-Butylbenzene ND U 0.50 1 04/01/03 04/01/03 1,2,4-Trimethylbenzene ND U 0.50 1 04/01/03 04/01/03 sec-Butylbenzene ND U 0.50 1 04/01/03 04/01/03 1,3-Dichlorobenzene ND U 0.50 1 04/01/03 04/01/03 4-Isopropyltoluene ND U 0.50 1 04/01/03 04/01/03 Bromoform ND U 0.50 1 04/01/03 04/01/03 1,1,2,2-Tetrachloroethane ND U 1.0 1 04/01/03 04/01/03 1,4-Dichlorobenzene ND U 0.50 1 04/01/03 04/01/03 1,2-Dichlorobenzene ND U 0.50 1 04/01/03 04/01/03 1,2-Dichlorobenzene ND U 0.50 1 04/01/03 04/01/03 1,2-Dibromo-3-chloropropane ND U 0.50 1 04/01/03 04/01/03 1,2-Dibromo-3-chloropropane ND U 5.0 1 04/01/03 04/01/03 1,2,4-Trichlorobenzene ND U 0.50 1 04/01/03 04/01/03 1,2,4-Trichlorobenzene ND U 0.50 1 04/01/03 04/01/03	4-Chlorotoluene	ND	U	0.50	1			
1,2,4-Trimethylbenzene ND U 0.50 1 04/01/03 04/01/03 sec-Butylbenzene ND U 0.50 1 04/01/03 04/01/03 1,3-Dichlorobenzene ND U 0.50 1 04/01/03 04/01/03 4-Isopropyltoluene ND U 0.50 1 04/01/03 04/01/03 Bromoform ND U 0.50 1 04/01/03 04/01/03 1,1,2,2-Tetrachloroethane ND U 1.0 1 04/01/03 04/01/03 1,4-Dichlorobenzene ND U 0.50 1 04/01/03 04/01/03 1,2-Dichlorobenzene ND U 0.50 1 04/01/03 04/01/03 n-Butylbenzene ND U 0.50 1 04/01/03 04/01/03 1,2-Dibromo-3-chloropropane ND U 5.0 1 04/01/03 04/01/03 1,2,4-Trichlorobenzene ND U 0.50 1 04/01/03 04/01/03	1,3,5-Trimethylbenzene	ND	U	0.50	1	04/01/03		
ND U 0.50 1 04/01/03 04/01/03 04/01/03 1,3-Dichlorobenzene ND U 0.50 1 04/01/03 04/01/03 04/01/03 4-Isopropyltoluene ND U 0.50 1 04/01/03 04/01/03 04/01/03 1,1,2,2-Tetrachloroethane ND U 0.50 1 04/01/03 04/01/03 1,1,2,2-Tetrachloroethane ND U 1.0 1 04/01/03 04/01/03 1,4-Dichlorobenzene ND U 0.50 1 04/01/03 04/01/03 1,2-Dichlorobenzene ND U 0.50 1 04/01/03 04/01/03 1,2-Dichloropropane ND U 0.50 1 04/01/03 04/01/03 1,2-Dibromo-3-chloropropane ND U 0.50 1 04/01/03 04/01/03 1,2,4-Trichlorobenzene ND U 0.50 1 0.50	tert-Butylbenzene	ND	U	0.50	1	04/01/03	04/01/03	
1,3-Dichlorobenzene ND U 0.50 1 04/01/03 04/01/03 4-Isopropyltoluene ND U 0.50 1 04/01/03 04/01/03 Bromoform ND U 0.50 1 04/01/03 04/01/03 1,1,2,2-Tetrachloroethane ND U 1.0 1 04/01/03 04/01/03 1,4-Dichlorobenzene ND U 0.50 1 04/01/03 04/01/03 1,2-Dichlorobenzene ND U 0.50 1 04/01/03 04/01/03 n-Butylbenzene ND U 0.50 1 04/01/03 04/01/03 1,2-Dibromo-3-chloropropane ND U 5.0 1 04/01/03 04/01/03 1,2,4-Trichlorobenzene ND U 0.50 1 04/01/03 04/01/03	1,2,4-Trimethylbenzene	ND	U	0.50	1	04/01/03	04/01/03	
4-Isopropyltoluene ND U 0.50 1 04/01/03 04/01/03 Bromoform ND U 0.50 1 04/01/03 04/01/03 1,1,2,2-Tetrachloroethane ND U 1.0 1 04/01/03 04/01/03 1,4-Dichlorobenzene ND U 0.50 1 04/01/03 04/01/03 1,2-Dichlorobenzene ND U 0.50 1 04/01/03 04/01/03 n-Butylbenzene ND U 0.50 1 04/01/03 04/01/03 1,2-Dibromo-3-chloropropane ND U 5.0 1 04/01/03 04/01/03 1,2,4-Trichlorobenzene ND U 0.50 1 04/01/03 04/01/03	sec-Butylbenzene	ND	U	0.50	1	04/01/03		
Bromoform ND U 0.50 1 04/01/03 04/01/03 1,1,2,2-Tetrachloroethane ND U 1.0 1 04/01/03 04/01/03 1,4-Dichlorobenzene ND U 0.50 1 04/01/03 04/01/03 1,2-Dichlorobenzene ND U 0.50 1 04/01/03 04/01/03 n-Butylbenzene ND U 0.50 1 04/01/03 04/01/03 1,2-Dibromo-3-chloropropane ND U 5.0 1 04/01/03 04/01/03 1,2,4-Trichlorobenzene ND U 0.50 1 04/01/03 04/01/03	1,3-Dichlorobenzene	ND	U	0.50	1	04/01/03	04/01/03	
1,1,2,2-Tetrachloroethane ND U 1.0 1 04/01/03 04/01/03 1,4-Dichlorobenzene ND U 0.50 1 04/01/03 04/01/03 1,2-Dichlorobenzene ND U 0.50 1 04/01/03 04/01/03 n-Butylbenzene ND U 0.50 1 04/01/03 04/01/03 1,2-Dibromo-3-chloropropane ND U 5.0 1 04/01/03 04/01/03 1,2,4-Trichlorobenzene ND U 0.50 1 04/01/03 04/01/03	4-Isopropyltoluene	ND	U	0.50	1			
1,4-Dichlorobenzene ND U 0.50 1 04/01/03 04/01/03 1,2-Dichlorobenzene ND U 0.50 1 04/01/03 04/01/03 n-Butylbenzene ND U 0.50 1 04/01/03 04/01/03 1,2-Dibromo-3-chloropropane ND U 5.0 1 04/01/03 04/01/03 1,2,4-Trichlorobenzene ND U 0.50 1 04/01/03 04/01/03	Bromoform	ND	U	0.50	1			
1,2-Dichlorobenzene ND U 0.50 1 04/01/03 04/01/03 n-Butylbenzene ND U 0.50 1 04/01/03 04/01/03 1,2-Dibromo-3-chloropropane ND U 5.0 1 04/01/03 04/01/03 1,2,4-Trichlorobenzene ND U 0.50 1 04/01/03 04/01/03	1,1,2,2-Tetrachloroethane	ND	U	1.0	1	04/01/03	04/01/03	
n-Butylbenzene ND U 0.50 1 04/01/03 04/01/03 1,2-Dibromo-3-chloropropane ND U 5.0 1 04/01/03 04/01/03 1,2,4-Trichlorobenzene ND U 0.50 1 04/01/03 04/01/03	1,4-Dichlorobenzene	ND	U	0.50	1	04/01/03	04/01/03	
1,2-Dibromo-3-chloropropane ND U 5.0 1 04/01/03 04/01/03 1,2,4-Trichlorobenzene ND U 0.50 1 04/01/03 04/01/03	1,2-Dichlorobenzene	ND	U	0.50	1			
1,2,4-Trichlorobenzene ND U 0.50 1 04/01/03 04/01/03	· ·	ND	U	0.50	1	04/01/03	04/01/03	
1,2,1 1110111010001120110	1,2-Dibromo-3-chloropropane	ND	U		1			
Hexachlorobutadiene ND U 0.50 1 04/01/03 04/01/03	1,2,4-Trichlorobenzene	ND	U	0.50	1			
	Hexachlorobutadiene	ND	U	0.50	1	04/01/03	04/01/03	

Comments:

Printed: 04/09/2003 08:38:08 $L: \A TEALTH \CRYSTAL.RPT \Form \Im.rpt$

Merged

Form 1A - Organic

000024

Page 2 of 3

SuperSet Reference:

RR3169

Analytical Results

Client:

BE&K Terranext WVBA/#0310-3154

Project: Sample Matrix:

Water

Service Request: X2300260

Date Collected: NA Date Received: NA

Volatile Organic Compounds

Sample Name:

Method Blank

Lab Code:

XWG0300433-3

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

			Dilution	Date	Date	
Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed	Arizona Qualifier
Naphthalene	ND U	3.0	1	04/01/03	04/01/03	
1,2,3-Trichlorobenzene	ND U	0.50	1	04/01/03	04/01/03	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Arizona Qualifier
Dibromofluoromethane	112	84-113	04/01/03	
Toluene-d8 4-Bromofluorobenzene	107 100	68-126 79-113	04/01/03 04/01/03	

Comments:

Merged

Printed: 04/09/2003 08:38:08 L:\STEALTH\CRYSTAL.RPT\Formlm.rpt

QA/QC Report

Client:

BE&K Terranext

Project:

WVBA/#0310-3154

Sample Matrix:

Water

Service Request: X2300260

Surrogate Recovery Summary Volatile Organic Compounds

Extraction Method: Analysis Method:

EPA 5030B

8260B

Units: PERCENT

Level: Low

Sample Name	Lab Code	Sur1	Sur2	Sur3
AVB69-0102-1000	X2300260-001	113	113	103
AVB69-0100-07270	X2300260-002	111	112	103
AVB69-0104-1000	X2300260-003	111	114	105
AVB77-0200-07210	X2300260-004	114 S3	114	105
AVB68-0400-06270	X2300260-005	112	112	104
Method Blank	XWG0300433-3	112	107	100
Batch QC	X2300248-003	112	113	104
Batch QCMS	XWG0300433-4	110	114	107
Batch QCDMS	XWG0300433-5	107	110	105
Lab Control Sample	XWG0300433-1	111	110	106
Duplicate Lab Control Sample	XWG0300433-2	107	110	106

Surrogate Recovery Control Limits (%)

84-113 Surl = Dibromofluoromethane 68-126 Sur2 = Toluene-d879-113 Sur3 = 4-Bromofluorobenzene

Results flagged with an asterisk (*) indicate values outside control criteria. Results flagged with a pound (#) indicate the control criteria is not applicable.

Printed: 04/09/2003 08:38:22 L:\STEALTH\CRYSTAL.RPT\Form2.rpt

Form 2A - Organic

000026

Page 1 of 1

QA/QC Report

Client: Project: BE&K Terranext WVBA/#0310-3154

Sample Matrix:

Water

Service Request: X2300260

Date Extracted: 04/01/2003

Date Analyzed: 04/01/2003

Matrix Spike/Duplicate Matrix Spike Summary Volatile Organic Compounds

Sample Name:

Batch QC

Lab Code:

X2300248-003

Extraction Method:

EPA 5030B

Analysis Method:

8260B

onathe Organic Compounds

Units: ug/L Basis: NA

Dasis. 1171

Level: Low

Extraction Lot: XWG0300433

Batch QCMS
XWG0300433-4

Batch QCDMS XWG0300433-5

	Sample Result	XWG0300433-4 Matrix Spike			XWG0300433-5 Duplicate Matrix Spike			%Rec		RPD
Analyte Name		Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit
Dichlorodifluoromethane	ND	27.9	10.0	279 M1	27.0	10.0	270 M1	78-207	3	20
Chloromethane	ND	16.9	10.0	169 M1	16.0	10.0	160 M1	70-157	5	20
Vinyl Chloride	ND	19.3	10.0	193 M1	18.4	10.0	184 M1	79-174	5	20
Bromomethane	ND	9.69	10.0	97	9.49	10.0	95	44-150	2	20
Chloroethane	ND	15.9	10.0	159 M1	14.8	10.0	148	74-150	7	20
Trichlorofluoromethane	ND	17.9	10.0	179 M1	17.3	10.0	173 M1	80-134	3	20
1,1,2-Trichlorotrifluoroethane	ND	15.1	10.0	151 Ml	14.5	10.0	145 M1	67-128	4	20
1,1-Dichloroethene	ND	12.7	10.0	127	12.3	10.0	123	71-142	3	20
Acetone	ND	38.9	40.0	97	42.2	40.0	106	1-155	8	20
Iodomethane	ND	35.7	40.0	89	37.2	40.0	93	47-120	4	20
Carbon Disulfide	ND	57.5	40.0	144 M1	55.4	40.0	139 M1	77-126	4	20
Methylene Chloride	ND	11.1	10.0	111 M1	10.8	10.0	108 M1	83-106	3	20
Methyl tert-Butyl Ether	ND	10.8	10.0	108	10.6	10.0	106	70-118	2	20
trans-1,2-Dichloroethene	ND	11.8	10.0	118 M1	11.5	10.0	115	86-115	3	20
1,1-Dichloroethane	ND	12.7	10.0	127	12.3	10.0	123	77-127	4	20
Vinyl Acetate	ND	60.6	40.0	151	60.2	40.0	150	8-187	1	20
2,2-Dichloropropane	ND	14.5	10.0	145	13.9	10.0	139	25-154	5	20
2-Butanone (MEK)	ND	44.1	40.0	110	43.6	40.0	109	90-112	1	20
cis-1,2-Dichloroethene	ND	10.9	10.0	109	10.7	10.0	107	69-118	2	20
Bromochloromethane	ND	9.52	10.0	95	9.35	10.0	94	47-136	2	20
Chloroform	ND	12.2	10.0	122	11.8	10.0	118	48-143	3	20
1,1,1-Trichloroethane	ND	14.1	10.0	141 M1	13.6	10.0	136 M1	84-122	4	20
Carbon Tetrachloride	ND	14.9	10.0	149 M1	14.3	10.0	143 M1	79-120	4	20
1,1-Dichloropropene	ND	13.9	10.0	139 M1	13.3	10.0	133 M1	85-117	4	20
Benzene	ND	12.4	10.0	124 M1	11.8	10.0	118 M1	88-114	5	20
1,2-Dichloroethane	ND	11.4	10.0	114 M1	11.1	10.0	111	75-112	3	20
Trichloroethene	ND	12.1	10.0	121 M1	11.7	10.0	117 M1	76-115	3	20
1,2-Dichloropropane	ND	11.5	10.0	115 M1	11.0	10.0	110 M1	85-107	4	20
Dibromomethane	ND	10.5	10.0	105	10.1	10.0	101	82-106	3	20
Bromodichloromethane	ND	11.6	10.0	116 M1	11.3	10.0	113 M1	83-107	3	20
	ND	11.1	10.0	111	10.3	10.0	103	70-114	7	20
cis-1,3-Dichloropropene 4-Methyl-2-pentanone (MIBK)	ND	37.8	40.0	95	37.5	40.0	94	54-129	1	20
	ND	12.4	10.0	124 MI	12.0	10.0	120 M1	86-114	3	20
Toluene	1,112									

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 04/09/2003 08:38:28 L:\STEALTH\CRYSTAL.RPT\Form3DMS.rpt

Form 3A - Organic

000027

Page

1 of 3

SuperSet Reference: RR3169

QA/QC Report

Client: **Project:** BE&K Terranext WVBA/#0310-3154

Sample Matrix:

Water

Service Request: X2300260 Date Extracted: 04/01/2003

Date Analyzed: 04/01/2003

Matrix Spike/Duplicate Matrix Spike Summary Volatile Organic Compounds

Sample Name:

Batch QC

Lab Code:

X2300248-003

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

Extraction Lot: XWG0300433

Batch QCMS	
XWG0300433-4	
Matrix Spike	

Batch OCDMS XWG0300433-5

	Sample	XWG0300433-4 Matrix Spike				VG0300433-: cate Matrix S		%Rec		RPD
Analyte Name	Result	Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit
trans-1,3-Dichloropropene	ND	11.1	10.0	111	10.7	10.0	107	73-112	3	20
1,1,2-Trichloroethane	ND	10.8	10.0	108	10.6	10.0	106	79-112	2	20
Tetrachloroethene	ND	11.9	10.0	119	11.5	10.0	115	78-130	3	20
2-Hexanone	ND	45.2	40.0	113 M1	44.2	40.0	110	77-112	2	20
1,3-Dichloropropane	ND	11.4	10.0	114	11.0	10.0	110	45-133	3	20
Dibromochloromethane	ND	10.2	10.0	102	10.2	10.0	102	74-108	1	20
1,2-Dibromoethane	ND	10.4	10.0	104	10.2	10.0	102	73-113	2	20
Chlorobenzene	ND	10.7	10.0	107	10.5	10.0	105	84-111	2	20
1,1,1,2-Tetrachloroethane	ND	10.4	10.0	104	10.1	10.0	101	84-119	3	20
Ethylbenzene	ND	12.4	10.0	124	12.0	10.0	120	47-136	3	20
m,p-Xylenes	ND	23.6	20.0	118	22.8	20.0	114	84-120	3	20
o-Xylene	ND	11.1	10.0	111	10.8	10.0	108	47-143	3	20
Styrene Styrene	ND	10.9	10.0	109	10.7	10.0	107	72-121	2	20
Isopropylbenzene	ND	12.3	10.0	123 M1	11.9	10.0	119 M1	63-108	3	20
Bromobenzene	ND	10.3	10.0	103	10.1	10.0	101	80-113	2	20
1,2,3-Trichloropropane	ND	11.2	10.0	112	10.9	10.0	109	78-119	2	20
n-Propylbenzene	ND	12.9	10.0	129 M1	12.6	10.0	126 M1	76-117	2	20
2-Chlorotoluene	ND	12.4	10.0	124 M1	12.0	10.0	120	79-121	3	20
4-Chlorotoluene	ND	11.9	10.0	119	11.6	10.0	116	70-133	3	20
1,3,5-Trimethylbenzene	ND	12.0	10.0	120 M1	11.7	10.0	117	79-118	3	20
tert-Butylbenzene	ND	12.9	10.0	129 M1	12.4	10.0	124 M1	77-120	4	20
1,2,4-Trimethylbenzene	ND	11.8	10.0	118	11.5	10.0	115	68-127	2	20
sec-Butylbenzene	ND	12.9	10.0	129 M1	12.5	10.0	125 M1	78-123	3	20
1,3-Dichlorobenzene	ND	10.6	10.0	106	10.3	10.0	103	78-127	3	20
4-Isopropyltoluene	ND	13.3	10.0	133	12.6	10.0	126	79-142	5	20
Bromoform	ND	9.69	10.0	97	9.52	10.0	95	83-111	2	20
	ND	11.1	10.0	111	10.7	10.0	107	66-133	3	20
1,1,2,2-Tetrachloroethane	ND	10.3	10.0	103	10.1	10.0	101	48-139	1	20
1,4-Dichlorobenzene	ND	10.3	10.0	103	10.1	10.0	101	64-109	2	20
1,2-Dichlorobenzene	ND	13.3	10.0	133 M1	12.7	10.0	127 M1	69-122	4	20
n-Butylbenzene	ND	9.75	10.0	98	10.6	10.0	106	54-160	8	20
1,2-Dibromo-3-chloropropane	ND	10.1	10.0	101	9.84	10.0	98	39-145	3	20
1,2,4-Trichlorobenzene	ND	12.7	10.0	127 M1	12.1	10.0	121 M1	74-113	4	20
Hexachlorobutadiene	MD	12.7	10.0	12. 1.11						

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

000028

2 of 3 Page SuperSet Reference: RR3169

OA/OC Report

Client: Project: BE&K Terranext WVBA/#0310-3154

Sample Matrix:

Water

Service Request: X2300260

Date Extracted: 04/01/2003 **Date Analyzed:** 04/01/2003

Matrix Spike/Duplicate Matrix Spike Summary Volatile Organic Compounds

Sample Name:

Batch QC

8260B

Lab Code:

Extraction Method:

EPA 5030B

Analysis Method:

X2300248-003

Units: ug/L

Basis: NA

Level: Low

Extraction Lot: XWG0300433

Batch QCMS

XWG0300433-4

Batch QCDMS

XWG0300433-5

	Sample	Matrix Spike				cate Matrix S	%Rec		RPD	
Analyte Name	Result	Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit
Naphthalene	ND	9.93	10.0	99	10.0	10.0	100	44-167	1	20
1,2,3-Trichlorobenzene	ND	10.2	10.0	102	10.0	10.0	100	37-158	2	20

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 04/09/2003 08:38:28 Form 3A - Organic

000029

SuperSet Reference:

Page 3 of 3

RR3169

OA/OC Report

Client: Project: BE&K Terranext WVBA/#0310-3154

Sample Matrix:

Water

Service Request: X2300260 Date Extracted: 04/01/2003

Date Analyzed: 04/01/2003

Lab Control Spike/Duplicate Lab Control Spike Summary Volatile Organic Compounds

Extraction Method: Analysis Method:

EPA 5030B

8260B

Units: ug/L Basis: NA Level: Low

Extraction Lot: XWG0300433

Lab Control Sample XWG0300433-1

Duplicate Lab Control Sample XWG0300433-2

		Control Spike	e	Duplicate	Lab Control	ab Control Spike %Rec			RPD
Analyte Name	Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit
Dichlorodifluoromethane	9.07	10.0	91	7.46	10.0	75	1-233	19	20
Chloromethane	9.86	10.0	99	9.02	10.0	90	46-156	9	20
Vinyl Chloride	12.3	10.0	123	11.0	10.0	110	51-158	12	20
Bromomethane	7.99	10.0	80	7.73	10.0	77	37-149	3	20
Chloroethane	12.0	10.0	120	11.3	10.0	113	56-146	6	20
Trichlorofluoromethane	13.9	10.0	139	12.1	10.0	121	69-139	14	20
1,1,2-Trichlorotrifluoroethane	14.1	10.0	141 L1	11.9	10.0	119	83-130	17	20
1,1-Dichloroethene	10.8	10.0	108	9.81	10.0	98	65-112	9	20
Acetone	40.7	40.0	102	42.6	40.0	106	68-128	4	20
Iodomethane	31.2	40.0	78	29.9	40.0	75	68-144	4	20
Carbon Disulfide	50.4	40.0	126	46.0	40.0	115	67-140	9	20
Methylene Chloride	11.2	10.0	112	10.7	10.0	107	70-113	5	20
Methyl tert-Butyl Ether	9.79	10.0	98	10.2	10.0	102	75-115	4	20
trans-1,2-Dichloroethene	10.5	10.0	105	9.59	10.0	96	73-118	9	20
1,1-Dichloroethane	12.3	10.0	123	11.5	10.0	115	77-127	7	20
Vinyl Acetate	56.0	40.0	140	55.1	40.0	138	51-202	2	39
2,2-Dichloropropane	12.5	10.0	125	11.4	10.0	114	75-132	9	20
2-Butanone (MEK)	39.5	40.0	99	41.4	40.0	103	72-122	5	20
cis-1,2-Dichloroethene	10.5	10.0	105	10.2	10.0	102	81-118	3	20
Bromochloromethane	9.64	10.0	96	9.52	10.0	95	82-114	1	20
Chloroform	11.8	10.0	118	11.1	10.0	111	78-119	6	20
1,1,1-Trichloroethane	11.9	10.0	119	10.9	10.0	109	71-125	9	20
Carbon Tetrachloride	13.0	10.0	130	11.8	10.0	118	69-130	10	20
1,1-Dichloropropene	12.2	10.0	122 L1	11.1	10.0	111	77-114	9	20
Benzene	11.2	10.0	112	10.7	10.0	107	81-117	5	20
1,2-Dichloroethane	11.4	10.0	114	11.2	10.0	112	67-122	2	20
Trichloroethene	11.0	10.0	110	10.3	10.0	103	79-114	7	20
1,2-Dichloropropane	10.9	10.0	109	10.6	10.0	106	78-114	3	20
Dibromomethane	10.5	10.0	105	10.4	10.0	104	78-113	2	20
Bromodichloromethane	11.2	10.0	112	10.9	10.0	109	79-122	2	20
cis-1,3-Dichloropropene	11.3	10.0	113	11.0	10.0	110	82-118	2	20
4-Methyl-2-pentanone (MIBK)	35.1	40.0	88	37.3	40.0	93	75-115	6	20
Toluene	11.4	10.0	114	11.0	10.0	110	85-118	4	20
trans-1,3-Dichloropropene	11.1	10.0	111	11.1	10.0	111	79-121	0	20
1,1,2-Trichloroethane	10.3	10.0	103	10.6	10.0	106	79-116	2	20

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 04/09/2003 08:38:35 L:\STEALTH\CRYSTAL.RPT\Form3DLC.rpt Form 3C - Organic

000030

SuperSet Reference:

Page 1 of 2

RR3169

QA/QC Report

Client: Project: BE&K Terranext WVBA/#0310-3154

Sample Matrix:

Water

Service Request: X2300260

Date Extracted: 04/01/2003

Date Analyzed: 04/01/2003

Lab Control Spike/Duplicate Lab Control Spike Summary Volatile Organic Compounds

Extraction Method: EPA 5030B

Analysis Method:

8260B

Units: ug/L

Basis: NA Level: Low

Extraction Lot: XWG0300433

Lab Control Sample XWG0300433-1

Duplicate Lab Control Sample XWG0300433-2

	XWG0300433-1 Lab Control Spike				Lab Control		%Rec	ana	RPD
Analyte Name	Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit
Tetrachloroethene	10.5	10.0	105	10.0	10.0	100	76-127	5	20
2-Hexanone	40.5	40.0	101	43.9	40.0	110	65-120	8	20
1,3-Dichloropropane	10.9	10.0	109	11.0	10.0	110	81-116	1	20
Dibromochloromethane	10.0	10.0	100	9.98	10.0	100	77-119	0	20
1,2-Dibromoethane	10.2	10.0	102	10.4	10.0	104	79-116	2	20
Chlorobenzene	10.2	10.0	102	9.99	10.0	100	84-114	2	20
1,1,1,2-Tetrachloroethane	9.89	10.0	99	9.69	10.0	97	78-118	2	20
Ethylbenzene	11.5	10.0	115	10.9	10.0	109	79-124	5	20
m,p-Xylenes	21.8	20.0	109	21.1	20.0	105	75-131	3	20
o-Xylene	10.4	10.0	104	10.1	10.0	101	78-122	3	20
Styrene	10.9	10.0	109	10.6	10.0	106	80-126	3	20
Isopropylbenzene	11.1	10.0	111	10.4	10.0	104	75-126	6	20
Bromobenzene	10.1	10.0	101	9.95	10.0	100	82-122	2	20
1,2,3-Trichloropropane	10.6	10.0	106	11.0	10.0	110	77-118	4	20
n-Propylbenzene	12.0	10.0	120	11.3	10.0	113	75-129	6	20
2-Chlorotoluene	11.7	10.0	117	11.3	10.0	113	77-126	3	20
4-Chlorotoluene	11.5	10.0	115	11.2	10.0	112	82-120	3	20
1,3,5-Trimethylbenzene	11.4	10.0	114	10.9	10.0	109	75-130	5	20
tert-Butylbenzene	11.8	10.0	118	11.2	10.0	112	73-130	5	20
1,2,4-Trimethylbenzene	11.4	10.0	114	11.0	10.0	110	60-137	3	20
sec-Butylbenzene	11.1	10.0	111	10.6	10.0	106	68-131	5	20
1,3-Dichlorobenzene	10.2	10.0	102	9.99	10.0	100	71-137	2	20
4-Isopropyltoluene	11.9	10.0	119	11.3	10.0	113	68-134	5	20
Bromoform	9.06	10.0	91	9.26	10.0	93	70-118	2	20
1,1,2,2-Tetrachloroethane	10.1	10.0	101	10.4	10.0	104	72-122	3	20
1,4-Dichlorobenzene	10.1	10.0	101	9.94	10.0	99	82-114	1	20
1,2-Dichlorobenzene	10.2	10.0	102	10.1	10.0	101	81-118	1	20
n-Butylbenzene	11.7	10.0	117	11.2	10.0	112	71-125	5	20
1,2-Dibromo-3-chloropropane	8.52	10.0	85	10.2	10.0	102	55-131	18	20
1,2,4-Trichlorobenzene	9.34	10.0	93	9.41	10.0	94	75-123	1	20
Hexachlorobutadiene	10.8	10.0	108	10.8	10.0	108	63-140	0	20
Naphthalene	8.92	10.0	89	9.45	10.0	95	67-125	6	20
1,2,3-Trichlorobenzene	9.48	10.0	95	9.74	10.0	97	72-124	3	20

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

000031

2 of 2 Page

April 1, 2003

Chuck Gordon BE & K Terranext 9830 S. 51st A-127 Phoenix, AZ 85044

Re: WVBA/Project #0310-3154

Dear Chuck:

Enclosed are the results of the samples submitted to our laboratory on March 21, 2003. For your reference, these analyses have been assigned our service request number L2300647.

All analyses were performed in accordance with our laboratory's quality assurance program. Results are intended to be considered in their entirety and apply only to the samples analyzed. Columbia Analytical Services is not responsible for use of less than the complete report.

Columbia Analytical Services - is certified for environmental analyses by the Arizona Department of Health Services (certificate number: AZ0544 and AZ0136, expiration: May 23, 2003).

If you have any questions, please call me at (818) 587-5550, extension 309.

Respectfully submitted,

Columbia Analytical Services, Inc.

Onders

Sue Anderson Project Chemist

SA

Columbia Analytical Services, Inc.

Acronyms

California DHS LUFT Method 8015M American Society for Testing and Materials ASTM Biochemical Oxygen Demand BOD Benzene/Toluene/Ethylbenzene/Xylenes BTEX California Assessment Metals CAM Chemical Abstract Service Registry Number **CAS Number** Chlorofluorocarbon CFC Chemical Oxygen Demand COD Contract Required Detection Limit CRDL Detected; result must be greater than zero. D Detected; result must be greater than the detection limit. DL**Duplicate Laboratory Control Sample** DLCS DMS **Duplicate Matrix Spike** Department of Health Services DOH or DHS Environmental Laboratory Accreditation Program **ELAP** U.S. Environmental Protection Agency **EPA** Gas Chromatography GCGas Chromatography/Mass Spectrometry GC/MS Ion Chromatography IC Initial Calibration Blank sample **ICB** Inductively Coupled Plasma atomic emission spectrometry **ICP** Initial Calibration Verification sample **ICV** Laboratory Control Sample LCS Leaking Underground Fuel Tank LUFT M Methylene Blue Active Substances **MBAS** Method Detection Limit MDL Method Reporting Limit MRL Matrix Spike MS Methyl-tert-Butyl Ether **MTBE** Not Applicable NA Not Calculated NC None Detected at or above the Method Reporting/Detection Limit (MRL/MDL) ND Nephelometric Turbidity Units NTU Parts Per Billion ppb Parts Per Million ppm Practical Quantitation Limit **PQL Ouality Assurance/Quality Control** QA/QC Resource Conservation and Recovery Act **RCRA** Relative Percent Difference RPD Selected Ion Monitoring SIM Standard Methods for the Examination of Water and Wastewater, 18th Ed., 1992. SM Solubility Threshold Limit Concentration STLC Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW-846, SWThird Edition, 1986 and as amended by Updates I, II, IIA, and IIB. Toxicity Characteristics Leaching Procedure TCLP Total Dissolved Solids TDS Total Petroleum Hydrocarbons TPH Total Recoverable Petroleum Hydrocarbons TRPH Total Suspended Solids TSS Total Threshold Limit Concentration **TTLC** Volatile Organic Analyte(s) VOA Qualifiers Undetected at or above MDL/MRL. U Estimated concentration. Analyte detected above MDL but below MRL. Hit above MRL also found in Method Blank. В Analyte concentration above high point of ICAL. \mathbf{E} Presumptive evidence of compound. N Result from dilution. D

See case narrative.

X

- Cover Page -INORGANIC ANALYSIS DATA PACKAGE

Client:

BE&K Terranext, LLC

Project Name : Project No. :

WVBA 0310-3154 Service Request: L2300647

Sample Name:

Laboratory Control Sample Method Blank Batch QC Batch QC AVB69-0100-07270,

AVB69-0104-1000 AVB77-0200-07210 AVB68-0400-06270 Lab Code:

L2300326-LCS L2300326-MB L2300620-001S L2300620-001SD L2300647-001 L2300647-002 L2300647-003 L2300647-004

Approved By: She Julian Date: 4/1/6

}

000034

Analytical Report

Client:

BE&K Terranext, LLC

Project Name: Project No.:

WVBA 0310-3154

Matrix:

Water

Service Request: L2300647

Date Collected: 03/21/03 **Date Received:** 03/21/03

Date Extracted: 03/26/03

Total Metals

Sample Name:

AVB69-0100-07270

Lab Code:

L2300647-001

Units: ug/L (ppb)

Basis: NA

Analyte Analysis Method MRL Date Analyzed Result Notes

Chromium 6010B 10 03/28/03 ND

Analytical Report

Client:

BE&K Terranext, LLC

Project Name: Project No.:

WVBA 0310-3154

Matrix:

Water

Service Request: L2300647

Date Collected: 03/21/03

Date Received: 03/21/03

Date Extracted: 03/26/03

Dissolved Metals

Sample Name:

AVB69-0100-07270

Lab Code:

L2300647-001

Units: ug/L (ppb)

Basis: NA

Analysis Method

MRL

Date Analyzed

Sample Result

Result

Analyte

6010B

10

03/28/03

Notes

Chromium

ND

Analytical Report

Client:

BE&K Terranext, LLC

Project Name : Project No. : WVBA 0310-3154

Matrix:

Water

Service Request: L2300647

Date Collected: 03/21/03

Date Received: 03/21/03

Date Extracted: 03/26/03

Total Metals

Sample Name:

AVB69-0104-1000

Lab Code:

L2300647-002

Units: ug/L (ppb)

Basis: NA

Analyte	Analysis Method	MRL	Date Analyzed	Sample Result	Result Notes
Chromium	6010B	10	03/28/03	ND	

Analytical Report

Client:

BE&K Terranext, LLC

Project Name : Project No. : WVBA 0310-3154

Matrix:

Water

Service Request: L2300647

Date Collected: 03/21/03

Date Received: 03/21/03

Date Extracted: 03/26/03

Dissolved Metals

Sample Name :

AVB69-0104-1000

Lab Code:

L2300647-002

Units: ug/L (ppb)

Basis: NA

Analyte	Analysis Method	MRL	Date Analyzed	Sample Result	Result Notes
Chromium	6010B	10	03/28/03	ND	

Analytical Report

Client:

BE&K Terranext, LLC

Project Name: Project No.:

WVBA 0310-3154

Matrix:

Water

Service Request: L2300647

Date Collected: 03/21/03

Date Received: 03/21/03

Date Extracted: 03/26/03

Total Metals

Sample Name:

AVB77-0200-07210

Lab Code:

L2300647-003

Units: ug/L (ppb)

Basis: NA

Result Sample Notes Result MRL **Date Analyzed Analysis Method** Analyte 03/28/03 ND 6010B 10 Chromium

Analytical Report

Client:

BE&K Terranext, LLC

Project Name : Project No. : WVBA 0310-3154

Matrix:

Water

Service Request: L2300647

Date Collected: 03/21/03 **Date Received:** 03/21/03

Date Extracted: 03/26/03

Dissolved Metals

Sample Name:

AVB77-0200-07210

Lab Code:

L2300647-003

Units: ug/L (ppb)

Basis: NA

Analyte	Analysis Method	MRL	Date Analyzed	Sample Result	Result Notes
Chromium	6010B	10	03/28/03	ND	

Analytical Report

Client:

BE&K Terranext, LLC

Project Name: Project No.:

WVBA 0310-3154

Matrix:

Water

Service Request: L2300647

Date Collected: 03/21/03 **Date Received:** 03/21/03

Date Extracted: 03/26/03

Total Metals

Sample Name:

AVB68-0400-06270

Lab Code:

L2300647-004

Units: ug/L (ppb)

Basis: NA

Analyte Analysis Method MRL Date Analyzed Result Notes

Chromium 6010B 10 03/28/03 15

Analytical Report

Client:

BE&K Terranext, LLC

Project Name: Project No.:

WVBA 0310-3154

Matrix:

Water

Service Request: L2300647

Date Collected: 03/21/03 **Date Received:** 03/21/03

Date Extracted: 03/26/03

Dissolved Metals

Sample Name:

AVB68-0400-06270

Lab Code :

L2300647-004

Units: ug/L (ppb)

Basis: NA

Analyte	Analysis Method	MRL	Date Analyzed	Sample Result	Result Notes
Chromium	6010B	10	03/28/03	ND	

Analytical Report

Client:

BE&K Terranext, LLC

Project Name : Project No. :

WVBA 0310-3154

Matrix:

Water

Service Request: L2300647

Date Collected: NA
Date Received: NA

Date Extracted: 03/26/03

Total Metals

Sample Name:

Method Blank

Lab Code:

L2300326-MB

Units: ug/L (ppb)

Basis: NA

Analyte Analysis Method MRL Date Analyzed Result Notes

Chromium 6010B 10 03/28/03 ND

Chromium 6010B 10 03/28/03

QA/QC Report

Client:

BE&K Terranext, LLC

Project Name: Project No.:

WVBA 0310-3154

Matrix:

Water

Service Request: L2300647 **Date Collected:** NA

Date Received: NA

Date Extracted: 03/26/03 Date Analyzed: 03/28/03

Laboratory Control Sample Summary

Total Metals

Sample Name:

Laboratory Control Sample

Lab Code:

L2300326-LCS

Units: ug/L (ppb)

Basis: NA

Analyte	Analysis Method	True Value	Result	Percent	CAS Percent Recovery Acceptance Limits	Result Notes
Chromium	6010B	500	532	106	87-111	

Analytical Report

Client:

BE&K Terranext, LLC

Project Name : Project No. :

WVBA

Matrix:

Water

0310-3154

Service Request: L2300647

Date Collected: NA
Date Received: NA
Date Extracted: 03/26/03

Date Analyzed: 03/28/03

Matrix Spike/Duplicate Matrix Spike Summary

Total Metals

Sample Name : Lab Code : Batch QC

L2300620-001S

L2300620-001SD

Units: ug/L (ppb)

Basis: NA

Analyte	Prep Method	Analysis Method	MRL	Spike MS	Level DMS	Sample Result	Spike MS	Result DMS	MS	DMS	CAS Acceptance Limits	Relative Percent Difference	Result Notes
Chromium	3010A	6010B	10	500	500	16.2	526	540	102	105	87-105	3	

Columbia Analytical Services ^{INC.}

CHAIN OF CUSTODY/LABORATORY ANALYSIS REQUEST FORM

3902 East University Drive, Suite 4 • Phoenix, AZ 85034 • (602) 437-2001 • (800) 695-7222 x09 • FAX (602) 437-5308 75200647

PAGE DATE 3-21-03

RUSH TAT - Surcharges Apply Lab No: X23-00260 ANALYSIS TAT (Circle One) REMARKS SAMPLE RECEIPT: ☐ 48 Hours ☐ 72 Hours □ 24 Hours Shipping VIA: STANDARD Enlec/21 Shipping #: Condition: Date/Time 3/2+103 ANALYSIS REQUESTED Date/Time 3-21-03 INVOICE INFORMATION: Date/Time Organization Organization 5 #.O.4 re^{gQ} REPORT REQUIREMENTS II. Report (includes DUP.MS. MSD, as required, may be charged as samples) Data Validation Report (includes All Raw Data) IV. CLP Deliverable Report I. Routine Report Received By (Signature) Received By (Signature) Received By (Signature) Polex Date/Time/4/5 NUMBER OF CONTAINERS PRESER-VATION Date/Time 3-7-63 D'Isolny Ct Requires Lab Fithing Date/Time 3-21-03 # 0310-3154 MATRIX 500 Organization Organization Organization 260-001 PEzK LAB I.D. C Y S 9,00 00:00 PHONE/FAX TIME PROJECT MANAGER CYDITOLIC AVB69-0104-1050125 ... 4/469-010-100|3-21-03 COMPANY/ADDRESS OFFK DATE PROJECT NAME LV 18A fic may Relinquished By (Signature) Relinquished By (Signature) Relinquished By (Signature) d-250-0010-1384 OCT 90-0040-8981 J. Carl AVB77-0200-07210 SAMPLER'S SIGNATURE_ SAMPLE

DISTRIBUTION: WHITE - retum to originator; YELLOW - lab; PINK - retained by originator

SAMPLE RECEIPT FORM

Service Request No: L2300647 Client: BE+K
Sample(s) delivered by: Client CAS Emp After Hours DHL
Golden State Overnight Fed X UPS Other Courier
Chain of Custody filled out accurately? Yes No(See Comments)
Appropriate sample volume and containers? Yes No(See Comments)
Sufficient labeling on container(s)? Yes No(See Comments)
Container(s) supplied by CAS? Yes No (See Comments)
Custody seal(s) intact? N/A / Yes No(See Comments)
Trip Blank(s) received Yes No
If Trip Blank was supplied by CAS, record serial #TB
Temperature of sample(s)/cooler °C Temp Blank?(Y) or N (Circle One)
Voa's Marked Preserved? Yes No Filled Properly? Yes No (See Comments)
Preserved Bottles Requiring pH check(s)? Yes Notified
RUSH Turn around time? Yes Notified Date & Time
Short Hold-Time Analysis (check all that apply)
ASAP Res Cl D.O Flash Diss S2 Ferrous Fe 24HR pH Odor Cr+6 48HR BOD Color MBAS Nitrate Nitrite O-PO4 Sett Sol Turbidity 72HR Vapors
Notified Date & Time
Container(s) received and their preservative(s): $-1 \rightarrow -4 = 2 - 500 \text{ml} Pl(NP) \text{AB}$ $1 - 500 \text{ml} Pl(HN03) \text{TB}$
comments Filter & preserve diss metal bottle in lab. apy of COC placed in metals box 3/2163 1000
Initials, Date, Time

CHAIN OF CUSTODY/LABORATORY ANALYSIS REQUEST FORM

Analytical Services INC.

3902 East University Drive, Suite 4 • Phoenix, AZ 85034 • (602) 437-2001 • (800) 695-7222 x09 • FAX (602) 437-5308

DATE 3-21-03

PAGE

Ы

RUSH TAT - Surcharges Apply 270000 Lab No: X23-00260 ANALYSIS TAT (Circle One) REMARKS SAMPLE RECEIPT: □ 48 Hours ☐ 72 Hours □ 24 Hours STANDARD Shipping VIA: Shipping #: Condition: ANALYSIS REQUESTED INVOICE INFORMATION: Date/Time $3-3l\cdot O3$ Date/Time Date/Time Plash Point D Hq D Jaint Filter D Organization Organization Organization P.O.# REPORT REQUIREMENTS II. Report (includes DUP.MS. MSD, as required, may be charged as samples) III. Data Validation Report (includes All Raw Data) IV. CLP Deliverable Report 1. Routine Report Volatile Organics Lestin May Received By (Signature) Received By (Signature) Received By (Signature) NUMBER OF CONTAINERS Date/Time/465 PRESER-VATION 4 0310-3154 Date/Time Date/Time 3-21-03, Dissolved CF Regules Cab Fitting MATRIX 2/20 کے COS Organization PE 2 | Organization 260- OCI Organization LAB .D. 00.00 91,00 PHONE/FAX 11.12 TIME SPECIAL INSTRUCTIONS/COMMENTS: PROJECT MANAGER COLOLO AVB69-0100-07170 "1 COMPANY/ADDRESS OFF 80-1C-8 0001-CO10-69816 PROJECT NAME LV VBA Relinquished By (Signature) Relinquished By (Signature) Relinquished By (Signature) AVB 77-0200-07210 91688-0400-06JD SAMPLER'S SIGNATURE_ なりつかん SAMPLE I.D.

DISTRIBUTION: WHITE - return to originator; YELLOW - lab; PINK - retained by originator

0702

Columbia Analytical Services, Inc. Phoenix, AZ

Sample Receipt and Preservation Form

Client:	BEXK			Project Name: _	WUBA
Sample(s) Re	eceived on: 3- Glass Bottle	<u>21-03</u> des□	late /4/ Plastic Bottles	'S time	Sleeves
MATRIX	: SOIL 🗆	WATER	Z		
First Extr	raction Holding	ime Expiratio	n:	_date	time (soils only)
Is first ex	traction/analysis	holding time	expiration LESS	THAN 24 HOUR	S(soil)/7 DAYS (water)? Yes \(\text{No} \(\text{No} \)
				•	Chemist's Initials
<u> </u>	<u> </u>				
1. Rush or st	andard turn-a-ro	und time?			RUSH STANDARD
0 A 11		m+9			Yes 🗆 No 🗆
If yes, how	w many and whe gnature and date	re? correct'?	on?		Yes No
4. Did all co	ntainers arrive in	good condition	on?	~ HD19	Yes
		1 (4)	t-ata in diontod'/		1037 1100
7 Have VO	A's been checked	for the preser	nce of air bubbles	? (note problems i	in comments) Yes ✓ No□ N/A□
8. Temperat	ure of sample(s)	upon receipt:	<u>6.900</u>		
Explaination	n of discrepancie	s:			
		T	T 1		VOA Vial pH Verification
					(Tested After Analysis)
					\Box All Samples pH ≤ 2
		YES	NO		☐ Following Samples Exhibited pH > 2
pН	Reagent				
12	NaOH				
2	HNO ₃	\ir			
2	H ₂ SO ₄	•			
			-		
Comments:					
		Fo	rm Completed	and Sample(s)	Received by (initials):

r:\common\forms\samprev.doc Revised: 09/27/02 4:19 PM

July 16, 2003

Chuck Gordon BE&K Terranext 9830 S. 51st Street, Suite A-127 Phoenix, AZ 85044

Re: WVB / Project #03103154

Dear Chuck:

Enclosed are the amended result pages for the samples submitted to our laboratory on March 25, 2003. The samples were analyzed for Total and Dissloved Chromium by our Canoga Park, CA facility (L2300676). For your reference, the 8260 analyses have been assigned our service request number X2300276.

All analyses were performed according to our laboratory's quality assurance program. All results are intended to be considered in their entirety, and Columbia Analytical Services, Inc. (CAS) is not responsible for use of less than the complete report. Results apply only to the samples analyzed. Columbia Analytical Services, Inc. is certified for environmental analyses by the Arizona Department of Health Services (Certificate #AZ0136; and #AZ0497).

Please call if you have any questions. My extension is 223.

Respectfully submitted,

Columbia Analytical Services, Inc.

Tracy L. Dutton Laboratory Director

TLD/lm

Page 1 of <u>55</u>

Client:

BE&K Terranext

Project:

WVB / #03103154

Sample Matrix:

Water

Service Request No.:

Date Received:

X2300276

3/25/03

CASE NARRATIVE

All analyses were performed consistent with the quality assurance program of Columbia Analytical Services, Inc. (CAS). This report contains analytical results for sample(s) designated for Tier II data deliverables. When appropriate to the method, method blank results have been reported with each analytical test. Surrogate recoveries have been reported for all applicable organic analyses. Additional quality control analyses reported herein include: Matrix/Duplicate Matrix Spike (MS/DMS) and Laboratory Control Sample (LCS).

All EPA recommended holding times have been met for analyses in this sample delivery group.

The following difficulties were experienced during analysis of this batch:

CCV recovery of Dichlorodifluoromethane, Method 8260B, was below method acceptnce limits on 4/3/03. This compound ws detected in the method reporting limit standard that was analyzed with this batch of samples. This verifies that the compound would be detected if present in the samples.

Sample AVB109-0100-02107 (X2300276-003) required a dilution of severl analytes for Method 8260B due to high concentration of target analytes.

Matrix spike (XWG0300456-4 and XWG0300456-5) recovery of several analytes for Method 8260B was high. The method control sample recovery was acceptable.

MS/DMS (XWG0300456-4 and XWG0300456-5) RPD for Vinyl Acetate, Method 8260B exceeded the laboratory control limits. Recovery met acceptance criteria.

Matrix spike (XWG0300459-1 and XWG0300459-2) recovery of several analytes for Method 8260B was low. The method control sample recovery was acceptable.

Matrix spike (XWG0300459-1) recovery of Hexachlorobutadiene, Method 8260B, was high. The method control sample recovery was acceptable.

LCS/DLCS (XWG0300459-3 and XWG0300459-4) RPD for several analytes for Method 8260B exceeded the laboratory control limits. Recovery met acceptance criteria.

The associated blank spike (XWG0300459-4) recovery of several analytes for Method 8260B was below labortory acceptance limits. These compounds were seen in the method reporting limit standard that was anlyzed with this batch of samples. This verifies that the compounds would be detected if present in the samples.

The associated blank spike (XWG0300459-4) recovery of Bromochloromethane, Method 8260B, was above laboratory acceptance limits. This compound was not detected in any of the samples analyzed in this batch.

Approved by	M Date 4-11-03
Approved by	000002

ARIZONA DATA QUALIFIERS

Method B	
B1	Target analyte detected in method blank at or above the method reporting limit.
B2	Non-target analyte detected in method blank and sample, producing interference.
В3	Target analyte detected in calibration blank at or above the method reporting limit.
В4	Target analyte detected in blank at/above method acceptance criteria.
B5	Target analyte detected in method blank at or above the method reporting limit, but below trigger level or MCL.
B6	Target analyte detected in calibration blank at or above the method reporting limit, but below trigger level or MCL.
B7	Target analyte detected in method blank at or above method reporting limit. Concentration found in the sample
	was 10 times above the concentration found in the method blank.
Confirma	
CI	Confirmatory analysis not performed as required by the method.
C2	Confirmatory analysis not performed. Confirmation of analyte presence established by site historical data.
C3	Qualitative confirmation performed. See case narrative.
C4	Confirmatory analysis was past holding time.
C5	Confirmatory analysis was past holding time. Original result not confirmed.
Dilution:	
D1	Sample required dilution due to matrix interference. See case narrative.
D2	Sample required dilution due to high concentration of target analyte.
D3	Sample dilution required due to insufficient sample.
D4	Minimum reporting level (MRL) adjusted to reflect sample amount received and analyzed.
Estimated	Concentration:
E1	Concentration estimated. Analyte exceeded calibration range. Reanalysis not possible due to insufficient sample.
E2	Concentration estimated. Analyte exceeded calibration range. Reanalysis not performed due to sample matrix.
E3	Concentration estimated. Analyte exceeded calibration range. Reanalysis not performed due to holding time
125.	requirements.
E4	Concentration estimated. Analyte was detected below laboratory minimum reporting level (MRL).
E5	Concentration estimated. Analyte was detected below laboratory minimum reporting level (MRL), but not
	confirmed by alternate analysis.
E6	Confirmation estimated. Internal standard recoveries did not meet method acceptance criteria.
E7	Confirmation estimated. Internal standard recoveries did not meet laboratory acceptance criteria.
Hold Tim	
1-11	Sample analysis performed past holding time. See case narrative.
H2	Initial analysis within holding time. Reanalysis for the required dilution was past holding time.
H3	Sample was received and analyzed past holding time.
F[4	Sample was extracted past required extraction holding time, but analyzed within analysis holding time. See case narrative.

Laboratory fortified blank/blank spike:

[1] The associated blank spike recovery was above laboratory acceptance limits. See case narrative.

The associated blank spike recovery was below laboratory acceptance limits. See case narrative. L2 The associated blank spike recovery was above method acceptance limits. See case narrative. L3 The associated blank spike recovery was below method acceptance limits. See case narrative. L4 Note: The L1, L2, L3, & L4 footnotes need to be added to all corresponding analytes for a sample. Matrix spike: Matrix spike recovery was high, the method control sample recovery was acceptable. M1Matrix spike recovery was low, the method control sample recovery was acceptable. M2The accuracy of the spike recovery value is reduced since the analyte concentration in the sample is М3 disproportionate to spike level. The method control sample recovery was acceptable. The analysis of the spiked sample required a dilution such that the spike concentrations was diluted below M4the reporting limit. The method control sample recovery was acceptable. Analyte concentration was determined by the method of standard addition (MSA). M5 Matrix spike recovery was high. Data reported per ADEQ policy 0154.000. M6 Matrix sipke recovery was low. Data reported per ADEQ policy 0154.000. M7 General: See case narrative. N1 See corrective action report. N2Sample quality: Sample integrity was not maintained. See case narrative. Q1 Sample received with head space. Q2Sample received with improper chemical preservation. Q3 Sample received and analyzed without chemical preservation. Q4 Sample received with inadequate chemical preservation, but preserved by the laboratory. $\bigcirc 5$ Sample was received above recommended temperature. 06 Sample inadequately dechlorinated. Q7 Insufficient sample received to meet QC requirements. QC requirements satisfy ADEQ policies 0154 and 0155. Q8 Insufficient sample received to meet QC requirements. Q9 Sample received in inappropriate sample container. O10 Sample is heterogeneous. Sample homogeneity could not be readily achieved using routine laboratory practices. QH **Duplicates:** RPD exceeded the method control limit. See case narrative. R1RPD exceeded the laboratory control limit. See case narrative. R2 Sample RPD between the primary and confirmatory analysis exceeded 40%. Per Method 8000B, the higher R3 value was reported. MS/MSD RPD exceeded the method control limit. Recovery met acceptance criteria. R4 MS/MSD RPD exceeded the laboratory control limit. Recovery met acceptance criteria. R5 LFB/LFBD RPD exceeded the method control limit. Recovery met acceptance criteria. R6 LFB/LFBD RPD exceeded the laboratory control limit. Recovery met acceptance criteria. R7 Sample RPD exceeded the method control limit. R8 Sample RPD exceeded the laboratory control limit. R9 Surrogate: Surrogate recovery was above laboratory acceptance limits, but within method acceptance limits. S1

Surrogate recovery was above laboratory and method acceptance limits.

S2

Surrogate recovery was above laboratory acceptance limits, but within method acceptance limits. No target S3 analytes were detected in the sample. Surrogate recovery was above laboratory and method acceptance limits. No target analytes were detected in the S4 Surrogate recovery was below laboratory acceptance limits, but within method acceptance limits. \$5 Surrogate recovery was below laboratory and method acceptance limits. Reextraction and/or reanalysis confirms 86 low recovery caused by matrix effect. Surrogate recovery was below laboratory and method acceptance limits. Unable to confirm matrix effect. S7The analysis of the sample required a dilution such that the surrogate concentration was diluted below the method **S8** acceptance criteria. The method control sample recovery was acceptable. The analysis of the sample required a dilution such that the surrogate concentration was diluted below the S9laboratory acceptance criteria. The method control sample recovery was acceptable. Surrogate recovery was above laboratory and method acceptance limits. See case narrative. S10 Surrogate recovery was high. Data reported per ADEQ policy 0154,000. S11 Surrogate recovery was low. Data reported per ADEQ policy 0154.000.

Method/analyte discrepancies:

S12

- Method promulgated by EPA, but not ADHS at this time. T1
- Cited ADHS licensed method does not contain this analyte as part of method compound list. T2
- Method not promulgated either by EPA or ADHS. Т3
- Tentatively identified compound. Concentration is estimated and based on the closest internal standard. Τ4

Calibration verification:

- CCV recovery was above method acceptance limits. This target analyte was not detected in the sample. V1
- CCV recovery was above method acceptance limits. This target analyte was detected in the sample. The sample V2could not be reanalyzed due to insufficient sample.
- CCV recovery was above method acceptance limits. This target analyte was detected in the sample, but the V3sample was not reanalyzed. See case narrative.
- CCV recovery was below method acceptance limits. The sample could not be reanalyzed due to insufficient V4
- CCV recovery after a group of samples was above acceptance limits. This target analyte was not detected in the V5 sample. Acceptable per EPA Method 8000B.
- Data reported from one-point calibration criteria per ADEQ policy 0155.000. V6
- Calibration verification recovery was above the method control limit for this analyte however the average V7% difference or % drift for all the analytes met method criteria.
- Calibration verification recovery was below the method control limit for this analyte however the average V8% difference or % drift for all the analytes met method criteria.

Calibration:

The % RSD for this compound was above 15%. The average % RSD for all compounds in the calibration met W1 the 15% criteria as specified in EPA method 8000B

Inorganic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.
- U The compound was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- The MRL/MDL has been elevated due to a matrix interference.
- X See case narrative.

Metals Data Qualifiers

- # The control limit criteria is not applicable. See case narrative.
- B The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.
- E The reported value is estimated because of the presence of matrix interference.
- M The duplicate injection precision was not met.
- N The Matrix Spike sample recovery is not within control limits. See case narrative.
- S The reported value was determined by the Method of Standard Additions (MSA).
- U The compound was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- W The post-digestion spike for furnace AA analysis is out of control limits, while sample absorbance is less than 50% of spike
- The MRL/MDL has been elevated due to a matrix interference.
- X See case narrative
- * The duplicate analysis not within control limits. See case narrative.
- + The correlation coefficient for the MSA is less than 0.995.

Organic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- A A tentatively identified compound, a suspected aldol-condensation product.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result.
- C The analyte was qualitatively confirmed using GC/MS techniques, pattern recognition, or by comparing to historical data.
- D The reported result is from a dilution.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.
- N The result is presumptive. The analyte was tentatively identified, but a confirmation analysis was not performed.
- P The GC or HPLC confirmation criteria was exceeded. The relative percent difference is greater than 40% between the two analytical results (25% for CLP Pesticides).
- U The compound was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- i The MRL/MDL has been elevated due to a chromatographic interference.
- X See case narrative.

Additional Petroleum Hydrocarbon Specific Qualifiers

- F The chromatographic fingerprint of the sample matches the elution pattern of the calibration standard.
- L The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of lighter molecular weight constituents than the calibration standard.
- H The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of heavier molecular weight constituents than the calibration standard.
- O The chromatographic fingerprint of the sample resembles an oil, but does not match the calibration standard.
- Y The chromatographic fingerprint of the sample resembles a petroleum product eluting in approximately the correct carbon range, but the elution pattern does not match the calibration standard.
- Z The chromatographic fingerprint does not resemble a petroleum product.

Client: Project: BE&K Terranext WVB/#03103154 **Service Request:**

X2300276

Cover Page - Organic Analysis Data Package **Volatile Organic Compounds**

Samula Nama	Lab Code	Date Collected	Date Received
Sample Name			00 10 5 10 00 0
AVB110-0100-02112	X2300276-001	03/25/2003	03/25/2003
AVB30-1100-01093	X2300276-002	03/25/2003	03/25/2003
AVB109-0100-02107	X2300276-003	03/25/2003	03/25/2003
AVB30-1104-1000	X2300276-004	03/25/2003	03/25/2003
AVB30-1102-1000	X2300276-005	03/25/2003	03/25/2003

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed in the case narrative. Release of the data contained in this hardcopy data package and in the computer-readable data submitted on floppy diskette has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signature.

RR3218

Date:

Analytical Results

Client: Project: BE&K Terranext WVB/#03103154

Sample Matrix:

Water

Service Request: X2300276 **Date Collected:** 03/25/2003

Date Received: 03/25/2003

Volatile Organic Compounds

Sample Name:

AVB110-0100-02112

Lab Code:

X2300276-001

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

			Dilution	Date	Date	Arizona Qualifier
Analyte Name	Result Q	MRL	Factor	Extracted		N1V4
Dichlorodifluoromethane	ND U	3.0	1	04/03/03	04/03/03	141 4 4
Chloromethane	ND U	2.0	1	04/03/03 04/03/03	04/03/03	
Vinyl Chloride	ND U	1.0	1			
Bromomethane	ND U	1.0	1	04/03/03	04/03/03 04/03/03	
Chloroethane	ND U	1.0	1	04/03/03	04/03/03	
Trichlorofluoromethane	ND U	1.0	1	04/03/03		
1,1,2-Trichlorotrifluoroethane	ND U	1.0	1	04/03/03	04/03/03	
1,1-Dichloroethene	6.0	1.0	1	04/03/03	04/03/03	
Acetone	17	10	1	04/03/03	04/03/03	
	ND U	2.0	1	04/03/03	04/03/03	
Iodomethane	ND U	2.0	1	04/03/03	04/03/03	
Carbon Disulfide	ND U	1.0	1	04/03/03	04/03/03	
Methylene Chloride	ND U	1.0	1	04/03/03	04/03/03	
Methyl tert-Butyl Ether	ND U	0.50	1	04/03/03	04/03/03	
trans-1,2-Dichloroethene	2.8	0.50	1	04/03/03	04/03/03	
1,1-Dichloroethane		3.0	1	04/03/03	04/03/03	
Vinyl Acetate	ND U	2.0	1	04/03/03	04/03/03	
2,2-Dichloropropane	ND U	2.0 8.0	1	04/03/03	04/03/03	
2-Butanone (MEK)	ND U			04/03/03	04/03/03	
cis-1,2-Dichloroethene	5.7	0.50	1 1	04/03/03	04/03/03	
Bromochloromethane	ND U	0.50	1	04/03/03	04/03/03	
Chloroform	2.2	1.0			04/03/03	
1.1.1-Trichloroethane	ND U	0.50	1	04/03/03 04/03/03	04/03/03	
Carbon Tetrachloride	ND U	0.50	1	04/03/03	04/03/03	
1,1-Dichloropropene	ND U	0.50	11			
Benzene	6.7	0.50	1	04/03/03	04/03/03	
1,2-Dichloroethane	ND U	0.50	1	04/03/03	04/03/03	
Trichloroethene	22	0.50	1	04/03/03	04/03/03	
1,2-Dichloropropane	ND U	0.50	1	04/03/03	04/03/03	
Dibromomethane	ND U	0.50	1	04/03/03	04/03/03	
Bromodichloromethane	0.62	0.50	1	04/03/03	04/03/03	
	ND U	0.50	1	04/03/03	04/03/03	
cis-1,3-Dichloropropene	ND U	8.0	1	04/03/03	04/03/03	
4-Methyl-2-pentanone (MIBK)	0.79	0.50	1	04/03/03	04/03/03	
Toluene		1.0	1	04/03/03	04/03/03	
trans-1,3-Dichloropropene	ND U	1.0	*			

Comments:

000008

Form 1A - Organic

1 of Page

Printed: 04/09/2003 11:09:49

Merged

RR3179

SuperSet Reference:

Analytical Results

Client: Project: BE&K Terranext WVB/#03103154

Sample Matrix:

Water

Service Request: X2300276 **Date Collected:** 03/25/2003

Date Received: 03/25/2003

Volatile Organic Compounds

Sample Name:

AVB110-0100-02112

Lab Code:

X2300276-001

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

Analysis Westers			Dilution	Date	Date	
N. A. STarra	Result Q	MRL	Factor	Extracted		Arizona Qualifier
Analyte Name	ND U	1.0	1	04/03/03	04/03/03	
1,1,2-Trichloroethane	20	0.50	1	04/03/03	04/03/03	
Tetrachloroethene		5.0	1	04/03/03	04/03/03	
2-Hexanone	ND U	1.0	1	04/03/03	04/03/03	
1,3-Dichloropropane	ND U	0.50	1	04/03/03	04/03/03	
Dibromochloromethane	ND U		1	04/03/03	04/03/03	
1,2-Dibromoethane	ND U	0.50	1	04/03/03	04/03/03	
Chlorobenzene	ND U	0.50	1	04/03/03	04/03/03	
1,1,1,2-Tetrachloroethane	ND U	0.50			04/03/03	
Ethylbenzene	0.58	0.50	1	04/03/03	04/03/03	
m,p-Xylenes	ND U	1.0	1	04/03/03	04/03/03	
o-Xylene	0.65	0.50	1	04/03/03		
	ND U	0.50	1	04/03/03	04/03/03	
Styrene	ND U	0.50	1	04/03/03	04/03/03	
Isopropylbenzene	ND U	0.50	1	04/03/03	04/03/03	
Bromobenzene	ND U	1.0	1	04/03/03	04/03/03	-
1,2,3-Trichloropropane	ND U	0.50	1	04/03/03	04/03/03	
n-Propylbenzene	ND U	0.50	1	04/03/03	04/03/03	
2-Chlorotoluene			1	04/03/03	04/03/03	
4-Chlorotoluene	ND U	0.50	1	04/03/03	04/03/03	
1,3,5-Trimethylbenzene	ND U	0.50	1	04/03/03	04/03/03	
tert-Butylbenzene	ND U	0.50	1	04/03/03	04/03/03	
1.2.4-Trimethylbenzene	ND U	0.50	1		04/03/03	
sec-Butylbenzene	ND U	0.50	1	04/03/03	04/03/03	
1,3-Dichlorobenzene	ND U	0.50	1	04/03/03		
·	ND U	0.50	1	04/03/03	04/03/03	
4-Isopropyltoluene	ND U	0.50	1	04/03/03	04/03/03	
Bromoform	ND U	1.0	1	04/03/03	04/03/03	
1,1,2,2-Tetrachloroethane		0.50	1	04/03/03	04/03/03	3
1,4-Dichlorobenzene	ND U	0.50	1.	04/03/03	04/03/03	3
1,2-Dichlorobenzene	ND U	0.50	1	04/03/03	04/03/03	3
n-Butylbenzene	ND U		1	04/03/03	04/03/03	3
1,2-Dibromo-3-chloropropane	ND U	5.0	1	04/03/03		
1,2,4-Trichlorobenzene	ND U	0.50	1	04/03/03		
Hexachlorobutadiene	ND U	0.50				
Naphthalene	ND U	3.0	1	04/03/03		
1,2,3-Trichlorobenzene	ND U	0.50	1	04/03/03	04/03/0	3
1,4,5-111011010001120110						

Comments:

Printed: 04/09/2003 11:09:49

Merged

Form 1A - Organic

000003

Page 2 of 3

SuperSet Reference: RR3179

Analytical Results

Client:

BE&K Terranext WVB/#03103154

Project: Sample Matrix:

Water

Service Request: X2300276 **Date Collected:** 03/25/2003

Date Received: 03/25/2003

Volatile Organic Compounds

Sample Name:

AVB110-0100-02112

Lab Code:

X2300276-001

Units: ug/L

Basis: NA

Surrogate Name	%Rec	Control Limits	Date Analyzed	Arizona Qualifier	
Dibromofluoromethane	107	84-113	04/03/03		
Toluene-d8	114	68-126	04/03/03		
4-Bromofluorobenzene	108	79-113	04/03/03		

Comments:

000016

Analytical Results

Client: Project: BE&K Terranext WVB/#03103154

Sample Matrix:

Water

Service Request: X2300276

Date Collected: 03/25/2003

Date Received: 03/25/2003

Volatile Organic Compounds

Sample Name:

AVB30-1100-01093

Lab Code:

X2300276-002

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

Analyte Name	Result Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Arizona Qualifier
Dichlorodifluoromethane	ND U	3.0	1	04/03/03	04/03/03	N1V4
Chloromethane	ND U	2.0	1	04/03/03	04/03/03	
Vinyl Chloride	ND U	1.0	1	04/03/03	04/03/03	
	ND U	1.0	1	04/03/03	04/03/03	
Bromomethane	ND U	1.0	1	04/03/03	04/03/03	
Chloroethane	ND U	1.0	1	04/03/03	04/03/03	
Trichlorofluoromethane			1	04/03/03	04/03/03	
1,1,2-Trichlorotrifluoroethane	ND U	1.0	1	04/03/03	04/03/03	
1,1-Dichloroethene	ND U	1.0	1	04/03/03	04/03/03	
Acetone	ND U	10			04/03/03	
Iodomethane	ND U	2.0	1	04/03/03	04/03/03	
Carbon Disulfide	ND U	2.0	1	04/03/03	04/03/03	
Methylene Chloride	1.6	1.0	1	04/03/03		
Methyl tert-Butyl Ether	ND U	1.0	1	04/03/03	04/03/03	
trans-1,2-Dichloroethene	ND U	0.50	1	04/03/03	04/03/03	
1,1-Dichloroethane	ND U	0.50	1	04/03/03	04/03/03	
Vinyl Acetate	ND U	3.0	1	04/03/03	04/03/03	
2,2-Dichloropropane	ND U	2.0	1	04/03/03	04/03/03	
2-Butanone (MEK)	ND U	8.0	1	04/03/03	04/03/03	
cis-1,2-Dichloroethene	ND U	0.50	1	04/03/03	04/03/03	
Bromochloromethane	1.2	0.50	1	04/03/03	04/03/03	
Chloroform	4.7	1.0	1	04/03/03	04/03/03	
1.1.1-Trichloroethane	ND U	0.50	1	04/03/03	04/03/03	
Carbon Tetrachloride	ND U	0.50	1	04/03/03	04/03/03	
1,1-Dichloropropene	ND U	0.50	1	04/03/03	04/03/03	
	ND U	0.50		04/03/03	04/03/03	
Benzene	ND U	0.50	1	04/03/03	04/03/03	
1,2-Dichloroethane Trichloroethene	ND U	0.50	1	04/03/03	04/03/03	
	ND U	0.50	1	04/03/03	04/03/03	
1,2-Dichloropropane		0.50	1	04/03/03	04/03/03	
Dibromomethane	ND U	0.50	1	04/03/03	04/03/03	
Bromodichloromethane	0.90			04/03/03	04/03/03	
cis-1,3-Dichloropropene	ND U	0.50	1	04/03/03	04/03/03	
4-Methyl-2-pentanone (MIBK)	ND U	8.0	1	04/03/03	04/03/03	
Toluene	16	0.50	1			
trans-1,3-Dichloropropene	ND U	1.0	1	04/03/03	04/03/03	

Comments:

000041

Merged

Analytical Results

Client: Project: BE&K Terranext WVB/#03103154

Sample Matrix:

Water

Service Request: X2300276 Date Collected: 03/25/2003

Date Received: 03/25/2003

Volatile Organic Compounds

Sample Name:

AVB30-1100-01093

Lab Code:

X2300276-002

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

	D 4 0	MRL	Dilution Factor	Date Extracted	Date Analyzed	Arizona Qualifier
Analyte Name	Result Q		1	04/03/03	04/03/03	
1,1,2-Trichloroethane	ND U	1.0	1	04/03/03	04/03/03	
Tetrachloroethene	ND U	0.50		04/03/03	04/03/03	
2-Hexanone	ND U	5.0	1	04/03/03	04/03/03	
1,3-Dichloropropane	ND U	1.0	1	04/03/03	04/03/03	
Dibromochloromethane	ND U	0.50		04/03/03	04/03/03	
1,2-Dibromoethane	ND U	0.50	1	04/03/03	04/03/03	
Chlorobenzene	ND U	0.50	1	04/03/03	04/03/03	
1,1,1,2-Tetrachloroethane	ND U	0.50	1		04/03/03	
Ethylbenzene	14	0.50	1	04/03/03	04/03/03	
m,p-Xylenes	130	1.0	1	04/03/03	04/03/03	
o-Xylene	74	0.50	1	04/03/03		
Styrene	ND U	0.50	1	04/03/03	04/03/03	
Isopropylbenzene	0.89	0.50	1	04/03/03	04/03/03	
Bromobenzene	ND U	0.50	1	04/03/03	04/03/03	
	ND U	1.0	1	04/03/03	04/03/03	
1,2,3-Trichloropropane n-Propylbenzene	2.0	0.50	1	04/03/03	04/03/03	
2-Chlorotoluene	ND U	0.50	1	04/03/03	04/03/03	
	ND U	0.50	1	04/03/03	04/03/03	
4-Chlorotoluene 1,3,5-Trimethylbenzene	24	0.50	1	04/03/03	04/03/03	
	ND U	0.50	1	04/03/03	04/03/03	
tert-Butylbenzene	78	0.50	1	04/03/03	04/03/03	
1,2,4-Trimethylbenzene	ND U	0.50	1	04/03/03	04/03/03	
sec-Butylbenzene	ND U	0.50	1	04/03/03	04/03/03	
1,3-Dichlorobenzene	ND U	0.50	1	04/03/03	04/03/03	
4-Isopropyltoluene	ND U	0.50	1	04/03/03	04/03/03	
Bromoform	ND U	1.0	1	04/03/03	04/03/03	
1,1,2,2-Tetrachloroethane		0.50	1	04/03/03	04/03/03	
1,4-Dichlorobenzene	ND U ND U	0.50	1	04/03/03	04/03/03	,
1,2-Dichlorobenzene	4.5	0.50	1	04/03/03	04/03/03	}
n-Butylbenzene		5.0	1	04/03/03	04/03/03	}
1,2-Dibromo-3-chloropropane	ND U	0.50	1	04/03/03	04/03/03	3
1,2,4-Trichlorobenzene	ND U	0.50	1	04/03/03		3
Hexachlorobutadiene	ND U			04/03/03		
Naphthalene	73	3.0	1 1	04/03/03		
1,2,3-Trichlorobenzene	ND U	0.50	1	0-1/05/05	0 17 02. 0	

Comments:

000012

Printed: 04/09/2003 11:10:01 Merged L:\STEALTH\CRYSTAL.RPT\Form1m.rpt

Form 1A - Organic

RR3179 SuperSet Reference:

2 of 3 Page

Analytical Results

Client:

BE&K Terranext

Project: Sample Matrix: WVB/#03103154

Water

Service Request: X2300276

Date Collected: 03/25/2003 **Date Received:** 03/25/2003

Volatile Organic Compounds

Sample Name: Lab Code: AVB30-1100-01093

X2300276-002

Units: ug/L Basis: NA

Surrogate Name	%Rec	Control Limits		Arizona Qualifier
Dibromofluoromethane	106	84-113	04/03/03	
Toluene-d8	113	68-126	04/03/03	
4-Bromofluorobenzene	111	79-113	04/03/03	

Comments:

000013

Analytical Results

Client: Project: BE&K Terranext WVB/#03103154

Sample Matrix:

Water

Service Request: X2300276

Date Collected: 03/25/2003

Date Received: 03/25/2003

Volatile Organic Compounds

Sample Name:

AVB109-0100-02107

Lab Code:

X2300276-003

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

	T 11 0	MDI	Dilution Factor	Date Extracted	Date Analyzed	Arizona Qualifier
Analyte Name	Result Q	MRL		04/03/03	04/03/03	N1V4
Dichlorodifluoromethane	ND U	3.0	1	04/03/03	04/03/03	11211
Chloromethane	ND U	2.0	1	04/03/03	04/03/03	
Vinyl Chloride	ND U	1.0			04/03/03	
Bromomethane	ND U	1.0	1	04/03/03	04/03/03	
Chloroethane	ND U	1.0	1	04/03/03 04/03/03	04/03/03	
Trichlorofluoromethane	ND U	1.0	1			
1,1,2-Trichlorotrifluoroethane	ND U	1.0	1	04/03/03	04/03/03	
1,1-Dichloroethene	ND U	1.0	1	04/03/03	04/03/03	
Acetone	ND U	10	1	04/03/03	04/03/03	
Iodomethane	ND U	2.0	1	04/03/03	04/03/03	
Carbon Disulfide	ND U	2.0	1	04/03/03	04/03/03	
Methylene Chloride	ND U	1.0	1	04/03/03	04/03/03	
	ND U	1.0	1	04/03/03	04/03/03	
Methyl tert-Butyl Ether	ND U	0.50	1	04/03/03	04/03/03	
trans-1,2-Dichloroethene	ND U	0.50	1	04/03/03	04/03/03	
1,1-Dichloroethane		3.0	1	04/03/03	04/03/03	
Vinyl Acetate	ND U ND U	2.0	1	04/03/03	04/03/03	
2,2-Dichloropropane		8.0	1	04/03/03	04/03/03	
2-Butanone (MEK)	ND U			04/03/03	04/03/03	
cis-1,2-Dichloroethene	ND U	0.50	1 1	04/03/03	04/03/03	
Bromochloromethane	ND U	0.50	1	04/03/03	04/03/03	
Chloroform	4.0	1.0			04/03/03	
1,1,1-Trichloroethane	ND U	0.50	1	04/03/03	04/03/03	
Carbon Tetrachloride	ND U	0.50	1	04/03/03	04/03/03	
1,1-Dichloropropene	ND U	0.50	1	04/03/03		
Benzene	9.4	0.50	1	04/03/03	04/03/03	
1,2-Dichloroethane	ND U	0.50	1	04/03/03	04/03/03	
Trichloroethene	0.88	0.50	1	04/03/03	04/03/03	
1,2-Dichloropropane	ND U	0.50	1	04/03/03	04/03/03	
Dibromomethane	ND U	0.50	1	04/03/03	04/03/03	
Bromodichloromethane	ND U	0.50	1	04/03/03	04/03/03	
	ND U	0.50		04/03/03	04/03/03	
cis-1,3-Dichloropropene	ND U	8.0	1	04/03/03	04/03/03	i
4-Methyl-2-pentanone (MIBK)	42	0.50	1	04/03/03	04/03/03	;
Toluene			<u>-</u> 1	04/03/03	04/03/03	
trans-1,3-Dichloropropene	ND U	1.0	1	0 1/05/05	5 ., 55, 65	

Comments:

000014

Form 1A - Organic

Page 1 of 3

Analytical Results

Client: Project: BE&K Terranext WVB/#03103154

Sample Matrix:

Water

Service Request: X2300276 **Date Collected:** 03/25/2003

Date Conected: 03/25/2003 **Date Received:** 03/25/2003

Volatile Organic Compounds

Sample Name:

AVB109-0100-02107

Lab Code:

X2300276-003

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

			Dilution	Date	Date	
Analyte Name	Result Q	MRL	Factor	Extracted		Arizona Qualifier
1,1,2-Trichloroethane	ND U	1.0	1	04/03/03	04/03/03	
Tetrachloroethene	5.3	0.50	1	04/03/03	04/03/03	
2-Hexanone	ND U	5.0	1	04/03/03	04/03/03	
1,3-Dichloropropane	ND U	1.0	1	04/03/03	04/03/03	
Dibromochloromethane	ND U	0.50	1	04/03/03	04/03/03	
1,2-Dibromoethane	ND U	0.50	1	04/03/03	04/03/03	
Chlorobenzene	ND U	0.50	1	04/03/03	04/03/03	
1,1,1,2-Tetrachloroethane	ND U	0.50	1	04/03/03	04/03/03	
Ethylbenzene	48 D	5.0	10	04/04/03	04/04/03	D2
m,p-Xylenes	220 D	10	10	04/04/03	04/04/03	D2
o-Xylene	78 D	5.0	10	04/04/03	04/04/03	D2
Styrene	ND U	0.50	1	04/03/03	04/03/03	
Isopropylbenzene	12	0.50	1	04/03/03	04/03/03	
Bromobenzene	ND U	0.50	1	04/03/03	04/03/03	
1,2,3-Trichloropropane	ND U	1.0	1	04/03/03	04/03/03	
n-Propylbenzene	21	0.50	1	04/03/03	04/03/03	
2-Chlorotoluene	ND U	0.50	1	04/03/03	04/03/03	
4-Chlorotoluene	ND U	0.50	1	04/03/03	04/03/03	
1,3,5-Trimethylbenzene	53	0.50	1	04/03/03	04/03/03	
tert-Butylbenzene	ND U	0.50	1	04/03/03	04/03/03	
1,2,4-Trimethylbenzene	76 D	5.0	10	04/04/03	04/04/03	D2
sec-Butylbenzene	6.2	0.50	1	04/03/03	04/03/03	
1,3-Dichlorobenzene	ND U	0.50	1	04/03/03	04/03/03	
4-Isopropyltoluene	1.7	0.50	1	04/03/03	04/03/03	
Bromoform	ND U	0.50	1	04/03/03	04/03/03	
1,1,2,2-Tetrachloroethane	ND U	1.0	1	04/03/03	04/03/03	
1,4-Dichlorobenzene	ND U	0.50	1	04/03/03	04/03/03	
1,2-Dichlorobenzene	ND U	0.50	1	04/03/03	04/03/03	
n-Butylbenzene	6.6	0.50	1	04/03/03	04/03/03	
1,2-Dibromo-3-chloropropane	ND U	5.0	1	04/03/03	04/03/03	
1,2,4-Trichlorobenzene	ND U	0.50	1	04/03/03	04/03/03	
Hexachlorobutadiene	ND U	0.50	1	04/03/03	04/03/03	
Naphthalene	14	3.0	1	04/03/03	04/03/03	
1,2,3-Trichlorobenzene	ND U	0.50	1	04/03/03	04/03/03	

Comments:

000015

Merged

Analytical Results

Client:

BE&K Terranext WVB/#03103154

Project: Sample Matrix:

Water

Service Request: X2300276

Date Collected: 03/25/2003

Date Received: 03/25/2003

Volatile Organic Compounds

Sample Name:

AVB109-0100-02107

Lab Code:

X2300276-003

Units: ug/L Basis: NA

Surrogate Name	%Rec	Control Limits	Date Analyzed	Arizona Qualifier
Dibromofluoromethane Toluene-d8 4-Bromofluorobenzene	104 110 102	84-113 68-126 79-113	04/03/03 04/03/03 04/03/03	

Comments:

Printed: 04/09/2003 11:10:13 $L: \label{lem:lem:lem:rpt} L: \label{lem:lem:rpt} L: \label{lem:rpt} L: \lab$

Merged

Form 1A - Organic

000016

3 of 3 Page

RR3179 SuperSet Reference:

Analytical Results

Client: Project: BE&K Terranext WVB/#03103154

Sample Matrix:

Water

Service Request: X2300276

Date Collected: 03/25/2003

Date Received: 03/25/2003

Volatile Organic Compounds

Sample Name: Lab Code:

AVB30-1102-1000 X2300276-005

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

	D. walt O	MRL	Dilution Factor	Date Extracted	Date Analyzed	Arizona Qualifier
Analyte Name	Result Q		1	04/03/03	04/03/03	N1V4
Dichlorodifluoromethane	ND U	3.0 2.0	1	04/03/03	04/03/03	
Chloromethane	ND U	2.0 1.0	1	04/03/03	04/03/03	
Vinyl Chloride	ND U			04/03/03	04/03/03	
Bromomethane	ND U	1.0	1	04/03/03	04/03/03	
Chloroethane	ND U	1.0	1 1	04/03/03	04/03/03	
Trichlorofluoromethane	ND U	1.0			04/03/03	
1,1,2-Trichlorotrifluoroethane	ND U	1.0	1	04/03/03	04/03/03	
1,1-Dichloroethene	ND U	1.0	1	04/03/03	04/03/03	
Acetone	ND U	10	1	04/03/03		
Iodomethane	ND U	2.0	1	04/03/03	04/03/03	
Carbon Disulfide	ND U	2.0	1	04/03/03	04/03/03	
Methylene Chloride	ND U	1.0	1	04/03/03	04/03/03	
·	ND U	1.0	1	04/03/03	04/03/03	
Methyl tert-Butyl Ether trans-1,2-Dichloroethene	ND U	0.50	1	04/03/03	04/03/03	
	ND U	0.50	1	04/03/03	04/03/03	
1,1-Dichloroethane	ND U	3.0	1	04/03/03	04/03/03	
Vinyl Acetate	ND U	2.0	î	04/03/03	04/03/03	
2,2-Dichloropropane	ND U	8.0	1	04/03/03	04/03/03	
2-Butanone (MEK)			1	04/03/03	04/03/03	
cis-1,2-Dichloroethene	ND U	0.50 0.50	1	04/03/03	04/03/03	
Bromochloromethane	ND U		1	04/03/03	04/03/03	
Chloroform	ND U	1.0		04/03/03	04/03/03	
1,1,1-Trichloroethane	ND U	0.50	1	04/03/03	04/03/03	
Carbon Tetrachloride	ND U	0.50	1	04/03/03	04/03/03	
1,1-Dichloropropene	ND U	0.50	1			
Benzene	ND U	0.50	1	04/03/03	04/03/03	
1,2-Dichloroethane	ND U	0.50	1	04/03/03	04/03/03	
Trichloroethene	ND U	0.50	1	04/03/03	04/03/03	
1,2-Dichloropropane	ND U	0.50	1	04/03/03	04/03/03	
Dibromomethane	ND U	0.50	1	04/03/03	04/03/03	
Bromodichloromethane	ND U	0.50	1	04/03/03	04/03/03	
	ND U	0.50	1	04/03/03	04/03/03	
cis-1,3-Dichloropropene	ND U	8.0	1	04/03/03	04/03/03	
4-Methyl-2-pentanone (MIBK)	ND U	0.50	1	04/03/03	04/03/03	}
Toluene		1.0	1	04/03/03	04/03/03	3
trans-1,3-Dichloropropene	ND U	1.0	1	0 ., 00, 00		

Comments:	
	000026

Printed: 04/09/2003 11:10:37

Form 1A - Organic

Merged

1 of 3 Page RR3179 SuperSet Reference:

Analytical Results

Client: Project: BE&K Terranext WVB/#03103154

Sample Matrix:

Water

Service Request: X2300276 **Date Collected:** 03/25/2003

Date Received: 03/25/2003

Volatile Organic Compounds

Sample Name: Lab Code:

AVB30-1102-1000 X2300276-005

Extraction Method: Analysis Method:

EPA 5030B 8260B

Units: ug/L Basis: NA

Level: Low

	,	3 (D)	Dilution Factor	Date Extracted	Date Analyzed	Arizona Qualifier
Analyte Name	Result Q	MRL		04/03/03	04/03/03	
1,1,2-Trichloroethane	ND U	1.0	1 1	04/03/03	04/03/03	
Tetrachloroethene	ND U	0.50			04/03/03	
2-Hexanone	ND U	5.0	1	04/03/03	04/03/03	
1,3-Dichloropropane	ND U	1.0	1	04/03/03	04/03/03	
Dibromochloromethane	ND U	0.50	1	04/03/03		
1,2-Dibromoethane	ND U	0.50	1	04/03/03	04/03/03	
Chlorobenzene	ND U	0.50	1	04/03/03	04/03/03	
1,1,1,2-Tetrachloroethane	ND U	0.50	1	04/03/03	04/03/03	
Ethylbenzene	ND U	0.50	1	04/03/03	04/03/03	
-	ND U	1.0	1	04/03/03	04/03/03	
m,p-Xylenes o-Xylene	ND U	0.50	1	04/03/03	04/03/03	
· ·	ND U	0.50	1	04/03/03	04/03/03	
Styrene	ND U	0.50	1	04/03/03	04/03/03	
Isopropylbenzene	ND U	0.50	1	04/03/03	04/03/03	
Bromobenzene	ND U	1.0	1	04/03/03	04/03/03	
1,2,3-Trichloropropane	ND U	0.50	1	04/03/03	04/03/03	
n-Propylbenzene	ND U	0.50	1	04/03/03	04/03/03	
2-Chlorotoluene				04/03/03	04/03/03	
4-Chlorotoluene	ND U	0.50	1	04/03/03	04/03/03	
1,3,5-Trimethylbenzene	ND U	0.50	1	04/03/03	04/03/03	
tert-Butylbenzene	ND U	0.50		04/03/03	04/03/03	
1,2,4-Trimethylbenzene	ND U	0.50	1	04/03/03	04/03/03	
sec-Butylbenzene	ND U	0.50	1	04/03/03	04/03/03	
1,3-Dichlorobenzene	ND U	0.50	1			
4-Isopropyltoluene	ND U	0.50	1	04/03/03	04/03/03	
Bromoform	ND U	0.50	1	04/03/03	04/03/03	
1,1,2,2-Tetrachloroethane	ND U	1.0	1	04/03/03	04/03/03	
1.4-Dichlorobenzene	ND U	0.50	1	04/03/03	04/03/03	
1,4-Dichlorobenzene	ND U	0.50	1	04/03/03	04/03/03	
n-Butylbenzene	ND U	0.50	1	04/03/03	04/03/03	
	ND U	5.0	1	04/03/03	04/03/03	
1,2-Dibromo-3-chloropropane	ND U	0.50	1	04/03/03	04/03/03	
1,2,4-Trichlorobenzene Hexachlorobutadiene	ND U	0.50	1	04/03/03	04/03/03	3
	ND U	3.0	1	04/03/03	04/03/03	3
Naphthalene	ND U	0.50	1	04/03/03		3
1,2,3-Trichlorobenzene	ט עמ	0.50	-			

Comments:

000021

Printed: 04/09/2003 11:10:37 L:\STEALTH\CRYSTAL.RPT\Form1m.rpt

Merged

Form 1A - Organic

2 of 3 Page

Analytical Results

Client:

BE&K Terranext WVB/#03103154

Project: Sample Matrix:

Water

Service Request: X2300276 **Date Collected:** 03/25/2003

Date Received: 03/25/2003

Volatile Organic Compounds

Sample Name: Lab Code:

AVB30-1102-1000

X2300276-005

Units: ug/L Basis: NA

Surrogate Name	%Rec	Control Limits	Date Analyzed	Arizona Qualifier	
Dibromofluoromethane	108	84-113	04/03/03		
Toluene-d8	113	68-126	04/03/03		
4-Bromofluorobenzene	105	79-113	04/03/03		

Comments:

Printed: 04/09/2003 11:10:37

Merged

Form 1A - Organic

000022

Page 3 of 3

RR3179 SuperSet Reference:

Analytical Results

Client: Project: BE&K Terranext WVB/#03103154

Sample Matrix:

Water

Service Request: X2300276

Date Collected: NA
Date Received: NA

Volatile Organic Compounds

Sample Name: Lab Code: Method Blank XWG0300456-3

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

				Dilution	Date	Date	
Analyte Name	Result	Q	MRL	Factor	Extracted	-	Arizona Qualifier
Dichlorodifluoromethane	ND	U	3.0	1	04/03/03	04/03/03	N1V4
Chloromethane	ND	U	2.0	1	04/03/03	04/03/03	
Vinyl Chloride	ND	U	1.0	1	04/03/03	04/03/03	
Bromomethane	ND	U	1.0	1	04/03/03	04/03/03	
Chloroethane	ND		1.0	1	04/03/03	04/03/03	
Trichlorofluoromethane	ND		1.0	1	04/03/03	04/03/03	
1,1,2-Trichlorotrifluoroethane	ND	U	1.0	1	04/03/03	04/03/03	
1,1-Dichloroethene	ND	U	1.0	1	04/03/03	04/03/03	
Acetone	ND	U	10	1	04/03/03	04/03/03	
Iodomethane	ND	U	2.0	1	04/03/03	04/03/03	
Carbon Disulfide	ND		2.0	1	04/03/03	04/03/03	
Methylene Chloride	ND		1.0	1	04/03/03	04/03/03	
Methyl tert-Butyl Ether	ND	U	1.0	1	04/03/03	04/03/03	
trans-1,2-Dichloroethene	ND		0.50	1	04/03/03	04/03/03	
1,1-Dichloroethane	ND		0.50	1	04/03/03	04/03/03	
Vinyl Acetate	ND		3.0	1	04/03/03	04/03/03	
2,2-Dichloropropane	ND		2.0	1	04/03/03	04/03/03	
2-Butanone (MEK)	ND		8.0	1	04/03/03	04/03/03	
cis-1,2-Dichloroethene	ND	U	0.50	1	04/03/03	04/03/03	
Bromochloromethane	ND		0.50	1	04/03/03	04/03/03	
Chloroform	ND		1.0	1	04/03/03	04/03/03	
1,1,1-Trichloroethane	ND	IJ	0.50	1	04/03/03	04/03/03	
Carbon Tetrachloride	ND		0.50	1	04/03/03	04/03/03	
1,1-Dichloropropene	ND		0.50	1	04/03/03	04/03/03	
Benzene	ND	TT	0.50	1	04/03/03	04/03/03	
1,2-Dichloroethane	ND		0.50	1	04/03/03	04/03/03	
Trichloroethene	ND		0.50	1	04/03/03	04/03/03	
	ND		0.50	1	04/03/03	04/03/03	
1,2-Dichloropropane Dibromomethane	ND		0.50	1	04/03/03	04/03/03	
Bromodichloromethane	ND		0.50	1	04/03/03	04/03/03	
			0.50	1	04/03/03	04/03/03	
cis-1,3-Dichloropropene		U	8.0	1	04/03/03	04/03/03	
4-Methyl-2-pentanone (MIBK)		U	8.0 0.50	1	04/03/03	04/03/03	
Toluene		U			04/03/03	04/03/03	
trans-1,3-Dichloropropene	ND	U	1.0	1	04/03/03	U 1 /U3/U3	

Comments:

000023

Printed: 04/09/2003 11:10:49 L:\STEALTH\CRYSTAL.RPT\Formlm.rpt

Form 1A - Organic

Page 1 of 3

Merged

SuperSet Reference: RR

RR3179

Analytical Results

Client: Project: BE&K Terranext WVB/#03103154

Sample Matrix:

Water

Service Request: X2300276

Date Collected: NA
Date Received: NA

Volatile Organic Compounds

Sample Name:

Lab Code:

Method Blank XWG0300456-3

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

Analyte Name					Dilution	Date	Date	Arizona Qualifiar
1,1,2-1 inchloroethane	Analyte Name						-	Alizona Quantier
Tetrachioroceinene	1,1,2-Trichloroethane				_			
2-Hexanone ND U 1.0 1 04/03/03 04/03/03 Dibromochloromethane ND U 0.50 1 04/03/03 04/03/03 1,2-Dibromochlane ND U 0.50 1 04/03/03 04/03/03 Chlorobenzene ND U 0.50 1 04/03/03 04/03/03 Ethylbenzene ND U 1.0 1 04/03/03 04/03/03 Ethylbenzene ND U 0.50 1 04/03/03 04/03/03 Ethylbenzene ND U 0.50 1 04/03/03 04/03/03 Styrene ND U 0.50 1 04/03/03 04/03/03 Styrene ND U 0.50 1 04/03/03 04/03/03 Styrene ND U 0.50 1 04/03/03 04/03/03 Ethylbenzene ND U 0.50 1 04/03/03 04/03/03 Isopropylbenzene ND U 0.50 1 04/03/03 04/03/03 Isopropylbenzene ND U 0.50 1 04/03/03 04/03/03 I,2,3-Trichloropropane ND U 1.0 1 04/03/03 04/03/03 I,2,3-Trichloropropane ND U 0.50 1 04/03/03 04/03/03 -Propylbenzene ND U 0.50 1 04/03/03 04/03/03 -Propylbenzene ND U 0.50 1 04/03/03 04/03/03 I,3,5-Trimethylbenzene ND U 0.50 1 04/03/03 04/03/03 I,3,5-Trimethylbenzene ND U 0.50 1 04/03/03 04/03/03 I,2,4-Trimethylbenzene ND U 0.50 1 04/03/03 04/03/03 I,2,4-Trimethylbenzene ND U 0.50 1 04/03/03 04/03/03 -Res-Butylbenzene ND U 0.50 1 04/03/03 04/03/03 I,3-Dichlorobenzene ND U 0.50 1 04/03/03 04/03/03 I,4-Dichlorobenzene ND U 0.50 1 04/03/03 04/03/03 I,4-Dichlorobenzene ND U 0.50 1 04/03/03 04/03/03 I,4-Dichlorobenzene ND U 0.50 1 04/03/03 04/03/03 I,2-Dichlorobenzene ND U 0.50 1 04/03/03 04/03/03 I,2-Dich	Tetrachloroethene	ND	U	0.50	1			
1,3-Dichrotopropage	2-Hexanone	ND	U				-	
Dibromochloromethane ND U 0.50 1 04/03/03 04/03/03 04/03/03 1,2-Dibromoethane ND U 0.50 1 04/03/03 04/03/0	1,3-Dichloropropane	ND	U			-		
1,2-Difformoethane		ND	U	0.50	1			
Chlorobenzene ND U 0.50 1 04/03/03 04/03/03 1,1,1,2-Tetrachloroethane ND U 0.50 1 04/03/03 04/03/03 Ethylbenzene ND U 0.50 1 04/03/03 04/03/03 mp-Xylenes ND U 1.0 1 04/03/03 04/03/03 o-Xylene ND U 0.50 1 04/03/03 04/03/03 Styrene ND U 0.50 1 04/03/03 04/03/03 Isopropylbenzene ND U 0.50 1 04/03/03 04/03/03 Isopropylbenzene ND U 0.50 1 04/03/03 04/03/03 Isopropylbenzene ND U 0.50 1 04/03/03 04/03/03 1,2,3-Trichloropropane ND U 0.50 1 04/03/03 04/03/03 1-2,3-Trichloropropane ND U 0.50 1 04/03/03 04/03/03 <t< td=""><td>1.2-Dibromoethane</td><td>ND</td><td>U</td><td>0.50</td><td></td><td></td><td></td><td></td></t<>	1.2-Dibromoethane	ND	U	0.50				
1,1,1,2-Tetrachloroethane		ND	U	0.50				
Ethylbenzene ND U 0.50 1 04/03/03 04/03/03 m.p-Xylenes ND U 1.0 1 04/03/03 04/03/03 o-Xylene ND U 0.50 1 04/03/03 04/03/03 Styrene ND U 0.50 1 04/03/03 04/03/03 Isopropylbenzene ND U 0.50 1 04/03/03 04/03/03 Bromobenzene ND U 0.50 1 04/03/03 04/03/03 I,2,3-Trichloropropane ND U 0.50 1 04/03/03 04/03/03 -Propylbenzene ND U 0.50 1 04/03/03 04/03/03 2-Chlorotoluene ND U 0.50 1 04/03/03 04/03/03 1,3,5-Trimethylbenzene ND U <td></td> <td>ND</td> <td>U</td> <td>0.50</td> <td>1</td> <td>04/03/03</td> <td></td> <td></td>		ND	U	0.50	1	04/03/03		
m.p-Xylenes ND U 1.0 1 04/03/03 04/03/03 o4/03/03 o-Xylene ND U 0.50 1 04/03/03 04/03/03 Styrene ND U 0.50 1 04/03/03 04/03/03 Isopropylbenzene ND U 0.50 1 04/03/03 04/03/03 Bromobenzene ND U 0.50 1 04/03/03 04/03/03 1,2,3-Trichloropropane ND U 1.0 1 04/03/03 04/03/03 n-Propylbenzene ND U 0.50 1 04/03/03 04/03/03 2-Chlorotoluene ND U 0.50 1 04/03/03 04/03/03 4-Chlorotoluene ND U 0.50 1 04/03/03 04/03/03 4-Chlorotoluene ND U 0.50 1 04/03/03 04/03/03 1,3,5-Trimethylbenzene ND U 0.50 1 04/03/03 04/03/03		ND	Ū	0.50	1			
o-Xylene ND U 0.50 1 04/03/03 04/03/03 Styrene ND U 0.50 1 04/03/03 04/03/03 Isopropylbenzene ND U 0.50 1 04/03/03 04/03/03 Bromobenzene ND U 0.50 1 04/03/03 04/03/03 1,2,3-Trichloropropane ND U 0.50 1 04/03/03 04/03/03 1-Propylbenzene ND U 0.50 1 04/03/03 04/03/03 2-Chlorotoluene ND U 0.50 1 04/03/03 04/03/03 4-Chlorotoluene ND U 0.50 1 04/03/03 04/03/03 4-Chlorotoluene ND U 0.50 1 04/03/03 04/03/03 4-Chlorotoluene ND U 0.50 1 04/03/03 04/03/03 1,3,5-Trimethylbenzene ND U 0.50 1 04/03/03 04/03/03 se				1.0	1			
Styrene		ND	U	0.50	1	04/03/03	04/03/03	
Stylich ND U 0.50		ND	IJ	0.50	1	04/03/03	04/03/03	
ND U 0.50 1 04/03/03 04	•				1	04/03/03	04/03/03	
1,2,3-Trichloropropane					1	04/03/03	04/03/03	
n-Propylbenzene ND U 0.50 1 04/03/03 04/03/03 04/03/03 2-Chlorotoluene ND U 0.50 1 04/03/03 0				1.0	1	04/03/03	04/03/03	
2-Chlorotoluene ND U 0.50 1 04/03/03 04/03/03 4-Chlorotoluene ND U 0.50 1 04/03/03 04/03/03 1,3,5-Trimethylbenzene ND U 0.50 1 04/03/03 04/03/03 1,2,4-Trimethylbenzene ND U 0.50 1 04/03/03 04/03/03 1,2,4-Trimethylbenzene ND U 0.50 1 04/03/03 04/03/03 1,3-Dichlorobenzene ND U 0.50 1 04/03/03 04/03/03 4-Isopropyltoluene ND U 0.50 1 04/03/03 04/03/03 4-Isopropyltoluene ND U 0.50 1 04/03/03 04/03/03 Bromoform ND U 0.50 1 04/03/03 04/03/03 1,1,2,2-Tetrachloroethane ND U 1.0 1 04/03/03 04/03/03 1,4-Dichlorobenzene ND U 0.50 1 04/03/03 04/03/03 1,2-Dichlorobenzene ND U 0.50 1 04/03/03 04/03/03 1,2-Dichlorobenzene ND U 0.50 1 04/03/03 04/03/03 1,2-Dichlorobenzene ND U 0.50 1 04/03/03 04/03/03 1,2-Dibromo-3-chloropropane ND U 0.50 1 04/03/03 04/03/03 1,2-Dibromo-3-chloropropane ND U 0.50 1 04/03/03 04/03/03 1,2-Trichlorobenzene ND U 0.50 1 04/03/03 04/03/03 Naphthalene ND U 3.0 1 04/03/03 04/03/03 Naphthalene ND U 3.0 1 04/03/03 04/03/03	, ,				1	04/03/03	04/03/03	
4-Chlorotoluene ND U 0.50 1 04/03/03 04/03/03 12,3-5-Trimethylbenzene ND U 0.50 1 04/03/03 04/03/03 12,2-4-Trimethylbenzene ND U 0.50 1 04/03/03 04/03/03 12,2-4-Trimethylbenzene ND U 0.50 1 04/03/03 04/03/03 12,3-Dichlorobenzene ND U 0.50 1 04/03/03 04/03/03 13,3-Dichlorobenzene ND U 0.50 1 04/03/03 04/03/03 13,3-Dichlorobenzene ND U 0.50 1 04/03/03 04/03/03 14,13-Dichlorobenzene ND U 0.50 1 04/03/03 04/03/03 14,12,2-Tetrachloroethane ND U 0.50 1 04/03/03 04/03/03 11,12,2-Tetrachloroethane ND U 0.50 1 04/03/03 04/03/03 13,4-Dichlorobenzene ND U 0.50 1 04/03/03 04/03/03 13,4-Dichlorobenzene ND U 0.50 1 04/03/03 04/03/03 13,2-Dichlorobenzene ND U 0.50 1 04/03/03 04/03/03 13,2-Dichlorobenzene ND U 0.50 1 04/03/03 04/03/03 13,2-Dichlorobenzene						04/03/03	04/03/03	
1,3,5-Trimethylbenzene ND U 0.50 1 04/03/03 04/03/03 1,2,4-Trimethylbenzene ND U 0.50 1 04/03/03 04/03/03 1,2,4-Trimethylbenzene ND U 0.50 1 04/03/03 04/03/03 1,3-Dichlorobenzene ND U 0.50 1 04/03/03 04/03/03 1,1,2,2-Tetrachloroethane ND U 0.50 1 04/03/03 04/03/03 1,1,2,2-Tetrachloroethane ND U 0.50 1 04/03/03 04/03/03 1,1-Dichlorobenzene ND U 0.50 1 04/03/03 04/03/03 1,2-Dichlorobenzene ND U 0.50 1 04/03/03 04/03/03 1,2-Dichlorobenzene ND U 0.50 1 04/03/03 04/03/03 1,2-Dichlorobenzene ND U 0.50					1	04/03/03	04/03/03	
tert-Butylbenzene ND U 0.50 1 04/03/03 04/03/03 1,2,4-Trimethylbenzene ND U 0.50 1 04/03/03 04/03/03 sec-Butylbenzene ND U 0.50 1 04/03/03 04/03/03 1,3-Dichlorobenzene ND U 0.50 1 04/03/03 04/03/03 4-Isopropyltoluene ND U 0.50 1 04/03/03 04/03/03 Bromoform ND U 0.50 1 04/03/03 04/03/03 1,1,2,2-Tetrachloroethane ND U 1.0 1 04/03/03 04/03/03 1,4-Dichlorobenzene ND U 0.50 1 04/03/03 04/03/03 1,2-Dichlorobenzene ND U 0.50 1 04/03/03 04/03/03 1,2-Dichlorobenzene ND U 0.50 1 04/03/03 04/03/03 1,2-Dichlorobenzene ND U 0.50 1 04/03/03 04/03/03 1,2-Dibromo-3-chloropropane ND U 0.50 1 04/03/03 04/03/03 1,2,4-Trichlorobenzene ND U 0.50 1 04/03/03 04/03/03 1,2,4-Trichlorobenzene ND U 0.50 1 04/03/03 04/03/03 1,2,4-Trichlorobenzene ND U 0.50 1 04/03/03 04/03/03 ND U 0.50 1 04/03/03 04/03/03 Naphthalene ND U 3.0 1 04/03/03 04/03/03 Naphthalene							04/03/03	
1,2,4-Trimethylbenzene ND U 0.50 1 04/03/03 04/03/03 sec-Butylbenzene ND U 0.50 1 04/03/03 04/03/03 1,3-Dichlorobenzene ND U 0.50 1 04/03/03 04/03/03 4-Isopropyltoluene ND U 0.50 1 04/03/03 04/03/03 Bromoform ND U 0.50 1 04/03/03 04/03/03 1,1,2,2-Tetrachloroethane ND U 1.0 1 04/03/03 04/03/03 1,4-Dichlorobenzene ND U 0.50 1 04/03/03 04/03/03 1,2-Dichlorobenzene ND U 0.50 1 04/03/03 04/03/03 1,2-Dichlorobenzene ND U 0.50 1 04/03/03 04/03/03 1,2-Dibromo-3-chloropropane ND U 0.50 1 04/03/03 04/03/03 1,2,4-Trichlorobenzene ND U 0.50 1 04/03/03 04/03/03 1,2,4-Trichlorobenzene ND U 0.50 1 04/03/03 04/03/03	•						04/03/03	
1,2,4-Trimethyleenzene	<u> </u>						04/03/03	
sec-Butylbenzene ND U 0.50 1 04/03/03 04/03/03 4-Isopropyltoluene ND U 0.50 1 04/03/03 04/03/03 Bromoform ND U 0.50 1 04/03/03 04/03/03 1,1,2,2-Tetrachloroethane ND U 1.0 1 04/03/03 04/03/03 1,4-Dichlorobenzene ND U 0.50 1 04/03/03 04/03/03 1,2-Dichlorobenzene ND U 0.50 1 04/03/03 04/03/03 n-Butylbenzene ND U 0.50 1 04/03/03 04/03/03 1,2-Dibromo-3-chloropropane ND U 5.0 1 04/03/03 04/03/03 1,2,4-Trichlorobenzene ND U 0.50 1 04/03/03 04/03/03 1,2,4-Trichlorobenzene ND U 0.50 1 04/03/03 04/03/03 Hexachlorobutadiene ND U 0.50 1 04/03/03 04/03/03 Naphthalene ND U 3.0 1 04/03/03 04/03/03 </td <td>, ,</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	, ,							
4-Isopropyltoluene ND U 0.50 1 04/03/03 04/03/03 Bromoform ND U 0.50 1 04/03/03 04/03/03 1,1,2,2-Tetrachloroethane ND U 1.0 1 04/03/03 04/03/03 1,4-Dichlorobenzene ND U 0.50 1 04/03/03 04/03/03 1,2-Dichlorobenzene ND U 0.50 1 04/03/03 04/03/03 n-Butylbenzene ND U 0.50 1 04/03/03 04/03/03 1,2-Dibromo-3-chloropropane ND U 5.0 1 04/03/03 04/03/03 1,2,4-Trichlorobenzene ND U 0.50 1 04/03/03 04/03/03 Hexachlorobutadiene ND U 0.50 1 04/03/03 04/03/03 Naphthalene ND U 3.0 1 04/03/03 04/03/03								
Bromoform	•							
Bromoform ND U 1.0 1 04/03/03 04/03/03 1,1,2,2-Tetrachloroethane ND U 0.50 1 04/03/03 04/03/03 1,2-Dichlorobenzene ND U 0.50 1 04/03/03 04/03/03 1,2-Dichlorobenzene ND U 0.50 1 04/03/03 04/03/03 1,2-Dibromo-3-chloropropane ND U 5.0 1 04/03/03 04/03/03 1,2,4-Trichlorobenzene ND U 0.50 1 04/03/03 04/03/03 Hexachlorobutadiene ND U 0.50 1 04/03/03 04/03/03 Naphthalene ND U 3.0 1 04/03/03 04/03/03	* **							
1,1,2,2-Tetrachloroetname ND U 0.50 1 04/03/03 04/03/03 1,4-Dichlorobenzene ND U 0.50 1 04/03/03 04/03/03 1,2-Dichlorobenzene ND U 0.50 1 04/03/03 04/03/03 n-Butylbenzene ND U 5.0 1 04/03/03 04/03/03 1,2-Dibromo-3-chloropropane ND U 5.0 1 04/03/03 04/03/03 1,2,4-Trichlorobenzene ND U 0.50 1 04/03/03 04/03/03 Hexachlorobutadiene ND U 0.50 1 04/03/03 04/03/03 Naphthalene ND U 3.0 1 04/03/03 04/03/03								
1,4-Dichlorobenzene ND U 0.50 1 04/03/03 04/03/03 1,2-Dichlorobenzene ND U 0.50 1 04/03/03 04/03/03 n-Butylbenzene ND U 0.50 1 04/03/03 04/03/03 1,2-Dibromo-3-chloropropane ND U 5.0 1 04/03/03 04/03/03 1,2,4-Trichlorobenzene ND U 0.50 1 04/03/03 04/03/03 Hexachlorobutadiene ND U 0.50 1 04/03/03 04/03/03 Naphthalene ND U 3.0 1 04/03/03 04/03/03								
1,2-Dichlorobenzene ND U 0.50 1 04/03/03 04/03/03 n-Butylbenzene ND U 0.50 1 04/03/03 04/03/03 1,2-Dibromo-3-chloropropane ND U 0.50 1 04/03/03 04/03/03 1,2,4-Trichlorobenzene ND U 0.50 1 04/03/03 04/03/03 Hexachlorobutadiene ND U 0.50 1 04/03/03 04/03/03 Naphthalene ND U 3.0 1 04/03/03 04/03/03								
n-Butylbenzene ND U 5.0 1 04/03/03 04/03/03 1,2-Dibromo-3-chloropropane ND U 5.0 1 04/03/03 04/03/03 1,2,4-Trichlorobenzene ND U 0.50 1 04/03/03 04/03/03 Hexachlorobutadiene ND U 0.50 1 04/03/03 04/03/03 Naphthalene ND U 3.0 1 04/03/03 04/03/03	•							
1,2-Dibromo-3-chloropropale ND U 0.50 1 04/03/03 04/03/03 1,2,4-Trichlorobenzene ND U 0.50 1 04/03/03 04/03/03 Hexachlorobutadiene ND U 3.0 1 04/03/03 04/03/03 Naphthalene ND U 3.0 1 04/03/03 04/03/03	n-Butylbenzene			_	· · · · · · · · · · · · · · · · · · ·			
1,2,4-Trichlorobenzene ND U 0.50 1 04/03/03 04/03/03 Hexachlorobutadiene ND U 3.0 1 04/03/03 04/03/03 Naphthalene ND U 3.0 1 04/03/03 04/03/03	,							
Naphthalene ND U 3.0 1 04/03/03 04/03/03 Naphthalene ND U 3.0 1 04/03/03 04/03/03	, ,							
Naphthalene ND 0 3.0 1 04/02/02 04/02/02	Hexachlorobutadiene							
	Naphthalene							
		ND	U	0.50	1	04/03/03	04/03/03	

Comments:

000024

Printed: 04/09/2003 11:10:49 L:\STEALTH\CRYSTAL.RPT\Form1m.rpt

Form 1A - Organic

Merged

Page 2 of 3

SuperSet Reference: RR3179

Analytical Results

Client: Project: BE&K Terranext WVB/#03103154

Sample Matrix:

Water

Service Request: X2300276

Date Collected: NA Date Received: NA

Volatile Organic Compounds

Sample Name: Lab Code:

Method Blank XWG0300456-3 Units: ug/L Basis: NA

Surrogate Name	%Rec	Control Limits	Date Analyzed	Arizona Qualifier
Dibromofluoromethane Toluene-d8 4-Bromofluorobenzene	102 102 102	84-113 68-126 79-113	04/03/03 04/03/03 04/03/03	

Comments:

000025

Merged

Analytical Results

Client:

BE&K Terranext WVB/#03103154

Project: Sample Matrix:

Water

Service Request: X2300276

Date Collected: NA Date Received: NA

Volatile Organic Compounds

Sample Name:

Method Blank

Lab Code:

XWG0300459-5

Extraction Method: Analysis Method:

EPA 5030B

8260B

Units: ug/L Basis: NA

Level: Low

	Result						
Analyte Name	T/C2mt	Q	MRL	Factor	Extracted		Arizona Qualifier
Dichlorodifluoromethane	ND	U	3.0	1	04/04/03	04/04/03	
Chloromethane	ND		2.0	1	04/04/03	04/04/03	
Vinyl Chloride	ND	U	1.0	1	04/04/03	04/04/03	
Bromomethane	ND	ŢŢ	1.0	1	04/04/03	04/04/03	
Chloroethane	ND		1.0	1	04/04/03	04/04/03	
Trichlorofluoromethane	ND		1.0	1	04/04/03	04/04/03	
	ND		1.0	1	04/04/03	04/04/03	
1,1,2-Trichlorotrifluoroethane	ND ND		1.0	1	04/04/03	04/04/03	
1,1-Dichloroethene	ND ND		10	1	04/04/03	04/04/03	
Acetone			2.0	1	04/04/03	04/04/03	
Iodomethane	ND		2.0	1	04/04/03	04/04/03	
Carbon Disulfide	ND ND		1.0	1	04/04/03	04/04/03	
Methylene Chloride				1	04/04/03	04/04/03	
Methyl tert-Butyl Ether	ND		1.0	1	04/04/03	04/04/03	
trans-1,2-Dichloroethene	ND		0.50	1	04/04/03	04/04/03	
1,1-Dichloroethane	ND		0.50		04/04/03	04/04/03	
Vinyl Acetate	ND		3.0	1	04/04/03	04/04/03	
2,2-Dichloropropane	ND		2.0	1	04/04/03	04/04/03	
2-Butanone (MEK)	ND	U	8.0	1			
cis-1,2-Dichloroethene	ND	U	0.50	1	04/04/03	04/04/03	
Bromochloromethane	ND	U	0.50	1	04/04/03	04/04/03	
Chloroform	ND	U	1.0	1	04/04/03	04/04/03	
1,1,1-Trichloroethane	ND	U	0.50	1	04/04/03	04/04/03	
Carbon Tetrachloride	ND		0.50	1	04/04/03	04/04/03	
1,1-Dichloropropene	ND		0.50	1	04/04/03	04/04/03	
Benzene	ND	II	0.50	1	04/04/03	04/04/03	
1,2-Dichloroethane	ND		0.50	1	04/04/03	04/04/03	
Trichloroethene	ND		0.50	1	04/04/03	04/04/03	
		Ū	0.50	1	04/04/03	04/04/03	
1,2-Dichloropropane		U	0.50	1	04/04/03	04/04/03	
Dibromomethane		U	0.50	1	04/04/03	04/04/03	
Bromodichloromethane			0.50	1	04/04/03	04/04/03	
cis-1,3-Dichloropropene		U	8.0	1	04/04/03	04/04/03	
4-Methyl-2-pentanone (MIBK)		U U	0.50	1	04/04/03	04/04/03	
Toluene				1	04/04/03	04/04/03	
trans-1,3-Dichloropropene	NI	U	1.0	1	U-7/U-7/U3	0-1/0-1/05	

Comments:

000026

SuperSet Reference:

Printed: 04/09/2003 11:11:01

Merged

Form 1A - Organic

1 of 3 Page RR3179

Analytical Results

Client: **Project:** BE&K Terranext WVB/#03103154

Sample Matrix:

Water

Service Request: X2300276

Date Collected: NA Date Received: NA

Volatile Organic Compounds

Sample Name: Lab Code:

Method Blank

Extraction Method:

XWG0300459-5

Analysis Method:

EPA 5030B 8260B

Units: ug/L Basis: NA

Level: Low

•		- m×	Dilution Factor	Date Extracted	Date Analyzed	Arizona Qualifier
Analyte Name	Result Q	MRL	ractor	04/04/03	04/04/03	
1,1,2-Trichloroethane	ND U	1.0	1	04/04/03	04/04/03	
Tetrachloroethene	ND U	0.50			04/04/03	
2-Hexanone	ND U	5.0	1	04/04/03	04/04/03	
1,3-Dichloropropane	ND U	1.0	1	04/04/03	04/04/03	
Dibromochloromethane	ND U	0.50	1	04/04/03		
1,2-Dibromoethane	ND U	0.50	1	04/04/03	04/04/03	
Chlorobenzene	ND U	0.50	1	04/04/03	04/04/03	
1,1,1,2-Tetrachloroethane	ND U	0.50	1	04/04/03	04/04/03	
	ND U	0.50	1	04/04/03	04/04/03	
Ethylbenzene	ND U	1.0	1	04/04/03	04/04/03	
m,p-Xylenes	ND U	0.50	1	04/04/03	04/04/03	
o-Xylene	ND U	0.50	1	04/04/03	04/04/03	
Styrene	ND U	0.50	1	04/04/03	04/04/03	
Isopropylbenzene	ND U	0.50	1	04/04/03	04/04/03	
Bromobenzene			1	04/04/03	04/04/03	
1,2,3-Trichloropropane	ND U	1.0 0.50	1	04/04/03	04/04/03	
n-Propylbenzene	ND U	0.50	1	04/04/03	04/04/03	
2-Chlorotoluene	ND U			04/04/03	04/04/03	
4-Chlorotoluene	ND U	0.50	1	04/04/03	04/04/03	
1,3,5-Trimethylbenzene	ND U	0.50	1 1	04/04/03	04/04/03	
tert-Butylbenzene	ND U	0.50			04/04/03	
1,2,4-Trimethylbenzene	ND U	0.50	1	04/04/03	04/04/03	
sec-Butylbenzene	ND U	0.50	1	04/04/03		
1,3-Dichlorobenzene	ND U	0.50	1	04/04/03	04/04/03	
4-Isopropyltoluene	ND U	0.50	1	04/04/03	04/04/03	
Bromoform	ND U	0.50	1	04/04/03	04/04/03	
1,1,2,2-Tetrachloroethane	ND U	1.0	1	04/04/03	04/04/03	
	ND U	0.50	1	04/04/03	04/04/03	
1,4-Dichlorobenzene	ND U	0.50	1	04/04/03	04/04/03	
1,2-Dichlorobenzene	ND U	0.50	1	04/04/03	04/04/03	3
n-Butylbenzene		5.0	1	04/04/03	04/04/03	}
1,2-Dibromo-3-chloropropane	ND U	0.50	1	04/04/03	04/04/03	3
1,2,4-Trichlorobenzene	ND U	0.50	1	04/04/03		
Hexachlorobutadiene	ND U			04/04/03		
Naphthalene	ND U	3.0	1	04/04/03		
1,2,3-Trichlorobenzene	ND U	0.50	i	04/04/03	0-1/01/02	•

Comments:

Printed: 04/09/2003 11:11:01

Merged

Form 1A - Organic

000027

Page 2 of 3

SuperSet Reference: RR3179

Analytical Results

Client: Project: BE&K Terranext WVB/#03103154

Sample Matrix:

Water

Service Request: X2300276

Date Collected: NA
Date Received: NA

Volatile Organic Compounds

Sample Name: Lab Code: Method Blank XWG0300459-5 Units: ug/L Basis: NA

Surrogate Name	%Rec	Control Limits	Date Analyzed	Arizona Qualifier
Dibromofluoromethane Toluene-d8 4-Bromofluorobenzene	98 100 92	84-113 68-126 79-113	04/04/03 04/04/03 04/04/03	

Comments:

Printed: 04/09/2003 11:11:01 L:\STEALTH\CRYSTAL.RPT\Form1m.rpt

Merged

Form 1A - Organic

100028

Page 3 of 3

QA/QC Report

Client:

BE&K Terranext WVB/#03103154

Project: Sample Matrix:

Water

Service Request: X2300276

Surrogate Recovery Summary Volatile Organic Compounds

Extraction Method: Analysis Method:

EPA 5030B

8260B

Units: PERCENT

Level: Low

Sample Name	Lab Code	Sur1	<u>Sur2</u>	Sur3
AVB110-0100-02112	X2300276-001	107	114	108
AVB30-1100-01093	X2300276-002	106	113	111
AVB109-0100-02107	X2300276-003	104	110	102
AVB70-1104-1000	X2300276-004	105	106	93
AVB30-1102-1000	X2300276-005	108	113	105
Method Blank	XWG0300456-3	102	102	102
Method Blank	XWG0300459-5	98	100	92
Batch QC	X2300279-002	102	106	95
Batch QC	X2300294-001	113	116	110
Batch QCMS	XWG0300456-4	113	116	113
Batch QCDMS	XWG0300456-5	107	112	109
Batch QCMS	XWG0300459-1	102	99	98
•	XWG0300459-2	96	101	94
Batch QCDMS	XWG0300456-1	103	107	105
Lab Control Sample	XWG0300456-2	104	106	106
Duplicate Lab Control Sample	XWG0300459-3	97	100	96
Lab Control Sample Duplicate Lab Control Sample	XWG0300459-4	99	95	95

Surrogate Recovery Control Limits (%)

Sur1 = Dibromofluoromethane	84-113
Sur2 = Toluene-d8	68-126
Sur3 = 4-Bromofluorobenzene	79-113

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

000029

QA/QC Report

Client: Project: **BE&K Terranext** WVB/#03103154

Sample Matrix:

Water

Service Request: X2300276

Date Extracted: 04/03/2003 **Date Analyzed:** 04/03/2003

Matrix Spike/Duplicate Matrix Spike Summary **Volatile Organic Compounds**

Sample Name: Lab Code:

Batch QC

X2300294-001

Extraction Method: Analysis Method:

EPA 5030B

8260B

Units: ug/L Basis: NA

Level: Low

Extraction Lot: XWG0300456

	Sample		atch QCMS VG0300456-4 Matrix Spike	4	XV	atch QCDMS VG0300456-: cate Matrix Sp	5	%Rec		RPD Limit
Analyte Name	Result	Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	
Dichlorodifluoromethane	ND	32.7	10.0	327 M1	30.7	10.0	307 M1	78-207	6	20
Chloromethane	ND	21.8	10.0	218 M1	21.3	10.0	213 M1	70-157	3	20
Vinyl Chloride	ND	20.0	10.0	200 M1	18.8	10.0	188 M1	79-174	6	20
Bromomethane	ND	13.0	10.0	130	12.4	10.0	124	44-150	5	20
Chloroethane	ND	15.3	10.0	153 M1	14.4	10.0	144	74-150	6	20
Trichlorofluoromethane	ND	18.7	10.0	187 M1	17.5	10.0	175 M1	80-134	6	20
1,1,2-Trichlorotrifluoroethane	ND	15.7	10.0	157 M1	14.9	10.0	149 M1	67-128	5	20
1,1-Dichloroethene	ND	13.4	10.0	134	12.6	10.0	126	71-142	6	20
Acetone	ND	39.9	40.0	100	38.4	40.0	96	1-155	4	20
Iodomethane	ND	43.4	40.0	108	39.7	40.0	99	47-120	9	20
Carbon Disulfide	ND	58.0	40.0	145 M1	54.0	40.0	135 M1	77-126	7	20
Methylene Chloride	ND	11.0	10.0	110 M1	10.4	10.0	104	83-106	6	20
Methyl tert-Butyl Ether	ND	10.6	10.0	106	9.90	10.0	99	70-118	6	20
trans-1,2-Dichloroethene	ND	12.4	10.0	124 M1	11.7	10.0	117 M1	86-115	6	20
1,1-Dichloroethane	ND	12.5	10.0	125	11.8	10.0	118	77-127	5	20
Vinyl Acetate	ND	53.1	40.0	133	41.3	40.0	103	8-187	25 R5	
2,2-Dichloropropane	ND	14.5	10.0	145	13.6	10.0	136	25-154	7	20
2-Butanone (MEK)	ND	38.5	40.0	96	37.2	40.0	93	90-112	3	20
cis-1,2-Dichloroethene	ND	11.4	10.0	114	10.8	10.0	108	69-118	5	20
Bromochloromethane	ND	10.6	10.0	106	9.91	10.0	99	47-136	7	20
Chloroform	1.6	13.3	10.0	117	12.6	10.0	110	48-143	5	20
1,1,1-Trichloroethane	ND	14.2	10.0	142 M1	13.4	10.0	134 M1	84-122	5	20
Carbon Tetrachloride	ND	15.1	10.0	151 M1	14.1	10.0	141 M1	79-120	7	20
1,1-Dichloropropene	ND	14.1	10.0	141 M1	13.6	10.0	136 M1	85-117	4	20
Benzene	ND	12.3	10.0	123 M1	11.8	10.0	118 M1	88-114	4	20
1.2-Dichloroethane	ND	11.0	10.0	110	10.3	10.0	103	75-112	6	20
Trichloroethene	ND	12.3	10.0	123 M1	12.0	10.0	120 M1	76-115	2	20
1,2-Dichloropropane	ND	11.0	10.0	110 M1	10.5	10.0	105	85-107	4	20
Dibromomethane	ND	10.3	10.0	103	9.63	10.0	96	82-106	6	20
Bromodichloromethane	ND	11.6	10.0	116 M1	10.8	10.0	108 M1		7	20
cis-1,3-Dichloropropene	ND	10.8	10.0	108	10.1	10.0	101	70-114	6	20
4-Methyl-2-pentanone (MIBK)	ND	36.6	40.0	92	34.1	40.0	85	54-129	7	20
	ND	12.4	10.0	124 M1	12.0	10.0	120 M1		3	20
Toluene trans-1,3-Dichloropropene	ND	10.6	10.0	106	10.0	10.0	100	73-112	5	20

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 04/09/2003 11:11:26 Form 3A - Organic

1 of Page

RR3179 SuperSet Reference:

OA/QC Report

Client: Project: BE&K Terranext WVB/#03103154

Sample Matrix:

Water

Service Request: X2300276 **Date Extracted:** 04/03/2003

Date Analyzed: 04/03/2003

Matrix Spike/Duplicate Matrix Spike Summary Volatile Organic Compounds

Sample Name: Lab Code:

Batch QC X2300294-001

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

Extraction Lot: XWG0300456

	Gle	XV	Batch QCMS XWG0300456-4 Matrix Spike		XW	Batch QCDMS XWG0300456-5 Duplicate Matrix Spike				RPD
Analyte Name	Sample Result	Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit
·	ND	10.3	10.0	103	9.84	10.0	98	79-112	4	20
1,1,2-Trichloroethane	ND	13.0	10.0	130	12.5	10.0	125	78-130	3	20
Tetrachloroethene	ND	42.8	40.0	107	40.3	40.0	101	77-112	6	20
2-Hexanone	ND	10.5	10.0	105	10.3	10.0	103	45-133	3	20
1,3-Dichloropropane	ND	10.2	10.0	102	9.85	10.0	99	74-108	3	20
Dibromochloromethane	ND	10.1	10.0	101	9.77	10.0	98	73-113	3	20
1,2-Dibromoethane	ND	11.1	10.0	111	11.0	10.0	110	84-111	2	20
Chlorobenzene	ND	10.6	10.0	106	10.5	10.0	105	84-119	2	20
1,1,1,2-Tetrachloroethane	ND	12.7	10.0	127	12.5	10.0	125	47-136	2	20
Ethylbenzene	ND	24.7	20.0	123 M1	23.9	20.0	120	84-120	3	20
m,p-Xylenes	ND	11.7	10.0	117	11.6	10.0	116	47-143	1	20
o-Xylene	ND	11.4	10.0	114	11.0	10.0	110	72-121	4	20
Styrene	ND	13.1	10.0	131 M1	12.8	10.0	128 M1	63-108	2	20
Isopropylbenzene	ND	10.8	10.0	108	10.6	10.0	106	80-113	2	20
Bromobenzene	ND	10.5	10.0	105	10.2	10.0	102	78-119	3	20
1,2,3-Trichloropropane	ND	13.7	10.0	137 M1	13.2	10.0	132 M1	76-117	4	20
n-Propylbenzene	ND	12.8	10.0	128 M1	12.3	10.0	123 M1	79-121	4	20
2-Chlorotoluene	ND	12.3	10.0	123	12.0	10.0	120	70-133	3	20
4-Chlorotoluene	ND	12.6	10.0	126 M1	12.3	10.0	123 M1	79-118	2	20
1,3,5-Trimethylbenzene	ND ND	13.9	10.0	139 M1	13.5	10.0	135 M1	77-120	3	20
tert-Butylbenzene	ND ND	12.5	10.0	125	12.0	10.0	120	68-127	4	20
1,2,4-Trimethylbenzene	ND ND	13.8	10.0	138 M1	13.3	10.0	133 M1	78-123	3	20
sec-Butylbenzene	ND ND	11.3	10.0	113	11.1	10.0	111	78-127	2	20
1,3-Dichlorobenzene	ND ND	14.0	10.0	140	13.7	10.0	137	79-142	2	20
4-Isopropyltoluene	ND ND	9.28	10.0	93	9.24	10.0	92	83-111	0	20
Bromoform	ND ND	10.4	10.0	104	10.0	10.0	100	66-133	4	20
1,1,2,2-Tetrachloroethane	ND ND	10.4	10.0	108	10.7	10.0	107	48-139	1	20
1,4-Dichlorobenzene	ND ND	10.8	10.0	108	10.7	10.0	107	64-109	1	20
1,2-Dichlorobenzene		13.9	10.0	139 M1	13.5	10.0	135 M1		3	20
n-Butylbenzene	ND ND	8.78	10.0	88	8.38	10.0	84	54-160	5	20
1,2-Dibromo-3-chloropropane		10.7	10.0	107	10.5	10.0	105	39-145	2	20
1,2,4-Trichlorobenzene	ND	13.9	10.0	139 M1		10.0	137 M1		1	20
Hexachlorobutadiene	ND ND	9.51	10.0	95	9.44	10.0	94	44-167		20
Naphthalene	ND ND	10.2	10.0	102	9.91	10.0	99	37-158	2	20
1,2,3-Trichlorobenzene	ND	10.2	10.0							

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 04/09/2003 11:11:26 L:\STEALTH\CRYSTAL.RPT\Form3DMS.rpt Form 3A - Organic

000031

2 of 2 Page

SuperSet Reference: RR3179

QA/QC Report

Client: Project: BE&K Terranext WVB/#03103154

Sample Matrix:

Water

Service Request: X2300276

Date Extracted: 04/04/2003

Date Analyzed: 04/04/2003

Matrix Spike/Duplicate Matrix Spike Summary Volatile Organic Compounds

Sample Name: Lab Code:

Batch QC X2300279-002

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

Extraction Lot: XWG0300459

	Cl.	XV	satch QCMS VG0300459- Matrix Spike	1	XV	Batch QCDMS XWG0300459-2 Duplicate Matrix Spike				RPD
Analyte Name	Sample Result	Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit
	ND	2.99	10.0	30 M2	2.94	10.0	29 M2	78-207	2	20
Dichlorodifluoromethane	ND	5.67	10.0	57 M2	5.14	10.0	51 M2	70-157	10	20
Chloromethane	ND	6.20	10.0	62 M2	6.18	10.0	62 M2	79-174	0	20
Vinyl Chloride	ND	7.63	10.0	76	6.99	10.0	70	44-150	9	20
Bromomethane	ND	8.26	10.0	83	8.37	10.0	84	74-150	1	20
Chloroethane	ND	7.91	10.0	79 M2	7.73	10.0	77 M2	80-134	2	20
Trichlorofluoromethane	ND	10.0	10.0	100	9.57	10.0	96	67-128	4	20
1,1,2-Trichlorotrifluoroethane	ND ND	9.41	10.0	94	9.26	10.0	93	71-142	2	20
1,1-Dichloroethene	ND	36.9	40.0	92	36.4	40.0	91	1-155	1	20
Acetone	ND	35.5	40.0	89	35.2	40.0	88	47-120	1	20
Iodomethane	ND	37.6	40.0	94	36.4	40.0	91	77-126	3	20
Carbon Disulfide	ND ND	9.54	10.0	95	9.19	10.0	92	83-106	4	20
Methylene Chloride	ND ND	8.70	10.0	87	7.79	10.0	78	70-118	11	20
Methyl tert-Butyl Ether	ND	10.0	10.0	100	9.88	10.0	99	86-115	1	20
trans-1,2-Dichloroethene	ND	10.6	10.0	106	10.4	10.0	104	77-127	1	20
1,1-Dichloroethane	ND ND	42.3	40.0	106	36.2	40.0	91	8-187	16	20
Vinyl Acetate		10.1	10.0	101	9.84	10.0	98	25-154	2	20
2,2-Dichloropropane	ND	41.9	40.0	105	38.1	40.0	95	90-112	9	20
2-Butanone (MEK)	ND	12.2	10.0	101	11.5	10.0	94	69-118	6	20
cis-1,2-Dichloroethene	2.1	11.2	10.0	112	9.97	10.0	100	47-136	12	20
Bromochloromethane	ND	11.2	10.0	113	10.8	10.0	108	48-143	5	20
Chloroform	ND	8.92	10.0	89	8.61	10.0	86	84-122	4	20
1,1,1-Trichloroethane	ND	8.92 9.37	10.0	94	9.15	10.0	92	79-120	2	20
Carbon Tetrachloride	ND		10.0	98	9.85	10.0	99	85-117	1	20
1,1-Dichloropropene	ND	9.75 9.85	10.0	99	9.90	10.0	99	88-114	1	20
Benzene	ND		10.0	100	9.86	10.0	99	75-112	2	20
1,2-Dichloroethane	ND	10.0	10.0	112	13.6	10.0	115	76-115	2	20
Trichloroethene	2.1	13.3	10.0	101	9.99	10.0	100	85-107	1	20
1,2-Dichloropropane	ND	10.1	10.0	99	10.0	10.0	100	82-106	2	20
Dibromomethane	ND	9.85	10.0	93	9.12	10.0	91	83-107	2	20
Bromodichloromethane	ND	9.26		103	9.83	10.0	98	70-114	4	20
cis-1,3-Dichloropropene	ND	10.3	10.0	96	33.9	40.0	85	54-129	13	20
4-Methyl-2-pentanone (MIBK)	ND	38.5	40.0 10.0	96 99	10.1	10.0	101	86-114	2	20
Toluene	ND .	9.91	10.0	102	9.33	10.0	93	73-112	9	20
	VII.7	111 /	11717	102	,					

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

ND

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

10.2

Printed: 04/09/2003 11:11:33 L:\STEALTH\CRYSTAL.RPT\Form3DMS.rpt

trans-1,3-Dichloropropene

Form 3A - Organic

10.0

102

SuperSet Reference:

1 of 2 Page

RR3179

QA/QC Report

Client: Project: BE&K Terranext WVB/#03103154

Sample Matrix:

Water

Service Request: X2300276

Date Extracted: 04/04/2003

Date Analyzed: 04/04/2003

Matrix Spike/Duplicate Matrix Spike Summary Volatile Organic Compounds

Sample Name: Lab Code:

Batch QC

X2300279-002

Extraction Method: Analysis Method:

8260B

EPA 5030B

Units: ug/L Basis: NA

Level: Low

Extraction Lot: XWG0300459

Batch QCMS

Batch QCDMS XWG0300459-2

	Sample	XWG0300459-1 Matrix Spike			XWG0300459-2 Duplicate Matrix Spike			%Rec		RPD
Analyte Name	Result	Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit
1,1,2-Trichloroethane	ND	9.30	10.0	93	8.63	10.0	86	79-112	7	20
Tetrachloroethene	7.2	17.0	10.0	99	17.3	10.0	101	78-130	2	20
2-Hexanone	ND	35.5	40.0	89	34.5	40.0	86	77-112	3	20
	ND	9.14	10.0	91	8.94	10.0	89	45-133	2	20
1,3-Dichloropropane Dibromochloromethane	ND	9.26	10.0	93	8.87	10.0	89	74-108	4	20
1,2-Dibromoethane	ND	9.08	10.0	91	8.62	10.0	86	73-113	5	20
Chlorobenzene	ND	10.2	10.0	102	10.2	10.0	102	84-111	0	20
	ND	9.55	10.0	96	9.54	10.0	95	84-119	0	20
1,1,1,2-Tetrachloroethane	ND	10.6	10.0	106	10.8	10.0	108	47-136	2	20
Ethylbenzene	ND	21.3	20.0	107	22.0	20.0	110	84-120	3	20
m,p-Xylenes	ND	10.2	10.0	102	10.4	10.0	104	47-143	2	20
o-Xylene	ND	10.5	10.0	105	10.1	10.0	101	72-121	3	20
Styrene	ND	10.2	10.0	102	10.2	10.0	102	63-108	0	20
Isopropylbenzene	ND	11.1	10.0	111	10.5	10.0	105	80-113	6	20
Bromobenzene	ND	10.2	10.0	102	9.18	10.0	92	78-119	10	20
1,2,3-Trichloropropane	ND ND	10.2	10.0	107	10.4	10.0	104	76-117	2	20
n-Propylbenzene	ND	10.7	10.0	104	10.2	10.0	102	79-121	2	20
2-Chlorotoluene	ND ND	10.4	10.0	104	10.3	10.0	103	70-133	1	20
4-Chlorotoluene	ND ND	10.5	10.0	105	10.2	10.0	102	79-118	3	20
1,3,5-Trimethylbenzene	ND ND	10.5	10.0	106	10.2	10.0	102	77-120	4	20
tert-Butylbenzene	ND ND	10.4	10.0	104	10.2	10.0	102	68-127	2	20
1,2,4-Trimethylbenzene		9.94	10.0	99	9.56	10.0	96	78-123	4	20
sec-Butylbenzene	ND	10.3	10.0	103	9.84	10.0	98	78-127	4	20
1,3-Dichlorobenzene	ND	10.5	10.0	105	10.2	10.0	102	79-142	3	20
4-Isopropyltoluene	ND	9.10	10.0	91	9.36	10.0	94	83-111	3	20
Bromoform	ND		10.0	106	10.5	10.0	105	66-133	1	20
1,1,2,2-Tetrachloroethane	ND	10.6	10.0	98	10.2	10.0	102	48-139	4	20
1,4-Dichlorobenzene	ND	9.76	10.0	98 97	9.66	10.0	97	64-109	1	20
1,2-Dichlorobenzene	ND	9.72	10.0	103	10.4	10.0	104	69-122	1	20
n-Butylbenzene	ND	10.3		91	9.13	10.0	91	54-160	1	20
1,2-Dibromo-3-chloropropane	ND	9.06	10.0	103	9.13	10.0	96	39-145	8	20
1,2,4-Trichlorobenzene	ND	10.3	10.0	103 120 M1	10.9	10.0	109	74-113	10	20
Hexachlorobutadiene	ND	12.0	10.0	98	8.52	10.0	85	44-167	14	20
Naphthalene	ND	9.81	10.0	98 121	10.5	10.0	105	37-158	14	20
1,2,3-Trichlorobenzene	ND	12.1	10.0	121	10.5	10.0	105	J. 250		

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 04/09/2003 11:11:33 Form 3A - Organic

2 of 2 Page

SuperSet Reference:

RR3179

QA/QC Report

Client: Project:

BE&K Terranext WVB/#03103154

Sample Matrix:

Water

Service Request: X2300276 **Date Extracted:** 04/03/2003

Date Analyzed: 04/03/2003

Lab Control Spike/Duplicate Lab Control Spike Summary Volatile Organic Compounds

Extraction Method: Analysis Method:

EPA 5030B

8260B

Units: ug/L Basis: NA

Level: Low Extraction Lot: XWG0300456

Duplicate Lab Control Sample Lab Control Sample XWG0300456-2 XWG0300456-1

	XWG0300456-1 Lab Control Spike		XWG0300456-2 Duplicate Lab Control Spike			%Rec	RPD		
Analyte Name	Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit
	6.60	10.0	66	6.14	10.0	61	1-233	7	20
Dichlorodifluoromethane	10.6	10.0	106	10.2	10.0	102	46-156	5	20
Chloromethane	10.5	10.0	105	9.49	10.0	95	51-158	10	20
Vinyl Chloride	9.97	10.0	100	9.54	10.0	95	37-149	4	20
Bromomethane	11.0	10.0	110	10.0	10.0	100	56-146	10	20
Chloroethane	12.3	10.0	123	11.1	10.0	111	69-139	10	20
Trichlorofluoromethane	12.3	10.0	121	11.0	10.0	110	83-130	9	20
1,1,2-Trichlorotrifluoroethane	9.97	10.0	100	9.02	10.0	90	65-112	10	20
1,1-Dichloroethene	9.97 37.3	40.0	93	37.7	40.0	94	68-128	1	20
Acetone		40.0	93	35.5	40.0	89	68-144	4	20
Iodomethane	37.1	40.0	113	41.1	40.0	103	67-140	9	20
Carbon Disulfide	45.2	10.0	103	10.3	10.0	103	70-113	0	20
Methylene Chloride	10.3	10.0	90	9.20	10.0	92	75-115	2	20
Methyl tert-Butyl Ether	9.02	10.0	101	9.27	10.0	93	73-118	8	20
trans-1,2-Dichloroethene	10.1		112	10.7	10.0	107	77-127	5	20
1,1-Dichloroethane	11.2	10.0	107	42.2	40.0	106	51-202	2	39
Vinyl Acetate	42.9	40.0	115	10.6	10.0	106	75-132	8	20
2,2-Dichloropropane	11.5	10.0	91	36.8	40.0	92	72-122	2	20
2-Butanone (MEK)	36.3	40.0		9.73	10.0	97	81-118	4	20
cis-1,2-Dichloroethene	10.1	10.0	101	9.73 9.74	10.0	97	82-114	1	20
Bromochloromethane	9.80	10.0	98	10.6	10.0	106	78-119	4	20
Chloroform	11.0	10.0	110	10.0	10.0	101	71-125	9	20
1,1,1-Trichloroethane	11.1	10.0	111	10.1	10.0	106	69-130	11	20
Carbon Tetrachloride	11.7	10.0	117	10.3	10.0	103	77-114	10	20
1,1-Dichloropropene	11.4	10.0	114	10.3	10.0	101	81-117	7	20
Benzene	10.8	10.0	108	10.1	10.0	103	67-122	0	20
1,2-Dichloroethane	10.2	10.0	102	9.81	10.0	98	79-114	6	20
Trichloroethene	10.5	10.0	105		10.0	99	78-114	1	20
1,2-Dichloropropane	10.1	10.0	101	9.93	10.0	97	78-113	0	20
Dibromomethane	9.65	10.0	97	9.68	10.0	105	79-122	1	20
Bromodichloromethane	10.4	10.0	104	10.5	10.0	105	82-118	2	20
cis-1,3-Dichloropropene	10.3	10.0	103	10.5	40.0	84	75-115	3	20
4-Methyl-2-pentanone (MIBK)	32.5	40.0	81	33.5		103	85-118	7	20
Toluene	11.1	10.0	111	10.3	10.0	103	79-121	4	20
trans-1,3-Dichloropropene	9.93	10.0	99	10.3	10.0	96	79-121	0	20
1,1,2-Trichloroethane	9.55	10.0	96	9.58	10.0	96 95	76-110	8	20
Tetrachloroethene	10.3	10.0	103	9.51	10.0	93	/0-14/	G	20

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 04/09/2003 11:11:40 L:\STEALTH\CRYSTAL.RPT\Form3DLC.rpt Form 3C - Organic

Page 1 of 2

SuperSet Reference: RR3179

QA/QC Report

Client: Project: BE&K Terranext WVB/#03103154

Sample Matrix:

Water

Service Request: X2300276 **Date Extracted:** 04/03/2003

Date Analyzed: 04/03/2003

Lab Control Spike/Duplicate Lab Control Spike Summary Volatile Organic Compounds

Extraction Method: EPA 5030B **Analysis Method:**

8260B

Units: ug/L Basis: NA

Level: Low

Extraction Lot: XWG0300456

Lab Control Sample YWG0300456-1

Duplicate Lab Control Sample xWG0300456-2

		/G0300456-1 Control Spike	•		XWG0300456-2 Duplicate Lab Control Spike %Rec				RPD	
Analyte Name	Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit	
	41.8	40.0	104	39.9	40.0	100	65-120	5	20	
2-Hexanone	10.1	10.0	101	10.3	10.0	103	81-116	1	20	
1,3-Dichloropropane	9.36	10.0	94	9.43	10.0	94	77-119	1	20	
Dibromochloromethane	9.58	10.0	96	9.75	10.0	98	79-116	2	20	
1,2-Dibromoethane	10.4	10.0	104	9.88	10.0	99	84-114	5	20	
Chlorobenzene	9.65	10.0	97	9.52	10.0	95	78-118	1	20	
1,1,1,2-Tetrachloroethane	11.3	10.0	113	10.5	10.0	105	79-124	8	20	
Ethylbenzene	21.9	20.0	109	20.4	20.0	102	75-131	7	20	
m,p-Xylenes	10.6	10.0	106	9.98	10.0	100	78-122	6	20	
o-Xylene		10.0	108	10.5	10.0	105	80-126	3	20	
Styrene	10.8	10.0	108	10.0	10.0	100	75-126	8	20	
Isopropylbenzene	10.8	10.0	100	9.88	10.0	99	82-122	1	20	
Bromobenzene	10.0	10.0	99	9.92	10.0	99	77-118	0	20	
1,2,3-Trichloropropane	9.88		115	10.7	10.0	107	75-129	8	20	
n-Propylbenzene	11.5	10.0	115	10.7	10.0	108	77-126	6	20	
2-Chlorotoluene	11.5	10.0	113	10.8	10.0	108	82-120	4	20	
4-Chlorotoluene	11.3	10.0		10.5	10.0	105	75-130	7	20	
1,3,5-Trimethylbenzene	11.2	10.0	112	10.3	10.0	108	73-130	8	20	
tert-Butylbenzene	11.7	10.0	117	10.8	10.0	107	60-137	5	20	
1,2,4-Trimethylbenzene	11.2	10.0	112	10.7	10.0	101	68-131	6	20	
sec-Butylbenzene	10.8	10.0	108		10.0	101	71-137	0	20	
1,3-Dichlorobenzene	10.2	10.0	102	10.1	10.0	110	68-134	6	20	
4-Isopropyltoluene	11.6	10.0	116	11.0	10.0	89	70-118	2	20	
Bromoform	8.76	10.0	88	8.93	10.0	98	72-122	1	20	
1,1,2,2-Tetrachloroethane	9.66	10.0	97	9.76	10.0	101	82-114	2	20	
1,4-Dichlorobenzene	10.3	10.0	103	10.1		101	81-118	1	20	
1,2-Dichlorobenzene	10.3	10.0	103	10.2	10.0	102	71-125	6	20	
n-Butylbenzene	11.5	10.0	115	10.8	10.0	82	55-131	6	20	
1,2-Dibromo-3-chloropropane	8.71	10.0	87	8.20	10.0	82 97	75-123	3	20	
1,2,4-Trichlorobenzene	9.37	10.0	94	9.70	10.0		63-140	1	20	
Hexachlorobutadiene	11.7	10.0	117	11.6	10.0	116	67-125	4	20	
Naphthalene	8.60	10.0	86	8.92	10.0	89	72-124	3	20	
1,2,3-Trichlorobenzene	9.36	10.0	94	9.64	10.0	96	/2-124	3	20	

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

000035

Page

OA/QC Report

Client: Project: BE&K Terranext WVB/#03103154

Sample Matrix:

Water

Service Request: X2300276

Date Extracted: 04/04/2003 **Date Analyzed:** 04/04/2003

Lab Control Spike/Duplicate Lab Control Spike Summary **Volatile Organic Compounds**

Extraction Method: EPA 5030B **Analysis Method:**

8260B

Units: ug/L

Basis: NA

Level: Low

Extraction Lot: XWG0300459

Lab Control Sample XWG0300459-3

Duplicate Lab Control Sample XWG0300459-4

	Lab Control Spike		e	Duplicate Lab Control Spike		Spike	%Rec	RPD	
Analyte Name	Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit
Dichlorodifluoromethane	2.60	10.0	26	1.46	10.0	15	1-233	56 R7	20
Chloromethane	5.56	10.0	56	4.09	10.0	41 L2	46-156	30 R7	20
Vinyl Chloride	6.16	10.0	62	4.27	10.0	43 L2	51-158	36 R7	20
Bromomethane	7.58	10.0	76	6.64	10.0	66	37-149	13	20
Chloroethane	8.15	10.0	82	7.34	10.0	73	56-146	10	20
Trichlorofluoromethane	7.39	10.0	74	5.45	10.0	55 L2	69-139	30 R7	20
1,1,2-Trichlorotrifluoroethane	8.53	10.0	85	6.56	10.0	66 L2	83-130	26 R7	20
1,1-Dichloroethene	8.29	10.0	83	6.46	10.0	65	65-112	25 R7	20
Acetone	47.8	40.0	120	44.3	40.0	111	68-128	8	20
Iodomethane	35.0	40.0	88	33.2	40.0	83	68-144	5	20
Carbon Disulfide	36.0	40.0	90	29.0	40.0	73	67-140	21 R7	20
Methylene Chloride	10.6	10.0	106	9.76	10.0	98	70-113	9	20
Methyl tert-Butyl Ether	9.04	10.0	90	9.00	10.0	90	75-115	0	20
trans-1,2-Dichloroethene	9.79	10.0	98	8.51	10.0	85	73-118	14	20
1,1-Dichloroethane	10.4	10.0	104	9.43	10.0	94	77-127	9	20
Vinyl Acetate	42.8	40.0	107	41.2	40.0	103	51-202	4	39
2,2-Dichloropropane	8.72	10.0	87	7.90	10.0	79	75-132	10	20
2-Butanone (MEK)	32.3	40.0	81	38.4	40.0	96	72-122	17	20
cis-1,2-Dichloroethene	9.47	10.0	95	9.26	10.0	93	81-118	2	20
Bromochloromethane	11.3	10.0	113	11.7	10.0	117 L1	82-114	3	20
Chloroform	10.2	10.0	102	9.78	10.0	98	78-119	4	20
1,1,1-Trichloroethane	7.67	10.0	77	6.64	10.0	66 L2	71-125	14	20
Carbon Tetrachloride	8.00	10.0	80	6.91	10.0	69	69-130	15	20
1,1-Dichloropropene	8.47	10.0	85	7.13	10.0	71 L2	77-114	17	20
Benzene	9.06	10.0	91	8.48	10.0	85	81-117	7	20
1,2-Dichloroethane	10.0	10.0	100	9.79	10.0	98	67-122	2	20
Trichloroethene		10.0	92	8.44	10.0	84	79-114	9	20
1,2-Dichloropropane	9.98	10.0	100	9.86	10.0	99	78-114	1	20
Dibromomethane	10.4	10.0	104	10.8	10.0	108	78-113	4	20
Bromodichloromethane	9.39	10.0	94	9.16	10.0	92	79-122	2	20
cis-1,3-Dichloropropene	10.9	10.0	109	10.8	10.0	108	82-118	1	20
4-Methyl-2-pentanone (MIBK)	41.1	40.0	103	43.6	40.0	109	75-115	. 6	20
Toluene	9.58	10.0	96	9.00	10.0	90	85-118	6	20
trans-1,3-Dichloropropene	10.6	10.0	106	10.4	10.0	104	79-121	2	20
1,1,2-Trichloroethane	9.93	10.0	99	9.97	10.0	100	79-116	0	20
Tetrachloroethene	8.99	10.0	90	7.90	10.0	79	76-127	13	20
1 Calucino Comono									

Results flagged with an asterisk (*) indicate values outside control criteria.

Printed: 04/09/2003 11:11:47

L:\STEALTH\CRYSTAL.RPT\Form3DLC.rpt

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

000036

QA/QC Report

Client: Project: BE&K Terranext WVB/#03103154

Sample Matrix:

Water

Service Request: X2300276

Date Extracted: 04/04/2003 **Date Analyzed:** 04/04/2003

Lab Control Spike/Duplicate Lab Control Spike Summary Volatile Organic Compounds

Extraction Method: EPA 5030B **Analysis Method:**

8260B

Units: ug/L Basis: NA Level: Low

Extraction Lot: XWG0300459

Duplicate Lab Control Sample Lab Control Sample XWG0300459-4 xWG0300459-3

	XW	XWG0300459-3 Lab Control Spike		0459-3 XWG0300459-4 Dl Spike Duplicate Lab Control Spike %Rec		icate Lab Control Spike %Rec			
Analyte Name	Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit
	39.2	40.0	98	40.3	40.0	101	65-120	3	20
2-Hexanone	9.93	10.0	99	10.4	10.0	104	81-116	5	20
1,3-Dichloropropane	10.1	10.0	101	10.1	10.0	101	77-119	0	20
Dibromochloromethane	9.98	10.0	100	9.98	10.0	100	79-116	0	20
1,2-Dibromoethane	9.96 9.66	10.0	97	9.60	10.0	96	84-114	1	20
Chlorobenzene		10.0	95	9.29	10.0	93	78-118	2	20
1,1,1,2-Tetrachloroethane	9.51	10.0	96	8.95	10.0	90	79-124	6	20
Ethylbenzene	9.55	20.0	98	18.5	20.0	93	75-131	6	20
m,p-Xylenes	19.6	10.0	98	9.44	10.0	94	78-122	3	20
o-Xylene	9.75	10.0	102	10.1	10.0	101	80-126	2	20
Styrene	10.2		92	8.47	10.0	85	75-126	8	20
Isopropylbenzene	9.20	10.0	109	10.9	10.0	109	82-122	0	20
Bromobenzene	10.9	10.0	103	10.1	10.0	101	77-118	2	20
1,2,3-Trichloropropane	10.3	10.0	97	8.80	10.0	88	75-129	9	20
n-Propylbenzene	9.66	10.0	97 99	9.25	10.0	93	77-126	7	20
2-Chlorotoluene	9.93	10.0	99 100	9.70	10.0	97	82-120	3	20
4-Chlorotoluene	9.98	10.0	98	9.70	10.0	93	75-130	6	20
1,3,5-Trimethylbenzene	9.84	10.0		8.42	10.0	84	73-130	12	20
tert-Butylbenzene	9.46	10.0	95	9.53	10.0	95	60-137	5	20
1,2,4-Trimethylbenzene	9.97	10.0	100	9.33 7.71	10.0	77	68-131	14	20
sec-Butylbenzene	8.89	10.0	89	9.91	10.0	99	71-137	3	20
1,3-Dichlorobenzene	10.2	10.0	102	9.91 8.66	10.0	87	68-134	11	20
4-Isopropyltoluene	9.67	10.0	97	9.96	10.0	100	70-118	7	20
Bromoform	9.32	10.0	93		10.0	116	72-122	7	20
1,1,2,2-Tetrachloroethane	10.9	10.0	109	11.6	10.0	100	82-114	3	20
1,4-Dichlorobenzene	9.76	10.0	98	10.0	10.0	97	81-118	0	20
1,2-Dichlorobenzene	9.63	10.0	96	9.67	10.0	82	71-125	9	20
n-Butylbenzene	8.98	10.0	90	8.23	10.0	87	55-131	8	20
1,2-Dibromo-3-chloropropane	7.97	10.0	80	8.66	10.0	97	75-123	2	20
1,2,4-Trichlorobenzene	9.57	10.0	96	9.74	10.0	91	63-140	7	20
Hexachlorobutadiene	9.70	10.0	97	9.06		91 96	67-125	8	20
Naphthalene	8.85	10.0	89	9.60	10.0	111	72-124	7	20
1,2,3-Trichlorobenzene	10.4	10.0	104	11.1	10.0	111	12 124	•	

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 04/09/2003 11:11:47 L:\STEALTH\CRYSTAL.RPT\Form3DLC.rpt

April 7, 2003

Chuck Gordon BE & K Terranext 9830 S. 51st A-127 Phoenix, AZ 85044

Re: WVB/Project #03103154

Dear Chuck:

Enclosed are the results of the samples submitted to our laboratory on March 25, 2003. For your reference, these analyses have been assigned our service request number L2300676.

All analyses were performed in accordance with our laboratory's quality assurance program. Results are intended to be considered in their entirety and apply only to the samples analyzed. Columbia Analytical Services is not responsible for use of less than the complete report.

Columbia Analytical Services - is certified for environmental analyses by the Arizona Department of Health Services (certificate number: AZ0544 and AZ0136, expiration: May 23, 2003).

If you have any questions, please call me at (818) 587-5550, extension 309.

Respectfully submitted,

Columbia Analytical Services, Inc.

Sue Anderson Project Chemist

SA

Page 1 of _/6_

000038

Columbia Analytical Services, Inc.

Acronyms

California DHS LUFT Method 8015M American Society for Testing and Materials **ASTM** Biochemical Oxygen Demand BOD Benzene/Toluene/Ethylbenzene/Xylenes BTEX California Assessment Metals CAM Chemical Abstract Service Registry Number **CAS Number** Chlorofluorocarbon **CFC** Chemical Oxygen Demand COD Contract Required Detection Limit **CRDL** Detected; result must be greater than zero. D Detected; result must be greater than the detection limit. DL **Duplicate Laboratory Control Sample DLCS** Duplicate Matrix Spike **DMS** DOH or DHS Department of Health Services Environmental Laboratory Accreditation Program ELAP U.S. Environmental Protection Agency **EPA** Gas Chromatography GC Gas Chromatography/Mass Spectrometry GC/MS Ion Chromatography IC Initial Calibration Blank sample **ICB** Inductively Coupled Plasma atomic emission spectrometry **ICP** Initial Calibration Verification sample **ICV** Laboratory Control Sample LCS Leaking Underground Fuel Tank **LUFT** Modified M Methylene Blue Active Substances **MBAS** Method Detection Limit MDL Method Reporting Limit MRL MS Matrix Spike Methyl-tert-Butyl Ether **MTBE** Not Applicable NA Not Calculated NC None Detected at or above the Method Reporting/Detection Limit (MRL/MDL) ND Nephelometric Turbidity Units NTU Parts Per Billion ppb Parts Per Million ppm Practical Quantitation Limit **PQL** Quality Assurance/Quality Control OA/QC Resource Conservation and Recovery Act RCRA Relative Percent Difference RPD Selected Ion Monitoring SIM Standard Methods for the Examination of Water and Wastewater, 18th Ed., 1992. SM Solubility Threshold Limit Concentration STLC Test Methods for Evaluating Solid Waste, Physical/Chemical Methods SW-846, SW Third Edition, 1986 and as amended by Updates I, II, IIA, and IIB. Toxicity Characteristics Leaching Procedure TCLP Total Dissolved Solids TDS Total Petroleum Hydrocarbons TPH Total Recoverable Petroleum Hydrocarbons TRPH Total Suspended Solids TSS Total Threshold Limit Concentration TTLC Volatile Organic Analyte(s) **VOA** Qualifiers Undetected at or above MDL/MRL. U Estimated concentration. Analyte detected above MDL but below MRL. J Hit above MRL also found in Method Blank. В Analyte concentration above high point of ICAL. E

Presumptive evidence of compound. N Result from dilution. D See case narrative. X

- Cover Page -INORGANIC ANALYSIS DATA PACKAGE

Client:

BE&K Terranext, LLC

Project Name : Project No. : WVB 03103154 Service Request: L2300676

Sample Name:

AVB110-0100-02112 AVB110-0100-02112 AVB110-0100-02112 AVB30-1100-01093 AVB109-0100-02107 AVB30-1104-1000 Laboratory Control Sample

Method Blank

Lab Code:

L2300676-001 L2300676-001S L2300676-001SD L2300676-002 L2300676-003 L2300676-004

L2300676-LCS L2300676-MB

Analytical Report

Client:

BE&K Terranext, LLC

Project Name : Project No. : WVB 03103154

Matrix:

Water

Service Request: L2300676

Date Collected: 03/25/03 Date Received: 03/25/03

Date Extracted: 04/02/03

Total Metals

Sample Name:

AVB110-0100-02112

Lab Code:

L2300676-001

Units: ug/L (ppb)

Basis: NA

Analyte Analysis Method MRL Date Analyzed Result Notes

Chromium 6010B 10 04/04/03 ND

Analytical Report

Client:

BE&K Terranext, LLC

Project Name : Project No. : WVB 03103154

Matrix:

Water

Service Request: L2300676

Date Collected: 03/25/03 **Date Received**: 03/25/03

Date Extracted: 04/02/03

Dissolved Metals

Sample Name:

AVB110-0100-02112

Lab Code:

L2300676-001

Units: ug/L (ppb)

Basis: NA

Analyte Analysis Method MRL Date Analyzed Result Notes

Chromium 6010B 10 04/04/03 ND

Analytical Report

Client:

BE&K Terranext, LLC

Project Name : Project No. : WVB

Matrix:

03103154 Water Service Request: L2300676

Date Collected: 03/25/03

Date Received: 03/25/03

Date Extracted: 04/02/03

Total Metals

Sample Name :

AVB30-1100-01093

Lab Code:

L2300676-002

Units: ug/L (ppb) ·

Analyte	Analysis Method	MRL	Date Analyzed	Sample Result	Result Notes
Chromium	6010B	10	04/04/03	ND	

Analytical Report

Client:

BE&K Terranext, LLC

Project Name:

WVB

Project No. :
Matrix :

03103154

Water

Service Request: L2300676

Date Collected: 03/25/03.

Date Received: 03/25/03

Date Extracted: 04/02/03

Dissolved Metals

Sample Name:

AVB30-1100-01093

Lab Code:

L2300676-002

Units: ug/L (ppb)

Analyte	Analysis Method	MRL	Date Analyzed	Sample Result	Result Notes
Chromium	6010B	10	04/04/03	ND	

Analytical Report

Client:

BE&K Terranext, LLC

Project Name:

WVB

Project No. :
Matrix :

03103154

Water

Service Request: L2300676

Date Collected: 03/25/03

Date Received: 03/25/03

Date Extracted: 04/02/03

Total Metals

Sample Name:

AVB109-0100-02107

Lab Code:

L2300676-003

Units: ug/L (ppb)

Analyte	Analysis Method	MRL	Date Analyzed	Sample Result	Result Notes
Chromium	6010B	10	04/04/03	38	

Analytical Report

Client:

BE&K Terranext, LLC

Project Name: Project No.:

WVB 03103154

Matrix:

Water

Service Request: L2300676

Date Collected: 03/25/03 **Date Received:** 03/25/03

Date Extracted: 04/02/03

Dissolved Metals

Sample Name:

AVB109-0100-02107

Lab Code:

L2300676-003

Units: ug/L (ppb)

Analyte	Analysis Method	MRL	Date Analyzed	Sample Result	Result Notes
Chromium	6010B	10	04/04/03	ND	

Analytical Report

Client:

BE&K Terranext, LLC

Project Name:

WVB

Project No.:

03103154

Matrix:

Water

Service Request: L2300676

Date Collected: 03/25/03

Date Received: 03/25/03

Date Extracted: 04/02/03

Total Metals

Sample Name:

AVB30-1104-1000

Lab Code:

L2300676-004

Units: ug/L (ppb)

Basis: NA

Analyte Analysis Method MRL Date Analyzed Result Notes

Chromium 6010B 10 04/04/03 ND

Analytical Report

Client:

BE&K Terranext, LLC

Project Name : Project No. :

WVB 03103154

Matrix:

Water

Service Request: L2300676

Date Collected: 03/25/03

Date Received: 03/25/03

Date Extracted: 04/02/03

Dissolved Metals

Sample Name:

AVB30-1104-1000

Lab Code:

L2300676-004

Units: ug/L (ppb)

Basis: NA

Analyte Analysis Method MRL Date Analyzed Result Notes

Chromium 6010B 10 04/04/03 ND

Analytical Report

Client:

Project Name: Project No.:

WVB

Matrix:

Water

BE&K Terranext, LLC

03103154

Service Request: L2300676 Date Collected: NA

Date Received: NA

Date Extracted: 04/02/03

Total Metals

Sample Name:

Method Blank

Lab Code:

L2300676-MB

Units: ug/L (ppb)

Analyte	Analysis Method	MRL	Date Analyzed	Sample Result	Result Notes
Chromium	6010B	10	04/04/03	ND	

QA/QC Report

Client:

BE&K Terranext, LLC

Project Name : Project No. : WVB 03103154

Project N Matrix :

Water

Service Request: L2300676

Date Collected: NA
Date Received: NA
Date Extracted: 04/02/03

Date Analyzed: 04/04/03

Laboratory Control Sample Summary

Total Metals

Sample Name:

Laboratory Control Sample

Lab Code:

L2300676-LCS

Units: ug/L (ppb)

Analyte	Analysis Method	True Value	Result	Percent	CAS Percent Recovery Acceptance Limits	Result Notes
Chromium	6010B	500	522	104	87-111	

Analytical Report

Client:

BE&K Terranext, LLC

Project Name : Project No. : WVB 03103154

Matrix:

Water

Service Request: L2300676

Date Collected: 03/25/03

Date Received: 03/25/03

Date Extracted: 04/02/03 **Date Analyzed:** 04/04/03

Matrix Spike/Duplicate Matrix Spike Summary

Total Metals

Sample Name: Lab Code: AVB110-0100-02112

L2300676-001S

L2300676-001SD

Units: ug/L (ppb)

Analyte	Prep Method	Analysis Method	MRL	Spike MS	Level DMS	Sample Result	Spike MS	Result DMS	MS	DMS	CAS Acceptance Limits	Relative Percent Difference	Result Notes
Chromium	3010A	6010B	10	500	500	ND	505	494	101	99	87-105	2	

CHAIN OF CUSTODY/LABORATORY ANALYSIS REQUEST FORM

Columbia
Analytical L230067b
Services Mc

3902 East University Drive, Suite 4 • Phoenix, AZ 85034 • (602) 437-2001 • (800) 695-7222 x09 • FAX (602) 437-5308

DATE

ń PAGE

P,

 Surcharges Apply Lab No: X230027C ANALYSIS TAT (Circle One) SAMPLE RECEIPT: □ 48 Hours ☐ 72 Hours □ 24 Hours STANDARD **RUSH TAT** Shipping VIA: Shipping #: Condition: ₀ 028 ANALYSIS REQUESTED Date/Time 3-25-03 3/26/03 INVOICE INFORMATION: 0121 Date/Time Date/Time Flash Point O pho Paint Filler O Total D TOLP D Organization Organization Organization Total D TOLP D P.O.# REPORT REQUIREMENTS II. Report (includes DUP.MS. MSD, as required, may be III, Data Validation Report (includes All Raw Data) IV. CLP Deliverable Report charged as samples) Routine Report Halogenafed Volatile Organics Received By (Signature) Received By (Signature) Received By (Signature) S NUMBER OF CONTAINERS Date/Time 3・2 S・c 3 Date/Time 3 -25-03 / 6:30 PRESER-VATION せ **新** 12.40 Date/Time * ż #63/63/24 MATRIX Organization SE+K 100-117 g 9 \$ Organization Organization LAB A 20 PHONE/FAX 11.40 1.20 SPECIAL INSTRUCTIONS/COMMENTS: Kerk Treck DATE 325 * Refinquished By (Signature) Relinquished By (Signature) Relinquished⁄6y (Signature) PROJECT NAME WYS AN 18-20-11 00 -012 13 ANGROA-0700-02/07 AMB 10-0110-03112 SAMPLER'S SIGNATURE WB30-1104-1009 4030-1109-1400 COMPANY/ADDRESS . PROJECT MANAGER SAMPLE I.D. 00005 1|5

DISTRIBUTION: WHITE - return to originator; YELLOW - lab; PINK - retained by originator

0702

SAMPLE RECEIPT FORM

Service Request No: L2300676 Client: B, E & K
Sample(s) delivered by: Client CAS Emp After Hours DHL
Golden State Overnight Fed X X UPS Other Courier
Chain of Custody filled out accurately? Yes X No (See Comments)
Appropriate sample volume and containers? Yes X No (See Comments)
Sufficient labeling on container(s)? Yes X No (See Comments)
Container(s) supplied by CAS? Yes No(See Comments)
Custody seal(s) intact?
Trip Blank(s) received Yes No
If Trip Blank was supplied by CAS, record serial #TB
Temperature of sample(s)/cooler °C Temp Blank? Yor N (Circle One)
Voa's Marked Preserved? Yes No Filled Properly? Yes No (See Comments)
Preserved Bottles Requiring pH check(s)? Yes X Notified LK durl
RUSH Turn around time? Yes Notified Date & Time
Short Hold-Time Analysis (check all that apply)
ASAP Res Cl D.O Flash Diss S2 Ferrous Fe 24HR pH Odor Cr+6 48HR BOD Color MBAS Nitrate Nitrite O-PO4 Sett Sol Turbidity 72HR Vapors
Notified Date & Time
Container(s) received and their preservative(s): 17-3 = 1 1 LPL NP (A), 1 1 LPL HNO3 (B) -4 = 1 500ml PL HNO3 (A), 1 1 LPL NP (B)
Comments Filter a preserve diss metals bottle in lab
Initials, Date, Time 123/265 1655 r:\sr_forms\cooler\doc Rev. 1/17/02

CHAIN OF CUSTODY/LABORATORY ANALYSIS REQUEST FORM AZ 85034 · (602) 437-2001 · (800) 695-7222 x09 · FAX (602) 437-5308 DATE PAGE COPTORM

PAGE &

Belinguished By (Signature)	Retinquished By (Signature)	Millemania	Relinquished By (Signature)						SPECIAL INSTRUCTIONS/COMMENTS:				1 0001-6011-000V	"	/ U	1 EEG10-001-069N	4 ses 21160-0110-0(121)	SAMPLE DATE	SAMPLER'S SIGNATURE TO	PHO		COMPANY/ADDRESS TOOK	PROJECT MANAGER Chuck	PROJECT NAME WVB	An Employee - Owned Company 3902
	Organization	かんナス	Organization						ГS:				- Y-bos	1/.40 of	1.70 003	3-30 1-50 -002	185 (276 -001	TME LAB		PHONE/FAX	The second secon		60rdon	# 0310	Sour East Office Sity Drive, Oute +
	Date/	5	n Date/Time 3・25・G3										3.	ot se in	33 N N	1	1/40 things	PRESER- MATRIX VATION			and the state of t	11.00		63184	ופ + - ו ווספוווא, הב ססססיי
		C	Ň	-									をなっ	S	9	4	ς. 5\		BER C	F CO	 NTA	INEF	RS		L
	Received By (Signature)	Mary	Received By (Signature)											ω	3	S		BTEX 602/80 Volati GC/M. Haloo	ile Orga S 624 Jenato	anics 260			/		(005) 101 5001 (000
lire)	ure)	Null	ure)		IV. CLP Deliv	(includes All Raw Data)	charged as	MSD, as required, may be	I. Routine Report	DEBORT DE								Halog 601/6 TPH/	Denate 02 [] 8015A	d & Ai 8021	tile Comat	"C Vo	·		
		<i>yy</i>	2		erable Report	All Raw Data)	samples) ation Report	ludes DUP.MS. quired, may be	port Somewick of	O I DEMENTS								Base GC/M	Neutre	⁹ Um F 418.1	lydro AZ I Orga	carbo	ons		//
Organization	Organization	20	Organization				Bill To			INVOICE								Le _{ad} Flash	To To	als 7 Otal 5 SLP 0	Total CLP			ANALYSIS F	
Date/Time	Date/Time	1246	Date/Time 3-25-03		100000					ICE INFORMATION:					2			Flash TVPI 8015 PAH	d as G	3 pH			ilter 🗇	REQUESTED	
		А		_	<u></u>		S &	ू थ		Š				`			\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	100	TAL	<u> </u>	9270 CR	_	_		
	RUSH TAT - S	110	ANALYSIS TAT		Lab No: X 23	Concession.	Shipping #:	Shipping VIA:	Ş	SAMP								D/QD/	POR	Chi July	D/W/ 7/2	CK Gor	Soon/	<u> </u>	
72 Hours	Surcharges Apply 24 Hours		T (Circle One)		300276	And the second s		a seed in section .	3	SAMPLE RECEIPT:								REMARKS							

Columbia Analytical Services, Inc. Phoenix, AZ

Sample Receipt and Preservation Form

ient: b	GK			Project	Name: _	WV	В		
•	ceived on: 3/2	2 \$∫0⊃ da □ F	te 17	45tir			eeves 🗆		
MATRIX:	SOIL 🗆	WATER	7						
First Extra	action Holding Ti	me Expiration	· <u> </u>	date		time (so	ls only)		
	raction/analysis h							Yes □	No
If YES, cl	nemist notified on	\$	date	time		Che	mist's Initials		
Are the cu If yes, how Are the sig Did all con Are all con Were the co Have VOA Temperatu	stody seals present many and where many and where gnature and date containers arrive in trainer labels containers which been checked are of sample(s) under the containers of discrepancies:	orrect? good condition uplete (i.e. pres used for the te for the presence pon receipt:	ervation, samests indicated? The of air bubble	ple ID)?	problems	in comments	Yes Yes Yes Yes Yes Yes Yes Yes	No O No O No O	DAR N/
						VOA	Vial pH Verif	ication	
							sted After Ana		
							All Samples pl	$1 \le 2$	
		YES	NO			☐ Followin	g Samples Exh	ibited pl	<u>I > 2</u>
pН	Reagent								
12	NaOH								
2	HNO ₃	/							
2	H ₂ SO ₄	***************************************							
Comments:				1 1 C -		Pagaired	by (initials):	H	<i>M</i>

April 10, 2003

Chuck Gordon BE&K Terranext 9830 S. 51st Street, Suite A-127 Phoenix, AZ 85044

WVB / Project #03103154 Re:

Dear Chuck:

Enclosed are the results of the samples submitted to our laboratory on March 27, 2003. The samples were analyzed for Total and Dissloved Chromium by our Canoga Park, CA facility (L2300695). For your reference, the 8260 analyses have been assigned our service request number X2300283.

All analyses were performed according to our laboratory's quality assurance program. results are intended to be considered in their entirety, and Columbia Analytical Services, Inc. (CAS) is not responsible for use of less than the complete report. Results apply only to the samples analyzed. Columbia Analytical Services, Inc. is certified for environmental analyses by the Arizona Department of Health Services (Certificate #AZ0136; and #AZ0497).

Please call if you have any questions. My extension is 223.

Respectfully submitted,

Columbia Analytical Services, Inc.

Tracy L. Dutton

Laboratory Director

TLD/lm

Page 1 of 60

Client: Project:

BE&K Terranext

WVB / #03103154

Sample Matrix: Water

Service Request No.:

X2300276

Date Received:

3/25/03

CASE NARRATIVE

All analyses were performed consistent with the quality assurance program of Columbia Analytical Services, Inc. (CAS). This report contains analytical results for sample(s) designated for Tier II data deliverables. When appropriate to the method, method blank results have been reported with each analytical test. Surrogate recoveries have been reported for all applicable organic analyses. Additional quality control analyses reported herein include: Matrix/Duplicate Matrix Spike (MS/DMS) and Laboratory Control Sample (LCS).

All EPA recommended holding times have been met for analyses in this sample delivery group.

The following difficulties were experienced during analysis of this batch:

The associated blank spike (XWG0300454-3) recovery of Bromochloromethne, Method 8260B was above laboratory acceptance limits. This compound was not detected in any of the samples analyzed in this batch.

Sample AVB118-0100-01100 (X2300283-004) required dilution of Trichloroethene, Method 8260B, due to high concentration of target analytes.

Matrix spike (XWG0300454-1, XWG0300454-2. XWG0300459-1, and XWG0300459-2) recovery of several analytes for Method 8260B was low. The method control sample recovery was acceptable.

MS/DMS (XWG0300454-1 and XWG0300454-2) RPD for Chloroethane, Method 8260B exceeded the laboratory control limits. Recovery met acceptance criteria.

Matrix spike (XWG0300454-1, XWG0300454-2, and XWG0300459-1) recovery of Hexachlorobutadiene, Method 8260B, was high. The method control sample recovery was acceptable.

LCS/DLCS (XWG0300459-3 and XWG0300459-4) RPD for several analytes for Method 8260B exceeded the laboratory control limits. Recovery met acceptance criteria.

The associated blank spike (XWG0300459-4) recovery of several analytes for Method 8260B was below labortory acceptance limits. These compounds were seen in the method reporting limit standard that was analyzed with this batch of samples. This verifies that the compounds would be detected if present in the samples.

The associated blank spike (XWG0300459-4) recovery of Bromochloromethane, Method 8260B, was above laboratory acceptance limits. This compound was not detected in any of the samples analyzed in this batch.

Approved by	M) _{Date}	4-11-03
Approved by		

ARIZONA DATA QUALIFIERS

Target analyte detected in calibration blank at or above the method reporting limit, but below trigger level or Target analyte detected in method blank at or above method reporting limit. Concentration found in the sample was 10 times above the concentration found in the method blank. Confirmation: C1 Confirmatory analysis not performed as required by the method. C2 Confirmatory analysis not performed. Confirmation of analyte presence established by site historical data. C3 Qualitative confirmation performed. See case narrative. C4 Confirmatory analysis was past holding time. C5 Confirmatory analysis was past holding time. Original result not confirmed. Dilution: D1 Sample required dilution due to matrix interference. See case narrative. D2 Sample required dilution due to high concentration of target analyte. D3 Sample dilution required due to insufficient sample. D4 Minimum reporting level (MRL) adjusted to reflect sample amount received and analyzed. Estimated concentration: E1 Concentration estimated. Analyte exceeded calibration range. Reanalysis not possible due to insufficient sample.	Method	Blank:
Target analyte detected in balank at or above the method reporting limit. Target analyte detected in blank at/above method acceptance criteria. Target analyte detected in method blank at or above the method reporting limit, but below trigger level or MC Target analyte detected in method blank at or above the method reporting limit, but below trigger level or MC Target analyte detected in method blank at or above method reporting limit. Concentration found in the sample was 10 times above the concentration found in the method blank. Confirmators Confirmatory analysis not performed as required by the method. Confirmatory analysis not performed. Confirmation of analyte presence established by site historical data. Qualitative confirmation performed. See case narrative. Confirmatory analysis was past holding time. Confirmatory analysis was past holding time. Confirmatory analysis was past holding time. Sample required dilution due to matrix interference. See case narrative. Sample required dilution due to high concentration of target analyte Sample dilution required due to insufficient sample. Minimum reporting level (MRL) adjusted to reflect sample amount received and analyzed. Estimated concentration: Concentration estimated. Analyte exceeded calibration range. Reanalysis not possible due to insufficient sample. Concentration estimated. Analyte exceeded calibration range. Reanalysis not performed due to holding time requirements. Concentration estimated. Analyte exceeded calibration range. Reanalysis not performed due to holding time requirements. Concentration estimated. Analyte was detected below laboratory minimum reporting level (MRL). Concentration estimated. Internal standard recoveries did not meet method acceptance criteria. Confirmation estimated. Internal standard recoveries did not meet laboratory acceptance criteria. Hold Time: Hold Time: Hold Time: Sample was received and analyzed past holding time. See case narrative.	B1	Target analyte detected in method blank at or above the method reporting limit.
Target analyte detected in balank at or above the method reporting limit. Target analyte detected in blank at/above method acceptance criteria. Target analyte detected in method blank at or above the method reporting limit, but below trigger level or MC Target analyte detected in method blank at or above the method reporting limit, but below trigger level or MC Target analyte detected in method blank at or above method reporting limit. Concentration found in the sample was 10 times above the concentration found in the method blank. Confirmators Confirmatory analysis not performed as required by the method. Confirmatory analysis not performed. Confirmation of analyte presence established by site historical data. Qualitative confirmation performed. See case narrative. Confirmatory analysis was past holding time. Confirmatory analysis was past holding time. Confirmatory analysis was past holding time. Sample required dilution due to matrix interference. See case narrative. Sample required dilution due to high concentration of target analyte Sample dilution required due to insufficient sample. Minimum reporting level (MRL) adjusted to reflect sample amount received and analyzed. Estimated concentration: Concentration estimated. Analyte exceeded calibration range. Reanalysis not possible due to insufficient sample. Concentration estimated. Analyte exceeded calibration range. Reanalysis not performed due to holding time requirements. Concentration estimated. Analyte exceeded calibration range. Reanalysis not performed due to holding time requirements. Concentration estimated. Analyte was detected below laboratory minimum reporting level (MRL). Concentration estimated. Internal standard recoveries did not meet method acceptance criteria. Confirmation estimated. Internal standard recoveries did not meet laboratory acceptance criteria. Hold Time: Hold Time: Hold Time: Sample was received and analyzed past holding time. See case narrative.	B2	Non-target analyte detected in method blank and sample, producing interference.
Target analyte detected in blank at/above method acceptance criteria. Target analyte detected in method blank at or above the method reporting limit, but below trigger level or MC Target analyte detected in method blank at or above method reporting limit, but below trigger level or MC Target analyte detected in method blank at or above method reporting limit. Concentration found in the sample was 10 times above the concentration found in the method blank. Confirmation: Confirmatory analysis not performed as required by the method. Confirmatory analysis not performed. Confirmation of analyte presence established by site historical data. Confirmatory analysis was past holding time. Sample dilution required dilution due to matrix interference. See case narrative. Estimated concentration: Concentration estimated. Analyte exceeded calibration range. Reanalysis not possible due to insufficient sample. Concentration estimated. Analyte exceeded calibration range. Reanalysis not performed due to holding time requirements. Concentration estimated. Analyte was detected below laboratory minimum reporting level (MRL). Concentration estimated. Analyte was detected below laboratory minimum reporting level (MRL). Concentration estimated. Internal standard recoveries did not meet method acceptance criteria. Confirmation estimated. Interna	B3	
Target analyte detected in method blank at or above the method reporting limit, but below trigger level or MC Target analyte detected in calibration blank at or above the method reporting limit, but below trigger level or Target analyte detected in method blank at or above method reporting limit. Concentration found in the sampl was 10 times above the concentration found in the method blank. Confirmation: Confirmation: Confirmatory analysis not performed as required by the method. Confirmatory analysis not performed. Confirmation of analyte presence established by site historical data. Qualitative confirmatory paralysis was past holding time. Confirmatory analysis was past holding time. Sample required dilution due to matrix interference. See case narrative. Sample required dilution due to matrix interference. See case narrative. Minimum reporting level (MRL) adjusted to reflect sample amount received and analyzed. Estimated concentration: El Concentration estimated. Analyte exceeded calibration range. Reanalysis not possible due to insufficient sample. Concentration estimated. Analyte exceeded calibration range. Reanalysis not performed due to holding time requirements. Concentration estimated. Analyte was detected below laboratory minimum reporting level (MRL). Concentration estimated. Analyte was detected below laboratory minimum reporting level (MRL), but not confirmed by alternate analysis. Confirmation estimated. Internal standard recoveries did not meet nethod acceptance criteria. Confirmation estimated. Internal standard recoveries did not meet laboratory acceptance criteria. Hold Time: In Sample analysis within holding time. Reanalysis for the required dilution was past holding time. Sample was received and analyzed past holding time.	B4	
Target analyte detected in calibration blank at or above the method reporting limit, but below trigger level or Target analyte detected in method blank at or above method reporting limit. Concentration found in the sample was 10 times above the concentration found in the method blank. Confirmation: Confirmatory analysis not performed as required by the method. Confirmatory analysis not performed. Confirmation of analyte presence established by site historical data. Qualitative confirmation performed. See case narrative. Confirmatory analysis was past holding time. Confirmatory analysis was past holding time. Original result not confirmed. Sample required dilution due to matrix interference. See case narrative. Sample required dilution due to high concentration of target analyte Sample dilution required due to insufficient sample. Minimum reporting level (MRL) adjusted to reflect sample amount received and analyzed. Estimated concentration: Concentration estimated. Analyte exceeded calibration range. Reanalysis not possible due to insufficient sample. Concentration estimated. Analyte exceeded calibration range. Reanalysis not performed due to sample matrix requirements. Concentration estimated. Analyte exceeded calibration range. Reanalysis not performed due to holding time requirements. Concentration estimated. Analyte was detected below laboratory minimum reporting level (MRL). Concentration estimated. Analyte was detected below laboratory minimum reporting level (MRL), but not confirmed by alternate analysis. Confirmation estimated. Internal standard recoveries did not meet method acceptance criteria. Confirmation estimated. Internal standard recoveries did not meet laboratory acceptance criteria. Hold Time: In Sample analysis within holding time. Reanalysis for the required dilution was past holding time. Sample was received and analyzed past holding time.	B5	Target analyte detected in method blank at or above the method reporting limit, but below trigger level or MCL.
Confirmation: Confirmation:	В6	Target analyte detected in calibration blank at or above the method reporting limit, but below trigger level or MCL
Confirmation: C1 Confirmatory analysis not performed. Confirmation of analyte presence established by site historical data. C2 Confirmatory analysis was past holding time. C3 Qualitative confirmation performed. See case narrative. C4 Confirmatory analysis was past holding time. C5 Confirmatory analysis was past holding time. Original result not confirmed. Dilution: D1 Sample required dilution due to matrix interference. See case narrative. Sample required dilution due to high concentration of target analyte. Sample dilution required due to insufficient sample. Minimum reporting level (MRL) adjusted to reflect sample amount received and analyzed. Estimated concentration: E1 Concentration estimated. Analyte exceeded calibration range. Reanalysis not possible due to insufficient sample. C0 concentration estimated. Analyte exceeded calibration range. Reanalysis not performed due to sample matrically concentration estimated. Analyte exceeded calibration range. Reanalysis not performed due to holding time requirements. E4 Concentration estimated. Analyte was detected below laboratory minimum reporting level (MRL). E5 Concentration estimated. Analyte was detected below laboratory minimum reporting level (MRL), but not confirmed by alternate analysis. C6 Confirmation estimated. Internal standard recoveries did not meet method acceptance criteria. E6 Confirmation estimated. Internal standard recoveries did not meet laboratory acceptance criteria. E7 Confirmation estimated. Internal standard recoveries did not meet laboratory acceptance criteria. E7 Confirmation estimated. Internal standard recoveries did not meet laboratory acceptance criteria. E8 Confirmation estimated. Internal standard recoveries did not meet laboratory acceptance criteria. E8 Confirmation estimated. Internal standard recoveries did not meet laboratory acceptance criteria. E8 Confirmation estimated. Internal standard recoveries did not meet laboratory acceptance criteria.	В7	Target analyte detected in method blank at or above method reporting limit. Concentration found in the sample
Confirmatory analysis not performed. Confirmation of analyte presence established by site historical data. Confirmation performed. Confirmation of analyte presence established by site historical data. Confirmatory analysis was past holding time. Confirmatory analysis was past holding time. Confirmatory analysis was past holding time. Original result not confirmed. Dilution: Di Sample required dilution due to matrix interference. See case narrative. Sample required dilution due to high concentration of target analyte. Sample dilution required due to insufficient sample. Minimum reporting level (MRL) adjusted to reflect sample amount received and analyzed. Estimated concentration: Concentration estimated. Analyte exceeded calibration range. Reanalysis not possible due to insufficient sample. Concentration estimated. Analyte exceeded calibration range. Reanalysis not performed due to sample matricentary concentration estimated. Analyte exceeded calibration range. Reanalysis not performed due to holding time requirements. Concentration estimated. Analyte was detected below laboratory minimum reporting level (MRL). Concentration estimated. Analyte was detected below laboratory minimum reporting level (MRL), but not confirmed by alternate analysis. Confirmation estimated. Internal standard recoveries did not meet method acceptance criteria. Confirmation estimated. Internal standard recoveries did not meet haboratory acceptance criteria. Hold Time: Bample analysis performed past holding time. See case narrative. Initial analysis within holding time. Reanalysis for the required dilution was past holding time.		was 10 times above the concentration found in the method blank.
C2 Confirmatory analysis not performed. Confirmation of analyte presence established by site historical data. C3 Qualitative confirmation performed. See case narrative. C5 Confirmatory analysis was past holding time. C5 Confirmatory analysis was past holding time. C6 Confirmatory analysis was past holding time. C7 Confirmatory analysis was past holding time. C8 Confirmatory analysis was past holding time. C9 Confirmatory analysis not performed. C9 Confirmatory analysis not performed due to matrix interference. C9 Case narrative. C9 Case narrative. C9 Concentration estimated. Analyte exceeded calibration range. Reanalysis not possible due to insufficient sample. C9 Concentration estimated. Analyte exceeded calibration range. Reanalysis not performed due to sample matrix concentration estimated. Analyte was detected below laboratory minimum reporting level (MRL). C9 Concentration estimated. Analyte was detected below laboratory minimum reporting level (MRL), but not confirmed by alternate analysis. C9 Confirmation estimated. Internal standard recoveries did not meet method acceptance criteria. C9 Confirmation estimated. Internal standard recoveries did not meet laboratory acceptance criteria. C9 Confirmation estimated. Internal standard recoveries did not meet laboratory acceptance criteria. C9 Confirmation estimated. Internal standard recoveries did not meet laboratory acceptance criteria. C1 Initial analysis within holding time. Reanalysis for the required dilution was past holding time.	Confirm	nation:
C3 Qualitative confirmation performed. See case narrative. C4 Confirmatory analysis was past holding time. C5 Confirmatory analysis was past holding time. Original result not confirmed. Dilution: D1 Sample required dilution due to matrix interference. See case narrative. D2 Sample required dilution due to high concentration of target analyte D3 Sample dilution required due to insufficient sample. D4 Minimum reporting level (MRL) adjusted to reflect sample amount received and analyzed. Estimated concentration: E1 Concentration estimated. Analyte exceeded calibration range. Reanalysis not possible due to insufficient sample. E2 Concentration estimated. Analyte exceeded calibration range. Reanalysis not performed due to sample matrix Concentration estimated. Analyte exceeded calibration range. Reanalysis not performed due to holding time requirements. E4 Concentration estimated. Analyte was detected below laboratory minimum reporting level (MRL). E5 Concentration estimated. Analyte was detected below laboratory minimum reporting level (MRL), but not confirmed by alternate analysis. E6 Confirmation estimated. Internal standard recoveries did not meet method acceptance criteria. E7 Confirmation estimated. Internal standard recoveries did not meet laboratory acceptance criteria. Hold Time: H1 Sample analysis performed past holding time. See case narrative. H11 Initial analysis within holding time. Reanalysis for the required dilution was past holding time. H33 Sample was received and analyzed past holding time.	C1	
C4 Confirmatory analysis was past holding time. C5 Confirmatory analysis was past holding time. Original result not confirmed. Dilution: D1 Sample required dilution due to matrix interference. See case narrative. D2 Sample required dilution due to high concentration of target analyte. D3 Sample dilution required due to insufficient sample. D4 Minimum reporting level (MRL) adjusted to reflect sample amount received and analyzed. Estimated concentration: E1 Concentration estimated. Analyte exceeded calibration range. Reanalysis not possible due to insufficient sample. E2 Concentration estimated. Analyte exceeded calibration range. Reanalysis not performed due to sample matrix E3 Concentration estimated. Analyte exceeded calibration range. Reanalysis not performed due to holding time requirements. E4 Concentration estimated. Analyte was detected below laboratory minimum reporting level (MRL). E5 Concentration estimated. Analyte was detected below laboratory minimum reporting level (MRL), but not confirmed by alternate analysis. E6 Confirmation estimated. Internal standard recoveries did not meet method acceptance criteria. E7 Confirmation estimated. Internal standard recoveries did not meet laboratory acceptance criteria. Hold Time: H11 Sample analysis performed past holding time. See case narrative. H12 Initial analysis within holding time. Reanalysis for the required dilution was past holding time.	C2	Confirmatory analysis not performed. Confirmation of analyte presence established by site historical data.
Dilution: Dilution: Sample required dilution due to matrix interference. See case narrative. 102 Sample required dilution due to high concentration of target analyte. 103 Sample dilution required due to insufficient sample. D4 Minimum reporting level (MRL) adjusted to reflect sample amount received and analyzed. Estimated concentration: E1 Concentration estimated. Analyte exceeded calibration range. Reanalysis not possible due to insufficient sample. E2 Concentration estimated. Analyte exceeded calibration range. Reanalysis not performed due to sample matrical. E3 Concentration estimated. Analyte exceeded calibration range. Reanalysis not performed due to holding time requirements. E4 Concentration estimated. Analyte was detected below laboratory minimum reporting level (MRL). E5 Concentration estimated. Analyte was detected below laboratory minimum reporting level (MRL), but not confirmed by alternate analysis. E6 Confirmation estimated. Internal standard recoveries did not meet method acceptance criteria. E7 Confirmation estimated. Internal standard recoveries did not meet laboratory acceptance criteria. Hold Time: H1 Sample analysis within holding time. Reanalysis for the required dilution was past holding time. H3 Sample was received and analyzed pas	C3	Qualitative confirmation performed. See case narrative.
Dilution: D1 Sample required dilution due to matrix interference. See case narrative. D2 Sample required dilution due to high concentration of target analyte. D3 Sample dilution required due to insufficient sample. D4 Minimum reporting level (MRL) adjusted to reflect sample amount received and analyzed. Estimated concentration: E1 E1 Concentration estimated. Analyte exceeded calibration range. Reanalysis not possible due to insufficient sample. E2 Concentration estimated. Analyte exceeded calibration range. Reanalysis not performed due to holding time requirements. E4 Concentration estimated. Analyte was detected below laboratory minimum reporting level (MRL). E5 Concentration estimated. Analyte was detected below laboratory minimum reporting level (MRL), but not confirmed by alternate analysis. E6 Confirmation estimated. Internal standard recoveries did not meet method acceptance criteria. E7 Confirmation estimated. Internal standard recoveries did not meet laboratory acceptance criteria. Hold Time: H1 Sample analysis performed past holding time. See case narrative. H2 Initial analysis within holding time. Reanalysis for the required dilution was past holding time. H3 Sample was received and analyzed past holding time.	C4	
Sample required dilution due to matrix interference. See case narrative. Sample required dilution due to high concentration of target analyte. Sample dilution required due to insufficient sample. Minimum reporting level (MRL) adjusted to reflect sample amount received and analyzed. Estimated concentration: Concentration estimated. Analyte exceeded calibration range. Reanalysis not possible due to insufficient sample. Concentration estimated. Analyte exceeded calibration range. Reanalysis not performed due to sample matrices. Concentration estimated. Analyte exceeded calibration range. Reanalysis not performed due to holding time requirements. Concentration estimated. Analyte was detected below laboratory minimum reporting level (MRL). Concentration estimated. Analyte was detected below laboratory minimum reporting level (MRL), but not confirmed by alternate analysis. Confirmation estimated. Internal standard recoveries did not meet method acceptance criteria. Confirmation estimated. Internal standard recoveries did not meet laboratory acceptance criteria. Confirmation estimated. Internal standard recoveries did not meet laboratory acceptance criteria. Hold Time: HI Sample analysis performed past holding time. See case narrative. Initial analysis within holding time. Reanalysis for the required dilution was past holding time.	C5	Confirmatory analysis was past holding time. Original result not confirmed.
Sample required dilution due to high concentration of target analyte. Sample dilution required due to insufficient sample. Minimum reporting level (MRL) adjusted to reflect sample amount received and analyzed. Estimated concentration: Concentration estimated. Analyte exceeded calibration range. Reanalysis not possible due to insufficient sample. Concentration estimated. Analyte exceeded calibration range. Reanalysis not performed due to sample matrices. Concentration estimated. Analyte exceeded calibration range. Reanalysis not performed due to holding time requirements. Concentration estimated. Analyte was detected below laboratory minimum reporting level (MRL). Concentration estimated. Analyte was detected below laboratory minimum reporting level (MRL), but not confirmed by alternate analysis. Confirmation estimated. Internal standard recoveries did not meet method acceptance criteria. Confirmation estimated. Internal standard recoveries did not meet laboratory acceptance criteria. Hold Time: HI Sample analysis performed past holding time. See case narrative. Initial analysis within holding time. Reanalysis for the required dilution was past holding time. Sample was received and analyzed past holding time.	Dilution	
D3 Sample dilution required due to insufficient sample. D4 Minimum reporting level (MRL) adjusted to reflect sample amount received and analyzed. Estimated concentration: E1 Concentration estimated. Analyte exceeded calibration range. Reanalysis not possible due to insufficient sample. E2 Concentration estimated. Analyte exceeded calibration range. Reanalysis not performed due to sample matrical analytic matrical exceeded calibration range. Reanalysis not performed due to holding time requirements. E4 Concentration estimated. Analyte was detected below laboratory minimum reporting level (MRL). E5 Concentration estimated. Analyte was detected below laboratory minimum reporting level (MRL), but not confirmed by alternate analysis. E6 Confirmation estimated. Internal standard recoveries did not meet method acceptance criteria. E7 Confirmation estimated. Internal standard recoveries did not meet laboratory acceptance criteria. Hold Time: H1 Sample analysis performed past holding time. See case narrative. H1 Sample analysis within holding time. Reanalysis for the required dilution was past holding time. E8 Sample was received and analyzed past holding time.	D1	·
 Bestimated concentration: Concentration estimated. Analyte exceeded calibration range. Reanalysis not possible due to insufficient sample. Concentration estimated. Analyte exceeded calibration range. Reanalysis not performed due to sample matrix. Concentration estimated. Analyte exceeded calibration range. Reanalysis not performed due to holding time requirements. Concentration estimated. Analyte was detected below laboratory minimum reporting level (MRL). Concentration estimated. Analyte was detected below laboratory minimum reporting level (MRL), but not confirmed by alternate analysis. Confirmation estimated. Internal standard recoveries did not meet method acceptance criteria. Confirmation estimated. Internal standard recoveries did not meet laboratory acceptance criteria. Hold Time: Hold Time: Initial analysis performed past holding time. See case narrative. Initial analysis within holding time. Reanalysis for the required dilution was past holding time. Sample was received and analyzed past holding time.	D2	
Estimated concentration: E1 Concentration estimated. Analyte exceeded calibration range. Reanalysis not possible due to insufficient sample. E2 Concentration estimated. Analyte exceeded calibration range. Reanalysis not performed due to sample matrix E3 Concentration estimated. Analyte exceeded calibration range. Reanalysis not performed due to holding time requirements. E4 Concentration estimated. Analyte was detected below laboratory minimum reporting level (MRL). E5 Concentration estimated. Analyte was detected below laboratory minimum reporting level (MRL), but not confirmed by alternate analysis. E6 Confirmation estimated. Internal standard recoveries did not meet method acceptance criteria. E7 Confirmation estimated. Internal standard recoveries did not meet laboratory acceptance criteria. Hold Time: H1 Sample analysis performed past holding time. See case narrative. H2 Initial analysis within holding time. Reanalysis for the required dilution was past holding time. H3 Sample was received and analyzed past holding time.	D3	
Concentration estimated. Analyte exceeded calibration range. Reanalysis not possible due to insufficient sample. Concentration estimated. Analyte exceeded calibration range. Reanalysis not performed due to sample matri Concentration estimated. Analyte exceeded calibration range. Reanalysis not performed due to holding time requirements. Concentration estimated. Analyte was detected below laboratory minimum reporting level (MRL). Concentration estimated. Analyte was detected below laboratory minimum reporting level (MRL), but not confirmed by alternate analysis. Confirmation estimated. Internal standard recoveries did not meet method acceptance criteria. Confirmation estimated. Internal standard recoveries did not meet laboratory acceptance criteria. Hold Time: Hold Time: Hold Time: Hold Time: Hold Time: Sample analysis performed past holding time. See case narrative. Initial analysis within holding time. Reanalysis for the required dilution was past holding time. Sample was received and analyzed past holding time.	D4	Minimum reporting level (MRL) adjusted to reflect sample amount received and analyzed.
E2 Concentration estimated. Analyte exceeded calibration range. Reanalysis not performed due to sample matri E3 Concentration estimated. Analyte exceeded calibration range. Reanalysis not performed due to holding time requirements. E4 Concentration estimated. Analyte was detected below laboratory minimum reporting level (MRL). E5 Concentration estimated. Analyte was detected below laboratory minimum reporting level (MRL), but not confirmed by alternate analysis. E6 Confirmation estimated. Internal standard recoveries did not meet method acceptance criteria. E7 Confirmation estimated. Internal standard recoveries did not meet laboratory acceptance criteria. H0ld Time: H1 Sample analysis performed past holding time. See case narrative. H2 Initial analysis within holding time. Reanalysis for the required dilution was past holding time. H3 Sample was received and analyzed past holding time.	Estimate	
Concentration estimated. Analyte exceeded calibration range. Reanalysis not performed due to holding time requirements. E4 Concentration estimated. Analyte was detected below laboratory minimum reporting level (MRL). E5 Concentration estimated. Analyte was detected below laboratory minimum reporting level (MRL), but not confirmed by alternate analysis. E6 Confirmation estimated. Internal standard recoveries did not meet method acceptance criteria. E7 Confirmation estimated. Internal standard recoveries did not meet laboratory acceptance criteria. Hold Time: H1 Sample analysis performed past holding time. See case narrative. H2 Initial analysis within holding time. Reanalysis for the required dilution was past holding time. H3 Sample was received and analyzed past holding time.	E1	
Concentration estimated. Analyte exceeded calibration range. Reanalysis not performed due to holding time requirements. E4 Concentration estimated. Analyte was detected below laboratory minimum reporting level (MRL). E5 Concentration estimated. Analyte was detected below laboratory minimum reporting level (MRL), but not confirmed by alternate analysis. E6 Confirmation estimated. Internal standard recoveries did not meet method acceptance criteria. E7 Confirmation estimated. Internal standard recoveries did not meet laboratory acceptance criteria. Hold Time: H1 Sample analysis performed past holding time. See case narrative. H2 Initial analysis within holding time. Reanalysis for the required dilution was past holding time. H3 Sample was received and analyzed past holding time.	E2	Concentration estimated. Analyte exceeded calibration range. Reanalysis not performed due to sample matrix.
Concentration estimated. Analyte was detected below laboratory minimum reporting level (MRL), but not confirmed by alternate analysis. E6 Confirmation estimated. Internal standard recoveries did not meet method acceptance criteria. E7 Confirmation estimated. Internal standard recoveries did not meet laboratory acceptance criteria. Hold Time: H1 Sample analysis performed past holding time. See case narrative. H2 Initial analysis within holding time. Reanalysis for the required dilution was past holding time. H3 Sample was received and analyzed past holding time.	E3	Concentration estimated. Analyte exceeded calibration range. Reanalysis not performed due to holding time
Concentration estimated. Analyte was detected below laboratory minimum reporting level (MRL), but not confirmed by alternate analysis. E6 Confirmation estimated. Internal standard recoveries did not meet method acceptance criteria. E7 Confirmation estimated. Internal standard recoveries did not meet laboratory acceptance criteria. Hold Time: H1 Sample analysis performed past holding time. See case narrative. H2 Initial analysis within holding time. Reanalysis for the required dilution was past holding time. H3 Sample was received and analyzed past holding time.	E4	Concentration estimated. Analyte was detected below laboratory minimum reporting level (MRL).
E7 Confirmation estimated. Internal standard recoveries did not meet laboratory acceptance criteria. Hold Time: H1 Sample analysis performed past holding time. See case narrative. H2 Initial analysis within holding time. Reanalysis for the required dilution was past holding time. H3 Sample was received and analyzed past holding time.	E5	Concentration estimated. Analyte was detected below laboratory minimum reporting level (MRL), but not
Hold Time: H1 Sample analysis performed past holding time. See case narrative. H2 Initial analysis within holding time. Reanalysis for the required dilution was past holding time. H3 Sample was received and analyzed past holding time.	E6	Confirmation estimated. Internal standard recoveries did not meet method acceptance criteria.
H1 Sample analysis performed past holding time. See case narrative. H2 Initial analysis within holding time. Reanalysis for the required dilution was past holding time. H3 Sample was received and analyzed past holding time.	E7	Confirmation estimated. Internal standard recoveries did not meet laboratory acceptance criteria.
H2 Initial analysis within holding time. Reanalysis for the required dilution was past holding time. H3 Sample was received and analyzed past holding time.	Hold Ti	me:
H3 Sample was received and analyzed past holding time.	H1	
	H2	, and the second se
H4 Sample was extracted past required extraction holding time, but analyzed within analysis holding time. See c	H3	
narrative.	H4	•

The associated blank spike recovery was above laboratory acceptance limits. See case narrative.

Laboratory fortified blank/blank spike:

LI

The associated blank spike recovery was below laboratory acceptance limits. See case narrative. L2The associated blank spike recovery was above method acceptance limits. See case narrative. 1.3 The associated blank spike recovery was below method acceptance limits. See case narrative. 1.4 Note: The L1, L2, L3, & L4 footnotes need to be added to all corresponding analytes for a sample. Matrix spike: Matrix spike recovery was high, the method control sample recovery was acceptable М1 Matrix spike recovery was low, the method control sample recovery was acceptable. M2 The accuracy of the spike recovery value is reduced since the analyte concentration in the sample is М3 disproportionate to spike level. The method control sample recovery was acceptable. The analysis of the spiked sample required a dilution such that the spike concentrations was diluted below M4 the reporting limit. The method control sample recovery was acceptable. Analyte concentration was determined by the method of standard addition (MSA). M5 Matrix spike recovery was high. Data reported per ADEQ policy 0154.000. M6 Matrix sipke recovery was low. Data reported per ADEQ policy 0154.000. M7General: See case narrative. N1 See corrective action report. N2Sample quality: Sample integrity was not maintained. See case narrative. 01 Sample received with head space. Q2 Sample received with improper chemical preservation. O3 Sample received and analyzed without chemical preservation. 04 Sample received with inadequate chemical preservation, but preserved by the laboratory. Q5 Sample was received above recommended temperature. Ο6 Sample inadequately dechlorinated. Q7 Insufficient sample received to meet QC requirements. QC requirements satisfy ADEQ policies 0154 and 0155. $\bigcirc 8$ Insufficient sample received to meet QC requirements. 09 Sample received in inappropriate sample container. O10 Sample is heterogeneous. Sample homogeneity could not be readily achieved using routine laboratory practices. 011 **Duplicates:** RPD exceeded the method control limit. See case narrative. R1 RPD exceeded the laboratory control limit. See case narrative. R2 Sample RPD between the primary and confirmatory analysis exceeded 40%. Per Method 8000B, the higher R3 value was reported. MS/MSD RPD exceeded the method control limit. Recovery met acceptance criteria. R4 MS/MSD RPD exceeded the laboratory control limit. Recovery met acceptance criteria. R5LFB/LFBD RPD exceeded the method control limit. Recovery met acceptance criteria. R6 LFB/LFBD RPD exceeded the laboratory control limit. Recovery met acceptance criteria. R7 Sample RPD exceeded the method control limit. R8 Sample RPD exceeded the laboratory control limit. R9 Surrogate: Surrogate recovery was above laboratory acceptance limits, but within method acceptance limits.

Surrogate recovery was above laboratory and method acceptance limits.

ST

S2

Surrogate recovery was above laboratory acceptance limits, but within method acceptance limits. No target S3 analytes were detected in the sample. Surrogate recovery was above laboratory and method acceptance limits. No target analytes were detected in the S4 sample. Surrogate recovery was below laboratory acceptance limits, but within method acceptance limits. S5 Surrogate recovery was below laboratory and method acceptance limits. Reextraction and/or reanalysis confirms 86 low recovery caused by matrix effect. Surrogate recovery was below laboratory and method acceptance limits. Unable to confirm matrix effect. S7 The analysis of the sample required a dilution such that the surrogate concentration was diluted below the method S8 acceptance criteria. The method control sample recovery was acceptable. The analysis of the sample required a dilution such that the surrogate concentration was diluted below the 89 laboratory acceptance criteria. The method control sample recovery was acceptable. Surrogate recovery was above laboratory and method acceptance limits. See case narrative. S10Surrogate recovery was high. Data reported per ADEQ policy 0154,000. S11

Method/analyte discrepancies:

S12

- Method promulgated by EPA, but not ADHS at this time.
- T2 Cited ADHS licensed method does not contain this analyte as part of method compound list.

Surrogate recovery was low. Data reported per ADEQ policy 0154.000.

- T3 Method not promulgated either by EPA or ADHS.
- Tentatively identified compound. Concentration is estimated and based on the closest internal standard.

Calibration verification:

- VI CCV recovery was above method acceptance limits. This target analyte was not detected in the sample.
- V2 CCV recovery was above method acceptance limits. This target analyte was detected in the sample. The sample could not be reanalyzed due to insufficient sample.
- V3 CCV recovery was above method acceptance limits. This target analyte was detected in the sample, but the sample was not reanalyzed. See case narrative.
- V4 CCV recovery was below method acceptance limits. The sample could not be reanalyzed due to insufficient sample.
- V5 CCV recovery after a group of samples was above acceptance limits. This target analyte was not detected in the sample. Acceptable per EPA Method 8000B.
- V6 Data reported from one-point calibration criteria per ADEQ policy 0155.000.
- Calibration verification recovery was above the method control limit for this analyte however the average % difference or % drift for all the analytes met method criteria.
- Calibration verification recovery was below the method control limit for this analyte however the average % difference or % drift for all the analytes met method criteria.

Calibration:

W1 The % RSD for this compound was above 15%. The average % RSD for all compounds in the calibration met the 15% criteria as specified in EPA method 8000B.

Inorganic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.
- U The compound was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- The MRL/MDL has been elevated due to a matrix interference.
- X See case narrative.

Metals Data Qualifiers

- # The control limit criteria is not applicable. See case narrative.
- B The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.
- E The reported value is estimated because of the presence of matrix interference.
- M The duplicate injection precision was not met.
- N The Matrix Spike sample recovery is not within control limits. See case narrative.
- S The reported value was determined by the Method of Standard Additions (MSA).
- U The compound was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- W The post-digestion spike for furnace AA analysis is out of control limits, while sample absorbance is less than 50% of spike absorbance.
- i The MRL/MDL has been elevated due to a matrix interference.
- X See case narrative.
- * The duplicate analysis not within control limits. See case narrative.
- + The correlation coefficient for the MSA is less than 0.995.

Organic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- A A tentatively identified compound, a suspected aldol-condensation product.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result.
- C The analyte was qualitatively confirmed using GC/MS techniques, pattern recognition, or by comparing to historical data.
- D The reported result is from a dilution.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.
- N The result is presumptive. The analyte was tentatively identified, but a confirmation analysis was not performed.
- P The GC or HPLC confirmation criteria was exceeded. The relative percent difference is greater than 40% between the two analytical results (25% for CLP Pesticides).
- U The compound was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- The MRL/MDL has been elevated due to a chromatographic interference.
- X See case narrative.

Additional Petroleum Hydrocarbon Specific Qualifiers

- F The chromatographic lingerprint of the sample matches the elution pattern of the calibration standard.
- L The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of lighter molecular weight constituents than the calibration standard.
- H The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of heavier molecular weight constituents than the calibration standard.
- O The chromatographic fingerprint of the sample resembles an oil, but does not match the calibration standard.
- Y The chromatographic fingerprint of the sample resembles a petroleum product eluting in approximately the correct carbon range, but the elution pattern does not match the calibration standard.
- Z The chromatographic fingerprint does not resemble a petroleum product.

Client: Project: BE&K Terranext WVB/#03103157

Service Request:

X2300283

Cover Page - Organic Analysis Data Package Volatile Organic Compounds

Sample Name	Lab Code	Date Collected	Date Received
AVB72-0100-07120	X2300283-001	03/27/2003	03/27/2003
AVB70-0100-07103	X2300283-002	03/27/2003	03/27/2003
AVB57-0100-16095	X2300283-003	03/27/2003	03/27/2003
AVB118-0100-01100	X2300283-004	03/27/2003	03/27/2003
AVB118-0104-1000	X2300283-005	03/27/2003	03/27/2003
AVB118-0102-1000	X2300283-006	03/27/2003	03/27/2003

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed in the case narrative. Release of the data contained in this hardcopy data package and in the computer-readable data submitted on floppy diskette has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signature.

Signature: Lary Lutton	Name: Tracy Dutton
Date:	Title: Lab Manager

RR3183

Analytical Results

Client: Project: BE&K Terranext WVB/#03103157

Sample Matrix:

Water

Service Request: X2300283

Date Collected: 03/27/2003

Date Received: 03/27/2003

Volatile Organic Compounds

Sample Name:

AVB72-0100-07120

Lab Code:

X2300283-001

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

			Dilution	Date	Date	
Analyte Name	Result Q	MRL	Factor	Extracted	-	Arizona Qualifier
Dichlorodifluoromethane	ND U	3.0	1	04/03/03	04/03/03	
Chloromethane	ND U	2.0	1	04/03/03	04/03/03	
Vinyl Chloride	ND U	1.0	1	04/03/03	04/03/03	
Bromomethane	ND U	1.0	1	04/03/03	04/03/03	
Chloroethane	ND U	1.0	1	04/03/03	04/03/03	
Trichlorofluoromethane	6.5	1.0	1	04/03/03	04/03/03	
1,1,2-Trichlorotrifluoroethane	ND U	1.0	1	04/03/03	04/03/03	
1,1-Dichloroethene	1.9	1.0	1	04/03/03	04/03/03	
Acetone	ND U	10	1	04/03/03	04/03/03	
Iodomethane	ND U	2.0	1	04/03/03	04/03/03	
Carbon Disulfide	ND U	2.0	1	04/03/03	04/03/03	
Methylene Chloride	ND U	1.0	1	04/03/03	04/03/03	
Methyl tert-Butyl Ether	ND U	1.0	1	04/03/03	04/03/03	
trans-1,2-Dichloroethene	0.69	0.50	1	04/03/03	04/03/03	
1,1-Dichloroethane	1.5	0.50	1	04/03/03	04/03/03	
Vinyl Acetate	ND U	3.0	1	04/03/03	04/03/03	
2,2-Dichloropropane	ND U	2.0	1	04/03/03	04/03/03	
2-Butanone (MEK)	ND U	8.0	1	04/03/03	04/03/03	
cis-1,2-Dichloroethene	15	0.50	1	04/03/03	04/03/03	* 4
Bromochloromethane	ND U	0.50	1	04/03/03	04/03/03	L1
Chloroform	ND U	1.0	1	04/03/03	04/03/03	
1,1,1-Trichloroethane	ND U	0.50	1	04/03/03	04/03/03	
Carbon Tetrachloride	ND U	0.50	1	04/03/03	04/03/03	
1,1-Dichloropropene	ND U	0.50	1	04/03/03	04/03/03	
Benzene	0.51	0.50	1	04/03/03	04/03/03	
1,2-Dichloroethane	ND U	0.50	1	04/03/03	04/03/03	
Trichloroethene	26	0.50	1	04/03/03	04/03/03	
1,2-Dichloropropane	ND U	0.50	1	04/03/03	04/03/03	
Dibromomethane	ND U	0.50	1	04/03/03	04/03/03	
Bromodichloromethane	ND U	0.50	1	04/03/03	04/03/03	
cis-1,3-Dichloropropene	ND U	0.50	1	04/03/03	04/03/03	
4-Methyl-2-pentanone (MIBK)	ND U	8.0	1	04/03/03	04/03/03	
Toluene	ND U	0.50	1	04/03/03	04/03/03	. <u></u>
trans-1,3-Dichloropropene	ND U	1.0	1	04/03/03	04/03/03	

Comments:

Printed: 04/09/2003 14:39:24

L:\STEALTH\CRYSTAL.RPT\Form1m.rpt

Form 1A - Organic

000008

Analytical Results

Client: Project: BE&K Terranext WVB/#03103157

Sample Matrix:

Water

Service Request: X2300283 **Date Collected:** 03/27/2003 **Date Received:** 03/27/2003

Volatile Organic Compounds

Sample Name: Lab Code:

AVB72-0100-07120 X2300283-001

Extraction Method: EPA 5030B **Analysis Method:**

8260B

Units: ug/L Basis: NA

Level: Low

·	- V 0	MRL	Dilution Factor	Date Extracted	Date Analyzed	Arizona Qualifier
Analyte Name	Result Q		1	04/03/03	04/03/03	
1,1,2-Trichloroethane	ND U	1.0 0.50	1	04/03/03	04/03/03	
Tetrachloroethene	23		1	04/03/03	04/03/03	
2-Hexanone	ND U	5.0	1	04/03/03	04/03/03	
1,3-Dichloropropane	ND U	1.0	1	04/03/03	04/03/03	
Dibromochloromethane	ND U	0.50		04/03/03	04/03/03	
1,2-Dibromoethane	ND U	0.50	1	04/03/03	04/03/03	
Chlorobenzene	ND U	0.50	1 1	04/03/03	04/03/03	
1,1,1,2-Tetrachloroethane	ND U	0.50			04/03/03	
Ethylbenzene	ND U	0.50	1	04/03/03	04/03/03	
m,p-Xylenes	ND U	1.0	1	04/03/03 04/03/03	04/03/03	
o-Xylene	ND U	0.50	1			
·	ND U	0.50	1	04/03/03	04/03/03	
Styrene	ND U	0.50	1	04/03/03	04/03/03	
Isopropylbenzene Bromobenzene	ND U	0.50	1	04/03/03	04/03/03	
	ND U		1	04/03/03	04/03/03	
1,2,3-Trichloropropane	ND U		1	04/03/03	04/03/03	
n-Propylbenzene	ND U		1	04/03/03	04/03/03	
2-Chlorotoluene	ND U		1	04/03/03	04/03/03	
4-Chlorotoluene	ND U		1	04/03/03	04/03/03	
1,3,5-Trimethylbenzene	ND U		1	04/03/03	04/03/03	
tert-Butylbenzene			1	04/03/03	04/03/03	
1,2,4-Trimethylbenzene	ND U		1	04/03/03	04/03/03	1
sec-Butylbenzene	ND U		1	04/03/03	04/03/03	•
1,3-Dichlorobenzene	ND U		1	04/03/03	04/03/03	
4-Isopropyltoluene	ND U		1	04/03/03		
Bromoform	ND U		1	04/03/03		3
1,1,2,2-Tetrachloroethane	ND U			04/03/03		
1,4-Dichlorobenzene	ND U		1	04/03/03		
1,2-Dichlorobenzene	ND U		1	04/03/03		
n-Butylbenzene	ND U	J 0.50	1			
1,2-Dibromo-3-chloropropane	ND U	J 5.0	1	04/03/03	-	
1,2,4-Trichlorobenzene	ND U		1	04/03/03		
Hexachlorobutadiene	ND U		. 1	04/03/03		
	ND U		1	04/03/03		
Naphthalene	ND V	_	1	04/03/03	3 04/03/0	3
1,2,3-Trichlorobenzene	1,10	_				

Comments:

Printed: 04/09/2003 14:39:24

Merged

Form 1A - Organic

000009

2 of 3 Page

RR3183 SuperSet Reference:

Analytical Results

Client: **Project:** BE&K Terranext WVB/#03103157

Sample Matrix:

Water

Service Request: X2300283

Date Collected: 03/27/2003

Date Received: 03/27/2003

Volatile Organic Compounds

Sample Name: Lab Code:

AVB72-0100-07120

X2300283-001

Units: ug/L Basis: NA

Surrogate Name	%Rec	Control Limits	Date Analyzed	Arizona Qualifier
Dibromofluoromethane	103	84-113	04/03/03	
Toluene-d8 4-Bromofluorobenzene	106 93	68-126 79-113	04/03/03 04/03/03	

Comments:

000010

Printed: 04/09/2003 14:39:24 L:\STEALTH\CRYSTAL.RPT\Form1m.rpt

Merged

Form 1A - Organic

SuperSet Reference: RR3183

Analytical Results

Client: **Project:** BE&K Terranext WVB/#03103157

Sample Matrix:

Water

Service Request: X2300283 **Date Collected:** 03/27/2003

Date Received: 03/27/2003

Volatile Organic Compounds

Sample Name:

AVB70-0100-07103

Lab Code:

X2300283-002

Extraction Method: EPA 5030B

Units: ug/L Basis: NA

Level: Low

Analysis Method: 8260B

	T. W.O.	MDI	Dilution Factor	Date Extracted	Date	Arizona Qualifier
Analyte Name	Result Q	MRL			04/03/03	Al Rolla Qualifier
Dichlorodifluoromethane	ND U	3.0	1	04/03/03	04/03/03	
Chloromethane	ND U	2.0	1	04/03/03	04/03/03	
Vinyl Chloride	ND U	1.0	1	04/03/03		
Bromomethane	ND U	1.0	1	04/03/03	04/03/03	
Chloroethane	ND U	1.0	1	04/03/03	04/03/03	
Trichlorofluoromethane	ND U	1.0	1	04/03/03	04/03/03	
1,1,2-Trichlorotrifluoroethane	ND U	1.0	1	04/03/03	04/03/03	
1,1-Dichloroethene	ND U	1.0	- 1	04/03/03	04/03/03	
Acetone	ND U	10	1	04/03/03	04/03/03	
Iodomethane	ND U	2.0	1	04/03/03	04/03/03	
Carbon Disulfide	ND U	2.0	1	04/03/03	04/03/03	
Methylene Chloride	ND U	1.0	1	04/03/03	04/03/03	
Methyl tert-Butyl Ether	ND U	1.0	1	04/03/03	04/03/03	
trans-1,2-Dichloroethene	ND U	0.50	1	04/03/03	04/03/03	
1,1-Dichloroethane	ND U	0.50	1	04/03/03	04/03/03	
Vinyl Acetate	ND U	3.0	1	04/03/03	04/03/03	
2,2-Dichloropropane	ND U	2.0	1	04/03/03	04/03/03	
2-Butanone (MEK)	ND U	8.0	1	04/03/03	04/03/03	
cis-1,2-Dichloroethene	0.79	0.50	1	04/03/03	04/03/03	T.4
Bromochloromethane	ND U	0.50	1	04/03/03	04/03/03	LI
Chloroform	3.7	1.0	1	04/03/03	04/03/03	
1,1,1-Trichloroethane	ND U	0.50	1	04/03/03	04/03/03	
Carbon Tetrachloride	ND U	0.50	1	04/03/03	04/03/03	
1,1-Dichloropropene	ND U	0.50	1	04/03/03	04/03/03	
Benzene	ND U	0.50	1	04/03/03	04/03/03	
1,2-Dichloroethane	ND U	0.50	1	04/03/03	04/03/03	
Trichloroethene	7.7	0.50	1	04/03/03	04/03/03	
1,2-Dichloropropane	ND U	0.50	1	04/03/03	04/03/03	
Dibromomethane	ND U	0.50	1	04/03/03	04/03/03	
Bromodichloromethane	ND U	0.50	1	04/03/03	04/03/03	
cis-1,3-Dichloropropene	ND U	0.50	1	04/03/03	04/03/03	
4-Methyl-2-pentanone (MIBK)	ND U	8.0	. 1	04/03/03	04/03/03	
Toluene	ND U	0.50	1	04/03/03	04/03/03	
trans-1,3-Dichloropropene	ND U	1.0	1	04/03/03	04/03/03	

Comments:

000011,

Printed: 04/09/2003 14:39:37

L:\STEALTH\CRYSTAL.RPT\Form1m.rpt

Merged

Form 1A - Organic

RR3183 SuperSet Reference:

Analytical Results

Client: Project: BE&K Terranext WVB/#03103157

Sample Matrix:

Water

Service Request: X2300283

Date Collected: 03/27/2003

Date Received: 03/27/2003

Volatile Organic Compounds

Sample Name:

AVB70-0100-07103

Lab Code:

X2300283-002

Extraction Method:

EPA 5030B

Units: ug/L Basis: NA

Level: Low

8260B **Analysis Method:**

	Donald O	MRL	Dilution Factor	Date Extracted	Date Analyzed	Arizona Qualifier
Analyte Name	Result Q		1	04/03/03	04/03/03	
1,1,2-Trichloroethane	ND U	0.50	1	04/03/03	04/03/03	
Tetrachloroethene	28		<u> </u>	04/03/03	04/03/03	
2-Hexanone	ND U		1	04/03/03	04/03/03	
1,3-Dichloropropane	ND U		1	04/03/03	04/03/03	
Dibromochloromethane	ND U			04/03/03	04/03/03	
1,2-Dibromoethane	ND U		1	04/03/03	04/03/03	
Chlorobenzene	ND U		1	04/03/03	04/03/03	
1,1,1,2-Tetrachloroethane	ND U				04/03/03	
Ethylbenzene	ND U		1	04/03/03		
m,p-Xylenes	ND U		1	04/03/03	04/03/03 04/03/03	
o-Xylene	ND U	0.50	1	04/03/03		
	ND U	0.50	1	04/03/03	04/03/03	
Styrene Isopropylbenzene	ND U		1	04/03/03	04/03/03	
Bromobenzene	ND U		1	04/03/03	04/03/03	
	ND U		1	04/03/03	04/03/03	
1,2,3-Trichloropropane	ND U		1	04/03/03	04/03/03	
n-Propylbenzene	ND U		1	04/03/03	04/03/03	
2-Chlorotoluene			1	04/03/03	04/03/03	
4-Chlorotoluene	ND U ND U		1	04/03/03	04/03/03	
1,3,5-Trimethylbenzene	ND U		1	04/03/03	04/03/03	
tert-Butylbenzene			1	04/03/03	04/03/03	
1,2,4-Trimethylbenzene	ND U		1	04/03/03	04/03/03	
sec-Butylbenzene	ND U		1	04/03/03	04/03/03	
1,3-Dichlorobenzene	ND U			04/03/03	04/03/03	
4-Isopropyltoluene	ND U		1	04/03/03	04/03/03	
Bromoform	ND U		1	04/03/03	04/03/03	
1,1,2,2-Tetrachloroethane	ND U		1			
1,4-Dichlorobenzene	ND I		1	04/03/03	04/03/03	
1,2-Dichlorobenzene	ND I		1	04/03/03	04/03/03	
n-Butylbenzene	ND 1	U 0.50	1	04/03/03	04/03/03	
1,2-Dibromo-3-chloropropane	ND 1	U 5.0	1	04/03/03	04/03/03	
1,2,4-Trichlorobenzene	ND 1		1	04/03/03	04/03/03	
Hexachlorobutadiene	ND 1	=	1	04/03/03	04/03/03	
	ND		1	04/03/03		
Naphthalene	ND ND	-	1	04/03/03	04/03/03	3
1,2,3-Trichlorobenzene	ND	0.50				

Comments:

000012

Printed: 04/09/2003 14:39:37

Merged

Form 1A - Organic

RR3183 SuperSet Reference:

Analytical Results

Client:

BE&K Terranext WVB/#03103157

Project: Sample Matrix:

Water

Service Request: X2300283 **Date Collected:** 03/27/2003

Date Received: 03/27/2003

Volatile Organic Compounds

Sample Name:

AVB70-0100-07103

Lab Code:

X2300283-002

Units: ug/L

Basis: NA

Surrogate Name	%Rec	Control Limits	Date Analyzed	Arizona Qualifier	
Dibromofluoromethane	105	84-113	04/03/03		
Toluene-d8	106	68-126	04/03/03		
4-Bromofluorobenzene	100	79-113	04/03/03		

Comments:

000013

Printed: 04/09/2003 14:39:37

Merged

Form 1A - Organic

SuperSet Reference: RR3183

Analytical Results

Client: Project: BE&K Terranext WVB/#03103157

Sample Matrix:

Water

Service Request: X2300283

Date Collected: 03/27/2003

Date Received: 03/27/2003

Volatile Organic Compounds

Sample Name:

AVB57-0100-16095

Lab Code:

X2300283-003

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

	Result Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Arizona Qualifier
Analyte Name	ND U	3.0	1	04/04/03	04/04/03	
Dichlorodifluoromethane	ND U ND U	2.0	1	04/04/03	04/04/03	
Chloromethane	ND U	1.0	1	04/04/03	04/04/03	
Vinyl Chloride			1	04/04/03	04/04/03	
Bromomethane	ND U	1.0	1	04/04/03	04/04/03	
Chloroethane	ND U	1.0	1	04/04/03	04/04/03	
Trichlorofluoromethane	ND U	1.0		04/04/03	04/04/03	
1,1,2-Trichlorotrifluoroethane	ND U	1.0	1	04/04/03	04/04/03	
1,1-Dichloroethene	ND U	1.0	1	04/04/03	04/04/03	
Acetone	ND U	10	1			
Iodomethane	ND U	2.0	1	04/04/03	04/04/03	
Carbon Disulfide	ND U	2.0	1	04/04/03	04/04/03	
Methylene Chloride	ND U	1.0	1	04/04/03	04/04/03	
Methyl tert-Butyl Ether	ND U	1.0	1	04/04/03	04/04/03	
trans-1,2-Dichloroethene	ND U	0.50	1	04/04/03	04/04/03	
1,1-Dichloroethane	ND U	0.50	1	04/04/03	04/04/03	
·	ND U	3.0	1	04/04/03	04/04/03	
Vinyl Acetate	ND U	2.0	1	04/04/03	04/04/03	
2,2-Dichloropropane 2-Butanone (MEK)	ND U	8.0	1	04/04/03	04/04/03	
• •	ND U	0.50	1	04/04/03	04/04/03	
cis-1,2-Dichloroethene	ND U	0.50	1	04/04/03	04/04/03	L1
Bromochloromethane	ND U	1.0	1	04/04/03	04/04/03	
Chloroform		0.50	1	04/04/03	04/04/03	
1,1,1-Trichloroethane	ND U	0.50	1	04/04/03	04/04/03	
Carbon Tetrachloride	ND U	0.50	1	04/04/03	04/04/03	
1,1-Dichloropropene	ND U			04/04/03	04/04/03	
Benzene	ND U	0.50	1 1	04/04/03	04/04/03	
1,2-Dichloroethane	ND U	0.50	1	04/04/03	04/04/03	
Trichloroethene	1.1	0.50		04/04/03	04/04/03	
1,2-Dichloropropane	ND U	0.50	1	04/04/03	04/04/03	
Dibromomethane	ND U	0.50	1		04/04/03	
Bromodichloromethane	ND U	0.50	1	04/04/03		
cis-1,3-Dichloropropene	ND U	0.50	1	04/04/03	04/04/03	
4-Methyl-2-pentanone (MIBK)	ND U	8.0	1	04/04/03	04/04/03	
Toluene	ND U	0.50	1	04/04/03	04/04/03	
trans-1,3-Dichloropropene	ND U	1.0	1	04/04/03	04/04/03	,

Comments:

000014

Merged

Analytical Results

Client: Project: BE&K Terranext WVB/#03103157

Sample Matrix:

Water

tical results

 Service Request:
 X2300283

 Date Collected:
 03/27/2003

 Date Received:
 03/27/2003

Volatile Organic Compounds

Sample Name:

AVB57-0100-16095

Lab Code:

X2300283-003

Extraction Method: Analysis Method:

EPA 5030B

8260B

Units: ug/L Basis: NA

Level: Low

	n4	MRL	Dilution Factor	Date Extracted	Date Analyzed	Arizona Qualifier
Analyte Name	Result Q		1	04/04/03	04/04/03	
1,1,2-Trichloroethane	ND U	1.0	1	04/04/03	04/04/03	
Tetrachloroethene	3.1	0.50		04/04/03	04/04/03	
2-Hexanone	ND U	5.0	1	04/04/03	04/04/03	
1,3-Dichloropropane	ND U	1.0	1	04/04/03	04/04/03	
Dibromochloromethane	ND U	0.50	1			
1,2-Dibromoethane	ND U	0.50	1	04/04/03	04/04/03	
Chlorobenzene	ND U	0.50	1	04/04/03	04/04/03	
1,1,1,2-Tetrachloroethane	ND U	0.50	1	04/04/03	04/04/03	
Ethylbenzene	ND U	0.50	1	04/04/03	04/04/03	
m,p-Xylenes	ND U	1.0	1	04/04/03	04/04/03	
o-Xylene	ND U	0.50	1	04/04/03	04/04/03	
-	ND U	0.50	1	04/04/03	04/04/03	
Styrene	ND U	0.50	1	04/04/03	04/04/03	
Isopropylbenzene	ND U	0.50	1	04/04/03	04/04/03	
Bromobenzene		1.0	1	04/04/03	04/04/03	
1,2,3-Trichloropropane	ND U	0.50	i	04/04/03	04/04/03	
n-Propylbenzene	ND U	0.50	1	04/04/03	04/04/03	
2-Chlorotoluene	ND U		1	04/04/03	04/04/03	
4-Chlorotoluene	ND U	0.50	1	04/04/03	04/04/03	
1,3,5-Trimethylbenzene	ND U	0.50		04/04/03	04/04/03	
tert-Butylbenzene	ND U	0.50	1			
1,2,4-Trimethylbenzene	ND U	0.50	1	04/04/03	04/04/03	
sec-Butylbenzene	ND U	0.50	1	04/04/03	04/04/03	
1,3-Dichlorobenzene	ND U	0.50	1	04/04/03	04/04/03	
4-Isopropyltoluene	ND U	0.50	1	04/04/03	04/04/03	
Bromoform	ND U	0.50	1	04/04/03	04/04/03	
1,1,2,2-Tetrachloroethane	ND U	1.0	1	04/04/03	04/04/03	
	ND U	0.50	1	04/04/03	04/04/03	
1,4-Dichlorobenzene	ND U	0.50	1	04/04/03	04/04/03	
1,2-Dichlorobenzene	ND U	0.50	1	04/04/03	04/04/03	
n-Butylbenzene		5.0	1	04/04/03	04/04/03	
1,2-Dibromo-3-chloropropane	ND U	0.50	1	04/04/03	04/04/03	
1,2,4-Trichlorobenzene	ND U	0.50	1	04/04/03	04/04/03	
Hexachlorobutadiene	ND U		1	04/04/03	04/04/03	
Naphthalene	ND U	3.0	1 1	04/04/03	04/04/03	
1,2,3-Trichlorobenzene	ND U	0.50	1	U 1 /U1/U3	07/07/02	•

Comments:

Form 1A - Organic

000015

Analytical Results

Client: Project: BE&K Terranext WVB/#03103157

Sample Matrix:

Water

Service Request: X2300283 **Date Collected:** 03/27/2003 **Date Received:** 03/27/2003

Volatile Organic Compounds

Sample Name:

AVB57-0100-16095

Lab Code:

X2300283-003

Units: ug/L

Basis: NA

Surrogate Name	%Rec	Control Limits	Date Analyzed	Arizona Qualifier
Dibromofluoromethane	101	84-113	04/04/03	
Toluene-d8	102	68-126	04/04/03	
4-Bromofluorobenzene	94	79-113	04/04/03	

Comments:

000018

Printed: 04/09/2003 14:39:50

Merged

Form 1A - Organic

3 of 3 Page

SuperSet Reference: RR3183

Analytical Results

Client:

BE&K Terranext WVB/#03103157

Project: Sample Matrix:

Water

Service Request: X2300283 **Date Collected:** 03/27/2003

Date Received: 03/27/2003

Volatile Organic Compounds

Sample Name:

AVB118-0100-01100

Lab Code:

X2300283-004

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

				Dilution	Date	Date	
Analyte Name	Result	Q	MRL	Factor	Extracted	-	Arizona Qualifier
Dichlorodifluoromethane	ND	U	3.0	1	04/04/03	04/04/03	
Chloromethane	ND	U	2.0	1	04/04/03	04/04/03	
Vinyl Chloride	ND	U	1.0	1	04/04/03	04/04/03	
Bromomethane	ND	U	1.0	1	04/04/03	04/04/03	
Chloroethane	ND	U	1.0	1	04/04/03	04/04/03	
Trichlorofluoromethane	ND	U	1.0	1	04/04/03	04/04/03	
1,1,2-Trichlorotrifluoroethane	ND	U	1.0	1	04/04/03	04/04/03	
1,1-Dichloroethene	27		1.0	1	04/04/03	04/04/03	
Acetone	ND	U	10	1	04/04/03	04/04/03	
Iodomethane	ND	U	2.0	1	04/04/03	04/04/03	
Carbon Disulfide	ND	U	2.0	1	04/04/03	04/04/03	
Methylene Chloride	ND	U	1.0	1	04/04/03	04/04/03	
Methyl tert-Butyl Ether	ND	U	1.0	1	04/04/03	04/04/03	
trans-1,2-Dichloroethene	ND	U	0.50	1	04/04/03	04/04/03	
1,1-Dichloroethane	20		0.50	1	04/04/03	04/04/03	
Vinyl Acetate	ND	U	3.0	1	04/04/03	04/04/03	
2,2-Dichloropropane	ND	U	2.0	1	04/04/03	04/04/03	
2-Butanone (MEK)	ND	U	8.0	1	04/04/03	04/04/03	
cis-1,2-Dichloroethene	19		0.50	1	04/04/03	04/04/03	
Bromochloromethane	ND	U	0.50	1	04/04/03	04/04/03	L1
Chloroform	1.7		1.0	1	04/04/03	04/04/03	
1,1,1-Trichloroethane	ND	U	0.50	1	04/04/03	04/04/03	
Carbon Tetrachloride	ND	U	0.50	1	04/04/03	04/04/03	
1,1-Dichloropropene	ND	U	0.50	1	04/04/03	04/04/03	
Benzene	ND	U	0.50	1	04/04/03	04/04/03	
1,2-Dichloroethane	ND	U	0.50	1	04/04/03	04/04/03	
Trichloroethene	92	D	5.0	10	04/04/03	04/04/03	D2
1,2-Dichloropropane	ND	U	0.50	1	04/04/03	04/04/03	
Dibromomethane	ND	U	0.50	1	04/04/03	04/04/03	
Bromodichloromethane	ND	U	0.50	1	04/04/03	04/04/03	
cis-1,3-Dichloropropene	ND	U	0.50	1	04/04/03	04/04/03	
4-Methyl-2-pentanone (MIBK)	ND	U	8.0	1	04/04/03	04/04/03	
Toluene	ND	U	0.50	1	04/04/03	04/04/03	
trans-1,3-Dichloropropene	ND	U	1.0	1	04/04/03	04/04/03	

Comments:

Printed: 04/09/2003 14:40:03

Form 1A - Organic

Merged

000017

1 of 3 Page

SuperSet Reference: RR3183

Analytical Results

Client: Project: **BE&K Terranext** WVB/#03103157

Sample Matrix:

Water

Service Request: X2300283

Date Collected: 03/27/2003

Date Received: 03/27/2003

Volatile Organic Compounds

Sample Name:

AVB118-0100-01100

Lab Code:

X2300283-004

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

			Dilution	Date	Date	A
Analyte Name	Result Q	MRL	Factor	Extracted	-	Arizona Qualifier
1,1,2-Trichloroethane	ND U	1.0	1	04/04/03	04/04/03	
Tetrachloroethene	3.8	0.50	1	04/04/03	04/04/03	
2-Hexanone	ND U	5.0	1	04/04/03	04/04/03	
1,3-Dichloropropane	ND U	1.0	1	04/04/03	04/04/03	
Dibromochloromethane	ND U	0.50	1	04/04/03	04/04/03	
1.2-Dibromoethane	ND U	0.50	1	04/04/03	04/04/03	
Chlorobenzene	ND U	0.50	1	04/04/03	04/04/03	
1,1,1,2-Tetrachloroethane	ND U	0.50	1	04/04/03	04/04/03	
Ethylbenzene	ND U	0.50	1	04/04/03	04/04/03	
m,p-Xylenes	ND U	1.0	1 .	04/04/03	04/04/03	
o-Xylene	ND U	0.50	1	04/04/03	04/04/03	
· · · · · · · · · · · · · · · · · · ·	ND U	0.50	1	04/04/03	04/04/03	
Styrene Isopropylbenzene	ND U	0.50	1	04/04/03	04/04/03	
Bromobenzene	ND U	0.50	1	04/04/03	04/04/03	
	ND U	1.0	1	04/04/03	04/04/03	
1,2,3-Trichloropropane	ND U	0.50	1	04/04/03	04/04/03	
n-Propylbenzene 2-Chlorotoluene	ND U	0.50	1	04/04/03	04/04/03	
	ND U	0.50	1	04/04/03	04/04/03	
4-Chlorotoluene	ND U	0.50	1	04/04/03	04/04/03	
1,3,5-Trimethylbenzene	ND U	0.50	1	04/04/03	04/04/03	
tert-Butylbenzene			1	04/04/03	04/04/03	
1,2,4-Trimethylbenzene	ND U	0.50 0.50	1	04/04/03	04/04/03	
sec-Butylbenzene	ND U	0.50	1	04/04/03	04/04/03	
1,3-Dichlorobenzene	ND U			04/04/03	04/04/03	
4-Isopropyltoluene	ND U	0.50	1	04/04/03	04/04/03	
Bromoform	ND U	0.50	1	04/04/03	04/04/03	
1,1,2,2-Tetrachloroethane	ND U	1.0			04/04/03	
1,4-Dichlorobenzene	ND U	0.50	1	04/04/03 04/04/03	04/04/03	
1,2-Dichlorobenzene	ND U	0.50	1		04/04/03	
n-Butylbenzene	ND U	0.50	1	04/04/03		
1,2-Dibromo-3-chloropropane	ND U	5.0	1	04/04/03	04/04/03	
1,2,4-Trichlorobenzene	ND U	0.50	1.	04/04/03	04/04/03	
Hexachlorobutadiene	ND U	0.50	1	04/04/03	04/04/03	
Naphthalene	ND U	3.0	1	04/04/03	04/04/03	
1,2,3-Trichlorobenzene	ND U	0.50	1	04/04/03	04/04/03	

Comments:

Printed: 04/09/2003 14:40:03 L:\STEALTH\CRYSTAL_RPT\Form1m.rpt

Merged

Form 1A - Organic

000018

2 of 3 Page

RR3183

Analytical Results

Client:

BE&K Terranext WVB/#03103157

Project: Sample Matrix:

Water

Service Request: X2300283

Date Collected: 03/27/2003 **Date Received:** 03/27/2003

Volatile Organic Compounds

Sample Name:

AVB118-0100-01100

Lab Code:

Units: ug/L Basis: NA

X2300283-004

Surrogate Name	%Rec	Control Limits	Date Analyzed	Arizona Qualifier	
Dibromofluoromethane	103	84-113	04/04/03		
Toluene-d8	102	68-126	04/04/03		
4-Bromofluorobenzene	96	79-113	04/04/03		

Comments:

Printed: 04/09/2003 14:40:03

Merged

000019

Page 3 of 3

Analytical Results

Client: **Project:** BE&K Terranext WVB/#03103157

Sample Matrix:

Water

Service Request: X2300283

Date Collected: 03/27/2003

Date Received: 03/27/2003

Volatile Organic Compounds

Sample Name:

AVB118-0104-1000

Lab Code:

X2300283-005

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

•			Dilution	Date Extracted	Date	Arizona Qualifier
Analyte Name	Result Q	MRL	Factor		04/04/03	THEORE Quality
Dichlorodifluoromethane	ND U	3.0	1	04/04/03	04/04/03	
Chloromethane	ND U	2.0	1	04/04/03 04/04/03	04/04/03	
Vinyl Chloride	ND U	1.0	1		04/04/03	
Bromomethane	ND U	1.0	1	04/04/03 04/04/03	04/04/03	
Chloroethane	ND U	1.0	1	04/04/03	04/04/03	
Trichlorofluoromethane	ND U	1.0	. 1		04/04/03	
1,1,2-Trichlorotrifluoroethane	ND U	1.0	1	04/04/03	04/04/03	
1,1-Dichloroethene	ND U	1.0	1	04/04/03	04/04/03	
Acetone	ND U	10	1	04/04/03		
Iodomethane	ND U	2.0	1	04/04/03	04/04/03	
Carbon Disulfide	ND U	2.0	1	04/04/03	04/04/03	
Methylene Chloride	ND U	1.0	. 1	04/04/03	04/04/03	
Methyl tert-Butyl Ether	ND U	1.0	1	04/04/03	04/04/03	
trans-1,2-Dichloroethene	ND U	0.50	1	04/04/03	04/04/03	
1,1-Dichloroethane	ND U	0.50	1	04/04/03	04/04/03	
	ND U	3.0	1	04/04/03	04/04/03	
Vinyl Acetate	ND U	2.0	1	04/04/03	04/04/03	
2,2-Dichloropropane	ND U	8.0	1	04/04/03	04/04/03	
2-Butanone (MEK)	ND U	0.50	1	04/04/03	04/04/03	
cis-1,2-Dichloroethene	ND U	0.50	1	04/04/03	04/04/03	L1
Bromochloromethane	ND U	1.0	1	04/04/03	04/04/03	
Chloroform		0.50	1	04/04/03	04/04/03	
1,1,1-Trichloroethane	ND U	0.50	1	04/04/03	04/04/03	
Carbon Tetrachloride	ND U ND U	0.50	1	04/04/03	04/04/03	
1,1-Dichloropropene		0.50	1	04/04/03	04/04/03	
Benzene	ND U		1	04/04/03	04/04/03	
1,2-Dichloroethane	ND U	0.50 0.50	1	04/04/03	04/04/03	
Trichloroethene	ND U	_		04/04/03	04/04/03	
1,2-Dichloropropane	ND U	0.50	1	04/04/03	04/04/03	
Dibromomethane	ND U	0.50	1 1	04/04/03	04/04/03	
Bromodichloromethane	ND U	0.50			04/04/03	
cis-1,3-Dichloropropene	ND U	0.50	1	04/04/03	04/04/03	
4-Methyl-2-pentanone (MIBK)	ND U	8.0	1	04/04/03		
Toluene	ND U	0.50	1	04/04/03		
trans-1,3-Dichloropropene	ND U	1.0	1	04/04/03	04/04/03	5

Comments:

Printed: 04/09/2003 14:40:16

Merged

Form 1A - Organic

000020

Page

SuperSet Reference:

RR3183

1 of 3

Analytical Results

Client: Project: BE&K Terranext WVB/#03103157

Sample Matrix:

Water

Service Request: X2300283

Date Collected: 03/27/2003 **Date Received:** 03/27/2003

Volatile Organic Compounds

Sample Name:

AVB118-0104-1000

Lab Code:

X2300283-005

Extraction Method: EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

			Dilution	Date	Date	t to Ouglifion
Analyte Name	Result Q	MRL	Factor	Extracted		Arizona Qualifier
1,1,2-Trichloroethane	ND U	1.0	1	04/04/03	04/04/03	
Tetrachloroethene	ND U	0.50	1	04/04/03	04/04/03	
2-Hexanone	ND U	5.0	1	04/04/03	04/04/03	
1,3-Dichloropropane	ND U	1.0	1	04/04/03	04/04/03	
Dibromochloromethane	ND U	0.50	1	04/04/03	04/04/03	
1.2-Dibromoethane	ND U	0.50	1	04/04/03	04/04/03	
Chlorobenzene	ND U	0.50	1	04/04/03	04/04/03	
1,1,1,2-Tetrachloroethane	ND U	0.50	1	04/04/03	04/04/03	
	ND U	0.50	1	04/04/03	04/04/03	
Ethylbenzene	ND U	1.0	1	04/04/03	04/04/03	
m,p-Xylenes	ND U	0.50	1	04/04/03	04/04/03	
o-Xylene	ND U	0.50	1	04/04/03	04/04/03	
Styrene	ND U	0.50	1	04/04/03	04/04/03	
Isopropylbenzene	ND U	0.50	1	04/04/03	04/04/03	
Bromobenzene			1	04/04/03	04/04/03	
1,2,3-Trichloropropane	ND U	1.0 0.50	1	04/04/03	04/04/03	
n-Propylbenzene	ND U	0.50	1	04/04/03	04/04/03	
2-Chlorotoluene	ND U			04/04/03	04/04/03	
4-Chlorotoluene	ND U	0.50	1	04/04/03	04/04/03	
1,3,5-Trimethylbenzene	ND U	0.50	1 1	04/04/03	04/04/03	
tert-Butylbenzene	ND U	0.50			04/04/03	
1,2,4-Trimethylbenzene	ND U	0.50	1	04/04/03	04/04/03	
sec-Butylbenzene	ND U	0.50	1	04/04/03	04/04/03	
1,3-Dichlorobenzene	ND U	0.50	1	04/04/03		
4-Isopropyltoluene	ND U	0.50	1	04/04/03	04/04/03	
Bromoform	ND U	0.50	1	04/04/03	04/04/03	
1,1,2,2-Tetrachloroethane	ND U	1.0	1	04/04/03	04/04/03	
1,4-Dichlorobenzene	ND U	0.50	1	04/04/03	04/04/03	
1,2-Dichlorobenzene	ND U	0.50	1	04/04/03	04/04/03	
n-Butylbenzene	ND U	0.50	1	04/04/03	04/04/03	
1,2-Dibromo-3-chloropropane	ND U	5.0	1	04/04/03	04/04/03	
1,2,4-Trichlorobenzene	ND U	0.50	1	04/04/03	04/04/03	
Hexachlorobutadiene	ND U	0.50	1	04/04/03	04/04/03	
	ND U	3.0	1	04/04/03	04/04/03	
Naphthalene	ND U	0.50	1	04/04/03	04/04/03	;
1,2,3-Trichlorobenzene	ND U	0.50	_			

Comments:

Printed: 04/09/2003 14:40:16

Merged

Form 1A - Organic

000021

Analytical Results

Client:

BE&K Terranext WVB/#03103157

Project: Sample Matrix:

Water

Service Request: X2300283 **Date Collected:** 03/27/2003

Date Received: 03/27/2003

Volatile Organic Compounds

Sample Name:

AVB118-0104-1000

Lab Code:

Units: ug/L Basis: NA

X2300283-005

Surrogate Name	%Rec	Control Limits	Date Analyzed	Arizona Qualifier
Dibromofluoromethane	104	84-113	04/04/03	
Toluene-d8	103	68-126	04/04/03	
4-Bromofluorobenzene	99	79-113	04/04/03	

Comments:

Printed: 04/09/2003 14:40:16 L:\STEALTH\CRYSTAL.RPT\Form1m.rpt

Form 1A - Organic

Merged

000022

3 of 3 Page

SuperSet Reference:

RR3183

Analytical Results

Client: Project: BE&K Terranext WVB/#03103157

Sample Matrix:

Water

Service Request: X2300283

Date Collected: 03/27/2003

Date Received: 03/27/2003

Volatile Organic Compounds

Sample Name:

AVB118-0102-1000

Lab Code:

X2300283-006

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

			Dilution	Date	Date	Arizono Qualifiar
Analyte Name	Result Q	MRL	Factor	Extracted	-	Arizona Qualifier
Dichlorodifluoromethane	ND U	3.0	1	04/04/03	04/04/03	
Chloromethane	ND U	2.0	1	04/04/03	04/04/03	
Vinyl Chloride	ND U	1.0	1	04/04/03	04/04/03	
Bromomethane	ND U	1.0	1	04/04/03	04/04/03	
Chloroethane	ND U	1.0	1	04/04/03	04/04/03	
Trichlorofluoromethane	ND U	1.0	1	04/04/03	04/04/03	
1,1,2-Trichlorotrifluoroethane	ND U	1.0	1	04/04/03	04/04/03	
1,1-Dichloroethene	ND U	1.0	1	04/04/03	04/04/03	
Acetone	ND U	10	1	04/04/03	04/04/03	
Iodomethane	ND U	2.0	1	04/04/03	04/04/03	
Carbon Disulfide	ND U	2.0	1	04/04/03	04/04/03	
Methylene Chloride	ND U	1.0	1	04/04/03	04/04/03	
Methyl tert-Butyl Ether	ND U	1.0	1	04/04/03	04/04/03	
trans-1,2-Dichloroethene	ND U	0.50	1	04/04/03	04/04/03	
1,1-Dichloroethane	ND U	0.50	1	04/04/03	04/04/03	
Vinyl Acetate	ND U	3.0	1	04/04/03	04/04/03	
2,2-Dichloropropane	ND U	2.0	1	04/04/03	04/04/03	
2-Butanone (MEK)	ND U	8.0	1	04/04/03	04/04/03	
cis-1,2-Dichloroethene	ND U	0.50	1	04/04/03	04/04/03	
Bromochloromethane	ND U	0.50	1	04/04/03	04/04/03	
Chloroform	ND U	1.0	1	04/04/03	04/04/03	
1,1,1-Trichloroethane	ND U	0.50	1	04/04/03	04/04/03	
Carbon Tetrachloride	ND U	0.50	1	04/04/03	04/04/03	
1,1-Dichloropropene	ND U	0.50	1	04/04/03	04/04/03	
Benzene	ND U	0.50	1	04/04/03	04/04/03	
1,2-Dichloroethane	ND U	0.50	1	04/04/03	04/04/03	
Trichloroethene	ND U	0.50	1	04/04/03	04/04/03	
1,2-Dichloropropane	ND U	0.50	1	04/04/03	04/04/03	
Dibromomethane	ND U	0.50	1	04/04/03	04/04/03	
Bromodichloromethane	ND U	0.50	1	04/04/03	04/04/03	
cis-1,3-Dichloropropene	ND U	0.50	1	04/04/03	04/04/03	
4-Methyl-2-pentanone (MIBK)	ND U	8.0	1	04/04/03	04/04/03	
Toluene	ND U	0.50	1	04/04/03	04/04/03	
trans-1,3-Dichloropropene	ND U	1.0	1	04/04/03	04/04/03	

Comments:

Printed: 04/09/2003 14:40:29 L:\STEALTH\CRYSTAL.RPT\Form1m.rpt

Form 1A - Organic

000023

Page 1 of 3

SuperSet Reference: RR3183

Analytical Results

Client: Project: BE&K Terranext WVB/#03103157

Sample Matrix:

Water

Service Request: X2300283 **Date Collected:** 03/27/2003

Date Received: 03/27/2003

Volatile Organic Compounds

Dilution

Date

Sample Name:

AVB118-0102-1000

Lab Code:

X2300283-006

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

Date

			Dilution	Date	Date	
Analyte Name	Result Q	MRL	Factor	Extracted		Arizona Qualifier
1,1,2-Trichloroethane	ND U	1.0	1	04/04/03	04/04/03	
Tetrachloroethene	ND U	0.50	1	04/04/03	04/04/03	
2-Hexanone	ND U	5.0	1	04/04/03	04/04/03	
1,3-Dichloropropane	ND U	1.0	1	04/04/03	04/04/03	
Dibromochloromethane	ND U	0.50	1	04/04/03	04/04/03	
1,2-Dibromoethane	ND U	0.50	1	04/04/03	04/04/03	
Chlorobenzene	ND U	0.50	1	04/04/03	04/04/03	
1,1,1,2-Tetrachloroethane	ND U	0.50	1	04/04/03	04/04/03	
	ND U	0.50	1	04/04/03	04/04/03	
Ethylbenzene	ND U	1.0	1	04/04/03	04/04/03	
m,p-Xylenes	ND U	0.50	1	04/04/03	04/04/03	
o-Xylene		0.50	1	04/04/03	04/04/03	
Styrene	ND U	0.50	1	04/04/03	04/04/03	
Isopropylbenzene	ND U ND U	0.50	1	04/04/03	04/04/03	
Bromobenzene				04/04/03	04/04/03	
1,2,3-Trichloropropane	ND U	1.0	1 1	04/04/03	04/04/03	
n-Propylbenzene	ND U	0.50	1	04/04/03	04/04/03	
2-Chlorotoluene	ND U	0.50		04/04/03	04/04/03	
4-Chlorotoluene	ND U	0.50	1	04/04/03	04/04/03	
1,3,5-Trimethylbenzene	ND U	0.50	1	04/04/03	04/04/03	
tert-Butylbenzene	ND U	0.50	1			
1,2,4-Trimethylbenzene	ND U	0.50	1	04/04/03	04/04/03	
sec-Butylbenzene	ND U	0.50	1	04/04/03	04/04/03	
1,3-Dichlorobenzene	ND U	0.50	1	04/04/03	04/04/03	
4-Isopropyltoluene	ND U	0.50	1	04/04/03	04/04/03	
Bromoform	ND U	0.50	1	04/04/03	04/04/03	
1,1,2,2-Tetrachloroethane	ND U	1.0	1	04/04/03	04/04/03	
1,4-Dichlorobenzene	ND U	0.50	1	04/04/03	04/04/03	
1,2-Dichlorobenzene	ND U	0.50	1	04/04/03	04/04/03	
n-Butylbenzene	ND U	0.50	1	04/04/03	04/04/03	
1,2-Dibromo-3-chloropropane	ND U	5.0	1	04/04/03	04/04/03	
1,2,4-Trichlorobenzene	ND U	0.50	1	04/04/03	04/04/03	
Hexachlorobutadiene	ND U	0.50	1	04/04/03	04/04/03	

Comments:

Naphthalene

Hexachlorobutadiene

1,2,3-Trichlorobenzene

000024

SuperSet Reference:

04/04/03

04/04/03

1

1

3.0

0.50

ND U

ND U

04/04/03

04/04/03

Analytical Results

Client: Project: BE&K Terranext WVB/#03103157

Sample Matrix:

Water

Service Request: X2300283 **Date Collected:** 03/27/2003

Date Received: 03/27/2003

Volatile Organic Compounds

Sample Name: Lab Code:

AVB118-0102-1000

X2300283-006

Units: ug/L Basis: NA

Surrogate Name	%Rec	Control Limits	Date Analyzed	Arizona Qualifier
Dibromofluoromethane	105	84-113	04/04/03	
Toluene-d8	103	68-126	04/04/03	
4-Bromofluorobenzene	97	79-113	04/04/03	

Comments:

Printed: 04/09/2003 14:40:29

Form 1A - Organic Merged

000025

3 of 3 Page

RR3183 SuperSet Reference:

Analytical Results

Client: Project: BE&K Terranext WVB/#03103157

Sample Matrix:

Water

Service Request: X2300283

Date Collected: NA Date Received: NA

Volatile Organic Compounds

Sample Name: Lab Code:

Method Blank XWG0300454-5

Extraction Method: EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

Analyte Name	Result Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Arizona Qualifier
Dichlorodifluoromethane	ND U	3.0	1	04/03/03	04/03/03	
Chloromethane	ND U	2.0	1	04/03/03	04/03/03	
Vinyl Chloride	ND U	1.0	1	04/03/03	04/03/03	
Bromomethane	ND U	1.0	1	04/03/03	04/03/03	
Chloroethane	ND U	1.0	1	04/03/03	04/03/03	
Trichlorofluoromethane	ND U	1.0	1	04/03/03	04/03/03	
1,1,2-Trichlorotrifluoroethane	ND U	1.0	1	04/03/03	04/03/03	
• •	ND U	1.0	1	04/03/03	04/03/03	
1,1-Dichloroethene	ND U	10	1	04/03/03	04/03/03	
Acetone	ND U	2.0	1	04/03/03	04/03/03	
Iodomethane	ND U	2.0	1	04/03/03	04/03/03	
Carbon Disulfide	ND U	1.0	1	04/03/03	04/03/03	
Methylene Chloride			1	04/03/03	04/03/03	
Methyl tert-Butyl Ether	ND U	1.0	1	04/03/03	04/03/03	
trans-1,2-Dichloroethene	ND U	0.50	1	04/03/03	04/03/03	
1,1-Dichloroethane	ND U	0.50			04/03/03	
Vinyl Acetate	ND U	3.0	1	04/03/03	04/03/03	
2,2-Dichloropropane	ND U	2.0	1	04/03/03	04/03/03	
2-Butanone (MEK)	ND U	8.0	1	04/03/03		
cis-1,2-Dichloroethene	ND U	0.50	1	04/03/03	04/03/03	T:1
Bromochloromethane	ND U	0.50	1	04/03/03	04/03/03	L1
Chloroform	ND U	1.0	1	04/03/03	04/03/03	
1,1,1-Trichloroethane	ND U	0.50	1	04/03/03	04/03/03	
Carbon Tetrachloride	ND U	0.50	1	04/03/03	04/03/03	
1,1-Dichloropropene	ND U	0.50	1	04/03/03	04/03/03	
Benzene	ND U	0.50	1	04/03/03	04/03/03	
1,2-Dichloroethane	ND U	0.50	1	04/03/03	04/03/03	
Trichloroethene	ND U	0.50	1	04/03/03	04/03/03	
1,2-Dichloropropane	ND U	0.50	1	04/03/03	04/03/03	
Dibromomethane	ND U	0.50	1	04/03/03	04/03/03	
Bromodichloromethane	ND U	0.50	1	04/03/03	04/03/03	
cis-1,3-Dichloropropene	ND U	0.50	1	04/03/03	04/03/03	
4-Methyl-2-pentanone (MIBK)	ND U	8.0	1	04/03/03	04/03/03	
Toluene	ND U	0.50	1	04/03/03	04/03/03	
	ND U	1.0	1	04/03/03	04/03/03	
trans-1,3-Dichloropropene	ND U	1.0		0 ., 00, 00		

Comments:

000026

Printed: 04/09/2003 14:40:42 L:\STEALTH\CRYSTAL.RPT\Form1m.rpt

Merged

Form 1A - Organic

RR3183

1 of 3 Page

SuperSet Reference:

Analytical Results

Client: Project: **BE&K Terranext** WVB/#03103157

Sample Matrix:

Water

Service Request: X2300283

Date Collected: NA Date Received: NA

Volatile Organic Compounds

Sample Name: Lab Code:

Method Blank XWG0300454-5

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

			Dilution	Date	Date	
Analyte Name	Result Q	MRL	Factor	Extracted	-	Arizona Qualifier
1,1,2-Trichloroethane	ND U	1.0	1	04/03/03	04/03/03	
Tetrachloroethene	ND U	0.50	1	04/03/03	04/03/03	
2-Hexanone	ND U	5.0	1	04/03/03	04/03/03	
1,3-Dichloropropane	ND U	1.0	1	04/03/03	04/03/03	
Dibromochloromethane	ND U	0.50	1	04/03/03	04/03/03	
1,2-Dibromoethane	ND U	0.50	1	04/03/03	04/03/03	-
Chlorobenzene	ND U	0.50	. 1	04/03/03	04/03/03	
1,1,1,2-Tetrachloroethane	ND U	0.50	1	04/03/03	04/03/03	·
Ethylbenzene	ND U	0.50	1	04/03/03	04/03/03	
m,p-Xylenes	ND U	1.0	1	04/03/03	04/03/03	
o-Xylene	ND U	0.50	1	04/03/03	04/03/03	
	ND U	0.50	1	04/03/03	04/03/03	
Styrene Isopropylbenzene	ND U	0.50	1	04/03/03	04/03/03	
Bromobenzene	ND U	0.50	1	04/03/03	04/03/03	
	ND U	1.0	1	04/03/03	04/03/03	
1,2,3-Trichloropropane n-Propylbenzene	ND U	0.50	1	04/03/03	04/03/03	
2-Chlorotoluene	ND U	0.50	1	04/03/03	04/03/03	
	ND U	0.50	1	04/03/03	04/03/03	
4-Chlorotoluene 1,3,5-Trimethylbenzene	ND U	0.50	1	04/03/03	04/03/03	
tert-Butylbenzene	ND U	0.50	1	04/03/03	04/03/03	
·	ND U	0.50	1	04/03/03	04/03/03	
1,2,4-Trimethylbenzene	ND U	0.50	1	04/03/03	04/03/03	
sec-Butylbenzene 1,3-Dichlorobenzene	ND U	0.50	1	04/03/03	04/03/03	
,	ND U	0.50	1	04/03/03	04/03/03	
4-Isopropyltoluene	ND U	0.50	1	04/03/03	04/03/03	
Bromoform	ND U	1.0	1	04/03/03	04/03/03	
1,1,2,2-Tetrachloroethane		0.50	1	04/03/03	04/03/03	
1,4-Dichlorobenzene	ND U	0.50	1	04/03/03	04/03/03	
1,2-Dichlorobenzene	ND U ND U	0.50	1	04/03/03	04/03/03	
n-Butylbenzene				04/03/03	04/03/03	
1,2-Dibromo-3-chloropropane	ND U	5.0	1	04/03/03	04/03/03	
1,2,4-Trichlorobenzene	ND U	0.50	1	04/03/03	04/03/03	
Hexachlorobutadiene	ND U	0.50		04/03/03	04/03/03	
Naphthalene	ND U	3.0	1	04/03/03	04/03/03	
1,2,3-Trichlorobenzene	ND U	0.50	1	04/03/03	U "1 /U3/U3	

Comments:

Printed: 04/09/2003 14:40:42

Merged

Form 1A - Organic

000027

2 of 3 Page

SuperSet Reference: RR3183

Analytical Results

Client:

BE&K Terranext

Project:

WVB/#03103157

Sample Matrix:

Water

Service Request: X2300283

Date Collected: NA

Date Received: NA

Volatile Organic Compounds

Sample Name: Lab Code:

Method Blank

XWG0300454-5

Units: ug/L Basis: NA

Surrogate Name	%Rec	Control Limits	Date Analyzed	Arizona Qualifier
Dibromofluoromethane Toluene-d8 4-Bromofluorobenzene	102 103 92	84-113 68-126 79-113	04/03/03 04/03/03 04/03/03	

Comments:

Printed: 04/09/2003 14:40:42

Merged

Form 1A - Organic

098028

Analytical Results

Client: Project: BE&K Terranext WVB/#03103157

Sample Matrix:

Water

Service Request: X2300283

Date Collected: NA

Date Received: NA

Volatile Organic Compounds

Sample Name: Lab Code:

Method Blank XWG0300459-5

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

			Dilution	Date	Date
Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed Arizona Qualifier
Dichlorodifluoromethane	ND U	3.0	1	04/04/03	04/04/03
Chloromethane	ND U	2.0	1	04/04/03	04/04/03
Vinyl Chloride	ND U	1.0	1	04/04/03	04/04/03
Bromomethane	ND U	1.0	1	04/04/03	04/04/03
Chloroethane	ND U	1.0	1	04/04/03	04/04/03
Trichlorofluoromethane	ND U	1.0	1	04/04/03	04/04/03
	ND U	1.0	1	04/04/03	04/04/03
1,1,2-Trichlorotrifluoroethane	ND U	1.0	1	04/04/03	04/04/03
1,1-Dichloroethene	ND U	10	1	04/04/03	04/04/03
Acetone		2.0	1	04/04/03	04/04/03
Iodomethane	ND U	2.0	1	04/04/03	04/04/03
Carbon Disulfide	ND U ND U	1.0	1	04/04/03	04/04/03
Methylene Chloride			1	04/04/03	04/04/03
Methyl tert-Butyl Ether	ND U	1.0	1	04/04/03	04/04/03
trans-1,2-Dichloroethene	ND U	0.50	1	04/04/03	04/04/03
1,1-Dichloroethane	ND U	0.50		04/04/03	04/04/03
Vinyl Acetate	ND U	3.0	1	04/04/03	04/04/03
2,2-Dichloropropane	ND U	2.0	1	04/04/03	04/04/03
2-Butanone (MEK)	ND U	8.0	1		
cis-1,2-Dichloroethene	ND U	0.50	1	04/04/03	04/04/03
Bromochloromethane	ND U	0.50	1	04/04/03	04/04/03
Chloroform	ND U	1.0	1	04/04/03	04/04/03
1.1.1-Trichloroethane	ND U	0.50	1	04/04/03	04/04/03
Carbon Tetrachloride	ND U	0.50	1	04/04/03	04/04/03
1,1-Dichloropropene	ND U	0.50	1	04/04/03	04/04/03
Benzene	ND U	0.50	1	04/04/03	04/04/03
1,2-Dichloroethane	ND U	0.50	1	04/04/03	04/04/03
Trichloroethene	ND U	0.50	1	04/04/03	04/04/03
	ND U	0.50	1	04/04/03	04/04/03
1,2-Dichloropropane	ND U	0.50	1	04/04/03	04/04/03
Dibromomethane	ND U	0.50	1	04/04/03	04/04/03
Bromodichloromethane		0.50	1	04/04/03	04/04/03
cis-1,3-Dichloropropene	ND U ND U	8.0	1	04/04/03	04/04/03
4-Methyl-2-pentanone (MIBK)	ND U ND U	0.50	1	04/04/03	04/04/03
Toluene		_	1	04/04/03	04/04/03
trans-1,3-Dichloropropene	ND U	1.0	1	V-1/V-1/VJ	

Comments:

Printed: 04/09/2003 14:40:55 L:\STEALTH\CRYSTAL.RPT\Form1m.rpt

Merged

Form 1A - Organic

1 of 3 Page

SuperSet Reference:

RR3183

Analytical Results

Client:

BE&K Terranext WVB/#03103157

Project: **Sample Matrix:**

Water

Service Request: X2300283

Date Collected: NA Date Received: NA

Volatile Organic Compounds

Sample Name: Lab Code:

Method Blank

XWG0300459-5

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

				Dilution	Date	Date	
Analyte Name	Result	Q	MRL	Factor	Extracted		Arizona Qualifier
1,1,2-Trichloroethane	ND	U	1.0	1	04/04/03	04/04/03	
Tetrachloroethene	ND	Ú	0.50	1	04/04/03	04/04/03	
2-Hexanone	ND	U	5.0	1	04/04/03	04/04/03	
1,3-Dichloropropane	ND	U	1.0	1	04/04/03	04/04/03	
Dibromochloromethane	ND	U	0.50	1	04/04/03	04/04/03	
1,2-Dibromoethane	ND	U	0.50	1	04/04/03	04/04/03	
Chlorobenzene	ND		0.50	1	04/04/03	04/04/03	
1,1,1,2-Tetrachloroethane	ND	U	0.50	1	04/04/03	04/04/03	
Ethylbenzene	ND	U	0.50	1	04/04/03	04/04/03	
m,p-Xylenes	ND		1.0	1	04/04/03	04/04/03	
o-Xylene	ND		0.50	. 1	04/04/03	04/04/03	
Styrene	ND	U	0.50	1	04/04/03	04/04/03	
Isopropylbenzene	ND		0.50	1	04/04/03	04/04/03	
Bromobenzene	ND		0.50	1	04/04/03	04/04/03	
1,2,3-Trichloropropane	ND	IJ	1.0	1	04/04/03	04/04/03	
n-Propylbenzene	ND		0.50	1	04/04/03	04/04/03	
2-Chlorotoluene	ND		0.50	1	04/04/03	04/04/03	
4-Chlorotoluene	ND	U	0.50	1	04/04/03	04/04/03	
1,3,5-Trimethylbenzene	ND	U	0.50	1	04/04/03	04/04/03	
tert-Butylbenzene	ND	U	0.50	. 1	04/04/03	04/04/03	
1,2,4-Trimethylbenzene	ND	U	0.50	1	04/04/03	04/04/03	
sec-Butylbenzene	ND	U	0.50	1	04/04/03	04/04/03	
1,3-Dichlorobenzene	ND		0.50	1	04/04/03	04/04/03	
4-Isopropyltoluene	ND	U	0.50	1	04/04/03	04/04/03	
Bromoform	ND		0.50	1	04/04/03	04/04/03	
1,1,2,2-Tetrachloroethane	ND		1.0	1	04/04/03	04/04/03	
1,4-Dichlorobenzene	ND		0.50	1	04/04/03	04/04/03	
1,2-Dichlorobenzene	ND		0.50	1	04/04/03	04/04/03	
n-Butylbenzene	ND		0.50	1	04/04/03	04/04/03	
1,2-Dibromo-3-chloropropane	ND		5.0	1	04/04/03	04/04/03	
1,2,4-Trichlorobenzene	ND		0.50	1	04/04/03	04/04/03	
Hexachlorobutadiene	ND		0.50	. 1	04/04/03	04/04/03	
	ND		3.0	1	04/04/03	04/04/03	
Naphthalene	ND ND		0.50	1	04/04/03	04/04/03	
1,2,3-Trichlorobenzene	ND	·	0.50	-			

Comments:

Printed: 04/09/2003 14:40:55 L:\STEALTH\CRYSTAL.RPT\Form1m.rpt

Form 1A - Organic

Page 2 of 3

RR3183 SuperSet Reference:

Analytical Results

Client:

BE&K Terranext

Project:

WVB/#03103157

Sample Matrix:

Water

Service Request: X2300283

Date Collected: NA Date Received: NA

Volatile Organic Compounds

Sample Name:

Method Blank

Lab Code:

XWG0300459-5

Units: ug/L Basis: NA

Surrogate Name	%Rec	Control Limits	Date Analyzed	Arizona Qualifier
Dibromofluoromethane Toluene-d8 4-Bromofluorobenzene	98 100 92	84-113 68-126 79-113	04/04/03 04/04/03 04/04/03	

Comments:

Printed: 04/09/2003 14:40:55

Merged

Form 1A - Organic

Page

SuperSet Reference: RR3183

3 of 3

QA/QC Report

Client:

BE&K Terranext

Project:

WVB/#03103157

Sample Matrix:

Water

Service Request: X2300283

Surrogate Recovery Summary Volatile Organic Compounds

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: PERCENT

Level: Low

Sample Name	Lab Code	Sur1	<u>Sur2</u>	Sur3
AVB72-0100-07120	X2300283-001	103	106	93
AVB70-0100-07103	X2300283-002	105	106	100
AVB57-0100-16095	X2300283-003	101	102	94
AVB118-0100-01100	X2300283-004	103	102	96
AVB118-0104-1000	X2300283-005	104	103	99
AVB118-0102-1000	X2300283-006	105	103	97
Method Blank	XWG0300454-5	102	103	92
Method Blank	XWG0300459-5	98	100	92
Batch QC	X2300279-002	102	106	95
Batch QC	X2300284-005	103	106	94
Batch QCMS	XWG0300454-1	104	105	100
Batch QCDMS	XWG0300454-2	101	105	98
Batch QCMS	XWG0300459-1	102	99	98
Batch QCDMS	XWG0300459-2	96	101	94
Lab Control Sample	XWG0300454-3	99	104	96
Duplicate Lab Control Sample	XWG0300454-4	97	98	95
Lab Control Sample	XWG0300459-3	97	100	96
Duplicate Lab Control Sample	XWG0300459-4	99	95	95

Surrogate Recovery Control Limits (%)

Sur1 =	Dibromofluoromethane	84-113
Sur2 =	Toluene-d8	68-126
Sur3 =	4-Bromofluorobenzene	79-113

Results flagged with an asterisk (*) indicate values outside control criteria. Results flagged with a pound (#) indicate the control criteria is not applicable.

QA/QC Report

Client: **Project:** BE&K Terranext WVB/#03103157

Sample Matrix:

Water

Service Request: X2300283

Date Extracted: 04/03/2003

Date Analyzed: 04/03/2003

Matrix Spike/Duplicate Matrix Spike Summary Volatile Organic Compounds

Sample Name:

Batch QC

Lab Code:

X2300284-005

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

Extraction Lot: XWG0300454

	Sample	Batch QCMS XWG0300454-1 Matrix Spike			Batch QCDMS XWG0300454-2 Duplicate Matrix Spike			%Rec		RPD
Analyte Name	Result	Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit
Dichlorodifluoromethane	ND	3.53	10.0	35 M2	3.15	10.0	32 M2	78-207	11	20
Chloromethane	ND	6.64	10.0	66 M2	5.83	10.0	58 M2	70-157	13	20
Vinyl Chloride	ND	7.47	10.0	75 M2	6.40	10.0	64 M2	79-174	15	20
Bromomethane	ND	8.40	10.0	84	7.19	10.0	72	44-150	16	20
Chloroethane	ND	9.90	10.0	99	7.80	10.0	78	74-150	24 R5	20
Trichlorofluoromethane	ND	9.13	10.0	91	7.93	10.0	79 M2	80-134	14	20
1,1,2-Trichlorotrifluoroethane	ND	11.3	10.0	113	9.72	10.0	97	67-128	15	20
1,1-Dichloroethene	ND	9.74	10.0	97	8.74	10.0	87	71-142	11	20
Acetone	ND	32.0	40.0	80	32.3	40.0	.81	1-155	1	20
Iodomethane	ND	41.2	40.0	103	36.7	40.0	92	47-120	11	20
Carbon Disulfide	ND	43.0	40.0	108	37.2	40.0	93	77-126	14	20
Methylene Chloride	ND	10.5	10.0	105	9.41	10.0	94	83-106	11	20
Methyl tert-Butyl Ether	ND	8.83	10.0	88	8.51	10.0	85	70-118	4	20
trans-1,2-Dichloroethene	ND	11.0	10.0	110	9.94	10.0	99	86-115	10	20
1,1-Dichloroethane	ND	11.3	10.0	113	10.2	10.0	102	77-127	10	20
Vinyl Acetate	ND	43.9	40.0	110	41.1	40.0	103	8-187	7	20
2,2-Dichloropropane	ND	10.5	10.0	105	9.70	10.0	97	25-154	8	20
2-Butanone (MEK)	ND	39.0	40.0	97	38.1	40.0	95	90-112	2	20
cis-1,2-Dichloroethene	ND	10.3	10.0	103	9.55	10.0	96	69-118	7	20
Bromochloromethane	ND	11.5	10.0	115	11.2	10.0	112	47-136	3	20
Chloroform	ND	10.9	10.0	109	10.2	10.0	102	48-143	7	20
1,1,1-Trichloroethane	ND	9.10	10.0	91	8.66	10.0	87	84-122	5	20
Carbon Tetrachloride	ND	9.85	10.0	99	9.44	10.0	94	79-120	4	20
1,1-Dichloropropene	ND	10.2	10.0	102	9.53	10.0	95	85-117	7	20
Benzene	ND	9.90	10.0	99	9.59	10.0	96	88-114	3	20
1,2-Dichloroethane	ND	10.2	10.0	102	9.95	10.0	100	75-112	2	20
Trichloroethene	ND	10.1	10.0	101	10.4	10.0	104	76-115	3	20
1,2-Dichloropropane	ND	10.0	10.0	100	9.96	10.0	100	85-107	1	20
Dibromomethane	ND	9.83	10.0	98	10.5	10.0	105	82-106	7	20
Bromodichloromethane	ND	9.33	10.0	93	9.39	10.0	94	83-107	1	20
cis-1,3-Dichloropropene	ND	10.7	10.0	107	10.5	10.0	105	70-114	2	20
4-Methyl-2-pentanone (MIBK)	ND	37.2	40.0	93	41.7	40.0	104	54-129	11	20
Toluene	ND	10.3	10.0	103	10.3	10.0	103	86-114	0	20
trans-1,3-Dichloropropene	ND	9.98	10.0	100	9.99	10.0	100	73-112	0	20

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

000033

Page SuperSet Reference:

1 of 2

QA/QC Report

Client: Project: BE&K Terranext WVB/#03103157

Sample Matrix:

Water

Service Request: X2300283

Date Extracted: 04/03/2003

Date Analyzed: 04/03/2003

Matrix Spike/Duplicate Matrix Spike Summary Volatile Organic Compounds

Sample Name:

Batch QC

Lab Code:

X2300284-005

Extraction Method: Analysis Method:

EPA 5030B

8260B

Units: ug/L Basis: NA

Level: Low

Extraction Lot: XWG0300454

Batch QCMS VWG0200454-1

Batch QCDMS XWG0300454-2

	Sample	XWG0300454-1 Matrix Spike			·	VG0300454-2 cate Matrix S _l		%Rec		RPD
Analyte Name	Result	Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit
1,1,2-Trichloroethane	ND	9.49	10.0	95	9.32	10.0	93	79-112	2	20
Tetrachloroethene	ND	10.6	10.0	106	10.3	10.0	103	78-130	3	20
2-Hexanone	ND	34.8	40.0	87	36.7	40.0	92	77-112	5	20
1,3-Dichloropropane	ND	9.59	10.0	96	9.43	10.0	94	45-133	2	20
Dibromochloromethane	ND	9.41	10.0	94	9.47	10.0	95	74-108	1	20
1,2-Dibromoethane	ND	9.59	10.0	96	9.28	10.0	93	73-113	3	20
Chlorobenzene	ND	10.2	10.0	102	10.1	10.0	101	84-111	1	20
1,1,1,2-Tetrachloroethane	ND	9.83	10.0	98	9.53	10.0	95	84-119	3	20
	ND	10.6	10.0	106	10.5	10.0	105	47-136	1	20
Ethylbenzene Wylenes	ND	21.6	20.0	108	21.1	20.0	105	84-120	3	20
m,p-Xylenes	ND	10.3	10.0	103	10.1	10.0	101	47-143	2	20
o-Xylene	ND	10.7	10.0	107	10.5	10.0	105	72-121	2	20
Styrene	ND	10.5	10.0	105	10.3	10.0	103	63-108	2	20
Isopropylbenzene	ND	11.0	10.0	110	11.1	10.0	111	80-113	1	20
Bromobenzene	ND	9.92	10.0	99	10.7	10.0	107	78-119	8	20
1,2,3-Trichloropropane	ND	11.1	10.0	111	10.7	10.0	107	76-117	3	20
n-Propylbenzene	ND	10.7	10.0	107	10.4	10.0	104	79-121	3	20
2-Chlorotoluene	ND	10.9	10.0	109	10.5	10.0	105	70-133	4	20
4-Chlorotoluene	ND	10.9	10.0	109	10.4	10.0	104	79-118	5	20
1,3,5-Trimethylbenzene	ND	11.1	10.0	111	10.6	10.0	106	77-120	4	20
tert-Butylbenzene	ND	10.9	10.0	109	10.7	10.0	107	68-127	2	20
1,2,4-Trimethylbenzene	ND	10.5	10.0	105	10.1	10.0	101	78-123	3	20
sec-Butylbenzene	ND	10.7	10.0	107	10.5	10.0	105	78-127	2	20
1,3-Dichlorobenzene	ND	11.1	10.0	111	10.7	10.0	107	79-142	4	20
4-Isopropyltoluene	ND	9.10	10.0	91	9.55	10.0	96	83-111	5	20
Bromoform	ND	10.1	10.0	101	10.7	10.0	107	66-133	5	20
1,1,2,2-Tetrachloroethane	ND	10.1	10.0	101	10.2	10.0	102	48-139	1	20
1,4-Dichlorobenzene	ND	9.84	10.0	98	9.89	10.0	99	64-109	1	20
1,2-Dichlorobenzene	ND	10.5	10.0	105	10.3	10.0	103	69-122	2	20
n-Butylbenzene	ND ND	8.77	10.0	88	9.91	10.0	99	54-160	12	20
1,2-Dibromo-3-chloropropane	ND ND	9.63	10.0	96	10.3	10.0	103	39-145	7	20
1,2,4-Trichlorobenzene	ND ND	9.03 11.7	10.0	117 M1		10.0	119 M1	74-113	2	20
Hexachlorobutadiene	ND ND	8.95	10.0	90	9.63	10.0	96	44-167	7	20
Naphthalene		10.8	10.0	108	11.5	10.0	115	37-158	6	20
1,2,3-Trichlorobenzene	ND	10.8	10.0	100	11.0					

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 04/09/2003 14:41:21 L:\STEALTH\CRYSTAL.RPT\Form3DMS.rpt Form 3A - Organic

000034

2 of 2 Page

RR3183 SuperSet Reference:

QA/QC Report

Client: Project: BE&K Terranext WVB/#03103157

Sample Matrix:

Water

Service Request: X2300283

Date Extracted: 04/04/2003

Date Analyzed: 04/04/2003

Matrix Spike/Duplicate Matrix Spike Summary Volatile Organic Compounds

Sample Name: Lab Code:

Batch QC X2300279-002

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

Extraction Lot: XWG0300459

amnle	Batch QCMS XWG0300459-1 Matrix Spike		Batch QCDMS XWG0300459-2 Duplicate Matrix Spike			%Rec	RPD	RPD Limit	
Result	Result	Expected	%Rec	Result	Expected	%Rec			Limit
ND	2.99	10.0	30 M2	2.94	10.0				20
		10.0	57 M2	5.14					20
		10.0	62 M2	6.18					20
		10.0	76	6.99				-	20
		10.0	83	8.37					20
		10.0	79 M2	7.73				_	20
		10.0	100	9.57					20
		10.0	94	9.26					20
		40.0	92	36.4					20
		40.0	89	35.2	40.0			_	20
		40.0	94	36.4	40.0				20
		10.0	95	9.19	10.0				20
		10.0	87	7.79					20
		10.0	100	9.88					20
		10.0	106	10.4					20
		40.0	106	36.2					20
		10.0	101	9.84	10.0				20
		40.0	105	38.1	40.0				20
			101	11.5	10.0				20
			112	9.97	10.0				20
		10.0	113	10.8	10.0				20
		10.0	89	8.61	10.0				20
			94	9.15	10.0				20
			98	9.85	10.0				20
			99	9.90	10.0				20
			100	9.86	10.0				20
		10.0	112	13.6	10.0				20
		10.0	101	9.99	10.0				20
			99	10.0	10.0				20
			93	9.12	10.0				20
				9.83	10.0				20
				33.9	40.0				20
			99	10.1	10.0	101			20
ND	10.2	10.0	102	9.33	10.0	93	73-112	9	20
	ND N	No	NE	ND 10.0 10	Name	ND 2.99 10.0 30 M2 2.94 10.0 ND 2.99 10.0 30 M2 5.14 10.0 ND 5.67 10.0 57 M2 5.14 10.0 ND 7.63 10.0 76 6.99 10.0 ND 7.91 10.0 79 M2 7.73 10.0 ND 10.0 10.0 100 9.57 10.0 ND 36.9 40.0 92 36.4 40.0 ND 37.6 40.0 94 36.4 40.0 ND 37.6 40.0 94 36.4 40.0 ND 8.70 10.0 87 7.79 10.0 ND ND 10.0 10.0 100 9.88 10.0 ND 10.1 10.0 10.0 10.0 9.88 10.0 ND 42.3 40.0 106 36.2 40.0 ND 41.9 40.0 105 38.1 40.0 ND 41.9 40.0 105 38.1 40.0 ND 41.3 10.0 112 9.97 10.0 ND 11.2 10.0 112 9.97 10.0 ND 9.37 10.0 89 8.61 10.0 ND 9.37 10.0 98 9.85 10.0 ND 9.75 10.0 98 9.85 10.0 ND 9.85 10.0 99 9.90 10.0 ND 10.1 10.0 100 9.86 10.0 ND 9.85 10.0 99 9.90 10.0 ND 9.86 10.0 93 9.12 10.0 ND 9.81 10.0 99 10.1 10.0 ND	NEW New	ND ND ND ND ND ND ND ND	Name

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 04/09/2003 14:41:28 Form 3A - Organic

Page 1 of 2

SuperSet Reference: RR3183

QA/QC Report

Client: Project: BE&K Terranext WVB/#03103157

Sample Matrix:

Water

Service Request: X2300283

Date Extracted: 04/04/2003 **Date Analyzed:** 04/04/2003

Matrix Spike/Duplicate Matrix Spike Summary Volatile Organic Compounds

Sample Name:

Batch QC

Lab Code:

X2300279-002

Extraction Method: Analysis Method:

EPA 5030B

8260B

Units: ug/L Basis: NA

Level: Low Extraction Lot: XWG0300459

Batch OCMS

Batch QCDMS

	Sample	XWG0300459-1 Matrix Spike			XWG0300459-2 Duplicate Matrix Spike			%Rec	RPD	RPD
Analyte Name	Result	Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit
1,1,2-Trichloroethane	ND	9.30	10.0	93	8.63	10.0	86	79-112	7	20
Tetrachloroethene	7.2	17.0	10.0	99	17.3	10.0	101	78-130	2	20
2-Hexanone	ND	35.5	40.0	89	34.5	40.0	86	77-112	3	20
1,3-Dichloropropane	ND	9.14	10.0	91	8.94	10.0	89	45-133	2	20
Dibromochloromethane	ND	9.26	10.0	93	8.87	10.0	89	74-108	4	20
1,2-Dibromoethane	ND	9.08	10.0	91	8.62	10.0	86	73-113	5	20
Chlorobenzene	ND	10.2	10.0	102	10.2	10.0	102	84-111	0	20
1,1,1,2-Tetrachloroethane	ND	9.55	10.0	96	9.54	10.0	95	84-119	0	20
Ethylbenzene	ND	10.6	10.0	106	10.8	10.0	108	47-136	2	20
m,p-Xylenes	ND	21.3	20.0	107	22.0	20.0	110	84-120	3	20
o-Xylene	ND	10.2	10.0	102	10.4	10.0	104	47-143	2	20
Styrene	ND	10.5	10.0	105	10.1	10.0	101	72-121	3	20
Isopropylbenzene	ND	10.2	10.0	102	10.2	10.0	102	63-108	0	20
Bromobenzene	ND	11.1	10.0	111	10.5	10.0	105	80-113	6	20
1,2,3-Trichloropropane	ND	10.2	10.0	102	9.18	10.0	92	78-119	10	20
n-Propylbenzene	ND	10.7	10.0	107	10.4	10.0	104	76-117	2	20
2-Chlorotoluene	ND	10.4	10.0	104	10.2	10.0	102	79-121	2	20
4-Chlorotoluene	ND	10.4	10.0	104	10.3	10.0	103	70-133	1	20
1,3,5-Trimethylbenzene	ND	10.5	10.0	105	10.2	10.0	102	79-118	3	20
tert-Butylbenzene	ND	10.6	10.0	106	10.2	10.0	102	77-120	4	20
1,2,4-Trimethylbenzene	ND	10.4	10.0	104	10.2	10.0	102	68-127	2	20
sec-Butylbenzene	ND	9.94	10.0	99	9.56	10.0	96	78-123	4	20
1,3-Dichlorobenzene	ND	10.3	10.0	103	9.84	10.0	98	78-127	4	20
4-Isopropyltoluene	ND	10.5	10.0	105	10.2	10.0	102	79-142	3	20
Bromoform	ND	9.10	10.0	91	9.36	10.0	94	83-111	3	20
1,1,2,2-Tetrachloroethane	ND	10.6	10.0	106	10.5	10.0	105	66-133	1	20
1,4-Dichlorobenzene	ND	9.76	10.0	98	10.2	10.0	102	48-139	4	20
1,2-Dichlorobenzene	ND	9.72	10.0	97	9.66	10.0	97	64-109	1	20
n-Butylbenzene	ND	10.3	10.0	103	10.4	10.0	104	69-122	1	20
1,2-Dibromo-3-chloropropane	ND	9.06	10.0	91	9.13	10.0	91	54-160	1	20
1,2,4-Trichlorobenzene	ND	10.3	10.0	103	9.57	10.0	96	39-145	8	20
Hexachlorobutadiene	ND	12.0	10.0	120 M1	10.9	10.0	109	74-113	10	20
Naphthalene	ND	9.81	10.0	98	8.52	10.0	85	44-167	14	20
1,2,3-Trichlorobenzene	ND	12.1	10.0	121	10.5	10.0	105	37-158	14	20

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

000036

Printed: 04/09/2003 14:41:28 $L: \ \ STEALTH \ \ CRYSTAL.RPT \ \ Form 3DMS.rpt$ Form 3A - Organic

SuperSet Reference:

2 of 2 Page

RR3183

OA/QC Report

Client: Project: BE&K Terranext WVB/#03103157

Sample Matrix:

Water

Service Request: X2300283

Date Extracted: 04/03/2003 **Date Analyzed:** 04/03/2003

Lab Control Spike/Duplicate Lab Control Spike Summary Volatile Organic Compounds

Extraction Method:

EPA 5030B

Units: ug/L

Basis: NA

Extraction Lot: XWG0300454

Level: Low

Analysis Method: 8260B

Duplicate Lab Control Sample Lab Control Sample XWG0300454-4 XWG0300454-3 **Duplicate Lab Control Spike** Lab Control Spike RPD %Rec RPD Limit Limits %Rec **Expected Expected** %Rec Result Result **Analyte Name** 20 1-233 5 34 3.43 10.0 10.0 36 3.59 Dichlorodifluoromethane 20 5 46-156 10.0 61 6.08 10.0 64 Chloromethane 6.38 20 2 10.0 67 51-158 6.74 69 6.90 10.0 Vinyl Chloride 20 76 37-149 11 10.0 7.61 10.0 85 8.51 Bromomethane 7 20 88 56-146 10.0 95 8.80 9.48 10.0 Chloroethane 69-139 14 20 74 7.38 10.0 85 10.0 8.51 Trichlorofluoromethane 20 99 83-130 6 9.92 10.0 106 10.0 1,1,2-Trichlorotrifluoroethane 10.6 8 20 88 65-112 10.0 8.78 95 9.53 10.0 1,1-Dichloroethene 20 68-128 10 118 40.0 42.9 40.0 107 47.1 Acetone 4 20 68-144 97 40.0 101 38.8 40.0 40.4 Iodomethane 20 67-140 6 97 38.7 40.0 102 40.0 40.9 Carbon Disulfide 20 70-113 1 10.0 103 10.3 10.0 102 10.2 Methylene Chloride 2 20 91 75-115 10.0 9.05 89 Methyl tert-Butyl Ether 8.86 10.0 7 20 73-118 99 10.0 9.87 10.0 106 10.6 trans-1.2-Dichloroethene 2 20 77-127 104 10.0 105 10.4 10.0 10.5 1.1-Dichloroethane 39 2 51-202 40.0 112 44.8 109 40.0 43.7 Vinyl Acetate 4 20 95 75-132 10.0 9.46 98 9.81 10.0 2,2-Dichloropropane 20 10 101 72-122 40.0 40.5 91 2-Butanone (MEK) 36.5 40.0 20 81-118 0 98 10.0 9.81 10.0 98 9.82 cis-1.2-Dichloroethene 20 82-114 1 115 L1 10.0 10.0 115 L1 11.5 11.5 Bromochloromethane 20 78-119 1 10.0 102 10.2 101 10.0 10.1 Chloroform 20 71-125 3 84 10.0 8.41 86 10.0 8.64 1,1,1-Trichloroethane 20 69-130 3 89 10.0 8.86 10.0 91 9.11 Carbon Tetrachloride 20 77-114 7 91 9.10 10.0 97 10.0 9.74 1,1-Dichloropropene 0 20 10.0 93 81-117 9.33 93 9.30 10.0 Benzene 67-122 0 20 100 10.0 10.0 100 10.0 10.0 1,2-Dichloroethane 20 79-114 1 10.0 100 9.99 101 10.0 10.1 Trichloroethene 20 78-114 1 100 10.0 9.95 101 10.1 10.0 1.2-Dichloropropane 20 78-113 2 107 10.0 10.7 10.0 109 10.9 Dibromomethane 1 20 97 79-122 10.0 9.65 95 10.0 9.52 Bromodichloromethane 20 82-118 2 110 11.0 10.0 10.0 108 10.8 cis-1,3-Dichloropropene 20 0 75-115 40.0 40.0 100 40.0 101 40.2 4-Methyl-2-pentanone (MIBK) 20 1 103 85-118 10.0 102 10.3 10.0 10.2 Toluene 20 4 79-121 10.0 110 11.0 10.5 10.0 105 trans-1,3-Dichloropropene 20 4 102 79-116 10.2 10.0 97 10.0 9.74 1,1,2-Trichloroethane 4 20 98 76-127 10.0 9.84 102 10.2 10.0 Tetrachloroethene

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 04/09/2003 14:41:35 L:\STEALTH\CRYSTAL.RPT\Form3DLC.rpt Form 3C - Organic

000037

2 1 of Page

QA/QC Report

Client: Project: **BE&K Terranext** WVB/#03103157

Sample Matrix:

Water

Service Request: X2300283

Date Extracted: 04/03/2003

Date Analyzed: 04/03/2003

Lab Control Spike/Duplicate Lab Control Spike Summary Volatile Organic Compounds

Extraction Method: EPA 5030B **Analysis Method:**

8260B

Units: ug/L Basis: NA

Level: Low

Extraction Lot: XWG0300454

Lab Control Sample xWG0300454-3

Duplicate Lab Control Sample XWG0300454-4

	XWG0300454-3 Lab Control Spike			XWG0300454-4 Duplicate Lab Control Spike			%Rec		RPD	
Analyte Name	Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit	
•	36.7	40.0	92	41.9	40.0	105	65-120	13	20	
2-Hexanone	10.1	10.0	101	10.4	10.0	104	81-116	3	20	
1,3-Dichloropropane Dibromochloromethane	10.1	10.0	101	10.4	10.0	104	77-119	3	20	
1,2-Dibromoethane	9.95	10.0	100	10.4	10.0	104	79-116	4	20	
Chlorobenzene	10.1	10.0	101	10.2	10.0	102	84-114	2	20	
1,1,1,2-Tetrachloroethane	9.55	10.0	96	9.55	10.0	96	78-118	0	20	
	10.3	10.0	103	10.2	10.0	102	79-124	1	20	
Ethylbenzene	21.1	20.0	105	20.4	20.0	102	75-131	3	20	
m,p-Xylenes	10.1	10.0	101	9.82	10.0	98	78-122	3	20	
o-Xylene	10.4	10.0	104	10.4	10.0	104	80-126	0	20	
Styrene	9.92	10.0	99	9.80	10.0	98	75-126	1	20	
Isopropylbenzene Bromobenzene	10.8	10.0	108	10.8	10.0	108	82-122	1	20	
	10.1	10.0	101	10.3	10.0	103	77-118	2	20	
1,2,3-Trichloropropane n-Propylbenzene	10.4	10.0	104	10.2	10.0	102	75-129	2	20	
n-Propytoenzene 2-Chlorotoluene	9.98	10.0	100	10.0	10.0	100	77-126	0	20	
4-Chlorotoluene	10.2	10.0	102	10.1	10.0	101	82-120	0	20	
	10.1	10.0	101	9.97	10.0	100	75-130	1	20	
1,3,5-Trimethylbenzene	10.1	10.0	101	10.0	10.0	100	73-130	1	20	
tert-Butylbenzene 1,2,4-Trimethylbenzene	10.2	10.0	102	10.1	10.0	101	60-137	1	20	
	9.50	10.0	95	9.29	10.0	93	68-131	2	20	
sec-Butylbenzene 1,3-Dichlorobenzene	10.0	10.0	100	10.1	10.0	101	71-137	1	20	
	10.1	10.0	101	9.98	10.0	100	68-134	1	20	
4-Isopropyltoluene Bromoform	10.4	10.0	104	9.52	10.0	95	70-118	9	20	
1,1,2,2-Tetrachloroethane	11.1	10.0	111	10.9	10.0	109	72-122	2	20	
1,4-Dichlorobenzene	10.2	10.0	102	9.83	10.0	98	82-114	4	20	
1,2-Dichlorobenzene	9.65	10.0	97	9.88	10.0	99	81-118	2	20	
*	10.1	10.0	101	9.68	10.0	97	71-125	4	20	
n-Butylbenzene 1,2-Dibromo-3-chloropropane	8.72	10.0	87	8.91	10.0	89	55-131	2	20	
-	9.80	10.0	98	9.44	10.0	94	75-123	4	20	
1,2,4-Trichlorobenzene	10.8	10.0	108	10.2	10.0	102	63-140	6	20	
Hexachlorobutadiene	9.18	10.0	92	9.37	10.0	94	67-125	2	20	
Naphthalene 1,2,3-Trichlorobenzene	11.1	10.0	111	10.9	10.0	109	72-124	1	20	

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

QA/QC Report

Client: **Project:** BE&K Terranext WVB/#03103157

Sample Matrix:

Water

Service Request: X2300283

Date Extracted: 04/04/2003 **Date Analyzed:** 04/04/2003

Lab Control Spike/Duplicate Lab Control Spike Summary Volatile Organic Compounds

Extraction Method: Analysis Method:

EPA 5030B

8260B

Units: ug/L Basis: NA

Level: Low

Extraction Lot: XWG0300459

Lab Control Sample XWG0300459-3

Duplicate Lab Control Sample XWG0300459-4

	XWG0300459-3 Lab Control Spike			Duplicate Lab Control Spike			%Rec		RPD	
Analyte Name	Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit	
Dichlorodifluoromethane	2.60	10.0	26	1.46	10.0	15	1-233	56 R7	20	
	5.56	10.0	56	4.09	10.0	41 L2	46-156	30 R7	20	
Chloromethane	6.16	10.0	62	4.27	10.0	43 L2	51-158	36 R7	20	
Vinyl Chloride	7.58	10.0	76	6.64	10.0	66	37-149	13	20	
Bromomethane	8.15	10.0	82	7.34	10.0	73	56-146	10	20	
Chloroethane	7.39	10.0	74	5.45	10.0	55 L2	69-139	30 R7	20	
Trichlorofluoromethane	8.53	10.0	85	6.56	10.0	66 L2	83-130	26 R7	20	
1,1,2-Trichlorotrifluoroethane	8.29	10.0	83	6.46	10.0	65	65-112	25 R7	20	
1,1-Dichloroethene	47.8	40.0	120	44.3	40.0	111	68-128	8	20	
Acetone	35.0	40.0	88	33.2	40.0	83	68-144	5	20	
Iodomethane	36.0	40.0	90	29.0	40.0	73	67-140	21 R7	20	
Carbon Disulfide	10.6	10.0	106	9.76	10.0	98	70-113	9	20	
Methylene Chloride	9.04	10.0	90	9.00	10.0	90	75-115	0	20	
Methyl tert-Butyl Ether	9.0 4 9.79	10.0	98	8.51	10.0	85	73-118	14	20	
trans-1,2-Dichloroethene	10.4	10.0	104	9.43	10.0	94	77-127	9	20	
1,1-Dichloroethane	42.8	40.0	107	41.2	40.0	103	51-202	4	39	
Vinyl Acetate		10.0	87	7.90	10.0	79	75-132	10	20	
2,2-Dichloropropane	8.72	40.0	81	38.4	40.0	96	72-122	17	20	
2-Butanone (MEK)	32.3	10.0	95	9.26	10.0	93	81-118	2	20	
cis-1,2-Dichloroethene	9.47	10.0	113	11.7	10.0	117 L1	82-114	3	20	
Bromochloromethane	11.3		102	9.78	10.0	98	78-119	4	20	
Chloroform	10.2	10.0	102 77	6.64	10.0	66 L2	71-125	14	20	
1,1,1-Trichloroethane	7.67	10.0	80	6.91	10.0	69	69-130	15	20	
Carbon Tetrachloride	8.00	10.0	85	7.13	10.0	71 L2	77-114	17	20	
1,1-Dichloropropene	8.47	10.0	83 91	8.48	10.0	85	81-117	7	20	
Benzene	9.06	10.0		9.79	10.0	98	67-122	2	20	
1,2-Dichloroethane	10.0	10.0	100	9.79 8.44	10.0	84	79-114	9	20	
Trichloroethene	9.21	10.0	92	9.86	10.0	99	78-114	1	20	
1,2-Dichloropropane	9.98	10.0	100	10.8	10.0	108	78-113	4	20	
Dibromomethane	10.4	10.0	104	9.16	10.0	92	79-122	2	20	
Bromodichloromethane	9.39	10.0	94		10.0	108	82-118	1	20	
cis-1,3-Dichloropropene	10.9	10.0	109	10.8	40.0	109	75-115	6	20	
4-Methyl-2-pentanone (MIBK)	41.1	40.0	103	43.6	10.0	90	85-118	6	20	
Toluene	9.58	10.0	96	9.00	10.0	104	79-121	2	20	
trans-1,3-Dichloropropene	10.6	10.0	106	10.4		104	79-121	0	20	
1,1,2-Trichloroethane	9.93	10.0	99 90	9.97 7.90	10.0 10.0	79	76-127	13	20	
Tetrachloroethene	8.99	10.0	90	7.30	10.0					

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

000039

Printed: 04/09/2003 14:41:42 L:\STEALTH\CRYSTAL.RPT\Form3DLC.rpt Form 3C - Organic

1 of 2 Page

RR3183 SuperSet Reference:

QA/QC Report

Client: **Project:** BE&K Terranext WVB/#03103157

Sample Matrix:

Water

Service Request: X2300283

Date Extracted: 04/04/2003 **Date Analyzed:** 04/04/2003

Lab Control Spike/Duplicate Lab Control Spike Summary Volatile Organic Compounds

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

Extraction Lot: XWG0300459

Lab Control Sample XWG0300459-3

Duplicate Lab Control Sample XWG0300459-4

	Lab Control Spike			Duplicate Lab Control Spike			%Rec		RPD	
Analyte Name	Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit	
	39.2	40.0	98	40.3	40.0	101	65-120	3	20	
2-Hexanone	9.93	10.0	99	10.4	10.0	104	81-116	5	20	
1,3-Dichloropropane	10.1	10.0	101	10.1	10.0	101	77-119	0	20	
Dibromochloromethane	9.98	10.0	100	9.98	10.0	100	79-116	0	20	
1,2-Dibromoethane	9.66	10.0	97	9.60	10.0	96	84-114	1	20	
Chlorobenzene	9.51	10.0	95	9.29	10.0	93	78-118	2	20	
1,1,1,2-Tetrachloroethane	9.55	10.0	96	8.95	10.0	90	79-124	6	20	
Ethylbenzene	19.6	20.0	98	18.5	20.0	93	75-131	6	20	
m,p-Xylenes	9.75	10.0	98	9.44	10.0	94	78-122	3	20	
o-Xylene	10.2	10.0	102	10.1	10.0	101	80-126	2	20	
Styrene	9.20	10.0	92	8.47	10.0	85	75-126	8	20	
Isopropylbenzene	10.9	10.0	109	10.9	10.0	109	82-122	0	20	
Bromobenzene	10.9	10.0	103	10.1	10.0	101	77-118	2	20	
1,2,3-Trichloropropane	9.66	10.0	97	8.80	10.0	88	75-129	9	20	
n-Propylbenzene	9.66 9.93	10.0	99	9.25	10.0	93	77-126	7	20	
2-Chlorotoluene		10.0	100	9.70	10.0	97	82-120	3	20	
4-Chlorotoluene	9.98 9.84	10.0	98	9.27	10.0	93	75-130	6	20	
1,3,5-Trimethylbenzene		10.0	95	8.42	10.0	84	73-130	12	20	
tert-Butylbenzene	9.46	10.0	100	9.53	10.0	95	60-137	5	20	
1,2,4-Trimethylbenzene	9.97	10.0	89	7.71	10.0	77	68-131	14	20	
sec-Butylbenzene	8.89	10.0	102	9.91	10.0	99	71-137	3	20	
1,3-Dichlorobenzene	10.2	10.0	97	8.66	10.0	87	68-134	11	20	
4-Isopropyltoluene	9.67	10.0	97	9.96	10.0	100	70-118	7	20	
Bromoform	9.32		109	11.6	10.0	116	72-122	7	20	
1,1,2,2-Tetrachloroethane	10.9	10.0	98	10.0	10.0	100	82-114	3	20	
1,4-Dichlorobenzene	9.76	10.0	96 96	9.67	10.0	97	81-118	0	20	
1,2-Dichlorobenzene	9.63	10.0		8.23	10.0	82	71-125	9	20	
n-Butylbenzene	8.98	10.0	90 80	8.66	10.0	87	55-131	8	20	
1,2-Dibromo-3-chloropropane	7.97	10.0	80 96	9.74	10.0	97	75-123	2	20	
1,2,4-Trichlorobenzene	9.57	10.0	96 97	9.74	10.0	91	63-140	7	20	
Hexachlorobutadiene	9.70	10.0		9.60	10.0	96	67-125	8	20	
Naphthalene 1,2,3-Trichlorobenzene	8.85 10.4	10.0 10.0	89 104	11.1	10.0	111	72-124	7	20	

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

000049

2 of 2

April 7, 2003

Chuck Gordon BE & K Terranext 9830 S. 51st A-127 Phoenix, AZ 85044

Re: WVB/Project #03103154

Dear Chuck:

Enclosed are the results of the samples submitted to our laboratory on March 27, 2003. For your reference, these analyses have been assigned our service request number L2300695.

All analyses were performed in accordance with our laboratory's quality assurance program. Results are intended to be considered in their entirety and apply only to the samples analyzed. Columbia Analytical Services is not responsible for use of less than the complete report.

Columbia Analytical Services - is certified for environmental analyses by the Arizona Department of Health Services (certificate number: AZ0544 and AZ0136, expiration: May 23, 2003).

If you have any questions, please call me at (818) 587-5550, extension 309.

Respectfully submitted,

Columbia Analytical Services, Inc.

She Julleshir

Sue Anderson Project Chemist

SA

Page 1 of <u>/8</u>

Columbia Analytical Services, Inc.

Acronvms California DHS LUFT Method 8015M American Society for Testing and Materials **ASTM** Biochemical Oxygen Demand BOD Benzene/Toluene/Ethylbenzene/Xylenes BTEX California Assessment Metals CAM Chemical Abstract Service Registry Number **CAS Number** Chlorofluorocarbon CFC Chemical Oxygen Demand COD Contract Required Detection Limit **CRDL** Detected; result must be greater than zero. D Detected; result must be greater than the detection limit. DL **Duplicate Laboratory Control Sample DLCS** Duplicate Matrix Spike DMS DOH or DHS Department of Health Services Environmental Laboratory Accreditation Program **ELAP** U.S. Environmental Protection Agency **EPA** Gas Chromatography GC Gas Chromatography/Mass Spectrometry GC/MS Ion Chromatography IC Initial Calibration Blank sample **ICB** Inductively Coupled Plasma atomic emission spectrometry **ICP** Initial Calibration Verification sample ICV Laboratory Control Sample LCS Leaking Underground Fuel Tank LUFT Modified M Methylene Blue Active Substances **MBAS** Method Detection Limit MDL Method Reporting Limit MRL Matrix Spike MS Methyl-tert-Butyl Ether **MTBE** Not Applicable NA Not Calculated NC None Detected at or above the Method Reporting/Detection Limit (MRL/MDL) ND Nephelometric Turbidity Units NTU Parts Per Billion ppb Parts Per Million ppm **Practical Quantitation Limit PQL** Quality Assurance/Quality Control QA/QC Resource Conservation and Recovery Act **RCRA** Relative Percent Difference **RPD** Selected Ion Monitoring SIM Standard Methods for the Examination of Water and Wastewater, 18th Ed., 1992. SM Solubility Threshold Limit Concentration STLC Test Methods for Evaluating Solid Waste, Physical/Chemical Methods SW-846, SW Third Edition, 1986 and as amended by Updates I, II, IIA, and IIB. Toxicity Characteristics Leaching Procedure **TCLP** Total Dissolved Solids TDS Total Petroleum Hydrocarbons **TPH** Total Recoverable Petroleum Hydrocarbons TRPH Total Suspended Solids TSS Total Threshold Limit Concentration TTLC Volatile Organic Analyte(s) VOA **Qualifiers** Undetected at or above MDL/MRL. U Estimated concentration. Analyte detected above MDL but below MRL. J Hit above MRL also found in Method Blank. В

Analyte concentration above high point of ICAL. E Presumptive evidence of compound. N Result from dilution. D See case narrative. X

- Cover Page -INORGANIC ANALYSIS DATA PACKAGE

Client:

BE&K Terranext, LLC

AVB118-0104-1000

Project Name: Project No.:

WVB

03103154

Service Request: L2300695

Lab Code: Sample Name: L2300676-001 Batch QC L2300676-001S Batch QC L2300676-001SD Batch QC L2300676-LCS Laboratory Control Sample L2300676-MB Method Blank L2300695-001 AVB72-0100-07120 L2300695-002 AVB70-0100-07103 L2300695-003 AVB57-0100-16095 L2300695-004 AVB118-0100-01100 L2300695-005

Analytical Report

Client:

BE&K Terranext, LLC

Project Name: Project No.:

WVB 03103154

Matrix:

Water

Service Request: L2300695

Date Collected: 03/27/03 **Date Received:** 03/27/03

Date Extracted: 04/02/03

Total Metals

Sample Name:

AVB72-0100-07120

Lab Code:

L2300695-001

Units: ug/L (ppb)

Analyte	Analysis Method	MRL	Date Analyzed	Sample Result	Result Notes
Chromium	6010B	10	04/04/03	1530	

Analytical Report

Client:

BE&K Terranext, LLC

Project Name: Project No.:

WVB 03103154

Matrix:

Water

Service Request: L2300695

Date Collected: 03/27/03

Date Received: 03/27/03

Date Extracted: 04/02/03

Dissolved Metals

Sample Name:

AVB72-0100-07120

Lab Code:

L2300695-001

Units: ug/L (ppb)

Basis: NA

Sample Result Notes Result **Date Analyzed** MRL **Analysis Method** Analyte ND 04/04/03 10 6010B Chromium

Analytical Report

Client:

BE&K Terranext, LLC

Project Name: Project No.:

WVB

Matrix:

03103154 Water

Service Request: L2300695 **Date Collected:** 03/27/03

Date Received: 03/27/03

Date Extracted: 04/02/03

Total Metals

Sample Name:

AVB70-0100-07103

Lab Code:

L2300695-002

Units: ug/L (ppb)

Analyte	Analysis Method	MRL	Date Analyzed	Sample Result	Result Notes
Chromium	6010B	10	04/04/03	140	

Analytical Report

Client:

BE&K Terranext, LLC

Project Name: Project No.:

WVB 03103154

Matrix:

Water

Service Request: L2300695

Date Collected: 03/27/03

Date Received: 03/27/03

Date Extracted: 04/02/03

Dissolved Metals

Sample Name:

AVB70-0100-07103

Lab Code:

L2300695-002

Units: ug/L (ppb)

Analyte	Analysis Method	MRL	Date Analyzed	Sample Result	Result Notes
Chromium	6010B	10	04/04/03	ND	

Analytical Report

Client:

BE&K Terranext, LLC

Project Name: Project No.:

WVB

Matrix:

03103154

Water

Service Request: L2300695 **Date Collected**: 03/27/03

Date Received: 03/27/03

Date Extracted: 04/02/03

Total Metals

Sample Name:

AVB57-0100-16095

Lab Code:

L2300695-003

Units: ug/L (ppb)

Analyte	Analysis Method	MRL	Date Analyzed	Sample Result	Result Notes
Chromium	6010B	10	04/04/03	186	

Analytical Report

Client:

BE&K Terranext, LLC

Project Name : Project No. :

WVB

Matrix:

03103154 Water Service Request: L2300695

Date Collected: 03/27/03

Date Received: 03/27/03

Date Extracted: 04/02/03

Dissolved Metals

Sample Name:

AVB57-0100-16095

Lab Code:

L2300695-003

Units: ug/L (ppb)

Analyte	Analysis Method	MRL	Date Analyzed	Sample Result	Result Notes
Chromium	6010B	10	04/04/03	ND	

Analytical Report

Client:

BE&K Terranext, LLC

Project Name: Project No.:

WVB 03103154

Matrix:

Water

Service Request: L2300695

Date Collected: 03/27/03 Date Received: 03/27/03 Date Extracted: 04/02/03

Total Metals

Sample Name:

AVB118-0100-01100

Lab Code:

L2300695-004

Units: ug/L (ppb)

A 7 4	Analysis Method	MRL	Date Analyzed	Sample Result	Result Notes
Analyte	Analysis Memor		0.4/0.4/02	ND	
Chromium	6010B	10	04/04/03	ND	

Analytical Report

Client:

BE&K Terranext, LLC

Project Name : Project No. :

WVB 03103154

Matrix:

Water

Service Request: L2300695

Date Collected: 03/27/03

Date Received: 03/27/03

Date Extracted: 04/02/03

Dissolved Metals

Sample Name:

AVB118-0100-01100

Lab Code:

L2300695-004

Units: ug/L (ppb)

Analyte	Analysis Method	MRL	Date Analyzed	Sample Result	Result Notes
Chromium	6010B	10	04/04/03	ND	

Analytical Report

Client:

BE&K Terranext, LLC

Project Name: Project No.:

WVB 03103154

Matrix:

Water

Service Request: L2300695

Date Collected: 03/27/03 Date Received: 03/27/03

Date Extracted: 04/02/03

Total Metals

Sample Name:

AVB118-0104-1000

Lab Code:

L2300695-005

Units: ug/L (ppb)

Basis: NA

Result Sample Result Notes **Date Analyzed** MRL **Analysis Method** Analyte ND 04/04/03 6010B 10 Chromium

Analytical Report

Client:

Matrix:

BE&K Terranext, LLC

Project Name : Project No. : WVB 03103154

Water

'erranext LLC

Service Request: L2300695

Date Collected: 03/27/03 **Date Received**: 03/27/03 **Date Extracted**: 04/02/03

Dissolved Metals

Sample Name:

AVB118-0104-1000

Lab Code:

L2300695-005

Units: ug/L (ppb)

Analyte	Analysis Method	MRL	Date Analyzed	Sample Result	Result Notes
Chromium	6010B	10	04/04/03	ND	

Analytical Report

Client:

BE&K Terranext, LLC

Project Name : Project No. :

WVB

Matrix:

03103154 Water Service Request: L2300695

Date Collected: NA
Date Received: NA

Date Extracted: 04/02/03

Total Metals

Sample Name:

Method Blank

Lab Code:

L2300676-MB

Units: ug/L (ppb)

Analyte .	Analysis Method	MRL	Date Analyzed	Sample Result	Result Notes
Chromium	6010B	10	04/04/03	ND	

QA/QC Report

Client:

BE&K Terranext, LLC

Project Name: Project No.:

WVB 03103154

Matrix:

Water

Service Request: L2300695 Date Collected: NA Date Received: NA

Date Extracted: 04/02/03 **Date Analyzed:** 04/04/03

Laboratory Control Sample Summary

Total Metals

Sample Name:

Laboratory Control Sample

Lab Code:

L2300676-LCS

Units: ug/L (ppb)

Analyte	Analysis Method	True Value	Result	Percent	CAS Percent Recovery Acceptance Limits	Result Notes
Chromium	6010B	500	522	104	87-111	

QA/QC Report

Client:

BE&K Terranext, LLC

Project Name: Project No.:

WVB 03103154

Matrix:

Water

Service Request: L2300695

Date Collected: NA Date Received: NA

Date Extracted: 04/02/03

Date Analyzed: 04/04/03

Matrix Spike Summary Total Metals

Sample Name:

Batch QC

Lab Code:

L2300676-001S

Units: ug/L (ppb)

Analyte	MRL	Spike Level	Sample Result	Spiked Sample Result	Percent Recovery	CAS Percent Recovery Acceptance Limits	Result Notes
Chromium	10	500	ND	505	101	87-105	

Columbia Analytical Services Inc.

CHAIN OF CUSTODY/LABORATORY ANALYSIS REQUEST FORM

3902 East University Drive, Suite 4 • Phoenix, AZ 85034 • (602) 437-2001 • (800) 695-7222 x09 • FAX (602) 437-5308 56900877

DATE 5-77-03

PAGE

P

 Surcharges Apply ANALYSIS TAT (Sircle One) REMARKS Lab No. X 2200285 SAMPLE RECEIPT: ☐ 72 Hours □ 48 Hours □ 24 Hours STANDARD RUSH TAT Shipping VIA: Shipping #: Condition: 3-27-03 **ANALYSIS REQUESTED** D INVOICE INFORMATION: Date/Time 0188 Date/Time Date/Time DHO Paint Filler DHO Organization Organization Organization 728 Total D TCLP D BII 70 #.O.4 MSD, as required, may be charged as samples) REPORT REQUIREMENTS III. Data Validation Report (includes All Raw Data) IV. CLP Deliverable Report I. Routine Report Volatile Organics Received By (Signature) Regeil∕jed By (Signature) Received By (Signature) TO OX NUMBER OF CONTAINERS Date/Time Date/Time 3-27-03 PRESER-VATION 意義 Date/Time 13103187 \$ 多 9 08 Organization Organization Organization STA LAB I.D. 0283 Gorden 66.07 8 PHONE/FAX 9.30 TIME S. 25 B B SPECIAL INSTRUCTIONS/COMMENTS: DATE COMPANY/ADDRESS, COMPAN 3.37 25. SAMPLER'S SIGNATURE - SA 1 PROJECT NAME NVB (By/(Signature) Relinguished By (Signature) Relinquished By (Signature) AUX-1000-16095 MIB-0100-01100 MG 2-0100-67120 F0170-0100-0784 WB118-004-1000 AVAILD COLD 100 PROJECT MANAGER SAMPLE I.D. D, 000057

DISTRIBUTION: WHITE - return to originator; YELLOW - lab; PINK - retained by originator

0702

SAMPLE RECEIPT FORM

Service Request No: L230 0695 CI	ient: BE+K
Sample(s) delivered by: Client CAS E	mp After Hours DHL
Golden State Overnight Fed X	UPS Other Courier
Chain of Custody filled out accurately?	Yes No(See Comments)
Appropriate sample volume and containers?	Yes/ No(See Comments)
Sufficient labeling on container(s)?	Yes No(See Comments)
Container(s) supplied by CAS?	Yes No √ (See Comments)
Custody seal(s) intact? N/A	Yes No(See Comments)
Trip Blank(s) received	Yes No
If Trip Blank was supplied by CAS, record s	erial #TB
Temperature of sample(s)/cooler	_°C Temp Blank? Y or N (Circle One)
Voa's Marked Preserved? Yes No Fille	d Properly? Yes No (See Comments)
Preserved Bottles Requiring pH check(s)? Yes	Notified done
RUSH Turn around time? Yes Notified	Date & Time
Short Hold-Time Analysis (check all that apply)	·
ASAP Res Cl D.O Fla 24HR pH Odor Cr- 48HR BOD Color MBA Nitrite O-PO4 Sett S 72HR Vapors	S Nitrate
Notified	Date & Time
Container(s) received and their preservative(s):	
-1 -> -5 = 1-1L PL(N 1-1L PL(HO	P) A U03)B
Comments Note: Filter Epusence dis 3/28/03 /0/5	55 Cv in lib. Benny called
Initials, Date, Time LK 3/28/93	1005 r:\sr_forms\cooler.doc Rev. 1/17/02

CHAIN OF CUSTODY/LABORATORY ANALYSIS REQUEST FORM

3902 East University Drive, Suite 4 • Phoenix, AZ 85034 • (602) 437-2001 • (800) 695-7222 x09 • FAX (602) 437-5308

Services ^{INC.}

Solumbia Analytical

DATE 3-7-03

A,

PAGE

RUSH TAT - Surcharges Apply AMALYSIS TAT (Sircle One) Lab No: X 2300283 REMARKS SAMPLE RECEIPT: STANDARD Shipping VIA: Shipping #: Condition: 2210 3-27-03 ANALYSIS REQUESTED 0<58 INVOICE INFORMATION: 0158 Date/Time Date/Time HAA Plash Point of pho Paint Filter of Total D TOLP DI Organization Organization Total D P.O.# 8RCRA Metals MSD, as required, may be charged as samples) REPORT REQUIREMENTS III. Data Validation Report (includes All Raw Data) IV. CLP Deliverable Report I. Routine Report Aromatic Volatiles Halogenated Volatile Organics Received By (Signature) Reg€iŊed By (Signature) 3 3 3 九 NUMBER OF CONTAINERS PRESER-VATION 五五 Date/Time Date/Time t 10000 B MATRIX 0283 -01 AD ට් 8 Organization Organization LAB I.D. Gorden 160.30 60 8 PHONE/FAX 0.30 0.30 るが TIME B) SPECIAL INSTRUCTIONS/COMMENTS: Chuck COMPANY/ADDRESS_COMPANY DATE 13.27 かど SAMPLER'S SIGNATURE K 1 ŝ Relinguished By (Signature) quished By (Signature) PROJECT NAME WUB M370-0100-07103 NUTS1 0100 - 16095 AN 118-0100-01100 MA 72-0100-67 AM AUBIES 16 10 2- 100 NB118-019-1000 PROJECT MANAGER SAMPLE

DISTRIBUTION: WHITE - return to originator; YELLOW - lab; PINK - retained by originator

0702

□ 24 Hours □ 48 Hours □ 72 Hours

Date/Time

Organization

Received By (Signature)

Date/Time

Organization

Relinquished By (Signature)

Columbia Analytical Services, Inc. Phoenix, AZ

Sample Receipt and Preservation Form

lient:	BEZU	TERRANEX	T_	Project Name: _	WVB	
	ceived on: 3/			D _{time}		
MATRIX: First Extra Is first extr	raction/analysis	Time Expiration in the control of th	R □ on: expiration LESS T	_date 'HAN 24 HOUR	time (soils only) S(soil)/7 DAYS (water)? Chemist's Initials	Yes □ No
	ndard turn-a-re				RUSH Yes □	STANDAR No P
Are the sig Did all con Are all con Were the c Have VOA Temperatu	orrect containe 's been checked re of sample(s)	e correct? n good condition implete (i.e. propers used for the d for the present upon receipt:	on? eservation, sample tests indicated? ace of air bubbles?	(note problems		No□ No□ No□
	A				VOA Vial pH Verifi (Tested After Anal	
		YES	NO		☐ All Samples pH☐ Following Samples Exh	
pН	Reagent					
12	NaOH					
2	HNO ₃					
2	H ₂ SO ₄					
Comments: _						

April 11, 2003

Chuck Gordon BE&K Terranext 9830 S. 51st Street, Suite A-127 Phoenix, AZ 85044

Re:

WVB / Project #03103154

Dear Chuck:

Enclosed are the results of the samples submitted to our laboratory on March 26, 2003. The samples were analyzed for Total & Dissolved Chromium by our Canoga Park, CA facility (L2300694). For your reference, the 8260 analyses have been assigned our service request number X2300279.

All analyses were performed according to our laboratory's quality assurance program. All results are intended to be considered in their entirety, and Columbia Analytical Services, Inc. (CAS) is not responsible for use of less than the complete report. Results apply only to the samples analyzed. Columbia Analytical Services, Inc. is certified for environmental analyses by the Arizona Department of Health Services (Certificate #AZ0136; and #AZ0497).

Please call if you have any questions. My extension is 223.

Respectfully submitted,

Columbia Analytical Services, Inc.

Tracy L. Dutton Laboratory Director

TLD/lm

Page 1 of <u>49</u>

Client:

BE&K Terranext

Project:

WVB / #03103154

Sample Matrix:

Water

Service Request No.:

X2300279

Date Received:

3/26/03

CASE NARRATIVE

All analyses were performed consistent with the quality assurance program of Columbia Analytical Services, Inc. (CAS). This report contains analytical results for sample(s) designated for Tier III data deliverables. When appropriate to the method, method blank results have been reported with each analytical test. Surrogate recoveries have been reported for all applicable organic analyses. Additional quality control analyses reported herein include: Matrix/Duplicate Matrix Spike (MS/DMS) and Laboratory Control Sample (LCS).

All EPA recommended holding times have been met for analyses in this sample delivery group.

The following difficulties were experienced during analysis of this batch:

Matrix spike (XWG0300459-1 and XWG0300459-2) recovery of several analytes for Method 8260B was low. The method control sample recovery was acceptable.

Matrix spike (XWG0300459-1) recovery of Hexachlorobutadiene, Method 8260B, was high. The method control sample recovery was acceptable.

The associated blank spike (XWG0300459-3 and XWG0300459-4) recovery of several analytes for Method 8260B was below the laboratory acceptance limit. These compounds were seen in the method reporting limit standard that was analyzed with this batch of samples. This verifies that the compounds would be detected if present in the samples.

LCS/DLCS (XWG0300459-3 and XWG0300459-4) RPD for several analytes for Method 8260B exceeded the labortory control limit. Recovery met acceptance criteria.

The associated blank spike (XWG0300459-4) recovery of Bromochloromethane, Method 8260, was above laboratory acceptance limits. This compound was not detected in any of the samples analyzed in this batch.

ARIZONA DATA QUALIFIERS

Method	Blank:
В1	Target analyte detected in method blank at or above the method reporting limit.
B2	Non-target analyte detected in method blank and sample, producing interference.
В3	Target analyte detected in calibration blank at or above the method reporting limit.
В4	Target analyte detected in blank at/above method acceptance criteria.
B5	Target analyte detected in method blank at or above the method reporting limit, but below trigger level or MCL.
В6	Target analyte detected in calibration blank at or above the method reporting limit, but below trigger level or MCL
B7	Target analyte detected in method blank at or above method reporting limit. Concentration found in the sample
	was 10 times above the concentration found in the method blank.
Confirn	nation:
C1	Confirmatory analysis not performed as required by the method.
C2	Confirmatory analysis not performed. Confirmation of analyte presence established by site historical data.
C3	Qualitative confirmation performed. See case narrative.
C4	Confirmatory analysis was past holding time.
C5	Confirmatory analysis was past holding time. Original result not confirmed.
Dilution	
DI	Sample required dilution due to matrix interference. See case narrative.
D2	Sample required dilution due to high concentration of target analyte.
D3	Sample dilution required due to insufficient sample.
1)4	Minimum reporting level (MRL) adjusted to reflect sample amount received and analyzed.
Estimat	ted concentration:
E1	Concentration estimated. Analyte exceeded calibration range. Reanalysis not possible due to insufficient
	sample.
E2	Concentration estimated. Analyte exceeded calibration range. Reanalysis not performed due to sample matrix.
E3	Concentration estimated. Analyte exceeded calibration range. Reanalysis not performed due to holding time
	requirements.
E4	Concentration estimated. Analyte was detected below laboratory minimum reporting level (MRL).
E5	Concentration estimated. Analyte was detected below laboratory minimum reporting level (MRL), but not confirmed by alternate analysis.
E6	Confirmation estimated. Internal standard recoveries did not meet method acceptance criteria.
E7	Confirmation estimated. Internal standard recoveries did not meet laboratory acceptance criteria.
Hold T	
H1	Sample analysis performed past holding time. See case narrative.
1-12	Initial analysis within holding time. Reanalysis for the required dilution was past holding time.
Н3	Sample was received and analyzed past holding time.
H4	Sample was extracted past required extraction holding time, but analyzed within analysis holding time. See case narrative.

The associated blank spike recovery was above laboratory acceptance limits. See case narrative.

Laboratory fortified blank/blank spike:

The associated blank spike recovery was below laboratory acceptance limits. See case narrative. L.2 The associated blank spike recovery was above method acceptance limits. See case narrative L3 The associated blank spike recovery was below method acceptance limits. See case narrative. L4 Note: The L1, L2, L3, & L4 footnotes need to be added to all corresponding analytes for a sample. Matrix spike: Matrix spike recovery was high, the method control sample recovery was acceptable. МI Matrix spike recovery was low, the method control sample recovery was acceptable. M2The accuracy of the spike recovery value is reduced since the analyte concentration in the sample is M3 disproportionate to spike level. The method control sample recovery was acceptable. The analysis of the spiked sample required a dilution such that the spike concentrations was diluted below M4 the reporting limit. The method control sample recovery was acceptable. Analyte concentration was determined by the method of standard addition (MSA). M5 Matrix spike recovery was high. Data reported per ADEQ policy 0154.000. M6 Matrix sipke recovery was low. Data reported per ADEQ policy 0154,000. M7 General: See case narrative. N1See corrective action report. N2Sample quality: Sample integrity was not maintained. See case narrative. Q1 Sample received with head space. Q2Sample received with improper chemical preservation. O3 Sample received and analyzed without chemical preservation. Q4 Sample received with inadequate chemical preservation, but preserved by the laboratory. Q5 Sample was received above recommended temperature. Q6 Sample inadequately dechlorinated. Q7 Insufficient sample received to meet QC requirements. QC requirements satisfy ADEQ policies 0154 and 0155. $\bigcirc 8$ Insufficient sample received to meet QC requirements. 09 Sample received in inappropriate sample container O10 Sample is heterogeneous. Sample homogeneity could not be readily achieved using routine laboratory practices. Q11 **Duplicates:** RPD exceeded the method control limit. See case narrative. R1 RPD exceeded the laboratory control limit. See case narrative. R2 Sample RPD between the primary and confirmatory analysis exceeded 40%. Per Method 8000B, the higher R3 value was reported. MS/MSD RPD exceeded the method control limit. Recovery met acceptance criteria. R4 MS/MSD RPD exceeded the laboratory control limit. Recovery met acceptance criteria. **R5** LFB/LFBD RPD exceeded the method control limit. Recovery met acceptance criteria. R6 LFB/LFBD RPD exceeded the laboratory control limit. Recovery met acceptance criteria. R7 Sample RPD exceeded the method control limit. **R8** Sample RPD exceeded the laboratory control limit. R9 Surrogate: Surrogate recovery was above laboratory acceptance limits, but within method acceptance limits.

Surrogate recovery was above laboratory and method acceptance limits.

S1

82

Surrogate recovery was above laboratory acceptance limits, but within method acceptance limits. No target 83 analytes were detected in the sample. Surrogate recovery was above laboratory and method acceptance limits. No target analytes were detected in the S4 sample. Surrogate recovery was below laboratory acceptance limits, but within method acceptance limits. S5 Surrogate recovery was below laboratory and method acceptance limits. Reextraction and/or reanalysis confirms 86 low recovery caused by matrix effect. Surrogate recovery was below laboratory and method acceptance limits. Unable to confirm matrix effect. **S7** The analysis of the sample required a dilution such that the surrogate concentration was diluted below the method **S8** acceptance criteria. The method control sample recovery was acceptable. The analysis of the sample required a dilution such that the surrogate concentration was diluted below the S9 laboratory acceptance criteria. The method control sample recovery was acceptable. Surrogate recovery was above laboratory and method acceptance limits. See case narrative. S10 Surrogate recovery was high. Data reported per ADEQ policy 0154.000. S11

Method/analyte discrepancies:

S12

- Method promulgated by EPA, but not ADHS at this time. T1
- Cited ADHS licensed method does not contain this analyte as part of method compound list. T2

Surrogate recovery was low. Data reported per ADEQ policy 0154.000.

- Method not promulgated either by EPA or ADHS. Т3
- Tentatively identified compound. Concentration is estimated and based on the closest internal standard. T4

Calibration verification:

- CCV recovery was above method acceptance limits. This target analyte was not detected in the sample. V1
- CCV recovery was above method acceptance limits. This target analyte was detected in the sample. The sample V2could not be reanalyzed due to insufficient sample.
- CCV recovery was above method acceptance limits. This target analyte was detected in the sample, but the V3 sample was not reanalyzed. See case narrative.
- CCV recovery was below method acceptance limits. The sample could not be reanalyzed due to insufficient V4
- CCV recovery after a group of samples was above acceptance limits. This target analyte was not detected in the V5 sample. Acceptable per EPA Method 8000B.
- Data reported from one-point calibration criteria per ADEQ policy 0155,000. V6
- Calibration verification recovery was above the method control limit for this analyte however the average V7% difference or % drift for all the analytes met method criteria.
- Calibration verification recovery was below the method control limit for this analyte however the average V8% difference or % drift for all the analytes met method criteria.

Calibration:

The % RSD for this compound was above 15%. The average % RSD for all compounds in the calibration met W1 the 15% criteria as specified in EPA method 8000B.

Inorganic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.
- U The compound was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- The MRL/MDL has been elevated due to a matrix interference.
- X See case narrative.

Metals Data Qualifiers

- # The control limit criteria is not applicable. See case narrative.
- B The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.
- E The reported value is estimated because of the presence of matrix interference.
- M The duplicate injection precision was not met.
- N The Matrix Spike sample recovery is not within control limits. See case narrative.
- S The reported value was determined by the Method of Standard Additions (MSA).
- U The compound was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- W The post-digestion spike for furnace AA analysis is out of control limits, while sample absorbance is less than 50% of spike absorbance
- i The MRL/MDL has been elevated due to a matrix interference.
- X See case narrative
- * The duplicate analysis not within control limits. See case narrative.
- + The correlation coefficient for the MSA is less than 0.995.

Organic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- A A tentatively identified compound, a suspected aldol-condensation product.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result.
- C The analyte was qualitatively confirmed using GC/MS techniques, pattern recognition, or by comparing to historical data.
- D The reported result is from a dilution.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.
- N The result is presumptive. The analyte was tentatively identified, but a confirmation analysis was not performed.
- P The GC or HPLC confirmation criteria was exceeded. The relative percent difference is greater than 40% between the two analytical results (25% for CLP Pesticides).
- U The compound was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- i The MRL/MDL has been elevated due to a chromatographic interference.
- X See case narrative.

Additional Petroleum Hydrocarbon Specific Qualifiers

- F The chromatographic fingerprint of the sample matches the elution pattern of the calibration standard.
- L The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of lighter molecular weight constituents than the calibration standard.
- H The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of heavier molecular weight constituents than the calibration standard.
- O The chromatographic fingerprint of the sample resembles an oil, but does not match the calibration standard.
- Y The chromatographic fingerprint of the sample resembles a petroleum product eluting in approximately the correct carbon range, but the elution pattern does not match the calibration standard.
- Z The chromatographic fingerprint does not resemble a petroleum product.

Client: Project: BE&K Terranext WVB/#03103154 Service Request:

X2300279

Cover Page - Organic Analysis Data Package **Volatile Organic Compounds**

Sample Name	Lab Code	Date Collected	Date Received
AVB76-0100-07108 AVB75-0100-07118 AVB73-0100-07109 AVB73-0104-1000 AVB73-0102-1000 AVB75-0100-07118MS AVB75-0100-07118DMS	X2300279-001 X2300279-002 X2300279-003 X2300279-004 X2300279-005 XWG0300459-1 XWG0300459-2	03/26/2003 03/26/2003 03/26/2003 03/26/2003 03/26/2003 03/26/2003	03/26/2003 03/26/2003 03/26/2003 03/26/2003 03/26/2003 03/26/2003

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed in the case narrative. Release of the data contained in this hardcopy data package and in the computer-readable data submitted on floppy diskette has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signature.

Date:

RR3180

Analytical Results

Client: **Project:** **BE&K Terranext** WVB/#03103154

Sample Matrix:

Water

Service Request: X2300279

Date Collected: 03/26/2003 **Date Received:** 03/26/2003

Volatile Organic Compounds

Sample Name:

AVB76-0100-07108

Lab Code:

X2300279-001

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA Level: Low

	- 1. O	MRL	Dilution Factor	Date Extracted	Date Analyzed Arizona Qua	lifier
Analyte Name	Result Q		1	04/04/03	04/04/03	
Dichlorodifluoromethane	ND U	3.0	1	04/04/03	04/04/03	
Chloromethane	ND U	2.0	1	04/04/03	04/04/03	
Vinyl Chloride	ND U	1.0		04/04/03	04/04/03	
Bromomethane	ND U	1.0	1	04/04/03	04/04/03	
Chloroethane	ND U	1.0	1 1	04/04/03	04/04/03	
Trichlorofluoromethane	ND U	1.0			04/04/03	
1,1,2-Trichlorotrifluoroethane	ND U	1.0	1	04/04/03	04/04/03	
1,1-Dichloroethene	ND U	1.0	1	04/04/03	04/04/03	
Acetone	11	10	1	04/04/03		
Iodomethane	ND U	2.0	1	04/04/03	04/04/03	
Carbon Disulfide	ND U	2.0	1	04/04/03	04/04/03	
Methylene Chloride	ND U	1.0	1	04/04/03	04/04/03	
	ND U	1.0	1	04/04/03	04/04/03	
Methyl tert-Butyl Ether trans-1,2-Dichloroethene	ND U	0.50	1	04/04/03	04/04/03	
1.1-Dichloroethane	ND U	0.50	1	04/04/03	04/04/03	
, , , , , , , , , , , , , , , , , , ,	ND U	3.0	1	04/04/03	04/04/03	
Vinyl Acetate	ND U	2.0	1	04/04/03	04/04/03	
2,2-Dichloropropane	ND U	8.0	1	04/04/03	04/04/03	
2-Butanone (MEK)		0.50	1	04/04/03	04/04/03	
cis-1,2-Dichloroethene	ND U	0.50	1	04/04/03	04/04/03	
Bromochloromethane	ND U ND U	1.0	1	04/04/03	04/04/03	
Chloroform			1	04/04/03	04/04/03	
1,1,1-Trichloroethane	ND U	0.50	1	04/04/03	04/04/03	
Carbon Tetrachloride	ND U	0.50	1	04/04/03	04/04/03	
1,1-Dichloropropene	ND U	0.50		04/04/03	04/04/03	
Benzene	1.2	0.50	1	04/04/03	04/04/03	
1.2-Dichloroethane	ND U	0.50	1	04/04/03	04/04/03	
Trichloroethene	ND U	0.50	1			
1,2-Dichloropropane	ND U	0.50	1	04/04/03	04/04/03	
Dibromomethane	ND U	0.50	1	04/04/03	04/04/03	
Bromodichloromethane	ND U	0.50	1	04/04/03	04/04/03	
cis-1,3-Dichloropropene	ND U	0.50	1	04/04/03	04/04/03	
4-Methyl-2-pentanone (MIBK)	ND U	8.0	1	04/04/03	04/04/03	
Toluene	ND U	0.50	1	04/04/03	04/04/03	
	ND U	1.0	1	04/04/03	04/04/03	
trans-1,3-Dichloropropene	IID U					

Comments:

Merged

RR3180

Analytical Results

Client: Project: BE&K Terranext WVB/#03103154

Sample Matrix:

Water

Service Request: X2300279

Date Collected: 03/26/2003 **Date Received:** 03/26/2003

Volatile Organic Compounds

Sample Name:

AVB76-0100-07108

Lab Code:

X2300279-001

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

			Dilution	Date Extracted	Date	Arizona Qualifier
Analyte Name	Result Q	MRL	Factor	04/04/03	04/04/03	THI MONEY &
1,1,2-Trichloroethane	ND U	1.0	1	04/04/03	04/04/03	
Tetrachloroethene	0.50	0.50	1		04/04/03	
2-Hexanone	ND U	5.0	1	04/04/03	04/04/03	
1,3-Dichloropropane	ND U	1.0	1	04/04/03	04/04/03	
Dibromochloromethane	ND U	0.50	1	04/04/03	04/04/03	
1,2-Dibromoethane	ND U	0.50	1	04/04/03	04/04/03	
Chlorobenzene	ND U	0.50	1	04/04/03	04/04/03	
1,1,1,2-Tetrachloroethane	ND U	0.50	1	04/04/03		
	ND U	0.50	1	04/04/03	04/04/03	
Ethylbenzene	ND U	1.0	1	04/04/03	04/04/03	
m,p-Xylenes o-Xylene	ND U	0.50	1	04/04/03	04/04/03	
·	ND U	0.50	1	04/04/03	04/04/03	
Styrene	ND U	0.50	1	04/04/03	04/04/03	
Isopropylbenzene	ND U	0.50	1	04/04/03	04/04/03	
Bromobenzene	ND U	1.0	1	04/04/03	04/04/03	
1,2,3-Trichloropropane	ND U	0.50	1	04/04/03	04/04/03	
n-Propylbenzene	ND U	0.50	1	04/04/03	04/04/03	
2-Chlorotoluene		0.50	1	04/04/03	04/04/03	
4-Chlorotoluene	ND U	0.50	1	04/04/03	04/04/03	
1,3,5-Trimethylbenzene	ND U	0.50	1	04/04/03	04/04/03	
tert-Butylbenzene	ND U		1	04/04/03	04/04/03	
1,2,4-Trimethylbenzene	ND U	0.50	1	04/04/03	04/04/03	
sec-Butylbenzene	ND U	0.50	1	04/04/03	04/04/03	
1,3-Dichlorobenzene	ND U	0.50		04/04/03	04/04/03	
4-Isopropyltoluene	ND U	0.50	1	04/04/03	04/04/03	
Bromoform	ND U	0.50	1	04/04/03	04/04/03	
1,1,2,2-Tetrachloroethane	ND U	1.0	1			
1.4-Dichlorobenzene	ND U	0.50	1	04/04/03		
1,2-Dichlorobenzene	ND U	0.50	1	04/04/03		
n-Butylbenzene	ND U	0.50	1	04/04/03		
1,2-Dibromo-3-chloropropane		5.0	1	04/04/03		
_	ND U	0.50	1	04/04/03		
1,2,4-Trichlorobenzene Hexachlorobutadiene	ND U	0.50	1	04/04/03		
	ND U	3.0	1	04/04/03	04/04/0	
Naphthalene	ND U	0.50	1	04/04/03	04/04/0	3
1,2,3-Trichlorobenzene	ט עא	0.50				

Comments:

Printed: 04/09/2003 11:26:04 L:\STEALTH\CRYSTAL.RPT\Form1m.rpt

Merged

Form 1A - Organic

000003

2 of 3 Page

SuperSet Reference:

Analytical Results

Client: Project: BE&K Terranext WVB/#03103154

Sample Matrix:

Water

Service Request: X2300279

Date Collected: 03/26/2003 **Date Received:** 03/26/2003

Volatile Organic Compounds

Sample Name:

AVB76-0100-07108

Lab Code:

X2300279-001

Units: ug/L Basis: NA

Surrogate Name	%Rec	Control Limits	Date Analyzed	Arizona Qualifier
Dibromofluoromethane Toluene-d8 4-Bromofluorobenzene	106 102 98	84-113 68-126 79-113	04/04/03 04/04/03 04/04/03	

Comments:

Printed: 04/09/2003 11:26:04

Merged

Form 1A - Organic

OHOP 10

Page 3 of 3

SuperSet Reference: RR3180

Analytical Results

Client: **Project:** BE&K Terranext WVB/#03103154

Sample Matrix:

Water

Service Request: X2300279

Date Collected: 03/26/2003 **Date Received:** 03/26/2003

Volatile Organic Compounds

Sample Name:

AVB75-0100-07118

Lab Code:

X2300279-002

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

	Result Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Arizona Qualifier
Analyte Name		3.0	1	04/04/03	04/04/03	
Dichlorodifluoromethane	ND U ND U	2.0	1	04/04/03	04/04/03	
Chloromethane	ND U	1.0	1	04/04/03	04/04/03	
Vinyl Chloride			1	04/04/03	04/04/03	
Bromomethane	ND U	1.0	1	04/04/03	04/04/03	
Chloroethane	ND U	1.0	1	04/04/03	04/04/03	
Trichlorofluoromethane	ND U	1.0			04/04/03	
1,1,2-Trichlorotrifluoroethane	ND U	1.0	1	04/04/03	04/04/03	
1,1-Dichloroethene	ND U	1.0	1	04/04/03	04/04/03	
Acetone	ND U	10	1	04/04/03		
Iodomethane	ND U	2.0	1	04/04/03	04/04/03	
Carbon Disulfide	ND U	2.0	1	04/04/03	04/04/03	
Methylene Chloride	ND U	1.0	1	04/04/03	04/04/03	
Methyl tert-Butyl Ether	ND U	1.0	1	04/04/03	04/04/03	
trans-1,2-Dichloroethene	ND U	0.50	1	04/04/03	04/04/03	
1,1-Dichloroethane	ND U	0.50	1	04/04/03	04/04/03	
· · · · · · · · · · · · · · · · · · ·	ND U	3.0	1	04/04/03	04/04/03	
Vinyl Acetate	ND U	2.0	1	04/04/03	04/04/03	
2,2-Dichloropropane	ND U	8.0	1	04/04/03	04/04/03	
2-Butanone (MEK)		0.50	1	04/04/03	04/04/03	
cis-1,2-Dichloroethene	2.1	0.50	1	04/04/03	04/04/03	
Bromochloromethane	ND U ND U	1.0	1	04/04/03	04/04/03	
Chloroform				04/04/03	04/04/03	
1,1,1-Trichloroethane	ND U	0.50	1	04/04/03	04/04/03	
Carbon Tetrachloride	ND U	0.50	1 1	04/04/03	04/04/03	
1,1-Dichloropropene	ND U	0.50				
Benzene	ND U	0.50	1	04/04/03	04/04/03	
1,2-Dichloroethane	ND U	0.50	1	04/04/03	04/04/03	
Trichloroethene	2.1	0.50	1	04/04/03	04/04/03	
1,2-Dichloropropane	ND U	0.50	1	04/04/03	04/04/03	
Dibromomethane	ND U	0.50	1	04/04/03	04/04/03	
Bromodichloromethane	ND U	0.50	1	04/04/03	04/04/03	
cis-1,3-Dichloropropene	ND U	0.50	1	04/04/03	04/04/03	
4-Methyl-2-pentanone (MIBK)	ND U	8.0	1	04/04/03	04/04/03	
	ND U	0.50	1	04/04/03	04/04/03	
Toluene		1.0	1	04/04/03	04/04/03	
trans-1,3-Dichloropropene	ND U	1.0	1	0 ., 0 ., 00		

Comments:

Analytical Results

Client: **Project:** BE&K Terranext WVB/#03103154

Sample Matrix:

Water

Service Request: X2300279

Date Collected: 03/26/2003 **Date Received:** 03/26/2003

Volatile Organic Compounds

Sample Name:

AVB75-0100-07118

Lab Code:

X2300279-002

Extraction Method: Analysis Method:

EPA 5030B 8260B

Units: ug/L Basis: NA

Level: Low

			3.604	Dilution Factor	Date Extracted	Date Analyzed	Arizona Qualifier
Analyte Name	Result		MRL	1	04/04/03	04/04/03	
1,1,2-Trichloroethane	ND	U	1.0	1	04/04/03	04/04/03	
Tetrachloroethene	7.2		0.50		04/04/03	04/04/03	
2-Hexanone	ND		5.0	1	04/04/03	04/04/03	
1,3-Dichloropropane	ND		1.0	1	04/04/03	04/04/03	
Dibromochloromethane	ND	U	0.50	1		04/04/03	
1,2-Dibromoethane	ND	Ū	0.50	1	04/04/03	04/04/03	
Chlorobenzene	ND	U	0.50	1	04/04/03	04/04/03	
1,1,1,2-Tetrachloroethane	ND	U	0.50	1	04/04/03		
Ethylbenzene	ND	Ū	0.50	1	04/04/03	04/04/03	
m,p-Xylenes	ND		1.0	1	04/04/03	04/04/03	
n,p-Aylenes o-Xylene	ND		0.50	. 1	04/04/03	04/04/03	
· · · · · · · · · · · · · · · · · · ·	ND		0.50	1	04/04/03	04/04/03	
Styrene	ND		0.50	1	04/04/03	04/04/03	
Isopropylbenzene	ND		0.50	1	04/04/03	04/04/03	
Bromobenzene		Ū	1.0	1	04/04/03	04/04/03	
1,2,3-Trichloropropane		Ū	0.50	1	04/04/03	04/04/03	
n-Propylbenzene		U	0.50	1	04/04/03	04/04/03	
2-Chlorotoluene			0.50	<u>1</u>	04/04/03	04/04/03	
4-Chlorotoluene	NE		0.50	1	04/04/03	04/04/03	
1,3,5-Trimethylbenzene		U	0.50	1	04/04/03	04/04/03	
tert-Butylbenzene		U			04/04/03	04/04/03	
1,2,4-Trimethylbenzene		U	0.50	1 1	04/04/03	04/04/03	
sec-Butylbenzene		U	0.50	1	04/04/03	04/04/03	
1,3-Dichlorobenzene	NI	U	0.50			04/04/03	
4-Isopropyltoluene	NI) U	0.50	1	04/04/03	04/04/03	
Bromoform	NI	U	0.50	1	04/04/03	04/04/03	
1,1,2,2-Tetrachloroethane	NI) U	1.0	1	04/04/03		
1,4-Dichlorobenzene	NI) U	0.50	1	04/04/03	04/04/03	
1,2-Dichlorobenzene		O U	0.50	1	04/04/03	04/04/03	
n-Butylbenzene		O U	0.50	1	04/04/03	04/04/03	
		O U	5.0	1	04/04/03		
1,2-Dibromo-3-chloropropane		DU	0.50	1	04/04/03		
1,2,4-Trichlorobenzene		DU	0.50	1	04/04/03		
Hexachlorobutadiene	N		3.0	1	04/04/03		
Naphthalene		D U	0.50	1	04/04/03	04/04/03	3
1,2,3-Trichlorobenzene	IN:	0	0.50				

Comments:

Printed: 04/09/2003 11:26:15

Merged

Form 1A - Organic

000012

2 of 3 Page

SuperSet Reference:

RR3180

Analytical Results

Client:

BE&K Terranext WVB/#03103154

Project: Sample Matrix:

Water

Service Request: X2300279 **Date Collected:** 03/26/2003

Date Received: 03/26/2003

Volatile Organic Compounds

Sample Name: Lab Code:

AVB75-0100-07118

X2300279-002

Units: ug/L Basis: NA

Surrogate Name	%Rec	Control Limits	Date Analyzed	Arizona Qualifier	
Dibromofluoromethane	102	84-113	04/04/03		
Toluene-d8	106	68-126	04/04/03		
4-Bromofluorobenzene	95	79-113	04/04/03		

Comments:

Printed: 04/09/2003 11:26:15

Merged

Form 1A - Organic

000013

Page 3 of 3

SuperSet Reference:

RR3180

Analytical Results

Client: **Project:** **BE&K** Terranext WVB/#03103154

Sample Matrix:

Water

Service Request: X2300279

Date Collected: 03/26/2003

Date Received: 03/26/2003

Volatile Organic Compounds

Sample Name:

AVB73-0100-07109

Lab Code:

X2300279-003

Extraction Method: Analysis Method:

8260B

EPA 5030B

Basis: NA

Level: Low

Units: ug/L

	Result	0	MRL	Dilution Factor	Date Extracted	Date Analyzed	Arizona Qualifier
Analyte Name			3.0	1	04/04/03	04/04/03	
Dichlorodifluoromethane	ND		2.0	1	04/04/03	04/04/03	
Chloromethane	ND		1.0	1	04/04/03	04/04/03	
Vinyl Chloride	ND				04/04/03	04/04/03	
Bromomethane	ND		1.0	1	04/04/03	04/04/03	
Chloroethane	ND		1.0	1 1	04/04/03	04/04/03	
Trichlorofluoromethane	ND	U	1.0				,
1,1,2-Trichlorotrifluoroethane	ND		1.0	1	04/04/03	04/04/03	
1,1-Dichloroethene	ND	U	1.0	1	04/04/03	04/04/03	
Acetone	ND	U	10	1	04/04/03	04/04/03	
Iodomethane	ND	U	2.0	1	04/04/03	04/04/03	
Carbon Disulfide	ND		2.0	. 1	04/04/03	04/04/03	
Methylene Chloride	ND		1.0	1	04/04/03	04/04/03	
•	ND	Ū	1.0	1	04/04/03	04/04/03	
Methyl tert-Butyl Ether	ND		0.50	1	04/04/03	04/04/03	
trans-1,2-Dichloroethene	ND		0.50	1	04/04/03	04/04/03	
1,1-Dichloroethane			3.0	1	04/04/03	04/04/03	
Vinyl Acetate	ND	U	2.0	1	04/04/03	04/04/03	
2,2-Dichloropropane	ND		8.0	1	04/04/03	04/04/03	
2-Butanone (MEK)	ND			1	04/04/03	04/04/03	
cis-1,2-Dichloroethene	ND		0.50	1	04/04/03	04/04/03	
Bromochloromethane	ND		0.50	=	04/04/03	04/04/03	
Chloroform	ND	U	1.0	1			
1,1,1-Trichloroethane	ND	U	0.50	1	04/04/03	04/04/03	
Carbon Tetrachloride	ND	U	0.50	1	04/04/03	04/04/03	
1,1-Dichloropropene	ND	U	0.50	1	04/04/03	04/04/03	
Benzene	ND	Ū	0.50	1	04/04/03	04/04/03	
1,2-Dichloroethane	ND		0.50	1	04/04/03	04/04/03	
Trichloroethene	0.60		0.50	1	04/04/03	04/04/03	_
	ND	TI	0.50	1	04/04/03	04/04/03	
1,2-Dichloropropane	ND ND		0.50	1	04/04/03	04/04/03	
Dibromomethane Bromodichloromethane	ND		0.50	1	04/04/03	04/04/03	
			0.50	1	04/04/03	04/04/03	
cis-1,3-Dichloropropene	ND		8.0	1	04/04/03	04/04/03	
4-Methyl-2-pentanone (MIBK)	ND		8.0 0.50	1	04/04/03	04/04/03	
Toluene	ND				04/04/03	04/04/03	
trans-1,3-Dichloropropene	ND	U	1.0	1	U4/U4/U3	U -1 /U-7/U3	•

Comments: 000014

Merged

Printed: 04/09/2003 11:26:26

Form 1A - Organic

1 of 3 Page

Analytical Results

Client: Project: BE&K Terranext WVB/#03103154

Sample Matrix:

Water

Service Request: X2300279

Date Collected: 03/26/2003 **Date Received:** 03/26/2003

Units: ug/L Basis: NA

Level: Low

Volatile Organic Compounds

Sample Name:

AVB73-0100-07109

Lab Code:

X2300279-003

Extraction Method:

EPA 5030B

Analysis Method:

8260B

			Dilution	Date	Date	Arizona Qualifier
Analyte Name	Result Q	MRL	Factor	Extracted		Alizona Quanner
1,1,2-Trichloroethane	ND U	1.0	1	04/04/03	04/04/03 04/04/03	
Tetrachloroethene	12	0.50	1	04/04/03		
2-Hexanone	ND U	5.0	1	04/04/03	04/04/03	
1,3-Dichloropropane	ND U	1.0	1	04/04/03	04/04/03	
Dibromochloromethane	ND U	0.50	1	04/04/03	04/04/03	
1.2-Dibromoethane	ND U	0.50	1	04/04/03	04/04/03	
Chlorobenzene	ND U	0.50	1	04/04/03	04/04/03	
1,1,1,2-Tetrachloroethane	ND U	0.50	1	04/04/03	04/04/03	
	ND U	0.50	1	04/04/03	04/04/03	
Ethylbenzene	ND U	1.0	1	04/04/03	04/04/03	
m,p-Xylenes o-Xylene	ND U	0.50	1	04/04/03	04/04/03	
	ND U	0.50	1	04/04/03	04/04/03	-
Styrene	ND U	0.50	1	04/04/03	04/04/03	
Isopropylbenzene Bromobenzene	ND U	0.50	1	04/04/03	04/04/03	
	ND U	1.0	1	04/04/03	04/04/03	
1,2,3-Trichloropropane	ND U	0.50	1	04/04/03	04/04/03	
n-Propylbenzene	ND U	0.50	1	04/04/03	04/04/03	
2-Chlorotoluene	ND U	0.50	1	04/04/03	04/04/03	
4-Chlorotoluene	ND U	0.50	1	04/04/03	04/04/03	
1,3,5-Trimethylbenzene	ND U	0.50	1	04/04/03	04/04/03	
tert-Butylbenzene		0.50	1	04/04/03	04/04/03	
1,2,4-Trimethylbenzene	ND U ND U	0.50	1	04/04/03	04/04/03	
sec-Butylbenzene	ND U	0.50	1	04/04/03	04/04/03	
1,3-Dichlorobenzene		0.50	1	04/04/03	04/04/03	
4-Isopropyltoluene	ND U	0.50	1	04/04/03	04/04/03	
Bromoform	ND U	1.0	1	04/04/03	04/04/03	
1,1,2,2-Tetrachloroethane	ND U		1	04/04/03	04/04/03	
1,4-Dichlorobenzene	ND U	0.50	1	04/04/03	04/04/03	
1,2-Dichlorobenzene	ND U	0.50	1	04/04/03	04/04/03	
n-Butylbenzene	ND U	0.50		04/04/03	04/04/03	
1,2-Dibromo-3-chloropropane	ND U	5.0	1	04/04/03	04/04/03	
1,2,4-Trichlorobenzene	ND U	0.50	1 1	04/04/03	04/04/03	
Hexachlorobutadiene	ND U	0.50				
Naphthalene	ND U	3.0	1	04/04/03 04/04/03		
1,2,3-Trichlorobenzene	ND U	0.50	1	04/04/03	U4/U4/U3	,

Comments:

000015

SuperSet Reference:

Analytical Results

Client: **Project:** BE&K Terranext WVB/#03103154

Sample Matrix:

Water

Service Request: X2300279 **Date Collected:** 03/26/2003

Date Received: 03/26/2003

Volatile Organic Compounds

Sample Name: Lab Code:

AVB73-0100-07109

X2300279-003

Units: ug/L Basis: NA

Surrogate Name	%Rec	Control Limits	Date Analyzed	Arizona Qualifier
Dibromofluoromethane	97	84-113	04/04/03	
Toluene-d8 4-Bromofluorobenzene	104 92	68-126 79-113	04/04/03 04/04/03	

Comments:

Printed: 04/09/2003 11:26:26

Merged

Form 1A - Organic

000016

3 of 3 Page

SuperSet Reference:

RR3180

Analytical Results

Client: Project: BE&K Terranext WVB/#03103154

Sample Matrix:

Water

Service Request: X2300279

Date Collected: 03/26/2003

Date Received: 03/26/2003

Volatile Organic Compounds

Sample Name:

AVB73-0104-1000

Lab Code:

X2300279-004

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

22202,7 222 222						
			Dilution	Date	Date	
Analyte Name	Result Q	MRL	Factor	Extracted		Arizona Qualifier
Dichlorodifluoromethane	ND U	3.0	1	04/04/03	04/04/03	
Chloromethane	ND U	2.0	1	04/04/03	04/04/03	
Vinyl Chloride	ND U	1.0	1	04/04/03	04/04/03	
•	ND U	1.0	1	04/04/03	04/04/03	
Bromomethane Chloroethane	ND U	1.0	1	04/04/03	04/04/03	
Trichlorofluoromethane	ND U	1.0	1	04/04/03	04/04/03	
	ND U	1.0	1	04/04/03	04/04/03	
1,1,2-Trichlorotrifluoroethane	ND U	1.0	1	04/04/03	04/04/03	
1,1-Dichloroethene	ND U	10	1	04/04/03	04/04/03	
Acetone		2.0	1	04/04/03	04/04/03	
Iodomethane	ND U	2.0	1	04/04/03	04/04/03	
Carbon Disulfide	ND U	2.0 1.0	1	04/04/03	04/04/03	
Methylene Chloride	ND U		1	04/04/03	04/04/03	
Methyl tert-Butyl Ether	ND U	1.0	1	04/04/03	04/04/03	
trans-1,2-Dichloroethene	ND U	0.50	1	04/04/03	04/04/03	
1,1-Dichloroethane	ND U	0.50			04/04/03	
Vinyl Acetate	ND U	3.0	1	04/04/03	04/04/03	
2,2-Dichloropropane	ND U	2.0	. 1	04/04/03 04/04/03	04/04/03	
2-Butanone (MEK)	ND U	8.0	1			
cis-1,2-Dichloroethene	ND U	0.50	1	04/04/03	04/04/03	
Bromochloromethane	ND U	0.50	1	04/04/03	04/04/03	
Chloroform	ND U	1.0	1	04/04/03	04/04/03	
1,1,1-Trichloroethane	ND U	0.50	1	04/04/03	04/04/03	
Carbon Tetrachloride	ND U	0.50	1	04/04/03	04/04/03	
1,1-Dichloropropene	ND U	0.50	1	04/04/03	04/04/03	
	ND U	0.50	1	04/04/03	04/04/03	
Benzene	ND U	0.50	1	04/04/03	04/04/03	
1,2-Dichloroethane	ND U	0.50	1	04/04/03	04/04/03	
Trichloroethene		0.50		04/04/03	04/04/03	
1,2-Dichloropropane	ND U	0.50	1	04/04/03	04/04/03	
Dibromomethane	ND U	0.50	1	04/04/03	04/04/03	
Bromodichloromethane	ND U		1	04/04/03	04/04/03	
cis-1,3-Dichloropropene	ND U	0.50		04/04/03	04/04/03	
4-Methyl-2-pentanone (MIBK)	ND U	8.0	1	04/04/03	04/04/03	
Toluene	ND U	0.50	1 .			
trans-1,3-Dichloropropene	ND U	1.0	1	04/04/03	04/04/03	

Comments:

Printed: 04/09/2003 11:26:37 L:\STEALTH\CRYSTAL.RPT\Form1m.rpt

Merged

Form 1A - Organic

000017

Page 1 of 3

SuperSet Reference: RR3180

Analytical Results

Client: Project: BE&K Terranext WVB/#03103154

Sample Matrix:

Water

Service Request: X2300279 **Date Collected:** 03/26/2003

Date Received: 03/26/2003

Volatile Organic Compounds

Sample Name: Lab Code:

AVB73-0104-1000 X2300279-004

EPA 5030B

Units: ug/L Basis: NA

Level: Low

Extraction Method:	EPA 3030
Analysis Method:	8260B

	p 0	MRL	Dilution Factor	Date Extracted	Date Analyzed	Arizona Qualifier
Analyte Name	Result Q		1	04/04/03	04/04/03	
1,1,2-Trichloroethane	ND U	1.0	1	04/04/03	04/04/03	
Tetrachloroethene	ND U	0.50		04/04/03	04/04/03	
2-Hexanone	ND U	5.0	1	04/04/03	04/04/03	
1,3-Dichloropropane	ND U	1.0	1	04/04/03	04/04/03	
Dibromochloromethane	ND U	0.50	1			
1,2-Dibromoethane	ND U	0.50	1	04/04/03	04/04/03	
Chlorobenzene	ND U	0.50	1	04/04/03	04/04/03	•
1,1,1,2-Tetrachloroethane	ND U	0.50	1	04/04/03	04/04/03	
Ethylbenzene	ND U	0.50	1	04/04/03	04/04/03	•
m,p-Xylenes	ND U	1.0	1	04/04/03.	04/04/03	
o-Xylene	ND U	0.50	1	04/04/03	04/04/03	
•	ND U	0.50	1	04/04/03	04/04/03	
Styrene	ND U	0.50	1	04/04/03	04/04/03	
Isopropylbenzene	ND U	0.50	1	04/04/03	04/04/03	
Bromobenzene	ND U	1.0	1	04/04/03	04/04/03	
1,2,3-Trichloropropane	ND U	0.50	1	04/04/03	04/04/03	
n-Propylbenzene	ND U	0.50	1	04/04/03	04/04/03	
2-Chlorotoluene			1	04/04/03	04/04/03	
4-Chlorotoluene	ND U	0.50	1	04/04/03	04/04/03	
1,3,5-Trimethylbenzene	ND U	0.50	1	04/04/03	04/04/03	
tert-Butylbenzene	ND U	0.50			04/04/03	
1,2,4-Trimethylbenzene	ND U	0.50	1	04/04/03 04/04/03	04/04/03	
sec-Butylbenzene	ND U	0.50	1	04/04/03	04/04/03	
1,3-Dichlorobenzene	ND U	0.50	1			
4-Isopropyltoluene	ND U	0.50	1	04/04/03	04/04/03	
Bromoform	ND U	0.50	1	04/04/03	04/04/03	
1,1,2,2-Tetrachloroethane	ND U	1.0	1	04/04/03	04/04/03	
1,4-Dichlorobenzene	ND U	0.50	1	04/04/03	04/04/03	
1,2-Dichlorobenzene	ND U	0.50	1	04/04/03	04/04/03	
n-Butylbenzene	ND U	0.50	1	04/04/03	04/04/03	
	ND U	5.0	1	04/04/03	04/04/03	
1,2-Dibromo-3-chloropropane	ND U	0.50	1	04/04/03	04/04/03	}
1,2,4-Trichlorobenzene	ND U	0.50	1	04/04/03	04/04/03	•
Hexachlorobutadiene		3.0	1	04/04/03	04/04/03	
Naphthalene	ND U	0.50	1	04/04/03	04/04/03	
1,2,3-Trichlorobenzene	ND U	0.50	1	J J J		

Comments:

Merged

Analytical Results

Client:

BE&K Terranext

Project:

WVB/#03103154

Sample Matrix:

Water

Service Request: X2300279

Date Collected: 03/26/2003

Date Received: 03/26/2003

Volatile Organic Compounds

Sample Name:

AVB73-0104-1000

Lab Code:

X2300279-004

Units: ug/L Basis: NA

Surrogate Name	%Rec	Control Limits	Date Analyzed	Arizona Qualifier
Dibromofluoromethane Toluene-d8 4-Bromofluorobenzene	97 106 91	84-113 68-126 79-113	04/04/03 04/04/03 04/04/03	

Comments:

Printed: 04/09/2003 11:26:37

Merged

Form 1A - Organic

000019

3 of 3 Page

SuperSet Reference:

RR3180

Analytical Results

Client: Project: BE&K Terranext WVB/#03103154

Sample Matrix:

Water

Service Request: X2300279 **Date Collected:** 03/26/2003

Date Received: 03/26/2003

Volatile Organic Compounds

Sample Name: Lab Code:

AVB73-0102-1000 X2300279-005

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

				Dilution	Date	Date	
Analyte Name	Result	Q	MRL	Factor	Extracted	· ·	Arizona Qualifier
Dichlorodifluoromethane	ND	U	3.0	1	04/04/03	04/04/03	
Chloromethane	ND	U	2.0	1	04/04/03	04/04/03	
Vinyl Chloride	ND	U	1.0	1	04/04/03	04/04/03	
Bromomethane	ND	U	1.0	1	04/04/03	04/04/03	
Chloroethane	ND		1.0	1	04/04/03	04/04/03	
Trichlorofluoromethane	ND		1.0	1	04/04/03	04/04/03	
1,1,2-Trichlorotrifluoroethane	ND		1.0	1	04/04/03	04/04/03	
<i>y</i> ,	ND		1.0	1	04/04/03	04/04/03	
1,1-Dichloroethene	ND		10	1	04/04/03	04/04/03	
Acetone	ND		2.0	1	04/04/03	04/04/03	
Iodomethane	ND ND		2.0	1	04/04/03	04/04/03	
Carbon Disulfide	ND ND		1.0	1	04/04/03	04/04/03	
Methylene Chloride				1	04/04/03	04/04/03	
Methyl tert-Butyl Ether	ND		1.0	1	04/04/03	04/04/03	
trans-1,2-Dichloroethene	ND		0.50	1	04/04/03	04/04/03	
1,1-Dichloroethane	ND		0.50			04/04/03	
Vinyl Acetate	ND		3.0	1	04/04/03	04/04/03	
2,2-Dichloropropane	ND		2.0	1	04/04/03	04/04/03	
2-Butanone (MEK)	ND	U	8.0	1	04/04/03		
cis-1,2-Dichloroethene	ND	U	0.50	1	04/04/03	04/04/03	
Bromochloromethane	ND	U	0.50	1	04/04/03	04/04/03	
Chloroform	ND	U	1.0	1	04/04/03	04/04/03	
1,1,1-Trichloroethane	ND	Ū	0.50	1	04/04/03	04/04/03	
Carbon Tetrachloride	ND		0.50	1	04/04/03	04/04/03	
1,1-Dichloropropene	ND		0.50	1	04/04/03	04/04/03	
	ND		0.50	1	04/04/03	04/04/03	
Benzene	ND		0.50	1	04/04/03	04/04/03	
1,2-Dichloroethane Trichloroethene	ND		0.50	1	04/04/03	04/04/03	
	ND		0.50	1	04/04/03	04/04/03	
1,2-Dichloropropane	ND ND		0.50	1	04/04/03	04/04/03	
Dibromomethane	ND ND		0.50	1	04/04/03	04/04/03	
Bromodichloromethane				1	04/04/03	04/04/03	
cis-1,3-Dichloropropene	ND		0.50	1	04/04/03	04/04/03	
4-Methyl-2-pentanone (MIBK)	ND		8.0	1	04/04/03	04/04/03	
Toluene		U.	0.50		04/04/03	04/04/03	
trans-1,3-Dichloropropene	ND	U	1.0	1	04/04/03	04/04/03	•

Comments:	

Analytical Results

Client: Project: BE&K Terranext WVB/#03103154

Sample Matrix:

Water

Service Request: X2300279

Date Collected: 03/26/2003 **Date Received:** 03/26/2003

Volatile Organic Compounds

Sample Name: Lab Code:

AVB73-0102-1000 X2300279-005

Extraction Method: EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

				Dilution	Date	Date	A Owelifier
Analyte Name	Result	Q	MRL	Factor	Extracted		Arizona Qualifier
1,1,2-Trichloroethane	ND	U	1.0	1	04/04/03	04/04/03	
Tetrachloroethene	ND	U	0.50	1	04/04/03	04/04/03	
2-Hexanone	ND	U	5.0	1	04/04/03	04/04/03	
1,3-Dichloropropane	ND	U	1.0	1	04/04/03	04/04/03	
Dibromochloromethane	ND	U	0.50	1	04/04/03	04/04/03	
1,2-Dibromoethane	ND	U	0.50	1	04/04/03	04/04/03	
Chlorobenzene	ND		0.50	1	04/04/03	04/04/03	
1,1,1,2-Tetrachloroethane	ND	\mathbf{U}	0.50	1	04/04/03	04/04/03	
Ethylbenzene	ND	U	0.50	1	04/04/03	04/04/03	
m,p-Xylenes	ND		1.0	1	04/04/03	04/04/03	
o-Xylene	ND		0.50	1	04/04/03	04/04/03	
·	ND	TT	0.50	1	04/04/03	04/04/03	
Styrene Isopropylbenzene	ND		0.50	1	04/04/03	04/04/03	
Bromobenzene	ND		0.50	1	04/04/03	04/04/03	
	ND		1.0	1	04/04/03	04/04/03	
1,2,3-Trichloropropane	ND		0.50	1	04/04/03	04/04/03	
n-Propylbenzene 2-Chlorotoluene	ND		0.50	1	04/04/03	04/04/03	
	ND		0.50	1	04/04/03	04/04/03	
4-Chlorotoluene	ND		0.50	1	04/04/03	04/04/03	
1,3,5-Trimethylbenzene tert-Butylbenzene	ND		0.50	1	04/04/03	04/04/03	
·	ND		0.50	1	04/04/03	04/04/03	
1,2,4-Trimethylbenzene	ND ND		0.50	1	04/04/03	04/04/03	
sec-Butylbenzene 1,3-Dichlorobenzene	ND		0.50	1	04/04/03	04/04/03	
-	ND		0.50		04/04/03	04/04/03	
4-Isopropyltoluene	ND ND		0.50	1	04/04/03	04/04/03	
Bromoform	ND ND		1.0	1	04/04/03	04/04/03	
1,1,2,2-Tetrachloroethane			0.50	1	04/04/03	04/04/03	
1,4-Dichlorobenzene	ND		0.50	1	04/04/03	04/04/03	
1,2-Dichlorobenzene	ND ND		0.50	1	04/04/03	04/04/03	
n-Butylbenzene				1	04/04/03	04/04/03	
1,2-Dibromo-3-chloropropane	ND		5.0	1	04/04/03	04/04/03	
1,2,4-Trichlorobenzene	ND		0.50 0.50	1	04/04/03	04/04/03	
Hexachlorobutadiene	ND				04/04/03	04/04/03	
Naphthalene	ND		3.0	1 1	04/04/03	04/04/03	
1,2,3-Trichlorobenzene	ND	U	0.50	1	V-1/U-1/UJ	0 1/0-1/05	

Comments:

Analytical Results

Client:

BE&K Terranext

Project:

WVB/#03103154

Sample Matrix:

Water

Service Request: X2300279

Date Collected: 03/26/2003

Date Received: 03/26/2003

Volatile Organic Compounds

Sample Name:

AVB73-0102-1000

Lab Code:

X2300279-005

Units: ug/L Basis: NA

Surrogate Name	%Rec	Control Limits	Date Analyzed	Arizona Qualifier
Dibromofluoromethane	104	84-113	04/04/03	
Toluene-d8	106	68-126	04/04/03	
4-Bromofluorobenzene	97	79-113	04/04/03	

Comments:

Printed: 04/09/2003 11:26:48 $L; \verb|\STEALTH| CRYSTAL.RPT| Form 1m.rpt$

Merged

Form 1A - Organic

RR3180 SuperSet Reference:

Page

Analytical Results

Client: **Project:** BE&K Terranext WVB/#03103154

Sample Matrix:

Water

Service Request: X2300279

Date Collected: NA Date Received: NA

Volatile Organic Compounds

Sample Name: Lab Code:

Method Blank XWG0300459-5

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

D 14 0	MDI	Dilution Factor	Date Extracted	Date Analyzed	Arizona Qualifier
		1			
		1		04/04/03	
				04/04/03	
				04/04/03	
		-			
ND U					
ND U			*		
ND U	10	1			
ND U	2.0	1			
ND U	2.0				N. Carlotte and Ca
ND U	1.0	1			
ND U	1.0	1	•		
		1			
	0.50	1	04/04/03	04/04/03	
	3.0	1	04/04/03	04/04/03	
		1	04/04/03	04/04/03	
		1	04/04/03	04/04/03	
		1	04/04/03	04/04/03	
		-		04/04/03	
ND U					
ND U		_			
ND U					
ND U	0.50	1			
ND U	0.50	1			
	0.50	1			
	0.50	1	04/04/03		
		1	04/04/03	04/04/03	
		1	04/04/03	04/04/03	
		1	04/04/03	04/04/03	}
ND U	1.0	1	04/04/03	04/04/03	
	ND U	ND U 3.0 ND U 1.0 ND U 2.0 ND U 2.0 ND U 2.0 ND U 0.50 ND U 0.50 ND U 3.0 ND U 2.0 ND U 2.0 ND U 3.0 ND U 3.0 ND U 2.0 ND U 3.0 ND U 0.50	No Color No Color	Result Q MRL Factor Extracted ND U 3.0 1 04/04/03 ND U 2.0 1 04/04/03 ND U 1.0 1 04/04/03 ND U 0.50 1 04/04	NESURE Variation Factor Extracted Analyzed

Comments:

Printed: 04/09/2003 11:26:59

Merged

Form 1A - Organic

000023

1 of 3 Page

RR3180

Analytical Results

Client: Project: BE&K Terranext WVB/#03103154

Sample Matrix:

Water

Service Request: X2300279

Date Collected: NA Date Received: NA

Volatile Organic Compounds

Sample Name: Lab Code:

Method Blank XWG0300459-5

Extraction Method: Analysis Method:

EPA 5030B 8260B

Units: ug/L Basis: NA

Level: Low

			Dilution	Date	Date	Animus Onalifian
Analyte Name	Result (Q MRL	Factor	Extracted		Arizona Qualifier
1,1,2-Trichloroethane	ND U	U 1.0	1	04/04/03	04/04/03	
Tetrachloroethene	ND U	U 0.50	1	04/04/03	04/04/03	
2-Hexanone	ND I	U 5.0	1	04/04/03	04/04/03	
1,3-Dichloropropane	ND I		1	04/04/03	04/04/03	
Dibromochloromethane	ND 1		1	04/04/03	04/04/03	
1.2-Dibromoethane	ND 1	U 0.50	1	04/04/03	04/04/03	
Chlorobenzene	ND 1	_	1	04/04/03	04/04/03	
1,1,1,2-Tetrachloroethane	ND 1		1	04/04/03	04/04/03	
Ethylbenzene	ND 1		1	04/04/03	04/04/03	
m,p-Xylenes	ND 1	-	1	04/04/03	04/04/03	
o-Xylene	ND 1	-	1	04/04/03	04/04/03	
•	ND		1	04/04/03	04/04/03	
Styrene	ND ND	-	1	04/04/03	04/04/03	
Isopropylbenzene Bromobenzene	ND 1	_	1	04/04/03	04/04/03	
		U 1.0	1	04/04/03	04/04/03	
1,2,3-Trichloropropane	ND ND	-	1	04/04/03	04/04/03	
n-Propylbenzene	ND ND	_	1	04/04/03	04/04/03	
2-Chlorotoluene			1	04/04/03	04/04/03	
4-Chlorotoluene	ND	-	1	04/04/03	04/04/03	
1,3,5-Trimethylbenzene	ND			04/04/03	04/04/03	
tert-Butylbenzene	ND		1	04/04/03	04/04/03	
1,2,4-Trimethylbenzene	ND			04/04/03	04/04/03	
sec-Butylbenzene	ND			04/04/03	04/04/03	
1,3-Dichlorobenzene	ND			04/04/03	04/04/03	
4-Isopropyltoluene	ND			04/04/03	04/04/03	
Bromoform	ND			04/04/03	04/04/03	
1,1,2,2-Tetrachloroethane	ND		1			
1.4-Dichlorobenzene	ND			04/04/03	04/04/03	
1,2-Dichlorobenzene	ND			04/04/03	04/04/03	
n-Butylbenzene	ND	U 0.50	1	04/04/03	04/04/03	
1,2-Dibromo-3-chloropropane	ND	U 5.0	1	04/04/03	04/04/03	
1,2,4-Trichlorobenzene	ND			04/04/03	04/04/03	
Hexachlorobutadiene	ND	U 0.50	1	04/04/03	04/04/03	
Naphthalene	ND	U 3.0	1	04/04/03	04/04/03	
1,2,3-Trichlorobenzene	ND		1	04/04/03	04/04/03	
1,2,3-1110111010001120110						

Comments:

Printed: 04/09/2003 11:26:59 L:\STEALTH\CRYSTAL.RPT\Form1m.rpt

Merged

Form 1A - Organic

000024

Page 2 of

Analytical Results

Client:

BE&K Terranext

Project:

WVB/#03103154

Sample Matrix:

Water

Service Request: X2300279

Date Collected: NA

Date Received: NA

Volatile Organic Compounds

Sample Name: Lab Code:

Method Blank

XWG0300459-5

Units: ug/L Basis: NA

Surrogate Name	%Rec	Control Limits	Date Analyzed	Arizona Qualifier
Dibromofluoromethane	98	84-113	04/04/03	
Toluene-d8	100	68-126	04/04/03	
4-Bromofluorobenzene	92	79-113	04/04/03	

Comments:

009025

Printed: 04/09/2003 11:26:59

Merged

Form 1A - Organic

Page 3 of 3

QA/QC Report

Client:

BE&K Terranext

Project: Sample Matrix: WVB/#03103154

Water

Service Request: X2300279

Surrogate Recovery Summary Volatile Organic Compounds

Extraction Method: Analysis Method:

EPA 5030B

8260B

Units: PERCENT

Level: Low

Sample Name	Lab Code	Sur1	Sur2	<u>Sur3</u>
AVB76-0100-07108	X2300279-001	106	102	98
AVB75-0100-07118	X2300279-002	102	106	95
AVB73-0100-07109	X2300279-003	97	104	92
AVB73-0104-1000	X2300279-004	97	106	91
AVB73-0102-1000	X2300279-005	104	106	97
Method Blank	XWG0300459-5	98	100	92
AVB75-0100-07118MS	XWG0300459-1	102	99	98
AVB75-0100-07118DMS	XWG0300459-2	96	101	94
Lab Control Sample	XWG0300459-3	97	100	96
Duplicate Lab Control Sample	XWG0300459-4	99	95	95

Surrogate Recovery Control Limits (%)

Sur1 = Dibromofluoromethane	84-113
Sur2 = Toluene-d8	68-126
Sur3 = 4-Bromofluorobenzene	79-113

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

QA/QC Report

Client: Project: BE&K Terranext WVB/#03103154

Sample Matrix:

Water

Service Request: X2300279 Date Extracted: 04/04/2003

Date Analyzed: 04/04/2003

Matrix Spike/Duplicate Matrix Spike Summary Volatile Organic Compounds

Sample Name:

AVB75-0100-07118

Lab Code:

X2300279-002

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

Extraction Lot: XWG0300459

AVB75-0100-07118MS VWC0200450-1

AVB75-0100-07118DMS

xWG0300459-2

·	Sample	XWG0300459-1 Matrix Spike			XWG0300459-2 Duplicate Matrix Spike			%Rec	RPD	RPD
Analyte Name	Result	Result	Expected	%Rec	Result	Expected	%Rec	Limits		Limit
· ·	ND	2.99	10.0	30 M2	2.94	10.0	29 M2	78-207	2	20
Dichlorodifluoromethane	ND	5.67	10.0	57 M2	5.14	10.0	51 M2	70-157	10	20
Chloromethane	ND	6.20	10.0	62 M2	6.18	10.0	62 M2	79-174	0	20
Vinyl Chloride	ND	7.63	10.0	76	6.99	10.0	70	44-150	9	20
Bromomethane	ND	8.26	10.0	83	8.37	10.0	84	74-150	1	20
Chloroethane	ND	7.91	10.0	79 M2	7.73	10.0	77 M2	80-134	2	20
Trichlorofluoromethane	ND	10.0	10.0	100	9.57	10.0	96	67-128	4	20
1,1,2-Trichlorotrifluoroethane	ND	9.41	10.0	94	9.26	10.0	93	71-142	2	20
1,1-Dichloroethene	ND ND	36.9	40.0	92	36.4	40.0	91	1-155	1	20
Acetone	ND ND	35.5	40.0	89	35.2	40.0	88	47-120	1	20
Iodomethane	ND ND	37.6	40.0	94	36.4	40.0	91	77-126	3	20
Carbon Disulfide	ND ND	9.54	10.0	95	9.19	10.0	92	83-106	4	20
Methylene Chloride	ND ND	8.70	10.0	87	7.79	10.0	78	70-118	11	20
Methyl tert-Butyl Ether	ND ND	10.0	10.0	100	9.88	10.0	99	86-115	1	20
trans-1,2-Dichloroethene		10.6	10.0	106	10.4	10.0	104	77-127	1	20
1,1-Dichloroethane	ND	42.3	40.0	106	36.2	40.0	91	8-187	16	20
Vinyl Acetate	ND	10.1	10.0	101	9.84	10.0	98	25-154	2	20
2,2-Dichloropropane	ND	41.9	40.0	105	38.1	40.0	95	90-112	9	20
2-Butanone (MEK)	ND	12.2	10.0	101	11.5	10.0	94	69-118	6	20
cis-1,2-Dichloroethene	2.1	11.2	10.0	112	9.97	10.0	100	47-136	12	20
Bromochloromethane	ND	11.2	10.0	113	10.8	10.0	108	48-143	5	20
Chloroform	ND		10.0	89	8.61	10.0	86	84-122	4	20
1,1,1-Trichloroethane	ND	8.92	10.0	94	9.15	10.0	92	79-120	2	20
Carbon Tetrachloride	ND	9.37	10.0	98	9.85	10.0	99	85-117	1	20
1,1-Dichloropropene	ND	9.75	10.0	99	9.90	10.0	99	88-114	1	20
Benzene	ND	9.85	10.0	100	9.86	10.0	99	75-112	2	20
1,2-Dichloroethane	ND	10.0	10.0	112	13.6	10.0	115	76-115	2	20
Trichloroethene	2.1	13.3		101	9.99	10.0	100	85-107	1	20
1,2-Dichloropropane	ND	10.1	10.0	99	10.0	10.0	100	82-106	2	20
Dibromomethane	ND	9.85	10.0	93	9.12	10.0	91	83-107	2	20
Bromodichloromethane	ND	9.26	10.0	103	9.83	10.0	98	70-114	4	20
cis-1,3-Dichloropropene	ND	10.3	10.0		33.9	40.0	85	54-129	13	20
4-Methyl-2-pentanone (MIBK)	ND	38.5	40.0	96 99	10.1	10.0	101	86-114	2	20
Toluene	ND	9.91	10.0		9.33	10.0	93	73-112	9	20
trans-1,3-Dichloropropene	ND	10.2	10.0	102	7.33	10.0				

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

000027

Page

OA/QC Report

Client: **Project:** BE&K Terranext WVB/#03103154

Sample Matrix:

Water

Service Request: X2300279

Date Extracted: 04/04/2003

Date Analyzed: 04/04/2003

Matrix Spike/Duplicate Matrix Spike Summary Volatile Organic Compounds

Sample Name:

AVB75-0100-07118

Lab Code:

X2300279-002

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

Extraction Lot: XWG0300459

AVB75-0100-07118MS

AVB75-0100-07118DMS XWG0300459-2

XWG0300459-1 **Duplicate Matrix Spike** RPD Matrix Spike %Rec Sample RPD Limit Limits %Rec %Rec **Expected** Result **Expected** Result Result **Analyte Name** 20 7 79-112 86 10.0 8.63 10.0 93 9.30 ND 1,1,2-Trichloroethane 20 2 78-130 101 10.0 99 17.3 10.0 7.2 17.0 Tetrachloroethene 3 20 77-112 86 34.5 40.0 89 35.5 40.0 ND 20 2-Hexanone 2 45-133 89 8.94 10.0 91 9.14 10.0 ND 1.3-Dichloropropane 20 4 74-108 89 10.0 8.87 10.0 93 9.26 ND Dibromochloromethane 20 5 73-113 86 8.62 10.0 91 9.08 10.0 ND 1,2-Dibromoethane 20 0 84-111 10.0 102 10.2 102 10.0 ND 10.2 Chlorobenzene 20 84-119 0 95 9.54 10.0 96 9.55 10.0 ND 1,1,1,2-Tetrachloroethane 2 20 47-136 10.0 108 10.8 106 10.0 10.6 ND Ethylbenzene 20 3 84-120 20.0 110 22.0 20.0 107 21.3 ND m,p-Xylenes 2 20 47-143 104 10.0 10.4 102 10.0 10.2 ND o-Xylene 3 20 72-121 101 10.0 10.1 105 10.0 ND 10.5 Styrene 0 20 63-108 102 10.0 10.2 102 10.0 10.2 ND Isopropylbenzene 20 80-113 6 10.0 105 10.5 111 10.0 11.1 ND Bromobenzene 20 10 78-119 92 9.18 10.0 10.0 102 10.2 1,2,3-Trichloropropane ND 20 2 76-117 10.0 104 107 10.4 10.0 10.7 ND n-Propylbenzene 20 2 102 79-121 10.0 10.2 104 10.0 ND 10.4 2-Chlorotoluene 1 20 70-133 10.0 103 10.3 104 10.4 10.0 ND 4-Chlorotoluene 20 3 79-118 10.0 102 10.2 105 10.0 10.5 ND 1,3,5-Trimethylbenzene 20 4 102 77-120 10.0 10.2 106 10.0 10.6 ND tert-Butylbenzene 20 68-127 2 10.0 102 10.2 104 10.0 10.4 ND 1,2,4-Trimethylbenzene 20 78-123 4 96 10.0 99 9.56 10.0 9.94 ND sec-Butylbenzene 78-127 4 20 98 10.0 9.84 10.0 103 10.3 ND 1,3-Dichlorobenzene 20 3 79-142 102 10.2 10.0 105 10.0 10.5 ND 4-Isopropyltoluene 20 3 94 83-111 10.0 9.36 91 10.0 9.10 ND Bromoform 20 105 66-133 1 10.0 10.5 106 10.0 10.6 ND 1,1,2,2-Tetrachloroethane 48-139 4 20 102 10.0 10.2 98 10.0 9.76 ND 1,4-Dichlorobenzene 1 20 64-109 97 9.66 10.0 97 10.0 9.72 ND 1,2-Dichlorobenzene 20 69-122 1 104 10.0 10.4 103 10.0 10.3 ND n-Butylbenzene 20 54-160 1 10.0 91 9.13 10.0 91 9.06 ND 1.2-Dibromo-3-chloropropane 20 96 39-145 8 10.0 9.57 103 10.3 10.0 ND 1.2.4-Trichlorobenzene 20 74-113 10 109 10.0 10.9 10.0 120 M1 ND 12.0 Hexachlorobutadiene 20 14 44-167 85 8.52 10.0 98 10.0 9.81 ND Naphthalene 20 14 37-158 10.0 105 10.5 121 10.0 12.1 ND 1,2,3-Trichlorobenzene

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

QA/QC Report

Client: Project: BE&K Terranext WVB/#03103154

Sample Matrix:

Water

Service Request: X2300279

Date Extracted: 04/04/2003 **Date Analyzed:** 04/04/2003

Lab Control Spike/Duplicate Lab Control Spike Summary **Volatile Organic Compounds**

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L

Basis: NA Level: Low

Extraction Lot: XWG0300459

Lab Control Sample XWG0300459-3

Duplicate Lab Control Sample XWG0300459-4

	XWG0300459-3 Lab Control Spike			Duplicate Lab Control Spike			%Rec		RPD
Analyte Name	Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit
Dichlorodifluoromethane	2.60	10.0	26	1.46	10.0	15	1-233	56 R7	20
Chloromethane	5.56	10.0	56	4.09	10.0	41 L2	46-156	30 R7	20
Vinyl Chloride	6.16	10.0	62	4.27	10.0	43 L2	51-158	36 R7	20
Bromomethane	7.58	10.0	76	6.64	10.0	66	37-149	13	20
Chloroethane	8.15	10.0	82	7.34	10.0	73	56-146	10	20
Trichlorofluoromethane	7.39	10.0	74	5.45	10.0	55 L2	69-139	30 R7	20
1,1,2-Trichlorotrifluoroethane	8.53	10.0	85	6.56	10.0	66 L2	83-130	26 R7	20
1,1-Dichloroethene	8.29	10.0	83	6.46	10.0	65	65-112	25 R7	20
Acetone	47.8	40.0	120	44.3	40.0	111	68-128	8	20
Iodomethane	35.0	40.0	88	33.2	40.0	83	68-144	5	20
Carbon Disulfide	36.0	40.0	90	29.0	40.0	73	67-140	21 R7	20
Methylene Chloride	10.6	10.0	106	9.76	10.0	98	70-113	9	20
Methyl tert-Butyl Ether	9.04	10.0	90	9.00	10.0	90	75-115	0	20
trans-1,2-Dichloroethene	9.79	10.0	98	8.51	10.0	85	73-118	14	20
1,1-Dichloroethane	10.4	10.0	104	9.43	10.0	94	77-127	9	20
Vinyl Acetate	42.8	40.0	107	41.2	40.0	103	51-202	4	39
2,2-Dichloropropane	8.72	10.0	87	7.90	10.0	79	75-132	10	20
2-Butanone (MEK)	32.3	40.0	81	38.4	40.0	96	72-122	17	20
cis-1,2-Dichloroethene	9.47	10.0	95	9.26	10.0	93	81-118	2	20
Bromochloromethane	11.3	10.0	113	11.7	10.0	117 L1	82-114	3	20
Chloroform	10.2	10.0	102	9.78	10.0	98	78-119	4	20
1,1,1-Trichloroethane	7.67	10.0	77	6.64	10.0	66 L2	71-125	14	20
Carbon Tetrachloride	8.00	10.0	80	6.91	10.0	69	69-130	15	20
1,1-Dichloropropene	8.47	10.0	85	7.13	10.0	71 L2	77-114	17	20
Benzene	9.06	10.0	91	8.48	10.0	85	81-117	7	20
1,2-Dichloroethane	10.0	10.0	100	9.79	10.0	98	67-122	2	20
Trichloroethene	9.21	10.0	92	8.44	10.0	84	79-114	9	20
1,2-Dichloropropane	9.98	10.0	100	9.86	10.0	99	78-114	1	20
Dibromomethane	10.4	10.0	104	10.8	10.0	108	78-113	4	20
Bromodichloromethane	9.39	10.0	94	9.16	10.0	92	79-122	2	20
cis-1,3-Dichloropropene	10.9	10.0	109	10.8	10.0	108	82-118	1	20
4-Methyl-2-pentanone (MIBK)	41.1	40.0	103	43.6	40.0	109	75-115	6	20
Toluene	9.58	10.0	96	9.00	10.0	90	85-118	6	20
trans-1,3-Dichloropropene	10.6	10.0	106	10.4	10.0	104	79-121	2	20
1,1,2-Trichloroethane	9.93	10.0	99	9.97	10.0	100	79-116	0	20
Tetrachloroethene	8.99	10.0	90	7.90	10.0	79	76-127	13	20

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 04/09/2003 11:27:26 L:\STEALTH\CRYSTAL.RPT\Form3DLC.rpt Form 3C - Organic

000029

1 of 2 Page

SuperSet Reference:

RR3180

OA/QC Report

Client: Project: BE&K Terranext WVB/#03103154

Sample Matrix:

Water

Service Request: X2300279

Date Extracted: 04/04/2003 **Date Analyzed:** 04/04/2003

Lab Control Spike/Duplicate Lab Control Spike Summary Volatile Organic Compounds

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low Extraction Lot: XWG0300459

Lab Control Sample XWG0300459-3

Duplicate Lab Control Sample XWG0300459-4

		/G0300459-3 Control Spike	e	Duplicate Lab Control Spike			%Rec		RPD	
Analyte Name	Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit	
	39.2	40.0	98	40.3	40.0	101	65-120	3	20	
2-Hexanone	9.93	10.0	99	10.4	10.0	104	81-116	5	20	
1,3-Dichloropropane	9.93 10.1	10.0	101	10.1	10.0	101	77-119	0	20	
Dibromochloromethane	9.98	10.0	100	9.98	10.0	100	79-116	0	20	
1,2-Dibromoethane	9.98 9.66	10.0	97	9.60	10.0	96	84-114	1	20	
Chlorobenzene	9.66 9.51	10.0	95	9.29	10.0	93	78-118	2	20	
1,1,1,2-Tetrachloroethane	9.51 9.55	10.0	96	8.95	10.0	90	79-124	6	20	
Ethylbenzene	9.33 19.6	20.0	98	18.5	20.0	93	75-131	6	20	
m,p-Xylenes	9.75	10.0	98	9.44	10.0	94	78-122	3	20	
o-Xylene		10.0	102	10.1	10.0	101	80-126	2	20	
Styrene	10.2 9.20	10.0	92	8.47	10.0	85	75-126	8	20	
Isopropylbenzene		10.0	109	10.9	10.0	109	82-122	0	20	
Bromobenzene	10.9	10.0	103	10.1	10.0	101	77-118	2	20	
1,2,3-Trichloropropane	10.3	10.0	97	8.80	10.0	88	75-129	9	20	
n-Propylbenzene	9.66	10.0	99	9.25	10.0	93	77-126	7	20	
2-Chlorotoluene	9.93	10.0	100	9.70	10.0	97	82-120	3	20	
4-Chlorotoluene	9.98	10.0	98	9.27	10.0	93	75-130	6	20	
1,3,5-Trimethylbenzene	9.84		96 95	8.42	10.0	84	73-130	12	20	
tert-Butylbenzene	9.46	10.0	100	9.53	10.0	95	60-137	5	20	
1,2,4-Trimethylbenzene	9.97	10.0	89	7.71	10.0	77	68-131	14	20	
sec-Butylbenzene	8.89	10.0	102	9.91	10.0	99	71-137	3	20	
1,3-Dichlorobenzene	10.2	10.0	97	8.66	10.0	87	68-134	11	20	
4-Isopropyltoluene	9.67	10.0	97	9.96	10.0	100	70-118	7	20	
Bromoform	9.32	10.0	93 109	11.6	10.0	116	72-122	7	20	
1,1,2,2-Tetrachloroethane	10.9	10.0	98	10.0	10.0	100	82-114	3	20	
1,4-Dichlorobenzene	9.76	10.0	98 96	9.67	10.0	97	81-118	0	20	
1,2-Dichlorobenzene	9.63	10.0	96 90	8.23	10.0	82	71-125	9	20	
n-Butylbenzene	8.98	10.0		8.66	10.0	87	55-131	8	20	
1,2-Dibromo-3-chloropropane	7.97	10.0	80	9.74	10.0	97	75-123	2	20	
1,2,4-Trichlorobenzene	9.57	10.0	96 07	9.74	10.0	91	63-140	7	20	
Hexachlorobutadiene	9.70	10.0	97	9.06 9.60	10.0	96	67-125	8	20	
Naphthalene 1,2,3-Trichlorobenzene	8.85 10.4	10.0 10.0	89 104	11.1	10.0	111	72-124	7	20	

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

April 8, 2003

Chuck Gordon BE & K Terranext 9830 S. 51st A-127 Phoenix, AZ 85044

Re: WVB/Project #03103154

Dear Chuck:

Enclosed are the results of the samples submitted to our laboratory on March 26, 2003. For your reference, these analyses have been assigned our service request number L2300694.

All analyses were performed in accordance with our laboratory's quality assurance program. Results are intended to be considered in their entirety and apply only to the samples analyzed. Columbia Analytical Services is not responsible for use of less than the complete report.

Columbia Analytical Services - is certified for environmental analyses by the Arizona Department of Health Services (certificate number: AZ0544 and AZ0136, expiration: May 23, 2003).

If you have any questions, please call me at (818) 587-5550, extension 309.

Respectfully submitted,

Sul Juderstor

Sue Anderson Project Chemist

SA

Columbia Analytical Services, Inc.

Acronyms

California DHS LUFT Method 8015M American Society for Testing and Materials **ASTM** Biochemical Oxygen Demand BOD Benzene/Toluene/Ethylbenzene/Xylenes **BTEX** California Assessment Metals CAM Chemical Abstract Service Registry Number **CAS Number** Chlorofluorocarbon CFC Chemical Oxygen Demand COD Contract Required Detection Limit CRDL Detected; result must be greater than zero. D Detected; result must be greater than the detection limit. DL **Duplicate Laboratory Control Sample** DLCS Duplicate Matrix Spike DMS Department of Health Services DOH or DHS Environmental Laboratory Accreditation Program **ELAP** ILS. Environmental Protection Agency **EPA** Gas Chromatography GC Gas Chromatography/Mass Spectrometry GC/MS Ion Chromatography IC Initial Calibration Blank sample **ICB** Inductively Coupled Plasma atomic emission spectrometry **ICP** Initial Calibration Verification sample **ICV** Laboratory Control Sample LCS Leaking Underground Fuel Tank LUFT Modified M Methylene Blue Active Substances **MBAS** Method Detection Limit MDL Method Reporting Limit MRL Matrix Spike MS Methyl-tert-Butyl Ether **MTBE** Not Applicable NA Not Calculated NC None Detected at or above the Method Reporting/Detection Limit (MRL/MDL) ND Nephelometric Turbidity Units NTU Parts Per Billion ppb Parts Per Million ppm **Practical Quantitation Limit PQL** Quality Assurance/Quality Control QA/QC Resource Conservation and Recovery Act **RCRA** Relative Percent Difference RPD Selected Ion Monitoring SIM Standard Methods for the Examination of Water and Wastewater, 18th Ed., 1992. SM Solubility Threshold Limit Concentration STLC Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW-846, SW Third Edition, 1986 and as amended by Updates I, II, IIA, and IIB. Toxicity Characteristics Leaching Procedure **TCLP** Total Dissolved Solids TDS Total Petroleum Hydrocarbons TPH Total Recoverable Petroleum Hydrocarbons TRPH Total Suspended Solids TSS Total Threshold Limit Concentration TTLC Volatile Organic Analyte(s) VOA **Oualifiers** Undetected at or above MDL/MRL. U Estimated concentration. Analyte detected above MDL but below MRL. J Hit above MRL also found in Method Blank. В Analyte concentration above high point of ICAL. \mathbf{E} Presumptive evidence of compound. N Result from dilution. D

See case narrative.

X

Client:

BE&K Terranext, LLC

Project:

WVBA/03103154

Sample Matrix:

Water

Service Request No.:

L2300694

Date Received:

3/26/03

CASE NARRATIVE

All analyses were performed in accordance with our laboratory's quality assurance program. This report contains analytical results for sample(s) designated for Tier II data deliverables. When appropriate to the method, method blank results have been reported with each analytical test. Additional quality control analyses reported herein include: Matrix/Duplicate Matrix Spike (MS/DMS) and Laboratory Control Sample (LCS).

All EPA recommended holding times have been met for analyses in this sample delivery group.

The following difficulties were experienced during analysis of this batch:

Metals, Method 6010B:

The matrix spike/duplicate matrix spike recoveries were not calculated. The data has been flagged with an M3 footnote. This flag denotes that the accuracy of the spike recovery value is reduced since the analyte concentration in the sample is disproportionate to the spike level. The method control sample recovery was acceptable.

Sul Muleston Date: 4/8/03 000033

- Cover Page -INORGANIC ANALYSIS DATA PACKAGE

Client:

BE&K Terranext, LLC

Project Name: Project No.:

WVB 03103154 Service Request: L2300694

Sample Name:	
AT 7076 0100 07109	

AVB76-0100-07108 AVB75-0100-07118 AVB75-0100-07118 AVB75-0100-07118 AVB73-0100-07109 AVB73-0104-1000 Laboratory Control Sample

Method Blank

Lab Code:

L2300694-001 L2300694-002 L2300694-002S L2300694-002SD L2300694-003 L2300694-004

L2300694-LCS

L2300694-MB

Sue Gulerson

Analytical Report

Client:

BE&K Terranext, LLC

Project Name : Project No. : WVB

Matrix:

03103154

Water

Service Request: L2300694

Date Collected: 03/26/03 **Date Received:** 03/26/03

Date Extracted: 04/02/03

Total Metals

Sample Name:

AVB76-0100-07108

Lab Code:

L2300694-001

Units: ug/L (ppb)

Basis: NA

Analyte Analysis Method MRL Date Analyzed Result Notes

Chromium 6010B 10 04/04/03 1520

Analytical Report

Client:

BE&K Terranext, LLC

Project Name : Project No. : WVB

Matrix:

03103154 Water Service Request: L2300694

Date Collected: 03/26/03 **Date Received:** 03/26/03

Date Extracted: 04/02/03

Dissolved Metals

Sample Name:

AVB76-0100-07108

Lab Code:

L2300694-001

Units: ug/L (ppb)

Analyte	Analysis Method	MRL	Date Analyzed	Sample Result	Result Notes
Chromium	6010B	10	04/07/03	14	

Analytical Report

Client:

BE&K Terranext, LLC

Project Name : Project No. : WVB

Matrix:

03103154 Water Service Request: L2300694

Date Collected: 03/26/03

Date Received: 03/26/03

Date Extracted: 04/02/03

Total Metals

Sample Name:

AVB75-0100-07118

Lab Code:

L2300694-002

Units: ug/L (ppb)

Analyte	Analysis Method	MRL	Date Analyzed	Sample Result	Result Notes
Chromium	6010B	10	04/04/03	2850	

Analytical Report

Client:

BE&K Terranext, LLC

Project Name: Project No.:

WVB

Matrix:

03103154 Water Service Request: L2300694

Date Collected: 03/26/03

Date Received: 03/26/03 **Date Extracted:** 04/02/03

Dissolved Metals

Sample Name:

AVB75-0100-07118

Lab Code :

L2300694-002

Units: ug/L (ppb)

A lada	Analysis Method	MRL	Date Analyzed	Sample Result	Result Notes
Analyte	*	10	04/07/03	16	
Chromium	6010B	10	0 1/ 0 // 0 2		

Analytical Report

Client:

BE&K Terranext, LLC

Project Name: Project No.:

WVB

Matrix:

03103154 Water

Service Request : L2300694 **Date Collected :** 03/26/03

Date Received: 03/26/03

Date Extracted: 04/02/03

Total Metals

Sample Name:

AVB73-0100-07109

Lab Code:

L2300694-003

Units: ug/L (ppb)

Analyte	Analysis Method	MRL	Date Analyzed	Sample Result	Result Notes
Chromium	6010B	10	04/04/03	572	

Analytical Report

Client:

BE&K Terranext, LLC

Project Name:

WVB

Project No.: Matrix:

03103154 Water

Service Request: L2300694

Date Collected: 03/26/03

Date Received: 03/26/03

Date Extracted: 04/02/03

Dissolved Metals

Sample Name:

AVB73-0100-07109

Lab Code:

L2300694-003

Units: ug/L (ppb)

Basis: NA

Sample Result Result Notes **Date Analyzed** MRL **Analysis Method** Analyte ND 04/07/03 10 6010B Chromium

Analytical Report

Client:

BE&K Terranext, LLC

Project Name : Project No. : WVB

Project N

03103154

Matrix:

Water

Service Request: L2300694

Date Collected: 03/26/03

Date Received: 03/26/03

Date Extracted: 04/02/03

Total Metals

Sample Name:

AVB73-0104-1000

Lab Code:

L2300694-004

Units: ug/L (ppb)

Analyte	Analysis Method	MRL	Date Analyzed	Sample Result	Result Notes
Chromium	6010B	10	04/07/03	ND	

Analytical Report

Client:

BE&K Terranext, LLC

Project Name : Project No. : WVB

Matrix:

03103154 Water Service Request: L2300694

Date Collected: 03/26/03 **Date Received:** 03/26/03 **Date Extracted:** 04/02/03

Dissolved Metals

Sample Name:

AVB73-0104-1000

Lab Code:

L2300694-004

Units: ug/L (ppb)

Analyte	Analysis Method	MRL	Date Analyzed	Sample Result	Result Notes
Chromium	6010B	10	04/07/03	ND	

Analytical Report

Client:

BE&K Terranext, LLC

Project Name : Project No. : WVB

03103154

Service Request: L2300694

Date Collected: NA

Date Received: NA **Date Extracted:** 04/02/03

Matrix:

Water

Total Metals

Sample Name:

Method Blank

Units: ug/L (ppb)

Basis: NA

Lab Code:

L2300694-MB

Analyte Analysis Method MRL Date Analyzed Result Notes

Chromium 6010B 10 04/04/03 ND

QA/QC Report

Client:

BE&K Terranext, LLC

Project Name:

WVB

Project No.:

03103154

Matrix: Water

Service Request: L2300694

Date Collected: NA

Date Received: NA

Date Extracted: 04/02/03

Date Analyzed: 04/04/03

Laboratory Control Sample Summary

Total Metals

Sample Name:

Laboratory Control Sample

Lab Code:

L2300694-LCS

Units: ug/L (ppb)

Analyte	Analysis Method	True Value	Result	Percent	CAS Percent Recovery Acceptance Limits	Result Notes
Chromium	6010B	500	522	104	87-111	

Analytical Report

Client:

BE&K Terranext, LLC

Project Name:

WVB

Project No.:

03103154

Matrix:

Water

Service Request: L2300694

Date Collected: 03/26/03 **Date Received:** 03/26/03

Date Extracted: 04/02/03 **Date Analyzed:** 04/04/03

Matrix Spike/Duplicate Matrix Spike Summary

Total Metals

Sample Name:

AVB75-0100-07118

Lab Code:

L2300694-002S

L2300694-002SD

Units: ug/L (ppb)

Analyte	Prep Method	Analysis Method	MRL	Spike MS	Level	Sample Result	Spike MS	Result DMS	MS	DMS	CAS Acceptance Limits	Relative Percent Difference	Result Notes
Chromium	3010A	6010B	10	500	500	2850	3190	3150	NC	NC	87-105	1	M3

CHAIN OF CUSTODY/LABORATORY ANALYSIS REQUEST FORM 2302 East University Drive, Suite 4 • Phoenix, AZ 85034 • (602) 437-2001 • (800) 695-7222 x09 • FAX (602) 437-5308 DATE 3 · 26 · 03

All Eliphoyee - Owned Cultipary	, Ç	# 63103154	7							¥	ANALYSIS	3EQL	REQUESTED		-			
PROJECT MANAGER CHUCK Gurlen					s		_	/ %/	Se//Je	su_		- 10//		<u> </u>	\	<u> </u>	_	
COMPANY/ADDRESS BROK					'INEB	<u></u>	_	inseric	/o:	odneso Paninsi		A Inle	-		<u> </u>	<u> </u>	_	
					ATNO	_	7.36	LOWS LOWS		0.0 p	Total TCL	d Dh		0228	<u></u>	_	_	
NOHA	PHONE/FAX				E CC	\ \ \	ON A	A & N 8021 1508	LH Z	1.814 10/5/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0	SIL	Hd L	_	\ \ /	`>	_		
SAMPLER'S SIGNATURE K					O H38	- G	genated 927	Senated 1500 1500 1500 1500 1500 1500 1500 150	05 07 8015A 32 19015A 10181	Set of the	SteM Pr	Iniod (0158	ر ایمار (<u>`</u> うる	<u></u>		
	TIME	LAB I.D.	MATRIX V	PRESER- VATION		(378 (8) (8) (8) (8) (8) (8) (8) (8) (8) (8	8/109 1018H	8) 109 8) 109 H ^A T	Total	10H8	Pe _e 7	4VT 8708	\rightarrow			\dashv	REMARKS	
7,08 3.26 037	23			\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	S	200												
"	1_	Π.		·	Q								N	9				
ŀ	1.25	63	"	3	7								7	\searrow				
r.	3:	70	,	,	6									ot				
"	 	*		W4	+	À								_				
2017			-															
					-											-		
SPECIAL INSTRICTIONS/COMMENTS:	- 60		_					REPO	RT REQUI	REPORT REQUIREMENTS	INC	SCE IN	INVOICE INFORMATION:	 <u></u>		SAMPL	SAMPLE RECEIPT:	
Extra samples taken for AVB75-0100-07/18	for AVB	75-01	00-0	07//R	de la		,		Routine Report Report (includes DUP.M\$ MSD, as required, may b charged as samples) III. Data Validation Report includes All Baw Data)	Routine Report Report (includes DUP.MS. MSD, as required, may be charged as samples) III. Data Validation Report (includes All Baw Data)	P.O.# Bill To				Shipping VIA: Shipping #:	VIA:		
								≥ O ≥	IV. CLP Deliverable Report	le Report					Lab No:_	Lab No: ×23002	0279	
Relinquished By (Signature)	Organiza Bok	Organization	Date/Time 3.20	in 67	Received		Signatur	J.			Organization CAS	۵	Date/Time 13. 20		ANALYSIS 1 STANDARD	- 1	ANALYSIS TAT (Circle One)	
Relinquished By (Signature)	Organiza	Organization OMS	Date/Ti	Date/Time 3-27-63		Received By (Signature) $Fe(px)$	Signatur	(e)			Organization		Date/Time		RUSH TAT	• 📙 📙	<i>- Surcharges Apply</i> □ 24 Hours □ 48 Hours	S ia
Relinquished By (Signature)	Organ	Organization	Date/Time	ime		Received By (Signature)	Signatur				Organization		Date/Time 3/38/03	~			☐ 72 Hours	
100					2	1					くせく	<u></u>	Control					

SAMPLE RECEIPT FORM

Service Request No: L230 0694 Client: BE+K
Sample(s) delivered by: Client CAS Emp After Hours DHL
Golden State Overnight Fed X V UPS Other Courier
Chain of Custody filled out accurately? Yes No (See Comments)
Appropriate sample volume and containers? Yes/ No(See Comments)
Sufficient labeling on container(s)? Yes No (See Comments)
Container(s) supplied by CAS? Yes V No. (See Communication)
Custody seal(s) intact? N/A / Yes No(See Comments)
Trip Blank(s) received Yes No
If Trip Blank was supplied by CAS, record serial #
Temperature of sample(s)/cooler C Temp Blank? Y or N (Circle One)
Voa's Marked Preserved? Yes No Filled Properly? Yes No (See Comments
Preserved Bottles Requiring pH check(s)? Yes Notified No (See Comments
RUSH Turn around time? Yes Notified Date & Time
Short Hold-Time Analysis (check all that apply)
ASAP Res Cl D.O Flash Diss S2- Ferrous Fe 24HR pH Odor Cr+6 48HR BOD Color MBAS Nitrate Nitrite O-PO4 Sett Sol Turbidity 72HR Vapors Turbidity
Notified Date & Time
Container(s) received and their preservative(s): -1, -3, -4 = 11-1L PL(NP)A [1-1L PL(HN03)B]
-2=12-11 PL(NP)AB ? Comments (2-11 PL(HNB)CD) Filter & preserve diss metals bottle in 196
Initials, Date, Time LK 3/28/03 1000

CHAIN OF CUSTODY/LABORATORY ANALYSIS REQUEST FORM

Columbia Analytical Services

3902 East University Drive, Suite 4 • Phoenix, AZ 85034 • (602) 437-2001 • (800) 695-7222 x09 • FAX (602) 437-5308

DATE 3,26.03

PAGE

. Р

Sy. RUSH TAT - Surcharges Apply 0702 ANALYSIS TAT (Circle One) REMARKS Lab No: \$2300279 SAMPLE RECEIPT: ☐ 72 Hours □ 24 Hours ☐ 48 Hours STANDARD Shipping VIA: Shipping #: Condition: 2216 N D 0758 ANALYSIS REQUESTED 12,20 INVOICE INFORMATION: Date/Time Date/Time Date/Time OIJ-9D OUIJOSED HAA Flash Point of paint Filter of Total D Total DT Organization Organization Organization CAS D_{plo} P.O.# Pear 8RCRA Metals II. Report (includes DUP.MS. MSD, as required, may be charged as samples) REPORT REQUIREMENTS III. Data Validation Report (includes All Raw Data) IV. CLP Deliverable Report Hydrocarbons Routine Report Halogenated & Aromatic Volatiles of Logologian States of Logologian Stat Halogenated Volatile Organics Received By (Signature) Received By (Signature) 3 Ś Ś BTEX 602/8021 あり D NUMBER OF CONTAINERS Q Ixtra Samples taken for AVB75-0100-07/18 2.203 PRESER-VATION S. S. Date/Time Z Date/Time Date/Time 1 Ä MATRIX Q # 03/03/54 Ċ ~ Organization Organization Organization 8 60 20 279-01 LAB ID Hok 3.50 PHONE/FAX TIME 13. Q+-13 3-26-61-45 PROJECT MANAGER Chuck Gordon SPECIAL INSTRUCTIONS/COMMENTS: DATE COMPANY/ADDRESS Beck なな 7 7 Relinquished By (Signature) Relinquished By (Signature) Relinquished By (Signature) PROJECT NAME NVB SAMPLER'S SIGNATURE_ 4876-0100-0710BV 40110-0010-ELEIM N873-0103-1000 JOST- D104-1600 WE15-0100-071/B USW/SW SAMPLE I.D.

Columbia Analytical Services, Inc. Phoenix, AZ

Sample Receipt and Preservation Form

Client:	3E&K			Project Name	:wvb	
		26-03 d	ate Plastic Bottles ≌	time Jars	□ Sleeves □	
First Extra		me Expiratio	n:		time (soils only)	
					JRS(soil)/7 DAYS (water)?	Yes □ No⊔
If YES, ch	emist notified or	c	date	time	Chemist's Initials	
 Are the cus If yes, how Are the sig Did all con Are all con Were the c Have VOA Temperature 	many and where mature and date of tainers arrive in tainer labels con orrect containers are of sample(s) u	orrect? good condition plete (i.e. proused for the for the preser pon receipt:	on? eservation, sample tests indicated? ace of air bubbles?	ID)? (note problet	RUSH (Yes □ Yes □ Yes ↓ Yes ↓ Yes ↓ Yes ↓ Yes ₺ Yes ₺ Yes ₺	No X No □ No □ No □ No □ No □
pH 12	Reagent NaOH	YES	NO		VOA Vial pH Verific (Tested After Analy All Samples pH Following Samples Exhi	ysis) ≤2
2	HNO ₃	/				
2	H ₂ SO ₄					
Comments:				V 	e(s) Received by (initials):	011/

July 16, 2003

Chuck Gordon BE&K Terranext 9830 S. 51st Street, Suite A-127 Phoenix, AZ 85044

Re:

WVB / Project #03103154

Dear Chuck:

Enclosed are the amended result pages for the samples submitted to our laboratory on March 24, 2003. The samples were analyzed for Total and Dissolved Chromium by our Canoga Park, CA facility (L2300668). For your reference, the 8260 analyses have been assigned our service request number X2300270.

All analyses were performed according to our laboratory's quality assurance program. All results are intended to be considered in their entirety, and Columbia Analytical Services, Inc. (CAS) is not responsible for use of less than the complete report. Results apply only to the samples analyzed. Columbia Analytical Services, Inc. is certified for environmental analyses by the Arizona Department of Health Services (Certificate #AZ0136; and #AZ0497).

Please call if you have any questions. My extension is 223.

Respectfully submitted,

Columbia Analytical Services, Inc.

Tracy L. Dutton

Laboratory Director

TLD/lm

Page 1 of <u>44</u>

Client:

BE&K Terranext

Project:

WVB / #03103154

Sample Matrix:

Water

Service Request No.:

X2300270

Date Received:

3/24/03

CASE NARRATIVE

All analyses were performed consistent with the quality assurance program of Columbia Analytical Services, Inc. (CAS). This report contains analytical results for sample(s) designated for Tier II data deliverables. When appropriate to the method, method blank results have been reported with each analytical test. Surrogate recoveries have been reported for all applicable organic analyses. Additional quality control analyses reported herein include: Matrix/Duplicate Matrix Spike (MS/DMS) and Laboratory Control Sample (LCS).

All EPA recommended holding times have been met for analyses in this sample delivery group.

The following difficulties were experienced during analysis of this batch:

CCV recovery of Dichlorodifluoromethane, Method 8260, was below method acceptance limits on 4/2/03. This compound was seen in the method reporting limit standard that was analyzed with this batch of samples. This verifies that the compound would be detected if present in the samples.

Surrogate recovery of Dibromofluoromethane and 4-Bromofluorobenzene, Method 8260B, was above laboratory acceptance limits for sample AVB113-0100-02113 (X2300270-002), but within method acceptance limits.

Matrix spike (XWG0300447-4 and XWG0300447-5) recovery of several analytes for Method 8260B, was high. The method control sample recovery was acceptable.

LCS/DLCS (XWG0300447-1 and XWG0300447-2) RPD for Dichlorodifluoromethane, Method 8260B, exceeded the laboratory control limits. Recovery met acceptance criteria.

The associated blank spike (XWG0300447-2) recovery of 1,1,2-Trichlorotrifluoroethane, 1,1-Dichloroethane, Carbon Tetrachloride and 1,1-Dichloropropene for Method 8260B was above laboratory acceptance limits. These compounds were not detected in any of the samples analyzed in this batch.

The associated blank spike (XWG0300447-2) recovery of n-Butylbenzne for Method 8260B was above laboratory acceptance limits but within method limits.

Approved by	 1-17-03

ARIZONA DATA QUALIFIERS

Method Bla	ank:
B1	Target analyte detected in method blank at or above the method reporting limit.
B2	Non-target analyte detected in method blank and sample, producing interference.
B3	Target analyte detected in calibration blank at or above the method reporting limit.
В4	Therest applyte detected in blank at/above method acceptance criteria.
B5	Townst analytic detected in method blank at or above the method reporting limit, but below trigger level or MCL.
B6	Target analyte detected in calibration blank at or above the method reporting limit, but below trigger level of MCE.
B7	Target analyte detected in method blank at or above method reporting limit. Concentration found in the sample
137	was 10 times above the concentration found in the method blank.
Confirmat	ion:
CI	Confirmatory analysis not performed as required by the method.
C2	Confirmatory analysis not performed. Confirmation of analyte presence established by site historical data.
C3	Qualitative confirmation performed. See case narrative.
C4	Confirmatory analysis was past holding time.
C'5	Confirmatory analysis was past holding time. Original result not confirmed.
Dilution:	
D1	Sample required dilution due to matrix interference. See case narrative.
D2	Sample required dilution due to high concentration of target analyte.
D3	Sample dilution required due to insufficient sample.
D4	Minimum reporting level (MRL) adjusted to reflect sample amount received and analyzed.
	•
Estimated	concentration:
El	Concentration estimated. Analyte exceeded calibration range. Reanalysis not possible due to insufficient
E2	Concentration estimated. Analyte exceeded calibration range. Reanalysis not performed due to sample marrix.
E3	Concentration estimated. Analyte exceeded calibration range. Reanalysis not performed due to holding time
	populiraments
E4	Computation optimated. Analyte was detected below laboratory minimum reporting level (MRL).
E5	Concentration estimated. Analyte was detected below laboratory minimum reporting level (MRL), but not
	contirmed by alternate analysis.
E6	Continuation estimated. Internal standard recoveries did not meet method acceptance criteria.
E7	Confirmation estimated. Internal standard recoveries did not meet laboratory acceptance criteria.
L)	
Hold Tim	e:
F-[1	Sample analysis performed past holding time. See case narrative.
H2	Initial analysis within holding time. Reanalysis for the required dilution was past holding time.
H3	Supply was received and analyzed past holding time.
H4	Sample was extracted past required extraction holding time, but analyzed within analysis holding time. See case
	parrative.

Laboratory fortified blank/blank spike:

The associated blank spike recovery was above laboratory acceptance limits. See case narrative. L1

The associated blank spike recovery was below laboratory acceptance limits. See case narrative. L2 The associated blank spike recovery was above method acceptance limits. See case narrative. 1.3 The associated blank spike recovery was below method acceptance limits. See case narrative. 1.4 Note: The L1, L2, L3, & L4 footnotes need to be added to all corresponding analytes for a sample. Matrix spike: Matrix spike recovery was high, the method control sample recovery was acceptable. М1 Matrix spike recovery was low, the method control sample recovery was acceptable. M2The accuracy of the spike recovery value is reduced since the analyte concentration in the sample is M3 disproportionate to spike level. The method control sample recovery was acceptable. The analysis of the spiked sample required a dilution such that the spike concentrations was diluted below M4 the reporting limit. The method control sample recovery was acceptable. Analyte concentration was determined by the method of standard addition (MSA). M5 Matrix spike recovery was high. Data reported per ADEQ policy 0154,000. М6 Matrix sipke recovery was low. Data reported per ADEQ policy 0154,000. M7 General: N1See case narrative. See corrective action report. N2Sample quality: Sample integrity was not maintained. See case narrative. 01 Sample received with head space. Q2 Sample received with improper chemical preservation. \bigcirc 3 Sample received and analyzed without chemical preservation. Ο4 Sample received with inadequate chemical preservation, but preserved by the laboratory. O5 Sample was received above recommended temperature 06 Sample inadequately dechlorinated. Q7 Insufficient sample received to meet QC requirements. QC requirements satisfy ADEQ policies 0154 and 0155. 08 Insufficient sample received to meet QC requirements. Q9 Sample received in inappropriate sample container. O10 Sample is heterogeneous. Sample homogeneity could not be readily achieved using routine laboratory practices. Q11 **Duplicates:** RPD exceeded the method control limit. See case narrative. R1 RPD exceeded the laboratory control limit. See case narrative. R2 Sample RPD between the primary and confirmatory analysis exceeded 40%. Per Method 8000B, the higher R3 value was reported. MS/MSD RPD exceeded the method control limit. Recovery met acceptance criteria. R4 MS/MSD RPD exceeded the laboratory control limit. Recovery met acceptance criteria. R5 LFB/LFBD RPD exceeded the method control limit. Recovery met acceptance criteria. R6 LFB/LFBD RPD exceeded the laboratory control limit. Recovery met acceptance criteria. R7 Sample RPD exceeded the method control limit. R8 Sample RPD exceeded the laboratory control limit. R9

Surrogate:

- Surrogate recovery was above laboratory acceptance limits, but within method acceptance limits. S1
- Surrogate recovery was above laboratory and method acceptance limits. S2

Surrogate recovery was above laboratory acceptance limits, but within method acceptance limits. No target 83 analytes were detected in the sample. Surrogate recovery was above laboratory and method acceptance limits. No target analytes were detected in the S4 Surrogate recovery was below laboratory acceptance limits, but within method acceptance limits. S5 Surrogate recovery was below laboratory and method acceptance limits. Reextraction and/or reanalysis confirms **S**6 low recovery caused by matrix effect. Surrogate recovery was below laboratory and method acceptance limits. Unable to confirm matrix effect. S7 The analysis of the sample required a dilution such that the surrogate concentration was diluted below the method 88 acceptance criteria. The method control sample recovery was acceptable. The analysis of the sample required a dilution such that the surrogate concentration was diluted below the S9laboratory acceptance criteria. The method control sample recovery was acceptable. Surrogate recovery was above laboratory and method acceptance limits. See case narrative. \$10 Surrogate recovery was high. Data reported per ADEQ policy 0154.000. 811 Surrogate recovery was low. Data reported per ADEQ policy 0154.000.

Method/analyte discrepancies:

S12

- Method promulgated by EPA, but not ADHS at this time. Τ1
- Cited ADHS licensed method does not contain this analyte as part of method compound list. T2
- Method not promulgated either by EPA or ADHS. 1.3
- Tentatively identified compound. Concentration is estimated and based on the closest internal standard. Т4

Calibration verification:

- CCV recovery was above method acceptance limits. This target analyte was not detected in the sample. V1
- CCV recovery was above method acceptance limits. This target analyte was detected in the sample. The sample V2could not be reanalyzed due to insufficient sample.
- CCV recovery was above method acceptance limits. This target analyte was detected in the sample, but the V3 sample was not reanalyzed. See case narrative.
- CCV recovery was below method acceptance limits. The sample could not be reanalyzed due to insufficient V4
- CCV recovery after a group of samples was above acceptance limits. This target analyte was not detected in the V5sample. Acceptable per EPA Method 8000B.
- Data reported from one-point calibration criteria per ADEQ policy 0155.000. V6
- Calibration verification recovery was above the method control limit for this analyte however the average V7% difference or % drift for all the analytes met method criteria.
- Calibration verification recovery was below the method control limit for this analyte however the average V8% difference or % drift for all the analytes met method criteria.

Calibration:

The % RSD for this compound was above 15%. The average % RSD for all compounds in the calibration met W1 the 15% criteria as specified in EPA method 8000B.

Inorganic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.
- U The compound was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- i The MRL/MDL has been elevated due to a matrix interference.
- X See case narrative.

Metals Data Qualifiers

- # The control limit criteria is not applicable. See case narrative.
- B The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.
- E The reported value is estimated because of the presence of matrix interference.
- M The duplicate injection precision was not met.
- N The Matrix Spike sample recovery is not within control limits. See case narrative.
- S The reported value was determined by the Method of Standard Additions (MSA).
- U The compound was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- W The post-digestion spike for furnace AA analysis is out of control limits, while sample absorbance is less than 50% of spike
- i The MRL/MDL has been elevated due to a matrix interference.
- X See case narrative.
- * The duplicate analysis not within control limits. See case narrative.
- + The correlation coefficient for the MSA is less than 0.995.

Organic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- A A tentatively identified compound, a suspected aldol-condensation product.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result.
- C The analyte was qualitatively confirmed using GC/MS techniques, pattern recognition, or by comparing to historical data.
- D The reported result is from a dilution.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.
- N The result is presumptive. The analyte was tentatively identified, but a confirmation analysis was not performed
- P The GC or HPLC confirmation criteria was exceeded. The relative percent difference is greater than 40% between the two analytical results (25% for CLP Pesticides).
- U The compound was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- i The MRL/MDL has been elevated due to a chromatographic interference.
- X See case narrative.

Additional Petroleum Hydrocarbon Specific Qualifiers

- F The chromatographic fingerprint of the sample matches the elution pattern of the calibration standard.
- L The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of lighter molecular weight constituents than the calibration standard.
- H The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of heavier molecular weight constituents than the calibration standard.
- O The chromatographic fingerprint of the sample resembles an oil, but does not match the calibration standard.
- Y The chromatographic fingerprint of the sample resembles a petroleum product eluting in approximately the correct carbon range, but the elution pattern does not match the calibration standard.
- Z The chromatographic fingerprint does not resemble a petroleum product.

Client: Project: BE&K Terranext WVB/#03103154 **Service Request:**

X2300270

Cover Page - Organic Analysis Data Package **Volatile Organic Compounds**

Sample Name	Lab Code	Date Collected	Date Received
AVB95-0100-03126	X2300270-001	03/24/2003	03/24/2003
AVB113-0100-02113	X2300270-002	03/24/2003	03/24/2003
AVB113-0104-1000	X2300270-003	03/24/2003	03/24/2003
AVB113-0102-1000	X2300270-004	03/24/2003	03/24/2003

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed in the case narrative. Release of the data contained in this hardcopy data package and in the computer-readable data submitted on floppy diskette has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signature.

Signature:

Page

1 of

Date:

Analytical Results

Client: Project: BE&K Terranext WVB/#03103154

Sample Matrix:

Water

Service Request: X2300270

Date Collected: 03/24/2003

Date Received: 03/24/2003

Volatile Organic Compounds

Sample Name:

AVB95-0100-03126

Lab Code:

X2300270-001

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

			Dilution	Date	Date	
Analyte Name	Result Q	MRL	Factor	Extracted		Arizona Qualifier
Dichlorodifluoromethane	ND U	3.0	1	04/02/03	04/02/03	N1V4
Chloromethane	ND U	2.0	1	04/02/03	04/02/03	
Vinyl Chloride	ND U	1.0	1	04/02/03	04/02/03	
Bromomethane	ND U	1.0	1	04/02/03	04/02/03	
Chloroethane	ND U	1.0	1	04/02/03	04/02/03	
Trichlorofluoromethane	ND U	1.0	1	04/02/03	04/02/03	
1,1,2-Trichlorotrifluoroethane	ND U	1.0	1	04/02/03	04/02/03	
1,1-Dichloroethene	ND U	1.0	1	04/02/03	04/02/03	
Acetone	ND U	10	1	04/02/03	04/02/03	
Iodomethane	ND U	2.0	1	04/02/03	04/02/03	
Carbon Disulfide	ND U	2.0	1	04/02/03	04/02/03	
Methylene Chloride	ND U	1.0	1	04/02/03	04/02/03	
Methyl tert-Butyl Ether	ND U	1.0	1	04/02/03	04/02/03	
trans-1,2-Dichloroethene	ND U	0.50	1	04/02/03	04/02/03	•
1,1-Dichloroethane	ND U	0.50	1	04/02/03	04/02/03	
Vinyl Acetate	ND U	3.0	1	04/02/03	04/02/03	
2,2-Dichloropropane	ND U	2.0	1	04/02/03	04/02/03	
2-Butanone (MEK)	ND U	8.0	1	04/02/03	04/02/03	·
cis-1,2-Dichloroethene	ND U	0.50	1	04/02/03	04/02/03	
Bromochloromethane	ND U	0.50	1	04/02/03	04/02/03	
Chloroform	3.5	1.0	1	04/02/03	04/02/03	
1,1,1-Trichloroethane	ND U	0.50	1	04/02/03	04/02/03	
Carbon Tetrachloride	ND U	0.50	1	04/02/03	04/02/03	
1,1-Dichloropropene	ND U	0.50	1	04/02/03	04/02/03	
Benzene	ND U	0.50	1	04/02/03	04/02/03	
1,2-Dichloroethane	ND U	0.50	1	04/02/03	04/02/03	
Trichloroethene	0.70	0.50	1	04/02/03	04/02/03	
1,2-Dichloropropane	ND U	0.50	1	04/02/03	04/02/03	
Dibromomethane	ND U	0.50	1	04/02/03	04/02/03	
Bromodichloromethane	ND U	0.50	1	04/02/03	04/02/03	
cis-1,3-Dichloropropene	ND U	0.50	1	04/02/03	04/02/03	
4-Methyl-2-pentanone (MIBK)	ND U	8.0	1	04/02/03	04/02/03	
Toluene	ND U	0.50	1	04/02/03	04/02/03	
	ND U	1.0	1	04/02/03	04/02/03	
trans-1,3-Dichloropropene	ט עא	1.0	-			

Comments:

000008

Printed: 04/09/2003 09:54:01

Merged

Form 1A - Organic

RR3174 SuperSet Reference:

1 of 3 Page

Analytical Results

Client: Project: BE&K Terranext WVB/#03103154

Sample Matrix:

Water

Service Request: X2300270 **Date Collected:** 03/24/2003

Date Received: 03/24/2003

Volatile Organic Compounds

Sample Name:

AVB95-0100-03126

Lab Code:

X2300270-001

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

				Dilution	Date	Date	A Louis OurallCon
Analyte Name	Result	Q	MRL	Factor	Extracted		Arizona Qualifier
1.1.2-Trichloroethane	ND	U	1.0	1	04/02/03	04/02/03	
Tetrachloroethene	2.1		0.50	1	04/02/03	04/02/03	
2-Hexanone	ND	U	5.0	1	04/02/03	04/02/03	
1,3-Dichloropropane	ND	U	1.0	1	04/02/03	04/02/03	
Dibromochloromethane	ND	U	0.50	1	04/02/03	04/02/03	
1,2-Dibromoethane	ND	U	0.50	1	04/02/03	04/02/03	
Chlorobenzene	ND	U	0.50	1	04/02/03	04/02/03	
1,1,1,2-Tetrachloroethane	ND	U	0.50	1	04/02/03	04/02/03	
Ethylbenzene	ND	U	0.50	1	04/02/03	04/02/03	
m,p-Xylenes	ND	U	1.0	1	04/02/03	04/02/03	
o-Xylene	ND	U	0.50	1	04/02/03	04/02/03	
Styrene	ND	U	0.50	1	04/02/03	04/02/03	
Isopropylbenzene	ND		0.50	1	04/02/03	04/02/03	
Bromobenzene	ND		0.50	1	04/02/03	04/02/03	
1,2,3-Trichloropropane	ND	IJ	1.0	1	04/02/03	04/02/03	·
n-Propylbenzene	ND		0.50	1	04/02/03	04/02/03	
2-Chlorotoluene	ND		0.50	1	04/02/03	04/02/03	
4-Chlorotoluene	ND	U	0.50	1	04/02/03	04/02/03	
1,3,5-Trimethylbenzene	ND		0.50	1	04/02/03	04/02/03	
tert-Butylbenzene	ND		0.50	1	04/02/03	04/02/03	
1,2,4-Trimethylbenzene	ND	U	0.50	1	04/02/03	04/02/03	
sec-Butylbenzene	ND		0.50	1	04/02/03	04/02/03	
1,3-Dichlorobenzene	ND		0.50	1	04/02/03	04/02/03	
4-Isopropyltoluene	ND	U	0.50	1	04/02/03	04/02/03	
Bromoform	ND		0.50	1	04/02/03	04/02/03	
1,1,2,2-Tetrachloroethane	ND		1.0	1	04/02/03	04/02/03	
1,4-Dichlorobenzene	ND		0.50	1	04/02/03	04/02/03	
1,2-Dichlorobenzene	ND		0.50	1	04/02/03	04/02/03	
n-Butylbenzene	ND		0.50	1	04/02/03	04/02/03	
1,2-Dibromo-3-chloropropane		U	5.0	1	04/02/03	04/02/03	
1,2,4-Trichlorobenzene		U	0.50	1	04/02/03	04/02/03	
Hexachlorobutadiene		Ū	0.50	1	04/02/03	04/02/03	
Naphthalene		U	3.0	1	04/02/03	04/02/03	
1,2,3-Trichlorobenzene		U	0.50	1	04/02/03	04/02/03	
1,2,3-111011010001120110	111		0.50	_			

Comments:

000000

Printed: 04/09/2003 09:54:01

·Merged

Form 1A - Organic

2 of 3 Page

RR3174 SuperSet Reference:

Analytical Results

Client:

BE&K Terranext WVB/#03103154

Project: Sample Matrix:

Water

Service Request: X2300270

Date Collected: 03/24/2003

Date Received: 03/24/2003

Volatile Organic Compounds

Sample Name:

AVB95-0100-03126

Lab Code:

X2300270-001

Units: ug/L

Basis: NA

Surrogate Name	%Rec	Control Limits	Date Analyzed	Arizona Qualifier	
Dibromofluoromethane	111	84-113	04/02/03		
Toluene-d8	113	68-126	04/02/03		
4-Bromofluorobenzene	108	79-113	04/02/03		

Comments:

000010

Printed: 04/09/2003 09:54:01

Merged

Form 1A - Organic

Page

RR3174 SuperSet Reference:

3 of 3

Analytical Results

Client: **Project:** BE&K Terranext WVB/#03103154

Sample Matrix:

Water

Service Request: X2300270

Date Collected: 03/24/2003 **Date Received:** 03/24/2003

Volatile Organic Compounds

Sample Name:

AVB113-0100-02113

Lab Code:

X2300270-002

Extraction Method: EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

			Dilution	Date	Date	
Analyte Name	Result Q	MRL	Factor	Extracted	-	Arizona Qualifier
Dichlorodifluoromethane	ND U	3.0	1	04/02/03	,	N1V4
Chloromethane	ND U	2.0	1	04/02/03	04/02/03	
Vinyl Chloride	ND U	1.0	1	04/02/03	04/02/03	
Bromomethane	ND U	1.0	1	04/02/03	04/02/03	
Chloroethane	ND U	1.0	1	04/02/03	04/02/03	
Trichlorofluoromethane	ND U	1.0	1	04/02/03	04/02/03	
1,1,2-Trichlorotrifluoroethane	ND U	1.0	1	04/02/03	04/02/03	
	ND U	1.0	1	04/02/03	04/02/03	
1,1-Dichloroethene	ND U	10	1	04/02/03	04/02/03	
Acetone	ND U	2.0		04/02/03	04/02/03	
Iodomethane	ND U	2.0	1	04/02/03	04/02/03	
Carbon Disulfide	ND U	1.0	1	04/02/03	04/02/03	
Methylene Chloride			1	04/02/03	04/02/03	
Methyl tert-Butyl Ether	ND U	1.0	1	04/02/03	04/02/03	
trans-1,2-Dichloroethene	ND U	0.50 0.50	1	04/02/03	04/02/03	
1,1-Dichloroethane	ND U	_		04/02/03	04/02/03	
Vinyl Acetate	ND U	3.0	1	04/02/03	04/02/03	
2,2-Dichloropropane	ND U	2.0	1	04/02/03	04/02/03	
2-Butanone (MEK)	ND U	8.0	1			
cis-1,2-Dichloroethene	ND U	0.50	1	04/02/03	04/02/03	
Bromochloromethane	ND U	0.50	1	04/02/03	04/02/03	
Chloroform	3.3	1.0	1	04/02/03	04/02/03	
1,1,1-Trichloroethane	ND U	0.50	1	04/02/03	04/02/03	
Carbon Tetrachloride	ND U	0.50	1	04/02/03	04/02/03	
1,1-Dichloropropene	ND U	0.50	1	04/02/03	04/02/03	
Benzene	ND U	0.50	1	04/02/03	04/02/03	
1,2-Dichloroethane	ND U	0.50	1	04/02/03	04/02/03	
Trichloroethene	0.55	0.50	1	04/02/03	04/02/03	
	ND U	0.50	1	04/02/03	04/02/03	
1,2-Dichloropropane	ND U	0.50	1	04/02/03	04/02/03	
Dibromomethane	ND U	0.50	1	04/02/03	04/02/03	
Bromodichloromethane		0.50	1	04/02/03	04/02/03	
cis-1,3-Dichloropropene	ND U	0.50 8.0	1	04/02/03	04/02/03	
4-Methyl-2-pentanone (MIBK)	ND U	0.50	1	04/02/03	04/02/03	
Toluene	0.74			04/02/03	04/02/03	
trans-1,3-Dichloropropene	ND U	1.0	1	04/02/03	04/02/03	

Comments: 000011

Merged

Form 1A - Organic

1 of 3 Page

SuperSet Reference:

Analytical Results

Client: Project: BE&K Terranext WVB/#03103154

Sample Matrix:

Water

Service Request: X2300270 **Date Collected:** 03/24/2003

Date Received: 03/24/2003

Volatile Organic Compounds

Sample Name:

AVB113-0100-02113

Lab Code:

X2300270-002

Extraction Method: EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

			Dilution	Date	Date	0.110
Analyte Name	Result Q	MRL	Factor	Extracted		Arizona Qualifier
1.1.2-Trichloroethane	ND U	1.0	1	04/02/03	04/02/03	
Tetrachloroethene	1.0	0.50	1	04/02/03	04/02/03	
2-Hexanone	ND U	5.0	1	04/02/03	04/02/03	
1,3-Dichloropropane	ND U	1.0	1	04/02/03	04/02/03	
Dibromochloromethane	ND U	0.50	1	04/02/03	04/02/03	
1,2-Dibromoethane	ND U	0.50	1	04/02/03	04/02/03	
Chlorobenzene	ND U	0.50	1	04/02/03	04/02/03	
1,1,1,2-Tetrachloroethane	ND U	0.50	1	04/02/03	04/02/03	
Ethylbenzene	ND U	0.50	1	04/02/03	04/02/03	
m,p-Xylenes	72	1.0	1	04/02/03	04/02/03	
o-Xylene	76	0.50	1	04/02/03	04/02/03	
	ND U	0.50	1	04/02/03	04/02/03	
Styrene	ND U	0.50	1	04/02/03	04/02/03	
Isopropylbenzene Bromobenzene	ND U	0.50	1	04/02/03	04/02/03	
	ND U	1.0	1	04/02/03	04/02/03	
1,2,3-Trichloropropane	ND U	0.50	1	04/02/03	04/02/03	
n-Propylbenzene 2-Chlorotoluene	ND U	0.50	1	04/02/03	04/02/03	
	ND U	0.50	1	04/02/03	04/02/03	
4-Chlorotoluene	33	0.50	1	04/02/03	04/02/03	
1,3,5-Trimethylbenzene	ND U	0.50	1	04/02/03	04/02/03	
tert-Butylbenzene		0.50	1	04/02/03	04/02/03	
1,2,4-Trimethylbenzene	60 ND U	0.50	1	04/02/03	04/02/03	
sec-Butylbenzene	ND U ND U	0.50	1	04/02/03	04/02/03	
1,3-Dichlorobenzene				04/02/03	04/02/03	
4-Isopropyltoluene	0.58	0.50 0.50	1	04/02/03	04/02/03	
Bromoform	ND U	1.0	1	04/02/03	04/02/03	
1,1,2,2-Tetrachloroethane	ND U		1	04/02/03	04/02/03	
1,4-Dichlorobenzene	ND U	0.50	1	04/02/03	04/02/03	
1,2-Dichlorobenzene	ND U	0.50 0.50	1	04/02/03	04/02/03	
n-Butylbenzene	1.6			04/02/03	04/02/03	
1,2-Dibromo-3-chloropropane	ND U	5.0	1	04/02/03	04/02/03	
1,2,4-Trichlorobenzene	ND U	0.50	1 1	04/02/03	04/02/03	
Hexachlorobutadiene	ND U	0.50		04/02/03	04/02/03	
Naphthalene	9.9	3.0	1	04/02/03	04/02/03	
1,2,3-Trichlorobenzene	ND U	0.50	1	04/02/03	04/02/03	

Comments:

000012

SuperSet Reference:

Analytical Results

Client:

BE&K Terranext

Project:

WVB/#03103154

Sample Matrix:

Water

Service Request: X2300270

Date Collected: 03/24/2003

Date Received: 03/24/2003

Volatile Organic Compounds

Sample Name:

AVB113-0100-02113

Lab Code:

X2300270-002

Units: ug/L

Basis: NA

Surrogate Name	%Rec	Control Limits	Date Analyzed	Arizona Qualifier	
athona	114	84-113	04/02/03	S1	
omofluoromethane	114	68-126	04/02/03	51	
Coluene-d8				61	
l-Bromofluorobenzene	115	79-113	04/02/03	S1	

Comments:

Printed: 04/09/2003 09:54:12 L:\STEALTH\CRYSTAL.RPT\Form1m.rpt

Merged

Form 1A - Organic

RR3174

3 of Page

SuperSet Reference:

Analytical Results

Client: Project: BE&K Terranext WVB/#03103154

Sample Matrix:

Water

Service Request: X2300270

Date Collected: 03/24/2003

Date Received: 03/24/2003

Volatile Organic Compounds

Sample Name:

AVB113-0104-1000

Lab Code:

X2300270-003

Extraction Method: EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

A. A.A. Nama	Result Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Arizona Qualifier
Analyte Name	ND U	3.0	1	04/02/03	04/02/03	N1V4
Dichlorodifluoromethane	ND U	2.0	1	04/02/03	04/02/03	
Chloromethane	ND U	1.0	1	04/02/03	04/02/03	
Vinyl Chloride		1.0	1	04/02/03	04/02/03	
Bromomethane	ND U ND U	1.0	1	04/02/03	04/02/03	
Chloroethane	ND U	1.0	1	04/02/03	04/02/03	
Trichlorofluoromethane				04/02/03	04/02/03	
1,1,2-Trichlorotrifluoroethane	ND U	1.0	1 1	04/02/03	04/02/03	
1,1-Dichloroethene	ND U	1.0	1	04/02/03	04/02/03	
Acetone	ND U	10				
Iodomethane	ND U	2.0	1	04/02/03	04/02/03	
Carbon Disulfide	ND U	2.0	1	04/02/03	04/02/03	
Methylene Chloride	ND U	1.0	1	04/02/03	04/02/03	
Methyl tert-Butyl Ether	ND U	1.0	1	04/02/03	04/02/03	
trans-1,2-Dichloroethene	ND U	0.50	1	04/02/03	04/02/03	
1,1-Dichloroethane	ND U	0.50	1	04/02/03	04/02/03	
Vinyl Acetate	ND U	3.0	1	04/02/03	04/02/03	
2,2-Dichloropropane	ND U	2.0	1	04/02/03	04/02/03	
2-Butanone (MEK)	ND U	8.0	1	04/02/03	04/02/03	
cis-1,2-Dichloroethene	ND U	0.50	1	04/02/03	04/02/03	
Bromochloromethane	ND U	0.50	1	04/02/03	04/02/03	
Chloroform	ND U	1.0	1	04/02/03	04/02/03	
1,1,1-Trichloroethane	ND U	0.50	1	04/02/03	04/02/03	
Carbon Tetrachloride	ND U	0.50	1	04/02/03	04/02/03	
1,1-Dichloropropene	ND U	0.50	1	04/02/03	04/02/03	
Benzene	ND U	0.50	1	04/02/03	04/02/03	
1,2-Dichloroethane	ND U	0.50	1	04/02/03	04/02/03	
Trichloroethene	ND U	0.50	1	04/02/03	04/02/03	
	ND U	0.50	1	04/02/03	04/02/03	
1,2-Dichloropropane Dibromomethane	ND U	0.50	1	04/02/03	04/02/03	
Bromodichloromethane	ND U	0.50	1	04/02/03	04/02/03	
		0.50	1	04/02/03	04/02/03	
cis-1,3-Dichloropropene	ND U	8.0	1	04/02/03	04/02/03	
4-Methyl-2-pentanone (MIBK)	ND U ND U	0.50	1	04/02/03	04/02/03	
Toluene				04/02/03	04/02/03	
trans-1,3-Dichloropropene	ND U	1.0	1	U 4 /U2/U3	UT/UZ/UJ	

000014

Comments:

Analytical Results

Client: Project: BE&K Terranext WVB/#03103154

Sample Matrix:

Water

Service Request: X2300270

Data

Date Collected: 03/24/2003

Date Received: 03/24/2003

Volatile Organic Compounds

TN:1...4! - --

Sample Name:

AVB113-0104-1000

Lab Code:

X2300270-003

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

			Dilution	Date	Date	
Analyte Name	Result Q	MRL	Factor	Extracted		Arizona Qualifier
1,1,2-Trichloroethane	ND U	1.0	1	04/02/03	04/02/03	
Tetrachloroethene	ND U	0.50	1	04/02/03	04/02/03	
2-Hexanone	ND U	5.0	1	04/02/03	04/02/03	
1,3-Dichloropropane	ND U	1.0	1	04/02/03	04/02/03	
Dibromochloromethane	ND U	0.50	. 1	04/02/03	04/02/03	
1,2-Dibromoethane	ND U	0.50	1	04/02/03	04/02/03	
Chlorobenzene	ND U	0.50	1	04/02/03	04/02/03	
1,1,1,2-Tetrachloroethane	ND U	0.50	1	04/02/03	04/02/03	
Ethylbenzene	ND U	0.50	1	04/02/03	04/02/03	
m,p-Xylenes	ND U	1.0	1	04/02/03	04/02/03	
o-Xylene	ND U	0.50	1	04/02/03	04/02/03	
Styrene	ND U	0.50	1	04/02/03	04/02/03	
Isopropylbenzene	ND U	0.50	1	04/02/03	04/02/03	
Bromobenzene	ND U	0.50	1	04/02/03	04/02/03	
1,2,3-Trichloropropane	ND U	1.0	1	04/02/03	04/02/03	
n-Propylbenzene	ND U	0.50	1	04/02/03	04/02/03	
2-Chlorotoluene	ND U	0.50	1	04/02/03	04/02/03	
4-Chlorotoluene	ND U	0.50	1	04/02/03	04/02/03	
1,3,5-Trimethylbenzene	ND U	0.50	1	04/02/03	04/02/03	
tert-Butylbenzene	ND U	0.50	1	04/02/03	04/02/03	
1,2,4-Trimethylbenzene	ND U	0.50	1	04/02/03	04/02/03	
sec-Butylbenzene	ND U	0.50	1	04/02/03	04/02/03	
1,3-Dichlorobenzene	ND U	0.50	1	04/02/03	04/02/03	
4-Isopropyltoluene	ND U	0.50	1	04/02/03	04/02/03	
Bromoform	ND U	0.50	1	04/02/03	04/02/03	
1,1,2,2-Tetrachloroethane	ND U	1.0	1	04/02/03	04/02/03	
1,4-Dichlorobenzene	ND U	0.50	. 1	04/02/03	04/02/03	
1,2-Dichlorobenzene	ND U	0.50	1	04/02/03	04/02/03	
n-Butylbenzene	ND U	0.50	1	04/02/03	04/02/03	
1,2-Dibromo-3-chloropropane	ND U	5.0	1	04/02/03	04/02/03	
1,2,4-Trichlorobenzene	ND U	0.50	1	04/02/03	04/02/03	
Hexachlorobutadiene	ND U	0.50	1	04/02/03	04/02/03	
Naphthalene	ND U	3.0	1	04/02/03	04/02/03	
1,2,3-Trichlorobenzene	ND U	0.50	1	04/02/03	04/02/03	
* * * * * * * * * * * * * * * * * * * *						

Comments:

000045

Form 1A - Organic Printed: 04/09/2003 09:54:23 Merged

RR3174 SuperSet Reference:

2 of Page

Analytical Results

Client:

BE&K Terranext

Project:

WVB/#03103154

Sample Matrix:

Water

Service Request: X2300270

Date Collected: 03/24/2003

Date Received: 03/24/2003

Volatile Organic Compounds

Sample Name:

AVB113-0104-1000

Lab Code:

X2300270-003

Units: ug/L

Basis: NA

Surrogate Name	%Rec	Control Limits	Date Analyzed	Arizona Qualifier
Dibromofluoromethane	107	84-113	04/02/03	
Toluene-d8	110	68-126	04/02/03	
4-Bromofluorobenzene	106	79-113	04/02/03	

Comments:

000016

Printed: 04/09/2003 09:54:23 L:\STEALTH\CRYSTAL.RPT\Form1m.rpt

Merged

Form 1A - Organic

Page 3 of 3

SuperSet Reference: RR3174

Analytical Results

Client: Project: BE&K Terranext WVB/#03103154

Sample Matrix:

Water

Service Request: X2300270

Date Collected: 03/24/2003 **Date Received:** 03/24/2003

Volatile Organic Compounds

Sample Name:

AVB113-0102-1000

Lab Code:

X2300270-004

Extraction Method: Analysis Method:

EPA 5030B

8260B

Units: ug/L Basis: NA

Level: Low

	D 14 0	MRL	Dilution Factor	Date Extracted	Date Analyzed Arizona Qualifier
Analyte Name	Result Q			04/02/03	04/02/03 N1V4
Dichlorodifluoromethane	ND U	3.0	1	04/02/03	04/02/03
Chloromethane	ND U	2.0	1	04/02/03	04/02/03
Vinyl Chloride	ND U	1.0	1		04/02/03
Bromomethane	ND U	1.0	1	04/02/03	04/02/03
Chloroethane	ND U	1.0	1	04/02/03	04/02/03
Trichlorofluoromethane	ND U	1.0	1	04/02/03	
1,1,2-Trichlorotrifluoroethane	ND U	1.0	1	04/02/03	04/02/03
1.1-Dichloroethene	ND U	1.0	1	04/02/03	04/02/03
Acetone	ND U	10	1	04/02/03	04/02/03
Iodomethane	ND U	2.0	1	04/02/03	04/02/03
Carbon Disulfide	ND U	2.0	1	04/02/03	04/02/03
Methylene Chloride	ND U	1.0	1	04/02/03	04/02/03
•	ND U	1.0	1	04/02/03	04/02/03
Methyl tert-Butyl Ether	ND U	0.50	1	04/02/03	04/02/03
trans-1,2-Dichloroethene	ND U	0.50	1	04/02/03	04/02/03
1,1-Dichloroethane		3.0	1	04/02/03	04/02/03
Vinyl Acetate	ND U	2.0	1	04/02/03	04/02/03
2,2-Dichloropropane	ND U	8.0	1	04/02/03	04/02/03
2-Butanone (MEK)	ND U			04/02/03	04/02/03
cis-1,2-Dichloroethene	ND U	0.50	1	04/02/03	04/02/03
Bromochloromethane	ND U	0.50	1	04/02/03	04/02/03
Chloroform	ND U	1.0	1		
1,1,1-Trichloroethane	ND U	0.50	1	04/02/03	04/02/03
Carbon Tetrachloride	ND U	0.50	1	04/02/03	04/02/03
1,1-Dichloropropene	ND U	0.50	1	04/02/03	04/02/03
Benzene	ND U	0.50	1	04/02/03	04/02/03
1,2-Dichloroethane	ND U	0.50	1	04/02/03	04/02/03
Trichloroethene	ND U	0.50	1	04/02/03	04/02/03
1,2-Dichloropropane	ND U	0.50	1	04/02/03	04/02/03
Dibromomethane	ND U	0.50	1	04/02/03	04/02/03
Bromodichloromethane	ND U	0.50	1	04/02/03	04/02/03
	ND U	0.50	1	04/02/03	04/02/03
cis-1,3-Dichloropropene	ND U	8.0	1	04/02/03	04/02/03
4-Methyl-2-pentanone (MIBK)	ND U	0.50	1	04/02/03	04/02/03
Toluene trans-1,3-Dichloropropene	ND U	1.0	1	04/02/03	04/02/03

Comments:

Printed: 04/09/2003 09:54:34 L:\STEALTH\CRYSTAL.RPT\Form1m.rpt

Merged

Form 1A - Organic

000017

Page 1 of 3

SuperSet Reference:

RR3174

of

Analytical Results

Client:

BE&K Terranext WVB/#03103154

Project: Sample Matrix:

Water

Service Request: X2300270

Date Collected: 03/24/2003

Date Received: 03/24/2003

Volatile Organic Compounds

Sample Name:

AVB113-0102-1000

Lab Code:

X2300270-004

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

			Dilution	Date	Date	
Analyte Name	Result Q	MRL	Factor	Extracted		Arizona Qualifier
1,1,2-Trichloroethane	ND U	1.0	1	04/02/03	04/02/03	
Tetrachloroethene	ND U	0.50	1	04/02/03	04/02/03	
2-Hexanone	ND U	5.0	1	04/02/03	04/02/03	
1,3-Dichloropropane	ND U	1.0	1	04/02/03	04/02/03	
Dibromochloromethane	ND U	0.50	1	04/02/03	04/02/03	
1,2-Dibromoethane	ND U	0.50	1	04/02/03	04/02/03	
Chlorobenzene	ND U	0.50	1	04/02/03	04/02/03	
1,1,1,2-Tetrachloroethane	ND U	0.50	1	04/02/03	04/02/03	
Ethylbenzene	ND U	0.50	1	04/02/03	04/02/03	
m,p-Xylenes	ND U	1.0	1	04/02/03	04/02/03	
o-Xylene	ND U	0.50	1	04/02/03	04/02/03	
Styrene	ND U	0.50	1	04/02/03	04/02/03	
Isopropylbenzene	ND U	0.50	1	04/02/03	04/02/03	
Bromobenzene	ND U	0.50	1	04/02/03	04/02/03	
1,2,3-Trichloropropane	ND U	1.0	1	04/02/03	04/02/03	
n-Propylbenzene	ND U	0.50	1	04/02/03	04/02/03	
2-Chlorotoluene	ND U	0.50	1	04/02/03	04/02/03	
4-Chlorotoluene	ND U	0.50	1	04/02/03	04/02/03	
1,3,5-Trimethylbenzene	ND U	0.50	1	04/02/03	04/02/03	
tert-Butylbenzene	ND U	0.50	. 1	04/02/03	04/02/03	
1,2,4-Trimethylbenzene	ND U	0.50	1	04/02/03	04/02/03	
sec-Butylbenzene	ND U	0.50	1	04/02/03	04/02/03	
1,3-Dichlorobenzene	ND U	0.50	1	04/02/03	04/02/03	
4-Isopropyltoluene	ND U	0.50	1	04/02/03	04/02/03	
Bromoform	ND U	0.50	1	04/02/03	04/02/03	
1,1,2,2-Tetrachloroethane	ND U	1.0	1	04/02/03	04/02/03	
1,4-Dichlorobenzene	ND U	0.50	1	04/02/03	04/02/03	
1,2-Dichlorobenzene	ND U	0.50	1	04/02/03	04/02/03	
n-Butylbenzene	ND U	0.50	1	04/02/03	04/02/03	
1,2-Dibromo-3-chloropropane	ND U	5.0	1	04/02/03	04/02/03	
1,2,4-Trichlorobenzene	ND U	0.50	1	04/02/03	04/02/03	
Hexachlorobutadiene	ND U	0.50	1	04/02/03	04/02/03	
Naphthalene	ND U	3.0	1	04/02/03	04/02/03	
1,2,3-Trichlorobenzene	ND U	0.50	1	04/02/03	04/02/03	
-y-y						

Comments:

Printed: 04/09/2003 09:54:34

Merged

Form 1A - Organic

2 of 3 Page

SuperSet Reference:

RR3174

Analytical Results

Client:

BE&K Terranext WVB/#03103154

Project: **Sample Matrix:**

Water

Service Request: X2300270

Date Collected: 03/24/2003

Date Received: 03/24/2003

Volatile Organic Compounds

Sample Name:

AVB113-0102-1000

Lab Code:

X2300270-004

Units: ug/L

Basis: NA

Surrogate Name	%Rec	Control Limits	Date Analyzed	Arizona Qualifier
Dibromofluoromethane	112	84-113	04/02/03	
Toluene-d8	114	68-126	04/02/03	
4-Bromofluorobenzene	108	79-113	04/02/03	

Comments:

000049

Printed: 04/09/2003 09:54:34

Merged

Form 1A - Organic

Page 3 of 3

Analytical Results

Client: Project: BE&K Terranext WVB/#03103154

Sample Matrix:

Water

Service Request: X2300270

Date Collected: NA
Date Received: NA

Volatile Organic Compounds

Sample Name: Lab Code: Method Blank XWG0300447-3

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

			Dilution	Date	Date	Arizona Qualifier
Analyte Name	Result Q	MRL	Factor	Extracted	04/02/03	N1V4
Dichlorodifluoromethane	ND U	3.0	1	04/02/03	04/02/03	141 44
Chloromethane	ND U	2.0	1	04/02/03	04/02/03	
Vinyl Chloride	ND U	1.0	1	04/02/03		
Bromomethane	ND U	1.0	1	04/02/03	04/02/03	
Chloroethane	ND U	1.0	1	04/02/03	04/02/03	
Trichlorofluoromethane	ND U	1.0	1	04/02/03	04/02/03	
1,1,2-Trichlorotrifluoroethane	ND U	1.0	1	04/02/03	04/02/03	
1,1-Dichloroethene	ND U	1.0	1	04/02/03	04/02/03	
Acetone	ND U	10	1	04/02/03	04/02/03	
	ND U	2.0	1	04/02/03	04/02/03	
Iodomethane	ND U	2.0	1	04/02/03	04/02/03	
Carbon Disulfide	ND U	1.0	1	04/02/03	04/02/03	
Methylene Chloride	ND U	1.0	1	04/02/03	04/02/03	
Methyl tert-Butyl Ether	ND U	0.50	1	04/02/03	04/02/03	
trans-1,2-Dichloroethene	ND U	0.50	1	04/02/03	04/02/03	
1,1-Dichloroethane			1	04/02/03	04/02/03	
Vinyl Acetate	ND U	3.0	1	04/02/03	04/02/03	
2,2-Dichloropropane	ND U	2.0 8.0	1	04/02/03	04/02/03	
2-Butanone (MEK)	ND U			04/02/03	04/02/03	
cis-1,2-Dichloroethene	ND U	0.50	1	04/02/03	04/02/03	
Bromochloromethane	ND U	0.50	1	04/02/03	04/02/03	
Chloroform	ND U	1.0	1			
1,1,1-Trichloroethane	ND U	0.50	1	04/02/03	04/02/03	
Carbon Tetrachloride	ND U	0.50	1	04/02/03	04/02/03 04/02/03	
1,1-Dichloropropene	ND U	0.50	1	04/02/03		
Benzene	ND U	0.50	1	04/02/03	04/02/03	
1,2-Dichloroethane	ND U	0.50	1	04/02/03	04/02/03	
Trichloroethene	ND U	0.50	1	04/02/03	04/02/03	
	ND U	0.50	1	04/02/03	04/02/03	
1,2-Dichloropropane	ND U	0.50	1	04/02/03	04/02/03	
Dibromomethane Bromodichloromethane	ND U	0.50	1	04/02/03	04/02/03	
	ND U	0.50	1	04/02/03	04/02/03	
cis-1,3-Dichloropropene	ND U	8.0	1	04/02/03	04/02/03	.
4-Methyl-2-pentanone (MIBK)	ND U	0.50	1	04/02/03	04/02/03	}
Toluene			1	04/02/03	04/02/03	}
trans-1,3-Dichloropropene	ND U	1.0	1	0 1, 02, 03	¥ - + -	

Comments:

Printed: 04/09/2003 09:54:45 L:\STEALTH\CRYSTAL.RPT\Formlm.rpt

Merged

Form 1A - Organic

100020

Page 1 of 3

SuperSet Reference: RR3174

Analytical Results

Client: Project: BE&K Terranext WVB/#03103154

Sample Matrix:

Water

Service Request: X2300270

Date Collected: NA Date Received: NA

Volatile Organic Compounds

Sample Name: Lab Code:

Method Blank XWG0300447-3

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

	D 1/ 0	MRL	Dilution Factor	Date Extracted	Date Analyzed	Arizona Qualifier
Analyte Name	Result Q		ractor	04/02/03	04/02/03	711111111111111111111111111111111111111
1,1,2-Trichloroethane	ND U	1.0	1	04/02/03	04/02/03	
Tetrachloroethene	ND U	0.50	1			
2-Hexanone	ND U	5.0	1	04/02/03	04/02/03	
1,3-Dichloropropane	ND U	1.0	1	04/02/03	04/02/03	
Dibromochloromethane	ND U	0.50	1	04/02/03	04/02/03	
1,2-Dibromoethane	ND U	0.50	1	04/02/03	04/02/03	
Chlorobenzene	ND U	0.50	. 1	04/02/03	04/02/03	
1,1,1,2-Tetrachloroethane	ND U	0.50	1	04/02/03	04/02/03	
Ethylbenzene	ND U	0.50	1	04/02/03	04/02/03	
m,p-Xylenes	ND U	1.0	1	04/02/03	04/02/03	
o-Xylene	ND U	0.50	1	04/02/03	04/02/03	
Styrene	ND U	0.50	1	04/02/03	04/02/03	
Isopropylbenzene	ND U	0.50	1	04/02/03	04/02/03	
Bromobenzene	ND U	0.50	1	04/02/03	04/02/03	
	ND U	1.0	1	04/02/03	04/02/03	
1,2,3-Trichloropropane	ND U	0.50	1	04/02/03	04/02/03	
n-Propylbenzene 2-Chlorotoluene	ND U	0.50	1	04/02/03	04/02/03	
	ND U	0.50	1	04/02/03	04/02/03	
4-Chlorotoluene	ND U ND U	0.50	1	04/02/03	04/02/03	
1,3,5-Trimethylbenzene	ND U	0.50	1	04/02/03	04/02/03	
tert-Butylbenzene			1	04/02/03	04/02/03	
1,2,4-Trimethylbenzene	ND U	0.50	1	04/02/03	04/02/03	
sec-Butylbenzene	ND U	0.50 0.50	1	04/02/03	04/02/03	
1,3-Dichlorobenzene	ND U			04/02/03	04/02/03	
4-Isopropyltoluene	ND U	0.50	1	04/02/03	04/02/03	
Bromoform	ND U	0.50	1	04/02/03	04/02/03	
1,1,2,2-Tetrachloroethane	ND U	1.0	1			
1,4-Dichlorobenzene	ND U	0.50	1	04/02/03	04/02/03	
1,2-Dichlorobenzene	ND U	0.50	1	04/02/03	04/02/03	
n-Butylbenzene	ND U	0.50	1	04/02/03	04/02/03	
1,2-Dibromo-3-chloropropane	ND U	5.0	1	04/02/03	04/02/03	
1,2,4-Trichlorobenzene	ND U	0.50	1	04/02/03	04/02/03	
Hexachlorobutadiene	ND U	0.50	1	04/02/03	04/02/03	
Naphthalene	ND U	3.0	1	04/02/03	04/02/03	
1,2,3-Trichlorobenzene	ND U	0.50	1	04/02/03	04/02/03	
1,2,0 11101110100011110110						

Comments:

Printed: 04/09/2003 09:54:45

Merged

Form 1A - Organic

000021

2 of 3 Page

RR3174 SuperSet Reference:

Analytical Results

Client:

BE&K Terranext

Project:

WVB/#03103154

Sample Matrix:

Water

Service Request: X2300270

Date Collected: NA Date Received: NA

Volatile Organic Compounds

Sample Name:

Method Blank

Lab Code:

XWG0300447-3

Units: ug/L Basis: NA

Surrogate Name	%Rec	Control Limits	Date Analyzed	Arizona Qualifier
Dibromofluoromethane Toluene-d8 4-Bromofluorobenzene	108 109 106	84-113 68-126 79-113	04/02/03 04/02/03 04/02/03	

Comments:

Printed: 04/09/2003 09:54:45

Merged

Form 1A - Organic

3 of 3 Page

SuperSet Reference: RR3174

QA/QC Report

Client:

BE&K Terranext

Project:

WVB/#03103154

Sample Matrix:

Water

Service Request: X2300270

Surrogate Recovery Summary Volatile Organic Compounds

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: PERCENT

Level: Low

Sample Name	Lab Code	<u>Sur1</u>	Sur2	Sur3
AVB95-0100-03126	X2300270-001	111	113	108
AVB113-0100-02113	X2300270-002	114 S1	114	115 S1
AVB113-0104-1000	X2300270-003	107	110	106
AVB113-0102-1000	X2300270-004	112	114	108
Method Blank	XWG0300447-3	108	109	106
Batch QC	X2300265-001	113	113	105
Batch QCMS	XWG0300447-4	108	115	110
Batch QCDMS	XWG0300447-5	106	112	108
Lab Control Sample	XWG0300447-1	104	108	108
Duplicate Lab Control Sample	XWG0300447-2	104	105	104

Surrogate Recovery Control Limits (%)

Sur1 = Dibromofluoromethane	84-113
Sur2 = Toluene-d8	68-126
Sur3 = 4-Bromofluorobenzene	79-113

Results flagged with an asterisk (*) indicate values outside control criteria. Results flagged with a pound (#) indicate the control criteria is not applicable.

Form 2A - Organic SuperSet Reference:

RR3174

1 of 1

Page

Printed: 04/09/2003 09:54:59 L:\STEALTH\CRYSTAL.RPT\Form2.rpt

QA/QC Report

Client: **Project:** BE&K Terranext WVB/#03103154

Sample Matrix:

Water

Service Request: X2300270

Date Extracted: 04/02/2003 **Date Analyzed:** 04/02/2003

Matrix Spike/Duplicate Matrix Spike Summary **Volatile Organic Compounds**

Sample Name:

Batch QC

Lab Code:

X2300265-001

Extraction Method: Analysis Method:

EPA 5030B

Units: ug/L Basis: NA

Level: Low

8260B

Extraction Lot: XWG0300447

	Sample	XV	Batch QCMS VG0300447- Matrix Spike	4	XV	atch QCDMS VG0300447- cate Matrix S	%Rec		RPD	
Analyte Name	Result	Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit
Dichlorodifluoromethane	ND	29.0	10.0	290 M1	27.6	10.0	276 M1	78-207	5	20
Chloromethane	ND	16.0	10.0	160 M1	15.4	10.0	154	70-157	4	20
Vinyl Chloride	ND	19.1	10.0	191 M1	18.6	10.0	186 M1	79-174	3	20
Bromomethane	ND	9.79	10.0	98	9.43	10.0	94	44-150	4	20
Chloroethane	ND	15.0	10.0	150	14.5	10.0	145	74-150	4	20
Trichlorofluoromethane	ND	16.5	10.0	165 M1	15.9	10.0	159 M1	80-134	4	20
1,1,2-Trichlorotrifluoroethane	ND	14.9	10.0	149 M1	14.7	10.0	147 M1	67-128	2	20
1,1-Dichloroethene	ND	12.6	10.0	126	12.2	10.0	122	71-142	3	20
Acetone	ND	42.9	40.0	107	43.3	40.0	108	1-155	. 1	20
Iodomethane	ND	31.8	40.0	79	30.6	40.0	76	47-120	4	20
Carbon Disulfide	ND	56.4	40.0	141 M1	54.0	40.0	135 M1	77-126	4	20
Methylene Chloride	ND	10.8	10.0	108 M1	10.6	10.0	106	83-106	2	20
Methyl tert-Butyl Ether	ND	10.2	10.0	102	10.7	10.0	107	70-118	5	20
trans-1,2-Dichloroethene	ND	11.9	10.0	119 M1	11.3	10.0	113	86-115	5	20
1,1-Dichloroethane	ND	12.6	10.0	126	12.1	10.0	121	77-127	4	20
Vinyl Acetate	ND	53.9	40.0	135	54.8	40.0	137	8-187	2	20
2,2-Dichloropropane	ND	13.9	10.0	139	13.5	10.0	135	25-154	3	20
2-Butanone (MEK)	ND	40.8	40.0	102	42.5	40.0	106	90-112	4	20
cis-1,2-Dichloroethene	ND	10.9	10.0	109	10.8	10.0	108	69-118	1	20
Bromochloromethane	ND	8.72	10.0	87	8.52	10.0	85	47-136	2	20
Chloroform	ND	11.7	10.0	117	11.5	10.0	115	48-143	2	20
1,1,1-Trichloroethane	ND	14.2	10.0	142 M1	13.4	10.0	134 M1	84-122	6	20
Carbon Tetrachloride	ND	14.7	10.0	147 M1	14.3	10.0	143 M1	79-120	3	20
1,1-Dichloropropene	ND	14.2	10.0	142 M1	13.6	10.0	136 M1	85-117	4	20
Benzene	ND	12.3	10.0	123 M1	11.8	10.0	118 M1	88-114	3	20
1,2-Dichloroethane	ND	11.0	10.0	110	11.1	10.0	- 111	75-112	1	20
Trichloroethene	ND	12.1	10.0	121 M1	11.6	10.0	116 M1	76-115	4	20
1,2-Dichloropropane	ND	11.4	10.0	114 M1	11.1	10.0	111 M1	85-107	2	20
Dibromomethane	ND	10.0	10.0	100	10.3	10.0	103	82-106	3	20
Bromodichloromethane	ND	11.3	10.0	113 M1	11.1	10.0	111 M1	83-107	2	20
cis-1,3-Dichloropropene	ND	10.6	10.0	106	10.6	10.0	106	70-114	1	20
4-Methyl-2-pentanone (MIBK)	ND	34.8	40.0	87	37.7	40.0	94	54-129	8	20
Toluene	ND	12.2	10.0	122 M1	11.9	10.0	119 M1	86-114	3	20
trans-1,3-Dichloropropene	ND	10.8	10.0	108	10.7	10.0	107	73-112	1	20

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

000024

Printed: 04/09/2003 09:55:05 Form 3A - Organic

1 of 2 Page

SuperSet Reference: RR3174

QA/QC Report

Client: **Project:** **BE&K Terranext** WVB/#03103154

Sample Matrix:

Water

Service Request: X2300270

Date Extracted: 04/02/2003 **Date Analyzed:** 04/02/2003

Matrix Spike/Duplicate Matrix Spike Summary **Volatile Organic Compounds**

Sample Name:

Batch QC

Lab Code:

X2300265-001

Extraction Method: Analysis Method:

EPA 5030B

8260B

Units: ug/L Basis: NA

Level: Low

Extraction Lot: XWG0300447

Batch QCMS

Batch QCDMS

	Sample	XWG0300447-4 Matrix Spike			XWG0300447-5 Duplicate Matrix Spike			%Rec		RPD
Analyte Name	Result	Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit
1,1,2-Trichloroethane	ND	10.4	10.0	104	10.4	10.0	104	79-112	0	20
Tetrachloroethene	ND	11.6	10.0	116	11.4	10.0	114	78-130	2	20
2-Hexanone	ND	43.0	40.0	107	44.7	40.0	112	77-112	4	20
1,3-Dichloropropane	ND	10.8	10.0	108	10.7	10.0	107	45-133	1	20
Dibromochloromethane	ND	9.99	10.0	100	9.86	10.0	99	74-108	1	20
1.2-Dibromoethane	ND	9.99	10.0	100	10.1	10.0	101	73-113	1	20
Chlorobenzene	ND	11.0	10.0	110	10.6	10.0	106	84-111	3	20
1,1,1,2-Tetrachloroethane	ND	10.5	10.0	105	10.2	10.0	102	84-119	4	20
Ethylbenzene	ND	12.6	10.0	126	12.2	10.0	122	47-136	4	20
m,p-Xylenes	ND	24.2	20.0	121 M1	23.1	20.0	115	84-120	5	20
o-Xylene	ND	11.3	10.0	113	11.0	10.0	110	47-143	3	20
Styrene	ND	11.2	10.0	112	10.8	10.0	108	72-121	3	20
Isopropylbenzene	ND	12.7	10.0	127 M1	12.3	10.0	123 M1	63-108	3	20
Bromobenzene	ND	10.3	10.0	103	9.98	10.0	100	80-113	3	20
1,2,3-Trichloropropane	ND	11.0	10.0	110	10.9	10.0	109	78-119	1	20
n-Propylbenzene	ND	13.4	10.0	134 M1	12.8	10.0	128 M1	76-117	4	20
2-Chlorotoluene	ND	12.6	10.0	126 M1	12.2	10.0	122 M1	79-121	3	20
4-Chlorotoluene	ND	12.2	10.0	122	11.8	10.0	118	70-133	3	20
1,3,5-Trimethylbenzene	ND	12.2	10.0	122 M1	11.8	10.0	118	79-118	4	20
tert-Butylbenzene	ND	13.2	10.0	132 M1	12.7	10.0	127 M1	77-120	4	20
1,2,4-Trimethylbenzene	ND	12.0	10.0	120	11.6	10.0	116	68-127	3	20
sec-Butylbenzene	ND	13.1	10.0	131 M1	12.5	10.0	125 M1	78-123	4	20
1,3-Dichlorobenzene	ND	10.6	10.0	106	10.5	10.0	105	78-127	2	20
4-Isopropyltoluene	ND	13.4	10.0	134	12.9	10.0	129	79-142	3	20
Bromoform	ND	9.53	10.0	95	9.83	10.0	98	83-111	3	20
1,1,2,2-Tetrachloroethane	ND	10.9	10.0	109	11.0	10.0	110	66-133	1	20
1,4-Dichlorobenzene	ND	10.6	10.0	106	10.5	10.0	105	48-139	2	20
1,2-Dichlorobenzene	ND	10.6	10.0	106	10.5	10.0	105	64-109	1	20
n-Butylbenzene	ND	13.9	10.0	139 M1	13.4	10.0	134 M1	69-122	. 4	20
1,2-Dibromo-3-chloropropane	ND	10.7	10.0	107	10.3	10.0	103	54-160	4	20
1,2,4-Trichlorobenzene	ND	10.1	10.0	101	10.1	10.0	101	39-145	0	20
Hexachlorobutadiene	ND	12.6	10.0	126 M1	12.2	10.0	122 M1		3	20
Naphthalene	ND	9.63	10.0	96	10.2	10.0	102	44-167	5	20
1,2,3-Trichlorobenzene	ND	9.95	10.0	100	10.1	10.0	101	37-158	2	20

Results flagged with an asterisk (*) indicate values outside control criteria:

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 04/09/2003 09:55:05 L:\STEALTH\CRYSTAL.RPT\Form3DMS.rpt Form 3A - Organic

2 of 2 Page

QA/QC Report

Client: Project: BE&K Terranext WVB/#03103154

Sample Matrix:

Water

Service Request: X2300270

Date Extracted: 04/02/2003

Date Analyzed: 04/02/2003

Lab Control Spike/Duplicate Lab Control Spike Summary Volatile Organic Compounds

Extraction Method: Analysis Method:

EPA 5030B

8260B

Units: ug/L Basis: NA

Level: Low

Extraction Lot: XWG0300447

Lab Control Sample XWG0300447-1

Duplicate Lab Control Sample XWG0300447-2

	Lab Control Spike			Duplicate Lab Control Spike			%Rec		RPD
Analyte Name	Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit
Dichlorodifluoromethane	7.46	10.0	75	10.8	10.0	108	1-233	36 R7	20
Chloromethane	8.70	10.0	87	10.3	10.0	103	46-156	17	20
Vinyl Chloride	11.0	10.0	110	12.8	10.0	128	51-158	15	20
Bromomethane	7.02	10.0	70	8.05	10.0	81	37-149	14	20
Chloroethane	11.6	10.0	116	12.5	10.0	125	56-146	7	20
Trichlorofluoromethane	12.4	10.0	124	13.0	10.0	130	69-139	5	20
1,1,2-Trichlorotrifluoroethane	12.2	10.0	122	13.8	10.0	138 L1	83-130	12	20
	9.82	10.0	98	11.3	10.0	113 L1	65-112	14	20
1,1-Dichloroethene	41.6	40.0	104	41.1	40.0	103	68-128	1	20
Acetone	27.2	40.0	68	28.2	40.0	71	68-144	4	20
Iodomethane	45.9	40.0	115	51.6	40.0	129	67-140	12	20
Carbon Disulfide	10.8	10.0	108	11.0	10.0	110	70-113	1	20
Methylene Chloride	9.81	10.0	98	9.93	10.0	99	75-115	1	20
Methyl tert-Butyl Ether	9.47	10.0	95	10.8	10.0	108	73-118	13	20
trans-1,2-Dichloroethene	11.7	10.0	117	12.3	10.0	123	77-127	5	20
1,1-Dichloroethane	50.8	40.0	127	57.4	40.0	144	51-202	12	39
Vinyl Acetate	11.2	10.0	112	12.9	10.0	129	75-132	15	20
2,2-Dichloropropane	39.2	40.0	98	40.2	40.0	100	72-122	3	20
2-Butanone (MEK)		10.0	100	10.6	10.0	106	81-118	6	20
cis-1,2-Dichloroethene	10.0	10.0	92	9.15	10.0	92	82-114	0	20
Bromochloromethane	9.16	10.0	92 114	11.9	10.0	119	78-119	5	20
Chloroform	11.4		109	12.3	10.0	123	71-125	12	20
1,1,1-Trichloroethane	10.9	10.0	118	13.5	10.0	135 L1	69-130	13	20
Carbon Tetrachloride	11.8	10.0	110	12.6	10.0	126 L1	77-114	14	20
1,1-Dichloropropene	11.0	10.0		11.4	10.0	114	81-117	5	20
Benzene	10.9	10.0	109	11.4	10.0	113	67-122	1	20
1,2-Dichloroethane	11.4	10.0	114	11.3	10.0	111	79-114	7	20
Trichloroethene	10.4	10.0	104	10.9	10.0	109	78-114	1	20
1,2-Dichloropropane	10.7	10.0	107	10.9	10.0	103	78-113	1	20
Dibromomethane	10.3	10.0	103	10.3	10.0	112	79-122	0	20
Bromodichloromethane	11.1	10.0	111		10.0	113	82-118	2	20
cis-1,3-Dichloropropene	11.1	10.0	111	11.3	40.0	86	75-115	7	20
4-Methyl-2-pentanone (MIBK)	36.9	40.0	92	34.3	10.0	115	85-118	5	20
Toluene	11.0	10.0	110	11.5		113	79-121	0	20
trans-1,3-Dichloropropene	11.1	10.0	111	11.1	10.0	106	79-121	4	20
1,1,2-Trichloroethane	10.3	10.0	103	10.6	10.0	110	76-127	11	20
Tetrachloroethene	9.80	10.0	98	11.0	10.0	110	/0-12/	11	20

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

000026

OA/QC Report

Client: **Project:** BE&K Terranext WVB/#03103154

Sample Matrix:

Water

Service Request: X2300270

Date Extracted: 04/02/2003

Date Analyzed: 04/02/2003

Lab Control Spike/Duplicate Lab Control Spike Summary Volatile Organic Compounds

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

Extraction Lot: XWG0300447

Lab Control Sample XWG0300447-1

Duplicate Lab Control Sample XWG0300447-2

	XWG0300447-1 Lab Control Spike			XWG0300447-2 Duplicate Lab Control Spike			%Rec		RPD
Analyte Name	Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit
	42.5	40.0	106	41.1	40.0	103	65-120	3	20
2-Hexanone	11.1	10.0	111	10.9	10.0	109	81-116	2	20
1,3-Dichloropropane	9.66	10.0	97	9.85	10.0	99	77-119	2	20
Dibromochloromethane	10.3	10.0	103	10.1	10.0	101	79-116	2	20
1,2-Dibromoethane	10.3	10.0	103	10.5	10.0	105	84-114	2	20
Chlorobenzene	9.95	10.0	100	10.3	10.0	103	78-118	3	20
1,1,1,2-Tetrachloroethane		10.0	114	12.1	10.0	121	79-124	6	20
Ethylbenzene	11.4 21.5	20.0	108	22.9	20.0	115	75-131	6	20
m,p-Xylenes		10.0	105	10.8	10.0	108	78-122	3	20
o-Xylene	10.5	10.0	109	11.0	10.0	110	80-126	1	20
Styrene	10.9	10.0	108	11.6	10.0	116	75-126	8	20
Isopropylbenzene	10.8	10.0	103	10.2	10.0	102	82-122	0	20
Bromobenzene	10.2	10.0	111	11.0	10.0	110	77-118	1	20
1,2,3-Trichloropropane	11.1	10.0	118	12.7	10.0	127	75-129	7	20
n-Propylbenzene	11.8	10.0	118	12.2	10.0	122	77-126	4	20
2-Chlorotoluene	11.8	10.0	117	12.0	10.0	120	82-120	3	20
4-Chlorotoluene	11.7		113	11.9	10.0	119	75-130	5	20
1,3,5-Trimethylbenzene	11.3	10.0 10.0	116	12.4	10.0	124	73-130	6	20
tert-Butylbenzene	11.6		114	11.9	10.0	119	60-137	5	20
1,2,4-Trimethylbenzene	11.4	10.0	110	11.9	10.0	119	68-131	8	20
sec-Butylbenzene	11.0	10.0	102	10.3	10.0	103	71-137	2	20
1,3-Dichlorobenzene	10.2	10.0	118	12.7	10.0	127	68-134	7	20
4-Isopropyltoluene	11.8	10.0	92	9.19	10.0	92	70-118	0	20
Bromoform	9.23	10.0	108	10.9	10.0	109	72-122	1	20
1,1,2,2-Tetrachloroethane	10.8	10.0	108	10.4	10.0	104	82-114	0	20
1,4-Dichlorobenzene	10.4	10.0	10 4 104	10.4	10.0	104	81-118	0	20
1,2-Dichlorobenzene	10.4	10.0		12.7	10.0	127 L1	71-125	7	20
n-Butylbenzene	11.8	10.0	118	9.92	10.0	99	55-131	0	20
1,2-Dibromo-3-chloropropane	9.96	10.0	100	9.92	10.0	99	75-123	3	20
1,2,4-Trichlorobenzene	9.58	10.0	96	12.1	10.0	121	63-140	8	20
Hexachlorobutadiene	11.1	10.0	111	9.43	10.0	94	67-125	0	20
Naphthalene 1,2,3-Trichlorobenzene	9.43 9.67	10.0 10.0	94 97	9.43	10.0	99	72-124	2	20

Results flagged with an asterisk (*) indicate values outside control criteria.

Printed: 04/09/2003 09:55:12

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

April 9, 2003

Chuck Gordon BE & K Terranext 9830 S. 51st A-127 Phoenix, AZ 85044

Re: WVB/Project #03103154

Dear Chuck:

Enclosed are the results of the samples submitted to our laboratory on March 24, 2003. For your reference, these analyses have been assigned our service request number L2300668.

All analyses were performed in accordance with our laboratory's quality assurance program. Results are intended to be considered in their entirety and apply only to the samples analyzed. Columbia Analytical Services is not responsible for use of less than the complete report.

Columbia Analytical Services - is certified for environmental analyses by the Arizona Department of Health Services (certificate number: AZ0544 and AZ0136, expiration: May 23, 2003).

If you have any questions, please call me at (818) 587-5550, extension 309.

Respectfully submitted,

Columbia Analytical Services, Inc.

me Quelerser

Sue Anderson Project Chemist

SA

000028

Client:

BE&K Terranext, LLC

Project:

WVBA/03103154

Sample Matrix:

Water

Service Request No.:

L2300668

Date Received:

3/24/03

CASE NARRATIVE

All analyses were performed in accordance with our laboratory's quality assurance program. This report contains analytical results for sample(s) designated for Tier II data deliverables. When appropriate to the method, method blank results have been reported with each analytical test. Additional quality control analyses reported herein include: Matrix/Duplicate Matrix Spike (MS/DMS) and Laboratory Control Sample (LCS).

All EPA recommended holding times have been met for analyses in this sample delivery group.

The following difficulties were experienced during analysis of this batch:

Metals, Method 6010B:

The matrix spike/duplicate matrix spike recoveries were not calculated. The data has been flagged with an M3 footnote. This flag denotes that the accuracy of the spike recovery value is reduced since the analyte concentration in the sample is disproportionate to the spike level. The method control sample recovery was acceptable.

Approved by: She July Date: 4/9/03

Columbia Analytical Services, Inc.

Acronyms

	Acronyms
004534	California DHS LUFT Method
8015M	American Society for Testing and Materials
ASTM	Biochemical Oxygen Demand
BOD	Benzene/Toluene/Ethylbenzene/Xylenes
BTEX	California Assessment Metals
CAM	Chemical Abstract Service Registry Number
CAS Number	Chlorofluorocarbon
CFC	
COD	Chemical Oxygen Demand Contract Required Detection Limit
CRDL	Detected; result must be greater than zero.
D	Detected; result must be greater than the detection limit.
DL	Duplicate Laboratory Control Sample
DLCS	Duplicate Matrix Spike
DMS	Department of Health Services
DOH or DHS	Environmental Laboratory Accreditation Program
ELAP	U.S. Environmental Protection Agency
EPA	
GC	Gas Chromatography Gas Chromatography/Mass Spectrometry
GC/MS	
IC	Ion Chromatography Initial Calibration Blank sample
ICB	Inductively Coupled Plasma atomic emission spectrometry
ICP	Initial Calibration Verification sample
ICV	Initial Calibration Ventral Sample
LCS	Laboratory Control Sample Leaking Underground Fuel Tank
LUFT	_
M	Modified Methylene Blue Active Substances
MBAS	Method Detection Limit
MDL	Method Reporting Limit
MRL	
MS	Matrix Spike
MTBE	Methyl-tert-Butyl Ether
NA	Not Applicable
NC	Not Calculated None Detected at or above the Method Reporting/Detection Limit (MRL/MDL)
ND	Nephelometric Turbidity Units
NTU	Parts Per Billion
ppb	Parts Per Million
ppm	Practical Quantitation Limit
PQL	Quality Assurance/Quality Control
QA/QC RCRA	Resource Conservation and Recovery Act
RPD	Relative Percent Difference
_	Calcated Ion Manitoring
SIM SM	Standard Methods for the Examination of Water and Wastewater, 18th Ed., 1992.
STLC	Salubility Threshold Limit Concentration
SW	Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW-846,
511	Third Edition, 1986 and as amended by Updates I, II, IIA, and IIB.
TCLP	Toxicity Characteristics Leaching Procedure
TDS	Total Dissolved Solids
TPH	Total Petroleum Hydrocarbons
TRPH	Total Recoverable Petroleum Hydrocarbons
TSS	Total Suspended Solids
TTLC	Total Threshold Limit Concentration
VOA	Volatile Organic Analyte(s)
	Qualifiers
\mathbf{U}	Undetected at or above MDL/MRL.
J	Estimated concentration. Analyte detected above MDL but below MRL.
В	Hit above MRL also found in Method Blank.
E	Analyte concentration above high point of ICAL.
N	Presumptive evidence of compound.
D	Result from dilution.
X	See case narrative.

- Cover Page -INORGANIC ANALYSIS DATA PACKAGE

Client:

BE&K Terranext, LLC

Project Name:

WVB

Project No.:

03103154

Service Request: L2300668

Sample Name:

AVB95-0100-03126 AVB113-0100-02113 AVB113-0104-1000 Laboratory Control Sample

Method Blank Batch QC Batch QC

Lab Code:

L2300668-001 L2300668-002 L2300668-003 L2300668-LCS

L2300668-MB L2300694-002S

L2300694-002SD

Bue Julestat Date: 4/9/03

Analytical Report

Client:

BE&K Terranext, LLC

Project Name: Project No.:

WVB

Matrix:

03103154

Water

Service Request: L2300668

Date Collected: 03/24/03 **Date Received:** 03/24/03

Date Extracted: 04/02/03

Total Metals

Sample Name:

AVB95-0100-03126

Lab Code:

L2300668-001

Units: ug/L (ppb)

Basis: NA

Analyte	Analysis Method	MRL	Date Analyzed	Sample Result	Result Notes
Chromium	6010B	10	04/07/03	ND	

Analytical Report

Client:

BE&K Terranext, LLC

Project Name: Project No.:

WVB 03103154

Matrix:

Water

Service Request: L2300668

Date Collected: 03/24/03 Date Received: 03/24/03

Date Extracted: 04/02/03

Dissolved Metals

Sample Name:

AVB95-0100-03126

Lab Code:

L2300668-001

Units: ug/L (ppb)

Basis: NA

Analyte Analysis Method MRL Date Analysis Chromium 6010B 10 04/07/0		Notes
---	--	-------

Analytical Report

Client:

BE&K Terranext, LLC

Project Name: Project No.:

WVB

Matrix:

03103154

Water

Service Request: L2300668 **Date Collected**: 03/24/03

Date Received: 03/24/03

Date Extracted: 04/02/03

Total Metals

Sample Name:

AVB113-0100-02113

Lab Code:

L2300668-002

Units: ug/L (ppb)

Analyte	Analysis Method	MRL	Date Analyzed	Sample Result	Result Notes
Chromium	6010B	10	04/07/03	19	

Analytical Report

Client:

BE&K Terranext, LLC

Project Name: Project No.:

WVB

Matrix:

03103154 Water

Service Request: L2300668

Date Collected: 03/24/03 Date Received: 03/24/03

Date Extracted: 04/02/03

Dissolved Metals

Sample Name:

AVB113-0100-02113

Lab Code:

L2300668-002

Units: ug/L (ppb)

Analyte	Analysis Method	MRL .	Date Analyzed	Sample Result	Result Notes
Chromium	6010B	10	04/07/03	ND	

Analytical Report

Client:

BE&K Terranext, LLC

Project Name: Project No.: WVB 03103154

Matrix:

Water

Service Request: L2300668

Date Collected: 03/24/03
Date Received: 03/24/03

Date Extracted: 04/02/03

Total Metals

Sample Name:

AVB113-0104-1000

Lab Code:

L2300668-003

Units: ug/L (ppb)

Analyte	Analysis Method	MRL	Date Analyzed	Sample Result	Result Notes
Chromium	6010B	10	04/07/03	ND	

Analytical Report

Client:

BE&K Terranext, LLC

Project Name:

WVB

Project No.:
Matrix:

03103154 Water **Service Request:** L2300668 **Date Collected:** 03/24/03

Date Collected: 03/24/03 **Date Received:** 03/24/03

Date Extracted: 04/02/03

Dissolved Metals

Sample Name:

AVB113-0104-1000

Lab Code:

L2300668-003

Units: ug/L (ppb)

	Analysis Method	MRL	Date Analyzed	Sample Result	Result Notes
Analyte	Analy Sis Ivicenous		0.410.710.2	ND	
Chromium	6010B	10	04/07/03	ND	

Analytical Report

Client:

BE&K Terranext, LLC

Project Name: Project No.:

WVB 03103154

Matrix:

Water

Service Request: L2300668

Date Collected: NA Date Received: NA

Date Extracted: 04/02/03

Total Metals

Sample Name: Lab Code:

Method Blank L2300668-MB

Units: ug/L (ppb)

Analyte	Analysis Method	MRL	Date Analyzed	Sample Result	Result Notes
Chromium	6010B	10	04/04/03	ND	

QA/QC Report

Client:

Matrix:

BE&K Terranext, LLC

Project Name: Project No.:

WVB 03103154

Water

Service Request: L2300668

Date Collected: NA

Date Received: NA **Date Extracted:** 04/02/03

Date Analyzed: 04/04/03

Laboratory Control Sample Summary

Total Metals

Sample Name:

Laboratory Control Sample

Lab Code:

L2300668-LCS

Units: ug/L (ppb)

Analyte	Analysis Method	True Value	Result	Percent	CAS Percent Recovery Acceptance Limits	Result Notes
Chromium	6010B	500	522	104	87-111	

Analytical Report

Client:

BE&K Terranext, LLC

Project Name : Project No. :

WVB

Matrix:

Water

03103154

Service Request: L2300668

Date Collected: NA
Date Received: NA

Date Extracted: 04/02/03

Date Analyzed: 04/04/03

Matrix Spike/Duplicate Matrix Spike Summary

Total Metals

Sample Name:

Batch QC

Lab Code:

L2300694-002S

L2300694-002SD

Units: ug/L (ppb)

Analyte	Prep Method	Analysis Method	MRL	Spike MS	Level DMS	Sample Result	Spike MS	Result DMS	MS	DMS	CAS Acceptance Limits	Relative Percent Difference	Result Notes
Chromium	3010A	6010B	10	500	500	2850	3190	3150	NC	NC	87-105	1	M3

CHAIN OF CUSTODY/LABORATORY ANALYSIS REQUEST FORM

7300868

3902 East University Drive, Suite 4 • Phoenix, AZ 85034 • (602) 437-2001 • (800) 695-7222 x09 • FAX (602) 437-5308

DATE 3.24.03

PAGE

A,

REMARKS SAMPLE RECEIPT: D 0758 ANALYSIS REQUESTED INVOICE INFORMATION: © 01E8 Flash Point (1) pH(1) Paint Filter (1) D lefoT Total D REPORT REQUIREMENTS Halogenated & Aromatic Volatiles
TPH/8015AZ B1

TO Co. Co. I. Routine Report Volatile Organics NUMBER OF CONTAINERS PRESER-VATION **支**責 Fel į î 48160188 # 6 2 *ત* 10-**0** .D. PB PHONE/FAX 11.20 85.55 32403 7.40 SPECIAL INSTRUCTIONS/COMMENTS: DATE PROJECT MANAGER CLANCK COMPANY/ADDRESS BEEK 7 SAMPLER'S SIGNATURE PROJECT NAME WVD Columbia
Analytical
Services INC.
An Employee - Owned Company 413113-010c-1000 N8950110-0326 AVB113-0104-1000 ANBII3-0100-021(3

SAMPLE I.D.

14

Lab No: X2300270	ANALYSIS TAT (Circle One) STANDARD	RUSH TAT - Surcharges Apply ☐ 24 Hours ☐ 48 Hours	☐ 72 Hours	0702
	Date/Time 3/24/03	Date/Time	Date/Time	by originator
	Organization CAS	Organization	Organization	ab; PINK - retained
III. Data Valuation report (includes All Raw Data) IV. CLP Deliverable Report	Date/Time Received By (Signature)	Received	Date/Time Received By (Signature)	DISTRIBUTION: WHITE - return to originator; YELLOW - lab; PINK - retained by originator
	Organization Dat		چ	
0660	Relinquished By (Signature)	Relinquished By (Signature)	Relinquisped By (Signature)	

Shipping VIA: Shipping #:

II. Report (includes DUP.MS. MSD, as required, may be charged as samples)

III. Data Validation Report (includes All Raw Data)

Condition:

SAMPLE RECEIPT FORM

Service Request No: L2300668 Client: BE &K
Sample(s) delivered by: Client CAS Emp After Hours DHL
Golden State Overnight Fed X UPS Other Courier
Chain of Custody filled out accurately? Yes X No (See Comments)
Appropriate sample volume and containers? Yes X No (See Comments)
Sufficient labeling on container(s)? Yes <u>X</u> No(See Comments)
Container(s) supplied by CAS? Yes X No (See Comments)
Custody seal(s) intact?
Trip Blank(s) received Yes NoX
If Trip Blank was supplied by CAS, record serial #TB
Temperature of sample(s)/cooler °C Temp Blank?(Y) r N (Circle One)
Voa's Marked Preserved? Yes No Filled Properly? Yes No (See Comments)
Preserved Bottles Requiring pH check(s)? Yes Notified Mr Done
RUSH Turn around time? Yes Notified Date & Time
Short Hold-Time Analysis (check all that apply)
ASAP Res Cl D.O Flash Diss S2- Ferrous Fe 24HR pH Odor Cr+6 48HR BOD Color MBAS Nitrate Nitrite O-PO4 Sett Sol Turbidity 72HR Vapors
Notified Date & Time
Container(s) received and their preservative(s):
7-3=1500ml PL HNO3(A), 11LPLNP(B)
Comments <u>Filter</u> and preserve given to Benny 3/25/03/340
· (/ _h /

Columbia Analytical Services Inc. An Employee - Owned Company

CHAIN OF CUSTODY/LABORATORY ANALYSIS REQUEST FORM

3902 East University Drive, Suite 4 • Phoenix, AZ 85034 • (602) 437-2001 • (800) 695-7222 x09 • FAX (602) 437-5308

PAGE

R

AX (602) 437-5308 DATE 3 . 24-Q3

RUSH TAT - Surcharges Apply ANALYSIS TAT (Circle One) Spagao REMARKS Lab No: X2300270 SAMPLE RECEIPT: □ 24 Hours ☐ 48 Hours □ 72 Hours STANDARD Shipping VIA: Shipping #: Condition: C. 40 ANALYSIS REQUESTED Date/Time 3/24/03 INVOICE INFORMATION: Date/Time Date/Time DHQ Paint Filter D $D_{D,D}^{\mathrm{lotol}}$ Organization Organization Organization EAS Total D letoT II. Report (includes DUP.MS. MSD, as required, may be charged as samples) REPORT REQUIREMENTS IV. CLP Deliverable Report III. Data Validation Report (includes All Raw Data) Halogenated & Aromatic Volatiles
Thylogolsky Mi Routine Report Volatile Organics Received By (Signature) Received By (Signature) 3 NUMBER OF CONTAINERS 32403 PRESER-VATION 五五 Her Date/Time Date/Time Date/Time ₹ 2 8 45/50/80 × Organization Organization Organization ひのれ 5 63 370-01 LAB I.D. PHONE/FAX TIME 7.40 07.1 8.5 SPECIAL INSTRUCTIONS/COMMENTS: PROJECT MANAGER (ALLCK Bee K 32403 DATE Re⊪rquished By (Signature) Relinquished By (Signature) Relinquished By (Signature) SAMPLER'S SIGNATURE PROJECT NAME WVD AVB113-0104-1000 ANBITS-0,00 - 1000 N 3950100-0326 COMPANY/ADDRESS_ ANBITS-0100-02113 SAMPLE I.D.

DISTRIBUTION: WHITE - return to originator; YELLOW - lab; PINK - retained by originator

Columbia Analytical Services, Inc. Phoenix, AZ

Sample Receipt and Preservation Form

_	BEZK		Pro	ject Name: _	MAR
mple(s DA's	Received on: 3-	24-03 da	nte <u> . 40</u> Plastic Bottles	_time Jars □	Sleeves □
1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	RIX: SOIL [] Extraction Holding 7			te	time (soils only)
Is firs	t extraction/analysis	holding time e	xpiration LESS THA		S(soil)/7 DAYS (water)? Yes □ No
If YE	S, chemist notified o	m:	datef	ime	Chemist's Initials
	or standard turn-a-ro	of the state of th			RUSH (STANDAR
					Yes 🗆 No 🗔
Are th	ne custody seals prese how many and whe	ent? re?			
Are th	ne signature and date	correct'?			Yes P No
Did at	Il containere arrive it	agood conditio	n?		Yes → No□ Yes → No□
Are al	Il container labels co the correct container	mplete (i.e. pre	servation, sample ID)?	Yes You
	erature of sample(s)				
xplaina	ation of discrepancie	s:			
xplaina	ation of discrepancie	s:			
xplaina	ation of discrepancie	S:			VOA Vial pH Verification
xplaina	ation of discrepancie	S:			VOA Vial pH Verification (Tested After Analysis)
xplaina	ation of discrepancie	S:			
xplaina	ation of discrepancie				(Tested After Analysis) $\Box \text{ All Samples pH} \leq 2$
		s:	NO		(Tested After Analysis) $\Box \text{ All Samples pH} \leq 2$
pH	Reagent				(Tested After Analysis) $\Box \text{ All Samples pH} \leq 2$
	Reagent NaOH				(Tested After Analysis) $\Box \text{ All Samples pH} \leq 2$
pH	Reagent NaOH HNO ₃				(Tested After Analysis) $\Box \text{ All Samples pH} \leq 2$
pH 12	Reagent NaOH				(Tested After Analysis) $\Box \text{ All Samples pH} \leq 2$
pH 12 2 2	Reagent NaOH HNO ₃	YES	NO		(Tested After Analysis)
pH 12 2 2	Reagent NaOH HNO ₃ H ₂ SO ₄	YES	NO		(Tested After Analysis) $\Box \text{ All Samples pH} \leq 2$

r:\common\forms\samprev.doc Revised: 09/27/02 4:19 PM

April 14, 2003

Chuck Gordon BE&K Terranext 9830 S. 51st Street, Suite A-127 Phoenix, AZ 85044

Re: WVB / Project #03103154

Dear Chuck:

Enclosed are the results of the samples submitted to our laboratory on March 28, 2003. The samples were analyzed for Total and Dissolved Chromium by our Canoga Park, CA facility (L2300706). For your reference, the 8260 analyses have been assigned our service request number X2300287.

All analyses were performed according to our laboratory's quality assurance program. All results are intended to be considered in their entirety, and Columbia Analytical Services, Inc. (CAS) is not responsible for use of less than the complete report. Results apply only to the samples analyzed. Columbia Analytical Services, Inc. is certified for environmental analyses by the Arizona Department of Health Services (Certificate #AZ0136; and #AZ0497).

Please call if you have any questions. My extension is 223.

Respectfully submitted,

Columbia Analytical Services, Inc.

Tracy L. Dutton Laboratory Director

TLD/lm

Page 1 of <u>**50**</u>

Client:

BE&K Terranext WVB / #03103154

Project: Sample Matrix:

Water

Service Request No.: Date Received: X2300287

3/28/03

CASE NARRATIVE

All analyses were performed consistent with the quality assurance program of Columbia Analytical Services, Inc. (CAS). This report contains analytical results for sample(s) designated for Tier II data deliverables. When appropriate to the method, method blank results have been reported with each analytical test. Surrogate recoveries have been reported for all applicable organic analyses. Additional quality control analyses reported herein include: Matrix/Duplicate Matrix Spike (MS/DMS) and Laboratory Control Sample (LCS).

All EPA recommended holding times have been met for analyses in this sample delivery group.

The following difficulties were experienced during analysis of this batch:

The associated blank spike (XWG0300463-3) recovery of Trichlorofluoromethane, Method 8260B, was below laboratory acceptance limits. This compound was seen in the method reporting limit standard that was analyzed with this batch of samples. This verifies that the compound would be detected if present in the samples.

Matrix spike (XWG0300463-1 and XWG0300463-2) recovery of Dichlorodifluoromethane, Chloromethane, and Vinyl Chloride. Method 8260B, was low. The method control sample recovery was acceptable.

MS/DMS (XWG0300463-1 and XWG0300463-2) RPD for Acetone, Method 8260B, exceeded the laboratory control limit. Recovery met acceptance criteria.

Matrix spike (XWG0300463-1 and XWG0300463-2) recovery several analytes for Method 8260B was high. The method control sample recovery was acceptable.

LCS/DLCS (XWG0300463-3 and XWG0300463-4) RPD for Acetone, 1,2-Dibromo-3-chloropropane, and Naphthalene, Method 8260B, exceeded the laboratory control limit. Recovery met acceptance criteria.

The associated blank spike (XWG0300463-4) recovery of Bromochloromethane, Dibromomethane, and 4-Methyl-2-pentanone (MIBK), Method 8260B, was above laboratory acceptance limits. These compounds were not detected in any of the samples analyzed in this batch.

RPD for 4-Methyl-2-pentanone (MIBK), Method 8260B, exceeded the laboratory control limit for MS/DMS (XWG0300463-3 and XWG0300463-4).

Approved by	JH)	_Date	4-14-03
		_	

ARIZONA DATA QUALIFIERS

Method Blank: Target analyte detected in method blank at or above the method reporting limit. B1Non-target analyte detected in method blank and sample, producing interference. B2 Target analyte detected in calibration blank at or above the method reporting limit. **B**3 Target analyte detected in blank at/above method acceptance criteria. **B**4 Target analyte detected in method blank at or above the method reporting limit, but below trigger level or MCL. B5 Target analyte detected in calibration blank at or above the method reporting limit, but below trigger level or MCL. **B6** Target analyte detected in method blank at or above method reporting limit. Concentration found in the sample **B7** was 10 times above the concentration found in the method blank. Confirmation: Confirmatory analysis not performed as required by the method. C1Confirmatory analysis not performed. Confirmation of analyte presence established by site historical data (2 Qualitative confirmation performed. See case narrative. (3 Confirmatory analysis was past holding time. C4Confirmatory analysis was past holding time. Original result not confirmed. C⁵5 Dilution: Sample required dilution due to matrix interference. See case narrative. D1Sample required dilution due to high concentration of target analyte. D2Sample dilution required due to insufficient sample. D3Minimum reporting level (MRL) adjusted to reflect sample amount received and analyzed. D4 Estimated concentration: Concentration estimated. Analyte exceeded calibration range. Reanalysis not possible due to insufficient EI sample. Concentration estimated. Analyte exceeded calibration range. Reanalysis not performed due to sample matrix. E2 Concentration estimated. Analyte exceeded calibration range. Reanalysis not performed due to holding time E3 requirements. Concentration estimated. Analyte was detected below laboratory minimum reporting level (MRL). E4 Concentration estimated. Analyte was detected below laboratory minimum reporting level (MRL), but not E.5 confirmed by alternate analysis. Confirmation estimated. Internal standard recoveries did not meet method acceptance criteria. E6 Confirmation estimated. Internal standard recoveries did not meet laboratory acceptance criteria. E7 Hold Time: Sample analysis performed past holding time. See case narrative. Ш Initial analysis within holding time. Reanalysis for the required dilution was past holding time. H2 Sample was received and analyzed past holding time. 1-13 Sample was extracted past required extraction holding time, but analyzed within analysis holding time. See case H4 narrative.

The associated blank spike recovery was above laboratory acceptance limits. See case narrative.

Laboratory fortified blank/blank spike:

LI

The associated blank spike recovery was below laboratory acceptance limits. See case narrative. 1.2 The associated blank spike recovery was above method acceptance limits. See case narrative. 1.3 The associated blank spike recovery was below method acceptance limits. See case narrative. 1.4 Note: The L1, L2, L3, & L4 footnotes need to be added to all corresponding analytes for a sample. Matrix spike: Matrix spike recovery was high, the method control sample recovery was acceptable. M1 Matrix spike recovery was low, the method control sample recovery was acceptable. M2 The accuracy of the spike recovery value is reduced since the analyte concentration in the sample is М3 disproportionate to spike level. The method control sample recovery was acceptable. The analysis of the spiked sample required a dilution such that the spike concentrations was diluted below M4 the reporting limit. The method control sample recovery was acceptable. Analyte concentration was determined by the method of standard addition (MSA). M5 Matrix spike recovery was high. Data reported per ADEQ policy 0154,000. M6 Matrix sipke recovery was low. Data reported per ADEQ policy 0154.000. M7 General: See case narrative. N1 See corrective action report. N2 Sample quality: Sample integrity was not maintained. See case narrative. Sample received with head space. $\bigcirc 2$ Sample received with improper chemical preservation. Q3 Sample received and analyzed without chemical preservation. **O**4 Sample received with inadequate chemical preservation, but preserved by the laboratory. 05 Sample was received above recommended temperature. 06 Sample inadequately dechlorinated. 07 Insufficient sample received to meet QC requirements. QC requirements satisfy ADEQ policies 0154 and 0155. 08 Insufficient sample received to meet QC requirements. Q9 Sample received in inappropriate sample container. Sample is heterogeneous. Sample homogeneity could not be readily achieved using routine laboratory practices. O10 Q11 **Duplicates:** RPD exceeded the method control limit. See case narrative. R1 RPD exceeded the laboratory control limit. See case narrative. Sample RPD between the primary and confirmatory analysis exceeded 40%. Per Method 8000B, the higher R2 R3 value was reported. MS/MSD RPD exceeded the method control limit. Recovery met acceptance criteria. R4 MS/MSD RPD exceeded the laboratory control limit. Recovery met acceptance criteria. R5 LFB/LFBD RPD exceeded the method control limit. Recovery met acceptance criteria.

Surrogate:

R6

R7

R8

R9

Surrogate recovery was above laboratory acceptance limits, but within method acceptance limits. S1

LFB/LFBD RPD exceeded the laboratory control limit. Recovery met acceptance criteria.

Surrogate recovery was above laboratory and method acceptance limits. S2

Sample RPD exceeded the method control limit.

Sample RPD exceeded the laboratory control limit.

Surrogate recovery was above laboratory acceptance limits, but within method acceptance limits. No target S3 analytes were detected in the sample. Surrogate recovery was above laboratory and method acceptance limits. No target analytes were detected in the S4 sample. Surrogate recovery was below laboratory acceptance limits, but within method acceptance limits. **S**5 Surrogate recovery was below laboratory and method acceptance limits. Reextraction and/or reanalysis confirms 86 low recovery caused by matrix effect. Surrogate recovery was below laboratory and method acceptance limits. Unable to confirm matrix effect. **S7** The analysis of the sample required a dilution such that the surrogate concentration was diluted below the method 88 acceptance criteria. The method control sample recovery was acceptable. The analysis of the sample required a dilution such that the surrogate concentration was diluted below the S9 laboratory acceptance criteria. The method control sample recovery was acceptable. Surrogate recovery was above laboratory and method acceptance limits. See case narrative. S10 Surrogate recovery was high. Data reported per ADEQ policy 0154,000. S11 Surrogate recovery was low. Data reported per ADEQ policy 0154.000.

Method/analyte discrepancies:

S12

- Method promulgated by EPA, but not ADHS at this time. Ή1
- Cited ADHS licensed method does not contain this analyte as part of method compound list. T2
- Method not promulgated either by EPA or ADHS. Т3
- Tentatively identified compound. Concentration is estimated and based on the closest internal standard. T4

Calibration verification:

- CCV recovery was above method acceptance limits. This target analyte was not detected in the sample. V1
- CCV recovery was above method acceptance limits. This target analyte was detected in the sample. The sample V2could not be reanalyzed due to insufficient sample.
- CCV recovery was above method acceptance limits. This target analyte was detected in the sample, but the V3 sample was not reanalyzed. See case narrative.
- CCV recovery was below method acceptance limits. The sample could not be reanalyzed due to insufficient V4
- CCV recovery after a group of samples was above acceptance limits. This target analyte was not detected in the V5sample. Acceptable per EPA Method 8000B.
- Data reported from one-point calibration criteria per ADEQ policy 0155.000. V6
- Calibration verification recovery was above the method control limit for this analyte however the average V7 % difference or % drift for all the analytes met method criteria.
- Calibration verification recovery was below the method control limit for this analyte however the average V8% difference or % drift for all the analytes met method criteria.

Calibration:

The % RSD for this compound was above 15%. The average % RSD for all compounds in the calibration met W1 the 15% criteria as specified in EPA method 8000B.

Inorganic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.
- U The compound was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- i The MRL/MDL has been elevated due to a matrix interference.
- X See case narrative.

Metals Data Qualifiers

- # The control limit criteria is not applicable. See case narrative.
- B The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.
- E The reported value is estimated because of the presence of matrix interference.
- M The duplicate injection precision was not met.
- N The Matrix Spike sample recovery is not within control limits. See case narrative.
- S The reported value was determined by the Method of Standard Additions (MSA).
- U The compound was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- W The post-digestion spike for furnace AA analysis is out of control limits, while sample absorbance is less than 50% of spike absorbance.
- i The MRL/MDL has been elevated due to a matrix interference.
- X See case narrative.
- * The duplicate analysis not within control limits. See case narrative.
- + The correlation coefficient for the MSA is less than 0.995.

Organic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See ease narrative.
- A A tentatively identified compound, a suspected aldol-condensation product.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result.
- C The analyte was qualitatively confirmed using GC/MS techniques, pattern recognition, or by comparing to historical data.
- D The reported result is from a dilution.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL
- N The result is presumptive. The analyte was tentatively identified, but a confirmation analysis was not performed.
- P The GC or HPLC confirmation criteria was exceeded. The relative percent difference is greater than 40% between the two analytical results (25% for CLP Pesticides).
- U The compound was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- i The MRL/MDL has been elevated due to a chromatographic interference.
- X See case narrative.

Additional Petroleum Hydrocarbon Specific Qualifiers

- F The chromatographic fingerprint of the sample matches the elution pattern of the calibration standard.
- The chromatographic l'ingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of lighter molecular weight constituents than the calibration standard.
- H The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of heavier molecular weight constituents than the calibration standard.
- O The chromatographic fingerprint of the sample resembles an oil, but does not match the calibration standard.
- Y The chromatographic fingerprint of the sample resembles a petroleum product eluting in approximately the correct carbon range, but the elution pattern does not match the calibration standard.
- Z The chromatographic fingerprint does not resemble a petroleum product.

Client: Project: BE&K Terranext WVB/#03103154 Service Request:

X2300287

Cover Page - Organic Analysis Data Package Volatile Organic Compounds

Sample Name	Lab Code	Date Collected	Date Received
AVB95-0200-02250 AVB108-0200-02150 AVB108-0201-02150 AVB108-0204-1000 AVB108-0202-1000 AVB108-0200-02150MS AVB108-0200-02150DMS	X2300287-001 X2300287-002 X2300287-003 X2300287-004 X2300287-005 XWG0300463-1 XWG0300463-2	03/28/2003 03/28/2003 03/28/2003 03/28/2003 03/28/2003 03/28/2003	03/28/2003 03/28/2003 03/28/2003 03/28/2003 03/28/2003 03/28/2003

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed in the case narrative. Release of the data contained in this hardcopy data package and in the computer-readable data submitted on floppy diskette has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signature.

Signature:	Juacy	Dutton	
		4-14-03	
Doto:		7-17-10	

Analytical Results

Client: **Project:** BE&K Terranext WVB/#03103154

Sample Matrix:

Water

Service Request: X2300287

Date Collected: 03/28/2003

Date Received: 03/28/2003

Volatile Organic Compounds

Sample Name:

AVB95-0200-02250

Lab Code:

X2300287-001

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

•			Dilution	Date	Date	Arizona Qualifier
Analyte Name	Result Q	MRL	Factor	Extracted	04/07/03	Alizona Quanto
Dichlorodifluoromethane	ND U	3.0	1	04/07/03 04/07/03	04/07/03	
Chloromethane	ND U	2.0	1	04/07/03	04/07/03	
Vinyl Chloride	ND U	1.0	1			
Bromomethane	ND U	1.0	1	04/07/03	04/07/03 04/07/03	
Chloroethane	ND U	1.0	1	04/07/03	04/07/03	L2
Trichlorofluoromethane	ND U	1.0	1	04/07/03		112
1,1,2-Trichlorotrifluoroethane	ND U	1.0	1	04/07/03	04/07/03	
1,1-Dichloroethene	ND U	1.0	1	04/07/03	04/07/03 04/07/03	
Acetone	ND U	10	11	04/07/03		
Iodomethane	ND U	2.0	1	04/07/03	04/07/03	
Carbon Disulfide	ND U	2.0	1	04/07/03	04/07/03	
Methylene Chloride	ND U	1.0	1	04/07/03	04/07/03	
	ND U	1.0	1	04/07/03	04/07/03	
Methyl tert-Butyl Ether	ND U	0.50	1	04/07/03	04/07/03	
trans-1,2-Dichloroethene	ND U	0.50	1	04/07/03	04/07/03	
1,1-Dichloroethane	ND U	3.0	1	04/07/03	04/07/03	
Vinyl Acetate	ND U	2.0	1	04/07/03	04/07/03	
2,2-Dichloropropane	ND U	8.0	1	04/07/03	04/07/03	
2-Butanone (MEK)	ND U	0.50	1	04/07/03	04/07/03	
cis-1,2-Dichloroethene	ND U	0.50	1	04/07/03	04/07/03	
Bromochloromethane	6.4	1.0	1	04/07/03	04/07/03	
Chloroform		0.50	1	04/07/03	04/07/03	
1,1,1-Trichloroethane	ND U	0.50	1	04/07/03	04/07/03	
Carbon Tetrachloride	ND U	0.50	1	04/07/03	04/07/03	
1,1-Dichloropropene	ND U			04/07/03	04/07/03	
Benzene	ND U	0.50	1	04/07/03	04/07/03	
1,2-Dichloroethane	ND U	0.50 0.50	1	04/07/03	04/07/03	
Trichloroethene	ND U			04/07/03	04/07/03	
1,2-Dichloropropane	ND U	0.50	1	04/07/03	04/07/03	
Dibromomethane	ND U	0.50	1 1	04/07/03	04/07/03	
Bromodichloromethane	ND U	0.50			04/07/03	
cis-1,3-Dichloropropene	ND U	0.50	1	04/07/03 04/07/03	04/07/0	
4-Methyl-2-pentanone (MIBK)	ND U	8.0	1	04/07/03	04/07/0	
Toluene	ND U	0.50	1	04/07/03	04/0//0	

000008

Merged

Printed: 04/09/2003 16:16:28 L:\STEALTH\CRYSTAL.RPT\Form1m.rpt

Comments:

Form 1A - Organic

1 of 3 Page

Analytical Results

Client: Project:

BE&K Terranext WVB/#03103154

Sample Matrix:

Water

Service Request: X2300287

Date Collected: 03/28/2003 **Date Received:** 03/28/2003

Volatile Organic Compounds

Sample Name:

AVB95-0200-02250

Lab Code:

X2300287-001

Extraction Method: Analysis Method:

EPA 5030B 8260B Units: ug/L Basis: NA

Level: Low

			Dilution	Date	Date	
Analyte Name	Result Q	MRL	Factor	Extracted		Arizona Qualifier
trans-1,3-Dichloropropene	ND U	1.0	1	04/07/03	04/07/03	
1,1,2-Trichloroethane	ND U	1.0	1	04/07/03	04/07/03	
Tetrachloroethene	1.7	0.50	1	04/07/03	04/07/03	
	ND U	5.0	1	04/07/03	04/07/03	
2-Hexanone	ND U	1.0	1	04/07/03	04/07/03	
1,3-Dichloropropane Dibromochloromethane	ND U	0.50	1	04/07/03	04/07/03	
	ND U	0.50	1	04/07/03	04/07/03	
1,2-Dibromoethane	ND U	0.50	1	04/07/03	04/07/03	
Chlorobenzene	ND U	0.50	1	04/07/03	04/07/03	
1,1,1,2-Tetrachloroethane	ND U	0.50	1	04/07/03	04/07/03	
Ethylbenzene	ND U	1.0	1	04/07/03	04/07/03	
m,p-Xylenes	ND U	0.50	1	04/07/03	04/07/03	
o-Xylene			1	04/07/03	04/07/03	
Styrene	ND U	0.50	1	04/07/03	04/07/03	
Isopropylbenzene	ND U	0.50 0.50	1	04/07/03	04/07/03	
Bromobenzene	ND U		1	04/07/03	04/07/03	
1,2,3-Trichloropropane	ND U	1.0	1	04/07/03	04/07/03	
n-Propylbenzene	ND U	0.50	1 1	04/07/03	04/07/03	
2-Chlorotoluene	ND U	0.50				
4-Chlorotoluene	ND U	0.50	1	04/07/03	04/07/03	
1,3,5-Trimethylbenzene	ND U	0.50	1	04/07/03	04/07/03 04/07/03	
tert-Butylbenzene	ND U	0.50	1	04/07/03		
1,2,4-Trimethylbenzene	ND U	0.50	1	04/07/03	04/07/03	
sec-Butylbenzene	ND U	0.50	1	04/07/03	04/07/03	
1,3-Dichlorobenzene	ND U	0.50	1	04/07/03	04/07/03	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
4-Isopropyltoluene	ND U	0.50	1	04/07/03	04/07/03	
Bromoform	ND U	0.50	1	04/07/03	04/07/03	
1,1,2,2-Tetrachloroethane	ND U	1.0	1	04/07/03	04/07/03	
1.4-Dichlorobenzene	ND U	0.50	1	04/07/03	04/07/03	
1,4-Dichlorobenzene	ND U	0.50	1	04/07/03	04/07/03	
n-Butylbenzene	ND U	0.50	1	04/07/03	04/07/03	
1,2-Dibromo-3-chloropropane	ND U	5.0	1	04/07/03	04/07/03	
,	ND U	0.50	1	04/07/03	04/07/03	
1,2,4-Trichlorobenzene Hexachlorobutadiene	ND U	0.50	1	04/07/03	04/07/03	
Hexachioroduladiene	110 0	0.00				

Comments:

Merged

Analytical Results

Client:

BE&K Terranext

Project:

WVB/#03103154

Sample Matrix:

Water

Service Request: X2300287

Date Collected: 03/28/2003

Date Received: 03/28/2003

Volatile Organic Compounds

Sample Name:

AVB95-0200-02250

Lab Code:

X2300287-001

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

A. A. Manag	Result Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Arizona Qualifier
Naphthalene	ND U	3.0	1	04/07/03	04/07/03	
1,2,3-Trichlorobenzene	ND U	0.50	1	04/07/03	04/07/03	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Arizona Qualifier
Dibromofluoromethane	103	84-113	04/07/03	
Toluene-d8	101	68-126	04/07/03	
4-Bromofluorobenzene	94	79-113	04/07/03	

Comments:

SuperSet Reference:

Analytical Results

Client: Project:

BE&K Terranext WVB/#03103154

Sample Matrix:

Water

Service Request: X2300287

Date Collected: 03/28/2003 **Date Received:** 03/28/2003

Volatile Organic Compounds

Sample Name:

AVB108-0200-02150

Lab Code:

X2300287-002

Extraction Method: Analysis Method:

EPA 5030B

A2300287-002

8260B

Units: ug/L Basis: NA

Level: Low

		MAIDE	Dilution Factor	Date Extracted	Date Analyzed	Arizona Qualifier
Analyte Name	Result Q	MRL	1	04/07/03	04/07/03	
Dichlorodifluoromethane	ND U	3.0	1	04/07/03	04/07/03	
Chloromethane	ND U	2.0	1	04/07/03	04/07/03	
Vinyl Chloride	ND U	1.0		04/07/03	04/07/03	
Bromomethane	ND U	1.0	1	04/07/03	04/07/03	
Chloroethane	ND U	1.0	1 1	04/07/03		L2
Trichlorofluoromethane	ND U	1.0			04/07/03	
1,1,2-Trichlorotrifluoroethane	ND U	1.0	1	04/07/03	04/07/03	
1,1-Dichloroethene	ND U	1.0	1	04/07/03 04/07/03	04/07/03	
Acetone	35	10	1			
Iodomethane	ND U	2.0	1	04/07/03	04/07/03	
Carbon Disulfide	ND U	2.0	1	04/07/03	04/07/03	
Methylene Chloride	ND U	1.0	11	04/07/03	04/07/03	
Methyl tert-Butyl Ether	ND U	1.0	1	04/07/03	04/07/03	
trans-1,2-Dichloroethene	ND U	0.50	1	04/07/03	04/07/03	
1,1-Dichloroethane	ND U	0.50	1	04/07/03	04/07/03	
	ND U	3.0	1	04/07/03	04/07/03	
Vinyl Acetate	ND U	2.0	1	04/07/03	04/07/03	
2,2-Dichloropropane	ND U	8.0	1	04/07/03	04/07/03	
2-Butanone (MEK)	ND U	0.50	1	04/07/03	04/07/03	
cis-1,2-Dichloroethene	ND U	0.50	1	04/07/03	04/07/03	
Bromochloromethane	ND U	1.0	1	04/07/03	04/07/03	
Chloroform		0.50	1	04/07/03	04/07/03	
1,1,1-Trichloroethane	0.96 ND U	0.50	1	04/07/03	04/07/03	
Carbon Tetrachloride	ND U ND U	0.50	1	04/07/03	04/07/03	
1,1-Dichloropropene			1	04/07/03	04/07/03	
Benzene	0.69	0.50 0.50	1	04/07/03	04/07/03	
1,2-Dichloroethane	ND U	0.50	1	04/07/03	04/07/03	
Trichloroethene	ND U			04/07/03	04/07/03	
1,2-Dichloropropane	ND U	0.50	1	04/07/03	04/07/03	
Dibromomethane	ND U	0.50	1	04/07/03	04/07/03	
Bromodichloromethane	ND U	0.50	1		04/07/03	
cis-1,3-Dichloropropene	ND U	0.50	1	04/07/03	04/07/03	
4-Methyl-2-pentanone (MIBK)	ND U	8.0	1	04/07/03	04/07/03	
Toluene	ND U	0.50	1	04/07/03	04/07/03	

Comments:

Printed: 04/09/2003 16:16:38 L:\STBALTH\CRYSTAL.RPT\Form\Im.rpt

Merged

Form 1A - Organic

000011

Page 1 of 3

Analytical Results

Client: Project: BE&K Terranext WVB/#03103154

Sample Matrix:

Water

Service Request: X2300287

Date Collected: 03/28/2003

Date Received: 03/28/2003

Volatile Organic Compounds

Sample Name:

AVB108-0200-02150

Lab Code:

X2300287-002

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

			Dilution	Date	Date	
Analyte Name	Result () MRL	Factor	Extracted		Arizona Qualifier
trans-1,3-Dichloropropene	ND U	J 1.0	1	04/07/03	04/07/03	
1,1,2-Trichloroethane	ND U	J 1.0	1	04/07/03	04/07/03	
Tetrachloroethene	0.63	0.50	1	04/07/03	04/07/03	
2-Hexanone	ND U	J 5.0	1	04/07/03	04/07/03	
1,3-Dichloropropane	ND U		1	04/07/03	04/07/03	
Dibromochloromethane	ND U	J 0.50	1	04/07/03	04/07/03	
1,2-Dibromoethane	ND U	J 0.50	1	04/07/03	04/07/03	
Chlorobenzene	ND U		1	04/07/03	04/07/03	
1,1,1,2-Tetrachloroethane	ND U		1	04/07/03	04/07/03	
	ND I	J 0.50	1	04/07/03	04/07/03	
Ethylbenzene	ND I		1	04/07/03	04/07/03	
m,p-Xylenes o-Xylene	ND I	_	1	04/07/03	04/07/03	
	ND I		1	04/07/03	04/07/03	
Styrene Isopropylbenzene	ND 1	•	1	04/07/03	04/07/03	
Bromobenzene	ND 1		1	04/07/03	04/07/03	
	ND 1		1	04/07/03	04/07/03	
1,2,3-Trichloropropane	ND 1		1	04/07/03	04/07/03	
n-Propylbenzene 2-Chlorotoluene	ND 1	_	1	04/07/03	04/07/03	
	ND			04/07/03	04/07/03	
4-Chlorotoluene	ND ND	-		04/07/03	04/07/03	
1,3,5-Trimethylbenzene	ND ND	•		04/07/03	04/07/03	
tert-Butylbenzene	ND			04/07/03	04/07/03	
1,2,4-Trimethylbenzene	ND ND	~		04/07/03	04/07/03	
sec-Butylbenzene	ND	_		04/07/03	04/07/03	
1,3-Dichlorobenzene	ND			04/07/03	04/07/03	
4-Isopropyltoluene	ND ND	-		04/07/03	04/07/03	
Bromoform	ND ND	•	1	04/07/03	04/07/03	
1,1,2,2-Tetrachloroethane			1	04/07/03	04/07/03	
1,4-Dichlorobenzene	ND	=	·	04/07/03	04/07/03	
1,2-Dichlorobenzene	ND ND		,	04/07/03	04/07/03	
n-Butylbenzene				04/07/03	04/07/03	
1,2-Dibromo-3-chloropropane	ND			04/07/03	04/07/03	
1,2,4-Trichlorobenzene	ND			04/07/03	04/07/03	
Hexachlorobutadiene	ND	0.30	, ,	0.1707705	/	

C	01	m	m	eı	ıt	S	:

Merged

Analytical Results

Client:

BE&K Terranext WVB/#03103154

Project: Sample Matrix:

Water

Service Request: X2300287

Date Collected: 03/28/2003

Date Received: 03/28/2003

Volatile Organic Compounds

Sample Name:

AVB108-0200-02150

Lab Code:

X2300287-002

Extraction Method: Analysis Method:

EPA 5030B

8260B

Units: ug/L Basis: NA

Level: Low

			Dilution	Date	Date	A vizona Qualifier
Amalyta Name	Result Q	MRL	Factor	Extracted		Arizona Qualifier
Naphthalene 1,2,3-Trichlorobenzene	ND U ND U	3.0 0.50	1 1	04/07/03 04/07/03	04/07/03 04/07/03	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Arizona Qualifier
Dibromofluoromethane	107	84-113	04/07/03	
Toluene-d8	108	68-126	04/07/03	
4-Bromofluorobenzene	100	79-113	04/07/03	

Comments:

Merged

000013

3 of 3

Analytical Results

Client: Project: BE&K Terranext WVB/#03103154

Sample Matrix:

Water

Service Request: X2300287

Date Collected: 03/28/2003

Date Received: 03/28/2003

Volatile Organic Compounds

Sample Name:

AVB108-0201-02150

Lab Code:

X2300287-003

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

			Dilution	Date	Date	
Analyte Name	Result Q	MRL	Factor	Extracted		Arizona Qualifier
Dichlorodifluoromethane	ND U	3.0	1	04/07/03	04/07/03	
Chloromethane	ND U	2.0	1	04/07/03	04/07/03	
Vinyl Chloride	ND U	1.0	1	04/07/03	04/07/03	
Bromomethane	ND U	1.0	1	04/07/03	04/07/03	
Chloroethane	ND U	1.0	1	04/07/03	04/07/03	T 0
Trichlorofluoromethane	ND U	1.0	11	04/07/03	04/07/03	<u>LZ</u>
1,1,2-Trichlorotrifluoroethane	ND U	1.0	1	04/07/03	04/07/03	
1,1-Dichloroethene	ND U	1.0	1	04/07/03	04/07/03	
Acetone	34	10	1	04/07/03	04/07/03	
Iodomethane	ND U	2.0	1	04/07/03	04/07/03	
Carbon Disulfide	ND U	2.0	1	04/07/03	04/07/03	
Methylene Chloride	ND U	1.0	1	04/07/03	04/07/03	
Methyl tert-Butyl Ether	ND U	1.0	1	04/07/03	04/07/03	
trans-1,2-Dichloroethene	ND U	0.50	1	04/07/03	04/07/03	
1,1-Dichloroethane	ND U	0.50	1	04/07/03	04/07/03	
	ND U	3.0	1	04/07/03	04/07/03	
Vinyl Acetate 2.2-Dichloropropane	ND U	2.0	1	04/07/03	04/07/03	
2-Butanone (MEK)	ND U	8.0	1	04/07/03	04/07/03	
cis-1,2-Dichloroethene	ND U	0.50	1	04/07/03	04/07/03	
Bromochloromethane	ND U	0.50	1	04/07/03	04/07/03	
Chloroform	ND U	1.0	1	04/07/03	04/07/03	
	0.84	0.50	1	04/07/03	04/07/03	
1,1,1-Trichloroethane Carbon Tetrachloride	ND U	0.50	1	04/07/03	04/07/03	
1,1-Dichloropropene	ND U	0.50	1	04/07/03	04/07/03	
	0.58	0.50	1	04/07/03	04/07/03	
Benzene 1,2-Dichloroethane	ND U	0.50	1	04/07/03	04/07/03	
Trichloroethene	ND U	0.50	1	04/07/03	04/07/03	
	ND U	0.50	1	04/07/03	04/07/03	
1,2-Dichloropropane Dibromomethane	ND U	0.50	1	04/07/03	04/07/03	
Bromodichloromethane	ND U	0.50	1	04/07/03	04/07/03	
	ND U	0.50	1	04/07/03	04/07/03	
cis-1,3-Dichloropropene 4-Methyl-2-pentanone (MIBK)	ND U	8.0	1	04/07/03	04/07/03	
	ND U	0.50	1	04/07/03	04/07/03	·
Toluene						

Comm	onte.

Merged

Analytical Results

Client: Project: BE&K Terranext WVB/#03103154

Sample Matrix:

Water

Service Request: X2300287

Date Collected: 03/28/2003

Date Received: 03/28/2003

Volatile Organic Compounds

Sample Name:

AVB108-0201-02150

Lab Code:

X2300287-003

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

			Dilution	Date	Date	
Analyte Name	Result Q	MRL	Factor	Extracted		Arizona Qualifier
trans-1,3-Dichloropropene	ND U	1.0	1	04/07/03	04/07/03	
1.1,2-Trichloroethane	ND U	1.0	1	04/07/03	04/07/03	
Tetrachloroethene	0.64	0.50	1	04/07/03	04/07/03	
2-Hexanone	ND U	5.0	1	04/07/03	04/07/03	
1,3-Dichloropropane	ND U	1.0	1	04/07/03	04/07/03	
Dibromochloromethane	ND U	0.50	1	04/07/03	04/07/03	
	ND U	0.50	1	04/07/03	04/07/03	
1,2-Dibromoethane	ND U	0.50	1	04/07/03	04/07/03	
Chlorobenzene	ND U	0.50	1	04/07/03	04/07/03	
1,1,1,2-Tetrachloroethane	ND U	0.50	1	04/07/03	04/07/03	
Ethylbenzene	ND U ND U	1.0	1	04/07/03	04/07/03	
m,p-Xylenes	ND U	0.50	1	04/07/03	04/07/03	
o-Xylene		0.50	1	04/07/03	04/07/03	
Styrene	ND U	0.50	1	04/07/03	04/07/03	
Isopropylbenzene	ND U	0.50	1	04/07/03	04/07/03	
Bromobenzene	ND U		1	04/07/03	04/07/03	
1,2,3-Trichloropropane	ND U	1.0	_	04/07/03	04/07/03	
n-Propylbenzene	ND U	0.50	1 1	04/07/03	04/07/03	
2-Chlorotoluene	ND U	0.50			04/07/03	
4-Chlorotoluene	ND U	0.50	1	04/07/03	04/07/03	
1,3,5-Trimethylbenzene	ND U	0.50	1	04/07/03	04/07/03	
tert-Butylbenzene	ND U	0.50	1	04/07/03		
1,2,4-Trimethylbenzene	ND U	0.50	1	04/07/03	04/07/03	
sec-Butylbenzene	ND U	0.50	1	04/07/03	04/07/03	
1,3-Dichlorobenzene	ND U	0.50	1	04/07/03	04/07/03	
4-Isopropyltoluene	ND U	0.50	1	04/07/03	04/07/03	
Bromoform	ND U	0.50	1	04/07/03	04/07/03	
1,1,2,2-Tetrachloroethane	ND U	1.0	1	04/07/03	04/07/03	
	ND U	0.50	1	04/07/03	04/07/03	
1,4-Dichlorobenzene	ND U	0.50	1	04/07/03	04/07/03	
1,2-Dichlorobenzene	ND U	0.50	1	04/07/03	04/07/03	
n-Butylbenzene	ND U	5.0	1	04/07/03	04/07/03	
1,2-Dibromo-3-chloropropane	ND U	0.50	1	04/07/03	04/07/03	
1,2,4-Trichlorobenzene	ND U	0.50	1	04/07/03	04/07/03	
Hexachlorobutadiene	ND U	0.50				

Comments: 000015

> Form 1A - Organic Merged

Analytical Results

Client: Project: BE&K Terranext WVB/#03103154

Sample Matrix:

Water

Service Request: X2300287

Date Collected: 03/28/2003 **Date Received:** 03/28/2003

Volatile Organic Compounds

Sample Name:

AVB108-0201-02150

Lab Code:

X2300287-003

Extraction Method: Analysis Method:

EPA 5030B 8260B

Units: ug/L

Basis: NA

Level: Low

	Result Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Arizona Qualifier
Naphthalene 1,2,3-Trichlorobenzene	ND U ND U	3.0 0.50	1 1	04/07/03 04/07/03	04/07/03 04/07/03	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Arizona Qualifier
Dibromofluoromethane	102	84-113	04/07/03	
Toluene-d8	104	68-126	04/07/03	
4-Bromofluorobenzene	95	79-113	04/07/03	

Comments:

Merged

000010

SuperSet Reference:

Analytical Results

Client: Project: BE&K Terranext WVB/#03103154

Sample Matrix:

Water

Service Request: X2300287

Date Collected: 03/28/2003

Date Received: 03/28/2003

Volatile Organic Compounds

Sample Name:

AVB108-0204-1000

Lab Code:

X2300287-004

Extraction Method: Analysis Method:

EPA 5030B 8260B

Units: ug/L Basis: NA

Level: Low

			Dilution	Date Extracted	Date	Arizona Qualifier
Analyte Name	Result Q	MRL	Factor		04/07/03	Titizona Quant
Dichlorodifluoromethane	ND U	3.0	l 1	04/07/03 04/07/03	04/07/03	
Chloromethane	ND U	2.0	1 1	04/07/03	04/07/03	
Vinyl Chloride	ND U	1.0	1		04/07/03	
Bromomethane	ND U	1.0	1	04/07/03 04/07/03	04/07/03	
Chloroethane	ND U	1.0	1	04/07/03		L2
Trichlorofluoromethane	ND U	1.0	1		04/07/03	
1,1,2-Trichlorotrifluoroethane	ND U	1.0	1	04/07/03 04/07/03	04/07/03	
1,1-Dichloroethene	ND U	1.0	1 1	04/07/03	04/07/03	
Acetone	ND U	10			04/07/03	
Iodomethane	ND U	2.0	1	04/07/03	04/07/03	
Carbon Disulfide	ND U	2.0	1	04/07/03 04/07/03	04/07/03	
Methylene Chloride	ND U	1.0	1		04/07/03	
Methyl tert-Butyl Ether	ND U	1.0	1	04/07/03	04/07/03	
trans-1,2-Dichloroethene	ND U	0.50	1	04/07/03 04/07/03	04/07/03	
1,1-Dichloroethane	ND U	0.50	1			
Vinyl Acetate	ND U	3.0	1	04/07/03	04/07/03 04/07/03	
2.2-Dichloropropane	ND U	2.0	1	04/07/03 04/07/03	04/07/03	
2-Butanone (MEK)	ND U	8.0	1			
cis-1,2-Dichloroethene	ND U	0.50	1	04/07/03	04/07/03 04/07/03	
Bromochloromethane	ND U	0.50	1	04/07/03	04/07/03	
Chloroform	ND U	1.0	1	04/07/03		
1,1,1-Trichloroethane	ND U	0.50	1	04/07/03	04/07/03	
Carbon Tetrachloride	ND U	0.50	1	04/07/03	04/07/03	
1,1-Dichloropropene	ND U	0.50	1	04/07/03	04/07/03	
	ND U	0.50	1	04/07/03	04/07/03	
Benzene 1,2-Dichloroethane	ND U	0.50	1	04/07/03	04/07/03	
Trichloroethene	ND U	0.50	1	04/07/03	04/07/03	
	ND U	0.50	1	04/07/03	04/07/03	
1,2-Dichloropropane Dibromomethane	ND U	0.50	1	04/07/03	04/07/03	
Bromodichloromethane	ND U	0.50	1	04/07/03	04/07/03	
	ND U	0.50	1	04/07/03	04/07/03	
cis-1,3-Dichloropropene 4-Methyl-2-pentanone (MIBK)	ND U	8.0	1	04/07/03	04/07/03	
Toluene	ND U	0.50	1 _	04/07/03	04/07/03	3
Totale						

	0000

Merged

Comments:

SuperSet Reference:

Analytical Results

Client: **Project:** BE&K Terranext WVB/#03103154

Sample Matrix:

Water

Service Request: X2300287

Date Collected: 03/28/2003 **Date Received:** 03/28/2003

Volatile Organic Compounds

Sample Name: Lab Code:

AVB108-0204-1000 X2300287-004

Extraction Method: Analysis Method:

EPA 5030B 8260B

Units: ug/L Basis: NA

Level: Low

			Dilution	Date	Date	
Analyte Name	Result Q	MRL	Factor	Extracted		Arizona Qualifier
trans-1,3-Dichloropropene	ND U	1.0	1	04/07/03	04/07/03	
1.1.2-Trichloroethane	ND U	1.0	1	04/07/03	04/07/03	
Tetrachloroethene	ND U	0.50	1	04/07/03	04/07/03	
2-Hexanone	ND U	5.0	1	04/07/03	04/07/03	
1,3-Dichloropropane	ND U	1.0	1	04/07/03	04/07/03	
Dibromochloromethane	ND U	0.50	1	04/07/03	04/07/03	
1,2-Dibromoethane	ND U	0.50	1	04/07/03	04/07/03	
Chlorobenzene	ND U	0.50	1	04/07/03	04/07/03	
1,1,1,2-Tetrachloroethane	ND U	0.50	1	04/07/03	04/07/03	
Ethylbenzene	ND U	0.50	1	04/07/03	04/07/03	
m,p-Xylenes	ND U	1.0	1	04/07/03	04/07/03	
o-Xylene	ND U	0.50	1	04/07/03	04/07/03	
Styrene	ND U	0.50	1	04/07/03	04/07/03	
Isopropylbenzene	ND U	0.50	1	04/07/03	04/07/03	
Bromobenzene	ND U	0.50	1	04/07/03	04/07/03	
1,2,3-Trichloropropane	ND U	1.0	1	04/07/03	04/07/03	
n-Propylbenzene	ND U	0.50	1	04/07/03	04/07/03	
2-Chlorotoluene	ND U	0.50	1	04/07/03	04/07/03	
4-Chlorotoluene	ND U	0.50	1	04/07/03	04/07/03	
1,3,5-Trimethylbenzene	ND U	0.50	1	04/07/03	04/07/03	
tert-Butylbenzene	ND U	0.50	1	04/07/03	04/07/03	
1,2,4-Trimethylbenzene	ND U	0.50	1	04/07/03	04/07/03	
sec-Butylbenzene	ND U	0.50	1	04/07/03	04/07/03	
1,3-Dichlorobenzene	ND U	0.50	1	04/07/03	04/07/03	
4-Isopropyltoluene	ND U	0.50	1	04/07/03	04/07/03	
Bromoform	ND U	0.50	1	04/07/03	04/07/03	
1,1,2,2-Tetrachloroethane	ND U	1.0	1	04/07/03	04/07/03	
1,4-Dichlorobenzene	ND U	0.50	1	04/07/03	04/07/03	
1,2-Dichlorobenzene	ND U	0.50	1	04/07/03	04/07/03	
n-Butylbenzene	ND U	0.50	1	04/07/03	04/07/03	
1,2-Dibromo-3-chloropropane	ND U	5.0	1	04/07/03	04/07/03	
1,2,4-Trichlorobenzene	ND U	0.50	1	04/07/03	04/07/03	
Hexachlorobutadiene	ND U	0.50	1	04/07/03	04/07/03	
110/14011101 00 4444444						

Comment	s:
---------	----

Printed: 04/09/2003 16:16:58

Merged

Form 1A - Organic

000018

Page 2 of 3

RR3188 SuperSet Reference:

Analytical Results

Client: Project:

BE&K Terranext WVB/#03103154

Sample Matrix:

Water

Service Request: X2300287

Date Collected: 03/28/2003

Date Received: 03/28/2003

Volatile Organic Compounds

Sample Name: Lab Code:

AVB108-0204-1000

Extraction Method:

X2300287-004

Analysis Method:

EPA 5030B 8260B Units: ug/L Basis: NA

Level: Low

A. J. de Monte	Result O	MRL	Dilution Factor	Date Extracted	Date Analyzed	Arizona Qualifier
Naphthalene	ND U	3.0	1	04/07/03	04/07/03	
1,2,3-Trichlorobenzene	ND U	0.50	1	04/07/03	04/07/03	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Arizona Qualifier
Dibromofluoromethane Toluene-d8 4-Bromofluorobenzene	103 100 97	84-113 68-126 79-113	04/07/03 04/07/03 04/07/03	

Comments:

Analytical Results

Client: Project: BE&K Terranext WVB/#03103154

Sample Matrix:

Water

Service Request: X2300287

Date Collected: 03/28/2003

Date Received: 03/28/2003

Volatile Organic Compounds

Sample Name: Lab Code:

AVB108-0202-1000

X2300287-005

Extraction Method:

EPA 5030B

Units: ug/L Basis: NA

Level: Low

8260B **Analysis Method:**

				Dilution	Date	Date	Avigana Qualifiar
Analyte Name	Result	Q	MRL	Factor	Extracted		Arizona Qualifier
Dichlorodifluoromethane	ND		3.0	1	04/07/03	04/07/03	
Chloromethane	ND		2.0	1	04/07/03	04/07/03 04/07/03	
Vinyl Chloride	ND	U	1.0	1	04/07/03		
Bromomethane	ND		1.0	1	04/07/03	04/07/03	
Chloroethane	ND		1.0	1	04/07/03	04/07/03	1.0
Trichlorofluoromethane	ND	U	1.0	1	04/07/03		L2
1,1,2-Trichlorotrifluoroethane	ND		1.0	1	04/07/03	04/07/03	
1,1-Dichloroethene	ND	U	1.0	1	04/07/03	04/07/03	
Acetone	ND	U	10	1	04/07/03	04/07/03	
Iodomethane	ND	U	2.0	1	04/07/03	04/07/03	
Carbon Disulfide	ND		2.0	1	04/07/03	04/07/03	
Methylene Chloride	ND	U	1.0	1	04/07/03	04/07/03	
Methyl tert-Butyl Ether	ND	U	1.0	1	04/07/03	04/07/03	
trans-1,2-Dichloroethene	ND		0.50	1	04/07/03	04/07/03	
1,1-Dichloroethane	ND		0.50	1	04/07/03	04/07/03	
Vinyl Acetate	ND	U	3.0	1	04/07/03	04/07/03	
2,2-Dichloropropane	ND		2.0	1	04/07/03	04/07/03	
2-Butanone (MEK)	ND		8.0	1	04/07/03	04/07/03	
cis-1,2-Dichloroethene	ND	U	0.50	1	04/07/03	04/07/03	
Bromochloromethane	ND		0.50	1	04/07/03	04/07/03	
Chloroform	ND		1.0	1	04/07/03	04/07/03	
1,1,1-Trichloroethane	ND	U	0.50	1	04/07/03	04/07/03	
Carbon Tetrachloride	ND		0.50	1	04/07/03	04/07/03	
1,1-Dichloropropene		U	0.50	1	04/07/03	04/07/03	
Benzene	ND	U	0.50	1	04/07/03	04/07/03	
1,2-Dichloroethane	ND	U	0.50	1	04/07/03	04/07/03	
Trichloroethene	ND	U	0.50	1	04/07/03	04/07/03	
1,2-Dichloropropane	NE	U	0.50	1	04/07/03	04/07/03	
Dibromomethane		U	0.50	1	04/07/03	04/07/03	
Bromodichloromethane		U	0.50	1	04/07/03	04/07/03	
cis-1,3-Dichloropropene	NE) U	0.50	1	04/07/03	04/07/03	
4-Methyl-2-pentanone (MIBK)		U	8.0	1	04/07/03	04/07/03	
Toluene		U	0.50	1	04/07/03	04/07/03	

Comments:

000020

Merged

Analytical Results

Client: Project: BE&K Terranext WVB/#03103154

Sample Matrix:

Water

Service Request: X2300287 **Date Collected:** 03/28/2003

Date Received: 03/28/2003

Volatile Organic Compounds

Sample Name: Lab Code:

AVB108-0202-1000

X2300287-005

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

Analyte Name Result Q MRL Factor Extraced. Active State S					Dilution	Date	Date	A ' Oalifian
1,1,2-Trichloroethane	Analyte Name			MRL	Factor	Extracted		Arizona Quaimer
1,12-Heinforetheine ND U 0.50 1 04/07/03 04/07/03	trans-1,3-Dichloropropene							
Pertainforderine ND U 5.0 1 04/07/03 04/07/03 04/07/03 1,3-Dichloropropane ND U 1.0 1 04/07/03	1,1,2-Trichloroethane							
1,3-Dichloropropane ND U 1.0 1 04/07/03 04/07/03 1,3-Dichloropropane ND U 0.50 1 04/07/03 04/07/03 1,2-Dibromochlane ND U 0.50 1 04/07/03 04/07/03 1,1,1,2-Tetrachlorocthane ND U 0.50 1 04/07/03 04/07/03 1,1,2-Tetrachlorocthane ND U 0.50 1 04/07/03 04/07/03 1,1,2,3-Trichloropropane ND U 0.50 1 04/07/03 04/07/03 1,2,3-Trichloropropane ND U 0.50 1 04/07/03 04/07/03 1,2,3-Trichloropropane ND U 0.50 1 04/07/03 04/07/03 1,3,5-Trimethylbenzene ND U 0.50 1 04/07/03 04/07/03 1,3,5-Trimethylbenzene ND U 0.50 1 04/07/03 04/07/03 1,2,4-Trimethylbenzene ND U 0.50 1 04/07/03 04/07/03 1,3-Dichlorobenzene ND U 0.50 1 04/07/03 04/07/03 1,4-Dichlorobenzene ND U 0.50 1 04/07/03 04/07/03 1,2-Dichlorobenzene ND U 0.50 1 04/07/03 04/07/03 1,2-Dichlorobenzene ND U 0.50 1 04/07/03 04/07/03 1,2-Dichlorobenzene ND U 0.50 1 04/07/03 04/07/03	Tetrachloroethene	ND	U	0.50	1			
1,3-Dichinorplane	2-Hexanone	ND	U		1			
Dibromochloromethane ND U 0.50 1 04/07/03 04/07/03 1,2-Dibromocthane ND U 0.50 1 04/07/03 04/07/03 1,1,1,2-Tetrachloroethane ND U 0.50 1 04/07/03 04/07/03 1,1,1,2-Tetrachloroethane ND U 0.50 1 04/07/03 04/07/03 1,1,1,2-Tetrachloroethane ND U 0.50 1 04/07/03 04/07/03 1,1,2-Tetrachloroethane ND U 0.50 1 04/07/03 04/07/03 1,2,3-Trichloropropane ND U 0.50 1 04/07/03 04/07/03 1,2,3-Trichloropropane ND U 0.50 1 04/07/03 04/07/03 1,2,3-Trimethylbenzene ND U 0.50 1 04/07/03 04/07/03 1,3,5-Trimethylbenzene ND U 0.50 1 04/07/03 04/07/03 1,4-Trimethylbenzene ND U 0.50 1 04/07/03 04/07/03 1,4-Trimethylbenzene ND U 0.50 1 04/07/03 04/07/03 1,4-Trimethylbenzene ND U 0.50 1 04/07/03 04/07/03 1,4-Dichloroetnzene ND U 0.50 1 04/07/03 04/07/03 1,4-Dichloroetnzene ND U 0.50 1 04/07/03 04/07/03 1,4-Dichloroetnzene ND U 0.50 1 04/07/03 04/07/03 1,2-Dichloroetnzene ND U 0.50 1 04/07/03 04		ND	U		1			
		ND	U	0.50	1	04/07/03		
Chlorobenzene	1 2-Dibromoethane	ND	U	0.50	1			
1,1,2-Tetrachloroethane	,	ND	U	0.50	1			
Ethylbenzene ND U 0.50 1 04/07/03 04/07/03 m,p-Xylenes ND U 1.0 1 04/07/03 04/07/03 e-Xylene ND U 0.50 1 04/07/03 04/07/03 Styrene ND U 0.50 1 04/07/03 04/07/03 Isopropylbenzene ND U 0.50 1 04/07/03 04/07/03 Bromobenzene ND U 0.50 1 04/07/03 04/07/03 I.2,3-Trichloropropane ND U 0.50 1 04/07/03 04/07/03 1-Propylbenzene ND U 0.50 1 04/07/03 04/07/03 2-Chlorotoluene ND U 0.50 1 04/07/03 04/07/03 4-Chlorotoluene ND U 0.50 1 04/07/03 04/07/03 4-Chlorotoluene ND U 0.50 1 04/07/03 04/07/03 1,3,5-Trimethylbe		ND	U	0.50	1	04/07/03	04/07/03	
ND U 1.0 1 04/07/03 04/07/03 04/07/03 0-Xylene ND U 0.50 1 04/07/03 04/07/0		ND	U	0.50	1	04/07/03	04/07/03	
o-Xylene ND U 0.50 1 04/07/03 04/07/03 Styrene ND U 0.50 1 04/07/03 04/07/03 Isopropylbenzene ND U 0.50 1 04/07/03 04/07/03 Bromobenzene ND U 0.50 1 04/07/03 04/07/03 1,2,3-Trichloropropane ND U 1.0 1 04/07/03 04/07/03 n-Propylbenzene ND U 0.50 1 04/07/03 04/07/03 2-Chlorotoluene ND U 0.50 1 04/07/03 04/07/03 4-Chlorotoluene ND U 0.50 1 04/07/03 04/07/03 1,3,5-Trimethylbenzene ND U 0.50 1 04/07/03 04/07/03 1,2,4-Trimethylbenzene ND U 0.50 1 04/07/03 04/07/03 1,2,4-Trimethylbenzene ND U 0.50 1 04/07/03 04/07/03 1,3-Dichlorobenzene ND U 0.50 1 04/07/03 04/07/03 4-Iso					1	04/07/03	04/07/03	
Styrene	·- ·			0.50	1	04/07/03	04/07/03	
ND U 0.50 1 04/07/03 04/07/03 04/07/03 1,2,3-Trichloropropane ND U 0.50 1 04/07/03 04/07/03 04/07/03 1,2,3-Trichloropropane ND U 0.50 1 04/07/03 04/07/03 04/07/03 1,2,3-Trichloropropane ND U 0.50 1 04/07/03 04/07		ND	IJ	0.50	1	04/07/03	04/07/03	
Recombined Proposed					1	04/07/03	04/07/03	
1,2,3-Trichloropropane				0.50	1	04/07/03	04/07/03	
ND U 0.50 1 04/07/03 04		ND	U	1.0	1	04/07/03	04/07/03	
2-Chlorotoluene ND U 0.50 1 04/07/03 04/07/03 4-Chlorotoluene ND U 0.50 1 04/07/03 04/07/03 1,3,5-Trimethylbenzene ND U 0.50 1 04/07/03 04/07/03 tert-Butylbenzene ND U 0.50 1 04/07/03 04/07/03 1,2,4-Trimethylbenzene ND U 0.50 1 04/07/03 04/07/03 sec-Butylbenzene ND U 0.50 1 04/07/03 04/07/03 1,3-Dichlorobenzene ND U 0.50 1 04/07/03 04/07/03 4-Isopropyltoluene ND U 0.50 1 04/07/03 04/07/03 Bromoform ND U 0.50 1 04/07/03 04/07/03 1,1,2,2-Tetrachloroethane ND U 0.50 1 04/07/03 04/07/03 1,4-Dichlorobenzene ND U 0.50 1 04/07/03 04/07/03 1,2-Dichlorobenzene ND U 0.50 1 04/07/03 04/07/03			_		1	04/07/03	04/07/03	
4-Chlorotoluene ND U 0.50 1 04/07/03 04/07/03 1,3,5-Trimethylbenzene ND U 0.50 1 04/07/03 04/07/03 tert-Butylbenzene ND U 0.50 1 04/07/03 04/07/03 1,2,4-Trimethylbenzene ND U 0.50 1 04/07/03 04/07/03 sec-Butylbenzene ND U 0.50 1 04/07/03 04/07/03 1,3-Dichlorobenzene ND U 0.50 1 04/07/03 04/07/03 4-Isopropyltoluene ND U 0.50 1 04/07/03 04/07/03 Bromoform ND U 0.50 1 04/07/03 04/07/03 1,1,2,2-Tetrachloroethane ND U 0.50 1 04/07/03 04/07/03 1,4-Dichlorobenzene ND U 0.50 1 04/07/03 04/07/03 1,2-Dichlorobenzene ND U 0.50 1 04/07/03 04/07/03 1,2-Dibromo-3-chloropropane ND U 0.50 1 04/07/03 04/07/03				0.50	1	04/07/03	04/07/03	
1,3,5-Trimethylbenzene ND U 0.50 1 04/07/03 04/07/03 tert-Butylbenzene ND U 0.50 1 04/07/03 04/07/03 1,2,4-Trimethylbenzene ND U 0.50 1 04/07/03 04/07/03 sec-Butylbenzene ND U 0.50 1 04/07/03 04/07/03 1,3-Dichlorobenzene ND U 0.50 1 04/07/03 04/07/03 4-Isopropyltoluene ND U 0.50 1 04/07/03 04/07/03 Bromoform ND U 0.50 1 04/07/03 04/07/03 1,1,2,2-Tetrachloroethane ND U 1.0 1 04/07/03 04/07/03 1,4-Dichlorobenzene ND U 0.50 1 04/07/03 04/07/03 1,2-Dichlorobenzene ND U 0.50 1 04/07/03 04/07/03 1,2-Dibromo-3-chloropropane ND U 0.50 1 04/07/03 04/07/03 1,2,4-Trichlorobenzene ND U 0.50 1 04/07/03 04/07/03 1,2,4-Trichlorobenzene ND U 0.50 1 04/07/		ND	U	0.50	1	04/07/03	04/07/03	
tert-Butylbenzene ND U 0.50 1 04/07/03 04/07/03 1,2,4-Trimethylbenzene ND U 0.50 1 04/07/03 04/07/03 sec-Butylbenzene ND U 0.50 1 04/07/03 04/07/03 1,3-Dichlorobenzene ND U 0.50 1 04/07/03 04/07/03 4-Isopropyltoluene ND U 0.50 1 04/07/03 04/07/03 Bromoform ND U 0.50 1 04/07/03 04/07/03 1,1,2,2-Tetrachloroethane ND U 1.0 1 04/07/03 04/07/03 1,4-Dichlorobenzene ND U 0.50 1 04/07/03 04/07/03 1,4-Dichlorobenzene ND U 0.50 1 04/07/03 04/07/03 1,2-Dichlorobenzene ND U 0.50 1 04/07/03 04/07/03 1,2-Dichlorobenzene ND U 0.50 1 04/07/03 04/07/03 1,2-Dichlorobenzene ND U 0.50 1 04/07/03 04/07/03 1,2-Dibromo-3-chloropropane ND U 5.0 1 04/07/03 04/07/03 1,2,4-Trichlorobenzene ND U 0.50 1 04/07/03 04/07/03 1,2,4-Trichlorobenzene ND U 0.50 1 04/07/03 04/07/03				0.50	1	04/07/03	04/07/03	
1,2,4-Trimethylbenzene ND U 0.50 1 04/07/03 04/07/03 sec-Butylbenzene ND U 0.50 1 04/07/03 04/07/03 1,3-Dichlorobenzene ND U 0.50 1 04/07/03 04/07/03 4-Isopropyltoluene ND U 0.50 1 04/07/03 04/07/03 Bromoform ND U 0.50 1 04/07/03 04/07/03 1,1,2,2-Tetrachloroethane ND U 1.0 1 04/07/03 04/07/03 1,4-Dichlorobenzene ND U 0.50 1 04/07/03 04/07/03 1,2-Dichlorobenzene ND U 0.50 1 04/07/03 04/07/03 1,2-Dibromo-3-chloropropane ND U 0.50 1 04/07/03 04/07/03 1,2,4-Trichlorobenzene ND U 0.50 1 04/07/03 04/07/03 1,2,4-Trichlorobenzene ND U 0.50 1 04/07/03 04/07/03	· · · · · · · · · · · · · · · · · · ·	ND	U	0.50	1	04/07/03	04/07/03	
sec-Butylbenzene ND U 0.50 1 04/07/03 04/07/03 1,3-Dichlorobenzene ND U 0.50 1 04/07/03 04/07		ND	U	0.50	1	04/07/03	04/07/03	
1,3-Dichlorobenzene ND U 0.50 1 04/07/03 04/07/03 4-Isopropyltoluene ND U 0.50 1 04/07/03 04/07/03 Bromoform ND U 0.50 1 04/07/03 04/07/03 1,1,2,2-Tetrachloroethane ND U 1.0 1 04/07/03 04/07/03 1,4-Dichlorobenzene ND U 0.50 1 04/07/03 04/07/03 1,2-Dichlorobenzene ND U 0.50 1 04/07/03 04/07/03 n-Butylbenzene ND U 0.50 1 04/07/03 04/07/03 1,2-Dibromo-3-chloropropane ND U 5.0 1 04/07/03 04/07/03 1,2,4-Trichlorobenzene ND U 0.50 1 04/07/03 04/07/03				0.50	1	04/07/03	04/07/03	
4-Isopropyltoluene ND U 0.50 1 04/07/03 04/07/03 Bromoform ND U 0.50 1 04/07/03 04/07/03 1,1,2,2-Tetrachloroethane ND U 1.0 1 04/07/03 04/07/03 1,4-Dichlorobenzene ND U 0.50 1 04/07/03 04/07/03 1,2-Dichlorobenzene ND U 0.50 1 04/07/03 04/07/03 n-Butylbenzene ND U 0.50 1 04/07/03 04/07/03 1,2-Dibromo-3-chloropropane ND U 5.0 1 04/07/03 04/07/03 1,2,4-Trichlorobenzene ND U 0.50 1 04/07/03 04/07/03	•			0.50	1	04/07/03	04/07/03	
Bromoform ND U 0.50 1 04/07/03 04/07/03 1,1,2,2-Tetrachloroethane ND U 1.0 1 04/07/03 04/07/03 1,4-Dichlorobenzene ND U 0.50 1 04/07/03 04/07/03 1,2-Dichlorobenzene ND U 0.50 1 04/07/03 04/07/03 n-Butylbenzene ND U 0.50 1 04/07/03 04/07/03 1,2-Dibromo-3-chloropropane ND U 5.0 1 04/07/03 04/07/03 1,2,4-Trichlorobenzene ND U 0.50 1 04/07/03 04/07/03		ND	U	0.50	1	04/07/03		
1,1,2,2-Tetrachloroethane ND U 1.0 1 04/07/03 04/07/03 1,4-Dichlorobenzene ND U 0.50 1 04/07/03 04/07/03 1,2-Dichlorobenzene ND U 0.50 1 04/07/03 04/07/03 n-Butylbenzene ND U 0.50 1 04/07/03 04/07/03 1,2-Dibromo-3-chloropropane ND U 5.0 1 04/07/03 04/07/03 1,2,4-Trichlorobenzene ND U 0.50 1 04/07/03 04/07/03				0.50	1	04/07/03	04/07/03	
1,4-Dichlorobenzene ND U 0.50 1 04/07/03 04/07/03 1,2-Dichlorobenzene ND U 0.50 1 04/07/03 04/07/03 n-Butylbenzene ND U 0.50 1 04/07/03 04/07/03 1,2-Dibromo-3-chloropropane ND U 5.0 1 04/07/03 04/07/03 1,2,4-Trichlorobenzene ND U 0.50 1 04/07/03 04/07/03		ND	U	1.0	1	04/07/03	04/07/03	
1,2-Dichlorobenzene ND U 0.50 1 04/07/03 04/07/03 n-Butylbenzene ND U 0.50 1 04/07/03 04/07/03 1,2-Dibromo-3-chloropropane ND U 5.0 1 04/07/03 04/07/03 1,2,4-Trichlorobenzene ND U 0.50 1 04/07/03 04/07/03		ND	U	0.50	1	04/07/03		
n-Butylbenzene ND U 0.50 1 04/07/03 04/07/03 1,2-Dibromo-3-chloropropane ND U 5.0 1 04/07/03 04/07/03 1,2,4-Trichlorobenzene ND U 0.50 1 04/07/03 04/07/03	,			0.50	1	04/07/03	04/07/03	
1,2-Dibromo-3-chloropropane ND U 5.0 1 04/07/03 04/07/03 1,2,4-Trichlorobenzene ND U 0.50 1 04/07/03 04/07/03	*	ND	U	0.50	1	04/07/03	04/07/03	
1,2,4-Trichlorobenzene ND U 0.50 1 04/07/03 04/07/03				5.0	1	04/07/03		
1,2,4 1101101000112010	·				1	04/07/03		
	, ,				1	04/07/03	04/07/03	

Comments:

000021

Printed: 04/09/2003 16:17:08 L:\STEALTH\CRYSTAL.RPT\Formlm.rpt

Analytical Results

Client:

BE&K Terranext WVB/#03103154

Project: Sample Matrix:

Water

Service Request: X2300287 **Date Collected:** 03/28/2003

Date Received: 03/28/2003

Volatile Organic Compounds

Sample Name: Lab Code:

AVB108-0202-1000 X2300287-005

Extraction Method: Analysis Method:

EPA 5030B 8260B

Units: ug/L Basis: NA

Level: Low

	Dogult ()	MRL	Dilution Factor	Date Extracted	Date Analyzed	Arizona Qualifier
Analyte Name Naphthalene 1,2,3-Trichlorobenzene	ND U ND U	3.0 0.50	1 1	04/07/03 04/07/03	04/07/03 04/07/03	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Arizona Qualifier
Dibromofluoromethane	108	84-113	04/07/03	
Toluene-d8	101	68-126	04/07/03	
4-Bromofluorobenzene	97	79-113	04/07/03	

Comments:

Merged

RR3188

Analytical Results

Client: Project: BE&K Terranext WVB/#03103154

Sample Matrix:

Water

Service Request: X2300287

Date Collected: NA Date Received: NA

Volatile Organic Compounds

Sample Name: Lab Code:

Method Blank XWG0300463-5

Extraction Method: Analysis Method:

EPA 5030B 8260B

Units: ug/L Basis: NA

Level: Low

			Dilution	Date	Date	
Dogult	0	MRL	Factor	Extracted		Arizona Qualifier
			1	04/07/03		
			1	04/07/03		
			1	04/07/03	04/07/03	
			1	04/07/03	04/07/03	
			1	04/07/03	04/07/03	
			1	04/07/03	04/07/03	L2
			1	04/07/03	04/07/03	
			=		04/07/03	
					04/07/03	_
					04/07/03	
			1			
			1			
ND	U					
			•			
			-			
ND	U	0.50				
ND	U	3.0				
ND	U					
ND	U	8.0				
ND	Ū	0.50				
		0.50				
		1.0	1			
		0.50	1			
			1			
		0.50	1	04/07/03		
		0.50	1	04/07/03		
			1	04/07/03		
			1	04/07/03	04/07/03	3
			1	04/07/03	04/07/03	3
			1	04/07/03	04/07/03	3
			1	04/07/03	04/07/03	3
				04/07/03	04/07/0	3
			1			3
N	U U	0.30				
		Result Q ND U ND	ND U 3.0 ND U 1.0 ND U 2.0 ND U 2.0 ND U 1.0 ND U 3.0 ND U 0.50 ND U 3.0 ND U 0.50 ND U 0.50	ND U 3.0 1 ND U 2.0 1 ND U 1.0 1 ND U 2.0 1 ND U 2.0 1 ND U 2.0 1 ND U 1.0 1 ND U 1.0 1 ND U 1.0 1 ND U 0.50 1 ND U 3.0 1 ND U 3.0 1 ND U 3.0 1 ND U 2.0 1 ND U 3.0 1 ND U 3.0 1 ND U 3.0 1 ND U 3.0 1 ND U 0.50 1	ND U 3.0 1 04/07/03 ND U 2.0 1 04/07/03 ND U 1.0 1 04/07/03 ND U 2.0 1 04/07/03 ND U 2.0 1 04/07/03 ND U 1.0 1 04/07/03 ND U 1.0 1 04/07/03 ND U 1.0 1 04/07/03 ND U 0.50 1 04/07/03 ND U 0.50 1 04/07/03 ND U 3.0 1 04/07/03 ND U 0.50 1 0	NESSIT Q

Comments:

000023

Printed: 04/09/2003 16:17:18 $L: \verb|\STEALTH| CRYSTAL.RPT| \verb|\Form| lm.rpt|$

Merged

Analytical Results

Client: Project: BE&K Terranext WVB/#03103154

Sample Matrix:

Water

Service Request: X2300287

Date Collected: NA
Date Received: NA

Volatile Organic Compounds

Sample Name: Lab Code: Method Blank XWG0300463-5

Extraction Method: Analysis Method:

EPA 5030B 8260B Units: ug/L Basis: NA

Level: Low

				Dilution	Date	Date	
Analyte Name	Result	Q	MRL	Factor	Extracted		Arizona Qualifier
trans-1,3-Dichloropropene	ND	U	1.0	1	04/07/03	04/07/03	
1,1,2-Trichloroethane	ND	U	1.0	1	04/07/03	04/07/03	
Tetrachloroethene	ND	U	0.50	1	04/07/03	04/07/03	
2-Hexanone	ND	U	5.0	1	04/07/03	04/07/03	
1,3-Dichloropropane	ND		1.0	1	04/07/03	04/07/03	
Dibromochloromethane	ND		0.50	1	04/07/03	04/07/03	
1.2-Dibromoethane	ND	U	0.50	1	04/07/03	04/07/03	
Chlorobenzene	ND		0.50	1	04/07/03	04/07/03	
1,1,1,2-Tetrachloroethane	ND		0.50	1	04/07/03	04/07/03	
	ND		0.50	1	04/07/03	04/07/03	
Ethylbenzene	ND ND		1.0	1	04/07/03	04/07/03	
m,p-Xylenes	ND		0.50	1	04/07/03	04/07/03	
o-Xylene	ND		0.50	1	04/07/03	04/07/03	
Styrene	ND ND		0.50	ı 1	04/07/03	04/07/03	
Isopropylbenzene	ND		0.50	1	04/07/03	04/07/03	
Bromobenzene			1.0	1	04/07/03	04/07/03	
1,2,3-Trichloropropane	ND ND		0.50	1	04/07/03	04/07/03	
n-Propylbenzene	ND ND		0.50	1	04/07/03	04/07/03	
2-Chlorotoluene			0.50		04/07/03	04/07/03	
4-Chlorotoluene	ND ND		0.50	1	04/07/03	04/07/03	
1,3,5-Trimethylbenzene	ND ND		0.50	1	04/07/03	04/07/03	
tert-Butylbenzene					04/07/03	04/07/03	
1,2,4-Trimethylbenzene		U	0.50	1	04/07/03	04/07/03	
sec-Butylbenzene		U	0.50	1	04/07/03	04/07/03	
1,3-Dichlorobenzene		U	0.50			04/07/03	
4-Isopropyltoluene		U	0.50	1	04/07/03	04/07/03	
Bromoform		U	0.50	1	04/07/03	04/07/03	
1,1,2,2-Tetrachloroethane	NI	U	1.0	1			
1.4-Dichlorobenzene		U	0.50	1	04/07/03	04/07/03	
1,2-Dichlorobenzene		U	0.50	1	04/07/03	04/07/03	
n-Butylbenzene	NE) U	0.50	1	04/07/03	04/07/03	
1,2-Dibromo-3-chloropropane	NI	U	5.0	1	04/07/03	04/07/03	
1,2,4-Trichlorobenzene		U	0.50	1	04/07/03	04/07/03	
Hexachlorobutadiene	NI	U	0.50	1	04/07/03	04/07/03	

Comments:

000024

Analytical Results

Client:

BE&K Terranext

Project:

WVB/#03103154

Sample Matrix:

Water

Service Request: X2300287

Date Collected: NA Date Received: NA

Volatile Organic Compounds

Sample Name: Lab Code:

Method Blank XWG0300463-5

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

N	Result O	MRL	Dilution Factor	Date Extracted	Date Analyzed	Arizona Qualifier
Naphthalene 1,2,3-Trichlorobenzene	ND U ND U	3.0 0.50	1 1	04/07/03 04/07/03	04/07/03 04/07/03	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Arizona Qualifier
Dibromofluoromethane	104	84-113	04/07/03	
Toluene-d8	107	68-126	04/07/03	
4-Bromofluorobenzene	97	79-113	04/07/03	

Comments:

Merged

000025

SuperSet Reference:

QA/QC Report

Client:

BE&K Terranext

Project: Sample Matrix: WVB/#03103154

Water

Service Request: X2300287

Surrogate Recovery Summary Volatile Organic Compounds

Extraction Method: EPA 5030B **Analysis Method:**

8260B

Units: PERCENT

Level: Low

Sample Name	Lab Code	Sur1	Sur2	Sur3
AVB95-0200-02250	X2300287-001	103	101	94
AVB108-0200-02150	X2300287-002	107	108	100
AVB108-0201-02150	X2300287-003	102	104	95
AVB108-0204-1000	X2300287-004	103	100	97
AVB108-0202-1000	X2300287-005	108	101	97
Method Blank	XWG0300463-5	104	107	97
AVB108-0200-02150MS	XWG0300463-1	108	108	99
AVB108-0200-02150DMS	XWG0300463-2	109	110	101
Lab Control Sample	XWG0300463-3	97	101	94
Duplicate Lab Control Sample	XWG0300463-4	103	105	100

Surrogate Recovery Control Limits (%)

84-113 Sur1 = Dibromofluoromethane 68-126 Sur2 = Toluene-d879-113 Sur3 = 4-Bromofluorobenzene

Results flagged with an asterisk (*) indicate values outside control criteria. Results flagged with a pound (#) indicate the control criteria is not applicable.

0000020

Printed: 04/09/2003 16:17:32 L:\STEALTH\CRYSTAL.RPT\Form2.rpt

Form 2A - Organic

1 of 1 Page

QA/QC Report

Client: Project: BE&K Terranext WVB/#03103154

Sample Matrix:

Water

Service Request: X2300287

Date Extracted: 04/07/2003 **Date Analyzed:** 04/07/2003

Matrix Spike/Duplicate Matrix Spike Summary Volatile Organic Compounds

Sample Name:

AVB108-0200-02150

Lab Code:

X2300287-002

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

Extraction Lot: XWG0300463

AVB108-0200-02150MS

AVB108-0200-02150DMS

	Sample	XV	VG0300463- Matrix Spike			VG0300463-2 cate Matrix Sp		%Rec		RPD
Analyte Name	Result	Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit
Dichlorodifluoromethane	ND	4.60	10.0	46 M2	4.36	10.0	44 M2	78-207	5	20
Chloromethane	ND	7.55	10.0	76	6.63	10.0	66 M2	70-157	13	20
Vinyl Chloride	ND	8.07	10.0	81	7.33	10.0	73 M2	79-174	10	20
Bromomethane	ND	8.06	10.0	81	8.97	10.0	90	44-150	11	20
Chloroethane	ND	9.89	10.0	99	8.86	10.0	89	74-150	11	20
Trichlorofluoromethane	ND	8.04	10.0	80	7.98	10.0	80	80-134	1	20
1,1,2-Trichlorotrifluoroethane	ND	9.17	10.0	92	10.7	10.0	107	67-128	15	20
1,1-Dichloroethene	ND	8.10	10.0	81	9.79	10.0	98	71-142	19	20
Acetone	35	69.8	40.0	88	88.8	40.0	135	1-155	24 R5	
Iodomethane	ND .	38.5	40.0	96	39.3	40.0	98	47-120	2	20
Carbon Disulfide	ND	41.2	40.0	103	43.6	40.0	109	77-126	6	20
Methylene Chloride	ND	10.5	10.0	105	10.6	10.0	106	83-106	0	20
Methyl tert-Butyl Ether	ND	9.58	10.0	96	9.18	10.0	92	70-118	4	20
trans-1,2-Dichloroethene	ND	11.2	10.0	112	11.1	10.0	111	86-115	1	20
1,1-Dichloroethane	ND	11.1	10.0	111	11.2	10.0	112	77-127	1	20
Vinyl Acetate	ND	48.7	40.0	122	45.2	40.0	113	8-187	8	20
2,2-Dichloropropane	ND	10.8	10.0	108	10.8	10.0	108	25-154	0	20
2-Butanone (MEK)	ND	44.6	40.0	112	45.2	40.0	113 M1	90-112	1	20
cis-1,2-Dichloroethene	ND	10.3	10.0	103	10.7	10.0	107	69-118	3	20
Bromochloromethane	ND	13.0	10.0	130	12.0	10.0	120	47-136	8	20
Chloroform	ND	11.8	10.0	118	12.4	10.0	124	48-143	5	20
1,1,1-Trichloroethane	0.96	10.1	10.0	91	10.2	10.0	92	84-122	1	20
Carbon Tetrachloride	ND	9.99	10.0	100	9.93	10.0	99	79-120	1	20
1,1-Dichloropropene	ND	10.3	10.0	103	10.7	10.0	107	85-117	4	20
Benzene	0.69	10.8	10.0	101	11.1	10.0	104	88-114	3	20
1,2-Dichloroethane	ND	10.7	10.0	107	10.7	10.0	107	75-112	0	20
Trichloroethene	ND	12.1	10.0	121 M1	12.3	10.0	123 M1	76-115	2	20
1,2-Dichloropropane	ND	10.9	10.0	109 M1	11.0	10.0	110 M1	85-107	1	20
Dibromomethane	ND	11.9	10.0	119 M1	11.1	10.0	111 M1	82-106	6	20
Bromodichloromethane	ND	10.4	10.0	104	10.1	10.0	101	83-107	2	20
cis-1,3-Dichloropropene	ND	11.5	10.0	115 M1		10.0	110	70-114	4	20
4-Methyl-2-pentanone (MIBK)	ND	43.5	40.0	109	42.3	40.0	106	54-129	3	20
Toluene	ND	10.9	10.0	109	10.6	10.0	106	86-114	3	20

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

000027

Printed: 04/09/2003 16:17:38 L:\STEALTH\CRYSTAL.RPT\Form3DMS.rpt Form 3A - Organic

Page

1 of

RR3188 SuperSet Reference:

QA/QC Report

Client: Project: BE&K Terranext WVB/#03103154

Sample Matrix:

Water

Service Request: X2300287

Date Extracted: 04/07/2003

Date Analyzed: 04/07/2003

Matrix Spike/Duplicate Matrix Spike Summary Volatile Organic Compounds

Sample Name:

AVB108-0200-02150

Lab Code:

X2300287-002

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

Extraction Lot: XWG0300463

AVB108-0200-02150MS

AVB108-0200-02150DMS

Sample		XWG0300463-1 Matrix Spike		XWG0300463-2 Duplicate Matrix Spike			%Rec		RPD	
Analyte Name	Result	Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit
trans-1,3-Dichloropropene	ND	11.7	10.0	117 M1	10.8	10.0	108	73-112	8	20
1,1,2-Trichloroethane	ND	9.94	10.0	99	10.1	10.0	101	79-112	2	20
Tetrachloroethene	0.63	11.0	10.0	103	11.4	10.0	107	78-130	4	20
2-Hexanone	ND	42.3	40.0	106	39.5	40.0	99	77-112	7	20
1,3-Dichloropropane	ND	10.7	10.0	107	10.2	10.0	102	45-133	4	20
Dibromochloromethane	ND	10.8	10.0	108	10.3	10.0	103	74-108	5	20
1,2-Dibromoethane	ND	10.4	10.0	104	9.99	10.0	100	73-113	4	20
Chlorobenzene	ND	10.6	10.0	106	10.6	10.0	106	84-111	0	20
1,1,1,2-Tetrachloroethane	ND	10.1	10.0	101	10.3	10.0	103	84-119	1	20
Ethylbenzene	ND	10.8	10.0	108	10.9	10.0	109	47-136	1	20
m,p-Xylenes	ND	21.7	20.0	108	21.9	20.0	109	84-120	1	20
	ND	10.3	10.0	103	10.6	10.0	106	47-143	3	20
o-Xylene	ND	10.7	10.0	107	10.9	10.0	109	72-121	2	20
Styrene	ND	10.1	10.0	101	10.6	10.0	106	63-108	4	20
Isopropylbenzene	ND	11.1	10.0	111	11.5	10.0	115 M1	80-113	4	20
Bromobenzene	ND	10.8	10.0	108	10.8	10.0	108	78-119	0	20
1,2,3-Trichloropropane	ND	10.3	10.0	103	10.9	10.0	109	76-117	6	20
n-Propylbenzene	ND	9.94	10.0	99	10.4	10.0	104	79-121	5	20
2-Chlorotoluene	ND	10.2	10.0	102	10.9	10.0	109	70-133	6	20
4-Chlorotoluene	ND	10.1	10.0	101	10.6	10.0	106	79-118	4	20
1,3,5-Trimethylbenzene	ND	10.2	10.0	102	10.8	10.0	108	77-120	6	20
tert-Butylbenzene	ND	10.2	10.0	102	10.9	10.0	109	68-127	7	20
1,2,4-Trimethylbenzene	ND	9.50	10.0	95	10.2	10.0	102	78-123	7	20
sec-Butylbenzene	ND	10.2	10.0	102	10.7	10.0	107	78-127	5	20
1,3-Dichlorobenzene	ND	10.1	10.0	101	10.9	10.0	109	79-142	7	20
4-Isopropyltoluene	ND	10.9	10.0	109	10.4	10.0	104	83-111	4	20
Bromoform	ND	12.5	10.0	125	11.3	10.0	113	66-133	9	20
1,1,2,2-Tetrachloroethane	ND	10.4	10.0	104	10.4	10.0	104	48-139	1	20
1,4-Dichlorobenzene	ND	10.2	10.0	102	10.6	10.0	106	64-109	3	20
1,2-Dichlorobenzene	ND	10.0	10.0	100	10.6	10.0	106	69-122	5	20
n-Butylbenzene	ND	10.3	10.0	103	10.5	10.0	105	54-160	3	20
1,2-Dibromo-3-chloropropane	ND ND	10.3	10.0	108	11.2	10.0	112	39-145	4	20
1,2,4-Trichlorobenzene	ND ND	11.5	10.0	115 M1	12.0	10.0	120 M1	74-113	4	20
Hexachlorobutadiene	עוזו	11.5	10.0	110 1111						

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

000028

Printed: 04/09/2003 16:17:38 L:\STEALTH\CRYSTAL.RPT\Form3DMS.rpt Form 3A - Organic

Page

2 of 3

RR3188 SuperSet Reference:

QA/QC Report

Client: Project: BE&K Terranext WVB/#03103154

Sample Matrix:

Water

Service Request: X2300287

Date Extracted: 04/07/2003 **Date Analyzed:** 04/07/2003

Matrix Spike/Duplicate Matrix Spike Summary Volatile Organic Compounds

Sample Name:

AVB108-0200-02150

Lab Code:

X2300287-002

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L

Basis: NA

Level: Low

Extraction Lot: XWG0300463

AVB108-0200-02150MS

AVB108-0200-02150DMS

XWG0300463-1

XWG0300463-2

	Cample	Sample Matrix Spike		Duplicate Matrix Spike			%Rec		RPD	
Analyte Name	Result	Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit
	ND	10.7	10.0	107	10.9	10.0	109	44-167	2	20
Naphthalene 1,2,3-Trichlorobenzene	ND	12.5	10.0	125	12.8	10.0	128	37-158	2	20

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

000020

Page 3 of 3

QA/QC Report

Client: Project: BE&K Terranext WVB/#03103154

Sample Matrix:

Water

Service Request: X2300287 Date Extracted: 04/07/2003

Date Analyzed: 04/07/2003

Lab Control Spike/Duplicate Lab Control Spike Summary Volatile Organic Compounds

Extraction Method: Analysis Method:

EPA 5030B

8260B

Units: ug/L

Basis: NA Level: Low

Extraction Lot: XWG0300463

Lab Control Sample XWG0300463-3

Duplicate Lab Control Sample

XWG0300463-4

	XWG0300463-3 Lab Control Spike			Duplicate Lab Control Spike			%Rec		RPD
Analyte Name	Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit
	3.96	10.0	40	3.88	10.0	39	1-233	2	20
Dichlorodifluoromethane	5.93	10.0	59	6.55	10.0	66	46-156	10	20
Chloromethane	6.46	10.0	65	6.63	10.0	66	51-158	3	20
Vinyl Chloride	7.86	10.0	79	7.86	10.0	79	37-149	0	20
Bromomethane	8.54	10.0	85	8.93	10.0	89	56-146	4	20
Chloroethane	6.78	10.0	68 L2	7.25	10.0	73	69-139	7	20
Trichlorofluoromethane	9.25	10.0	93	9.99	10.0	100	83-130	8	20
1,1,2-Trichlorotrifluoroethane	9.23 8.46	10.0	85	8.99	10.0	90	65-112	6	20
1,1-Dichloroethene	35.2	40.0	88	43.3	40.0	108	68-128	21 R7	20
Acetone	36.3	40.0	91	39.0	40.0	97	68-144	7	20
Iodomethane	30.3 37.9	40.0	95	40.9	40.0	102	67-140	8	20
Carbon Disulfide	9,48	10.0	95	10.0	10.0	100	70-113	5	20
Methylene Chloride	9.48 8.17	10.0	82	9.61	10.0	96	75-115	16	20
Methyl tert-Butyl Ether	9.50	10.0	95	10.2	10.0	102	73-118	7	20
trans-1,2-Dichloroethene	9.30 9.75	10.0	98	10.7	10.0	107	77-127	9	20
1,1-Dichloroethane	40.8	40.0	102	48.7	40.0	122	51-202	18	39
Vinyl Acetate	9.23	10.0	92	10.0	10.0	100	75-132	8	20
2,2-Dichloropropane		40.0	89	38.4	40.0	96	72-122	8	20
2-Butanone (MEK)	35.5	10.0	93	9.89	10.0	99	81-118	7	20
cis-1,2-Dichloroethene	9.26	10.0	109	12.9	10.0	129 L1	82-114	17	20
Bromochloromethane	10.9	10.0	96	10.5	10.0	105	78-119	9	20
Chloroform	9.64	10.0	80	8.46	10.0	85	71-125	5	20
1,1,1-Trichloroethane	8.03	10.0	86	9.07	10.0	91	69-130	6	20
Carbon Tetrachloride	8.57	10.0	91	9.38	10.0	94	77-114	4	20
1,1-Dichloropropene	9.05	10.0	92	9.58	10.0	96	81-117	5	20
Benzene	9.15	10.0	92 97	10.9	10.0	109	67-122	11	20
1,2-Dichloroethane	9.74		97 94	9.65	10.0	97	79-114	3	20
Trichloroethene	9.39	10.0 10.0	9 4 98	10.6	10.0	106	78-114	7	20
1,2-Dichloropropane	9.84		102	11.6	10.0	116 L1	78-113	13	20
Dibromomethane	10.2	10.0	96	10.1	10.0	101	79-122	5	20
Bromodichloromethane	9.60	10.0	96 107	10.1	10.0	117	82-118	9	20
cis-1,3-Dichloropropene	10.7	10.0	107 98	48.8	40.0	122 L1	75-115	22 R2	20
4-Methyl-2-pentanone (MIBK)	39.1	40.0	98 100	10.2	10.0	102	85-118	2	20
Toluene	9.95	10.0		10.2	10.0	117	79-121	10	20
trans-1,3-Dichloropropene	10.6	10.0	106	10.5	10.0	105	79-116	4	20
1,1,2-Trichloroethane	10.1	10.0	101	10.5	10.0	105	., 210		

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

000030

QA/QC Report

Client: Project: BE&K Terranext WVB/#03103154

Sample Matrix:

Water

Service Request: X2300287 Date Extracted: 04/07/2003

Date Analyzed: 04/07/2003

Lab Control Spike/Duplicate Lab Control Spike Summary Volatile Organic Compounds

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

Extraction Lot: XWG0300463

Lab Control Sample XWG0300463-3

Duplicate Lab Control Sample XWG0300463-4

	XWG0300463-3 Lab Control Spike			Duplicate Lab Control Spike			%Rec		RPD
Analyte Name	Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit
Tetrachloroethene	9.70	10.0	97	9.56	10.0	96	76-127	1	20
	38.0	40.0	95	46.2	40.0	116	65-120	20	20
2-Hexanone	10.3	10.0	103	11.1	10.0	111	81-116	7	20
1,3-Dichloropropane	10.3	10.0	102	11.0	10.0	110	77-119	7	20
Dibromochloromethane	9.89	10.0	99	10.7	10.0	107	79-116	8	20
1,2-Dibromoethane	9.81	10.0	98	10.1	10.0	101	84-114	3	20
Chlorobenzene	9.28	10.0	93	9.93	10.0	99	78-118	7	20
1,1,1,2-Tetrachloroethane	9.62	10.0	96	9.99	10.0	100	79-124	4	20
Ethylbenzene	19.8	20.0	99	20.3	20.0	102	75-131	3	20
m,p-Xylenes	9.56	10.0	96	9.94	10.0	99	78-122	4	20
o-Xylene	10.0	10.0	100	10.4	10.0	104	80-126	4	20
Styrene	9.46	10.0	95	9.62	10.0	96	75-126	2	20
Isopropylbenzene	10.8	10.0	108	11.0	10.0	110	82-122	1	20
Bromobenzene	10.5	10.0	105	11.6	10.0	116	77-118	10	20
1,2,3-Trichloropropane	9.82	10.0	98	10.1	10.0	101	75-129	2	20
n-Propylbenzene	9.78	10.0	98	9.92	10.0	99	77-126	1	20
2-Chlorotoluene	9.78	10.0	100	10.5	10.0	105	82-120	5	20
4-Chlorotoluene	9.93	10.0	97	10.1	10.0	101	75-130	4	20
1,3,5-Trimethylbenzene	9.74	10.0	99	10.0	10.0	100	73-130	1	20
tert-Butylbenzene	10.1	10.0	101	10.2	10.0	102	60-137	1	20
1,2,4-Trimethylbenzene	9.28	10.0	93	9.40	10.0	94	68-131	1	20
sec-Butylbenzene	9.28	10.0	101	10.4	10.0	104	71-137	3	20
1,3-Dichlorobenzene	10.1	10.0	100	10.2	10.0	102	68-134	1	20
4-Isopropyltoluene	9.66	10.0	97	10.3	10.0	103	70-118	6	20
Bromoform	10.6	10.0	106	12.1	10.0	121	72-122	13	20
1,1,2,2-Tetrachloroethane	9.66	10.0	97	9.98	10.0	100	82-114	3	20
1,4-Dichlorobenzene	9.58	10.0	96	10.1	10.0	101	81-118	5	20
1,2-Dichlorobenzene	9.38	10.0	92	9.75	10.0	98	71-125	6	20
n-Butylbenzene	9.21 8.42	10.0	84	11.6	10.0	116	55-131	32 R	7 20
1,2-Dibromo-3-chloropropane	8.42 9.75	10.0	98	10.3	10.0	103	75-123	6	20
1,2,4-Trichlorobenzene		10.0	106	10.5	10.0	105	63-140	1	20
Hexachlorobutadiene	10.6	10.0	92	11.3	10.0	113	67-125	21 R	7 20
Naphthalene	9.15	10.0	92 111	12.6	10.0	126 L1	72-124	13	20
1,2,3-Trichlorobenzene	11.1	10.0	111	12.0	10.0	120 21			

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

000031

Printed: 04/09/2003 16:17:45 L:\STEALTH\CRYSTAL.RPT\Form3DLC.rpt Form 3C - Organic

Page

2 of

RR3188 SuperSet Reference:

April 9, 2003

Chuck Gordon BE & K Terranext 9830 S. 51st A-127 Phoenix, AZ 85044

Re: WVB/Project #03103154

Dear Chuck:

Enclosed are the results of the samples submitted to our laboratory on March 28, 2003. For your reference, these analyses have been assigned our service request number L2300706.

All analyses were performed in accordance with our laboratory's quality assurance program. Results are intended to be considered in their entirety and apply only to the samples analyzed. Columbia Analytical Services is not responsible for use of less than the complete report.

Columbia Analytical Services - is certified for environmental analyses by the Arizona Department of Health Services (certificate number: AZ0544 and AZ0136, expiration: May 23, 2003).

If you have any questions, please call me at (818) 587-5550, extension 309.

Respectfully submitted,

Columbia Analytical Services, Inc.

Sue Anderson Project Chemist

SA

900932

Columbia Analytical Services, Inc.

Acronvms California DHS LUFT Method 8015M American Society for Testing and Materials **ASTM** Biochemical Oxygen Demand BOD Benzene/Toluene/Ethylbenzene/Xylenes **BTEX** California Assessment Metals CAM Chemical Abstract Service Registry Number **CAS Number** Chlorofluorocarbon **CFC** Chemical Oxygen Demand COD Contract Required Detection Limit **CRDL** Detected; result must be greater than zero. D Detected; result must be greater than the detection limit. DL **Duplicate Laboratory Control Sample** DLCS Duplicate Matrix Spike DMS Department of Health Services DOH or DHS Environmental Laboratory Accreditation Program **ELAP** U.S. Environmental Protection Agency EPA Gas Chromatography GCGas Chromatography/Mass Spectrometry GC/MS Ion Chromatography IC Initial Calibration Blank sample **ICB** Inductively Coupled Plasma atomic emission spectrometry **ICP** Initial Calibration Verification sample **ICV** Laboratory Control Sample LCS Leaking Underground Fuel Tank LUFT Modified M Methylene Blue Active Substances **MBAS** Method Detection Limit MDL Method Reporting Limit MRL Matrix Spike MS Methyl-tert-Butyl Ether MTBE Not Applicable NA Not Calculated NC None Detected at or above the Method Reporting/Detection Limit (MRL/MDL) ND Nephelometric Turbidity Units NTU Parts Per Billion ppb Parts Per Million ppm **Practical Quantitation Limit PQL** Ouality Assurance/Quality Control QA/QC Resource Conservation and Recovery Act **RCRA** Relative Percent Difference RPD Selected Ion Monitoring SIM Standard Methods for the Examination of Water and Wastewater, 18th Ed., 1992. SM Solubility Threshold Limit Concentration STLC Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW-846, SW Third Edition, 1986 and as amended by Updates I, II, IIA, and IIB. Toxicity Characteristics Leaching Procedure **TCLP** Total Dissolved Solids **TDS**

Total Petroleum Hydrocarbons **TPH**

Total Recoverable Petroleum Hydrocarbons **TRPH**

Total Suspended Solids TSS

Total Threshold Limit Concentration TTLC

Volatile Organic Analyte(s) **VOA**

Oualifiers

Undetected at or above MDL/MRL. U Estimated concentration. Analyte detected above MDL but below MRL. J Hit above MRL also found in Method Blank. В Analyte concentration above high point of ICAL. E Presumptive evidence of compound. N Result from dilution. D See case narrative. \mathbf{X}

Client:

BE&K Terranext, LLC

Project:

WVBA/03103154

Sample Matrix:

Water

Service Request No.:

L2300706 3/28/03

Date Received:

CASE NARRATIVE

All analyses were performed in accordance with our laboratory's quality assurance program. This report contains analytical results for sample(s) designated for Tier II data deliverables. When appropriate to the method, method blank results have been reported with each analytical test. Additional quality control analyses reported herein include: Matrix/Duplicate Matrix Spike (MS/DMS) and Laboratory Control Sample (LCS).

All EPA recommended holding times have been met for analyses in this sample delivery group.

The following difficulties were experienced during analysis of this batch:

Metals, Method 6010B:

The matrix spike duplicate recovery was high, the method control sample recovery was acceptable. The data has been flagged accordingly.

Approved by: Sue Jule 14/9/03

- Cover Page - INORGANIC ANALYSIS DATA PACKAGE

Client:

BE&K Terranext, LLC

Project Name : Project No. :

WVB

03103154

Service Request: L2300706

Sample Name:

AVB108-0200-02150 AVB108-0201-02150 AVB108-0201-02150 AVB108-0201-02150 AVB108-0204-1000 Laboratory Control Sample

Method Blank

Lab Code:

L2300706-001 L2300706-002 L2300706-002S L2300706-002SD L2300706-003 L2300706-LCS L2300706-MB

Analytical Report

Client:

BE&K Terranext, LLC

Project Name: Project No.:

WVB 03103154

Matrix:

Water

Service Request: L2300706

Date Collected: 03/28/03

Date Received: 03/28/03

Date Extracted: 04/03/03

Total Metals

Sample Name:

AVB108-0200-02150

Lab Code:

L2300706-001

Units: ug/L (ppb)

Analyte	Analysis Method	MRL	Date Analyzed	Sample Result	Result Notes
Chromium	6010B	10	04/07/03	ND	

Analytical Report

Client:

BE&K Terranext, LLC

Project Name : Project No. : WVB

Matrix:

Water

03103154

Service Request: L2300706

Date Collected: 03/28/03

Date Received: 03/28/03

Date Extracted: 04/03/03

Dissolved Metals

Sample Name:

AVB108-0200-02150

Lab Code:

L2300706-001

Units: ug/L (ppb)

Analyte	Analysis Method	MRL	Date Analyzed	Sample Result	Result Notes
Chromium	6010B	10	04/07/03	ND	

Analytical Report

Client:

BE&K Terranext, LLC

Project Name : Project No. : WVB

Matrix:

03103154 Water Service Request: L2300706

Date Collected: 03/28/03

Date Received: 03/28/03 **Date Extracted:** 04/03/03

Total Metals

Sample Name:

AVB108-0201-02150

Lab Code:

L2300706-002

Units: ug/L (ppb)

Analyte	Analysis Method	MRL	Date Analyzed	Sample Result	Result Notes
Chromium	6010B	10	04/07/03	ND	

Analytical Report

Client:

BE&K Terranext, LLC

Project Name : Project No. : WVB 03103154

Matrix:

Water

Service Request: L2300706

Date Collected: 03/28/03 **Date Received:** 03/28/03

Date Extracted: 04/03/03

Dissolved Metals

Sample Name:

AVB108-0201-02150

Lab Code:

L2300706-002

Units: ug/L (ppb)

Analyte	Analysis Method	MRL	Date Analyzed	Sample Result	Result Notes
Chromium	6010B	10	04/07/03	ND	

Analytical Report

Client:

BE&K Terranext, LLC

Project Name: Project No.:

WVB

Matrix:

03103154 Water

Service Request: L2300706

Date Collected: 03/28/03

Date Received: 03/28/03

Date Extracted: 04/03/03

Total Metals

Sample Name:

AVB108-0204-1000

Lab Code:

L2300706-003

Units: ug/L (ppb)

Basis: NA

Analyte Analysis Method MRL Date Analyzed Result Notes

Chromium 6010B 10 04/07/03 ND

Analytical Report

Client:

BE&K Terranext, LLC

Project Name: Project No.:

WVB 03103154

Matrix:

Water

Service Request: L2300706

Date Collected: 03/28/03 **Date Received:** 03/28/03

Date Extracted: 04/03/03

Dissolved Metals

Sample Name:

AVB108-0204-1000

Lab Code:

L2300706-003

Units: ug/L (ppb)

Analyte	Analysis Method	MRL	Date Analyzed	Sample Result	Result Notes
Chromium	6010B	10	04/07/03	ND	

Analytical Report

Client:

BE&K Terranext, LLC

Project Name:

WVB

Project No.: Matrix:

03103154 Water

Service Request: L2300706

Date Collected: NA

Date Received: NA

Date Extracted: 04/03/03

Total Metals

Sample Name:

Method Blank

Lab Code:

L2300706-MB

Units: ug/L (ppb)

Basis: NA

Result Sample Notes **Date Analyzed** Result MRL **Analysis Method** Analyte ND 04/07/03 10 6010B Chromium

QA/QC Report

Client:

BE&K Terranext, LLC

Project Name: Project No.:

WVB 03103154

Matrix:

Water

Service Request: L2300706

Date Collected: NA

Date Received: NA **Date Extracted:** 04/03/03 **Date Analyzed:** 04/07/03

Laboratory Control Sample Summary Total Metals

Sample Name:

Laboratory Control Sample

Lab Code:

L2300706-LCS

Units: ug/L (ppb)

Analyte	Analysis Method	True Value	Result	Percent	CAS Percent Recovery Acceptance Limits	Result Notes
Chromium	6010B	500	541	108	87-111	

Analytical Report

Client:

BE&K Terranext, LLC

Project Name: Project No.:

WVB

Matrix:

03103154 Water

Service Request: L2300706

Date Collected: 03/28/03

Date Received: 03/28/03

Date Extracted: 04/03/03

Date Analyzed: 04/07/03

Matrix Spike/Duplicate Matrix Spike Summary

Total Metals

Sample Name:

AVB108-0201-02150

Lab Code:

L2300706-002S

L2300706-002SD

Units: ug/L (ppb)

Analyte	Prep Method	Analysis Method	MRL	Spike MS	Level DMS	Sample Result	Spike MS	Result DMS	MS	DMS	CAS Acceptance Limits	Relative Percent Difference	Result Notes
Chromium	3010A	6010B	10	500	500	ND	527	531	105	106	87-105	<1	M1

Analytical Services Inc. Columbia

CHAIN OF CUSTODY/LABORATORY ANALYSIS REQUEST FORM

2302 East University Drive, Suite 4 • Phoenix, AZ 85034 • (602) 437-2001 • (800) 695-7222 x09 • FAX (602) 437-5308

DATE 3.28.63

PAGE

P

REMARKS SAMPLE RECEIPT: Shipping VIA: Shipping #: _ Condition: N ANALYSIS REQUESTED N INVOICE INFORMATION DHG Paint Filter D Diniod Asela Total DT Island P.O.# II. Report (includes DUP.MS. MSD, as required, may be charged as samples) REPORT REQUIREMENTS III. Data Validation Report (includes All Raw Data) Routine Report Halogenated Volatile Organics A AV 8108-0200-02150 4 9 NUMBER OF CONTAINERS **(N)** PRESER-VATION À 至 ţ 53103184 MATRIX .D. huck benden PHONE/FAX Extra samples taken TIME 7.00 ₹ 3 7.55 SPECIAL INSTRUCTIONS/COMMENTS: PROJECT MANAGER 28 - K DATE AVB95-0200-02250 3.20 Š • for ms/msD PROJECT NAME_WVB SAMPLER'S SIGNATURE_ 4VB108-0204-1600 AN BIOG -0202-1000 COMPANY/ADDRESS ____ AV5108-0201-0215D AVBIDB-6260-62150 SAMPLE I.D.

4

S/291c3 DISTRIBUTION: WHITE - return to originator; YELLOW - lab; PINK - retained by originator Organization Organization Received By (Signature) Regented By (Signature) Anny 1 Te(FX Date/Time 3 - 28 - 03 / 6:30 Date/Time

RUSH TAT - Surcharges Apply

Date/Time

☐ 24 Hours ☐ 48 Hours ☐ 72 Hours

ANALYSIS TAT (Circle One)

Date/Time 3-28-03

Organization

公公司

Received By (Signature)

Date/Time 3.28.03

1.00Pm

Betk

Organization

Relinquished By (Signature)

Organization

Retirequished By (Signature)

Organization

Relinquished By (Signature)

TO OX

IV. CLP Deliverable Report

STANDARD

Lab No: X2300287

SAMPLE RECEIPT FORM

Service Request No: L230 0706 Client: BE+K
Sample(s) delivered by: Client CAS Emp After Hours DHL
Golden State Overnight Fed X V UPS Other Courier
Chain of Custody filled out accurately? Yes \(\sqrt{\sqrt{No}} \) No \(\sqrt{See Comments} \)
Appropriate sample volume and containers? Yes No(See Comments)
Sufficient labeling on container(s)? Yes No(See Comments)
Container(s) supplied by CAS? Yes No(See Comments)
Custody seal(s) intact? N/A / Yes No(See Comments)
Trip Blank(s) received Yes No /
If Trip Blank was supplied by CAS, record serial #
Temperature of sample(s)/seeler 3
Temperature of sample(s)/cooler 3 °C Temp Blank? (Y) or N (Circle One)
Voa's Marked Preserved? Yes No Filled Properly? Yes No (See Comments) Preserved Bottles Requiring pH check(s)? Yes Notified \(\subseteq \)
RUSH Turn around time? Yes Notified Date & Time
Short Hold-Time Analysis (check all that apply)
ASAP Res Cl D.O Flash Diss S2 Ferrous Fe 24HR pH Odor Cr+6
48HR BOD Color MBAS Nitrate
72HR Vapors Sett Sol Turbidity
Notified Date & Time
Container(s) received and their preservative(s)
Container(s) received and their preservative(s): $-1 = 2 - 1L PL (HN03) AB$
2-IL PI (NP)CD
-28-3=1-1LPL(HNO3)A
Comments I-IL PI (NP)B
Filter & preserve diss. metals bottle in lab
- Theres bottle in lab
Initials, Date, Time

Columbia Analytical Services Inc.

CHAIN OF CUSTODY/LABORATORY ANALYSIS REQUEST FORM

3902 East University Drive, Suite 4 • Phoenix, AZ 85034 • (602) 437-2001 • (800) 695-7222 x09 • FAX (602) 437-5308

DATE 3.28.63

PAGE

**b**00000 REMARKS SAMPLE RECEIPT: **ANALYSIS REQUESTED** N INVOICE INFORMATION: Dretting the Driving held $\mathcal{L}{\mathcal{D}}^{\mathsf{lofol}}$ $\int_{D}^{D} d701$ REPORT REQUIREMENTS I. Routine Report Palogoinal & believed of the policy of the p Halogenafed Volatile Organics ٥ **(V)** 3 Extra samples taken of AVB108-0200-02150 9 NUMBER OF CONTAINERS S 6 Ł 圣 ÷ 53103184 MATRIX 2 4 ₹ - 05 -03 -04 -05 28701 LAB ID huck Gerden PHONE/FAX TIME 7.00 ₹ 3 7.45 0:: SPECIAL INSTRUCTIONS/COMMENTS: PROJECT MANAGER 28-8 DATE AVB95-6200-02250 3:28 × Ŀ < PROJECT NAME_WVB SAMPLER'S SIGNATURE AVBIOB -6204-1600 COMPANY/ADDRESS AVB108-0201-0215D AV BIOB -0202-1600 AVBIDB-6260-62150 SAMPLE I.D.

) ofor
Φ
- 1

Shipping VIA: Shipping #: _ Condition:

P.O.#

II. Report (includes DUP.MS. MSD, as required, may be charged as samples)

for ms/msD

IV. CLP Deliverable Report III. Data Validation Report (includes All Raw Data)

DISTRIBUTION: WHITE - return to originator; YELLOW - lab; PINK - retained by originator

Columbia Analytical Services, Inc. Phoenix, AZ

Sample Receipt and Preservation Form

Client:	BEEK			Pro	oject Name:	WVB	
Sample(s) Re VOA's ∐	eceived on: <u>3-2</u> Glass Bottle	8-03 es□	date $\frac{13}{2}$ Plastic Bottles	50	time Jars [Sleeves 🗆	
	: SOIL □ action Holding T			da	te	time (soils only)	
						RS(soil)/7 DAYS (water) Chemist's Initi	
1. Rush or st	andard turn-a-ro	und time?				RU	SH STANDARD
2 Are the cu	stody seals prese w many and when gnature and date	nt?				Yes	No D
5. Are all conference of the c	ntainers arrive in ntainer labels con correct container A's been checked are of sample(s) of discrepancies	nplete (i.e. pr s used for the for the prese upon receipt:	tests indicated ance of air bubble	es? (no 	te problems	Yes Yes in comments) Yes	; □ No□ ; □ No□ ; □ No□ ; □ No□ N/A
						VOA Vial pH Ve	erification
					-	(Tested After A	analysis)
		YES	NO			☐ Following Samples I	Exhibited pH > 2
рН	Reagent						
12	NaOH						
2	HNO ₃	1.00					
2	H ₂ SO ₄						
Comments:					C 1 / 1) Received by (initials	s). LL

CHAIN OF CUSTODY/LABORATORY ANALYSIS REQUEST FORM

Columbia Analytical Services Inc.

DATE 32800

670000 Я PAGE © 0228 ANALYSIS REQUESTED 0158 DHO Paint Filter D Day yould Total D TOLP D Total D D d10T 3902 East University Drive, Suite 4 • Phoenix, AZ 85034 • (602) 437-2001 • (800) 695-7222 x09 • FAX (602) 437-5308 Halogenafed Volatile Organics NUMBER OF CONTAINERS 5 PHONE/FAX

BLAD

COMPANY/ADDRESS

PROJECT MANAGER PROJECT NAME WIVE

REMARKS

HAA

PRESER-VATION

MATRIX 9

LAB I.D.

TIME 00 F

DATE 88 erana Property

SAMPLE I.D.

SAMPLER'S SIGNATURE

2040

VRC6-0200-0225

18163-020-8018V

3

143

348108 -6264-600

		I						
				SAMPLE RECEIPT:	Shipping VIA: Shipping #: Condition: Lab No: X3360287	ANALYSIS TAT (Circle One) STANDARD	RUSH TAI - Surcharges Apply □ 24 Hours □ 48 Hours	☐ 72 Hours
	*		<u>.</u>	INVOICE INFORMATION:		Date/Time 3-28-03 ほ.00	Date/Time	
					P.O.# Bill To	Organization C舟S	Organization	Organization
				REPORT REQUIREMENTS	I. Routine Report II. Report (includes DUP.MS. MSD, as required, may be charged as samples) III. Data Validation Report (includes All Raw Data) IV. CLP Deliverable Report			2
						Received By (Signature)	Received By (Signature)	Received By (Signature)
		æ,			20	Received	Received	Received
					0020-9	Date/Time 3.28・03	Date/Time	Date/Time
						Organization Be+1c	Organization	Organization
				COMMENTS	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			
				O/SINCITORIOR INC	Extra Samples later at AV0108-0200-02	Relinquished By (Signature)	Relinquished By (Signature)	Relinquished By (Signature)

DISTRIBUTION: WHITE - return to originator; YELLOW - lab; PINK - retained by originator

Columbia Analytical Services, Inc. Phoenix, AZ

Sample Receipt and Preservation Form

Client:	BEEK			Proje	ect Name: _	WVB	
Sample(s) Re VOA's 🗹	eceived on: <u>3-3</u> Glass Bottl	8-03 es□	date $\frac{3}{2}$ Plastic Bottles		time Jars □	Sleeves	
Is first ex	action Holding f	holding time	on:expiration LES	S THAN	I 24 HOUR	time (soils onl S(soil)/7 DAYS (w Chemist's	vater)? Yes □ No
 Are the cu If yes, how Are the sig Did all cor Are all cor Were the cor Have VOA Temperature 	andard turn-a-ro stody seals prese many and when gnature and date ntainers arrive in ntainer labels con correct container a's been checked are of sample(s)	ent? re? correct? a good conditionplete (i.e. proposed for the presentation receipt:	on? eservation, samplests indicated? nce of air bubble \(\frac{4}{2}^{\circ}C\)	ple ID)? es? (note	problems i	n comments)	RUSH STANDAR Yes No No Yes No No Yes No
pH 12 2 2	Reagent NaOH HNO ₃ H ₂ SO ₄	YES	NO			(Tested Af	oH Verification fter Analysis) mples pH ≤ 2 ples Exhibited pH > 2
Comments: _		Fo	rm Completed	land S	amnle(s)	Received by (in	itials). LL

April 2, 2003

Chuck Gordon BE&K Terranext 9830 S. 51st Street, Suite A-127 Phoenix, AZ 85044

Re: WVBA / Project #03103154

Dear Chuck:

Enclosed are the results of the samples submitted to our laboratory on March 17, 2003. The samples were analyzed for Total and Dissolved Chromium by our Canoga Park, CA facility (L2300593). For your reference, the 8260 analyses have been assigned our service request number X2300226.

All analyses were performed according to our laboratory's quality assurance program. All results are intended to be considered in their entirety, and Columbia Analytical Services, Inc. (CAS) is not responsible for use of less than the complete report. Results apply only to the samples analyzed. Columbia Analytical Services, Inc. is certified for environmental analyses by the Arizona Department of Health Services (Certificate #AZ0136; and #AZ0497).

Please call if you have any questions. My extension is 223.

Respectfully submitted,

Columbia Analytical Services, Inc.

Tracy L. Dutton

Laboratory Director

TLD/lm

Page 1 of <u>54</u>

Client:

BE&K Terranext

Project:

WVBA / #03103154

Sample Matrix:

Water

Service Request No.:

X2300226

Date Received:

3/17/03

CASE NARRATIVE

All analyses were performed consistent with the quality assurance program of Columbia Analytical Services, Inc. (CAS). This report contains analytical results for sample(s) designated for Tier II data deliverables. When appropriate to the method, method blank results have been reported with each analytical test. Surrogate recoveries have been reported for all applicable organic analyses. Additional quality control analyses reported herein include: Matrix/Duplicate Matrix Spike (MS/DMS) and Laboratory Control Sample (LCS).

All EPA recommended holding times have been met for analyses in this sample delivery group.

The following difficulties were experienced during analysis of this batch:

The associated blank spike (XWG0300408-1 and XWG0300408-2) recovery of 1,1,2-Trichlorotrifluoroethane, 1,1-Dichloroethene, and 1,1-Dichloropropene, Method 8260, was above laboratory acceptance limits. The LCS/DLCS recovery for 1,1-Dichloroethene and 1,1-Dichloropropene is within method acceptance limits. The compound 1,1,2-Trichlorotrifluoroethane was not detected in any sample.

CCV recovery of 2-Hexanone, Method 8260B, was below method acceptance limits on 3/27/03. This compound was seen in the method reporting limit standard that was analyzed with this batch of samples. This verifies that the compound would be detected if present in the samples.

Matrix spike (XWG0300408-4 and XWG0300408-5) recovery of several analytes for Method 8260B was high. The method control sample recovery was acceptable.

The accuracy of the spike (XWG0300410-1) recovery value of Tetrachloroethene, Method 8260B, is reduced since the analyte concentration in the sample is disproportionate to spike level. The method control sample recovery was acceptable.

11 Date 4:203 Approved by

ARIZONA DATA QUALIFIERS

Method Bla	
B1	Target analyte detected in method blank at or above the method reporting limit.
B2	Non-target analyte detected in method blank and sample, producing interference.
В3	Target analyte detected in calibration blank at or above the method reporting limit.
B4	Target analyte detected in blank at/above method acceptance criteria.
Confirmati	
C1	Confirmatory analysis not performed as required by the method.
C2	Confirmatory analysis not performed. Confirmation of analyte presence established by site historical data.
C3	Qualitative confirmation performed. See case narrative.
C4	Confirmatory analysis was past holding time.
C5	Confirmatory analysis was past holding time. Original result not confirmed.
Dilution:	
DI	Sample required dilution due to matrix interference. See case narrative.
D2	Sample required dilution due to high concentration of target analyte.
D3	Sample dilution required due to insufficient sample.
D4	Minimum reporting level (MRL) adjusted to reflect sample amount received and analyzed.
Estimated	concentration:
EI	Concentration estimated. Analyte exceeded calibration range. Reanalysis not possible due to insufficient sample.
E2	Concentration estimated. Analyte exceeded calibration range. Reanalysis not performed due to sample matrix.
E3	Concentration estimated. Analyte exceeded calibration range. Reanalysis not performed due to holding time requirements.
E4	Concentration estimated. Analyte was detected below laboratory minimum reporting level (MRL).
E5	Concentration estimated. Analyte was detected below laboratory minimum reporting level (MRL), but not
17. 4	confirmed by alternate analysis. Confirmation estimated. Internal standard recoveries did not meet method acceptance criteria.
E6	Confirmation estimated. Internal standard recoveries did not meet laboratory acceptance criteria.
E7	Confirmation estimated. Internal standard recoveries did not meet according a supplied to the confirmation estimated.
Hold Time	
H1	Sample analysis performed past holding time. See case narrative.
H2	fnitial analysis within holding time. Reanalysis for the required dilution was past holding time.
H3	Sample was received and analyzed past holding time.
FT4	Sample was extracted past required extraction holding time, but analyzed within analysis holding time. See cas narrative.
BOD	
BOD:	The sample dilutions set-up for the BOD analysis did not meet the oxygen depletion criteria of at least 2mg/L.
K1	Any reported result is an estimated value.
K2	The sample dilutions set up for the BOD analysis did not meet the criteria of a residual dissolved oxygen of at
K2	least 1 mg/L. Any reported result is an estimated value.
K3	The seed depletion was outside the method acceptance limits.
171	The cook depresent may consider the formation of

The seed depletion was outside the method and laboratory acceptance limits. The reported result is an estimated K4 value. The dilution water D.O. depletion was >0.2 mg/L. K5 Glucose/glutamic acid BOD was below method acceptance criteria. Κ6 The discrepancy between the BOD and COD results has been verified by reanalysis of the sample for COD. K7 Laboratory fortified blank/blank spike: The associated blank spike recovery was above laboratory acceptance limits. See case narrative. L1The associated blank spike recovery was below laboratory acceptance limits. See case narrative. L2The associated blank spike recovery was above method acceptance limits. See case narrative. 1.3 The associated blank spike recovery was below method acceptance limits. See case narrative. L4 Note: The L1, L2, L3, & L4 footnotes need to be added to all corresponding analytes for a sample. Matrix spike: Matrix spike recovery was high, the method control sample recovery was acceptable. M1Matrix spike recovery was low, the method control sample was acceptable. M2 The accuracy of the spike recovery value is reduced since the analyte concentration in the sample is M3 disproportionate to spike level. The method control sample recovery was acceptable. The analysis of the spiked sample required a dilution such that the spike concentrations was diluted below M4 the reporting limit. The method control sample recovery was acceptable. Analyte concentration was determined by the method of standard addition (MSA). M5 General: See case narrative. N1See corrective action report. Nο Sample quality: Sample integrity was not maintained. See case narrative. Q1 Sample received with head space. Q2 Sample received with improper chemical preservation. O3 Sample received and analyzed without chemical preservation. **Q**4 Sample received with inadequate chemical preservation, but preserved by the laboratory. O5 Sample was received above recommended temperature. O6Sample inadequately dechlorinated. 07 Insufficient sample received to meet QC requirements. QC requirements satisfy ADEQ policies 0154 and 0155. O8 Insufficient sample received to meet QC requirements. 09 Sample received in inappropriate sample container. Q10 Sample is heterogeneous. Sample homogeneity could not be readily achieved using routine laboratory practices. Q11 **Duplicates:** RPD exceeded the method control limit. See case narrative. R1 RPD exceeded the laboratory control limit. See case narrative. R2 Sample RPD between the primary and confirmatory analysis exceeded 40%. Per Method 8000B, the higher R3 value was reported. MS/MSD RPD exceeded the method control limit. Recovery met acceptance criteria. **R4** MS/MSD RPD exceeded the laboratory control limit. Recovery met acceptance criteria. R5 LFB/LFBD RPD exceeded the method control limit. Recovery met acceptance criteria. R6 LFB/LFBD RPD exceeded the laboratory control limit. Recovery met acceptance criteria. R7

Sample RPD exceeded the laboratory control limit. R9 Surrogate: Surrogate recovery was above laboratory acceptance limits, but within method acceptance limits. S1Surrogate recovery was above laboratory and method acceptance limits. S2 Surrogate recovery was above laboratory acceptance limits, but within method acceptance limits. No target S3analytes were detected in the sample. Surrogate recovery was above laboratory and method acceptance limits. No target analytes were detected in the S4 sample. Surrogate recovery was below laboratory acceptance limits, but within method acceptance limits. S5 Surrogate recovery was below laboratory and method acceptance limits. Reextraction and/or reanalysis confirms 86 low recovery caused by matrix effect. Surrogate recovery was below laboratory and method acceptance limits. Unable to confirm matrix effect. **S7** The analysis of the sample required a dilution such that the surrogate concentration was diluted below the method S8 acceptance criteria. The method control sample recovery was acceptable. The analysis of the sample required a dilution such that the surrogate concentration was diluted below the S9laboratory acceptance criteria. The method control sample recovery was acceptable. Surrogate recovery was above laboratory and method acceptance limits. See case narrative. S10

Sample RPD exceeded the method control limit.

Method promulgated by EPA, but not ADHS at this time.

Method not promulgated either by EPA or ADHS.

Calibration verification:

Method/analyte discrepancies:

R8

Ή1

T2

Т3

Т4

V1 CCV recovery was above method acceptance limits. This target analyte was not detected in the sample.

Cited ADHS licensed method does not contain this analyte as part of method compound list.

V2 CCV recovery was above method acceptance limits. This target analyte was detected in the sample. The sample could not be reanalyzed due to insufficient sample.

Tentatively identified compound. Concentration is estimated and based on the closest internal standard.

- CCV recovery was above method acceptance limits. This target analyte was detected in the sample, but the sample was not reanalyzed. See case narrative.
- V4 CCV recovery was below method acceptance limits. The sample could not be reanalyzed due to insufficient sample.
- V5 CCV recovery after a group of samples was above acceptance limits. This target analyte was not detected in the sample. Acceptable per EPA Method 8000B.

Inorganic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.
- U The compound was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- The MRL/MDL has been elevated due to a matrix interference.
- X See case narrative.

Metals Data Qualifiers

- The control limit criteria is not applicable. See case narrative.
- B The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.
- E The reported value is estimated because of the presence of matrix interference.
- M The duplicate injection precision was not met.
- N The Matrix Spike sample recovery is not within control limits. See case narrative.
- S The reported value was determined by the Method of Standard Additions (MSA).
- U The compound was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- W The post-digestion spike for furnace AA analysis is out of control limits, while sample absorbance is less than 50% of spike
- i The MRL/MDL has been elevated due to a matrix interference.
- X See case narrative.
- * The duplicate analysis not within control limits. See case narrative.
- + The correlation coefficient for the MSA is less than 0.995.

Organic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- A A tentatively identified compound, a suspected aldol-condensation product.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result.
- C The analyte was qualitatively confirmed using GC/MS techniques, pattern recognition, or by comparing to historical data.
- D The reported result is from a dilution.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.
- N The result is presumptive. The analyte was tentatively identified, but a confirmation analysis was not performed.
- P The GC or HPLC confirmation criteria was exceeded. The relative percent difference is greater than 40% between the two analytical results (25% for CLP Pesticides).
- U The compound was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- i The MRL/MDL has been elevated due to a chromatographic interference.
- X See case narrative.

Additional Petroleum Hydrocarbon Specific Qualifiers

- F The chromatographic fingerprint of the sample matches the elution pattern of the calibration standard.
- L The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of lighter molecular weight constituents than the calibration standard.
- H The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of heavier molecular weight constituents than the calibration standard.
- O The chromatographic fingerprint of the sample resembles an oil, but does not match the calibration standard.
- Y The chromatographic fingerprint of the sample resembles a petroleum product eluting in approximately the correct carbon range, but the elution pattern does not match the calibration standard.
- Z The chromatographic fingerprint does not resemble a petroleum product.

Client: Project: BE&K Terranext WVBA/#03103154 **Service Request:**

X2300226

Cover Page - Organic Analysis Data Package Volatile Organic Compounds

		Date	Date
Sample Name	Lab Code	Collected	Received
AVB26-0100-19094	X2300226-001	03/17/2003	03/17/2003
AVB99-0100-03100	X2300226-002	03/17/2003	03/17/2003
AVB85-0100-05103	X2300226-003	03/17/2003	03/17/2003
AVB83-0100-05106	X2300226-004	03/17/2003	03/17/2003
AVB83-0104-1000	X2300226-005	03/17/2003	03/17/2003
AVB83-0102-1000	X2300226-006	03/17/2003	03/17/2003
AVB26-0100-19094MS	XWG0300408-4	03/17/2003	03/17/2003
AVB26-0100-19094DMS	XWG0300408-5	03/17/2003	03/17/2003
TY VIDEO TOO TOO TOO			

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed in the case narrative. Release of the data contained in this hardcopy data package and in the computer-readable data submitted on floppy diskette has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signature.

Analytical Results

Client: Project: BE&K Terranext WVBA/#03103154

Sample Matrix:

Water

Service Request: X2300226

Date Collected: 03/17/2003 **Date Received:** 03/17/2003

Volatile Organic Compounds

Sample Name:

AVB26-0100-19094

Lab Code:

X2300226-001

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

•			Dilution	Date Extracted	Date Analyzed	Arizona Qualifier
Analyte Name	Result Q	MRL	Factor	03/27/03	03/27/03	THI Edita Quantities
Dichlorodifluoromethane	ND U	3.0	1	03/27/03	03/27/03	
Chloromethane	ND U	2.0	1 1	03/27/03	03/27/03	
Vinyl Chloride	ND U	1.0			03/27/03	
Bromomethane	ND U	1.0	1	03/27/03 03/27/03	03/27/03	
Chloroethane	ND U	1.0	1	03/27/03	03/27/03	
Trichlorofluoromethane	ND U	1.0	1		03/27/03	Ll
1,1,2-Trichlorotrifluoroethane	ND U	1.0	1	03/27/03	03/27/03	Ll
1,1-Dichloroethene	1.6	1.0	1	03/27/03 03/27/03	03/27/03	11
Acetone	ND U	10	1			
Iodomethane	ND U	2.0	1	03/27/03	03/27/03 03/27/03	
Carbon Disulfide	ND U	2.0	1	03/27/03	03/27/03	
Methylene Chloride	ND U	1.0	1	03/27/03		
Methyl tert-Butyl Ether	ND U	1.0	1	03/27/03	03/27/03	
trans-1,2-Dichloroethene	ND U	0.50	1	03/27/03	03/27/03	
1.1-Dichloroethane	0.94	0.50	1	03/27/03	03/27/03	
Vinyl Acetate	ND U	3.0	1	03/27/03	03/27/03	
2,2-Dichloropropane	ND U	2.0	1	03/27/03	03/27/03	
2-Butanone (MEK)	ND U	8.0	1	03/27/03	03/27/03	
cis-1,2-Dichloroethene	1.7	0.50	1	03/27/03	03/27/03	
Bromochloromethane	ND U	0.50	1	03/27/03	03/27/03	
Chloroform	1.8	1.0	1	03/27/03	03/27/03	
1,1,1-Trichloroethane	ND U	0.50	1	03/27/03	03/27/03	
Carbon Tetrachloride	ND U	0.50	1	03/27/03	03/27/03	* *
1,1-Dichloropropene	ND U	0.50	1	03/27/03	03/27/03	
Benzene	8.0	0.50	1	03/27/03	03/27/03	
1,2-Dichloroethane	ND U	0.50	1	03/27/03	03/27/03	
Trichloroethene	4.9	0.50	1	03/27/03	03/27/03	
1,2-Dichloropropane	ND U	0.50	1	03/27/03	03/27/03	
Dibromomethane	ND U	0.50	1	03/27/03	03/27/03	
Bromodichloromethane	0.90	0.50	1	03/27/03	03/27/03	
cis-1,3-Dichloropropene	ND U	0.50	1	03/27/03	03/27/03	
4-Methyl-2-pentanone (MIBK)	ND U	8.0	1	03/27/03	03/27/03	
Toluene	2.0	0.50	1	03/27/03	03/27/03	
LOIUCHE						

Comn	nante•
	iiciits.

Merged

Page

000008

Analytical Results

Client: **Project:** BE&K Terranext WVBA/#03103154

Sample Matrix:

Water

Service Request: X2300226

Date Collected: 03/17/2003 **Date Received:** 03/17/2003

Volatile Organic Compounds

Sample Name:

AVB26-0100-19094

Lab Code:

X2300226-001

Extraction Method: Analysis Method:

EPA 5030B

8260B

Units: ug/L Basis: NA

Level: Low

Analyte Name Result Q MRL Factor Extracted (Analyzer Arizona Qualifier trans-1,3-Dichloropropene (ND U 1.0 1.0 30/27/03 03/27/03 03/27/03 1.1,2-Trichloroethane (ND U 1.0 1.0 30/27/03 03/27/03 03/27/03 03/27/03 03/27/03 1 03/27/03 03/27/03 03/27/03 03/27/03 Tetrachloroethene 10 U 5.0 1 03/27/03 03/27/03 03/27/03 03/27/03 03/27/03 03/27/03 03/27/03 03/27/03 03/27/03 NIV 4 2-Hexanone (ND U 1.0 1.0 1.0 0.50 1 03/27/03 03/27/03 03/27/03 03/27/03 03/27/03 03/27/03 03/27/03 03/27/03 03/27/03 NIV 4 1,2-Dibromoethane (ND U 0.50 1 03/27/03 03/27/03 03/27/03 03/27/03 03/27/03 03/27/03 03/27/03 03/27/03 03/27/03 03/27/03 NIV 4 Chlorobenzene (ND U 0.50 1 0.050 1 03/27/03 03/27/03 03/27/03 03/27/03 03/27/03 03/27/03 03/27/03 03/27/03 03/27/03 NIV 4 Ethylenzene (2.2 0.50 1 03/27/03 03/				Dilution	Date	Date Analyzed Arizona Qualifier
trans-1,3-Dichioroproprehe ND U 1.0 1 03/27/03 03/27/03 03/27/03 03/27/03 03/27/03 03/27/03 03/27/03 03/27/03 03/27/03 03/27/03 03/27/03 03/27/03 03/27/03 NIV 4 2-Hexanone ND U 0.50 1 03/27/03	Analyte Name					
1,12-Inchloroethane 10	trans-1,3-Dichloropropene					
Company Comp						
2-Hexanone ND U 1.0 1 03/27/03 03/27/03 Dibromochloromethane ND U 0.50 1 03/27/03 03/27/03 03/27/03 Dibromochloromethane ND U 0.50 1 03/27/03 03/27/03 03/27/03 Dibromochloromethane ND U 0.50 1 03/27/03 03/27/03 03/27/03 03/27/03 03/27/03 03/27/03 03/27/03 03/27/03 03/27/03 03/27/03 03/27/03	Tetrachloroethene					
1,3-Dichloropropane	2-Hexanone					
1,2-Dibromoethane	1,3-Dichloropropane			-		
1,2-Dibromocthane	Dibromochloromethane	ND U				
Chlorobenzene	1.2-Dibromoethane					
1,1,2-letrachrorentance						
Ethylenzene 2.1 1.0 1 03/27/03 03/27/03 m.p.Xylene 1.7 0.50 1 03/27/03 03/27/03 Styrene ND U 0.50 1 03/27/03 03/27/03 Isopropylbenzene ND U 0.50 1 03/27/03 03/27/03 Bromobenzene ND U 0.50 1 03/27/03 03/27/03 1,2,3-Trichloropropane ND U 1.0 1 03/27/03 03/27/03 1,2,3-Trichloropropane ND U 0.50 1 03/27/03 03/27/03 n-Propylbenzene ND U 0.50 1 03/27/03 03/27/03 2-Chlorotoluene ND U 0.50 1 03/27/03 03/27/03 4-Chlorotoluene ND U 0.50 1 03/27/03 03/27/03 1,3,5-Trimethylbenzene ND U 0.50 1 03/27/03 03/27/03 1,2,4-Trimethylbenzene ND U 0.50 1 03/27/03 03/27/03 1,3-Dichlorobe	1,1,1,2-Tetrachloroethane	ND U	0.50	l		
m,p-Xylenes 2.1 1.0 1 03/27/03 03/27/03 o-Xylene 1.7 0.50 1 03/27/03 03/27/03 Styrene ND U 0.50 1 03/27/03 03/27/03 Isopropylbenzene ND U 0.50 1 03/27/03 03/27/03 Bromobenzene ND U 0.50 1 03/27/03 03/27/03 1,2,3-Trichloropropane ND U 0.50 1 03/27/03 03/27/03 1-Propylbenzene ND U 0.50 1 03/27/03 03/27/03 2-Chlorotoluene ND U 0.50 1 03/27/03 03/27/03 4-Chlorotoluene ND U 0.50 1 03/27/03 03/27/03 1,3,5-Trimethylbenzene ND U 0.50 1 03/27/03 03/27/03 1,2,4-Trimethylbenzene ND U 0.50 1 03/27/03 03/27/03 1,3-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 1,3-Dichlorobenzen	Ethylhenzene	2.2				
o-Xylene 1.7 0.50 1 03/27/03 03/27/03 Styrene ND U 0.50 1 03/27/03 03/27/03 Isopropylbenzene ND U 0.50 1 03/27/03 03/27/03 Bromobenzene ND U 0.50 1 03/27/03 03/27/03 Bromobenzene ND U 0.50 1 03/27/03 03/27/03 n-Propylbenzene ND U 0.50 1 03/27/03 03/27/03 2-Chlorotoluene ND U 0.50 1 03/27/03 03/27/03 4-Chlorotoluene ND U 0.50 1 03/27/03 03/27/03 1,3,5-Trimethylbenzene ND U 0.50 1 03/27/03 03/27/03 tert-Butylbenzene ND U 0.50 1 03/27/03 03/27/03 1,2,4-Trimethylbenzene 1.4 0.50 1 03/27/03 03/27/03 1,3-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 1,2-Tetrachloroethane		2.1				
Styrene		1.7	0.50	1		
Isopropylbenzene		ND U	0.50	1		
Bromobenzene ND U 0.50 1 03/27/03 03/27/03 1,2,3-Trichloropropane ND U 1.0 1 03/27/03 03/27/03 n-Propylbenzene ND U 0.50 1 03/27/03 03/27/03 2-Chlorotoluene ND U 0.50 1 03/27/03 03/27/03 4-Chlorotoluene ND U 0.50 1 03/27/03 03/27/03 1,3,5-Trimethylbenzene ND U 0.50 1 03/27/03 03/27/03 1,3,5-Trimethylbenzene ND U 0.50 1 03/27/03 03/27/03 1-2,4-Trimethylbenzene ND U 0.50 1 03/27/03 03/27/03 1,2,4-Trimethylbenzene ND U 0.50 1 03/27/03 03/27/03 1,3-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 1,3-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 1,1-2,2-Tetrachloroethane ND U 0.50 1 03/27/03 03/27/03 1,4-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 1,2,4-Trichlorobenzene ND U 0.50 1 0.50 1 03/27/03 1,2,4-Trichlorobe		ND U	0.50	1		
1,2,3-Trichloropropane		ND U	0.50	1	03/27/03	
n-Propylbenzene ND U 0.50 1 03/27/03 03/27/03 2-Chlorotoluene ND U 0.50 1 03/27/03 03/27/03 4-Chlorotoluene ND U 0.50 1 03/27/03 03/27/03 1,3,5-Trimethylbenzene ND U 0.50 1 03/27/03 03/27/03 tert-Butylbenzene ND U 0.50 1 03/27/03 03/27/03 1,2,4-Trimethylbenzene 1.4 0.50 1 03/27/03 03/27/03 sec-Butylbenzene ND U 0.50 1 03/27/03 03/27/03 1,3-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 4-Isopropyltoluene ND U 0.50 1 03/27/03 03/27/03 Bromoform ND U 0.50 1 03/27/03 03/27/03 1,1,2,2-Tetrachloroethane ND U 0.50 1 03/27/03 03/27/03 1,4-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03		ND U	1.0	1		
2-Chlorotoluene ND U 0.50 1 03/27/03 03/27/03 4-Chlorotoluene ND U 0.50 1 03/27/03 03/27/03 1,3,5-Trimethylbenzene ND U 0.50 1 03/27/03 03/27/03 tert-Butylbenzene ND U 0.50 1 03/27/03 03/27/03 1,2,4-Trimethylbenzene ND U 0.50 1 03/27/03 03/27/03 sec-Butylbenzene ND U 0.50 1 03/27/03 03/27/03 1,3-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 4-Isopropyltoluene ND U 0.50 1 03/27/03 03/27/03 Bromoform ND U 0.50 1 03/27/03 03/27/03 1,1,2,2-Tetrachloroethane ND U 0.50 1 03/27/03 03/27/03 1,4-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 1,2-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03		ND U	0.50	1		
A-Chlorotoluene		ND U	0.50	1		
1,3,5-Trimethylbenzene		ND U	0.50	1		
tert-Butylbenzene ND U 0.50 1 03/27/03 03/27/03 1,2,4-Trimethylbenzene 1.4 0.50 1 03/27/03 03/27/03 sec-Butylbenzene ND U 0.50 1 03/27/03 03/27/03 1,3-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 4-Isopropyltoluene ND U 0.50 1 03/27/03 03/27/03 Bromoform ND U 0.50 1 03/27/03 03/27/03 1,1,2,2-Tetrachloroethane ND U 0.50 1 03/27/03 03/27/03 1,4-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 1,2-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 1,2-Dibromo-3-chloropropane ND U 5.0 1 03/27/03 03/27/03 1,2,4-Trichlorobenzene ND U 0.50 1 03/27/03 03/27/03 1,2,4-Trichlorobenzene ND U 0.50 1 03/27/03 03/27/03 <td></td> <td>ND U</td> <td>0.50</td> <td>1</td> <td></td> <td></td>		ND U	0.50	1		
1,2,4-Trimethylbenzene 1.4 0.50 1 03/27/03 03/27/03 sec-Butylbenzene ND U 0.50 1 03/27/03 03/27/03 1,3-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 4-Isopropyltoluene ND U 0.50 1 03/27/03 03/27/03 Bromoform ND U 0.50 1 03/27/03 03/27/03 1,1,2,2-Tetrachloroethane ND U 1.0 1 03/27/03 03/27/03 1,4-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 1,2-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 1,2-Dibromo-3-chloropropane ND U 5.0 1 03/27/03 03/27/03 1,2,4-Trichlorobenzene ND U 0.50 1 03/27/03 03/27/03 1,2,4-Trichlorobenzene ND U 0.50 1 03/27/03 03/27/03	· ·	ND U	0.50	11		
sec-Butylbenzene ND U 0.50 1 03/27/03 03/27/03 1,3-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 4-Isopropyltoluene ND U 0.50 1 03/27/03 03/27/03 Bromoform ND U 0.50 1 03/27/03 03/27/03 1,1,2,2-Tetrachloroethane ND U 1.0 1 03/27/03 03/27/03 1,4-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 1,2-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 1,2-Dibromo-3-chloropropane ND U 5.0 1 03/27/03 03/27/03 1,2,4-Trichlorobenzene ND U 0.50 1 03/27/03 03/27/03 1,2,4-Trichlorobenzene ND U 0.50 1 03/27/03 03/27/03		1.4	0.50	1		
1,3-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 4-Isopropyltoluene ND U 0.50 1 03/27/03 03/27/03 Bromoform ND U 0.50 1 03/27/03 03/27/03 1,1,2,2-Tetrachloroethane ND U 1.0 1 03/27/03 03/27/03 1,4-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 1,2-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 1,2-Dibromo-3-chloropropane ND U 5.0 1 03/27/03 03/27/03 1,2,4-Trichlorobenzene ND U 0.50 1 03/27/03 03/27/03 1,2,4-Trichlorobenzene ND U 0.50 1 03/27/03 03/27/03		ND U	0.50	1		
4-Isopropyltoluene ND U 0.50 1 03/27/03 03/27/03 Bromoform ND U 0.50 1 03/27/03 03/27/03 1,1,2,2-Tetrachloroethane ND U 1.0 1 03/27/03 03/27/03 1,4-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 1,2-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 n-Butylbenzene ND U 0.50 1 03/27/03 03/27/03 1,2-Dibromo-3-chloropropane ND U 5.0 1 03/27/03 03/27/03 1,2,4-Trichlorobenzene ND U 0.50 1 03/27/03 03/27/03		ND U	0.50	1	03/27/03	03/27/03
Bromoform ND U 0.50 1 03/27/03 03/27/03 1,1,2,2-Tetrachloroethane ND U 1.0 1 03/27/03 03/27/03 1,4-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 1,2-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 n-Butylbenzene ND U 0.50 1 03/27/03 03/27/03 1,2-Dibromo-3-chloropropane ND U 5.0 1 03/27/03 03/27/03 1,2,4-Trichlorobenzene ND U 0.50 1 03/27/03 03/27/03		ND U	0.50	1		
1,1,2,2-Tetrachloroethane ND U 1.0 1 03/27/03 03/27/03 1,4-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 1,2-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 n-Butylbenzene ND U 0.50 1 03/27/03 03/27/03 1,2-Dibromo-3-chloropropane ND U 5.0 1 03/27/03 03/27/03 1,2,4-Trichlorobenzene ND U 0.50 1 03/27/03 03/27/03		ND U	0.50	1		
1,4-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 1,2-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 n-Butylbenzene ND U 0.50 1 03/27/03 03/27/03 1,2-Dibromo-3-chloropropane ND U 5.0 1 03/27/03 03/27/03 1,2,4-Trichlorobenzene ND U 0.50 1 03/27/03 03/27/03		ND U	1.0	1	03/27/03	03/27/03
1,2-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 n-Butylbenzene ND U 0.50 1 03/27/03 03/27/03 1,2-Dibromo-3-chloropropane ND U 5.0 1 03/27/03 03/27/03 1,2,4-Trichlorobenzene ND U 0.50 1 03/27/03 03/27/03		ND U	0.50	1		
n-Butylbenzene ND U 0.50 1 03/27/03 03/27/03 1,2-Dibromo-3-chloropropane ND U 5.0 1 03/27/03 03/27/03 1,2,4-Trichlorobenzene ND U 0.50 1 03/27/03 03/27/03			0.50	1		
1,2-Dibromo-3-chloropropane ND U 5.0 1 03/27/03 03/27/03 1,2,4-Trichlorobenzene ND U 0.50 1 03/27/03 03/27/03			0.50	1	03/27/03	
1,2,4-Trichlorobenzene ND U 0.50 1 03/27/03 03/27/03 1,2,4-Trichlorobenzene ND U 0.50 1 03/27/03 03/27/03		ND U	5.0	1		
1,2,4-11101110110010001120110	-		0.50	1		
				1	03/27/03	03/27/03

Commen	ts:

000009

Merged

Analytical Results

Client: Project: BE&K Terranext WVBA/#03103154

Sample Matrix:

Water

Service Request: X2300226

Date Collected: 03/17/2003

Date Received: 03/17/2003

Volatile Organic Compounds

Sample Name:

AVB26-0100-19094

Lab Code:

X2300226-001

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

			Dilution	Date	Date	
Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed	Arizona Qualifier
Naphthalene 1,2,3-Trichlorobenzene	ND U ND U	3.0 0.50	1 1	03/27/03 03/27/03	03/27/03 03/27/03	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Arizona Qualifier	
Dibromofluoromethane	107	84-113	03/27/03		
Toluene-d8	112	68-126	03/27/03		
4-Bromofluorobenzene	106	79-113	03/27/03		

Comments:

000020

Merged

Analytical Results

Client: Project: BE&K Terranext WVBA/#03103154

Sample Matrix:

Water

Service Request: X2300226

Date Collected: 03/17/2003

Date Received: 03/17/2003

Volatile Organic Compounds

Sample Name:

AVB99-0100-03100

Lab Code:

X2300226-002

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

			Dilution	Date	Date	
Analyte Name	Result Q	MRL	Factor	Extracted		Arizona Qualifier
Dichlorodifluoromethane	ND U	3.0	1	03/27/03	03/27/03	
Chloromethane	ND U	2.0	1	03/27/03	03/27/03	
Vinyl Chloride	ND U	1.0	1	03/27/03	03/27/03	
Bromomethane	ND U	1.0	1	03/27/03	03/27/03	
Chloroethane	ND U	1.0	1	03/27/03	03/27/03	
Trichlorofluoromethane	ND U	1.0	1	03/27/03	03/27/03	
1,1,2-Trichlorotrifluoroethane	ND U	1.0	1	03/27/03	03/27/03	L1
1,1-Dichloroethene	1.1	1.0	1	03/27/03		Ll
Acetone	ND U	10	1	03/27/03	03/27/03	
Iodomethane	ND U	2.0	1	03/27/03	03/27/03	
Carbon Disulfide	ND U	2.0	1	03/27/03	03/27/03	
Methylene Chloride	ND U	1.0	1	03/27/03	03/27/03	
Methyl tert-Butyl Ether	ND U	1.0	1	03/27/03	03/27/03	,
trans-1,2-Dichloroethene	ND U	0.50	1	03/27/03	03/27/03	
1,1-Dichloroethane	ND U	0.50	1	03/27/03	03/27/03	
Vinyl Acetate	ND U	3.0	1	03/27/03	03/27/03	
2,2-Dichloropropane	ND U	2.0	1	03/27/03	03/27/03	
2-Butanone (MEK)	ND U	8.0	1	03/27/03	03/27/03	
cis-1,2-Dichloroethene	0.56	0.50	1	03/27/03	03/27/03	
Bromochloromethane	ND U	0.50	1	03/27/03	03/27/03	
Chloroform	1.3	1.0	1	03/27/03	03/27/03	
1,1,1-Trichloroethane	ND U	0.50	1	03/27/03	03/27/03	
Carbon Tetrachloride	ND U	0.50	1	03/27/03	03/27/03	
1,1-Dichloropropene	ND U	0.50	1	03/27/03	03/27/03	L1
Benzene	ND U	0.50	1	03/27/03	03/27/03	
1,2-Dichloroethane	ND U	0.50	1	03/27/03	03/27/03	
Trichloroethene	2.3	0.50	1	03/27/03	03/27/03	
1,2-Dichloropropane	ND U	0.50	1	03/27/03	03/27/03	
Dibromomethane	ND U	0.50	1	03/27/03	03/27/03	
Bromodichloromethane	ND U	0.50	1	03/27/03	03/27/03	
cis-1,3-Dichloropropene	ND U	0.50	1	03/27/03	03/27/03	
4-Methyl-2-pentanone (MIBK)	ND U	8.0	1	03/27/03	03/27/03	
Toluene	ND U	0.50	1	03/27/03	03/27/03	
10140110						

Comments:

Printed: 04/01/2003 15:57:39 L:\STEALTH\CRYSTAL.RPT\Formlm.rpt

Merged

Form 1A - Organic

000011

Page 1 of 3

SuperSet Reference: RR3140

Analytical Results

Client: Project: BE&K Terranext WVBA/#03103154

Sample Matrix:

Water

Service Request: X2300226

Date Collected: 03/17/2003

Date Received: 03/17/2003

Volatile Organic Compounds

Sample Name:

AVB99-0100-03100

Lab Code:

X2300226-002

Extraction Method: Analysis Method:

EPA 5030B 8260B

Units: ug/L Basis: NA

Level: Low

	D 14 0	MDI	Dilution Factor	Date Extracted	Date Analyzed	Arizona Qualifier
Analyte Name	Result Q	MRL	1	03/27/03	03/27/03	
trans-1,3-Dichloropropene	ND U	1.0	1	03/27/03	03/27/03	
1,1,2-Trichloroethane	ND U	1.0 0.50	1	03/27/03	03/27/03	
Tetrachloroethene	0.66			03/27/03	03/27/03	N1V4
2-Hexanone	ND U	5.0	1	03/27/03	03/27/03	111 14
1,3-Dichloropropane	ND U	1.0	1	03/27/03	03/27/03	
Dibromochloromethane	ND U	0.50	1		03/27/03	
1,2-Dibromoethane	ND U	0.50	1	03/27/03	03/27/03	
Chlorobenzene	ND U	0.50	1	03/27/03	03/27/03	
1,1,1,2-Tetrachloroethane	ND U	0.50	1	03/27/03		
Ethylbenzene	ND U	0.50	1	03/27/03	03/27/03	
m,p-Xylenes	ND U	1.0	1	03/27/03	03/27/03	
o-Xylene	ND U	0.50	1	03/27/03	03/27/03	
Styrene	ND U	0.50	1	03/27/03	03/27/03	
Isopropylbenzene	ND U	0.50	1	03/27/03	03/27/03	
Bromobenzene	ND U	0.50	1	03/27/03	03/27/03	
1,2,3-Trichloropropane	ND U	1.0	1	03/27/03	03/27/03	
n-Propylbenzene	ND U	0.50	1	03/27/03	03/27/03	
2-Chlorotoluene	ND U	0.50	1	03/27/03	03/27/03	
4-Chlorotoluene	ND U	0.50	1	03/27/03	03/27/03	
1.3.5-Trimethylbenzene	ND U	0.50	1	03/27/03	03/27/03	
tert-Butylbenzene	ND U	0.50	1	03/27/03	03/27/03	
	ND U	0.50	1	03/27/03	03/27/03	
1,2,4-Trimethylbenzene	ND U	0.50	1	03/27/03	03/27/03	
sec-Butylbenzene	ND U	0.50	1 .	03/27/03	03/27/03	
1,3-Dichlorobenzene	ND U	0.50	1	03/27/03	03/27/03	
4-Isopropyltoluene	ND U	0.50	1	03/27/03	03/27/03	
Bromoform	ND U	1.0	1	03/27/03	03/27/03	
1,1,2,2-Tetrachloroethane	ND U	0.50	1	03/27/03	03/27/03	
1,4-Dichlorobenzene		0.50	1	03/27/03	03/27/03	
1,2-Dichlorobenzene	ND U ND U	0.50	1	03/27/03	03/27/03	
n-Butylbenzene			1	03/27/03	03/27/03	
1,2-Dibromo-3-chloropropane	ND U	5.0 0.50	1	03/27/03	03/27/03	
1,2,4-Trichlorobenzene	ND U ND U	0.50	1	03/27/03	03/27/03	
Hexachlorobutadiene	עאו ע	0.50				

Comments:

000012

Printed: 04/01/2003 15:57:39 L:\STEALTH\CRYSTAL.RPT\Formlm.rpt

Merged

Form 1A - Organic

Page 2 of 3

Analytical Results

Client: **Project:** BE&K Terranext WVBA/#03103154

Sample Matrix:

Water

Service Request: X2300226

Date Collected: 03/17/2003

Date Received: 03/17/2003

Volatile Organic Compounds

Sample Name:

AVB99-0100-03100

Lab Code:

X2300226-002

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

			Dilution	Date	Date	
Analyte Name	Result O	MRL	Factor	Extracted	Analyzed	Arizona Qualifier
Naphthalene 1,2,3-Trichlorobenzene	ND U ND U	3.0 0.50	1 1	03/27/03 03/27/03	03/27/03 03/27/03	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Arizona Qualifier	
Dibromofluoromethane	105	84-113	03/27/03		
Toluene-d8	109	68-126	03/27/03		
4-Bromofluorobenzene	106	79-113	03/27/03		

Comments:

000013

Analytical Results

Client: Project: BE&K Terranext WVBA/#03103154

Sample Matrix:

Water

Service Request: X2300226

Date Collected: 03/17/2003 **Date Received:** 03/17/2003

Volatile Organic Compounds

Sample Name: Lab Code:

AVB85-0100-05103 X2300226-003

Extraction Method:

Analysis Method:

EPA 5030B 8260B

Units: ug/L Basis: NA

Level: Low

			Dilution	Date	Date	
Analyte Name	Result Q	MRL	Factor	Extracted		Arizona Qualifier
Dichlorodifluoromethane	ND U	3.0	1	03/27/03	03/27/03	
Chloromethane	ND U	2.0	1	03/27/03	03/27/03	
Vinyl Chloride	ND U	1.0	1	03/27/03	03/27/03	
Bromomethane	ND U	1.0	1	03/27/03	03/27/03	
Chloroethane	ND U	1.0	1	03/27/03	03/27/03	
Trichlorofluoromethane	ND U	1.0	1	03/27/03	03/27/03	
1,1,2-Trichlorotrifluoroethane	ND U	1.0	1	03/27/03	03/27/03	L1
1,1-Dichloroethene	5.1	1.0	1	03/27/03	03/27/03	L1
Acetone	ND U	10	1	03/27/03	03/27/03	
Iodomethane	ND U	2.0	1	03/27/03	03/27/03	•
Carbon Disulfide	ND U	2.0	1	03/27/03	03/27/03	
Methylene Chloride	ND U	1.0	1	03/27/03	03/27/03	
Methyl tert-Butyl Ether	ND U	1.0	1	03/27/03	03/27/03	
trans-1,2-Dichloroethene	ND U	0.50	1	03/27/03	03/27/03	
1,1-Dichloroethane	3.2	0.50	1	03/27/03	03/27/03	
	ND U	3.0	1	03/27/03	03/27/03	
Vinyl Acetate 2,2-Dichloropropane	ND U	2.0	1	03/27/03	03/27/03	
2-Butanone (MEK)	ND U	8.0	1	03/27/03	03/27/03	
cis-1,2-Dichloroethene	25	0.50	1	03/27/03	03/27/03	
Bromochloromethane	ND U	0.50	1	03/27/03	03/27/03	
Chloroform	1.1	1.0	1	03/27/03	03/27/03	
	5.0	0.50	1	03/27/03	03/27/03	
1,1,1-Trichloroethane Carbon Tetrachloride	ND U	0.50	1	03/27/03	03/27/03	
1,1-Dichloropropene	ND U	0.50	1	03/27/03	03/27/03	Ll
	ND U	0.50	1	03/27/03	03/27/03	
Benzene	ND U	0.50	1	03/27/03	03/27/03	
1,2-Dichloroethane Trichloroethene	34	0.50	1	03/27/03	03/27/03	
	ND U	0.50	1	03/27/03	03/27/03	
1,2-Dichloropropane	ND U	0.50	1	03/27/03	03/27/03	
Dibromomethane Bromodichloromethane	ND U	0.50	1	03/27/03	03/27/03	
	ND U	0.50	1	03/27/03	03/27/03	
cis-1,3-Dichloropropene	ND U ND U	8.0	1	03/27/03	03/27/03	
4-Methyl-2-pentanone (MIBK)	ND U	0.50	1	03/27/03	03/27/03	
Toluene	ND 0	0.20				

Comments:	
-----------	--

000014

Analytical Results

Client: Project:

BE&K Terranext WVBA/#03103154

Sample Matrix:

Water

Service Request: X2300226

Date Collected: 03/17/2003

Date Collected: 03/17/2003 **Date Received:** 03/17/2003

Volatile Organic Compounds

Sample Name: Lab Code: AVB85-0100-05103

70 4 41 30

X2300226-003

Extraction Method: Analysis Method:

EPA 5030B 8260B Units: ug/L Basis: NA

Level: Low

	n14	0	MRL	Dilution Factor	Date Extracted	Date Analyzed	Arizona Qualifier
Analyte Name	Result		1.0	1	03/27/03	03/27/03	
trans-1,3-Dichloropropene	ND	U	1.0	1	03/27/03	03/27/03	
1,1,2-Trichloroethane	2.0 69		0.50	1	03/27/03	03/27/03	
Tetrachloroethene				1	03/27/03	03/27/03	N1V4
2-Hexanone	ND		5.0		03/27/03	03/27/03	141 4 1
1,3-Dichloropropane	ND		1.0	1 1	03/27/03	03/27/03	
Dibromochloromethane	ND		0.50				
1,2-Dibromoethane	ND		0.50	1	03/27/03	03/27/03	
Chlorobenzene	ND		0.50	1	03/27/03	03/27/03	
1,1,1,2-Tetrachloroethane	ND	U	0.50	1	03/27/03	03/27/03	
Ethylbenzene	ND	U	0.50	1	03/27/03	03/27/03	
m,p-Xylenes	ND	U	1.0	1	03/27/03	03/27/03	
o-Xylene	ND	U	0.50	1	03/27/03	03/27/03	
Styrene	ND	U	0.50	1	03/27/03	03/27/03	
Isopropylbenzene	ND		0.50	1	03/27/03	03/27/03	
Bromobenzene	ND		0.50	1	03/27/03	03/27/03	
	ND		1.0	1	03/27/03	03/27/03	
1,2,3-Trichloropropane	ND		0.50	1	03/27/03	03/27/03	
n-Propylbenzene 2-Chlorotoluene	ND		0.50	1	03/27/03	03/27/03	
	ND		0.50	1	03/27/03	03/27/03	
4-Chlorotoluene	ND ND		0.50	î	03/27/03	03/27/03	
1,3,5-Trimethylbenzene	ND		0.50	1	03/27/03	03/27/03	
tert-Butylbenzene			0.50	1	03/27/03	03/27/03	
1,2,4-Trimethylbenzene	ND ND		0.50	1	03/27/03	03/27/03	
sec-Butylbenzene	ND ND		0.50	1	03/27/03	03/27/03	
1,3-Dichlorobenzene				1	03/27/03	03/27/03	
4-Isopropyltoluene		U	0.50	1	03/27/03	03/27/03	
Bromoform		U	0.50	1	03/27/03	03/27/03	
1,1,2,2-Tetrachloroethane		U	1.0				
1,4-Dichlorobenzene		U	0.50	1	03/27/03	03/27/03 03/27/03	
1,2-Dichlorobenzene		U	0.50	1	03/27/03	03/27/03	
n-Butylbenzene	NI	U	0.50	1	03/27/03		
1,2-Dibromo-3-chloropropane		U	5.0	1	03/27/03	03/27/03	
1,2,4-Trichlorobenzene	NI	U	0.50	1	03/27/03	03/27/03	
Hexachlorobutadiene	NI	U	0.50	1	03/27/03	03/27/03	

Comments:	
Communities.	

Printed: 04/01/2003 15:57:49 L:\STEALTH\CRYSTAL.RPT\Formlm.rpt

Form 1A - Organic 000015

Page 2 of 3

Analytical Results

Client:

BE&K Terranext WVBA/#03103154

Project: Sample Matrix:

Water

Service Request: X2300226

Date Collected: 03/17/2003

Date Received: 03/17/2003

Volatile Organic Compounds

Sample Name:

AVB85-0100-05103

Lab Code:

X2300226-003

Extraction Method: Analysis Method:

EPA 5030B

8260B

Units: ug/L Basis: NA

Level: Low

			Dilution	Date Extracted	Date Analyzed	Arizona Qualifier
Analyte Name	Result Q ND U	3.0	Factor 1	03/27/03	03/27/03	Mizona Quin-
Naphthalene 1,2,3-Trichlorobenzene	ND U	0.50	1	03/27/03	03/27/03	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Arizona Qualifier
Dibromofluoromethane	106	84-113	03/27/03	
Toluene-d8	111	68-126	03/27/03	
4-Bromofluorobenzene	105	79-113	03/27/03	

Comments:

RR3140

SuperSet Reference:

Analytical Results

Client: Project: BE&K Terranext WVBA/#03103154

Sample Matrix:

Water

Service Request: X2300226

Date Collected: 03/17/2003

Date Received: 03/17/2003

Volatile Organic Compounds

Sample Name:

AVB83-0100-05106

Lab Code:

X2300226-004

Extraction Metho Analysis Method:

Units: ug/L Basis: NA

Level: Low

od:	EPA 5030B
l:	8260B

		•	MDI	Dilution Factor	Date Extracted	Date Analyzed	Arizona Qualifier
Analyte Name	Result		MRL		03/27/03	03/27/03	1111201111 Q
Dichlorodifluoromethane	ND		3.0	1 1	03/27/03	03/27/03	
Chloromethane	ND		2.0	1	03/27/03	03/27/03	
Vinyl Chloride	ND		1.0			03/27/03	
Bromomethane	ND		1.0	1	03/27/03 03/27/03	03/27/03	
Chloroethane	ND		1.0	1	03/27/03	03/27/03	
Trichlorofluoromethane	ND		1.0	1			T 1
1,1,2-Trichlorotrifluoroethane	ND		1.0	1	03/27/03		L1
1,1-Dichloroethene	ND		1.0	1	03/27/03		LI
Acetone	ND	U	10	1	03/27/03	03/27/03	
Iodomethane	ND	U	2.0	1	03/27/03	03/27/03	
Carbon Disulfide	ND	U	2.0	1	03/27/03	03/27/03	
Methylene Chloride	ND	U	1.0	1	03/27/03	03/27/03	
Methyl tert-Butyl Ether	ND	IJ	1.0	1	03/27/03	03/27/03	
trans-1,2-Dichloroethene	ND		0.50	1	03/27/03	03/27/03	
1,1-Dichloroethane	ND		0.50	1	03/27/03	03/27/03	
	ND		3.0	1	03/27/03	03/27/03	
Vinyl Acetate	ND ND		2.0	1	03/27/03	03/27/03	
2,2-Dichloropropane	ND		8.0	1	03/27/03	03/27/03	
2-Butanone (MEK)	ND		0,50	1	03/27/03	03/27/03	
cis-1,2-Dichloroethene	ND ND		0.50	1	03/27/03	03/27/03	
Bromochloromethane	ND ND		1.0	1	03/27/03	03/27/03	
Chloroform			0,50	1	03/27/03	03/27/03	
1,1,1-Trichloroethane	ND		0.50	1	03/27/03	03/27/03	
Carbon Tetrachloride		U	0.50	1	03/27/03	03/27/03	Ll
1,1-Dichloropropene		U			03/27/03	03/27/03	
Benzene		U	0.50	1	03/27/03	03/27/03	
1,2-Dichloroethane		U	0.50	1 1	03/27/03	03/27/03	
Trichloroethene	11		0.50			03/27/03	
1,2-Dichloropropane		U	0.50	1	03/27/03		
Dibromomethane		U	0.50	1	03/27/03	03/27/03 03/27/03	
Bromodichloromethane	NL	U	0.50	1	03/27/03		
cis-1,3-Dichloropropene		U	0.50	1	03/27/03	03/27/03	
4-Methyl-2-pentanone (MIBK)	NI	U	8.0	1	03/27/03	03/27/03	
Toluene	NI	U	0.50	1	03/27/03	03/27/03	

Comments:

Printed: 04/01/2003 15:58:00 L:\STEALTH\CRYSTAL.RPT\Form1m.rpt

Merged

Form 1A - Organic

000017

1 of 3 Page

SuperSet Reference:

RR3140

Analytical Results

Client: **Project:** BE&K Terranext WVBA/#03103154

Sample Matrix:

Water

Service Request: X2300226

Date Collected: 03/17/2003 **Date Received:** 03/17/2003

Volatile Organic Compounds

Sample Name: Lab Code:

AVB83-0100-05106 X2300226-004

Extraction Method: Analysis Method:

EPA 5030B 8260B

Units: ug/L Basis: NA

Level: Low

				Dilution	Date	Date	
Analyte Name	Result	Q	MRL	Factor	Extracted		Arizona Qualifier
trans-1,3-Dichloropropene	ND	U	1.0	1	03/27/03	03/27/03	
1,1,2-Trichloroethane	ND	U	1.0	1	03/27/03	03/27/03	
Tetrachloroethene	48		0.50	1	03/27/03	03/27/03	
2-Hexanone	ND	IJ	5.0	1	03/27/03	03/27/03	N1V4
1,3-Dichloropropane	ND		1.0	1	03/27/03	03/27/03	
Dibromochloromethane	ND		0.50	1	03/27/03	03/27/03	
1,2-Dibromoethane	ND		0.50	1	03/27/03	03/27/03	
Chlorobenzene	ND		0.50	1	03/27/03	03/27/03	
1,1,1,2-Tetrachloroethane	ND		0.50	1	03/27/03	03/27/03	
	ND		0.50	1	03/27/03	03/27/03	
Ethylbenzene	ND ND		1.0	1	03/27/03	03/27/03	
m,p-Xylenes	ND ND		0.50	1	03/27/03	03/27/03	
o-Xylene			0.50	1	03/27/03	03/27/03	
Styrene	ND		0.50	1	03/27/03	03/27/03	
Isopropylbenzene	ND ND		0.50	1	03/27/03	03/27/03	
Bromobenzene				1	03/27/03	03/27/03	
1,2,3-Trichloropropane	ND		1.0	1	03/27/03	03/27/03	
n-Propylbenzene	ND		0.50	1	03/27/03	03/27/03	
2-Chlorotoluene	ND		0.50				
4-Chlorotoluene	ND		0.50	1	03/27/03	03/27/03 03/27/03	
1,3,5-Trimethylbenzene	ND		0.50	1	03/27/03	03/27/03	
tert-Butylbenzene	ND	U	0.50	11	03/27/03		
1,2,4-Trimethylbenzene	ND	U	0.50	1	03/27/03	03/27/03	
sec-Butylbenzene	ND	U	0.50	1	03/27/03	03/27/03	
1,3-Dichlorobenzene	ND	U	0.50	1	03/27/03	03/27/03	
4-Isopropyltoluene	ND	U	0.50	1	03/27/03	03/27/03	
Bromoform	ND		0.50	1	03/27/03	03/27/03	
1,1,2,2-Tetrachloroethane	ND	U	1.0	1	03/27/03	03/27/03	
1,4-Dichlorobenzene	ND	U	0.50	1	03/27/03	03/27/03	
1,2-Dichlorobenzene	ND		0.50	1	03/27/03	03/27/03	
n-Butylbenzene	ND		0.50	1	03/27/03	03/27/03	
1,2-Dibromo-3-chloropropane		U	5.0	1	03/27/03	03/27/03	
1,2,4-Trichlorobenzene		U	0.50	1	03/27/03	03/27/03	
Hexachlorobutadiene		U	0.50	1	03/27/03	03/27/03	
nexaciiioroutautene	.,10						

Comments:

000018

Printed: 04/01/2003 15:58:00 $L: \verb|\STEALTH| CRYSTAL.RPT| Form lm.rpt$

Analytical Results

Client:

BE&K Terranext WVBA/#03103154

Project: Sample Matrix:

Water

Service Request: X2300226

Date Collected: 03/17/2003

Date Received: 03/17/2003

Volatile Organic Compounds

Sample Name:

AVB83-0100-05106

Lab Code:

X2300226-004

Extraction Method:

8260B

Analysis Method:

EPA 5030B

Units: ug/L Basis: NA

Level: Low

	D 14 0	MRL	Dilution Factor	Date Extracted	Date Analyzed	Arizona Qualifier
Naphthalene 1 2 3-Trichlorobenzene	ND U ND U	3.0 0.50	1 1	03/27/03 03/27/03	03/27/03 03/27/03	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Arizona Qualifier
Dibromofluoromethane	107	84-113	03/27/03	
Toluene-d8	110	68-126	03/27/03	
4-Bromofluorobenzene	105	79-113	03/27/03	

Comments:

SuperSet Reference:

Analytical Results

Client: Project: BE&K Terranext WVBA/#03103154

Sample Matrix:

Water

Service Request: X2300226

Date Collected: 03/17/2003 **Date Received:** 03/17/2003

Volatile Organic Compounds

Sample Name: Lab Code:

AVB83-0104-1000 X2300226-005

Extraction Method: Analysis Method:

EPA 5030B 8260B

Units: ug/L Basis: NA

Level: Low

			Dilution	Date	Date	0 110
Analyte Name	Result Q	MRL	Factor	Extracted		Arizona Qualifier
Dichlorodifluoromethane	ND U	3.0	1	03/27/03	03/27/03	
Chloromethane	ND U	2.0	1	03/27/03	03/27/03	
Vinyl Chloride	ND U	1.0	1	03/27/03	03/27/03	
	ND U	1.0	1	03/27/03	03/27/03	
Bromomethane	ND U	1.0	1	03/27/03	03/27/03	
Chloroethane	ND U	1.0	1	03/27/03	03/27/03	
Trichlorofluoromethane	ND U	1.0	1	03/27/03	03/27/03	L1
1,1,2-Trichlorotrifluoroethane	ND U	1.0	1	03/27/03	03/27/03	L1
1,1-Dichloroethene	ND U	10	1	03/27/03	03/27/03	
Acetone		2.0	1	03/27/03	03/27/03	
Iodomethane	ND U	2.0	1	03/27/03	03/27/03	
Carbon Disulfide	ND U ND U	1.0	ī	03/27/03	03/27/03	
Methylene Chloride			1	03/27/03	03/27/03	
Methyl tert-Butyl Ether	ND U	1.0 0.50	1	03/27/03	03/27/03	
trans-1,2-Dichloroethene	ND U	0.50	1	03/27/03	03/27/03	
1,1-Dichloroethane	ND U			03/27/03	03/27/03	
Vinyl Acetate	ND U	3.0	1	03/27/03	03/27/03	
2,2-Dichloropropane	ND U	2.0	1 1	03/27/03	03/27/03	
2-Butanone (MEK)	ND U	8.0			03/27/03	
cis-1,2-Dichloroethene	ND U	0.50	1	03/27/03 03/27/03	03/27/03	
Bromochloromethane	ND U	0.50	1	03/27/03	03/27/03	
Chloroform	ND U	1.0	1			
1,1,1-Trichloroethane	ND U	0.50	1	03/27/03	03/27/03	
Carbon Tetrachloride	ND U	0.50	1	03/27/03	03/27/03 03/27/03	L1
1,1-Dichloropropene	ND U	0.50	1	03/27/03		L1
	ND U	0.50	1	03/27/03	03/27/03	
Benzene 1.2-Dichloroethane	ND U	0.50	1	03/27/03	03/27/03	
Trichloroethene	ND U	0.50	1	03/27/03	03/27/03	
	ND U	0.50	1	03/27/03	03/27/03	
1,2-Dichloropropane	ND U	0.50	1	03/27/03	03/27/03	
Dibromomethane	ND U	0.50	1	03/27/03	03/27/03	
Bromodichloromethane	ND U	0.50	1	03/27/03	03/27/03	1
cis-1,3-Dichloropropene	ND U ND U	8.0	1	03/27/03	03/27/03	, ,
4-Methyl-2-pentanone (MIBK)	ND U	0.50	1	03/27/03	03/27/03	
Toluene	ND U	0.50				

Comments:

 $L: \verb|\STEALTH| CRYSTAL.RPT| \verb|\Form| lm.rpt|$

Form 1A - Organic

0000020

RR3140

Analytical Results

Client: Project: BE&K Terranext WVBA/#03103154

Sample Matrix:

Water

Service Request: X2300226

Date Collected: 03/17/2003 **Date Received:** 03/17/2003

Volatile Organic Compounds

Sample Name: Lab Code: AVB83-0104-1000 X2300226-005

Extraction Method: Analysis Method:

EPA 5030B 8260B Units: ug/L Basis: NA

Level: Low

				Dilution	Date	Date	
Analyte Name	Result	Q	MRL	Factor	Extracted		Arizona Qualifier
trans-1,3-Dichloropropene	ND	U	1.0	1	03/27/03	03/27/03	
1.1,2-Trichloroethane	ND	U	1.0	1	03/27/03	03/27/03	
Tetrachloroethene	ND	U	0.50	1	03/27/03	03/27/03	
2-Hexanone	ND	U	5.0	1	03/27/03		N1V4
1,3-Dichloropropane	ND	U	1.0	1	03/27/03	03/27/03	
Dibromochloromethane	ND	U	0.50	1	03/27/03	03/27/03	
1,2-Dibromoethane	ND	U	0.50	1	03/27/03	03/27/03	
Chlorobenzene	ND		0.50	1	03/27/03	03/27/03	
1,1,1,2-Tetrachloroethane	ND		0.50	1	03/27/03	03/27/03	
Ethylbenzene	ND	U	0.50	1	03/27/03	03/27/03	
m,p-Xylenes	ND		1.0	1	03/27/03	03/27/03	
o-Xylene	ND		0.50	l	03/27/03	03/27/03	
Styrene	ND		0.50	1	03/27/03	03/27/03	
Isopropylbenzene	ND		0.50	1	03/27/03	03/27/03	
Bromobenzene	ND		0.50	1	03/27/03	03/27/03	
	ND		1.0	1	03/27/03	03/27/03	
1,2,3-Trichloropropane n-Propylbenzene	ND		0.50	1	03/27/03	03/27/03	
2-Chlorotoluene	ND		0.50	1	03/27/03	03/27/03	
4-Chlorotoluene	ND		0.50	1	03/27/03	03/27/03	
1,3,5-Trimethylbenzene	ND		0.50	1	03/27/03	03/27/03	
tert-Butylbenzene	ND		0.50	1	03/27/03	03/27/03	
1,2,4-Trimethylbenzene	ND		0.50	1	03/27/03	03/27/03	
sec-Butylbenzene	ND		0.50	1	03/27/03	03/27/03	
1,3-Dichlorobenzene	ND		0.50	1	03/27/03	03/27/03	
4-Isopropyltoluene	ND		0.50	1	03/27/03	03/27/03	
Bromoform	ND		0.50	1	03/27/03	03/27/03	
1,1,2,2-Tetrachloroethane	ND		1.0	1	03/27/03	03/27/03	
1,4-Dichlorobenzene	ND		0.50	1	03/27/03	03/27/03	
1,4-Dichlorobenzene	ND		0.50	1	03/27/03	03/27/03	
n-Butylbenzene	ND		0.50	1	03/27/03	03/27/03	
1,2-Dibromo-3-chloropropane	ND		5.0	1	03/27/03	03/27/03	
1,2,4-Trichlorobenzene	ND ND		0.50	1	03/27/03	03/27/03	
Hexachlorobutadiene	ND ND		0.50	1	03/27/03	03/27/03	
riexaciiioiouttauiciie			VIII -				

Comments:

000021

SuperSet Reference:

Analytical Results

Client:

BE&K Terranext

Project: **Sample Matrix:** WVBA/#03103154 Water

Service Request: X2300226

Date Collected: 03/17/2003

Date Received: 03/17/2003

Volatile Organic Compounds

Sample Name:

AVB83-0104-1000

Lab Code:

X2300226-005

Analysis Method:

EPA 5030B

Units: ug/L Basis: NA

Level: Low

Extraction Method: 8260B

			Dilution	Date	Date	
Analyta Name	Result O	MRL	Factor	Extracted	Analyzed	Arizona Qualifier
Naphthalene 1,2,3-Trichlorobenzene	ND U ND U	3.0 0.50	1 1	03/27/03 03/27/03	03/27/03 03/27/03	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Arizona Qualifier
Dibromofluoromethane	104	84-113	03/27/03	
Toluene-d8	110	68-126	03/27/03	
4-Bromofluorobenzene	105	79-113	03/27/03	

Comments:

Analytical Results

Client: Project: BE&K Terranext WVBA/#03103154

Sample Matrix:

Water

Service Request: X2300226

Date Collected: 03/17/2003

Date Received: 03/17/2003

Volatile Organic Compounds

Sample Name: Lab Code: AVB83-0102-1000 X2300226-006

Extraction Method: Analysis Method:

EPA 5030B 8260B Units: ug/L Basis: NA

Level: Low

ona Qualifier

Comments:

Printed: 04/01/2003 15:58:22 L:\STEALTH\CRYSTAL.RPT\Form\m.rpt

Merged

Form 1A - Organic

000053

Page 1 of 3 RR3140

Analytical Results

Client: **Project:** BE&K Terranext WVBA/#03103154

Sample Matrix:

Water

Service Request: X2300226

Date Collected: 03/17/2003 **Date Received:** 03/17/2003

Volatile Organic Compounds

Sample Name: Lab Code:

AVB83-0102-1000 X2300226-006

Extraction Method: Analysis Method:

EPA 5030B 8260B

Units: ug/L Basis: NA

Level: Low

				Dilution	Date	Date	
Analyte Name	Result	Q	MRL	Factor	Extracted		Arizona Qualifier
trans-1,3-Dichloropropene	ND	U	1.0	1	03/27/03	03/27/03	
1,1,2-Trichloroethane	ND	U	1.0	1	03/27/03	03/27/03	
Tetrachloroethene	ND	U	0.50	1	03/27/03	03/27/03	
2-Hexanone	ND	U	5.0	1	03/27/03	03/27/03	N1V4
1,3-Dichloropropane	ND	U	1.0	1	03/27/03	03/27/03	
Dibromochloromethane	ND		0.50	1	03/27/03	03/27/03	
1.2-Dibromoethane	ND	U	0.50	1	03/27/03	03/27/03	
Chlorobenzene	ND		0.50	1	03/27/03	03/27/03	
1,1,1,2-Tetrachloroethane	ND		0.50	1	03/27/03	03/27/03	
Ethylbenzene	ND	U	0.50	1	03/27/03	03/27/03	
m,p-Xylenes	ND		1.0	1	03/27/03	03/27/03	
o-Xylene	ND		0.50	1	03/27/03	03/27/03	
	ND	IJ	0.50	1	03/27/03	03/27/03	
Styrene Isopropylbenzene	ND		0.50	1	03/27/03	03/27/03	
Bromobenzene	ND		0.50	1	03/27/03	03/27/03	
	ND		1.0	1	03/27/03	03/27/03	
1,2,3-Trichloropropane	ND		0.50	1	03/27/03	03/27/03	
n-Propylbenzene 2-Chlorotoluene	ND		0.50	1	03/27/03	03/27/03	
4-Chlorotoluene	ND		0.50	1	03/27/03	03/27/03	
1.3.5-Trimethylbenzene	ND		0.50	1	03/27/03	03/27/03	
tert-Butylbenzene	ND		0.50	1	03/27/03	03/27/03	
	ND		0.50	1	03/27/03	03/27/03	
1,2,4-Trimethylbenzene	ND ND		0.50	1	03/27/03	03/27/03	
sec-Butylbenzene 1,3-Dichlorobenzene	ND ND		0.50	1	03/27/03	03/27/03	
/	ND		0.50	1	03/27/03	03/27/03	
4-Isopropyltoluene	ND ND		0.50	1	03/27/03	03/27/03	
Bromoform 1,1,2,2-Tetrachloroethane	ND		1.0	$\overline{1}$	03/27/03	03/27/03	
, , , ,	ND		0.50	1	03/27/03	03/27/03	
1,4-Dichlorobenzene			0.50	1	03/27/03	03/27/03	
1,2-Dichlorobenzene	ND		0.50	1	03/27/03	03/27/03	
n-Butylbenzene	ND				03/27/03	03/27/03	
1,2-Dibromo-3-chloropropane	ND		5.0	1	03/27/03	03/27/03	
1,2,4-Trichlorobenzene	ND		0.50	1 1	03/27/03	03/27/03	
Hexachlorobutadiene	ND	U	0.50	1	03121103	03121103	

Comments:

Printed: 04/01/2003 15:58:22 $L: \verb|\STEALTH| CRYSTAL.RPT| Form lm.rpt$

Merged

Form 1A - Organic

2 of 3 Page

SuperSet Reference:

RR3140

Analytical Results

Client:

BE&K Terranext

Project:

WVBA/#03103154

Sample Matrix:

Water

Service Request: X2300226

Date Collected: 03/17/2003

Date Received: 03/17/2003

Volatile Organic Compounds

Sample Name:

AVB83-0102-1000

Lab Code:

X2300226-006

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

A. J. de Nomo	Result O	MRL	Dilution Factor	Date Extracted	Date Analyzed	Arizona Qualifier
Naphthalene 1,2,3-Trichlorobenzene	ND U ND U	3.0 0.50	1	03/27/03 03/27/03	03/27/03 03/27/03	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Arizona Qualifier
Dibromofluoromethane Toluene-d8 4-Bromofluorobenzene	109 110 105	84-113 68-126 79-113	03/27/03 03/27/03 03/27/03	

Comments:

Printed: 04/01/2003 15:58:22 L:\STEALTH\CRYSTAL.RPT\Form1m.rpt

Merged

Form 1A - Organic

000025

3 of 3 Page

Analytical Results

Client: Project:

BE&K Terranext WVBA/#03103154

Sample Matrix:

Water

Service Request: X2300226

Date Collected: NA
Date Received: NA

Volatile Organic Compounds

Sample Name: Lab Code: Method Blank XWG0300408-3

Extraction Method: Analysis Method:

EPA 5030B 8260B Units: ug/L Basis: NA

Level: Low

·		MRL	Dilution Factor	Date Extracted	Date Analyzed	Arizona Qualifier
Analyte Name	Result Q		1	03/27/03	03/27/03	
Dichlorodifluoromethane	ND U	3.0	1	03/27/03	03/27/03	
Chloromethane	ND U	2.0	1	03/27/03	03/27/03	
Vinyl Chloride	ND U	1.0		03/27/03	03/27/03	
Bromomethane	ND U	1.0	1 1	03/27/03	03/27/03	
Chloroethane	ND U	1.0	1	03/27/03	03/27/03	
Trichlorofluoromethane	ND U	1.0			03/27/03	Ll
1,1,2-Trichlorotrifluoroethane	ND U	1.0	1	03/27/03		Ll
1,1-Dichloroethene	ND U	1.0	1	03/27/03	03/27/03	171
Acetone	ND U	10	1	03/27/03		
	ND U	2.0	1	03/27/03	03/27/03	
Iodomethane	ND U	2.0	1	03/27/03	03/27/03	
Carbon Disulfide	ND U	1.0	1	03/27/03	03/27/03	
Methylene Chloride	ND U	1.0	1	03/27/03	03/27/03	
Methyl tert-Butyl Ether	ND U	0.50	1	03/27/03	03/27/03	
trans-1,2-Dichloroethene	ND U	0.50	1	03/27/03	03/27/03	
1,1-Dichloroethane			1	03/27/03	03/27/03	
Vinyl Acetate	ND U	3.0	1	03/27/03	03/27/03	
2,2-Dichloropropane	ND U	2.0 8.0	1	03/27/03	03/27/03	<u></u>
2-Butanone (MEK)	ND U			03/27/03	03/27/03	
cis-1,2-Dichloroethene	ND U	0.50		03/27/03	03/27/03	
Bromochloromethane	ND U	0.50	1 1	03/27/03	03/27/03	
Chloroform	ND U	1.0			03/27/03	
1,1,1-Trichloroethane	ND U	0.50	1	03/27/03	03/27/03	
Carbon Tetrachloride	ND U	0.50	1	03/27/03	03/27/03	
1.1-Dichloropropene	ND U	0.50	1	03/27/03		
	ND U	0.50	1	03/27/03	03/27/03	
Benzene	ND U	0.50	1	03/27/03	03/27/03	
1,2-Dichloroethane	ND U	0.50	1	03/27/03	03/27/03	
Trichloroethene	ND U	0.50	1	03/27/03	03/27/03	
1,2-Dichloropropane	ND U ND U	0.50	1	03/27/03	03/27/03	
Dibromomethane		0.50	1	03/27/03	03/27/03	3
Bromodichloromethane	ND U		1	03/27/03	03/27/0	3
cis-1,3-Dichloropropene	ND U	0.50	1	03/27/03		
4-Methyl-2-pentanone (MIBK)	ND U	8.0	1	03/27/03		
Toluene	ND_U	0.50	1	03/27/03		

Comments:

Printed: 04/01/2003 15:58:32 L\STEALTH\CRYSTAL.RPT\Formlm.rpt

Analytical Results

Client: Project: BE&K Terranext WVBA/#03103154

Sample Matrix:

Water

Service Request: X2300226

Date Collected: NA Date Received: NA

Volatile Organic Compounds

Sample Name: Lab Code:

Method Blank XWG0300408-3

Units: ug/L Basis: NA

Level: Low

Extraction Method:	EPA 5030B
Analysis Method:	8260B
An alvita Nama	

•			Dilution Factor	Date Extracted	Date Analyzed	Arizona Qualifier
Analyte Name	Result Q	MRL	Factor	03/27/03	03/27/03	
trans-1,3-Dichloropropene	ND U	1.0	1	03/27/03	03/27/03	
1,1,2-Trichloroethane	ND U	1.0	1	03/27/03	03/27/03	
Tetrachloroethene	ND U	0.50		03/27/03	03/27/03	N1V4
2-Hexanone	ND U	5.0	1	03/27/03	03/27/03	
1,3-Dichloropropane	ND U	1.0	1	03/27/03	03/27/03	
Dibromochloromethane	ND U	0.50		03/27/03	03/27/03	
1,2-Dibromoethane	ND U	0.50	<u>l</u>	03/27/03	03/27/03	
Chlorobenzene	ND U	0.50	1	03/27/03	03/27/03	
1,1,1,2-Tetrachloroethane	ND U	0.50	1		03/27/03	
Ethylbenzene	ND U	0.50	1	03/27/03 03/27/03	03/27/03	
m,p-Xylenes	ND U	1.0	1	03/27/03	03/27/03	
o-Xylene	ND U	0.50	1		03/27/03	
Styrene	ND U	0.50	1	03/27/03 03/27/03	03/27/03	
Isopropylbenzene	ND U	0.50	1	03/27/03	03/27/03	
Bromobenzene	ND U	0.50	1			
1,2,3-Trichloropropane	ND U	1.0	1	03/27/03	03/27/03 03/27/03	
n-Propylbenzene	ND U	0.50	1	03/27/03	03/27/03	
2-Chlorotoluene	ND U	0.50	1	03/27/03		
4-Chlorotoluene	ND U	0.50	1	03/27/03	03/27/03 03/27/03	
1.3,5-Trimethylbenzene	ND U	0.50	1	03/27/03	03/27/03	
tert-Butylbenzene	ND U	0.50	1	03/27/03		
	ND U	0.50	1	03/27/03	03/27/03	
1,2,4-Trimethylbenzene sec-Butylbenzene	ND U	0.50	1	03/27/03	03/27/03	
1,3-Dichlorobenzene	ND U	0.50	11	03/27/03	03/27/03	
	ND U	0.50	1	03/27/03	03/27/03	
4-Isopropyltoluene	ND U	0.50	1	03/27/03	03/27/03	
Bromoform 1,1,2,2-Tetrachloroethane	ND U	1.0	1	03/27/03	03/27/03	
	ND U	0.50	1	03/27/03	03/27/03	
1,4-Dichlorobenzene	ND U	0.50	1	03/27/03	03/27/03	
1,2-Dichlorobenzene	ND U	0.50	1	03/27/03	03/27/03	
n-Butylbenzene	ND U	5.0	1	03/27/03	03/27/03	
1,2-Dibromo-3-chloropropane	ND U	0.50	1	03/27/03	03/27/03	
1,2,4-Trichlorobenzene	ND U	0.50	1	03/27/03	03/27/0	3
Hexachlorobutadiene						

Comments:	

Analytical Results

Client: Project: BE&K Terranext WVBA/#03103154

Sample Matrix:

Water

Service Request: X2300226

Date Collected: NA

Date Received: NA

Volatile Organic Compounds

Sample Name: Lab Code:

Method Blank XWG0300408-3

Extraction Method: Analysis Method:

EPA 5030B

Units: ug/L Basis: NA

Level: Low

8260B

			Dilution	Date	Date	
Analyta Name	Result Q	\mathbf{MRL}	Factor	Extracted	Analyzed	Arizona Qualifier
Naphthalene 1,2,3-Trichlorobenzene	ND U ND U	3.0 0.50	1	03/27/03 03/27/03	03/27/03 03/27/03	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Arizona Qualifier	
Dibromofluoromethane Toluene-d8 4-Bromofluorobenzene	105 104 103	84-113 68-126 79-113	03/27/03 03/27/03 03/27/03		

Comments:

000008

QA/QC Report

Client:

BE&K Terranext

Project: Sample Matrix: WVBA/#03103154

Service Request: X2300226

Water

Surrogate Recovery Summary Volatile Organic Compounds

Extraction Method: Analysis Method:

EPA 5030B

8260B

Units: PERCENT

Level: Low

Sample Name	Lab Code	Sur1	Sur2	Sur3
AVB26-0100-19094	X2300226-001	107	112	106
AVB99-0100-03100	X2300226-002	105	109	106
AVB85-0100-05103	X2300226-003	106	111	105
AVB83-0100-05106	X2300226-004	107	110	105
AVB83-0104-1000	X2300226-005	104	110	105
	X2300226-006	109	110	105
AVB83-0102-1000	XWG0300408-3	105	104	103
Method Blank	XWG0300408-4	103	110	107
AVB26-0100-19094MS	XWG0300408-5	102	106	101
AVB26-0100-19094DMS	XWG0300408-1	100	101	100
Lab Control Sample	XWG0300408-1 XWG0300408-2	101	100	100
Duplicate Lab Control Sample	XWG0300408-2	101	100	-00

Surrogate Recovery Control Limits (%)

Sur1 =	Dibromofluoromethane	84-113
	Toluene-d8	68-126
~	4-Bromofluorobenzene	79-113

Results flagged with an asterisk (*) indicate values outside control criteria. Results flagged with a pound (#) indicate the control criteria is not applicable.

0000089

QA/QC Report

Client: Project: BE&K Terranext WVBA/#03103154

Sample Matrix:

Water

Service Request: X2300226

Date Extracted: 03/27/2003 **Date Analyzed:** 03/27/2003

Matrix Spike/Duplicate Matrix Spike Summary Volatile Organic Compounds

Sample Name:

AVB26-0100-19094

Lab Code:

X2300226-001

Extraction Method: Analysis Method:

EPA 5030B

8260B

Units: ug/L

Basis: NA

Level: Low

Extraction Lot: XWG0300408

AVB26-0100-19094MS XWG0300408-4

AVB26-0100-19094DMS

XWG0300408-5

	Cample		VG0300408- Matrix Spike	4 	Duplicate Matrix Spike			%Rec		RPD
Analyte Name	Sample Result	Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit
	ND	27.6	10.0	276 M1	26.5	10.0	265 M1	78-207	4	20
Dichlorodifluoromethane	ND	11.9	10.0	119	11.5	10.0	115	70-157	4	20
Chloromethane	ND	14.7	10.0	147	14.4	10.0	144	79-174	3	20
Vinyl Chloride	ND	7.09	10.0	71	7.06	10.0	71	44-150	0	20
Bromomethane	ND	11.9	10.0	119	11.3	10.0	113	74-150	6	20
Chloroethane	ND	14.7	10.0	147 M1	14.4	10.0	144 M1	80-134	2	20
Trichlorofluoromethane 1.1.2-Trichlorotrifluoroethane	ND	14.7	10.0	147 M1	14.5	10.0	145 M1	67-128	2	20
* *	1.6	14.1	10.0	125	13.8	10.0	122	71-142	2	20
1,1-Dichloroethene	ND	32.4	40.0	81	33.6	40.0	84	1-155	4	20
Acetone	ND	31.8	40.0	79	29.9	40.0	75	47-120	6	20
Iodomethane	ND	50.8	40.0	127 M1	48.8	40.0	122	77-126	4	20
Carbon Disulfide	ND	9.88	10.0	99	9.67	10.0	97	83-106	2	20
Methylene Chloride	ND	9.70	10.0	97	9.83	10.0	98	70-118	1	20
Methyl tert-Butyl Ether	ND	11.4	10.0	114	11.2	10.0	112	86-115	2	20
trans-1,2-Dichloroethene	0.94	11.2	10.0	103	11.1	10.0	102	77-127	1	20
1,1-Dichloroethane	ND	44.8	40.0	112	44.7	40.0	112	8-187	0	20
Vinyl Acetate	ND	12.2	10.0	122	11.7	10.0	117	25-154	4	20
2,2-Dichloropropane	ND	36.6	40.0	92	37.1	40.0	93	90-112	1	20
2-Butanone (MEK)	1.7	12.2	10.0	104	12.0	10.0	102	69-118	2	20
cis-1,2-Dichloroethene	ND	9.48	10.0	95	9.41	10.0	94	47-136	1	20
Bromochloromethane	1.8	11.8	10.0	100	11.7	10.0	99	48-143	0	20
Chloroform	ND	12.3	10.0	123 M1	12.0	10.0	120	84-122	2	20
1,1,1-Trichloroethane	ND	13.3	10.0	133 M1	13.2	10.0	132 M1	79-120	1	20
Carbon Tetrachloride	ND	12.5	10.0	125 M1	12.1	10.0	121 M1	85-117	3	20
1,1-Dichloropropene	8.0	18.9	10.0	109	18.0	10.0	100	88-114	5	20
Benzene	ND	8.85	10.0	89	8.81	10.0	88	75-112	0	20
1,2-Dichloroethane	4.9	16.3	10.0	113	15.8	10.0	109	76-115	3	20
Trichloroethene	ND	9.54	10.0	95	9.46	10.0	95	85-107	1	20
1,2-Dichloropropane	ND ND	9.26	10.0	93	9.21	10.0	92	82-106	1	20
Dibromomethane	0.90	10.5	10.0	96	10.5	10.0	96	83-107	0	20
Bromodichloromethane	ND	9.79	10.0	98	9.58	10.0	96	70-114	2	20
cis-1,3-Dichloropropene	ND ND	36.8	40.0	92	35.6	40.0	89	54-129	3	20
4-Methyl-2-pentanone (MIBK)	2.0	13.4	10.0	114	13.0	10.0	110	86-114	3	20
Toluene	2.0	13.4	10.0	11.	22.0	, and the second				

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 04/01/2003 15:58:52 L:\STEALTH\CRYSTAL.RPT\Form3DMS.rpt Form 3A - Organic

000030

Page

RR3140 SuperSet Reference:

QA/QC Report

Client: **Project:** BE&K Terranext WVBA/#03103154

Sample Matrix:

Water

Service Request: X2300226

Date Extracted: 03/27/2003

Date Analyzed: 03/27/2003

Matrix Spike/Duplicate Matrix Spike Summary Volatile Organic Compounds

Sample Name:

AVB26-0100-19094

Lab Code:

X2300226-001

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

Extraction Lot: XWG0300408

AVB26-0100-19094MS XWG0300408-4

AVB26-0100-19094DMS

XWG0300408-5

	Sample	XWG0300408-4 Matrix Spike			Duplicate Matrix Spike			%Rec		RPD
Analyte Name	Result	Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit
	ND	9.62	10.0	96	9.47	10.0	95	73-112	2	20
trans-1,3-Dichloropropene	ND	9.45	10.0	95	9.35	10.0	94	79-112	1	20
1,1,2-Trichloroethane Tetrachloroethene	10	24.2	10.0	138 M1	23.2	10.0	127	78-130	4	20
	ND	35.2	40.0	88	35.1	40.0	88	77-112	0	20
2-Hexanone	ND	9.43	10.0	94	9.37	10.0	94	45-133	1	20
1,3-Dichloropropane Dibromochloromethane	ND	9.98	10.0	100	9.99	10.0	100	74-108	0	20
	ND	9.77	10.0	98	9.68	10.0	97	73-113	1	20
1,2-Dibromoethane Chlorobenzene	ND	10.8	10.0	108	10.4	10.0	104	84-111	4	20
1,1,1,2-Tetrachloroethane	ND	10.3	10.0	103	9,86	10.0	99	84-119	4	20
The state of the s	2.2	14.2	10.0	120	13.4	10.0	112	47-136	6	20
Ethylbenzene	2.1	26.1	20.0	120	24.6	20.0	112	84-120	6	20
m,p-Xylenes	1.7	13.2	10.0	115	12.6	10.0	109	47-143	5	20
o-Xylene	ND	11.0	10.0	110	10.5	10.0	105	72-121	5	20
Styrene	ND	12.7	10.0	127 M1	12.0	10.0	120 M1	63-108	6	20
Isopropylbenzene	ND	10.7	10.0	107	10.1	10.0	101	80-113	6	20
Bromobenzene 1,2,3-Trichloropropane	ND	9.39	10.0	94	9.14	10.0	91	78-119	3	20
	ND	12.7	10.0	127 M1	12.0	10.0	120 M1	76-117	5	20
n-Propylbenzene 2-Chlorotoluene	ND	11.4	10.0	114	10.9	10.0	109	79-121	5	20
4-Chlorotoluene	ND	11.3	10.0	113	10.7	10.0	107	70-133	5	20
1,3,5-Trimethylbenzene	ND	12.4	10.0	124 M1	11.8	10.0	118	79-118	5	20
	ND	13.3	10.0	133 M1	12.5	10.0	125 M1	77-120	6	20
tert-Butylbenzene 1,2,4-Trimethylbenzene	1.4	13.2	10.0	118	12.6	10.0	112	68-127	5	20
sec-Butylbenzene	ND	13.0	10.0	130 M1	12.2	10.0	122	78-123	6	20
1,3-Dichlorobenzene	ND	11.0	10.0	110	10.5	10.0	105	78-127	4	20
4-Isopropyltoluene	ND	13.5	10.0	135	12.7	10.0	127	79-142	6	20
Bromoform	ND	9.77	10.0	98	9.74	10.0	97	83-111	0	20
1,1,2,2-Tetrachloroethane	ND	9.30	10.0	93	9.52	10.0	95	66-133	2	20
1,1,2,2-1etracmorocmane 1,4-Dichlorobenzene	ND	10.6	10.0	106	10.2	10.0	102	48-139	3	20
	ND	10.6	10.0	106	10.3	10.0	103	64-109	2	20
1,2-Dichlorobenzene	ND	12.7	10.0	127 M1	12.2	10.0	122	69-122	4	20
n-Butylbenzene 1,2-Dibromo-3-chloropropane	ND	8.00	10.0	80	8.22	10.0	82	54-160	3	20
1,2,4-Trichlorobenzene	ND	11.2	10.0	112	10.8	10.0	108	39-145	4	20
Hexachlorobutadiene	ND	14.5	10.0	145 M1	13.5	10.0	135 M1	74-113	7	20

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

000031

Printed: 04/01/2003 15:58:52 L:\STEALTH\CRYSTAL.RPT\Form3DMS.rpt Form 3A - Organic

Page

2 of 3

QA/QC Report

Client: Project: BE&K Terranext WVBA/#03103154

Sample Matrix:

Water

Service Request: X2300226

Date Extracted: 03/27/2003

Date Analyzed: 03/27/2003

Matrix Spike/Duplicate Matrix Spike Summary Volatile Organic Compounds

Sample Name:

AVB26-0100-19094

Lab Code:

X2300226-001

Extraction Method: Analysis Method:

EPA 5030B

8260B

Units: ug/L

Basis: NA

Level: Low

Extraction Lot: XWG0300408

AVB26-0100-19094MS

XWG0300408-4

AVB26-0100-19094DMS

XWG0300408-5

	Comple	XWG0300408-4 Matrix Spike				Duplicate Matrix Spike				RPD
Analyte Name	Sample Result	Result	Expected	%Rec	Result	Expected		Limits	RPD	Limit
Naphthalene 1,2,3-Trichlorobenzene	ND ND	10.7 11.0	10.0 10.0	107 110	10.3 10.6	10.0 10.0	103 106	44-167 37-158	3 4	20 20

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 04/01/2003 15:58:52 Form 3A - Organic

000032

3 of 3 Page

SuperSet Reference: RR3140

QA/QC Report

Client: **Project:** BE&K Terranext WVBA/#03103154

Sample Matrix:

Water

Service Request: X2300226 **Date Extracted:** 03/27/2003

Date Analyzed: 03/27/2003

Lab Control Spike/Duplicate Lab Control Spike Summary Volatile Organic Compounds

Extraction Method: Analysis Method:

EPA 5030B

8260B

Units: ug/L Basis: NA

Level: Low

Extraction Lot: XWG0300408

Lab Control Sample XWG0300408-1

Duplicate Lab Control Sample XWG0300408-2

	XWG0300408-1 Lab Control Spike				/G0300408-2 Lab Control	Spike	%Rec		RPD
Analyte Name	Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit
	11.5	10.0	115	11.0	10.0	110	1-233	5	20
Dichlorodifluoromethane	7.90	10.0	79	7.90	10.0	79	46-156	0	20
Chloromethane	10.4	10.0	104	10.6	10.0	106	51-158	2	20
Vinyl Chloride	5.62	10.0	56	5.88	10.0	59	37-149	5	20
Bromomethane	9.75	10.0	98	10.3	10.0	103	56-146	5	20
Chloroethane	12.2	10.0	122	12.1	10.0	121	69-139	1	20
Trichlorofluoromethane	14.0	10.0	140 L1	13.5	10.0	135 L1	83-130	3	20
1,1,2-Trichlorotrifluoroethane	11.3	10.0	113 L1	11.5	10.0	115 L1	65-112	1	20
1,1-Dichloroethene	31.7	40.0	79	35.5	40.0	89	68-128	11	20
Acetone	32.0	40.0	80	31.2	40.0	78	68-144	2	20
Iodomethane	48.0	40.0	120	48.4	40.0	121	67-140	1	20
Carbon Disulfide	9.63	10.0	96	9.89	10.0	99	70-113	3	20
Methylene Chloride	9.03 8.87	10.0	89	9.51	10.0	95	75-115	7	20
Methyl tert-Butyl Ether	10.5	10.0	105	10.6	10.0	106	73-118	1	20
trans-1,2-Dichloroethene	10.3	10.0	101	10.3	10.0	103	77-127	1	20
1,1-Dichloroethane	43.8	40.0	101	44.3	40.0	111	51-202	1	39
Vinyl Acetate		10.0	112	11.2	10.0	112	75-132	0	20
2,2-Dichloropropane	11.2 35.1	40.0	88	37.2	40.0	93	72-122	6	20
2-Butanone (MEK)		10.0	101	10.3	10.0	103	81-118	2	20
cis-1,2-Dichloroethene	10.1 9.84	10.0	98	10.1	10.0	101	82-114	3	20
Bromochloromethane		10.0	98	10.1	10.0	101	78-119	3	20
Chloroform	9.82	10.0	107	10.1	10.0	109	71-125	1	20
1,1,1-Trichloroethane	10.7	10.0	107	12.3	10.0	123	69-130	. 1	20
Carbon Tetrachloride	12.1	10.0	115 L1	11.6	10.0	116 L1	77-114	0	20
1,1-Dichloropropene	11.5	10.0	101	10.1	10.0	101	81-117	0	20
Benzene	10.1		84	8.94	10.0	89	67-122	6	20
1,2-Dichloroethane	8.44	10.0 10.0	107	10.7	10.0	107	79-114	0	20
Trichloroethene	10.7	10.0	91	9.17	10.0	92	78-114	1	20
1,2-Dichloropropane	9.12	10.0	90	9.49	10.0	95	78-113	5	20
Dibromomethane	8.99		90 94	9.67	10.0	97	79-122	3	20
Bromodichloromethane	9.38	10.0	9 4 99	10.1	10.0	101	82-118	3	20
cis-1,3-Dichloropropene	9.85	10.0	99 84	37.4	40.0	94	75-115	10	20
4-Methyl-2-pentanone (MIBK)	33.7	40.0	84 106	10.7	10.0	107	85-118	1	20
Toluene	10.6	10.0	106 94	9.83	10.0	98	79-121	5	20
trans-1,3-Dichloropropene	9.36	10.0	94 86	9.83	10.0	92	79-116	7	20
1,1,2-Trichloroethane	8.56	10.0	00	7.44	10.0	, 2			

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

000033

1 of

QA/QC Report

Client: **Project:** BE&K Terranext WVBA/#03103154

Sample Matrix:

Water

Service Request: X2300226 **Date Extracted:** 03/27/2003 **Date Analyzed:** 03/27/2003

Lab Control Spike/Duplicate Lab Control Spike Summary Volatile Organic Compounds

Extraction Method: EPA 5030B **Analysis Method:**

8260B

Units: ug/L Basis: NA

Level: Low

Extraction Lot: XWG0300408

							Extraction Lot. Awdo30040		
	Lab Control Sample XWG0300408-1 Lab Control Spike			XW	Lab Control (G0300408-2 Lab Control		%Rec	gpn	RPD
Analyte Name	Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit
Tetrachloroethene	12.1	10.0	121	11.9	10.0	119	76-127	2	20
2-Hexanone	31.7	40.0	79	35.5	40.0	89	65-120	11	20
1,3-Dichloropropane	8.97	10.0	90	9.49	10.0	95	81-116	6	20
Dibromochloromethane	9.37	10.0	94	9.72	10.0	97	77-119	4	20
1,2-Dibromoethane	9.39	10.0	94	9.95	10.0	100	79-116	6	20
Chlorobenzene	10.0	10.0	100	10.1	10.0	101	84-114	1	20
1,1,1,2-Tetrachloroethane	9.61	10.0	96	9.73	10.0	97	78-118	1	20
Ethylbenzene	10.8	10.0	108	10.9	10.0	109	79-124	1	20
m,p-Xylenes	21.8	20.0	109	21.9	20.0	109	75-131	0	20
o-Xylene	10.4	10.0	104	10.4	10.0	104	78-122	0	20
Styrene	10.4	10.0	104	10.5	10.0	105	80-126	1	20
Isopropylbenzene	11.1	10.0	111	11.1	10.0	111	75-126	0	20
Bromobenzene	9.85	10.0	99	10.2	10.0	102	82-122	3	20
1,2,3-Trichloropropane	8.59	10.0	86	9.10	10.0	91	77-118	6	20
n-Propylbenzene	11.2	10.0	112	11.1	10.0	111	75-129	0	20
2-Chlorotoluene	10.5	10.0	105	10.5	10.0	105	77-126	0	20
4-Chlorotoluene	10.3	10.0	103	10.4	10.0	104	82-120	0	20
1,3,5-Trimethylbenzene	10.9	10.0	109	11.0	10.0	110	75-130	0	20
tert-Butylbenzene	11.8	10.0	118	11.8	10.0	118	73-130	0	20
1,2,4-Trimethylbenzene	10.7	10.0	107	10.7	10.0	107	60-137	0	20
sec-Butylbenzene	11.2	10.0	112	11.0	10.0	110	68-131	2	20
1,3-Dichlorobenzene	10.1	10.0	101	10.1	10.0	101	71-137	0	20
4-Isopropyltoluene	12.0	10.0	120	11.8	10.0	118	68-134	2	20
Bromoform	9.14	10.0	91	9.69	10.0	97	70-118	6	20
1,1,2,2-Tetrachloroethane	8.54	10.0	85	9.19	10.0	92	72-122	7	20
1,4-Dichlorobenzene	10.1	10.0	101	9.97	10.0	100	82-114	2	20
1,2-Dichlorobenzene	10.1	10.0	101	10.1	10.0	101	81-118	0	20
n-Butylbenzene	11.3	10.0	113	11.0	10.0	110	71-125	3	20
1,2-Dibromo-3-chloropropane	7.51	10.0	75	8.46	10.0	85	55-131	12	20
1,2,4-Trichlorobenzene	10.4	10.0	104	10.4	10.0	104	75-123	0	20
Hexachlorobutadiene	13.0	10.0	130	12.1	10.0	121	63-140	7	20
Naphthalene	9.57	10.0	96	9.98	10.0	100	67-125	4	20
1,2,3-Trichlorobenzene	10.3	10.0	103	10.6	10.0	106	72-124	3	20

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 04/01/2003 15:58:59 L:\STEALTH\CRYSTAL.RPT\Form3DLC.rpt

March 27, 2003

Chuck Gordon BE & K/Terranext 9830 S. 51st A-127 Phoenix, AZ 85044

RE: WVBA/Project #03103154

Dear Chuck:

Enclosed are the results of the samples submitted to our laboratory on March 17, 2003. For your reference, these analyses have been assigned our service request number L2300593.

All analyses were performed in accordance with our laboratory's quality assurance program. Results are intended to be considered in their entirety and apply only to the samples analyzed. Columbia Analytical Services is not responsible for use of less than the complete report.

Columbia Analytical Services is certified for environmental analyses by the California Department of Health Services (certificate number: 1296A); NELAP (certificate number: 02115CA); Los Angeles County Laboratory ID (No. 10151); and Arizona Department of Health Services (License number: AZ0136 and AZ0544).

If you have any questions, please call me at (818) 587-5550, extension 309.

Respectfully submitted,

Columbia Analytical Services, Inc.

Que Andersa

Sue Anderson Project Chemist

SA

Page 1 of <u>18</u>

000035

Columbia Analytical Services, Inc.

Acronyms

California DHS LUFT Method 8015M American Society for Testing and Materials **ASTM** Biochemical Oxygen Demand BOD Benzene/Toluene/Ethylbenzene/Xylenes BTEX California Assessment Metals CAM Chemical Abstract Service Registry Number **CAS Number** Chlorofluorocarbon **CFC** Chemical Oxygen Demand COD Contract Required Detection Limit **CRDL** Detected; result must be greater than zero. D Detected; result must be greater than the detection limit. DL **Duplicate Laboratory Control Sample** DLCS Duplicate Matrix Spike **DMS** DOH or DHS Department of Health Services Environmental Laboratory Accreditation Program **ELAP** U.S. Environmental Protection Agency **EPA** Gas Chromatography GC Gas Chromatography/Mass Spectrometry GC/MS Ion Chromatography IC Initial Calibration Blank sample **ICB** Inductively Coupled Plasma atomic emission spectrometry **ICP** Initial Calibration Verification sample **ICV** Laboratory Control Sample LCS Leaking Underground Fuel Tank LUFT Modified M Methylene Blue Active Substances **MBAS** MDL Method Detection Limit MRL Method Reporting Limit Matrix Spike MS Methyl-tert-Butyl Ether **MTBE** Not Applicable NA Not Calculated NC None Detected at or above the Method Reporting/Detection Limit (MRL/MDL) ND Nephelometric Turbidity Units NTU Parts Per Billion ppb Parts Per Million ppm Practical Quantitation Limit **PQL Ouality Assurance/Quality Control** QA/QC Resource Conservation and Recovery Act **RCRA** Relative Percent Difference **RPD** Selected Ion Monitoring SIM Standard Methods for the Examination of Water and Wastewater, 18th Ed., 1992. SMSolubility Threshold Limit Concentration **STLC** Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW-846, SW Third Edition, 1986 and as amended by Updates I, II, IIA, and IIB. Toxicity Characteristics Leaching Procedure **TCLP** Total Dissolved Solids TDS Total Petroleum Hydrocarbons **TPH** Total Recoverable Petroleum Hydrocarbons TRPH Total Suspended Solids TSS **Total Threshold Limit Concentration** TTLC Volatile Organic Analyte(s) VOA Qualifiers Undetected at or above MDL/MRL. U Estimated concentration. Analyte detected above MDL but below MRL. J Hit above MRL also found in Method Blank. В Analyte concentration above high point of ICAL. E Presumptive evidence of compound. N Result from dilution. D See case narrative. X

- Cover Page -INORGANIC ANALYSIS DATA PACKAGE

Client:

BE&K Terranext, LLC

Project Name: Project No.:

WVBA 03103154 Service Request: L2300593

Sample Name:

Laboratory Control Sample Method Blank AVB26-0100-19094 AVB26-0100-19094 AVB26-0100-19094 AVB99-0100-03100 AVB85-0100-05103 AVB83-0100-05106 AVB83-0104-1000 Lab Code:

L2300324-LCS L2300324-MB L2300593-001 L2300593-001S L2300593-002 L2300593-002 L2300593-003 L2300593-004 L2300593-005

Analytical Report

Client:

BE&K Terranext, LLC

Project Name : Project No. : WVBA 03103154

Matrix:

Water

Service Request: L2300593

Date Collected: 03/17/03 Date Received: 03/17/03

Date Extracted: 03/24/03

Total Metals

Sample Name:

AVB26-0100-19094

Lab Code:

L2300593-001

Units: ug/L (ppb)

Analyte	Analysis Method	MRL	Date Analyzed	Sample Result	Result Notes
Chromium	6010B	10	03/26/03	17	

Analytical Report

Client:

BE&K Terranext, LLC

Project Name : Project No. : WVBA 03103154

Matrix:

Water

Service Request: L2300593

Date Collected : 03/17/03 **Date Received :** 03/17/03 **Date Extracted :** 03/24/03

Dissolved Metals

Sample Name:

AVB26-0100-19094

Lab Code:

L2300593-001

Units: ug/L (ppb)

Analyte	Analysis Method	MRL	Date Analyzed	Sample Result	Result Notes
Chromium	6010B	10	03/26/03	ND	

Analytical Report

Client:

BE&K Terranext, LLC

Project Name: Project No.:

WVBA

Matrix:

03103154 Water

Service Request: L2300593 **Date Collected:** 03/17/03

Date Received: 03/17/03

Date Extracted: 03/24/03

Total Metals

Sample Name:

AVB99-0100-03100

Lab Code:

L2300593-002

Units: ug/L (ppb)

Analyte	Analysis Method	MRL	Date Analyzed	Sample Result	Result Notes
Chromium	6010B	10	03/26/03	ND	

Analytical Report

Client:

BE&K Terranext, LLC

Project Name: Project No.:

WVBA

Matrix:

03103154 Water Service Request: L2300593

Date Collected: 03/17/03 **Date Received:** 03/17/03

Date Extracted: 03/24/03

Dissolved Metals

Sample Name:

AVB99-0100-03100

Lab Code:

L2300593-002

Units: ug/L (ppb)

Analyte	Analysis Method	MRL	Date Analyzed	Sample Result	Result Notes
Chromium	6010B	10	03/26/03	ND	

Analytical Report

Client:

BE&K Terranext, LLC

Project Name : Project No. : WVBA

Matrix:

03103154 Water Service Request: L2300593

Date Collected: 03/17/03

Date Received: 03/17/03

Date Extracted: 03/24/03

Total Metals

Sample Name:

AVB85-0100-05103

Lab Code:

L2300593-003

Units: ug/L (ppb)

Basis: NA

Analyte Analysis Method MRL Date Analyzed Result Notes

Chromium 6010B 10 03/26/03 ND

Analytical Report

Client:

BE&K Terranext, LLC

Project Name: Project No.:

WVBA 03103154

Matrix:

Water

Service Request: L2300593

Date Collected: 03/17/03 **Date Received:** 03/17/03

Date Extracted: 03/24/03

Dissolved Metals

Sample Name:

AVB85-0100-05103

Lab Code:

L2300593-003

Units: ug/L (ppb)

Analyte	Analysis Method	MRL	Date Analyzed	Sample Result	Result Notes
Chromium	6010B	10	03/26/03	ND	

Analytical Report

Client:

BE&K Terranext, LLC

Project Name: Project No.:

WVBA 03103154

Matrix:

Water

Service Request: L2300593

Date Collected: 03/17/03

Date Received: 03/17/03

Date Extracted: 03/24/03

Total Metals

Sample Name:

AVB83-0100-05106

Lab Code:

L2300593-004

Units: ug/L (ppb)

Basis: NA

Date Analyzed MRL **Analysis Method** Analyte

Sample Result

Result Notes

ND

Chromium

6010B

10

03/26/03

Analytical Report

Client:

BE&K Terranext, LLC

Project Name : Project No. : WVBA 03103154

Matrix:

Water

Service Request: L2300593

Date Collected: 03/17/03

Date Received: 03/17/03

Date Extracted: 03/24/03

Dissolved Metals

Sample Name:

AVB83-0100-05106

Lab Code:

L2300593-004

Units: ug/L (ppb)

Analyte	Analysis Method	MRL	Date Analyzed	Sample Result	Result Notes
Chromium	6010B	10	03/26/03	ND	

Analytical Report

Client:

BE&K Terranext, LLC

Project Name: Project No.:

WVBA 03103154

Matrix:

Water

Service Request: L2300593

Date Collected: 03/17/03 Date Received: 03/17/03

Date Extracted: 03/24/03

Total Metals

Sample Name:

AVB83-0104-1000

Lab Code:

Units: ug/L (ppb)

L2300593-005

Basis: NA

Result Sample Result Notes **Date Analyzed** MRL **Analysis Method** Analyte ND 03/26/03 10 6010B Chromium

Analytical Report

Client:

BE&K Terranext, LLC

Project Name: Project No.:

WVBA 03103154

Matrix:

Water

Service Request: L2300593

Date Collected: 03/17/03

Date Received: 03/17/03

Date Extracted: 03/24/03

Dissolved Metals

Sample Name:

AVB83-0104-1000

Units: ug/L (ppb)

Basis: NA

Lab Code:

L2300593-005

Date Analyzed

Sample Result

Result **Notes**

Analyte Chromium **Analysis Method** 6010B

10

MRL

03/26/03

ND

000047

Analytical Report

Client:

BE&K Terranext, LLC

Project Name: Project No.:

WVBA 03103154

Matrix:

Water

Service Request: L2300593

Date Collected: NA

Date Received: NA

Date Extracted: 03/24/03

Total Metals

Sample Name:

Method Blank

Units: ug/L (ppb)

Basis: NA

Lab Code:

L2300324-MB

Sample

Result

Analyte

Analysis Method

MRL

Date Analyzed

Result

6010B

10

03/26/03

ND

Notes

Chromium

QA/QC Report

Client:

Matrix:

BE&K Terranext, LLC

Project Name: Project No.:

WVBA 03103154

Water

Service Request: L2300593

Date Collected: NA Date Received: NA

Date Extracted: 03/24/03 **Date Analyzed:** 03/26/03

Laboratory Control Sample Summary

Total Metals

Sample Name:

Laboratory Control Sample

Units: ug/L (ppb)

Lab Code:

L2300324-LCS

Basis: NA

Analyte	Analysis Method	True Value	Result	Percent	CAS Percent Recovery Acceptance Limits	Result Notes
Chromium	6010B	500	533	107	87-111	

Analytical Report

Client:

BE&K Terranext, LLC

Project Name: Project No.:

WVBA 03103154

Matrix:

Water

Service Request: L2300593

Date Collected: 03/17/03

Date Received: 03/17/03 **Date Extracted:** 03/24/03

Date Analyzed: 03/26/03

Matrix Spike/Duplicate Matrix Spike Summary

Total Metals

Sample Name: Lab Code:

AVB26-0100-19094

L2300593-001S

L2300593-001SD

Units: ug/L (ppb)

Basis: NA

Analyte	Prep Method	Analysis Method	MRL	Spike MS	Level DMS	Sample Result	Spike MS	Result DMS	MS	DMS	CAS Acceptance Limits	Relative Percent Difference	Result Notes
Chromium	3010A	6010B	10	500	500	17.3	523	517	101	100	87-105	1	

Columbia Analytical Services

22300595 chain of custody/Laboratory analysis request FC PAGE_ DATE 3-17-03 3902 East University Drive, Sulte 4 • Phoenix, AZ 85034 • (602) 437-2001 • (800) 695-7222 x09 • FAX (602) 437-5308

RUSH TAT - Surcharges Apply ANALYSIS TAT (Circle One) REMARKS Lab No; X 23:00 22.0 SAMPLE RECEIPT: □ 72 Hours □ 24 Hours □ 48 Hours 20. S.2°C STANDARD Shipping VIA: _ Shipping #: Condition: ANALYSIS REQUESTED Date/Time 3/18/03 INVOICE INFORMATION: 3-17-03 Date/Time Date/Time D 19th Filter DHQ Diniod Asela Organization Organization Organization ZAS S P.O.# REPORT REQUIREMENTS Report (includes DUP.MS. MSD, as required, may be III. Data Validation Report (includes All Raw Data) IV. CLP Deliverable Report charged as samples) Boutine Report Received By (Signature) Received By (Signature) Recei∲ed By (Signature) 7 Kesler S 5 5 NUMBER OF CONTAINERS Date/Time 3.14.63 3.10 PRESER-VATION 3.0.03 # 030315C Date/Time Date/Time MATRIX **=** ئة = CHUCLE CORDON BEH Organization 400 33 Organization Organization 40826-0100-190943-1703 0745 300-001 EAB I.D. 1040 1210 PROJECT NAME CONTRACTOR (NOR A 30 10915 名のナス 410 496 4100 PHONEFAX TIME SPECIAL INSTRUCTIONS/COMMENTS: DATE Ę Z 3 Ξ Relinquished By (Signature) Relipquished By (Signature) LAN CARA AVB-85-0100-05103 AVB 83-0100-05104 NB 83-0104-1000 AND 85-0101-1000 AN\$99-0100-03100 Relinquished By Signat SAMPLER'S SIGNATURE SHEET OF M COMPANY/ADDRESS _ PROJECT MANAGER SAMPLE I.D. 000051

DISTRIBUTION: WHITE - return to originator; YELLOW - lab; PINK - retained by originator

SAMPLE RECEIPT FORM

Service Request No: L230 0 593 Client: BF+K
Sample(s) delivered by: Client CAS Emp After Hours DHL
Golden State Overnight Fed X V UPS Other Courier
Chain of Custody filled out accurately? Yes ✓ No(See Comments)
Appropriate sample volume and containers? Yes No(See Comments)
Sufficient labeling on container(s)? Yes ✓ No(See Comments)
Container(s) supplied by CAS? Yes No(See Comments)
Custody seal(s) intact? N/A Yes No (See Comments)
Trip Blank(s) received Yes No
If Trip Blank was supplied by CAS, record serial #
Temperature of sample(s)/cooler °C Temp Blank? Y of N Circle One)
Voa's Marked Preserved? Yes No Filled Properly? Yes No (See Comments)
Preserved Bottles Requiring pH check(s)? Yes Notified
RUSH Turn around time? Yes Notified Date & Time
Short Hold-Time Analysis (check all that apply)
ASAP Res Cl D.O Flash Diss S2 Ferrous Fe 24HR pH Odor Cr+6 48HR BOD Color MBAS Nitrate Nitrite O-PO4 Sett Sol Turbidity 72HR Vapors
Notified Date & Time
Container(s) received and their preservative(s):
$-1 \rightarrow -5 = \begin{cases} 1-500 \text{ ml PI (NP) A } \\ 1-500 \text{ ml PI (HNO3)B} \end{cases}$
comments Piss Metals bottle to be filtered & preserved in lab, Benny notified a 3/18/03 0950
3/18/03
Initials, Date, Time 18 0.00052 18 17/02

Analytical Services Inc. olumbia

CHAIN OF CUSTODY/LABORATORY ANALYSIS REQUEST FORM

3902 East University Drive, Suite 4 • Phoenix, AZ 85034 • (602) 437-2001 • (800) 695-7222 x09 • FAX (602) 437-5308

DATE 317.03

PAGE_

A

RUSH TAT - Surcharges Apply 00 ANALYSIS TAT (Circle One) REMARKS Lab No: X23:00 22 C SAMPLE RECEIPT: ☐ 72 Hours □ 24 Hours ☐ 48 Hours STANDARD Shipping VIA: Shipping #: Condition: ANALYSIS REQUESTED INVOICE INFORMATION: 3-17-03 Date/Time Date/Time Date/Time D'Halliq Inlied DHQ Diniod Asela Organization Organization Organization Total D Bill To P.O.# II. Report (includes DUP.MS. MSD, as required, may be charged as samples) REPORT REQUIREMENTS IV. CLP Deliverable Report (includes All Raw Data) III. Data Validation Report Boutine Report Volatile Organics Received By (Signature) Received By (Signature) Received By (Signature) N 5 S **10** NUMBER OF CONTAINERS Date/Time 3.14-63 3.10 PRESER-VATION 03103154 Date/Time Date/Time MATRIX \pm ---= 2 Colador) 200 Organization 8 88 Organization Organization 336-00/ LAB I.D. 1040 3.1703 0745 PROJECT NAME 4345 WVBA 210 1230 0915 BETK 4804964100 PHONEIFAX TIME 2006 SPECIAL INSTRUCTIONS/COMMENTS: DATE 3 Z 7 Relinquished By (Signature) Relipquished By (Signature) AUS 26-0100-19094 AVS 83-0100-05104 AV8-85-0100-05103 ANS 83-0104-1000 ANB99-0100-03100 ANB 83-0102-1000 SAMPLER'S SIGNATURE Relinquished By Signat CURTED SO SO COMPANY/ADDRESS PROJECT MANAGER SAMPLE I.D.

DISTRIBUTION: WHITE - return to originator; YELLOW - lab; PINK - retained by originator

Columbia Analytical Services, Inc. Phoenix, AZ

Sample Receipt and Preservation Form

Client:	BEaK			Project Name: _	WUBA
	ceived on: 3-/	7-03 da	te //	3 <i>10</i> time	
MATRIX:	SOIL 🗆	WATER			
First Extra	nction Holding Ti	me Expiration		date	time (soils only)
Is first ext	raction/analysis l	nolding time ex	epiration LES	S THAN 24 HOUR	S(soil)/7 DAYS (water)? Yes □ No□ Chemist's Initials
2 Are the cu	stody seals preser	nt?			RUSH STANDARD Yes \(\text{No} \(\text{No} \)
4. Did all cor 5. Are all cor 6. Were the c	ntainers arrive in ntainer labels con	good condition uplete (i.e. presused for the present	n? servation, sam ests indicated? se of air bubbl	es? (note problems	Yes
Explaination	of discrepancies				
		4.0			VOA Vial pH Verification
					(Tested After Analysis)
					☐ All Samples $pH \le 2$
-		YES	NO	_	☐ Following Samples Exhibited pH > 2
рН	Reagent			_ -	
12	NaOH				
2	HNO ₃			_ -	
2	H ₂ SO ₄				
Comments:		<u></u>			
		For	m Complete	ed and Sample(s) Received by (initials):

April 4, 2003

Chuck Gordon BE&K Terranext 9830 S. 51st Street, Suite A-127 Phoenix, AZ 85044

Re: V

WVB

Dear Chuck:

Enclosed are the results of the samples submitted to our laboratory on March 17, 2003. The samples were analyzed for Total and Dissolved Chromium by our Canoga Park, CA facility (L2300594). For your reference, the 8260 analyses have been assigned our service request number X2300228.

All analyses were performed according to our laboratory's quality assurance program. All results are intended to be considered in their entirety, and Columbia Analytical Services, Inc. (CAS) is not responsible for use of less than the complete report. Results apply only to the samples analyzed. Columbia Analytical Services, Inc. is certified for environmental analyses by the Arizona Department of Health Services (Certificate #AZ0136; and #AZ0497).

Please call if you have any questions. My extension is 223.

Respectfully submitted,

Columbia Analytical Services, Inc.

Tracy L. Dutton

Laboratory Director

TLD/lm

Page 1 of 49

Client:

BE&K Terranext

Project:

WVB

Sample Matrix:

Water

Service Request No.:

Date Received:

X2300228

3/17/03

CASE NARRATIVE

All analyses were performed consistent with the quality assurance program of Columbia Analytical Services, Inc. (CAS). This report contains analytical results for sample(s) designated for Tier II data deliverables. When appropriate to the method, method blank results have been reported with each analytical test. Surrogate recoveries have been reported for all applicable organic analyses. Additional quality control analyses reported herein include: Matrix/Duplicate Matrix Spike (MS/DMS) and Laboratory Control Sample (LCS).

All EPA recommended holding times have been met for analyses in this sample delivery group.

The following difficulties were experienced during analysis of this batch:

The associated blank spike (XWG0300408-1 and XWG0300408-2) recovery of 1,1-Dichloroethene, and 1,1-Dichloropropene, Method 8260B, was above laboratory acceptance limits but within method limits.

The associated blank spike (XWG0300408-1 and XWG0300408-2) recovery of 1,1,2-Trichlorotrifluoroethane, Method 8260B, was above laboratory acceptance limits. Any detects of these compounds for samples should be considered high biased.

CCV recovery of 2-Hexanone, Method 8260B, was below method acceptance limits on 3/27/03. This compound was seen in the method reporting limit standard that was analyzed with this batch of samples. This verifies that the compound would be detected if present in the samples.

Matrix spike (XWG0300408-4 and XWG0300408-5) recovery of several analytes for Method 8260B was high. The method control sample recovery was acceptable.

JMDate 4-4-03

Approved by

000002

ARIZONA DATA QUALIFIERS

Method Bl	auk:
BI	Target analyte detected in method blank at or above the method reporting limit.
В2	Non-target analyte detected in method blank and sample, producing interference.
В3	Target analyte detected in calibration blank at or above the method reporting limit.
B4	Target analyte detected in blank at/above method acceptance criteria.
B5	Target analyte detected in method blank at or above the method reporting limit, but below trigger level or MCL.
В6	Target analyte detected in calibration blank at or above the method reporting limit, but below trigger level or MCL
B7	Target analyte detected in method blank at or above method reporting limit. Concentration found in the sample
	was 10 times above the concentration found in the method blank.
Confirmat	
C'1	Confirmatory analysis not performed as required by the method.
C2	Confirmatory analysis not performed. Confirmation of analyte presence established by site historical data.
C3	Qualitative confirmation performed. See case narrative.
C4	Confirmatory analysis was past holding time.
C5	Confirmatory analysis was past holding time. Original result not confirmed.
Dilution:	
D1	Sample required dilution due to matrix interference. See case narrative.
D2	Sample required dilution due to high concentration of target analyte.
D3	Sample dilution required due to insufficient sample.
D4	Minimum reporting level (MRL) adjusted to reflect sample amount received and analyzed.
Estimated	concentration:
E1	Concentration estimated. Analyte exceeded calibration range. Reanalysis not possible due to insufficient
	sample.
E2	Concentration estimated. Analyte exceeded calibration range. Reanalysis not performed due to sample matrix.
E3	Concentration estimated. Analyte exceeded calibration range. Reanalysis not performed due to holding time
	requirements.
E4	Concentration estimated. Analyte was detected below laboratory minimum reporting level (MRL).
E5	Concentration estimated. Analyte was detected below laboratory minimum reporting level (MRL), but not
	confirmed by alternate analysis.
E6	Confirmation estimated. Internal standard recoveries did not meet method acceptance criteria.
E7	Contirmation estimated. Internal standard recoveries did not meet laboratory acceptance criteria.
Hold Time	<u>ei</u>
I -I 1	Sample analysis performed past holding time. See case narrative.
H2	Initial analysis within holding time. Reanalysis for the required dilution was past holding time.
Н3	Sample was received and analyzed past holding time.
H4	Sample was extracted past required extraction holding time, but analyzed within analysis holding time. See case narrative.

Laboratory fortified blank/blank spike:

L1 The associated blank spike recovery was above laboratory acceptance limits. See case narrative.

The associated blank spike recovery was below laboratory acceptance limits. See case narrative. 1.2 The associated blank spike recovery was above method acceptance limits. See case narrative. 1.3 The associated blank spike recovery was below method acceptance limits. See case narrative. L4 Note: The L1, L2, L3, & L4 footnotes need to be added to all corresponding analytes for a sample. Matrix spike: Matrix spike recovery was high, the method control sample recovery was acceptable. M1Matrix spike recovery was low, the method control sample recovery was acceptable. M2The accuracy of the spike recovery value is reduced since the analyte concentration in the sample is М3 disproportionate to spike level. The method control sample recovery was acceptable. The analysis of the spiked sample required a dilution such that the spike concentrations was diluted below M4the reporting limit. The method control sample recovery was acceptable. Analyte concentration was determined by the method of standard addition (MSA). M5 Matrix spike recovery was high. Data reported per ADEQ policy 0154.000. M6 Matrix sipke recovery was low. Data reported per ADEQ policy 0154.000. М7 General: See case narrative. Νī See corrective action report. N2 Sample quality: Sample integrity was not maintained. See case narrative. **Q1** Sample received with head space. **Q**2 Sample received with improper chemical preservation. Q3 Sample received and analyzed without chemical preservation. $\bigcirc 4$ Sample received with inadequate chemical preservation, but preserved by the laboratory. O5 Sample was received above recommended temperature. 06 Sample inadequately dechlorinated. 07 Insufficient sample received to meet QC requirements. QC requirements satisfy ADEQ policies 0154 and 0155. Q8 Insufficient sample received to meet QC requirements. ()9 Sample received in inappropriate sample container. Q10 Sample is heterogeneous. Sample homogeneity could not be readily achieved using routine laboratory practices. Q11 **Duplicates:** RPD exceeded the method control limit. See case narrative R1 RPD exceeded the laboratory control limit. See case narrative. R2 Sample RPD between the primary and contirmatory analysis exceeded 40%. Per Method 8000B, the higher R3 value was reported. MS/MSD RPD exceeded the method control limit. Recovery met acceptance criteria. R4 MS/MSD RPD exceeded the laboratory control limit. Recovery met acceptance criteria. R5 LFB/LFBD RPD exceeded the method control limit. Recovery met acceptance criteria. R6 LFB/LFBD RPD exceeded the laboratory control limit. Recovery met acceptance criteria. R7 Sample RPD exceeded the method control limit. **R8** Sample RPD exceeded the laboratory control limit. R9 Surrogate: Surrogate recovery was above laboratory acceptance limits, but within method acceptance limits. S1

Surrogate recovery was above laboratory and method acceptance limits.

S2

Surrogate recovery was above laboratory acceptance limits, but within method acceptance limits. No target S3analytes were detected in the sample. Surrogate recovery was above laboratory and method acceptance limits. No target analytes were detected in the **S4** sample Surrogate recovery was below laboratory acceptance limits, but within method acceptance limits. S5 Surrogate recovery was below laboratory and method acceptance limits. Reextraction and/or reanalysis confirms 86 low recovery caused by matrix effect. Surrogate recovery was below laboratory and method acceptance limits. Unable to confirm matrix effect. S7The analysis of the sample required a dilution such that the surrogate concentration was diluted below the method S8acceptance criteria. The method control sample recovery was acceptable. The analysis of the sample required a dilution such that the surrogate concentration was diluted below the S9laboratory acceptance criteria. The method control sample recovery was acceptable. Surrogate recovery was above laboratory and method acceptance limits. See case narrative. S10 Surrogate recovery was high. Data reported per ADEQ policy 0154.000. S11 Surrogate recovery was low. Data reported per ADEQ policy 0154.000.

Method/analyte discrepancies:

S12

- Method promulgated by EPA, but not ADHS at this time. T1
- Cited ADHS licensed method does not contain this analyte as part of method compound list. T'2
- Method not promulgated either by EPA or ADHS. T3
- Tentatively identified compound. Concentration is estimated and based on the closest internal standard. T4

Calibration verification:

- CCV recovery was above method acceptance limits. This target analyte was not detected in the sample. V1
- CCV recovery was above method acceptance limits. This target analyte was detected in the sample. The sample V2could not be reanalyzed due to insufficient sample.
- CCV recovery was above method acceptance limits. This target analyte was detected in the sample, but the V3 sample was not reanalyzed. See case narrative.
- CCV recovery was below method acceptance limits. The sample could not be reanalyzed due to insufficient V4sample.
- CCV recovery after a group of samples was above acceptance limits. This target analyte was not detected in the V5sample. Acceptable per EPA Method 8000B.
- Data reported from one-point calibration criteria per ADEQ policy 0155.000. V6
- Calibration verification recovery was above the method control limit for this analyte however the average V7 % difference or % drift for all the analytes met method criteria.
- Calibration verification recovery was below the method control limit for this analyte however the average V8% difference or % drift for all the analytes met method criteria.

Calibration:

The % RSD for this compound was above 15%. The average % RSD for all compounds in the calibration met W1the 15% criteria as specified in EPA method 8000B.

Inorganic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.
- U The compound was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- The MRL/MDL has been elevated due to a matrix interference.
- X See case narrative.

Metals Data Qualifiers

- # The control limit criteria is not applicable. See case narrative.
- B The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.
- E The reported value is estimated because of the presence of matrix interference.
- M The duplicate injection precision was not met.
- N The Matrix Spike sample recovery is not within control limits. See case narrative.
- S The reported value was determined by the Method of Standard Additions (MSA).
- U The compound was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- W The post-digestion spike for furnace AA analysis is out of control limits, while sample absorbance is less than 50% of spike absorbance.
- i The MRL/MDL has been elevated due to a matrix interference.
- X See case narrative.
- * The duplicate analysis not within control limits. See case narrative.
- + The correlation coefficient for the MSA is less than 0.995.

Organic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- A A tentatively identified compound, a suspected aldol-condensation product.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result.
- C The analyte was qualitatively confirmed using GC/MS techniques, pattern recognition, or by comparing to historical data.
- D The reported result is from a dilution.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.
- N The result is presumptive. The analyte was tentatively identified, but a confirmation analysis was not performed.
- P The GC or HPLC confirmation criteria was exceeded. The relative percent difference is greater than 40% between the two analytical results (25% for CLP Pesticides).
- U The compound was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- i The MRL/MDL has been elevated due to a chromatographic interference.
- X See case narrative.

Additional Petroleum Hydrocarbon Specific Qualifiers

- F The chromatographic fingerprint of the sample matches the elution pattern of the calibration standard.
- L The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of lighter molecular weight constituents than the calibration standard.
- H The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of heavier molecular weight constituents than the calibration standard.
- O The chromatographic fingerprint of the sample resembles an oil, but does not match the calibration standard.
- Y The chromatographic fingerprint of the sample resembles a petroleum product eluting in approximately the correct carbon range, but the elution pattern does not match the calibration standard.
- Z The chromatographic fingerprint does not resemble a petroleum product.

000006

Client: Project: BE&K Terranext

WVB

Service Request:

X2300228

Cover Page - Organic Analysis Data Package **Volatile Organic Compounds**

Sample Name	Lab Code	Date Collected	Date Received
AVB92-0200-03206	X2300228-001	03/17/2003	03/17/2003
AVB96-0200-03234	X2300228-002	03/17/2003	03/17/2003
AVB94-0200-03201	X2300228-003	03/17/2003	03/17/2003
AVB94-0204-1000	X2300228-004	03/17/2003	03/17/2003
AVB94-0202-1000	X2300228-005	03/17/2003	03/17/2003

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed in the case narrative. Release of the data contained in this hardcopy data package and in the computer-readable data submitted on floppy diskette has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signature.

RR3152

Date:

Analytical Results

Client:

BE&K Terranext

Project:

WVB

Sample Matrix:

Water

Service Request: X2300228

Date Collected: 03/17/2003 **Date Received:** 03/17/2003

Volatile Organic Compounds

Sample Name:

AVB92-0200-03206

Lab Code:

X2300228-001

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

			Dilution	Date	Date	
Analyte Name	Result Q	MRL	Factor	Extracted		Arizona Qualifier
Dichlorodifluoromethane	ND U	, 3.0	. 1	03/27/03	03/27/03	
Chloromethane	ND U	2.0	1	03/27/03	03/27/03	
Vinyl Chloride	ND U	1.0	1	03/27/03	03/27/03	
Bromomethane	ND U	1.0	1	03/27/03	03/27/03	
Chloroethane	ND U	1.0	1	03/27/03	03/27/03	
Trichlorofluoromethane	ND U	1.0	1	03/27/03	03/27/03	
1,1,2-Trichlorotrifluoroethane	ND U	1.0	1	03/27/03		L1
1,1-Dichloroethene	ND U	1.0	. 1	03/27/03	03/27/03	L1
Acetone	ND U	10	1	03/27/03	03/27/03	
Iodomethane	ND U	2.0	1	03/27/03	03/27/03	
Carbon Disulfide	ND U	2.0	1	03/27/03	03/27/03	
Methylene Chloride	ND U	1.0	1	03/27/03	03/27/03	
Methyl tert-Butyl Ether	ND U	1.0	1	03/27/03	03/27/03	
trans-1,2-Dichloroethene	ND U	0.50	1	03/27/03	03/27/03	
1,1-Dichloroethane	ND U	0.50	1	03/27/03	03/27/03	
Vinyl Acetate	ND U	3.0	1	03/27/03	03/27/03	
2,2-Dichloropropane	ND U	2.0	1	03/27/03	03/27/03	
2-Butanone (MEK)	ND U	8.0	1	03/27/03	03/27/03	
cis-1,2-Dichloroethene	ND U	0.50	1	03/27/03	03/27/03	
Bromochloromethane	ND U	0.50	1	03/27/03	03/27/03	
Chloroform	ND U	1.0	1	03/27/03	03/27/03	
1,1,1-Trichloroethane	ND U	0.50	1	03/27/03	03/27/03	
Carbon Tetrachloride	ND U	0.50	1	03/27/03	03/27/03	
1,1-Dichloropropene	ND U	0.50	1	03/27/03	03/27/03	Ll
Benzene	ND U	0.50	1	03/27/03	03/27/03	
1,2-Dichloroethane	ND U	0.50	1	03/27/03	03/27/03	
Trichloroethene	0.58	0.50	1	03/27/03	03/27/03	
1,2-Dichloropropane	ND U	0.50	1	03/27/03	03/27/03	
Dibromomethane	ND U		1	03/27/03	03/27/03	
Bromodichloromethane	ND U		1	03/27/03	03/27/03	
cis-1,3-Dichloropropene	ND U	0.50	1	03/27/03	03/27/03	
4-Methyl-2-pentanone (MIBK)	ND U		1	03/27/03	03/27/03	
Toluene	ND U		1	03/27/03	03/27/03	
10100110						

Comments:

Printed: 04/03/2003 14:55:44 L:\STEALTH\CRYSTAL.RPT\Form1m.rpt

Form 1A - Organic

000008

1 of 3 Page

Analytical Results

Client:

BE&K Terranext

Project:

WVB

Sample Matrix:

Water

Service Request: X2300228

Date Collected: 03/17/2003

Date Received: 03/17/2003

Volatile Organic Compounds

Sample Name:

AVB92-0200-03206

Lab Code:

X2300228-001

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

			Diluti	ion Date	Date	
Analyte Name	Result (Q MF	L Fact	or Extracted	Analyzed	Arizona Qualifier
trans-1,3-Dichloropropene	ND U	J 1.0	1	03/27/03	03/27/03	
1,1,2-Trichloroethane	ND U	J 1.0) 1	03/27/03	03/27/03	
Tetrachloroethene	0.69	0.5	0 1	03/27/03	03/27/03	
2-Hexanone	ND (J 5.0) 1	03/27/03	03/27/03	N1V4
1,3-Dichloropropane	ND U	J 1.0) 1	03/27/03	03/27/03	
Dibromochloromethane	ND (IJ 0.5	0 1	03/27/03	03/27/03	
1,2-Dibromoethane	ND U			03/27/03	03/27/03	
Chlorobenzene	ND U			03/27/03	03/27/03	
1,1,1,2-Tetrachloroethane	ND U	J 0.5	0 1	03/27/03	03/27/03	
Ethylbenzene	ND U	J 0.5	0 1	03/27/03	03/27/03	
m,p-Xylenes	ND U	J 1.0) 1	03/27/03	03/27/03	
o-Xylene	ND I	J 0.5	0 1	03/27/03	03/27/03	
Styrene	ND I	IJ 0.5	0 1	03/27/03	03/27/03	
Isopropylbenzene	ND U	J 0.5	0 1	03/27/03	03/27/03	
Bromobenzene	ND I	U 0.5	0 1	03/27/03	03/27/03	
1,2,3-Trichloropropane	ND I	U 1.0) 1	03/27/03	03/27/03	
n-Propylbenzene	ND U	U 0.5	0 1	03/27/03	03/27/03	
2-Chlorotoluene	ND I	U 0.5	0 1	03/27/03	03/27/03	
4-Chlorotoluene	ND I	U 0.5	0 1	03/27/03	03/27/03	
1,3,5-Trimethylbenzene	ND I	U 0.5	0 1	03/27/03	03/27/03	
tert-Butylbenzene	ND 1	U 0.5	0 1	03/27/03	03/27/03	
1,2,4-Trimethylbenzene	ND I	U 0.5	0 1	03/27/03	03/27/03	
sec-Butylbenzene	ND I	U 0.5	0 1	03/27/03	03/27/03	
1,3-Dichlorobenzene	ND 1	U 0.5	0 1	03/27/03	03/27/03	
4-Isopropyltoluene	ND 1	U 0.5	0 1	03/27/03	03/27/03	
Bromoform	ND 1	U 0.5	0 1	03/27/03	03/27/03	
1,1,2,2-Tetrachloroethane	ND 1	U 1.) 1	03/27/03	03/27/03	
1,4-Dichlorobenzene	ND 1	U 0.5	0 1	03/27/03	03/27/03	
1,2-Dichlorobenzene	ND 1	U 0.5	0 1	03/27/03	03/27/03	
n-Butylbenzene	ND 1	U 0.5	1	03/27/03	03/27/03	
1,2-Dibromo-3-chloropropane	ND 1	U 5.	0 1	03/27/03	03/27/03	
1,2,4-Trichlorobenzene	ND 1	U 0.5	1	03/27/03	03/27/03	
Hexachlorobutadiene	ND 1	U 0.5	1	03/27/03	03/27/03	

Comments:

000009

Analytical Results

Client:

BE&K Terranext

Project:

WVB

Sample Matrix:

Water

Service Request: X2300228

Date Collected: 03/17/2003

Date Received: 03/17/2003

Volatile Organic Compounds

Sample Name:

AVB92-0200-03206

Lab Code:

X2300228-001

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L

Basis: NA

Level: Low

			Dilution	Date	Date	
Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed	Arizona Qualifier
Naphthalene	ND U	3.0	1	03/27/03	03/27/03	
1,2,3-Trichlorobenzene	ND U	0.50	1	03/27/03	03/27/03	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Arizona Qualifier	
Dibromofluoromethane	106	84-113	03/27/03		
Toluene-d8	109	68-126	03/27/03		
4-Bromofluorobenzene	104	79-113	03/27/03		

Comments:

0000020

Merged

Page

Analytical Results

Client:

BE&K Terranext

Project:

WVB

Sample Matrix:

Water

Service Request: X2300228

Date Collected: 03/17/2003

Date Received: 03/17/2003

Volatile Organic Compounds

Sample Name:

AVB96-0200-03234

Lab Code:

X2300228-002

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

				Dilution	Date	Date	
Analyte Name	Result	Q	MRL	Factor	Extracted		Arizona Qualifier
Dichlorodifluoromethane	ND	U	3.0	1	03/27/03	03/27/03	
Chloromethane	ND	U	2.0	1	03/27/03	03/27/03	
Vinyl Chloride	ND	U	1.0	1	03/27/03	03/27/03	
Bromomethane	ND	U	1.0	1	03/27/03	03/27/03	
Chloroethane	ND	U	1.0	1	03/27/03	03/27/03	
Trichlorofluoromethane	ND	U	1.0	1	03/27/03	03/27/03	
1,1,2-Trichlorotrifluoroethane	ND	U	1.0	1	03/27/03	03/27/03	L1
1,1-Dichloroethene	ND	U	1.0	1	03/27/03		L1
Acetone	10		10	1	03/27/03	03/27/03	
Iodomethane	ND	U	2.0	1	03/27/03	03/27/03	
Carbon Disulfide	ND	U	2.0	1	03/27/03	03/27/03	
Methylene Chloride	ND	U	1.0	1	03/27/03	03/27/03	
Methyl tert-Butyl Ether	ND	U	1.0	1	03/27/03	03/27/03	
trans-1,2-Dichloroethene	ND	U	0.50	1	03/27/03	03/27/03	
1,1-Dichloroethane	ND		0.50	1	03/27/03	03/27/03	
Vinyl Acetate	ND	U	3.0	1	03/27/03	03/27/03	
2,2-Dichloropropane	ND	U	2.0	1	03/27/03	03/27/03	
2-Butanone (MEK)	ND	U	8.0	1	03/27/03	03/27/03	
cis-1,2-Dichloroethene	ND	U	0.50	1	03/27/03	03/27/03	
Bromochloromethane	ND	U	0.50	1	03/27/03	03/27/03	
Chloroform	ND	U	1.0	1	03/27/03	03/27/03	
1.1.1-Trichloroethane	ND	U	0.50	1	03/27/03	03/27/03	
Carbon Tetrachloride	ND	U	0.50	1	03/27/03	03/27/03	
1,1-Dichloropropene	ND	U	0.50	1	03/27/03	03/27/03	L1
Benzene	ND	U	0.50	1	03/27/03	03/27/03	
1.2-Dichloroethane	ND	U	0.50	1	03/27/03	03/27/03	
Trichloroethene	ND	U	0.50	1	03/27/03	03/27/03	
1,2-Dichloropropane	ND	U	0.50	1	03/27/03	03/27/03	
Dibromomethane	ND	U	0.50	1	03/27/03	03/27/03	
Bromodichloromethane	ND	U	0.50	1	03/27/03	03/27/03	
cis-1,3-Dichloropropene	ND	U	0.50	1	03/27/03	03/27/03	
4-Methyl-2-pentanone (MIBK)	ND	U	8.0	1	03/27/03	03/27/03	
Toluene	ND	U	0.50	1	03/27/03	03/27/03	

Comments:

000011

SuperSet Reference:

Analytical Results

Client:

BE&K Terranext

Project:

WVB

Sample Matrix:

Water

Service Request: X2300228

Date Collected: 03/17/2003

Date Received: 03/17/2003

Volatile Organic Compounds

Sample Name:

AVB96-0200-03234

Lab Code:

X2300228-002

Extraction Method: EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

Analyte Name	Result	0	MRL	Dilution Factor	Date Extracted	Date Analyzed	Arizona Qualifier
trans-1,3-Dichloropropene	ND		1.0	1	03/27/03	03/27/03	
1,1,2-Trichloroethane	ND		1.0	1	03/27/03	03/27/03	
Tetrachloroethene	ND		0.50	1	03/27/03	03/27/03	
2-Hexanone	ND	U	5.0	1	03/27/03	03/27/03	N1V4
1,3-Dichloropropane	ND		1.0	1	03/27/03	03/27/03	
Dibromochloromethane	ND	U	0.50	1	03/27/03	03/27/03	
1,2-Dibromoethane	ND	U	0.50	1	03/27/03	03/27/03	
Chlorobenzene	ND	U	0.50	1	03/27/03	03/27/03	
1,1,1,2-Tetrachloroethane	ND	U	0.50	1	03/27/03	03/27/03	
Ethylbenzene	ND	U	0.50	1	03/27/03	03/27/03	
m,p-Xylenes	ND	U	1.0	1	03/27/03	03/27/03	
o-Xylene	ND	U	0.50	1	03/27/03	03/27/03	
Styrene	ND	U	0.50	1	03/27/03	03/27/03	
Isopropylbenzene	ND	U	0.50	1	03/27/03	03/27/03	
Bromobenzene	ND	U	0.50	1	03/27/03	03/27/03	
1,2,3-Trichloropropane	ND	U	1.0	1	03/27/03	03/27/03	
n-Propylbenzene	ND	U	0.50	1	03/27/03	03/27/03	
2-Chlorotoluene	ND	U	0.50	1	03/27/03	03/27/03	
4-Chlorotoluene	ND	U	0.50	1	03/27/03	03/27/03	
1,3,5-Trimethylbenzene	ND	U	0.50	1	03/27/03	03/27/03	
tert-Butylbenzene	ND	U	0.50	1	03/27/03	03/27/03	
1,2,4-Trimethylbenzene	ND	U	0.50	1	03/27/03	03/27/03	
sec-Butylbenzene	ND	U	0.50	1	03/27/03	03/27/03	
1,3-Dichlorobenzene	ND	U	0.50	1	03/27/03	03/27/03	
4-Isopropyltoluene	ND	U	0.50	1	03/27/03	03/27/03	
Bromoform	ND	U	0.50	1	03/27/03	03/27/03	
1,1,2,2-Tetrachloroethane	ND	U	1.0	1	03/27/03	03/27/03	
1,4-Dichlorobenzene	ND	U	0.50	1	03/27/03	03/27/03	
1,2-Dichlorobenzene	ND	U	0.50	1	03/27/03	03/27/03	
n-Butylbenzene	ND	U	0.50	11	03/27/03	03/27/03	
1,2-Dibromo-3-chloropropane	ND	U	5.0	1	03/27/03	03/27/03	
1,2,4-Trichlorobenzene		U	0.50	1	03/27/03	03/27/03	
Hexachlorobutadiene	ND	U	0.50	1	03/27/03	03/27/03	

Comments:

000012

Analytical Results

Client:

BE&K Terranext

Project:

WVB

Sample Matrix:

Water

Service Request: X2300228

Date Collected: 03/17/2003

Date Received: 03/17/2003

Volatile Organic Compounds

Sample Name:

AVB96-0200-03234

Lab Code:

X2300228-002

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L

Basis: NA

Level: Low

			Dilution	Date	Date	
Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed	Arizona Qualifier
Naphthalene	ND U	3.0	1	03/27/03	03/27/03	
1,2,3-Trichlorobenzene	ND U	0.50	1	03/27/03	03/27/03	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Arizona Qualifier	
Dibromofluoromethane	104	84-113	03/27/03		
Toluene-d8	108	68-126	03/27/03		
4-Bromofluorobenzene	102	79-113	03/27/03		

Comments:

Printed: 04/03/2003 14:55:54

Merged

Form 1A - Organic

000013

3 of 3 Page

RR3152 SuperSet Reference:

Analytical Results

Client:

BE&K Terranext

Project:

WVB

Sample Matrix:

Water

Service Request: X2300228

Date Collected: 03/17/2003

Date Received: 03/17/2003

Volatile Organic Compounds

Sample Name:

AVB94-0200-03201

Lab Code:

X2300228-003

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

			Dilution	Date	Date	
Analyte Name	Result Q	MRL	Factor	Extracted		Arizona Qualifier
Dichlorodifluoromethane	ND U	3.0	1	03/27/03	03/27/03	
Chloromethane	ND U	2.0	1	03/27/03	03/27/03	
Vinyl Chloride	ND U	1.0	1	03/27/03	03/27/03	
Bromomethane	ND U	1.0	1	03/27/03	03/27/03	
Chloroethane	ND U	1.0	1	03/27/03	03/27/03	
Trichlorofluoromethane	ND U	1.0	11	03/27/03	03/27/03	
1,1,2-Trichlorotrifluoroethane	2,1	1.0	1	03/27/03	03/27/03	L1
1,1-Dichloroethene	2.7	1.0	1	03/27/03	03/27/03	Ll
Acetone	ND U	10	1	03/27/03	03/27/03	
Iodomethane	ND U	2.0	1	03/27/03	03/27/03	
Carbon Disulfide	ND U	2.0	1	03/27/03	03/27/03	
Methylene Chloride	ND U	1.0	1	03/27/03	03/27/03	
Methyl tert-Butyl Ether	ND U	1.0	1	03/27/03	03/27/03	
trans-1,2-Dichloroethene	ND U	0.50	1	03/27/03	03/27/03	
1,1-Dichloroethane	ND U	0.50	1	03/27/03	03/27/03	
Vinyl Acetate	ND U	3.0	1	03/27/03	03/27/03	
2,2-Dichloropropane	ND U	2.0	1	03/27/03	03/27/03	
2-Butanone (MEK)	ND U	8.0	1	03/27/03	03/27/03	
cis-1,2-Dichloroethene	ND U	0.50	1	03/27/03	03/27/03	
Bromochloromethane	ND U	0.50	1	03/27/03	03/27/03	
Chloroform	1.1	1.0	1	03/27/03	03/27/03	
1.1.1-Trichloroethane	ND U	0.50	1	03/27/03	03/27/03	
Carbon Tetrachloride	ND U	0.50	1	03/27/03	03/27/03	
1,1-Dichloropropene	ND U	0.50	1	03/27/03	03/27/03	L1
Benzene	ND U	0.50	1	03/27/03	03/27/03	
1,2-Dichloroethane	ND U	0.50	1	03/27/03	03/27/03	
Trichloroethene	1.2	0.50	1	03/27/03	03/27/03	
1,2-Dichloropropane	ND U	0.50	1	03/27/03	03/27/03	
Dibromomethane	ND U	0.50	1	03/27/03	03/27/03	
Bromodichloromethane	ND U	0.50	1	03/27/03	03/27/03	
cis-1,3-Dichloropropene	ND U	0.50	1	03/27/03	03/27/03	
4-Methyl-2-pentanone (MIBK)	ND U	8.0	1	03/27/03	03/27/03	
Toluene	ND U	0.50	1	03/27/03	03/27/03	

Comments:

Printed: 04/03/2003 14:56:04 L:\STEALTH\CRYSTAL.RPT\Form\m.rpt

Merged

Form 1A - Organic 000014

Page 1 of 3

Analytical Results

Client:

BE&K Terranext

Project:

WVB

Sample Matrix:

Water

Service Request: X2300228

Date Collected: 03/17/2003

Date Received: 03/17/2003

Volatile Organic Compounds

Sample Name:

AVB94-0200-03201

Lab Code:

X2300228-003

Extraction Method: EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

Analyte Name Result Ø MRL Factor Extracted Analyzed Arizona Qualiffer trans-1,3-Dichloropropene ND U 1.0 1 03/27/03 03/27/03 32/27/03 12/27/33 12/27/33 32/27/03 </th <th></th> <th></th> <th></th> <th></th> <th>Dilution</th> <th>Date</th> <th>Date</th> <th></th>					Dilution	Date	Date	
trans-1,3-Dichloropropene ND U 1,0 1 03/27/03 03/27/03 03/27/03 1,1,2-Trichloroethane ND U 1.0 1 03/27/03 03/27/03 03/27/03 2-Hexanone ND U 5.0 1 03/27/03 03/27/03 03/27/03 2-Hexanone ND U 5.0 1 03/27/03 03/27/03 03/27/03 1,3-Dichloropropane ND U 0.50 1 03/27/03 03/27/03 03/27/03 Dibromoethane ND U 0.50 1 03/27/03 03/27/03 03/27/03 Chlorobenzene ND U 0.50 1 03/27/03 03/27/03 03/27/03 Chlorobenzene ND U 0.50 1 03/27/03 03/27/03 03/27/03 Chlorobenzene ND U 0.50 1 03/27/03 03/27/03 03/27/03 Styrene ND U 0.50 1 03/27/03 03/2	Analyte Name	Result	Q	MRL	Factor	Extracted	Analyzed	Arizona Qualifier
1,1,2-Trichloroethane		ND	U	1.0	1	03/27/03		
Tetrachloroethene		ND	U	1.0	1			
1,3-Dichloropropane ND U 1.0 1 03/27/03 03/27/03 1,3-Dichloropropane ND U 0.50 1 03/27/03 03/27/03 1,1-Dichloropropane ND U 0.50 1 03/27/03 03/27/03 1,1-Dichloropropane ND U 0.50 1 03/27/03 03/27/03 1,1,1-Dichloropropane ND U 0.50 1 03/27/03 03/27/03 1,1-Dichloropropane ND U 0.50 1 03/27/03 03/27/03 1,2-Dichloropropane ND U 0.50 1 03/27/03 03/27/03 1,2,3-Trichloropropane ND U 0.50 1 03/27/03 03/27/03 1,2,3-Trichloropropane ND U 0.50 1 03/27/03 03/27/03 1,2-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 1,3,5-Trimethylbenzene ND U 0.50 1 03/27/03 03/27/03 1,2,4-Trimethylbenzene ND U 0.50 1 03/27/03 03/27/03 1,3-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 1,4-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 1,4-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 1,2-Dichlorobenzene ND U 0.50 1 0		1.2		0.50	1	03/27/03	03/27/03	
1,3-Dichloropropane ND U 1.0 1 03/27/03 03/27/03 1,2-Dibromochloromethane ND U 0.50 1 03/27/03 03/27/03 1,2-Dibromochlane ND U 0.50 1 03/27/03 03/27/03 1,1,1,2-Tetrachloroethane ND U 0.50 1 03/27/03 03/27/03 1,1,1,2-Tetrachloroethane ND U 0.50 1 03/27/03 03/27/03 1,1,1,2-Tetrachloroethane ND U 0.50 1 03/27/03 03/27/03 1,1,2-Tetrachloroethane ND U 0.50 1 03/27/03 03/27/03 1,1,1,2-Tetrachloroethane ND U 0.50 1 03/27/03 03/27/03 1,1,1,2-Tetrachloroethane ND U 0.50 1 03/27/03 03/27/03 1,1,1,2-Tetrachloroethane ND U 0.50 1 03/27/03 03/27/03 1,2,3-Trichloropropane ND U 0.50 1 03/27/03 03/27/03 1,2,4-Trimethylbenzene ND U 0.50 1 03/27/03 03/27/03 1,2,4-Trimethylbenzene ND U 0.50 1 03/27/03 03/27/03 1,2,2-Tetrachloroethane ND U 0.50 1 03/27/03 03/27/03 1,2-Tetrachloroethane ND U 0.50 1 03/27/03 03/27/03 1,2-Tetrachloroethane ND U 0.50 1 03/27/03 03/27/03 1,2-Tetra	2-Hexanone	ND	U	5.0	1			N1V4
Dibromochloromethane ND U 0.50 1 03/27/03 03/27/03 1,2-Dibromocthane ND U 0.50 1 03/27/03 03/27/03 1,1,1,2-Tetrachloroethane ND U 0.50 1 03/27/03 03/27/03 2,1,1,2-Tetrachloroethane ND U 0.50 1 03/27/03 03/27/03 2,1,1,2-Tetrachloroethane ND U 0.50 1 03/27/03 03/27/03 3,1,1,2-Tetrachloroethane ND U 0.50 1 03/27/03 03/27/03 3,1,1,2-Timethylbenzene ND U 0.50 1 03/27/03 03/27/03 3,2,4-Trimethylbenzene ND U 0.50 1 03/27/03 03/27/03 3,2,4-Trimethylbenzene ND U 0.50 1 03/27/03 03/27/03 3,3-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 3,1-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 3,2-Dichlorobenzene ND U		ND	U	1.0	1			
1,2-Protothone		ND	U	0.50	1			
Chlorobenzene	1,2-Dibromoethane	ND	U		1			
The process of the		ND	U		1			
Shrystene ND U	1,1,1,2-Tetrachloroethane	ND	U	0.50	11	03/27/03	03/27/03	
m,p-Xylenes ND U 1.0 1 03/27/03 03/27/03 o-Xylene ND U 0.50 1 03/27/03 03/27/03 Styrene ND U 0.50 1 03/27/03 03/27/03 Isopropylbenzene ND U 0.50 1 03/27/03 03/27/03 Bromobenzene ND U 0.50 1 03/27/03 03/27/03 12,3-Trichloropropane ND U 1.0 1 03/27/03 03/27/03 1-Propylbenzene ND U 0.50 1 03/27/03 03/27/03 2-Chlorotoluene ND U 0.50 1 03/27/03 03/27/03 4-Chlorotoluene ND U 0.50 1 03/27/03 03/27/03 1,3,5-Trimethylbenzene ND U 0.50 1 03/27/03 03/27/03 1,2,4-Trimethylbenzene ND U 0.50 1 03/27/03 03/27/03 1,3-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 1,3-Pibrobenzene </td <td>Ethylbenzene</td> <td>ND</td> <td>U</td> <td></td> <td>1</td> <td></td> <td></td> <td></td>	Ethylbenzene	ND	U		1			
o-Xylene ND U 0.50 1 03/27/03 03/27/03 Styrene ND U 0.50 1 03/27/03 03/27/03 Isopropylbenzene ND U 0.50 1 03/27/03 03/27/03 Bromobenzene ND U 0.50 1 03/27/03 03/27/03 1,2,3-Trichloropropane ND U 0.50 1 03/27/03 03/27/03 1,2,3-Trichloropropane ND U 0.50 1 03/27/03 03/27/03 2-Chlorotoluene ND U 0.50 1 03/27/03 03/27/03 4-Chlorotoluene ND U 0.50 1 03/27/03 03/27/03 1,3,5-Trimethylbenzene ND U 0.50 1 03/27/03 03/27/03 tert-Butylbenzene ND U 0.50 1 03/27/03 03/27/03 1,2,4-Trimethylbenzene ND U 0.50 1 03/27/03 03/27/03 1,3-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 1,	Ţ	ND	U	1.0	1			
Stylene		ND	U	0.50	1	03/27/03	03/27/03	
Isopropylbenzene	Styrene	ND	U	0.50	1			
Bromobenzene ND U 0.50 1 03/27/03 03/27/03 1,2,3-Trichloropropane ND U 1.0 1 03/27/03 03/27/03 n-Propylbenzene ND U 0.50 1 03/27/03 03/27/03 2-Chlorotoluene ND U 0.50 1 03/27/03 03/27/03 4-Chlorotoluene ND U 0.50 1 03/27/03 03/27/03 1,3,5-Trimethylbenzene ND U 0.50 1 03/27/03 03/27/03 1,3,5-Trimethylbenzene ND U 0.50 1 03/27/03 03/27/03 1,2,4-Trimethylbenzene ND U 0.50 1 03/27/03 03/27/03 1,2,4-Trimethylbenzene ND U 0.50 1 03/27/03 03/27/03 1,3-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 1,3-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 1,3-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 1,1,2,2-Tetrachloroethane ND U 0.50 1 03/27/03 03/27/03 1,4-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 1,2-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 1,2-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 1,2-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 1,2-Dibromo-3-chloropropane ND U 0.50 1 03/27/03 03/27/03 1,2-Trichlorobenzene ND U 0.50 1 03/27/03 03/27/03 1,2-Trichlorobenzene ND U 0.50 1 03/27/03 03/27/03 1,2-Dibromo-3-chloropropane ND U 0.50 1 03/27/03 03/27/03 1,2-Trichlorobenzene ND U 0.50 1 03/27/03 03/27/03		ND	U	0.50	1			
1,2,5-Themotophopane ND U 0.50 1 03/27/03 03/27/03 2-Chlorotoluene ND U 0.50 1 03/27/03 03/27/03 4-Chlorotoluene ND U 0.50 1 03/27/03 03/27/03 4-Chlorotoluene ND U 0.50 1 03/27/03 03/27/03 1,3,5-Trimethylbenzene ND U 0.50 1 03/27/03 03/27/03 tert-Butylbenzene ND U 0.50 1 03/27/03 03/27/03 1,2,4-Trimethylbenzene ND U 0.50 1 03/27/03 03/27/03 sec-Butylbenzene ND U 0.50 1 03/27/03 03/27/03 1,3-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 4-Isopropyltoluene ND U 0.50 1 03/27/03 03/27/03 Bromoform ND U 0.50 1 03/27/03 03/27/03 1,4-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03		ND	U	0.50	1	03/27/03	03/27/03	
n-Propylbenzene ND U 0.50 1 03/27/03 03/27/03 2-Chlorotoluene ND U 0.50 1 03/27/03 03/27/03 4-Chlorotoluene ND U 0.50 1 03/27/03 03/27/03 1,3,5-Trimethylbenzene ND U 0.50 1 03/27/03 03/27/03 tert-Butylbenzene ND U 0.50 1 03/27/03 03/27/03 1,2,4-Trimethylbenzene ND U 0.50 1 03/27/03 03/27/03 sec-Butylbenzene ND U 0.50 1 03/27/03 03/27/03 1,3-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 4-Isopropyltoluene ND U 0.50 1 03/27/03 03/27/03 Bromoform ND U 0.50 1 03/27/03 03/27/03 1,1,2,2-Tetrachloroethane ND U 0.50 1 03/27/03 03/27/03 1,4-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03	1.2.3-Trichloropropane	ND	U	1.0	1			
2-Chlorotoluene ND U 0.50 1 03/27/03 03/27/03 4-Chlorotoluene ND U 0.50 1 03/27/03 03/27/03 1,3,5-Trimethylbenzene ND U 0.50 1 03/27/03 03/27/03 tert-Butylbenzene ND U 0.50 1 03/27/03 03/27/03 1,2,4-Trimethylbenzene ND U 0.50 1 03/27/03 03/27/03 sec-Butylbenzene ND U 0.50 1 03/27/03 03/27/03 1,3-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 4-Isopropyltoluene ND U 0.50 1 03/27/03 03/27/03 Bromoform ND U 0.50 1 03/27/03 03/27/03 1,1,2,2-Tetrachloroethane ND U 0.50 1 03/27/03 03/27/03 1,4-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 1,2-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03		ND	U	0.50				
1,3,5-Trimethylbenzene ND U 0.50 1 03/27/03 03/27/03 1,2,4-Trimethylbenzene ND U 0.50 1 03/27/03 03/27/03 sec-Butylbenzene ND U 0.50 1 03/27/03 03/27/03 sec-Butylbenzene ND U 0.50 1 03/27/03 03/27/03 1,3-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 4-Isopropyltoluene ND U 0.50 1 03/27/03 03/27/03 Bromoform ND U 0.50 1 03/27/03 03/27/03 1,1,2,2-Tetrachloroethane ND U 1.0 1 03/27/03 03/27/03 1,4-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 1,4-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 1,2-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 1,2-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 1,2-Dibromo-3-chloropropane ND U 5.0 1 03/27/03 03/27/03 1,2,4-Trichlorobenzene ND U 0.50 1 03/27/03 03/27/03 1,2,4-Trichlorobenzene ND U 0.50 1 03/27/03 03/27/03 1,2,4-Trichlorobenzene ND U 0.50 1 03/27/03 03/27/03	4.7	ND	U	0.50	1	03/27/03		
1,3,5-Trimethylbenzene ND U 0.50 1 03/27/03 03/27/03 tert-Butylbenzene ND U 0.50 1 03/27/03 03/27/03 1,2,4-Trimethylbenzene ND U 0.50 1 03/27/03 03/27/03 sec-Butylbenzene ND U 0.50 1 03/27/03 03/27/03 1,3-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 4-Isopropyltoluene ND U 0.50 1 03/27/03 03/27/03 Bromoform ND U 0.50 1 03/27/03 03/27/03 1,1,2,2-Tetrachloroethane ND U 0.50 1 03/27/03 03/27/03 1,4-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 1,2-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 1,2-Dibromo-3-chloropropane ND U 5.0 1 03/27/03 03/27/03 1,2,4-Trichlorobenzene ND U 0.50 1 <td>4-Chlorotoluene</td> <td>ND</td> <td>U</td> <td>0.50</td> <td>1</td> <td></td> <td></td> <td></td>	4-Chlorotoluene	ND	U	0.50	1			
tert-Butylbenzene ND U 0.50 1 03/27/03 03/27/03 1,2,4-Trimethylbenzene ND U 0.50 1 03/27/03 03/27/03 sec-Butylbenzene ND U 0.50 1 03/27/03 03/27/03 1,3-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 4-Isopropyltoluene ND U 0.50 1 03/27/03 03/27/03 Bromoform ND U 0.50 1 03/27/03 03/27/03 1,1,2,2-Tetrachloroethane ND U 1.0 1 03/27/03 03/27/03 1,4-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 1,2-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 n-Butylbenzene ND U 0.50 1 03/27/03 03/27/03 1,2-Dibromo-3-chloropropane ND U 5.0 1 03/27/03 03/27/03 1,2,4-Trichlorobenzene ND U 0.50 1 03/27/03 03/27/03 <		ND	U	0.50	1			
Sec-Butylbenzene	* *	ND	U	0.50	1			
sec-Butylbenzene ND U 0.50 1 03/27/03 03/27/03 1,3-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 4-Isopropyltoluene ND U 0.50 1 03/27/03 03/27/03 Bromoform ND U 0.50 1 03/27/03 03/27/03 1,1,2,2-Tetrachloroethane ND U 1.0 1 03/27/03 03/27/03 1,4-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 1,2-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 n-Butylbenzene ND U 0.50 1 03/27/03 03/27/03 1,2-Dibromo-3-chloropropane ND U 5.0 1 03/27/03 03/27/03 1,2,4-Trichlorobenzene ND U 0.50 1 03/27/03 03/27/03	1.2.4-Trimethylbenzene	ND	U	0.50	1			
1,3-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 4-Isopropyltoluene ND U 0.50 1 03/27/03 03/27/03 Bromoform ND U 0.50 1 03/27/03 03/27/03 1,1,2,2-Tetrachloroethane ND U 1.0 1 03/27/03 03/27/03 1,4-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 1,2-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 n-Butylbenzene ND U 0.50 1 03/27/03 03/27/03 1,2-Dibromo-3-chloropropane ND U 5.0 1 03/27/03 03/27/03 1,2,4-Trichlorobenzene ND U 0.50 1 03/27/03 03/27/03		ND	U	0.50	1			
Bromoform ND U 0.50 1 03/27/03 03/27/03 1,1,2,2-Tetrachloroethane ND U 1.0 1 03/27/03 03/27/03 1,4-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 1,2-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 n-Butylbenzene ND U 0.50 1 03/27/03 03/27/03 1,2-Dibromo-3-chloropropane ND U 5.0 1 03/27/03 03/27/03 1,2,4-Trichlorobenzene ND U 0.50 1 03/27/03 03/27/03		ND	U	0.50	1	03/27/03	03/27/03	
Bromoform ND U 0.50 1 03/27/03 03/27/03 1,1,2,2-Tetrachloroethane ND U 1.0 1 03/27/03 03/27/03 1,4-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 1,2-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 n-Butylbenzene ND U 0.50 1 03/27/03 03/27/03 1,2-Dibromo-3-chloropropane ND U 5.0 1 03/27/03 03/27/03 1,2,4-Trichlorobenzene ND U 0.50 1 03/27/03 03/27/03	4-Isopropyltoluene	ND	U	0.50	1			
1,1,2,2-Tetrachloroethane ND U 1.0 1 03/27/03 03/27/03 1,4-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 1,2-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 n-Butylbenzene ND U 0.50 1 03/27/03 03/27/03 1,2-Dibromo-3-chloropropane ND U 5.0 1 03/27/03 03/27/03 1,2,4-Trichlorobenzene ND U 0.50 1 03/27/03 03/27/03		ND	U	0.50	1			
1,3-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 n-Butylbenzene ND U 0.50 1 03/27/03 03/27/03 1,2-Dibromo-3-chloropropane ND U 5.0 1 03/27/03 03/27/03 1,2,4-Trichlorobenzene ND U 0.50 1 03/27/03 03/27/03		ND	U	1.0	1	03/27/03	03/27/03	
1,2-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 n-Butylbenzene ND U 0.50 1 03/27/03 03/27/03 1,2-Dibromo-3-chloropropane ND U 5.0 1 03/27/03 03/27/03 1,2,4-Trichlorobenzene ND U 0.50 1 03/27/03 03/27/03	1.4-Dichlorobenzene	ND	U	0.50	1			
n-Butylbenzene ND U 0.50 1 03/27/03 03/27/03 1,2-Dibromo-3-chloropropane ND U 5.0 1 03/27/03 03/27/03 1,2,4-Trichlorobenzene ND U 0.50 1 03/27/03 03/27/03	*	ND	U	0.50	1			
1,2,4-Trichlorobenzene ND U 0.50 1 03/27/03 03/27/03		ND	U	0.50	11	03/27/03		
1,2,4-Trichlorobenzene ND U 0.50 1 03/27/03 03/27/03	1,2-Dibromo-3-chloropropane	ND	U		1			
4 00 IOTIOO 00 IOTIOO		ND	U		1			
	, ,	ND	U	0.50	1	03/27/03	03/27/03	

Comments:

Printed: 04/03/2003 14:56:04 L:\STEALTH\CRYSTAL.RPT\Form1m.rpt

Merged

Analytical Results

Client:

BE&K Terranext

Project:

WVB

Sample Matrix:

Water

Service Request: X2300228

Date Collected: 03/17/2003

Date Received: 03/17/2003

Volatile Organic Compounds

Sample Name:

AVB94-0200-03201

Lab Code:

X2300228-003

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L

Basis: NA

Level: Low

			Dilution	Date	Date	
Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed	Arizona Qualifier
Naphthalene	ND U	3.0	1	03/27/03	03/27/03	
1,2,3-Trichlorobenzene	ND U	0.50	1	03/27/03	03/27/03	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Arizona Qualifier	
Dibromofluoromethane	105	84-113	03/27/03		
Toluene-d8	109	68-126	03/27/03		
4-Bromofluorobenzene	103	79-113	03/27/03		

Comments:

Printed: 04/03/2003 14:56:04 L:\STEALTH\CRYSTAL.RPT\Form1m.rpt

Merged

Form 1A - Organic

000016

Page 3 of 3

SuperSet Reference:

Analytical Results

Client:

BE&K Terranext

Project:

WVB

Sample Matrix:

Water

Service Request: X2300228

Date Collected: 03/17/2003 **Date Received:** 03/17/2003

Volatile Organic Compounds

Sample Name:

AVB94-0204-1000

Lab Code:

X2300228-004

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

			Dilution	Date	Date	
Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed	Arizona Qualifier
Dichlorodifluoromethane	ND U	3.0	1	03/27/03	03/27/03	
Chloromethane	ND U	2.0	1	03/27/03	03/27/03	
Vinyl Chloride	ND U	1.0	1	03/27/03	03/27/03	
Bromomethane	ND U	1.0	1	03/27/03	03/27/03	
Chloroethane	ND U	1.0	1	03/27/03	03/27/03	
Trichlorofluoromethane	ND U	1.0	1	03/27/03	03/27/03	
1,1,2-Trichlorotrifluoroethane	ND U	1.0	1	03/27/03	03/27/03	L1
1.1-Dichloroethene	ND U	1.0	1	03/27/03	03/27/03	L1
Acetone	ND U	10	1	03/27/03	03/27/03	
Iodomethane	ND U	2.0	1	03/27/03	03/27/03	
Carbon Disulfide	ND U	2.0	1	03/27/03	03/27/03	
Methylene Chloride	ND U	1.0	1	03/27/03	03/27/03	
Methyl tert-Butyl Ether	ND U	1.0	1	03/27/03	03/27/03	
trans-1,2-Dichloroethene	ND U	0.50	1	03/27/03	03/27/03	
1,1-Dichloroethane	ND U	0.50	1	03/27/03	03/27/03	
<u></u>	ND U	3.0	1	03/27/03	03/27/03	
Vinyl Acetate 2,2-Dichloropropane	ND U	2.0	1	03/27/03	03/27/03	
2,2-Dictioropropane 2-Butanone (MEK)	ND U	8.0	1	03/27/03	03/27/03	
cis-1,2-Dichloroethene	ND U	0.50	1	03/27/03	03/27/03	
Bromochloromethane	ND U	0.50	1	03/27/03	03/27/03	
Chloroform	ND U	1.0	1	03/27/03	03/27/03	
	ND U	0.50	1	03/27/03	03/27/03	
1,1,1-Trichloroethane Carbon Tetrachloride	ND U	0.50	1	03/27/03	03/27/03	
1,1-Dichloropropene	ND U	0.50	1	03/27/03	03/27/03	L1
	ND U	0.50	1	03/27/03	03/27/03	
Benzene	ND U	0.50	1	03/27/03	03/27/03	
1,2-Dichloroethane Trichloroethene	ND U	0.50	. 1	03/27/03	03/27/03	
	ND U	0.50	1	03/27/03	03/27/03	
1,2-Dichloropropane	ND U	0.50	1	03/27/03	03/27/03	
Dibromomethane Bromodichloromethane	ND U	0.50	1	03/27/03	03/27/03	
	ND U	0.50	1	03/27/03	03/27/03	
cis-1,3-Dichloropropene	ND U	8.0	1	03/27/03	03/27/03	
4-Methyl-2-pentanone (MIBK)	ND U	0.50	1	03/27/03	03/27/03	
Toluene	עאו	0.50				

Comments:

Printed: 04/03/2003 14:56:14 L:\STEALTH\CRYSTAL.RPT\Form\lm.rpt

Merged

Form 1A - Organic **600017**

1 of 3 Page

Analytical Results

Client:

BE&K Terranext

Project:

WVB

Sample Matrix:

Water

Service Request: X2300228

Date Collected: 03/17/2003

Date Received: 03/17/2003

Volatile Organic Compounds

Sample Name: Lab Code:

AVB94-0204-1000 X2300228-004

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

Analyte Name Result Q MRL Factor Extracted Analyzed Arizona Qualiffer trans-1,3-Dichloropropene ND U 1.0 1 03/27/03 03/27/03 3/27/03 1,1,2-Trichlorocethane ND U 0.50 1 03/27/03 03/27/03 NIV4 2-Hexanone ND U 5.0 1 03/27/03 03/27/03 03/27/03 1,3-Dichloropropane ND U 1.0 1 03/27/03 03/27/03 03/27/03 1,2-Dibromochlane ND U 0.50 1 03/27/03 03/27/03 03/27/03 1,2-Dibromochlane ND U 0.50 1 03/27/03 03/27/03 03/27/03 1,2-Tetrachlorocthane ND U 0.50 1 03/27/03 03/27/03 1,1,1,2-Tetrachlorocthane ND U 0.50 1 03/27/03 03/27/03 1,1,1,2-Tetrachlorocthane ND U 0.50 1 03/27/03 03/27/03 1,1,1,2-Tetrachlorocthane ND U 0.50 1 03/27/03 <th></th> <th></th> <th></th> <th></th> <th>Dilution</th> <th>Date</th> <th>Date</th> <th></th>					Dilution	Date	Date	
1,1,2-Trichloroethane	Analyte Name	Result	Q	MRL	Factor	Extracted	Analyzed	Arizona Qualifier
The properties ND U 0.50 1 03/27/03 03/27/0	trans-1,3-Dichloropropene	ND	U	1.0	1	03/27/03		
Section Sect		ND	U	1.0	1			
1,3-Dichloropropane ND U 1.0 1 03/27/03 03/27/03 1,3-Dichloropropane ND U 0.50 1 03/27/03 03/27/03 1,2-Dibromochloromethane ND U 0.50 1 03/27/03 03/27/03 1,1,2-Dibromochlane ND U 0.50 1 03/27/03 03/27/03 1,1,1,2-Tetrachloroethane ND U 0.50 1 03/27/03 03/27/03 1,1,1,2-Tetrachloroethane ND U 0.50 1 03/27/03 03/27/03 1,1,1,2-Tetrachloroethane ND U 0.50 1 03/27/03 03/27/03 1,1,2-Tetrachloroethane ND U 0.50 1 03/27/03 03/27/03 1,2,3-Trichloropropane ND U 0.50 1 03/27/03 03/27/03 1,2,3-Trichloropropane ND U 0.50 1 03/27/03 03/27/03 1,2-Tetrachloroethane ND U 0.50 1 03/27/03 03/27/03 1,3-Trimethylbenzene ND U 0.50 1 03/27/03 03/27/03 1,3-Trimethylbenzene ND U 0.50 1 03/27/03 03/27/03 1,2-Trimethylbenzene ND U 0.50 1 03/27/03 03/27/03 1,2-Trimethylbenzene ND U 0.50 1 03/27/03 03/27/03 1,3-Trimethylbenzene ND U 0.50 1 03/27/03 03/27/03 1,3-Triachloroethane ND U 0.50 1 03/27/03 03/27/03 1,3-Trichloroethane ND U 0.50 1 03/27/03 03/27/03 1,2-Tetrachloroethane ND U 0.50 1 03/27/03 0	Tetrachloroethene	ND	U	0.50	1	03/27/03	03/27/03	
1,2-Dibromochloromethane	2-Hexanone	ND	U	5.0	1	03/27/03		N1V4
Dibromochloromethane ND U 0.50 1 03/27/03 03/27/03 1,2-Dibromochlane ND U 0.50 1 03/27/03 03/27/03 1,1,1,2-Tetrachloroethane ND U 0.50 1 03/27/03 03/27/03 1,2,3-Tichloropropane ND U 0.50 1 03/27/03 03/27/03 1,2,3-Tichloropropane ND U 0.50 1 03/27/03 03/27/03 1,3,5-Trimethylbenzene ND U 0.50 1 03/27/03 03/27/03 1,3,5-Trimethylbenzene ND U 0.50 1 03/27/03 03/27/03 1,2,4-Trimethylbenzene ND U 0.50 1 03/27/03 03/27/03 1,3,5-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 1,4-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 1,2,1-Tirnethylbenzene ND U 0.50 1 03/27/03 03/27/03 1,2,1-Tetrachloroethane ND U 0.50 1 03/27/03 03/27/03 1,2,1-Tetrachloroethane ND U 0.50 1 03/27/03 03/27/03 1,2,1-Tichlorobenzene ND U 0.50 1 03/27/03 03/27/03 1,2,1-Tichlorobenzene ND U 0.50 1 03/27/03 03/27/03 1,2,1-Tichlorobenzene ND U 0.50 1 03/27/03 03/27/03 1,2-Dibromo-3-chloropropane ND U 0.50 1 03/27/03 03/27/03 1,2-Dibromo-3	1.3-Dichloropropane	ND	U	1.0	1			
ND U		ND	U	0.50	1	03/27/03	03/27/03	
Chlorobenzene	1.2-Dibromoethane	ND	U	0.50	1	03/27/03	03/27/03	
1,1,2-Tetrachloroethane		ND	U	0.50	1	03/27/03		
Display Disp		ND	U	0.50	1	03/27/03	03/27/03	
m,p-Xylenes ND U 1.0 1 03/27/03 03/27/03 c-Xylene ND U 0.50 1 03/27/03 03/27/03 Styrene ND U 0.50 1 03/27/03 03/27/03 Isopropylbenzene ND U 0.50 1 03/27/03 03/27/03 Bromobenzene ND U 0.50 1 03/27/03 03/27/03 1,2,3-Trichloropropane ND U 0.50 1 03/27/03 03/27/03 1-Propylbenzene ND U 0.50 1 03/27/03 03/27/03 2-Chlorotoluene ND U 0.50 1 03/27/03 03/27/03 4-Chlorotoluene ND U 0.50 1 03/27/03 03/27/03 1,3,5-Trimethylbenzene ND U 0.50 1 03/27/03 03/27/03 tert-Butylbenzene ND U 0.50 1 03/27/03 03/27/03 1,2,4	Ethylbenzene	ND	U	0.50	1	03/27/03	03/27/03	
o-Xylene ND U 0.50 1 03/27/03 03/27/03 Styrene ND U 0.50 1 03/27/03 03/27/03 Isopropylbenzene ND U 0.50 1 03/27/03 03/27/03 Bromobenzene ND U 0.50 1 03/27/03 03/27/03 1,2,3-Trichloropropane ND U 1.0 1 03/27/03 03/27/03 1,2,3-Trichloropropane ND U 0.50 1 03/27/03 03/27/03 2-Chlorotoluene ND U 0.50 1 03/27/03 03/27/03 2-Chlorotoluene ND U 0.50 1 03/27/03 03/27/03 4-Chlorotoluene ND U 0.50 1 03/27/03 03/27/03 1,3,5-Trimethylbenzene ND U 0.50 1 03/27/03 03/27/03 tert-Butylbenzene ND U 0.50 1 03/27/03 03/27/03 1,2,4-Trimethylbenzene ND U 0.50 1 03/27/03 03/27/03 1,3-Dic	•	ND	U	1.0	1	03/27/03		
Styrene	• •	ND	U	0.50	1	03/27/03	03/27/03	
Isopropylbenzene		ND	U	0.50	1	03/27/03	03/27/03	
Bromobenzene ND U 0.50 1 03/27/03 03/27/03 1,2,3-Trichloropropane ND U 1.0 1 03/27/03 03/27/03 n-Propylbenzene ND U 0.50 1 03/27/03 03/27/03 2-Chlorotoluene ND U 0.50 1 03/27/03 03/27/03 4-Chlorotoluene ND U 0.50 1 03/27/03 03/27/03 1,3,5-Trimethylbenzene ND U 0.50 1 03/27/03 03/27/03 tert-Butylbenzene ND U 0.50 1 03/27/03 03/27/03 1,2,4-Trimethylbenzene ND U 0.50 1 03/27/03 03/27/03 sec-Butylbenzene ND U 0.50 1 03/27/03 03/27/03 1,3-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 4-Isopropyltoluene ND U 0.50 1 03/27/03 03/27/03 Bromoform ND U 0.50 1 03/27/03 03/27/03 <t< td=""><td>•</td><td></td><td></td><td>0.50</td><td>1</td><td>03/27/03</td><td>03/27/03</td><td></td></t<>	•			0.50	1	03/27/03	03/27/03	
No. No.		ND	U	0.50	1	03/27/03	03/27/03	
n-Propylbenzene ND U 0.50 1 03/27/03 03/27/03 2-Chlorotoluene ND U 0.50 1 03/27/03 03/27/03 4-Chlorotoluene ND U 0.50 1 03/27/03 03/27/03 1,3,5-Trimethylbenzene ND U 0.50 1 03/27/03 03/27/03 tert-Butylbenzene ND U 0.50 1 03/27/03 03/27/03 1,2,4-Trimethylbenzene ND U 0.50 1 03/27/03 03/27/03 sec-Butylbenzene ND U 0.50 1 03/27/03 03/27/03 1,3-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 4-Isopropyltoluene ND U 0.50 1 03/27/03 03/27/03 Bromoform ND U 0.50 1 03/27/03 03/27/03 1,1,2,2-Tetrachloroethane ND U 0.50 1 03/27/03 03/27/03 1,4-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03	1.2.3-Trichloropropane	ND	U	1.0	1	03/27/03	03/27/03	
2-Chlorotoluene ND U 0.50 1 03/27/03 03/27/03 4-Chlorotoluene ND U 0.50 1 03/27/03 03/27/03 1,3,5-Trimethylbenzene ND U 0.50 1 03/27/03 03/27/03 tert-Butylbenzene ND U 0.50 1 03/27/03 03/27/03 1,2,4-Trimethylbenzene ND U 0.50 1 03/27/03 03/27/03 sec-Butylbenzene ND U 0.50 1 03/27/03 03/27/03 1,3-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 4-Isopropyltoluene ND U 0.50 1 03/27/03 03/27/03 Bromoform ND U 0.50 1 03/27/03 03/27/03 1,1,2,2-Tetrachloroethane ND U 0.50 1 03/27/03 03/27/03 1,4-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 1,2-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03		ND	U	0.50	1	03/27/03	03/27/03	
1,3,5-Trimethylbenzene ND U 0.50 1 03/27/03 03/27/03 tert-Butylbenzene ND U 0.50 1 03/27/03 03/27/03 1,2,4-Trimethylbenzene ND U 0.50 1 03/27/03 03/27/03 sec-Butylbenzene ND U 0.50 1 03/27/03 03/27/03 sec-Butylbenzene ND U 0.50 1 03/27/03 03/27/03 1,3-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 4-Isopropyltoluene ND U 0.50 1 03/27/03 03/27/03 Bromoform ND U 0.50 1 03/27/03 03/27/03 1,1,2,2-Tetrachloroethane ND U 1.0 1 03/27/03 03/27/03 1,4-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 1,4-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 1,2-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 1,2-Dibromo-3-chloropropane ND U 0.50 1 03/27/03 03/27/03 1,2,4-Trichlorobenzene ND U 0.50 1 03/27/03 03/27/03 1,2,4-Trichlorobenzene ND U 0.50 1 03/27/03 03/27/03		ND	U	0.50	1	03/27/03	03/27/03	
1,3,5-Trimethylbenzene ND U 0.50 1 03/27/03 03/27/03 tert-Butylbenzene ND U 0.50 1 03/27/03 03/27/03 1,2,4-Trimethylbenzene ND U 0.50 1 03/27/03 03/27/03 sec-Butylbenzene ND U 0.50 1 03/27/03 03/27/03 1,3-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 4-Isopropyltoluene ND U 0.50 1 03/27/03 03/27/03 Bromoform ND U 0.50 1 03/27/03 03/27/03 1,1,2,2-Tetrachloroethane ND U 0.50 1 03/27/03 03/27/03 1,4-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 1,2-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 1,2-Dibromo-3-chloropropane ND U 5.0 1 03/27/03 <	4-Chlorotoluene	ND	U	0.50	1			
1,2,4-Trimethylbenzene ND U 0.50 1 03/27/03 03/27/03 sec-Butylbenzene ND U 0.50 1 03/27/03 03/27/03 1,3-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 4-Isopropyltoluene ND U 0.50 1 03/27/03 03/27/03 Bromoform ND U 0.50 1 03/27/03 03/27/03 1,1,2,2-Tetrachloroethane ND U 1.0 1 03/27/03 03/27/03 1,4-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 1,2-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 n-Butylbenzene ND U 0.50 1 03/27/03 03/27/03 1,2-Dibromo-3-chloropropane ND U 5.0 1 03/27/03 03/27/03 1,2,4-Trichlorobenzene ND U 0.50 1 03/27/03 03/27/03 1,2,4-Trichlorobenzene ND U 0.50 1 03/27/03 03/27/03	1,3,5-Trimethylbenzene	ND	U	0.50	1			
ND U 0.50 1 03/27/03 03/27/03 03/27/03 1,3-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 03/27/03 1,3-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 03/27/03 1 03/27/03 03/27/03 1 03/27/03 03/27/03 1,1,2,2-Tetrachloroethane ND U 1.0 1 03/27/03 03/27/03 1,4-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 1,2-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 1,2-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 1,2-Dibromo-3-chloropropane ND U 0.50 1 03/27/03 03/27/03 1,2,4-Trichlorobenzene ND U 0.50 1	tert-Butylbenzene	ND	U	0.50	1	03/27/03	03/27/03	
sec-Butylbenzene ND U 0.50 1 03/27/03 03/27/03 1,3-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 4-Isopropyltoluene ND U 0.50 1 03/27/03 03/27/03 Bromoform ND U 0.50 1 03/27/03 03/27/03 1,1,2,2-Tetrachloroethane ND U 1.0 1 03/27/03 03/27/03 1,4-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 1,2-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 n-Butylbenzene ND U 0.50 1 03/27/03 03/27/03 1,2-Dibromo-3-chloropropane ND U 5.0 1 03/27/03 03/27/03 1,2,4-Trichlorobenzene ND U 0.50 1 03/27/03 03/27/03	1.2.4-Trimethylbenzene	ND	U	0.50	1	03/27/03		
1,3-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 4-Isopropyltoluene ND U 0.50 1 03/27/03 03/27/03 Bromoform ND U 0.50 1 03/27/03 03/27/03 1,1,2,2-Tetrachloroethane ND U 1.0 1 03/27/03 03/27/03 1,4-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 1,2-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 n-Butylbenzene ND U 0.50 1 03/27/03 03/27/03 1,2-Dibromo-3-chloropropane ND U 5.0 1 03/27/03 03/27/03 1,2,4-Trichlorobenzene ND U 0.50 1 03/27/03 03/27/03		ND	U	0.50	1			
Bromoform ND U 0.50 1 03/27/03 03/27/03 1,1,2,2-Tetrachloroethane ND U 1.0 1 03/27/03 03/27/03 1,4-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 1,2-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 n-Butylbenzene ND U 0.50 1 03/27/03 03/27/03 1,2-Dibromo-3-chloropropane ND U 5.0 1 03/27/03 03/27/03 1,2,4-Trichlorobenzene ND U 0.50 1 03/27/03 03/27/03		ND	U	0.50	1	03/27/03	03/27/03	
Bromoform ND U 0.50 1 03/27/03 03/27/03 1,1,2,2-Tetrachloroethane ND U 1.0 1 03/27/03 03/27/03 1,4-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 1,2-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 n-Butylbenzene ND U 0.50 1 03/27/03 03/27/03 1,2-Dibromo-3-chloropropane ND U 5.0 1 03/27/03 03/27/03 1,2,4-Trichlorobenzene ND U 0.50 1 03/27/03 03/27/03	4-Isopropyltoluene	ND	U	0.50	1	03/27/03		
1,4-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 1,2-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 n-Butylbenzene ND U 0.50 1 03/27/03 03/27/03 1,2-Dibromo-3-chloropropane ND U 5.0 1 03/27/03 03/27/03 1,2,4-Trichlorobenzene ND U 0.50 1 03/27/03 03/27/03		ND	U	0.50	1			
1,2-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 n-Butylbenzene ND U 0.50 1 03/27/03 03/27/03 1,2-Dibromo-3-chloropropane ND U 5.0 1 03/27/03 03/27/03 1,2,4-Trichlorobenzene ND U 0.50 1 03/27/03 03/27/03	1,1,2,2-Tetrachloroethane	ND	U	1.0	1	03/27/03	03/27/03	
1,2-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 n-Butylbenzene ND U 0.50 1 03/27/03 03/27/03 1,2-Dibromo-3-chloropropane ND U 5.0 1 03/27/03 03/27/03 1,2,4-Trichlorobenzene ND U 0.50 1 03/27/03 03/27/03	1.4-Dichlorobenzene	ND	U	0.50	1	03/27/03	03/27/03	
n-Butylbenzene ND U 0.50 1 03/27/03 03/27/03 1,2-Dibromo-3-chloropropane ND U 5.0 1 03/27/03 03/27/03 1,2,4-Trichlorobenzene ND U 0.50 1 03/27/03 03/27/03		ND	U	0.50	1	03/27/03		
1,2,4-Trichlorobenzene ND U 0.50 1 03/27/03 03/27/03	•	ND	U	0.50	1	03/27/03	03/27/03	
1,2,4-Trichlorobenzene ND U 0.50 1 03/27/03 03/27/03	1,2-Dibromo-3-chloropropane	ND	U	5.0	1	03/27/03	03/27/03	
**************************************				0.50	1	03/27/03		
	· · ·			0.50	1	03/27/03	03/27/03	

Comments:

000018

Analytical Results

Client:

BE&K Terranext

Project:

WVB

Sample Matrix:

Water

Service Request: X2300228

Date Collected: 03/17/2003

Date Received: 03/17/2003

Volatile Organic Compounds

Sample Name:

AVB94-0204-1000

Lab Code:

X2300228-004

Extraction Method: EPA 5030B **Analysis Method:**

8260B

Units: ug/L

Basis: NA

Level: Low

			Dilution	Date	Date	
Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed	Arizona Qualifier
Naphthalene	ND U	3.0	1	03/27/03	03/27/03	
1,2,3-Trichlorobenzene	ND U	0.50	1	03/27/03	03/27/03	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Arizona Qualifier	
Dibromofluoromethane	103	84-113	03/27/03		
Toluene-d8	109	68-126	03/27/03		
4-Bromofluorobenzene	104	79-113	03/27/03		

Comments:

Analytical Results

Client:

BE&K Terranext

Project:

WVB

Sample Matrix:

Water

Service Request: X2300228

Date Collected: 03/17/2003

Date Received: 03/17/2003

Volatile Organic Compounds

Sample Name: Lab Code:

AVB94-0202-1000

Extraction Method:

EPA 5030B

X2300228-005

8260B **Analysis Method:**

Units: ug/L Basis: NA

Level: Low

		•	MDI	Dilution Factor	Date Extracted	Date Analyzed	Arizona Qualifier
Analyte Name	Result		MRL			03/27/03	Alizona Quanner
Dichlorodifluoromethane	ND		3.0	1	03/27/03 03/27/03	03/27/03	
Chloromethane	ND		2.0	1	03/27/03	03/27/03	
Vinyl Chloride	ND		1.0	1			
Bromomethane	ND		1.0	1	03/27/03	03/27/03	
Chloroethane	ND		1.0	1	03/27/03 03/27/03	03/27/03 03/27/03	
Trichlorofluoromethane	ND		1.0	1			T 1
1,1,2-Trichlorotrifluoroethane	ND		1.0	1	03/27/03		L1
1,1-Dichloroethene	ND		1.0	1	03/27/03		L1
Acetone	ND	U	10	1	03/27/03	03/27/03	
Iodomethane	ND	U	2.0	1	03/27/03	03/27/03	
Carbon Disulfide	ND	U	2.0	1	03/27/03	03/27/03	
Methylene Chloride	ND	U	1.0	1	03/27/03	03/27/03	
Methyl tert-Butyl Ether	ND	U	1.0	1	03/27/03	03/27/03	
trans-1,2-Dichloroethene	ND	U	0.50	1	03/27/03	03/27/03	
1,1-Dichloroethane	ND	U	0.50	1	03/27/03	03/27/03	
Vinyl Acetate	ND	U	3.0	1	03/27/03	03/27/03	
2,2-Dichloropropane	ND	U	2.0	1	03/27/03	03/27/03	
2-Butanone (MEK)	ND	U	8.0	1	03/27/03	03/27/03	
cis-1,2-Dichloroethene	ND	U	0.50	1	03/27/03	03/27/03	
Bromochloromethane	ND	U	0.50	1	03/27/03	03/27/03	
Chloroform	ND	U	1.0	1	03/27/03	03/27/03	
1,1,1-Trichloroethane	ND	U	0.50	1	03/27/03	03/27/03	
Carbon Tetrachloride	ND	U	0.50	1	03/27/03	03/27/03	
1,1-Dichloropropene	ND	U	0.50	1	03/27/03	03/27/03	L1
Benzene	ND	U	0.50	1	03/27/03	03/27/03	
1,2-Dichloroethane	ND	U	0.50	1	03/27/03	03/27/03	
Trichloroethene	ND	U	0.50	1	03/27/03	03/27/03	
1,2-Dichloropropane	ND	U	0.50	1	03/27/03	03/27/03	
Dibromomethane	ND	U	0.50	1	03/27/03	03/27/03	
Bromodichloromethane	ND	U	0.50	1	03/27/03	03/27/03	
cis-1,3-Dichloropropene	ND	U	0.50	1	03/27/03	03/27/03	
4-Methyl-2-pentanone (MIBK)	ND	U	8.0	1	03/27/03	03/27/03	
Toluene	ND	U	0.50	1	03/27/03	03/27/03	

Form 1A - Organic

Comments:

000020

Analytical Results

Client:

BE&K Terranext

Project: Sample Matrix: WVB Water

Service Request: X2300228 Date Collected: 03/17/2003

Date Received: 03/17/2003

Volatile Organic Compounds

Sample Name: Lab Code:

AVB94-0202-1000 X2300228-005

Extraction Method: Analysis Method:

EPA 5030B 8260B

Units: ug/L Basis: NA

Level: Low

				Dilution	Date	Date	
Analyte Name	Result	Q	MRL	Factor	Extracted		Arizona Qualifier
trans-1,3-Dichloropropene	ND	U	1.0	1	03/27/03	03/27/03	
1,1,2-Trichloroethane	ND	U	1.0	1	03/27/03	03/27/03	
Tetrachloroethene	ND	U	0.50	1	03/27/03	03/27/03	
2-Hexanone	ND	U	5.0	1	03/27/03	03/27/03	N1V4
1,3-Dichloropropane	ND	U	1.0	1	03/27/03	03/27/03	
Dibromochloromethane	ND	U	0.50	1	03/27/03	03/27/03	
1,2-Dibromoethane	ND	U	0.50	1	03/27/03	03/27/03	
Chlorobenzene	ND		0.50	1	03/27/03	03/27/03	
1,1,1,2-Tetrachloroethane	ND	U	0.50	1	03/27/03	03/27/03	
Ethylbenzene	ND	U	0.50	1	03/27/03	03/27/03	
m,p-Xylenes	ND		1.0	1	03/27/03	03/27/03	
o-Xylene	ND		0.50	1	03/27/03	03/27/03	
	ND		0,50	1	03/27/03	03/27/03	
Styrene Isopropylbenzene	ND		0.50	1	03/27/03	03/27/03	
Bromobenzene	ND		0,50	1	03/27/03	03/27/03	
	ND		1.0	1	03/27/03	03/27/03	
1,2,3-Trichloropropane	ND ND		0.50	ĩ	03/27/03	03/27/03	
n-Propylbenzene 2-Chlorotoluene	ND		0.50	1	03/27/03	03/27/03	
4-Chlorotoluene	ND		0.50	1	03/27/03	03/27/03	
1,3,5-Trimethylbenzene	ND		0.50	1	03/27/03	03/27/03	
tert-Butylbenzene	ND		0.50	1	03/27/03	03/27/03	
	ND		0.50	1	03/27/03	03/27/03	
1,2,4-Trimethylbenzene sec-Butylbenzene	ND ND		0.50	1	03/27/03	03/27/03	
1,3-Dichlorobenzene	ND		0.50	1	03/27/03	03/27/03	
	ND		0.50	1	03/27/03	03/27/03	
4-Isopropyltoluene	ND ND		0.50	î	03/27/03	03/27/03	
Bromoform 1,1,2,2-Tetrachloroethane	ND		1.0	1	03/27/03	03/27/03	
· / / /	ND		0.50	1	03/27/03	03/27/03	
1,4-Dichlorobenzene	ND ND		0.50	1	03/27/03	03/27/03	
1,2-Dichlorobenzene		U	0.50	1	03/27/03	03/27/03	
n-Butylbenzene		U	5.0	1	03/27/03	03/27/03	
1,2-Dibromo-3-chloropropane) U	0.50	1	03/27/03	03/27/03	
1,2,4-Trichlorobenzene) U	0.50	1	03/27/03	03/27/03	
Hexachlorobutadiene	INL	, 0	0.50	*	32.27.00		

Comments:

Printed: 04/03/2003 14:56:24 L:\STEALTH\CRYSTAL.RPT\Form1m.rpt

Merged

Form 1A - Organic

Page 2 of 3

Analytical Results

Client:

BE&K Terranext

Project: Sample Matrix: WVB

Water

Service Request: X2300228

Date Collected: 03/17/2003

Date Received: 03/17/2003

Volatile Organic Compounds

Sample Name:

AVB94-0202-1000

Lab Code:

X2300228-005

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L

Basis: NA

Level: Low

			Dilution	Date	Date	
Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed	Arizona Qualifier
Naphthalene	ND U	3.0	1	03/27/03	03/27/03	
1,2,3-Trichlorobenzene	ND U	0.50	1	03/27/03	03/27/03	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Arizona Qualifier	
Dibromofluoromethane	107	84-113	03/27/03		
Toluene-d8	111	68-126	03/27/03		
4-Bromofluorobenzene	105	79-113	03/27/03		

Comments:

Printed: 04/03/2003 14:56:24 L:\STEALTH\CRYSTAL.RPT\Form\m.rpt

Analytical Results

Client:

BE&K Terranext

Project: **Sample Matrix:** WVB Water

Service Request: X2300228

Date Collected: NA Date Received: NA

Volatile Organic Compounds

Sample Name: Lab Code:

Method Blank

Extraction Method:

EPA 5030B

XWG0300408-3

Units: ug/L Basis: NA Level: Low

Analysis Method:

8260B

				Dilution	Date	Date	
Analyte Name	Result	Q	MRL	Factor	Extracted	Analyzed	Arizona Qualifier
Dichlorodifluoromethane	ND	U	3.0	1	03/27/03	03/27/03	
Chloromethane	ND	U	2.0	1	03/27/03	03/27/03	
Vinyl Chloride	ND	U	1.0	1	03/27/03	03/27/03	
Bromomethane	ND	U	1.0	1	03/27/03	03/27/03	
Chloroethane	ND	U	1.0	1	03/27/03	03/27/03	
Trichlorofluoromethane	ND	U	1.0	1	03/27/03	03/27/03	
1,1,2-Trichlorotrifluoroethane	ND	U	1.0	1	03/27/03	03/27/03	L1
1,1-Dichloroethene	ND	U	1.0	1	03/27/03		L1
Acetone	ND	U	10	1	03/27/03	03/27/03	
Iodomethane	ND	U	2.0	1	03/27/03	03/27/03	
Carbon Disulfide	ND	U	2.0	1	03/27/03	03/27/03	
Methylene Chloride	ND	U	1.0	1	03/27/03	03/27/03	
Methyl tert-Butyl Ether	ND	U	1.0	1	03/27/03	03/27/03	
trans-1,2-Dichloroethene	ND	U	0.50	1	03/27/03	03/27/03	
1,1-Dichloroethane	ND	U	0.50	1	03/27/03	03/27/03	
Vinyl Acetate	ND	U	3.0	1	03/27/03	03/27/03	
2,2-Dichloropropane	ND	U	2.0	1	03/27/03	03/27/03	
2-Butanone (MEK)	ND	U	8.0	1	03/27/03	03/27/03	
cis-1,2-Dichloroethene	ND	U	0.50	1	03/27/03	03/27/03	
Bromochloromethane	ND	U	0.50	I	03/27/03	03/27/03	
Chloroform	ND	U	1.0	1	03/27/03	03/27/03	
1,1,1-Trichloroethane	ND	U	0.50	1	03/27/03	03/27/03	
Carbon Tetrachloride	ND	U	0.50	1	03/27/03	03/27/03	
1,1-Dichloropropene	ND	U	0.50	1	03/27/03	03/27/03	L1
Benzene	ND	U	0.50	1	03/27/03	03/27/03	
1,2-Dichloroethane	ND	U	0.50	1	03/27/03	03/27/03	
Trichloroethene	ND	U	0.50	1	03/27/03	03/27/03	
1,2-Dichloropropane	ND	U	0.50	1	03/27/03	03/27/03	
Dibromomethane	ND	U	0.50	1	03/27/03	03/27/03	
Bromodichloromethane	ND	U	0.50	1	03/27/03	03/27/03	
cis-1,3-Dichloropropene	ND		0.50	1	03/27/03	03/27/03	
4-Methyl-2-pentanone (MIBK)	ND		8.0	1	03/27/03	03/27/03	
Toluene	ND	U	0.50	1	03/27/03	03/27/03	

Comments:

Printed: 04/03/2003 14:56:34 L:\STEALTH\CRYSTAL.RPT\Form1m.rpt

Merged

Form 1A - Organic

000023

Page 1 of 3

Analytical Results

Client:

BE&K Terranext

Project: Sample Matrix: WVB Water Service Request: X2300228

Date Collected: NA Date Received: NA

Volatile Organic Compounds

Sample Name: Lab Code:

Method Blank XWG0300408-3

Extraction Method: Analysis Method:

EPA 5030B 8260B

Units: ug/L Basis: NA

Level: Low

Analyte Name	Result	0	MRL	Dilution Factor	Date Extracted	Date Analyzed	Arizona Qualifier
trans-1,3-Dichloropropene	ND		1.0	1	03/27/03	03/27/03	
1,1,2-Trichloroethane	ND		1.0	1	03/27/03	03/27/03	
Tetrachloroethene	ND		0.50	1	03/27/03	03/27/03	
2-Hexanone	ND		5.0	1	03/27/03	03/27/03	N1V4
1,3-Dichloropropane	ND		1.0	$\overline{1}$	03/27/03	03/27/03	
Dibromochloromethane	ND		0.50	1	03/27/03	03/27/03	
1,2-Dibromoethane	ND	U	0.50	1	03/27/03	03/27/03	
Chlorobenzene	ND		0.50	1	03/27/03	03/27/03	
1,1,1,2-Tetrachloroethane	ND		0.50	1	03/27/03	03/27/03	
Ethylbenzene	ND	U	0.50	1	03/27/03	03/27/03	
m,p-Xylenes			1.0	1	03/27/03	03/27/03	
o-Xylene	ND	U	0.50	1	03/27/03	03/27/03	
Styrene	ND	U	0.50	1	03/27/03	03/27/03	
Isopropylbenzene	ND		0.50	1	03/27/03	03/27/03	
Bromobenzene	ND	U	0.50	1	03/27/03	03/27/03	
1,2,3-Trichloropropane	ND	U	1.0	1	03/27/03	03/27/03	
n-Propylbenzene	ND	U	0.50	1	03/27/03	03/27/03	
2-Chlorotoluene	ND	U	0.50	1	03/27/03	03/27/03	
4-Chlorotoluene	ND	U	0.50	1	03/27/03	03/27/03	
1,3,5-Trimethylbenzene	ND		0.50	1	03/27/03	03/27/03	
tert-Butylbenzene	ND	U	0.50	1	03/27/03	03/27/03	
1,2,4-Trimethylbenzene	ND		0.50	1	03/27/03	03/27/03	
sec-Butylbenzene	ND		0.50	1	03/27/03	03/27/03	
1,3-Dichlorobenzene	ND	U	0.50	1	03/27/03	03/27/03	
4-Isopropyltoluene	ND		0.50	1	03/27/03	03/27/03	
Bromoform	ND		0.50	1	03/27/03	03/27/03	
1,1,2,2-Tetrachloroethane	ND	U	1.0	1	03/27/03	03/27/03	
1,4-Dichlorobenzene	ND		0.50	1	03/27/03	03/27/03	
1,2-Dichlorobenzene	ND		0.50	1	03/27/03	03/27/03	
n-Butylbenzene	ND	U	0.50	1	03/27/03	03/27/03	
1,2-Dibromo-3-chloropropane	ND		5.0	1	03/27/03	03/27/03	
1,2,4-Trichlorobenzene	ND		0.50	1	03/27/03	03/27/03	
Hexachlorobutadiene	ND	U	0.50	1	03/27/03	03/27/03	

Comments:

000024

Printed: 04/03/2003 14:56:34 L:\STEALTH\CRYSTAL.RPT\Form1m.rpt

Merged

Form 1A - Organic

Page 2 of 3

SuperSet Reference:

Analytical Results

Client:

BE&K Terranext

Project: Sample Matrix: WVB

Water

Service Request: X2300228

Date Collected: NA Date Received: NA

Volatile Organic Compounds

Sample Name: Lab Code:

Method Blank

Extraction Method:

XWG0300408-3

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

			Dilution	Date	Date	
Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed	Arizona Qualifier
Naphthalene	ND U	3.0	1	03/27/03	03/27/03	
1,2,3-Trichlorobenzene	ND U	0.50	1	03/27/03	03/27/03	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Arizona Qualifier	
Dibromofluoromethane	105	84-113	03/27/03		
Toluene-d8	104	68-126	03/27/03		
4-Bromofluorobenzene	103	79-113	03/27/03		

Comments:

Printed: 04/03/2003 14:56:34

QA/QC Report

Client:

BE&K Terranext

Project:

WVB

Sample Matrix:

Water

Service Request: X2300228

Surrogate Recovery Summary Volatile Organic Compounds

Extraction Method: Analysis Method:

EPA 5030B

8260B

Units: PERCENT

Level: Low

Sample Name	Lab Code	Sur1	Sur2	Sur3
AVB92-0200-03206	X2300228-001	106	109	104
AVB96-0200-03234	X2300228-002	104	108	102
AVB94-0200-03201	X2300228-003	105	109	103
AVB94-0204-1000	X2300228-004	103	109	104
AVB94-0202-1000	X2300228-005	107	111	105
Method Blank	XWG0300408-3	105	104	103
Batch QC	X2300226-001	107	112	106
Batch QCMS	XWG0300408-4	103	110	107
Batch QCDMS	XWG0300408-5	102	106	101
Lab Control Sample	XWG0300408-1	100	101	100
Duplicate Lab Control Sample	XWG0300408-2	101	100	100

Surrogate Recovery Control Limits (%)

$\overline{Sur1} =$	Dibromofluoromethane	84-113
Sur2 =	Toluene-d8	68-126
Sur3 =	4-Bromofluorobenzene	79-113

Results flagged with an asterisk (*) indicate values outside control criteria. Results flagged with a pound (#) indicate the control criteria is not applicable.

Printed: 04/03/2003 14:56:48 $L: \verb|\STEALTH| CRYSTAL.RPT| Form 2.rpt$

000086

Page 1 of 1

QA/QC Report

Client:

BE&K Terranext

Project: Sample Matrix: WVB

Water

Service Request: X2300228 Date Extracted: 03/27/2003

Date Analyzed: 03/27/2003

Matrix Spike/Duplicate Matrix Spike Summary Volatile Organic Compounds

Sample Name:

Batch QC

Lab Code:

X2300226-001

Extraction Method: Analysis Method:

EPA 5030B

8260B

Units: ug/L

Basis: NA

Level: Low

Extraction Lot: XWG0300408

	Sample	XV	atch QCMS VG0300408- Matrix Spike	4	XV	tch QCDMS VG0300408- ate Matrix S	%Rec		RPD	
Analyte Name	Result	Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit
Dichlorodifluoromethane	ND	27.6	10.0	276 M1	26.5	10.0	265 M1	78-207	4	20
Chloromethane	ND	11.9	10.0	119	11.5	10.0	115	70-157	4	20
Vinyl Chloride	ND	14.7	10.0	147	14.4	10.0	144	79-174	3	20
Bromomethane	ND	7.09	10.0	71	7.06	10.0	71	44-150	0	20
Chloroethane	ND	11.9	10.0	119	11.3	10.0	113	74-150	6	20
Trichlorofluoromethane	ND	14.7	10.0	147 M1	14.4	10.0	144 M1	80-134	2	20
1,1,2-Trichlorotrifluoroethane	ND	14.7	10.0	147 M1	14.5	10.0	145 M1	67-128	2	20
1,1-Dichloroethene	1.6	14.1	10.0	125	13.8	10.0	122	71-142	2	20
Acetone	ND	32.4	40.0	81	33.6	40.0	84	1-155	4	20
Iodomethane	ND	31.8	40.0	79	29.9	40.0	75	47-120	6	20
Carbon Disulfide	ND	50.8	40.0	127 M1	48.8	40.0	122	77-126	4	20
Methylene Chloride	ND	9.88	10.0	99	9.67	10.0	97	83-106	2	20
Methyl tert-Butyl Ether	ND	9.70	10.0	97	9.83	10.0	98	70-118	1	20
trans-1,2-Dichloroethene	ND	11.4	10.0	114	11.2	10.0	112	86-115	2	20
1,1-Dichloroethane	0.94	11.2	10.0	103	11.1	10.0	102	77-127	I	20
Vinyl Acetate	ND	44.8	40.0	112	44.7	40.0	112	8-187	0	20
2,2-Dichloropropane	ND	12.2	10.0	122	11.7	10.0	117	25-154	4	20
2-Butanone (MEK)	ND	36.6	40.0	92	37.1	40.0	93	90-112	1	20
cis-1,2-Dichloroethene	1.7	12.2	10.0	104	12.0	10.0	102	69-118	2	20
Bromochloromethane	ND	9.48	10.0	95	9.41	10.0	94	47-136	1	20
Chloroform	1.8	11.8	10.0	100	11.7	10.0	99	48-143	0	20
1,1,1-Trichloroethane	ND	12.3	10.0	123 M1	12.0	10.0	120	84-122	2	20
Carbon Tetrachloride	ND	13.3	10.0	133 M1	13.2	10.0	132 M1	79-120	1	20
1,1-Dichloropropene	ND	12.5	10.0	125 M1	12.1	10.0	121 M1	85-117	3	20
Benzene	8.0	18.9	10.0	109	18.0	10.0	100	88-114	5	20
1,2-Dichloroethane	ND	8.85	10.0	89	8.81	10.0	88	75-112	0	20
Trichloroethene	4.9	16.3	10.0	113	15.8	10.0	109	76-115	3	20
1,2-Dichloropropane	ND	9.54	10.0	95	9.46	10.0	95	85-107	1	20
Dibromomethane	ND	9.26	10.0	93	9.21	10.0	92	82-106	1	20
Bromodichloromethane	0.90	10.5	10.0	96	10.5	10.0	96	83-107	0	20
cis-1,3-Dichloropropene	ND	9.79	10.0	98	9.58	10.0	96	70-114	2	20
4-Methyl-2-pentanone (MIBK)	ND	36.8	40.0	92	35.6	40.0	89 .	54-129	3	20
Toluene	2.0	13.4	10.0	114	13.0	10.0	110	86-114	3	20

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

000027

Printed: 04/03/2003 14:56:54 Form 3A - Organic

SuperSet Reference: RR3152 Page 1 of 3

QA/QC Report

Client:

BE&K Terranext

Project:

WVB

Sample Matrix:

Water

Service Request: X2300228

Date Extracted: 03/27/2003 **Date Analyzed:** 03/27/2003

Matrix Spike/Duplicate Matrix Spike Summary Volatile Organic Compounds

Sample Name: Lab Code:

Batch QC X2300226-001

Extraction Method: Analysis Method:

EPA 5030B 8260B

Units: ug/L Basis: NA

Level: Low

Extraction Lot: XWG0300408

Batch QCMS

Batch QCDMS

	Gmla	Batch QCMS XWG0300408-4 Matrix Spike			XW	VG0300408-5	%Rec	nnn	RPD Limit	
Analyte Name	Sample Result	Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	
	ND	9.62	10.0	96	9.47	10.0	95	73-112	2	20 20
trans-1,3-Dichloropropene	ND	9.45	10.0	95	9.35	10.0	94	79-112	1	20
1,1,2-Trichloroethane	10	24.2	10.0	138 M1	23.2	10.0	127	78-130	4	20
Tetrachloroethene	ND	35.2	40.0	88	35.1	40.0	88	77-112	0	20
2-Hexanone	ND	9.43	10.0	94	9.37	10.0	94	45-133	1	20
1,3-Dichloropropane	ND	9.98	10.0	100	9.99	10.0	100	74-108	0	20
Dibromochloromethane	ND	9.77	10.0	98	9.68	10.0	97	73-113	1	20
1,2-Dibromoethane	ND	10.8	10.0	108	10.4	10.0	104	84-111	4	20
Chlorobenzene	ND	10.3	10.0	103	9.86	10.0	99	84-119	4	20
1,1,1,2-Tetrachloroethane	2.2	14.2	10.0	120	13.4	10.0	112	47-136	6	20
Ethylbenzene	2.2	26.1	20.0	120	24.6	20.0	112	84-120	6	20
m,p-Xylenes	1.7	13.2	10.0	115	12.6	10.0	109	47-143	5	
o-Xylene	ND	11.0	10.0	110	10.5	10.0	105	72-121	5	20
Styrene	ND	12.7	10.0	127 M1	12.0	10.0	120 M1	63-108	6	20
Isopropylbenzene	ND	10.7	10.0	107	10.1	10.0	101	80-113	6	20
Bromobenzene	ND	9.39	10.0	94	9.14	10.0	91	78-119	3	20
1,2,3-Trichloropropane	ND	12.7	10.0	127 M1	12.0	10.0	120 M1	76-117	5	20
n-Propylbenzene	ND ND	11.4	10.0	114	10.9	10.0	109	79-121	5	20
2-Chlorotoluene		11.4	10.0	113	10.7	10.0	107	70-133	5	20
4-Chlorotoluene	ND	12.4	10.0	124 M1	11.8	10.0	118	79-118	5	20
1,3,5-Trimethylbenzene	ND	13.3	10.0	133 M1	12.5	10.0	125 M1	77-120	6	20
tert-Butylbenzene	ND	13.3	10.0	118	12.6	10.0	112	68-127	5	20
1,2,4-Trimethylbenzene	1.4	13.2	10.0	130 M1	12.2	10.0	122	78-123	6	20
sec-Butylbenzene	ND	11.0	10.0	110	10.5	10.0	105	78-127	4	20
1,3-Dichlorobenzene	ND	13.5	10.0	135	12.7	10.0	127	79-142	6	20
4-Isopropyltoluene	ND	9.77	10.0	98	9.74	10.0	97	83-111	0	20
Bromoform	ND	9.77	10.0	93	9.52	10.0	95	66-133	2	20
1,1,2,2-Tetrachloroethane	ND	10.6	10.0	106	10.2	10.0	102	48-139	3	20
1,4-Dichlorobenzene	ND	10.6	10.0	106	10.3	10.0	103	64-109		20
1,2-Dichlorobenzene	ND	10.6	10.0	127 M1		10.0	122	69-122		20
n-Butylbenzene	ND		10.0	80	8.22	10.0	82	54-160		20
1,2-Dibromo-3-chloropropane	ND	8.00	10.0	112	10.8	10.0	108	39-145	4	20
1,2,4-Trichlorobenzene	ND	11.2	10.0	145 M1		10.0	135 M	1 74-113	7	20
Hexachlorobutadiene	ND	14.5	10.0	1 10 1411						

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

000028

SuperSet Reference:

Printed: 04/03/2003 14:56:54 L:\STEALTH\CRYSTAL.RPT\Form3DMS.rpt Form 3A - Organic

RR3152

2 of Page

QA/QC Report

Client:

BE&K Terranext

Project:

WVB

Sample Matrix:

Water

Service Request: X2300228

Date Extracted: 03/27/2003 **Date Analyzed:** 03/27/2003

Matrix Spike/Duplicate Matrix Spike Summary Volatile Organic Compounds

Sample Name:

Batch QC

Lab Code:

X2300226-001

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

Extraction Lot: XWG0300408

Batch QCMS

Batch QCDMS XWG0300408-5

XWG0300408-4

Duplicate Matrix Spike RPD Matrix Spike %Rec Sample RPD Limit Limits %Rec **Expected** %Rec Result Result Result **Expected Analyte Name** 20 3 44-167 103 10.0 10.3 107 10.0 10.7 ND 20 Naphthalene 37-158 4 106 10.0 10.6 110 10.0 11.0 ND 1,2,3-Trichlorobenzene

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

000029

Printed: 04/03/2003 14:56:54 L:\STEALTH\CRYSTAL.RPT\Form3DMS.rpt Form 3A - Organic

RR3152 SuperSet Reference:

3 of Page

QA/QC Report

Client:

BE&K Terranext

Project: Sample Matrix: WVB Water Service Request: X2300228 **Date Extracted:** 03/27/2003

Date Analyzed: 03/27/2003

Lab Control Spike/Duplicate Lab Control Spike Summary Volatile Organic Compounds

Extraction Method: Analysis Method:

EPA 5030B

8260B

Units: ug/L

Basis: NA Level: Low

Extraction Lot: XWG0300408

Lab Control Sample XWG0300408-1

Duplicate Lab Control Sample XWG0300408-2

	XW	G0300408-1 Control Spike		XWG0300408-2 Duplicate Lab Control Spike			%Rec		RPD	
Analyte Name	Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit	
	11.5	10.0	115	11.0	10.0	110	1-233	5	20	
Dichlorodifluoromethane	7.90	10.0	79	7.90	10.0	79	46-156	0	20	
Chloromethane	10.4	10.0	104	10.6	10.0	106	51-158	2	20	
Vinyl Chloride	5.62	10.0	56	5.88	10.0	59	37-149	5	20	
Bromomethane	9.75	10.0	98	10.3	10.0	103	56-146	5	20	
Chloroethane	12.2	10.0	122	12.1	10.0	121	69-139	1	20	
Trichlorofluoromethane		10.0	140 L1	13.5	10.0	135 L1	83-130	3	20	
1,1,2-Trichlorotrifluoroethane	14.0	10.0	113 L1	11.5	10.0	115 L1	65-112	1	20	
1,1-Dichloroethene	11.3	40.0	79	35.5	40.0	89	68-128	11	20	
Acetone	31.7	40.0	80	31.2	40.0	78	68-144	2	20	
Iodomethane	32.0	40.0	120	48.4	40.0	121	67-140	1	20	
Carbon Disulfide	48.0		96	9.89	10.0	99	70-113	3	20	
Methylene Chloride	9.63	10.0	90 89	9.51	10.0	95	75-115	7	20	
Methyl tert-Butyl Ether	8.87	10.0		10.6	10.0	106	73-118	1	20	
trans-1,2-Dichloroethene	10.5	10.0	105	10.3	10.0	103	77-127	1	20	
1,1-Dichloroethane	10.1	10.0	101	44.3	40.0	111	51-202	1	39	
Vinyl Acetate	43.8	40.0	109	11.2	10.0	112	75-132	0	20	
2,2-Dichloropropane	11.2	10.0	112	37.2	40.0	93	72-122	6	20	
2-Butanone (MEK)	35.1	40.0	88		10.0	103	81-118	2	20	
cis-1,2-Dichloroethene	10.1	10.0	101	10.3	10.0	101	82-114	3	20	
Bromochloromethane	9.84	10.0	98	10.1	10.0	101	78-119	3	20	
Chloroform	9.82	10.0	98	10.1		101	71-125	1	20	
1.1.1-Trichloroethane	10.7	10.0	107	10.9	10.0	123	69-130	1	20	
Carbon Tetrachloride	12.1	10.0	121	12.3	10.0	123 116 L1	77-114	0	20	
1,1-Dichloropropene	11.5	10.0	115 L1	11.6	10.0	101	81-117	0	20	
Benzene	10.1	10.0	101	10.1	10.0	89	67-122	6	20	
1,2-Dichloroethane	8.44	10.0	84	8.94	10.0		79-114	0	20	
Trichloroethene	10.7	10.0	107	10.7	10.0	107	78-114	1	20	
1,2-Dichloropropane	9.12	10.0	91	9.17	10.0	92	78-114	5	20	
Dibromomethane	8.99	10.0	90	9.49	10.0	95 97	79-122	3	20	
Bromodichloromethane	9.38	10.0	94	9.67	10.0	97		3	20	
cis-1,3-Dichloropropene	9.85	10.0	99	10.1	10.0	101	82-118	3 10	20	
4-Methyl-2-pentanone (MIBK)	33.7	40.0	84	37.4	40.0	94	75-115		20	
Toluene	10.6	10.0	106	10.7	10.0	107	85-118	1 5	20	
trans-1,3-Dichloropropene	9.36	10.0	94	9.83	10.0	98	79-121	5	20	
1,1,2-Trichloroethane	8.56	10.0	86	9.22	10.0	92	79-116	7	20	

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

000050

Printed: 04/03/2003 14:57:01 L:\STEALTH\CRYSTAL.RPT\Form3DLC.rpt

QA/QC Report

Client:

BE&K Terranext

Project:

WVB

Sample Matrix:

Water

Service Request: X2300228

Date Extracted: 03/27/2003

Date Analyzed: 03/27/2003

Lab Control Spike/Duplicate Lab Control Spike Summary Volatile Organic Compounds

Extraction Method: Analysis Method:

EPA 5030B

8260B

Units: ug/L

Basis: NA

Extraction Lot: XWG0300408

Level: Low

Lab Control Sample xWG0300408-1

Duplicate Lab Control Sample

XWG0300408-2

		/G0300408-1 Control Spike			G0300408-2 Lab Control	Spike	%Rec	RPD	
Analyte Name	Result	Expected	%Rec	Result	Expected	%Rec	Limits RPD		Limit
	12.1	10.0	121	11.9	10.0	119	76-127	2	20
Tetrachloroethene	31.7	40.0	79	35.5	40.0	89	65-120	11	20
2-Hexanone	8.97	10.0	90	9.49	10.0	95	81-116	6	20
1,3-Dichloropropane	9.37	10.0	94	9.72	10.0	97	77-119	4	20
Dibromochloromethane	9.39	10.0	94	9.95	10.0	100	79-116	6	20
1,2-Dibromoethane	10.0	10.0	100	10.1	10.0	101	84-114	1	20
Chlorobenzene	9.61	10.0	96	9.73	10.0	97	78-118	1	20
1,1,1,2-Tetrachloroethane	10.8	10.0	108	10.9	10.0	109	79-124	1	20
Ethylbenzene	21.8	20.0	109	21.9	20.0	109	75-131	0	20
m,p-Xylenes	10.4	10.0	104	10.4	10.0	104	78-122	0	20
o-Xylene	10.4	10.0	104	10.5	10.0	105	80-126	1	20
Styrene	11.1	10.0	111	11.1	10.0	111	75-126	0	20
Isopropylbenzene	9,85	10.0	99	10.2	10.0	102	82-122	3	20
Bromobenzene	8.59	10.0	86	9.10	10.0	91	77-118	6	20
1,2,3-Trichloropropane	11.2	10.0	112	11.1	10.0	111	75-129	0	20
n-Propylbenzene	10.5	10.0	105	10.5	10.0	105	77-126	0	20
2-Chlorotoluene	10.3	10.0	103	10.4	10.0	104	82-120	0	20
4-Chlorotoluene	10.3	10.0	109	11.0	10.0	110	75-130	0	20
1,3,5-Trimethylbenzene	10.9	10.0	118	11.8	10.0	118	73-130	0	20
tert-Butylbenzene	10.7	10.0	107	10.7	10.0	107	60-137	0	20
1,2,4-Trimethylbenzene		10.0	112	11.0	10.0	110	68-131	2	20
sec-Butylbenzene	11.2 10.1	10.0	101	10.1	10.0	101	71-137	0	20
1,3-Dichlorobenzene	10.1	10.0	120	11.8	10.0	118	68-134	2	20
4-Isopropyltoluene	9.14	10.0	91	9.69	10.0	97	70-118	6	20
Bromoform	9.14 8.54	10.0	85	9.19	10.0	92	72-122	7	20
1,1,2,2-Tetrachloroethane	8.54 10.1	10.0	101	9.97	10.0	100	82-114	2	20
1,4-Dichlorobenzene		10.0	101	10.1	10.0	101	81-118	0	20
1,2-Dichlorobenzene	10.1	10.0	113	11.0	10.0	110	71-125	3	20
n-Butylbenzene	11.3	10.0	75	8.46	10.0	85	55-131	12	20
1,2-Dibromo-3-chloropropane	7.51	10.0	104	10.4	10.0	104	75-123	0	20
1,2,4-Trichlorobenzene	10.4	10.0	130	12.1	10.0	121	63-140	7	20
Hexachlorobutadiene	13.0	10.0	96	9.98	10.0	100	67-125	4	20
Naphthalene 1,2,3-Trichlorobenzene	9.57 10.3	10.0	103	10.6	10.0	106	72-124	3	20

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

000031 Form 3C - Organic

March 27, 2003

Chuck Gordon BE & K/Terranext 9830 S. 51st A-127 Phoenix, AZ 85044

RE: WVB

Dear Chuck:

Enclosed are the results of the samples submitted to our laboratory on March 17, 2003. For your reference, these analyses have been assigned our service request number L2300594.

All analyses were performed in accordance with our laboratory's quality assurance program. Results are intended to be considered in their entirety and apply only to the samples analyzed. Columbia Analytical Services is not responsible for use of less than the complete report.

Columbia Analytical Services is certified for environmental analyses by the California Department of Health Services (certificate number: 1296A); NELAP (certificate number: 02115CA); Los Angeles County Laboratory ID (No. 10151); and Arizona Department of Health Services (License number: AZ0136 and AZ0544).

If you have any questions, please call me at (818) 587-5550, extension 309.

Respectfully submitted,

Columbia Analytical Services, Inc.

The Collers

Sue Anderson Project Chemist

SA

Page 1 of 16

Columbia Analytical Services, Inc.

Acronyms

California DHS LUFT Method 8015M American Society for Testing and Materials **ASTM** Biochemical Oxygen Demand BOD Benzene/Toluene/Ethylbenzene/Xylenes BTEX California Assessment Metals CAM Chemical Abstract Service Registry Number **CAS Number** Chlorofluorocarbon CFC Chemical Oxygen Demand COD Contract Required Detection Limit **CRDL** Detected; result must be greater than zero. D Detected; result must be greater than the detection limit. DL**Duplicate Laboratory Control Sample** DLCS Duplicate Matrix Spike **DMS** Department of Health Services DOH or DHS Environmental Laboratory Accreditation Program **ELAP** U.S. Environmental Protection Agency **EPA** Gas Chromatography GCGas Chromatography/Mass Spectrometry GC/MS Ion Chromatography IC Initial Calibration Blank sample **ICB** Inductively Coupled Plasma atomic emission spectrometry ICP Initial Calibration Verification sample **ICV** Laboratory Control Sample LCS Leaking Underground Fuel Tank LUFT Modified M Methylene Blue Active Substances **MBAS** Method Detection Limit MDL Method Reporting Limit MRL Matrix Spike MS Methyl-tert-Butyl Ether **MTBE** Not Applicable NA Not Calculated NC None Detected at or above the Method Reporting/Detection Limit (MRL/MDL) ND Nephelometric Turbidity Units NTU Parts Per Billion ppb Parts Per Million ppm Practical Quantitation Limit **PQL** Quality Assurance/Quality Control QA/QC Resource Conservation and Recovery Act **RCRA** Relative Percent Difference RPD Selected Ion Monitoring SIM Standard Methods for the Examination of Water and Wastewater, 18th Ed., 1992. SM Solubility Threshold Limit Concentration STLC Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW-846, SWThird Edition, 1986 and as amended by Updates I, II, IIA, and IIB. Toxicity Characteristics Leaching Procedure **TCLP** Total Dissolved Solids TDS Total Petroleum Hydrocarbons **TPH** Total Recoverable Petroleum Hydrocarbons **TRPH** Total Suspended Solids TSS **Total Threshold Limit Concentration** TTLC Volatile Organic Analyte(s) **VOA Oualifiers** Undetected at or above MDL/MRL. U Estimated concentration. Analyte detected above MDL but below MRL. J Hit above MRL also found in Method Blank. В Analyte concentration above high point of ICAL. E Presumptive evidence of compound. N Result from dilution. D See case narrative. X

- Cover Page -INORGANIC ANALYSIS DATA PACKAGE

Client:

BE&K Terranext, LLC

Project Name : Project No. : WVB NA Service Request: L2300594

Sample Name :	<u>Lab Code :</u>
Batch QC Batch QC Laboratory Control Sample Method Blank AVB92-0200-03206 AVB96-0200-03234 AVB94-0200-03201 AVB94-0204-1000	L2300593-001S L2300593-001SD L2300324-LCS L2300324-MB L2300594-001 L2300594-002 L2300594-003 L2300594-004

Approved By: She Under Date: 3/27/03

3

Analytical Report

Client:

BE&K Terranext, LLC

Project Name: Project No.:

WVB

Water

Matrix:

NA

Service Request: L2300594

Date Collected: 03/17/03 **Date Received:** 03/17/03

Date Extracted: 03/24/03

Total Metals

Sample Name:

AVB92-0200-03206

Lab Code:

L2300594-001

Units: ug/L (ppb)

		MRL	Date Analyzed	Sample Result	Result Notes
Analyte	Analysis Method		03/26/03	19	
Chromium	6010B	10	03/26/03	17	

Analytical Report

Client:

Matrix:

BE&K Terranext, LLC

Project Name: Project No.:

WVB NA

Water

Service Request: L2300594

Date Collected: 03/17/03 Date Received: 03/17/03 Date Extracted: 03/24/03

Dissolved Metals

Sample Name:

AVB92-0200-03206

Lab Code:

L2300594-001

Units: ug/L (ppb)

		MDI	Date Analyzed	Sample Result	Result Notes
Analyte	Analysis Method	MRL	Date Manyzea		
Chromium	6010B	10	03/26/03	11	

Analytical Report

Client:

BE&K Terranext, LLC

Project Name : Project No. : WVB NA

Matrix:

Water

Service Request: L2300594

Date Collected: 03/17/03 **Date Received:** 03/17/03 **Date Extracted:** 03/24/03

Total Metals

Sample Name:

AVB96-0200-03234

Lab Code:

L2300594-002

Units: ug/L (ppb)

Analyte	Analysis Method	MRL	Date Analyzed	Sample Result	Result Notes
Chromium	6010B	10	03/26/03	12	

Analytical Report

Client:

BE&K Terranext, LLC

Project Name : Project No. : WVB NA

Matrix:

Water

Service Request: L2300594

Date Collected: 03/17/03 **Date Received:** 03/17/03 **Date Extracted:** 03/24/03

Dissolved Metals

Sample Name:

AVB96-0200-03234

Lab Code:

L2300594-002

Units: ug/L (ppb)

Analyte	Analysis Method	MRL	Date Analyzed	Sample Result	Result Notes
Chromium	6010B	10	03/26/03	ND	

Analytical Report

Client:

BE&K Terranext, LLC

Project Name: Project No.:

WVB NA

Matrix :

Water

Service Request: L2300594

Date Collected: 03/17/03

Date Received: 03/17/03

Date Extracted: 03/24/03

Total Metals

Sample Name:

AVB94-0200-03201

Lab Code:

L2300594-003

Units: ug/L (ppb)

Basis: NA

Analyte Analysis Method MRL Date Analyzed Result Notes

Chromium 6010B 10 03/26/03 12

Analytical Report

Client:

BE&K Terranext, LLC

Project Name: Project No.:

WVB NA

Matrix:

Water

Service Request: L2300594 Date Collected: 03/17/03 Date Received: 03/17/03

Date Extracted: 03/24/03

Dissolved Metals

Sample Name:

AVB94-0200-03201

Lab Code:

L2300594-003

Units: ug/L (ppb)

		MRL	Date Analyzed	Sample Result	Result Notes
Analyte	Analysis Method	IVIINE	B 600 12-00-0		
Chromium	6010B	10	03/26/03	11	

Analytical Report

Client:

BE&K Terranext, LLC

Project Name : Project No. : WVB NA

Matrix:

Water

Service Request: L2300594

Date Collected: 03/17/03 Date Received: 03/17/03

Date Extracted: 03/24/03

Total Metals

Sample Name:

AVB94-0204-1000

Lab Code:

L2300594-004

Units: ug/L (ppb)

Analyte	Analysis Method	MRL	Date Analyzed	Sample Result	Result Notes
Chromium	6010B	10	03/26/03	ND	

Analytical Report

Client:

BE&K Terranext, LLC

Project Name: Project No.:

WVB NA

Matrix:

Water

Service Request: L2300594

Date Collected: 03/17/03

Date Received: 03/17/03

Date Extracted: 03/24/03

Dissolved Metals

Sample Name:

AVB94-0204-1000

Lab Code:

L2300594-004

Units: ug/L (ppb)

Basis: NA

Analyte

Analysis Method

MRL

Date Analyzed

Sample Result

Result

Chromium

6010B

10

03/26/03

ND

Notes

Analytical Report

Client:

BE&K Terranext, LLC

Project Name: Project No.:

WVB NA

Matrix:

Water

Service Request: L2300594

Date Collected: NA Date Received: NA

Date Extracted: 03/24/03

Total Metals

Sample Name:

Method Blank

Units: ug/L (ppb)

Basis: NA

Lab Code:

L2300324-MB

Result Sample Notes Result **Date Analyzed Analysis Method** MRL ND 6010B

Analyte

10

03/26/03

QA/QC Report

Client:

BE&K Terranext, LLC

Project Name : Project No. :

WVB NA

Matrix:

Water

Service Request: L2300594

Date Collected: NA

Date Received: NA

Date Extracted: 03/24/03

Date Analyzed: 03/26/03

Laboratory Control Sample Summary

Total Metals

Sample Name:

Laboratory Control Sample

Lab Code:

L2300324-LCS

Units: ug/L (ppb)

Analyte	Analysis Method	True Value	Result	Percent	CAS Percent Recovery Acceptance Limits	Result Notes
Chromium	6010B	500	533	107	87-111	

Analytical Report

Client:

BE&K Terranext, LLC

Project Name : Project No. : WVB NA

Matrix:

Water

Service Request: L2300594

Date Collected: NA

Date Received: NA

Date Extracted: 03/24/03

Date Analyzed: 03/26/03

Matrix Spike/Duplicate Matrix Spike Summary

Total Metals

Sample Name:

Batch QC

Lab Code:

L2300593-001S

L2300593-001SD

Units: ug/L (ppb)

Analyte	Prep Method	Analysis Method	MRL	Spike MS	Level DMS	Sample Result	Spike MS	Result DMS	MS	DMS	CAS Acceptance Limits	Relative Percent Difference	Result Notes
Chromium	3010A	6010B	10	500	500	17.3	523	517	101	100	87-105	1	

nbia	Analytical	Services MC.	Сотралу
Columbia	Ana	Seg	An Employee - Owned Company
K			An Empl

22300594 chain of custody/Laboratory analysis request form

3902 East University Drive, Suite 4 • Phoenix, AZ 85034 • (602) 437-2001 • (800) 695-7222 x09 • FAX (602) 437-5308

80.08

PAGE

DATE

RUSH TAT - Surcharges Apply AMALYSIS TAT (Circle One) REMARKS Lab No: X23-00-23d SAMPLE RECEIPT: ☐ 48 Hours □ 24 Hours **ETANDARD** Shipping VIA: Shipping #: Condition: D 0758 ANALYSIS REQUESTED INVOICE INFORMATION: Date/Time Date/Time D Tellia Iniba DHa Diniod Asela Total D TOLP D Organization Organization 4 메그 P.O.# REPORT REQUIREMENTS II. Report (includes DUP MS. MSD, as required, may be charged as samples) III. Data Validation Report (includes All Raw Data) IV. CLP Deliverable Report I. Routine Report 8 Nomatic Volatiles Volatile Organics Received By (Signature) K Received By (Signature) Regeived By (Signature) S 3.17 (5.40) NUMBER OF CONTAINERS S Hel/mg PRESER-VATION 3-17-03 Date/Time Date/Time Date/Time Z ₹ 8 COO 8 Organization Organization Organization oazk.col Take Mark LAB I.D. 338 PHONE/FAX 14.35 9.10 04.11 SPECIAL INSTRUCTIONS/COMMENTS: PROJECT MANAGER Chuck Gridon DATE 11.8 COMPANY/ADDRESS BOLD 3.17 3.7 11:0 Relinquished By (Signature) Relinquished By (Signature) Relinguished By (Signature) slew may PROJECT NAME WVB SAMPLER'S SIGNATURE 1296-020-0324 ABR-0100-03201 VB92-0200-03206 4+1914-6202 -1000 0001 - 1000 MENT SAMPLE 000046

.

DISTRIBUTION: WHITE - return to originator; YELLOW - lab; PINK - retained by originator

0702

SAMPLE RECEIPT FORM

Service Request No: L230 0594 Client: BE+K
Sample(s) delivered by: Client CAS Emp After Hours DHL
Golden State Overnight Fed X UPS Other Courier
Chain of Custody filled out accurately? Yes No(See Comments)
Appropriate sample volume and containers? Yes No(See Comments)
Sufficient labeling on container(s)? Yes No(See Comments)
Container(s) supplied by CAS? Yes No(See Comments)
Custody seal(s) intact? N/A/ Yes No(See Comments)
Trip Blank(s) received Yes No
If Trip Blank was supplied by CAS, record serial #TB
Temperature of sample(s)/cooler °C Temp Blank? Y o(N) Circle One)
Voa's Marked Preserved? Yes No Filled Properly? Yes No (See Comments)
Preserved Bottles Requiring pH check(s)? Yes Notified
RUSH Turn around time? Yes Notified Date & Time
Short Hold-Time Analysis (check all that apply)
ASAP Res Cl D.O Flash Diss S2 Ferrous Fe 24HR pH Odor Cr+6 48HR BOD Color MBAS Nitrate Nitrite O-PO4 Sett Sol Turbidity 72HR Vapors
Notified Date & Time
Container(s) received and their preservative(s):
$-1 \rightarrow -4 = 1-560 \text{ml PI (NP)} A$ $1-500 \text{ml PI (HN03)} B$
comments Diss Metals bottle to be filtered preserved in lab, Benny notified 3/18/03@0950
Initials, Date, Time 16 3/18/03 0940 r:\sr_forms\cooler.doc Rev. 1/17/02 000047

CHAIN OF CUSTODY/LABORATORY ANALYSIS REQUEST FORM

Services INC. Analytical

3902 East University Drive, Suite 4 • Phoenix, AZ 85034 • (602) 437-2001 • (800) 695-7222 x09 • FAX (602) 437-5308

S-17.63 DATE

R

PAGE

870000 RUSH TAT - Surcharges Apply 0702 AMALYSIS TAT (Circle One) REMARKS Lab No: ×33-00-23& SAMPLE RECEIPT: □ 72 Hours ☐ 24 Hours ☐ 48 Hours **ETANDARD** Shipping VIA: Shipping #: _ Condition: D 0158 ANALYSIS REQUESTED INVOICE INFORMATION: 31703 Date/Time Date/Time Date/Time Plash Point O pho Paint Filler O Organization Organization Organization $\sum_{D \in \mathcal{D}} \frac{\text{lotol}}{\text{dJOT}}$ Bill To P.O.# Pea7 REPORT REQUIREMENTS II. Report (includes DUP.MS. MSD, as required, may be charged as samples) IV. CLP Deliverable Report III. Data Validation Report (includes All Raw Data) Routine Report Halogenated & Aromatic Volatiles Volatile Organics Received By (Signature) Received By (Signature) Received By (Signature) ęγ 5 3 87EX 602/8021 S S S ら 3.17 (5.40) NUMBER OF CONTAINERS なが \$2/48.3 PRESER-VATION 五 Date/Time Date/Time Date/Time ď. MATRIX Z Organization SS 600 が Organization Organization BCS took ! DAR. COL LAB I.D. (5:00 1435 0.6 PHONE/FAX TIME 11.40 SPECIAL INSTRUCTIONS/COMMENTS: PROJECT MANAGER Chuck Cordon DATE 13:17 11.8 3.17 COMPANY/ADDRESS TO & C 3:13 3 Relinquished By (Signature) Relinquished By (Signature) Relinguished By (Signature) PROJECT NAME_NVB SAMPLER'S SIGNATURE

VIFE -020 -0224 ABR-0000-03201

Arbit-0202 -1000 ABY #24 - 1000

W892-0200-03206

SAMPLE I.D.

Columbia Analytical Services, Inc. Phoenix, AZ

Sample Receipt and Preservation Form

Client:	BENK			Pro	ject Name: _	Terranet		
	ceived on: 3- 7 Glass Bottle	′7-03 s□	_date/_ Plastic Bottle	5 40 es 7	_time Jars □	Sleeves 🗆		
MATRIX	SOIL 🗆	WATI	ER					
First Extra	action Holding T	ime Expirat	ion:	da	te	time (soils only)		
ł.						S(soil)/7 DAYS (water)?	Yes 🗌 No	יב
If YES, cl	nemist notified o	n:	date		ime	Chemist's Initials		
							<u>ari gaut yez</u>	
 Are the cu If yes, how Are the sig Did all cor Are all cor Were the cor Have VOA Temperature 	stody seals prese many and wher gnature and date ntainers arrive in ntainer labels con correct container. A's been checked are of sample(s) in of discrepancies	nt? correct? good condi mplete (i.e. ps used for the for the pres	tion? preservation, sar e tests indicated sence of air bubb : 2.2 °C	mple ID 1? bles? (no)? ote problems i		No No No No No No No No	3 D /A[_ _
						VOA Vial pH Verif (Tested After Ana All Samples ph	ysis)	
		YES	NO			☐ Following Samples Ext		2
pН	Reagent	123	110					
12	NaOH							
2	HNO ₃	1						
2	H ₂ SO ₄							
Comments:		ı	Form Complete	ted and	I Sample(s)	Received by (initials):	Lw	-

r:\common\forms\samprev.doc Revised: 09/27/02 4:19 PM

April 4, 2003

Chuck Gordon BE&K Terranext 9830 S. 51st Street, Suite A-127 Phoenix, AZ 85044

Re: WVBA / Project #03103154

Dear Chuck:

Enclosed are the results of the samples submitted to our laboratory on March 18, 2003. The samples were analyzed for Total & Dissolved Chromium by our Canoga Park, CA facility (L2300618). For your reference, the 8260 analyses have been assigned our service request number X2300235.

All analyses were performed according to our laboratory's quality assurance program. All results are intended to be considered in their entirety, and Columbia Analytical Services, Inc. (CAS) is not responsible for use of less than the complete report. Results apply only to the samples analyzed. Columbia Analytical Services, Inc. is certified for environmental analyses by the Arizona Department of Health Services (Certificate #AZ0136; and #AZ0497).

Please call if you have any questions. My extension is 223.

Respectfully submitted,

hay & Rutton

Columbia Analytical Services, Inc.

Tracy L. Dutton
Laboratory Director

TLD/lm

Page 1 of <u>54</u>

Client:

BE&K Terranext

Project:

WVB / #03103154

Sample Matrix:

Water

Service Request No.:

X2300235

Date Received:

3/18/03

CASE NARRATIVE

All analyses were performed consistent with the quality assurance program of Columbia Analytical Services, Inc. (CAS). This report contains analytical results for sample(s) designated for Tier II data deliverables. When appropriate to the method, method blank results have been reported with each analytical test. Surrogate recoveries have been reported for all applicable organic analyses. Additional quality control analyses reported herein include: Matrix/Duplicate Matrix Spike (MS/DMS) and Laboratory Control Sample (LCS).

All EPA recommended holding times have been met for analyses in this sample delivery group.

The following difficulties were experienced during analysis of this batch:

The associated blank spike (XWG0300416-1) recovery of 1,1,2-Trichlorotrifluoroethane Method 8260B, was above laboratory acceptance limits. This compound was not detected in any sample.

The associated blank spike (XWG0300416-1) recovery of 1,1-Dichloroethene, and 1,1-Dichloropropene, Method 8260B, was above laboratory acceptance limits but within method acceptance limits.

Matrix spike (XWG0300416-4 and XWG0300416-5) recovery of several analytes for Method 8260B was low. The method control sample recovery was acceptable.

MS/DMS (XWG0300417-1 and XWG0300417-2) RPD for Chloroethane and Acetone, Method 8260B, exceeded the laboratory control limit. Recovery met acceptance criteria.

M)	Date	4-7-03	
	11)	////_Date	M Date 4-7-03

000002

ARIZONA DATA QUALIFIERS

Method	Blank:
B1	Target analyte detected in method blank at or above the method reporting limit.
B2	Non-target analyte detected in method blank and sample, producing interference.
В3	Target analyte detected in calibration blank at or above the method reporting limit.
B4	Target analyte detected in blank at/above method acceptance criteria.
Confirm	nation:
C1	Confirmatory analysis not performed as required by the method.
C2	Confirmatory analysis not performed. Confirmation of analyte presence established by site historical data.
С3	Qualitative confirmation performed. See case narrative.
C4	Confirmatory analysis was past holding time.
C5	Confirmatory analysis was past holding time. Original result not confirmed.
Dilution	<u>ı:</u>
D1	Sample required dilution due to matrix interference. See case narrative.
D2	Sample required dilution due to high concentration of target analyte.
D3	Sample dilution required due to insufficient sample.
D4	Minimum reporting level (MRL) adjusted to reflect sample amount received and analyzed.
Estimat	ted concentration:
E1	Concentration estimated. Analyte exceeded calibration range. Reanalysis not possible due to insufficient
	sample:
E2	Concentration estimated. Analyte exceeded calibration range. Reanalysis not performed due to sample matrix.
E3	Concentration estimated. Analyte exceeded calibration range. Reanalysis not performed due to holding time
	requirements.
E4 -	Concentration estimated. Analyte was detected below laboratory minimum reporting level (MRL).
E5	Concentration estimated. Analyte was detected below laboratory minimum reporting level (MRL), but not confirmed by alternate analysis.
E6	Confirmation estimated. Internal standard recoveries did not meet method acceptance criteria.
E7	Confirmation estimated. Internal standard recoveries did not meet laboratory acceptance criteria.
Hold T	
H1	Sample analysis performed past holding time. See case narrative.
H2	Initial analysis within holding time. Reanalysis for the required dilution was past holding time.
H3	Sample was received and analyzed past holding time.
H4	Sample was extracted past required extraction holding time, but analyzed within analysis holding time. See case
	narrative.
BOD:	and popularie did not meet the oxygen depletion criteria of at least 2mg/L.
K1	The sample dilutions set-up for the BOD analysis did not meet the oxygen depletion criteria of at least 2mg/L.
	Any reported result is an estimated value. The sample dilutions set up for the BOD analysis did not meet the criteria of a residual dissolved oxygen of at
K2	The sample dilutions set up for the BOD analysis and not theet the effort of a residual state of the sample of the
	least 1 mg/L. Any reported result is an estimated value.
K3	The seed depletion was outside the method acceptance limits.

The seed depletion was outside the method and laboratory acceptance limits. The reported result is an estimated K4 value The dilution water D.O. depletion was >0.2 mg/L. K5 Glucose/glutamic acid BOD was below method acceptance criteria. К6 The discrepancy between the BOD and COD results has been verified by reanalysis of the sample for COD. K7 Laboratory fortified blank/blank spike: The associated blank spike recovery was above laboratory acceptance limits. See case narrative. L1The associated blank spike recovery was below laboratory acceptance limits. See case narrative. L2The associated blank spike recovery was above method acceptance limits. See case narrative. L3 The associated blank spike recovery was below method acceptance limits. See case narrative. L4 Note: The L1, L2, L3, & L4 footnotes need to be added to all corresponding analytes for a sample. Matrix spike: Matrix spike recovery was high, the method control sample recovery was acceptable. M1Matrix spike recovery was low, the method control sample was acceptable M2The accuracy of the spike recovery value is reduced since the analyte concentration in the sample is M3 disproportionate to spike level. The method control sample recovery was acceptable. The analysis of the spiked sample required a dilution such that the spike concentrations was diluted below M4 the reporting limit. The method control sample recovery was acceptable. Analyte concentration was determined by the method of standard addition (MSA). M5 General: See case narrative. N1 See corrective action report. N2 Sample quality: Sample integrity was not maintained. See case narrative. Q1 Sample received with head space. $\bigcirc 2$ Sample received with improper chemical preservation. O3 Sample received and analyzed without chemical preservation. O4 Sample received with inadequate chemical preservation, but preserved by the laboratory. 05 Sample was received above recommended temperature. Q6 Sample inadequately dechlorinated. Q7 Insufficient sample received to meet QC requirements. QC requirements satisfy ADEQ policies 0154 and 0155. O8 Insufficient sample received to meet QC requirements. Q9 Sample received in inappropriate sample container. O10 Sample is heterogeneous. Sample homogeneity could not be readily achieved using routine laboratory practices. 011 **Duplicates:** RPD exceeded the method control limit. See case narrative. R1 RPD exceeded the laboratory control limit. See case narrative. R2 Sample RPD between the primary and confirmatory analysis exceeded 40%. Per Method 8000B, the higher R3 value was reported. MS/MSD RPD exceeded the method control limit. Recovery met acceptance criteria. R4 MS/MSD RPD exceeded the laboratory control limit. Recovery met acceptance criteria. R5 LFB/LFBD RPD exceeded the method control limit. Recovery met acceptance criteria. R6 LFB/LFBD RPD exceeded the laboratory control limit. Recovery met acceptance criteria. R7

Sample RPD exceeded the laboratory control limit. R9 Surrogate: Surrogate recovery was above laboratory acceptance limits, but within method acceptance limits. S1Surrogate recovery was above laboratory and method acceptance limits. S2Surrogate recovery was above laboratory acceptance limits, but within method acceptance limits. No target S3 analytes were detected in the sample. Surrogate recovery was above laboratory and method acceptance limits. No target analytes were detected in the **S4** sample. Surrogate recovery was below laboratory acceptance limits, but within method acceptance limits. S5 Surrogate recovery was below laboratory and method acceptance limits. Reextraction and/or reanalysis confirms S6 low recovery caused by matrix effect. Surrogate recovery was below laboratory and method acceptance limits. Unable to confirm matrix effect. S7 The analysis of the sample required a dilution such that the surrogate concentration was diluted below the method S8 acceptance criteria. The method control sample recovery was acceptable. The analysis of the sample required a dilution such that the surrogate concentration was diluted below the **S9** laboratory acceptance criteria. The method control sample recovery was acceptable. Surrogate recovery was above laboratory and method acceptance limits. See case narrative. S10 Method/analyte discrepancies: Method promulgated by EPA, but not ADHS at this time. Τ1 Cited ADHS licensed method does not contain this analyte as part of method compound list. T2 Method not promulgated either by EPA or ADHS. T3 Tentatively identified compound. Concentration is estimated and based on the closest internal standard. Τ4 Calibration verification: CCV recovery was above method acceptance limits. This target analyte was not detected in the sample V1CCV recovery was above method acceptance limits. This target analyte was detected in the sample. The sample V2 could not be reanalyzed due to insufficient sample. CCV recovery was above method acceptance limits. This target analyte was detected in the sample, but the V3 sample was not reanalyzed. See case narrative. CCV recovery was below method acceptance limits. The sample could not be reanalyzed due to insufficient V4

CCV recovery after a group of samples was above acceptance limits. This target analyte was not detected in the

Sample RPD exceeded the method control limit.

sample. Acceptable per EPA Method 8000B.

R8

V5

Inorganic Data Qualifiers

- The result is an outlier. See case narrative.
- The control limit criteria is not applicable. See case narrative.
- The analyte was found in the associated method blank at a level that is significant relative to the sample result. # В
- The result is an estimate amount because the value exceeded the instrument calibration range.
- The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL. E
- The compound was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL. J U
- The MRL/MDL has been elevated due to a matrix interference. i
- See case narrative. Χ

Metals Data Qualifiers

- The control limit criteria is not applicable. See case narrative.
- The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL. В
- The reported value is estimated because of the presence of matrix interference. Ε
- The duplicate injection precision was not met. M
- The Matrix Spike sample recovery is not within control limits. See case narrative.
- The reported value was determined by the Method of Standard Additions (MSA). N
- The compound was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL. S
- The post-digestion spike for furnace AA analysis is out of control limits, while sample absorbance is less than 50% of spike U W absorbance.
- The MRL/MDL has been elevated due to a matrix interference. i
- See case narrative. X
- The duplicate analysis not within control limits. See case narrative.
- The correlation coefficient for the MSA is less than 0.995. +

Organic Data Qualifiers

- The result is an outlier. See case narrative.
- The control limit criteria is not applicable. See case narrative.
- A tentatively identified compound, a suspected aldol-condensation product. Α
- The analyte was found in the associated method blank at a level that is significant relative to the sample result.
- The analyte was qualitatively confirmed using GC/MS techniques, pattern recognition, or by comparing to historical data. В C
- The reported result is from a dilution.
- The result is an estimate amount because the value exceeded the instrument calibration range. D Ε
- The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.
- The result is presumptive. The analyte was tentatively identified, but a confirmation analysis was not performed. J
- The GC or HPLC confirmation criteria was exceeded. The relative percent difference is greater than 40% between the two N analytical results (25% for CLP Pesticides). P
- The compound was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL. U
- The MRL/MDL has been elevated due to a chromatographic interference. i
- See case narrative. Χ

Additional Petroleum Hydrocarbon Specific Qualifiers

- The chromatographic fingerprint of the sample matches the elution pattern of the calibration standard.
- The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a F greater amount of lighter molecular weight constituents than the calibration standard.
- The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a L greater amount of heavier molecular weight constituents than the calibration standard. Η
- The chromatographic fingerprint of the sample resembles an oil, but does not match the calibration standard.
- The chromatographic fingerprint of the sample resembles a petroleum product eluting in approximately the correct carbon 0 range, but the elution pattern does not match the calibration standard. Y
- The chromatographic fingerprint does not resemble a petroleum product. Z

1100

Client: Project: BE&K Terranext WVBA/#0310-3154 **Service Request:**

X2300235

Cover Page - Organic Analysis Data Package Volatile Organic Compounds

Sample Name	Lab Code	Date Collected	Date Received
AVB91-0202-1000 AVB91-0200-03300 AVB91-0204-1000 AVB98-0100-03290 AVB98-0101-03290 AVB81-0100-05300 AVB91-0200-03300MS AVB91-0200-03300DMS	X2300235-001 X2300235-002 X2300235-003 X2300235-004 X2300235-005 X2300235-006 XWG0300416-4 XWG0300416-5	03/18/2003 03/18/2003 03/18/2003 03/18/2003 03/18/2003 03/18/2003 03/18/2003	03/19/2003 03/19/2003 03/19/2003 03/19/2003 03/19/2003 03/19/2003 03/19/2003

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed in the case narrative. Release of the data contained in this hardcopy data package and in the computer-readable data submitted on floppy diskette has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signature.

SuperSet Reference:

Cover Page - Organic

Page

Analytical Results

Client: Project: BE&K Terranext WVBA/#0310-3154

Sample Matrix:

Water

Service Request: X2300235 **Date Collected:** 03/18/2003

Date Received: 03/19/2003

Volatile Organic Compounds

Sample Name: Lab Code:

AVB91-0202-1000 X2300235-001

Extraction Method: Analysis Method:

EPA 5030B

8260B

Units: ug/L Basis: NA

Level: Low

•		MRL	Dilution Factor	Date Extracted	Date Analyzed	Arizona Qualifier
Analyte Name	Result Q		1	03/28/03	03/28/03	
Dichlorodifluoromethane	ND U	3.0	1	03/28/03	03/28/03	
Chloromethane	ND U	2.0	1	03/28/03	03/28/03	
Vinyl Chloride	ND U	1.0		03/28/03	03/28/03	
Bromomethane	ND U	1.0	1 1	03/28/03	03/28/03	
Chloroethane	ND U	1.0	1	03/28/03	03/28/03	
Frichlorofluoromethane	ND U	1.0			03/28/03	Ll
1,1,2-Trichlorotrifluoroethane	ND U	1.0	1	03/28/03 03/28/03	03/28/03	L1
1,1-Dichloroethene	ND U	1.0	1	03/28/03	03/28/03	LI
Acetone	ND U	10	1			
	ND U	2.0	1	03/28/03	03/28/03	
Iodomethane	ND U	2.0	1	03/28/03	03/28/03	
Carbon Disulfide	ND U	1.0	1	03/28/03	03/28/03	
Methylene Chloride	ND U	1.0	1	03/28/03	03/28/03	
Methyl tert-Butyl Ether	ND U	0.50	1	03/28/03	03/28/03	
trans-1,2-Dichloroethene	ND U	0.50	1	03/28/03	03/28/03	
1,1-Dichloroethane		3.0	1	03/28/03	03/28/03	
Vinyl Acetate	ND U	2.0	1	03/28/03	03/28/03	
2,2-Dichloropropane	ND U	8.0	1	03/28/03	03/28/03	
2-Butanone (MEK)	ND U		1	03/28/03	03/28/03	
cis-1,2-Dichloroethene	ND U	0.50	1	03/28/03	03/28/03	
Bromochloromethane	ND U	0.50	1	03/28/03	03/28/03	
Chloroform	ND U	1.0			03/28/03	
1,1,1-Trichloroethane	ND U	0.50	1	03/28/03	03/28/03	
Carbon Tetrachloride	ND U	0.50	1	03/28/03	03/28/03	
1.1-Dichloropropene	ND U	0.50	1	03/28/03		
	ND U	0.50	1	03/28/03	03/28/03	
Benzene	ND U	0.50	1	03/28/03	03/28/03	
1,2-Dichloroethane	ND U	0.50	1	03/28/03	03/28/03	
Trichloroethene	ND U	0.50	1	03/28/03	03/28/03	
1,2-Dichloropropane	ND U	0.50	1	03/28/03	03/28/03	
Dibromomethane	ND U	0.50	1	03/28/03	03/28/03	
Bromodichloromethane			1	03/28/03	03/28/03	3
cis-1,3-Dichloropropene	ND U	0.50	1	03/28/03		
4-Methyl-2-pentanone (MIBK)	ND U	8.0	1	03/28/03		
Toluene	ND U	0.50	1			

Comments:	

200008

Merged

SuperSet Reference:

Analytical Results

Client: Project:

BE&K Terranext WVBA/#0310-3154

Sample Matrix:

Water

Service Request: X2300235

Date Collected: 03/18/2003 **Date Received:** 03/19/2003

Volatile Organic Compounds

Sample Name: Lab Code: AVB91-0202-1000 X2300235-001

Extraction Method: Analysis Method:

EPA 5030B 8260B Units: ug/L Basis: NA

Level: Low

Analyte Name Result Q MRL Factor Extracted Analyzed Arizona Qualiffer trans-1,3-Dichloropropene ND U 1.0 1 03/28/03 03/28/03 1,1,2-Trichlorocthane ND U 1.0 1 03/28/03 03/28/03 2-Hexanone ND U 5.0 1 03/28/03 03/28/03 1,3-Dichloropropane ND U 1.0 1 03/28/03 03/28/03 1,3-Dichloropropane ND U 0.50 1 03/28/03 03/28/03 1,2-Dibromoethane ND U 0.50 1 03/28/03 03/28/03 Chlorobenzene ND U 0.50 1 03/28/03 03/28/03 Eltylbenzene ND U 0.50 1 03/28/03 03/28/03 Eltylbenzene ND U 0.50 1 03/28/03 03/28/03 Styrene ND U 0.50 1 03/28/03 03/28/03 Styrene ND U 0.50 1 03/28/03 03/28/03 <t< th=""><th></th><th></th><th></th><th>Dilution</th><th>Date</th><th>Date</th><th></th></t<>				Dilution	Date	Date	
Trans-1,3-Dichloropropene	Analyte Name	Result Q	MRL	Factor			Arizona Qualifier
1,1,2-Trichloroethane		ND U	1.0	1			
Tetrachloroethene ND U 0.50 1 03/28/03 03/28/03 2-Hexanone ND U 1.0 1 03/28/03 03/28/03 1,3-Dichloropropane ND U 1.0 1 03/28/03 03/28/03 1,2-Dibromoethane ND U 0.50 1 03/28/03 03/28/03 1,2-Dibromoethane ND U 0.50 1 03/28/03 03/28/03 1,1,12-Tetrachloroethane ND U 0.50 1 03/28/03 03/28/03 Elthylbenzene ND U 0.50 1 03/28/03 03/28/03 Ethylbenzene ND U 0.50 1 03/28/03 03/28/03 e-Xylene ND U 0.50 1 03/28/03 03/28/03 Styrene ND U 0.50 1 03/28/03 03/28/03 Isopropylbenzene ND U 0.50 1 03/28/03 03/28/03 Isopropylbenzene ND U 0.50 1 03/28/03 03/28/03 1,2,3-Trichloropropane <td></td> <td></td> <td>1.0</td> <td>1</td> <td></td> <td></td> <td></td>			1.0	1			
2-Hexanone		ND U	0.50	1	03/28/03		
ND U		ND U	5.0	1			
Ditromochloromethane			1.0	1			
1,2-Dibromoethane			0.50	1	03/28/03		
1,2-Flottontone		ND U	0.50	1	03/28/03		
1,1,1,2-Tetrachloroethane				1	03/28/03		
Strylenes			0.50	1	03/28/03	03/28/03	
ND U 1.0 1 03/28/03 03/28/03 03/28/03 05/			0.50	1	03/28/03	03/28/03	
N. N. N. N. N. N. N. N.	7			1	03/28/03	03/28/03	
Styrene	•			1	03/28/03	03/28/03	
Styrete ND U 0.50 1 03/28/03 03/28/03 03/28/03			0.50	1	03/28/03	03/28/03	
Soprophylocente ND U 0.50				1	03/28/03	03/28/03	
1,2,3-Trichloropropane	1 10			1	03/28/03	03/28/03	
1,2,3-Trichloropropane				1	03/28/03	03/28/03	
2-Chlorotoluene ND U 0.50 1 03/28/03 03/28/03 4-Chlorotoluene ND U 0.50 1 03/28/03 03/28/03 1,3,5-Trimethylbenzene ND U 0.50 1 03/28/03 03/28/03 tert-Butylbenzene ND U 0.50 1 03/28/03 03/28/03 1,2,4-Trimethylbenzene ND U 0.50 1 03/28/03 03/28/03 sec-Butylbenzene ND U 0.50 1 03/28/03 03/28/03 1,3-Dichlorobenzene ND U 0.50 1 03/28/03 03/28/03 4-Isopropyltoluene ND U 0.50 1 03/28/03 03/28/03 4-Isopropyltoluene ND U 0.50 1 03/28/03 03/28/03 Bromoform ND U 0.50 1 03/28/03 03/28/03 1,1,2,2-Tetrachloroethane ND U 1.0 1 03/28/03 03/28/03 1,4-Dichlorobenzene ND U 0.50 1 03/28/03 03/28/03 1,4-Dichlorobenzene ND U 0.50 1 03/28/03 03/28/03 1,2-Dichlorobenzene ND U 0.50 1 03/28/03 03/28/03 1,2-Dichlorobenzene ND U 0.50 1 03/28/03 03/28/03 1,2-Dichlorobenzene ND U 0.50 1 03/28/03 03/28/03 1,2-Dibromo-3-chloropropane ND U 5.0 1 03/28/03 03/28/03 1,2,4-Trichlorobenzene ND U 0.50 1 03/28/03 03/28/03 1,2,4-Trichlorobenzene ND U 0.50 1 03/28/03 03/28/03						03/28/03	
4-Chlorotoluene ND U 0.50 1 03/28/03 03/28/03 1,3,5-Trimethylbenzene ND U 0.50 1 03/28/03 03/28/03 tert-Butylbenzene ND U 0.50 1 03/28/03 03/28/03 1,2,4-Trimethylbenzene ND U 0.50 1 03/28/03 03/28/03 sec-Butylbenzene ND U 0.50 1 03/28/03 03/28/03 1,3-Dichlorobenzene ND U 0.50 1 03/28/03 03/28/03 4-Isopropyltoluene ND U 0.50 1 03/28/03 03/28/03 Bromoform ND U 0.50 1 03/28/03 03/28/03 1,1,2,2-Tetrachloroethane ND U 1.0 1 03/28/03 03/28/03 1,4-Dichlorobenzene ND U 0.50 1 03/28/03 03/28/03 1,2-Dichlorobenzene ND U 0.50 1 03/28/03 03/28/03 1,2-Dibromo-3-chloropropane ND U 5.0 1 03/28/03 03/28/03					03/28/03	03/28/03	
4-Chlorotoluene ND U 0.50 1 03/28/03 03/28/03 1,3,5-Trimethylbenzene ND U 0.50 1 03/28/03 03/28/03 1,2,4-Trimethylbenzene ND U 0.50 1 03/28/03 03/28/03 sec-Butylbenzene ND U 0.50 1 03/28/03 03/28/03 1,3-Dichlorobenzene ND U 0.50 1 03/28/03 03/28/03 4-Isopropyltoluene ND U 0.50 1 03/28/03 03/28/03 Bromoform ND U 0.50 1 03/28/03 03/28/03 1,1,2,2-Tetrachloroethane ND U 1.0 1 03/28/03 03/28/03 1,4-Dichlorobenzene ND U 0.50 1 03/28/03 03/28/03 1,2-Dichlorobenzene ND U 0.50 1 03/28/03 03/28/03 1,2-Dibromo-3-chloropropane ND U 5.0 1 03/28/03 03/28/03 1,2,4-Trichlorobenzene ND U 0.50 1 03/28/03 03/28/03 1,2,4-Trichlorobenzene ND U 0.50 1 03/28/03<				i	03/28/03	03/28/03	
tert-Butylbenzene ND U 0.50 1 03/28/03 03/28/03 1,2,4-Trimethylbenzene ND U 0.50 1 03/28/03 03/28/03 sec-Butylbenzene ND U 0.50 1 03/28/03 03/28/03 1,3-Dichlorobenzene ND U 0.50 1 03/28/03 03/28/03 4-Isopropyltoluene ND U 0.50 1 03/28/03 03/28/03 Bromoform ND U 0.50 1 03/28/03 03/28/03 1,1,2,2-Tetrachloroethane ND U 1.0 1 03/28/03 03/28/03 1,4-Dichlorobenzene ND U 0.50 1 03/28/03 03/28/03 1,2-Dichlorobenzene ND U 0.50 1 03/28/03 03/28/03 1,2-Dichlorobenzene ND U 0.50 1 03/28/03 03/28/03 1,2-Dichlorobenzene ND U 0.50 1 03/28/03 03/28/03 1,2-Dibromo-3-chloropropane ND U 0.50 1 03/28/03 03/28/03 1,2,4-Trichlorobenzene ND U 0.50 1 03/28/03 03/28/03 1,2,4-Trichlorobenzene ND U 0.50 1 03/28/03 03/28/03	· -					03/28/03	
1,2,4-Trimethylbenzene	, ,					03/28/03	
1,2,4-Trimethylbenzene ND U 0.50 1 03/28/03 03/28/03 sec-Butylbenzene ND U 0.50 1 03/28/03 03/28/03 1,3-Dichlorobenzene ND U 0.50 1 03/28/03 03/28/03 4-Isopropyltoluene ND U 0.50 1 03/28/03 03/28/03 Bromoform ND U 0.50 1 03/28/03 03/28/03 1,1,2,2-Tetrachloroethane ND U 0.50 1 03/28/03 03/28/03 1,4-Dichlorobenzene ND U 0.50 1 03/28/03 03/28/03 1,2-Dichlorobenzene ND U 0.50 1 03/28/03 03/28/03 1,2-Dibromo-3-chloropropane ND U 5.0 1 03/28/03 03/28/03 1,2,4-Trichlorobenzene ND U 0.50 1 03/28/03 03/28/03 1,2,4-Trichlorobenzene ND U 0.50 1 03/28/03 03/28/03				1	03/28/03	03/28/03	
sec-Butylbenzene ND U 0.50 1 03/28/03 03/28/03 1,3-Dichlorobenzene ND U 0.50 1 03/28/03 03/28/03 4-Isopropyltoluene ND U 0.50 1 03/28/03 03/28/03 Bromoform ND U 0.50 1 03/28/03 03/28/03 1,1,2,2-Tetrachloroethane ND U 0.50 1 03/28/03 03/28/03 1,4-Dichlorobenzene ND U 0.50 1 03/28/03 03/28/03 1,2-Dichlorobenzene ND U 0.50 1 03/28/03 03/28/03 1,2-Dibromo-3-chloropropane ND U 5.0 1 03/28/03 03/28/03 1,2,4-Trichlorobenzene ND U 0.50 1 03/28/03 03/28/03							
1,3-Dichlorobenzene ND U 0.50 1 03/28/03 03/28/03 4-Isopropyltoluene ND U 0.50 1 03/28/03 03/28/03 Bromoform ND U 0.50 1 03/28/03 03/28/03 1,1,2,2-Tetrachloroethane ND U 0.50 1 03/28/03 03/28/03 1,4-Dichlorobenzene ND U 0.50 1 03/28/03 03/28/03 1,2-Dichlorobenzene ND U 0.50 1 03/28/03 03/28/03 1,2-Dibromo-3-chloropropane ND U 5.0 1 03/28/03 03/28/03 1,2,4-Trichlorobenzene ND U 0.50 1 03/28/03 03/28/03				_			
4-Isopropyltoluene ND U 0.50 1 03/28/03 03/28/03 Bromoform ND U 0.50 1 03/28/03 03/28/03 1,1,2,2-Tetrachloroethane ND U 1.0 1 03/28/03 03/28/03 1,4-Dichlorobenzene ND U 0.50 1 03/28/03 03/28/03 1,2-Dichlorobenzene ND U 0.50 1 03/28/03 03/28/03 n-Butylbenzene ND U 5.0 1 03/28/03 03/28/03 1,2-Dibromo-3-chloropropane ND U 5.0 1 03/28/03 03/28/03 1,2,4-Trichlorobenzene ND U 0.50 1 03/28/03 03/28/03	<u> </u>					03/28/03	
Bromoform ND U 0.50 1,1,2,2-Tetrachloroethane ND U 1.0 1 03/28/03 03/28/03 1,4-Dichlorobenzene ND U 0.50 1 03/28/03 03/28/03 1,2-Dichlorobenzene ND U 0.50 1 03/28/03 03/28/03 n-Butylbenzene ND U 0.50 1 03/28/03 03/28/03 1,2-Dibromo-3-chloropropane ND U 5.0 1 03/28/03 03/28/03 1,2,4-Trichlorobenzene ND U 0.50 1 03/28/03 03/28/03							
1,1,2,2-Tetrachloroethane ND U 0.50 1 03/28/03 03/28/03 1,4-Dichlorobenzene ND U 0.50 1 03/28/03 03/28/03 1,2-Dichlorobenzene ND U 0.50 1 03/28/03 03/28/03 n-Butylbenzene ND U 0.50 1 03/28/03 03/28/03 1,2-Dibromo-3-chloropropane ND U 5.0 1 03/28/03 03/28/03 1,2,4-Trichlorobenzene ND U 0.50 1 03/28/03 03/28/03							
1,4-Dichlorobenzene ND U 0.50 1 03/28/03 03/28/03 1,2-Dichlorobenzene ND U 0.50 1 03/28/03 03/28/03 n-Butylbenzene ND U 0.50 1 03/28/03 03/28/03 1,2-Dibromo-3-chloropropane ND U 5.0 1 03/28/03 03/28/03 1,2,4-Trichlorobenzene ND U 0.50 1 03/28/03 03/28/03	1,1,2,2-Tetrachloroethane						
1,2-Dichlorobenzene ND U 0.50 1 03/28/03 03/28/03 n-Butylbenzene ND U 0.50 1 03/28/03 03/28/03 1,2-Dibromo-3-chloropropane ND U 5.0 1 03/28/03 03/28/03 1,2,4-Trichlorobenzene ND U 0.50 1 03/28/03 03/28/03	1,4-Dichlorobenzene						
n-Butylbenzene ND U 5.0 1 03/28/03 03/28/03 1,2-Dibromo-3-chloropropane ND U 5.0 1 03/28/03 03/28/03 1,2,4-Trichlorobenzene ND U 0.50 1 03/28/03 03/28/03				_			
1,2-Dibromo-3-chloropropane ND U 0.50 1 03/28/03 03/28/03 1,2,4-Trichlorobenzene ND U 0.50 1 03/28/03 03/28/03	n-Butylbenzene						
1,2,4-Trichlorobenzene ND 0 0.30	1,2-Dibromo-3-chloropropane						
Hexachlorobutadiene ND U 0.50 1 05/28/05 05/28/05				1			
110/110/110/10/00/110	Hexachlorobutadiene	ND U	0.50	ı l	03/26/03		

Comments:

Printed: 04/02/2003 13:58:59 L:\STEALTH\CRYSTAL.RPT\Formlm.rpt

Merged

000009

Analytical Results

Client:

BE&K Terranext

Project:

WVBA/#0310-3154

Sample Matrix:

Water

Service Request: X2300235

Date Collected: 03/18/2003

Date Received: 03/19/2003

Volatile Organic Compounds

Sample Name:

AVB91-0202-1000

Lab Code:

X2300235-001

Extraction Method: Analysis Method:

EPA 5030B 8260B

Units: ug/L Basis: NA

Level: Low

	~ V 0	MRL	Dilution Factor	Date Extracted	Date Analyzed	Arizona Qualifier
Naphthalene 1,2,3-Trichlorobenzene	ND U ND U	3.0 0.50	1 1	03/28/03 03/28/03	03/28/03 03/28/03	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Arizona Qualifier
Dibromofluoromethane	105	84-113	03/28/03	
Toluene-d8	111	68-126	03/28/03	
4-Bromofluorobenzene	105	79-113	03/28/03	

Comments:

Merged

RR3144

Analytical Results

Client:

BE&K Terranext WVBA/#0310-3154

Project: Sample Matrix:

Water

Service Request: X2300235

Date Collected: 03/18/2003

Date Received: 03/19/2003

Volatile Organic Compounds

Sample Name: Lab Code:

AVB91-0200-03300 X2300235-002

E

¤р∆ 5030В

Units: ug/L Basis: NA

Level: Low

Extraction Method:	EPA 5030B
Analysis Method:	8260B

•			Dilution	Date Extracted	Date	Arizona Qualifier
Analyte Name	Result Q	MRL	Factor	03/28/03	03/28/03	
Dichlorodifluoromethane	ND U	3.0	1	03/28/03	03/28/03	
Chloromethane	ND U	2.0	1	03/28/03	03/28/03	
Vinyl Chloride	ND U	1.0			03/28/03	
Bromomethane	ND U	1.0	1	03/28/03 03/28/03	03/28/03	
Chloroethane	ND U	1.0	1	03/28/03	03/28/03	
Trichlorofluoromethane	ND U	1.0	1		03/28/03	L1
1,1,2-Trichlorotrifluoroethane	ND U	1.0	1	03/28/03	03/28/03	L1 L1
1,1-Dichloroethene	1.1	1.0	1	03/28/03	03/28/03	171
Acetone	ND U	10	1	03/28/03		
	ND U	2.0	1	03/28/03	03/28/03	
Iodomethane Carbon Disulfide	ND U	2.0	1	03/28/03	03/28/03	
Methylene Chloride	ND U	1.0	1	03/28/03	03/28/03	
	ND U	1.0	1	03/28/03	03/28/03	
Methyl tert-Butyl Ether	ND U	0.50	1	03/28/03	03/28/03	
trans-1,2-Dichloroethene	ND U	0.50	1	03/28/03	03/28/03	
1,1-Dichloroethane	ND U	3.0	1	03/28/03	03/28/03	
Vinyl Acetate	ND U	2.0	1	03/28/03	03/28/03	
2,2-Dichloropropane	ND U	8.0	1	03/28/03	03/28/03	
2-Butanone (MEK)		0.50	1	03/28/03	03/28/03	
cis-1,2-Dichloroethene	ND U	0.50	1	03/28/03	03/28/03	
Bromochloromethane	ND U ND U	1.0	1	03/28/03	03/28/03	
Chloroform			1	03/28/03	03/28/03	
1,1,1-Trichloroethane	ND U	0.50	1	03/28/03	03/28/03	
Carbon Tetrachloride	ND U	0.50 0.50	1	03/28/03	03/28/03	
1,1-Dichloropropene	ND U		1	03/28/03	03/28/03	
Benzene	ND U	0.50	1	03/28/03	03/28/03	
1,2-Dichloroethane	ND U	0.50	1	03/28/03	03/28/03	
Trichloroethene	1.2	0.50		03/28/03	03/28/03	
1,2-Dichloropropane	ND U	0.50	1	03/28/03	03/28/03	
Dibromomethane	ND U	0.50	1	03/28/03	03/28/03	
Bromodichloromethane	ND U	0.50	1			
cis-1,3-Dichloropropene	ND U	0.50	1	03/28/03		
4-Methyl-2-pentanone (MIBK)	ND U	8.0	1	03/28/03		
Toluene	ND U	0.50	1	03/28/03	03/28/0	3

Comments:

000011

Printed: 04/02/2003 13:59:09 L:\STEALTH\CRYSTAL.RPT\Form1m.rpt

Form 1A - Organic

RR3144 SuperSet Reference:

1 of 3 Page

Analytical Results

Client: **Project:** BE&K Terranext WVBA/#0310-3154

Sample Matrix:

Water

Service Request: X2300235

Date Collected: 03/18/2003

Date Received: 03/19/2003

Volatile Organic Compounds

Sample Name:

AVB91-0200-03300

Lab Code:

X2300235-002

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

				Dilution	Date	Date	
Analyte Name	Result	Q	MRL	Factor	Extracted		Arizona Qualifier
trans-1,3-Dichloropropene	ND	U	1.0	1	03/28/03	03/28/03	
1.1.2-Trichloroethane	ND	U	1.0	1	03/28/03	03/28/03	
Tetrachloroethene	4.4		0.50	1	03/28/03	03/28/03	
2-Hexanone	ND	U	5.0	1	03/28/03	03/28/03	
1,3-Dichloropropane	ND		1.0	1	03/28/03	03/28/03	
Dibromochloromethane	ND		0.50	1	03/28/03	03/28/03	
1,2-Dibromoethane	ND		0.50	1	03/28/03	03/28/03	
Chlorobenzene	ND		0.50	1	03/28/03	03/28/03	
1,1,1,2-Tetrachloroethane	ND		0.50	1	03/28/03	03/28/03	
Ethylbenzene	ND		0.50	1	03/28/03	03/28/03	
m,p-Xylenes	ND		1.0	1	03/28/03	03/28/03	
o-Xylene	ND		0.50	1	03/28/03	03/28/03	
	ND	U	0.50	1	03/28/03	03/28/03	
Styrene	ND		0.50	1	03/28/03	03/28/03	
Isopropylbenzene Bromobenzene	ND		0.50	1	03/28/03	03/28/03	
	ND		1.0	1	03/28/03	03/28/03	
1,2,3-Trichloropropane	ND		0.50	1	03/28/03	03/28/03	
n-Propylbenzene 2-Chlorotoluene	ND		0.50	1	03/28/03	03/28/03	
	ND		0.50	1	03/28/03	03/28/03	
4-Chlorotoluene	ND ND		0.50	1	03/28/03	03/28/03	
1,3,5-Trimethylbenzene tert-Butylbenzene	ND ND		0.50	1	03/28/03	03/28/03	
	ND		0.50	1	03/28/03	03/28/03	
1,2,4-Trimethylbenzene	ND ND		0.50	1	03/28/03	03/28/03	
sec-Butylbenzene	ND ND		0.50	1	03/28/03	03/28/03	
1,3-Dichlorobenzene	ND		0.50	1	03/28/03	03/28/03	
4-Isopropyltoluene	ND ND		0.50	1	03/28/03	03/28/03	
Bromoform	ND ND		1.0	1	03/28/03	03/28/03	
1,1,2,2-Tetrachloroethane			0.50	1	03/28/03	03/28/03	
1,4-Dichlorobenzene	ND		0.50	. 1	03/28/03	03/28/03	
1,2-Dichlorobenzene	ND ND		0.50	1	03/28/03	03/28/03	
n-Butylbenzene					03/28/03	03/28/03	
1,2-Dibromo-3-chloropropane	ND		5.0	1	03/28/03	03/28/03	
1,2,4-Trichlorobenzene	ND		0.50 0.50	1 1	03/28/03	03/28/03	
Hexachlorobutadiene	ND	U	0.30	1	03120103	33,20,03	

Comments:

Printed: 04/02/2003 13:59:09 L:\STEALTH\CRYSTAL.RPT\Form1m.rpt

Merged

Form 1A - Organic

2 of 3 Page

SuperSet Reference:

RR3144

Analytical Results

Client:

BE&K Terranext WVBA/#0310-3154

Project: Sample Matrix:

Water

Service Request: X2300235 **Date Collected:** 03/18/2003

Date Received: 03/19/2003

Volatile Organic Compounds

Sample Name: Lab Code:

AVB91-0200-03300 X2300235-002

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

	Result Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Arizona Qualifier
Naphthalene	ND U	3.0	1	03/28/03	03/28/03	
1,2,3-Trichlorobenzene	ND U	0.50	1	03/28/03	03/28/03	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Arizona Qualifier
Dibromofluoromethane Toluene-d8 4-Bromofluorobenzene	108 109 103	84-113 68-126 79-113	03/28/03 03/28/03 03/28/03	

Comments:

Analytical Results

Client: Project: BE&K Terranext WVBA/#0310-3154

Sample Matrix:

Water

Service Request: X2300235

Date Collected: 03/18/2003 **Date Received:** 03/19/2003

Volatile Organic Compounds

Sample Name: Lab Code: AVB91-0204-1000 X2300235-003

Extraction Method: Analysis Method:

EPA 5030B 8260B Units: ug/L Basis: NA

Level: Low

		Dilution	Date	Date	
Result Q	MRL	Factor	Extracted		Arizona Qualifier
ND U	3.0	1			
ND U	2.0				
ND U	1.0	1			
ND U	1.0	1			
ND U	1.0	1			
ND U	1.0	1			
ND U	1.0	1			L1
	1.0	1			L1
	10	1	03/28/03		
ND U	2.0	1	03/28/03		
	2.0	1			
	1.0	1	03/28/03	03/28/03	
	1.0	1	03/28/03	03/28/03	
		1	03/28/03	03/28/03	
	0.50	1	03/28/03	03/28/03	
	3.0	1	03/28/03	03/28/03	
		1	03/28/03	03/28/03	
		1	03/28/03	03/28/03	
		1	03/28/03	03/28/03	
			03/28/03	03/28/03	
		1	03/28/03	03/28/03	
		1	03/28/03	03/28/03	
		1		03/28/03	
		î	03/28/03	03/28/03	L1
		1	03/28/03	03/28/03	
		1		03/28/03	
		i		03/28/03	
				03/28/03	
		_			
		=			
ND U	0.30	1	05/20/05		
	ND U ND U ND U ND U ND U	ND U 3.0 ND U 1.0 ND U 2.0 ND U 2.0 ND U 1.0 ND U 3.0 ND U 0.50 ND U 0.50 ND U 3.0 ND U 0.50	No Color No Color	Result Q MRL Factor Extracted ND U 3.0 1 03/28/03 ND U 2.0 1 03/28/03 ND U 1.0 1 03/28/03 ND U 2.0 1 03/28/03 ND U 2.0 1 03/28/03 ND U 1.0 1 03/28/03 ND U 0.50 1 03/28/03 ND U 0.50 1 03/28/03 ND U 3.0 1 03/28/03 ND U 3.0 1 03/28/03 ND U 0.50 1 03/28/03 <td>Result Q MRL Factor Extracted Analyzed ND U 3.0 1 03/28/03 03/28/03 ND U 2.0 1 03/28/03 03/28/03 ND U 1.0 1 03/28/03 03/28/03 ND U 2.0 1 03/28/03 03/28/03 ND U 1.0 1 03/28/03 03/28/03 ND U 1.0 1 03/28/03 03/28/03 ND U 0.50 1 03/28/03 03/28/03 ND U</td>	Result Q MRL Factor Extracted Analyzed ND U 3.0 1 03/28/03 03/28/03 ND U 2.0 1 03/28/03 03/28/03 ND U 1.0 1 03/28/03 03/28/03 ND U 2.0 1 03/28/03 03/28/03 ND U 1.0 1 03/28/03 03/28/03 ND U 1.0 1 03/28/03 03/28/03 ND U 0.50 1 03/28/03 03/28/03 ND U

Comments:

000014

Analytical Results

Client: **Project:** BE&K Terranext WVBA/#0310-3154

Sample Matrix:

Water

Service Request: X2300235

Date Collected: 03/18/2003

Date Received: 03/19/2003

Volatile Organic Compounds

Sample Name: Lab Code:

AVB91-0204-1000

Extraction Method:

X2300235-003

Analysis Method:

EPA 5030B 8260B

Units: ug/L Basis: NA

Level: Low

				Dilution	Date	Date	
Analyte Name	Result	Q	MRL	Factor	Extracted	Analyzed	Arizona Qualifier
trans-1,3-Dichloropropene	ND	U	1.0	1	03/28/03	03/28/03	
1,1,2-Trichloroethane	ND	U	1.0	1	03/28/03	03/28/03	
Tetrachloroethene	ND	U	0.50	1	03/28/03	03/28/03	
2-Hexanone	ND	U	5.0	1	03/28/03	03/28/03	
1,3-Dichloropropane	ND	U	1.0	1	03/28/03	03/28/03	
Dibromochloromethane	ND	U	0.50	1	03/28/03	03/28/03	
1,2-Dibromoethane	ND	U	0.50	1	03/28/03	03/28/03	
Chlorobenzene	ND		0.50	1	03/28/03	03/28/03	
1,1,1,2-Tetrachloroethane	ND	U	0.50	1	03/28/03	03/28/03	
Ethylbenzene	ND	IJ	0.50	1	03/28/03	03/28/03	
m,p-Xylenes	ND		1.0	1	03/28/03	03/28/03	
o-Xylene	ND		0.50	1	03/28/03	03/28/03	
Styrene	ND	IJ	0.50	1	03/28/03	03/28/03	
Isopropylbenzene	ND		0.50	1	03/28/03	03/28/03	
Bromobenzene	ND		0.50	1	03/28/03	03/28/03	
1,2,3-Trichloropropane	ND	U	1.0	1	03/28/03	03/28/03	
n-Propylbenzene	ND		0.50	1	03/28/03	03/28/03	
2-Chlorotoluene	ND		0.50	1	03/28/03	03/28/03	
4-Chlorotoluene	ND		0.50	1	03/28/03	03/28/03	
1,3,5-Trimethylbenzene	ND		0.50	1	03/28/03	03/28/03	
tert-Butylbenzene	ND		0.50	1	03/28/03	03/28/03	
1,2,4-Trimethylbenzene	ND		0.50	1	03/28/03	03/28/03	
sec-Butylbenzene	ND		0.50	1	03/28/03	03/28/03	
1,3-Dichlorobenzene	ND		0.50	1	03/28/03	03/28/03	
4-Isopropyltoluene	ND		0.50	1	03/28/03	03/28/03	
Bromoform	ND		0.50	1	03/28/03	03/28/03	
1,1,2,2-Tetrachloroethane	ND		1.0	1	03/28/03	03/28/03	
1,4-Dichlorobenzene	ND		0.50	1	03/28/03	03/28/03	
1,4-Dichlorobenzene	ND		0.50	1	03/28/03	03/28/03	
n-Butylbenzene	ND		0.50	1	03/28/03	03/28/03	
1,2-Dibromo-3-chloropropane	ND		5.0	1	03/28/03	03/28/03	
1,2,4-Trichlorobenzene		U	0.50	1	03/28/03	03/28/03	
Hexachlorobutadiene		U	0.50	1	03/28/03	03/28/03	
11CACIIIOIOUIIAUICIIC							

Comments:

000015

Analytical Results

Client:

BE&K Terranext WVBA/#0310-3154

Project: Sample Matrix:

Water

Service Request: X2300235

Date Collected: 03/18/2003

Date Received: 03/19/2003

Volatile Organic Compounds

Sample Name:

AVB91-0204-1000

Lab Code:

X2300235-003

Extraction Method: Analysis Method:

EPA 5030B 8260B

Units: ug/L Basis: NA

Level: Low

Date Date **Dilution** Analyzed Arizona Qualifier Extracted **Factor** MRL Result Q Analyte Name 03/28/03 1 03/28/03 3.0 ND U Naphthalene 03/28/03 03/28/03 1 0.50 ND U 1,2,3-Trichlorobenzene

Surrogate Name	%Rec	Control Limits	Date Analyzed	Arizona Qualifier
Dibromofluoromethane	107	84-113	03/28/03	
Toluene-d8	110	68-126	03/28/03	
4-Bromofluorobenzene	102	79-113	03/28/03	

Comments:

Analytical Results

Client: Project: BE&K Terranext WVBA/#0310-3154

Sample Matrix:

Water

Service Request: X2300235

Date Collected: 03/18/2003

Date Received: 03/19/2003

Volatile Organic Compounds

Sample Name: Lab Code:

AVB98-0100-03290 X2300235-004

Extraction Method: Analysis Method:

EPA 5030B 8260B

Units: ug/L Basis: NA

Level: Low

	n 14 O	MRL	Dilution Factor	Date Extracted	Date Analyzed	Arizona Qualifier
Analyte Name	Result Q	3.0	1	03/28/03	03/28/03	
Dichlorodifluoromethane	ND U	2.0	1	03/28/03	03/28/03	
Chloromethane	ND U	1.0	1	03/28/03	03/28/03	
Vinyl Chloride	ND U		1	03/28/03	03/28/03	
Bromomethane	ND U	1.0	1	03/28/03	03/28/03	
Chloroethane	ND U	1.0	1	03/28/03	03/28/03	
Trichlorofluoromethane	ND U	1.0			03/28/03	Ll
1,1,2-Trichlorotrifluoroethane	ND U	1.0	1	03/28/03	03/28/03	Ll
1,1-Dichloroethene	ND U	1.0	1	03/28/03	03/28/03	1.1
Acetone	ND U	10	1	03/28/03		,
	ND U	2.0	1	03/28/03	03/28/03	
Iodomethane	ND U	2.0	1	03/28/03	03/28/03	
Carbon Disulfide	ND U	1.0	1	03/28/03	03/28/03	
Methylene Chloride	ND U	1.0	1	03/28/03	03/28/03	
Methyl tert-Butyl Ether	ND U	0.50	1	03/28/03	03/28/03	
trans-1,2-Dichloroethene	ND U	0.50	1	03/28/03	03/28/03	
1,1-Dichloroethane		3.0	1	03/28/03	03/28/03	
Vinyl Acetate	ND U	2.0	1	03/28/03	03/28/03	
2,2-Dichloropropane	ND U	8.0	1	03/28/03	03/28/03	
2-Butanone (MEK)	ND U		1	03/28/03	03/28/03	
cis-1,2-Dichloroethene	ND U	0.50	1	03/28/03	03/28/03	
Bromochloromethane	ND U	0.50	1	03/28/03	03/28/03	
Chloroform	ND U	1.0			03/28/03	
1,1,1-Trichloroethane	ND U		1	03/28/03 03/28/03	03/28/03	
Carbon Tetrachloride	ND U		1	03/28/03	03/28/03	
1,1-Dichloropropene	ND U	0.50	1			
Benzene	ND U	0.50	1	03/28/03	03/28/03	
1,2-Dichloroethane	ND U		1	03/28/03	03/28/03	
Trichloroethene	ND U		1	03/28/03	03/28/03	
	ND U		1	03/28/03	03/28/03	
1,2-Dichloropropane	ND U		1	03/28/03	03/28/03	
Dibromomethane	ND U		1	03/28/03	03/28/03	3
Bromodichloromethane			1	03/28/03	03/28/03	3
cis-1,3-Dichloropropene	ND U		1	03/28/03	03/28/03	3
4-Methyl-2-pentanone (MIBK)	ND U		1	03/28/03	03/28/03	3
Toluene	ND U	0.30				

Comments:

Printed: 04/02/2003 13:59:34 $L: \verb|\STEALTH| CRYSTAL.RPT| \verb|\Formlm.rpt|$

Merged

000017

SuperSet Reference:

Analytical Results

Client: Project: BE&K Terranext WVBA/#0310-3154

Sample Matrix:

Water

Service Request: X2300235

Date Collected: 03/18/2003

Date Received: 03/19/2003

Volatile Organic Compounds

Sample Name:

AVB98-0100-03290

Lab Code:

X2300235-004

Extraction Method: Analysis Method:

EPA 5030B 8260B

Units: ug/L Basis: NA

Level: Low

Name	·			Dilution	Date	Date Analyzed Arizona Qualifier
trans-1,3-Dichloropropene ND U 1.0 1 03/28/03 03/	Analyte Name		MRL	Factor	Extracted	
1,1,2-Trichloroethane ND U 0.50 1 03/28/03 03/28/03 2-Hexanone ND U 5.0 1 03/28/03 03/28/03 1,3-Dichloropropane ND U 1.0 1 03/28/03 03/28/03 1,3-Dichloropropane ND U 0.50 1 03/28/03 03/28/03 Dibromoethane ND U 0.50 1 03/28/03 03/28/03 1,2-Dibromoethane ND U 0.50 1 03/28/03 03/28/03 Chlorobenzene ND U 0.50 1 03/28/03 03/28/03 Chlorobenzene ND U 0.50 1 03/28/03 03/28/03 1,1,12-Tetrachloroethane ND U 0.50 1 03/28/03 03/28/03 Ethylbenzene ND U 0.50 1 03/28/03 03/28/03 Ethylenzene ND U 0.50 1 03/28/03 03/28/03 Styrene ND U 0.50 1 03/28/03 03/28/03 Styrene ND U 0.50 1 03/28/03 03/28/03 Bromobenzene ND U 0.50 1 03/28/03	trans-1,3-Dichloropropene			_		
Tetrachloroethene	1,1,2-Trichloroethane					
2-Hexanone ND U 1.0 1 03/28/03 03/28/03 1,3-Dichloropropane ND U 1.0 1 03/28/03 03/28/03 1,2-Dibromochloromethane ND U 0.50 1 03/28/03 03/28/03 1,1,1,2-Tetrachlorochane ND U 0.50 1 03/28/03 03/28/03 1,1,1,1-Tetrachlorochane ND U 0.50 1 03/28/03 03/28/03 1,1,1,2-Tetrachlorochane ND U 0.50 1 03/28/03 03/28/03 1,1,1,1,1-Tetrachlorochane ND U 0.50 1 03/28/03 03/28/03 1,1,1,1,1-Tetrachlorochane ND U 0.50 1 03/28/03 03/28/03 1,1,1,1,1,1-Tetrachlorochane ND U 0.50 1 03/28/03 03/28/03 1,1,1,1,1,1-Tetrachlorochane ND U 0.50 1 03/28/03 03/28/03 1,1,1,1,1,1-Tetrachlorochane ND U 0.50 1 03/28/03 03/28/03 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,	Tetrachloroethene					
1,3-Dichloropropane	2-Hexanone					
Dibromochloromethane						
1,2-Dibromoethane	Dibromochloromethane					
Chlorobenzene	1 2-Dibromoethane					
1,1,2-Tetrachloroethane	,	ND U				
Ethylbenzene		ND U	0.50	l l		
ND U 1.0 1 03/28/03 03/28/03 03/28/03 05/		ND U	0.50			
ND U 0.50 1 03/28/03 03/28/03			1.0	1		
Styrene	7		0.50	1 _		
ND U 0.50 1 03/28/03 03/28/03 03/28/03 1,2,3-Trichloropropane ND U 0.50 1 03/28/03 03/28/03 03/28/03 1,2,3-Trichloropropane ND U 0.50 1 03/28/03 03/2			0.50	1		
Sophopylochic ND U 0.50				1		
1,2,3-Trichloropropane			0.50	1	03/28/03	03/28/03
1,2,4-Trienthophopane			1.0	1	03/28/03	
2-Chlorotoluene ND U 0.50 1 03/28/03 03/28/03 4-Chlorotoluene ND U 0.50 1 03/28/03 03/28/03 1,3,5-Trimethylbenzene ND U 0.50 1 03/28/03 03/28/03 tert-Butylbenzene ND U 0.50 1 03/28/03 03/28/03 1,2,4-Trimethylbenzene ND U 0.50 1 03/28/03 03/28/03 sec-Butylbenzene ND U 0.50 1 03/28/03 03/28/03 1,3-Dichlorobenzene ND U 0.50 1 03/28/03 03/28/03 4-Isopropyltoluene ND U 0.50 1 03/28/03 03/28/03 Bromoform ND U 0.50 1 03/28/03 03/28/03 1,1,2,2-Tetrachloroethane ND U 1.0 1 03/28/03 03/28/03 1,4-Dichlorobenzene ND U 0.50 1 03/28/03 03/28/03 1,2-Dichlorobenzene ND U 0.50 1 03/28/03 03/28/03				1	03/28/03	
4-Chlorotoluene ND U 0.50 1 03/28/03 03/28/03 1,3,5-Trimethylbenzene ND U 0.50 1 03/28/03 03/28/03 tert-Butylbenzene ND U 0.50 1 03/28/03 03/28/03 1,2,4-Trimethylbenzene ND U 0.50 1 03/28/03 03/28/03 sec-Butylbenzene ND U 0.50 1 03/28/03 03/28/03 1,3-Dichlorobenzene ND U 0.50 1 03/28/03 03/28/03 4-Isopropyltoluene ND U 0.50 1 03/28/03 03/28/03 Bromoform ND U 0.50 1 03/28/03 03/28/03 1,1,2,2-Tetrachloroethane ND U 0.50 1 03/28/03 03/28/03 1,4-Dichlorobenzene ND U 0.50 1 03/28/03 03/28/03 1,2-Dichlorobenzene ND U 0.50 1 03/28/03 03/28/03 1,2-Dibromo-3-chloropropane ND U 5.0 1 03/28/03 03/28/03				1	03/28/03	03/28/03
1,3,5-Trimethylbenzene tert-Butylbenzene ND U 0.50 1 03/28/03 03/28/03 03/28/03 1,2,4-Trimethylbenzene ND U 0.50 1 03/28/03			0.50	1	03/28/03	03/28/03
tert-Butylbenzene ND U 0.50 1 03/28/03 03/28/03 1,2,4-Trimethylbenzene ND U 0.50 1 03/28/03 03/28/03 sec-Butylbenzene ND U 0.50 1 03/28/03 03/28/03 1,3-Dichlorobenzene ND U 0.50 1 03/28/03 03/28/03 4-Isopropyltoluene ND U 0.50 1 03/28/03 03/28/03 Bromoform ND U 0.50 1 03/28/03 03/28/03 1,1,2,2-Tetrachloroethane ND U 1.0 1 03/28/03 03/28/03 1,4-Dichlorobenzene ND U 0.50 1 03/28/03 03/28/03 1,2-Dichlorobenzene ND U 0.50 1 03/28/03 03/28/03 1,2-Dichlorobenzene ND U 0.50 1 03/28/03 03/28/03 1,2-Dichlorobenzene ND U 0.50 1 03/28/03 03/28/03 1,2-Dibromo-3-chloropropane ND U 0.50 1 03/28/03 03/28/03 1,2-Trichlorobenzene ND U 0.50 1 03/28/03 03/28/03 1,2-Trichlorobenzene ND U 0.50 1 03/28/03 03/28/03 1,2,4-Trichlorobenzene ND U 0.50 1 03/28/03 03/28/03					03/28/03	03/28/03
1,2,4-Trimethylbenzene				1	03/28/03	03/28/03
1,2,4-Trimethylbenzene ND U 0.50 1 03/28/03 03/28/03 sec-Butylbenzene ND U 0.50 1 03/28/03 03/28/03 1,3-Dichlorobenzene ND U 0.50 1 03/28/03 03/28/03 4-Isopropyltoluene ND U 0.50 1 03/28/03 03/28/03 Bromoform ND U 0.50 1 03/28/03 03/28/03 1,1,2,2-Tetrachloroethane ND U 0.50 1 03/28/03 03/28/03 1,4-Dichlorobenzene ND U 0.50 1 03/28/03 03/28/03 1,2-Dichlorobenzene ND U 0.50 1 03/28/03 03/28/03 n-Butylbenzene ND U 0.50 1 03/28/03 03/28/03 1,2-Dibromo-3-chloropropane ND U 5.0 1 03/28/03 03/28/03 1,2,4-Trichlorobenzene ND U 0.50 1 03/28/03 03/28/03 1,2,4-Trichlorobenzene ND U 0.50 1 03/28/03 03/28/03				1	03/28/03	03/28/03
Sec-Butylbenzene						03/28/03
1,3-Dichlorobenzene ND U 0.50 1 03/28/03 03/28/03 4-Isopropyltoluene ND U 0.50 1 03/28/03 03/28/03 Bromoform ND U 0.50 1 03/28/03 03/28/03 1,1,2,2-Tetrachloroethane ND U 0.50 1 03/28/03 03/28/03 1,4-Dichlorobenzene ND U 0.50 1 03/28/03 03/28/03 1,2-Dichlorobenzene ND U 0.50 1 03/28/03 03/28/03 1,2-Dibromo-3-chloropropane ND U 5.0 1 03/28/03 03/28/03 1,2,4-Trichlorobenzene ND U 0.50 1 03/28/03 03/28/03					03/28/03	03/28/03
4-Isopropyltoluene ND U 0.30 1 03/28/03 03/28/03 Bromoform ND U 0.50 1 03/28/03 03/28/03 1,1,2,2-Tetrachloroethane ND U 1.0 1 03/28/03 03/28/03 1,4-Dichlorobenzene ND U 0.50 1 03/28/03 03/28/03 1,2-Dichlorobenzene ND U 0.50 1 03/28/03 03/28/03 n-Butylbenzene ND U 5.0 1 03/28/03 03/28/03 1,2-Dibromo-3-chloropropane ND U 5.0 1 03/28/03 03/28/03 1,2,4-Trichlorobenzene ND U 0.50 1 03/28/03 03/28/03					03/28/03	03/28/03
Bromoform ND U 0.30 1,1,2,2-Tetrachloroethane ND U 1.0 1 03/28/03 03/28/03 1,4-Dichlorobenzene ND U 0.50 1 03/28/03 03/28/03 1,2-Dichlorobenzene ND U 0.50 1 03/28/03 03/28/03 n-Butylbenzene ND U 0.50 1 03/28/03 03/28/03 1,2-Dibromo-3-chloropropane ND U 5.0 1 03/28/03 03/28/03 1,2,4-Trichlorobenzene ND U 0.50 1 03/28/03 03/28/03						
1,1,2,2-Tetrachloroethane ND U 1.0 1,4-Dichlorobenzene ND U 0.50 1 03/28/03 03/28/03 1,2-Dichlorobenzene ND U 0.50 1 03/28/03 03/28/03 n-Butylbenzene ND U 0.50 1 03/28/03 03/28/03 1,2-Dibromo-3-chloropropane ND U 5.0 1 03/28/03 03/28/03 1,2,4-Trichlorobenzene ND U 0.50 1 03/28/03 03/28/03						
1,4-Dichlorobenzene ND U 0.30 1 03/28/03 03/28/03 1,2-Dichlorobenzene ND U 0.50 1 03/28/03 03/28/03 n-Butylbenzene ND U 0.50 1 03/28/03 03/28/03 1,2-Dibromo-3-chloropropane ND U 5.0 1 03/28/03 03/28/03 1,2,4-Trichlorobenzene ND U 0.50 1 03/28/03 03/28/03	1,1,2,2-Tetrachloroethane					
1,2-Dichlorobenzene ND U 0.30 1 03/28/03 03/28/03 n-Butylbenzene ND U 0.50 1 03/28/03 03/28/03 1,2-Dibromo-3-chloropropane ND U 5.0 1 03/28/03 03/28/03 1,2,4-Trichlorobenzene ND U 0.50 1 03/28/03 03/28/03	1,4-Dichlorobenzene					
n-Butylbenzene ND U 0.50 1 03/28/03 03/28/03 1,2-Dibromo-3-chloropropane ND U 5.0 1 03/28/03 03/28/03 1,2,4-Trichlorobenzene ND U 0.50 1 03/28/03 03/28/03	1,2-Dichlorobenzene					
1,2-Dibromo-3-chloropropane ND U 0.50 1 03/28/03 03/28/03 1,2,4-Trichlorobenzene ND U 0.50 1 03/28/03 03/28/03	n-Butylbenzene					
1,2,4-Trichlorobenzene ND U 0.50 1 03/28/03 03/28/03	1,2-Dibromo-3-chloropropane					
Hexachlorobutadiene ND U 0.50 1 03/28/03 03/28/03	1,2,4-Trichlorobenzene					
	Hexachlorobutadiene	ND U	0.50	1	03/26/03	03/20/03

Comments:

000018

Analytical Results

Client: Project: BE&K Terranext WVBA/#0310-3154

Sample Matrix:

Water

Service Request: X2300235 **Date Collected:** 03/18/2003

Date Received: 03/19/2003

Volatile Organic Compounds

Sample Name:

AVB98-0100-03290

Lab Code:

X2300235-004

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

			Dilution	Date	Date	
A Esta Nama	Result O	MRL	Factor	Extracted	Analyzed	Arizona Qualifier
Naphthalene 1,2,3-Trichlorobenzene	ND U ND U	3.0 0.50	1 1	03/28/03 03/28/03	03/28/03 03/28/03	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Arizona Qualifier
Dibromofluoromethane	107	84-113	03/28/03	
Toluene-d8	110	68-126	03/28/03	
4-Bromofluorobenzene	103	79-113	03/28/03	

Comments:

Analytical Results

Client: Project: BE&K Terranext WVBA/#0310-3154

Sample Matrix:

Water

Service Request: X2300235

Date Collected: 03/18/2003 **Date Received:** 03/19/2003

Volatile Organic Compounds

Sample Name:

AVB98-0101-03290

Lab Code:

X2300235-005

Extraction Method: Analysis Method:

EPA 5030B 8260B

Units: ug/L Basis: NA

Level: Low

			Dilution	Date	Date Analyzed	Arizona Qualifier
Analyte Name	Result Q	MRL	Factor	Extracted	03/28/03	ATIZOIII Quantos
Dichlorodifluoromethane	ND U	3.0	1	03/28/03	03/28/03	
Chloromethane	ND U	2.0	1	03/28/03	03/28/03	
Vinyl Chloride	ND U	1.0	1	03/28/03		
Bromomethane	ND U	1.0	1	03/28/03	03/28/03	
Chloroethane	ND U	1.0	1	03/28/03	03/28/03	
Trichlorofluoromethane	ND U	1.0	1	03/28/03	03/28/03	
1,1,2-Trichlorotrifluoroethane	ND U	1.0	1	03/28/03		L1
	ND U	1.0	1	03/28/03		L1
1,1-Dichloroethene	ND U	10	1	03/28/03	03/28/03	
Acetone	ND U	2.0	1	03/28/03	03/28/03	
Iodomethane	ND U	2.0	1	03/28/03	03/28/03	
Carbon Disulfide	ND U	1.0	1	03/28/03	03/28/03	
Methylene Chloride		1.0	1	03/28/03	03/28/03	
Methyl tert-Butyl Ether	ND U	0.50	1	03/28/03	03/28/03	
trans-1,2-Dichloroethene	ND U	0.50	1	03/28/03	03/28/03	
1,1-Dichloroethane	ND U			03/28/03	03/28/03	
Vinyl Acetate	ND U	3.0	1	03/28/03	03/28/03	
2,2-Dichloropropane	ND U	2.0	1 1	03/28/03	03/28/03	
2-Butanone (MEK)	ND U	8.0			03/28/03	
cis-1,2-Dichloroethene	ND U	0.50	1	03/28/03	03/28/03	
Bromochloromethane	ND U	0.50	1	03/28/03	03/28/03	
Chloroform	ND U	1.0	1	03/28/03		
1.1.1-Trichloroethane	ND U	0.50	1	03/28/03	03/28/03	
Carbon Tetrachloride	ND U	0.50	1	03/28/03	03/28/03	
1.1-Dichloropropene	ND U	0.50	1	03/28/03	03/28/03	L1
	ND U	0.50	1	03/28/03	03/28/03	
Benzene	ND U	0.50	1	03/28/03	03/28/03	
1,2-Dichloroethane	ND U	0.50	1	03/28/03	03/28/03	
Trichloroethene		0.50	1	03/28/03	03/28/03	
1,2-Dichloropropane	ND U	0.50	1	03/28/03	03/28/03	
Dibromomethane	ND U	0.50	1	03/28/03	03/28/03	
Bromodichloromethane	ND U		1	03/28/03	03/28/03	
cis-1,3-Dichloropropene	ND U	0.50	1	03/28/03	03/28/03	
4-Methyl-2-pentanone (MIBK)	ND U	8.0	1	03/28/03	03/28/03	
Toluene	ND U	0.50	1	03/20/03		

Comments:

Printed: 04/02/2003 13:59:46

Merged

RR3144

Analytical Results

Client: Project: BE&K Terranext WVBA/#0310-3154

Sample Matrix:

Water

Service Request: X2300235

Date Collected: 03/18/2003 **Date Received:** 03/19/2003

Volatile Organic Compounds

Sample Name:

AVB98-0101-03290 X2300235-005

Lab Code: **Extraction Method:**

Analysis Method:

EPA 5030B 8260B

Units: ug/L Basis: NA

Level: Low

Name				Dilution	Date	Date	
No.	Analyta Name	Result Q	MRL	Factor	Extracted		Arizona Qualifier
1,1,2-Trichloroethane			1.0	1			
Tetrachloroethene			1.0	1			
2-Hexanone	, ,		0.50	1	03/28/03		
1,3-Dichloropropane		ND U	5.0	1			
Dibromochloromethane			1.0	1			
12-Dibromoethane			0.50	1	03/28/03	03/28/03	
1,2- Dithintenance			0.50	1	03/28/03		
Chrotocoletzene	,			1			
Thylibrate ND U 0.50 1 03/28/03			0.50	1	03/28/03	03/28/03	
ND U 1.0 1 03/28/03 03/			0.50	1	03/28/03	03/28/03	
ND U 0.50 1 03/28/03 03/28/03	3			1	03/28/03		
Styrene	· - ·			1	03/28/03	03/28/03	
Styfene			0.50	1	03/28/03	03/28/03	
Soprophyletizetie ND U 0.50 1 03/28/03 03/28/03 03/28/03 1,2,3-Trichloropropane ND U 1.0 1 03/28/03 03/28/03 03/28/03 1,2,3-Trichloropropane ND U 0.50 1 03/28/03 03/28/0				1	03/28/03	03/28/03	
1,2,3-Trichloropropane				1	03/28/03	03/28/03	
1,2,3-1 richloropropane ND U 0.50 1 03/28/03 03/28/03 n-Propylbenzene ND U 0.50 1 03/28/03 03/28/03 2-Chlorotoluene ND U 0.50 1 03/28/03 03/28/03 4-Chlorotoluene ND U 0.50 1 03/28/03 03/28/03 1,3,5-Trimethylbenzene ND U 0.50 1 03/28/03 03/28/03 tert-Butylbenzene ND U 0.50 1 03/28/03 03/28/03 1,2,4-Trimethylbenzene ND U 0.50 1 03/28/03 03/28/03 1,3-Dichlorobenzene ND U 0.50 1 03/28/03 03/28/03 1,3-Dichlorobenzene ND U 0.50 1 03/28/03 03/28/03 4-Isopropyltoluene ND U 0.50 1 03/28/03 03/28/03 Bromoform ND U 0.50 1 03/28/03 03/28/03 1,4-Dichlorobenzene ND U 0.50 1 03/28/03 03/28/03 <tr< td=""><td></td><td></td><td></td><td>1</td><td>03/28/03</td><td>03/28/03</td><td></td></tr<>				1	03/28/03	03/28/03	
2-Chlorotoluene ND U 0.50 1 03/28/03 03/28/03 4-Chlorotoluene ND U 0.50 1 03/28/03 03/28/03 1,3,5-Trimethylbenzene ND U 0.50 1 03/28/03 03/28/03 tert-Butylbenzene ND U 0.50 1 03/28/03 03/28/03 1,2,4-Trimethylbenzene ND U 0.50 1 03/28/03 03/28/03 sec-Butylbenzene ND U 0.50 1 03/28/03 03/28/03 1,3-Dichlorobenzene ND U 0.50 1 03/28/03 03/28/03 4-Isopropyltoluene ND U 0.50 1 03/28/03 03/28/03 Bromoform ND U 0.50 1 03/28/03 03/28/03 1,1,2,2-Tetrachloroethane ND U 1.0 1 03/28/03 03/28/03 1,4-Dichlorobenzene ND U 0.50 1 03/28/03 03/28/03 1,4-Dichlorobenzene ND U 0.50 1 03/28/03 03/28/03 1,2-Dichlorobenzene ND U 0.50 1 03/28/03 03/28/03 1,2-Dibromo-3-chloropropane ND U 5.0 1 03/28/03 03/28/03 1,2-Trichlorobenzene ND U 0.50 1 03/28/03 03/28/03 1,2-Dichlorobenzene ND U 0.50 1 03/28/03 03/28/03 1,2-Dichlorobenzene ND U 0.50 1 03/28/03 03/28/03 1,2-Dibromo-3-chloropropane ND U 0.50 1 03/28/03 03/28/03 1,2-Trichlorobenzene ND U 0.50 1 03/28/03 03/28/03					03/28/03	03/28/03	
4-Chlorotoluene ND U 0.50 1 03/28/03 03/28/03 1,3,5-Trimethylbenzene ND U 0.50 1 03/28/03 03/28/03 1				1	03/28/03	03/28/03	
4-Chlorotoluene ND U 0.50 1 03/28/03 03/28/03 1,3,5-Trimethylbenzene ND U 0.50 1 03/28/03 03/28/03 1,2,4-Trimethylbenzene ND U 0.50 1 03/28/03 03/28/03 sec-Butylbenzene ND U 0.50 1 03/28/03 03/28/03 1,3-Dichlorobenzene ND U 0.50 1 03/28/03 03/28/03 4-Isopropyltoluene ND U 0.50 1 03/28/03 03/28/03 Bromoform ND U 0.50 1 03/28/03 03/28/03 1,1,2,2-Tetrachloroethane ND U 1.0 1 03/28/03 03/28/03 1,4-Dichlorobenzene ND U 0.50 1 03/28/03 03/28/03 1,2-Dichlorobenzene ND U 0.50 1 03/28/03 03/28/03 1,2-Dibromo-3-chloropropane ND U 0.50 1 03/28/03 03/28/03 1,2,4-Trichlorobenzene ND U 0.50 1 03/28/03 03/28/03 1,2,4-Trichlorobenzene ND U 0.50 1 03/28/03				1	03/28/03	03/28/03	
tert-Butylbenzene ND U 0.50 1 03/28/03 03/28/03 1,2,4-Trimethylbenzene ND U 0.50 1 03/28/03 03/28/03 sec-Butylbenzene ND U 0.50 1 03/28/03 03/28/03 1,3-Dichlorobenzene ND U 0.50 1 03/28/03 03/28/03 4-Isopropyltoluene ND U 0.50 1 03/28/03 03/28/03 Bromoform ND U 0.50 1 03/28/03 03/28/03 1,1,2,2-Tetrachloroethane ND U 1.0 1 03/28/03 03/28/03 1,4-Dichlorobenzene ND U 0.50 1 03/28/03 03/28/03 1,2-Dichlorobenzene ND U 0.50 1 03/28/03 03/28/03 1,2-Dibromo-3-chloropropane ND U 0.50 1 03/28/03 03/28/03 1,2-Trichlorobenzene ND U 0.50 1 03/28/03 03/28/03 1,2,4-Trichlorobenzene ND U 0.50 1 03/28/03 03/28/03					03/28/03	03/28/03	
1,2,4-Trimethylbenzene	· · · · · · · · · · · · · · · · · · ·				03/28/03	03/28/03	
1,2,4-Trimethylbenzene ND U 0.50 1 03/28/03 03/28/03 sec-Butylbenzene ND U 0.50 1 03/28/03 03/28/03 1,3-Dichlorobenzene ND U 0.50 1 03/28/03 03/28/03 4-Isopropyltoluene ND U 0.50 1 03/28/03 03/28/03 Bromoform ND U 0.50 1 03/28/03 03/28/03 1,1,2,2-Tetrachloroethane ND U 0.50 1 03/28/03 03/28/03 1,4-Dichlorobenzene ND U 0.50 1 03/28/03 03/28/03 1,2-Dichlorobenzene ND U 0.50 1 03/28/03 03/28/03 1,2-Dibromo-3-chloropropane ND U 5.0 1 03/28/03 03/28/03 1,2,4-Trichlorobenzene ND U 0.50 1 03/28/03 03/28/03 1,2,4-Trichlorobenzene ND U 0.50 1 03/28/03 03/28/03				1	03/28/03	03/28/03	
sec-Butylbenzene ND U 0.50 1 03/28/03 03/28/03 1,3-Dichlorobenzene ND U 0.50 1 03/28/03 03/28/03 4-Isopropyltoluene ND U 0.50 1 03/28/03 03/28/03 Bromoform ND U 0.50 1 03/28/03 03/28/03 1,1,2,2-Tetrachloroethane ND U 0.50 1 03/28/03 03/28/03 1,4-Dichlorobenzene ND U 0.50 1 03/28/03 03/28/03 1,2-Dichlorobenzene ND U 0.50 1 03/28/03 03/28/03 1,2-Dibromo-3-chloropropane ND U 5.0 1 03/28/03 03/28/03 1,2,4-Trichlorobenzene ND U 0.50 1 03/28/03 03/28/03		-		_		03/28/03	
1,3-Diction/obetizene ND U 0.50 1 03/28/03 03/28/03 4-Isopropyltoluene ND U 0.50 1 03/28/03 03/28/03 Bromoform ND U 0.50 1 03/28/03 03/28/03 1,1,2,2-Tetrachloroethane ND U 0.50 1 03/28/03 03/28/03 1,4-Dichlorobenzene ND U 0.50 1 03/28/03 03/28/03 1,2-Dichlorobenzene ND U 0.50 1 03/28/03 03/28/03 1,2-Dibromo-3-chloropropane ND U 5.0 1 03/28/03 03/28/03 1,2,4-Trichlorobenzene ND U 0.50 1 03/28/03 03/28/03				_		03/28/03	
4-Isopropyltoluene ND U 0.50 1 03/28/03 03/28/03 Bromoform ND U 0.50 1 03/28/03 03/28/03 1,1,2,2-Tetrachloroethane ND U 1.0 1 03/28/03 03/28/03 1,4-Dichlorobenzene ND U 0.50 1 03/28/03 03/28/03 1,2-Dichlorobenzene ND U 0.50 1 03/28/03 03/28/03 1,2-Dibromo-3-chloropropane ND U 5.0 1 03/28/03 03/28/03 1,2,4-Trichlorobenzene ND U 0.50 1 03/28/03 03/28/03	·			1	03/28/03	03/28/03	
Bromoform ND U 1.0 1 03/28/03 03/28/03 1,1,2,2-Tetrachloroethane ND U 1.0 1 03/28/03 03/28/03 1,4-Dichlorobenzene ND U 0.50 1 03/28/03 03/28/03 1,2-Dichlorobenzene ND U 0.50 1 03/28/03 03/28/03 n-Butylbenzene ND U 0.50 1 03/28/03 03/28/03 1,2-Dibromo-3-chloropropane ND U 0.50 1 03/28/03 03/28/03 1,2,4-Trichlorobenzene ND U 0.50 1 03/28/03 03/28/03							
1,1,2,2-Tetrachloroethane ND U 0.50 1 03/28/03 03/28/03 1,4-Dichlorobenzene ND U 0.50 1 03/28/03 03/28/03 1,2-Dichlorobenzene ND U 0.50 1 03/28/03 03/28/03 n-Butylbenzene ND U 5.0 1 03/28/03 03/28/03 1,2-Dibromo-3-chloropropane ND U 5.0 1 03/28/03 03/28/03 1,2,4-Trichlorobenzene ND U 0.50 1 03/28/03 03/28/03				_			
1,4-Dichlorobenzene ND U 0.50 1 03/28/03 03/28/03 1,2-Dichlorobenzene ND U 0.50 1 03/28/03 03/28/03 n-Butylbenzene ND U 0.50 1 03/28/03 03/28/03 1,2-Dibromo-3-chloropropane ND U 5.0 1 03/28/03 03/28/03 1,2,4-Trichlorobenzene ND U 0.50 1 03/28/03 03/28/03				1		03/28/03	
1,2-Dichlorobenzene ND U 0.50 1 03/28/03 03/28/03 n-Butylbenzene ND U 0.50 1 03/28/03 03/28/03 1,2-Dibromo-3-chloropropane ND U 5.0 1 03/28/03 03/28/03 1,2,4-Trichlorobenzene ND U 0.50 1 03/28/03 03/28/03							
n-Butylbenzene ND U 0.50 1 03/28/03 03/28/03 1,2-Dibromo-3-chloropropane ND U 5.0 1 03/28/03 03/28/03 1,2,4-Trichlorobenzene ND U 0.50 1 03/28/03 03/28/03 03/28/03							
1,2-Dibromo-3-chloropropane ND U 0.50 1 03/28/03 03/28/03 1,2,4-Trichlorobenzene ND U 0.50 1 03/28/03 03/28/03							
1,2,4-Trichlorobenzene ND U 0.30							
Hexachlorobutadiene ND U 0.50 1 05/26/05 05/26/05							
	Hexachlorobutadiene	ND U	0.50	1	03120103	03/20/03	

Analytical Results

Client:

BE&K Terranext WVBA/#0310-3154

Project: Sample Matrix:

Water

Service Request: X2300235

Date Collected: 03/18/2003 **Date Received:** 03/19/2003

Volatile Organic Compounds

Sample Name:

AVB98-0101-03290

Lab Code:

X2300235-005

Extraction Method: Analysis Method:

EPA 5030B

8260B

Units: ug/L

Basis: NA

Level: Low

			Dilution	Date	Date	
	Result Q	MRL	Factor	Extracted	Analyzed A	rizona Qualifier
Naphthalene 1,2,3-Trichlorobenzene	ND U ND U	3.0 0.50	1 1	03/28/03 03/28/03	03/28/03 03/28/03	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Arizona Qualifier
Dibromofluoromethane	106	84-113	03/28/03	
Toluene-d8	111	68-126	03/28/03	
4-Bromofluorobenzene	105	79-113	03/28/03	

Comments:

Printed: 04/02/2003 13:59:46 L:\STEALTH\CRYSTAL.RPT\Formlm.rpt

Analytical Results

Client: Project: BE&K Terranext WVBA/#0310-3154

Sample Matrix:

Water

Service Request: X2300235

Date Collected: 03/18/2003 **Date Received:** 03/19/2003

Volatile Organic Compounds

Sample Name: Lab Code:

AVB81-0100-05300

Extraction Method: EPA 5030B

X2300235-006

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

				Dilution	Date	Date	
Analyte Name	Result	Q	MRL	Factor	Extracted	Analyzed	Arizona Qualifier
Dichlorodifluoromethane	ND	U	3.0	1	03/28/03	03/28/03	
Chloromethane	ND	U	2.0	1	03/28/03	03/28/03	
Vinyl Chloride	ND	U	1.0	.1	03/28/03	03/28/03	
Bromomethane	ND	U	1.0	1	03/28/03	03/28/03	
Chloroethane	ND	U	1.0	1	03/28/03	03/28/03	
Trichlorofluoromethane	ND	U	1.0	1	03/28/03	03/28/03	
1,1,2-Trichlorotrifluoroethane	ND	U	1.0	1	03/28/03	03/28/03	L1
1,1-Dichloroethene	ND	U	1.0	1	03/28/03		Ll
Acetone	ND	U	10	1	03/28/03	03/28/03	
Iodomethane	ND	U	2.0	1	03/28/03	03/28/03	
Carbon Disulfide	ND	U	2.0	1	03/28/03	03/28/03	
Methylene Chloride	ND	U	1.0	1	03/28/03	03/28/03	
Methyl tert-Butyl Ether	ND	U	1.0	1	03/28/03	03/28/03	
trans-1,2-Dichloroethene	ND	U	0.50	1	03/28/03	03/28/03	
1,1-Dichloroethane	ND	U	0.50	1	03/28/03	03/28/03	
Vinyl Acetate	ND	U	3.0	1	03/28/03	03/28/03	
2,2-Dichloropropane	ND	U	2.0	1	03/28/03	03/28/03	
2-Butanone (MEK)	ND	U	8.0	1	03/28/03	03/28/03	
cis-1,2-Dichloroethene	ND	U	0.50	1	03/28/03	03/28/03	
Bromochloromethane	ND	U	0.50	1	03/28/03	03/28/03	
Chloroform	ND	U	1.0	1	03/28/03	03/28/03	
1,1,1-Trichloroethane	ND	U	0.50	1	03/28/03	03/28/03	
Carbon Tetrachloride	ND	U	0.50	1	03/28/03	03/28/03	
1,1-Dichloropropene	ND	U	0.50	1	03/28/03	03/28/03	Ll
Benzene	ND	U	0.50	1	03/28/03	03/28/03	
1,2-Dichloroethane	ND	U	0.50	1	03/28/03	03/28/03	
Trichloroethene	ND	U	0.50	1	03/28/03	03/28/03	
1,2-Dichloropropane	ND	U	0.50	1	03/28/03	03/28/03	
Dibromomethane	ND	U	0.50	1	03/28/03	03/28/03	
Bromodichloromethane	ND	U	0.50	1	03/28/03	03/28/03	
cis-1,3-Dichloropropene	ND	U	0.50	1	03/28/03	03/28/03	
4-Methyl-2-pentanone (MIBK)	ND	U	8.0	1	03/28/03	03/28/03	
Toluene	ND	U	0.50	1	03/28/03	03/28/03	

Comments:

000023

Analytical Results

Client: Project: BE&K Terranext WVBA/#0310-3154

Sample Matrix:

Water

Service Request: X2300235 **Date Collected:** 03/18/2003

Date Received: 03/19/2003

Volatile Organic Compounds

Sample Name:

AVB81-0100-05300

Lab Code:

X2300235-006

Extraction Method: Analysis Method:

8260B

EPA 5030B

Units: ug/L Basis: NA

Level: Low

				Dilution	Date	Date	
Analyte Name	Result	Q	MRL	Factor	Extracted		Arizona Qualifier
trans-1,3-Dichloropropene	ND		1.0	1	03/28/03	03/28/03	
1.1.2-Trichloroethane	ND		1.0	1	03/28/03	03/28/03	
Tetrachloroethene	ND		0.50	1	03/28/03	03/28/03	
2-Hexanone	ND	IJ	5.0	1	03/28/03	03/28/03	
1,3-Dichloropropane	ND		1.0	1	03/28/03	03/28/03	
Dibromochloromethane	ND		0.50	1	03/28/03	03/28/03	
1,2-Dibromoethane	ND	U	0.50	1	03/28/03	03/28/03	
Chlorobenzene	ND		0.50	1	03/28/03	03/28/03	
1,1,1,2-Tetrachloroethane	ND		0.50	1	03/28/03	03/28/03	
Ethylbenzene	ND	U	0.50	1	03/28/03	03/28/03	
m,p-Xylenes	ND		1.0	1	03/28/03	03/28/03	
o-Xylene	ND		0.50	1	03/28/03	03/28/03	
Styrene	ND	U	0.50	1	03/28/03	03/28/03	
Isopropylbenzene	ND		0.50	1	03/28/03	03/28/03	
Bromobenzene	ND		0.50	1	03/28/03	03/28/03	
1,2,3-Trichloropropane	ND		1.0	1	03/28/03	03/28/03	
n-Propylbenzene	ND		0.50	1	03/28/03	03/28/03	
2-Chlorotoluene	ND		0.50	1	03/28/03	03/28/03	
4-Chlorotoluene	ND	U	0.50	1	03/28/03	03/28/03	
1,3,5-Trimethylbenzene	ND		0.50	1	03/28/03	03/28/03	
tert-Butylbenzene	ND		0.50	1	03/28/03	03/28/03	
1,2,4-Trimethylbenzene	ND	U	0.50	1	03/28/03	03/28/03	
sec-Butylbenzene	ND		0.50	1	03/28/03	03/28/03	
1,3-Dichlorobenzene	ND		0.50	1	03/28/03	03/28/03	
4-Isopropyltoluene	ND		0.50	1	03/28/03	03/28/03	
Bromoform	ND		0.50	1	03/28/03	03/28/03	
1,1,2,2-Tetrachloroethane	ND		1.0	1	03/28/03	03/28/03	
1,4-Dichlorobenzene		U	0.50	1	03/28/03	03/28/03	
1,2-Dichlorobenzene		Ū	0.50	1	03/28/03	03/28/03	
n-Butylbenzene		Ū	0.50	1	03/28/03	03/28/03	
1,2-Dibromo-3-chloropropane		U	5.0	1	03/28/03	03/28/03	
1,2-Diotomo-5-emoropropane		TT	0.50	1	03/28/03	03/28/03	

Commen	te.
Commen	ts.

1,2,4-Trichlorobenzene

Hexachlorobutadiene

1

1

0.50

0.50

ND U

ND U

Merged

03/28/03

03/28/03

03/28/03

03/28/03

Analytical Results

Client:

BE&K Terranext

Project: **Sample Matrix:** WVBA/#0310-3154 Water

Service Request: X2300235 **Date Collected:** 03/18/2003

Date Received: 03/19/2003

Volatile Organic Compounds

Sample Name:

AVB81-0100-05300

Lab Code:

X2300235-006

Extraction Method: Analysis Method:

EPA 5030B

Units: ug/L Basis: NA

Level: Low

8260B

N	Result O	MRL	Dilution Factor_	Date Extracted	Date Analyzed	Arizona Qualifier
Naphthalene 1,2,3-Trichlorobenzene	ND U ND U	3.0 0.50	1 1	03/28/03 03/28/03	03/28/03 03/28/03	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Arizona Qualifier
Dibromofluoromethane	107	84-113	03/28/03	
Toluene-d8	111	68-126	03/28/03	
4-Bromofluorobenzene	106	79-113	03/28/03	

Comments:

Printed: 04/02/2003 14:00:00 $L: \verb|\STEALTH| CRYSTAL.RPT| \verb|\Formlm.rpt|$ Merged 000025

3 of 3 Page

Analytical Results

Client: Project:

BE&K Terranext WVBA/#0310-3154

Sample Matrix:

Water

Service Request: X2300235

Date Collected: NA
Date Received: NA

Volatile Organic Compounds

Sample Name: Lab Code: Method Blank XWG0300416-3

Extraction Method: Analysis Method:

EPA 5030B 8260B Units: ug/L Basis: NA

Level: Low

•			Dilution	Date	Date	Arizona Qualifier
Analyte Name	Result Q	MRL	Factor	03/28/03	03/28/03	Arizona Quantos
Dichlorodifluoromethane	ND U	3.0	1	03/28/03	03/28/03	
Chloromethane	ND U	2.0	1	03/28/03	03/28/03	
Vinyl Chloride	ND U	1.0	1			
Bromomethane	ND U	1.0	1	03/28/03	03/28/03 03/28/03	
Chloroethane	ND U	1.0	1	03/28/03	03/28/03	
Trichlorofluoromethane	ND U	1.0	1	03/28/03		T 1
1,1,2-Trichlorotrifluoroethane	ND U	1.0	1	03/28/03	03/28/03	L1
1,1-Dichloroethene	ND U	1.0	1	03/28/03	03/28/03	L1
Acetone	ND U	10	1	03/28/03	03/28/03	
	ND U	2.0	1	03/28/03	03/28/03	
Iodomethane	ND U	2.0	1	03/28/03	03/28/03	
Carbon Disulfide	ND U	1.0	1	03/28/03	03/28/03	
Methylene Chloride	ND U	1.0	1	03/28/03	03/28/03	
Methyl tert-Butyl Ether	ND U	0.50	1	03/28/03	03/28/03	
trans-1,2-Dichloroethene	ND U	0.50	1	03/28/03	03/28/03	
1,1-Dichloroethane		3.0	1	03/28/03	03/28/03	
Vinyl Acetate	ND U	2.0	1	03/28/03	03/28/03	
2,2-Dichloropropane	ND U	8.0	1	03/28/03	03/28/03	
2-Butanone (MEK)	ND U		1	03/28/03	03/28/03	
cis-1,2-Dichloroethene	ND U	0.50	1	03/28/03	03/28/03	
Bromochloromethane	ND U	0.50	1	03/28/03	03/28/03	
Chloroform	ND U	1.0			03/28/03	
1,1,1-Trichloroethane	ND U	0.50	1	03/28/03	03/28/03	
Carbon Tetrachloride	ND U	0.50	1	03/28/03	03/28/03	L1
1,1-Dichloropropene	ND U	0.50	1	03/28/03		LI
Benzene	ND U	0.50	1	03/28/03	03/28/03	
1.2-Dichloroethane	ND U	0.50	1	03/28/03	03/28/03	
Trichloroethene	ND U	0.50	1	03/28/03	03/28/03	
	ND U	0.50	1	03/28/03	03/28/03	
1,2-Dichloropropane	ND U	0.50	1	03/28/03	03/28/03	
Dibromomethane Bromodichloromethane	ND U	0.50	1	03/28/03	03/28/03	
	ND U	0.50	1	03/28/03	03/28/03	
cis-1,3-Dichloropropene	ND U	8.0	1	03/28/03	03/28/03	;
4-Methyl-2-pentanone (MIBK)	ND U	0.50	1	03/28/03	03/28/03	3
Toluene	ND U					

Comments:

Analytical Results

Client: Project: BE&K Terranext WVBA/#0310-3154

Sample Matrix:

Water

Service Request: X2300235

Date Collected: NA

Date Received: NA

Volatile Organic Compounds

Sample Name: Lab Code: Method Blank XWG0300416-3

Extraction Method: Analysis Method:

EPA 5030B 8260B Units: ug/L Basis: NA

Level: Low

				Dilution	Date	Date	
Analyte Name	Result	Q	MRL	Factor	Extracted		Arizona Qualifier
trans-1,3-Dichloropropene	ND	U	1.0	1	03/28/03	03/28/03	
1,1,2-Trichloroethane	ND	U	1.0	1	03/28/03	03/28/03	
Tetrachloroethene	ND	U	0.50	1	03/28/03	03/28/03	
2-Hexanone	ND	U	5.0	1	03/28/03	03/28/03	
1,3-Dichloropropane	ND	U	1.0	1	03/28/03	03/28/03	
Dibromochloromethane	ND	U	0.50	1	03/28/03	03/28/03	
1.2-Dibromoethane	ND	U	0.50	1	03/28/03	03/28/03	
Chlorobenzene	ND	U	0.50	1	03/28/03	03/28/03	
1,1,1,2-Tetrachloroethane	ND	U	0.50	1	03/28/03	03/28/03	
Ethylbenzene	ND	U	0.50	1	03/28/03	03/28/03	
m,p-Xylenes	ND		1.0	1	03/28/03	03/28/03	
o-Xylene	ND		0.50	1	03/28/03	03/28/03	
	ND		0.50	1	03/28/03	03/28/03	
Styrene Isopropylbenzene	ND		0.50	1	03/28/03	03/28/03	
Bromobenzene	ND		0.50	1	03/28/03	03/28/03	
	ND		1.0	1	03/28/03	03/28/03	
1,2,3-Trichloropropane n-Propylbenzene	ND		0.50	1	03/28/03	03/28/03	
2-Chlorotoluene	ND		0.50	1	03/28/03	03/28/03	
4-Chlorotoluene	ND		0.50	1	03/28/03	03/28/03	
1,3,5-Trimethylbenzene	ND		0.50	1	03/28/03	03/28/03	
tert-Butylbenzene	ND		0.50	1	03/28/03	03/28/03	
	ND		0.50	1	03/28/03	03/28/03	
1,2,4-Trimethylbenzene sec-Butylbenzene	ND		0.50	1	03/28/03	03/28/03	
1,3-Dichlorobenzene	ND		0.50	1	03/28/03	03/28/03	
	ND		0.50	1	03/28/03	03/28/03	
4-Isopropyltoluene Bromoform	ND		0.50	1	03/28/03	03/28/03	
1,1,2,2-Tetrachloroethane	ND		1.0	1	03/28/03	03/28/03	
		U	0.50	1	03/28/03	03/28/03	
1,4-Dichlorobenzene		U	0.50	1	03/28/03	03/28/03	
1,2-Dichlorobenzene) U	0.50	î	03/28/03	03/28/03	
n-Butylbenzene		U	5.0	1	03/28/03	03/28/03	
1,2-Dibromo-3-chloropropane) U	0.50	1	03/28/03	03/28/03	
1,2,4-Trichlorobenzene) U	0.50	1	03/28/03	03/28/03	
Hexachlorobutadiene	INL		0.30		05,20,00		

Comments:

000027

Analytical Results

Client:

BE&K Terranext

Project:

WVBA/#0310-3154

Sample Matrix:

Water

Service Request: X2300235

Date Collected: NA Date Received: NA

Volatile Organic Compounds

Sample Name: Lab Code:

Method Blank XWG0300416-3

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

	Result Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Arizona Qualifier
Naphthalene 1,2,3-Trichlorobenzene	ND U ND U	3.0 0.50	1	03/28/03 03/28/03	03/28/03 03/28/03	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Arizona Qualifier
Dibromofluoromethane	100	84-113	03/28/03	
Toluene-d8	103	68-126	03/28/03	
4-Bromofluorobenzene	101	79-113	03/28/03	

Comments:

000026

QA/QC Report

Client:

BE&K Terranext

Project:

WVBA/#0310-3154

Sample Matrix:

Water

Service Request: X2300235

Surrogate Recovery Summary Volatile Organic Compounds

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: PERCENT

Level: Low

Sample Name	Lab Code	Sur1	Sur2	<u>Sur3</u>
AVB91-0202-1000 AVB91-0200-03300 AVB91-0204-1000 AVB98-0100-03290 AVB98-0101-03290 AVB81-0100-05300 Method Blank	X2300235-001 X2300235-002 X2300235-003 X2300235-004 X2300235-005 X2300235-006 XWG0300416-3	105 108 107 107 106 107 100	111 109 110 110 111 111 103 112	105 103 102 103 105 106 101
AVB91-0200-03300MS AVB91-0200-03300DMS Lab Control Sample Duplicate Lab Control Sample	XWG0300416-4 XWG0300416-5 XWG0300416-1 XWG0300416-2	105 105 94 97	109 95 100	104 99 104

Surrogate Recovery Control Limits (%)

		04 110
Curl =	Dibromofluoromethane	84-113
		68-126
Sur2 =	Toluene-d8	08-120
		79-113
Sur3 =	4-Bromofluorobenzene	7,7 113

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Printed: 04/02/2003 14:00:30 L:\STEALTH\CRYSTAL.RPT\Form2.rpt

QA/QC Report

Client: Project: BE&K Terranext WVBA/#0310-3154

Sample Matrix:

Water

Service Request: X2300235

Date Extracted: 03/28/2003 **Date Analyzed:** 03/28/2003

Matrix Spike/Duplicate Matrix Spike Summary Volatile Organic Compounds

Sample Name: Lab Code:

AVB91-0200-03300 X2300235-002

Extraction Method: Analysis Method:

EPA 5030B 8260B

Units: ug/L

Basis: NA

Level: Low

Extraction Lot: XWG0300416

AVB91-0200-03300MS

AVB91-0200-03300DMS XWG0300416-5

	Gl-	XWG0300416-4 Matrix Spike			XWG0300416-5 Duplicate Matrix Spike				%Rec	ppp	RPD	
Analyte Name	Sample Result	Result	Expected	%Re	c	Result	Expected	%Re	c	Limits	RPD	Limit
	ND	17.1	10.0	171		16.8	10.0	168		78-207	2	20
Dichlorodifluoromethane	ND	8.09	10.0	81		8.12	10.0	81		70-157	0	20
Chloromethane	ND	9.96	10.0	100		9.87	10.0	99		79-174	1	20
Vinyl Chloride	ND	5.33	10.0	53		5.02	10.0	50		44-150	6	20
Bromomethane	ND	9.35	10.0	94		8.25	10.0	83		74-150	13	20
Chloroethane	ND	9.46	10.0	95		9.30	10.0	93		80-134	2	20
Trichlorofluoromethane	ND	8.73	10.0	87		8.76	10.0	88		67-128	0	20
1,1,2-Trichlorotrifluoroethane	1.1	8.82	10.0	77		8.78	10.0	76		71-142	0	20
1,1-Dichloroethene	ND	21.6	40.0	54		24.0	40.0	60		1-155	11	20
Acetone	ND	19.5	40.0	49		20.8	40.0	52		47-120	6	20
Iodomethane	ND	31.6	40.0	79		31.2	40.0	78		77-126	1	20
Carbon Disulfide	ND	6.14	10.0		M2	6.22	10.0	62	M2	83-106	1	20
Methylene Chloride	ND	5.80	10.0		M2	6.11	10.0	61	M2	70-118	5	20
Methyl tert-Butyl Ether	ND	6.86	10.0		M2	6.79	10.0	68	M2	86-115	1	20
trans-1,2-Dichloroethene	ND	6.82	10.0		M2	6.85	10.0	69	M2	77-127	0	20
1,1-Dichloroethane	ND	27.2	40.0	68		29.2	40.0	73		8-187	7	20
Vinyl Acetate	ND	7.62	10.0	76		7.46	10.0	75		25-154	2	20
2,2-Dichloropropane	ND ND	21.9	40.0	55	M2	24.1	40.0	60	M2	90-112	9	20
2-Butanone (MEK)	ND ND	6.34	10.0	63	M2	6.37	10.0	64	M2	69-118	0	20
cis-1,2-Dichloroethene		5.48	10.0	55		5.67	10.0	57		47-136	3	20
Bromochloromethane	ND	6.64	10.0	66		6.61	10.0	66		48-143	0	20
Chloroform	ND	7.76	10.0	78	M2	7.54	10.0	75	M2	84-122	3	20
1,1,1-Trichloroethane	ND	8.35	10.0	84	11.12	8.15	10.0	82		79-120	2	20
Carbon Tetrachloride	ND	8.33 7.73	10.0	77	M2	7.46	10.0	75	M2	85-117	4	20
1,1-Dichloropropene	ND	7.73 6.89	10.0	69		6.65	10.0	67	M2	88-114	4	20
Benzene	ND		10.0	58		5.97	10.0	60	M2	75-112	3	20
1,2-Dichloroethane	ND	5.82	10.0	- 72		8.03	10.0	69	M2	76-115	4	20
Trichloroethene	1.2	8.39	10.0	61			10.0	61		85-107	0	20
1,2-Dichloropropane	ND	6.12	10.0	56		5.87	10.0	59			4	20
Dibromomethane	ND	5.64		62			10.0	61			2	20
Bromodichloromethane	ND	6.19	10.0	60			10.0		M2		1	20
cis-1,3-Dichloropropene	ND	5.97	10.0	50			40.0	55		54-129	8	20
4-Methyl-2-pentanone (MIBK)	ND	20.1	40.0		M2		10.0	69				20
Toluene	ND	7.14	10.0	/1	1012	0.05	10.0					

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

000030

Printed: 04/02/2003 14:00:37 L:\STEALTH\CRYSTAL.RPT\Form3DMS.rpt

OA/QC Report

Client: Project: BE&K Terranext WVBA/#0310-3154

Sample Matrix:

Water

Service Request: X2300235

Date Extracted: 03/28/2003

Date Analyzed: 03/28/2003

Matrix Spike/Duplicate Matrix Spike Summary Volatile Organic Compounds

Sample Name: Lab Code:

AVB91-0200-03300 X2300235-002

Extraction Method: Analysis Method:

EPA 5030B 8260B

Units: ug/L Basis: NA

Level: Low

Extraction Lot: XWG0300416

AVB91-0200-03300MS XWG0300416-4

AVB91-0200-03300DMS XWG0300416-5

	Commis	XWG0300416-4 Matrix Spike				VG0300416-3 cate Matrix S	%Rec		RPD	
Analyte Name	Sample Result	Result	Expected	%Rec	Result	Expected	%Rec	Limits	Limits RPD	Limit
trans-1,3-Dichloropropene	ND	5.85	10.0	59 M2	5.93	10.0	59 M2	73-112	1	20
1,1,2-Trichloroethane	ND	5.68	10.0	57 M2	5.99	10.0	60 M2	79-112	5	20
Tetrachloroethene	4.4	12.7	10.0	84	12.2	10.0	78	78-130	5	20
2-Hexanone	ND	21.4	40.0	53 M2	22.4	40.0	56 M2	77-112	5	20
1,3-Dichloropropane	ND	5.96	10.0	60	6.00	10.0	60	45-133	1	20
Dibromochloromethane	ND	5.67	10.0	57 M2	5.72	10.0	57 M2	74-108	1	20
1,2-Dibromoethane	ND	5.85	10.0	59 M2	5.92	10.0	59 M2	73-113	1	20
Chlorobenzene	ND	6.42	10.0	64 M2	6.14	10.0	61 M2	84-111	4	20
1,1,1,2-Tetrachloroethane	ND	6.10	10.0	61 M2	5.85	10.0	59 M2	84-119	4	20
Ethylbenzene	ND	7.17	10.0	72	6.82	10.0	68	47-136	5	20
m,p-Xylenes	ND	14.0	20.0	70 M2	13.4	20.0	67 M2	84-120	5	20
o-Xylene	ND	6.65	10.0	67	6.41	10.0	64	47-143	4	20
Styrene	ND	6.37	10.0	64 M2	6.06	10.0	61 M2	72-121	5	20
Isopropylbenzene	ND	7.39	10.0	74	7.07	10.0	71	63-108	4	20
Bromobenzene	ND	6.07	10.0	61 M2	5.97	10.0	60 M2	80-113	2	20
1,2,3-Trichloropropane	ND	5.87	10.0	59 M2	5.98	10.0	60 M2	78-119	2	20
n-Propylbenzene	ND	7.60	10.0	76	7.15	10.0	72 M2	76-117	6	20
2-Chlorotoluene	ND	7.05	10.0	71 M2	6.78	10.0	68 M2	79-121	4	20
4-Chlorotoluene	ND	6.80	10.0	68 M2	6.63	10.0	66 M2	70-133	3	20
1,3,5-Trimethylbenzene	ND	7.06	10.0	71 M2	6.70	10.0	67 M2	79-118	5	20
tert-Butylbenzene	ND	7.83	10.0	78	7.26	10.0	73 M2	77-120	8	20
1,2,4-Trimethylbenzene	ND	6.94	10.0	69	6.60	10.0	66 M2	68-127	5	20
sec-Butylbenzene	ND	7.73	10.0	77 M2	7.31	10.0	73 M2	78-123	6	20
1.3-Dichlorobenzene	ND	6.35	10.0	64 M2	6.23	10.0	62 M2	78-127	2	20
4-Isopropyltoluene	ND	7.93	10.0	79	7.41	10.0	74 M2	79-142	7	20
Bromoform	ND	5.55	10.0	56 M2	5.63	10.0	56 M2	83-111	1	20
1,1,2,2-Tetrachloroethane	ND	6.01	10.0	60 M2	6.17	10.0	62 M2	66-133	3	20
1,4-Dichlorobenzene	ND	6.41	10.0	64	6.03	10.0	60	48-139	6	20
1,2-Dichlorobenzene	ND	6.25	10.0	63 M2	6.09	10.0	61 M2		3	20
n-Butylbenzene	ND	7.90	10.0	79	7.40	10.0	74	69-122	7	20
1,2-Dibromo-3-chloropropane	ND	5.46	10.0	55	5.80	10.0	58	54-160	6	20
1,2,4-Trichlorobenzene	ND	6.28	10.0	63	5.97	10.0	60	39-145	5	20
Hexachlorobutadiene	ND	8.40	10.0	84	7.82	10.0	78	74-113	7	20

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

000031

Printed: 04/02/2003 14:00:37 L:\STEALTH\CRYSTAL.RPT\Form3DMS.rpt Form 3A - Organic

Page

2 of 3

SuperSet Reference: RR3144

QA/QC Report

Client: **Project:** BE&K Terranext WVBA/#0310-3154

Sample Matrix:

Water

Service Request: X2300235

Date Extracted: 03/28/2003 **Date Analyzed:** 03/28/2003

Matrix Spike/Duplicate Matrix Spike Summary Volatile Organic Compounds

Sample Name:

AVB91-0200-03300

Lab Code:

X2300235-002

Extraction Method: Analysis Method:

EPA 5030B 8260B

Units: ug/L Basis: NA

Level: Low

Extraction Lot: XWG0300416

AVB91-0200-03300MS

AVB91-0200-03300DMS

VWG0300416-5

Analyte Name	Commis		VG0300416- Matrix Spike	4	XV Duplic	%Rec		RPD		
	Sample Result	Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit 20
Naphthalene	ND ND	5.77 6.32	10.0 10.0	58 63	5.80 6.15	10.0 10.0	58 62	44-167 37-158	3	20
1,2,3-Trichlorobenzene	TUD	0.01								

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

000032 Form 3A - Organic

3 of

Page

QA/QC Report

Client: Project: BE&K Terranext WVBA/#0310-3154

Sample Matrix:

Water

Service Request: X2300235 Date Extracted: 03/28/2003

Date Analyzed: 03/28/2003

Lab Control Spike/Duplicate Lab Control Spike Summary Volatile Organic Compounds

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L

Basis: NA

Level: Low

Extraction Lot: XWG0300416

Lab Control Sample XWG0300416-1

Duplicate Lab Control Sample

XWG0300416-2

		G0300416-1 Control Spik	e	Duplicate Lab Control Spike		%Rec		RPD	
Analyte Name	Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit
Dichlorodifluoromethane	11.3	10.0	113	9.29	10.0	93	1-233	19	20
Chloromethane	8.95	10.0	90	8.34	10.0	83	46-156	7	20
Vinyl Chloride	11.8	10.0	118	10.6	10.0	106	51-158	11	20
Bromomethane	6.85	10.0	69	6.68	10.0	67	37-149	3	20
Chloroethane	11.3	10.0	113	10.0	10.0	100	56-146	12	20
Trichlorofluoromethane	12.9	10.0	129	11.1	10.0	111	69-139	16	20
1,1,2-Trichlorotrifluoroethane	14.2	10.0	142 L1	12.1	10.0	121	83-130	15	20
1,1-Dichloroethene	11.3	10.0	113 L1	10.3	10.0	103	65-112	10	20
Acetone	37.4	40.0	93	36.7	40.0	92	68-128	2	20
Iodomethane	28.5	40.0	71	27.1	40.0	68	68-144	5	20
Carbon Disulfide	50.2	40.0	125	45.6	40.0	114	67-140	9	20
Methylene Chloride	10.5	10.0	105	10.0	10.0	100	70-113	4	20
Methyl tert-Butyl Ether	9.64	10.0	96	9.50	10.0	95	75-115	1	20
trans-1,2-Dichloroethene	10.6	10.0	106	9.84	10.0	98	73-118	8	20
1.1-Dichloroethane	11.1	10.0	111	10.5	10.0	105	77-127	6	20
	46.5	40.0	116	46.5	40.0	116	51-202	0	39
Vinyl Acetate	11.8	10.0	118	11.0	10.0	110	75-132	7	20
2,2-Dichloropropane	38.2	40.0	96	37.0	40.0	93	72-122	3	20
2-Butanone (MEK)	10.3	10.0	103	9.92	10.0	99	81-118	4	20
cis-1,2-Dichloroethene	9.39	10.0	94	8.91	10.0	89	82-114	5	20
Bromochloromethane	10.7	10.0	107	10.4	10.0	104	78-119	3	20
Chloroform	11.4	10.0	114	10.6	10.0	106	71-125	8	20
1,1,1-Trichloroethane	12.6	10.0	126	11.5	10.0	115	69-130	10	20
Carbon Tetrachloride	12.3	10.0	123 L1	11.3	10.0	113	77-114	9	20
1,1-Dichloropropene	10.7	10.0	107	10.3	10.0	103	81-117	4	20
Benzene	9.77	10.0	98	9.51	10.0	95	67-122	3	20
1,2-Dichloroethane	9.77	10.0	111	10.2	10.0	102	79-114	8	20
Trichloroethene	9.93	10.0	99	9.92	10.0	99	78-114	0	20
1,2-Dichloropropane		10.0	9 7	9.51	10.0	95	78-113	2	20
Dibromomethane	9.68		101	9.93	10.0	. 99	79-122	2	20
Bromodichloromethane	10.1	10.0 10.0	107	10.5	10.0	105	82-118	2	20
cis-1,3-Dichloropropene	10.7		90	36.0	40.0	90	75-115	0	20
4-Methyl-2-pentanone (MIBK)	36.1	40.0	90 111	10.9	10.0	109	85-118	2	20
Toluene	11.1	10.0	104	10.3	10.0	103	79-121	1	20
trans-1,3-Dichloropropene	10.4	10.0	10 4 97	9.55	10.0	96	79-116	1	20
1,1,2-Trichloroethane	9.66	10.0	97	9.33	10.0	70	,, 110	•	4

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 04/02/2003 14:00:46 L:\STEALTH\CRYSTAL.RPT\Form3DLC.rpt Form 3C - Organic

000033

Page

1 of 2

SuperSet Reference: RR3144

QA/QC Report

Client: Project: BE&K Terranext WVBA/#0310-3154

Sample Matrix:

Water

Service Request: X2300235 Date Extracted: 03/28/2003

Date Analyzed: 03/28/2003

Lab Control Spike/Duplicate Lab Control Spike Summary Volatile Organic Compounds

Extraction Method: EPA 5030B **Analysis Method:**

8260B

Units: ug/L

Basis: NA Level: Low

Extraction Lot: XWG0300416

Lab Control Sample XWG0300416-1

Duplicate Lab Control Sample XWG0300416-2

		VG0300416-1 Control Spik		Duplicate Lab Control Spike		Duplicate Lab Control Spike %Rec			RPD	
Analyte Name	Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit	
Tetrachloroethene	11.4	10.0	114	10.8	10.0	108	76-127	6	20	
2-Hexanone	37.8	40.0	94	38.1	40.0	95	65-120	1	20	
1,3-Dichloropropane	9.93	10.0	99	9.99	10.0	100	81-116	1	20	
Dibromochloromethane	9.63	10.0	96	9.59	10.0	96	77-119	0	20	
1,2-Dibromoethane	9.98	10.0	100	10.0	10.0	100	79-116	0	20	
Chlorobenzene	10.2	10.0	102	9.99	10.0	100	84-114	2	20	
1,1,1,2-Tetrachloroethane	9.67	10.0	97	9.50	10.0	95	78-118	2	20	
Ethylbenzene	11.3	10.0	113	10.9	10.0	109	79-124	3	20	
m,p-Xylenes	22.0	20.0	110	21.4	20.0	107	75-131	3	20	
o-Xylene	10.7	10.0	107	10.3	10.0	103	78-122	4	20	
Styrene	10.7	10.0	107	10.7	10.0	107	80-126	0	20	
Isopropylbenzene	11.3	10.0	113	10.7	10.0	107	75-126	5	20	
Bromobenzene	9.97	10.0	100	9.99	10.0	100	82-122	0	20	
1,2,3-Trichloropropane	9.84	10.0	98	9.84	10.0	98	77-118	0	20	
n-Propylbenzene	11.9	10.0	119	11.1	10.0	111	75-129	6	20	
2-Chlorotoluene	11.2	10.0	112	11.0	10.0	110	77-126	1	20	
4-Chlorotoluene	11.1	10.0	111	10.9	10.0	109	82-120	2	20	
1,3,5-Trimethylbenzene	11.4	10.0	114	10.9	10.0	109	75-130	5	20	
tert-Butylbenzene	12.3	10.0	123	11.6	10.0	116	73-130	7	20	
1,2,4-Trimethylbenzene	11.2	10.0	112	10.9	10.0	109	60-137	3	20	
sec-Butylbenzene	11.5	10.0	115	10.8	10.0	108	68-131	7	20	
1,3-Dichlorobenzene	10.2	10.0	102	9.98	10.0	100	71-137	2	20	
4-Isopropyltoluene	12.3	10.0	123	11.7	10.0	117	68-134	5	20	
Bromoform	9.16	10.0	92	9.01	10.0	90	70-118	2	20	
1,1,2,2-Tetrachloroethane	9.50	10.0	95	9.69	10.0	97	72-122	2	20	
1,4-Dichlorobenzene	10.1	10.0	101	10.1	10.0	101	82-114	1	20	
1,2-Dichlorobenzene	10.1	10.0	101	10.2	10.0	102	81-118	1	20	
n-Butylbenzene	11.9	10.0	119	11.2	10.0	112	71-125	7	20	
1,2-Dibromo-3-chloropropane	8.72	10.0	87	8.76	10.0	88	55-131	0	20	
1,2,4-Trichlorobenzene	10.0	10.0	100	10.1	10.0	101	75-123	0	20	
Hexachlorobutadiene	12.3	10.0	123	11.8	10.0	118	63-140	4	20	
Naphthalene	9.55	10.0	96	9.62	10.0	96	67-125	1	20	
1,2,3-Trichlorobenzene	9.99	10.0	100	9.99	10.0	100	72-124	0	20	
-,-,-										

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

000034

Printed: 04/02/2003 14:00:46 L:\STEALTH\CRYSTAL.RPT\Form3DLC.rpt Form 3C - Organic

Page 2 of 2

SuperSet Reference: RR3144

March 31, 2003

Chuck Gordon BE & K Terranext 9830 S. 51st A-127 Phoenix, AZ 85044

Re: WVBA/Project #0310-3154

Dear Chuck:

Enclosed are the results of the samples submitted to our laboratory on March 19, 2003. For your reference, these analyses have been assigned our service request number L2300618.

All analyses were performed in accordance with our laboratory's quality assurance program. Results are intended to be considered in their entirety and apply only to the samples analyzed. Columbia Analytical Services is not responsible for use of less than the complete report.

Columbia Analytical Services - is certified for environmental analyses by the Arizona Department of Health Services (certificate number: AZ0544 and AZ0136, expiration: May 23, 2003).

If you have any questions, please call me at (818) 587-5550, extension 309.

Respectfully submitted,

Columbia Analytical Services, Inc.

Sue Anderson Project Chemist

SA

Columbia Analytical Services, Inc.

Acronyms

8015M California DHS LUFT Method

ASTM American Society for Testing and Materials

BOD Biochemical Oxygen Demand

BTEX Benzene/Toluene/Ethylbenzene/Xylenes

CAM California Assessment Metals

CAS Number Chemical Abstract Service Registry Number

CFC Chlorofluorocarbon
COD Chemical Oxygen Demand
CRDL Contract Required Detection Limit
Detected; result must be greater than zero.

DL Detected; result must be greater than the detection limit.

DLCS Duplicate Laboratory Control Sample

DMS Duplicate Matrix Spike
DOH or DHS Department of Health Services

ELAP Environmental Laboratory Accreditation Program

EPA U.S. Environmental Protection Agency

GC Gas Chromatography

GC/MS Gas Chromatography/Mass Spectrometry

IC Ion Chromatography

ICB Initial Calibration Blank sample

ICP Inductively Coupled Plasma atomic emission spectrometry

ICV Initial Calibration Verification sample

LCS Laboratory Control Sample
LUFT Leaking Underground Fuel Tank

M Modified

MBAS Methylene Blue Active Substances

MDL Method Detection Limit
MRL Method Reporting Limit

MS Matrix Spike

MTBE Methyl-tert-Butyl Ether

NA Not Applicable
NC Not Calculated

ND None Detected at or above the Method Reporting/Detection Limit (MRL/MDL)

NTU Nephelometric Turbidity Units

ppb Parts Per Billion ppm Parts Per Million

PQL Practical Quantitation Limit
QA/QC Quality Assurance/Quality Control
RCRA Resource Conservation and Recovery Act

RPD Relative Percent Difference
SIM Selected Ion Monitoring

SM Standard Methods for the Examination of Water and Wastewater, 18th Ed., 1992.

STLC Solubility Threshold Limit Concentration

SW Test Methods for Evaluating Solid Waste, Physical/Chemical Methods SW-846,

Third Edition, 1986 and as amended by Updates I, II, IIA, and IIB.

TCLP Toxicity Characteristics Leaching Procedure

TDS Total Dissolved Solids
TPH Total Petroleum Hydrocarbons

TRPH Total Recoverable Petroleum Hydrocarbons

TSS Total Suspended Solids

TTLC Total Threshold Limit Concentration

VOA Volatile Organic Analyte(s)

Qualifiers

U Undetected at or above MDL/MRL.

J Estimated concentration. Analyte detected above MDL but below MRL.

B Hit above MRL also found in Method Blank.
 E Analyte concentration above high point of ICAL.

N Presumptive evidence of compound.

D Result from dilution.X See case narrative.

- Cover Page - INORGANIC ANALYSIS DATA PACKAGE

Client:

BE&K Terranext, LLC

Project Name: Project No.:

WVBA 0310-3154 Service Request: L2300618

Sample Name:

Laboratory Control Sample Method Blank AVB91-0200-03300 AVB91-0200-03300 AVB91-0204-1000 AVB98-0100-03290 AVB98-0101-03290 AVB81-0100-05300

Lab Code:

L2300326-LCS L2300326-MB L2300618-001 L2300618-001S L2300618-001SD L2300618-002 L2300618-003 L2300618-004 L2300618-005

approved By: Sul Quellers

Date:

00003

Analytical Report

Client:

BE&K Terranext, LLC

Project Name: Project No.:

WVBA 0310-3154

Matrix:

Water

Service Request: L2300618

Date Collected: 03/18/03

Date Received: 03/19/03

Date Extracted: 03/26/03

Total Metals

Sample Name:

AVB91-0200-03300

Lab Code:

L2300618-001

Units: ug/L (ppb)

Analyte	Analysis Method	MRL	Date Analyzed	Sample Result	Result Notes
Chromium	6010B	10	03/28/03	17	

Analytical Report

Client:

BE&K Terranext, LLC

Project Name : Project No. : WVBA 0310-3154

Matrix:

Water

Service Request: L2300618

Date Collected: 03/18/03

Date Received: 03/19/03

Date Extracted: 03/26/03

Dissolved Metals

Sample Name:

AVB91-0200-03300

Lab Code:

L2300618-001

Units: ug/L (ppb)

Analyte	Analysis Method	MRL	Date Analyzed	Sample Result	Result Notes
Chromium	6010B	10	03/28/03	12	

Analytical Report

Client:

BE&K Terranext, LLC

Project Name : Project No. : WVBA 0310-3154

Matrix:

Water

Service Request: L2300618

Date Collected: 03/18/03 Date Received: 03/19/03

Date Extracted: 03/26/03

Total Metals

Sample Name:

AVB91-0204-1000

Lab Code:

L2300618-002

Units: ug/L (ppb)

Analyte	Analysis Method	MRL	Date Analyzed	Sample Result	Result Notes
Chromium	6010B	10	03/28/03	ND	

Analytical Report

Client:

BE&K Terranext, LLC

Project Name:
Project No.:

WVBA 0310-3154

Matrix:

Water

Service Request: L2300618

Date Collected: 03/18/03 **Date Received:** 03/19/03

Date Extracted: 03/26/03

Dissolved Metals

Sample Name:

AVB91-0204-1000

Lab Code:

L2300618-002

Units: ug/L (ppb)

Analyte	Analysis Method	MRL	Date Analyzed	Sample Result	Result Notes
Chromium	6010B	10	03/28/03	ND	

Analytical Report

Client:

BE&K Terranext, LLC

Project Name : Project No. : WVBA

Matrix:

Water

0310-3154

Service Request: L2300618

Date Collected: 03/18/03

Date Received: 03/19/03

Date Extracted: 03/26/03

Total Metals

Sample Name:

AVB98-0100-03290

Lab Code :

L2300618-003

Units: ug/L (ppb)

Analyte	Analysis Method	MRL	Date Analyzed	Sample Result	Result Notes
Chromium	6010B	10	03/28/03	15	

Analytical Report

Client:

BE&K Terranext, LLC

Project Name: Project No.:

WVBA 0310-3154

Matrix:

Water

Service Request: L2300618 **Date Collected:** 03/18/03

Date Received: 03/19/03

Date Extracted: 03/26/03

Dissolved Metals

Sample Name:

AVB98-0100-03290

Lab Code:

L2300618-003

Units: ug/L (ppb)

Analyte	Analysis Method	MRL	Date Analyzed	Sample Result	Result Notes
Chromium	6010B	10	03/28/03	ND	

Analytical Report

Client:

BE&K Terranext, LLC

Project Name : Project No. :

WVBA 0310-3154

Matrix:

Water

Service Request: L2300618

Date Collected: 03/18/03

Date Received: 03/19/03

Date Extracted: 03/26/03

Total Metals

Sample Name:

AVB98-0101-03290

Lab Code:

L2300618-004

Units: ug/L (ppb)

Analyte	Analysis Method	MRL	Date Analyzed	Sample Result	Result Notes
Chromium	6010B	10	03/28/03	11	

Analytical Report

Client:

BE&K Terranext, LLC

Project Name: Project No.:

WVBA 0310-3154

Matrix:

Water

Service Request: L2300618

Date Collected: 03/18/03 **Date Received:** 03/19/03

Date Extracted: 03/26/03

Dissolved Metals

Sample Name:

AVB98-0101-03290

Lab Code:

L2300618-004

Units: ug/L (ppb)

Analyte	Analysis Method	MRL	Date Analyzed	Sample Result	Result Notes
Chromium	6010B	10	03/28/03	ND	

Analytical Report

Client:

BE&K Terranext, LLC

Project Name : Project No. : WVBA 0310-3154

Matrix:

Water

Service Request: L2300618

Date Collected: 03/18/03 **Date Received:** 03/19/03

Date Extracted: 03/26/03

Total Metals

Sample Name:

AVB81-0100-05300

Lab Code:

L2300618-005

Units: ug/L (ppb)

Analyte	Analysis Method	MRL	Date Analyzed	Sample Result	Result Notes
Chromium	6010B	10	03/28/03	ND	

Analytical Report

Client:

Matrix:

BE&K Terranext, LLC

Project Name: Project No.:

WVBA 0310-3154

Water

Service Request: L2300618

Date Collected: 03/18/03 Date Received: 03/19/03 Date Extracted: 03/26/03

Dissolved Metals

Sample Name:

AVB81-0100-05300

Lab Code:

L2300618-005

Units: ug/L (ppb)

Analyte	Analysis Method	MRL	Date Analyzed	Sample Result	Result Notes
Chromium	6010B	10	03/28/03	ND	

Analytical Report

Client:

BE&K Terranext, LLC

Project Name : Project No. : WVBA 0310-3154

Matrix:

Water

Service Request: L2300618

Date Collected: NA
Date Received: NA

Date Extracted: 03/26/03

Total Metals

Sample Name : Lab Code : Method Blank L2300326-MB Units: ug/L (ppb)

Basis: NA

Analyte Analysis Method MRL Date Analyzed Result Notes

Chromium 6010B 10 03/28/03 ND

QA/QC Report

Client:

BE&K Terranext, LLC

Project Name: Project No.:

WVBA 0310-3154

Matrix:

Water

Service Request: L2300618

Date Collected: NA

Date Received: NA

Date Extracted: 03/26/03

Date Analyzed: 03/28/03

Laboratory Control Sample Summary

Total Metals

Sample Name:

Laboratory Control Sample

Lab Code:

L2300326-LCS

Units: ug/L (ppb)

					CAS Percent Recovery	
Analyte	Analysis Method	True Value	Result	Percent	Acceptance Limits	Result Notes
Chromium	6010B	500	537	107	87-111	

Analytical Report

Client:

BE&K Terranext, LLC

Project Name : Project No. : WVBA 0310-3154

Matrix:

Water

Service Request: L2300618

Date Collected: 03/18/03

Date Received: 03/19/03

Date Extracted: 03/26/03 **Date Analyzed:** 03/28/03

Matrix Spike/Duplicate Matrix Spike Summary

Total Metals

Sample Name : Lab Code :

AVB91-0200-03300

L2300618-001S

L2300618-001SD

Units: ug/L (ppb)

Analyte	Prep Method	Analysis Method	MRL	Spike MS	Level DMS	Sample Result	Spike MS	Result DMS	MS	DMS	CAS Acceptance Limits	Relative Percent Difference	Result Notes
Chromium	3010A	6010B	10	500	500	16.9	514	525	99	102	87-105	2	

Columbia Analytical Services INC.

223006/8~ Chain of custody/Laboratory analysis request form

3902 East University Drive, Suite 4 • Phoenix, AZ 85034 • (602) 437-2001 • (800) 695-7222 x09 • FAX (602) 437-5308

PAGE DATE 3-18-03

RUSH TAT - Surcharges Apply ANALYSIS TAT (Circle One) REMARKS Lab No: 233-00035 SAMPLE RECEIPT: □ 48 Hours ☐ 72 Hours □ 24 Hours Shipping VIA: 76. STANDARD Shipping #: Condition: Date/Time 3 ANALYSIS REQUESTED INVOICE INFORMATION: Date/Time 3/6.03 Date/Time D'Haliri Filter D'Hq Organization Organization Organization II. Report (includes DUP.MS. MSD, as required, may be charged as samples) REPORT REQUIREMENTS III. Data Validation Report (includes All Raw Data) CLP Deliverable Report I. Routine Report TINES MOU Received By (Signature) Received By (Signature) Received By (Signature) Samples Far dissolved CF regume lab Fistering O **NOMBER OF CONTAINERS** Sate/Time 3-19-03 Date/Time 3. 79.03 Date/Time # 0310-315H 2002 1 997 3)087 \$ Organization T\$ \$ Organization Organization LAB LD COMPANY/ADDRESS OCAKITEMS-1xt Z F 1330 1700 PHONE/FAX IME SPECIAL INSTRUCTIONS/COMMENTS: ひてん 3/18 AVB91-0204-1000 3/18 DATE 91/891-0200-0330d 3/18 100V AVB81-0100-05300 3/18 Relinquished By (Signature) Helinquished By (Signature) Relinquished By (Signature) Lale Alex AVB98-0100-03290 91/898-0101-03290 91/891-020-1020 SAMPLER'S SIGNATURE PROJECT NAME 1 PROJECT MANAGER 18.50 oraș SAMPLE I.D.

DISTRIBUTION: WHITE - return to originator; YELLOW - lab; PINK - retained by originator

CAS

SAMPLE RECEIPT FORM

Service Request No: L230 ()618 Client: BETK
Sample(s) delivered by: Client CAS Emp After Hours DHL
Golden State Overnight Fed X _ \(\sqrt{UPS} Other Courier
Chain of Custody filled out accurately? Yes/ No(See Comments)
Appropriate sample volume and containers? Yes No(See Comments)
Sufficient labeling on container(s)? Yes No(See Comments)
Container(s) supplied by CAS? Yes No (See Comments)
Custody seal(s) intact? N/A \(\) Yes \(\) No \(\) (See Comments)
Trip Blank(s) received Yes No/
If Trip Blank was supplied by CAS, record serial #TB
Temperature of sample(s)/cooler 3 °C Temp Blank? Yor N (Circle One)
Voa's Marked Preserved? Yes No Filled Properly? Yes No (See Comments)
Preserved Bottles Requiring pH check(s)? Yes Notified
RUSH Turn around time? Yes Notified Date & Time
Short Hold-Time Analysis (check all that apply)
ASAP Res Cl D.O Flash Diss S2- Ferrous Fe 24HR pH Odor Cr+6 48HR BOD Color MBAS Nitrate Nitrite O-PO4 Sett Sol Turbidity 72HR Vapors
24HR pH Odor Cr+6 48HR BOD Color MBAS Nitrate Nitrite O-PO4 Sett Sol Turbidity
24HR pH Odor Cr+6 48HR BOD Color MBAS Nitrate Nitrite O-PO4 Sett Sol Turbidity 72HR Vapors Notified Date & Time Container(s) received and their preservative(s): - 2 2 - SW MI PI (HN03) CD
24HR pH Odor Cr+6 48HR BOD Color MBAS Nitrate Nitrite O-PO4 Sett Sol Turbidity 72HR Vapors Notified Date & Time Container(s) received and their preservative(s):
24HR pH Odor Cr+6 48HR BOD Color MBAS Nitrate Nitrite O-PO4 Sett Sol Turbidity 72HR Vapors Notified Date & Time Container(s) received and their preservative(s): - 2 2 - SW MI PI (HN03) CD

Analytical Services No. 3and Fact I Iniv.

CHAIN OF CUSTODY/LABORATORY ANALYSIS REQUEST FORM

3902 East University Drive, Suite 4 • Phoenix, AZ 85034 • (602) 437-2001 • (800) 695-7222 x09 • FAX (602) 437-5308

DATE 3 - 18-03 PAGE

RUSH IAT - Surcharges Apply REMARKS ANALYSIS TAT (Circle One) Lab No: x 33.000335 MS/MSD SAMPLE RECEIPT: ☐ 48 Hours ☐ 72 Hours □ 24 Hours STANDARD Shipping VIA: Shipping #: _ Condition: **ANALYSIS REQUESTED** INVOICE INFORMATION: Date/Time 3/6.03 Date/Time Date/Time DHO Paint Filter D Organization Organization Organization II. Report (includes DUP.MS. MSD, as required, may be charged as samples) REPORT REQUIREMENTS III. Data Validation Report (includes All Raw Data) IV. CLP Deliverable Report I. Routine Report Received By (Signature) Received By (Signature) Received By (Signature) Samples For dissolved CF regione lab Fittering \underline{c} NUMBER OF CONTAINERS PRESER-VATION Date/Time 3-(4-03 Date/Time Date/Time 4 0310-315 Q# MATRIX 007 / <u>ද</u> ඉද 700 235-001 Organization Organization LAB I.D. PHONE/FAX 1330 TIME 1610 SPECIAL INSTRUCTIONS/COMMENTS: AZ 701701 COMPANY/ADDRESS BENK/ 3/18 3/(8) 3//8 91/291-0200-0330d 1/18 PROJECT NAME N VBA DATE AVB81-0100-05300 3/18 Relinquished By (Signature) Relinquished By (Signature) Kelinquished By (Signature) 911891-02ar-1020 AVB98-0100-03296 AV891-0204-000 AV898-0101-0329d SAMPLER'S SIGNATURE_ POR THE RICH PROJECT MANAGER SAMPLE I.D.

DISTRIBUTION: WHITE - return to originator; YELLOW - lab; PINK - retained by originator

0702

Columbia Analytical Services, Inc. Phoenix, AZ

Sample Receipt and Preservation Form

lient:	EVK			Pr	oject Name:	WUB	A		
imple(s) Red OA's []	ceived on: 3-/9. Glass Bottles	03	_date Plastic E	O845 Bottles	time Jars []	Sleeves		
	SOIL □			d	ate	time (soils only)		
Is first ext	raction/analysis h	olding tim	e expiratio	n LESS TH	AN 24 HOUI	RS(soil)/7 I	DAYS (water)?	Yes □	N
	emist notified on:								
Rush or sta	ndard turn-a-rour	nd time?					RUSI	I STAN	DAF
Are the cus	stody seals present	t?					Yes [] N o□	
Are the sig Did all con Are all con Were the c	many and where? nature and date containers arrive in guaranter labels comporrect containers to be been checked for	orrect? good condi plete (i.e. j used for th	tion? preservation te tests indic	cated?	0)?	in comme	Yes Yes Yes	No No	N
-	re of sample(s) up								
		****				VC	A Vial pH Veri	fication	
						(7	Tested After Ana	alysis)	
							All Samples p		
		YES	N	0		☐ Follow	ing Samples Ex	hibited pl	1 > 1
рН	Reagent								
12	NaOH								
2	HNO ₃								
2	H ₂ SO ₄							<u></u>	
Comments: _		Б	Corm Com	inleted and	1 Sample(s) Receive	d by (initials):	Lm	

July 16, 2003

Chuck Gordon BE&K Terranext 9830 S. 51st Street, Suite A-127 Phoenix, AZ 85044

Re: WVB / Project #03103154

Dear Chuck:

Enclosed are the amended result pages for the samples submitted to our laboratory on March 19, 2003. The samples were analyzed for Total & Dissolved Chromium by our Canoga Park, CA facility (L2300620). For your reference, the 8260 analyses have been assigned our service request number X2300237.

All analyses were performed according to our laboratory's quality assurance program. All results are intended to be considered in their entirety, and Columbia Analytical Services, Inc. (CAS) is not responsible for use of less than the complete report. Results apply only to the samples analyzed. Columbia Analytical Services, Inc. is certified for environmental analyses by the Arizona Department of Health Services (Certificate #AZ0136; and #AZ0497).

Please call if you have any questions. My extension is 223.

Respectfully submitted,

Columbia Analytical Services, Inc.

Tracy L. Dutton
Laboratory Director

TLD/lm

Page 1 of **67**

Client:

BE&K Terranext WVB / #03103154

Project: Sample Matrix:

Water

Service Request No.:

X2300237

Date Received:

3/19/03

CASE NARRATIVE

All analyses were performed consistent with the quality assurance program of Columbia Analytical Services, Inc. (CAS). This report contains analytical results for sample(s) designated for Tier II data deliverables. When appropriate to the method, method blank results have been reported with each analytical test. Surrogate recoveries have been reported for all applicable organic analyses. Additional quality control analyses reported herein include: Matrix/Duplicate Matrix Spike (MS/DMS) and Laboratory Control Sample (LCS).

All EPA recommended holding times have been met for analyses in this sample delivery group.

The following difficulties were experienced during analysis of this batch:

The associated blank spike (XWG0300422-1) recovery of 1,1-Dichloroethene and 1,1-Dichloropropene for Method 8260B was above laboratory acceptance limits but within method limits.

The associated blank spike (XWG0300422-1) recovery of 1,1,2-Trichlorotrifluoroethane and Carbon Tetrachloride for Method 8260B was above laboratory and method acceptance limits. These compounds were not detected in any of the samples analyzed in this batch.

The associated blank spike (XWG0300422-1) recovery of Iodomethane, Method 8260B, was below laboratory acceptance limits. This compound was seen in the method reporting limit standard that was analyzed with this batch of samples. This verifies that the compound would be detected if present in the samples.

Matrix spike (XWG0300420-1 and XWG0300420-2) recovery of Dichlorodifluoromethane, Chloromethane, and Vinyl Chloride, Method 8260B, was low. The method control sample recovery was acceptable.

Matrix spike (XWG0300420-1 and XWG0300420-2) recovery of Dibromomethane and Hexachlorobutadiene, Method 8260B, was high. The method control sample recovery was acceptable.

Matrix spike (XWG0300422-4 and XWG0300422-5) recovery of 1,1,2-Trichlorotrifluoroethane, Carbon Tetrachloride and 1,1-Dichloropropene for Method 8260B was high. These compounds were not detected in any of the samples analyzed in this batch

Matrix spike (XWG0300422-4 and XWG0300422-5) recovery of several other analytes for Method 8260B was high. The method control sample recovery was acceptable.

Matrix spike (XWG0300422-4 and XWG0300422-5) recovery of 2-Butanone (MEK), Method 8260B, was low. The method control sample recovery was acceptable.

LCS/DLCS (XWG0300420-3 and XWG0300420-4) RPD for 2-Butanone (MEK) and 1,2-Dibromo-3-chloropropane, Method 8260B, exceeded the laboratory control limit. Recovery met acceptance criteria.

LCS/DLCS (XWG0300422-1and XWG0300422-2) RPD for several analytes for Method 8260B exceeded the laboratory control limit. Recovery met acceptance criteria.

Approved by	Date	7-17-03	
ripproved by			_

ARIZONA DATA QUALIFIERS

Method B	lank:
B1	Target analyte detected in method blank at or above the method reporting limit.
B2	Non-target analyte detected in method blank and sample, producing interference.
ВЗ	Target analyte detected in calibration blank at or above the method reporting limit.
B4	Target analyte detected in blank at/above method acceptance criteria.
Confirma	
C1	Confirmatory analysis not performed as required by the method.
C2	Confirmatory analysis not performed. Confirmation of analyte presence established by site historical data.
C3	Qualitative confirmation performed. See case narrative.
C4	Confirmatory analysis was past holding time.
C5	Confirmatory analysis was past holding time. Original result not confirmed.
Dilution:	
D1	Sample required dilution due to matrix interference. See case narrative.
D2	Sample required dilution due to high concentration of target analyte.
D3	Sample dilution required due to insufficient sample.
D4	Minimum reporting level (MRL) adjusted to reflect sample amount received and analyzed.
Estimated	concentration:
E1	Concentration estimated. Analyte exceeded calibration range. Reanalysis not possible due to insufficient
	sample.
E2	Concentration estimated. Analyte exceeded calibration range. Reanalysis not performed due to sample matrix.
E3	Concentration estimated. Analyte exceeded calibration range. Reanalysis not performed due to holding time
	requirements.
E4	Concentration estimated. Analyte was detected below laboratory minimum reporting level (MRL).
E5	Concentration estimated. Analyte was detected below laboratory minimum reporting level (MRL), but not confirmed by alternate analysis.
E6	Confirmation estimated. Internal standard recoveries did not meet method acceptance criteria.
E7	Confirmation estimated. Internal standard recoveries did not meet laboratory acceptance criteria.
Hold Tim	
H1	Sample analysis performed past holding time. See case narrative.
H2	Initial analysis within holding time. Reanalysis for the required dilution was past holding time.
Н3	Sample was received and analyzed past holding time.
H4	Sample was extracted past required extraction holding time, but analyzed within analysis holding time. See cas narrative.
BOD:	The sample dilutions set-up for the BOD analysis did not meet the oxygen depletion criteria of at least 2mg/L.
K1	Any reported result is an estimated value.
К2	The sample dilutions set up for the BOD analysis did not meet the criteria of a residual dissolved oxygen of at least 1 mg/L. Any reported result is an estimated value.
K3	The seed depletion was outside the method acceptance limits.

The seed depletion was outside the method and laboratory acceptance limits. The reported result is an estimated K4 value. The dilution water D.O. depletion was >0.2 mg/L. K5 Glucose/glutamic acid BOD was below method acceptance criteria. Κ6 The discrepancy between the BOD and COD results has been verified by reanalysis of the sample for COD. К7 Laboratory fortified blank/blank spike: The associated blank spike recovery was above laboratory acceptance limits. See case narrative. L1 The associated blank spike recovery was below laboratory acceptance limits. See case narrative. 1.2 The associated blank spike recovery was above method acceptance limits. See case narrative. L3 The associated blank spike recovery was below method acceptance limits. See case narrative. L4 Note: The L1, L2, L3, & L4 footnotes need to be added to all corresponding analytes for a sample. Matrix spike: Matrix spike recovery was high, the method control sample recovery was acceptable. M1 Matrix spike recovery was low, the method control sample was acceptable. M2The accuracy of the spike recovery value is reduced since the analyte concentration in the sample is M3 disproportionate to spike level. The method control sample recovery was acceptable. The analysis of the spiked sample required a dilution such that the spike concentrations was diluted below M4 the reporting limit. The method control sample recovery was acceptable. Analyte concentration was determined by the method of standard addition (MSA). M5 General: See case narrative. N1 See corrective action report. N2 Sample quality: Sample integrity was not maintained. See case narrative. Q1 Sample received with head space. Q2Sample received with improper chemical preservation. Q3 Sample received and analyzed without chemical preservation. Q4 Sample received with inadequate chemical preservation, but preserved by the laboratory. Q5 Sample was received above recommended temperature. 06 Sample inadequately dechlorinated. 07 Insufficient sample received to meet QC requirements. QC requirements satisfy ADEQ policies 0154 and 0155. Q8 Insufficient sample received to meet QC requirements. Q9 Sample received in inappropriate sample container. Q10 Sample is heterogeneous. Sample homogeneity could not be readily achieved using routine laboratory practices. QH Duplicates: RPD exceeded the method control limit. See case narrative. R1 RPD exceeded the laboratory control limit. See case narrative. R2 Sample RPD between the primary and confirmatory analysis exceeded 40%. Per Method 8000B, the higher R3 value was reported. MS/MSD RPD exceeded the method control limit. Recovery met acceptance criteria. R4 MS/MSD RPD exceeded the laboratory control limit. Recovery met acceptance criteria. R5 LFB/LFBD RPD exceeded the method control limit. Recovery met acceptance criteria. R6 LFB/LFBD RPD exceeded the laboratory control limit. Recovery met acceptance criteria. R7

140	buttle to be the second of the
R9	Sample RPD exceeded the laboratory control limit.
Surrogat	te:
S1	Surrogate recovery was above laboratory acceptance limits, but within method acceptance limits.
S2	Surrogate recovery was above laboratory and method acceptance limits.
S3	Surrogate recovery was above laboratory acceptance limits, but within method acceptance limits. No target
	analytes were detected in the sample.
S4	Surrogate recovery was above laboratory and method acceptance limits. No target analytes were detected in the
	sample.
S5	Surrogate recovery was below laboratory acceptance limits, but within method acceptance limits.
S6	Surrogate recovery was below laboratory and method acceptance limits. Reextraction and/or reanalysis confirms
	low recovery caused by matrix effect.
S7	Surrogate recovery was below laboratory and method acceptance limits. Unable to confirm matrix effect.
S8	The analysis of the sample required a dilution such that the surrogate concentration was diluted below the method
	acceptance criteria. The method control sample recovery was acceptable.
S9	The analysis of the sample required a dilution such that the surrogate concentration was diluted below the
	laboratory acceptance criteria. The method control sample recovery was acceptable.
S10	Surrogate recovery was above laboratory and method acceptance limits. See case narrative.
Method	/analyte discrepancies:
T1	Method promulgated by EPA, but not ADHS at this time.
T2	Cited ADHS licensed method does not contain this analyte as part of method compound list.
T3	Method not promulgated either by EPA or ADHS.
T4	Tentatively identified compound. Concentration is estimated and based on the closest internal standard.
Calibra	tion verification:
V1	CCV recovery was above method acceptance limits. This target analyte was not detected in the sample.
V2	CCV recovery was above method acceptance limits. This target analyte was detected in the sample. The sample
	could not be reanalyzed due to insufficient sample.
V3	CCV recovery was above method acceptance limits. This target analyte was detected in the sample, but the
,	sample was not reanalyzed. See case narrative.
V4	CCV recovery was below method acceptance limits. The sample could not be reanalyzed due to insufficient
	·

CCV recovery after a group of samples was above acceptance limits. This target analyte was not detected in the

Sample RPD exceeded the method control limit.

sample. Acceptable per EPA Method 8000B.

R8

V5

Inorganic Data Qualifiers

- The result is an outlier. See case narrative.
- The control limit criteria is not applicable. See case narrative.
- The analyte was found in the associated method blank at a level that is significant relative to the sample result. В
- The result is an estimate amount because the value exceeded the instrument calibration range. E
- The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL. J
- The compound was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL. U
- The MRL/MDL has been elevated due to a matrix interference. i
- See case narrative. Х

Metals Data Qualifiers

- The control limit criteria is not applicable. See case narrative.
- The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL. В
- The reported value is estimated because of the presence of matrix interference. E
- The duplicate injection precision was not met M
- The Matrix Spike sample recovery is not within control limits. See case narrative. N
- The reported value was determined by the Method of Standard Additions (MSA). S
- The compound was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- The post-digestion spike for furnace AA analysis is out of control limits, while sample absorbance is less than 50% of spike U W absorbance
- The MRL/MDL has been elevated due to a matrix interference. i
- See case narrative. Χ
- The duplicate analysis not within control limits. See case narrative.
- The correlation coefficient for the MSA is less than 0.995.

Organic Data Qualifiers

- The result is an outlier. See case narrative.
- The control limit criteria is not applicable. See case narrative. #
- A tentatively identified compound, a suspected aldol-condensation product. Α
- The analyte was found in the associated method blank at a level that is significant relative to the sample result. В
- The analyte was qualitatively confirmed using GC/MS techniques, pattern recognition, or by comparing to historical data. C
- The reported result is from a dilution. D
- The result is an estimate amount because the value exceeded the instrument calibration range. Ε
- The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL. J
- The result is presumptive. The analyte was tentatively identified, but a confirmation analysis was not performed. N
- The GC or HPLC confirmation criteria was exceeded. The relative percent difference is greater than 40% between the two P analytical results (25% for CLP Pesticides).
- The compound was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL. U
- The MRL/MDL has been elevated due to a chromatographic interference. i
- Χ See case narrative.

Additional Petroleum Hydrocarbon Specific Qualifiers

- The chromatographic fingerprint of the sample matches the elution pattern of the calibration standard.
- The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a F greater amount of lighter molecular weight constituents than the calibration standard. L
- The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of heavier molecular weight constituents than the calibration standard. Η
- The chromatographic fingerprint of the sample resembles an oil, but does not match the calibration standard. Ο
- The chromatographic fingerprint of the sample resembles a petroleum product eluting in approximately the correct carbon
- range, but the elution pattern does not match the calibration standard. Y
- The chromatographic lingerprint does not resemble a petroleum product. Ζ

000006

Client: Project: BE&K Terranext WVB/#03103154

Service Request:

X2300237

Cover Page - Organic Analysis Data Package Volatile Organic Compounds

		Date	Date
Sample Name	Lab Code	Collected	Received
AVB106-0200-07135	X2300237-001	03/19/2003	03/19/2003
AVB106-0300-07150	X2300237-002	03/19/2003	03/19/2003
AVB106-0100-07095	X2300237-003	03/19/2003	03/19/2003
AVB103-0200-03092	X2300237-004	03/19/2003	03/19/2003
AVB15-0100-02108	X2300237-005	03/19/2003	03/19/2003
AVB15-0104-1000	X2300237-006	03/19/2003	03/19/2003
AVB15-0102-1000	X2300237-007	03/19/2003	03/19/2003
AVB106-0100-07095MS	XWG0300422-4	03/19/2003	03/19/2003
AVB106-0100-07095DMS	XWG0300422-5	03/19/2003	03/19/2003

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed in the case narrative. Release of the data contained in this hardcopy data package and in the computer-readable data submitted on floppy diskette has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signature.

Signature:	Train Dutton	
· —		
Date:	4-4-03	

Name: Tray Dutton

Title: Lab Manager

Analytical Results

Client: Project: BE&K Terranext WVB/#03103154

Sample Matrix:

Water

Service Request: X2300237

Date Collected: 03/19/2003

Date Collected: 03/19/2003 **Date Received:** 03/19/2003

Volatile Organic Compounds

Sample Name:

AVB106-0200-07135

Lab Code:

X2300237-001

Extraction Method:

EPA 5030B

8260B

Units: ug/L Basis: NA

Level: Low

Analysis Method. 02002			D11 /	Data	Data	
Analyte Name	Result Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Arizona Qualifier
Dichlorodifluoromethane	ND U	3.0	1	03/29/03	03/29/03	
	ND U	2.0	1	03/29/03	03/29/03	
Chloromethane Vinyl Chloride	ND U	1.0	1	03/29/03	03/29/03	
Bromomethane	ND U	1.0	1	03/29/03	03/29/03	
Chloresthone	ND II	1.0	1	03/29/03	03/29/03	

/03 /03 0/03 ND U Chloroethane 03/29/03 03/29/03 1 1.0 ND U Trichlorofluoromethane 03/29/03 03/29/03 1.1.2-Trichlorotrifluoroethane ND U 1.0 03/29/03 03/29/03 1 ND U 1.0 1.1-Dichloroethene 03/29/03 1 03/29/03 10 ND U Acetone 1 03/29/03 03/29/03 2.0 ND U Iodomethane 03/29/03 03/29/03 1 ND U 2.0 Carbon Disulfide 03/29/03 1 03/29/03 ND U 1.0 Methylene Chloride 03/29/03 1 03/29/03 ND U 1.0 Methyl tert-Butyl Ether 03/29/03 1 03/29/03 ND U 0.50 trans-1,2-Dichloroethene 03/29/03 03/29/03 0.50 1 5.3 1,1-Dichloroethane 03/29/03 1 03/29/03 3,0 ND U Vinvl Acetate 03/29/03 1 03/29/03 2.0 ND U 2,2-Dichloropropane 1 03/29/03 03/29/03 ND U 8.0 2-Butanone (MEK) 03/29/03 03/29/03 0.50 2.4 cis-1,2-Dichloroethene 03/29/03 03/29/03 1 0.50 ND U Bromochloromethane 03/29/03 03/29/03 1 1.0 ND U Chloroform 03/29/03 1 03/29/03 0.50 ND U 1.1.1-Trichloroethane 03/29/03 1 03/29/03 ND U 0.50 Carbon Tetrachloride 03/29/03 1 03/29/03 0.50 1,1-Dichloropropene ND U 03/29/03 1 03/29/03 0.50 4.9 Benzene 03/29/03 1 03/29/03 0.50 ND U 1,2-Dichloroethane 03/29/03 1 03/29/03 11 0.50 **Trichloroethene** 1 03/29/03 03/29/03 0.50 ND U 1,2-Dichloropropane 03/29/03 03/29/03 1 ND U 0.50 Dibromomethane 03/29/03 03/29/03 1 ND U 0.50 Bromodichloromethane 03/29/03 1 03/29/03 ND U 0.50 cis-1,3-Dichloropropene 03/29/03 03/29/03 8.0 1 ND U 4-Methyl-2-pentanone (MIBK) 03/29/03 0.50 1 03/29/03 0.79 Toluene

Comments:	

SuperSet Reference:

Analytical Results

Client: Project: BE&K Terranext WVB/#03103154

Sample Matrix:

Water

Service Request: X2300237

Date Collected: 03/19/2003

Date Received: 03/19/2003

Volatile Organic Compounds

Sample Name:

AVB106-0200-07135

Lab Code:

X2300237-001

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

Analyte Name trans-1,3-Dichloropropene	Result	\sim					
		Q	MRL	Factor	Extracted		Arizona Qualifier
mans-1.5-Dichiolopiopene	ND	U	1.0	1	03/29/03	03/29/03	
1,1,2-Trichloroethane	ND	U	1.0	1	03/29/03	03/29/03	
Tetrachloroethene	16		0.50	1	03/29/03	03/29/03	
2-Hexanone	ND	U	5.0	1	03/29/03	03/29/03	
1,3-Dichloropropane	ND	U	1.0	1	03/29/03	03/29/03	
Dibromochloromethane	0.54		0.50	1	03/29/03	03/29/03	
1,2-Dibromoethane	ND	U	0.50	1	03/29/03	03/29/03	
Chlorobenzene	ND	U	0.50	1	03/29/03	03/29/03	
1,1,1,2-Tetrachloroethane	ND	U	0.50	1	03/29/03	03/29/03	
Ethylbenzene	0.61		0.50	1	03/29/03	03/29/03	
m,p-Xylenes	ND	U	1.0	1	03/29/03	03/29/03	
o-Xylene	0.51		0.50	1	03/29/03	03/29/03	
Styrene	ND	U	0.50	1	03/29/03	03/29/03	
Isopropylbenzene	ND	U	0.50	1	03/29/03	03/29/03	
Bromobenzene	ND		0.50	1	03/29/03	03/29/03	
1,2,3-Trichloropropane	ND	U	1.0	1	03/29/03	03/29/03	
n-Propylbenzene	ND	U	0.50	1	03/29/03	03/29/03	
2-Chlorotoluene	ND	U	0.50	1	03/29/03	03/29/03	
4-Chlorotoluene	ND	U	0.50	1	03/29/03	03/29/03	
1,3,5-Trimethylbenzene	ND	U	0.50	1	03/29/03	03/29/03	
tert-Butylbenzene	ND	U	0.50	1	03/29/03	03/29/03	
1,2,4-Trimethylbenzene	ND	U	0.50	1	03/29/03	03/29/03	
sec-Butylbenzene	ND	U	0.50	1	03/29/03	03/29/03	
1,3-Dichlorobenzene	ND	U	0.50	1	03/29/03	03/29/03	
4-Isopropyltoluene	ND	U	0.50	1	03/29/03	03/29/03	
Bromoform	ND	U	0.50	1	03/29/03	03/29/03	
1,1,2,2-Tetrachloroethane	ND		1.0	1	03/29/03	03/29/03	
1,4-Dichlorobenzene	ND	U	0.50	1	03/29/03	03/29/03	
1,2-Dichlorobenzene	ND	U	0.50	1	03/29/03	03/29/03	
n-Butylbenzene	ND		0.50	1	03/29/03	03/29/03	
1,2-Dibromo-3-chloropropane	ND	U	5.0	1	03/29/03	03/29/03	
1,2,4-Trichlorobenzene	ND		0.50	1	03/29/03	03/29/03	
Hexachlorobutadiene	ND		0.50	11	03/29/03	03/29/03	

Comments:

Printed: 04/02/2003 12:20:19 L:\STEALTH\CRYSTAL.RPT\Formlm.rpt

Merged

Form 1A - Organic

000009

Page 2 of 3

SuperSet Reference: RR3143

Analytical Results

Client:

BE&K Terranext WVB/#03103154

Project: Sample Matrix:

Water

Service Request: X2300237

Date Collected: 03/19/2003

Date Received: 03/19/2003

Volatile Organic Compounds

Sample Name:

AVB106-0200-07135

Lab Code:

X2300237-001

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

			Dilution	Date	Date	
Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed	Arizona Qualifier
Naphthalene	ND U	3.0	1	03/29/03	03/29/03	
1,2,3-Trichlorobenzene	ND U	0.50	1	03/29/03	03/29/03	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Arizona Qualifier	
Dibromofluoromethane	97	84-113	03/29/03		
Toluene-d8	102	68-126	03/29/03		
4-Bromofluorobenzene	90	79-113	03/29/03		

Comments:

Printed: 04/02/2003 12:20:19 L:\STEALTH\CRYSTAL.RPT\Form1m.rpt

Analytical Results

Client: Project: BE&K Terranext WVB/#03103154

Sample Matrix:

Water

Service Request: X2300237 **Date Collected:** 03/19/2003

Date Collected: 03/19/2003 **Date Received:** 03/19/2003

Volatile Organic Compounds

Sample Name:

AVB106-0300-07150

Lab Code:

X2300237-002

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

				Dilution	Date	Date	
Analyte Name	Result	Q	MRL	Factor	Extracted		Arizona Qualifier
Dichlorodifluoromethane	ND	U	3.0	1	03/29/03	03/29/03	
Chloromethane	ND	U	2.0	1	03/29/03	03/29/03	
Vinyl Chloride	ND	U	1.0	1	03/29/03	03/29/03	
Bromomethane	ND	U	1.0	1	03/29/03	03/29/03	
Chloroethane	ND	U	1.0	1	03/29/03	03/29/03	
Trichlorofluoromethane	ND	U	1.0	1	03/29/03	03/29/03	
1,1,2-Trichlorotrifluoroethane	ND	U	1.0	1	03/29/03	03/29/03	
1,1-Dichloroethene	ND	U	1.0	1	03/29/03	03/29/03	
Acetone	ND	U	10	1	03/29/03	03/29/03	
Iodomethane	ND	U	2.0	1	03/29/03	03/29/03	
Carbon Disulfide	ND		2.0	1	03/29/03	03/29/03	
Methylene Chloride	ND	U	1.0	1	03/29/03	03/29/03	
Methyl tert-Butyl Ether	ND	U	1.0	1	03/29/03	03/29/03	
trans-1,2-Dichloroethene	ND		0.50	1	03/29/03	03/29/03	
1,1-Dichloroethane	ND	U	0.50	1	03/29/03	03/29/03	
Vinyl Acetate	ND	U	3.0	1	03/29/03	03/29/03	
2,2-Dichloropropane	ND		2.0	1	03/29/03	03/29/03	
2-Butanone (MEK)	ND	U	8.0	1	03/29/03	03/29/03	
cis-1,2-Dichloroethene	ND	U	0.50	1	03/29/03	03/29/03	
Bromochloromethane	ND		0.50	1	03/29/03	03/29/03	
Chloroform	ND	U	1.0	1	03/29/03	03/29/03	
1,1,1-Trichloroethane	ND	U	0.50	1	03/29/03	03/29/03	
Carbon Tetrachloride	ND		0.50	1	03/29/03	03/29/03	
1,1-Dichloropropene	ND	U	0.50	1	03/29/03	03/29/03	
Benzene	ND	U	0.50	1	03/29/03	03/29/03	
1,2-Dichloroethane	ND		0.50	1	03/29/03	03/29/03	
Trichloroethene	ND		0.50	1	03/29/03	03/29/03	
1,2-Dichloropropane	ND	IJ	0.50	1	03/29/03	03/29/03	
Dibromomethane	ND		0.50	1	03/29/03	03/29/03	
Bromodichloromethane	ND		0.50	1	03/29/03	03/29/03	
cis-1,3-Dichloropropene	ND		0.50	1	03/29/03	03/29/03	
4-Methyl-2-pentanone (MIBK)	ND		8.0	1	03/29/03	03/29/03	
Toluene	ND		0.50	1	03/29/03	03/29/03	
TOTACHE			·				

Comments:

Printed: 04/02/2003 12:20:30 L:\STEALTH\CRYSTAL.RPT\Form\lm.rpt

Merged

Form 1A - Organic

000011

Page 1 of 3

SuperSet Reference: R

Analytical Results

Client: Project: BE&K Terranext WVB/#03103154

Sample Matrix:

Water

Service Request: X2300237

Date Collected: 03/19/2003 **Date Received:** 03/19/2003

Units: ug/L

Volatile Organic Compounds

Sample Name:

AVB106-0300-07150

Lab Code:

X2300237-002

Extraction Method: Analysis Method:

EPA 5030B

8260B

Basis: NA Level: Low

		•	MDI	Dilution Factor	Date Extracted	Date Analyzed	Arizona Qualifier_
Analyte Name	Result		MRL		03/29/03	03/29/03	Milzona Quantes
trans-1,3-Dichloropropene	ND		1.0	1	03/29/03	03/29/03	
1,1,2-Trichloroethane	ND		1.0	1 1	03/29/03	03/29/03	
Tetrachloroethene	ND		0.50				
2-Hexanone	ND		5.0	1	03/29/03	03/29/03 03/29/03	
1,3-Dichloropropane	ND		1.0	1	03/29/03 03/29/03	03/29/03	
Dibromochloromethane	ND		0.50	1			
1,2-Dibromoethane	ND		0.50	1	03/29/03	03/29/03	
Chlorobenzene	ND		0.50	1	03/29/03	03/29/03	
1,1,1,2-Tetrachloroethane	ND	U	0.50	1	03/29/03	03/29/03	
Ethylbenzene	ND	U	0.50	1	03/29/03	03/29/03	
m,p-Xylenes	ND	U	1.0	1	03/29/03	03/29/03	
o-Xylene	ND	U	0.50	1	03/29/03	03/29/03	
Styrene	ND	U	0.50	1	03/29/03	03/29/03	
Isopropylbenzene	ND		0.50	1	03/29/03	03/29/03	
Bromobenzene	ND		0.50	1	03/29/03	03/29/03	
1,2,3-Trichloropropane	ND	U	1.0	1	03/29/03	03/29/03	
n-Propylbenzene	ND		0.50	1	03/29/03	03/29/03	
2-Chlorotoluene	ND		0.50	1	03/29/03	03/29/03	
4-Chlorotoluene	ND	U	0.50	1	03/29/03	03/29/03	
1,3,5-Trimethylbenzene	ND		0.50	1	03/29/03	03/29/03	
tert-Butylbenzene	ND		0.50	1	03/29/03	03/29/03	
1,2,4-Trimethylbenzene	ND	U	0.50	1	03/29/03	03/29/03	
sec-Butylbenzene	ND		0.50	1	03/29/03	03/29/03	
1,3-Dichlorobenzene	ND		0.50	1	03/29/03	03/29/03	
4-Isopropyltoluene	ND	U	0.50	1	03/29/03	03/29/03	
Bromoform	ND		0.50	1	03/29/03	03/29/03	
1,1,2,2-Tetrachloroethane	ND		1.0	1	03/29/03	03/29/03	
1,4-Dichlorobenzene	ND		0.50	1	03/29/03	03/29/03	
1,4-Dichlorobenzene	ND		0.50	1	03/29/03	03/29/03	
n-Butylbenzene	ND		0.50	1	03/29/03	03/29/03	
1,2-Dibromo-3-chloropropane	ND		5.0	1	03/29/03	03/29/03	
1,2,4-Trichlorobenzene		U	0.50	1	03/29/03	03/29/03	
Hexachlorobutadiene		U	0.50	î	03/29/03	03/29/03	
HEADCINOTOURIDATION	1112						

Comments:

000012

SuperSet Reference:

Analytical Results

Client:

BE&K Terranext

Project:

WVB/#03103154

Sample Matrix:

Water

Service Request: X2300237

Date Collected: 03/19/2003

Date Received: 03/19/2003

Volatile Organic Compounds

Sample Name:

AVB106-0300-07150

Lab Code:

X2300237-002

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

			Dilution	Date	Date	
Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed	Arizona Qualifier
Naphthalene 1,2,3-Trichlorobenzene	ND U ND U	3.0 0.50	1 1	03/29/03 03/29/03	03/29/03 03/29/03	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Arizona Qualifier	
Dibromofluoromethane	107	84-113	03/29/03		
Toluene-d8	107	68-126	03/29/03		
4-Bromofluorobenzene	95	79-113	03/29/03		

Comments:

Printed: 04/02/2003 12:20:30 L:\STEALTH\CRYSTAL.RPT\Form1m.rpt

Merged

Form 1A - Organic

3 of 3 Page

Analytical Results

Client: Project: BE&K Terranext WVB/#03103154

Sample Matrix:

Water

Service Request: X2300237 **Date Collected:** 03/19/2003

Date Received: 03/19/2003

Volatile Organic Compounds

Sample Name:

AVB106-0100-07095

Lab Code:

X2300237-003

Extraction Method: Analysis Method:

EPA 5030B

8260B

Units: ug/L Basis: NA

Level: Low

				Dilution	Date	Date	
Analyte Name	Result	Q	MRL	Factor	Extracted	Analyzed	Arizona Qualifier
Dichlorodifluoromethane	ND	U	3,0	1	03/29/03	03/29/03	
Chloromethane	ND	U	2.0	1	03/29/03	03/29/03	
Vinyl Chloride	ND	U	1.0	1	03/29/03	03/29/03	
Bromomethane	ND	U	1.0	1	03/29/03	03/29/03	
Chloroethane	ND	U	1.0	1	03/29/03	03/29/03	
Trichlorofluoromethane	ND	U	1.0	1	03/29/03	03/29/03	
1,1,2-Trichlorotrifluoroethane	ND	U	1.0	1	03/29/03	03/29/03	L1
1,1-Dichloroethene	ND	U	1.0	1	03/29/03	03/29/03	Ll
Acetone	ND	U	10	1	03/29/03	03/29/03	
Iodomethane	ND	U	2.0	1	03/29/03	03/29/03	L2
Carbon Disulfide	ND	U	2.0	1	03/29/03	03/29/03	
Methylene Chloride	ND	U	1.0	1	03/29/03	03/29/03	
Methyl tert-Butyl Ether	ND	U	1.0	1	03/29/03	03/29/03	
trans-1,2-Dichloroethene	ND		0.50	1	03/29/03	03/29/03	
1,1-Dichloroethane	ND	U	0.50	1	03/29/03	03/29/03	
Vinyl Acetate	ND	U	3.0	1	03/29/03	03/29/03	
2,2-Dichloropropane	ND	U	2.0	1	03/29/03	03/29/03	
2-Butanone (MEK)	ND	U	8.0	1	03/29/03	03/29/03	
cis-1,2-Dichloroethene	ND	U	0.50	1	03/29/03	03/29/03	
Bromochloromethane	ND	U	0.50	1	03/29/03	03/29/03	
Chloroform	4.8		1.0	1	03/29/03	03/29/03	
1,1,1-Trichloroethane	ND	U	0.50	1	03/29/03	03/29/03	
Carbon Tetrachloride	ND	U	0.50	1	03/29/03	03/29/03	L1
1,1-Dichloropropene	ND	U	0.50	1	03/29/03	03/29/03	L1
Benzene	ND	U	0.50	1	03/29/03	03/29/03	
1,2-Dichloroethane	ND	U	0.50	1	03/29/03	03/29/03	
Trichloroethene	27		0.50	1	03/29/03	03/29/03	
1,2-Dichloropropane	ND	U	0.50	1	03/29/03	03/29/03	
Dibromomethane	ND	U	0.50	1	03/29/03	03/29/03	
Bromodichloromethane	1.4		0.50	1	03/29/03	03/29/03	
cis-1,3-Dichloropropene	ND	U	0.50	1	03/29/03	03/29/03	
4-Methyl-2-pentanone (MIBK)	ND		8.0	1	03/29/03	03/29/03	
Toluene	ND	U	0.50	1	03/29/03	03/29/03	

Comments:

Printed: 04/02/2003 12:20:41 $L: \verb|\STEALTH| CRYSTAL.RPT| Form lm.rpt$

Merged

Form 1A - Organic

000014

1 of 3 Page

SuperSet Reference:

Analytical Results

Client: Project: BE&K Terranext WVB/#03103154

Sample Matrix:

Water

Service Request: X2300237

Date Collected: 03/19/2003 **Date Received:** 03/19/2003

Volatile Organic Compounds

Sample Name:

AVB106-0100-07095

Lab Code:

X2300237-003

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

				Dilution	Date	Date	
Analyte Name	Result	Q	MRL	Factor	Extracted	Analyzed	Arizona Qualifier
trans-1,3-Dichloropropene	ND	U	1.0	1	03/29/03	03/29/03	
1,1,2-Trichloroethane	ND ⁻	U	1.0	1	03/29/03	03/29/03	
Tetrachloroethene	8.9		0.50	1	03/29/03	03/29/03	
2-Hexanone	ND	U	5.0	1	03/29/03	03/29/03	
1,3-Dichloropropane	ND '	U	1.0	1	03/29/03	03/29/03	
Dibromochloromethane	ND	U	0.50	1	03/29/03	03/29/03	
1,2-Dibromoethane	ND	U	0.50	1	03/29/03	03/29/03	
Chlorobenzene	ND	U	0.50	1	03/29/03	03/29/03	
1,1,1,2-Tetrachloroethane	ND	U	0.50	1	03/29/03	03/29/03	
Ethylbenzene	ND	U	0.50	1	03/29/03	03/29/03	
m,p-Xylenes	ND	U	1.0	1	03/29/03	03/29/03	
o-Xylene	ND	U	0.50	1	03/29/03	03/29/03	
Styrene	ND	U	0.50	1	03/29/03	03/29/03	
Isopropylbenzene	ND	U	0.50	1	03/29/03	03/29/03	
Bromobenzene	ND	U	0.50	1	03/29/03	03/29/03	
1,2,3-Trichloropropane	ND	U	1.0	1	03/29/03	03/29/03	
n-Propylbenzene	ND	U	0.50	1	03/29/03	03/29/03	
2-Chlorotoluene	ND	U	0.50	1	03/29/03	03/29/03	
4-Chlorotoluene	ND	U	0.50	1	03/29/03	03/29/03	
1,3,5-Trimethylbenzene	ND	U	0.50	. 1	03/29/03	03/29/03	
tert-Butylbenzene	ND	U	0.50	1	03/29/03	03/29/03	
1,2,4-Trimethylbenzene	ND	U	0.50	1	03/29/03	03/29/03	
sec-Butylbenzene	ND	U	0.50	1	03/29/03	03/29/03	
1,3-Dichlorobenzene	ND	U	0.50	1	03/29/03	03/29/03	
4-Isopropyltoluene	ND	U	0.50	1	03/29/03	03/29/03	
Bromoform	ND	U	0.50	1	03/29/03	03/29/03	
1,1,2,2-Tetrachloroethane	ND	U	1.0	1	03/29/03	03/29/03	
1,4-Dichlorobenzene	ND	U	0.50	1	03/29/03	03/29/03	
1,2-Dichlorobenzene	ND	U	0.50	1	03/29/03	03/29/03	
n-Butylbenzene	ND	U	0.50	1	03/29/03	03/29/03	
1,2-Dibromo-3-chloropropane	ND	U	5.0	1	03/29/03	03/29/03	
1,2,4-Trichlorobenzene	ND		0.50	1	03/29/03	03/29/03	
Hexachlorobutadiene	ND		0.50	1	03/29/03	03/29/03	

Comments:

000015

Page 2 of 3

Form 1A - Organic

Analytical Results

Client: Project: BE&K Terranext WVB/#03103154

Sample Matrix:

Water

Service Request: X2300237

Date Collected: 03/19/2003 **Date Received:** 03/19/2003

Volatile Organic Compounds

Sample Name:

AVB106-0100-07095

Lab Code:

X2300237-003

Extraction Method:

EPA 5030B

Units: ug/L Basis: NA

Level: Low

Analysis Method:

8260B

			Dilution	Date	Date	
Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed	Arizona Qualifier
Naphthalene	ND U	3.0	1	03/29/03	03/29/03	
1,2,3-Trichlorobenzene	ND U	0.50	1	03/29/03	03/29/03	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Arizona Qualifier	
Dibromofluoromethane	108	84-113	03/29/03		
Toluene-d8	112	68-126	03/29/03		
4-Bromofluorobenzene	104	79-113	03/29/03		

Comments:

Printed: 04/02/2003 12:20:41 L:\STEALTH\CRYSTAL.RPT\Form\m.rpt

Analytical Results

Client: Project: BE&K Terranext WVB/#03103154

Sample Matrix:

Water

Service Request: X2300237 **Date Collected:** 03/19/2003

Date Received: 03/19/2003

Volatile Organic Compounds

Sample Name:

AVB103-0200-03092

Lab Code:

X2300237-004

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

			Dilution	Date	Date	
Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed	Arizona Qualifier
Dichlorodifluoromethane	ND U	3.0	1	03/29/03	03/29/03	
Chloromethane	ND U	2.0	1	03/29/03	03/29/03	
Vinyl Chloride	ND U	1.0	1	03/29/03	03/29/03	
Bromomethane	ND U	1.0	1	03/29/03	03/29/03	
Chloroethane	ND U	1.0	1	03/29/03	03/29/03	
Trichlorofluoromethane	ND U	1.0	1	03/29/03	03/29/03	
1,1,2-Trichlorotrifluoroethane	ND U	1.0	1	03/29/03		L1
1,1-Dichloroethene	1.2	1.0	1	03/29/03		L1
Acetone	ND U	10	. 1	03/29/03	03/29/03	
Iodomethane	ND U	2.0	1	03/29/03	03/29/03	L2
Carbon Disulfide	ND U	2.0	1	03/29/03	03/29/03	
Methylene Chloride	ND U	1.0	1	03/29/03	03/29/03	
Methyl tert-Butyl Ether	ND U	1.0	1	03/29/03	03/29/03	
trans-1,2-Dichloroethene	ND U	0.50	1	03/29/03	03/29/03	
1,1-Dichloroethane	ND U	0.50	1	03/29/03	03/29/03	
Vinyl Acetate	ND U	3.0	1	03/29/03	03/29/03	
2,2-Dichloropropane	ND U	2.0	1	03/29/03	03/29/03	
2-Butanone (MEK)	ND U	8.0	1	03/29/03	03/29/03	
cis-1,2-Dichloroethene	0.89	0.50	1	03/29/03	03/29/03	
Bromochloromethane	ND U	0.50	1	03/29/03	03/29/03	
Chloroform	1.0	1.0	1	03/29/03	03/29/03	
1.1.1-Trichloroethane	ND U	0.50	1	03/29/03	03/29/03	
Carbon Tetrachloride	ND U	0.50	1	03/29/03	03/29/03	L1
1,1-Dichloropropene	ND U	0.50	1	03/29/03	03/29/03	L1
Benzene	ND U	0.50	1	03/29/03	03/29/03	
1,2-Dichloroethane	ND U	0.50	1	03/29/03	03/29/03	
Trichloroethene	2.7	0.50	1	03/29/03	03/29/03	
1,2-Dichloropropane	ND U	0.50	1	03/29/03	03/29/03	
Dibromomethane	ND U	. 0.50	1	03/29/03	03/29/03	
Bromodichloromethane	ND U	0.50	1	03/29/03	03/29/03	4040
cis-1,3-Dichloropropene	ND U	0.50	1	03/29/03	03/29/03	
4-Methyl-2-pentanone (MIBK)	ND U	8.0	1	03/29/03	03/29/03	
Toluene	ND U	0.50	1	03/29/03	03/29/03	

Comments:

Printed: 04/02/2003 12:20:52

Merged

Form 1A - Organic

000017

1 of 3 Page

Analytical Results

Client: Project: BE&K Terranext WVB/#03103154

Sample Matrix:

Water

Service Request: X2300237

Date Collected: 03/19/2003 **Date Received:** 03/19/2003

Volatile Organic Compounds

Sample Name:

AVB103-0200-03092

Lab Code:

X2300237-004

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

			Dilution	Date	Date	
Analyte Name	Result Q	MRL	Factor	Extracted		Arizona Qualifier
trans-1,3-Dichloropropene	ND U	1.0	1	03/29/03	03/29/03	
1,1,2-Trichloroethane	ND U	1.0	1	03/29/03	03/29/03	
Tetrachloroethene	0.80	0.50	1	03/29/03	03/29/03	
2-Hexanone	ND U	5.0	1	03/29/03	03/29/03	
1,3-Dichloropropane	ND U	1.0	1	03/29/03	03/29/03	
Dibromochloromethane	ND U	0.50	1	03/29/03	03/29/03	
1,2-Dibromoethane	ND U	0.50	1	03/29/03	03/29/03	
Chlorobenzene	ND U	0.50	1	03/29/03	03/29/03	
1,1,1,2-Tetrachloroethane	ND U	0.50	1	03/29/03	03/29/03	
Ethylbenzene	ND U	0.50	1	03/29/03	03/29/03	
m,p-Xylenes	ND U	1.0	1	03/29/03	03/29/03	
o-Xylene	ND U	0.50	1	03/29/03	03/29/03	
Styrene	ND U	0.50	1	03/29/03	03/29/03	
Isopropylbenzene	ND U	0.50	1	03/29/03	03/29/03	
Bromobenzene	ND U	0.50	1	03/29/03	03/29/03	
1,2,3-Trichloropropane	ND U	1.0	1	03/29/03	03/29/03	
n-Propylbenzene	ND U	0.50	1	03/29/03	03/29/03	
2-Chlorotoluene	ND U	0.50	1	03/29/03	03/29/03	
4-Chlorotoluene	ND U	0.50	1	03/29/03	03/29/03	
1,3,5-Trimethylbenzene	ND U	0.50	1	03/29/03	03/29/03	
tert-Butylbenzene	ND U	0.50	1	03/29/03	03/29/03	
1,2,4-Trimethylbenzene	ND U	0.50	1	03/29/03	03/29/03	
sec-Butylbenzene	ND U	0.50	1	03/29/03	03/29/03	
1,3-Dichlorobenzene	ND U	0.50	1	03/29/03	03/29/03	
4-Isopropyltoluene	ND U	0.50	1	03/29/03	03/29/03	
Bromoform	ND U	0.50	1	03/29/03	03/29/03	
1,1,2,2-Tetrachloroethane	ND U	1.0	1	03/29/03	03/29/03	
1,4-Dichlorobenzene	ND U	0.50	1	03/29/03	03/29/03	
1,2-Dichlorobenzene	ND U	0.50	1	03/29/03	03/29/03	
n-Butylbenzene	ND U	0.50	1	03/29/03	03/29/03	
1,2-Dibromo-3-chloropropane	ND U	5.0	1	03/29/03	03/29/03	
1,2,4-Trichlorobenzene	ND U	0.50	1	03/29/03	03/29/03	
Hexachlorobutadiene	ND U	0.50	1	03/29/03	03/29/03	

Comments:

Printed: 04/02/2003 12:20:52

Form 1A - Organic

000018

2 of 3 Page

Analytical Results

Client:

BE&K Terranext WVB/#03103154

Project: Sample Matrix:

Water

Service Request: X2300237

Date Collected: 03/19/2003

Date Received: 03/19/2003

Volatile Organic Compounds

Sample Name:

AVB103-0200-03092

Lab Code:

X2300237-004

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

			Dilution	Date	Date	
Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed	Arizona Qualifier
Naphthalene	ND U ND U	3.0 0.50	1	03/29/03 03/29/03	03/29/03 03/29/03	
1,2,3-Trichlorobenzene	ND 0	0.50				

Surrogate Name	%Rec	Control Limits	Date Analyzed	Arizona Qualifier	
Dibromofluoromethane	109	84-113	03/29/03		
Toluene-d8	110	68-126	03/29/03		
4-Bromofluorobenzene	104	79-113	03/29/03		

Comments:

Printed: 04/02/2003 12:20:52

RR3143

Merged

Analytical Results

Client: Project: BE&K Terranext WVB/#03103154

Sample Matrix:

Water

Service Request: X2300237

Date Collected: 03/19/2003

Date Received: 03/19/2003

Volatile Organic Compounds

Sample Name: Lab Code: AVB15-0100-02108

Extraction Method:

X2300237-005

Analysis Method:

EPA 5030B 8260B Units: ug/L Basis: NA

Level: Low

				Dilution	Date	Date	
Analyte Name	Result	Q	MRL	Factor	Extracted		Arizona Qualifier
Dichlorodifluoromethane	ND	U	3.0	1	03/29/03	03/29/03	
Chloromethane	ND	U	2.0	1	03/29/03	03/29/03	
Vinyl Chloride	ND	U	1.0	1	03/29/03	03/29/03	
Bromomethane	ND	U	1.0	1	03/29/03	03/29/03	
Chloroethane	ND	U	1.0	1	03/29/03	03/29/03	
Trichlorofluoromethane	1.0		1.0	1	03/29/03	03/29/03	
1.1.2-Trichlorotrifluoroethane	ND	U	1.0	1	03/29/03	03/29/03	Ll
1.1-Dichloroethene	ND	U	1.0	1	03/29/03	03/29/03	L1
Acetone	ND	U	10	1	03/29/03	03/29/03	
Iodomethane	ND	U	2.0	1	03/29/03	03/29/03	L2
Carbon Disulfide	ND	U	2.0	1	03/29/03	03/29/03	
Methylene Chloride	ND	U	1.0	1	03/29/03	03/29/03	
Methyl tert-Butyl Ether	ND	U	1.0	1	03/29/03	03/29/03	
trans-1,2-Dichloroethene	ND		0.50	1	03/29/03	03/29/03	
1,1-Dichloroethane	ND	U	0.50	1	03/29/03	03/29/03	
Vinyl Acetate	ND	U	3.0	1	03/29/03	03/29/03	
2,2-Dichloropropane	ND	U	2.0	1	03/29/03	03/29/03	
2-Butanone (MEK)	ND	U	8.0	1	03/29/03	03/29/03	
cis-1,2-Dichloroethene	7.3		0.50	1	03/29/03	03/29/03	
Bromochloromethane	ND	U	0.50	1	03/29/03	03/29/03	
Chloroform	3.1		1.0	1	03/29/03	03/29/03	
1.1.1-Trichloroethane	ND	U	0.50	1	03/29/03	03/29/03	
Carbon Tetrachloride	ND	U	0.50	1	03/29/03	03/29/03	L1
1,1-Dichloropropene	ND	U	0.50	1	03/29/03	03/29/03	Ll
Benzene	ND	U	0.50	1	03/29/03	03/29/03	
1,2-Dichloroethane	ND	U	0.50	1	03/29/03	03/29/03	
Trichloroethene	73	i	0.50	1	03/29/03	03/29/03	
1,2-Dichloropropane	ND	U	0.50	1	03/29/03	03/29/03	
Dibromomethane		U	0.50	1	03/29/03	03/29/03	
Bromodichloromethane	0.64	1	0.50	1	03/29/03	03/29/03	
cis-1,3-Dichloropropene	ND	U	0.50	1	03/29/03	03/29/03	
4-Methyl-2-pentanone (MIBK)		U	8.0	1	03/29/03	03/29/03	
Toluene	NE	U	0.50	1	03/29/03	03/29/03	

Comments:

Printed: 04/02/2003 12:21:03 L:\STEALTH\CRYSTAL.RPT\Form\m.rpt

Merged

Form 1A - Organic

111020 et Reference:

Page 1 of 3

Analytical Results

Client: Project: BE&K Terranext WVB/#03103154

Sample Matrix:

Water

Service Request: X2300237

Date Collected: 03/19/2003 **Date Received:** 03/19/2003

Units: ug/L

Basis: NA

Volatile Organic Compounds

Sample Name:

AVB15-0100-02108

Lab Code:

Extraction Method: Analysis Method:

EPA 5030B 8260B

X2300237-005

Level: Low

Date

Date

Dilution

				Dilution	Date	Date	
Analyte Name	Result	Q	MRL	Factor	Extracted	Analyzed	Arizona Qualifier
trans-1,3-Dichloropropene	ND		1.0	1	03/29/03	03/29/03	
1,1,2-Trichloroethane	ND		1.0	1	03/29/03	03/29/03	
Tetrachloroethene	2.9		0.50	1	03/29/03	03/29/03	
2-Hexanone	ND	IJ	5.0	1	03/29/03	03/29/03	
1,3-Dichloropropane	ND		1.0	1	03/29/03	03/29/03	
Dibromochloromethane	ND		0.50	1	03/29/03	03/29/03	
1,2-Dibromoethane	ND		0.50	1	03/29/03	03/29/03	
Chlorobenzene	ND		0.50	1	03/29/03	03/29/03	
1,1,1,2-Tetrachloroethane	ND		0.50	1	03/29/03	03/29/03	
Ethylbenzene	ND	U	0.50	1	03/29/03	03/29/03	
m,p-Xylenes	ND		1.0	1	03/29/03	03/29/03	
o-Xylene	ND		0.50	1	03/29/03	03/29/03	
Styrene	ND	U	0.50	1	03/29/03	03/29/03	
Isopropylbenzene	ND		0.50	1	03/29/03	03/29/03	
Bromobenzene	ND		0.50	1	03/29/03	03/29/03	
1,2,3-Trichloropropane	ND	U	1.0	1	03/29/03	03/29/03	
n-Propylbenzene	ND		0.50	1	03/29/03	03/29/03	
2-Chlorotoluene	ND		0.50	1	03/29/03	03/29/03	
4-Chlorotoluene	ND	U	0.50	1	03/29/03	03/29/03	
1,3,5-Trimethylbenzene	ND		0.50	1	03/29/03	03/29/03	
tert-Butylbenzene	ND		0.50	1	03/29/03	03/29/03	
1,2,4-Trimethylbenzene	ND	U	0.50	1	03/29/03	03/29/03	
sec-Butylbenzene	ND		0.50	1	03/29/03	03/29/03	
1,3-Dichlorobenzene	ND		0.50	1	03/29/03	03/29/03	
4-Isopropyltoluene	ND	U	0.50	1	03/29/03	03/29/03	
Bromoform	ND	U	0.50	1	03/29/03	03/29/03	
1,1,2,2-Tetrachloroethane	ND	U	1.0	1	03/29/03	03/29/03	
1,4-Dichlorobenzene	ND	U	0.50	1	03/29/03	03/29/03	
1,2-Dichlorobenzene	ND		0.50	1	03/29/03	03/29/03	
n-Butylbenzene	ND	U	0.50	1	03/29/03	03/29/03	
1,2-Dibromo-3-chloropropane	ND	U	5.0	1	03/29/03	03/29/03	
1,2,4-Trichlorobenzene	ND	U	0.50	1	03/29/03	03/29/03	
Hexachlorobutadiene	ND	U	0.50	1	03/29/03	03/29/03	

Comments:

000021

SuperSet Reference:

Printed: 04/02/2003 12:21:03 L:\STEALTH\CRYSTAL.RPT\Formlm.rpt

Merged

Form 1A - Organic

2 of 3 Page

Analytical Results

Client:

BE&K Terranext WVB/#03103154

Project: Sample Matrix:

Water

Service Request: X2300237

Date Collected: 03/19/2003

Date Received: 03/19/2003

Volatile Organic Compounds

Sample Name:

AVB15-0100-02108

Lab Code:

X2300237-005

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

			Dilution	Date	Date	
Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed	Arizona Qualifier
Naphthalene	ND U	3.0	1	03/29/03	03/29/03	
1,2,3-Trichlorobenzene	ND U	0.50	1	03/29/03	03/29/03	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Arizona Qualifier	
Dibromofluoromethane	109	84-113	03/29/03		
Toluene-d8	111	68-126	03/29/03		
4-Bromofluorobenzene	105	79-113	03/29/03		

Comments:

000022

SuperSet Reference:

Merged

Page

Analytical Results

Client: Project: BE&K Terranext WVB/#03103154

Sample Matrix:

Water

Service Request: X2300237

Date Collected: 03/19/2003 **Date Received:** 03/19/2003

Volatile Organic Compounds

Sample Name: Lab Code: AVB15-0104-1000 X2300237-006

Extraction Method: Analysis Method:

EPA 5030B 8260B Units: ug/L Basis: NA Level: Low

				Dilution	Date	Date	
Analyte Name	Result	Q	MRL	Factor	Extracted	Analyzed	Arizona Qualifier
Dichlorodifluoromethane	ND	U	3.0	1	03/29/03	03/29/03	
Chloromethane	ND	U	2.0	1 .	03/29/03	03/29/03	
Vinyl Chloride	ND	U	1.0	1	03/29/03	03/29/03	
Bromomethane	ND	U	1.0	1	03/29/03	03/29/03	
Chloroethane	ND	U	1.0	1	03/29/03	03/29/03	
Trichlorofluoromethane	ND	U	1.0	1	03/29/03	03/29/03	
1,1,2-Trichlorotrifluoroethane	ND	U	1.0	1	03/29/03	03/29/03	Ll
1,1-Dichloroethene	ND	U	1.0	1	03/29/03	03/29/03	Ll
Acetone	ND	U	10	1	03/29/03	03/29/03	
Iodomethane	ND	U	2.0	1	03/29/03	03/29/03	L2
Carbon Disulfide	ND		2.0	1	03/29/03	03/29/03	
Methylene Chloride	ND	U	1.0	1	03/29/03	03/29/03	
Methyl tert-Butyl Ether	ND	U	1.0	1	03/29/03	03/29/03	
trans-1,2-Dichloroethene	ND		0.50	1	03/29/03	03/29/03	
1,1-Dichloroethane	ND		0.50	1	03/29/03	03/29/03	
Vinyl Acetate	ND	U	3.0	1	03/29/03	03/29/03	
2,2-Dichloropropane	ND	U	2.0	1	03/29/03	03/29/03	
2-Butanone (MEK)	ND	U	8.0	1	03/29/03	03/29/03	
cis-1,2-Dichloroethene	ND	U	0.50	1	03/29/03	03/29/03	
Bromochloromethane	ND	U	0.50	1	03/29/03	03/29/03	
Chloroform	1.3		1.0	1	03/29/03	03/29/03	
1,1,1-Trichloroethane	ND	U	0.50	1	03/29/03	03/29/03	
Carbon Tetrachloride	ND	U	0.50	1	03/29/03	03/29/03	L1
1,1-Dichloropropene	ND	U	0.50	1	03/29/03	03/29/03	L1
Benzene	ND	U	0.50	1	03/29/03	03/29/03	
1.2-Dichloroethane	ND	U	0.50	1	03/29/03	03/29/03	
Trichloroethene	ND	U	0.50	1	03/29/03	03/29/03	
1,2-Dichloropropane	ND	U	0.50	1	03/29/03	03/29/03	
Dibromomethane	ND	U	0.50	1	03/29/03	03/29/03	
Bromodichloromethane	0.69)	0.50	1	03/29/03	03/29/03	
cis-1,3-Dichloropropene	ND	U	0.50	1	03/29/03	03/29/03	
4-Methyl-2-pentanone (MIBK)	ND	U	8.0	1	03/29/03	03/29/03	
Toluene	ND	U	0.50	1	03/29/03	03/29/03	

Comments:

Printed: 04/02/2003 12:21:14 L:\STEALTH\CRYSTAL.RPT\Form\m.rpt

Merged

Form 1A - Organic

000023

Page 1 of 3

SuperSet Reference:

Analytical Results

Client: Project: BE&K Terranext WVB/#03103154

Sample Matrix:

Water

Service Request: X2300237

Date Collected: 03/19/2003

Date Received: 03/19/2003

Volatile Organic Compounds

Sample Name: Lab Code:

AVB15-0104-1000 X2300237-006

Extraction Method: EPA 5030B

Units: ug/L Basis: NA

Level: Low

EXITACTION MICHIOU.	LIZIO
Analysis Method:	8260B

	-	0	MDY	Dilution Factor	Date Extracted	Date Analyzed	Arizona Qualifier
Analyte Name	Result		MRL		03/29/03	03/29/03	Arizona Quanner
trans-1,3-Dichloropropene	ND		1.0	1 1	03/29/03	03/29/03	
1,1,2-Trichloroethane	ND		1.0 0.50	1	03/29/03	03/29/03	
Tetrachloroethene	ND					03/29/03	
2-Hexanone	ND		5.0	1	03/29/03 03/29/03	03/29/03	
1,3-Dichloropropane	ND		1.0	1	03/29/03	03/29/03	
Dibromochloromethane	ND		0.50	1			
1,2-Dibromoethane	ND		0.50	1	03/29/03	03/29/03	
Chlorobenzene	ND		0.50	1	03/29/03	03/29/03	
1,1,1,2-Tetrachloroethane	ND	U	0.50	1	03/29/03	03/29/03	
Ethylbenzene	ND	U	0.50	1	03/29/03	03/29/03	
m,p-Xylenes	ND	U	1.0	1	03/29/03	03/29/03	
o-Xylene	ND	U	0.50	1	03/29/03	03/29/03	
Styrene	ND	U	0.50	. 1	03/29/03	03/29/03	
Isopropylbenzene	ND		0.50	1	03/29/03	03/29/03	
Bromobenzene	ND		0.50	1	03/29/03	03/29/03	
1,2,3-Trichloropropane	ND	U	1.0	1	03/29/03	03/29/03	
n-Propylbenzene	ND		0.50	1	03/29/03	03/29/03	
2-Chlorotoluene	ND	U	0.50	1	03/29/03	03/29/03	
4-Chlorotoluene	ND	U	0.50	1	03/29/03	03/29/03	
1,3,5-Trimethylbenzene	ND	U	0.50	1	03/29/03	03/29/03	
tert-Butylbenzene	ND		0.50	1	03/29/03	03/29/03	
1,2,4-Trimethylbenzene	ND	U	0.50	1	03/29/03	03/29/03	
sec-Butylbenzene	ND	U	0.50	1	03/29/03	03/29/03	
1,3-Dichlorobenzene	ND		0.50	1	03/29/03	03/29/03	
4-Isopropyltoluene	ND	U	0.50	1	03/29/03	03/29/03	
Bromoform	ND	U	0.50	1	03/29/03	03/29/03	
1,1,2,2-Tetrachloroethane	ND		1.0	1	03/29/03	03/29/03	
1,4-Dichlorobenzene	ND	U	0.50	1	03/29/03	03/29/03	
1,2-Dichlorobenzene	ND		0.50	1	03/29/03	03/29/03	
n-Butylbenzene	ND		0.50	1	03/29/03	03/29/03	
1,2-Dibromo-3-chloropropane	ND	U	5.0	1	03/29/03	03/29/03	
1,2,4-Trichlorobenzene	ND		0.50	1	03/29/03	03/29/03	
Hexachlorobutadiene		U	0.50	1	03/29/03	03/29/03	

Comments:

000024

Merged

Analytical Results

Client: Project:

BE&K Terranext WVB/#03103154

Sample Matrix:

Water

Service Request: X2300237

Date Collected: 03/19/2003

Date Received: 03/19/2003

Volatile Organic Compounds

Sample Name: Lab Code: AVB15-0104-1000 X2300237-006

Extraction Method:

EPA 5030B

Units: ug/L Basis: NA

Level: Low

Analysis Method:

8260B

			Dilution	Date	Date	
Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed	Arizona Qualifier
Naphthalene	ND U	3.0	1	03/29/03	03/29/03	
1,2,3-Trichlorobenzene	ND U	0.50	1	03/29/03	03/29/03	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Arizona Qualifier	
Dibromofluoromethane	108	84-113	03/29/03		
Toluene-d8	110	68-126	03/29/03		
4-Bromofluorobenzene	104	79-113	03/29/03		

Comments:

Printed: 04/02/2003 12:21:14

Merged

Form 1A - Organic

000025

Page 3 of 3

SuperSet Reference:

Analytical Results

Client: Project:

BE&K Terranext WVB/#03103154

Sample Matrix:

Water

Service Request: X2300237

Date Collected: 03/19/2003 **Date Received:** 03/19/2003

Volatile Organic Compounds

Sample Name: Lab Code: AVB15-0102-1000 X2300237-007

Extraction Method: Analysis Method:

EPA 5030B 8260B Units: ug/L Basis: NA

Level: Low

Analyte Name Dichlorodifluoromethane Chloromethane Vinyl Chloride	ND ND ND ND	U	MRL 3.0	Factor	Extracted	Analyzed	Arizona Qualifier
Chloromethane Vinyl Chloride	ND		3.0				
Vinyl Chloride		TT	5.0	1	03/29/03	03/29/03	
	ND	U	2.0	1	03/29/03	03/29/03	
D		U	1.0	1	03/29/03	03/29/03	
Bromomethane	ND	U	1.0	1	03/29/03	03/29/03	
Chloroethane	ND	U	1.0	1	03/29/03	03/29/03	
Trichlorofluoromethane	ND	U	1.0	11	03/29/03	03/29/03	
1,1,2-Trichlorotrifluoroethane	ND	U	1.0	1	03/29/03	03/29/03	
1,1-Dichloroethene	ND	U	1.0	1	03/29/03	03/29/03	
Acetone	ND	U	10	1	03/29/03	03/29/03	
Iodomethane	ND	U	2.0	1	03/29/03	03/29/03	
Carbon Disulfide	ND	U	2.0	1	03/29/03	03/29/03	
Methylene Chloride	ND	U	1.0	1	03/29/03	03/29/03	
Methyl tert-Butyl Ether	ND	U	1.0	1	03/29/03	03/29/03	
trans-1,2-Dichloroethene	ND	U	0.50	.1	03/29/03	03/29/03	
1,1-Dichloroethane	ND		0.50	1	03/29/03	03/29/03	
Vinyl Acetate	ND	U	3.0	1	03/29/03	03/29/03	
2,2-Dichloropropane	ND	U	2.0	1	03/29/03	03/29/03	
2-Butanone (MEK)	ND	U	8.0	1	03/29/03	03/29/03	
cis-1,2-Dichloroethene	ND	U	0.50	1	03/29/03	03/29/03	
Bromochloromethane	ND	U	0.50	1	03/29/03	03/29/03	
Chloroform	ND	U	1.0	1	03/29/03	03/29/03	
1,1,1-Trichloroethane	ND	U	0.50	1	03/29/03	03/29/03	
Carbon Tetrachloride	ND	U	0.50	1	03/29/03	03/29/03	
1,1-Dichloropropene	ND	U	0.50	1	03/29/03	03/29/03	
Benzene	ND	U	0.50	1	03/29/03	03/29/03	
1,2-Dichloroethane	ND	U	0.50	1	03/29/03	03/29/03	
Trichloroethene	ND	U	0.50	1	03/29/03	03/29/03	
1,2-Dichloropropane	ND	U	0.50	1	03/29/03	03/29/03	
Dibromomethane	ND	U	0.50	1	03/29/03	03/29/03	
Bromodichloromethane	ND	U	0.50	1	03/29/03	03/29/03	
cis-1,3-Dichloropropene	ND	U	0.50	1	03/29/03	03/29/03	
4-Methyl-2-pentanone (MIBK)	ND		8.0	1	03/29/03	03/29/03	
Toluene	ND		0.50	1	03/29/03	03/29/03	

Comments:

Printed: 04/02/2003 12:21:25

Form 1A - Organic

000026

Page 1 of 3

Analytical Results

Client: Project: BE&K Terranext WVB/#03103154

Sample Matrix:

Water

Service Request: X2300237

Date Collected: 03/19/2003 **Date Received:** 03/19/2003

Volatile Organic Compounds

Sample Name: Lab Code:

AVB15-0102-1000 X2300237-007

Extraction Method: Analysis Method:

EPA 5030B 8260B Units: ug/L Basis: NA

Level: Low

				Dilution	Date	Date	
Analyte Name	Result	Q	MRL	Factor	Extracted	Analyzed	Arizona Qualifier
trans-1,3-Dichloropropene	ND	U	1.0	1	03/29/03	03/29/03	
1,1,2-Trichloroethane	ND	U	1.0	1	03/29/03	03/29/03	
Tetrachloroethene	ND	U	0.50	1	03/29/03	03/29/03	
2-Hexanone	ND	U	5.0	1	03/29/03	03/29/03	
1,3-Dichloropropane	ND	U	1.0	1	03/29/03	03/29/03	
Dibromochloromethane	ND	U	0.50	1	03/29/03	03/29/03	
1,2-Dibromoethane	ND	U	0.50	1	03/29/03	03/29/03	
Chlorobenzene	ND		0.50	1	03/29/03	03/29/03	
1,1,1,2-Tetrachloroethane	ND	U	0.50	1	03/29/03	03/29/03	
Ethylbenzene	ND	U	0.50	1	03/29/03	03/29/03	
m,p-Xylenes	ND		1.0	1	03/29/03	03/29/03	
o-Xylene	ND	U	0.50	1	03/29/03	03/29/03	
Styrene	ND	U	0.50	1	03/29/03	03/29/03	
Isopropylbenzene	ND		0.50	1	03/29/03	03/29/03	
Bromobenzene	ND	U	0.50	1	03/29/03	03/29/03	
1,2,3-Trichloropropane	ND	U	1.0	1	03/29/03	03/29/03	
n-Propylbenzene	ND		0.50	1	03/29/03	03/29/03	
2-Chlorotoluene	ND		0.50	1	03/29/03	03/29/03	
4-Chlorotoluene	ND	U	0.50	1	03/29/03	03/29/03	
1,3,5-Trimethylbenzene	ND	U	0.50	1	03/29/03	03/29/03	
tert-Butylbenzene	ND		0.50	1	03/29/03	03/29/03	
1,2,4-Trimethylbenzene	ND	U	0.50	1	03/29/03	03/29/03	
sec-Butylbenzene	ND		0.50	1	03/29/03	03/29/03	
1,3-Dichlorobenzene	ND		0.50	1	03/29/03	03/29/03	
4-Isopropyltoluene	ND	U	0.50	1	03/29/03	03/29/03	
Bromoform	ND		0.50	1	03/29/03	03/29/03	
1,1,2,2-Tetrachloroethane	ND		1.0	1	03/29/03	03/29/03	
1,4-Dichlorobenzene	ND		0.50	1	03/29/03	03/29/03	
1,2-Dichlorobenzene	ND		0.50	1	03/29/03	03/29/03	
n-Butylbenzene	ND		0.50	1	03/29/03	03/29/03	
1.2-Dibromo-3-chloropropane	ND		5.0	1	03/29/03	03/29/03	
1,2,4-Trichlorobenzene	ND		0.50	1	03/29/03	03/29/03	
Hexachlorobutadiene	ND		0.50	1	03/29/03	03/29/03	

Comments:

000027

RR3143

Merged

Analytical Results

Client: Project: BE&K Terranext WVB/#03103154

Sample Matrix:

Water

Service Request: X2300237

Date Collected: 03/19/2003

Date Received: 03/19/2003

Volatile Organic Compounds

Sample Name: Lab Code: AVB15-0102-1000 X2300237-007

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

			Dilution	Date	Date	
Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed	Arizona Qualifier
Naphthalene	ND U	3.0	1	03/29/03	03/29/03	
1,2,3-Trichlorobenzene	ND U	0.50	1	03/29/03	03/29/03	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Arizona Qualifier	
Dibromofluoromethane	107	84-113	03/29/03		
Toluene-d8	103	68-126	03/29/03		
4-Bromofluorobenzene	96	79-113	03/29/03		

Comments:

Printed: 04/02/2003 12:21:25 L:\STEALTH\CRYSTAL.RPT\Formlm.rpt

Merged

Form 1A - Organic

000028

Page 3 of 3

SuperSet Reference: RR3143

Analytical Results

Client: Project: BE&K Terranext WVB/#03103154

Sample Matrix:

Water

Service Request: X2300237

Date Collected: NA Date Received: NA

Volatile Organic Compounds

Sample Name: Lab Code:

Method Blank XWG0300420-5

Extraction Method: Analysis Method:

EPA 5030B 8260B

Units: ug/L Basis: NA

Level: Low

Analyte Name	Result	O	MRL	Dilution Factor	Date Extracted	Date Analyzed	Arizona Qualifier
Dichlorodifluoromethane	ND		3.0	1	03/29/03	03/29/03	
Chloromethane	ND		2.0	1	03/29/03	03/29/03	
Vinyl Chloride	ND		1.0	1	03/29/03	03/29/03	
Bromomethane	ND	U	1.0	1	03/29/03	03/29/03	
Chloroethane	ND		1.0	1	03/29/03	03/29/03	
Trichlorofluoromethane	ND	U	1.0	1	03/29/03	03/29/03	
1,1,2-Trichlorotrifluoroethane	ND	U	1.0	1	03/29/03	03/29/03	
1,1-Dichloroethene	ND		1.0	1	03/29/03	03/29/03	
Acetone	ND	U	10	1	03/29/03	03/29/03	
Iodomethane	ND	U	2.0	1	03/29/03	03/29/03	
Carbon Disulfide	ND		2.0	1	03/29/03	03/29/03	
Methylene Chloride	ND	U	1.0	1	03/29/03	03/29/03	
Methyl tert-Butyl Ether	ND	U	1.0	1	03/29/03	03/29/03	
trans-1,2-Dichloroethene	ND		0.50	1	03/29/03	03/29/03	
1,1-Dichloroethane	ND	U	0.50	1	03/29/03	03/29/03	
Vinyl Acetate	ND	U	3.0	1	03/29/03	03/29/03	
2,2-Dichloropropane	ND	U	2.0	1	03/29/03	03/29/03	
2-Butanone (MEK)	ND	U	8.0	1	03/29/03	03/29/03	
cis-1,2-Dichloroethene	ND	U	0.50	1	03/29/03	03/29/03	
Bromochloromethane	ND	U	0.50	1	03/29/03	03/29/03	
Chloroform	ND	U	1.0	1	03/29/03	03/29/03	
1,1,1-Trichloroethane	ND	U	0.50	1	03/29/03	03/29/03	
Carbon Tetrachloride	ND	U	0.50	1	03/29/03	03/29/03	
1,1-Dichloropropene	ND	U	0.50	1	03/29/03	03/29/03	
Benzene	ND	U	0.50	1	03/29/03	03/29/03	
1,2-Dichloroethane	ND	U	0.50	1	03/29/03	03/29/03	
Trichloroethene	ND	U	0.50	1	03/29/03	03/29/03	
1,2-Dichloropropane	ND	U	0.50	1	03/29/03	03/29/03	
Dibromomethane	ND	U	0.50	1	03/29/03	03/29/03	
Bromodichloromethane	ND	U	0.50	1	03/29/03	03/29/03	
cis-1,3-Dichloropropene	ND	U	0.50	1	03/29/03	03/29/03	
4-Methyl-2-pentanone (MIBK)	ND	U	8.0	1	03/29/03	03/29/03	
Toluene	ND	U	0.50	1	03/29/03	03/29/03	

Comments:

Printed: 04/02/2003 12:21:36

Form 1A - Organic

000029

1 of 3 Page

SuperSet Reference:

Analytical Results

Client: Project: BE&K Terranext WVB/#03103154

Sample Matrix:

Water

Service Request: X2300237

Date Collected: NA Date Received: NA

Volatile Organic Compounds

Sample Name: Lab Code:

Method Blank XWG0300420-5

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

_	D 14	0	MRL	Dilution Factor	Date Extracted	Date Analyzed	Arizona Qualifier
Analyte Name	Result			1	03/29/03	03/29/03	TATABOTA QUALITA
trans-1,3-Dichloropropene	ND		1.0 1.0	1	03/29/03	03/29/03	
1,1,2-Trichloroethane	ND		0.50	1	03/29/03	03/29/03	
Tetrachloroethene	ND					03/29/03	
2-Hexanone	ND		5.0	1	03/29/03	03/29/03	
1,3-Dichloropropane	ND		1.0	1	03/29/03	03/29/03	
Dibromochloromethane	ND		0.50	1	03/29/03		
1.2-Dibromoethane	ND		0.50	1	03/29/03	03/29/03	
Chlorobenzene	ND		0.50	1	03/29/03	03/29/03	
1,1,1,2-Tetrachloroethane	ND	U	0.50	1	03/29/03	03/29/03	
Ethylbenzene	ND	U	0.50	1	03/29/03	03/29/03	
m,p-Xylenes	ND		1.0	1	03/29/03	03/29/03	
o-Xylene	ND		0.50	1	03/29/03	03/29/03	
	ND		0,50	1	03/29/03	03/29/03	
Styrene Isopropylbenzene	ND		0.50	1	03/29/03	03/29/03	
Bromobenzene	ND		0.50	1	03/29/03	03/29/03	
	ND		1.0	1	03/29/03	03/29/03	
1,2,3-Trichloropropane	ND ND		0.50	1	03/29/03	03/29/03	
n-Propylbenzene	ND ND		0.50	1	03/29/03	03/29/03	
2-Chlorotoluene					03/29/03	03/29/03	
4-Chlorotoluene	ND		0.50	1	03/29/03	03/29/03	
1,3,5-Trimethylbenzene	ND		0.50	1	03/29/03	03/29/03	
tert-Butylbenzene	ND		0.50	1			
1,2,4-Trimethylbenzene	ND		0.50	1	03/29/03	03/29/03	
sec-Butylbenzene	ND		0.50	1	03/29/03	03/29/03	
1,3-Dichlorobenzene	ND	U	0.50	1	03/29/03	03/29/03	
4-Isopropyltoluene	ND	U	0.50	1	03/29/03	03/29/03	
Bromoform	ND	U	0.50	1	03/29/03	03/29/03	
1,1,2,2-Tetrachloroethane	ND	U	1.0	1	03/29/03	03/29/03	
1.4-Dichlorobenzene	ND	U	0.50	1	03/29/03	03/29/03	
1,2-Dichlorobenzene	ND		0.50	1	03/29/03	03/29/03	
n-Butylbenzene	ND		0.50	1	03/29/03	03/29/03	
1,2-Dibromo-3-chloropropane		U	5.0	1	03/29/03	03/29/03	
,		U	0.50	1	03/29/03	03/29/03	
1,2,4-Trichlorobenzene		U	0.50	1	03/29/03	03/29/03	
Hexachlorobutadiene	INL	, 0	0.50				

Comments:

Printed: 04/02/2003 12:21:36

Merged

Form 1A - Organic

000030

Page 2 of 3

SuperSet Reference:

Analytical Results

Client:

BE&K Terranext WVB/#03103154

Project: Sample Matrix:

Water

Service Request: X2300237

Date Collected: NA

Date Received: NA

Volatile Organic Compounds

Sample Name: Lab Code:

Method Blank XWG0300420-5

Extraction Method: Analysis Method:

EPA 5030B 8260B

Units: ug/L Basis: NA

Level: Low

Dilution Date Date Analyzed Arizona Qualifier Factor Extracted MRL Result Q **Analyte Name** 03/29/03 3.0 1 03/29/03 ND U Naphthalene 1 03/29/03 03/29/03 0.50 ND U 1,2,3-Trichlorobenzene

Surrogate Name	%Rec	Control Limits	Date Analyzed	Arizona Qualifier	
Dibromofluoromethane	101	84-113	03/29/03		
Toluene-d8	105	68-126	03/29/03		
4-Bromofluorobenzene	94	79-113	03/29/03		

Comments:

Printed: 04/02/2003 12:21:36 L:\STEALTH\CRYSTAL.RPT\Form1m.rpt

Form 1A - Organic

000031

Page 3 of 3

RR3143 SuperSet Reference:

Analytical Results

Client: Project: BE&K Terranext WVB/#03103154

Sample Matrix:

Water

Service Request: X2300237

Date Collected: NA
Date Received: NA

Volatile Organic Compounds

Sample Name: Lab Code:

Method Blank XWG0300422-3

Extraction Method: Analysis Method:

EPA 5030B 8260B Units: ug/L Basis: NA

Level: Low

			Dilution	Date	Date	
Analyte Name	Result (Q MRL	Factor	Extracted	Analyzed	Arizona Qualifier
Dichlorodifluoromethane	ND U	J 3.0	1	03/29/03	03/29/03	
Chloromethane	ND U		1	03/29/03	03/29/03	
Vinyl Chloride	ND U	J 1.0	1	03/29/03	03/29/03	
Bromomethane	ND U		1	03/29/03	03/29/03	
Chloroethane	ND U	J 1.0	1	03/29/03	03/29/03	
Trichlorofluoromethane	ND U	J 1.0	1	03/29/03	03/29/03	
1,1,2-Trichlorotrifluoroethane	ND U	J 1.0	1	03/29/03	03/29/03	Ll
1,1-Dichloroethene	ND (J 1.0	1	03/29/03	03/29/03	L1
Acetone	ND U	J 10	1	03/29/03	03/29/03	
Iodomethane	ND U	J 2.0	1	03/29/03	03/29/03	L2
Carbon Disulfide	ND U	U 2.0	1	03/29/03	03/29/03	
Methylene Chloride	ND U	J 1.0	1	03/29/03	03/29/03	
Methyl tert-Butyl Ether	ND U	U 1.0	1	03/29/03	03/29/03	
trans-1,2-Dichloroethene	ND U		1	03/29/03	03/29/03	
1,1-Dichloroethane	ND U	U 0.50	1	03/29/03	03/29/03	
Vinyl Acetate	ND U	J 3.0	1	03/29/03	03/29/03	
2,2-Dichloropropane	ND U	U 2.0	1	03/29/03	03/29/03	
2-Butanone (MEK)	ND U	U 8.0	1	03/29/03	03/29/03	
cis-1,2-Dichloroethene	ND U	U 0.50	1	03/29/03	03/29/03	
Bromochloromethane	ND U	U 0.50	1	03/29/03	03/29/03	
Chloroform	ND U	U 1.0	1	03/29/03	03/29/03	
1,1,1-Trichloroethane	ND U	U 0.50	1	03/29/03	03/29/03	
Carbon Tetrachloride	ND U	U 0.50	1	03/29/03	03/29/03	L1
1,1-Dichloropropene	ND U	U 0.50	1	03/29/03	03/29/03	L1
Benzene	ND I	U 0.50	1	03/29/03	03/29/03	
1.2-Dichloroethane	ND U	U 0.50	1	03/29/03	03/29/03	
Trichloroethene	ND U	U 0.50	1	03/29/03	03/29/03	
1,2-Dichloropropane	ND I	U 0.50	1	03/29/03	03/29/03	
Dibromomethane	ND I		1	03/29/03	03/29/03	
Bromodichloromethane	ND 1	U 0.50	1	03/29/03	03/29/03	
cis-1,3-Dichloropropene	ND 1		1	03/29/03	03/29/03	
4-Methyl-2-pentanone (MIBK)	ND I		1	03/29/03	03/29/03	
Toluene	ND 1	U 0.50	1	03/29/03	03/29/03	

Comments:

000032

Merged

Analytical Results

Client: Project: BE&K Terranext WVB/#03103154

Sample Matrix:

Water

Service Request: X2300237

Date Collected: NA
Date Received: NA

Volatile Organic Compounds

Sample Name: Lab Code: Method Blank XWG0300422-3

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

				Dilution	Date	Date	
Analyte Name	Result	Q	MRL	Factor	Extracted		Arizona Qualifier
trans-1,3-Dichloropropene	ND	U	1.0	1	03/29/03	03/29/03	
1,1,2-Trichloroethane	ND	U	1.0	1	03/29/03	03/29/03	
Tetrachloroethene	ND	U	0.50	1	03/29/03	03/29/03	
2-Hexanone	ND	U	5.0	1	03/29/03	03/29/03	
1,3-Dichloropropane	ND	U	1.0	1	03/29/03	03/29/03	
Dibromochloromethane	ND	U	0.50	1	03/29/03	03/29/03	
1,2-Dibromoethane	ND	U	0.50	1	03/29/03	03/29/03	
Chlorobenzene	ND	U	0.50	1	03/29/03	03/29/03	
1,1,1,2-Tetrachloroethane	ND	U	0.50	1	03/29/03	03/29/03	
Ethylbenzene	ND	U	0.50	1	03/29/03	03/29/03	
m,p-Xylenes	ND	U	1.0	1	03/29/03	03/29/03	
o-Xylene	ND	U	0.50	1	03/29/03	03/29/03	
Styrene	ND	U	0.50	1	03/29/03	03/29/03	
Isopropylbenzene	ND	U	0.50	1	03/29/03	03/29/03	
Bromobenzene	ND	U	0.50	1	03/29/03	03/29/03	
1,2,3-Trichloropropane	ND	U	1.0	1	03/29/03	03/29/03	
n-Propylbenzene	ND	U	0.50	1	03/29/03	03/29/03	
2-Chlorotoluene	ND	U	0.50	1	03/29/03	03/29/03	
4-Chlorotoluene	ND	U	0.50	1	03/29/03	03/29/03	
1,3,5-Trimethylbenzene	ND	U	0.50	1	03/29/03	03/29/03	
tert-Butylbenzene	ND	U	0.50	1	03/29/03	03/29/03	
1,2,4-Trimethylbenzene	ND	U	0.50	1	03/29/03	03/29/03	
sec-Butylbenzene	ND	U	0.50	1	03/29/03	03/29/03	
1,3-Dichlorobenzene	ND	U	0.50	1	03/29/03	03/29/03	
4-Isopropyltoluene	ND	U	0.50	1	03/29/03	03/29/03	
Bromoform	ND	U	0.50	1	03/29/03	03/29/03	
1,1,2,2-Tetrachloroethane	ND	U	1.0	1	03/29/03	03/29/03	
1,4-Dichlorobenzene	ND	U	0.50	1	03/29/03	03/29/03	
1,2-Dichlorobenzene	ND		0.50	1	03/29/03	03/29/03	
n-Butylbenzene	ND	U	0.50	1	03/29/03	03/29/03	
1,2-Dibromo-3-chloropropane	ND	U	5.0	1	03/29/03	03/29/03	
1,2,4-Trichlorobenzene	ND		0.50	1	03/29/03	03/29/03	
Hexachlorobutadiene	ND	U	0.50	1	03/29/03	03/29/03	

Comments:

000033

Merged

Analytical Results

Client:

BE&K Terranext

Project: Sample Matrix: WVB/#03103154 Water

Date Collected: NA

Service Request: X2300237

Date Received: NA

Volatile Organic Compounds

Sample Name: Lab Code:

Method Blank XWG0300422-3

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

			Dilution	Date	Date	
Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed	Arizona Qualifier
Naphthalene	ND U	3.0	1	03/29/03	03/29/03	
1,2,3-Trichlorobenzene	ND U	0.50	1	03/29/03	03/29/03	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Arizona Qualifier	
Dibromofluoromethane	103	84-113	03/29/03		
Toluene-d8	108	68-126	03/29/03		
4-Bromofluorobenzene	102	79-113	03/29/03		

Comments:

Merged

QA/QC Report

Client: Project: BE&K Terranext WVB/#03103154

Sample Matrix:

Water

Service Request: X2300237

Surrogate Recovery Summary Volatile Organic Compounds

Extraction Method: Analysis Method:

EPA 5030B

8260B

Units: PERCENT

Level: Low

Sample Name	Lab Code	Sur1	Sur2	Sur3
AVB106-0200-07135	X2300237-001	97	102	90
AVB106-0300-07150	X2300237-002	107	107	95
AVB106-0100-07095	X2300237-003	108	112	104
AVB103-0200-03092	X2300237-004	109	110	104
AVB15-0100-02108	X2300237-005	109	111	105
AVB15-0104-1000	X2300237-006	108	110	104
AVB15-0102-1000	X2300237-007	107	103	96
Method Blank	XWG0300420-5	101	105	94
Method Blank	XWG0300422-3	103	108	102
Batch QC	X2300240-003	101	102	93
Batch QCMS	XWG0300420-1	101	109	97
Batch QCDMS	XWG0300420-2	101	99	98
AVB106-0100-07095MS	XWG0300422-4	109	114	108
AVB106-0100-07095DMS	XWG0300422-5	104	108	104
Lab Control Sample	XWG0300420-3	100	103	95
Duplicate Lab Control Sample	XWG0300420-4	101	105	98
Lab Control Sample	XWG0300422-1	107	111	109
Duplicate Lab Control Sample	XWG0300422-2	105	104	105

Surrogate Recovery Control Limits (%)

Sur1 =	Dibromofluoromethane	84-113
Sur2 =	Toluene-d8	68-126
Sur3 =	4-Bromofluorobenzene	79-113

Results flagged with an asterisk (*) indicate values outside control criteria. Results flagged with a pound (#) indicate the control criteria is not applicable.

Printed: 04/02/2003 12:22:05 L:\STEALTH\CRYSTAL.RPT\Form2.rpt

000035

Page RR3143

1 of 1

QA/QC Report

Client: Project: BE&K Terranext WVB/#03103154

Sample Matrix:

Water

Service Request: X2300237

Date Extracted: 03/29/2003 **Date Analyzed:** 03/29/2003

Matrix Spike/Duplicate Matrix Spike Summary Volatile Organic Compounds

Sample Name: Lab Code:

Batch QC X2300240-003

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L

Basis: NA

Level: Low

Extraction Lot: XWG0300420

Batch QCMS XWG0300420-1

Batch OCDMS XWG0300420-2

	Campla	XWG0300420-1 Matrix Spike			Duplicate Matrix Spike			%Rec		RPD
Analyte Name	Sample Result	Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit
Dichlorodifluoromethane	ND	3.56	10.0	36 M2	3.30	10.0	33 M2	78-207	8	20
Chloromethane	ND	5.95	10.0	60 M2	5.19	10.0	52 M2	70-157	14	20
Vinyl Chloride	ND	7.09	10.0	71 M2	6.37	10.0	64 M2	79-174	11	20
Bromomethane	ND	6.60	10.0	66	5.98	10.0	60	44-150	10	20
Chloroethane	ND	9.17	10.0	92	8.67	10.0	87	74-150	6	20
Trichlorofluoromethane	ND	8.75	10.0	88	8.23	10.0	82	80-134	6	20
1,1,2-Trichlorotrifluoroethane	ND	10.3	10.0	103	9.94	10.0	99	67-128	4	20
1,1-Dichloroethene	ND	9.09	10.0	91	8.95	10.0	90	71-142	2	20
Acetone	ND	40.6	40.0	102	36.2	40.0	90	1-155	12	20
Iodomethane	ND	33.1	40.0	83	31.4	40.0	78	47-120	5	20
Carbon Disulfide	ND	39.8	40.0	100	38.6	40.0	97	77-126	3	20
Methylene Chloride	ND	9.55	10.0	96	9.55	10.0	96	83-106	0	20
Methyl tert-Butyl Ether	ND	8.56	10.0	86	8.85	10.0	89	70-118	3	20
trans-1,2-Dichloroethene	ND	10.2	10.0	102	10.3	10.0	103	86-115	0	20
1,1-Dichloroethane	ND	10.8	10.0	108	10.7	10.0	107	77-127	1	20
Vinyl Acetate	ND	41.8	40.0	105	44.0	40.0	110	8-187	5	20
2,2-Dichloropropane	ND	10.3	10.0	103	10.2	10.0	102	25-154	1	20
2-Butanone (MEK)	ND	37.6	40.0	94	38.0	40.0	95	90-112	1	20
cis-1,2-Dichloroethene	ND	9.80	10.0	98	9.67	10.0	97	69-118	1	20
Bromochloromethane	ND	10.8	10.0	108	10.6	10.0	106	47-136	1	20
Chloroform	ND	10.6	10.0	106	10.4	10.0	104	48-143	2	20
1,1,1-Trichloroethane	ND	8.91	10.0	89	8.84	10.0	88	84-122	1	20
Carbon Tetrachloride	ND	9.82	10.0	98	9.62	10.0	96	79-120	2	20
1,1-Dichloropropene	ND	9.75	10.0	98	9.77	10.0	98	85-117	0	20
Benzene	ND	9.84	10.0	98	9.46	10.0	95	88-114	4	20
1,2-Dichloroethane	ND	10.3	10.0	103	10.3	10.0	103	75-112	0	20
Trichloroethene	ND	10.3	10.0	103	10.2	10.0	102	76-115	2	20
1,2-Dichloropropane	ND	10.4	10.0	104	10.4	10.0	104	85-107	0	20
Dibromomethane	ND	10.6	10.0	106	10.7	10.0	107 M1	82-106	1	20
Bromodichloromethane	ND	9.63	10.0	96	9.30	10.0	93	83-107	3	20
cis-1,3-Dichloropropene	ND	10.9	10.0	109	10.6	10.0	106	70-114	3	20
4-Methyl-2-pentanone (MIBK)	ND	41.3	40.0	103	34.8	40.0	87	54-129	17	20
Toluene	ND	10.6	10.0	106	9.81	10.0	98	86-114	8	20

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

000036

Page 1 of 3

Printed: 04/02/2003 12:22:11

Form 3A - Organic

SuperSet Reference: RR3143

QA/QC Report

Client: Project: BE&K Terranext WVB/#03103154

Sample Matrix:

Water

Service Request: X2300237

Date Extracted: 03/29/2003 **Date Analyzed:** 03/29/2003

Matrix Spike/Duplicate Matrix Spike Summary Volatile Organic Compounds

Sample Name: Lab Code:

Batch QC

X2300240-003

Extraction Method: Analysis Method:

EPA 5030B

8260B

Units: ug/L Basis: NA

Level: Low

Extraction Lot: XWG0300420

Batch QCMS XWG0300420-1

Batch OCDMS XWG0300420-2

	Sample	XWG0300420-1 Matrix Spike				ate Matrix S		%Rec		RPD
Analyte Name	Result	Result	Expected	%Rec	Result	Expected	%Rec	Limits RPD	Limit	
trans-1,3-Dichloropropene	ND	10.4	10.0	104	10.1	10.0	101	73-112	3	20
1,1,2-Trichloroethane	ND	10.1	10.0	101	9.23	10.0	92	79-112	9	20
Tetrachloroethene	ND	10.4	10.0	104	9.49	10.0	95	78-130	10	20
2-Hexanone	ND	37.7	40.0	94	36.5	40.0	91	77-112	3	20
1,3-Dichloropropane	ND	10.1	10.0	101	9.43	10.0	94	45-133	7	20
Dibromochloromethane	ND	10.3	10.0	103	9.49	10.0	95	74-108	8	20
1,2-Dibromoethane	ND	9.58	10.0	96	9.43	10.0	94	73-113	2	20
Chlorobenzene	ND	10.2	10.0	102	9.97	10.0	100	84-111	2	20
1,1,1,2-Tetrachloroethane	ND	9.84	10.0	98	9.75	10.0	98	84-119	1	20
Ethylbenzene Ethylbenzene	ND	10.8	10.0	108	10.3	10.0	103	47-136	4	20
m,p-Xylenes	ND	21.6	20.0	108	20.8	20.0	104	84-120	4	20
o-Xylene	ND	10.3	10.0	103	9.87	10.0	99	47-143	4	20
Styrene	ND	10.5	10.0	105	10.6	10.0	106	72-121	0	20
Isopropylbenzene	ND	10.3	10.0	103	10.1	10.0	101	63-108	1	20
Bromobenzene	ND	10.7	10.0	107	11.1	10.0	111	80-113	4	20
1,2,3-Trichloropropane	ND	9.50	10.0	95	10.6	10.0	106	78-119	11	20
n-Propylbenzene	ND	10.7	10.0	107	10.6	10.0	106	76-117	1	20
2-Chlorotoluene	ND	10.2	10.0	102	10.4	10.0	104	79-121	2	20
4-Chlorotoluene	ND	10.6	10.0	106	10.7	10.0	107	70-133	0	20
1,3,5-Trimethylbenzene	ND	10.4	10.0	104	10.7	10.0	107	79-118	3	20
tert-Butylbenzene	ND	10.4	10.0	104	10.5	10.0	105	77-120	1	20
1,2,4-Trimethylbenzene	ND	10.4	10.0	104	10.7	10.0	107	68-127	3	20
sec-Butylbenzene	ND	9.85	10.0	99	10.0	10.0	100	78-123	2	20
1,3-Dichlorobenzene	ND	10.2	10.0	102	10.5	10.0	105	78-127	3	20
4-Isopropyltoluene	ND	10.4	10.0	104	10.9	10.0	109	79-142	4	20
Bromoform	ND	9.67	10.0	97	9.63	10.0	96	83-111	0	20
1,1,2,2-Tetrachloroethane	ND	10.6	10.0	106	10.8	10.0	108	66-133	2	20
1,4-Dichlorobenzene	ND	9.83	10.0	98	10.2	10.0	102	48-139	3	20
1,2-Dichlorobenzene	ND	9.51	10.0	95	9.79	10.0	98	64-109	3	20
n-Butylbenzene	ND	10.4	10.0	104	10.4	10.0	104	69-122	0	20
1,2-Dibromo-3-chloropropane	ND	10.9	10.0	109	12.1	10.0	121	54-160	10	20
1,2,4-Trichlorobenzene	ND	9.96	10.0	100	10.0	10.0	100	39-145	1	20
Hexachlorobutadiene	ND	11.4	10.0	114 M1	11.6	10.0	116 M1	74-113	2	20
Ticacinoroutautene										

Results flagged with an asterisk (*) indicate values outside control criteria.

Printed: 04/02/2003 12:22:11

L:\STEALTH\CRYSTAL.RPT\Form3DMS.rpt

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

000037

Page 2 of 3

QA/QC Report

Client:

BE&K Terranext WVB/#03103154

Project: Sample Matrix:

Water

Service Request: X2300237

Date Extracted: 03/29/2003 **Date Analyzed:** 03/29/2003

Matrix Spike/Duplicate Matrix Spike Summary Volatile Organic Compounds

Sample Name:

Batch QC

Lab Code:

X2300240-003

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L

Basis: NA

Level: Low

Extraction Lot: XWG0300420

Batch OCMS

XWG0300420-1

Batch QCDMS

XWG0300420-2

Duplicate Matrix Spike Matrix Spike %Rec RPD Sample Limits **RPD** Limit %Rec Result %Rec **Expected Expected** Result Result Analyte Name 20 10.0 103 44-167 8 95 10.3 9.51 10.0 ND Naphthalene 10.0 115 37-158 3 20 11.5 10.0 111 ND 11.1 1,2,3-Trichlorobenzene

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 04/02/2003 12:22:11 L:\STEALTH\CRYSTAL.RPT\Form3DMS.rpt Form 3A - Organic

000038

SuperSet Reference:

Page 3 of

RR3143

QA/QC Report

Client:

BE&K Terranext WVB/#03103154

Project: Sample Matrix:

Water

Service Request: X2300237

Date Extracted: 03/29/2003

Date Analyzed: 03/29/2003

Matrix Spike/Duplicate Matrix Spike Summary **Volatile Organic Compounds**

Sample Name:

AVB106-0100-07095

Lab Code:

X2300237-003

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

Extraction Lot: XWG0300422

AVB106-0100-07095MS

XWG0300422-4

AVB106-0100-07095DMS

XWG0300422-5

	Sample	Matrix Spike			Dupli	cate Matrix S _l	%Rec		RPD	
Analyte Name	Result	Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit
Dichlorodifluoromethane	ND	31.0	10.0	310 M1	28.0	10.0	280 M1	78-207	10	20
Chloromethane	ND	15.4	10.0	154	13.5	10.0	135	70-157	14	20
Vinyl Chloride	ND	18.6	10.0	186 M1	16.9	10.0	169	79-174	10	20
Bromomethane	ND	9.12	10.0	91	8.50	10.0	85	44-150	7	20
Chloroethane	ND	14.6	10.0	146	14.9	10.0	149	74-150	3	20
Trichlorofluoromethane	ND	17.0	10.0	170 M1	15.5	10.0	155 M1	80-134	9	20
1,1,2-Trichlorotrifluoroethane	ND	15.5	10.0	155 N1	14.3	10.0	143 M1	67-128	8	20
1,1-Dichloroethene	ND	13.5	10.0	155 N T 135 PM	312.5 35.3	10.0	125	71-142	8	20
Acetone	ND	37.4	40.0	94 1/1	35.3	40.0	88	1-155	6	20
Iodomethane	ND	33.3	40.0	83	29.0	40.0	72	47-120	14	20
Carbon Disulfide	ND	56.3	40.0	141 M1	50.9	40.0	127 M1	77-126	10	20
Methylene Chloride	ND	10.7	10.0	107 M1	9.94	10.0	99	83-106	7	20
Methyl tert-Butyl Ether	ND	9.80	10.0	98	9.50	10.0	95	70-118	3	20
trans-1,2-Dichloroethene	ND	11.9	10.0	119 M1	11.0	10.0	110	86-115	8	20
1,1-Dichloroethane	ND	12.4	10.0	124	11.3	10.0	113	77-127	9	20
Vinyl Acetate	ND	50.4	40.0	126	46.3	40.0	116	8-187	9	20
2,2-Dichloropropane	ND	13.6	10.0	136	12.1	10.0	121	25-154	12	20
2-Butanone (MEK)	ND	37.8	40.0	95	34.2	40.0	86 M2	90-112	10	20
cis-1,2-Dichloroethene	ND	11.1	10.0	111	10.3	10.0	103	69-118	7	20
Bromochloromethane	ND	8.95	10.0	90	8.41	10.0	84	47-136	6	20
Chloroform	4.8	16.3	10.0	115	15.1	10.0	103	48-143	8	20
1,1,1-Trichloroethane	ND	13.6	10.0	136 M1	12.8	10.0	128 M1	84-122	7	20
Carbon Tetrachloride	ND	14.6	10.0	146 NT F	13.5	10.0	135 M1	79-120	8	20
1,1-Dichloropropene	ND	13.3	10.0	133 N1	12.6	10.0	126 M1	85-117	6	20
Benzene	ND	11.8	10.0	118 M1 ⁹	11.2	10.0	112	88-114	5	20
1,2-Dichloroethane	ND	10.3	10.0	103	9.88	10.0	99	75-112	4	20
Trichloroethene	27	40.2	10.0	127 M1	37.6	10.0	101	76-115	7	20
1,2-Dichloropropane	ND	10.9	10.0	109 M1	10.3	10.0	103	85-107	6	20
Dibromomethane	ND	9.74	10.0	97	9.57	10.0	96	82-106	2	20
Bromodichloromethane	1.4	12.2	10.0	108 M1	11.5	10.0	101	83-107	6	20
cis-1,3-Dichloropropene	ND	10.3	10.0	. 103	9.74	10.0	97	70-114	5	20
4-Methyl-2-pentanone (MIBK)	ND	33.1	40.0	83	32.4	40.0	81	54-129	2	20
Toluene	ND	11.8	10.0	118 M1	11.1	10.0	111	86-114	6	20
trans-1,3-Dichloropropene	ND	10.1	10.0	101	9.73	10.0	97	73-112	4	20

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Form 3A - Organic

1 of 2 Page

Printed: 07/16/2003 15:34:29 L:\STEALTH\CRYSTAL.RPT\Form3DMS.rpt

RR3143 SuperSet Reference:

QA/QC Report

Client:

BE&K Terranext WVB/#03103154

Project: Sample Matrix:

Water

Service Request: X2300237

Date Extracted: 03/29/2003

Date Analyzed: 03/29/2003

Matrix Spike/Duplicate Matrix Spike Summary **Volatile Organic Compounds**

Sample Name:

AVB106-0100-07095

Lab Code:

X2300237-003

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

Extraction Lot: XWG0300422

AVB106-0100-07095MS XWG0300422-4

AVB106-0100-07095DMS

XWG0300422-5

	Sample	Matrix Spike			Duplic	cate Matrix S _l	%Rec		RPD	
Analyte Name	Result	Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit
1,1,2-Trichloroethane	ND	9.98	10.0	100	9.44	10.0	94	79-112	6	20
Tetrachloroethene	8.9	21.3	10.0	125	20.2	10.0	113	78-130	5	20
2-Hexanone	ND	37.5	40.0	94	36.6	40.0	91	77-112	3	20
1,3-Dichloropropane	ND	10.2	10.0	102	9.65	10.0	97	45-133	5	20
Dibromochloromethane	ND	9.73	10.0	97	9.32	10.0	93	74-108	4	20
1,2-Dibromoethane	ND	9.64	10.0	96	9.32	10.0	93	73-113	3	20
Chlorobenzene	ND	10.6	10.0	106	10.2	10.0	102	84-111	3	20
1,1,1,2-Tetrachloroethane	ND	9.98	10.0	100	9.76	10.0	98	84-119	2	20
Ethylbenzene	ND	12.0	10.0	120	11.5	10.0	115	47-136	5	20
m,p-Xylenes	ND	23.1	20.0	116	22.1	20.0	111	84-120	4	20
o-Xylene	ND	11.0	10.0	110	10.6	10.0	106	47-143	4	20
Styrene	ND	10.7	10.0	107	10.2	10.0	102	72-121	5	20
Isopropylbenzene	ND	12.4	10.0	124 M1	11.9	10.0	119 M1	63-108	5	20
Bromobenzene	ND	10.1	10.0	101	9.58	10.0	96	80-113	5	20
1,2,3-Trichloropropane	ND	9.86	10.0	99	9.49	10.0	95	78-119	4	20
n-Propylbenzene	ND	12.8	10.0	128 M1	12.2	10.0	122 M1	76-117	5	20
2-Chlorotoluene	ND	12.1	10.0	121	11.3	10.0	113	79-121	7	20
4-Chlorotoluene	ND	11.8	10.0	118	11.1	10.0	111	70-133	6	20
1,3,5-Trimethylbenzene	ND	12.0	10.0	120 M1	11.5	10.0	115	79-118	5	20
tert-Butylbenzene	ND	13.0	10.0	130 M1	12.4	10.0	124 M1	77-120	5	20
1,2,4-Trimethylbenzene	ND	11.8	10.0	118	11.2	10.0	112	68-127	5	20
sec-Butylbenzene	ND	13.1	10.0	131 M1	12.5	10.0	125 M1	78-123	5	20
1,3-Dichlorobenzene	ND	10.7	10.0	107	10.3	10.0	103	78-127	4	20
4-Isopropyltoluene	ND	13.2	10.0	132	12.5	10.0	125	79-142	6	20
Bromoform	ND	8.85	10.0	89	8.87	10.0	89	83-111	0	20
1,1,2,2-Tetrachloroethane	ND	9.83	10.0	98	9.68	10.0	97	66-133	2	20
1,4-Dichlorobenzene	ND	10.4	10.0	104	10.0	10.0	100	48-139	3	20
1,2-Dichlorobenzene	ND	10.3	10.0	103	9.97	10.0	100	64-109	3	20
n-Butylbenzene	ND	13.4	10.0	134 M1	12.8	10.0	128 M1	69-122	5	20
1,2-Dibromo-3-chloropropane	ND	9.11	10.0	91	8.76	10.0	88	54-160	4	20
1,2,4-Trichlorobenzene	ND	10.0	10.0	100	9.73	10.0	97	39-145	3	20
Hexachlorobutadiene	ND	13.1	10.0	131 M1	12.8	10.0	128 M1	74-113	2	20
Naphthalene	ND	9.23	10.0	92	8.91	10.0	89	44-167	4	20
1,2,3-Trichlorobenzene	ND	9.74	10.0	97	9.38	10.0	94	37-158	4	20

Results flagged with an asterisk (*) indicate values outside control criteria.

Printed: 07/16/2003 15:34:29

L:\STEALTH\CRYSTAL.RPT\Form3DMS.rpt

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

100040

Form 3A - Organic

Page 2 of 2

RR3143 SuperSet Reference:

Fill Page

(X2300237)

QA/QC Report

Client: Project: BE&K Terranext WVB/#03103154

Sample Matrix:

Water

Service Request: X2300237 **Date Extracted:** 03/29/2003

Date Analyzed: 03/29/2003

Lab Control Spike/Duplicate Lab Control Spike Summary Volatile Organic Compounds

Extraction Method: EPA 5030B **Analysis Method:**

8260B

Units: ug/L Basis: NA

Level: Low

Extraction Lot: XWG0300420

Lab Control Sample XWG0300420-3

Duplicate Lab Control Sample XWG0300420-4

		Control Spik	e	Duplicate Lab Control Spike			%Rec		RPD
Analyte Name	Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit
Dichlorodifluoromethane	3.61	10.0	36	3.37	10.0	34	1-233	7	20
Chloromethane	6.22	10.0	62	6.32	10.0	63	46-156	2	20
Vinyl Chloride	6.98	10.0	70	7.13	10.0	71	51-158	2	20
Bromomethane	6.53	10.0	65	7.01	10.0	70	37-149	7	20
Chloroethane	8.97	10.0	90	9.32	10.0	93	56-146	4	20
Trichlorofluoromethane	8.72	10.0	87	8.55	10.0	86	69-139	2	20
1,1,2-Trichlorotrifluoroethane	10.5	10.0	105	10.4	10.0	104	83-130	1	20
1,1-Dichloroethene	9.23	10.0	92	9.22	10.0	92	65-112	0	20
Acetone	42.0	40.0	105	42.5	40.0	106	68-128	1	20
Iodomethane	32.4	40.0	81	34.6	40.0	87	68-144	6	20
Carbon Disulfide	40.2	40.0	101	40.5	40.0	101	67-140	1	20
Methylene Chloride	10.2	10.0	102	10.5	10.0	105	70-113	3	20
Methyl tert-Butyl Ether	9.03	10.0	90	9.31	10.0	93	75-115	3	20
trans-1,2-Dichloroethene	10.1	10.0	101	10.1	10.0	101	73-118	1	20
1,1-Dichloroethane	10.6	10.0	106	10.7	10.0	107	77-127	1	20
Vinyl Acetate	43.7	40.0	109	42.6	40.0	107	51-202	3	39
2,2-Dichloropropane	10.0	10.0	100	9.90	10.0	99	75-132	1	20
2-Butanone (MEK)	35.5	40.0	89	47.3	40.0	118	72-122	28 R7	20
cis-1,2-Dichloroethene	9.71	10.0	97	9.69	10.0	97	81-118	0	20
Bromochloromethane	10.8	10.0	108	11.4	10.0	114	82-114	6	20
Chloroform	10.6	10.0	106	10.5	10.0	105	78-119	0	20
1,1,1-Trichloroethane	8.96	10.0	90	8.72	10.0	87	71-125	3	20
Carbon Tetrachloride	9.37	10.0	94	9.35	10.0	94	69-130	0	20
1,1-Dichloropropene	9.91	10.0	99	9.77	10.0	98	77-114	1	20
Benzene	9.59	10.0	96	9.53	10.0	95	81-117	1	20
1,2-Dichloroethane	10.2	10.0	102	10.4	10.0	104	67-122	3	20
Trichloroethene	10.0	10.0	100	10.3	10.0	103	79-114	3	20
1,2-Dichloropropane	10.4	10.0	104	10.4	10.0	104	78-114	0	20
Dibromomethane	10.9	10.0	109	10.9	10.0	109	78-113	0	20
Bromodichloromethane	9.67	10.0	97	9.77	10.0	98	79-122	1	20
cis-1,3-Dichloropropene	11.2	10.0	112	11.5	10.0	115	82-118	3	20
4-Methyl-2-pentanone (MIBK)	43.9	40.0	110	41.0	40.0	102	75-115	7	20
Toluene	10.5	10.0	105	10.4	10.0	104	85-118	1	20
trans-1,3-Dichloropropene	11.3	10.0	113	10.9	10.0	109	79-121	3	20
1,1,2-Trichloroethane	10.1	10.0	101	10.1	10.0	101	79-116	0	20

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 04/02/2003 12:22:25 L:\STEALTH\CRYSTAL.RPT\Form3DLC.rpt

000042 Form 3C - Organic

Page 1 of 2 RR3143

SuperSet Reference:

QA/QC Report

Client: Project: BE&K Terranext WVB/#03103154

Sample Matrix:

Water

Service Request: X2300237

Date Extracted: 03/29/2003

Date Analyzed: 03/29/2003

Lab Control Spike/Duplicate Lab Control Spike Summary Volatile Organic Compounds

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

Extraction Lot: XWG0300420

Lab Control Sample XWG0300420-3

Duplicate Lab Control Sample XWG0300420-4

XWG0300420-3 Lab Control Spike			e		XWG0300420-4 Duplicate Lab Control Spike				RPD
Analyte Name	Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit
Tetrachloroethene	10.3	10.0	103	10.3	10.0	103	76-127	0	20
	40.8	40.0	102	41.1	40.0	103	65-120	1	20
2-Hexanone 1,3-Dichloropropane	10.2	10.0	102	10.4	10.0	104	81-116	2	20
Dibromochloromethane	10.2	10.0	102	10.7	10.0	107	77-119	5	20
	10.4	10.0	104	10.7	10.0	107	79-116	3	20
1,2-Dibromoethane	10.4	10.0	101	9.90	10.0	99	84-114	2	20
Chlorobenzene	9,60	10.0	96	9.68	10.0	97	78-118	1	20
1,1,1,2-Tetrachloroethane	10.4	10.0	104	10.3	10.0	103	79-124	0	20
Ethylbenzene	20.9	20.0	105	21.0	20.0	105	75-131	1	20
m,p-Xylenes	10.3	10.0	103	10.2	10.0	102	78-122	0	20
o-Xylene	10.5	10.0	106	10.5	10.0	105	80-126	1	20
Styrene	10.0	10.0	102	10.2	10.0	102	75-126	0	20
Isopropylbenzene	10.2	10.0	111	11.3	10.0	113	82-122	2	20
Bromobenzene	10.4	10.0	104	11.0	10.0	110	77-118	6	20
1,2,3-Trichloropropane	10.4	10.0	106	10.5	10.0	105	75-129	1	20
n-Propylbenzene	10.6	10.0	101	10.4	10.0	104	77-126	3	20
2-Chlorotoluene		10.0	105	10.7	10.0	107	82-120	2	20
4-Chlorotoluene	10.5	10.0	103	10.7	10.0	105	75-130	3	20
1,3,5-Trimethylbenzene	10.2		102	10.5	10.0	106	73-130	1	20
tert-Butylbenzene	10.4	10.0	104	10.0	10.0	107	60-137	3	20
1,2,4-Trimethylbenzene	10.3	10.0	103 97	9.92	10.0	99	68-131	3	20
sec-Butylbenzene	9.65	10.0		10.7	10.0	107	71-137	5	20
1,3-Dichlorobenzene	10.2	10.0	102	10.7	10.0	106	68-134	4	20
4-Isopropyltoluene	10.1	10.0	101		10.0	101	70-118	Ö	20
Bromoform	10.1	10.0	101	10.1	10.0	111	72-122	1	20
1,1,2,2-Tetrachloroethane	11.3	10.0	113	11.1	10.0	100	82-114	0	20
1,4-Dichlorobenzene	9.94	10.0	99	9.96	10.0	100	81-118	3	20
1,2-Dichlorobenzene	9.74	10.0	97	10.0		100	71-125	0	20
n-Butylbenzene	10.0	10.0	100	10.0	10.0	120	55-131	26 R	
1,2-Dibromo-3-chloropropane	9.23	10.0	92	12.0	10.0	99	75-123	3	20
1,2,4-Trichlorobenzene	9.65	10.0	97	9.92	10.0		63-140	2	20
Hexachlorobutadiene	10.3	10.0	103	10.6	10.0	106		5	20
Naphthalene	9.64	10.0	96	10.2	10.0	102	67-125	2	20
1,2,3-Trichlorobenzene	10.9	10.0	109	11.1	10.0	111	72-124	2	20

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

000043

QA/QC Report

Client: Project: BE&K Terranext WVB/#03103154

Sample Matrix:

Water

Service Request: X2300237 **Date Extracted:** 03/29/2003 **Date Analyzed:** 03/29/2003

Lab Control Spike/Duplicate Lab Control Spike Summary Volatile Organic Compounds

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L

Basis: NA Level: Low

Extraction Lot: XWG0300422

Lab Control Sample XWG0300422-1

Duplicate Lab Control Sample XWG0300422-2

	XWG0300422-1 Lab Control Spike			Duplicate Lab Control Spike			%Rec		RPD
Analyte Name	Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit
Dichlorodifluoromethane	10.4	10.0	104	8.28	10.0	83	1-233	23 R7	20
Chloromethane	9.69	10.0	97	8.74	10.0	87	46-156	10	20
Vinyl Chloride	12.6	10.0	126	10.3	10.0	103	51-158	20	20
Bromomethane	7.58	10.0	76	6.88	10.0	69	37-149	10	20
Chloroethane	12.4	10.0	124	10.5	10.0	105	56-146	16	20
Trichlorofluoromethane	13.1	10.0	131	10.8	10.0	108	69-139	19	20
1,1,2-Trichlorotrifluoroethane	13.9	10.0	139 L1	10.8	10.0	108	83-130	25 R7	20
1,1-Dichloroethene	11.3	10.0	113 L1	9.33	10.0	93	65-112	19	20
Acetone	36.1	40.0	90	40.4	40.0	101	68-128	11	20
Iodomethane	26.7	40.0	67 L2	29.1	40.0	73	68-144	9	20
Carbon Disulfide	51.7	40.0	129	43.4	40.0	109	67-140	17	20
Methylene Chloride	10.5	10.0	105	10.4	10.0	104	70-113	1	20
Methyl tert-Butyl Ether	8.88	10.0	89	9.55	10.0	96	75-115	7	20
trans-1,2-Dichloroethene	10.7	10.0	107	9.41	10.0	94	73-118	13	20
1,1-Dichloroethane	12.0	10.0	120	11.0	10.0	110	77-127	9	20
Vinyl Acetate	47.3	40.0	118	52.3	40.0	131	51-202	10	39
2,2-Dichloropropane	12.3	10.0	123	10.3	10.0	103	75-132	18	20
2-Butanone (MEK)	35.0	40.0	88	39.1	40.0	98	72-122	11	20
cis-1,2-Dichloroethene	10.4	10.0	104	10.1	10.0	101	81-118	4	20
Bromochloromethane	8.82	10.0	88	9.63	10.0	96	82-114	9	20
Chloroform	11.3	10.0	113	10.8	10.0	108	78-119	5	20
1,1,1-Trichloroethane	12.0	10.0	120	9.80	10.0	98	71-125	20	20
Carbon Tetrachloride	13.2	10.0	132 L1	10.4	10.0	104	69-130	24 R7	
1,1-Dichloropropene	12.4	10.0	124 L1	9.85	10.0	99	77-114	23 R7	
Benzene	11.2	10.0	112	10.1	10.0	101	81-117	11	20
1,2-Dichloroethane	10.4	10.0	104	10.5	10.0	105	67-122	1	20
Trichloroethene	11.0	10.0	110	9.61	10.0	96	79-114	14	20
1,2-Dichloropropane	10.4	10.0	104	10.2	10.0	102	78-114	2	20
Dibromomethane	9.67	10.0	97	10.1	10.0	101	78-113	4	20
Bromodichloromethane	10.5	10.0	105	10.5	10.0	105	79-122	1	20
cis-1,3-Dichloropropene	10.7	10.0	107	10.6	10.0	106	82-118	1	20
4-Methyl-2-pentanone (MIBK)	31.4	40.0	78	34.0	40.0	85	75-115	8	20
Toluene	11.4	10.0	114	10.1	10.0	101	85-118	12	20
trans-1,3-Dichloropropene	10.2	10.0	102	10.6	10.0	106	79-121	3	20
1,1,2-Trichloroethane	9.34	10.0	93	9.79	10.0	98	79-116	5	20

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 04/02/2003 12:22:32 L:\STEALTH\CRYSTAL.RPT\Form3DLC.rpt Form 3C - Organic 000044

Page 1 of 2

QA/QC Report

Client: Project: BE&K Terranext WVB/#03103154

Sample Matrix:

Water

Service Request: X2300237

Date Extracted: 03/29/2003

Date Analyzed: 03/29/2003

Lab Control Spike/Duplicate Lab Control Spike Summary Volatile Organic Compounds

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L

Basis: NA Level: Low

Extraction Lot: XWG0300422

Lab Control Sample XWG0300422-1

Duplicate Lab Control Sample XWG0300422-2

	Lab Control Spike			Duplicate Lab Control Spike			%Rec		RPD	
Analyte Name	Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit	
Tetrachloroethene	10.9	10.0	109	8.89	10.0	89	76-127	20	20	
2-Hexanone	35.5	40.0	89	38.6	40.0	97	65-120	9	20	
1,3-Dichloropropane	10.0	10.0	100	10.4	10.0	104	81-116	4	20	
Dibromochloromethane	9.36	10.0	94	9.55	10.0	96	77-119	2	20	
1,2-Dibromoethane	9.38	10.0	94	9.91	10.0	99	79-116	5	20	
Chlorobenzene	10.3	10.0	103	9.68	10.0	97	84-114	6	20	
1,1,1,2-Tetrachloroethane	9.78	10.0	98	9.56	10.0	96	78-118	. 2	20	
Ethylbenzene	11.8	10.0	118	10.2	10.0	102	79-124	15	20	
m,p-Xylenes	22.8	20.0	114	19.8	20.0	99	75-131	14	20	
o-Xylene	10.8	10.0	108	9.80	10.0	98	78-122	10	20	
Styrene	10.9	10.0	109	10.3	10.0	103	80-126	6	20	
Isopropylbenzene	11.5	10.0	115	9.70	10.0	97	75-126	17	20	
Bromobenzene	9.90	10.0	99	9.72	10.0	97	82-122	2	20	
1,2,3-Trichloropropane	10.0	10.0	100	10.2	10.0	102	77-118	2	20	
n-Propylbenzene	12.4	10.0	124	10.4	10.0	104	75-129	18	20	
2-Chlorotoluene	12.0	10.0	120	10.8	10.0	108	77-126	11	20	
4-Chlorotoluene	11.6	10.0	116	10.6	10.0	106	82-120	9	20	
1,3,5-Trimethylbenzene	11.7	10.0	117	10.3	10.0	103	75-130	13	20	
tert-Butylbenzene	12.3	10.0	123	10.3	10.0	103	73-130	17	20	
1,2,4-Trimethylbenzene	11.7	10.0	117	10.5	10.0	105	60-137	11	20	
sec-Butylbenzene	11.7	10.0	117	9.88	10.0	99	68-131	17	20	
1,3-Dichlorobenzene	10.4	10.0	104	9.88	10.0	99	71-137	5	20	
4-Isopropyltoluene	12.5	10.0	125	10.7	10.0	107	68-134	16	20	
Bromoform	8.44	10.0	84	8.87	10.0	89	70-118	5	20	
1,1,2,2-Tetrachloroethane	9.46	10.0	95	9.86	10.0	99	72-122	4	20	
1,4-Dichlorobenzene	10.2	10.0	102	9.86	10.0	99	82-114	4	20	
1,2-Dichlorobenzene	10.1	10.0	101	9.94	10.0	99	81-118	2	20	
n-Butylbenzene	12.1	10.0	121	10.5	10.0	105	71-125	14	20	
1,2-Dibromo-3-chloropropane	8.32	10.0	83	9.23	10.0	92	55-131	10	20	
1,2,4-Trichlorobenzene	9.35	10.0	94	9.59	10.0	96	75-123	3	20	
Hexachlorobutadiene	11.7	10.0	117	10.8	10.0	108	63-140	9	20	
Naphthalene	8.37	10.0	84	9.31	10.0	93	67-125	11	20	
1,2,3-Trichlorobenzene	9.29	10.0	93	10.0	10.0	100	72-124	8	20	

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

000045

2 of 2

March 31, 2003

Chuck Gordon BE & K Terranext 9830 S. 51st A-127 Phoenix, AZ 85044

Re: WVBA/Project #03103154

Dear Chuck:

Enclosed are the results of the samples submitted to our laboratory on March 19, 2003. For your reference, these analyses have been assigned our service request number L2300620.

All analyses were performed in accordance with our laboratory's quality assurance program. Results are intended to be considered in their entirety and apply only to the samples analyzed. Columbia Analytical Services is not responsible for use of less than the complete report.

Columbia Analytical Services - is certified for environmental analyses by the Arizona Department of Health Services (certificate number: AZ0544 and AZ0136, expiration: May 23, 2003).

If you have any questions, please call me at (818) 587-5550, extension 309.

Respectfully submitted,

Columbia Analytical Services, Inc.

Sue Anderson Project Chemist

SA

Page 1 of <u>20</u>

000046

Columbia Analytical Services, Inc.

Acronyms California DHS LUFT Method 8015M American Society for Testing and Materials **ASTM** Biochemical Oxygen Demand BOD Benzene/Toluene/Ethylbenzene/Xylenes BTEX California Assessment Metals CAM Chemical Abstract Service Registry Number **CAS Number** Chlorofluorocarbon **CFC** Chemical Oxygen Demand COD Contract Required Detection Limit CRDL Detected; result must be greater than zero. D Detected; result must be greater than the detection limit. DL **Duplicate Laboratory Control Sample DLCS** Duplicate Matrix Spike **DMS** Department of Health Services DOH or DHS Environmental Laboratory Accreditation Program ELAP U.S. Environmental Protection Agency **EPA** Gas Chromatography GC Gas Chromatography/Mass Spectrometry GC/MS Ion Chromatography IC Initial Calibration Blank sample **ICB** Inductively Coupled Plasma atomic emission spectrometry **ICP** Initial Calibration Verification sample **ICV** Laboratory Control Sample LCS Leaking Underground Fuel Tank LUFT Modified M Methylene Blue Active Substances **MBAS** Method Detection Limit MDL Method Reporting Limit MRL Matrix Spike MS Methyl-tert-Butyl Ether **MTBE** Not Applicable NA Not Calculated NC None Detected at or above the Method Reporting/Detection Limit (MRL/MDL) ND Nephelometric Turbidity Units NTU Parts Per Billion ppb Parts Per Million ppm Practical Quantitation Limit **PQL** Quality Assurance/Quality Control OA/QC Resource Conservation and Recovery Act **RCRA** Relative Percent Difference **RPD** Selected Ion Monitoring SIM Standard Methods for the Examination of Water and Wastewater, 18th Ed., 1992. SM Solubility Threshold Limit Concentration **STLC** Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW-846, SWThird Edition, 1986 and as amended by Updates I, II, IIA, and IIB. Toxicity Characteristics Leaching Procedure **TCLP** Total Dissolved Solids TDS Total Petroleum Hydrocarbons **TPH** Total Recoverable Petroleum Hydrocarbons TRPH Total Suspended Solids TSS Total Threshold Limit Concentration **TTLC** Volatile Organic Analyte(s) VOA **Oualifiers** Undetected at or above MDL/MRL. U

U Undetected at or above MDL/MRL.

J Estimated concentration. Analyte detected above MDL but below MRL.

B Hit above MRL also found in Method Blank.

E Analyte concentration above high point of ICAL.

N Presumptive evidence of compound.

D Result from dilution.

See case narrative.

X

- Cover Page -INORGANIC ANALYSIS DATA PACKAGE

Client:

BE&K Terranext, LLC

Project Name:

WVB

Project No.:

03103154

Service Request: L2300620

Sample Name:	<u>Lab Code :</u>
Laboratory Control Sample	L2300326-LCS
Method Blank	L2300326-MB
AVB106-0200-07135	L2300620-001
AVB106-0200-07135	L2300620-001S
AVB106-0200-07135	L2300620-001SD
AVB106-0300-07150	L2300620-002
AVB106-0100-07095	L2300620-003
AVB103-0200-03092	L2300620-004
AVB15-0100-02108	L2300620-005
AVB15-0104-1000	L2300620-006
11,1010 0101 1000	

Analytical Report

Client:

BE&K Terranext, LLC

Project Name:

WVB

Project No.:

03103154

Matrix:

Water

Service Request: L2300620

Date Collected: 03/19/03

Date Received: 03/19/03

Date Extracted: 03/26/03

Total Metals

Sample Name:

AVB106-0200-07135

Lab Code:

L2300620-001

Units: ug/L (ppb)

Basis: NA

Sample Result Result Notes **Analysis Method** MRL **Date Analyzed** Analyte 10 03/28/03 16 6010B Chromium

Analytical Report

Client:

BE&K Terranext, LLC

Project Name:

WVB

Project No.:

03103154

Matrix:

Water

Service Request: L2300620

Date Collected: 03/19/03

Date Received: 03/19/03

Date Extracted: 03/26/03

Dissolved Metals

Sample Name:

AVB106-0200-07135

Lab Code:

L2300620-001

Units: ug/L (ppb)
Basis: NA

Analyte	Analysis Method	MRL	Date Analyzed	Sample Result	Result Notes
Chromium	6010B	10	03/28/03	ND	

Analytical Report

Client:

BE&K Terranext, LLC

Project Name : Project No. : WVB

Matrix:

03103154 Water Service Request: L2300620

Date Collected: 03/19/03

Date Received: 03/19/03

Date Extracted: 03/26/03

Total Metals

Sample Name :

AVB106-0300-07150

Lab Code:

L2300620-002

Units: ug/L (ppb)

Analyte	Analysis Method	MRL	Date Analyzed	Sample Result	Result Notes
Chromium	6010B	10	03/28/03	ND	

Analytical Report

Client:

BE&K Terranext, LLC

Project Name: Project No.: WVB

Matrix:

03103154

Water

Service Request: L2300620

Date Collected: 03/19/03

Date Received: 03/19/03 **Date Extracted**: 03/26/03

Dissolved Metals

Sample Name :

AVB106-0300-07150

Lab Code:

L2300620-002

Units: ug/L (ppb)

Analyte	Analysis Method	MRL	Date Analyzed	Sample Result	Result Notes
Chromium	6010B	10	03/28/03	ND	

Analytical Report

Client:

BE&K Terranext, LLC

Project Name:

WVB

Project No. : Matrix:

03103154

Water

Service Request: L2300620 **Date Collected:** 03/19/03

Date Received: 03/19/03

Date Extracted: 03/26/03

Total Metals

Sample Name : Lab Code :

AVB106-0100-07095

L2300620-003

Units: ug/L (ppb)

Analyte	Analysis Method	MRL	Date Analyzed	Sample Result	Result Notes
Chromium	6010B	10	03/28/03	ND	

Analytical Report

Client:

BE&K Terranext, LLC

Project Name:

WVB

Project No.:

03103154

Matrix:

Water

Service Request: L2300620

Date Collected: 03/19/03

Date Received: 03/19/03

Date Extracted: 03/26/03

Dissolved Metals

Sample Name:

AVB106-0100-07095

Lab Code:

L2300620-003

Units: ug/L (ppb)

Analyte	Analysis Method	MRL	Date Analyzed	Sample Result	Result Notes
Chromium	6010B	10	03/28/03	ND	

Analytical Report

Client:

BE&K Terranext, LLC

Project Name:

WVB

Project No.:

03103154

Matrix:

Water

Service Request: L2300620

Date Collected: 03/19/03 Date Received: 03/19/03

Date Extracted: 03/26/03

Total Metals

Sample Name:

AVB103-0200-03092

Lab Code:

L2300620-004

Units: ug/L (ppb)

Basis: NA

Sample Result **Date Analyzed** Result Notes **Analysis Method** MRL Analyte ND 03/28/03 6010B 10 Chromium

Analytical Report

Client:

BE&K Terranext, LLC

Project Name:
Project No.:

WVB

Matrix:

03103154 Water Service Request: L2300620

Date Collected: 03/19/03

Date Received: 03/19/03

Date Extracted: 03/26/03

Dissolved Metals

Sample Name:

AVB103-0200-03092

Lab Code:

L2300620-004

Units: ug/L (ppb)

Analyte	Analysis Method	MRL	Date Analyzed	Sample Result	Result Notes
Chromium	6010B	10	03/28/03	ND	

Analytical Report

Client:

BE&K Terranext, LLC

Project Name : Project No. : WVB 03103154

Matrix:

Water

Service Request: L2300620

Date Collected: 03/19/03 **Date Received:** 03/19/03

Date Extracted: 03/26/03

Total Metals

Sample Name:

AVB15-0100-02108

Lab Code:

L2300620-005

Units: ug/L (ppb)

Analyte	Analysis Method	MRL	Date Analyzed	Sample Result	Result Notes
Chromium	6010B	10	03/28/03	ND	

Analytical Report

Client:

BE&K Terranext, LLC

Project Name: Project No.: WVB 03103154

Matrix:

Water

Service Request: L2300620

Date Collected: 03/19/03 **Date Received**: 03/19/03

Date Extracted: 03/26/03

Dissolved Metals

Sample Name:

AVB15-0100-02108

Lab Code:

L2300620-005

Units: ug/L (ppb)

Analyte	Analysis Method	MRL	Date Analyzed	Sample Result	Result Notes
Chromium	6010B	10	03/28/03	ND	

Analytical Report

Client:

BE&K Terranext, LLC

Project Name : Project No. :

WVB

Matrix:

03103154 Water Service Request: L2300620

Date Collected: 03/19/03

Date Received: 03/19/03

Date Extracted: 03/26/03

Total Metals

Sample Name:

AVB15-0104-1000

Lab Code :

L2300620-006

Units: ug/L (ppb)

Basis: NA

Analyte Analysis Method MRL Date Analyzed Result Notes

Chromium 6010B 10 03/28/03 ND

Analytical Report

Client:

BE&K Terranext, LLC

Project Name:

WVB

Project No.:

03103154

Matrix:

Water

Service Request: L2300620

Date Collected: 03/19/03

Date Received: 03/19/03

Date Extracted: 03/26/03

Dissolved Metals

Sample Name:

AVB15-0104-1000

Lab Code:

L2300620-006

Units: ug/L (ppb)

Basis: NA

Sample Result **Analysis Method** MRL **Date Analyzed** Result Notes Analyte 03/28/03 ND 6010B 10 Chromium

Analytical Report

Client:

BE&K Terranext, LLC

Project Name: Project No.:

WVB 03103154

Matrix:

Water

Service Request: L2300620

Date Collected: NA

Date Received: NA

Date Extracted: 03/26/03

Total Metals

Sample Name:

Method Blank

Lab Code:

L2300326-MB

Units: ug/L (ppb)

Basis: NA

Sample Result **Analysis Method** MRL **Date Analyzed** Result Notes Analyte 03/28/03 ND 6010B 10 Chromium

QA/QC Report

Client:

BE&K Terranext, LLC

Project Name:

WVB

Project No.:

03103154

Matrix:

Water

Service Request: L2300620

Date Collected: NA

Date Received: NA **Date Extracted:** 03/26/03

Date Analyzed: 03/28/03

Laboratory Control Sample Summary Total Metals

Sample Name:

Laboratory Control Sample

Lab Code:

L2300326-LCS

Units: ug/L (ppb)

Analyte	Analysis Method	True Value	Result	Percent	CAS Percent Recovery Acceptance Limits	Result Notes
Chromium	6010B	500	532	106	87-111	

Analytical Report

Client:

BE&K Terranext, LLC

Project Name: Project No.:

WVB 03103154

Matrix:

Water

Service Request: L2300620

Date Collected: 03/19/03

Date Received: 03/19/03

Date Extracted: 03/26/03

Date Analyzed: 03/28/03

Matrix Spike/Duplicate Matrix Spike Summary

Total Metals

Sample Name:

AVB106-0200-07135

Lab Code:

L2300620-001S

L2300620-001SD

Units: ug/L (ppb)

Analyte	Prep Method	Analysis Method	MRL	Spike MS	Level DMS	Sample Result	Spike MS	Result DMS	MS	DMS	CAS Acceptance Limits	Relative Percent Difference	Result Notes
Chromium	3010A	6010B	10	500	500	16.2	526	540	102	105	87-105	3	

Services INC. Analytical columbia

(2300620 chain of custody/Laboratory analysis request form

3902 East University Drive, Suite 4 • Phoenix, AZ 85034 • (602) 437-2001 • (800) 695-7222 x09 • FAX (602) 437-5308

PAGE

P.

DATE 3 , 19 . 63

 Surcharges Apply ANALYSIS TAT (Circle One) REMARKS Lab No: X 23 302 SAMPLE RECEIPT: □ 24 Hours □ 48 Hours ☐ 72 Hours STANDARD Shipping VIA: 4 **RUSH TAT** Condition: 1245 D 0158 ANALYSIS REQUESTED Sate/Time 3 INVOICE INFORMATION 0158 Date/Time Date/Time 13/19/103 HAA D Teilii Filied DHQ Diniod Asela D leto! D d JOT Organization Organization Organization (PS) D d TOL Z P.O.# 8PCPA Metals REPORT REQUIREMENTS K II. Report (includes DUP.MS. MSD, as required, may be IV. CLP Deliverable Report III. Data Validation Report (includes All Raw Data) charged as samples) Routine Report Aromatic Volatiles Halogenated Volatile Organics Received BV (Signature) Received By (Signature) Received By (Signatu∯d) BTEX 602/8021 S NUMBER OF CONTAINERS W 12-45 **表** PRESER-VATION Date/Time 3-79:03 Date/Time Date/Time 3.19 # 03103157 MATRIX 图 OD HOO 003 1 200 not oos I Organization 100-Organization Organization LAB I.D. 0237 04:11 PHONE/FAX 2.4 ?e/ TIME 12:00 8:40 is the second SPECIAL INSTRUCTIONS/COMMENTS: おって DATE 3.8 -Ξ. 3/1 Relinquished By (Signature) Relinquished By (Signature) Relinquished By (Signature) SAMPLER'S SIGNATURE Lealis new PROJECT NAME WVB ANB 6-0100-02108 AVBIOL 0200-07/35 ANBILLO-0250-02150 AVB 105-0000-03/12 418106-0100-67095 LYMBIS 5102-1000 10001-4010-1000 PROJECT MANAGER COMPANY/ADDRESS SAMPLE I.D. 000064

DISTRIBUTION: WHITE - return to originator; YELLOW - lab; PINK - retained by originator

SAMPLE RECEIPT FORM

Service Request No: L230 O620 Client: BETK
Sample(s) delivered by: Client CAS Emp After Hours DHL
Golden State Overnight Fed X UPS Other Courier
Chain of Custody filled out accurately? Yes No (See Comments)
Appropriate sample volume and containers? Yes/ No(See Comments)
Sufficient labeling on container(s)? Yes No(See Comments)
Container(s) supplied by CAS? Yes No(See Comments)
Custody seal(s) intact? N/A / Yes No(See Comments)
Trip Blank(s) received Yes No
If Trip Blank was supplied by CAS, record serial #TB
Temperature of sample(s)/cooler °C Temp Blank (Y) or N (Circle One)
Voa's Marked Preserved? Yes No Filled Properly? Yes No (See Comments)
Preserved Bottles Requiring pH check(s)? Yes Notified
RUSH Turn around time? Yes Notified Date & Time
Short Hold-Time Analysis (check all that apply)
ASAP Res Cl D.O Flash Diss S2 Ferrous Fe 24HR pH Odor Cr+6 48HR BOD Color MBAS Nitrate Nitrite O-PO4 Sett Sol Turbidity
Notified Date & Time
Container(s) received and their preservative(s): $-1 \rightarrow -5 = 1-500 \text{ ml PI (NP)A}$ $1-500 \text{ ml PI (HN03)B}$
Comments Filtal & preserve bottle in lab
Initials, Date, Time LK 3/6 3/20/03 1105 r:\sr_forms\cooler.doc Rev. 1/17/02

CHAIN OF CUSTODY/LABORATORY ANALYSIS REQUEST FORM

Columbia Analytical Services Inc.

DATE 3 . 19 . 63 3902 East University Drive, Suite 4 • Phoenix, AZ 85034 • (602) 437-2001 • (800) 695-7222 x09 • FAX (602) 437-5308

PAGE

990000 REMARKS D 0758 ANALYSIS REQUESTED 0188 Dyalit Filter D Halogenated & Aromatic Volatiles Halogenafed Volatile Organics 3 NUMBER OF CONTAINERS M A.E.O.3 PRESER-VATION \vec{z} 03103184 MATRIX 002 180 \$ 004 AD Sou Sou 100 LAB .D. 0237 07:11 PHONE/FAX 24 TIME 25.22 5 840 De CL DATE 3.6 **2**2, <u>%</u> SAMPLER'S SIGNATURE PROJECT NAME_WVB AVBIOL 0200-07135 ANB 6.0100-02108 AVB NO-0-20-07150 AVR 103-0000 DONZ ANDION-0100-07055 Missind-1000 MBIS-6102-1000 PROJECT MANAGER COMPANY/ADDRESS SAMPLE I.D.

l	
	PINK - retained by originator
	YELLOW - lab:
	return to originator:
	WHITE
	DISTRIBUTION:

RUSH TAT - Surcharges Apply

Date/Time

Organization

☐ 48 Hours ☐ 72 Hours

Date/Time

Organization

Received By (Signature)

Date/Time

Organization

Relinquished By (Signature)

□ 24 Hours

ANALYSIS TAT (Circle One)

Date/Time

Organization

STANDARD

13/19/183

Z

Received By (Signatu#e)

12-45

3.19

Date/Time

Organization

Relinquished By (Signature)

Received B (Signature)

Date/Time

Organization

Relinquished By (Signature)

23002 37

Lab No:

Condition:

P.O.# Bill To

 II. Report (includes DUP.MS. MSD, as required, may be charged as samples)

III. Data Validation Report (includes All Raw Data) IV. CLP Deliverable Report

SAMPLE RECEIPT:

INVOICE INFORMATION:

REPORT REQUIREMENTS

SPECIAL INSTRUCTIONS/COMMENTS:

Routine Report

Shipping VIA: __ Shipping #: __

Columbia Analytical Services, Inc. Phoenix, AZ

Sample Receipt and Preservation Form

Client:	BEaK]	Project Name: _	Tenanget	
Sample(s) Re VOA`s 🗐	eceived on: 3. Glass Bottle	19.03 s		time Jars 🗆	Sleeves []	
Is first ex	action Holding T traction/analysis	ime Expirati	on:	HAN 24 HOUR	time (soils only) S(soil)/7 DAYS (water)? Chemist's Initials	Yes □ No[
2. Are the cult yes, how 3. Are the sign 4. Did all condition of the condi	correct containers A's been checked are of sample(s) u	nt? e? correct? good condition plete (i.e. pr s used for the for the prese upon receipt:	ion? reservation, sample	note problems i	RUSH Yes □	Ne□ No□ No□ No□
		YES	NO		VOA Vial pH Verifi (Tested After Anal ☐ All Samples pH ☐ Following Samples Exh	ysis) I ≤ 2
pН	Reagent					
12	NaOH					
2	HNO ₃	1/				
2	H ₂ SO ₄	· · · · · · · · · · · · · · · · · · ·				
			Completed	nd Sample(s)	Received by (initials):	Lin

0000,67

r:\common\forms\samprev.doc Revised: 09/27/02 4:19 PM

July 16, 2003

Chuck Gordon BE&K Terranext 9830 S. 51st Street, Suite A-127 Phoenix, AZ 85044

Re: WVBA / Project #0310-3154

Dear Chuck:

Enclosed are the amended result pages for the samples submitted to our laboratory on March 20, 2003. The samples were analyzed for Total and Dissolved Chromium by our Canoga Park, CA facility (L2300635). For your reference, the 8260 analyses have been assigned our service request number X2300246.

All analyses were performed according to our laboratory's quality assurance program. All results are intended to be considered in their entirety, and Columbia Analytical Services, Inc. (CAS) is not responsible for use of less than the complete report. Results apply only to the samples analyzed. Columbia Analytical Services, Inc. is certified for environmental analyses by the Arizona Department of Health Services (Certificate #AZ0136; and #AZ0497).

Please call if you have any questions. My extension is 223.

Respectfully submitted,

Columbia Analytical Services, Inc.

Tracy L. Dutton Laboratory Director

TLD/lm

Page 1 of <u>52</u>

Client: Project:

BE&K Terranext

WVBA / #0310-3154

Sample Matrix:

Water

Service Request No.:

X2300246

Date Received:

3/20/03

CASE NARRATIVE

All analyses were performed consistent with the quality assurance program of Columbia Analytical Services, Inc. (CAS). This report contains analytical results for sample(s) designated for Tier II data deliverables. When appropriate to the method, method blank results have been reported with each analytical test. Surrogate recoveries have been reported for all applicable organic analyses. Additional quality control analyses reported herein include: Matrix/Duplicate Matrix Spike (MS/DMS) and Laboratory Control Sample (LCS).

All EPA recommended holding times have been met for analyses in this sample delivery group.

The following difficulties were experienced during analysis of this batch:

The associated blank spike (XWG0300422-1, XWG0300422-2, XWG0300425-1, and XWG0300425-2) recovery of 1,1-Dichloroethene and 1,1-Dichloropropene for Method 8260B was above laboratory acceptance limits but within method limits.

The associated blank spike (XWG0300422-1 and XWG0300425-1) recovery of 1,1,2-Trichlorotrifluoroethane and Carbon Tetrachloride for Method 8260B was above laboratory acceptance limits. The associated blank spike (XWG0300425-2) recovery of 1,1,2-Trichlorotrifluoroethane for Method 8260B was above laboratory acceptance limits. These compounds were not detected in any of the samples analyzed in this batch.

The associated blank spike (XWG0300422-1) recovery of Iodomethane, Method 8260B, was below laboratory acceptance limits. This compound was seen in the method reporting limit standard that was analyzed with this batch of samples. This verifies that the compound would be detected if present in the samples.

Surrogate recovery of Dibromofluoromethne, Method 8260B, was above laboratory acceptance limits for sample AVB82-0100-05320 (X2300246-004), but within method acceptance limits.

Matrix spike (XWG0300422-4, XWG0300422-5, XWG0300425-5, and XWG0300425-5) recovery of 1,1,2-Trichlorotrifluoroethane, Carbon Tetrachloride and 1,1-Dichloropropene for Method 8260B was high. These compounds were not detected in any of the samples analyzed in this batch

Matrix spike (XWG0300422-4, XWG0300422-5, XWG0300425-4, and XWG0300425-5) recovery of other several analytes for Method 8260B was high. The method control sample recovery was acceptable.

Matrix spike (XWG0300422-5) recovery of 2-Butanone (MEK) Method 8260B was low. The method control sample recovery was acceptable.

LCS/DLCS (XWG0300422-1 and XWG0300422-2) RPD for several analytes for Method 8260B exceeded the laboratory control limit. Recovery met acceptance criteria.

Approved by	Date
-------------	------

ARIZONA DATA QUALIFIERS

Method Bl	ank:
B1	Target analyte detected in method blank at or above the method reporting limit.
B2	Non-target analyte detected in method blank and sample, producing interference.
В3	Target analyte detected in calibration blank at or above the method reporting limit.
134	Target analyte detected in blank at/above method acceptance criteria.
B5	Target analyte detected in method blank at or above the method reporting limit, but below trigger level or MCL.
В6	Target analyte detected in calibration blank at or above the method reporting limit, but below trigger level or MCL
В7	Target analyte detected in method blank at or above method reporting limit. Concentration found in the sample was 10 times above the concentration found in the method blank.
Confirmati	ion:
C1	Confirmatory analysis not performed as required by the method.
C2	Confirmatory analysis not performed. Confirmation of analyte presence established by site historical data.
C3	Qualitative confirmation performed. See case narrative.
C4	Confirmatory analysis was past holding time.
C5	Confirmatory analysis was past holding time. Original result not confirmed.
Dilution:	
D1	Sample required dilution due to matrix interference. See case narrative.
D2	Sample required dilution due to high concentration of target analyte.
D3	Sample dilution required due to insufficient sample.
D4	Minimum reporting level (MRL) adjusted to reflect sample amount received and analyzed.
Estimated	concentration:
E1	Concentration estimated. Analyte exceeded calibration range. Reanalysis not possible due to insufficient sample.
E2	Concentration estimated. Analyte exceeded calibration range. Reanalysis not performed due to sample matrix.
E3	Concentration estimated. Analyte exceeded calibration range. Reanalysis not performed due to holding time requirements.
E4	Concentration estimated. Analyte was detected below laboratory minimum reporting level (MRL).
E5	Concentration estimated. Analyte was detected below laboratory minimum reporting level (MRL), but not confirmed by alternate analysis.
E6	Confirmation estimated. Internal standard recoveries did not meet method acceptance criteria.
E7	Confirmation estimated. Internal standard recoveries did not meet laboratory acceptance criteria.
Hold Time	<u>:</u>
H1	Sample analysis performed past holding time. See case narrative.
H2	Initial analysis within holding time. Reanalysis for the required dilution was past holding time.
H3	Sample was received and analyzed past holding time.
H4	Sample was extracted past required extraction holding time, but analyzed within analysis holding time. See case narrative.

Laboratory fortified blank/blank spike:

L1 The associated blank spike recovery was above laboratory acceptance limits. See case narrative.

The associated blank spike recovery was below laboratory acceptance limits. See case narrative. L2The associated blank spike recovery was above method acceptance limits. See case narrative. L3 The associated blank spike recovery was below method acceptance limits. See case narrative. L4 Note: The L1, L2, L3, & L4 footnotes need to be added to all corresponding analytes for a sample. Matrix spike: M1 Matrix spike recovery was high, the method control sample recovery was acceptable. Matrix spike recovery was low, the method control sample recovery was acceptable. M2The accuracy of the spike recovery value is reduced since the analyte concentration in the sample is М3 disproportionate to spike level. The method control sample recovery was acceptable. The analysis of the spiked sample required a dilution such that the spike concentrations was diluted below M4the reporting limit. The method control sample recovery was acceptable. Analyte concentration was determined by the method of standard addition (MSA). M5 Matrix spike recovery was high. Data reported per ADEQ policy 0154.000. M6 Matrix sipke recovery was low. Data reported per ADEQ policy 0154.000. М7 General: N1 See case narrative. N2See corrective action report. Sample quality: Sample integrity was not maintained. See case narrative Q1 Q2 Sample received with head space. О3 Sample received with improper chemical preservation. Sample received and analyzed without chemical preservation. Q4 Sample received with inadequate chemical preservation, but preserved by the laboratory. O5 Sample was received above recommended temperature. Q6 Sample inadequately dechlorinated. Q7 Insufficient sample received to meet QC requirements. QC requirements satisfy ADEQ policies 0154 and 0155. O8 Q9 Insufficient sample received to meet QC requirements. Sample received in inappropriate sample container. O10 Sample is heterogeneous. Sample homogeneity could not be readily achieved using routine laboratory practices. Q11 **Duplicates:** RPD exceeded the method control limit. See case narrative. R1 RPD exceeded the laboratory control limit. See case narrative. R2 Sample RPD between the primary and confirmatory analysis exceeded 40%. Per Method 8000B, the higher R3 value was reported. MS/MSD RPD exceeded the method control limit. Recovery met acceptance criteria. R4 MS/MSD RPD exceeded the laboratory control limit. Recovery met acceptance criteria. **R**5 LFB/LFBD RPD exceeded the method control limit. Recovery met acceptance criteria. R6 LFB/LFBD RPD exceeded the laboratory control limit. Recovery met acceptance criteria. R7 Sample RPD exceeded the method control limit. R8 Sample RPD exceeded the laboratory control limit. R9 Surrogate:

Surrogate recovery was above laboratory acceptance limits, but within method acceptance limits.

Surrogate recovery was above laboratory and method acceptance limits

S1

S2

Surrogate recovery was above laboratory acceptance limits, but within method acceptance limits. No target S3analytes were detected in the sample. Surrogate recovery was above laboratory and method acceptance limits. No target analytes were detected in the S4 sample. Surrogate recovery was below laboratory acceptance limits, but within method acceptance limits. S5 Surrogate recovery was below laboratory and method acceptance limits. Reextraction and/or reanalysis confirms 86 low recovery caused by matrix effect. Surrogate recovery was below laboratory and method acceptance limits. Unable to confirm matrix effect. S7 The analysis of the sample required a dilution such that the surrogate concentration was diluted below the method S8 acceptance criteria. The method control sample recovery was acceptable. The analysis of the sample required a dilution such that the surrogate concentration was diluted below the S9laboratory acceptance criteria. The method control sample recovery was acceptable. Surrogate recovery was above laboratory and method acceptance limits. See case narrative. S10 Surrogate recovery was high. Data reported per ADEQ policy 0154.000. SH

Method/analyte discrepancies:

S12

- T1 Method promulgated by EPA, but not ADHS at this time.
- T2 Cited ADHS licensed method does not contain this analyte as part of method compound list.

Surrogate recovery was low. Data reported per ADEQ policy 0154.000.

- T3 Method not promulgated either by EPA or ADHS.
- Tentatively identified compound. Concentration is estimated and based on the closest internal standard.

Calibration verification:

- V1 CCV recovery was above method acceptance limits. This target analyte was not detected in the sample.
- V2 CCV recovery was above method acceptance limits. This target analyte was detected in the sample. The sample could not be reanalyzed due to insufficient sample.
- V3 CCV recovery was above method acceptance limits. This target analyte was detected in the sample, but the sample was not reanalyzed. See case narrative.
- V4 CCV recovery was below method acceptance limits. The sample could not be reanalyzed due to insufficient sample.
- V5 CCV recovery after a group of samples was above acceptance limits. This target analyte was not detected in the sample. Acceptable per EPA Method 8000B.
- V6 Data reported from one-point calibration criteria per ADEQ policy 0155.000.
- Calibration verification recovery was above the method control limit for this analyte however the average % difference or % drift for all the analytes met method criteria.
- Calibration verification recovery was below the method control limit for this analyte however the average % difference or % drift for all the analytes met method criteria.

Calibration:

W1 The % RSD for this compound was above 15%. The average % RSD for all compounds in the calibration met the 15% criteria as specified in EPA method 8000B.

Inorganic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.
- U The compound was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- i The MRL/MDL has been elevated due to a matrix interference.
- X See case narrative.

Metals Data Qualifiers

- # The control limit criteria is not applicable. See case narrative.
- B The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.
- E The reported value is estimated because of the presence of matrix interference.
- M The duplicate injection precision was not met.
- N The Matrix Spike sample recovery is not within control limits. See case narrative.
- S The reported value was determined by the Method of Standard Additions (MSA).
- U The compound was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- W The post-digestion spike for furnace AA analysis is out of control limits, while sample absorbance is less than 50% of spike absorbance.
- i The MRL/MDL has been elevated due to a matrix interference.
- X See case narrative.
- * The duplicate analysis not within control limits. See case narrative.
- + The correlation coefficient for the MSA is less than 0.995.

Organic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- A A tentatively identified compound, a suspected aldol-condensation product.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result.
- C The analyte was qualitatively confirmed using GC/MS techniques, pattern recognition, or by comparing to historical data.
- D The reported result is from a dilution.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.
- N The result is presumptive. The analyte was tentatively identified, but a confirmation analysis was not performed.
- P The GC or HPLC confirmation criteria was exceeded. The relative percent difference is greater than 40% between the two analytical results (25% for CLP Pesticides).
- U The compound was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- i The MRL/MDL has been elevated due to a chromatographic interference.
- X See case narrative.

Additional Petroleum Hydrocarbon Specific Qualifiers

- F The chromatographic fingerprint of the sample matches the elution pattern of the calibration standard.
- L The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of lighter molecular weight constituents than the calibration standard.
- H The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of heavier molecular weight constituents than the calibration standard.
- O The chromatographic fingerprint of the sample resembles an oil, but does not match the calibration standard.
- Y The chromatographic fingerprint of the sample resembles a petroleum product eluting in approximately the correct carbon range, but the elution pattern does not match the calibration standard.
- Z The chromatographic fingerprint does not resemble a petroleum product.

Client: Project: BE&K Terranext WVBA/#0310-3154 **Service Request:**

X2300246

Cover Page - Organic Analysis Data Package Volatile Organic Compounds

		Date	Date
Sample Name	Lab Code	Collected	Received
AVB60-0102-1000	X2300246-001	03/20/2003	03/20/2003
AVB60-0100-14450	X2300246-002	03/20/2003	03/20/2003
AVB60-0104-1000	X2300246-003	03/20/2003	03/20/2003
AVB82-0100-05320	X2300246-004	03/20/2003	03/20/2003

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed in the case narrative. Release of the data contained in this hardcopy data package and in the computer-readable data submitted on floppy diskette has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signature.

Signature: \MM \MUM

Name: Tracy Dutton

4-4-03

Title: Lab Manager

RR3154

Date:

Analytical Results

Client:

BE&K Terranext WVBA/#0310-3154

Project: Sample Matrix:

Water

Service Request: X2300246

Date Collected: 03/20/2003 **Date Received:** 03/20/2003

Volatile Organic Compounds

Sample Name: Lab Code:

AVB60-0102-1000 X2300246-001

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

Analyte Name	Result	o	MRL	Dilution Factor	Date Extracted	Date Analyzed	Arizona Qualifier
Dichlorodifluoromethane	ND		3.0	1	03/29/03	03/29/03	
Chloromethane	ND	U	2.0	1	03/29/03	03/29/03	
Vinyl Chloride	ND	U	1.0	1	03/29/03	03/29/03	
Bromomethane	ND	U	1.0	1	03/29/03	03/29/03	
Chloroethane	ND	U	1.0	1	03/29/03	03/29/03	
Trichlorofluoromethane	ND	U	1.0	1	03/29/03	03/29/03	
1,1,2-Trichlorotrifluoroethane	ND	U	1.0	1	03/29/03	03/29/03	L1
1,1-Dichloroethene	ND	U	1.0	1	03/29/03	03/29/03	L1
Acetone	ND	U	10	1	03/29/03	03/29/03	
Iodomethane	ND	U	2.0	1	03/29/03	03/29/03	L2
Carbon Disulfide	ND	U	2.0	1	03/29/03	03/29/03	
Methylene Chloride	ND	U	1.0	1	03/29/03	03/29/03	
Methyl tert-Butyl Ether	ND	U	1.0	1	03/29/03	03/29/03	
trans-1,2-Dichloroethene	ND	U	0.50	1	03/29/03	03/29/03	
1,1-Dichloroethane	ND		0.50	1	03/29/03	03/29/03	
Vinyl Acetate	ND	U	3.0	1	03/29/03	03/29/03	
2,2-Dichloropropane	ND	U	2.0	1	03/29/03	03/29/03	
2-Butanone (MEK)	ND	U	8.0	1	03/29/03	03/29/03	
cis-1,2-Dichloroethene	ND	U	0.50	1	03/29/03	03/29/03	
Bromochloromethane	ND	U	0.50	1	03/29/03	03/29/03	
Chloroform	ND	U	1.0	1	03/29/03	03/29/03	
1,1,1-Trichloroethane	ND	U	0.50	1	03/29/03	03/29/03	
Carbon Tetrachloride	ND	U	0.50	1	03/29/03	03/29/03	L1
1,1-Dichloropropene	ND	U	0.50	1	03/29/03	03/29/03	L1
Benzene	ND	U	0.50	1	03/29/03	03/29/03	
1,2-Dichloroethane	ND	U	0.50	1	03/29/03	03/29/03	
Trichloroethene	ND	U	0.50	1	03/29/03	03/29/03	
1,2-Dichloropropane	ND	U	0.50	1	03/29/03	03/29/03	
Dibromomethane	ND	U	0.50	1	03/29/03	03/29/03	
Bromodichloromethane	ND	U	0.50	1	03/29/03	03/29/03	
cis-1,3-Dichloropropene	ND	U	0.50	1	03/29/03	03/29/03	
4-Methyl-2-pentanone (MIBK)	ND	U	8.0	1	03/29/03	03/29/03	
Toluene	ND	U	0.50	1	03/29/03	03/29/03	

Comments:

Printed: 04/03/2003 15:22:35

Form 1A - Organic

000008

Page 1 of 3

Analytical Results

Client: Project: BE&K Terranext WVBA/#0310-3154

Sample Matrix:

Water

Service Request: X2300246

Date Collected: 03/20/2003 **Date Received:** 03/20/2003

Volatile Organic Compounds

Sample Name: Lab Code: AVB60-0102-1000 X2300246-001

Extraction Method: Analysis Method:

EPA 5030B 8260B Units: ug/L Basis: NA

Level: Low

		_		Dilution	Date	Date	
Analyte Name	Result		MRL	Factor	Extracted		Arizona Qualifier
trans-1,3-Dichloropropene	ND		1.0	1	03/29/03	03/29/03	
1,1,2-Trichloroethane	ND		1.0	1	03/29/03	03/29/03	
Tetrachloroethene	ND		0.50	1	03/29/03	03/29/03	
2-Hexanone	ND		5.0	1	03/29/03	03/29/03	
1,3-Dichloropropane	ND		1.0	1	03/29/03	03/29/03	
Dibromochloromethane	ND	U	0.50	11	03/29/03	03/29/03	
1,2-Dibromoethane	ND	U	0.50	1	03/29/03	03/29/03	
Chlorobenzene	ND	U	0.50	1	03/29/03	03/29/03	
1,1,1,2-Tetrachloroethane	ND	U	0.50	1	03/29/03	03/29/03	
Ethylbenzene	ND	U	0.50	1	03/29/03	03/29/03	
m,p-Xylenes	ND	U	1.0	1	03/29/03	03/29/03	
o-Xylene	ND	U	0.50	1	03/29/03	03/29/03	
Styrene	ND	IJ	0.50	1	03/29/03	03/29/03	
Isopropylbenzene	ND		0.50	1	03/29/03	03/29/03	
Bromobenzene	ND		0.50	1	03/29/03	03/29/03	
1,2,3-Trichloropropane	ND		1.0	1	03/29/03	03/29/03	3,000
n-Propylbenzene	ND		0.50	1	03/29/03	03/29/03	
2-Chlorotoluene	ND		0.50	1	03/29/03	03/29/03	
4-Chlorotoluene	ND		0.50	1	03/29/03	03/29/03	
1,3,5-Trimethylbenzene	ND		0.50	1	03/29/03	03/29/03	
tert-Butylbenzene	ND		0.50	1	03/29/03	03/29/03	
1,2,4-Trimethylbenzene			0.50	1	03/29/03	03/29/03	
sec-Butylbenzene	ND ND		0.50	1	03/29/03	03/29/03	
1,3-Dichlorobenzene	ND		0.50	1	03/29/03	03/29/03	
<u> </u>	ND		0.50	1	03/29/03	03/29/03	
4-Isopropyltoluene Bromoform	ND ND		0.50	1	03/29/03	03/29/03	
	ND ND		1.0	1	03/29/03	03/29/03	
1,1,2,2-Tetrachloroethane							
1,4-Dichlorobenzene	ND		0.50	1	03/29/03	03/29/03	
1,2-Dichlorobenzene	ND		0.50	1	03/29/03	03/29/03	
n-Butylbenzene	ND		0.50	1	03/29/03	03/29/03	
1,2-Dibromo-3-chloropropane	ND		5.0	1	03/29/03	03/29/03	
1,2,4-Trichlorobenzene	ND		0.50	1	03/29/03	03/29/03	
Hexachlorobutadiene	ND	U	0.50	1	03/29/03	03/29/03	

Comments:

Page

2 of 3

Analytical Results

Client: Project: BE&K Terranext WVBA/#0310-3154

Sample Matrix:

Water

Service Request: X2300246

Date Collected: 03/20/2003 **Date Received:** 03/20/2003

Volatile Organic Compounds

Sample Name:

AVB60-0102-1000

Units: ug/L Basis: NA

Lab Code:

X2300246-001

Extraction Method:

EPA 5030B

Level: Low

Analysis Method:

8260B

			Dilution	Date	Date	
Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed	Arizona Qualifier
Naphthalene	ND U	3.0	1	03/29/03	03/29/03	
1,2,3-Trichlorobenzene	ND U	0.50	1	03/29/03	03/29/03	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Arizona Qualifier	
Dibromofluoromethane	109	84-113	03/29/03		
Toluene-d8	111	68-126	03/29/03		
4-Bromofluorobenzene	105	79-113	03/29/03		

Comments:

SuperSet Reference:

RR3154

Analytical Results

Client: Project: BE&K Terranext WVBA/#0310-3154

Sample Matrix:

Water

Service Request: X2300246 **Date Collected:** 03/20/2003

Date Collected: 03/20/2003 **Date Received:** 03/20/2003

Volatile Organic Compounds

Sample Name: Lab Code: AVB60-0100-14450 X2300246-002

Extraction Method: Analysis Method:

EPA 5030B 8260B Units: ug/L Basis: NA

Level: Low

	D . 14	•	MRL	Dilution Factor	Date Extracted	Date	Arizona Qualifier
Analyte Name	Result				03/29/03	03/29/03	Alizona Quanner
Dichlorodifluoromethane	ND		3.0	1	03/29/03	03/29/03	
Chloromethane	ND		2.0	1 1	03/29/03	03/29/03	
Vinyl Chloride	ND		1.0				
Bromomethane	ND		1.0	1	03/29/03	03/29/03	
Chloroethane	ND		1.0	1	03/29/03	03/29/03	
Trichlorofluoromethane	ND		1.0	1	03/29/03	03/29/03	
1,1,2-Trichlorotrifluoroethane	ND		1.0	1	03/29/03	03/29/03	L1
1,1-Dichloroethene	ND		1.0	1	03/29/03		Ll
Acetone	ND	U	10	1	03/29/03	03/29/03	
Iodomethane	ND	U	2.0	1	03/29/03	03/29/03	L2
Carbon Disulfide	ND	U	2.0	1	03/29/03	03/29/03	
Methylene Chloride	ND	U	1.0	1	03/29/03	03/29/03	
Methyl tert-Butyl Ether	ND	U	1.0	1	03/29/03	03/29/03	
trans-1,2-Dichloroethene	ND		0.50	1	03/29/03	03/29/03	
1,1-Dichloroethane	ND		0.50	1	03/29/03	03/29/03	
Vinyl Acetate	ND	U	3.0	1	03/29/03	03/29/03	
2,2-Dichloropropane	ND	U	2.0	1	03/29/03	03/29/03	
2-Butanone (MEK)	ND	U	8.0	1	03/29/03	03/29/03	
cis-1,2-Dichloroethene	ND	U	0.50	1	03/29/03	03/29/03	
Bromochloromethane	ND	U	0.50	1	03/29/03	03/29/03	
Chloroform	ND	U	1.0	1	03/29/03	03/29/03	
1,1,1-Trichloroethane	ND	U	0.50	1	03/29/03	03/29/03	
Carbon Tetrachloride	ND	U	0.50	1	03/29/03	03/29/03	L1
1,1-Dichloropropene	ND	U	0.50	1	03/29/03	03/29/03	L1
Benzene	ND	U	0.50	1	03/29/03	03/29/03	
1,2-Dichloroethane	ND	U	0.50	1	03/29/03	03/29/03	
Trichloroethene	ND	U	0.50	1	03/29/03	03/29/03	
1,2-Dichloropropane	ND	U	0.50	1	03/29/03	03/29/03	
Dibromomethane	ND	U	0.50	1	03/29/03	03/29/03	
Bromodichloromethane	ND	U	0.50	1	03/29/03	03/29/03	
cis-1,3-Dichloropropene	ND	U	0.50	1	03/29/03	03/29/03	
4-Methyl-2-pentanone (MIBK)	ND		8.0	1	03/29/03	03/29/03	
Toluene	ND	U	0.50	1	03/29/03	03/29/03	

Comments:

000011

Analytical Results

Client: Project:

BE&K Terranext WVBA/#0310-3154

Sample Matrix:

Water

Service Request: X2300246

Date Collected: 03/20/2003

Date Received: 03/20/2003

Volatile Organic Compounds

Sample Name: Lab Code: AVB60-0100-14450 X2300246-002

Extraction Method: Analysis Method:

EPA 5030B 8260B Units: ug/L Basis: NA

Level: Low

	n 1.	0	MON	Dilution	Date	Date	Anizana Qualifian
Analyte Name	Result		MRL	Factor	Extracted		Arizona Qualifier
trans-1,3-Dichloropropene	ND		1.0	1	03/29/03	03/29/03	
1,1,2-Trichloroethane	ND	U	1.0	1	03/29/03	03/29/03	
Tetrachloroethene	1.1		0.50	1	03/29/03	03/29/03	
2-Hexanone	ND		5.0	1	03/29/03	03/29/03	
1,3-Dichloropropane	ND		1.0	1	03/29/03	03/29/03	
Dibromochloromethane	ND		0.50	1	03/29/03	03/29/03	
1,2-Dibromoethane	ND	U	0.50	1	03/29/03	03/29/03	
Chlorobenzene	ND	U	0.50	1	03/29/03	03/29/03	
1,1,1,2-Tetrachloroethane	ND	U	0.50	1	03/29/03	03/29/03	
Ethylbenzene	ND	U	0.50	1	03/29/03	03/29/03	
m,p-Xylenes	ND		1.0	1	03/29/03	03/29/03	
o-Xylene	ND	U	0.50	1	03/29/03	03/29/03	
Styrene	ND	U	0.50	1	03/29/03	03/29/03	
Isopropylbenzene	ND		0.50	1	03/29/03	03/29/03	
Bromobenzene	ND		0.50	1	03/29/03	03/29/03	
1,2,3-Trichloropropane	ND	IJ	1.0	1	03/29/03	03/29/03	
n-Propylbenzene	ND		0.50	1	03/29/03	03/29/03	
2-Chlorotoluene	ND		0.50	1	03/29/03	03/29/03	
4-Chlorotoluene	ND		0.50	1	03/29/03	03/29/03	
1,3,5-Trimethylbenzene	ND		0.50	1	03/29/03	03/29/03	
tert-Butylbenzene	ND		0.50	1	03/29/03	03/29/03	
	ND		0.50	1	03/29/03	03/29/03	
1,2,4-Trimethylbenzene sec-Butylbenzene	ND ND		0.50	1	03/29/03	03/29/03	
1,3-Dichlorobenzene	ND ND		0.50	1	03/29/03	03/29/03	
					03/29/03	03/29/03	
4-Isopropyltoluene	ND		0.50	1	03/29/03	03/29/03	
Bromoform	ND		0.50	1			
1,1,2,2-Tetrachloroethane	ND		1.0	1	03/29/03	03/29/03	
1,4-Dichlorobenzene	ND		0.50	1	03/29/03	03/29/03	
1,2-Dichlorobenzene	ND		0.50	1	03/29/03	03/29/03	
n-Butylbenzene	ND	U	0.50	1	03/29/03	03/29/03	
1,2-Dibromo-3-chloropropane	ND	U	5.0	1	03/29/03	03/29/03	
1,2,4-Trichlorobenzene	ND	U	0.50	1	03/29/03	03/29/03	
Hexachlorobutadiene	ND	U	0.50	1	03/29/03	03/29/03	

Comments:

000012

Merged

Analytical Results

Client: Project: BE&K Terranext WVBA/#0310-3154

Sample Matrix:

Water

Service Request: X2300246

Date Collected: 03/20/2003

Date Received: 03/20/2003

Volatile Organic Compounds

Sample Name:

AVB60-0100-14450

Lab Code:

X2300246-002

Units: ug/L Basis: NA

Extraction Method:

EPA 5030B

Level: Low

Analysis Method:

8260B

			Dilution	Date
Analyte Name	Result Q	MRL	Factor	Extracte
	NID II	2.0	1	02/20/02

ND U 3.0 Naphthalene 0.50 ND U 1,2,3-Trichlorobenzene

r	Extracted	Analyzed	Arizona Qualifier
	03/29/03	03/29/03	
	03/29/03	03/29/03	

Date

Surrogate Name	%Rec	Control Limits	Date Analyzed	Arizona Qualifier	
Dibromofluoromethane	110	84-113	03/29/03		
Toluene-d8	112	68-126	03/29/03		
4-Bromofluorobenzene	106	79-113	03/29/03		

Comments:

Printed: 04/03/2003 15:22:46

Merged

Form 1A - Organic

000013

3 of 3 Page

RR3154

Analytical Results

Client: Project: BE&K Terranext WVBA/#0310-3154

Sample Matrix:

Water

Service Request: X2300246

Date Collected: 03/20/2003 **Date Received:** 03/20/2003

Volatile Organic Compounds

Sample Name: Lab Code: AVB60-0104-1000 X2300246-003

Extraction Method: Analysis Method:

EPA 5030B 8260B Units: ug/L Basis: NA

Level: Low

			Dilution	Date	Date	
Analyte Name	Result Q	MRL	Factor	Extracted		Arizona Qualifier
Dichlorodifluoromethane	ND U	3.0	1	03/31/03	03/31/03	
Chloromethane	ND U	2.0	1	03/31/03	03/31/03	
Vinyl Chloride	ND U	1.0	1	03/31/03	03/31/03	
Bromomethane	ND U	1.0	1	03/31/03	03/31/03	
Chloroethane	ND U	1.0	1	03/31/03	03/31/03	
Trichlorofluoromethane	ND U	1.0	1	03/31/03	03/31/03	
1,1,2-Trichlorotrifluoroethane	ND U	1.0	1	03/31/03	03/31/03	L1
1,1-Dichloroethene	ND U	1.0	1	03/31/03		L1
Acetone	ND U	10	1	03/31/03	03/31/03	
Iodomethane	ND U	2.0	1	03/31/03	03/31/03	
Carbon Disulfide	ND U	2.0	. 1	03/31/03	03/31/03	
Methylene Chloride	ND U	1.0	1	03/31/03	03/31/03	
Methyl tert-Butyl Ether	ND U	1.0	1	03/31/03	03/31/03	
trans-1,2-Dichloroethene	ND U	0.50	1	03/31/03	03/31/03	
1,1-Dichloroethane	ND U	0.50	1	03/31/03	03/31/03	
Vinyl Acetate	ND U	3.0	1	03/31/03	03/31/03	
2,2-Dichloropropane	ND U	2.0	1	03/31/03	03/31/03	
2-Butanone (MEK)	ND U	8.0	1	03/31/03	03/31/03	
cis-1,2-Dichloroethene	ND U	0.50	1	03/31/03	03/31/03	
Bromochloromethane	ND U	0.50	1	03/31/03	03/31/03	
Chloroform	ND U	1.0	1	03/31/03	03/31/03	
1,1,1-Trichloroethane	ND U	0.50	1	03/31/03	03/31/03	
Carbon Tetrachloride	ND U	0.50	1	03/31/03		Ll
1,1-Dichloropropene	ND U	0.50	1	03/31/03	03/31/03	L1
Benzene	ND U	0.50	1	03/31/03	03/31/03	
1,2-Dichloroethane	ND U	0.50	. 1	03/31/03	03/31/03	
Trichloroethene	ND U	0.50	1	03/31/03	03/31/03	
1,2-Dichloropropane	ND U	0.50	1	03/31/03	03/31/03	
Dibromomethane	ND U	0.50	1	03/31/03	03/31/03	
Bromodichloromethane	ND U	0.50	1	03/31/03	03/31/03	
cis-1,3-Dichloropropene	ND U	0.50	1	03/31/03	03/31/03	
4-Methyl-2-pentanone (MIBK)	ND U	8.0	1	03/31/03	03/31/03	
Toluene	ND U	0.50	1	03/31/03	03/31/03	

Comments:

Printed: 04/03/2003 15:22:57 L:\STEALTH\CRYSTAL.RPT\Formlm.rpt

Form 1A - Organic

000014

Page 1 of 3

SuperSet Reference: RR3154

Analytical Results

Client: Project: BE&K Terranext WVBA/#0310-3154

Sample Matrix:

Water

Service Request: X2300246

Date Collected: 03/20/2003 **Date Received:** 03/20/2003

Volatile Organic Compounds

Sample Name: Lab Code: AVB60-0104-1000 X2300246-003

Extraction Method: Analysis Method:

EPA 5030B 8260B Units: ug/L Basis: NA

Level: Low

Analyte Name	Result	Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Arizona Qualifier
trans-1,3-Dichloropropene	ND	~~~	1.0	1	03/31/03	03/31/03	
1,1,2-Trichloroethane	ND	U	1.0	1	03/31/03	03/31/03	
Tetrachloroethene	ND	U	0.50	1	03/31/03	03/31/03	
2-Hexanone	ND	U	5.0	1	03/31/03	03/31/03	
1,3-Dichloropropane	ND	U	1.0	1	03/31/03	03/31/03	
Dibromochloromethane	ND	U	0.50	1	03/31/03	03/31/03	
1,2-Dibromoethane	ND	U	0.50	1	03/31/03	03/31/03	
Chlorobenzene	ND	U	0.50	1	03/31/03	03/31/03	
1,1,1,2-Tetrachloroethane	ND	U	0.50	1	03/31/03	03/31/03	
Ethylbenzene	ND	U	0.50	1	03/31/03	03/31/03	
m,p-Xylenes	ND	U	1.0	1	03/31/03	03/31/03	
o-Xylene	ND	U	0.50	1	03/31/03	03/31/03	
Styrene	ND	U	0.50	1	03/31/03	03/31/03	
Isopropylbenzene	ND	U	0.50	1	03/31/03	03/31/03	
Bromobenzene	ND	U	0.50	1	03/31/03	03/31/03	
1,2,3-Trichloropropane	ND	U	1.0	1	03/31/03	03/31/03	
n-Propylbenzene	ND	U	0.50	1	03/31/03	03/31/03	
2-Chlorotoluene	ND	U	0.50	1	03/31/03	03/31/03	
4-Chlorotoluene	ND	U	0.50	1	03/31/03	03/31/03	
1,3,5-Trimethylbenzene	ND		0.50	1	03/31/03	03/31/03	
tert-Butylbenzene	ND	U	0.50	1	03/31/03	03/31/03	
1,2,4-Trimethylbenzene	ND	U	0.50	1	03/31/03	03/31/03	
sec-Butylbenzene	ND	U	0.50	1	03/31/03	03/31/03	
1,3-Dichlorobenzene	ND	U	0.50	1	03/31/03	03/31/03	
4-Isopropyltoluene	ND	U	0.50	1	03/31/03	03/31/03	
Bromoform	ND	U	0.50	1	03/31/03	03/31/03	
1,1,2,2-Tetrachloroethane	ND	U	1.0	1	03/31/03	03/31/03	
1,4-Dichlorobenzene	ND	U	0.50	1	03/31/03	03/31/03	
1,2-Dichlorobenzene	ND	U	0.50	1	03/31/03	03/31/03	
n-Butylbenzene	ND	U	0.50	1	03/31/03	03/31/03	
1,2-Dibromo-3-chloropropane	ND	U	5.0	1	03/31/03	03/31/03	
1,2,4-Trichlorobenzene	ND	U	0.50	1	03/31/03	03/31/03	
Hexachlorobutadiene	ND	U	0.50	1	03/31/03	03/31/03	

Comments:

Printed: 04/03/2003 15:22:57 L:\STEALTH\CRYSTAL.RPT\Form\m.rpt

Merged

Form 1A - Organic

000015

Page 2 of 3

SuperSet Reference: RR3154

Analytical Results

Client: Project: BE&K Terranext WVBA/#0310-3154

Sample Matrix:

Water

Service Request: X2300246

Date Collected: 03/20/2003

Date Received: 03/20/2003

Volatile Organic Compounds

Sample Name:

AVB60-0104-1000

Lab Code:

X2300246-003

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

			Dilution	Date	Date	
Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed	Arizona Qualifier
Naphthalene	ND U	3.0	1	03/31/03	03/31/03	
1,2,3-Trichlorobenzene	ND U	0.50	1	03/31/03	03/31/03	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Arizona Qualifier	
Dibromofluoromethane	109	84-113	03/31/03		
Toluene-d8	111	68-126	03/31/03		
4-Bromofluorobenzene	105	79-113	03/31/03		

Comments:

000016

Analytical Results

Client: Project: BE&K Terranext WVBA/#0310-3154

Sample Matrix:

Water

Service Request: X2300246 Date Collected: 03/20/2003 **Date Received:** 03/20/2003

Volatile Organic Compounds

Sample Name:

AVB82-0100-05320

Lab Code:

X2300246-004

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA Level: Low

nalysis Method: 8260B	n14 ()	MRL	Dilution Factor	Date Extracted		Arizona Qualifier
nalyte Name	Result Q	3.0	1	03/31/03	03/31/03	
ichlorodifluoromethane	ND U	2.0	1	03/31/03	03/31/03	
Chloromethane	ND U	1.0	1	03/31/03	03/31/03	
Jinyl Chloride	ND U		1	03/31/03	03/31/03	
Bromomethane	ND U	1.0	1	03/31/03	03/31/03	
Chloroethane	ND U	1.0	1	03/31/03	03/31/03	
Chloroethane Trichlorofluoromethane	ND U	1.0	1	03/31/03	03/31/03	L1
I TICTIOI OTTUO TOTTUO	ND U	1.0	1	03/31/03	03/31/03	L1
1,1,2-Trichlorotrifluoroethane	8.9	1.0	1	03/31/03	03/31/03	
1,1-Dichloroethene	ND U	10		03/31/03	03/31/03	
Acetone	ND U	2.0	1	03/31/03	03/31/03	
Iodomethane	ND U	2.0	1	03/31/03	03/31/03	
Carbon Disulfide	ND U	1.0	1		03/31/03	
Methylene Chloride		1.0	1	03/31/03		
Methyl tert-Butyl Ether	ND U	0.50	1	03/31/03	03/31/03	
trans-1,2-Dichloroethene	ND U	0.50	1	03/31/03	03/31/03	
1,1-Dichloroethane	0.61		1	03/31/03	03/31/03	
Vinyl Acetate	ND U	3.0	1	03/31/03	03/31/03	
2,2-Dichloropropane	ND U	2.0	1	03/31/03	03/31/03	
2-Butanone (MEK)	ND U	8.0	1	03/31/03	03/31/03	
2-Butanone (WEEL)	ND U	0.50	1	03/31/03	03/31/03	3
cis-1,2-Dichloroethene	ND U	0.50	1	03/31/03		
Bromochloromethane	2.1	1.0		03/31/03		3
Chloroform	ND U	0.50	1	03/31/03		
1,1,1-Trichloroethane	ND U	0.50	1			
Carbon Tetrachloride	ND U	0.50	1	03/31/03		
1,1-Dichloropropene		0.50	1	03/31/03		
Benzene	ND U	0.50	1	03/31/03		
1,2-Dichloroethane	ND U	0.50	1	03/31/0		
Trichloroethene	2.5	0.50	1	03/31/0	3 03/31/0	
1,2-Dichloropropane	ND U	0.50	1	03/31/0		
Dibromomethane	ND U	0.50	1	03/31/0		
Bromodichloromethane	ND U		1	03/31/0	03/31/0	
	ND U	0.50	1	03/31/0	03/31/0	
cis-1,3-Dichloropropene 4-Methyl-2-pentanone (MIBK)	ND U	8.0	1	03/31/0		
4-Methyl-2-pentanone (MIDIC) Toluene	ND U	0.50	1			

Comments:

000017

Analytical Results

Client: Project: BE&K Terranext WVBA/#0310-3154

Sample Matrix:

Water

Service Request: X2300246 **Date Collected:** 03/20/2003 **Date Received:** 03/20/2003

> Units: ug/L Basis: NA

> Level: Low

Volatile Organic Compounds

Sample Name:

AVB82-0100-05320

Lab Code:

X2300246-004

EPA 5030B

Analysis Method: 8260B		MDI	Dilution Factor	Date Extracted		Arizona Qualifier
Analyte Name	Result Q	MRL	1	03/31/03	03/31/03	
rans-1,3-Dichloropropene	ND U	1.0	1	03/31/03	03/31/03	
1,1,2-Trichloroethane	ND U	1.0	1	03/31/03	03/31/03	
Cetrachloroethene	30	0.50	1	03/31/03	03/31/03	
	ND U	5.0	1	03/31/03	03/31/03	
-Hexanone	ND U	1.0	1	03/31/03	03/31/03	
,3-Dichloropropane Dibromochloromethane	ND U	0.50		03/31/03	03/31/03	
	ND U	0.50	1	03/31/03	03/31/03	
1,2-Dibromoethane	ND U	0.50	1	03/31/03	03/31/03	
Chlorobenzene	ND U	0.50		03/31/03	03/31/03	
1,1,1,2-Tetrachloroethane	ND U	0.50	1	03/31/03	03/31/03	
Ethylbenzene	ND U	1.0	1	03/31/03	03/31/03	
m,p-Xylenes	ND U	0.50		03/31/03	03/31/03	
o-Xylene	ND U	0.50	1	03/31/03	03/31/03	
Styrene	ND U	0.50	1	03/31/03	03/31/03	
Isopropylbenzene	ND U	0.50	1		03/31/03	
Bromobenzene	ND U	1.0	1	03/31/03	03/31/03	
1,2,3-Trichloropropane	ND U	0.50	1	03/31/03	03/31/03	
n-Propylbenzene	ND U	0.50	1	03/31/03		
2-Chlorotoluene		0.50	1	03/31/03		
4-Chlorotoluene	ND U	0.50	1	03/31/03	4 10	
1,3,5-Trimethylbenzene	ND U	0.50	1	03/31/03		
tert-Butylbenzene	ND U	0.50	1	03/31/03	- 1 10	
1,2,4-Trimethylbenzene	ND U	0.50	1	03/31/03		
sec-Butylbenzene	ND U	0.50	1	03/31/03		
1,3-Dichlorobenzene	ND U		1	03/31/0	3 03/31/0	
4-Isopropyltoluene	ND U	0.50	1	03/31/0		
Bromoform	ND U	0.50	1	03/31/0		
1,1,2,2-Tetrachloroethane	ND U	1.0	1	03/31/0	3 03/31/	03
1,1,2,2-10utomort	ND U	0.50	1	03/31/0	3 03/31/	
1,4-Dichlorobenzene	ND U	0.50	1	03/31/0		03
i balicolocuzene		0.50	1			

Comments:	

0.50

5.0

0.50

0.50

ND U

ND U

ND U

ND U

Merged

Printed: 04/03/2003 15:23:08 L:\STEALTH\CRYSTAL.RPT\Formlm.rpt

1,2-Dichlorobenzene

1,2-Dibromo-3-chloropropane

1,2,4-Trichlorobenzene

Hexachlorobutadiene

n-Butylbenzene

Form 1A - Organic

000018

03/31/03

03/31/03

03/31/03

03/31/03

03/31/03

03/31/03

1

1

1

2 of Page RR3154 SuperSet Reference:

Analytical Results

Client:

BE&K Terranext WVBA/#0310-3154

Project: Sample Matrix:

Water

Service Request: X2300246

Date Collected: 03/20/2003 **Date Received:** 03/20/2003

Volatile Organic Compounds

Sample Name:

AVB82-0100-05320

Lab Code:

X2300246-004

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

Analysis Method: 620		MRL	Dilution Factor	Date Extracted	Date Analyzed	Arizona Qualifier
Analyte Name Naphthalene 1,2,3-Trichlorobenzene	Result Q ND U ND U	3.0 0.50	1 1	03/31/03 03/31/03	03/31/03 03/31/03	

Surrogate Name	%Rec	Control Limits		Arizona Qualifier
Dibromofluoromethane Toluene-d8 4-Bromofluorobenzene	115 113 105	84-113 68-126 79-113	03/31/03 03/31/03 03/31/03	S1

Comments:

Printed: 04/03/2003 15:23:08 L:\STEALTH\CRYSTAL.RPT\Form1m.rpt

Merged

Form 1A - Organic

O D D SuperSet Reference:

Analytical Results

Client:

BE&K Terranext WVBA/#0310-3154

Project: Sample Matrix:

Water

Service Request: X2300246

Date Collected: NA Date Received: NA

Volatile Organic Compounds

Sample Name: Lab Code:

Method Blank XWG0300422-3

Extraction Method:

EPA 5030B

8260B

Units: ug/L Basis: NA

Level: Low

Analysis Method: 8260B			Dilution	Date	Date Ovalifier
		MRL	Factor	Extracted	Analyzed Arizona Qualifier
Analyte Name	Result Q	3.0	1	03/29/03	03/29/03
Dichlorodifluoromethane	ND U	2.0	1	03/29/03	03/29/03 03/29/03
Chloromethane	ND U	1.0	1	03/29/03	
Vinyl Chloride	ND U	1.0	1	03/29/03	03/29/03
Bromomethane	ND U	1.0	1	03/29/03	03/29/03
Chloroethane	ND U	1.0	1	03/29/03	03/29/03
Trichlorofluoromethane	ND U		1	03/29/03	03/29/03 L1
1,1,2-Trichlorotrifluoroethane	ND U	1.0	1	03/29/03	03/29/03 L1
1,1,2-ITICNIOIOUIIIIuoioo	ND U	1.0	1	03/29/03	03/29/03
1,1-Dichloroethene	ND U	10	1	03/29/03	03/29/03 L2
Acetone	ND U	2.0	1	03/29/03	03/29/03
Iodomethane	ND U	2.0	1	03/29/03	03/29/03
Carbon Disulfide	ND U	1.0		03/29/03	03/29/03
Methylene Chloride	ND U	1.0	1	03/29/03	03/29/03
Methyl tert-Butyl Ether	ND U	0.50	1 1	03/29/03	03/29/03
trans-1.2-Dichloroethene	ND U	0.50		03/29/03	
1,1-Dichloroethane	ND U	3.0	1	03/29/03	12.0.10.0
Vinyl Acetate	ND U	2.0	1	03/29/03	·
2. 2-Dichloropropane	ND U	8.0	1		
2-Butanone (MEK)	ND U	0.50	1	03/29/03	
cis-1 2-Dichloroethene	ND U	0.50	1	03/29/03	v= 0.10.0
Bromochloromethane	ND U	1.0	1	03/29/03	
Chloroform		0.50	1	03/29/0	- 10 a T 1
1,1,1-Trichloroethane	ND U	0.50	1	03/29/0	1 03/23/02 1 1 1
Carbon Tetrachloride	ND U	0.50	1	03/29/0	03/23/02
1,1-Dichloropropene	ND U		1	03/29/0	
	ND U	0.50 0.50	1	03/29/0	
Benzene 1,2-Dichloroethane	ND U	0.50	1	03/29/0	
1,2-Dichloroethane Trichloroethene	ND U		1	03/29/0	03 03/29/03
	ND U	0.50	1	03/29/	03 03/29/03
1,2-Dichloropropane	ND U	0.50	1	00/00/	
Dibromomethane	ND U	0.50		02/20/	
Bromodichloromethane	ND U	0.50	1	00/00	- 1-0100
cis-1,3-Dichloropropene	ND U	8.0	1	00/00	·- ~ 10.0
4-Methyl-2-pentanone (MIBK)	ND U	0.50		. 05/2:	
Toluene					

Comments:	
	000020
	0000-0

SuperSet Reference:

Analytical Results

Client: Project: BE&K Terranext WVBA/#0310-3154

Sample Matrix:

Water

Service Request: X2300246

Date Collected: NA
Date Received: NA

Volatile Organic Compounds

Sample Name: Lab Code: Method Blank XWG0300422-3

Extraction Method: Analysis Method:

EPA 5030B 8260B Units: ug/L Basis: NA

Level: Low

Analysis Method.		MDI	Dilution Factor	Date Extracted	Date Analyzed	Arizona Qualifier
Analyte Name	Result Q	MRL	1	03/29/03	03/29/03	
trans-1,3-Dichloropropene	ND U	1.0	î	03/29/03	03/29/03	
1,1,2-Trichloroethane	ND U	1.0	1	03/29/03	03/29/03	_
Tetrachloroethene	ND U	0.50		03/29/03	03/29/03	
2-Hexanone	ND U	5.0	1 1	03/29/03	03/29/03	
1,3-Dichloropropane	ND U	1.0	1	03/29/03	03/29/03	
Dibromochloromethane	ND U	0.50		03/29/03	03/29/03	
1,2-Dibromoethane	ND U	0.50	1	03/29/03	03/29/03	
Chlorobenzene	ND U	0.50	1	03/29/03	03/29/03	
1,1,1,2-Tetrachloroethane	ND U	0.50	1		03/29/03	
	ND U	0.50	1	03/29/03	03/29/03	
Ethylbenzene	ND U	1.0	1	03/29/03	03/29/03	
m,p-Xylenes	ND U	0.50	1	03/29/03		
o-Xylene	ND U	0.50	1	03/29/03	03/29/03	
Styrene	ND U	0.50	1	03/29/03	03/29/03	
Isopropylbenzene	ND U	0.50	1	03/29/03	03/29/03	
Bromobenzene	ND U	1.0	1	03/29/03	03/29/03	
1,2,3-Trichloropropane	ND U ND U	0.50	1	03/29/03	03/29/03	
n-Propylbenzene	ND U	0.50	1	03/29/03	03/29/03	
2-Chlorotoluene		0.50	1	03/29/03	03/29/03	
4-Chlorotoluene	ND U	0.50	1	03/29/03	03/29/03	
1,3,5-Trimethylbenzene	ND U	0.50	1	03/29/03	03/29/03	
tert-Butylbenzene	ND U		1	03/29/03	03/29/03	
1,2,4-Trimethylbenzene	ND U	0.50	1	03/29/03	03/29/03	
sec-Butylbenzene	ND U	0.50	1	03/29/03	03/29/03	
1,3-Dichlorobenzene	ND U	0.50		03/29/03	03/29/03	3
4-Isopropyltoluene	ND U	0.50	1	03/29/03	03/29/03	
Bromoform	ND U	0.50	1	03/29/03	03/29/03	
1,1,2,2-Tetrachloroethane	ND U	1.0			03/29/0	
1,4-Dichlorobenzene	ND U	0.50	1	03/29/03 03/29/03		
1,4-Dichlorobenzene	ND U	0.50	1			
	ND U	0.50	1	03/29/03		
n-Butylbenzene	ND U	5.0	1	03/29/03		
1,2-Dibromo-3-chloropropane	ND U	0.50	1	03/29/03		
1,2,4-Trichlorobenzene	ND U	0.50	1	03/29/03	03/29/0	ن
Hexachlorobutadiene	1100					

Comments:

Analytical Results

Client:

BE&K Terranext WVBA/#0310-3154

Project: Sample Matrix:

Water

Service Request: X2300246

Date Collected: NA Date Received: NA

Volatile Organic Compounds

Sample Name: Lab Code:

Method Blank XWG0300422-3

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

Analysis Method: 8200D Analyte Name Naphthalene 1,2,3-Trichlorobenzene	Result Q ND U ND U	MRL 3.0 0.50	Dilution Factor 1	Date Extracted 03/29/03 03/29/03	Date Analyzed 03/29/03 03/29/03	Arizona Qualifier
---	--------------------------	--------------------	-------------------------	---	--	-------------------

g	%Rec	Control Limits	711142,7==	Arizona Qualifier	
Surrogate Name Dibromofluoromethane Toluene-d8 4-Bromofluorobenzene	103 108 102	84-113 68-126 79-113	03/29/03 03/29/03 03/29/03		

Comments:

Printed: 04/03/2003 15:23:19 L:\STEALTH\CRYSTAL.RPT\Form1m.rpt

Merged

Form 1A - Organic 000022

Page RR3154 SuperSet Reference:

3 of

Analytical Results

Client: Project: BE&K Terranext WVBA/#0310-3154

Sample Matrix:

Water

Service Request: X2300246

Date Collected: NA Date Received: NA

Volatile Organic Compounds

Sample Name: Lab Code:

Method Blank XWG0300425-3

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

Analysis Method.		MRL	Dilution Factor	Date Extracted	Date Analyzed	Arizona Qualifier
Analyte Name	Result Q		1	03/31/03	03/31/03	
Dichlorodifluoromethane	ND U	3.0	1	03/31/03	03/31/03	
Chloromethane	ND U	2.0	1	03/31/03	03/31/03	
Vinyl Chloride	ND U	1.0	1	03/31/03	03/31/03	
Bromomethane	ND U	1.0	1	03/31/03	03/31/03	
Chloroethane	ND U	1.0	1	03/31/03	03/31/03	
Trichlorofluoromethane	ND U	1.0		03/31/03	03/31/03	L1
1,1,2-Trichlorotrifluoroethane	ND U	1.0	1	03/31/03	03/31/03	
1,1-Dichloroethene	ND U	1.0	1	03/31/03	03/31/03	2.2
	ND U	10	1			
Acetone	ND U	2.0	1	03/31/03	03/31/03	
Iodomethane	ND U	2.0	1	03/31/03	03/31/03	
Carbon Disulfide	ND U	1.0	1	03/31/03	03/31/03	
Methylene Chloride	ND U	1.0	1	03/31/03	03/31/03	
Methyl tert-Butyl Ether	ND U	0.50	1	03/31/03	03/31/03	
trans-1,2-Dichloroethene		0.50	1	03/31/03	03/31/03	
1,1-Dichloroethane	ND U		1	03/31/03	03/31/03	
Vinyl Acetate	ND U	3.0	1	03/31/03	03/31/03	
2.2-Dichloropropane	ND U	2.0	1	03/31/03	03/31/03	
2-Butanone (MEK)	ND U	8.0		03/31/03	03/31/03	
cis-1,2-Dichloroethene	ND U	0.50	1	03/31/03	03/31/03	
Bromochloromethane	ND U	0.50	1	03/31/03	03/31/03	
Chloroform	ND U	1.0	1		03/31/03	
	ND U	0.50	1	03/31/03		
1,1,1-Trichloroethane	ND U	0.50	1	03/31/03	03/31/03	
Carbon Tetrachloride	ND U	0.50	1	03/31/03	03/31/03	
1,1-Dichloropropene	ND U	0.50	1	03/31/03	03/31/03	
Benzene	ND U	0.50	1	03/31/03	03/31/03	
1,2-Dichloroethane	ND U	0.50	1	03/31/03	03/31/03	3
Trichloroethene			1	03/31/03	03/31/0	3
1,2-Dichloropropane	ND U	0.50	1	03/31/03		3
Dibromomethane	ND U	0.50	1	03/31/03		3
Bromodichloromethane	ND U	0.50		03/31/03		
cis-1,3-Dichloropropene	ND U	0.50	1	03/31/03		
4-Methyl-2-pentanone (MIBK)	ND U	8.0	1	03/31/03		
Toluene	ND U	0.50	1	03/31/03		

Comments:

SuperSet Reference: RR3154

Analytical Results

Client:

BE&K Terranext

Project:

WVBA/#0310-3154

Sample Matrix:

Water

Service Request: X2300246

Date Collected: NA
Date Received: NA

Volatile Organic Compounds

Sample Name:

Method Blank

Lab Code:

XWG0300425-3

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

Analysis Method: 8260B			_	70. 4-	Date	
			Dilution	Date Extracted	Analyzed	Arizona Qualifier
andrita Name	Result Q	MRL	Factor	03/31/03	03/31/03	
Analyte Name	ND U	1.0	1	03/31/03	03/31/03	
rans-1,3-Dichloropropene	ND U	1.0	1	03/31/03	03/31/03	
,1,2-Trichloroethane Tetrachloroethene	ND U	0.50	1		03/31/03	
	ND U	5.0	1	03/31/03	03/31/03	
2-Hexanone	ND U	1.0	1	03/31/03 03/31/03	03/31/03	
,3-Dichloropropane Dibromochloromethane	ND U	0.50	1		03/31/03	
	ND U	0.50	1	03/31/03	03/31/03	
1,2-Dibromoethane	ND U	0.50	1	03/31/03	03/31/03	
Chlorobenzene	ND U	0.50	1	03/31/03		
1,1,1,2-Tetrachloroethane	ND U	0.50	1	03/31/03	03/31/03 03/31/03	
Ethylbenzene	ND U	1.0	1	03/31/03	03/31/03	
m,p-Xylenes	ND U	0.50	1	03/31/03		
o-Xylene	ND U	0.50	1	03/31/03	03/31/03	
Styrene	ND U	0.50	1	03/31/03	03/31/03 03/31/03	
Isopropylbenzene	ND U	0.50	1	03/31/03		
Bromobenzene	ND U	1.0	1	03/31/03	03/31/03	
1,2,3-Trichloropropane	ND U	0.50	1	03/31/03	03/31/03	
n-Propylbenzene	ND U	0.50	1	03/31/03	03/31/03	
2-Chlorotoluene	ND U	0.50	1	03/31/03	03/31/03	
4-Chlorotoluene	ND U	0.50	1	03/31/03	03/31/03	
1,3,5-Trimethylbenzene	ND U	0.50	1	03/31/03	03/31/03	
tert-Butylbenzene		0.50	1	03/31/03	03/31/03	
1,2,4-Trimethylbenzene	ND U	0.50	1	03/31/03	03/31/03	
sec-Butylbenzene	ND U	0.50	1	03/31/03		
1,3-Dichlorobenzene	ND U	0.50	1	03/31/03	03/31/03	
4-Isopropyltoluene	ND U	0.50	1	03/31/03		
Bromoform	ND U	1.0	1	03/31/03	03/31/0	3
1,1,2,2-Tetrachloroethane	ND U		1	03/31/03	03/31/0	3
1,4-Dichlorobenzene	ND U	0.50 0.50	1	03/31/03	03/31/0	
1,2-Dichlorobenzene	ND U	0.50 0.50	1	03/31/03		3
n-Butylbenzene	ND U		<u>1</u>	03/31/03	3 03/31/0	03
1,2-Dibromo-3-chloropropane	ND U	5.0	1	03/31/03		
1,2,4-Trichlorobenzene	ND U	0.50	1	03/31/0		
Hexachlorobutadiene	ND U	0.50				

Comments:	
_	

Merged

SuperSet Reference:

Analytical Results

Client:

BE&K Terranext

Project:

WVBA/#0310-3154

Sample Matrix:

Water

Service Request: X2300246

Date Collected: NA
Date Received: NA

Volatile Organic Compounds

Sample Name:

Method Blank

Lab Code:

XWG0300425-3

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

	Dogult ()	MRL	Dilution Factor	Date Extracted	Date Analyżed	Arizona Qualifier
Naphthalene	ND U	3.0	1	03/31/03	03/31/03	
1,2,3-Trichlorobenzene	ND U	0.50	1	03/31/03	03/31/03	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Arizona Qualifier
Dibromofluoromethane Toluene-d8 4-Bromofluorobenzene	109 108 103	84-113 68-126 79-113	03/31/03 03/31/03 03/31/03	

Comments:

Merged

RR3154

OA/QC Report

Client:

BE&K Terranext

Project:

WVBA/#0310-3154

Sample Matrix:

Water

Service Request: X2300246

Surrogate Recovery Summary Volatile Organic Compounds

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: PERCENT

Level: Low

Sample Name	Lab Code	Sur1	Sur2	Sur3
AVB60-0102-1000	X2300246-001	109	111	105
AVB60-0100-14450	X2300246-002	110	112	106
AVB60-0104-1000	X2300246-003	109	111	105
AVB82-0100-05320	X2300246-004	115 S1	113	105
Method Blank	XWG0300422-3	103	108	102
Method Blank	XWG0300425-3	109	108	103
Batch QC	X2300237-003	108	112	104
Batch QC	X2300243-002	111	115	107
Batch QCMS	XWG0300422-4	109	114	108
Batch QCDMS	XWG0300422-5	104	108	104
Batch QCMS	XWG0300425-4	112	115	108
Batch QCDMS	XWG0300425-5	102	108	103
Lab Control Sample	XWG0300422-1	107	111	109
Duplicate Lab Control Sample	XWG0300422-2	105	104	105
Lab Control Sample	XWG0300425-1	107	110	106
Duplicate Lab Control Sample	XWG0300425-2	107	109	105

Surrogate Recovery Control Limits (%)

84-113 Sur1 = Dibromofluoromethane 68-126 Sur2 = Toluene-d879-113 Sur3 = 4-Bromofluorobenzene

Results flagged with an asterisk (*) indicate values outside control criteria. Results flagged with a pound (#) indicate the control criteria is not applicable.

Printed: 04/03/2003 15:23:47 1 -\STEALTH\CRYSTAL.RPT\Form2.rpt

OA/QC Report

Client: Project: BE&K Terranext WVBA/#0310-3154

Sample Matrix:

Water

Service Request: X2300246 Date Extracted: 03/29/2003

Date Analyzed: 03/29/2003

Matrix Spike/Duplicate Matrix Spike Summary Volatile Organic Compounds

Sample Name: Lab Code:

Batch QC

Extraction Method: Analysis Method:

Dibromomethane

Toluene

Bromodichloromethane

cis-1,3-Dichloropropene

4-Methyl-2-pentanone (MIBK)

trans-1,3-Dichloropropene

Printed: 07/16/2003 17:04:12

EPA 5030B

X2300237-003

8260B

Units: ug/L Basis: NA

Level: Low

Extraction Lot: XWG0300422

10.0

10.0

40.0

10.0

10.0

11.5

9.74

32.4

11.1

9.73

101

97

81

111

97

	Sample	Batch QCMS XWG0300422-4 Matrix Spike			XV	atch QCDMS VG0300422-5 cate Matrix Sp	%Rec	nnn.	RPD	
Analyte Name	Result	Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit
	ND	31.0	10.0	310 M1	28.0	10.0	280 M1	78-207	10	20
Dichlorodifluoromethane	ND	15.4	10.0	154	13.5	10.0	135	70-157	14	20
Chloromethane	ND	18.6	10.0	186 M1	16.9	10.0	169	79-174	10	20
Vinyl Chloride	ND	9.12	10.0	91	8.50	10.0	85	44-150	7	20
Bromomethane	ND	14.6	10.0	146	14.9	10.0	149	74-150	3	20
Chloroethane	ND	17.0	10.0	170 M1	15.5	10.0	155 M1	80-134	9	20
Trichlorofluoromethane	ND	15.5	10.0	155 N1	14.3	10.0	143N1 a	67-128	8	20
1,1,2-Trichlorotrifluoroethane	ND	13.5	10.0	135	12.5	10.0	125	71-142	8	20
1,1-Dichloroethene	ND ND	37.4	40.0	94 1	35.3	40.0	88 W/16/6		6	20
Acetone	ND ND	33.3	40.0	83 4/1	29.0	40.0	72	47-120	14	20
Iodomethane	ND ND	56.3	40.0	141 M1	50.9	40.0	127 M1	77-126	10	20
Carbon Disulfide	ND ND	10.7	10.0	107 M1	9.94	10.0	99	83-106	7	20
Methylene Chloride	ND ND	9.80	10.0	98	9.50	10.0	95	70-118	3	20
Methyl tert-Butyl Ether	ND ND	11.9	10.0	119 M1	11.0	10.0	110	86-115	8	20
trans-1,2-Dichloroethene	ND ND	12.4	10.0	124	11.3	10.0	113	77-127	9	20
1,1-Dichloroethane	ND ND	50.4	40.0	126	46.3	40.0	116	8-187	9	20
Vinyl Acetate	ND ND	13.6	10.0	136	12.1	10.0	121	25-154	12	20
2,2-Dichloropropane	ND ND	37.8	40.0	95	34.2	40.0	86 M2	90-112	10	20
2-Butanone (MEK)	ND ND	11.1	10.0	111	10.3	10.0	103	69-118	7	20
cis-1,2-Dichloroethene		8.95	10.0	90	8.41	10.0	84	47-136	6	20
Bromochloromethane	ND	16.3	10.0	115	15.1	10.0	103	48-143	8	20
Chloroform	4.8	13.6	10.0	136 M1	12.8	10.0	128 M1		7	20
1,1,1-Trichloroethane	ND	14.6	10.0	146 N1	13.5	10.0	135 N1 126 N1	79-120	8	20
Carbon Tetrachloride	ND	13.3	10.0	133 N1	11013.5 112.6	10.0	126 N1	85-117	6	20
1,1-Dichloropropene	ND	11.8	10.0	118 M1	11.2	10.0			5	20
Benzene	ND		10.0	103	9.88	10.0	الم 99	75-112	4	20
1,2-Dichloroethane	ND	10.3	10.0	103 127 M1		10.0	101	76-115	7	20
Trichloroethene	27	40.2 10.9	10.0	109 M1		10.0	103	85-107	6	20
1,2-Dichloropropane	ND	10.9 0.74	10.0	97	9.57	10.0	96	82-106	2	20

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

9.74

12.2

10.3

33.1

11.8

10.1

ND

1.4

ND

ND

ND

ND

000027

103

83

101

108 M1

118 M1

10.0

10.0

10.0

40.0

10.0

10.0

Form 3A - Organic

1 of Page SuperSet Reference: RR3154

83-107

70-114

54-129

86-114

73-112

6

5

2

6

4

20

20

20

20

20

QA/QC Report

Client: Project: BE&K Terranext WVBA/#0310-3154

Sample Matrix:

Water

Service Request: X2300246

Date Extracted: 03/29/2003 **Date Analyzed:** 03/29/2003

Matrix Spike/Duplicate Matrix Spike Summary **Volatile Organic Compounds**

Sample Name: Lab Code:

Batch QC X2300237-003

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

Extraction Lot: XWG0300422

	a l	XW	atch QCMS /G0300422-4 latrix Spike	· •	XW	tch QCDMS G0300422-5 ate Matrix Sp	oike ————	%Rec Limits	RPD	RPD Limit
1 1 to Nome	Sample Result	Result	Expected	%Rec	Result	Expected	%Rec	79-112	6	20
Analyte Name	ND.	9.98	10.0	100	9.44	10.0	94	78-112 78-130	5	20
1,1,2-Trichloroethane	ND	21.3	10.0	125	20.2	10.0	113	77-112	3	20
Tetrachloroethene	8.9	37.5	40.0	94	36.6	40.0	91	45-133	5	20
2-Hexanone	ND	10.2	10.0	102	9.65	10.0	97	74-108	4	20
1,3-Dichloropropane	ND	9.73	10.0	97	9.32	10.0	93	73-113	3	20
Dibromochloromethane	ND	9.73 9.64	10.0	96	9.32	10.0	93	73-113 84-111	3	20
1,2-Dibromoethane	ND	10.6	10.0	106	10.2	10.0	102	84-111	2	20
Chlorobenzene	ND	9.98	10.0	100	9.76	10.0	98	47-136	5	20
1,1,1,2-Tetrachloroethane	ND	12.0	10.0	120	11.5	10.0	115	84-120	4	20
Ethylbenzene	ND	23.1	20.0	116	22.1	20.0	111	47-143	4	20
m,p-Xylenes	ND	11.0	10.0	110	10.6	10.0	106	72-121	5	20
o-Xylene	ND	10.7	10.0	107	10.2	10.0	102	63-108	5	20
Styrene	ND	12.4	10.0	124 M1	11.9	10.0	119 M1	80-113	5	20
Isopropylbenzene	ND	10.1	10.0	101	9.58	10.0	96	78-119	4	20
Bromobenzene	ND	9.86	10.0	99	9.49	10.0	95	76-119	5	20
1,2,3-Trichloropropane	ND	12.8	10.0	128 M1	12.2	10.0	122 M1	79-121	7	20
n-Propylbenzene	ND	12.1	10.0	121	11.3	10.0	113	79-121	6	20
2-Chlorotoluene	ND	11.8	10.0	118	11.1	10.0	111	79-118	5	20
4-Chlorotoluene	ND	12.0	10.0	120 M1	11.5	10.0	115		5	20
1,3,5-Trimethylbenzene	ND	13.0	10.0	130 M1	12.4	10.0	124 M1	68-127	5	20
tert-Butylbenzene	ND	11.8	10.0	118	11.2	10.0	112			20
1,2,4-Trimethylbenzene	ND	13.1	10.0	131 M1	12.5	10.0	125 M1	78-123 78-127	_	20
sec-Butylbenzene	ND	10.7	10.0	107	10.3	10.0	103	79-142	•	20
1,3-Dichlorobenzene	ND	13.2	10.0	132	12.5	10.0	125	83-111		20
4-Isopropyltoluene	ND	8.85	10.0	89	8.87	10.0	89	66-133		20
Bromoform	ND	9.83	10.0	98	9.68	10.0	97	48-139		20
1,1,2,2-Tetrachloroethane	ND	10.4	10.0	104	10.0	10.0	100	64-109		20
1,4-Dichlorobenzene	ND	10.4	10.0	103	9.97	10.0	100			20
1,2-Dichlorobenzene	ND	13.4	10.0	134 M			128 M	54-16	_	20
n-Butylbenzene	ND	9.11	10.0	91	8.76		88	39-14	-	20
1,2-Dibromo-3-chloropropane	ND	10.0		100	9.73		97			
1,2,4-Trichlorobenzene	ND	13.1		131 M	12.8		128 M	.1 /4-11 44-16		
Hexachlorobutadiene	ND	9.23		92	8.91		89	37-15	•	
Naphthalene	ND ND	9.23		97	9.38	10.0	94	5/-13	0 7	
1,2,3-Trichlorobenzene	עא	9.17								

Results flagged with an asterisk (*) indicate values outside control criteria.

Printed: 07/16/2003 17:04:12

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

000028

Form 3A - Organic

RR3154 SuperSet Reference:

2 of 2 Page

Fill Page

(X2300246)

QA/QC Report

Client: Project: BE&K Terranext WVBA/#0310-3154

Sample Matrix:

Water

Service Request: X2300246 Date Extracted: 03/31/2003

Date Analyzed: 03/31/2003

Matrix Spike/Duplicate Matrix Spike Summary Volatile Organic Compounds

Sample Name: Lab Code:

Batch QC X2300243-002

Extraction Method: Analysis Method:

EPA 5030B 8260B

Units: ug/L Basis: NA

Level: Low

Extraction Lot: XWG0300425

Batch QCMS

Batch QCDMS

	Constant	XW	atch QCMS /G0300425-4 Iatrix Spike	4	XW	G0300425-5	oike ———	%Rec	DDD	RPD Limit
Analyte Name	Sample Result	Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD 12	20
	ND	28.9	10.0	289 M1	25.7	10.0	257 M1	78-207 70-157	11	20
Dichlorodifluoromethane	ND	14.6	10.0	146	13.2	10.0	132	70-137 79-174	12	20
Chloromethane	ND	18.3	10.0	183 M1	16.2	10.0	162	79-174 44-150	3	20
Vinyl Chloride	ND	8.79	10.0	88	8.53	10.0	85	74-150	12	20
Bromomethane	ND	14.5	10.0	145	12.9	10.0	129		15	20
Chloroethane	ND	16.9	10.0	169 M1	14.5	10.0	145 M1	80-134	10	20
Trichlorofluoromethane	ND	15.1	10.0	151 N1	13.7	10.0	137 N1	67-128	13	20
1,1,2-Trichlorotrifluoroethane	ND	13.4	10.0			10.0	118	71-142	8	20
1,1-Dichloroethene	ND	41.4	40.0	103 🔥	38.2	40.0	96	6 1-155		20
Acetone	ND	36.4	40.0	91	30.4	40.0	/6	4/-120	18	20
Iodomethane		56.4	40.0	141 M1	50.9	40.0	127 M1	77-126	10	
Carbon Disulfide	ND	11.0	10.0	110 M1	10.1	10.0	101	83-106	9	20
Methylene Chloride	ND	11.0	10.0	110	10.2	10.0	102	70-118	7	20
Methyl tert-Butyl Ether	ND	12.2	10.0	122 M1	11.0	10.0	110	86-115	11	20
trans-1,2-Dichloroethene	ND	12.2	10.0	122	11.1	10.0	111	77-127	9	20
1,1-Dichloroethane	ND	56.4	40.0	141	51.5	40.0	129	8-187	9	20
Vinyl Acetate	ND	13.9	10.0	139	12.4	10.0	124	25-154	11	20
2,2-Dichloropropane	ND	42.3	40.0	106	39.1	40.0	98	90-112	8	20
2-Butanone (MEK)	ND	11.3	10.0	113	10.2	10.0	102	69-118	10	20
cis-1,2-Dichloroethene	ND		10.0	98	8.60	10.0	86	47-136	13	20
Bromochloromethane	ND	9.84	10.0			10.0	105	48-143	9	20
Chloroform	ND	11.6	10.0	124 M1	19 1 124	10.0	124 M	84-122	9	20
1,1,1-Trichloroethane	ND	13.6	10.0	146 N1	13.4	10.0	134 N1	79-120 385-117	9	20
Carbon Tetrachloride	ND	14.6		136N1	12.7	10.0	127 N1	V _{1.2} 85-117	7	20
1,1-Dichloropropene	ND	13.6	10.0	138 M1		10.0	113 M	16 88-114	5	20
Benzene	ND	11.8	10.0	108	10.0	10.0	100	75-112	7	20
1,2-Dichloroethane	ND	10.8	10.0	108 118 M1		10.0	112	76-115	6	20
Trichloroethene	ND	11.8	10.0	109 M1		10.0	103	85-107	6	20
1,2-Dichloropropane	ND	10.9	10.0	104	9.66	10.0	97	82-106	7	20
Dibromomethane	ND	10.4	10.0	104 110 Mi		10.0	102	83-107	7	20
Bromodichloromethane	ND	11.0	10.0	110 M.	10.2	10.0	100	70-114	6	20
cis-1,3-Dichloropropene	ND	10.7	10.0		35.3	40.0	88	54-129	5	20
4-Methyl-2-pentanone (MIBK)	ND	37.0	40.0	92		10.0	114	86-114	7	20
Toluene	ND	12.2	10.0	122 M	10.2	10.0	102	73-112		20
trans-1,3-Dichloropropene	ND	10.7	10.0	107	10.2	10.0				

Results flagged with an asterisk (*) indicate values outside control criteria.

Printed: 07/16/2003 17:04:19

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Form 3A - Organic

Page

1 of 2

RR3154 SuperSet Reference:

QA/QC Report

Client: Project: BE&K Terranext WVBA/#0310-3154

Sample Matrix:

Water

Service Request: X2300246 Date Extracted: 03/31/2003 **Date Analyzed:** 03/31/2003

Matrix Spike/Duplicate Matrix Spike Summary Volatile Organic Compounds

Sample Name: Lab Code:

Batch QC X2300243-002

Extraction Method:

EPA 5030B

8260B

Units: ug/L Basis: NA

Level: Low

Extraction Lot: XWG0300425

		Batch QCMS XWG0300425-4 Matrix Spike			XW	ch QCDMS G0300425-5 ate Matrix Sp	ike 	%Rec	n.p.n	RPD
	Sample Result	Result	Expected	%Rec	Result	Expected	/OICC	Limits	RPD	Limit
Analyte Name	Result			102	9.88	10.0	//	79-112	4	20 20
1,1,2-Trichloroethane	ND	10.2	10.0	102	11.6	10.0	110	78-130	5	20
Tetrachloroethene	ND	12.2	10.0	105	40.9	40.0		77-112	3	20
1 etracmoroeunene	ND	42.0	40.0	105	10.2	10.0	102	45-133	3	
2-Hexanone	ND	10.6	10.0		9.66	10.0	97	74-108	4	20
1,3-Dichloropropane	ND	10.0	10.0	100	9.79	10.0	98	73-113	4	20
Dibromochloromethane	ND	10.2	10.0	102	10.2	10.0	102	84-111	4	20
1,2-Dibromoethane	ND	10.7	10.0	107	9.68	10.0	97	84-119	3	20
Chlorobenzene	ND	10.0	10.0	100	9.08 11.6	10.0	116	47-136	5	20
1,1,1,2-Tetrachloroethane	ND	12.1	10.0	121		20.0	112	84-120	5	20
Ethylbenzene	ND	23.4	20.0	117	22.3	10.0	108	47-143	3	20
m,p-Xylenes	ND	11.1	10.0	111	10.8	10.0	104	72-121	4	20
o-Xylene	ND	10.9	10.0	109	10.4	10.0	118 M1	63-108	5	20
Styrene	ND	12.4	10.0	124 M1	11.8		98	80-113	3	20
Isopropylbenzene	ND	10.1	10.0	101	9.80	10.0	100	78-119	2	20
Bromobenzene	ND ND	10.2	10.0	102	9.98	10.0	122 M1	76-117	4	20
1,2,3-Trichloropropane	ND ND	12.7	10.0	127 M1	12.2	10.0	114	79-121	4	20
n-Propylbenzene		12.0	10.0	120	11.4	10.0	113	70-133	3	20
2-Chlorotoluene	ND	11.7	10.0	117	11.3	10.0		79-118	5	20
4-Chlorotoluene	ND	12.0	10.0	120 M1	11.4	10.0	114	77-120		20
1,3,5-Trimethylbenzene	ND	13.0	10.0	130 M1		10.0	123 M1	68-127		2
tert-Butylbenzene	ND		10.0	116	11.2	10.0	112	78-123		2
1,2,4-Trimethylbenzene	ND	11.6	10.0	129 M1	12.3	10.0	123	78-123 78-127		2
sec-Butylbenzene	ND	12.9	10.0	107	10.3	10.0	103			2
1,3-Dichlorobenzene	ND	10.7	10.0	132	12.6	10.0	126	79-142	_	2
4-Isopropyltoluene	ND	13.2		92	9.61	10.0	96	83-111	•	2
Bromoform	ND	9.21	10.0	99	10.0	10.0	100	66-133		
1,1,2,2-Tetrachloroethane	ND	9.91	10.0	102	10.1	10.0	101	48-139		
1,1,2,2-Tetracmorocmano	ND	10.2	10.0	102	10.2	10.0	102	64-10		
1,4-Dichlorobenzene	ND	10.2	10.0			_	126 M	1 69-12		
1,2-Dichlorobenzene	ND	12.9	10.0	129 M	9.15		92	54-16		
n-Butylbenzene	ND	8.72	10.0	87	10.2		102	39-14		
1,2-Dibromo-3-chloropropane	ND	10.2	10.0							
1,2,4-Trichlorobenzene	ND	13.0	10.0		9.99			44-16	57	3
Hexachlorobutadiene	ND	9.72				,		37-15	58	1
Naphthalene 1,2,3-Trichlorobenzene	ND	9.97		100	10.1	10.0	. • • •			

Results flagged with an asterisk (*) indicate values outside control criteria.

Printed: 07/16/2003 17:04:19

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

000031

Form 3A - Organic

2 of 2 Page RR3154 SuperSet Reference:

Fill Page

(X2300246)

QA/QC Report

Client: Project: BE&K Terranext WVBA/#0310-3154

Sample Matrix:

Water

Service Request: X2300246 Date Extracted: 03/29/2003 **Date Analyzed:** 03/29/2003

Lab Control Spike/Duplicate Lab Control Spike Summary Volatile Organic Compounds

Extraction Method: Analysis Method:

EPA 5030B 8260B

Units: ug/L Basis: NA Level: Low

Extraction Lot: XWG0300422

Lab Control Sample XWG0300422-1

Duplicate Lab Control Sample

	Lab Control Sample XWG0300422-1 Lab Control Spike			xw(G0300422-2 Lab Control		%Rec	DDD	RPD Limit
Analyte Name	Result	Expected	%Rec	Result	Expected	%Rec	1-233	23 R7	20
	10.4	10.0	104	8.28	10.0	83	1-233 46-156	10	20
Dichlorodifluoromethane	9.69	10.0	97	8.74	10.0	87	51-158	20	20
Chloromethane	12.6	10.0	126	10.3	10.0	103	37-149	10	20
Vinyl Chloride	7.58	10.0	76	6.88	10.0	69	56-146	16	20
Bromomethane	12.4	10.0	124	10.5	10.0	105	69-139	19	20
Chloroethane	13.1	10.0	131	10.8	10.0	108	83-130	25 R7	20
Trichlorofluoromethane	13.1	10.0	139 L1	10.8	10.0	108	65-112	19	20
1,1,2-Trichlorotrifluoroethane	11.3	10.0	113 L1	9.33	10.0	93	68-128	11	20
1,1-Dichloroethene	36.1	40.0	90	40.4	40.0	101		9	20
Acetone	26.7	40.0	67 L2	29.1	40.0	73	68-144	17	20
Iodomethane		40.0	129	43.4	40.0	109	67-140	1	20
Carbon Disulfide	51.7	10.0	105	10.4	10.0	104	70-113	7	20
Methylene Chloride	10.5	10.0	89	9.55	10.0	96	75-115	13	20
Methyl tert-Butyl Ether	8.88	10.0	107	9.41	10.0	94	73-118		20
trans-1,2-Dichloroethene	10.7	10.0	120	11.0	10.0	110	77-127	9	39
1,1-Dichloroethane	12.0	40.0	118	52.3	40.0	131	51-202	10	20
Vinyl Acetate	47.3		123	10.3	10.0	103	75-132	18	20
2,2-Dichloropropane	12.3	10.0	88	39.1	40.0	98	72-122	11	20
2-Butanone (MEK)	35.0	40.0	00 104	10.1	10.0	101	81-118	4	
cis-1,2-Dichloroethene	10.4	10.0	88	9.63	10.0	96	82-114	9	20
Bromochloromethane	8.82	10.0	113	10.8	10.0	108	78-119	5	20
Chloroform	11.3	10.0		9.80	10.0	98	71-125	20	20
1,1,1-Trichloroethane	12.0	10.0	120		10.0	104	69-130	24 R	
Carbon Tetrachloride	13.2	10.0	132 L1	_	10.0	99	77-114	23 R	7 20
1,1-Dichloropropene	12.4	10.0	124 L1	10.1	10.0	101	81-117	11	20
Benzene	11.2	10.0	112	10.1	10.0	105	67-122	1	20
1,2-Dichloroethane	10.4	10.0	104		10.0	96	79-114	14	20
Trichloroethene	11.0	10.0	110	9.61	10.0	102	78-114	2	20
1,2-Dichloropropane	10.4	10.0	104	10.2	10.0	101	78-113	4	20
1,2-Dichioropropane	9.67	10.0	97	10.1	10.0	105	79-122	1	20
Dibromomethane Bromodichloromethane	10.5	10.0	105	10.5	10.0	106	82-118		20
Bromodichioronichianc	10.7	10.0	107	10.6	40.0	85	75-115		20
cis-1,3-Dichloropropene 4-Methyl-2-pentanone (MIBK)	31.4	40.0	78	34.0	10.0		85-118		20
	11.4	10.0		10.1	_		79-121		20
Toluene	10.2	10.0	102	10.6			79-116		20
trans-1,3-Dichloropropene 1,1,2-Trichloroethane	9.34			9.79	10.0	90	,, 110	_	

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 04/03/2003 15:24:09 t -\STFAL.TH\CRYSTAL.RPT\Form3DLC.rpt

QA/QC Report

Client:

BE&K Terranext WVBA/#0310-3154

Project: Sample Matrix:

Water

Service Request: X2300246 Date Extracted: 03/29/2003 **Date Analyzed:** 03/29/2003

Lab Control Spike/Duplicate Lab Control Spike Summary Volatile Organic Compounds

Extraction Method: Analysis Method:

EPA 5030B

8260B

Units: ug/L Basis: NA Level: Low

Extraction Lot: XWG0300422

Lab Control Sample XWG0300422-1

Duplicate Lab Control Sample XWG0300422-2

	Lab Control Sample XWG0300422-1 Lab Control Spike			XW(Duplicate	50300422-2 Lab Control		%Rec	RPD	RPD Limit
	Result	Expected	%Rec	Result	Expected	%Rec	76-127	20	20
Analyte Name		10.0	109	8.89	10.0	89	65-120	9	20
Tetrachloroethene	10.9	40.0	89	38.6	40.0	97	81-116	4	20
2-Hexanone	35.5	10.0	100	10.4	10.0	104 96	77-119	2	20
1,3-Dichloropropane	10.0	10.0	94	9.55	10.0	96 99	79-116	5	20
Dibromochloromethane	9.36	10.0	94	9.91	10.0	99 97	84-114	6	20
1,2-Dibromoethane	9.38	10.0	103	9.68	10.0	97 96	78-118	2	20
Chlorobenzene	10.3	10.0	98	9.56	10.0		79-124	15	20
1,1,1,2-Tetrachloroethane	9.78	10.0	118	10.2	10.0	102	75-131	14	20
Ethylbenzene	11.8	20.0	114	19.8	20.0	99	78-122	10	20
m,p-Xylenes	22.8	10.0	108	9.80	10.0	98	80-126	6	20
	10.8		109	10.3	10.0	103	75-126	17	20
o-Xylene	10.9	10.0	115	9.70	10.0	97 2 7	82-122	2	20
Styrene Isopropylbenzene	11.5	10.0	99	9.72	10.0	97	77-118	2	20
Isopropyrochizone	9.90	10.0	100	10.2	10.0	102	75-129	18	20
Bromobenzene 1,2,3-Trichloropropane	10.0	10.0	124	10.4	10.0	104	77-126	11	20
1,2,3-1 fiction optopular	12.4	10.0	124	10.8	10.0	108	82-120	9	20
n-Propylbenzene	12.0	10.0	116	10.6	10.0	106	_	13	20
2-Chlorotoluene	11.6	10.0	117	10.3	10.0	103	75-130	17	20
4-Chlorotoluene	11.7	10.0		10.3	10.0	103	73-130	11	20
1,3,5-Trimethylbenzene	12.3	10.0	123	10.5	10.0	105	60-137	_	20
tert-Butylbenzene	11.7	10.0	117	9.88	10.0	99	68-131	_	20
1,2,4-Trimethylbenzene	11.7	10.0	117	9.88	10.0	99	71-137		20
sec-Butylbenzene	10.4	10.0	104	10.7	10.0		68-134		20
1,3-Dichlorobenzene	12.5	10.0	125	8.87	10.0		70-118		20
4-Isopropyltoluene	8.44	10.0	84	8.07 9.86			72-122	_	20
Promoform	9.46	10.0	95				82-114	_	20
1,1,2,2-Tetrachloroethane	10.2	10.0	102	9.86			81-11		20
1 4-Dichlorobenzene	10.1	10.0	101	9.94			71-12		20
1.2-Dichlorobenzene	12.1	10.0	121	10.5	,		55-13		
n Butylhenzene	8.32	40.0	83	9.23		_	75-12		20
1.2-Dibromo-3-chloropropane	9.35		94	9.59			63-14	.0 9	20
1 2 4-Trichlorobenzene	11.7) 117	10.3			67-12	25 11	20
Hexachlorobutadiene	8.37		84	9.3	•		72-12	24 8	20
Naphthalene 1,2,3-Trichlorobenzene	9.29			10.	0 10	.0 100			

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded. Results flagged with an asterisk (*) indicate values outside control criteria.

Printed: 04/03/2003 15:24:09 TAGTE AT THICRYSTAL.RPT\Form3DLC.rpt 000034 SuperSet Reference:

QA/QC Report

Client: Project: BE&K Terranext WVBA/#0310-3154

Sample Matrix:

Water

Service Request: X2300246 Date Extracted: 03/31/2003 **Date Analyzed:** 03/31/2003

Lab Control Spike/Duplicate Lab Control Spike Summary Volatile Organic Compounds

Extraction Method: Analysis Method:

EPA 5030B

8260B

Units: ug/L

Basis: NA Level: Low

Extraction Lot: XWG0300425

Lab Control Sample XWG0300425-1

Duplicate Lab Control Sample

	Lab Control Sample XWG0300425-1 Lab Control Spike			XWG0300425-2 Duplicate Lab Control Spike			%Rec	nnn	RPD
N. d. M. and	Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit
Analyte Name	9.92	10.0	99	9.28	10.0	93	1-233	7	20 20
Dichlorodifluoromethane	9.92 8.86	10.0	89	8.77	10.0	88	46-156	1	20
Chloromethane	8.80 12.0	10.0	120	11.8	10.0	118	51-158	1	20
Vinyl Chloride		10.0	70	6.92	10.0	69	37-149	1	20
Bromomethane	6.99	10.0	116	11.4	10.0	114	56-146	2	20
Chloroethane	11.6	10.0	128	12.7	10.0	127	69-139	1	
Trichlorofluoromethane	12.8	10.0	145 L1	13.6	10.0	136 L1	83-130	6	20
1,1,2-Trichlorotrifluoroethane	14.5	10.0	115 L1	11.2	10.0	112	65-112	2	20
1,1-Dichloroethene	11.5		86	38.2	40.0	95	68-128	11	20
Acetone	34.2	40.0	70	30.8	40.0	77	68-144	9	20
Iodomethane	28.1	40.0	126	49.9	40.0	125	67-140	1	20
Carbon Disulfide	50.6	40.0		10.5	10.0	105	70-113	0	20
Methylene Chloride	10.6	10.0	106	9.78	10.0	98	75-115	4	20
Methyl tert-Butyl Ether	9.42	10.0	94	10.7	10.0	107	73-118	1	20
trans-1,2-Dichloroethene	10.5	10.0	105	11.6	10.0	116	77-127	0	20
1,1-Dichloroethane	11.6	10.0	116	49.8	40.0	125	51-202	1	39
Vinyl Acetate	49.1	40.0	123	12.4	10.0	124	75-132	0	20
2,2-Dichloropropane	12.5	10.0	125	40.0	40.0	100	72-122	7	20
2-Butanone (MEK)	37.4	40.0	94	10.6	10.0	106	81-118	0	20
cis-1,2-Dichloroethene	10.5	10.0	105	9.24	10.0	92	82-114	2	20
Bromochloromethane	9.07	10.0	91		10.0	112	78-119	1	20
Chloroform	11.1	10.0	111	11.2	10.0	117	71-125	1	20
1,1,1-Trichloroethane	11.8	10.0	118	11.7	10.0	127	69-130	3	20
Carbon Tetrachloride	13.1	10.0	131 L1		10.0	122 L1	77-114	3	20
1,1-Dichloropropene	12.6	10.0	126 L1		10.0	111	81-117	1	20
	11.0	10.0	110	11.1	10.0	102	67-122	2	20
Benzene 1,2-Dichloroethane	10.0	10.0	100	10.2		112	79-114	0	20
	11.2	10.0	112	11.2	10.0	103	78-114	0	20
Trichloroethene	10.3	10.0	103	10.3	10.0	98	78-113	2	20
1,2-Dichloropropane	9.62	10.0	96	9.81	10.0		79-122	2	20
Dibromomethane	10.4	10.0	104	10.6	10.0	106	82-118	1	20
Bromodichloromethane	10.9	10.0	109	11.0	10.0	110	75-115	5	20
cis-1,3-Dichloropropene	33.5	40.0	84	35.3	40.0	88	85-118	0	20
4-Methyl-2-pentanone (MIBK)	11.3	10.0	113	11.3	10.0	113	79-121	4	20
Toluene	10.3	10.0	103	10.7	10.0	107	79-121 79-116		20
trans-1,3-Dichloropropene 1,1,2-Trichloroethane	9.51	10.0	95	9.72	10.0	97	/9-116	۷	20

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 04/03/2003 15:24:18 L:\STEALTH\CRYSTAL.RPT\Form3DLC.rpt

QA/QC Report

Client: Project: BE&K Terranext WVBA/#0310-3154

Sample Matrix:

Water

Service Request: X2300246 Date Extracted: 03/31/2003 **Date Analyzed:** 03/31/2003

Lab Control Spike/Duplicate Lab Control Spike Summary Volatile Organic Compounds

Extraction Method: EPA 5030B **Analysis Method:**

8260B

Units: ug/L Basis: NA Level: Low

Extraction Lot: XWG0300425

Lab Control Sample XWG0300425-1

Duplicate Lab Control Sample XWG0300425-2

	XWG0300425-1 Lab Control Spike			XWG0300425-2 Duplicate Lab Control Spike			%Rec	~~~	RPD
Analyte Name	Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit
	11.2	10.0	112	11.1	10.0	111	76-127	1	20
Tetrachloroethene	36.4	40.0	91	38.1	40.0	95	65-120	5	20
2-Hexanone	9.95	10.0	100	10.3	10.0	103	81-116	4	20
1,3-Dichloropropane	9.93	10.0	94	9.69	10.0	97	77-119	3	20
Dibromochloromethane	9.44	10.0	96	10.0	10.0	100	79-116	4	20
1,2-Dibromoethane	10.1	10.0	101	10.1	10.0	101	84-114	0	20
Chlorobenzene		10.0	96	9.76	10.0	98	78-118	2	20
1,1,1,2-Tetrachloroethane	9.59	10.0	115	11.4	10.0	114	79-124	1	20
Ethylbenzene	11.5	20.0	111	22.2	20.0	111	75-131	1	20
m,p-Xylenes	22.3	10.0	106	10.6	10.0	106	78-122	0	20
o-Xylene	10.6	10.0	106	10.7	10.0	107	80-126	1	20
Styrene	10.6		114	11.2	10.0	112	75-126	1	20
Isopropylbenzene	11.4	10.0	98	9.75	10.0	98	82-122	0	20
Bromobenzene	9.76	10.0	98 96	9.92	10.0	99	77-118	3	20
1,2,3-Trichloropropane	9.58	10.0	90 119	11.7	10.0	117	75-129	2	20
n-Propylbenzene	11.9	10.0	119	11.7	10.0	113	77-126	1	20
2-Chlorotoluene	11.4	10.0	114	11.3	10.0	111	82-120	0	20
4-Chlorotoluene	11.1	10.0		11.3	10.0	113	75-130	2	20
1,3,5-Trimethylbenzene	11.5	10.0	115	11.3	10.0	118	73-130	2	20
tert-Butylbenzene	12.1	10.0	121	11.3	10.0	112	60-137	1	20
1,2,4-Trimethylbenzene	11.3	10.0	113	11.2	10.0	113	68-131	1	20
sec-Butylbenzene	11.5	10.0	115	10.1	10.0	101	71-137	0	20
1,3-Dichlorobenzene	10.1	10.0	101		10.0	121	68-134	3	20
4-Isopropyltoluene	12.4	10.0	124	12.1	10.0	91	70-118	2	20
Bromoform	8.89	10.0	89	9.06	10.0	100	72-122	7	20
1,1,2,2-Tetrachloroethane	9.35	10.0	94	9.98	10.0	101	82-114	0	20
1,4-Dichlorobenzene	10.2	10.0	102	10.1		101	81-118	0	20
1,2-Dichlorobenzene	10.1	10.0	101	10.2	10.0	102	71-125	3	20
n-Butylbenzene	12.2	10.0	122	11.8	10.0	84	55-131	4	20
1,2-Dibromo-3-chloropropane	8.01	10.0	80	8.35	10.0	84 98	75-123	1	20
1,2,4-Trichlorobenzene	9.71	10.0	97	9.79	10.0	98 116	63-140	3	20
Hexachlorobutadiene	12.0	10.0	120	11.6	10.0		67-125	3	20
Naphthalene	9.20	10.0	92	9.49	10.0	95	72-124	3	20
1,2,3-Trichlorobenzene	9.73	10.0	97	10.0	10.0	100	12-124	5	20

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 04/03/2003 15:24:18 I.\STEALTH\CRYSTAL.RPT\Form3DLC.rpt

March 31, 2003

Chuck Gordon BE & K Terranext 9830 S. 51st A-127 Phoenix, AZ 85044

Re: WVBA/Project #0310-3154

Dear Chuck:

Enclosed are the results of the samples submitted to our laboratory on March 20, 2003. For your reference, these analyses have been assigned our service request number L2300635.

All analyses were performed in accordance with our laboratory's quality assurance program. Results are intended to be considered in their entirety and apply only to the samples analyzed. Columbia Analytical Services is not responsible for use of less than the complete report.

Columbia Analytical Services - is certified for environmental analyses by the Arizona Department of Health Services (certificate number: AZ0544 and AZ0136, expiration: May 23, 2003).

If you have any questions, please call me at (818) 587-5550, extension 309.

Respectfully submitted,

Columbia Analytical Services, Inc.

Sue Anderson Project Chemist

SA

Columbia Analytical Services, Inc.

Acronyms

	Acronyms				
	California DHS LUFT Method				
8015M	American Society for Testing and Materials				
ASTM	Biochemical Oxygen Demand				
BOD	Benzene/Toluene/Ethylbenzene/Xylenes				
BTEX	California Assessment Metals				
CAM CAS Number	Chemical Abstract Service Registry Number				
CFC	Chlorofluorocarbon				
COD	Chemical Oxygen Demand				
CRDL	Contract Required Detection Limit				
D	Detected; result must be greater than zero.				
DL	Detected; result must be greater than the detection limit.				
DLCS	Duplicate Laboratory Control Sample				
DMS	Duplicate Matrix Spike Department of Health Services				
DOH or DHS	Environmental Laboratory Accreditation Program				
ELAP	U.S. Environmental Protection Agency				
EPA	Gas Chromatography				
GC CC/MS	Gas Chromatography/Mass Spectrometry				
GC/MS IC	Ion Chromatography				
ICB	Tuiting Collibration Blank sample				
ICP	Inductively Coupled Plasma atomic emission spectrometry				
ICV	Initial Calibration Verification sample				
LCS	Laboratory Control Sample				
LUFT	Leaking Underground Fuel Tank				
M	Modified The Adding Substances				
MBAS	Methylene Blue Active Substances				
MDL	Method Detection Limit				
MRL	Method Reporting Limit				
MS	Matrix Spike Methyl- <i>tert</i> -Butyl Ether				
MTBE	Not Applicable				
NA NC					
ND	None Detected at or above the Method Reporting/Detection Entite (MACA)				
NTU	Nephelometric Turbidity Units				
ppb	Parts Per Billion				
ppm	Parts Per Million				
PQL	Practical Quantitation Limit				
QA/QC	Quality Assurance/Quality Control				
RCRA	Resource Conservation and Recovery Act Relative Percent Difference				
RPD					
SIM	Selected Ion Monitoring Standard Methods for the Examination of Water and Wastewater, 18th Ed., 1992.				
SM CTEL C					
STLC SW	The street in a Colid Waste Physical Chemical Internation				
311	Third Edition, 1986 and as amended by Opdates 1, 11, 111, 1111				
TCLP	Toxicity Characteristics Leaching Procedure				
TDS	Total Dissolved Solids				
TPH	Total Petroleum Hydrocarbons				
TRPH	Total Recoverable Petroleum Hydrocarbons				
TSS	Total Suspended Solids Total Threshold Limit Concentration				
TTLC	Volatile Organic Analyte(s)				
VOA	Qualifiers				
	•				
U	Undetected at or above MDL/MRL.				
J	Estimated concentration. Analyte detected above MDL but below MAL.				
В	The shows MRI also found in Method Blank.				
E	Analyte concentration above high point of TCAL.				
N	Presumptive evidence of compound.				
D	Result from dilution. See case narrative.				
X	See case narranyo.				

- Cover Page -INORGANIC ANALYSIS DATA PACKAGE

Client:

BE&K Terranext, LLC

Project Name : Project No. : WVBA 0310-3154 Service Request: L2300635

Sample Name:

Method Blank

Laboratory Control Sample Batch QC

Batch QC AVB60-0100

AVB60-0100-14450 AVB60-0104-1000 AVB82-0100-05320 Lab Code:

L2300326-MB L2300326-LCS L2300618-001S L2300618-001SD L2300635-001 L2300635-002

L2300635-002

pproved By: Sue July Same

Date:

3

3/3/03

Analytical Report

Client:

BE&K Terranext, LLC

Project Name:

WVBA

Project No.: Matrix:

0310-3154

Water

Service Request: L2300635

Date Collected: 03/20/03 Date Received: 03/20/03 **Date Extracted:** 03/26/03

Total Metals

Sample Name: Lab Code:

AVB60-0100-14450

L2300635-001

Units: ug/L (ppb)

		MRL	Date Analyzed	Sample Result	Result Notes
Analyte Chromium	Analysis Method 6010B	10	03/28/03	24	
Cilionnam					

Analytical Report

Client:

BE&K Terranext, LLC

Project Name:
Project No.:

WVBA

Matrix:

0310-3154 Water Service Request: L2300635

Date Collected: 03/20/03 **Date Received:** 03/20/03

Date Extracted: 03/26/03

Dissolved Metals

Sample Name :

AVB60-0100-14450

Lab Code:

L2300635-001

Units: ug/L (ppb)

Basis: NA

AnalyteAnalysis MethodMRLDate AnalyzedSample Result NotesChromium6010B1003/28/03ND

Analytical Report

Client:

BE&K Terranext, LLC

Project Name:
Project No.:

WVBA 0310-3154

Matrix:

Water

Service Request: L2300635

Date Collected: 03/20/03
Date Received: 03/20/03

Date Extracted: 03/26/03

Total Metals

Sample Name : Lab Code : AVB60-0104-1000

L2300635-002

Units: ug/L (ppb)

Analyte	Analysis Method	MRL	Date Analyzed	Sample Result	Result Notes
Chromium	6010B	10	03/28/03	ND	

Analytical Report

Client:

BE&K Terranext, LLC

Project Name: Project No.:

WVBA 0310-3154

Matrix:

Water

Service Request: L2300635

Date Collected: 03/20/03 Date Received: 03/20/03

Date Extracted: 03/26/03

Dissolved Metals

Sample Name:

AVB60-0104-1000

Lab Code:

L2300635-002

Units: ug/L (ppb)

Basis: NA

Result Sample Notes Result Date Analyzed MRL **Analysis Method** Analyte ND 03/28/03 10 6010B Chromium

Analytical Report

Client:

Matrix:

BE&K Terranext, LLC

Project Name:

WVBA

Project No.:

0310-3154

Water

Service Request: L2300635

Date Collected: 03/20/03 **Date Received:** 03/20/03

Date Extracted: 03/26/03

Dissolved Metals

Sample Name :

AVB82-0100-05320

Lab Code:

L2300635-003

Units: ug/L (ppb)

Basis: NA

Result Sample Result Notes **Date Analyzed** MRL **Analysis Method** Analyte ND 03/28/03 10 6010B Chromium

Analytical Report

Client:

BE&K Terranext, LLC

Project Name: Project No.:

WVBA

Matrix:

0310-3154 Water

Service Request: L2300635

Date Collected: 03/20/03

Date Received: 03/20/03 Date Extracted: 03/26/03

Total Metals

Sample Name:

AVB82-0100-05320

Lab Code:

L2300635-003

Units: ug/L (ppb)

Basis: NA

Result Sample Notes Result **Date Analyzed** MRL **Analysis Method** Analyte ND 03/28/03 10 6010B Chromium

Analytical Report

Client:

BE&K Terranext, LLC

Project Name : Project No. : WVBA 0310-3154

Matrix:

Water

Service Request: L2300635

Date Collected: NA
Date Received: NA

Date Extracted: 03/26/03

Total Metals

Sample Name:

Method Blank

Lab Code:

L2300326-MB

Units: ug/L (ppb)

Analyte	Analysis Method	MRL	Date Analyzed	Sample Result	Result Notes
Chromium	6010B	10	03/28/03	ND	

QA/QC Report

Client:

BE&K Terranext, LLC

Project Name: Project No.:

WVBA 0310-3154

Matrix:

Water

Service Request: L2300635

Date Collected: NA

Date Received: NA **Date Extracted:** 03/26/03

Date Analyzed: 03/28/03

Laboratory Control Sample Summary Total Metals

Sample Name:

Laboratory Control Sample

Lab Code:

L2300326-LCS

Units: ug/L (ppb)

A. alada	Analysis Method	True Value	Result	Percent	CAS Percent Recovery Acceptance Limits	Result Notes
Analyte	Analysis Methou	riue value	MCSUIT	A CI CCIIC		
Chromium	6010B	500	537	107	87-111	

Analytical Report

Client:

BE&K Terranext, LLC

Project Name : Project No.:

WVBA 0310-3154

Matrix:

Water

Service Request: L2300635

Date Collected: NA

Date Received: NA

Date Extracted: 03/26/03

Date Analyzed: 03/28/03

Matrix Spike/Duplicate Matrix Spike Summary

Total Metals

Sample Name:

Batch QC

Lab Code :

L2300618-001S

L2300618-001SD

Units: ug/L (ppb)

Analyte	Prep Method	Analysis Method	MRL	Spike MS	Level DMS	Sample Result	Spike MS	Result DMS	MS	DMS	CAS Acceptance Limits	Relative Percent Difference	Result Notes
Chromium	3010A	6010B	10	500	500	16.9	514	525	99	102	87-105	2	

Analytical Services Inc.

CHAIN OF CUSTODY/LABORATORY ANALYSIS REQUEST FORM

ANALYSIS REQUESTED 2302 East University Drive, Suite 4 • Phoenix, AZ 85034 • (602) 437-2001 • (800) 695-7222 ×09 • FAX (602) 437-5308

PAGE DATE 3-20-03

RUSH TAT - Surcharges Apply ANALYSIS TAT (Circle One) Lab No: X23-0024U REMARKS ☐ 72 Hours ☐ 48 Hours SAMPLE RECEIPT: ☐ 24 Hours Shipping VIA: **STANDARD** Shipping #: Condition: Date/Time 3.30.03 INVOICE INFORMATION: Date/Time DISTRIBUTION: WHITE - return to originator, YELLOW - lab; PINK - retained by originator Paint Filter O Organization Organization Organization 3 P.O.# REPORT REQUIREMENTS MSD, as required, may be charged as samples) IV. CLP Deliverable Report III. Data Validation Report (includes All Raw Data) I. Routine Report rapi may Received By (Signature) Received By (Signature) Received By (Signature) relex NUMBER OF CONTAINERS Date/Time 3-20-03 Sate/Time Date/Time PRESER-VATION Dissolucio Cr Reforms Lab Filturs #0310-3154 MATRIX Organization Organization \$ Organization 100 7KC0 PEaK LAB I.D. 12:43 10,30 9.30 HONE/FAX TIME SECIAL INSTRUCTIONS/COMMENTS: ANSI PROJECT MANAGER (-0 100) 3-20 DATE 118A = Relinquished By (Signature) Relinquished By (Signature) Relinquished By (Signature) ester may <u>を</u>を AVB82-0110-05330 AVB60-0100-14450 AVB60-0104-1000 SAMPLER'S SIGNATURE_ 0001-7010-098/1b COMPANY/ADDRESS SAMPLE PROJECT NAME_

SAMPLE RECEIPT FORM

Service Request No: L230 0635 Client: BETK
Sample(s) delivered by: Client CAS Emp After Hours DHL
Golden State Overnight Fed X UPS Other Courier
Chain of Custody filled out accurately? Yes No(See Comments)
Appropriate sample volume and containers? Yes No(See Comments)
Sufficient labeling on container(s)? Yes No(See Comments)
Container(s) supplied by CAS? Yes No(See Comments)
Custody seal(s) intact?
Trip Blank(s) received Yes No
If Trip Blank was supplied by CAS, record serial #TB
Temperature of sample(s)/cooler °C Temp Blank? Y or N (Circle One)
Voa's Marked Preserved? Yes No Filled Properly? Yes No (See Comments)
Preserved Bottles Requiring pH check(s)? Yes Notified DONE
RUSH Turn around time? Yes Notified Date & Time
Short Hold-Time Analysis (check all that apply)
ASAP Res Cl D.O Flash Diss S2 Ferrous Fe 24HR pH Odor Cr+6 48HR BOD Color MBAS Nitrate Nitrite O-PO4 Sett Sol Turbidity 72HR Vapors
Notified Date & Time
Container(s) received and their preservative(s): $-1 \rightarrow -3 = 1 - 500 \text{m} 1 \text{PI} (\text{NP}) \text{A} \text{C}$ $\left(1 - 500 \text{m} 1 \text{PI} (\text{HNB}) \text{B} \right)$
Comments
Initials, Date, Time LK 3/21/03 0955 r:\sr_forms\cooler.doc Rev. 1/17/02

CHAIN OF CUSTODY/LABORATORY ANALYSIS REQUEST FORM

DATE 3-30-03

PAGE

3902 East University Drive, Suite 4 • Phoenix, AZ 85034 • (602) 437-2001 • (800) 695-7222 x09 • FAX (602) 437-5308

RUSH TAT - Surcharges Apply ANALYSIS TAT (Circle One) Lab No: 233.00246 REMARKS **TG**0000 SAMPLE RECEIPT: ☐ 72 Hours ☐ 24 Hours ☐ 48 Hours STANDARD Shipping VIA: Shipping #: Condition: INVOICE INFORMATION: ANALYSIS REQUESTED Date/Time Date/Time DISTRIBUTION: WHITE - return to originator; YELLOW - lab; PINK - retained by originator Organization Organization Organization D_{lotal} 뼯고 P.O.# MSD, as required, may be charged as samples) REPORT REQUIREMENTS IV. CLP Deliverable Report III. Data Validation Report (includes All Raw Data) Routine Report Volatile Organics Received By (Signature) Received By (Signature) Received By (Signature) NUMBER OF CONTAINERS 3-20-03 1500 PRESER-VATION Date/Time Date/Time Dissolucio Cr Refuses Lab Filtery #03(0~3154 MATRIX Organization Organization 200 Organization 100-3460 PEak - PB - D: 12:45 10, 30 HONE/FAX TIME SPECIAL INSTRUCTIONS/COMMENTS: PROJECT MANAGER C-ONDON 3-20-03 DATE 184V ... Relinquished By (Signature) Relinquished By (Signature) Relinquished By (Signature) AVB82-0110-05330 91860-01100-14450 9VB60-0104-1000 SAMPLER'S SIGNATURE_ D1/860-0102-1000 COMPANY/ADDRESS SAMPLE I.D. PROJECT NAME_

Columbia Analytical Services, Inc. Phoenix, AZ

Sample Receipt and Preservation Form

Taple(s) Received on: $\frac{3-20-0}{\text{Glass Bottles}}$		- <u>03</u> dat P	e	00_time Jars □	Sleeves []	
MATRIX: First Extract	tion Holding Time	WATER e Expiration:		dateS	time (soils only) S(soil)/7 DAYS (water)? Yes 🗆	Ne
If YES, che	mist notified on:		date	time	Chemist's Initials	۰۰, ۰۱. <u>دفت</u>
1 1 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					RUSH STAND) AF
Are the cust If yes, how	tody seals present' many and where?	orrect?			Yes ☐ No☐ Yes ☐ No☐	
Are all con Were the co Have VOA Temperatu	tainer labels comported containers to been checked for the of sample(s) up	plete (i.e. pre used for the t or the presen oon receipt:	eservation, sam tests indicated ace of air bubble 5.70	nple ID)? ? les? (note problems 	Yes No	<u>N</u>
Are all con Were the co Have VOA Temperatu	tainer labels comported containers to been checked for the of sample(s) up	plete (i.e. pre used for the t or the presen oon receipt:	eservation, sam tests indicated ace of air bubble 5.70	nple ID)? ? les? (note problems	Yes ☐ No☐ Yes ☐ No☐	N
Are all con Were the co Have VOA Temperatu	tainer labels comported containers to been checked for the of sample(s) up	plete (i.e. pre used for the t or the presen oon receipt:	eservation, sam tests indicated ace of air bubble 5.70	nple ID)? ? les? (note problems 	in comments) Yes No□ Yes No□ Yes No□ Yes No□ Yes No□ Yes No□ Yes No□	Ŋ
Are all con Were the co Have VOA Temperatu	tainer labels comported containers to been checked for the of sample(s) up	plete (i.e. pre used for the t or the presen oon receipt:	eservation, sam tests indicated ace of air bubble 5.70	nple ID)? ? les? (note problems 	Yes No□ Yes No□ Yes No□ Yes No□ Yes No□ Yes No□ Yes No□ Your No Your No	N
Are all con Were the co Have VOA Temperatu	tainer labels comported containers to been checked for the of sample(s) up	plete (i.e. pre used for the t or the presen oon receipt:	eservation, sam tests indicated ace of air bubble 5.70	nple ID)? ? les? (note problems 	Yes No□ Yes No□ Yes No□ Yes No□ No□ VOA Vial pH Verification (Tested After Analysis) □ All Samples pH ≤ 2	
Are all con Were the co Have VOA Temperatu	tainer labels comported containers to been checked for the of sample(s) up	plete (i.e. pre used for the t for the presen noon receipt:	eservation, sam tests indicated ace of air bubble 5.70	nple ID)? ? les? (note problems 	Yes No□ Yes No□ Yes No□ Yes No□ Yes No□ Yes No□ Yes No□ Your No Your No	
Are all com Were the con Have VOA Temperatur	tainer labels comported containers it is been checked for e of sample(s) up of discrepancies:	plete (i.e. pre used for the t or the presen oon receipt:	eservation, samests indicated according to the servation of the servation	nple ID)? ? les? (note problems 	Yes No□ Yes No□ Yes No□ Yes No□ No□ VOA Vial pH Verification (Tested After Analysis) □ All Samples pH ≤ 2	
Are all com Are all com Were the co Have VOA Temperatu Explaination	tainer labels comported containers it is been checked for e of sample(s) up of discrepancies: Reagent	plete (i.e. pre used for the t for the presen noon receipt:	eservation, samests indicated according to the servation of the servation	nple ID)? ? les? (note problems 	Yes No□ Yes No□ Yes No□ Yes No□ No□ VOA Vial pH Verification (Tested After Analysis) □ All Samples pH ≤ 2	
Are all com Were the co Have VOA Temperatu Explaination pH 12	rainer labels comported containers it is been checked for e of sample(s) up of discrepancies: Reagent NaOH	plete (i.e. pre used for the t for the presen noon receipt:	eservation, samests indicated according to the servation of the servation	nple ID)? ? les? (note problems 	Yes No□ Yes No□ Yes No□ Yes No□ No□ VOA Vial pH Verification (Tested After Analysis) □ All Samples pH ≤ 2	
Are all com Are all com Were the co Have VOA Temperatu Explaination pH 12 2	rainer labels comported containers in seen checked for e of sample(s) up of discrepancies: Reagent NaOH HNO3	plete (i.e. pre used for the t for the presen noon receipt:	eservation, samests indicated according to the servation of the servation	nple ID)? ? les? (note problems 	Yes No□ Yes No□ Yes No□ Yes No□ No□ VOA Vial pH Verification (Tested After Analysis) □ All Samples pH ≤ 2	
Are all com Were the co Have VOA Temperatu Explaination pH 12	rainer labels comported containers it is been checked for e of sample(s) up of discrepancies: Reagent NaOH	plete (i.e. pre used for the t for the presen noon receipt:	eservation, samests indicated according to the servation of the servation	nple ID)? ? les? (note problems 	Yes No□ Yes No□ Yes No□ Yes No□ No□ VOA Vial pH Verification (Tested After Analysis) □ All Samples pH ≤ 2	

July 16, 2003

Chuck Gordon BE&K Terranext 9830 S. 51st Street, Suite A-127 Phoenix, AZ 85044

Re: WVB

Dear Chuck:

Enclosed are the amended result pages for the samples submitted to our laboratory on March 12, 2003. The samples were analyzed for Total & Dissolved Chromium by our Canoga Park, CA facility (L2300633). For your reference, the 8260 analyses have been assigned our service request number X2300243.

All analyses were performed according to our laboratory's quality assurance program. All results are intended to be considered in their entirety, and Columbia Analytical Services, Inc. (CAS) is not responsible for use of less than the complete report. Results apply only to the samples analyzed. Columbia Analytical Services, Inc. is certified for environmental analyses by the Arizona Department of Health Services (Certificate #AZ0136; and #AZ0497).

Please call if you have any questions. My extension is 223.

Respectfully submitted,

Columbia Analytical Services, Inc.

Tracy L. Dutton

Laboratory Director

TLD/lm

Page 1 of <u>67</u>

Client:

BE&K Terranext

Service Request No.:

X2300243 3/20/03

Project:

WVB

Water Sample Matrix:

Date Received:

CASE NARRATIVE

All analyses were performed consistent with the quality assurance program of Columbia Analytical Services, Inc. (CAS). This report contains analytical results for sample(s) designated for Tier II data deliverables. When appropriate to the method, method blank results have been reported with each analytical test. Surrogate recoveries have been Additional quality control analyses reported herein include: reported for all applicable organic analyses. Matrix/Duplicate Matrix Spike (MS/DMS) and Laboratory Control Sample (LCS).

All EPA recommended holding times have been met for analyses in this sample delivery group.

The following difficulties were experienced during analysis of this batch:

The associated blank spike (XWG0300425-1 and XWG0300425-2) recovery of 1,1-Dichloroethene and 1,1-Dichloropropene for Method 8260 was above laboratory acceptance limits but within method acceptance limits.

The associated blank spike (XWG0300422-1 and XWG0300425-1) recovery of 1,1,2-Trichlorotrifluoroethane and Carbon Tetrachloride for Method 8260B was above laboratory acceptance limits. The associated blank spike (XWG0300425-2) recovery of 1,1,2-Trichlorotrifluoroethane for Method 8260B was above laboratory acceptance limits. These compounds were not detected in any of the samples analyzed in this batch.

CCV recovery of Dichlorodifluoromethane, Method 8260 was below method acceptance limits on 4/1/03. This compound was seen in the method reporting limit standard that was analyzed with this batch of samples. This verifies that the compound would be detected if present in the samples.

The associated blank spike (XWG0300433-1) recovery of 1,1,2-Trichlorotrifluoroethane and 1,1-Dichloropropene, Method 8260, was above laboratory acceptance limits. These compounds were not detected in any of the samples analyzed in this batch.

Surrogate recovery of Dibromofluoromethane, Method 8260B, was above laboratory acceptance limits for samples AVB89-0102-04000 (X2300243-004) and AVB111-0104-1000 (X2300243-006), but within method acceptance limits. No target analytes were seen in the sample.

Matrix spike (XWG0300425-4 and XWG0300425-5) recovery of 1,1,2-Trichlorotrifluoroethane, Carbon Tetrachloride and 1,1-Dichloropropene for Method 8260B was high. Matrix spike (XWG0300433-4 and XWG0300433-5) recovery of 1,1,2-Trichlorotrifluoroethane and 1,1-Dichloropropene for Method 8260B was high. These compounds were not detected in any of the samples analyzed in these batches.

Matrix spike (XWG0300425-4, XWG0300425-5, XWG0300433-4, and XWG0300433-5) recovery of other several analytes for Method 8260B was high. The method control sample recovery was acceptable.

	111	117 23
	- W -	nte
		ite
Approved by		

ARIZONA DATA QUALIFIERS

Method Bla	ink:
B1	to the diagnosthod blank at or above the method reporting
B2	to the diagraph of blank and sample, producing in the
В3	Non-target analyte detected in richlod blank at or above the method reporting limit. Target analyte detected in calibration blank at or above the method reporting limit.
B4	Target analyte detected in blank at/above method acceptance of the properties limit, but below trigger level or MCL.
B5	Target analyte detected in blank at/above method acceptance citeria. Target analyte detected in method blank at or above the method reporting limit, but below trigger level or MCL. Target analyte detected in calibration blank at or above the method reporting limit, but below trigger level or MCL. Target analyte detected in calibration blank at or above the method reporting limit. Concentration found in the sample
В6	Target analyte detected in calibration blank at or above the method reporting limit. Concentration found in the sample Target analyte detected in method blank at or above method reporting limit. Concentration found in the sample
В7	Target analyte detected in method blank at of above method blank.
	was 10 times above the concentration found in the method blank.
Confirmat	ion:
C1	Confirmatory analysis not performed as required by the method. Confirmatory analysis not performed. Confirmation of analyte presence established by site historical data.
C2	Continuatory analysis not performed. Continuation of the state of the
C3	Qualitative confirmation performed. See case narrative.
C4	Confirmatory analysis was past holding time. Confirmatory analysis was past holding time. Original result not confirmed.
C5	Confirmatory analysis was past holding time.
Dilution:	the interference. See case narrative.
D1	Sample required dilution due to matrix interference. See case narrative. Sample required dilution due to high concentration of target analyte.
D2	
D3	Sample required due to insufficient sample. Sample dilution required due to insufficient sample. Minimum reporting level (MRL) adjusted to reflect sample amount received and analyzed.
D4	Minimum reporting level (MRC) adjusted to
Estimate	d concentration: Concentration estimated. Analyte exceeded calibration range. Reanalysis not possible due to insufficient
E1	Concentration estimated. Analyte exceeded canonaton range
	sample. Concentration estimated. Analyte exceeded calibration range. Reanalysis not performed due to sample matrix. Let collibration range. Reanalysis not performed due to holding time
E2	Concentration estimated. Analyte exceeded calibration range. Reanalysis not performed due to holding time Concentration estimated. Analyte exceeded calibration range. Reanalysis not performed due to holding time
E3	Concentration estimated. Analyte exceeded days
	requirements. Concentration estimated. Analyte was detected below laboratory minimum reporting level (MRL), but not
E4	Concentration estimated. Analyte was detected below laboratory minimum reporting level (MRL), but not Concentration estimated. Analyte was detected below laboratory minimum reporting level (MRL), but not
E5	Concentration estimated. Addaty to the design of the concentration estimated analysis.
	confirmed by alternate analysis. Confirmation estimated. Internal standard recoveries did not meet method acceptance criteria.
E6	Confirmation estimated. Internal standard recoveries did not meet laboratory acceptance criteria. Confirmation estimated. Internal standard recoveries did not meet laboratory acceptance criteria.
E7	Confirmation estimated. Internal
Hold T	ime: See case narrative.
[1]	Sample analysis performed past holding time. See case narrative. Initial analysis within holding time. Reanalysis for the required dilution was past holding time.
H2	Initial analysis within holding time. Reanalysis for the Sample was received and analyzed past holding time. See case
H3	Sample was received and analyzed past holding time. Sample was extracted past required extraction holding time, but analyzed within analysis holding time. See case
H4	
	narrative.

Laboratory fortified blank/blank spike:

The associated blank spike recovery was above laboratory acceptance limits. See case narrative. L1

- The associated blank spike recovery was below laboratory acceptance limits. See case narrative. The associated blank spike recovery was above method acceptance limits. See case narrative. L2 The associated blank spike recovery was below method acceptance limits. See case narrative. 1.3 L4 Note: The L1, L2, L3, & L4 footnotes need to be added to all corresponding analytes for a sample. Matrix spike recovery was high, the method control sample recovery was acceptable. Matrix spike: Matrix spike recovery was low, the method control sample recovery was acceptable. М1 The accuracy of the spike recovery value is reduced since the analyte concentration in the sample is M2 disproportionate to spike level. The method control sample recovery was acceptable. M3 The analysis of the spiked sample required a dilution such that the spike concentrations was diluted below the reporting limit. The method control sample recovery was acceptable. M4Analyte concentration was determined by the method of standard addition (MSA). Matrix spike recovery was high. Data reported per ADEQ policy 0154.000. M5 Matrix sipke recovery was low. Data reported per ADEQ policy 0154,000. M6 M7 General: See case narrative. N1See corrective action report N2Sample quality: Sample integrity was not maintained. See case narrative. 01 Sample received with head space. Q2 Sample received with improper chemical preservation. Q3 Sample received and analyzed without chemical preservation. Sample received with inadequate chemical preservation, but preserved by the laboratory. O4 Q5 Sample was received above recommended temperature. Q6 Sample inadequately dechlorinated. Insufficient sample received to meet QC requirements. QC requirements satisfy ADEQ policies 0154 and 0155. 07 Ο8 Insufficient sample received to meet QC requirements ()9 Sample received in inappropriate sample container. Sample is heterogeneous. Sample homogeneity could not be readily achieved using routine laboratory practices. Q10 Q11 Duplicates: RPD exceeded the method control limit. See case narrative. R1 RPD exceeded the laboratory control limit. See case narrative. Sample RPD between the primary and confirmatory analysis exceeded 40%. Per Method 8000B, the higher R2 R3 value was reported.
 - MS/MSD RPD exceeded the method control limit. Recovery met acceptance criteria. MS/MSD RPD exceeded the laboratory control limit. Recovery met acceptance criteria. **R4** LFB/LFBD RPD exceeded the method control limit. Recovery met acceptance criteria. R5 R6

 - LFB/LFBD RPD exceeded the laboratory control limit. Recovery met acceptance criteria.
 - **R7**
 - Sample RPD exceeded the method control limit. **R8**
 - Sample RPD exceeded the laboratory control limit. R9

- Surrogate recovery was above laboratory acceptance limits, but within method acceptance limits. Surrogate:
- Surrogate recovery was above laboratory and method acceptance limits. S1S2

Surrogate recovery was above laboratory acceptance limits, but within method acceptance limits. No target S3 analytes were detected in the sample. Surrogate recovery was above laboratory and method acceptance limits. No target analytes were detected in the S4 Surrogate recovery was below laboratory acceptance limits, but within method acceptance limits. sample. Surrogate recovery was below laboratory and method acceptance limits. Reextraction and/or reanalysis confirms S5 \$6 low recovery caused by matrix effect. Surrogate recovery was below laboratory and method acceptance limits. Unable to confirm matrix effect. The analysis of the sample required a dilution such that the surrogate concentration was diluted below the method **S7** S8 acceptance criteria. The method control sample recovery was acceptable. The analysis of the sample required a dilution such that the surrogate concentration was diluted below the laboratory acceptance criteria. The method control sample recovery was acceptable. S9Surrogate recovery was above laboratory and method acceptance limits. See case narrative. S10Surrogate recovery was high. Data reported per ADEQ policy 0154,000. S11Surrogate recovery was low. Data reported per ADEQ policy 0154,000.

Method/analyte discrepancies:

S12

- Method promulgated by EPA, but not ADHS at this time. Т1
- Cited ADHS licensed method does not contain this analyte as part of method compound list. T2
- Method not promulgated either by EPA or ADHS. Т3
- Tentatively identified compound. Concentration is estimated and based on the closest internal standard. **T4**

Calibration verification: CCV recovery was above method acceptance limits. This target analyte was not detected in the sample. CCV recovery was above method acceptance limits. This target analyte was detected in the sample. The sample V1V2could not be reanalyzed due to insufficient sample. CCV recovery was above method acceptance limits. This target analyte was detected in the sample, but the V3 sample was not reanalyzed. See case narrative. CCV recovery was below method acceptance limits. The sample could not be reanalyzed due to insufficient V4CCV recovery after a group of samples was above acceptance limits. This target analyte was not detected in the V5sample. Acceptable per EPA Method 8000B. Data reported from one-point calibration criteria per ADEQ policy 0155.000. Calibration verification recovery was above the method control limit for this analyte however the average V6 V7 % difference or % drift for all the analytes met method criteria. Calibration verification recovery was below the method control limit for this analyte however the average V8% difference or % drift for all the analytes met method criteria

The % RSD for this compound was above 15%. The average % RSD for all compounds in the calibration met Calibration: WI the 15% criteria as specified in EPA method 8000B.

Inorganic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.
- U The compound was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- i The MRL/MDL has been elevated due to a matrix interference.
- X See case narrative.

Metals Data Qualifiers

- # The control limit criteria is not applicable. See case narrative.
- B The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.
- E The reported value is estimated because of the presence of matrix interference.
- M The duplicate injection precision was not met.
- N The Matrix Spike sample recovery is not within control limits. See case narrative.
- S The reported value was determined by the Method of Standard Additions (MSA).
- U The compound was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- W The post-digestion spike for furnace AA analysis is out of control limits, while sample absorbance is less than 50% of spike absorbance.
- The MRL/MDL has been elevated due to a matrix interference.
- X See case narrative.
- * The duplicate analysis not within control limits. See case narrative.
- + The correlation coefficient for the MSA is less than 0.995.

Organic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- A A tentatively identified compound, a suspected aldol-condensation product.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result.
- C The analyte was qualitatively confirmed using GC/MS techniques, pattern recognition, or by comparing to historical data.
- D The reported result is from a dilution.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.
- N The result is presumptive. The analyte was tentatively identified, but a confirmation analysis was not performed.
- P The GC or HPLC confirmation criteria was exceeded. The relative percent difference is greater than 40% between the two analytical results (25% for CLP Pesticides).
- U The compound was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL..
- The MRL/MDL has been elevated due to a chromatographic interference.
- X See case narrative.

Additional Petroleum Hydrocarbon Specific Qualifiers

- F The chromatographic fingerprint of the sample matches the elution pattern of the calibration standard.
- L The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of lighter molecular weight constituents than the calibration standard.
- H The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of heavier molecular weight constituents than the calibration standard.
- O The chromatographic fingerprint of the sample resembles an oil, but does not match the calibration standard.
- Y The chromatographic fingerprint of the sample resembles a petroleum product eluting in approximately the correct carbon range, but the elution pattern does not match the calibration standard.
- Z The chromatographic fingerprint does not resemble a petroleum product.

Client: Project: BE&K Terranext

WVB

Service Request:

X2300243

Cover Page - Organic Analysis Data Package Volatile Organic Compounds

Sample Name	Lab Code	Date Collected	Date Received
AVB86-0100-04111 AVB89-0100-04000 AVB90-0100-04000 AVB89-0102-04000 AVB111-0100-01103 AVB111-0104-1000 AVB111-0102-1000 AVB89-0100-04000MS AVB89-0100-04000DMS	X2300243-001 X2300243-002 X2300243-003 X2300243-004 X2300243-005 X2300243-006 X2300243-007 XWG0300425-4 XWG0300425-5	03/20/2003 03/20/2003 03/20/2003 03/20/2003 03/20/2003 03/20/2003 03/20/2003 03/20/2003	03/20/2003 03/20/2003 03/20/2003 03/20/2003 03/20/2003 03/20/2003 03/20/2003 03/20/2003

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed in the case narrative. Release of the data contained in this hardcopy data package and in the computer-readable data submitted on floppy diskette has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signature.

Signature: Hay Lutton

Date: 4-7-03

Tame: 11acy Dulton

Title: Lab Manager

Analytical Results

Client:

BE&K Terranext

Project: Sample Matrix: WVB

Water

Service Request: X2300243 Date Collected: 03/20/2003

Date Received: 03/20/2003

Volatile Organic Compounds

Sample Name:

AVB86-0100-04111

Lab Code:

X2300243-001

Extraction Method:

EPA 5030B

Units: ug/L Basis: NA

Level: Low

Analysis Method: 8260B	Result Q	MRL	Dilution Factor	Date Extracted		Arizona Qualifier
Analyte Name	ND U	3.0	1	03/31/03	03/31/03	
Dichlorodifluoromethane	ND U	2.0	1	03/31/03	03/31/03	
Chloromethane	ND U	1.0	1	03/31/03	03/31/03	
Vinyl Chloride	ND U	1.0	1	03/31/03	03/31/03	
Bromomethane	ND U	1.0	1	03/31/03	03/31/03	
Chloroethane	ND U	1.0	1	03/31/03	03/31/03	
Trichlorofluoromethane	ND U	1.0	1	03/31/03	00/02/	L1
1,1,2-Trichlorotrifluoroethane	2.8	1.0	1	03/31/03	0.07.	L1
1,1-Dichloroethene	2.8 ND U	10	1	03/31/03	03/31/03	
Acetone		2.0	1	03/31/03	03/31/03	
Iodomethane	ND U	2.0	1	03/31/03	03/31/03	
Carbon Disulfide	ND U	1.0	1	03/31/03	03/31/03	
Methylene Chloride	ND U	1.0	1	03/31/03	03/31/03	
Methyl tert-Butyl Ether	ND U	0.50	1	03/31/03	03/31/03	
trans-1,2-Dichloroethene	ND U	0.50	1	03/31/03	03/31/03	
1,1-Dichloroethane	1.0		1	03/31/03	03/31/03	
Vinyl Acetate	ND U	3.0 2.0	1	03/31/03	03/31/03	
2,2-Dichloropropane	ND U	8.0	1	03/31/03	03/31/03	
2-Butanone (MEK)	ND U		1	03/31/03	03/31/03	 :
cis-1,2-Dichloroethene	2.6	0.50	1	03/31/03	03/31/03	
Bromochloromethane	ND U	0.50 1.0	1	03/31/03	03/31/03	
Chloroform	4.3		1	03/31/03	03/31/03	3
1,1,1-Trichloroethane	ND U	0.50	1	03/31/03	03/31/03	3 L1
Carbon Tetrachloride	ND U	0.50	1	03/31/03	03/31/03	B L1
1,1-Dichloropropene	ND U	0.50	1	03/31/03	03/31/03	3
Benzene	ND U	0.50	1	03/31/03		
1,2-Dichloroethane	ND U	0.50	1	03/31/03		
Trichloroethene	40	0.50	1	03/31/03		3
1,2-Dichloropropane	ND U	0.50	1	03/31/03		
Dibromomethane	ND U	0.50	1	03/31/03		
Bromodichloromethane	ND U	0.50		03/31/03		
cis-1,3-Dichloropropene	ND U	0.50	1	03/31/03		
4-Methyl-2-pentanone (MIBK)	ND U	8.0	1	03/31/03		
Toluene	ND U	0.50	1	05/51/0.		

Comments:

1 \QTF AI TH\CRYSTAL.RPT\Formlm.rpt

Analytical Results

Client:

BE&K Terranext

Project:

WVB

Sample Matrix:

Water

Service Request: X2300243

Date Collected: 03/20/2003 **Date Received:** 03/20/2003

Volatile Organic Compounds

Sample Name:

AVB86-0100-04111

Lab Code:

X2300243-001

Extraction Method: Analysis Method:

EPA 5030B

8260B

Units: ug/L Basis: NA

Level: Low

Analyte Name Result Q MRC 2 1 03/31/03 03/31/03 trans-1,3-Dichloropropene ND U 1.0 1 03/31/03 03/31/03 ND U 1.0 1 03/31/03 03/31/03	Tanacy day 2.20-2.			Dilution	Date Extracted	Date	Arizona Qualifier
Trans-1,3-Dichloropropene	Analyte Name		MRL	Factor_			ATTEME Quality
1,1,2-Trichloroethane				1			
Tetrachloroethene	1.1.2-Trichloroethane			1			
2-Hexanone ND U 1.0 1 03/31/03 03/31/03 1,3-Dichloropropane ND U 1.0 1 03/31/03 03/31/03 03/31/03 1,2-Dibromoethane ND U 0.50 1 03/31/03 03/31/03 03/31/03 1,1-1,1-2-Tetrachloroethane ND U 0.50 1 03/31/03 03/	Tetrachloroethene						
1,3-Dichloropropane ND U 0.50 1 03/31/03 03/31/03 1,2-Dibromochloromethane ND U 0.50 1 03/31/03 03/31/03 1,2-Dibromochlane ND U 0.50 1 03/31/03 03/31/03 1,1,1,2-Tetrachloroethane ND U 0.50 1 03/31/03 03/31/03 1,1,1,1,2-Tetrachloroethane ND U 0.50 1 03/31/03 03/31/03 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,	2-Hexanone						
Dibromochloromethane ND U 0.50 1 03/31/03 03/31/03 03/31/03 0.50 1 0							
1,2-Dibromoethane							
Chlorobenzene	1.2-Dibromoethane			=			
1,1,2-Tetrachloroethane							
Ethylbenzene	1,1,1,2-Tetrachloroethane						
mp-Xylenes ND U 0.50 1 03/31/03 03/31/03 c-Xylene ND U 0.50 1 03/31/03 03/31/03 Styrene ND U 0.50 1 03/31/03 03/31/03 Isopropylbenzene ND U 0.50 1 03/31/03 03/31/03 Bromobenzene ND U 0.50 1 03/31/03 03/31/03 12,3-Trichloropropane ND U 0.50 1 03/31/03 03/31/03 1-Propylbenzene ND U 0.50 1 03/31/03 03/31/03 2-Chlorotoluene ND U 0.50 1 03/31/03 03/31/03 4-Chlorotoluene ND U 0.50 1 03/31/03 03/31/03 1,3,5-Trimethylbenzene ND U 0.50 1 03/31/03 03/31/03 1,2,4-Trimethylbenzene ND U 0.50 1 03/31/03 03/31/03 1				_			
o-Xylene ND U 0.50 1 03/31/03 03/31/03 Styrene ND U 0.50 1 03/31/03 03/31/03 Isopropylbenzene ND U 0.50 1 03/31/03 03/31/03 Bromobenzene ND U 0.50 1 03/31/03 03/31/03 1,2,3-Trichloropropane ND U 0.50 1 03/31/03 03/31/03 1,2,3-Trichloropropane ND U 0.50 1 03/31/03 03/31/03 2-Chlorotoluene ND U 0.50 1 03/31/03 03/31/03 4-Chlorotoluene ND U 0.50 1 03/31/03 03/31/03 1,3,5-Trimethylbenzene ND U 0.50 1 03/31/03 03/31/03 1,2,4-Trimethylbenzene ND U 0.50 1 03/31/03 03/31/03 1,2,4-Trimethylbenzene ND U 0.50 1 03/31/03 03/31/03 1,2-4-Trimethylbenzene ND U 0.50 1 03/31/03 03/31/03							
Styrene							
Isopropylbenzene							
Bromobenzene							
1,2,3-Trichloropropane							
n-Propylbenzene ND U 0.50 1 03/31/03 03/31/03 2-Chlorotoluene ND U 0.50 1 03/31/03 03/31/03 4-Chlorotoluene ND U 0.50 1 03/31/03 03/31/03 1,3,5-Trimethylbenzene ND U 0.50 1 03/31/03 03/31/03 tert-Butylbenzene ND U 0.50 1 03/31/03 03/31/03 1,2,4-Trimethylbenzene ND U 0.50 1 03/31/03 03/31/03 sec-Butylbenzene ND U 0.50 1 03/31/03 03/31/03 1,3-Dichlorobenzene ND U 0.50 1 03/31/03 03/31/03 4-Isopropyltoluene ND U 0.50 1 03/31/03 03/31/03 Bromoform ND U 0.50 1 03/31/03 03/31/03 1,1,2,2-Tetrachloroethane ND U 0.50 1 03/31/03 03/31/03 1,2-Dichlorobenzene ND U 0.50 1 03/31/03 03/31/03	1.2.3-Trichloropropane						
2-Chlorotoluene ND U 0.50 1 03/31/03 03/31/03 4-Chlorotoluene ND U 0.50 1 03/31/03 03/31/03 1,3,5-Trimethylbenzene ND U 0.50 1 03/31/03 03/31/03 tert-Butylbenzene ND U 0.50 1 03/31/03 03/31/03 1,2,4-Trimethylbenzene ND U 0.50 1 03/31/03 03/31/03 sec-Butylbenzene ND U 0.50 1 03/31/03 03/31/03 1,3-Dichlorobenzene ND U 0.50 1 03/31/03 03/31/03 4-Isopropyltoluene ND U 0.50 1 03/31/03 03/31/03 Bromoform ND U 0.50 1 03/31/03 03/31/03 1,1,2,2-Tetrachloroethane ND U 0.50 1 03/31/03 03/31/03 1,4-Dichlorobenzene ND U 0.50 1 03/31/03 03/31/03 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
4-Chlorotoluene ND U 0.50 1 03/31/03 03/31/03 1,3,5-Trimethylbenzene ND U 0.50 1 03/31/03 03/31/03 tert-Butylbenzene ND U 0.50 1 03/31/03 03/31/03 1,2,4-Trimethylbenzene ND U 0.50 1 03/31/03 03/31/03 sec-Butylbenzene ND U 0.50 1 03/31/03 03/31/03 1,3-Dichlorobenzene ND U 0.50 1 03/31/03 03/31/03 4-Isopropyltoluene ND U 0.50 1 03/31/03 03/31/03 Bromoform ND U 0.50 1 03/31/03 03/31/03 1,1,2,2-Tetrachloroethane ND U 0.50 1 03/31/03 03/31/03 1,4-Dichlorobenzene ND U 0.50 1 03/31/03 03/31/03 1,2-Dichlorobenzene ND U 0.50 1 03/31/03 03/31/03 1,2-Dibromo-3-chloropropane ND U 0.50 1 03/31/03 03/31/03							
1,3,5-Trimethylbenzene	4-Chlorotoluene						
tert-Butylbenzene ND U 0.50 1 03/31/03 03/31/03 sec-Butylbenzene ND U 0.50 1 03/31/03 03/31/03 sec-Butylbenzene ND U 0.50 1 03/31/03 03/31/03 1,3-Dichlorobenzene ND U 0.50 1 03/31/03 03/31/03 4-Isopropyltoluene ND U 0.50 1 03/31/03 03/31/03 Bromoform ND U 0.50 1 03/31/03 03/31/03 1,1,2,2-Tetrachloroethane ND U 1.0 1 03/31/03 03/31/03 1,4-Dichlorobenzene ND U 0.50 1 03/31/03 03/31/03 1,2-Dichlorobenzene ND U 0.50 1 03/31/03 03/31/03 1,2-Dichlorobenzene ND U 0.50 1 03/31/03 03/31/03 1,2-Dichlorobenzene ND U 0.50 1 03/31/03 03/31/03 1,2-Dibromo-3-chloropropane ND U 5.0 1 03/31/03 03/31/03 1,2-Dibromo-3-chloropropane ND U 0.50 1 03/31/03 03/31/03 1,2-Trichlorobenzene ND U 0.50 1 03/31/03 03/31/03 1,2-4-Trichlorobenzene ND U 0.50 1 03/31/03 03/31/03 1,2-4-Trichlorobenzene ND U 0.50 1 03/31/03 03/31/03							
1,2,4-Trimethylbenzene	tert-Butylbenzene						
sec-Butylbenzene ND U 0.30 1 03/31/03 03/31/03 1,3-Dichlorobenzene ND U 0.50 1 03/31/03 03/31/03 4-Isopropyltoluene ND U 0.50 1 03/31/03 03/31/03 Bromoform ND U 0.50 1 03/31/03 03/31/03 1,1,2,2-Tetrachloroethane ND U 0.50 1 03/31/03 03/31/03 1,4-Dichlorobenzene ND U 0.50 1 03/31/03 03/31/03 1,2-Dichlorobenzene ND U 0.50 1 03/31/03 03/31/03 1,2-Dibromo-3-chloropropane ND U 5.0 1 03/31/03 03/31/03 1,2,4-Trichlorobenzene ND U 0.50 1 03/31/03 03/31/03 1,2,4-Trichlorobenzene ND U 0.50 1 03/31/03 03/31/03							
1,3-Dichlorobenzene ND U 0.30 1 03/31/03 03/31/03 4-Isopropyltoluene ND U 0.50 1 03/31/03 03/31/03 Bromoform ND U 0.50 1 03/31/03 03/31/03 1,1,2,2-Tetrachloroethane ND U 0.50 1 03/31/03 03/31/03 1,4-Dichlorobenzene ND U 0.50 1 03/31/03 03/31/03 1,2-Dichlorobenzene ND U 0.50 1 03/31/03 03/31/03 1,2-Dibromo-3-chloropropane ND U 5.0 1 03/31/03 03/31/03 1,2,4-Trichlorobenzene ND U 0.50 1 03/31/03 03/31/03							
4-Isopropyltoluene ND U 0.30 1 03/31/03 03/31/03 Bromoform ND U 0.50 1 03/31/03 03/31/03 1,1,2,2-Tetrachloroethane ND U 1.0 1 03/31/03 03/31/03 1,4-Dichlorobenzene ND U 0.50 1 03/31/03 03/31/03 1,2-Dichlorobenzene ND U 0.50 1 03/31/03 03/31/03 n-Butylbenzene ND U 5.0 1 03/31/03 03/31/03 1,2-Dibromo-3-chloropropane ND U 5.0 1 03/31/03 03/31/03 1,2,4-Trichlorobenzene ND U 0.50 1 03/31/03 03/31/03							
Bromoform ND U 0.30 1 03/31/03 03/31/03 1,1,2,2-Tetrachloroethane ND U 1.0 1 03/31/03 03/31/03 1,4-Dichlorobenzene ND U 0.50 1 03/31/03 03/31/03 1,2-Dichlorobenzene ND U 0.50 1 03/31/03 03/31/03 n-Butylbenzene ND U 5.0 1 03/31/03 03/31/03 1,2-Dibromo-3-chloropropane ND U 5.0 1 03/31/03 03/31/03 1,2,4-Trichlorobenzene ND U 0.50 1 03/31/03 03/31/03	4-Isopropyltoluene						
1,1,2,2-Tetrachloroethane ND U 1.0 1 03/31/03 03/31/03 1,4-Dichlorobenzene ND U 0.50 1 03/31/03 03/31/03 1,2-Dichlorobenzene ND U 0.50 1 03/31/03 03/31/03 n-Butylbenzene ND U 0.50 1 03/31/03 03/31/03 1,2-Dibromo-3-chloropropane ND U 5.0 1 03/31/03 03/31/03 1,2,4-Trichlorobenzene ND U 0.50 1 03/31/03 03/31/03							
1,4-Dichlorobenzene ND U 0.30 1 03/31/03 03/31/03 1,2-Dichlorobenzene ND U 0.50 1 03/31/03 03/31/03 n-Butylbenzene ND U 0.50 1 03/31/03 03/31/03 1,2-Dibromo-3-chloropropane ND U 5.0 1 03/31/03 03/31/03 1,2,4-Trichlorobenzene ND U 0.50 1 03/31/03 03/31/03							
1,2-Dichlorobenzene ND U 0.50 1 03/31/03 03/31/03 n-Butylbenzene ND U 0.50 1 03/31/03 03/31/03 1,2-Dibromo-3-chloropropane ND U 5.0 1 03/31/03 03/31/03 1,2,4-Trichlorobenzene ND U 0.50 1 03/31/03 03/31/03	1 4-Dichlorobenzene						
n-Butylbenzene ND U 0.50 1 03/31/03 03/31/03 1,2-Dibromo-3-chloropropane ND U 5.0 1 03/31/03 03/31/03 1,2,4-Trichlorobenzene ND U 0.50 1 03/31/03 03/31/03	1 2-Dichlorobenzene						
1,2-Dibromo-3-chloropropane ND U 5.0 1 03/31/03 03/31/03 1,2,4-Trichlorobenzene ND U 0.50 1 03/31/03 03/31/03							
1,2,4-Trichlorobenzene ND U 0.50 1 03/31/03 03/31/03							
Hexachlorobutadiene ND U 0.50 1 05/51/05 05/51/05							
	Hexachlorobutadiene	ND U	0.50	1		05/51/05	

Comments: 000009

Merged

Form 1A - Organic

2 of 3 Page SuperSet Reference:

Analytical Results

Client:

BE&K Terranext

Project:

WVB

Sample Matrix:

Water

Service Request: X2300243 Date Collected: 03/20/2003

Date Received: 03/20/2003

Volatile Organic Compounds

Sample Name:

AVB86-0100-04111

Lab Code:

X2300243-001

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

Analysis Method.	- 11 0	MRL	Dilution Factor	Date Extracted	Date Analyzed Arizona Qualifier
Analyte Name Naphthalene 1,2,3-Trichlorobenzene	ND U	3.0	1	03/31/03	03/31/03
	ND U	0.50	1	03/31/03	03/31/03

Surrogate Name	%Rec	Control Limits	1111111	Arizona Qualifier
Dibromofluoromethane Toluene-d8 4-Bromofluorobenzene	110 111 105	84-113 68-126 79-113	03/31/03 03/31/03 03/31/03	

Comments:

Printed: 04/07/2003 10:38:06 TAGERAL THACRYSTAL RPT\Formlm.rpt

Merged

Form 1A - Organic

SuperSet Reference:

RR3159

3 of 3 Page

Analytical Results

Client:

BE&K Terranext

Project:

WVB

Sample Matrix:

Water

Service Request: X2300243 **Date Collected:** 03/20/2003

Date Received: 03/20/2003

Volatile Organic Compounds

Sample Name:

AVB89-0100-04000

Lab Code:

X2300243-002

Extraction Method:

EPA 5030B 8260B

Units: ug/L Basis: NA

Level: Low

Analysis Method: 8260B	Result Q	MRL	Dilution Factor			Arizona Qualifier
Analyte Name	ND U	3.0	1	03/31/03	03/31/03	
Dichlorodifluoromethane	ND U	2.0	1	03/31/03	03/31/03	
Chloromethane	ND U	1.0	1	03/31/03	03/31/03	
Vinyl Chloride		1.0	1	03/31/03	03/31/03	
Bromomethane	ND U	1.0	1	03/31/03	03/31/03	
Chloroethane	ND U	1.0	1	03/31/03	03/31/03	
Trichlorofluoromethane	ND U		1	03/31/03	03/31/03	
1,1,2-Trichlorotrifluoroethane	ND U	1.0	1	03/31/03	03/31/03	L1
1,1-Dichloroethene	ND U	1.0	1	03/31/03	03/31/03	
Acetone	ND U	10	1	03/31/03	03/31/03	
	ND U	2.0	_	03/31/03	03/31/03	
Iodomethane Garban Digulfide	ND U	2.0	1 1	03/31/03	03/31/03	
Carbon Disulfide Methylene Chloride	ND U	1.0		03/31/03	03/31/03	
Methyletic Chloride	ND U	1.0	1	03/31/03	03/31/03	
Methyl tert-Butyl Ether	ND U	0.50	1	03/31/03	03/31/03	
trans-1,2-Dichloroethene	ND U	0.50	1			
1,1-Dichloroethane	ND U	3.0	1	03/31/03	03/31/03	
Vinyl Acetate	ND U	2.0	1	03/31/03	03/31/03 03/31/03	
2,2-Dichloropropane	ND U	8.0	1	03/31/03		
2-Butanone (MEK)	ND U	0.50	1	03/31/03	03/31/03	
cis-1,2-Dichloroethene	ND U ND U	0.50	1	03/31/03	03/31/03	
Bromochloromethane		1.0	1	03/31/03	03/31/03	
Chloroform	ND U	0.50	1	03/31/03	03/31/03	
1,1,1-Trichloroethane	ND U	0.50	1	03/31/03	03/31/03	
Carbon Tetrachloride	ND U	0.50	1	03/31/03	03/31/03	3 L1
1,1-Dichloropropene	ND U		1	03/31/03	03/31/03	3
Benzene	ND U	0.50	1	03/31/03	03/31/0	3
1,2-Dichloroethane	ND U	0.50	1	03/31/03	03/31/0	3
Trichloroethene	ND U	0.50		03/31/03		
	ND U	0.50	1	03/31/03		
1,2-Dichloropropane	ND U	0.50	1	03/31/03		
Dibromomethane	ND U	0.50	1			
Bromodichloromethane	ND U	0.50	1	03/31/03		
cis-1,3-Dichloropropene	ND U	8.0	1	03/31/03		
4-Methyl-2-pentanone (MIBK)	ND U	0.50	1	03/31/03	03/31/0	J.J.
Toluene	110 0					

Comments:

Printed: 04/07/2003 10:38:26 TAGTE AT THICR YSTAL RPT\Formlm.rpt

Merged

Form 1A - Organic

1 of 3 Page RR3159

SuperSet Reference:

Analytical Results

Client:

BE&K Terranext

Project: Sample Matrix: WVB Water Service Request: X2300243 Date Collected: 03/20/2003

Date Received: 03/20/2003

Volatile Organic Compounds

Sample Name: Lab Code:

AVB89-0100-04000

X2300243-002

Extraction Method: Analysis Method:

EPA 5030B 8260B

Units: ug/L Basis: NA

Level: Low

Analysis Method: 8200B	- 0	MRL	Dilution Factor	Date Extracted	Date Analyzed	Arizona Qualifier
Analyte Name	Result Q		1	03/31/03	03/31/03	
rans-1,3-Dichloropropene	ND U	1.0	1	03/31/03	03/31/03	
1,1,2-Trichloroethane	ND U	1.0	1	03/31/03	03/31/03	
Tetrachloroethene	ND U	0.50	1	03/31/03	03/31/03	
2-Hexanone	ND U	5.0	1	03/31/03	03/31/03	
1,3-Dichloropropane	ND U	1.0	1	03/31/03	03/31/03	·
Dibromochloromethane	ND U	0.50		03/31/03	03/31/03	
	ND U	0.50	1	03/31/03	03/31/03	
1,2-Dibromoethane	ND U	0.50	1	03/31/03	03/31/03	
Chlorobenzene	ND U	0.50	1		03/31/03	
1,1,1,2-Tetrachloroethane	ND U	0.50	1	03/31/03	03/31/03	
Ethylbenzene	ND U	1.0	1	03/31/03	03/31/03	
m,p-Xylenes	ND U	0.50	1	03/31/03		
o-Xylene	ND U	0.50	1	03/31/03	03/31/03	
Styrene	ND U	0.50	1	03/31/03	03/31/03	
Isopropylbenzene	ND U	0.50	1	03/31/03	03/31/03	
Bromobenzene			1	03/31/03	03/31/03	
1.2,3-Trichloropropane	ND U	1.0 0.50	1	03/31/03	03/31/03	
n-Propylbenzene	ND U	0.50	1	03/31/03	03/31/03	
2-Chlorotoluene	ND U		1	03/31/03	03/31/03	
4-Chlorotoluene	ND U	0.50	1	03/31/03	03/31/03	}
1,3,5-Trimethylbenzene	ND U	0.50	1	03/31/03	03/31/03	3
tert-Butylbenzene	ND U	0.50		03/31/03	03/31/03	3
	ND U	0.50	1	03/31/03	03/31/03	
1,2,4-Trimethylbenzene	ND U	0.50	1	03/31/03	03/31/03	
sec-Butylbenzene	ND U	0.50	1		03/31/0	
1,3-Dichlorobenzene	ND U	0.50	1	03/31/03		
4-Isopropyltoluene	ND U	0.50	1	03/31/03		
Bromoform	ND U	1.0	1	03/31/03		
1,1,2,2-Tetrachloroethane	ND U	0.50	1	03/31/03		
1,4-Dichlorobenzene	ND U	0.50	1	03/31/03		
1,2-Dichlorobenzene	ND U	0.50	1	03/31/03		
n-Butylbenzene		5.0	1	03/31/03		
1,2-Dibromo-3-chloropropane	ND U	0.50	1	03/31/03		
1.2.4-Trichlorobenzene	ND U	0.50	1	03/31/03	3 03/31/0)3
Hexachlorobutadiene	ND U	0.30				

Comments:

Printed: 04/07/2003 10:38:26 VOTE AT TLICE VSTAL RPT\Form\m.rpt

Merged

Form 1A - Organic

000012

2 of 3 Page

Analytical Results

Client:

BE&K Terranext

Project:

WVB

Sample Matrix:

Water

Service Request: X2300243 Date Collected: 03/20/2003

Date Received: 03/20/2003

Volatile Organic Compounds

Sample Name:

AVB89-0100-04000

Lab Code:

X2300243-002

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

Analysis Method.		MDI	Dilution Factor	Date Extracted	Date Analyzed Arizona Qualifier
Analyte Name Naphthalene 1,2,3-Trichlorobenzene	ND U	3.0	1	03/31/03	03/31/03
	ND U	0.50	1	03/31/03	03/31/03

Surrogate Name	%Rec	Control Limits	1111111	Arizona Qualifier
Dibromofluoromethane Toluene-d8 4-Bromofluorobenzene	111 115 107	84-113 68-126 79-113	03/31/03 03/31/03 03/31/03	

Comments:

Printed: 04/07/2003 10:38:26 DODVETAI RPT\Formlm.mt

Merged

Form 1A - Organic

SuperSet Reference: RR3159

3 of 3 Page

Analytical Results

Client:

BE&K Terranext

Project:

WVB

Sample Matrix:

Water

Service Request: X2300243 **Date Collected:** 03/20/2003

Date Received: 03/20/2003

Volatile Organic Compounds

Sample Name:

AVB90-0100-04000

Lab Code:

X2300243-003

Extraction Method: Analysis Method:

EPA 5030B 8260B

Units: ug/L Basis: NA

Level: Low

nalysis Method: 8260B	Result Q	MRL	Dilution Factor		Date Analyzed	Arizona Qualifier
nalyte Name	ND U	3.0	1	03/31/03	03/31/03	
ichlorodifluoromethane	ND U	2.0	1	03/31/03	03/31/03	
Chloromethane	ND U	1.0	1	03/31/03		
Vinyl Chloride	ND U	1.0	1	03/31/03	03/31/03	
Bromomethane	ND U	1.0	1	03/31/03	03/31/03	
Chloroethane	ND U	1.0	1	03/31/03	03/31/03	
Frichlorofluoromethane		1.0	1	03/31/03	00,0 =	L1
1,1,2-Trichlorotrifluoroethane	ND U	1.0	1	03/31/03	03/31/03	L1
1,1-Dichloroethene	ND U	10	1	03/31/03	03/31/03	
Acetone	ND U		1	03/31/03	03/31/03	
Iodomethane	ND U	2.0	1	03/31/03	03/31/03	
Carbon Disulfide	ND U	2.0	1	03/31/03	03/31/03	
Methylene Chloride	ND U	1.0		03/31/03	03/31/03	
Melliylene Chroniae	ND U	1.0	1	03/31/03	03/31/03	
Methyl tert-Butyl Ether	ND U	0.50	1	03/31/03	03/31/03	
trans-1,2-Dichloroethene	ND U	0.50	1		03/31/03	
1,1-Dichloroethane	ND U	3.0	1	03/31/03	03/31/03	
Vinyl Acetate	ND U	2.0	1	03/31/03	03/31/03	
2,2-Dichloropropane	ND U	8.0	1	03/31/03		
2-Butanone (MEK)		0.50	1	03/31/03	03/31/03	
cis-1,2-Dichloroethene	ND U	0.50	1	03/31/03	03/31/03	
Bromochloromethane	ND U	1.0	1	03/31/03	03/31/03	3
Chloroform	ND U		1	03/31/03	03/31/03	3
1,1,1-Trichloroethane	ND U	0.50	1	03/31/03		
Carbon Tetrachloride	ND U	0.50	1	03/31/03		3 L1
1,1-Dichloropropene	ND U	0.50		03/31/03		
	ND U	0.50	1	03/31/03		
Benzene	ND U	0.50	1	03/31/03		
1,2-Dichloroethane	ND U	0.50	1			
Trichloroethene	ND U	0.50	1	03/31/03		
1,2-Dichloropropane	ND U	0.50	1	03/31/03		
Dibromomethane	ND U	0.50	1	03/31/03		
Bromodichloromethane		0.50	1	03/31/0		
cis. 1.3-Dichloropropene	ND U	8.0	1	03/31/0		
4-Methyl-2-pentanone (MIBK)	ND U	0.50	1	03/31/0	3 03/31/	03
Toluene	ND U	0.30				

Comments:	

Merged

Analytical Results

Client:

BE&K Terranext

Project:

WVB

Sample Matrix:

Water

Service Request: X2300243 Date Collected: 03/20/2003

Date Received: 03/20/2003

Volatile Organic Compounds

Sample Name:

AVB90-0100-04000

Lab Code:

X2300243-003

Extraction Method:

EPA 5030B

Units: ug/L Basis: NA

Level: Low

nalysis Method: 8260B			Dilution Factor	Date Extracted	Date Analyzed	Arizona Qualifier
Analyte Name	Result Q	MRL	1	03/31/03	03/31/03	
rans-1,3-Dichloropropene	ND U	1.0	1	03/31/03	03/31/03	
ans-1,3-Dictionopropose 1,2-Trichloroethane	ND U	1.0	1	03/31/03	03/31/03	
etrachloroethene	ND U	0.50		03/31/03	03/31/03	
	ND U	5.0	1	03/31/03	03/31/03	
-Hexanone	ND U	1.0	1	03/31/03	03/31/03	
1,3-Dichloropropane	ND U	0.50	1		03/31/03	
Dibromochloromethane	ND U	0.50	1	03/31/03	03/31/03	
1,2-Dibromoethane	ND U	0.50	1	03/31/03	03/31/03	
Chlorobenzene	ND U	0.50	1	03/31/03		
1,1,1,2-Tetrachloroethane	ND U	0.50	1	03/31/03	03/31/03 03/31/03	
Ethylbenzene	ND U	1.0	1	03/31/03	03/31/03	
m,p-Xylenes	ND U	0.50	1	03/31/03		
o-Xylene		0.50	1	03/31/03	03/31/03	
Styrene	ND U	0.50	1	03/31/03	03/31/03	
Isopropylbenzene	ND U	0.50	1	03/31/03	03/31/03	
Bromobenzene	ND U	1.0	1	03/31/03	03/31/03	
1,2,3-Trichloropropane	ND U	0.50	1	03/31/03	03/31/03	
n-Propylbenzene	ND U	0.50	1	03/31/03	03/31/03	
2-Chlorotoluene	ND U		1	03/31/03	03/31/03	3
4-Chlorotoluene	ND U	0.50	1	03/31/03	03/31/03	3
1,3,5-Trimethylbenzene	ND U	0.50	1	03/31/03	03/31/03	
tert-Butylbenzene	ND U	0.50		03/31/03	03/31/03	3
	ND U	0.50	1	03/31/03	03/31/03	
1,2,4-Trimethylbenzene	ND U	0.50	1	03/31/03		
sec-Butylbenzene	ND U	0.50	1			
1,3-Dichlorobenzene	ND U	0.50	1	03/31/03		
4-Isopropyltoluene	ND U	0.50	1	03/31/03		
Bromoform	ND U	1.0	1	03/31/03		
1,1,2,2-Tetrachloroethane	ND U	0.50	1	03/31/03		
1,4-Dichlorobenzene	ND U ND U	0.50	1	03/31/03		
1,2-Dichlorobenzene	ND U	0.50	1	03/31/03		
n-Butylbenzene		5.0	1	03/31/0	3 03/31/0	
1,2-Dibromo-3-chloropropane	ND U	0.50	1	03/31/0	3 03/31/0	
1,2,4-Trichlorobenzene	ND U	0.50	1	03/31/0	3 03/31/0	03
Hexachlorobutadiene	ND U	0.30				- -

Merged

Analytical Results

Client:

BE&K Terranext

Project: Sample Matrix: WVB

Water

Service Request: X2300243 **Date Collected:** 03/20/2003

Date Received: 03/20/2003

Units: ug/L

Volatile Organic Compounds

Sample Name:

AVB90-0100-04000

Lab Code:

X2300243-003

Extraction Method: Analysis Method:

EPA 5030B

Basis: NA Level: Low

8260B

	Result Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Arizona Qualifier
Naphthalene	ND U	3.0	1	03/31/03	03/31/03	
1,2,3-Trichlorobenzene	ND U	0.50	1	03/31/03	03/31/03	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Arizona Qualifier
Dibromofluoromethane	112	84-113	03/31/03	
Toluene-d8	112	68-126	03/31/03	
4-Bromofluorobenzene	105	79-113	03/31/03	

Comments:

Merged

000016

Analytical Results

Client:

BE&K Terranext

Project:

WVB

Sample Matrix:

Water

Service Request: X2300243

Date Collected: 03/20/2003

Date Received: 03/20/2003

Volatile Organic Compounds

Sample Name:

AVB89-0102-04000

Lab Code:

X2300243-004

Extraction Method: EPA 5030B **Analysis Method:**

8260B

Units: ug/L Basis: NA

Level: Low

Malyte Name					Dilution	Date	Date	
Dichlorodifluoromethane	Analyte Name	Result	Q	MRL	Factor	Extracted		
Chloromethane		ND	U	3.0	1	04/01/03		N1V4
Vinyl Chloride		ND	U	2.0	1			
Bromomethane	-	ND	U	1.0	1	04/01/03	04/01/03	
Chloroethane		ND	U	1.0	1	04/01/03		
Trichlorofluoromethane	—	ND	U	1.0	1			
1,1-Dichloroethene		ND	U	1.0	1	04/01/03	04/01/03	
1,1-Dichloroethene	1.1.2-Trichlorotrifluoroethane	ND	U	1.0	1	04/01/03		L1
Acetone ND U	* *	ND	U	1.0	1	04/01/03		
Indomethane		ND	U	10	1	04/01/03	04/01/03	
Carbon Disulfide ND U 2.0 1 04/01/03 04/01/03 Methylene Chloride ND U 1.0 1 04/01/03 04/01/03 Methyl tert-Butyl Ether ND U 1.0 1 04/01/03 04/01/03 trans-1,2-Dichloroethene ND U 0.50 1 04/01/03 04/01/03 1,1-Dichloroethane ND U 0.50 1 04/01/03 04/01/03 Vinyl Acetate ND U 3.0 1 04/01/03 04/01/03 2,2-Dichloropropane ND U 2.0 1 04/01/03 04/01/03 2-Butanone (MEK) ND U 8.0 1 04/01/03 04/01/03 2-Butanone (MEK) ND U 8.0 1 04/01/03 04/01/03 2-Butanone (MEK) ND U 0.50 1 04/01/03 04/01/03 3-Cis-1,2-Dichloroethene ND U 0.50 1 04/01/03 04/01/03 4-Dichloroform ND U 0.50 1 04/01/03 04/01/03		ND	U	2.0	1	04/01/03	04/01/03	
Methylene Chloride ND U 1.0 1 04/01/03 04/01/03 Methyl tert-Butyl Ether ND U 1.0 1 04/01/03 04/01/03 trans-1,2-Dichloroethene ND U 0.50 1 04/01/03 04/01/03 1,1-Dichloroethane ND U 0.50 1 04/01/03 04/01/03 Vinyl Acetate ND U 3.0 1 04/01/03 04/01/03 2,2-Dichloropropane ND U 2.0 1 04/01/03 04/01/03 2,2-Dichloroethene ND U 8.0 1 04/01/03 04/01/03 2,2-Dichloroethene ND U 0.50 1 04/01/03 04/01/03 2-Butanone (MEK) ND U 0.50 1 04/01/03 04/01/03 2-Butanone (MEK) ND U 0.50 1 04/01/03 04/01/03 Bromochloromethane ND U 0.50 1 04/01/03 04/01/03				2.0	1	04/01/03	04/01/03	
Methyl tert-Butyl Ether ND U 1.0 1 04/01/03 04/01/03 trans-1,2-Dichloroethene ND U 0.50 1 04/01/03 04/01/03 1,1-Dichloroethane ND U 0.50 1 04/01/03 04/01/03 Vinyl Acetate ND U 3.0 1 04/01/03 04/01/03 2,2-Dichloropropane ND U 2.0 1 04/01/03 04/01/03 2-Butanone (MEK) ND U 8.0 1 04/01/03 04/01/03 2-Butanone (MEK) ND U 0.50 1 04/01/03 04/01/03 1,1-Trichloroethane ND U 0.50 1 04/01/03 04/01/03 1,2-Dichloropropane ND U <td></td> <td></td> <td></td> <td></td> <td>1</td> <td>04/01/03</td> <td>04/01/03</td> <td></td>					1	04/01/03	04/01/03	
trans-1,2-Dichloroethene ND U 0.50 1 04/01/03 04/01/03 1,1-Dichloroethane ND U 0.50 1 04/01/03 04/01/03 04/01/03 2,2-Dichloropropane ND U 2.0 1 04/01/03 04/01/03 04/01/03 2-Butanone (MEK) ND U 8.0 1 04/01/03 04		ND	IJ	1.0	1	04/01/03	04/01/03	
1,1-Dichloroethane ND U 0.50 1 04/01/03 04/01/03 Vinyl Acetate ND U 3.0 1 04/01/03 04/01/03 2,2-Dichloropropane ND U 2.0 1 04/01/03 04/01/03 2-Butanone (MEK) ND U 8.0 1 04/01/03 04/01/03 2-Butanone (MEK) ND U 0.50 1 04/01/03 04/01/03 Bromochloroethane ND U 0.50 1 04/01/03 04/01/03 1,1-Trichloroethane ND U 0.50 1 04/01/03 04/01/03 1,1-Dichloropropene ND U 0.50 1 04/01/03 04/01/03 1,2-Dichloroethane ND U 0.50 1 04/01/03 04/01/03 <td< td=""><td></td><td></td><td></td><td></td><td>1</td><td>04/01/03</td><td>04/01/03</td><td></td></td<>					1	04/01/03	04/01/03	
Vinyl Acetate ND U 3.0 1 04/01/03 04/01/03 2,2-Dichloropropane ND U 2.0 1 04/01/03 04/01/03 2-Butanone (MEK) ND U 8.0 1 04/01/03 04/01/03 2-Butanone (MEK) ND U 0.50 1 04/01/03 04/01/03 2-Butanone (MEK) ND U 0.50 1 04/01/03 04/01/03 Bromochloromethane ND U 0.50 1 04/01/03 04/01/03 Chloroform ND U 0.50 1 04/01/03 04/01/03 Chloroform ND U 0.50 1 04/01/03 04/01/03 1,1,1-Trichloroethane ND U 0.50 1 04/01/03 04/01/03 1,1-Dichloropropene ND U 0.50 1 04/01/03 04/01/03 1,2-Dichloroethane ND U 0.50 1 04/01/03 04/01/03					1	04/01/03	04/01/03	
2,2-Dichloropropane ND U 2.0 1 04/01/03 04/01/03 2-Butanone (MEK) ND U 8.0 1 04/01/03 04/01/03 cis-1,2-Dichloroethene ND U 0.50 1 04/01/03 04/01/03 Bromochloromethane ND U 0.50 1 04/01/03 04/01/03 Chloroform ND U 1.0 1 04/01/03 04/01/03 Chloroform ND U 0.50 1 04/01/03 04/01/03 1,1,1-Trichloroethane ND U 0.50 1 04/01/03 04/01/03 Carbon Tetrachloride ND U 0.50 1 04/01/03 04/01/03 1,1-Dichloropropene ND U 0.50 1 04/01/03 04/01/03 1,1-Dichloropropene ND U 0.50 1 04/01/03 04/01/03 1,2-Dichloroethane ND U 0.50 1 04/01/03 04/01/03 1,2-Dichloropropane ND U 0.50 1 04/01/03 04/01/03				3.0	1	04/01/03	04/01/03	
2-Butanone (MEK) ND U 8.0 1 04/01/03 04/01/03 cis-1,2-Dichloroethene ND U 0.50 1 04/01/03 04/01/03 Bromochloromethane ND U 0.50 1 04/01/03 04/01/03 Chloroform ND U 1.0 1 04/01/03 04/01/03 1,1,1-Trichloroethane ND U 0.50 1 04/01/03 04/01/03 Carbon Tetrachloride ND U 0.50 1 04/01/03 04/01/03 1,1-Dichloropropene ND U 0.50 1 04/01/03 04/01/03 L1 Benzene ND U 0.50 1 04/01/03 04/01/03 1,2-Dichloroethane ND U 0.50 1 04/01/03 04/01/03 1,2-Dichloroethane ND U 0.50 1 04/01/03 04/01/03 1,2-Dichloropropene ND U 0.50 1 04/01/03 04/01/03 1,2-Dichloropropene ND U 0.50 1 04/01/03 04/01/03 Dibromomethane ND U 0.50 1 04/01/03 04/01/03 04/01/03 1,2-Dichloropropene ND U 0.50 1 04/01/03 04/01/03 04/01/03					1	04/01/03	04/01/03	
cis-1,2-Dichloroethene ND U 0.50 1 04/01/03 04/01/03 Bromochloromethane ND U 0.50 1 04/01/03 04/01/03 Chloroform ND U 1.0 1 04/01/03 04/01/03 1,1,1-Trichloroethane ND U 0.50 1 04/01/03 04/01/03 Carbon Tetrachloride ND U 0.50 1 04/01/03 04/01/03 1,1-Dichloropropene ND U 0.50 1 04/01/03 04/01/03 1,1-Dichloropropene ND U 0.50 1 04/01/03 04/01/03 1,2-Dichloroethane ND U 0.50 1 04/01/03 04/01/03 1,2-Dichloropropane ND U 0.50 1 04/01/03 04/01/03 1,2-Dichloropropane ND U 0.50 1 04/01/03 04/01/03 1,2-Dichloropropene ND U 0.50 1 04/01/03 04/01/03 Bromodichloromethane ND U 0.50 1 04/01/03 04/01/03 <td></td> <td></td> <td></td> <td></td> <td>1</td> <td>04/01/03</td> <td>04/01/03</td> <td></td>					1	04/01/03	04/01/03	
Bromochloromethane ND U 0.50 1 04/01/03 04/01/03 Chloroform ND U 1.0 1 04/01/03 04/01/03 1,1,1-Trichloroethane ND U 0.50 1 04/01/03 04/01/03 Carbon Tetrachloride ND U 0.50 1 04/01/03 04/01/03 1,1-Dichloropropene ND U 0.50 1 04/01/03 04/01/03 Benzene ND U 0.50 1 04/01/03 04/01/03 1,2-Dichloropethane ND U 0.50 1 04/01/03 04/01/03 Trichloropethane ND U 0.50 1 04/01/03 04/01/03 1,2-Dichloropropane ND U 0.50 1 04/01/03 04/01/03 1,2-Dichloropropane ND U 0.50 1 04/01/03 04/01/03 Bromodichloromethane ND U 0.50 1 04/01/03 04/01/03 cis-1,3-Dichloropropene ND U 0.50 1 04/01/03 04/01/03		ND	U	0.50	1	04/01/03	04/01/03	
Chloroform ND U 1.0 1 04/01/03 04/01/03 1,1,1-Trichloroethane ND U 0.50 1 04/01/03 04/01/03 Carbon Tetrachloride ND U 0.50 1 04/01/03 04/01/03 1,1-Dichloropropene ND U 0.50 1 04/01/03 04/01/03 Benzene ND U 0.50 1 04/01/03 04/01/03 1,2-Dichloroethane ND U 0.50 1 04/01/03 04/01/03 Trichloroethene ND U 0.50 1 04/01/03 04/01/03 1,2-Dichloropropane ND U 0.50 1 04/01/03 04/01/03 1,2-Dichloropropane ND U 0.50 1 04/01/03 04/01/03 Bromodichloromethane ND U 0.50 1 04/01/03 04/01/03 cis-1,3-Dichloropropene ND U 0.50 1 04/01/03 04/01/03 4-Methyl-2-pentanone (MIBK) ND U 8.0 1 04/01/03 04/01/03 <td></td> <td></td> <td></td> <td>0.50</td> <td>1</td> <td>04/01/03</td> <td>04/01/03</td> <td></td>				0.50	1	04/01/03	04/01/03	
1,1,1-Trichloroethane ND U 0.50 1 04/01/03 04/01/03 Carbon Tetrachloride ND U 0.50 1 04/01/03 04/01/03 1,1-Dichloropropene ND U 0.50 1 04/01/03 04/01/03 L1 Benzene ND U 0.50 1 04/01/03 04/01/03 04/01/03 1,2-Dichloroethane ND U 0.50 1 04/01/03 04/01/03 Trichloroethene ND U 0.50 1 04/01/03 04/01/03 1,2-Dichloropropane ND U 0.50 1 04/01/03 04/01/03 Dibromomethane ND U 0.50 1 04/01/03 04/01/03 Bromodichloromethane ND U 0.50 1 04/01/03 04/01/03 cis-1,3-Dichloropropene ND U 0.50 1 04/01/03 04/01/03 4-Methyl-2-pentanone (MIBK) ND U 8.0 1 04/01/03 04/01/03		ND	U	1.0	1	04/01/03	04/01/03	-
Carbon Tetrachloride ND U 0.50 1 04/01/03 04/01/03 04/01/03 L1 1,1-Dichloropropene ND U 0.50 1 04/01/03 04/01/03 L1 Benzene ND U 0.50 1 04/01/03 04/01/03 04/01/03 1,2-Dichloropethane ND U 0.50 1 04/01/03 04/01/03 Trichloropropane ND U 0.50 1 04/01/03 04/01/03 Dibromomethane ND U 0.50 1 04/01/03 04/01/03 Bromodichloromethane ND U 0.50 1 04/01/03 04/01/03 cis-1,3-Dichloropropene ND U 0.50 1 04/01/03 04/01/03 4-Methyl-2-pentanone (MIBK) ND U 8.0 1 04/01/03 04/01/03		ND	U	0.50	1	04/01/03	04/01/03	
1,1-Dichloropropene				0.50	1			
Benzene ND U 0.50 1 04/01/03 04/01/03 1,2-Dichloroethane ND U 0.50 1 04/01/03 04/01/03 Trichloroethene ND U 0.50 1 04/01/03 04/01/03 1,2-Dichloropropane ND U 0.50 1 04/01/03 04/01/03 Dibromomethane ND U 0.50 1 04/01/03 04/01/03 Bromodichloromethane ND U 0.50 1 04/01/03 04/01/03 cis-1,3-Dichloropropene ND U 0.50 1 04/01/03 04/01/03 4-Methyl-2-pentanone (MIBK) ND U 8.0 1 04/01/03 04/01/03		ND	U	0.50	1	04/01/03	04/01/03	L1
1,2-Dichloroethane ND U 0.50 1 04/01/03 04/01/03 Trichloroethene ND U 0.50 1 04/01/03 04/01/03 1,2-Dichloropropane ND U 0.50 1 04/01/03 04/01/03 Dibromomethane ND U 0.50 1 04/01/03 04/01/03 Bromodichloromethane ND U 0.50 1 04/01/03 04/01/03 cis-1,3-Dichloropropene ND U 0.50 1 04/01/03 04/01/03 4-Methyl-2-pentanone (MIBK) ND U 8.0 1 04/01/03 04/01/03		ND	U	0.50	1	04/01/03	04/01/03	
Trichloroethene ND U 0.50 1 04/01/03 04/01/03 1,2-Dichloropropane ND U 0.50 1 04/01/03 04/01/03 Dibromomethane ND U 0.50 1 04/01/03 04/01/03 Bromodichloromethane ND U 0.50 1 04/01/03 04/01/03 cis-1,3-Dichloropropene ND U 0.50 1 04/01/03 04/01/03 4-Methyl-2-pentanone (MIBK) ND U 8.0 1 04/01/03 04/01/03				0.50	1	04/01/03	04/01/03	
1,2-Dichloropropane ND U 0.50 1 04/01/03 04/01/03 Dibromomethane ND U 0.50 1 04/01/03 04/01/03 Bromodichloromethane ND U 0.50 1 04/01/03 04/01/03 cis-1,3-Dichloropropene ND U 0.50 1 04/01/03 04/01/03 4-Methyl-2-pentanone (MIBK) ND U 8.0 1 04/01/03 04/01/03	,	ND	U	0.50	1	04/01/03	04/01/03	
Dibromomethane ND U 0.50 1 04/01/03 04/01/03 Bromodichloromethane ND U 0.50 1 04/01/03 04/01/03 cis-1,3-Dichloropropene ND U 0.50 1 04/01/03 04/01/03 4-Methyl-2-pentanone (MIBK) ND U 8.0 1 04/01/03 04/01/03		ND	U	0.50	1	04/01/03	04/01/03	
Bromodichloromethane ND U 0.50 1 04/01/03 04/01/03 cis-1,3-Dichloropropene ND U 0.50 1 04/01/03 04/01/03 4-Methyl-2-pentanone (MIBK) ND U 8.0 1 04/01/03 04/01/03	,				1	04/01/03	04/01/03	
cis-1,3-Dichloropropene ND U 0.50 1 04/01/03 04/01/03 4-Methyl-2-pentanone (MIBK) ND U 8.0 1 04/01/03 04/01/03	· · · · · · · · · · · · · · · · · · ·			0.50	1	04/01/03	04/01/03	
4-Methyl-2-pentanone (MIBK) ND U 8.0 1 04/01/03 04/01/03		ND	U	0.50	1			-
1 04/01/02 04/01/02					1			
	Toluene			0.50	1	04/01/03	04/01/03	

Comments:

000017 Form 1A - Organic

Page 1 of 3

DD2150

C. ... and at Dafaranca.

Analytical Results

Client:

BE&K Terranext

Project:

WVB

Sample Matrix:

Water

Service Request: X2300243

Date Collected: 03/20/2003

Date Received: 03/20/2003

Volatile Organic Compounds

Sample Name:

AVB89-0102-04000

Lab Code:

X2300243-004

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

	D a and 4	0	MRL	Dilution Factor	Date Extracted	Date Analyzed	Arizona Qualifier
Analyte Name	Result			ractor 1	04/01/03	04/01/03	Arizona Quamici
trans-1,3-Dichloropropene	ND ND		1.0 1.0	1	04/01/03	04/01/03	
1,1,2-Trichloroethane	ND ND		0.50	1	04/01/03	04/01/03	
Tetrachloroethene					04/01/03	04/01/03	
2-Hexanone	ND		5.0	1 1	04/01/03	04/01/03	
1,3-Dichloropropane	ND ND		1.0 0.50	1	04/01/03	04/01/03	
Dibromochloromethane							
1,2-Dibromoethane	ND		0.50	1	04/01/03	04/01/03	
Chlorobenzene	ND		0.50	1	04/01/03	04/01/03	
1,1,1,2-Tetrachloroethane	ND		0.50	1	04/01/03	04/01/03	
Ethylbenzene	ND		0.50	1	04/01/03	04/01/03	
m,p-Xylenes	ND		1.0	1	04/01/03	04/01/03	
o-Xylene	ND	U	0.50	1	04/01/03	04/01/03	
Styrene	ND	U	0.50	1	04/01/03	04/01/03	
Isopropylbenzene	ND	U	0.50	1	04/01/03	04/01/03	
Bromobenzene	ND	U	0.50	1	04/01/03	04/01/03	
1,2,3-Trichloropropane	ND		1.0	1	04/01/03	04/01/03	
n-Propylbenzene	ND		0.50	1	04/01/03	04/01/03	
2-Chlorotoluene	ND	U	0.50	1	04/01/03	04/01/03	
4-Chlorotoluene	ND	U	0.50	1	04/01/03	04/01/03	
1,3,5-Trimethylbenzene	ND	U	0.50	1	04/01/03	04/01/03	
tert-Butylbenzene	ND	U	0.50	1	04/01/03	04/01/03	
1,2,4-Trimethylbenzene	ND	U	0.50	1	04/01/03	04/01/03	
sec-Butylbenzene	ND	U	0.50	1	04/01/03	04/01/03	
1,3-Dichlorobenzene	ND	U	0.50	1	04/01/03	04/01/03	
4-Isopropyltoluene	ND	U	0.50	1	04/01/03	04/01/03	
Bromoform	ND	U	0.50	1	04/01/03	04/01/03	
1,1,2,2-Tetrachloroethane	ND	U	1.0	1	04/01/03	04/01/03	
1,4-Dichlorobenzene	ND	U	0.50	1	04/01/03	04/01/03	
1,2-Dichlorobenzene	ND	U	0.50	1	04/01/03	04/01/03	
n-Butylbenzene	ND	U	0.50	1	04/01/03	04/01/03	
1,2-Dibromo-3-chloropropane	ND	U	5.0	1	04/01/03	04/01/03	
1,2,4-Trichlorobenzene	ND	U	0.50	1	04/01/03	04/01/03	
Hexachlorobutadiene	ND	U	0.50	1	04/01/03	04/01/03	

Comments:

000018

Merged

Analytical Results

Client:

BE&K Terranext

Project:

WVB

Sample Matrix:

Water

Service Request: X2300243

Date Collected: 03/20/2003

Date Received: 03/20/2003

Volatile Organic Compounds

Sample Name:

AVB89-0102-04000

Lab Code:

X2300243-004

Extraction Method:

EPA 5030B

Units: ug/L Basis: NA

Level: Low

Analysis Method:

8260B

N. W.	Result Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Arizona Qualifier
Naphthalene 1,2,3-Trichlorobenzene	ND U ND U	3.0 0.50	1 1	04/01/03 04/01/03	04/01/03 04/01/03	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Arizona Qualifier
Dibromofluoromethane	114	84-113	04/01/03	S3
Toluene-d8	113	68-126	04/01/03	
4-Bromofluorobenzene	104	79-113	04/01/03	

Comments:

00015 SuperSet Reference: RR3159

Analytical Results

Client:

BE&K Terranext

Project:

WVB

Sample Matrix:

Water

Service Request: X2300243

Date Collected: 03/20/2003 **Date Received:** 03/20/2003

Volatile Organic Compounds

Sample Name:

AVB111-0100-01103

Lab Code:

X2300243-005

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

-		1504	Dilution Factor	Date Extracted	Date Analyzed	Arizona Qualifier
Analyte Name	Result Q	MRL	ractor	04/01/03	04/01/03	N1V4
Dichlorodifluoromethane	ND U	3.0	1	04/01/03	04/01/03	111 7 1
Chloromethane	ND U	2.0	1	04/01/03	04/01/03	
Vinyl Chloride	ND U	1.0		04/01/03	04/01/03	
Bromomethane	ND U	1.0	1	04/01/03	04/01/03	
Chloroethane	ND U	1.0	1	04/01/03	04/01/03	
Trichlorofluoromethane	ND U	1.0	1		04/01/03	L1
1,1,2-Trichlorotrifluoroethane	ND U	1.0	1	04/01/03 04/01/03	04/01/03	1.71
1,1-Dichloroethene	ND U	1.0	1	04/01/03	04/01/03	
Acetone	ND U	10	1			
Iodomethane	ND U	2.0	1	04/01/03	04/01/03	
Carbon Disulfide	ND U	2.0	1	04/01/03	04/01/03 04/01/03	
Methylene Chloride	ND U	1.0	1	04/01/03		
Methyl tert-Butyl Ether	ND U	1.0	1	04/01/03	04/01/03	
trans-1,2-Dichloroethene	ND U	0.50	1	04/01/03	04/01/03	
1,1-Dichloroethane	ND U	0.50	1	04/01/03	04/01/03	
Vinyl Acetate	ND U	3.0	1	04/01/03	04/01/03	
2.2-Dichloropropane	ND U	2.0	1	04/01/03	04/01/03	
2-Butanone (MEK)	ND U	8.0	1	04/01/03	04/01/03	
	ND U	0.50	1	04/01/03	04/01/03	
cis-1,2-Dichloroethene Bromochloromethane	ND U	0.50	1	04/01/03	04/01/03	
Chloroform	ND U	1.0	1	04/01/03	04/01/03	
	ND U	0.50	1	04/01/03	04/01/03	
1,1,1-Trichloroethane	ND U	0.50	1	04/01/03	04/01/03	
Carbon Tetrachloride	ND U	0.50	1	04/01/03	04/01/03	L1
1,1-Dichloropropene	ND U	0.50	1	04/01/03	04/01/03	
Benzene	ND U	0.50	1	04/01/03	04/01/03	
1,2-Dichloroethane	0.89	0.50	1	04/01/03	04/01/03	
Trichloroethene		0.50	1	04/01/03	04/01/03	
1,2-Dichloropropane	ND U	0.50	1	04/01/03	04/01/03	
Dibromomethane	ND U ND U	0.50	1	04/01/03	04/01/03	;
Bromodichloromethane			1	04/01/03	04/01/03	}
cis-1,3-Dichloropropene	ND U	0.50 8.0	1	04/01/03	04/01/03	
4-Methyl-2-pentanone (MIBK)	ND U	8.0 0.50	1	04/01/03	04/01/03	
Toluene	ND U	0.30		3 .7 0 2. 00		

Comments:

000020

Analytical Results

Client:

BE&K Terranext

Project: Sample Matrix: WVB Water

Service Request: X2300243 **Date Collected:** 03/20/2003

Date Received: 03/20/2003

Volatile Organic Compounds

Sample Name:

AVB111-0100-01103

Lab Code:

X2300243-005

Extraction Method: Analysis Method:

8260B

EPA 5030B

Units: ug/L Basis: NA

Level: Low

	D 14 0	MRL	D ilution Factor	Date Extracted	Date Analyzed	Arizona Qualifier
Analyte Name	Result Q		1	04/01/03	04/01/03	
trans-1,3-Dichloropropene	ND U	1.0 1.0	1	04/01/03	04/01/03	
1,1,2-Trichloroethane	ND U	0.50	1	04/01/03	04/01/03	
Tetrachloroethene	0.53		1	04/01/03	04/01/03	
2-Hexanone	ND U	5.0 1.0	1	04/01/03	04/01/03	
1,3-Dichloropropane	ND U	0.50	1	04/01/03	04/01/03	
Dibromochloromethane	ND U		1	04/01/03	04/01/03	
1,2-Dibromoethane	ND U	0.50 0.50	1	04/01/03	04/01/03	
Chlorobenzene	ND U	0.50	1	04/01/03	04/01/03	
1,1,1,2-Tetrachloroethane	ND U		1	04/01/03	04/01/03	
Ethylbenzene	ND U	0.50	1	04/01/03	04/01/03	
m,p-Xylenes	ND U	1.0 0.50	1	04/01/03	04/01/03	
o-Xylene	ND U		1	04/01/03	04/01/03	
Styrene	ND U	0.50 0.50	1	04/01/03	04/01/03	
Isopropylbenzene	ND U	0.50	1	04/01/03	04/01/03	
Bromobenzene	ND U			04/01/03	04/01/03	
1,2,3-Trichloropropane	ND U	1.0	1 1	04/01/03	04/01/03	
n-Propylbenzene	ND U	0.50	1	04/01/03	04/01/03	
2-Chlorotoluene	ND U	0.50		04/01/03	04/01/03	
4-Chlorotoluene	ND U	0.50	1 1	04/01/03	04/01/03	
1,3,5-Trimethylbenzene	ND U	0.50	1	04/01/03	04/01/03	
tert-Butylbenzene	ND U	0.50			04/01/03	
1,2,4-Trimethylbenzene	ND U	0.50	1	04/01/03 04/01/03	04/01/03	
sec-Butylbenzene	ND U	0.50	1	04/01/03	04/01/03	
1,3-Dichlorobenzene	ND U	0.50	1			
4-Isopropyltoluene	ND U	0.50	1	04/01/03	04/01/03 04/01/03	
Bromoform	ND U	0.50	1	04/01/03	04/01/03	
1,1,2,2-Tetrachloroethane	ND U	1.0	1	04/01/03		
1.4-Dichlorobenzene	ND U	0.50	1	04/01/03	04/01/03	
1,2-Dichlorobenzene	ND U	0.50	1	04/01/03	04/01/03	
n-Butylbenzene	ND U	0.50	1	04/01/03	04/01/03	
1,2-Dibromo-3-chloropropane	ND U	5.0	1	04/01/03	04/01/03	
1,2,4-Trichlorobenzene	ND U	0.50	1	04/01/03	04/01/03	
Hexachlorobutadiene	ND U	0.50	1	04/01/03	04/01/03)

000021

Comments:

SuperSet Reference:

Analytical Results

Client:

BE&K Terranext

Project:

WVB

Water

Service Request: X2300243

Date Collected: 03/20/2003

Date Received: 03/20/2003

Volatile Organic Compounds

Sample Name:

Sample Matrix:

AVB111-0100-01103

Lab Code:

X2300243-005

EPA 5030B

Units: ug/L Basis: NA

Level: Low

Extraction Method: Analysis Method:

8260B

Date Dilution Date Result Q MRL **Factor** Extracted Analyzed Arizona Qualifier **Analyte Name** $ND \overline{U}$ 3.0 04/01/03 04/01/03 Naphthalene 1 1,2,3-Trichlorobenzene ND U 0.50 1 04/01/03 04/01/03

Surrogate Name	%Rec	Control Limits	Date Analyzed	Arizona Qualifier	
Dibromofluoromethane	112	84-113	04/01/03		
Toluene-d8	114	68-126	04/01/03		
4-Bromofluorobenzene	104	79-113	04/01/03		

Comments:

000022

RR3159

Analytical Results

Client:

BE&K Terranext

Project: Sample Matrix: WVB Water Service Request: X2300243

Date Collected: 03/20/2003 **Date Received:** 03/20/2003

Volatile Organic Compounds

Sample Name:

AVB111-0104-1000

Lab Code:

X2300243-006

Extraction Method: Analysis Method:

EPA 5030B 8260B

Units: ug/L Basis: NA

Level: Low

			Dilution	Date	Date	
Analyte Name	Result Q	MRL	Factor	Extracted		Arizona Qualifier
Dichlorodifluoromethane	ND U	3.0	1	04/01/03	04/01/03	N1V4
Chloromethane	ND U	2.0	1	04/01/03	04/01/03	
Vinyl Chloride	ND U	1.0	1	04/01/03	04/01/03	
Bromomethane	ND U	1.0	1	04/01/03	04/01/03	
Chloroethane	ND U	1.0	1	04/01/03	04/01/03	
Trichlorofluoromethane	ND U	1.0	1	04/01/03	04/01/03	
1.1.2-Trichlorotrifluoroethane	ND U	1.0	1	04/01/03	04/01/03	Ll
-, ,	ND U	1.0	1	04/01/03	04/01/03	
1,1-Dichloroethene	ND U	10	1	04/01/03	04/01/03	
Acetone	ND U	2.0	1	04/01/03	04/01/03	
Iodomethane	ND U	2.0	1	04/01/03	04/01/03	
Carbon Disulfide	ND U	1.0	î	04/01/03	04/01/03	
Methylene Chloride		1.0	1	04/01/03	04/01/03	
Methyl tert-Butyl Ether	ND U	0.50	1	04/01/03	04/01/03	
trans-1,2-Dichloroethene	ND U ND U	0.50	1	04/01/03	04/01/03	
1,1-Dichloroethane				04/01/03	04/01/03	
Vinyl Acetate	ND U	3.0	1 1	04/01/03	04/01/03	
2,2-Dichloropropane	ND U	2.0		04/01/03	04/01/03	
2-Butanone (MEK)	ND U	8.0	1			
cis-1,2-Dichloroethene	ND U	0.50	1	04/01/03	04/01/03 04/01/03	
Bromochloromethane	ND U	0.50	1	04/01/03	04/01/03	
Chloroform	ND U	1.0	1	04/01/03		
1,1,1-Trichloroethane	ND U	0.50	1	04/01/03	04/01/03	
Carbon Tetrachloride	ND U	0.50	1	04/01/03	04/01/03	* 1
1,1-Dichloropropene	ND U	0.50	1	04/01/03	04/01/03	Ll
Benzene	ND U	0.50	1	04/01/03	04/01/03	
1.2-Dichloroethane	ND U	0.50	1	04/01/03	04/01/03	
Trichloroethene	ND U	0.50	1	04/01/03	04/01/03	
	ND U	0.50	1	04/01/03	04/01/03	
1,2-Dichloropropane Dibromomethane	ND U	0.50	1	04/01/03	04/01/03	
Bromodichloromethane	ND U	0.50	1	04/01/03	04/01/03	
	ND U	0.50	1	04/01/03	04/01/03	
cis-1,3-Dichloropropene	ND U	8.0	1	04/01/03	04/01/03	
4-Methyl-2-pentanone (MIBK)	ND U	0.50	1	04/01/03	04/01/03	
Toluene	1112 0	0.00				

Printed: 04/07/2003 10:39:14

Merged

Form 1A - Organic

1 of 3 Page

RR3159

Analytical Results

Client:

BE&K Terranext

Project: Sample Matrix: WVB Water

Service Request: X2300243 **Date Collected:** 03/20/2003

Date Received: 03/20/2003

Volatile Organic Compounds

Sample Name:

AVB111-0104-1000

Lab Code:

X2300243-006

Extraction Method: Analysis Method:

EPA 5030B

8260B

Units: ug/L Basis: NA

Level: Low

				Dilution	Date	Date	
Analyte Name	Result	Q	MRL	Factor	Extracted		Arizona Qualifier
trans-1,3-Dichloropropene	ND	U	1.0	1	04/01/03	04/01/03	
1.1,2-Trichloroethane	ND	U	1.0	1	04/01/03	04/01/03	
Tetrachloroethene	ND	Ü	0.50	1	04/01/03	04/01/03	
2-Hexanone	ND	U	5.0	1	04/01/03	04/01/03	
1,3-Dichloropropane	ND	U	1.0	1	04/01/03	04/01/03	
Dibromochloromethane	ND	U	0.50	1	04/01/03	04/01/03	
1,2-Dibromoethane	ND	U	0.50	1	04/01/03	04/01/03	
Chlorobenzene	ND	U	0.50	1	04/01/03	04/01/03	
1,1,1,2-Tetrachloroethane	ND	U	0.50	1	04/01/03	04/01/03	
Ethylbenzene	ND	Ū	0.50	1	04/01/03	04/01/03	
m,p-Xylenes	ND		1.0	1	04/01/03	04/01/03	
o-Xylene	ND		0.50	1	04/01/03	04/01/03	
Styrene	ND		0.50	1	04/01/03	04/01/03	
Isopropylbenzene	ND		0.50	1	04/01/03	04/01/03	
Bromobenzene	ND		0.50	1	04/01/03	04/01/03	
1,2,3-Trichloropropane	ND		1.0	1	04/01/03	04/01/03	
n-Propylbenzene	ND		0.50	1	04/01/03	04/01/03	
2-Chlorotoluene	ND		0.50	1	04/01/03	04/01/03	
4-Chlorotoluene	ND		0.50	1	04/01/03	04/01/03	
1,3,5-Trimethylbenzene	ND ND		0.50	1	04/01/03	04/01/03	
tert-Butylbenzene	ND		0.50	1	04/01/03	04/01/03	
· · · · · · · · · · · · · · · · · · ·	ND		0.50	1	04/01/03	04/01/03	
1,2,4-Trimethylbenzene	ND ND		0.50	1	04/01/03	04/01/03	
sec-Butylbenzene 1,3-Dichlorobenzene	ND		0.50	1	04/01/03	04/01/03	
,	ND		0.50	1	04/01/03	04/01/03	
4-Isopropyltoluene	ND ND		0.50	1	04/01/03	04/01/03	
Bromoform	ND ND		1.0	1	04/01/03	04/01/03	
1,1,2,2-Tetrachloroethane	ND		0.50	1	04/01/03	04/01/03	
1,4-Dichlorobenzene	ND ND		0.50	1	04/01/03	04/01/03	
1,2-Dichlorobenzene	ND ND		0.50	1	04/01/03	04/01/03	
n-Butylbenzene				1	04/01/03	04/01/03	
1,2-Dibromo-3-chloropropane	ND		5.0	1	04/01/03	04/01/03	
1,2,4-Trichlorobenzene	ND ND		0.50 0.50	1	04/01/03	04/01/03	
Hexachlorobutadiene	ND		0.30		01/02/03		

Comments:

Printed: 04/07/2003 10:39:14 $L: \verb|\STEALTH| CRYSTAL.RPT \verb|\Formlm.rpt|$

Merged

Analytical Results

Client:

BE&K Terranext

Project: Sample Matrix: WVB Water

Service Request: X2300243 **Date Collected:** 03/20/2003 **Date Received:** 03/20/2003

Volatile Organic Compounds

Sample Name:

AVB111-0104-1000

Lab Code:

X2300243-006

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

			Dilution	Date	Date	
Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed	Arizona Qualifier
Naphthalene	ND U	3.0	1	04/01/03	04/01/03	
1,2,3-Trichlorobenzene	ND U	0.50	1	04/01/03	04/01/03	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Arizona Qualifier	
Dibromofluoromethane	118	84-113	04/01/03	S3	
Toluene-d8	115	68-126	04/01/03		
4-Bromofluorobenzene	105	79-113	04/01/03		

Comments:

Printed: 04/07/2003 10:39:14 L:\STEALTH\CRYSTAL.RPT\Formlm.rpt

Merged

Analytical Results

Client:

BE&K Terranext

Project: **Sample Matrix:** WVB Water

Service Request: X2300243 **Date Collected:** 03/20/2003

Date Received: 03/20/2003

Volatile Organic Compounds

Sample Name: Lab Code:

AVB111-0102-1000 X2300243-007

Extraction Method: Analysis Method:

EPA 5030B 8260B

Units: ug/L Basis: NA

Level: Low

			Dilution	Date	Date	
Analyte Name	Result Q	MRL	Factor	Extracted		Arizona Qualifier
Dichlorodifluoromethane	ND U	3.0	1	03/31/03	03/31/03	
Chloromethane	ND U	2.0	1	03/31/03	03/31/03	
Vinyl Chloride	ND U	1.0	1	03/31/03	03/31/03	
	ND U	1.0	1	03/31/03	03/31/03	
Bromomethane	ND U	1.0	1	03/31/03	03/31/03	
Chloroethane Trichlorofluoromethane	ND U	1.0	1	03/31/03	03/31/03	
	ND U	1.0	1	03/31/03	03/31/03	L1
1,1,2-Trichlorotrifluoroethane	ND U	1.0	1	03/31/03	03/31/03	Ll
1,1-Dichloroethene	ND U	10	1	03/31/03	03/31/03	
Acetone	ND U	2.0	1	03/31/03	03/31/03	
Iodomethane	ND U ND U	2.0	1	03/31/03	03/31/03	
Carbon Disulfide	ND U	1.0	1	03/31/03	03/31/03	
Methylene Chloride		1.0	1	03/31/03	03/31/03	
Methyl tert-Butyl Ether	ND U	0.50	1	03/31/03	03/31/03	
trans-1,2-Dichloroethene	ND U	0.50	1	03/31/03	03/31/03	
1,1-Dichloroethane	ND U			03/31/03	03/31/03	
Vinyl Acetate	ND U	3.0	1	03/31/03	03/31/03	
2,2-Dichloropropane	ND U	2.0	1	03/31/03	03/31/03	
2-Butanone (MEK)	ND U	8.0		03/31/03	03/31/03	
cis-1,2-Dichloroethene	ND U	0.50	1	03/31/03	03/31/03	
Bromochloromethane	ND U	0.50	1 1	03/31/03	03/31/03	
Chloroform	ND U	1.0				
1,1,1-Trichloroethane	ND U	0.50	1	03/31/03	03/31/03	L1
Carbon Tetrachloride	ND U	0.50	1	03/31/03	03/31/03 03/31/03	L1
1,1-Dichloropropene	ND U	0.50	1	03/31/03		Li
Benzene	ND U	0.50	1	03/31/03	03/31/03	
1,2-Dichloroethane	ND U	0.50	1	03/31/03	03/31/03	
Trichloroethene	ND U	0.50	1	03/31/03	03/31/03	
1,2-Dichloropropane	ND U	0.50	1	03/31/03	03/31/03	
Dibromomethane	ND U	0.50	1	03/31/03	03/31/03	
Bromodichloromethane	ND U	0.50	1	03/31/03	03/31/03	
cis-1,3-Dichloropropene	ND U	0.50	1	03/31/03	03/31/03	
4-Methyl-2-pentanone (MIBK)	ND U	8.0	1	03/31/03	03/31/03	
Toluene	ND U	0.50	1	03/31/03	03/31/03	
TOTUCIIC						

Comments:

Printed: 04/07/2003 10:39:25 L:\STEALTH\CRYSTAL.RPT\Form1m.rpt

Merged

Form 1A - Organic

000026

1 of 3 Page

Analytical Results

Client:

BE&K Terranext

Project: Sample Matrix: WVB

Water

Service Request: X2300243

Date Collected: 03/20/2003 **Date Received:** 03/20/2003

Volatile Organic Compounds

Sample Name:

AVB111-0102-1000

Lab Code:

X2300243-007

Extraction Method: Analysis Method:

EPA 5030B

8260B

Units: ug/L Basis: NA

Level: Low

Analyte Name Result Q MRL Factor Extracted Analyzed Arizona Qualiffer					Dilution	Date	Date	
1.1,2-Trichloroethane	Analyte Name	Result	Q	MRL	Factor	Extracted		Arizona Qualifier
1,1,2-Trichloroethane	trans-1,3-Dichloropropene	ND	U		1			
2-Hexanone		ND	U					
2-Hexandre ND U	Tetrachloroethene	ND	U	0.50	1	03/31/03	03/31/03	
1,3-Dibromochloromethane	2-Hexanone	ND	U	5.0	1			
Dibromochloromethane ND U 0.50 1 03/31/03 03/31/03 1,2-Dibromoethane ND U 0.50 1 03/31/03 03/31/03 Chlorobenzene ND U 0.50 1 03/31/03 03/31/03 I,1,1,2-Tetrachloroethane ND U 0.50 1 03/31/03 03/31/03 Ethylbenzene ND U 0.50 1 03/31/03 03/31/03 Ethylbenzene ND U 0.50 1 03/31/03 03/31/03 Ethylbenzene ND U 0.50 1 03/31/03 03/31/03 Styrene ND U 0.50 1 03/31/03 03/31/03 Isopropylbenzene ND U 0.50 1 03/31/03 03/31/03 Bromobenzene ND U 0.50 1 03/31/03 03/31/03 1,2,3-Trichloropropane ND U 0.50 1 03/31/03 03/31/03		ND	U	1.0	1			
1,2-prototocheme		ND	U	0.50	1	03/31/03	03/31/03	
Chlorobenzene ND U 0.50 1 03/31/03 03/31/03 1,1,1,2-Tetrachloroethane ND U 0.50 1 03/31/03 03/31/03 Ethylbenzene ND U 0.50 1 03/31/03 03/31/03 m.p-Xylenes ND U 0.50 1 03/31/03 03/31/03 o-Xylene ND U 0.50 1 03/31/03 03/31/03 Styrene ND U 0.50 1 03/31/03 03/31/03 Isopropylbenzene ND U 0.50 1 03/31/03 03/31/03 Bromobenzene ND U 0.50 1 03/31/03 03/31/03 2-Chlorotoluene ND U	1.2-Dibromoethane	ND	U	0.50	1			
1,1,2-Tetrachloroethane	,	ND	U	0.50	1			
Ethylbenzene		ND	U	0.50	1	03/31/03	03/31/03	
m.p-Xylenes ND U 1.0 1 03/31/03 03/31/03 o-Xylene ND U 0.50 1 03/31/03 03/31/03 Styrene ND U 0.50 1 03/31/03 03/31/03 Isopropylbenzene ND U 0.50 1 03/31/03 03/31/03 Bromobenzene ND U 0.50 1 03/31/03 03/31/03 1_2,3-Trichloropropane ND U 1.0 1 03/31/03 03/31/03 1-Propylbenzene ND U 0.50 1 03/31/03 03/31/03 2-Chlorotoluene ND U 0.50 1 03/31/03 03/31/03 4-Chlorotoluene ND U 0.50 1 03/31/03 03/31/03 1_3,5-Trimethylbenzene ND U 0.50 1 03/31/03 03/31/03 tert-Butylbenzene ND U 0.50 1 03/31/03 03/31/03 1_2,4-	Ethylbenzene	ND	U	0.50	1	03/31/03	03/31/03	
o-Xylene ND U 0.50 1 03/31/03 03/31/03 Styrene ND U 0.50 1 03/31/03 03/31/03 Isopropylbenzene ND U 0.50 1 03/31/03 03/31/03 Bromobenzene ND U 0.50 1 03/31/03 03/31/03 1,2,3-Trichloropropane ND U 1.0 1 03/31/03 03/31/03 n-Propylbenzene ND U 0.50 1 03/31/03 03/31/03 2-Chlorotoluene ND U 0.50 1 03/31/03 03/31/03 4-Chlorotoluene ND U 0.50 1 03/31/03 03/31/03 1,3,5-Trimethylbenzene ND U 0.50 1 03/31/03 03/31/03 1,2,4-Trimethylbenzene ND U 0.50 1 03/31/03 03/31/03 1,2,4-Trimethylbenzene ND U 0.50 1 03/31/03 03/31/03 1,2-4-Trimethylbenzene ND U 0.50 1 03/31/03 03/31/03 1,	•			1.0	1	03/31/03	03/31/03	
Styrene				0.50	1	03/31/03	03/31/03	
ND U 0.50 1 03/31/03 03/31/03 03/31/03 1,2,3-Trichloropropane ND U 0.50 1 03/31/03 03/31/03 1,2,3-Trichloropropane ND U 0.50 1 03/31/03 03/31/03 1,2,3-Trichloropropane ND U 0.50 1 03/31/03 03/31/03 03/31/03 1,2,2-Trichloropropane ND U 0.50 1 03/31/03 03/31/03 03/31/03 1,3,5-Trimethylbenzene ND U 0.50 1 03/31/03 03/31/03 03/31/03 1,3,5-Trimethylbenzene ND U 0.50 1 03/31/03 03/31/03 03/31/03 1,2,4-Trimethylbenzene ND U 0.50 1 03/31/03 03/31/03 1,3-Dichlorobenzene ND U 0.50 1 03/31/03 03/31/03 1,3-Dichlorobenzene ND U 0.50 1 03/31/03 03/31/03 1,3-Dichlorobenzene ND U 0.50 1 03/31/03 03/31/03 1,1,2,2-Tetrachloroethane ND U 0.50 1 03/31/03 03/31/03 1,1,2,2-Tetrachloroethane ND U 0.50 1 03/31/03 03/31/03 1,4-Dichlorobenzene ND U 0.50 1 03/31/03 03/31/03 1,2-Dichlorobenzene ND U 0.50 1 03/31/03 03/31		ND	U	0.50	1	03/31/03	03/31/03	
Bromobenzene ND U 0.50 1 03/31/03 03/31/03 1,2,3-Trichloropropane ND U 1.0 1 03/31/03 03/31/03 03/31/03 1,2,3-Trichloropropane ND U 0.50 1 03/31/03 03/31/03 03/31/03 1,0 03/31/03 03/31/03 03/31/03 1,3,5-Trimethylbenzene ND U 0.50 1 03/31/03 03/31/03 1,3,5-Trimethylbenzene ND U 0.50 1 03/31/03 03/31/03 1,3,5-Trimethylbenzene ND U 0.50 1 03/31/03 03/31/03 1,2,4-Trimethylbenzene ND U 0.50 1 03/31/03 03/31/03 1,2,4-Trimethylbenzene ND U 0.50 1 03/31/03 03/31/03 1,3-Dichlorobenzene ND U 0.50 1 03/31/03 03/31/03 1,3-Dichlorobenzene ND U 0.50 1 03/31/03 03/31/03 1,3-Dichlorobenzene ND U 0.50 1 03/31/03 03/31/03 1,1,2,2-Tetrachloroethane ND U 0.50 1 03/31/03 03/31/03 1,1,2-Dichlorobenzene ND U 0.50 1 03/31/03 03/31/03 1,2-Dichlorobenzene ND U 0.50 1				0.50	1	03/31/03	03/31/03	
1,2,3-Trichloropropane				0.50	1	03/31/03	03/31/03	
n-Propylbenzene ND U 0.50 1 03/31/03 03/31/03 2-Chlorotoluene ND U 0.50 1 03/31/03 03/31/03 4-Chlorotoluene ND U 0.50 1 03/31/03 03/31/03 1,3,5-Trimethylbenzene ND U 0.50 1 03/31/03 03/31/03 tert-Butylbenzene ND U 0.50 1 03/31/03 03/31/03 1,2,4-Trimethylbenzene ND U 0.50 1 03/31/03 03/31/03 sec-Butylbenzene ND U 0.50 1 03/31/03 03/31/03 1,3-Dichlorobenzene ND U 0.50 1 03/31/03 03/31/03 4-Isopropyltoluene ND U 0.50 1 03/31/03 03/31/03 4-Isopropyltoluene ND U 0.50 1 03/31/03 03/31/03 Bromoform ND U 0.50 1 03/31/03 03/31/03 1,1,2,2-Tetrachloroethane ND U 0.50 1 03/31/03 03/31/03 1,4-Dichlorobenzene ND U 0.50 1 03/31/03 03/31/03 1,2-Dichlorobenzene N	1 2 3-Trichloropropane	ND	U	1.0	1			
2-Chlorotoluene ND U 0.50 1 03/31/03 03/31/03 4-Chlorotoluene ND U 0.50 1 03/31/03 03/31/03 1,3,5-Trimethylbenzene ND U 0.50 1 03/31/03 03/31/03 tert-Butylbenzene ND U 0.50 1 03/31/03 03/31/03 1,2,4-Trimethylbenzene ND U 0.50 1 03/31/03 03/31/03 sec-Butylbenzene ND U 0.50 1 03/31/03 03/31/03 1,3-Dichlorobenzene ND U 0.50 1 03/31/03 03/31/03 4-Isopropyltoluene ND U 0.50 1 03/31/03 03/31/03 Bromoform ND U 0.50 1 03/31/03 03/31/03 1,1,2,2-Tetrachloroethane ND U 0.50 1 03/31/03 03/31/03 1,4-Dichlorobenzene ND U 0.50 1 03/31/03 03/31/03 1,2-Dichlorobenzene ND U 0.50 1 03/31/03 03/31/03	· ·	ND	U	0.50	1			
1,3,5-Trimethylbenzene ND U 0.50 1 03/31/03 03/31/03 1,2,4-Trimethylbenzene ND U 0.50 1 03/31/03 03/31/03 1,2,4-Trimethylbenzene ND U 0.50 1 03/31/03 03/31/03 1,3-Dichlorobenzene ND U 0.50 1 03/31/03 03/31/03 1,1,2,2-Tetrachloroethane ND U 0.50 1 03/31/03 03/31/03 1,1,2,2-Tetrachloroethane ND U 1.0 1 03/31/03 03/31/03 1,4-Dichlorobenzene ND U 0.50 1 03/31/03 03/31/03 1,2-Dichlorobenzene ND U 0.50 1 03/31/03 03/31/03 1,2-Dichlorobenzene ND U 0.50 1 03/31/03 03/31/03 1,2-Dibromo-3-chloropropane ND U 0.50 1 03/31/03 03/31/03		ND	U	0.50	1	03/31/03	03/31/03	
1,3,5-Trimethylbenzene ND U 0.50 1 03/31/03 03/31/03 tert-Butylbenzene ND U 0.50 1 03/31/03 03/31/03 1,2,4-Trimethylbenzene ND U 0.50 1 03/31/03 03/31/03 sec-Butylbenzene ND U 0.50 1 03/31/03 03/31/03 1,3-Dichlorobenzene ND U 0.50 1 03/31/03 03/31/03 4-Isopropyltoluene ND U 0.50 1 03/31/03 03/31/03 Bromoform ND U 0.50 1 03/31/03 03/31/03 1,1,2,2-Tetrachloroethane ND U 0.50 1 03/31/03 03/31/03 1,4-Dichlorobenzene ND U 0.50 1 03/31/03 03/31/03 1,2-Dichlorobenzene ND U 0.50 1 03/31/03 03/31/03 1,2-Dibromo-3-chloropropane ND U 5.0 1 03/31/03 03/31/03 1,2,4-Trichlorobenzene ND U 5.0 1	4-Chlorotoluene	ND	U	0.50	1			
tert-Butylbenzene ND U 0.50 1 03/31/03 03/31/03 1,2,4-Trimethylbenzene ND U 0.50 1 03/31/03 03/31/03 sec-Butylbenzene ND U 0.50 1 03/31/03 03/31/03 1,3-Dichlorobenzene ND U 0.50 1 03/31/03 03/31/03 4-Isopropyltoluene ND U 0.50 1 03/31/03 03/31/03 Bromoform ND U 0.50 1 03/31/03 03/31/03 1,1,2,2-Tetrachloroethane ND U 1.0 1 03/31/03 03/31/03 1,4-Dichlorobenzene ND U 0.50 1 03/31/03 03/31/03 1,2-Dichlorobenzene ND U 0.50 1 03/31/03 03/31/03 n-Butylbenzene ND U 0.50 1 03/31/03 03/31/03 1,2-Dibromo-3-chloropropane ND U 5.0 1 03/31/03 03/31/03 1,2,4-Trichlorobenzene ND U 0.50 1 03/31/03 03/31/03 <		ND	U	0.50				
1,2,4-Trichlorobenzene		ND	U	0.50	1	03/31/03	03/31/03	
sec-Butylbenzene ND U 0.50 1 03/31/03 03/31/03 1,3-Dichlorobenzene ND U 0.50 1 03/31/03 03/31/03 4-Isopropyltoluene ND U 0.50 1 03/31/03 03/31/03 Bromoform ND U 0.50 1 03/31/03 03/31/03 1,1,2,2-Tetrachloroethane ND U 1.0 1 03/31/03 03/31/03 1,4-Dichlorobenzene ND U 0.50 1 03/31/03 03/31/03 1,2-Dichlorobenzene ND U 0.50 1 03/31/03 03/31/03 n-Butylbenzene ND U 0.50 1 03/31/03 03/31/03 1,2-Dibromo-3-chloropropane ND U 5.0 1 03/31/03 03/31/03 1,2,4-Trichlorobenzene ND U 0.50 1 03/31/03 03/31/03	1 2 4-Trimethylbenzene	ND	U	0.50	1			
1,3-Dichlorobenzene ND U 0.50 1 03/31/03 03/31/03 4-Isopropyltoluene ND U 0.50 1 03/31/03 03/31/03 Bromoform ND U 0.50 1 03/31/03 03/31/03 1,1,2,2-Tetrachloroethane ND U 1.0 1 03/31/03 03/31/03 1,4-Dichlorobenzene ND U 0.50 1 03/31/03 03/31/03 1,2-Dichlorobenzene ND U 0.50 1 03/31/03 03/31/03 n-Butylbenzene ND U 0.50 1 03/31/03 03/31/03 1,2-Dibromo-3-chloropropane ND U 5.0 1 03/31/03 03/31/03 1,2,4-Trichlorobenzene ND U 0.50 1 03/31/03 03/31/03		ND	U	0.50	1			
Bromoform ND U 0.50 1 03/31/03 03/31/03 1,1,2,2-Tetrachloroethane ND U 1.0 1 03/31/03 03/31/03 1,4-Dichlorobenzene ND U 0.50 1 03/31/03 03/31/03 1,2-Dichlorobenzene ND U 0.50 1 03/31/03 03/31/03 n-Butylbenzene ND U 0.50 1 03/31/03 03/31/03 1,2-Dibromo-3-chloropropane ND U 5.0 1 03/31/03 03/31/03 1,2,4-Trichlorobenzene ND U 0.50 1 03/31/03 03/31/03		ND	U	0.50	1	03/31/03	03/31/03	
Bromoform ND U 0.50 1 03/31/03 03/31/03 1,1,2,2-Tetrachloroethane ND U 1.0 1 03/31/03 03/31/03 1,4-Dichlorobenzene ND U 0.50 1 03/31/03 03/31/03 1,2-Dichlorobenzene ND U 0.50 1 03/31/03 03/31/03 n-Butylbenzene ND U 0.50 1 03/31/03 03/31/03 1,2-Dibromo-3-chloropropane ND U 5.0 1 03/31/03 03/31/03 1,2,4-Trichlorobenzene ND U 0.50 1 03/31/03 03/31/03	4-Isopropyltoluene	ND	U	0.50	1			
1,1,2,2=Tetrachnorocentaine ND U 0.50 1 03/31/03 03/31/03 1,4-Dichlorobenzene ND U 0.50 1 03/31/03 03/31/03 1,2-Dichlorobenzene ND U 0.50 1 03/31/03 03/31/03 n-Butylbenzene ND U 0.50 1 03/31/03 03/31/03 1,2-Dibromo-3-chloropropane ND U 5.0 1 03/31/03 03/31/03 1,2,4-Trichlorobenzene ND U 0.50 1 03/31/03 03/31/03		ND	U	0.50				
1,4-Dichlorobenzene ND U 0.50 1 03/31/03 03/31/03 1,2-Dichlorobenzene ND U 0.50 1 03/31/03 03/31/03 1,2-Dibromo-3-chloropropane ND U 5.0 1 03/31/03 03/31/03 1,2,4-Trichlorobenzene ND U 0.50 1 03/31/03 03/31/03	1,1,2,2-Tetrachloroethane	ND	U	1.0	1	03/31/03	03/31/03	
1,2-Dichlorobenzene ND U 0.50 1 03/31/03 03/31/03 n-Butylbenzene ND U 0.50 1 03/31/03 03/31/03 1,2-Dibromo-3-chloropropane ND U 5.0 1 03/31/03 03/31/03 1,2,4-Trichlorobenzene ND U 0.50 1 03/31/03 03/31/03	1,4-Dichlorobenzene	ND	U	0.50	1			
n-Butylbenzene ND U 0.50 1 03/31/03 03/31/03 1,2-Dibromo-3-chloropropane ND U 5.0 1 03/31/03 03/31/03 1,2,4-Trichlorobenzene ND U 0.50 1 03/31/03 03/31/03		ND	U	0.50	1			
1,2,4-Trichlorobenzene ND U 0.50 1 03/31/03 03/31/03	*	ND	U	0.50	1			
1,2,4-Trichlorobenzene ND U 0.50 1 03/31/03 03/31/03		ND	U	5.0	1			
	·			0.50	1			
		ND	U	0.50	1	03/31/03	03/31/03	

Comments:

Printed: 04/07/2003 10:39:25 L:\STEALTH\CRYSTAL.RPT\Form1m.rpt

Merged

Form 1A - Organic

000027

2 of 3 Page

SuperSet Reference: RR3159

Analytical Results

Client:

BE&K Terranext

Project:

WVB

Sample Matrix:

Water

Service Request: X2300243

Date Collected: 03/20/2003

Date Received: 03/20/2003

Volatile Organic Compounds

Sample Name:

AVB111-0102-1000

Lab Code:

X2300243-007

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

			Dilution	Date	Date	
Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed	Arizona Qualifier
Naphthalene	ND U	3.0	1	03/31/03	03/31/03	
1,2,3-Trichlorobenzene	ND U	0.50	1	03/31/03	03/31/03	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Arizona Qualifier	
Dibromofluoromethane	109	84-113	03/31/03		
Toluene-d8	114	68-126	03/31/03		
4-Bromofluorobenzene	108	79-113	03/31/03		

Comments:

000028

SuperSet Reference:

Analytical Results

Client:

BE&K Terranext

Project: Sample Matrix: WVB

Water

Service Request: X2300243

Date Collected: NA Date Received: NA

Volatile Organic Compounds

Sample Name: Lab Code:

Method Blank

Extraction Method:

XWG0300425-3

Analysis Method:

EPA 5030B

8260B

Units: ug/L Basis: NA

Level: Low

		•	MDI	Dilution Factor	Date Extracted	Date Analyzed	Arizona Qualifier
Analyte Name	Result		MRL		03/31/03	03/31/03	Minoun Quantiti
Dichlorodifluoromethane	ND		3.0	1	03/31/03	03/31/03	
Chloromethane	ND		2.0	1 1	03/31/03	03/31/03	
Vinyl Chloride	ND		1.0				
Bromomethane	ND		1.0	1	03/31/03	03/31/03 03/31/03	
Chloroethane	ND		1.0	1	03/31/03	03/31/03	
Trichlorofluoromethane	ND		1.0	1	03/31/03		т 1
1,1,2-Trichlorotrifluoroethane	ND		1.0	1	03/31/03	03/31/03	L1
1,1-Dichloroethene	ND		1.0	1	03/31/03		L1
Acetone	ND	U	10	1	03/31/03	03/31/03	
Iodomethane	ND	U	2.0	1	03/31/03	03/31/03	
Carbon Disulfide	ND	U	2.0	1	03/31/03	03/31/03	
Methylene Chloride	ND	U	1.0	1	03/31/03	03/31/03	
Methyl tert-Butyl Ether	ND	U	1.0	1	03/31/03	03/31/03	
trans-1,2-Dichloroethene	ND		0.50	1	03/31/03	03/31/03	
1,1-Dichloroethane	ND		0.50	1	03/31/03	03/31/03	
Vinyl Acetate	ND	U	3.0	1	03/31/03	03/31/03	
2,2-Dichloropropane	ND		2.0	1	03/31/03	03/31/03	
2-Butanone (MEK)	ND		8.0	1	03/31/03	03/31/03	
cis-1,2-Dichloroethene	ND	U	0.50	1	03/31/03	03/31/03	
Bromochloromethane	ND		0.50	1	03/31/03	03/31/03	
Chloroform	ND		1.0	1	03/31/03	03/31/03	
1,1,1-Trichloroethane	ND	IJ	0.50	1	03/31/03	03/31/03	
Carbon Tetrachloride	ND		0.50	1	03/31/03	03/31/03	L1
1.1-Dichloropropene	ND		0.50	1	03/31/03	03/31/03	L1
Renzene	ND		0.50	1	03/31/03	03/31/03	
1,2-Dichloroethane	ND		0.50	1	03/31/03	03/31/03	
Trichloroethene	ND		0.50	1	03/31/03	03/31/03	
· · · · · · · · · · · · · · · · · · ·	ND		0.50	1	03/31/03	03/31/03	
1,2-Dichloropropane	ND ND		0.50	1	03/31/03	03/31/03	
Dibromomethane Bromodichloromethane	ND ND		0.50	1	03/31/03	03/31/03	
	ND		0.50	1	03/31/03	03/31/03	
cis-1,3-Dichloropropene	ND ND		8.0	1	03/31/03	03/31/03	
4-Methyl-2-pentanone (MIBK)	ND ND		0.50	1	03/31/03	03/31/03	
Toluene	עאו	0	0.50				

Comments:

000029

Printed: 04/07/2003 10:39:36 L:\STEALTH\CRYSTAL.RPT\Form1m.rpt

Form 1A - Organic

Merged

SuperSet Reference:

Page 1 of 3

Analytical Results

Client:

BE&K Terranext

Project: Sample Matrix: WVB Water Service Request: X2300243

Date Collected: NA Date Received: NA

Volatile Organic Compounds

Sample Name: Lab Code:

Method Blank XWG0300425-3

Extraction Method: Analysis Method:

EPA 5030B 8260B

Units: ug/L Basis: NA

Level: Low

				Dilution	Date	Date	0 10
Analyte Name	Result		MRL	Factor	Extracted		Arizona Qualifier
trans-1,3-Dichloropropene	ND		1.0	1	03/31/03	03/31/03	
1,1,2-Trichloroethane	ND		1.0	1	03/31/03	03/31/03	
Tetrachloroethene	ND	U	0.50	1	03/31/03	03/31/03	
2-Hexanone	ND		5.0	1	03/31/03	03/31/03	
1.3-Dichloropropane	ND		1.0	1	03/31/03	03/31/03	
Dibromochloromethane	ND	U	0.50	1	03/31/03	03/31/03	
1.2-Dibromoethane	ND	U	0.50	1	03/31/03	03/31/03	
Chlorobenzene	ND	U	0.50	1	03/31/03	03/31/03	
1,1,1,2-Tetrachloroethane	ND	U	0.50	11	03/31/03	03/31/03	
Ethylbenzene	ND	U	0.50	1	03/31/03	03/31/03	
m,p-Xylenes	ND	U	1.0	1	03/31/03	03/31/03	
o-Xylene	ND	U	0.50	1	03/31/03	03/31/03	
Styrene	ND	U	0.50	1	03/31/03	03/31/03	
Isopropylbenzene	ND		0.50	1	03/31/03	03/31/03	
Bromobenzene	ND		0.50	1	03/31/03	03/31/03	
1,2,3-Trichloropropane	ND	U	1.0	1	03/31/03	03/31/03	
n-Propylbenzene	ND		0.50	1	03/31/03	03/31/03	
2-Chlorotoluene	ND		0.50	1	03/31/03	03/31/03	
4-Chlorotoluene	ND	U	0.50	1	03/31/03	03/31/03	
1,3,5-Trimethylbenzene	ND		0.50	1	03/31/03	03/31/03	
tert-Butylbenzene	ND	U	0.50	1	03/31/03	03/31/03	
1,2,4-Trimethylbenzene	ND	U	0.50	1	03/31/03	03/31/03	
sec-Butylbenzene	ND		0.50	1	03/31/03	03/31/03	
1,3-Dichlorobenzene	ND		0.50	1	03/31/03	03/31/03	
4-Isopropyltoluene	ND		0.50	1	03/31/03	03/31/03	
Bromoform	ND		0.50	1	03/31/03	03/31/03	
1,1,2,2-Tetrachloroethane	ND		1.0	1	03/31/03	03/31/03	
1,4-Dichlorobenzene	ND	U	0.50	1	03/31/03	03/31/03	
1,2-Dichlorobenzene	ND		0.50	1	03/31/03	03/31/03	
n-Butylbenzene	ND		0.50	1	03/31/03	03/31/03	
1,2-Dibromo-3-chloropropane	ND		5.0	1	03/31/03	03/31/03	
1,2,4-Trichlorobenzene	ND		0.50	1	03/31/03	03/31/03	
Hexachlorobutadiene	ND		0.50	1	03/31/03	03/31/03	
Teadomoroumations							

Comments:

Form 1A - Organic

000030

2 of 3 Page

Analytical Results

Client:

BE&K Terranext

Project: Sample Matrix: WVB

Water

Service Request: X2300243

Date Collected: NA Date Received: NA

Volatile Organic Compounds

Sample Name:

Method Blank

Lab Code:

XWG0300425-3

Extraction Method: Analysis Method:

EPA 5030B 8260B

Units: ug/L Basis: NA

Level: Low

			Dilution	Date	Date	
A Ito Nome	Result O	MRL	Factor	Extracted	Analyzed	Arizona Qualifier
Naphthalene 1,2,3-Trichlorobenzene	ND U ND U	3.0 0.50	1 1	03/31/03 03/31/03	03/31/03 03/31/03	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Arizona Qualifier
Dibromofluoromethane	109	84-113	03/31/03	
Toluene-d8	108	68-126	03/31/03	
4-Bromofluorobenzene	103	79-113	03/31/03	

Comments:

Merged

RR3159

Analytical Results

Client:

BE&K Terranext

Project: Sample Matrix: WVB Water Service Request: X2300243

Date Collected: NA Date Received: NA

Volatile Organic Compounds

Sample Name: Lab Code:

Method Blank XWG0300433-3

Extraction Method:

EPA 5030B 8260B

Units: ug/L Basis: NA

Level: Low

Analysis Method: 8260B						
Augliita Nama	Result Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Arizona Qualifier
Analyte Name	ND U	3.0	1	04/01/03	04/01/03	N1V4
Dichlorodifluoromethane	ND U	2.0	1	04/01/03	04/01/03	
Chloromethane Vinyl Chloride	ND U	1.0	1	04/01/03	04/01/03	
	ND U	1.0	1	04/01/03	04/01/03	
Bromomethane	ND U	1.0	1	04/01/03	04/01/03	
Chloroethane Trichlorofluoromethane	ND U	1.0	1	04/01/03	04/01/03	
Themorometrane	ND II	1.0	1	04/01/03	04/01/03	Ll

/03 /03 /03 /03 L104/01/03 1.0 1,1,2-Trichlorotrifluoroethane ND U 04/01/03 04/01/03 1 1.0 ND U 1.1-Dichloroethene 04/01/03 04/01/03 1 ND U 10 Acetone 04/01/03 04/01/03 1 2.0 ND U Iodomethane 04/01/03 04/01/03 1 ND U 2.0 Carbon Disulfide 04/01/03 04/01/03 1 1.0 ND U Methylene Chloride 04/01/03 04/01/03 1.0 ND U Methyl tert-Butyl Ether 04/01/03 04/01/03 1 0.50 trans-1,2-Dichloroethene ND U 04/01/03 04/01/03 1 0.50 ND U 1 1-Dichloroethane 04/01/03 1 04/01/03 3.0 ND U Vinyl Acetate 04/01/03 04/01/03 1 ND U 2.0 2,2-Dichloropropane 04/01/03 04/01/03 1 8.0 ND U 2-Butanone (MEK) 04/01/03 04/01/03 1 ND U 0.50 cis-1,2-Dichloroethene 04/01/03 04/01/03 1 0.50 ND U Bromochloromethane 04/01/03 04/01/03 1 1.0 ND U Chloroform 04/01/03 04/01/03 1 0.50 ND U 1 1.1-Trichloroethane 04/01/03 04/01/03 1 0.50 ND U Carbon Tetrachloride 04/01/03 L1 1 04/01/03 0.50 ND U 1,1-Dichloropropene 04/01/03 04/01/03 1 0.50 ND U Benzene 04/01/03 1 04/01/03 ND U 0.50 1.2-Dichloroethane 04/01/03 04/01/03 1 0.50 ND U Trichloroethene 04/01/03 04/01/03 1 ND U 0.50 1,2-Dichloropropane 04/01/03 04/01/03 1 0.50 ND U Dibromomethane 04/01/03 04/01/03 1 0.50 ND U Bromodichloromethane 04/01/03 1 04/01/03 0.50 ND U cis-1,3-Dichloropropene 04/01/03 04/01/03 1 8.0 ND U 4-Methyl-2-pentanone (MIBK) 04/01/03 04/01/03 1 0.50 ND U

Comments:

Toluene

000032

Analytical Results

Client:

BE&K Terranext

Project: Sample Matrix: WVB Water Service Request: X2300243

Date Collected: NA
Date Received: NA

Volatile Organic Compounds

Sample Name: Lab Code: Method Blank XWG0300433-3

Extraction Method: Analysis Method:

EPA 5030B 8260B Units: ug/L Basis: NA

Level: Low

				Dilution	Date	Date	
Analyte Name	Result		MRL	Factor	Extracted		Arizona Qualifier
trans-1,3-Dichloropropene	ND		1.0	1	04/01/03	04/01/03	
1,1,2-Trichloroethane	ND		1.0	1	04/01/03	04/01/03	
Tetrachloroethene	ND	U	0.50	1	04/01/03	04/01/03	
2-Hexanone	ND		5.0	1	04/01/03	04/01/03	
1,3-Dichloropropane	ND		1.0	1	04/01/03	04/01/03	
Dibromochloromethane	ND	U	0.50	1	04/01/03	04/01/03	
1,2-Dibromoethane	ND	U	0.50	1	04/01/03	04/01/03	
Chlorobenzene	ND	U	0.50	1	04/01/03	04/01/03	
1,1,1,2-Tetrachloroethane	ND	U	0.50	1	04/01/03	04/01/03	
Ethylbenzene	ND	U	0.50	1	04/01/03	04/01/03	
m,p-Xylenes	ND	U	1.0	1	04/01/03	04/01/03	
o-Xylene	ND	U	0.50	1	04/01/03	04/01/03	
Styrene	ND	U	0.50	1	04/01/03	04/01/03	
Isopropylbenzene	ND	U	0.50	1	04/01/03	04/01/03	
Bromobenzene	ND	U	0.50	1	04/01/03	04/01/03	
1,2,3-Trichloropropane	ND	U	1.0	1	04/01/03	04/01/03	
n-Propylbenzene	ND	U	0.50	1	04/01/03	04/01/03	
2-Chlorotoluene	ND	U	0.50	1	04/01/03	04/01/03	
4-Chlorotoluene	ND	U	0.50	1	04/01/03	04/01/03	
1,3,5-Trimethylbenzene	ND	U	0.50	1	04/01/03	04/01/03	
tert-Butylbenzene	ND	U	0.50	1	04/01/03	04/01/03	
1,2,4-Trimethylbenzene	ND	U	0.50	1	04/01/03	04/01/03	
sec-Butylbenzene	ND	U	0.50	1	04/01/03	04/01/03	
1,3-Dichlorobenzene	ND	U	0.50	1	04/01/03	04/01/03	
4-Isopropyltoluene	ND	U	0.50	1	04/01/03	04/01/03	
Bromoform	ND	U	0.50	1	04/01/03	04/01/03	
1,1,2,2-Tetrachloroethane	ND	U	1.0	1	04/01/03	04/01/03	
1,4-Dichlorobenzene	ND	U	0.50	1	04/01/03	04/01/03	
1,2-Dichlorobenzene	ND	U	0.50	1	04/01/03	04/01/03	
n-Butylbenzene	ND	U	0.50	1	04/01/03	04/01/03	
1,2-Dibromo-3-chloropropane	ND	U	5.0	1	04/01/03	04/01/03	
1,2,4-Trichlorobenzene	ND	U	0.50	1	04/01/03	04/01/03	
Hexachlorobutadiene	ND	U	0.50	1	04/01/03	04/01/03	

Comments:

000033

SuperSet Reference:

2 of 3

Analytical Results

Client:

BE&K Terranext

Project: Sample Matrix: WVB Water Service Request: X2300243

Date Collected: NA Date Received: NA

Volatile Organic Compounds

Sample Name: Lab Code:

Method Blank XWG0300433-3 Units: ug/L Basis: NA

Extraction Method:

EPA 5030B

Level: Low

Analysis Method:

8260B

Analyte Name	Result Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Arizona Qualifier
Naphthalene	ND U	3.0	1	04/01/03	04/01/03	
1,2,3-Trichlorobenzene	ND U	0.50	1	04/01/03	04/01/03	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Arizona Qualifier	
Dibromofluoromethane	112	84-113	04/01/03		
Toluene-d8	107	68-126	04/01/03		
4-Bromofluorobenzene	100	79-113	04/01/03		

Comments:

Printed: 04/07/2003 10:39:47 L:\STEALTH\CRYSTAL.RPT\Form1m.rpt

QA/QC Report

Client:

BE&K Terranext

Project:

WVB

Sample Matrix:

Water

Service Request: X2300243

Surrogate Recovery Summary Volatile Organic Compounds

Extraction Method: Analysis Method:

EPA 5030B

8260B

Units: PERCENT

Level: Low

Sample Name	Lab Code	Sur1	Sur2	Sur3
AVB86-0100-04111	X2300243-001	110	111	105
AVB89-0100-04000	X2300243-002	111	115	107
AVB90-0100-04000	X2300243-003	112	112	105
AVB89-0102-04000	X2300243-004	114 S3	113	104
AVB111-0100-01103	X2300243-005	112	114	104
AVB111-0104-1000	X2300243-006	118 S3	115	105
AVB111-0102-1000	X2300243-007	109	114	108
Method Blank	XWG0300425-3	109	108	103
Method Blank	XWG0300433-3	112	107	100
Batch QC	X2300248-003	112	113	104
AVB89-0100-04000MS	XWG0300425-4	112	115	108
AVB89-0100-04000DMS	XWG0300425-5	102	108	103
Batch QCMS	XWG0300433-4	110	114	107
Batch QCDMS	XWG0300433-5	107	110	105
Lab Control Sample	XWG0300425-1	107	110	106
Duplicate Lab Control Sample	XWG0300425-2	107	109	105
Lab Control Sample	XWG0300433-1	111	110	106
Duplicate Lab Control Sample	XWG0300433-2	107	110	106

Surrogate Recovery Control Limits (%)

Sur1 =	Dibromofluoromethane	84-113
Sur2 =	Toluene-d8	68-126
Sur3 =	4-Bromofluorobenzene	79-113

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

000035

Form 2A - Organic

QA/QC Report

Client:

BE&K Terranext

Project:

WVB

Sample Matrix:

Water

Service Request: X2300243

Date Extracted: 03/31/2003

Date Analyzed: 03/31/2003

Matrix Spike/Duplicate Matrix Spike Summary Volatile Organic Compounds

Sample Name:

AVB89-0100-04000

Lab Code:

X2300243-002

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

Extraction Lot: XWG0300425

AVB89-0100-04000MS

VWC0300425-4

AVB89-0100-04000DMS

XWG0300425-5

	Sample	XWG0300425-4 Matrix Spike			XWG0300425-5 Duplicate Matrix Spike			%Rec	DDD	RPD
Analyte Name	Result	Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit
Dichlorodifluoromethane	ND	28.9	10.0	289 M1	25.7	10.0	257 M1	78-207	12	20
	ND	14.6	10.0	146	13.2	10.0	132	70-157	11	20
Chloromethane	ND	18.3	10.0	183 M1	16.2	10.0	162	79-174	12	20
Vinyl Chloride Bromomethane	ND	8.79	10.0	88	8.53	10.0	85	44-150	3	20
Chloroethane	ND	14.5	10.0	145	12.9	10.0	129	74-150	12	20
Trichlorofluoromethane	ND	16.9	10.0	169 M1	14.5	10.0	145 M1	80-134	15	20
1,1,2-Trichlorotrifluoroethane	ND	15.1	10.0	151 N1	13.7	10.0	137 N1	67-128	10	20
	ND	13.4	10.0	134	t 11.8	10.0	118 pm	71-142	13	20
1,1-Dichloroethene	ND	41.4	40.0	103 Alsi	3 38.2 30.4	40.0	JOHAN TO I	n 1-155	8	20
Acetone	ND	36.4	40.0	91	30.4	40.0			18	20
Iodomethane	ND	56.4	40.0	141 M1	50.9	40.0	127 M1	77-126	10	20
Carbon Disulfide	ND	11.0	10.0	110 M1	10.1	10.0	101	83-106	9	20
Methylene Chloride	ND	11.0	10.0	110	10.2	10.0	102	70-118	7	20
Methyl tert-Butyl Ether	ND	12.2	10.0	122 M1	11.0	10.0	110	86-115	11	20
trans-1,2-Dichloroethene	ND	12.2	10.0	122	11.1	10.0	111	77-127	9	20
1,1-Dichloroethane	ND	56.4	40.0	141	51.5	40.0	129	8-187	9	20
Vinyl Acetate	ND	13.9	10.0	139	12.4	10.0	124	25-154	11	20
2,2-Dichloropropane	ND	42.3	40.0	106	39.1	40.0	98	90-112	8	20
2-Butanone (MEK)	ND	11.3	10.0	113	10.2	10.0	102	69-118	10	20
cis-1,2-Dichloroethene	ND	9.84	10.0	98	8.60	10.0	86	47-136	13	20
Bromochloromethane	ND	11.6	10.0	116	10.5	10.0	105	48-143	9	20
Chloroform	ND	13.6	10.0	116 136 M1	12.4	10.0	124 M1	84-122	9	20
1,1,1-Trichloroethane	ND	14.6	10.0	146 NT	111/02/13.4	10.0	134 N1	79-120	9	20
Carbon Tetrachloride	ND	13.6	10.0	136 N 1	12.7	10.0	127 N1	85-117	7	20
1,1-Dichloropropene	ND	11.8	10.0	118 M1	11.3	10.0	113	88-114	5	20
Benzene	ND	10.8	10.0	108	10.0	10.0	100	75-112	7	20
1,2-Dichloroethane	ND	11.8	10.0	118 M1	11.2	10.0	112	76-115	6	20
Trichloroethene	ND	10.9	10.0	109 M1	10.3	10.0	103	85-107	6	20
1,2-Dichloropropane	ND ND	10.4	10.0	104	9.66	10.0	97	82-106	7	20
Dibromomethane	ND ND	11.0	10.0	110 M1	10.2	10.0	102	83-107	7	20
Bromodichloromethane	ND	10.7	10.0	107	10.0	10.0	100	70-114		20
cis-1,3-Dichloropropene	ND ND	37.0	40.0	92	35.3	40.0	88	54-129		20
4-Methyl-2-pentanone (MIBK)	ND ND	12.2	10.0	122 M1	11.4	10.0	114	86-114		20
Toluene	ND ND	10.7	10.0	107	10.2	10.0	102	73-112	4	20
trans-1,3-Dichloropropene	ND	10.7	10.0	'						

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Form 3A - Organic

QA/QC Report

Client:

BE&K Terranext

Project:

WVB

Sample Matrix:

Water

Service Request: X2300243

Date Extracted: 03/31/2003

Date Analyzed: 03/31/2003

Matrix Spike/Duplicate Matrix Spike Summary Volatile Organic Compounds

Sample Name:

AVB89-0100-04000

Lab Code:

X2300243-002

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L

Basis: NA

Level: Low

Extraction Lot: XWG0300425

AVB89-0100-04000MS

AVB89-0100-04000DMS

VWG0300425-5

	Sample	XWG0300425-4 Matrix Spike			XWG0300425-5 Duplicate Matrix Spike			%Rec		RPD
Analyte Name	Result	Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit
	ND	10.2	10.0	102	9.88	10.0	99	79-112	4	20
1,1,2-Trichloroethane	ND	12.2	10.0	122	11.6	10.0	116	78-130	5	20
Tetrachloroethene	ND	42.0	40.0	105	40.9	40.0	102	77-112	3	20
2-Hexanone	ND	10.6	10.0	106	10.2	10.0	102	45-133	3	20
1,3-Dichloropropane	ND	10.0	10.0	100	9.66	10.0	97	74-108	4	20
Dibromochloromethane	ND	10.2	10.0	102	9.79	10.0	98	73-113	4	20
1,2-Dibromoethane	ND	10.7	10.0	107	10.2	10.0	102	84-111	4	20
Chlorobenzene	ND	10.7	10.0	100	9.68	10.0	97	84-119	3	20
1,1,1,2-Tetrachloroethane	ND ND	12.1	10.0	121	11.6	10.0	116	47-136	5	20
Ethylbenzene	ND ND	23.4	20.0	117	22.3	20.0	112	84-120	5	20
m,p-Xylenes	ND ND	11.1	10.0	111	10.8	10.0	108	47-143	3	20
o-Xylene		10.9	10.0	109	10.4	10.0	104	72-121	4	20
Styrene	ND	10.9	10.0	124 M1	11.8	10.0	118 M1	63-108	5	20
Isopropylbenzene	ND	10.1	10.0	101	9.80	10.0	98	80-113	3	20
Bromobenzene	ND	10.1	10.0	102	9.98	10.0	100	78-119	2	20
1,2,3-Trichloropropane	ND		10.0	102 127 M1	12.2	10.0	122 M1	76-117	4	20
n-Propylbenzene	ND	12.7	10.0	120	11.4	10.0	114	79-121	4	20
2-Chlorotoluene	ND	12.0		117	11.3	10.0	113	70-133	3	20
4-Chlorotoluene	ND	11.7	10.0	120 M1	11.4	10.0	114	79-118	5	20
1,3,5-Trimethylbenzene	ND	12.0	10.0	120 M1	12.3	10.0	123 M1	77-120	5	20
tert-Butylbenzene	ND	13.0	10.0	130 MI	11.2	10.0	112	68-127	3	20
1,2,4-Trimethylbenzene	ND	11.6	10.0		12.3	10.0	123	78-123	5	20
sec-Butylbenzene	ND	12.9	10.0	129 M1	10.3	10.0	103	78-127	4	20
1,3-Dichlorobenzene	ND	10.7	10.0	107	12.6	10.0	126	79-142	5	20
4-Isopropyltoluene	ND	13.2	10.0	132	9.61	10.0	96	83-111	4	20
Bromoform	ND	9.21	10.0	92	10.0	10.0	100	66-133	1	20
1,1,2,2-Tetrachloroethane	ND	9.91	10.0	99		10.0	101	48-139	0	20
1,4-Dichlorobenzene	ND	10.2	10.0	102	10.1	10.0	101	64-109	1	20
1,2-Dichlorobenzene	ND	10.2	10.0	102	10.2		102 126 M1	69-122	3	20
n-Butylbenzene	ND	12.9	10.0	129 M1	12.6	10.0	92	54-160	5	20
1,2-Dibromo-3-chloropropane	ND	8.72	10.0	87	9.15	10.0	102	39-145	0	20
1.2.4-Trichlorobenzene	ND	10.2	10.0	102	10.2	10.0	102 129 M1		0	20
Hexachlorobutadiene	ND	13.0	10.0	130 M1	12.9	10.0		44-167	3	20
Naphthalene	ND	9.72	10.0	97	9.99	10.0	100 101	37-158		20
1,2,3-Trichlorobenzene	ND	9.97	10.0	100	10.1	10.0	101	3/-130	1	20

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

000037

Form 3A - Organic

RR3159 SuperSet Reference:

2 of 2 Page

Printed: 07/16/2003 16:40:35 L:\STEALTH\CRYSTAL.RPT\Form3DMS.rpt Fill Page

(X2300243)

QA/QC Report

Client:

BE&K Terranext

Project: Sample Matrix: WVB Water Service Request: X2300243

Date Extracted: 04/01/2003

Date Analyzed: 04/01/2003

Matrix Spike/Duplicate Matrix Spike Summary Volatile Organic Compounds

Sample Name:

Batch QC

Lab Code:

X2300248-003

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Jasis. 1111

Level: Low

Extraction L

Extraction Lot: XWG0300433

Batch QCMS
XWG0300433-4
Matrix Spike

Batch QCDMS XWG0300433-5

	Sample	XWG0300433-4 Matrix Spike				cate Matrix S	%Rec		RPD	
Analyte Name	Result	Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit
Dichlorodifluoromethane	ND	27.9	10.0	279 M1	27.0	10.0	270 M1	78-207	3	20
Chloromethane	ND	16.9	10.0	169 M1	16.0	10.0	160 M1	70-157	5	20
Vinyl Chloride	ND	19.3	10.0	193 M1	18.4	10.0	184 M1	79-174	5	20
Bromomethane	ND	9.69	10.0	97	9.49	10.0	95	44-150	2	20
Chloroethane	ND	15.9	10.0	159 M1	14.8	10.0	148	74-150	7	20
Trichlorofluoromethane	ND	17.9	10.0	179 M1	17.3	10.0	173 M1	80-134	3	20
1,1,2-Trichlorotrifluoroethane	ND	15.1	10.0	151 N1	14.5	10.0	145 N1	67-128	4	20
1,1-Dichloroethene	ND	12.7	10.0	الرو 127	12.3	10.0	123	71-142	3	20
Acetone	ND	38.9	40.0	97 All	42.2	40.0	106 Alia	B 1-155	8	20
Iodomethane	ND	35.7	40.0	89	37.2	40.0	93	47-120	4	20
Carbon Disulfide	ND	57.5	40.0	144 M1	55.4	40.0	139 M1	77-126	4	20
Methylene Chloride	ND	11.1	10.0	111 M1	10.8	10.0	108 M1	83-106	3	20
Methyl tert-Butyl Ether	ND	10.8	10.0	108	10.6	10.0	106	70-118	2	20
trans-1,2-Dichloroethene	ND	11.8	10.0	118 M1	11.5	10.0	115	86-115	3	20
1,1-Dichloroethane	ND	12.7	10.0	127	12.3	10.0	123	77-127	4	20
Vinyl Acetate	ND	60.6	40.0	151	60.2	40.0	150	8-187	1	20
2,2-Dichloropropane	ND	14.5	10.0	145	13.9	10.0	139	25-154	5	20
2-Butanone (MEK)	ND	44.1	40.0	110	43.6	40.0	109	90-112	1	20
cis-1,2-Dichloroethene	ND	10.9	10.0	109	10.7	10.0	107	69-118	2	20
Bromochloromethane	ND	9.52	10.0	95	9.35	10.0	94	47-136	2	20
Chloroform	ND	12.2	10.0	122	11.8	10.0	118	48-143	3	20
1,1,1-Trichloroethane	ND	14.1	10.0	141 M1	13.6	10.0	136 M1	84-122	4	20
Carbon Tetrachloride	ND	14.9	10.0	149 M1	14.3	10.0	143 M1	79-120	4	20
1,1-Dichloropropene	ND	13.9	10.0	139 N 1	11/03/13.3	10.0	133 NT	85-117	4	20
Benzene	ND	12.4	10.0	124 M1 ^r	11.8	10.0	118 M1	88-114	5	20
1,2-Dichloroethane	ND	11.4	10.0	114 M1	11.1	10.0	111	75-112	3	20
Trichloroethene	ND	12.1	10.0	121 M1	11.7	10.0	117 M1	76-115	3	20
1,2-Dichloropropane	ND	11.5	10.0	115 M1	11.0	10.0	110 M1	85-107	4	20
Dibromomethane	ND	10.5	10.0	105	10.1	10.0	101	82-106	3	20
Bromodichloromethane	ND	11.6	10.0	116 M1	11.3	10.0	113 M1	83-107	3	20
cis-1,3-Dichloropropene	ND	11.1	10.0	111	10.3	10.0	103	70-114	7	20
4-Methyl-2-pentanone (MIBK)	ND	37.8	40.0	95	37.5	40.0	94	54-129	1	20
Toluene	ND	12.4	10.0	124 M1	12.0	10.0	120 M1	86-114	3	20
trans-1,3-Dichloropropene	ND	11.1	10.0	111	10.7	10.0	107	73-112	3	20

Results flagged with an asterisk (*) indicate values outside control criteria.

Printed: 07/16/2003 16:40:42

I ACTEAT THEODVCTAT DDT Form 3 DMS mt

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Form 3A - Organic

Page 1 of 2

RR3159

OA/QC Report

Client:

BE&K Terranext

Project:

WVB

Sample Matrix:

Water

Service Request: X2300243

Date Extracted: 04/01/2003

Date Analyzed: 04/01/2003

Matrix Spike/Duplicate Matrix Spike Summary Volatile Organic Compounds

Sample Name:

Batch QC

Lab Code:

X2300248-003

Extraction Method: Analysis Method:

EPA 5030B

8260B

Units: ug/L Basis: NA

Level: Low

Extraction Lot: XWG0300433

Batch QCMS
XWG0300433-4

Batch QCDMS

	Sample	XWG0300433-4 Matrix Spike			XWG0300433-5 Duplicate Matrix Spike			%Rec		RPD
Analyte Name	Result	Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit
1,1,2-Trichloroethane	ND	10.8	10.0	108	10.6	10.0	106	79-112	2	20
	ND	11.9	10.0	119	11.5	10.0	115	78-130	3	20
Tetrachloroethene	ND	45.2	40.0	113 M1	44.2	40.0	110	77-112	2	20
2-Hexanone	ND	11.4	10.0	114	11.0	10.0	110	45-133	3	20
1,3-Dichloropropane Dibromochloromethane	ND	10.2	10.0	102	10.2	10.0	102	74-108	1	20
1,2-Dibromoethane	ND	10.4	10.0	104	10.2	10.0	102	73-113	2	20
Chlorobenzene	ND	10.7	10.0	107	10.5	10.0	105	84-111	2	20
1,1,1,2-Tetrachloroethane	ND	10.4	10.0	104	10.1	10.0	101	84-119	3 .	20
·	ND	12.4	10.0	124	12.0	10.0	120	47-136	3	20
Ethylbenzene	ND	23.6	20.0	118	22.8	20.0	114	84-120	3	20
m,p-Xylenes	ND	11.1	10.0	111	10.8	10.0	108	47-143	3	20
o-Xylene	ND	10.9	10.0	109	10.7	10.0	107	72-121	2	20
Styrene	ND	12.3	10.0	123 M1	11.9	10.0	119 M1	63-108	3	20
Isopropylbenzene	ND	10.3	10.0	103	10.1	10.0	101	80-113	2	20
Bromobenzene	ND	11.2	10.0	112	10.9	10.0	109	78-119	2	20
1,2,3-Trichloropropane	ND	12.9	10.0	129 M1	12.6	10.0	126 M1	76-117	2	20
n-Propylbenzene	ND	12.4	10.0	124 M1	12.0	10.0	120	79-121	3	20
2-Chlorotoluene	ND	11.9	10.0	119	11.6	10.0	116	70-133	3	20
4-Chlorotoluene	ND	12.0	10.0	120 M1	11.7	10.0	117	79-118	3	20
1,3,5-Trimethylbenzene	ND	12.9	10.0	129 M1	12.4	10.0	124 M1	77-120	4	20
tert-Butylbenzene	ND	11.8	10.0	118	11.5	10.0	115	68-127	2	20
1,2,4-Trimethylbenzene	ND	12.9	10.0	129 M1	12.5	10.0	125 M1	78-123	3	20
sec-Butylbenzene	ND	10.6	10.0	106	10.3	10.0	103	78-127	3	20
1,3-Dichlorobenzene	ND	13.3	10.0	133	12.6	10.0	126	79-142	5	20
4-Isopropyltoluene	ND	9.69	10.0	97	9.52	10.0	95	83-111	2	20
Bromoform	ND	11.1	10.0	111	10.7	10.0	107	66-133	3	20
1,1,2,2-Tetrachloroethane	ND	10.3	10.0	103	10.1	10.0	101	48-139	1	20
1,4-Dichlorobenzene	ND ND	10.3	10.0	103	10.1	10.0	101	64-109	2	20
1,2-Dichlorobenzene	ND ND	13.3	10.0	133 M1	12.7	10.0	127 M1	69-122	4	20
n-Butylbenzene	ND ND	9.75	10.0	98	10.6	10.0	106	54-160	8	20
1,2-Dibromo-3-chloropropane	ND ND	10.1	10.0	101	9.84	10.0	98	39-145	3	20
1,2,4-Trichlorobenzene	ND ND	12.7	10.0	127 M1	12.1	10.0	121 M1	74-113	4	20
Hexachlorobutadiene	ND ND	9.93	10.0	99	10.0	10.0	100	44-167	1	20
Naphthalene	ND ND	10.2	10.0	102	10.0	10.0	100	37-158	2	20
1,2,3-Trichlorobenzene	ND	10.2	10.0	102	10.0					

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

000040

Form 3A - Organic

Page

2 of 2

Printed: 07/16/2003 16:40:42 L:\STEALTH\CRYSTAL.RPT\Form3DMS.rpt Fill Page

(X2300243)

QA/QC Report

Client:

BE&K Terranext

Project:

WVB

Sample Matrix:

Water

Service Request: X2300243

Date Extracted: 03/31/2003

Date Analyzed: 03/31/2003

Lab Control Spike/Duplicate Lab Control Spike Summary Volatile Organic Compounds

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L

Basis: NA Level: Low

Extraction Lot: XWG0300425

Lab Control Sample XWG0300425-1

Duplicate Lab Control Sample XWG0300425-2

	Lab	Control Spik	e	Duplicate Lab Control Spike			%Rec		RPD
Analyte Name	Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit
Dichlorodifluoromethane	9.92	10.0	99	9.28	10.0	93	1-233	7	20
Chloromethane	8.86	10.0	89	8.77	10.0	88	46-156	1	20
Vinyl Chloride	12.0	10.0	120	11.8	10.0	118	51-158	1	20
Bromomethane	6.99	10.0	70	6.92	10.0	69	37-149	1	20
Chloroethane	11.6	10.0	116	11.4	10.0	114	56-146	2	20
Trichlorofluoromethane	12.8	10.0	128	12.7	10.0	127	69-139	1	20
1,1,2-Trichlorotrifluoroethane	14.5	10.0	145 L1	13.6	10.0	136 L1	83-130	6	20
1,1-Dichloroethene	11.5	10.0	115 L1	11.2	10.0	112	65-112	2	20
Acetone	34.2	40.0	86	38.2	40.0	95	68-128	11	20
Iodomethane	28.1	40.0	70	30.8	40.0	77	68-144	9	20
Carbon Disulfide	50.6	40.0	126	49.9	40.0	125	67-140	1	20
Methylene Chloride	10.6	10.0	106	10.5	10.0	105	70-113	0	20
Methyl tert-Butyl Ether	9.42	10.0	94	9.78	10.0	98	75-115	4	20
trans-1,2-Dichloroethene	10.5	10.0	105	10.7	10.0	107	73-118	1	20
1,1-Dichloroethane	11.6	10.0	116	11.6	10.0	116	77-127	0	20
Vinyl Acetate	49.1	40.0	123	49.8	40.0	125	51-202	1	39
2,2-Dichloropropane	12.5	10.0	125	12.4	10.0	124	75-132	0	20
2-Butanone (MEK)	37.4	40.0	94	40.0	40.0	100	72-122	7	20
cis-1,2-Dichloroethene	10.5	10.0	105	10.6	10.0	106	81-118	0	20
Bromochloromethane	9.07	10.0	91	9.24	10.0	92	82-114	2	20
Chloroform	11.1	10.0	111	11.2	10.0	112	78-119	1	20
1,1,1-Trichloroethane	11.8	10.0	118	11.7	10.0	117	71-125	1	20
Carbon Tetrachloride	13.1	10.0	131 L1	12.7	10.0	127	69-130	3	20
1,1-Dichloropropene	12.6	10.0	126 L1	12.2	10.0	122 L1	77-114	3	20
Benzene	11.0	10.0	110	11.1	10.0	111	81-117	1	20
1,2-Dichloroethane	10.0	10.0	100	10.2	10.0	102	67-122	2	20
Trichloroethene	11.2	10.0	112	11.2	10.0	112	79-114	0	20
1,2-Dichloropropane	10.3	10.0	103	10.3	10.0	103	78-114	0	20
Dibromomethane	9.62	10.0	96	9.81	10.0	98	78-113	2	20
Bromodichloromethane	10.4	10.0	104	10.6	10.0	106	79-122	2	20
cis-1,3-Dichloropropene	10.9	10.0	109	11.0	10.0	110	82-118	1	20
4-Methyl-2-pentanone (MIBK)	33.5	40.0	84	35.3	40.0	88	75-115	5	20
Toluene	11.3	10.0	113	11.3	10.0	113	85-118	0	20
trans-1,3-Dichloropropene	10.3	10.0	103	10.7	10.0	107	79-121	4	20
1,1,2-Trichloroethane	9.51	10.0	95	9.72	10.0	97	79-116	2	20

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

000042

SuperSet Reference:

Printed: 04/07/2003 10:40:25 L:\STEALTH\CRYSTAL.RPT\Form3DLC.rpt Form 3C - Organic

1 of 2 Page

RR3159

QA/QC Report

Client:

BE&K Terranext

Project: Sample Matrix: WVB Water Service Request: X2300243 **Date Extracted:** 03/31/2003

Date Analyzed: 03/31/2003

Lab Control Spike/Duplicate Lab Control Spike Summary Volatile Organic Compounds

Extraction Method: Analysis Method:

EPA 5030B

8260B

Units: ug/L

Basis: NA Level: Low

Extraction Lot: XWG0300425

Lab Control Sample XWG0300425-1

Duplicate Lab Control Sample

XWG0300425-2

		Lab Control Spike		Duplicate Lab Control Spike			%Rec		RPD
Analyte Name	Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit
	11.2	10.0	112	11.1	10.0	111	76-127	1	20
Tetrachloroethene	36.4	40.0	91	38.1	40.0	95	65-120	5	20
2-Hexanone	9.95	10.0	100	10.3	10.0	103	81-116	4	20
1,3-Dichloropropane	9.44	10.0	94	9.69	10.0	97	77-119	3	20
Dibromochloromethane	9.59	10.0	96	10.0	10.0	100	79-116	4	20
1,2-Dibromoethane	10.1	10.0	101	10.1	10.0	101	84-114	0	20
Chlorobenzene	9.59	10.0	96	9.76	10.0	98	78-118	2	20
1,1,1,2-Tetrachloroethane	11.5	10.0	115	11.4	10.0	114	79-124	1	20
Ethylbenzene	22.3	20.0	111	22.2	20.0	111	75-131	1	20
m,p-Xylenes	10.6	10.0	106	10.6	10.0	106	78-122	0	20
o-Xylene	10.6	10.0	106	10.7	10.0	107	80-126	1	20
Styrene	10.6	10.0	114	11.2	10.0	112	75-126	1	20
Isopropylbenzene	9.76	10.0	98	9.75	10.0	98	82-122	0	20
Bromobenzene	9.76 9.58	10.0	96	9.92	10.0	99	77-118	3	20
1,2,3-Trichloropropane	9.38 11.9	10.0	119	11.7	10.0	117	75-129	2	20
n-Propylbenzene		10.0	114	11.3	10.0	113	77-126	1	20
2-Chlorotoluene	11.4	10.0	111	11.1	10.0	111	82-120	0	20
4-Chlorotoluene	11.1	10.0	115	11.3	10.0	113	75-130	2	20
1,3,5-Trimethylbenzene	11.5	10.0	121	11.8	10.0	118	73-130	2	20
tert-Butylbenzene	12.1	10.0	113	11.3	10.0	112	60-137	1	20
1,2,4-Trimethylbenzene	11.3	10.0	115	11.3	10.0	113	68-131	1	20
sec-Butylbenzene	11.5	10.0	101	10.1	10.0	101	71-137	0	20
1,3-Dichlorobenzene	10.1		124	12.1	10.0	121	68-134	3	20
4-Isopropyltoluene	12.4	10.0	89	9.06	10.0	91	70-118	2	20
Bromoform	8.89	10.0	89 94	9.08	10.0	100	72-122	7	20
1,1,2,2-Tetrachloroethane	9.35	10.0	102	10.1	10.0	101	82-114	0	20
1,4-Dichlorobenzene	10.2	10.0	102	10.1	10.0	102	81-118	0	20
1,2-Dichlorobenzene	10.1	10.0		10.2	10.0	118	71-125	3	20
n-Butylbenzene	12.2	10.0	122	8.35	10.0	84	55-131	4	20
1,2-Dibromo-3-chloropropane	8.01	10.0	80	8,33 9,79	10.0	98	75-123	1	20
1,2,4-Trichlorobenzene	9.71	10.0	97		10.0	116	63-140	3	20
Hexachlorobutadiene	12.0	10.0	120	11.6 9.49	10.0	95	67-125	3	20
Naphthalene	9.20	10.0	92	9.49 10.0	10.0	100	72-124	3	20
1,2,3-Trichlorobenzene	9.73	10.0	97	10.0	10.0	100	,2 ,2 ,		

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 04/07/2003 10:40:25 L:\STEALTH\CRYSTAL.RPT\Form3DLC.rpt

QA/QC Report

Client:

BE&K Terranext

Project: Sample Matrix: WVB

Water

Service Request: X2300243 Date Extracted: 04/01/2003

Date Analyzed: 04/01/2003

Lab Control Spike/Duplicate Lab Control Spike Summary Volatile Organic Compounds

Extraction Method: Analysis Method:

EPA 5030B

8260B

Units: ug/L Basis: NA

Level: Low

Extraction Lot: XWG0300433

Lab Control Sample XWG0300433-1

Duplicate Lab Control Sample XWG0300433-2

	Lab	Control Spik	e	Duplicate	Lab Control	Spike	%Rec		RPD
Analyte Name	Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit
Dichlorodifluoromethane	9.07	10.0	91	7.46	10.0	75	1-233	19	20
Chloromethane	9.86	10.0	99	9.02	10.0	90	46-156	9	20
Vinyl Chloride	12.3	10.0	123	11.0	10.0	110	51-158	12	20
Bromomethane	7.99	10.0	80	7.73	10.0	. 77	37-149	3	20
Chloroethane	12.0	10.0	120	11.3	10.0	113	56-146	6	20
Trichlorofluoromethane	13.9	10.0	139	12.1	10.0	121	69-139	14	20
1,1,2-Trichlorotrifluoroethane	14.1	10.0	141 L1	11.9	10.0	119	83-130	17	20
1,1-Dichloroethene	10.8	10.0	108	9.81	10.0	98	65-112	9	20
Acetone	40.7	40.0	102	42.6	40.0	106	68-128	4	20
Iodomethane	31.2	40.0	78	29.9	40.0	75	68-144	4	20
Carbon Disulfide	50.4	40.0	126	46.0	40.0	115	67-140	9	20
Methylene Chloride	11.2	10.0	112	10.7	10.0	107	70-113	5	20
Methyl tert-Butyl Ether	9.79	10.0	98	10.2	10.0	102	75-115	4	20
trans-1,2-Dichloroethene	10.5	10.0	105	9.59	10.0	96	73-118	9	20
1,1-Dichloroethane	12.3	10.0	123	11.5	10.0	115	77-127	7	20
Vinyl Acetate	56.0	40.0	140	55.1	40.0	138	51-202	2	39
2,2-Dichloropropane	12.5	10.0	125	11.4	10.0	114	75-132	9	20
2-Butanone (MEK)	39.5	40.0	99	41.4	40.0	103	72-122	5	20
cis-1,2-Dichloroethene	10.5	10.0	105	10.2	10.0	102	81-118	3	20
Bromochloromethane	9.64	10.0	96	9.52	10.0	95	82-114	1	20
Chloroform	11.8	10.0	118	11.1	10.0	111	78-119	6	20
1,1,1-Trichloroethane	11.9	10.0	119	10.9	10.0	109	71-125	9	20
Carbon Tetrachloride	13.0	10.0	130	11.8	10.0	118	69-130	10	20
1,1-Dichloropropene	12.2	10.0	122 L1	11.1	10.0	111	77-114	9	20
Benzene	11.2	10.0	112	10.7	10.0	107	81-117	5	20
1,2-Dichloroethane	11.4	10.0	114	11.2	10.0	112	67-122	2	20
Trichloroethene	11.0	10.0	110	10.3	10.0	103	79-114	7	20
1,2-Dichloropropane	10.9	10.0	109	10.6	10.0	106	78-114	3	20
Dibromomethane	10.5	10.0	105	10.4	10.0	104	78-113	2	20
Bromodichloromethane	11.2	10.0	112	10.9	10.0	109	79-122	2	20
cis-1,3-Dichloropropene	11.3	10.0	113	11.0	10.0	110	82-118	2	20
4-Methyl-2-pentanone (MIBK)	35.1	40.0	88	37.3	40.0	93	75-115	6	20
Toluene	11.4	10.0	114	11.0	10.0	110	85-118	4	20
trans-1,3-Dichloropropene	11.1	10.0	111	11.1	10.0	111	79-121	0	20
1,1,2-Trichloroethane	10.3	10.0	103	10.6	10.0	106	79-116	2	20

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 04/07/2003 10:40:32 L:\STEALTH\CRYSTAL.RPT\Form3DLC.rpt Form 3C - Organic

000044

1 of 2 Page

SuperSet Reference: RR3159

QA/QC Report

Client:

BE&K Terranext

Project: Sample Matrix: **WVB** Water Service Request: X2300243

Date Extracted: 04/01/2003

Date Analyzed: 04/01/2003

Lab Control Spike/Duplicate Lab Control Spike Summary Volatile Organic Compounds

Extraction Method: EPA 5030B **Analysis Method:**

8260B

Units: ug/L

Basis: NA

Level: Low

Extraction Lot: XWG0300433

Lab Control Sample XWG0300433-1

Duplicate Lab Control Sample

XWG0300433-2

		G0300433-1 Control Spik	e		ate Lab Control Spike		%Rec		RPD
Analyte Name	Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit
Tetrachloroethene	10.5	10.0	105	10.0	10.0	100	76-127	5	20
2-Hexanone	40.5	40.0	101	43.9	40.0	110	65-120	8	20
1,3-Dichloropropane	10.9	10.0	109	11.0	10.0	110	81-116	1	20
Dibromochloromethane	10.0	10.0	100	9.98	10.0	100	77-119	0	20
1,2-Dibromoethane	10.2	10.0	102	10.4	10.0	104	79-116	2	20
Chlorobenzene	10.2	10.0	102	9.99	10.0	100	84-114	2	20
1,1,1,2-Tetrachloroethane	9.89	10.0	99	9.69	10.0	97	78-118	2	20
Ethylbenzene	11.5	10.0	115	10.9	10.0	109	79-124	5	20
m,p-Xylenes	21.8	20.0	109	21.1	20.0	105	75-131	3	20
	10.4	10.0	104	10.1	10.0	101	78-122	3	20
o-Xylene	10.9	10.0	109	10.6	10.0	106	80-126	3	20
Styrene	11.1	10.0	111	10.4	10.0	104	75-126	6	20
Isopropylbenzene Bromobenzene	10.1	10.0	101	9.95	10.0	100	82-122	2	20
1,2,3-Trichloropropane	10.6	10.0	106	11.0	10.0	110	77-118	4	20
n-Propylbenzene	12.0	10.0	120	11.3	10.0	113	75-129	6	20
2-Chlorotoluene	11.7	10.0	117	11.3	10.0	113	77-126	3	20
4-Chlorotoluene	11.5	10.0	115	11.2	10.0	112	82-120	3	20
	11.4	10.0	114	10.9	10.0	109	75-130	5	20
1,3,5-Trimethylbenzene	11.4	10.0	118	11.2	10.0	112	73-130	5	20
tert-Butylbenzene	11.4	10.0	114	11.0	10.0	110	60-137	3	20
1,2,4-Trimethylbenzene	11.1	10.0	111	10.6	10.0	106	68-131	5	20
sec-Butylbenzene	10.2	10.0	102	9.99	10.0	100	71-137	2	20
1,3-Dichlorobenzene	11.9	10.0	119	11.3	10.0	113	68-134	5	20
4-Isopropyltoluene	9.06	10.0	91	9.26	10.0	93	70-118	2	20
Bromoform	10.1	10.0	101	10.4	10.0	104	72-122	3	20
1,1,2,2-Tetrachloroethane	10.1	10.0	101	9.94	10.0	99	82-114	1	20
1,4-Dichlorobenzene	10.1	10.0	102	10.1	10.0	101	81-118	1	20
1,2-Dichlorobenzene	11.7	10.0	117	11.2	10.0	112	71-125	5	20
n-Butylbenzene	8.52	10.0	85	10.2	10.0	102	55-131	18	20
1,2-Dibromo-3-chloropropane	9.34	10.0	93	9.41	10.0	94	75-123	1	20
1,2,4-Trichlorobenzene	10.8	10.0	108	10.8	10.0	108	63-140	0	20
Hexachlorobutadiene	8.92	10.0	89	9.45	10.0	95	67-125	6	20
Naphthalene 1,2,3-Trichlorobenzene	9.48	10.0	95	9.74	10.0	97	72-124	3	20

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 04/07/2003 10:40:32 L:\STEALTH\CRYSTAL.RPT\Form3DLC.rpt Form 3C - Organic

0000 SuperSet Reference: RR3159

2 of Page

April 1, 2003

Chuck Gordon BE & K Terranext 9830 S. 51st A-127 Phoenix, AZ 85044

Re: WVB

Dear Chuck:

Enclosed are the results of the samples submitted to our laboratory on March 20, 2003. For your reference, these analyses have been assigned our service request number L2300633.

All analyses were performed in accordance with our laboratory's quality assurance program. Results are intended to be considered in their entirety and apply only to the samples analyzed. Columbia Analytical Services is not responsible for use of less than the complete report.

Columbia Analytical Services - is certified for environmental analyses by the Arizona Department of Health Services (certificate number: AZ0544 and AZ0136, expiration: May 23, 2003).

If you have any questions, please call me at (818) 587-5550, extension 309.

Respectfully submitted,

Columbia Analytical Services, Inc.

Sue Anderson Project Chemist

SA

Page 1 of <u>20</u>

Columbia Analytical Services, Inc.

Acronyms

California DHS LUFT Method 8015M American Society for Testing and Materials **ASTM** Biochemical Oxygen Demand BOD Benzene/Toluene/Ethylbenzene/Xylenes **BTEX** California Assessment Metals CAM Chemical Abstract Service Registry Number **CAS Number** Chlorofluorocarbon CFC Chemical Oxygen Demand COD Contract Required Detection Limit CRDL Detected; result must be greater than zero. D Detected; result must be greater than the detection limit. DL**Duplicate Laboratory Control Sample** DLCS Duplicate Matrix Spike **DMS** Department of Health Services DOH or DHS Environmental Laboratory Accreditation Program **ELAP** U.S. Environmental Protection Agency **EPA** Gas Chromatography GC Gas Chromatography/Mass Spectrometry GC/MS Ion Chromatography IC Initial Calibration Blank sample **ICB** Inductively Coupled Plasma atomic emission spectrometry **ICP** Initial Calibration Verification sample **ICV** Laboratory Control Sample LCS Leaking Underground Fuel Tank LUFT Modified M Methylene Blue Active Substances **MBAS** Method Detection Limit **MDL** Method Reporting Limit MRL Matrix Spike MS Methyl-tert-Butyl Ether **MTBE** Not Applicable NA NC Not Calculated None Detected at or above the Method Reporting/Detection Limit (MRL/MDL) ND Nephelometric Turbidity Units NTU Parts Per Billion ppb Parts Per Million ppm Practical Quantitation Limit **PQL Ouality Assurance/Quality Control** QA/QC Resource Conservation and Recovery Act **RCRA** Relative Percent Difference **RPD** Selected Ion Monitoring SIM Standard Methods for the Examination of Water and Wastewater, 18th Ed., 1992. SM Solubility Threshold Limit Concentration STLC Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW-846, SW Third Edition, 1986 and as amended by Updates I, II, IIA, and IIB. Toxicity Characteristics Leaching Procedure **TCLP** Total Dissolved Solids TDS Total Petroleum Hydrocarbons **TPH** Total Recoverable Petroleum Hydrocarbons TRPH Total Suspended Solids TSS Total Threshold Limit Concentration TTLC Volatile Organic Analyte(s) VOA **Qualifiers** Undetected at or above MDL/MRL. U Estimated concentration. Analyte detected above MDL but below MRL. J Hit above MRL also found in Method Blank. В Analyte concentration above high point of ICAL. E Presumptive evidence of compound. N Result from dilution. D

See case narrative.

X

- Cover Page -INORGANIC ANALYSIS DATA PACKAGE

Client:

BE&K Terranext, LLC

Project Name: Project No.:

WVB NA Service Request: L2300633

Sample Name:

Laboratory Control Sample Method Blank AVB86-0100-04111 AVB89-0100-04000 AVB89-0100-04000 AVB90-0100-04000 AVB99-0102-04000 AVB111-0100-01103 AVB111-0104-1000 L2300326-LCS L2300326-MB L2300633-001 L2300633-002 L2300633-002S

Lab Code:

L2300633-002SD L2300633-003 L2300633-004 L2300633-005 L2300633-006

Approved By: _____ Date: _____ 4/1/03

7

Analytical Report

Client:

BE&K Terranext, LLC

Project Name: Project No.:

WVB NA

Matrix:

Water

Service Request: L2300633

Date Collected: 03/20/03

Date Received: 03/20/03 Date Extracted: 03/26/03

Total Metals

Sample Name:

AVB86-0100-04111

Lab Code:

L2300633-001

Units: ug/L (ppb)

Basis: NA

Analyte

Analysis Method

MRL

Date Analyzed

Sample Result

Result Notes

Chromium

6010B

10

03/28/03

ND

Analytical Report

Client:

BE&K Terranext, LLC

Project Name: Project No.:

WVB NA

Matrix:

Water

Service Request: L2300633

Date Collected: 03/20/03 **Date Received:** 03/20/03

Date Extracted: NA

Dissolved Metals

Sample Name:

AVB86-0100-04111

Lab Code :

L2300633-001

Units: ug/L (ppb)

Analyte	Analysis Method	MRL	Date Analyzed	Sample Result	Result Notes
Chromium	6010B	10	03/28/03	ND	

Analytical Report

Client:

BE&K Terranext, LLC

Project Name: Project No.:

WVB NA

Matrix:

Water

Service Request: L2300633

Date Collected: 03/20/03 **Date Received**: 03/20/03

Date Extracted: 03/26/03

Total Metals

Sample Name:

AVB89-0100-04000

Lab Code:

L2300633-002

Units: ug/L (ppb)

Analyte	Analysis Method	MRL	Date Analyzed	Sample Result	Result Notes
Chromium	6010B	10	03/28/03	19	

Analytical Report

Client:

BE&K Terranext, LLC

Project Name: Project No.:

WVB NA

Matrix:

Water

Service Request: L2300633

Date Collected: 03/20/03

Date Extracted: NA

Date Received: 03/20/03

Dissolved Metals

Sample Name:

AVB89-0100-04000

Lab Code:

L2300633-002

Units: ug/L (ppb)

Basis: NA

Analyte

Analysis Method

MRL

Date Analyzed

Sample Result

Result Notes

Chromium

6010B

10

03/28/03

ND

Analytical Report

Client:

Matrix:

BE&K Terranext, LLC

Project Name: Project No.: WVB NA

Water

Service Request: L2300633

Date Collected: 03/20/03 **Date Received:** 03/20/03

Date Extracted: 03/26/03

Total Metals

Sample Name:

AVB90-0100-04000

Lab Code:

L2300633-003

Units: ug/L (ppb)

Analyte	Analysis Method	MRL	Date Analyzed	Sample Result	Result Notes
Chromium	6010B	10	03/28/03	ND	

Analytical Report

Client:

BE&K Terranext, LLC

Project Name: Project No.:

WVB NA

Matrix:

Water

Service Request : L2300633 **Date Collected :** 03/20/03

Date Received: 03/20/03

Date Extracted: NA

Dissolved Metals

Sample Name:

AVB90-0100-04000

Lab Code:

L2300633-003

Units: ug/L (ppb)

Analyte	Analysis Method	MRL	Date Analyzed	Sample Result	Result Notes
Chromium	6010B	10	03/28/03	ND	

Analytical Report

Client:

Matrix:

BE&K Terranext, LLC

Project Name: Project No.:

WVB NA

Water

Service Request: L2300633

Date Collected: 03/20/03

Date Received: 03/20/03

Date Extracted: 03/26/03

Total Metals

Sample Name:

AVB89-0102-04000

Lab Code:

L2300633-004

Units: ug/L (ppb)

Analyte	Analysis Method	MRL	Date Analyzed	Sample Result	Result Notes
Analyte	·	<u> </u>	02/20/02	17	
Chromium	6010B	10	03/28/03	1 /	

Analytical Report

Client:

BE&K Terranext, LLC

Project Name: Project No.:

WVB NA

Matrix:

Water

Service Request: L2300633

Date Collected: 03/20/03

Date Extracted: NA

Date Received: 03/20/03

Dissolved Metals

Sample Name:

AVB89-0102-04000

Lab Code:

L2300633-004

Units: ug/L (ppb)

Basis: NA

Result Sample Result Notes **Date Analyzed Analysis Method** MRL Analyte ND 03/28/03 6010B 10 Chromium

Analytical Report

Client:

BE&K Terranext, LLC

Project Name : Project No. :

WVB NA

Matrix:

Water

Service Request: L2300633

Date Collected: 03/20/03 **Date Received:** 03/20/03

Date Extracted: 03/26/03

Total Metals

Sample Name:

AVB111-0100-01103

Lab Code:

L2300633-005

Units: ug/L (ppb)

Analyte	Analysis Method	MRL	Date Analyzed	Sample Result	Result Notes
Chromium	6010B	10	03/28/03	11	

Analytical Report

Client:

BE&K Terranext, LLC

Project Name: Project No.:

WVB NA

Matrix:

Water

Service Request: L2300633

Date Collected: 03/20/03 **Date Received:** 03/20/03

Date Extracted: NA

Dissolved Metals

Sample Name:

AVB111-0100-01103

Lab Code:

L2300633-005

Units: ug/L (ppb)

Analyte	Analysis Method	MRL	Date Analyzed	Sample Result	Result Notes
Chromium	6010B	10	03/28/03	ND	

Analytical Report

Client:

BE&K Terranext, LLC

Project Name : Project No. :

WVB NA

Matrix:

Water

Service Request: L2300633

Date Collected: 03/20/03 **Date Received:** 03/20/03

Date Extracted: 03/26/03

Total Metals

Sample Name:

AVB111-0104-1000

Lab Code:

L2300633-006

Units: ug/L (ppb)

Analyte	Analysis Method	MRL	Date Analyzed	Sample Result	Result Notes
Chromium	6010B	10	03/28/03	ND	

Analytical Report

Client:

BE&K Terranext, LLC

Project Name: Project No.:

WVB NA

Matrix:

Water

Service Request: L2300633

Date Collected: 03/20/03

Date Received: 03/20/03

Date Extracted: NA

Dissolved Metals

Sample Name:

AVB111-0104-1000

Lab Code:

Chromium

L2300633-006

Units: ug/L (ppb)

Basis: NA

MRL **Analysis Method** Analyte

Date Analyzed

Sample Result

Result

6010B

10

03/28/03

ND

Notes

Analytical Report

Client:

BE&K Terranext, LLC

Project Name: Project No.:

WVB NA

Matrix:

Water

Service Request: L2300633

Date Collected: NA Date Received: NA

Date Extracted: 03/26/03

Total Metals

Sample Name: Lab Code:

Method Blank

L2300326-MB

Units: ug/L (ppb)

Basis: NA

Analyte	Analysis Method	MRL	Date Analyzed	Sample Result	Result Notes
Chromium	6010B	10	03/28/03	ND	

QA/QC Report

Client:

BE&K Terranext, LLC

Project Name: Project No.:

WVB NA

Matrix:

Water

Service Request: L2300633

Date Collected: NA
Date Received: NA

Date Extracted: 03/26/03

Date Analyzed: 03/28/03

Laboratory Control Sample Summary

Total Metals

Sample Name:

Laboratory Control Sample

Lab Code:

L2300326-LCS

Units: ug/L (ppb)

Basis: NA

Analyte	Analysis Method	True Value	Result	Percent	CAS Percent Recovery Acceptance Limits	Result Notes
2 Had y to	•					
Chromium	6010B	500	523	105	87-111	

Analytical Report

Client:

BE&K Terranext, LLC

Project Name: Project No. :

WVB NA

Matrix:

Water

Service Request: L2300633

Date Collected: 03/20/03 **Date Received:** 03/20/03

Date Extracted: 03/26/03 Date Analyzed: 03/28/03

Matrix Spike/Duplicate Matrix Spike Summary Total Metals

Sample Name:

AVB89-0100-04000

Lab Code:

L2300633-002S

L2300633-002SD

Units: ug/L (ppb)

Basis: NA

Analyte	Prep Method	Analysis Method	MRL	Spike MS	Level DMS	Sample Result	Spike MS	Result DMS	MS	DMS	CAS Acceptance Limits	Relative Percent Difference	Result Notes
Chromium	3010A	6010B	10	500	500	19.3	534	520	103	100	87-105	3	

Columbia Analytical Services NC.

CHAIN OF CUSTODY/LABORATORY ANALYSIS REQUEST FORM

22302 East University Drive, Suite 4. Phoenix, AZ 85034 (602) 437-2001 (800) 695-7222 x09 · FAX (602) 437-5308

DATE 3' JO BY

PAGE

 Surcharges Apply ANALYSIS TAT (Circle One) REMARKS Lab No: X 23.00243 SMQ/SH 4.0°C SAMPLE RECEIPT: □ 72 Hours □ 24 Hours □ 48 Hours Shipping VIA: 14 **ETANDARD** Shipping #: Condition: SSIQ 1 Date/Time 13/21/03 ANALYSIS REQUESTED INVOICE INFORMATION: N Date/Time 3-20-03 Date/Time D'Ieilia iniéa DHa Organization Organization Organization ZY, Bill 70 P.O.# Z MSD, as required, may be charged as samples) REPORT REQUIREMENTS III. Data Validation Report (includes All Raw Data) IV. CLP Deliverable Report I. Routine Report Leli may Received By (Signature) Received By (Signature) Recei∳ed By (Signature Perlex Extra samples taken for AVB89-0100-04000 for ms/msn 9 5 NUMBER OF CONTAINERS Date/Time PRESER-VATION Date/Time 3-3(0-03 T 5003 Ş Date/Time MATRIX ; 3 Organization Š g Organization Organization \$ 200 100-545 BerK LAB I.D. CAS PHONE/FAX 17.45 8.50 g S るなろ SPECIAL INSTRUCTIONS/COMMENTS: PROJECT MANAGER (huck COMPANY/ADDRESS BCCK SAMPLER'S SIGNATURE - KX 3.20.03 DATE 2 2 PROJECT NAME WVB Relinquished By (Signature) Relinquished By (Signature) Relinquished By (Signature) tishi may AV889-0102-04000 MBB9-0100-04000 ANDIH GIBS-1000 AV890-0100-04000 ANBILL - DICO- 01103 RVB/III-DID4-1000 41786-0100-04111 SAMPLE I.D. 00064

DISTRIBUTION: WHITE - return to originator; YELLOW - lab; PINK - retained by originator

SAMPLE RECEIPT FORM

Service Request No: L230 0633 Client: BE+K
Sample(s) delivered by: Client CAS Emp After Hours DHL
Golden State Overnight Fed X UPS Other Courier
Chain of Custody filled out accurately? Yes/ No(See Comments)
Appropriate sample volume and containers? Yes/ No(See Comments)
Sufficient labeling on container(s)? Yes/ No(See Comments)
Container(s) supplied by CAS? Yes No(See Comments)
Custody seal(s) intact? N/A / Yes No (See Comments)
Trip Blank(s) received Yes No
If Trip Blank was supplied by CAS, record serial #TB
Temperature of sample(s)/cooler °C Temp Blank (Y) or N (Circle One)
Voa's Marked Preserved? Yes No Filled Properly? Yes No (See Comments)
Preserved Bottles Requiring pH check(s)? Yes Notified
RUSH Turn around time? Yes Notified Date & Time
Short Hold-Time Analysis (check all that apply)
ASAP Res Cl D.O Flash Diss S2 Ferrous Fe 24HR pH Odor Cr+6 48HR BOD Color MBAS Nitrate Nitrite O-PO4 Sett Sol Turbidity 72HR Vapors
Notified Date & Time
Container(s) received and their preservative(s): $-1_{1}-3 \rightarrow -6 = 1-500 \text{ mir} \text{ PI} (NP) \text{A}$ $1-500 \text{ mir} \text{ PI} (HNB) \text{ B}$
-2 = 2-500m1P1(NP)AB 2-500m1P1(HNB)CD
Diss Filter & preserve diss metal bottle in lab
Initials, Date, Time LE 3/3/(U3 1005 r:\sr_forms\cooler.doc Rev. 1/17/02

Columbia Analytical Services Inc. 98 - Owned Company

CHAIN OF CUSTODY/LABORATORY ANALYSIS REQUEST FORM

3902 East University Drive, Suite 4 • Phoenix, AZ 85034 • (602) 437-2001 • (800) 695-7222 x09 • FAX (602) 437-5308

DATE 3' 30' 67

J\$6000

PAGE

REMARKS SMQ/SW SAMPLE RECEIPT: SSIQ 1 D 0128 ANALYSIS REQUESTED INVOICE INFORMATION: Ŋ 0158 HAA DHQ paint Filler DHQ Daviod Asela $\sum_{D \in \mathcal{D}}^{D \text{ lotal}}$ Total D Total D Total REPORT REQUIREMENTS I. Routine Report Selifielo Volatiles Halogenarie Organics 1508/108 3 ٩ 3 Ø 3 3 Extra samples taken for AVB89-0100-04000 for ms/msD 5 NUMBER OF CONTAINERS 0 PRESER-VATION #C # 751 3 3 • MATRIX ; ? 603 CCC_{c} 8 8 COO 100-8460 LAB I.D. 10:45 PHONE/FAX 7.45 TIME 8 E 9 9 9:00 <u>જ</u> SPECIAL INSTRUCTIONS/COMMENTS: SAMPLER'S SIGNATURE TXA Smele COMPANY/ADDRESS BCCK 3.20.03 DATE Z 0 è 1 7 PROJECT NAME WVB 4VBB9-0100-04000 AV889-0102-04000 AV890-0100-04000 ABILL - 0/00-01103 WBIII - 9 02 - 1000 ANDER-0100-04111 AVBIII-BID4-1000 PROJECT MANAGER SAMPLE

			IV. CLP Deliverable Report			Lab No: X 23.00243
Relinquished By (Signature)	Organization Date/Time Re	Date/Time	Received By (Signature)	Organization	Date/Time	ANALYSIS TAT (Circle One)
A C.	Be+K 32003	3.10.03	Leslie may	CAS	1200 1200	ETANDARD
Relinguished By (Signature)	Organization Date/Time	Date/Time	Received By (Signature)	Organization	Date/Time	RUSH TAT - Surcharges Apply
-)					☐ 24 Hours

Shipping VIA: Shipping #: Condition:

P.O.#

II. Report (includes DUP.MS. MSD, as required, may be charged as samples)

III. Data Validation Report (includes All Raw Data)

DISTRIBUTION: WHITE - return to originator; YELLOW - lab; PINK - retained by originator

0702

ુ

40

☐ 72 Hours ☐ 48 Hours

Date/Time

Organization

Received By (Signature)

Date/Time

Organization

Relinquished By (Signature)

Columbia Analytical Services, Inc. Phoenix, AZ

Sample Receipt and Preservation Form

Client:	BE*K			Project Name: _	Terranex	
	Received on: 3-c	30.03 d s□	ate // Plastic Bottles	ss _{time}	Sleeves □	
First Ex		ime Expiratio	n:		time (soils only) S(soil)/7 DAYS (water)?	Yes □ No□
If YES,	chemist notified o	n:	date	time	Chemist's Initials	
 Are the of the second of the se	standard turn-a-roo custody seals prese ow many and wher signature and date containers arrive in container labels cor- e correct containers DA's been checked ature of sample(s) u	nt? e? correct? good conditionplete (i.e. pressured for the tofor the presentation of the tofor the presentation of the presen	eservation, samplests indicated? See of air bubbles.	e ID)? ? (note problems i	Yes ☐ Yes Ø Yes Ø Yes Ø Yes Ø in comments) Yes Ø	No□ No□ No□ No□ No□
		YES	NO		VOA Vial pH Verifi (Tested After Anal All Samples pF Following Samples Exh	ysis) I ≤ 2
рН	Reagent		'			
12	NaOH					
2	HNO₃	V				
2	H ₂ SO ₄					
Comments	3:				Received by (initials):	Lm)

000067

March 27, 2003

Chuck Gordon BE&K Terranext 9830 S. 51st Street, Suite A-127 Phoenix, AZ 85044

Re:

Re: WVBA/#03103154

Dear Chuck:

Enclosed are the results of the samples submitted to our laboratory on March 10, 2003. The samples were analyzed for Total and Dissolved Chromium by our Canoga Park, CA facility (L2300521). For your reference, the 8260B analyses have been assigned our service request number X2300196.

All analyses were performed according to our laboratory's quality assurance program. All results are intended to be considered in their entirety, and Columbia Analytical Services, Inc. (CAS) is not responsible for use of less than the complete report. Results apply only to the samples analyzed. Columbia Analytical Services, Inc. is certified for environmental analyses by the Arizona Department of Health Services (Certificate #AZ0136; and #AZ0497).

Please call if you have any questions. My extension is 223.

Respectfully submitted,

Columbia Analytical Services, Inc.

Tracy L. Dutton

Laboratory Director

TLD/td

Page 1 of 61

Client: Project:

BE&K Terranext

WVBA/#03103154

Sample Matrix:

Water

Service Request No.:

X2300196

Date Received:

3/10/03

CASE NARRATIVE

All analyses were performed consistent with the quality assurance program of Columbia Analytical Services, Inc. (CAS). This report contains analytical results for sample(s) designated for Tier II data deliverables. When appropriate to the method, method blank results have been reported with each analytical test. Surrogate recoveries have been reported for all applicable organic analyses. Additional quality control analyses reported herein include: Matrix/Duplicate Matrix Spike (MS/DMS) and Laboratory Control Sample (LCS).

All EPA recommended holding times have been met for analyses in this sample delivery group.

The following difficulties were experienced during analysis of this batch:

CCV recovery for Dichlorodifluoromethane and 2-Hexanone for Method 8260B on 3/14/03 was below method acceptance limits. These compounds were recovered within CCV cceptance limits in the LCS/DLCS. This verifies that the compounds can be accurately analyzed and quantitated.

CCV recovery for Dichlorodifluoromethane, 2-Hexanone and tert-Butylbenzene for Method 8260B on 3/18/03 was below method acceptance limits. These compounds were seen in the method reporting limit standard that was analyzed with this batch of samples. This verifies that the compounds would be detected if present in the samples.

Matrix spike recovery for Carbon Disulfide, Isopropylbenzene and Hexachlorobutadiene for XWG0300346 for 8260B was high, the method control sample recovery was acceptable.

The accuracy of the spike recovery value for Tetrachloroethene is reduced since the analyte concentration in the sample XWG0300346 for 8260B is disproportionate to spike level. The method control sample recovery was acceptable.

Matrix spike recovery for Methylene Chloride and Hexachlorobutadiene for XWG0300353 for 8260B was high, the method control sample recovery was acceptable.

Matrix spike recovery for 2-Butanone for XWG0300353 for 8260B was low, the method control sample recovery was acceptable.

The associated blank spike recovery for 2-Butanone and 1,1,2-Trichlorotrifluoroethne for 8260B was below laboratory acceptance limits. The duplicate analysis was within acceptance limits.

LCS/DLCS RPD exceeded the laboratory control limit for Chloroethane and 2-Butanone for 8260B on 3/18/03. The recoveries met acceptance limits.

Approved by	SHI	_Date_	3-27-03	
		_		

000002

The seed depletion was outside the method and laboratory acceptance limits. The reported result is an estimated K4 value. The dilution water D.O. depletion was >0.2 mg/L. K5 Glucose/glutamic acid BOD was below method acceptance criteria. K6 The discrepancy between the BOD and COD results has been verified by reanalysis of the sample for COD. K7 Laboratory fortified blank/blank spike: The associated blank spike recovery was above laboratory acceptance limits. See case narrative. I 1 The associated blank spike recovery was below laboratory acceptance limits. See case narrative. L2 The associated blank spike recovery was above method acceptance limits. See case narrative. L3 The associated blank spike recovery was below method acceptance limits. See case narrative. 14 Note: The L1, L2, L3, & L4 footnotes need to be added to all corresponding analytes for a sample. Matrix spike: Matrix spike recovery was high, the method control sample recovery was acceptable. MΤ Matrix spike recovery was low, the method control sample was acceptable M2The accuracy of the spike recovery value is reduced since the analyte concentration in the sample is M3disproportionate to spike level. The method control sample recovery was acceptable. The analysis of the spiked sample required a dilution such that the spike concentrations was diluted below M4the reporting limit. The method control sample recovery was acceptable. Analyte concentration was determined by the method of standard addition (MSA). M5 General: N1See case narrative. N2 See corrective action report. Sample quality: Sample integrity was not maintained. See case narrative. O1 Sample received with head space. Q2 Sample received with improper chemical preservation. O3 Q4 Sample received and analyzed without chemical preservation. Sample received with inadequate chemical preservation, but preserved by the laboratory. Q5 Sample was received above recommended temperature. Q6 07 Sample inadequately dechlorinated. Insufficient sample received to meet QC requirements. QC requirements satisfy ADEQ policies 0154 and 0155. 08 Insufficient sample received to meet QC requirements. 09 Sample received in inappropriate sample container. QI0 Sample is heterogeneous. Sample homogeneity could not be readily achieved using routine laboratory practices. 011 **Duplicates:** RPD exceeded the method control limit. See case narrative. R1RPD exceeded the laboratory control limit. See case narrative. R2 Sample RPD between the primary and confirmatory analysis exceeded 40%. Per Method 8000B, the higher R3 value was reported. MS/MSD RPD exceeded the method control limit. Recovery met acceptance criteria. R4 MS/MSD RPD exceeded the laboratory control limit. Recovery met acceptance criteria. R5 LFB/LFBD RPD exceeded the method control limit. Recovery met acceptance criteria. **R**6 LFB/LFBD RPD exceeded the laboratory control limit. Recovery met acceptance criteria. R7

Sample RPD exceeded the laboratory control limit. R9 Surrogate: Surrogate recovery was above laboratory acceptance limits, but within method acceptance limits. \$1 Surrogate recovery was above laboratory and method acceptance limits. **S**2 Surrogate recovery was above laboratory acceptance limits, but within method acceptance limits. No target S3 analytes were detected in the sample. Surrogate recovery was above laboratory and method acceptance limits. No target analytes were detected in the S4 sample. Surrogate recovery was below laboratory acceptance limits, but within method acceptance limits. S5 Surrogate recovery was below laboratory and method acceptance limits. Reextraction and/or reanalysis confirms 86 low recovery caused by matrix effect. Surrogate recovery was below laboratory and method acceptance limits. Unable to confirm matrix effect. S7 The analysis of the sample required a dilution such that the surrogate concentration was diluted below the method S8 acceptance criteria. The method control sample recovery was acceptable. The analysis of the sample required a dilution such that the surrogate concentration was diluted below the S9 laboratory acceptance criteria. The method control sample recovery was acceptable. Surrogate recovery was above laboratory and method acceptance limits. See case narrative. S10 Method/analyte discrepancies: Method promulgated by EPA, but not ADHS at this time. Τ1 Cited ADHS licensed method does not contain this analyte as part of method compound list. T2 Т3 Method not promulgated either by EPA or ADHS. Tentatively identified compound. Concentration is estimated and based on the closest internal standard. Т4

Sample RPD exceeded the method control limit.

R8

Calibration verification: V1 CCV recovery was above method acceptance limits. This target analyte was not detected in the sample. V2 CCV recovery was above method acceptance limits. This target analyte was detected in the sample. The sample could not be reanalyzed due to insufficient sample. V3 CCV recovery was above method acceptance limits. This target analyte was detected in the sample, but the sample was not reanalyzed. See case narrative. V4 CCV recovery was below method acceptance limits. The sample could not be reanalyzed due to insufficient sample. V5 CCV recovery after a group of samples was above acceptance limits. This target analyte was not detected in the sample. Acceptable per EPA Method 8000B.

Inorganic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.
- U The compound was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- i The MRL/MDL has been elevated due to a matrix interference.
- X See case narrative

Metals Data Qualifiers

- # The control limit criteria is not applicable. See case narrative.
- B The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.
- E The reported value is estimated because of the presence of matrix interference.
- M The duplicate injection precision was not met.
- N The Matrix Spike sample recovery is not within control limits. See case narrative.
- S The reported value was determined by the Method of Standard Additions (MSA).
- [J] The compound was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- W The post-digestion spike for furnace AA analysis is out of control limits, while sample absorbance is less than 50% of spike absorbance.
- i The MRL/MDL has been elevated due to a matrix interference.
- X See case narrative.
- * The duplicate analysis not within control limits. See case narrative.
- + The correlation coefficient for the MSA is less than 0.995.

Organic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- A A tentatively identified compound, a suspected aldol-condensation product.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result.
- C The analyte was qualitatively confirmed using GC/MS techniques, pattern recognition, or by comparing to historical data.
- D The reported result is from a dilution.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.
- N The result is presumptive. The analyte was tentatively identified, but a confirmation analysis was not performed.
- P The GC or HPLC confirmation criteria was exceeded. The relative percent difference is greater than 40% between the two analytical results (25% for CLP Pesticides).
- U The compound was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- i The MRL/MDL has been elevated due to a chromatographic interference.
- X See case narrative.

Additional Petroleum Hydrocarbon Specific Qualifiers

- F The chromatographic fingerprint of the sample matches the elution pattern of the calibration standard.
- L The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of lighter molecular weight constituents than the calibration standard.
- H The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of heavier molecular weight constituents than the calibration standard.
- O The chromatographic tingerprint of the sample resembles an oil, but does not match the calibration standard.
- Y The chromatographic fingerprint of the sample resembles a petroleum product eluting in approximately the correct carbon range, but the elution pattern does not match the calibration standard.
- Z The chromatographic fingerprint does not resemble a petroleum product.

Client: Project: BE&K Terranext WVBA/#03103154 **Service Request:**

X2300196

Cover Page - Organic Analysis Data Package Volatile Organic Compounds

		Date	Date
Sample Name	Lab Code	Collected	Received
AVB92-0100-03130	X2300196-001	03/10/2003	03/10/2003
AVB74-0100-07088	X2300196-002	03/10/2003	03/10/2003
AVB29-0100-19111	X2300196-003	03/10/2003	03/10/2003
AVB71-0100-07125	X2300196-004	03/10/2003	03/10/2003
AVB71-0104-1000	X2300196-005	03/10/2003	03/10/2003
AVB71-0102-1000	X2300196-006	03/10/2003	03/10/2003
AVB92-0100-03130MS	XWG0300346-4	03/10/2003	03/10/2003
AVB92-0100-03130DMS	XWG0300346-5	03/10/2003	03/10/2003
AVB74-0100-07088MS	XWG0300353-4	03/10/2003	03/10/2003
AVB74-0100-07088DMS	XWG0300353-5	03/10/2003	03/10/2003

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed in the case narrative. Release of the data contained in this hardcopy data package and in the computer-readable data submitted on floppy diskette has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signature.

Signature:	Tracy Dutton	Name: Tracy Dutton
	2 22 42	Lab M
D-4	(1-1+1)5	Title: Lab Manager

Cover Page - Organic

Page 1 of 1

000006

SuperSet Reference: RR3104

Analytical Results

Client: Project: BE&K Terranext WVBA/#03103154

Sample Matrix:

Water

Service Request: X2300196 **Date Collected:** 03/10/2003

Date Received: 03/10/2003

Volatile Organic Compounds

Sample Name: Lab Code:

AVB92-0100-03130

Extraction Method:

X2300196-001

Analysis Method:

EPA 5030B 8260B

Units: ug/L Basis: NA

Level: Low

				Dilution	Date	Date	
Analyte Name	Result	Q	MRL	Factor	Extracted	Analyzed	Arizona Qualifier
Dichlorodifluoromethane	ND	U	3.0	1	03/14/03	03/14/03	N1V4
Chloromethane	ND	U	2.0	1	03/14/03	03/14/03	
Vinyl Chloride	ND	U	1.0	1	03/14/03	03/14/03	
Bromomethane	ND	U	1.0	1	03/14/03	03/14/03	
Chloroethane	ND		1.0	1	03/14/03	03/14/03	
Trichlorofluoromethane	ND	U	1.0	1	03/14/03	03/14/03	
1,1,2-Trichlorotrifluoroethane	ND	U	1.0	1	03/14/03	03/14/03	
1,1-Dichloroethene	ND	U	1.0	1	03/14/03	03/14/03	
Acetone	ND	U	10	1	03/14/03	03/14/03	
Iodomethane	ND	U	2.0	1	03/14/03	03/14/03	
Carbon Disulfide	ND	U	2.0	1	03/14/03	03/14/03	
Methylene Chloride	ND	U	1.0	1	03/14/03	03/14/03	
Methyl tert-Butyl Ether	ND	U	1.0	1	03/14/03	03/14/03	
trans-1,2-Dichloroethene	ND	U	0.50	1	03/14/03	03/14/03	
1,1-Dichloroethane	ND	U	0.50	1	03/14/03	03/14/03	
Vinyl Acetate	ND	U	3.0	1	03/14/03	03/14/03	
2,2-Dichloropropane	ND	U	2.0	1	03/14/03	03/14/03	
2-Butanone (MEK)	ND	U	8.0	1	03/14/03	03/14/03	Mary to the two
cis-1,2-Dichloroethene	0.64		0.50	1	03/14/03	03/14/03	
Bromochloromethane	ND	U	0.50	1	03/14/03	03/14/03	
Chloroform	2.2		1.0	1	03/14/03	03/14/03	
1,1,1-Trichloroethane	ND	U	0.50	1	03/14/03	03/14/03	
Carbon Tetrachloride	ND		0.50	1	03/14/03	03/14/03	
1,1-Dichloropropene	ND	U	0.50	1	03/14/03	03/14/03	
Benzene	6.4		0.50	1	03/14/03	03/14/03	
1,2-Dichloroethane	ND	U	0.50	1	03/14/03	03/14/03	
Trichloroethene	1.0		0.50	1	03/14/03	03/14/03	
1,2-Dichloropropane	ND	U	0.50	1	03/14/03	03/14/03	
Dibromomethane	ND	U	0.50	1	03/14/03	03/14/03	
Bromodichloromethane	1.1		0.50	1	03/14/03	03/14/03	
cis-1,3-Dichloropropene	ND	U	0.50	1	03/14/03	03/14/03	
4-Methyl-2-pentanone (MIBK)	ND	U	8.0	1	03/14/03	03/14/03	
Toluene	0.68		0.50	1	03/14/03	03/14/03	

Comments:

Printed: 03/20/2003 12:45:58 L:\STEALTH\CRYSTAL.RPT\Formlm.rpt

Form 1A - Organic 000007

1 of 3 Page

Analytical Results

Client: Project: BE&K Terranext WVBA/#03103154

Sample Matrix:

Water

Service Request: X2300196

Date Collected: 03/10/2003 **Date Received:** 03/10/2003

Volatile Organic Compounds

Sample Name:

AVB92-0100-03130

Lab Code:

X2300196-001

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

				Dilution	Date	Date	
Analyte Name	Result	Q	MRL	Factor	Extracted	Analyzed	Arizona Qualifier
trans-1,3-Dichloropropene	ND	U	1.0	1	03/14/03	03/14/03	
1,1,2-Trichloroethane	ND		1.0	1	03/14/03	03/14/03	
Tetrachloroethene	130	D	5.0	10	03/14/03	03/14/03	D2
2-Hexanone	ND	U	5.0	1	03/14/03	03/14/03	N1V4
1,3-Dichloropropane			1.0	1	03/14/03	03/14/03	
Dibromochloromethane	ND	U	0.50	1	03/14/03	03/14/03	
1,2-Dibromoethane	ND		0.50	1	03/14/03	03/14/03	
Chlorobenzene	ND		0.50	1	03/14/03	03/14/03	
1,1,1,2-Tetrachloroethane	ND	U	0.50	1	03/14/03	03/14/03	
Ethylbenzene	ND	U	0.50	1	03/14/03	03/14/03	
m,p-Xylenes	ND	U	1.0	1	03/14/03	03/14/03	
o-Xylene	ND	U	0.50	1	03/14/03	03/14/03	
Styrene .	ND	U	0.50	1	03/14/03	03/14/03	
Isopropylbenzene	ND	U	0.50	1	03/14/03	03/14/03	
Bromobenzene	ND	U	0.50	1	03/14/03	03/14/03	
1,2,3-Trichloropropane			1.0	1	03/14/03	03/14/03	
n-Propylbenzene	ND		0.50	1	03/14/03	03/14/03	
2-Chlorotoluene	ND	U	0.50	1	03/14/03	03/14/03	
4-Chlorotoluene	ND		0.50	1	03/14/03	03/14/03	
1,3,5-Trimethylbenzene	ND		0.50	1	03/14/03	03/14/03	
tert-Butylbenzene	ND	U	0.50	1	03/14/03	03/14/03	
1,2,4-Trimethylbenzene	ND	U	0.50	1	03/14/03	03/14/03	
sec-Butylbenzene	ND		0.50	1	03/14/03	03/14/03	
1,3-Dichlorobenzene	ND	U	0.50	1	03/14/03	03/14/03	
4-Isopropyltoluene	ND		0.50	1	03/14/03	03/14/03	
Bromoform	ND		0.50	1	03/14/03	03/14/03	
1,1,2,2-Tetrachloroethane	ND	U	1.0	1	03/14/03	03/14/03	
1,4-Dichlorobenzene	ND	U	0.50	1	03/14/03	03/14/03	
1,2-Dichlorobenzene	ND		0.50	1	03/14/03	03/14/03	
n-Butylbenzene	ND	U	0.50	1	03/14/03	03/14/03	
1,2-Dibromo-3-chloropropane	ND		5.0	1	03/14/03	03/14/03	
1,2,4-Trichlorobenzene	ND		0.50	1	03/14/03	03/14/03	
Hexachlorobutadiene	ND	U	0.50	1	03/14/03	03/14/03	

Comments:

Analytical Results

Client: Project: BE&K Terranext WVBA/#03103154

Sample Matrix:

Water

Service Request: X2300196

Date Collected: 03/10/2003

Date Received: 03/10/2003

Volatile Organic Compounds

Sample Name: Lab Code:

AVB92-0100-03130

X2300196-001

Extraction Method:

EPA 5030B

Units: ug/L Basis: NA

Level: Low

Analysis Method:

8260B

			Dilution	Date	Date	
Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed	Arizona Qualifier
Naphthalene	ND U	3.0	1	03/14/03	03/14/03	
1,2,3-Trichlorobenzene	ND U	0.50	1	03/14/03	03/14/03	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Arizona Qualifier	
Dibromofluoromethane	103	84-113	03/14/03		
Toluene-d8	117	68-126	03/14/03		
4-Bromofluorobenzene	111	79-113	03/14/03		

Comments:

Printed: 03/20/2003 12:45:58 L:\STEALTH\CRYSTAL.RPT\Form1m.rpt

RR3104

Analytical Results

Client: Project: BE&K Terranext WVBA/#03103154

Sample Matrix:

Water

Service Request: X2300196

Date Collected: 03/10/2003 **Date Received:** 03/10/2003

Volatile Organic Compounds

Sample Name:

AVB74-0100-07088

Lab Code:

X2300196-002

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

A. N. N	Doggle O	MRL	Dilution Factor	Date Extracted	Date	Arizona Qualifier
Analyte Name	Result Q			03/18/03	03/18/03	N1V4
Dichlorodifluoromethane	ND U ND U	3.0 2.0	1 1	03/18/03	03/18/03	N1 V4
Chloromethane Vinyl Chloride	ND U	1.0	1	03/18/03	03/18/03	
				03/18/03	03/18/03	45 744
Bromomethane	ND U ND U	1.0 1.0	1 1	03/18/03	03/18/03	
Chloroethane Trichlorofluoromethane	ND U ND U	1.0	1	03/18/03	03/18/03	
				03/18/03	03/18/03	
1,1,2-Trichlorotrifluoroethane	ND U	1.0	1	03/18/03	03/18/03	
1,1-Dichloroethene	ND U	1.0 10	1 1	03/18/03	03/18/03	
Acetone	ND U					
Iodomethane	ND U	2.0	1	03/18/03	03/18/03	
Carbon Disulfide	ND U	2.0	1	03/18/03	03/18/03	
Methylene Chloride	ND U	1.0	1	03/18/03	03/18/03	A APPEN
Methyl tert-Butyl Ether	ND U	1.0	1	03/18/03	03/18/03	
trans-1,2-Dichloroethene	ND U	0.50	1	03/18/03	03/18/03	
1,1-Dichloroethane	ND U	0.50	1	03/18/03	03/18/03	
Vinyl Acetate	ND U	3.0	1	03/18/03	03/18/03	
2,2-Dichloropropane	ND U	2.0	1	03/18/03	03/18/03	
2-Butanone (MEK)	ND U	8.0	1	03/18/03	03/18/03	L2
cis-1,2-Dichloroethene	ND U	0.50	1	03/18/03	03/18/03	
Bromochloromethane	ND U	0.50	1	03/18/03	03/18/03	
Chloroform	2.6	1.0	1	03/18/03	03/18/03	
1,1,1-Trichloroethane	ND U	0.50	1	03/18/03	03/18/03	
Carbon Tetrachloride	ND U	0.50	1	03/18/03	03/18/03	
1,1-Dichloropropene	ND U	0.50	1	03/18/03	03/18/03	
Benzene	0.95	0.50	1	03/18/03	03/18/03	
1,2-Dichloroethane	ND U	0.50	1	03/18/03	03/18/03	
Trichloroethene	1.2	0.50	1	03/18/03	03/18/03	
1,2-Dichloropropane	ND U	0.50	1	03/18/03	03/18/03	
Dibromomethane	ND U	0.50	1	03/18/03	03/18/03	
Bromodichloromethane	0.72	0.50	1	03/18/03	03/18/03	
cis-1,3-Dichloropropene	ND U	0.50	1	03/18/03	03/18/03	
4-Methyl-2-pentanone (MIBK)	ND U	8.0	1	03/18/03	03/18/03	
Toluene	ND U	0.50	1	03/18/03	03/18/03	

Comments:
Communication.

Printed: 03/20/2003 12:46:09 L:\STEALTH\CRYSTAL.RPT\Form1m.rpt

Analytical Results

Client: Project: BE&K Terranext WVBA/#03103154

Sample Matrix:

Water

Service Request: X2300196

Date Collected: 03/10/2003 **Date Received:** 03/10/2003

Volatile Organic Compounds

Sample Name:

AVB74-0100-07088

Lab Code:

X2300196-002

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

			Dilution	Date	Date	
Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed	Arizona Qualifier
trans-1,3-Dichloropropene	ND U	1.0	1	03/18/03	03/18/03	
1,1,2-Trichloroethane	ND U	1.0	1	03/18/03	03/18/03	
Tetrachloroethene	2.9	0.50	1	03/18/03	03/18/03	
2-Hexanone	ND U	5.0	1	03/18/03	03/18/03	N1V4
1,3-Dichloropropane	ND U	1.0	1	03/18/03	03/18/03	
Dibromochloromethane	ND U	0.50	1	03/18/03	03/18/03	
1,2-Dibromoethane	ND U	0.50	1	03/18/03	03/18/03	
Chlorobenzene	ND U	0.50	1	03/18/03	03/18/03	
1,1,1,2-Tetrachloroethane	ND U	0.50	1	03/18/03	03/18/03	
Ethylbenzene	ND U	0.50	1	03/18/03	03/18/03	
m,p-Xylenes	ND U	1.0	1	03/18/03	03/18/03	
o-Xylene	ND U	0.50	1	03/18/03	03/18/03	
Styrene	ND U	0.50	1	03/18/03	03/18/03	
Isopropylbenzene	ND U	0.50	1	03/18/03	03/18/03	
Bromobenzene	ND U	0.50	1	03/18/03	03/18/03	
1,2,3-Trichloropropane	ND U	1.0	1	03/18/03	03/18/03	
n-Propylbenzene	ND U	0.50	1	03/18/03	03/18/03	
2-Chlorotoluene	ND U	0.50	1	03/18/03	03/18/03	
4-Chlorotoluene	ND U	0.50	1	03/18/03	03/18/03	
1,3,5-Trimethylbenzene	ND U	0.50	1	03/18/03	03/18/03	
tert-Butylbenzene	ND U	0.50	1	03/18/03	03/18/03	N1V4
1,2,4-Trimethylbenzene	ND U	0.50	1	03/18/03	03/18/03	
sec-Butylbenzene	ND U	0.50	1	03/18/03	03/18/03	
1,3-Dichlorobenzene	ND U	0.50	1	03/18/03	03/18/03	
4-Isopropyltoluene	ND U	0.50	1	03/18/03	03/18/03	
Bromoform	ND U	0.50	1	03/18/03	03/18/03	
1,1,2,2-Tetrachloroethane	ND U	1.0	1	03/18/03	03/18/03	
1,4-Dichlorobenzene	ND U	0.50	1	03/18/03	03/18/03	
1,2-Dichlorobenzene	ND U	0.50	1	03/18/03	03/18/03	
n-Butylbenzene	ND U	0.50	1	03/18/03	03/18/03	
1,2-Dibromo-3-chloropropane	ND U	5.0	1	03/18/03	03/18/03	
1,2,4-Trichlorobenzene	ND U	0.50	1	03/18/03	03/18/03	
Hexachlorobutadiene	ND U	0.50	1	03/18/03	03/18/03	and the second of AUV

Comments:

Analytical Results

Client: **Project:** BE&K Terranext WVBA/#03103154

Sample Matrix:

Water

Service Request: X2300196

Date Collected: 03/10/2003

Date Received: 03/10/2003

Volatile Organic Compounds

Sample Name:

AVB74-0100-07088

Lab Code:

X2300196-002

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L

Basis: NA

Level: Low

			Dilution	Date	Date	
Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed	Arizona Qualifier
Naphthalene	ND U	3.0	1	03/18/03	03/18/03	
1,2,3-Trichlorobenzene	ND U	0.50	1	03/18/03	03/18/03	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Arizona Qualifier	
Dibromofluoromethane	94	84-113	03/18/03		
Toluene-d8	111	68-126	03/18/03		
4-Bromofluorobenzene	94	79-113	03/18/03		

Comments:

Printed: 03/20/2003 12:46:09 L:\STEALTH\CRYSTAL.RPT\Form1m.rpt

Analytical Results

Client: Project:

BE&K Terranext WVBA/#03103154

Sample Matrix:

Water

Service Request: X2300196 **Date Collected:** 03/10/2003

Date Collected: 03/10/2003 **Date Received:** 03/10/2003

Volatile Organic Compounds

Sample Name: Lab Code: AVB29-0100-19111 X2300196-003

Extraction Method: Analysis Method:

EPA 5030B 8260B Units: ug/L Basis: NA

Level: Low

				Dilution	Date	Date	A O 125'
Analyte Name	Result		MRL	Factor	Extracted		Arizona Qualifier
Dichlorodifluoromethane	ND		3.0	1	03/18/03	03/18/03	N1V4
Chloromethane	ND		2.0	1	03/18/03	03/18/03	
Vinyl Chloride	ND	U	1.0	1	03/18/03	03/18/03	
Bromomethane	ND	U	1.0	1	03/18/03	03/18/03	
Chloroethane	ND	U	1.0	1	03/18/03	03/18/03	
Trichlorofluoromethane	ND	U	1.0	1	03/18/03	03/18/03	
1,1,2-Trichlorotrifluoroethane	ND	U	1.0	1	03/18/03	03/18/03	
1,1-Dichloroethene	ND	U	1.0	1	03/18/03	03/18/03	
Acetone	ND	U	10	1	03/18/03	03/18/03	
Iodomethane	ND	U	2.0	1	03/18/03	03/18/03	
Carbon Disulfide	ND	U	2.0	1	03/18/03	03/18/03	
Methylene Chloride	ND	U	1.0	1	03/18/03	03/18/03	
Methyl tert-Butyl Ether	ND	U	1.0	1	03/18/03	03/18/03	
trans-1,2-Dichloroethene	ND		0.50	1	03/18/03	03/18/03	
1,1-Dichloroethane	ND	U	0.50	1	03/18/03	03/18/03	
Vinyl Acetate	ND	U	3.0	1	03/18/03	03/18/03	
2,2-Dichloropropane	ND		2.0	1	03/18/03	03/18/03	
2-Butanone (MEK)	ND	U	8.0	1	03/18/03	03/18/03	L2
cis-1,2-Dichloroethene	ND	U	0.50	1	03/18/03	03/18/03	
Bromochloromethane	ND		0.50	1	03/18/03	03/18/03	
Chloroform	2.9		1.0	1	03/18/03	03/18/03	
1,1,1-Trichloroethane	ND	U	0.50	1	03/18/03	03/18/03	
Carbon Tetrachloride	ND		0.50	1	03/18/03	03/18/03	
1,1-Dichloropropene	ND	U	0.50	1	03/18/03	03/18/03	
Benzene	ND	U	0.50	1	03/18/03	03/18/03	All I
1,2-Dichloroethane	ND		0.50	1	03/18/03	03/18/03	
Trichloroethene	1.6		0.50	1	03/18/03	03/18/03	
1,2-Dichloropropane	ND		0.50	1	03/18/03	03/18/03	
Dibromomethane	ND		0.50	î	03/18/03	03/18/03	
Bromodichloromethane	0.79		0.50	1	03/18/03	03/18/03	
cis-1,3-Dichloropropene	ND		0,50	1	03/18/03	03/18/03	
4-Methyl-2-pentanone (MIBK)	ND ND		8.0	1	03/18/03	03/18/03	
Toluene	ND		0.50	1	03/18/03	03/18/03	
TOTUCIE			0.00				

Comments:

Printed: 03/20/2003 12:46:20 L:\STEALTH\CRYSTAL.RPT\Form1m.rpt

Merged

Form 1A - Organic 00013

Page 1 of 3

SuperSet Reference:

RR3104

Analytical Results

Client: **Project:** BE&K Terranext WVBA/#03103154

Sample Matrix:

Water

Service Request: X2300196

Date Collected: 03/10/2003 **Date Received:** 03/10/2003

Volatile Organic Compounds

Sample Name: Lab Code:

AVB29-0100-19111 X2300196-003

Extraction Method: Analysis Method:

EPA 5030B

8260B

Units: ug/L Basis: NA

Level: Low

Analyte Name	Result	0	MRL	Dilution Factor	Date Extracted	Date Analyzed	Arizona Qualifier
trans-1,3-Dichloropropene	ND		1.0	1	03/18/03	03/18/03	
1,1,2-Trichloroethane	ND		1.0	1	03/18/03	03/18/03	
Tetrachloroethene	2.6		0.50	1	03/18/03	03/18/03	
2-Hexanone	ND	U	5.0	1	03/18/03	03/18/03	N1V4
1,3-Dichloropropane	ND		1.0	1	03/18/03	03/18/03	
Dibromochloromethane	ND		0.50	1	03/18/03	03/18/03	
1,2-Dibromoethane	ND	U	0.50	1	03/18/03	03/18/03	
Chlorobenzene	ND	U	0.50	1	03/18/03	03/18/03	
1,1,1,2-Tetrachloroethane	ND	U	0.50	1	03/18/03	03/18/03	
Ethylbenzene	ND	U	0.50	1	03/18/03	03/18/03	
m,p-Xylenes	ND	U	1.0	1	03/18/03	03/18/03	
o-Xylene	ND	U	0.50	1	03/18/03	03/18/03	
Styrene	ND	U	0.50	1	03/18/03	03/18/03	
Isopropylbenzene	ND	U	0.50	1	03/18/03	03/18/03	
Bromobenzene	ND	U	0.50	1	03/18/03	03/18/03	
1,2,3-Trichloropropane	ND	U	1.0	1	03/18/03	03/18/03	
n-Propylbenzene	ND	U	0.50	1	03/18/03	03/18/03	
2-Chlorotoluene	ND	U	0.50	1	03/18/03	03/18/03	
4-Chlorotoluene	ND	U	0.50	1	03/18/03	03/18/03	
1,3,5-Trimethylbenzene	ND	U	0.50	1 .	03/18/03	03/18/03	
tert-Butylbenzene	ND	U	0.50	1	03/18/03	03/18/03	N1V4
1,2,4-Trimethylbenzene	ND	U	0.50	1	03/18/03	03/18/03	
sec-Butylbenzene	ND		0.50	1	03/18/03	03/18/03	
1,3-Dichlorobenzene	ND	U	0.50	1	03/18/03	03/18/03	
4-Isopropyltoluene	ND	U	0.50	1	03/18/03	03/18/03	
Bromoform	ND		0.50	1	03/18/03	03/18/03	
1,1,2,2-Tetrachloroethane	ND	U	1.0	1	03/18/03	03/18/03	
1,4-Dichlorobenzene	ND		0.50	1	03/18/03	03/18/03	
1,2-Dichlorobenzene	ND		0.50	1	03/18/03	03/18/03	
n-Butylbenzene	ND	U	0.50	1	03/18/03	03/18/03	
1,2-Dibromo-3-chloropropane	ND	U	5.0	1	03/18/03	03/18/03	
1,2,4-Trichlorobenzene	ND	U	0.50	1	03/18/03	03/18/03	
Hexachlorobutadiene	ND	U	0.50	1	03/18/03	03/18/03	

Comments:

Analytical Results

Client: Project: BE&K Terranext WVBA/#03103154

Sample Matrix:

Water

Service Request: X2300196

Date Collected: 03/10/2003

Date Received: 03/10/2003

Volatile Organic Compounds

Sample Name: Lab Code:

AVB29-0100-19111

X2300196-003

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

			Dilution	Date	Date	
Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed	Arizona Qualifier
Naphthalene	ND U	3.0	1	03/18/03	03/18/03	
1,2,3-Trichlorobenzene	ND U	0.50	1	03/18/03	03/18/03	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Arizona Qualifier	
Dibromofluoromethane	97	84-113	03/18/03		
Toluene-d8	106	68-126	03/18/03		
4-Bromofluorobenzene	97	79-113	03/18/03		

Comments:

Printed: 03/20/2003 12:46:20 L:\STEALTH\CRYSTAL.RPT\Form1m.rpt

Analytical Results

Client: Project: BE&K Terranext WVBA/#03103154

Sample Matrix:

Water

Service Request: X2300196 **Date Collected:** 03/10/2003

Date Received: 03/10/2003

Volatile Organic Compounds

Sample Name: Lab Code:

AVB71-0100-07125 X2300196-004

Extraction Method: Analysis Method:

EPA 5030B 8260B

Units: ug/L Basis: NA

Level: Low

				Dilution	Date	Date	
Analyte Name	Result	Q	MRL	Factor	Extracted		Arizona Qualifier
Dichlorodifluoromethane	ND	U	3.0	1	03/18/03	03/18/03	N1V4
Chloromethane	ND	U	2.0	1	03/18/03	03/18/03	
Vinyl Chloride	ND	U	1.0	1	03/18/03	03/18/03	
Bromomethane	ND	U	1.0	1	03/18/03	03/18/03	
Chloroethane	ND	U	1.0	1	03/18/03	03/18/03	
Trichlorofluoromethane	ND	U	1.0	1	03/18/03	03/18/03	
1,1,2-Trichlorotrifluoroethane	ND	U	1.0	1	03/18/03	03/18/03	
1,1-Dichloroethene	ND	U	1.0	1	03/18/03	03/18/03	
Acetone	ND	U	10	1	03/18/03	03/18/03	
Iodomethane	ND	U	2.0	1	03/18/03	03/18/03	
Carbon Disulfide	ND	U	2.0	1	03/18/03	03/18/03	
Methylene Chloride	ND	U	1.0	1	03/18/03	03/18/03	
Methyl tert-Butyl Ether	ND	U	1.0	1	03/18/03	03/18/03	
trans-1,2-Dichloroethene	ND	U	0.50	1	03/18/03	03/18/03	
1,1-Dichloroethane	ND	U	0.50	1	03/18/03	03/18/03	- Annual - A
Vinyl Acetate	ND		3.0	1	03/18/03	03/18/03	
2,2-Dichloropropane	ND	U	2.0	1	03/18/03	03/18/03	
2-Butanone (MEK)	ND	U	8.0	11	03/18/03		L2
cis-1,2-Dichloroethene	ND	U	0.50	1	03/18/03	03/18/03	
Bromochloromethane	ND	U	0.50	1	03/18/03	03/18/03	
Chloroform	ND	U	1.0	1	03/18/03	03/18/03	
1,1,1-Trichloroethane	ND	U	0.50	1	03/18/03	03/18/03	
Carbon Tetrachloride	ND	U	0.50	1	03/18/03	03/18/03	
1,1-Dichloropropene	ND	U	0.50	1	03/18/03	03/18/03	
Benzene	1.3		0.50	1	03/18/03	03/18/03	
1,2-Dichloroethane	ND	U	0.50	1	03/18/03	03/18/03	
Trichloroethene	ND	U	0.50	1	03/18/03	03/18/03	
1,2-Dichloropropane	ND	U	0.50	1	03/18/03	03/18/03	
Dibromomethane	ND	U	0.50	1	03/18/03	03/18/03	
Bromodichloromethane	ND	U	0.50	1	03/18/03	03/18/03	
cis-1,3-Dichloropropene	ND	U	0.50	1	03/18/03	03/18/03	
4-Methyl-2-pentanone (MIBK)	ND	U	8.0	1	03/18/03	03/18/03	
Toluene	ND	U	0.50	1	03/18/03	03/18/03	

Comments:

Printed: 03/20/2003 12:46:31 L:\STEALTH\CRYSTAL.RPT\Form1m.rpt

Merged

Form 1A - Organic 000016 Page 1 of 3

Analytical Results

Client: Project: BE&K Terranext WVBA/#03103154

Sample Matrix:

Water

Service Request: X2300196

Date Collected: 03/10/2003 **Date Received:** 03/10/2003

Volatile Organic Compounds

Sample Name:

AVB71-0100-07125

Lab Code:

X2300196-004

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

			Dilution	Date	Date	
Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed	Arizona Qualifier
trans-1,3-Dichloropropene	ND U	1.0	1	03/18/03	03/18/03	
1,1,2-Trichloroethane	ND U	1.0	1	03/18/03	03/18/03	
Tetrachloroethene	ND U	0.50	1	03/18/03	03/18/03	
2-Hexanone	ND U	5.0	1	03/18/03	03/18/03	N1V4
1,3-Dichloropropane	ND U	1.0	1	03/18/03	03/18/03	
Dibromochloromethane	ND U	0.50	1	03/18/03	03/18/03	
1,2-Dibromoethane	ND U	0.50	1	03/18/03	03/18/03	
Chlorobenzene	ND U	0.50	1	03/18/03	03/18/03	
1,1,1,2-Tetrachloroethane	ND U	0.50	1	03/18/03	03/18/03	
Ethylbenzene	ND U	0.50	1	03/18/03	03/18/03	
m,p-Xylenes	ND U	1.0	1	03/18/03	03/18/03	
o-Xylene	ND U	0.50	1	03/18/03	03/18/03	
Styrene	ND U	0.50	1	03/18/03	03/18/03	
Isopropylbenzene	ND U	0.50	1	03/18/03	03/18/03	
Bromobenzene	ND U	0.50	1	03/18/03	03/18/03	
1,2,3-Trichloropropane	ND U	1.0	1	03/18/03	03/18/03	
n-Propylbenzene	ND U	0.50	1	03/18/03	03/18/03	
2-Chlorotoluene	ND U	0.50	1	03/18/03	03/18/03	L. Paragonia
4-Chlorotoluene	ND U	0.50	1	03/18/03	03/18/03	
1,3,5-Trimethylbenzene	ND U	0.50	1	03/18/03	03/18/03	
tert-Butylbenzene	ND U	0.50	1	03/18/03		N1V4
1,2,4-Trimethylbenzene	ND U	0.50	1	03/18/03	03/18/03	
sec-Butylbenzene	ND U	0.50	1	03/18/03	03/18/03	
1,3-Dichlorobenzene	ND U	0.50	1	03/18/03	03/18/03	
4-Isopropyltoluene	ND U	0.50	1	03/18/03	03/18/03	
Bromoform	ND U	0.50	1	03/18/03	03/18/03	
1,1,2,2-Tetrachloroethane	ND U	1.0	1	03/18/03	03/18/03	
1,4-Dichlorobenzene	ND U	0.50	1	03/18/03	03/18/03	
1,2-Dichlorobenzene	ND U	0.50	1	03/18/03	03/18/03	
n-Butylbenzene	ND U	0.50	11	03/18/03	03/18/03	
1,2-Dibromo-3-chloropropane	ND U	5.0	1	03/18/03	03/18/03	
1,2,4-Trichlorobenzene	ND U	0.50	1	03/18/03	03/18/03	
Hexachlorobutadiene	ND U	0.50	1	03/18/03	03/18/03	

Comments:

 $\begin{array}{lll} Printed: & 03/20/2003 & 12:46:31 \\ \text{L\STEALTH\CRYSTAL.RPT\Formlm.rpt} \end{array}$

Analytical Results

Client: Project: BE&K Terranext WVBA/#03103154

Sample Matrix:

Water

Service Request: X2300196

Date Collected: 03/10/2003

Date Received: 03/10/2003

Volatile Organic Compounds

Sample Name:

AVB71-0100-07125

Lab Code:

X2300196-004

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

			Dilution	Date	Date	
Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed	Arizona Qualifier
Naphthalene	ND U	3.0	1	03/18/03	03/18/03	
1,2,3-Trichlorobenzene	ND U	0.50	1	03/18/03	03/18/03	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Arizona Qualifier	
Dibromofluoromethane	97	84-113	03/18/03		
Toluene-d8	107	68-126	03/18/03		
4-Bromofluorobenzene	94	79-113	03/18/03		

Comments:

Printed: 03/20/2003 12:46:31 L:\STEALTH\CRYSTAL.RPT\Form\lm.rpt

Merged

Form 1A - Organic

000018

SuperSet Reference: RR3104

Page 3 of 3

Analytical Results

Client: Project: BE&K Terranext WVBA/#03103154

Sample Matrix:

Water

Service Request: X2300196 **Date Collected:** 03/10/2003

Date Collected: 03/10/2003 **Date Received:** 03/10/2003

Volatile Organic Compounds

Sample Name: Lab Code: AVB71-0104-1000 X2300196-005

Extraction Method: Analysis Method:

EPA 5030B 8260B Units: ug/L Basis: NA

Level: Low

			Dilution	n Date	Date	
Analyte Name	Result	Q MRI	Factor	Extracted		Arizona Qualifier
Dichlorodifluoromethane	ND	U 3.0	1	03/18/03	03/18/03	N1V4
Chloromethane	ND	U 2.0	1	03/18/03	03/18/03	
Vinyl Chloride	ND	U 1.0	1	03/18/03	03/18/03	
Bromomethane	ND	U 1.0	1	03/18/03	03/18/03	
Chloroethane	ND		1	03/18/03	03/18/03	
Trichlorofluoromethane	ND	U 1.0	1	03/18/03	03/18/03	
1,1,2-Trichlorotrifluoroethane	ND	U 1.0	1	03/18/03	03/18/03	
1,1-Dichloroethene	ND	U 1.0	1	03/18/03	03/18/03	
Acetone	ND	U 10	1	03/18/03	03/18/03	
Iodomethane	ND	U 2.0	1	03/18/03	03/18/03	
Carbon Disulfide	ND	U 2.0	1	03/18/03	03/18/03	
Methylene Chloride	ND	U 1.0	1	03/18/03	03/18/03	
Methyl tert-Butyl Ether	ND	U 1.0	1	03/18/03	03/18/03	
trans-1,2-Dichloroethene	ND		1	03/18/03	03/18/03	
1,1-Dichloroethane	ND	U 0.50	1	03/18/03	03/18/03	
Vinyl Acetate	ND	U 3.0	1	03/18/03	03/18/03	
2,2-Dichloropropane	ND	U 2.0	1	03/18/03	03/18/03	
2-Butanone (MEK)	ND	U 8.0	1	03/18/03	03/18/03	L2
cis-1,2-Dichloroethene	ND	U 0.50	1	03/18/03	03/18/03	
Bromochloromethane	ND	U 0.50	1	03/18/03	03/18/03	
Chloroform	ND	U 1.0	1	03/18/03	03/18/03	
1,1,1-Trichloroethane	ND	U 0.50	1	03/18/03	03/18/03	
Carbon Tetrachloride	ND	U 0.50	1	03/18/03	03/18/03	
1,1-Dichloropropene	ND	U 0.50	1	03/18/03	03/18/03	
Benzene	ND	U 0.50	1	03/18/03	03/18/03	
1,2-Dichloroethane	ND		1	03/18/03	03/18/03	
Trichloroethene	ND	U 0.50	1	03/18/03	03/18/03	
1,2-Dichloropropane	ND	U 0.50	1	03/18/03	03/18/03	
Dibromomethane	ND		1	03/18/03	03/18/03	
Bromodichloromethane	ND	U 0.50	1	03/18/03	03/18/03	
cis-1,3-Dichloropropene	ND	U 0.50	1	03/18/03	03/18/03	
4-Methyl-2-pentanone (MIBK)	ND		1	03/18/03	03/18/03	
Toluene	ND		1	03/18/03	03/18/03	

Comments:

Printed: 03/20/2003 12:46:43 L:\STEALTH\CRYSTAL.RPT\Formlm.rpt

Form 1A - Organic

000019

Page 1 of 3

SuperSet Reference:

RR3104

Analytical Results

Client: Project: BE&K Terranext WVBA/#03103154

Sample Matrix:

Water

Service Request: X2300196

Date Collected: 03/10/2003 **Date Received:** 03/10/2003

Volatile Organic Compounds

Sample Name: Lab Code:

AVB71-0104-1000 X2300196-005

Extraction Method: Analysis Method:

EPA 5030B

8260B

Units: ug/L Basis: NA

Level: Low

Analyte Name Result Q MRL Factor Extracted Analyzed Arizona Qualiffer trans-1,3-Dichloropopene ND U 1.0 1 03/18/03 03/18/03 1,1,2-Trichloroethane ND U 0.50 1 03/18/03 03/18/03 2-Hexanone ND U 5.0 1 03/18/03 03/18/03 1,3-Dichloropopane ND U 1.0 1 03/18/03 03/18/03 1,3-Dichloromoethane ND U 0.50 1 03/18/03 03/18/03 1,2-Dibromoethane ND U 0.50 1 03/18/03 03/18/03 1,1,1,2-Tetrachloroethane ND U 0.50 1 03/18/03 03/18/03 1,1,1,2-Tetrachloroethane ND U 0.50 1 03/18/03 03/18/03 Ethylbenzere ND U 0.50 1 03/18/03 03/18/03 1,1,2-Tetrachloroethane ND U 0.50 1 03/18/03 03/18/03 Styrene ND U 0.50 1 03/18/03					Dilution	Date	Date	
1,1,2-Trichloroethane	Analyte Name	Result	Q	MRL	Factor	Extracted	Analyzed	Arizona Qualifier
Tetrachloroethene	trans-1,3-Dichloropropene	ND	U	1.0	1			
2-Hexanone	1,1,2-Trichloroethane			1.0	1			
1,3-Dichloropropane	Tetrachloroethene	ND	U	0.50	1	03/18/03	03/18/03	
Dibromochloromethane	2-Hexanone	ND	U	5.0	1	03/18/03		N1V4
1,2-Dibromoethane	1,3-Dichloropropane	ND	U	1.0	1			
Chlorobenzene ND U 0.50 1 03/18/03 03/18/03 1,1,2-Tetrachloroethane ND U 0.50 1 03/18/03 03/18/03 03/18/03 1,1,1,2-Tetrachloroethane ND U 0.50 1 03/18/03 03/18/03 03/18/03 m,p-Xylene ND U 1.0 1 03/18/03 03/18/0	Dibromochloromethane	ND	U	0.50	1	03/18/03	03/18/03	
Chlorobenzene	1,2-Dibromoethane	ND	U	0.50	1	03/18/03	03/18/03	
Description	Chlorobenzene	ND	U	0.50	1			
m,p-Xylenes ND U 1.0 1 03/18/03 03/18/03 o-Xylene ND U 0.50 1 03/18/03 03/18/03 Styrene ND U 0.50 1 03/18/03 03/18/03 Isopropylbenzene ND U 0.50 1 03/18/03 03/18/03 Bromobenzene ND U 0.50 1 03/18/03 03/18/03 Bromobenzene ND U 0.50 1 03/18/03 03/18/03 1,2,3-Trichloropropane ND U 1.0 1 03/18/03 03/18/03 1-Propylbenzene ND U 0.50 1 03/18/03 03/18/03 2-Chlorotoluene ND U 0.50 1 03/18/03 03/18/03 4-Chlorotoluene ND U 0.50 1 03/18/03 03/18/03 1,3,5-Trimethylbenzene ND U 0.50 1 03/18/03 03/18/03 1,2,4-Trimethylbenzene ND U 0.50 1 03/18/03 03/18/03 1,2,4-Trimethylbenzene ND U 0.50 1 03/18/03 03/18/03 1,3-Dichlorobenzene ND U 0.50 1 03/18/03 03/18/03 1,3-Pichlorobenzene ND U 0.50 1 03/18/03 03/18/03 Bromoform	1,1,1,2-Tetrachloroethane	ND	U	0.50	1	03/18/03	03/18/03	
ND U	Ethylbenzene	ND	U	0.50	1			
Styrene	m,p-Xylenes	ND	U	1.0	1			
Sopropylbenzene ND U 0.50 1 03/18/03 03/18/03 03/18/03 1,2,3-Trichloropropane ND U 0.50 1 03/18/03 03/18/03 1,2,3-Trichloropropane ND U 0.50 1 03/18/03 03/18/03 03/18/03 1,2,3-Trichloropropane ND U 0.50 1 03/18/03	o-Xylene	ND	U	0.50	1	03/18/03	03/18/03	
Isopropylbenzene	Styrene	ND	U	0.50	1			
Bromobenzene ND U 0.50 1 03/18/03 03/18/03 1,2,3-Trichloropropane ND U 1.0 1 03/18/03 03/18/03 n-Propylbenzene ND U 0.50 1 03/18/03 03/18/03 2-Chlorotoluene ND U 0.50 1 03/18/03 03/18/03 4-Chlorotoluene ND U 0.50 1 03/18/03 03/18/03 1,3,5-Trimethylbenzene ND U 0.50 1 03/18/03 03/18/03 tert-Butylbenzene ND U 0.50 1 03/18/03 03/18/03 1,2,4-Trimethylbenzene ND U 0.50 1 03/18/03 03/18/03 1,2-Hrimethylbenzene ND U 0.50 1 03/18/03 03/18/03 1,3-Dichlorobenzene ND U 0.50 1 03/18/03 03/18/03 1,3-Dichlorobenzene ND U 0.50 1 03/18/03 03/18/03 4-Isopropyltoluene ND U 0.50 1 03/18/03 03/18/03 <		ND	U	0.50	1			
n-Propylbenzene ND U 0.50 1 03/18/03 03/18/03 4-Chlorotoluene ND U 0.50 1 03/18/03 03/18/03 4-Chlorotoluene ND U 0.50 1 03/18/03 03/18/03 1,3,5-Trimethylbenzene ND U 0.50 1 03/18/03 03/18/03 tert-Butylbenzene ND U 0.50 1 03/18/03 03/18/03 1,2,4-Trimethylbenzene ND U 0.50 1 03/18/03 03/18/03 sec-Butylbenzene ND U 0.50 1 03/18/03 03/18/03 sec-Butylbenzene ND U 0.50 1 03/18/03 03/18/03 1,3-Dichlorobenzene ND U 0.50 1 03/18/03 03/18/03 4-Isopropyltoluene ND U 0.50 1 03/18/03 03/18/03 Bromoform ND U 0.50 1 03/18/03 03/18/03 1,1,2,2-Tetrachloroethane ND U 1.0 1 03/18/03 03/18/03 1,4-Dichlorobenzene ND U 0.50 1 03/18/03 03/18/03 1,4-Dichlorobenzene ND U 0.50 1 03/18/03 03/18/03 1,2-Dichlorobenzene ND U 0.50 1 03/18/03 03/18/03 1,2-Dichlorobenzene ND U 0.50 1 03/18/03 03/18/03 1,2-Dichlorobenzene ND U 0.50 1 03/18/03 03/18/03 1,2-Dibromo-3-chloropropane ND U 5.0 1 03/18/03 03/18/03 1,2-Dibromo-3-chloropropane ND U 0.50 1 03/18/03 03/18/03 1,2-Trichlorobenzene ND U 0.50 1 03/18/03 03/18/03		ND	U	0.50	1	03/18/03	03/18/03	
2-Chlorotoluene ND U 0.50 1 03/18/03 03/18/03 4-Chlorotoluene ND U 0.50 1 03/18/03 03/18/03 1,3,5-Trimethylbenzene ND U 0.50 1 03/18/03 03/18/03 tert-Butylbenzene ND U 0.50 1 03/18/03 03/18/03 1,2,4-Trimethylbenzene ND U 0.50 1 03/18/03 03/18/03 sec-Butylbenzene ND U 0.50 1 03/18/03 03/18/03 1,3-Dichlorobenzene ND U 0.50 1 03/18/03 03/18/03 4-Isopropyltoluene ND U 0.50 1 03/18/03 03/18/03 Bromoform ND U 0.50 1 03/18/03 03/18/03 1,2,2-Tetrachloroethane ND U 0.50 1 03/18/03 03/18/03 1,4-Dichlorobenzene ND U 0.50 1 03/18/03 03/18/03 1,2-Dichlorobenzene ND U 0.50 1 03/18/03 03/18/03 <t< td=""><td>1,2,3-Trichloropropane</td><td>ND</td><td>U</td><td>1.0</td><td>1</td><td></td><td></td><td></td></t<>	1,2,3-Trichloropropane	ND	U	1.0	1			
4-Chlorotoluene ND U 0.50 1 03/18/03 03/18/03 1,3,5-Trimethylbenzene ND U 0.50 1 03/18/03 03/18/03 tert-Butylbenzene ND U 0.50 1 03/18/03 03/18/03 1,2,4-Trimethylbenzene ND U 0.50 1 03/18/03 03/18/03 sec-Butylbenzene ND U 0.50 1 03/18/03 03/18/03 1,3-Dichlorobenzene ND U 0.50 1 03/18/03 03/18/03 4-Isopropyltoluene ND U 0.50 1 03/18/03 03/18/03 Bromoform ND U 0.50 1 03/18/03 03/18/03 1,1,2,2-Tetrachloroethane ND U 1.0 1 03/18/03 03/18/03 1,4-Dichlorobenzene ND U 0.50 1 03/18/03 03/18/03 1,2-Dichlorobenzene ND U 0.50 1 03/18/03 03/18/03 1,2-Dibromo-3-chloropropane ND U 5.0 1 03/18/03 03/18/03	n-Propylbenzene	ND	U					
1,3,5-Trimethylbenzene ND U 0.50 1 03/18/03 03/18/03 tert-Butylbenzene ND U 0.50 1 03/18/03 03/18/03 N1V4 1,2,4-Trimethylbenzene ND U 0.50 1 03/18/03 03/18/03 sec-Butylbenzene ND U 0.50 1 03/18/03 03/18/03 1,3-Dichlorobenzene ND U 0.50 1 03/18/03 03/18/03 4-Isopropyltoluene ND U 0.50 1 03/18/03 03/18/03 Bromoform ND U 0.50 1 03/18/03 03/18/03 1,1,2,2-Tetrachloroethane ND U 1.0 1 03/18/03 03/18/03 1,4-Dichlorobenzene ND U 0.50 1 03/18/03 03/18/03 1,2-Dichlorobenzene ND U 0.50 1 03/18/03 03/18/03 1,2-Dibromo-3-chloropropane ND U 5.0 1 03/18/03 03/18/03 1,2,4-Trichlorobenzene ND U 0.50 1 03/18/03 03/18/03 1,2,4-Trichlorobenzene ND U 0.50 1 <td>2-Chlorotoluene</td> <td>ND</td> <td>U</td> <td>0.50</td> <td>1</td> <td>03/18/03</td> <td></td> <td></td>	2-Chlorotoluene	ND	U	0.50	1	03/18/03		
tert-Butylbenzene ND U 0.50 1 03/18/03 03/18/03 N1V4 1,2,4-Trimethylbenzene ND U 0.50 1 03/18/03 03/18/03 sec-Butylbenzene ND U 0.50 1 03/18/03 03/18/03 1,3-Dichlorobenzene ND U 0.50 1 03/18/03 03/18/03 4-Isopropyltoluene ND U 0.50 1 03/18/03 03/18/03 Bromoform ND U 0.50 1 03/18/03 03/18/03 1,1,2,2-Tetrachloroethane ND U 1.0 1 03/18/03 03/18/03 1,4-Dichlorobenzene ND U 0.50 1 03/18/03 03/18/03 1,4-Dichlorobenzene ND U 0.50 1 03/18/03 03/18/03 1,2-Dichlorobenzene ND U 0.50 1 03/18/03 03/18/03 1,2-Dibromo-3-chloropropane ND U 0.50 1 03/18/03 03/18/03 1,2-Dibromo-3-chloropropane ND U 5.0 1 03/18/03 03/18/03 1,2,4-Trichlorobenzene ND U 0.50 1 03/18/03 03/18/03 1,2,4-Trichlorobenzene ND U 0.50 1 03/18/03 03/18/03	4-Chlorotoluene	ND	U		1			
1,2,4-Trimethylbenzene ND U 0.50 1 03/18/03 03/18/03 sec-Butylbenzene ND U 0.50 1 03/18/03 03/18/03 1,3-Dichlorobenzene ND U 0.50 1 03/18/03 03/18/03 4-Isopropyltoluene ND U 0.50 1 03/18/03 03/18/03 Bromoform ND U 0.50 1 03/18/03 03/18/03 1,1,2,2-Tetrachloroethane ND U 1.0 1 03/18/03 03/18/03 1,4-Dichlorobenzene ND U 0.50 1 03/18/03 03/18/03 1,2-Dichlorobenzene ND U 0.50 1 03/18/03 03/18/03 n-Butylbenzene ND U 0.50 1 03/18/03 03/18/03 1,2-Dibromo-3-chloropropane ND U 5.0 1 03/18/03 03/18/03 1,2,4-Trichlorobenzene ND U 0.50 1 03/18/03 03/18/03	1,3,5-Trimethylbenzene	ND	U		1			
ND U 0.50 1 03/18/03 03/18/03 03/18/03 1,3-Dichlorobenzene ND U 0.50 1 03/18/03 03/18/03 03/18/03 4-Isopropyltoluene ND U 0.50 1 03/18/03 03/18/03 03/18/03 1,1,2,2-Tetrachloroethane ND U 0.50 1 03/18/03 03/18/03 1,4-Dichlorobenzene ND U 0.50 1 03/18/03 03/18/03 1,2-Dichlorobenzene ND U 0.50 1 03/18/03 03/18/03 1,2-Dichlorobenzene ND U 0.50 1 03/18/03 03/18/03 1,2-Dibromo-3-chloropropane ND U 0.50 1 03/18/03 03/18/03 1,2,4-Trichlorobenzene ND U 0.50 1 0.50	tert-Butylbenzene	ND	U	0.50	1	03/18/03	03/18/03	N1V4
sec-Butylbenzene ND U 0.50 1 03/18/03 03/18/03 1,3-Dichlorobenzene ND U 0.50 1 03/18/03 03/18/03 4-Isopropyltoluene ND U 0.50 1 03/18/03 03/18/03 Bromoform ND U 0.50 1 03/18/03 03/18/03 1,1,2,2-Tetrachloroethane ND U 1.0 1 03/18/03 03/18/03 1,4-Dichlorobenzene ND U 0.50 1 03/18/03 03/18/03 1,2-Dichlorobenzene ND U 0.50 1 03/18/03 03/18/03 n-Butylbenzene ND U 0.50 1 03/18/03 03/18/03 1,2-Dibromo-3-chloropropane ND U 5.0 1 03/18/03 03/18/03 1,2,4-Trichlorobenzene ND U 0.50 1 03/18/03 03/18/03	1,2,4-Trimethylbenzene	ND	U	0.50	1			
4-Isopropyltoluene ND U 0.50 1 03/18/03 03/18/03 Bromoform ND U 0.50 1 03/18/03 03/18/03 1,1,2,2-Tetrachloroethane ND U 1.0 1 03/18/03 03/18/03 1,4-Dichlorobenzene ND U 0.50 1 03/18/03 03/18/03 1,2-Dichlorobenzene ND U 0.50 1 03/18/03 03/18/03 n-Butylbenzene ND U 0.50 1 03/18/03 03/18/03 1,2-Dibromo-3-chloropropane ND U 5.0 1 03/18/03 03/18/03 1,2,4-Trichlorobenzene ND U 0.50 1 03/18/03 03/18/03		ND	U	0.50	1			
Bromoform ND U 0.50 1 03/18/03 03/18/03 1,1,2,2-Tetrachloroethane ND U 1.0 1 03/18/03 03/18/03 1,4-Dichlorobenzene ND U 0.50 1 03/18/03 03/18/03 1,2-Dichlorobenzene ND U 0.50 1 03/18/03 03/18/03 n-Butylbenzene ND U 0.50 1 03/18/03 03/18/03 1,2-Dibromo-3-chloropropane ND U 5.0 1 03/18/03 03/18/03 1,2,4-Trichlorobenzene ND U 0.50 1 03/18/03 03/18/03	1,3-Dichlorobenzene	ND	U	0.50	1	03/18/03	03/18/03	
Bromoform ND U 0.50 1 03/18/03 03/18/03 1,1,2,2-Tetrachloroethane ND U 1.0 1 03/18/03 03/18/03 1,4-Dichlorobenzene ND U 0.50 1 03/18/03 03/18/03 1,2-Dichlorobenzene ND U 0.50 1 03/18/03 03/18/03 n-Butylbenzene ND U 0.50 1 03/18/03 03/18/03 1,2-Dibromo-3-chloropropane ND U 5.0 1 03/18/03 03/18/03 1,2,4-Trichlorobenzene ND U 0.50 1 03/18/03 03/18/03	4-Isopropyltoluene	ND	U	0.50	1			
1,4-Dichlorobenzene ND U 0.50 1 03/18/03 03/18/03 1,2-Dichlorobenzene ND U 0.50 1 03/18/03 03/18/03 n-Butylbenzene ND U 0.50 1 03/18/03 03/18/03 1,2-Dibromo-3-chloropropane ND U 5.0 1 03/18/03 03/18/03 1,2,4-Trichlorobenzene ND U 0.50 1 03/18/03 03/18/03	Bromoform	ND	U					
1,2-Dichlorobenzene ND U 0.50 1 03/18/03 03/18/03 n-Butylbenzene ND U 0.50 1 03/18/03 03/18/03 1,2-Dibromo-3-chloropropane ND U 5.0 1 03/18/03 03/18/03 1,2,4-Trichlorobenzene ND U 0.50 1 03/18/03 03/18/03	1,1,2,2-Tetrachloroethane	ND	U	1.0	1	03/18/03	03/18/03	
n-Butylbenzene ND U 0.50 1 03/18/03 03/18/03 1,2-Dibromo-3-chloropropane ND U 5.0 1 03/18/03 03/18/03 1,2,4-Trichlorobenzene ND U 0.50 1 03/18/03 03/18/03	1,4-Dichlorobenzene	ND	U		1			
1,2-Dibromo-3-chloropropane ND U 5.0 1 03/18/03 03/18/03 1,2,4-Trichlorobenzene ND U 0.50 1 03/18/03 03/18/03	1,2-Dichlorobenzene	ND	U					
1,2,4-Trichlorobenzene ND U 0.50 1 03/18/03 03/18/03	n-Butylbenzene	ND	U	0.50	1	03/18/03	03/18/03	
1,2,1 111011101000111011	1,2-Dibromo-3-chloropropane							
Hexachlorobutadiene ND U 0.50 1 03/18/03 03/18/03	1,2,4-Trichlorobenzene							
	Hexachlorobutadiene	ND	U	0.50	1	03/18/03	03/18/03	

Comments:

Printed: 03/20/2003 12:46:43 L:\STEALTH\CRYSTAL.RPT\Form1m.rpt

Form 1A - Organic

000020

Page 2 of 3

Analytical Results

Client: Project: BE&K Terranext WVBA/#03103154

Sample Matrix:

Water

Service Request: X2300196

Date Collected: 03/10/2003

Date Received: 03/10/2003

Volatile Organic Compounds

Sample Name: Lab Code:

AVB71-0104-1000 X2300196-005

Units: ug/L Basis: NA

Extraction Method:

EPA 5030B

Level: Low

Analysis Method:

8260B

Analyte Name	Result Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Arizona Qualifier
Naphthalene	ND U	3.0	1	03/18/03 03/18/03	03/18/03 03/18/03	
1,2,3-Trichlorobenzene	ND U	0.50	Ţ	03/18/03	03/18/03	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Arizona Qualifier	
Dibromofluoromethane	95	84-113	03/18/03		
Toluene-d8	110	68-126	03/18/03		
4-Bromofluorobenzene	91	79-113	03/18/03		

Comments:

Printed: 03/20/2003 12:46:43 L:\STEALTH\CRYSTAL.RPT\Form1m.rpt

Analytical Results

Client: **Project:** BE&K Terranext WVBA/#03103154

Sample Matrix:

Water

Service Request: X2300196

Date Collected: 03/10/2003 **Date Received:** 03/10/2003

Volatile Organic Compounds

Sample Name: Lab Code:

AVB71-0102-1000 X2300196-006

Extraction Method: Analysis Method:

EPA 5030B 8260B

Units: ug/L Basis: NA

Level: Low

				Dilution	Date	Date	
Analyte Name	Result	Q	MRL	Factor	Extracted		Arizona Qualifier
Dichlorodifluoromethane	ND	U	3.0	1	03/14/03	03/14/03	N1V4
Chloromethane	ND		2.0	1	03/14/03	03/14/03	
Vinyl Chloride	ND	U	1.0	1	03/14/03	03/14/03	
Bromomethane	ND	U	1.0	1	03/14/03	03/14/03	
Chloroethane	ND	U	1.0	1	03/14/03	03/14/03	
Trichlorofluoromethane	ND	U	1.0	1	03/14/03	03/14/03	
1,1,2-Trichlorotrifluoroethane	ND	U	1.0	1	03/14/03	03/14/03	
1,1-Dichloroethene	ND	U	1.0	1	03/14/03	03/14/03	
Acetone	ND	U	10	1	03/14/03	03/14/03	
Iodomethane	ND	U	2.0	1	03/14/03	03/14/03	
Carbon Disulfide	ND	U	2.0	1	03/14/03	03/14/03	
Methylene Chloride	ND	U	1.0	1	03/14/03	03/14/03	
Methyl tert-Butyl Ether	ND	U .	1.0	1	03/14/03	03/14/03	
trans-1,2-Dichloroethene	ND	U	0.50	1	03/14/03	03/14/03	
1,1-Dichloroethane	ND	U	0.50	1	03/14/03	03/14/03	
Vinyl Acetate	ND	U	3.0	1	03/14/03	03/14/03	
2,2-Dichloropropane	ND	U	2.0	1	03/14/03	03/14/03	
2-Butanone (MEK)	ND	U	8.0	1	03/14/03	03/14/03	
cis-1,2-Dichloroethene	ND	U	0.50	1	03/14/03	03/14/03	
Bromochloromethane	ND	U	0.50	1	03/14/03	03/14/03	
Chloroform	ND	U	1.0	1	03/14/03	03/14/03	
1,1,1-Trichloroethane	ND	U	0.50	1	03/14/03	03/14/03	
Carbon Tetrachloride	ND	U	0.50	1	03/14/03	03/14/03	
1,1-Dichloropropene	ND	U	0.50	1	03/14/03	03/14/03	
Benzene	ND	U	0.50	1	03/14/03	03/14/03	
1,2-Dichloroethane	ND	U	0.50	1	03/14/03	03/14/03	
Trichloroethene	ND	U	0.50	1	03/14/03	03/14/03	
1,2-Dichloropropane	ND	U	0.50	1	03/14/03	03/14/03	
Dibromomethane	ND	U	0.50	1	03/14/03	03/14/03	
Bromodichloromethane	ND	U	0.50	1	03/14/03	03/14/03	
cis-1,3-Dichloropropene	ND	U	0.50	1	03/14/03	03/14/03	
4-Methyl-2-pentanone (MIBK)	ND		8.0	1	03/14/03	03/14/03	
Toluene	ND		0.50	1	03/14/03	03/14/03	

Comments:

Printed: 03/20/2003 12:46:54 L:\STEALTH\CRYSTAL.RPT\Form1m.rpt

Merged

Form 1A - Organic

Page 1 of 3

000022 SuperSet Reference:

RR3104

Analytical Results

Client: Project: BE&K Terranext WVBA/#03103154

Sample Matrix:

Water

Service Request: X2300196

Date Collected: 03/10/2003 **Date Received:** 03/10/2003

Volatile Organic Compounds

Sample Name: Lab Code:

AVB71-0102-1000 X2300196-006

Extraction Method: Analysis Method:

EPA 5030B 8260B

Units: ug/L Basis: NA

Level: Low

				Dilution	Date	Date	
Analyte Name	Result	Q_	MRL	Factor	Extracted		Arizona Qualifier
trans-1,3-Dichloropropene	ND	U	1.0	1	03/14/03	03/14/03	
1,1,2-Trichloroethane	ND		1.0	1	03/14/03	03/14/03	
Tetrachloroethene	ND	U	0.50	1	03/14/03	03/14/03	
2-Hexanone	ND	U	5.0	1	03/14/03	03/14/03	N1V4
1,3-Dichloropropane	ND	U	1.0	1	03/14/03	03/14/03	
Dibromochloromethane	ND	U	0.50	1	03/14/03	03/14/03	
1.2-Dibromoethane	ND	U	0.50	1	03/14/03	03/14/03	
Chlorobenzene	ND	U	0.50	1	03/14/03	03/14/03	
1,1,2-Tetrachloroethane	ND	U	0.50	1	03/14/03	03/14/03	
Ethylbenzene	ND	U	0.50	1	03/14/03	03/14/03	
m,p-Xylenes	ND	U	1.0	1	03/14/03	03/14/03	
o-Xylene	ND	U	0.50	1	03/14/03	03/14/03	
Styrene	ND	U	0.50	1	03/14/03	03/14/03	
Isopropylbenzene	ND	U	0.50	1	03/14/03	03/14/03	
Bromobenzene	ND	U	0.50	1	03/14/03	03/14/03	
1,2,3-Trichloropropane	ND	U	1.0	1	03/14/03	03/14/03	
n-Propylbenzene	ND	U	0.50	1	03/14/03	03/14/03	
2-Chlorotoluene	ND	U	0.50	1	03/14/03	03/14/03	
4-Chlorotoluene	ND	U	0.50	1	03/14/03	03/14/03	
1,3,5-Trimethylbenzene	ND	U	0.50	1	03/14/03	03/14/03	
tert-Butylbenzene	ND	U	0.50	1	03/14/03	03/14/03	
1,2,4-Trimethylbenzene	ND	U	0.50	1	03/14/03	03/14/03	
sec-Butylbenzene	ND	U	0.50	1	03/14/03	03/14/03	
1,3-Dichlorobenzene	ND	U	0.50	1	03/14/03	03/14/03	
4-Isopropyltoluene	ND	U	0.50	1	03/14/03	03/14/03	
Bromoform	ND	U	0.50	1	03/14/03	03/14/03	
1,1,2,2-Tetrachloroethane	ND	U	1.0	1	03/14/03	03/14/03	
1,4-Dichlorobenzene	ND	U	0.50	1	03/14/03	03/14/03	
1,2-Dichlorobenzene	ND	U	0.50	1	03/14/03	03/14/03	
n-Butylbenzene	ND	U	0.50	1	03/14/03	03/14/03	
1,2-Dibromo-3-chloropropane	ND	U	5.0	1	03/14/03	03/14/03	
1,2,4-Trichlorobenzene	ND		0.50	1	03/14/03	03/14/03	
Hexachlorobutadiene	ND		0.50	1	03/14/03	03/14/03	

Comments:

Printed: 03/20/2003 12:46:54

Page 2 of 3

Analytical Results

Client: Project: BE&K Terranext WVBA/#03103154

Sample Matrix:

Water

Service Request: X2300196 **Date Collected:** 03/10/2003

Date Received: 03/10/2003

Volatile Organic Compounds

Sample Name: Lab Code:

AVB71-0102-1000 X2300196-006

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

			Dilution	Date	Date	
Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed	Arizona Qualifier
Naphthalene	ND U	3.0	1	03/14/03	03/14/03	
1,2,3-Trichlorobenzene	ND U	0.50	1	03/14/03	03/14/03	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Arizona Qualifier	
Dibromofluoromethane	102	84-113	03/14/03		
Toluene-d8	116	68-126	03/14/03		
4-Bromofluorobenzene	109	79-113	03/14/03		

Comments:

Printed: 03/20/2003 12:46:54 L:\STEALTH\CRYSTAL.RPT\Formlm.rpt

Analytical Results

Client: **Project:** BE&K Terranext WVBA/#03103154

Sample Matrix:

Water

Service Request: X2300196

Date Collected: NA Date Received: NA

Volatile Organic Compounds

Sample Name: Lab Code:

Method Blank XWG0300346-3

Extraction Method: Analysis Method:

EPA 5030B 8260B

Units: ug/L Basis: NA

Level: Low

	Dogwld O	MRL	Dilution Factor	Date Extracted	Date Analyzed	Arizona Qualifier
Analyte Name	Result Q	3.0	1	03/14/03	03/14/03	N1V4
Dichlorodifluoromethane	ND U ND U	2.0	1	03/14/03	03/14/03	141 4 4
Chloromethane	ND U	1.0	1	03/14/03	03/14/03	
Vinyl Chloride			1	03/14/03	03/14/03	
Bromomethane	ND U	1.0 1.0	1	03/14/03	03/14/03	
Chloroethane	ND U ND U	1.0	1	03/14/03	03/14/03	
Trichlorofluoromethane				03/14/03	03/14/03	
1,1,2-Trichlorotrifluoroethane	ND U	1.0	1	03/14/03	03/14/03	
1,1-Dichloroethene	ND U	1.0	1 1	03/14/03	03/14/03	
Acetone	ND U	10				
Iodomethane	ND U	2.0	1	03/14/03	03/14/03	
Carbon Disulfide	ND U	2.0	1	03/14/03	03/14/03	
Methylene Chloride	ND U	1.0	1	03/14/03	03/14/03	
Methyl tert-Butyl Ether	ND U	1.0	1	03/14/03	03/14/03	
trans-1,2-Dichloroethene	ND U	0.50	1	03/14/03	03/14/03	
1,1-Dichloroethane	ND U	0.50	1	03/14/03	03/14/03	
Vinyl Acetate	ND U	3.0	1	03/14/03	03/14/03	
2,2-Dichloropropane	ND U	2.0	1	03/14/03	03/14/03	
2-Butanone (MEK)	ND U	8.0	1	03/14/03	03/14/03	
cis-1,2-Dichloroethene	ND U	0.50	1	03/14/03	03/14/03	
Bromochloromethane	ND U	0.50	1	03/14/03	03/14/03	
Chloroform	ND U	1.0	1	03/14/03	03/14/03	
1,1,1-Trichloroethane	ND U	0.50	1	03/14/03	03/14/03	
Carbon Tetrachloride	ND U	0.50	1	03/14/03	03/14/03	
1,1-Dichloropropene	ND U	0.50	1	03/14/03	03/14/03	
Benzene	ND U	0.50	1	03/14/03	03/14/03	
1,2-Dichloroethane	ND U	0.50	1	03/14/03	03/14/03	
Trichloroethene	ND U	0.50	1	03/14/03	03/14/03	
1,2-Dichloropropane	ND U	0.50	1	03/14/03	03/14/03	
Dibromomethane	ND U	0.50	1	03/14/03	03/14/03	
Bromodichloromethane	ND U	0.50	1	03/14/03	03/14/03	
cis-1,3-Dichloropropene	ND U	0.50	1	03/14/03	03/14/03	
4-Methyl-2-pentanone (MIBK)	ND U	8.0	1	03/14/03	03/14/03	
Toluene	ND U	0.50	1	03/14/03	03/14/03	

Comments:

Printed: 03/20/2003 12:47:05 L:\STEALTH\CRYSTAL.RPT\Form1m.rpt

Merged

Form 1A - Organic

 $000025_{\rm SuperSet\,Reference:}$

1 of 3 Page

RR3104

Analytical Results

Client: Project:

BE&K Terranext WVBA/#03103154

Sample Matrix:

Water

Service Request: X2300196

Date Collected: NA
Date Received: NA

Volatile Organic Compounds

Sample Name: Lab Code: Method Blank XWG0300346-3

Extraction Method: Analysis Method:

EPA 5030B 8260B Units: ug/L Basis: NA

Level: Low

			Dilution	Date	Date	
Analyte Name	Result Q	MRL	Factor	Extracted	T	Arizona Qualifier
trans-1,3-Dichloropropene	ND U	1.0	1	03/14/03	03/14/03	
1,1,2-Trichloroethane	ND U	1.0	1	03/14/03	03/14/03	
Tetrachloroethene	ND U	0.50	1	03/14/03	03/14/03	
2-Hexanone	ND U	5.0	1	03/14/03	03/14/03	N1V4
1,3-Dichloropropane	ND U	1.0	1	03/14/03	03/14/03	
Dibromochloromethane	ND U	0.50	1	03/14/03	03/14/03	
1,2-Dibromoethane	ND U	0.50	1	03/14/03	03/14/03	
Chlorobenzene	ND U	0.50	1	03/14/03	03/14/03	
1,1,1,2-Tetrachloroethane	ND U	0.50	1	03/14/03	03/14/03	
Ethylbenzene	ND U	0.50	1	03/14/03	03/14/03	
m,p-Xylenes	ND U	1.0	1	03/14/03	03/14/03	
o-Xylene	ND U	0.50	1	03/14/03	03/14/03	
Styrene	ND U	0.50	1	03/14/03	03/14/03	
Isopropylbenzene	ND U	0.50	1	03/14/03	03/14/03	
Bromobenzene	ND U	0.50	1	03/14/03	03/14/03	
1,2,3-Trichloropropane	ND U	1.0	1	03/14/03	03/14/03	
n-Propylbenzene	ND U	0.50	1	03/14/03	03/14/03	
2-Chlorotoluene	ND U	0.50	1	03/14/03	03/14/03	
4-Chlorotoluene	ND U	0.50	1	03/14/03	03/14/03	
1,3,5-Trimethylbenzene	ND U	0.50	1	03/14/03	03/14/03	
tert-Butylbenzene	ND U	0.50	1	03/14/03	03/14/03	
1,2,4-Trimethylbenzene	ND U	0.50	1	03/14/03	03/14/03	
sec-Butylbenzene	ND U	0.50	1	03/14/03	03/14/03	
1,3-Dichlorobenzene	ND U	0.50	11	03/14/03	03/14/03	
4-Isopropyltoluene	ND U	0.50	1	03/14/03	03/14/03	
Bromoform	ND U	0.50	1	03/14/03	03/14/03	
1,1,2,2-Tetrachloroethane	ND U	1.0	1	03/14/03	03/14/03	
1,4-Dichlorobenzene	ND U	0.50	1	03/14/03	03/14/03	
1,2-Dichlorobenzene	ND U	0.50	1	03/14/03	03/14/03	
n-Butylbenzene	ND U	0.50	1	03/14/03	03/14/03	
1,2-Dibromo-3-chloropropane	ND U	5.0	1	03/14/03	03/14/03	
1,2,4-Trichlorobenzene	ND U	0.50	1	03/14/03	03/14/03	
Hexachlorobutadiene	ND U	0.50	1	03/14/03	03/14/03	

Comments:

Printed: 03/20/2003 12:47:05 L:\STEALTH\CRYSTAL.RPT\Form\m.rpt

Merged

Form 1A - Organic

0000026

Page 2 of 3

SuperSet Reference:

RR3104

Analytical Results

Client: Project:

BE&K Terranext WVBA/#03103154

Sample Matrix:

Water

Service Request: X2300196

Date Collected: NA
Date Received: NA

Volatile Organic Compounds

Sample Name: Lab Code: Method Blank XWG0300346-3

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

			Dilution	Date	Date	
Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed	Arizona Qualifier
Naphthalene	ND U	3.0	1	03/14/03	03/14/03	
1,2,3-Trichlorobenzene	ND U	0.50	1	03/14/03	03/14/03	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Arizona Qualifier	
Dibromofluoromethane	101	84-113	03/14/03		
Toluene-d8	116	68-126	03/14/03		
4-Bromofluorobenzene	112	79-113	03/14/03		

Comments:

Printed: 03/20/2003 12:47:05 L:\STEALTH\CRYSTAL.RPT\Formlm.rpt

RR3104

Analytical Results

Client: Project: BE&K Terranext WVBA/#03103154

Sample Matrix:

Water

Service Request: X2300196

Date Collected: NA Date Received: NA

Volatile Organic Compounds

Sample Name: Lab Code:

Method Blank XWG0300353-3

Extraction Method: Analysis Method:

EPA 5030B 8260B

Units: ug/L Basis: NA

Level: Low

			MDY	Dilution	Date	Date	Awizona Qualifier
Analyte Name	Result		MRL	Factor	Extracted		Arizona Qualifier
Dichlorodifluoromethane	ND		3.0	1	03/18/03	03/18/03	N1V4
Chloromethane	ND		2.0	1	03/18/03	03/18/03	
Vinyl Chloride	ND		1.0	1	03/18/03	03/18/03	
Bromomethane	ND		1.0	1	03/18/03	03/18/03	
Chloroethane	ND		1.0	1	03/18/03	03/18/03	
Trichlorofluoromethane	ND	U	1.0	1	03/18/03	03/18/03	
1,1,2-Trichlorotrifluoroethane	ND	U	1.0	1	03/18/03	03/18/03	
1,1-Dichloroethene	ND	U	1.0	1	03/18/03	03/18/03	
Acetone	ND	U	10	1	03/18/03	03/18/03	
Iodomethane	ND	U	2.0	1	03/18/03	03/18/03	
Carbon Disulfide	ND	U	2.0	1	03/18/03	03/18/03	
Methylene Chloride	ND	U	1.0	1	03/18/03	03/18/03	
Methyl tert-Butyl Ether	ND	U	1.0	1	03/18/03	03/18/03	
trans-1,2-Dichloroethene	ND		0.50	1	03/18/03	03/18/03	
1,1-Dichloroethane	ND		0.50	1	03/18/03	03/18/03	
Vinyl Acetate	ND	U	3.0	1	03/18/03	03/18/03	
2,2-Dichloropropane	ND		2.0	1	03/18/03	03/18/03	
2-Butanone (MEK)	ND	U	8.0	1	03/18/03	03/18/03	L2
cis-1,2-Dichloroethene	ND	U	0.50	1	03/18/03	03/18/03	
Bromochloromethane	ND		0.50	1	03/18/03	03/18/03	
Chloroform	ND	U	1.0	1	03/18/03	03/18/03	
1,1,1-Trichloroethane	ND	U	0.50	1	03/18/03	03/18/03	
Carbon Tetrachloride	ND		0.50	1	03/18/03	03/18/03	
1,1-Dichloropropene	ND	U	0.50	1	03/18/03	03/18/03	
Benzene	ND	U	0.50	1	03/18/03	03/18/03	
1,2-Dichloroethane	ND		0.50	1	03/18/03	03/18/03	
Trichloroethene	ND	U	0.50	1	03/18/03	03/18/03	
1,2-Dichloropropane	ND	U	0.50	1	03/18/03	03/18/03	
Dibromomethane	ND		0.50	1	03/18/03	03/18/03	
Bromodichloromethane	ND		0.50	1	03/18/03	03/18/03	
cis-1,3-Dichloropropene	ND	U	0.50	1	03/18/03	03/18/03	***
4-Methyl-2-pentanone (MIBK)	ND		8.0	1	03/18/03	03/18/03	
Toluene	ND		0.50	1	03/18/03	03/18/03	

Comments:

Printed: 03/20/2003 12:47:16 L:\STEALTH\CRYSTAL.RPT\Formlm.rpt

Merged

Form 1A - Organic

1 of 3 Page

000028 SuperSet Reference:

RR3104

Analytical Results

Client: Project: BE&K Terranext WVBA/#03103154

Sample Matrix:

Water

Service Request: X2300196

Date Collected: NA Date Received: NA

Volatile Organic Compounds

Sample Name: Lab Code:

Method Blank XWG0300353-3

Extraction Method: Analysis Method:

EPA 5030B 8260B

Units: ug/L Basis: NA

Level: Low

			Dilution	Date	Date	
Analyte Name	Result Q	MRL	Factor	Extracted		Arizona Qualifier
trans-1,3-Dichloropropene	ND U	1.0	1	03/18/03	03/18/03	
1,1,2-Trichloroethane	ND U	1.0	1	03/18/03	03/18/03	
Tetrachloroethene	ND U	0.50	1	03/18/03	03/18/03	1119
2-Hexanone	ND U	5.0	1	03/18/03	03/18/03	N1V4
1,3-Dichloropropane	ND U	1.0	1	03/18/03	03/18/03	
Dibromochloromethane	ND U	0.50	1	03/18/03	03/18/03	
1,2-Dibromoethane	ND U	0.50	1	03/18/03	03/18/03	
Chlorobenzene	ND U	0.50	1	03/18/03	03/18/03	
1,1,1,2-Tetrachloroethane	ND U	0.50	1	03/18/03	03/18/03	
Ethylbenzene	ND U	0.50	1	03/18/03	03/18/03	
m,p-Xylenes	ND U	1.0	1	03/18/03	03/18/03	
o-Xylene	ND U	0.50	1	03/18/03	03/18/03	
Styrene	ND U	0.50	1	03/18/03	03/18/03	
Isopropylbenzene	ND U	0.50	1	03/18/03	03/18/03	
Bromobenzene	ND U	0.50	1	03/18/03	03/18/03	
1,2,3-Trichloropropane	ND U	1.0	1	03/18/03	03/18/03	
n-Propylbenzene	ND U	0.50	1	03/18/03	03/18/03	
2-Chlorotoluene	ND U	0.50	1	03/18/03	03/18/03	
4-Chlorotoluene	ND U	0.50	1	03/18/03	03/18/03	
1,3,5-Trimethylbenzene	ND U	0.50	1	03/18/03	03/18/03	
tert-Butylbenzene	ND U	0.50	1	03/18/03	03/18/03	N1V4
1,2,4-Trimethylbenzene	ND U	0.50	1	03/18/03	03/18/03	
sec-Butylbenzene	ND U	0.50	1	03/18/03	03/18/03	
1,3-Dichlorobenzene	ND U	0.50	1	03/18/03	03/18/03	
4-Isopropyltoluene	ND U	0.50	1	03/18/03	03/18/03	
Bromoform	ND U	0.50	1	03/18/03	03/18/03	
1,1,2,2-Tetrachloroethane	ND U	1.0	1	03/18/03	03/18/03	
1.4-Dichlorobenzene	ND U	0.50	1	03/18/03	03/18/03	
1,2-Dichlorobenzene	ND U	0.50	1	03/18/03	03/18/03	
n-Butylbenzene	ND U	0.50	1	03/18/03	03/18/03	
1,2-Dibromo-3-chloropropane	ND U	5.0	1	03/18/03	03/18/03	
1,2,4-Trichlorobenzene	ND U	0.50	1	03/18/03	03/18/03	
Hexachlorobutadiene	ND U	0.50	1	03/18/03	03/18/03	

Comments:

Printed: 03/20/2003 12:47:16

Form 1A - Organic 0 0 0 0 2 9

Page 2 of 3

Analytical Results

Client:

BE&K Terranext WVBA/#03103154

Project: Sample Matrix:

Water

Service Request: X2300196

Date Collected: NA
Date Received: NA

Volatile Organic Compounds

Sample Name: Lab Code: Method Blank XWG0300353-3

Extraction Method: Analysis Method:

EPA 5030B 8260B Units: ug/L Basis: NA

Level: Low

Dilution Date **Date** Analyzed Arizona Qualifier **Factor** Extracted MRL Result Q **Analyte Name** 03/18/03 1 03/18/03 ND U 3.0 Naphthalene 0.50 1 03/18/03 03/18/03 ND U 1,2,3-Trichlorobenzene

Surrogate Name	%Rec	Control Limits	Date Analyzed	Arizona Qualifier	
Dibromofluoromethane	91	84-113	03/18/03		
Toluene-d8	101	68-126	03/18/03		
4-Bromofluorobenzene	91	79-113	03/18/03		

Comments:

RR3104

QA/QC Report

Client: Project: BE&K Terranext WVBA/#03103154

Sample Matrix:

Water

Service Request: X2300196

Surrogate Recovery Summary Volatile Organic Compounds

Extraction Method: Analysis Method:

EPA 5030B

8260B

Units: PERCENT

Level: Low

Sample Name	Lab Code	<u>Sur1</u>	Sur2	<u>Sur3</u>
AVB92-0100-03130	X2300196-001	103	117	111
AVB74-0100-07088	X2300196-002	94	111	94
AVB29-0100-19111	X2300196-003	97	106	97
AVB71-0100-07125	X2300196-004	97	107	94
AVB71-0104-1000	X2300196-005	95	110	91
AVB71-0102-1000	X2300196-006	102	116	109
Method Blank	XWG0300346-3	101	116	112
Method Blank	XWG0300353-3	91	101	91
AVB92-0100-03130MS	XWG0300346-4	104	116	112
AVB92-0100-03130DMS	XWG0300346-5	103	118	113
AVB74-0100-07088MS	XWG0300353-4	98	115	106
AVB74-0100-07088DMS	XWG0300353-5	95	112	99
Lab Control Sample	XWG0300346-1	103	116	111
Duplicate Lab Control Sample	XWG0300346-2	105	117	113
Lab Control Sample	XWG0300353-1	92	104	98
Duplicate Lab Control Sample	XWG0300353-2	92	101	96

Surrogate Recovery Control Limits (%)

Sur1 = Dibromofluoromethane	84-113
Sur2 = Toluene-d8	68-126
Sur3 = 4-Bromofluorobenzene	79-113

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Printed: 03/20/2003 12:47:35 L:\STEALTH\CRYSTAL.RPT\Form2.rpt

Form 2A - Organic 000031

Page 1 of 1

SuperSet Reference:

RR3104

QA/QC Report

Client: Project: BE&K Terranext WVBA/#03103154

Sample Matrix:

Water

Service Request: X2300196 **Date Extracted:** 03/14/2003

Date Analyzed: 03/14/2003

Matrix Spike/Duplicate Matrix Spike Summary Volatile Organic Compounds

Sample Name:

AVB92-0100-03130

Lab Code:

X2300196-001

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

Extraction Lot: XWG0300346

AVB92-0100-03130MS

XWG0300346-4

AVB92-0100-03130DMS

XWG0300346-5

	Sample	Matrix Spike			Duplic	ate Matrix S	pike	%Rec		RPD
Analyte Name	Result	Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit
Dichlorodifluoromethane	ND	11.6	10.0	116	11.0	10.0	110	78-207	5	20
Chloromethane	ND	9.90	10.0	99	9.31	10.0	93	70-157	6	20
Vinyl Chloride	ND	11.2	10.0	112	10.4	10.0	104	79-174	7	20
Bromomethane	ND	7.46	10.0	75	7.07	10.0	71	44-150	5	20
Chloroethane	ND	10.6	10.0	106	10.1	10.0	101	74-150	5	20
Trichlorofluoromethane	ND	11.1	10.0	111	10.5	10.0	105	80-134	6	20
1,1,2-Trichlorotrifluoroethane	ND	10.5	10.0	105	9.67	10.0	97	67-128	8	20
1,1-Dichloroethene	ND	11.1	10.0	111	10.4	10.0	104	71-142	7	20
Acetone	ND	38.7	40.0	97	38.4	40.0	96	1-155	1	20
Iodomethane	ND	37.8	40.0	94	36.1	40.0	90	47-120	4	20
Carbon Disulfide	ND	51.0	40.0	127 M1	47.8	40.0	120	77-126	6	20
Methylene Chloride	ND	10.5	10.0	105	10.2	10.0	102	83-106	3	20
Methyl tert-Butyl Ether	ND	9.51	10.0	95	9.54	10.0	95	70-118	0	20
trans-1,2-Dichloroethene	ND	10.5	10.0	105	9.90	10.0	99	86-115	6	20
1,1-Dichloroethane	ND	10.9	10.0	109	10.4	10.0	104	77-127	5	20
Vinyl Acetate	ND	47.2	40.0	118	49.0	40.0	123	8-187	4	20
2,2-Dichloropropane	ND	11.3	10.0	113	10.6	10.0	106	25-154	7	20
2-Butanone (MEK)	ND	36.6	40.0	92	36.4	40.0	91	90-112	1	20
cis-1,2-Dichloroethene	0.64	11.2	10.0	106	10.7	10.0	101	69-118	5	20
Bromochloromethane	ND	10.2	10.0	102	10.2	10.0	102	47-136	0	20
Chloroform	2.2	12.6	10.0	105	12.1	10.0	100	48-143	4	20
1,1,1-Trichloroethane	ND	10.4	10.0	104	9.97	10.0	100	84-122	5	20
Carbon Tetrachloride	ND	11.2	10.0	112	10.5	10.0	105	79-120	6	20
1,1-Dichloropropene	ND	11.4	10.0	114	10.8	10.0	108	85-117	5	20
Benzene	6.4	17.5	10.0	111	16.9	10.0	105	88-114	4	20
1,2-Dichloroethane	ND	9.41	10.0	94	9.35	10.0	94	75-112	1	20
Trichloroethene	1.0	11.9	10.0	109	11.4	10.0	104	76-115	4	20
1,2-Dichloropropane	ND	10.1	10.0	101	9.83	10.0	98	85-107	3	20
Dibromomethane	ND	9.55	10.0	96	9.71	10.0	97	82-106	2	20
Bromodichloromethane	1.1	10.8	10.0	98	10.5	10.0	94	83-107	3	20
cis-1,3-Dichloropropene	ND	10.6	10.0	106	10.2	10.0	102	70-114	4	20
4-Methyl-2-pentanone (MIBK)	ND	35.8	40.0	89	37.4	40.0	93	54-129	4	20
Toluene	0.68	11.5	10.0	109	11.2	10.0	105	86-114	3	20

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 03/20/2003 12:47:42 L:\STEALTH\CRYSTAL.RPT\Form3DMS.rpt Form 3A - Organic 000032

Page 1 of 3

RR3104 SuperSet Reference:

QA/QC Report

Client: Project: BE&K Terranext WVBA/#03103154

Sample Matrix:

Water

Service Request: X2300196 **Date Extracted:** 03/14/2003

Date Analyzed: 03/14/2003

Matrix Spike/Duplicate Matrix Spike Summary Volatile Organic Compounds

Sample Name:

AVB92-0100-03130

Lab Code:

X2300196-001

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

Extraction Lot: XWG0300346

AVB92-0100-03130MS

XWG0300346-4

AVB92-0100-03130DMS

XWG0300346-5

	Sample	N	Aatrix Spike		Duplie	pike	%Rec		RPD	
Analyte Name	Result	Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit
trans-1,3-Dichloropropene	ND	10.1	10.0	101	9.96	10.0	100	73-112	1	20
1,1,2-Trichloroethane	ND	9.44	10.0	94	9.73	10.0	97	79-112	3	20
Tetrachloroethene	130	182E	10.0	523 M3	175E	10.0	457 M3	78-130	4	20
2-Hexanone	ND	35.9	40.0	90	37.8	40.0	95	77-112	5	20
1,3-Dichloropropane	ND	10.0	10.0	100	10.1	10.0	101	45-133	1	20
Dibromochloromethane	ND	10.1	10.0	101	9.94	10.0	99	74-108	2	20
1,2-Dibromoethane	ND	9.73	10.0	97	9.85	10.0	99	73-113	1	20
Chlorobenzene	ND	10.4	10.0	104	10.0	10.0	100	84-111	3	20
1,1,1,2-Tetrachloroethane	ND	9.78	10.0	98	9.55	10.0	96	84-119	2	20
Ethylbenzene	ND	11.5	10.0	115	11.1	10.0	111	47-136	3	20
m,p-Xylenes	ND	21.8	20.0	109	21.4	20.0	107	84-120	2	20
o-Xylene	ND	11.0	10.0	110	10.6	10.0	106	47-143	- 3	20
Styrene	ND	10.5	10.0	105	10.3	10.0	103	72-121	2	20
Isopropylbenzene	ND	10.9	10.0	109 M1	10.5	10.0	105	63-108	4	20
Bromobenzene	ND	9.97	10.0	100	9.84	10.0	98	80-113	1	20
1,2,3-Trichloropropane	ND	8.65	10.0	87	8.87	10.0	89	78-119	3	20
n-Propylbenzene	ND	11.1	10.0	111	10.7	10.0	107	76-117	4	20
2-Chlorotoluene	ND	10.4	10.0	104	10.3	10.0	103	79-121	2	20
4-Chlorotoluene	ND	10.4	10.0	104	10.1	10.0	101	70-133	3	20
1,3,5-Trimethylbenzene	ND	11.0	10.0	110	10.6	10.0	106	79-118	4	20
tert-Butylbenzene	ND	10.9	10.0	109	10.6	10.0	106	77-120	3	20
1,2,4-Trimethylbenzene	ND	10.9	10.0	109	10.6	10.0	106	68-127	3	20
sec-Butylbenzene	ND	10.8	10.0	108	10.5	10.0	105	78-123	3	20
1,3-Dichlorobenzene	ND	10.2	10.0	102	10.0	10.0	100	78-127	1	20
4-Isopropyltoluene	ND	10.9	10.0	109	10.5	10.0	105	79-142	3	20
Bromoform	ND	9.16	10.0	92	9.26	10.0	93	83-111	1	20
1,1,2,2-Tetrachloroethane	ND	9.54	10.0	95	9.61	10.0	96	66-133	1	20
1,4-Dichlorobenzene	ND	10.4	10.0	104	10.2	10.0	102	48-139	2	20
1,2-Dichlorobenzene	ND	10.1	10.0	101	9.97	10.0	100	64-109	1	20
n-Butylbenzene	ND	11.1	10.0	111	10.9	10.0	109	69-122	3	20
1,2-Dibromo-3-chloropropane	ND	8.19	10.0	82	8.47	10.0	85	54-160	3	20
1,2,4-Trichlorobenzene	ND	10.4	10.0	104	10.2	10.0	102	39-145	1	20
Hexachlorobutadiene	ND	12.3	10.0	123 M1	12.0	10.0	120 M1	74-113	3	20

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 03/20/2003 12:47:42 L:\STEALTH\CRYSTAL.RPT\Form3DMS.rpt Form 3A - Organic 000033

Page 2 of 3 RR3104 SuperSet Reference:

QA/QC Report

Client: Project: BE&K Terranext WVBA/#03103154

Sample Matrix:

Water

Service Request: X2300196

Date Extracted: 03/14/2003

Date Analyzed: 03/14/2003

Matrix Spike/Duplicate Matrix Spike Summary Volatile Organic Compounds

Sample Name:

AVB92-0100-03130

Lab Code:

X2300196-001

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

Extraction Lot: XWG0300346

AVB92-0100-03130MS

XWG0300346-4

AVB92-0100-03130DMS

XWG0300346-5

Duplicate Matrix Spike Matrix Spike %Rec **RPD** Sample **RPD** Limits Limit Result **Expected** %Rec Result Expected %Rec Result **Analyte Name** 20 105 44-167 4 10.5 10.0 10.1 10.0 101 ND Naphthalene 108 37-158 2 20 10.8 10.0 10.0 106 ND 10.6 1,2,3-Trichlorobenzene

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 03/20/2003 12:47:42 L:\STEALTH\CRYSTAL.RPT\Form3DMS.rpt Form 3A - Organic

000034 SuperSet Reference: RR3104

Page 3 of 3

QA/QC Report

Client: Project: BE&K Terranext WVBA/#03103154

Sample Matrix:

Water

Service Request: X2300196
Date Extracted: 03/18/2003

Date Analyzed: 03/18/2003

Matrix Spike/Duplicate Matrix Spike Summary Volatile Organic Compounds

Sample Name:

AVB74-0100-07088

Lab Code:

X2300196-002

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Dasis. 1471

Level: Low
Extraction Lot: XWG0300353

AVB74-0100-07088DMS

AVB74-0100-07088MS

XWG0300353-4 XWG0300353-5

	Sample	Matrix Spike			Duplic	ate Matrix S	pike	%Rec		RPD
Analyte Name	Result	Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit
Dichlorodifluoromethane	ND	9.35	10.0	94	8.75	10.0	88	78-207	7	20
Chloromethane	ND	9.70	10.0	97	9.63	10.0	96	70-157	1	20
Vinyl Chloride	ND	11.6	10.0	116	10.7	10.0	107	79-174	8	20
Bromomethane	ND	12.5	10.0	125	11.5	10.0	115	44-150	9	20
Chloroethane	ND	11.8	10.0	118	10.7	10.0	107	74-150	9	20
Trichlorofluoromethane	ND	11.0	10.0	110	10.7	10.0	107	80-134	3	20
1,1,2-Trichlorotrifluoroethane	ND	10.8	10.0	108	10.1	10.0	101	67-128	7	20
1,1-Dichloroethene	ND	10.8	10.0	108	10.2	10.0	102	71-142	5	20
Acetone	ND	37.7	40.0	94	37.6	40.0	94	1-155	0	20
Iodomethane	ND	45.1	40.0	113	42.7	40.0	107	47-120	6	20
Carbon Disulfide	ND	46.6	40.0	116	43.2	40.0	108	77-126	7	20
Methylene Chloride	ND	11.6	10.0	116 M1	10.9	10.0	109 M1	83-106	6	20
Methyl tert-Butyl Ether	ND	9.20	10.0	92	9.13	10.0	91	70-118	1	20
trans-1,2-Dichloroethene	ND	10.7	10.0	107	10.1	10.0	101	86-115	6	20
1,1-Dichloroethane	ND	11.0	10.0	110	10.3	10.0	103	77-127	6	20
Vinyl Acetate	ND	39.1	40.0	98	36.9	40.0	92	8-187	6	20
2,2-Dichloropropane	ND	10.5	10.0	105	10.2	10.0	102	25-154	3	20
2-Butanone (MEK)	ND	36.5	40.0	91	33.9	40.0	85 M2	90-112	7	20
cis-1,2-Dichloroethene	ND	11.0	10.0	110	10.7	10.0	107	69-118	2	20
Bromochloromethane	ND	11.5	10.0	115	10.7	10.0	107	47-136	7	20
Chloroform	2.6	12.5	10.0	98	11.8	10.0	92	48-143	5	20
1,1,1-Trichloroethane	ND	9.58	10.0	96	9.19	10.0	92	84-122	4	20
Carbon Tetrachloride	ND	9.34	10.0	93	8.98	10.0	90	79-120	4	20
1,1-Dichloropropene	ND	10.3	10.0	103	9.80	10.0	98	85-117	5	20
Benzene	0.95	10.8	10.0	99	10.4	10.0	94	88-114	4	20
1,2-Dichloroethane	ND	9.06	10.0	91	8.70	10.0	87	75-112	4	20
Trichloroethene	1.2	12.0	10.0	109	11.9	10.0	107	76-115	1	20
1,2-Dichloropropane	ND	10.1	10.0	101	9.92	10.0	99	85-107	1	20
Dibromomethane	ND	9.24	10.0	92	9.44	10.0	94	82-106	2	20
Bromodichloromethane	0.72	9.68	10.0	90	9.65	10.0	89	83-107	0	20
cis-1,3-Dichloropropene	ND	9.52	10.0	95	9.57	10.0	96	70-114	1	20
4-Methyl-2-pentanone (MIBK)	ND	37.1	40.0	93	39.6	40.0	99	54-129	7	20
Toluene	ND	11.0	10.0	110	10.7	10.0	107	86-114	3	20

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 03/20/2003 12:47:49 L:\STEALTH\CRYSTAL.RPT\Form3DMS.rpt

Form 3A - Organic 000035

Page 1 of 3

SuperSet Reference: RR3104

QA/QC Report

Client: Project: BE&K Terranext WVBA/#03103154

Sample Matrix:

Water

Service Request: X2300196

Date Extracted: 03/18/2003 **Date Analyzed:** 03/18/2003

Matrix Spike/Duplicate Matrix Spike Summary Volatile Organic Compounds

Sample Name:

AVB74-0100-07088

Lab Code:

X2300196-002

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low Extraction Lot: XWG0300353

AVB74-0100-07088MS

XWG0300353-4

AVB74-0100-07088DMS

XWG0300353-5

	Sample	Matrix Spike				cate Matrix S	%Rec		RPD	
Analyte Name	Result	Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit
trans-1,3-Dichloropropene	ND	9.43	10.0	94	9.43	10.0	94	73-112	0	20
1,1,2-Trichloroethane	ND	9.79	10.0	98	9.62	10.0	96	79-112	2	20
Tetrachloroethene	2.9	13.7	10.0	108	13.1	10.0	102	78-130	4	20
2-Hexanone	ND	32.7	40.0	82	33.9	40.0	85	77-112	4	20
1,3-Dichloropropane	ND	9.43	10.0	94	9.82	10.0	98	45-133	4	20
Dibromochloromethane	ND	9.78	10.0	98	9.60	10.0	96	74-108	2	20
1,2-Dibromoethane	ND	9.25	10.0	93	9.46	10.0	95	73-113	2	20
Chlorobenzene	ND	10.1	10.0	101	9.85	10.0	99	84-111	3	20
1,1,1,2-Tetrachloroethane	ND	10.1	10.0	101	10.1	10.0	101	84-119	0	20
Ethylbenzene	ND	10.7	10.0	107	10.2	10.0	102	47-136	5	20
m,p-Xylenes	ND	21.7	20.0	108	21.2	20.0	106	84-120	2	20
o-Xylene	ND	10.4	10.0	104	9.94	10.0	99	47-143	4	20
Styrene	ND	10.7	10.0	107	10.1	10.0	101	72-121	6	20
Isopropylbenzene	ND	10.3	10.0	103	9.73	10.0	97	63-108	5	20
Bromobenzene	ND	10.3	10.0	103	9.93	10.0	99	80-113	4	20
1,2,3-Trichloropropane	ND	9.76	10.0	98	9.29	10.0	93	78-119	5	20
n-Propylbenzene	ND	10.9	10.0	109	10.3	10.0	103	76-117	6	20
2-Chlorotoluene	ND	10.4	10.0	104	9.82	10.0	98	79-121	6	20
4-Chlorotoluene	ND	10.4	10.0	104	9.81	10.0	98	70-133	5	20
1,3,5-Trimethylbenzene	ND	10.5	10.0	105	10.1	10.0	101	79-118	4	20
tert-Butylbenzene	ND	9.40	10.0	94	9.95	10.0	100	77-120	6	20
1,2,4-Trimethylbenzene	ND	10.9	10.0	109	10.3	10.0	103	68-127	5	20
sec-Butylbenzene	ND	10.5	10.0	105	9.97	10.0	100	78-123	6	20
1,3-Dichlorobenzene	ND	10.6	10.0	106	10.2	10.0	102	78-127	4	20
4-Isopropyltoluene	ND	10.9	10.0	109	10.2	10.0	102	79-142	6	20
Bromoform	ND	8.85	10.0	89	8.60	10.0	86	83-111	3	20
1,1,2,2-Tetrachloroethane	ND	9.40	10.0	94	9.77	10.0	98	66-133	4	20
1,4-Dichlorobenzene	ND	10.0	10.0	100	9.73	10.0	97	48-139	3	20
1,2-Dichlorobenzene	ND	9.91	10.0	99	9.68	10.0	97	64-109	2	20
n-Butylbenzene	ND	10.4	10.0	104	10.1	10.0	101	69-122	3	20
1,2-Dibromo-3-chloropropane	ND	8.67	10.0	87	8.31	10.0	83	54-160	4	20
1,2,4-Trichlorobenzene	ND	10.2	10.0	102	10.1	10.0	101	39-145	1	20
Hexachlorobutadiene	ND	11.9	10.0	119 M1	11.3	10.0	113	74-113	5	20

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 03/20/2003 12:47:49 L:\STEALTH\CRYSTAL.RPT\Form3DMS.rpt Form 3A - Organic 000036

Page 2 of 3

SuperSet Reference: RR3104

QA/QC Report

Client:

BE&K Terranext WVBA/#03103154

Project: Sample Matrix:

Water

Service Request: X2300196

Date Extracted: 03/18/2003

Date Analyzed: 03/18/2003

Matrix Spike/Duplicate Matrix Spike Summary Volatile Organic Compounds

Sample Name:

AVB74-0100-07088

Lab Code:

X2300196-002

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L

Basis: NA

Level: Low

Extraction Lot: XWG0300353

AVB74-0100-07088MS

XWG0300353-4

AVB74-0100-07088DMS

XWG0300353-5

	Sample	Matrix Spike			Duplicate Matrix Spike			%Rec		RPD
Analyte Name	Result	Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit
Naphthalene 1,2,3-Trichlorobenzene	ND ND	8.77 10.2	10.0 10.0	88 102	9.14 10.4	10.0 10.0	91 104	44-167 37-158	4 2	20 20

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 03/20/2003 12:47:49 L:\STEALTH\CRYSTAL.RPT\Form3DMS.rpt Form 3A - Organic 000037

Page 3 of

SuperSet Reference: RR3104

QA/QC Report

Client: Project: BE&K Terranext WVBA/#03103154

Water Sample Matrix:

Service Request: X2300196 **Date Extracted:** 03/14/2003 **Date Analyzed:** 03/14/2003

Lab Control Spike/Duplicate Lab Control Spike Summary Volatile Organic Compounds

Extraction Method: EPA 5030B **Analysis Method:**

8260B

Units: ug/L Basis: NA

Level: Low Extraction Lot: XWG0300346

Lab Control Sample
XWG0300346-1

Duplicate Lab Control Sample XWG0300346-2

	Lab Control Spike			Duplicate	Lab Control	%Rec		RPD	
Analyte Name	Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit
Dichlorodifluoromethane	9.85	10.0	99	9.60	10.0	96	1-233	3	20
Chloromethane	8.71	10.0	87	8.64	10.0	86	46-156	1	20
Vinyl Chloride	9.63	10.0	96	9.51	10.0	95	51-158	1	20
Bromomethane	6.19	10.0	62	6.50	10.0	65	37-149	5	20
Chloroethane	9.54	10.0	95	9.33	10.0	93	56-146	2	20
Trichlorofluoromethane	9.41	10.0	94	9.13	10.0	91	69-139	3	20
1,1,2-Trichlorotrifluoroethane	8.98	10.0	90	8.58	10.0	86	83-130	5	20
1,1-Dichloroethene	8.97	10.0	90	8.90	10.0	89	65-112	1	20
Acetone	36.0	40.0	90	38.4	40.0	96	68-128	7	20
Iodomethane	32.6	40.0	81	34.3	40.0	86	68-144	5	20
Carbon Disulfide	43.7	40.0	109	43.5	40.0	109	67-140	1	20
Methylene Chloride	9.75	10.0	98	9.98	10.0	100	70-113	2	20
Methyl tert-Butyl Ether	8.77	10.0	88	9.51	10.0	95	75-115	8	20
trans-1,2-Dichloroethene	9.22	10.0	92	9.33	10.0	93	73-118	1	20
1,1-Dichloroethane	9.76	10.0	98	9.80	10.0	98	77-127	0	20
Vinyl Acetate	36.7	40.0	92	43,8	40.0	109	51-202	18	39
2,2-Dichloropropane	9.90	10.0	99	9.68	10.0	97	75-132	2	20
2-Butanone (MEK)	32.2	40.0	80	35.8	40.0	89	72-122	11	20
cis-1,2-Dichloroethene	9.69	10.0	97	9.84	10.0	98	81-118	2	20
Bromochloromethane	9.70	10.0	97	10.0	10.0	100	82-114	3	20
Chloroform	9.68	10.0	97	9.81	10.0	98	78-119	1	20
1,1,1-Trichloroethane	9.19	10.0	92	9.11	10.0	91	71-125	1	20
Carbon Tetrachloride	9.65	10.0	97	9.30	10.0	93	69-130	4	20
1,1-Dichloropropene	9.90	10.0	99	9.51	10.0	95	77-114	4	20
Benzene	9.90	10.0	99	9.78	10.0	98	81-117	1	20
1,2-Dichloroethane	8.80	10.0	88	9.12	10.0	91	67-122	4	20
Trichloroethene	9.80	10.0	98	9.69	10.0	97	79-114	1	20
1,2-Dichloropropane	9.52	10.0	95	9.42	10.0	94	78-114	1	20
Dibromomethane	9.11	10.0	91	9.48	10.0	95	78-113	4	20
Bromodichloromethane	9.10	10.0	91	9.27	10.0	93	79-122	2	20
cis-1,3-Dichloropropene	10.1	10.0	101	10.2	10.0	102	82-118	1	20
4-Methyl-2-pentanone (MIBK)	32.6	40.0	82	37.0	40.0	92	75-115	12	20
Toluene	9.85	10.0	99	9.80	10.0	98	85-118	1	20
trans-1,3-Dichloropropene	9.46	10.0	95	9.67	10.0	97	79-121	2	20
1,1,2-Trichloroethane	8.85	10.0	89	9.27	10.0	93	79-116	5	20

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 03/20/2003 12:47:56 L:\STEALTH\CRYSTAL.RPT\Form3DLC.rpt Form 3C - Organic 000038

Page 1 of 2

RR3104 SuperSet Reference:

QA/QC Report

Client: Project: BE&K Terranext WVBA/#03103154

Sample Matrix:

Water

Service Request: X2300196 **Date Extracted:** 03/14/2003

Date Analyzed: 03/14/2003

Lab Control Spike/Duplicate Lab Control Spike Summary Volatile Organic Compounds

Extraction Method: EPA 5030B **Analysis Method:**

8260B

Units: ug/L

Basis: NA Level: Low

Extraction Lot: XWG0300346

Lab Control Sample XWG0300346-1

Duplicate Lab Control Sample XWG0300346-2

		Control Spik	e	Duplicate	Lab Control	Spike	%Rec		RPD
Analyte Name	Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit
Tetrachloroethene	9.87	10.0	99	9.66	10.0	97	76-127	2	20
2-Hexanone	32.4	40.0	81	36.2	40.0	91	65-120	11	20
1,3-Dichloropropane	9.38	10.0	94	9.76	10.0	98	81-116	4	20
Dibromochloromethane	9.00	10.0	90	9.31	10.0	93	77-119	3	20
1,2-Dibromoethane	9.09	10.0	91	9.60	10.0	96	79-116	5	20
Chlorobenzene	9.53	10.0	95	9.59	10.0	96	84-114	1	20
1,1,1,2-Tetrachloroethane	9.08	10.0	91	8.98	10.0	90	78-118	1	20
Ethylbenzene	9.78	10.0	98	9.78	10.0	98	79-124	0	20
m,p-Xylenes	19.5	20.0	97	19.5	20.0	97	75-131	0	20
o-Xylene	9.70	10.0	97	9.74	10.0	97	78-122	0	20
Styrene	9.71	10.0	97	9.80	10.0	98	80-126	1	20
Isopropylbenzene	9.70	10.0	97	9.65	10.0	97	75-126	1	20
Bromobenzene	9.31	10.0	93	9.55	10.0	96	82-122	3	20
1,2,3-Trichloropropane	8.19	10.0	82	8.75	10.0	88	77-118	7	20
n-Propylbenzene	9.81	10.0	98	9.75	10.0	98	75-129	1	20
2-Chlorotoluene	9.59	10.0	96	9.66	10.0	97	77-126	1	20
4-Chlorotoluene	9.59	10.0	96	9.66	10.0	97	82-120	1	20
1,3,5-Trimethylbenzene	9.82	10.0	98	9.85	10.0	99	75-130	0	20
tert-Butylbenzene	9.63	10.0	96	9.66	10.0	97	73-130	0	20
1,2,4-Trimethylbenzene	9.79	10.0	98	9.80	10.0	98	60-137	0	20
sec-Butylbenzene	9.49	10.0	95	9.42	10.0	94	68-131	1	20
1,3-Dichlorobenzene	9.35	10.0	94	9.65	10.0	97	71-137	3	20
4-Isopropyltoluene	9.67	10.0	97	9.52	10.0	95	68-134	2	20
Bromoform	8.66	10.0	87	8.92	10.0	89	70-118	3	20
1,1,2,2-Tetrachloroethane	8.98	10.0	90	9.30	10.0	93	72-122	4	20
1,4-Dichlorobenzene	9.63	10.0	96	9.69	10.0	97	82-114	1	20
1,2-Dichlorobenzene	9.47	10.0	95	9.68	10.0	97	81-118	2	20
n-Butylbenzene	9.95	10.0	100	9.61	10.0	96	71-125	3	20
1,2-Dibromo-3-chloropropane	8.06	10.0	81	7.72	10.0	77	55-131	4	20
1,2,4-Trichlorobenzene	9.58	10.0	96	10.0	10.0	100	75-123	5	20
Hexachlorobutadiene	10.9	10.0	109	10.5	10.0	105	63-140	4	20
Naphthalene	8.77	10.0	88	9.66	10.0	97	67-125	10	20
1,2,3-Trichlorobenzene	9.45	10.0	95	10.2	10.0	102	72-124	8	20

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 03/20/2003 12:47:56 L:\STEALTH\CRYSTAL.RPT\Form3DLC.rpt

000039 Form 3C - Organic

SuperSet Reference:

RR3104

Page 2 of 2

QA/QC Report

Client: Project: BE&K Terranext WVBA/#03103154

Sample Matrix:

Water

Service Request: X2300196 Date Extracted: 03/18/2003

Date Analyzed: 03/18/2003

Lab Control Spike/Duplicate Lab Control Spike Summary Volatile Organic Compounds

Extraction Method: EPA 5030B **Analysis Method:**

8260B

Units: ug/L Basis: NA

Level: Low

Extraction Lot: XWG0300353

Lab Control Sample XWG0300353-1

Duplicate Lab Control Sample XWG0300353-2

		Control Spik			Lab Control		%Rec		RPD
Analyte Name	Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit
Dichlorodifluoromethane	7.37	10.0	74	6.69	10.0	67	1-233	10	20
Chloromethane	9.33	10.0	93	8.08	10.0	81	46-156	14	20
Vinyl Chloride	9.69	10.0	97	8.03	10.0	80	51-158	19	20
Bromomethane	11.5	10.0	115	10.1	10.0	101	37-149	13	20
Chloroethane	10.7	10.0	107	8.65	10.0	87	56-146	21 R7	20
Trichlorofluoromethane	8.85	10.0	89	7.73	10.0	77	69-139	14	20
1,1,2-Trichlorotrifluoroethane	8.98	10.0	90	7.94	10.0	79 L2	83-130	12	20
1,1-Dichloroethene	8.71	10.0	87	7.87	10.0	79	65-112	10	20
Acetone	28.1	40.0	70	27.4	40.0	69	68-128	2	20
Iodomethane	41.4	40.0	104	36.0	40.0	90	68-144	14	20
Carbon Disulfide	40.4	40.0	101	35.2	40.0	88	67-140	14	20
Methylene Chloride	10.8	10.0	108	10.0	10.0	100	70-113	7	20
Methyl tert-Butyl Ether	8.73	10.0	87	8.58	10.0	86	75-115	2	20
trans-1,2-Dichloroethene	9.55	10.0	96	8.46	10.0	85	73-118	12	20
1,1-Dichloroethane	9.81	10.0	98	9.21	10.0	92	77-127	6	20
Vinyl Acetate	37.2	40.0	93	35.8	40.0	90	51-202	4	39
2,2-Dichloropropane	9.05	10.0	91	8.65	10.0	87	75-132	5	20
2-Butanone (MEK)	26.4	40.0	66 L2	32.5	40.0	81	72-122	21 R7	20
cis-1,2-Dichloroethene	9.58	10.0	96	9.61	10.0	96	81-118	0	20
Bromochloromethane	10.1	10.0	101	10.4	10.0	104	82-114	3	20
Chloroform	8.80	10.0	88	8.74	10.0	87	78-119	1	20
1,1,1-Trichloroethane	8.18	10.0	82	7.73	10.0	77	71-125	6	20
Carbon Tetrachloride	7.90	10.0	79	7.56	10.0	76	69-130	4	20
1,1-Dichloropropene	8.52	10.0	85	8.51	10.0	85	77-114	0	20
Benzene	8.53	10.0	85	8.53	10.0	85	81-117	0	20
1,2-Dichloroethane	8.29	10.0	83	8.44	10.0	84	67-122	2	20
Trichloroethene	8.59	10.0	86	8.95	10.0	90	79-114	4	20
1,2-Dichloropropane	8.46	10.0	85	9.16	10.0	92	78-114	8	20
Dibromomethane	8.64	10.0	86	8.94	10.0	89	78-113	3	20
Bromodichloromethane	8.31	10.0	83	8.55	10.0	86	79-122	3	20
cis-1,3-Dichloropropene	9.12	10.0	91	9.55	10.0	96	82-118	5	20
4-Methyl-2-pentanone (MIBK)	38.9	40.0	97	35.9	40.0	90	75-115	8	20
Toluene	9.16	10.0	92	9.12	10.0	91	85-118	0	20
trans-1,3-Dichloropropene	8.77	10.0	88	9.03	10.0	90	79-121	3	20
1,1,2-Trichloroethane	8.89	10.0	89	8.98	10.0	90	79-116	1	20

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 03/20/2003 12:48:03 L:\STEALTH\CRYSTAL.RPT\Form3DLC.rpt

000040 Form 3C - Organic

Page 1 of 2

QA/QC Report

Client: Project: BE&K Terranext WVBA/#03103154

Sample Matrix:

Water

Service Request: X2300196 Date Extracted: 03/18/2003

Date Analyzed: 03/18/2003

Lab Control Spike/Duplicate Lab Control Spike Summary **Volatile Organic Compounds**

Extraction Method: EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

Extraction Lot: XWG0300353

Lab Control Sample XWG0300353-1

Duplicate Lab Control Sample XWG0300353-2

	Lab Control Spike			Duplicate Lab Control Spike			%Rec		RPD
Analyte Name	Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit
Tetrachloroethene	8,93	10.0	89	8.77	10.0	88	76-127	2	20
2-Hexanone	30.2	40.0	75	31.0	40.0	78	65-120	3	20
1,3-Dichloropropane	8.75	10.0	88	8.81	10.0	88	81-116	1	20
Dibromochloromethane	8.83	10.0	88	8.78	10.0	88	77-119	1	20
1,2-Dibromoethane	8.79	10.0	88	8.74	10.0	87	79-116	1	20
Chlorobenzene	9.04	10.0	90	9.13	10.0	91	84-114	1	20
1,1,1,2-Tetrachloroethane	9.21	10.0	92	9.42	10.0	94	78-118	2	20
Ethylbenzene	9.09	10.0	91	9.00	10.0	90	79-124	1	20
m,p-Xylenes	18.7	20.0	94	18.8	20.0	94	75-131	0	20
o-Xylene	8.95	10.0	90	9.09	10.0	91	78-122	2	20
Styrene	9.64	10.0	96	9.61	10.0	96	80-126	0	20
Isopropylbenzene	8.78	10.0	88	8.53	10.0	85	75-126	3	20
Bromobenzene	9.23	10.0	92	9.37	10.0	94	82-122	2	20
1,2,3-Trichloropropane	8.69	10.0	87	8.74	10.0	87	77-118	1	20
n-Propylbenzene	9.34	10.0	93	9.07	10.0	91	75-129	3	20
2-Chlorotoluene	9.15	10.0	92	9.02	10.0	90	77-126	1	20
4-Chlorotoluene	9.23	10.0	92	9.01	10.0	90	82-120	2	20
1,3,5-Trimethylbenzene	9.08	10.0	91	8.81	10.0	88	75-130	3	20
tert-Butylbenzene	9.02	10.0	90	8.70	10.0	87	73-130	4	20
1,2,4-Trimethylbenzene	9.24	10.0	92	9.15	10.0	92	60-137	1	20
sec-Butylbenzene	8.85	10.0	89	8.65	10.0	87	68-131	2	20
1,3-Dichlorobenzene	9.61	10.0	96	9.31	10.0	93	71-137	3	20
4-Isopropyltoluene	9.20	10.0	92	9.06	10.0	91	68-134	2	20
Bromoform	8.46	10.0	85	8.81	10.0	88	70-118	4	20
1,1,2,2-Tetrachloroethane	9.13	10.0	91	9.57	10.0	96	72-122	5	20
1,4-Dichlorobenzene	8.96	10.0	90	9.16	10.0	92	82-114	2	20
1,2-Dichlorobenzene	8.87	10.0	89	9.30	10.0	93	81-118	5	20
n-Butylbenzene	8.53	10.0	85	8.70	10.0	87	71-125	2	20
1,2-Dibromo-3-chloropropane	7.45	10.0	75	8.38	10.0	84	55-131	12	20
1.2.4-Trichlorobenzene	9.06	10.0	91	10.1	10.0	101	75-123	11	20
Hexachlorobutadiene	9.59	10.0	96	9.75	10.0	98	63-140	2	20
Naphthalene	7.92	10.0	79	9.67	10.0	97	67-125	20	20
1,2,3-Trichlorobenzene	9.23	10.0	92	10.8	10.0	108	72-124	15	20

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 03/20/2003 12:48:03 L:\STEALTH\CRYSTAL.RPT\Form3DLC.rpt

000041 Form 3C - Organic

RR3104

SuperSet Reference:

2 of 2 Page

March 20, 2003

Chuck Gordon BE & K Terranext 9830 S. 51st A-127 Phoenix, AZ 85044

Re: WVBA/Project #03103154

Dear Chuck:

Enclosed are the results of the samples submitted to our laboratory on March 10, 2003. For your reference, these analyses have been assigned our service request number L2300521.

All analyses were performed in accordance with our laboratory's quality assurance program. Results are intended to be considered in their entirety and apply only to the samples analyzed. Columbia Analytical Services is not responsible for use of less than the complete report.

Columbia Analytical Services - is certified for environmental analyses by the Arizona Department of Health Services (certificate number: AZ0544 and AZ0136, expiration: May 23, 2003).

If you have any questions, please call me at (818) 587-5550, extension 309.

Respectfully submitted,

Columbia Analytical Services, Inc.

Quelers

Sue Anderson Project Chemist

SA

000042

Columbia Analytical Services, Inc.

Acronvms

California DHS LUFT Method 8015M **ASTM** American Society for Testing and Materials Biochemical Oxygen Demand BOD Benzene/Toluene/Ethylbenzene/Xylenes BTEX California Assessment Metals **CAM** Chemical Abstract Service Registry Number CAS Number **CFC** Chlorofluorocarbon COD Chemical Oxygen Demand **CRDL** Contract Required Detection Limit Detected; result must be greater than zero. D Detected; result must be greater than the detection limit. DL**DLCS Duplicate Laboratory Control Sample** Duplicate Matrix Spike DMS **DOH or DHS** Department of Health Services Environmental Laboratory Accreditation Program **ELAP** U.S. Environmental Protection Agency **EPA** Gas Chromatography GC Gas Chromatography/Mass Spectrometry GC/MS Ion Chromatography IC Initial Calibration Blank sample **ICB** Inductively Coupled Plasma atomic emission spectrometry **ICP** Initial Calibration Verification sample **ICV** LCS Laboratory Control Sample Leaking Underground Fuel Tank LUFT Modified M Methylene Blue Active Substances **MBAS** Method Detection Limit MDL Method Reporting Limit **MRL** Matrix Spike Methyl-tert-Butyl Ether **MTBE** Not Applicable NA Not Calculated NC None Detected at or above the Method Reporting/Detection Limit (MRL/MDL) ND Nephelometric Turbidity Units NTU Parts Per Billion ppb ppm Parts Per Million Practical Quantitation Limit **PQL** Quality Assurance/Quality Control QA/QC Resource Conservation and Recovery Act **RCRA** Relative Percent Difference RPD SIM Selected Ion Monitoring Standard Methods for the Examination of Water and Wastewater, 18th Ed., 1992. SMSolubility Threshold Limit Concentration STLC Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW-846, SW Third Edition, 1986 and as amended by Updates I, II, IIA, and IIB. Toxicity Characteristics Leaching Procedure **TCLP** Total Dissolved Solids TDS **TPH** Total Petroleum Hydrocarbons **TRPH** Total Recoverable Petroleum Hydrocarbons Total Suspended Solids TSS Total Threshold Limit Concentration TTLC Volatile Organic Analyte(s) VOA **Qualifiers** Undetected at or above MDL/MRL. U Estimated concentration. Analyte detected above MDL but below MRL. J Hit above MRL also found in Method Blank. В Analyte concentration above high point of ICAL. E N Presumptive evidence of compound.

Result from dilution. D X See case narrative.

- Cover Page -INORGANIC ANALYSIS DATA PACKAGE

Client:

BE&K Terranext, LLC

AVB71-0104-1000

Project Name: Project No.:

WVBA 03103154 Service Request: L2300521

L2300521-005

Sample Name :	<u>Lab Code :</u>
Laboratory Control Sample	L2300318-LCS
Method Blank	L2300318-MB
AVB92-0100-03130	L2300521-001
AVB92-0100-03130	L2300521-001S
AVB92-0100-03130	L2300521-001SD
AVB74-0100-07088	L2300521-002
AVB29-0100-19111	L2300521-003
AVB71-0100-07125	L2300521-004

Zue Dewlerse Approved By: 003

Analytical Report

Client:

BE&K Terranext, LLC

Project Name: Project No.:

WVBA 03103154

Matrix:

Water

Service Request: L2300521

Date Collected: 03/10/03

Date Received: 03/10/03

Date Extracted: 03/18/03

Total Metals

Sample Name:

AVB92-0100-03130

Lab Code:

L2300521-001

Units: ug/L (ppb)
Basis: NA

Analyte	Analysis Method	MRL	Date Analyzed	Sample Result	Result Notes
Chromium	6010B	10	03/19/03	15	

Analytical Report

Client:

BE&K Terranext, LLC

Project Name : Project No. : WVBA

Matrix:

03103154 Water Service Request: L2300521

Date Collected: 03/10/03

Date Received: 03/10/03

Date Extracted: 03/18/03

Dissolved Metals

Sample Name :

AVB92-0100-03130

Lab Code:

L2300521-001

Units: ug/L (ppb)

Analyte	Analysis Method	MRL	Date Analyzed	Sample Result	Result Notes
Chromium	6010B	10	03/19/03	11	

Analytical Report

Client:

BE&K Terranext, LLC

Project Name : Project No. : WVBA

Matrix:

03103154 Water Service Request: L2300521

Date Collected: 03/10/03

Date Received: 03/10/03

Date Extracted: 03/18/03

Total Metals

Sample Name:

AVB74-0100-07088

Lab Code:

L2300521-002

Units: ug/L (ppb)

Analyte	Analysis Method	MRL	Date Analyzed	Sample Result	Result Notes
Chromium	6010B	10	03/19/03	30	

Analytical Report

Client:

BE&K Terranext, LLC

Project Name: Project No.:

WVBA 03103154

Matrix:

Water

Service Request: L2300521

Date Collected: 03/10/03 Date Received: 03/10/03

Date Extracted: 03/18/03

Dissolved Metals

Sample Name:

AVB74-0100-07088

Lab Code:

L2300521-002

Units: ug/L (ppb)

Basis: NA

Result Sample Result Notes **Analysis Method** MRL **Date Analyzed** Analyte 14 10 03/19/03 6010B Chromium

Analytical Report

Client:

BE&K Terranext, LLC

Project Name:

WVBA

Project No.:

03103154

Matrix:

Water

Service Request: L2300521

Date Collected: 03/10/03

Date Received: 03/10/03

Date Extracted: 03/18/03

Total Metals

Sample Name:

AVB29-0100-19111

Lab Code:

L2300521-003

Units: ug/L (ppb)

Basis: NA

Sample Result MRL **Date Analyzed** Result Notes **Analysis Method** Analyte 10 03/19/03 16 6010B Chromium

Analytical Report

Client:

BE&K Terranext, LLC

Project Name:

WVBA

Project No. :

03103154

Matrix:

Water

Service Request: L2300521

Date Collected: 03/10/03

Date Received: 03/10/03

Date Extracted: 03/18/03

Dissolved Metals

Sample Name:

AVB29-0100-19111

Lab Code:

L2300521-003

Units: ug/L (ppb)

Analyte	Analysis Method	MRL	Date Analyzed	Sample Result	Result Notes
Chromium	6010B	10	03/19/03	11	

Analytical Report

Client:

BE&K Terranext, LLC

Project Name : Project No. : WVBA

Matrix:

03103154 Water Service Request: L2300521

Date Collected: 03/10/03

Date Received: 03/10/03

Date Extracted: 03/18/03

Total Metals

Sample Name:

AVB71-0100-07125

Lab Code:

L2300521-004

Units: ug/L (ppb)

Analyte	Analysis Method	MRL	Date Analyzed	Sample Result	Result Notes
Chromium	6010B	10	03/19/03	ND	

Analytical Report

Client:

BE&K Terranext, LLC

Project Name : Project No. : WVBA 03103154

Matrix:

Water

Service Request: L2300521

Date Collected: 03/10/03

Date Received: 03/10/03

Date Extracted: 03/18/03

Dissolved Metals

Sample Name:

AVB71-0100-07125

Lab Code:

L2300521-004

Units: ug/L (ppb)

Analyte	Analysis Method	MRL	Date Analyzed	Sample Result	Result Notes
Chromium	6010B	10	03/19/03	ND	

Analytical Report

Client:

BE&K Terranext, LLC

Project Name : Project No. : WVBA

Matrix:

03103154

Water

Service Request: L2300521

Date Collected: 03/10/03

Date Received: 03/10/03

Date Extracted: 03/18/03

Total Metals

Sample Name:

AVB71-0104-1000

Lab Code :

L2300521-005

Units: ug/L (ppb)

Basis: NA

Analyte Analysis Method MRL Date Analyzed Result Notes

Chromium 6010B 10 03/19/03 ND

Analytical Report

Client:

BE&K Terranext, LLC

Project Name:

WVBA

Project No.:

03103154

Matrix:

Water

Service Request: L2300521

Date Collected: 03/10/03

Date Received: 03/10/03

Date Extracted: 03/18/03

Dissolved Metals

Sample Name:

AVB71-0104-1000

Lab Code:

L2300521-005

Units: ug/L (ppb)

Basis: NA

Analyte

Analysis Method

MRL

Date Analyzed

Sample Result

Result Notes

Chromium

6010B

10

03/19/03

ND

Analytical Report

Client:

BE&K Terranext, LLC

Project Name: Project No.:

WVBA 03103154

Matrix:

Water

Service Request: L2300521

Date Collected: NA Date Received: NA

Date Extracted: 03/18/03

Total Metals

Sample Name:

Method Blank

Lab Code:

L2300318-MB

Units: ug/L (ppb)

Basis: NA

Sample Result Analyte **Analysis Method** MRL **Date Analyzed** Result Notes

Chromium

6010B

10

03/19/03

ND

Analytical Report

Client:

BE&K Terranext, LLC

Project Name: Project No.:

WVBA 03103154

Matrix:

Water

Service Request: L2300521

Date Collected: 03/10/03

Date Received: 03/10/03

Date Extracted: 03/18/03

Date Analyzed: 03/19/03

Matrix Spike/Duplicate Matrix Spike Summary

Total Metals

Sample Name: Lab Code:

AVB92-0100-03130

L2300521-001S

L2300521-001SD

Units: ug/L (ppb)

Analyte	Prep Method	Analysis Method	MRL	Spike MS	Level DMS	Sample Result	Spike MS	Result DMS	MS	DMS	CAS Acceptance Limits	Relative Percent Difference	Result Notes
Chromium	3010A	6010B	10	500	500	15.3	530	529	103	103	87-105	<1	

QA/QC Report

Client:

BE&K Terranext, LLC

Project Name: Project No.:

WVBA 03103154

Matrix:

Water

Service Request: L2300521

Date Collected: NA Date Received: NA

Date Extracted: 03/18/03

Date Analyzed: 03/19/03

Laboratory Control Sample Summary Total Metals

Sample Name:

Laboratory Control Sample

Lab Code:

L2300318-LCS

Units: ug/L (ppb)

Analyte	Analysis Method	True Value	Result	Percent	CAS Percent Recovery Acceptance Limits	Result Notes
Chromium	6010B	500	521	104	87-111	

Analytical Services Inc. Columbia

CHAIN OF CUSTODY/LABORATORY ANALYSIS REQUEST FORM 7.5300527

3902 East University Drive, Suite 4 • Phoenix, AZ 85034 • (602) 437-2001 • (800) 695-7222 x09 • FAX (602) 437-5308

PAGE DATE 3.10.03

ANALYSIS TAT (Circle One) REMARKS Lab No. X2300 196 SAMPLE RECEIPT: Shipping VIA: Shipping #: Condition: CPA Date/Time 3 10-03 13:45 **ANALYSIS REQUESTED** INVOICE INFORMATION D 0158 HAA Diellist inleg DHq Djujod yseld Organization Total D Total P.O.# REPORT REQUIREMENTS II. Report (includes DUP.MS. MSD, as required, may be IV. CLP Deliverable Report III. Data Validation Report (includes All Raw Data) charged as samples) I. Routine Report Aromatic Volatiles Volatile Organics Received By (Signature) 中 3 h NUMBER OF CONTAINERS Date/Time **3**∵ro ⋅ ⊖3 PRESER-VATION PHONERY (20 496 4100 PMX AZ 85044 9830 S 5137 ST # @3103154 MATRIX 1 Į ¥ GORDON 60 Bot Organization 10-9610 0196 - ØŠ LAB I.D. we were 05.00 12:45 3.10.63 08.10 0915 12.15 TIME PROJECT MANAGER CHOCK SPECIAL INSTRUCTIONS/COMMENTS: COMPANY/ADDRESS BEFLE DATE PROJECT NAME WY BA <u>~</u> Ξ ~ 421 Y z ¥ Relinquished by (Signature) AVB 29-0100-1911 AUB 71-0100-07125 AVB 92-0100-03130 ANB 74-0100-07088 SAMPLER'S SIGNATURE 3/87/-0104-1000 AVR11-0102-1000 SAMPLE I.D. Soile 紫红

RUSH TAT - Surcharges Apply

Date/Time

Organization

Received By (Signature)

3-1003 Date/Time

Organization

Refinquished By (Signature)

Lalie May

13.45.

RETK

多

STANDARD

☐ 24 Hours ☐ 48 Hours

□ 72 Hours

Date/Time

Organization

Received By (Signature) で)を

Date/Time

Organization

Relinquished By (Signature)

8

SAMPLE RECEIPT FORM

Service Request No: L230 5 1 Client: BE+K
Sample(s) delivered by: Client CAS Emp After Hours DHL
Golden State Overnight Fed X UPS Other Courier
Chain of Custody filled out accurately? Yes No(See Comments)
Appropriate sample volume and containers? Yes/ No(See Comments)
Sufficient labeling on container(s)? Yes No(See Comments)
Container(s) supplied by CAS? Yes No(See Comments)
Custody seal(s) intact? N/A Yes No(See Comments)
Trip Blank(s) received Yes No
If Trip Blank was supplied by CAS, record serial #TB
Temperature of sample(s)/cooler °C Temp Blank(Y) or N (Circle One)
Voa's Marked Preserved? Yes No Filled Properly? Yes No (See Comments)
Preserved Bottles Requiring pH check(s)? Yes Notified
RUSH Turn around time? Yes Notified Date & Time
Short Hold-Time Analysis (check all that apply)
ASAP Res Cl D.O Flash Diss S2 Ferrous Fe
24HR pH Odor Cr+6 48HR BOD Color_ MBAS Nitrate
NitriteO-PO4Sett SolTurbidity
Notified Date & Time
Container(s) received and their preservative(s):
$-1 \rightarrow -5 = \{1-500 \text{m} (\text{HNo3}) \text{A} \}$ $\{1-500 \text{m} (\text{NP}) \text{B} \}$
1-500 hollos)A
(1-300)4(1(147)13
Comments
Benny notified @ 1030
1103
Initials, Date, Time LK 3/4/03 1020 r:\sr forms\cooler.doc Rev 1/17/02
Initials, Date, Time LE 3 (11 [0] 10 PC r:\sr_forms\cooler.doc Rev. 1/17/02

CHAIN OF CUSTODY/LABORATORY ANALYSIS REQUEST FORM

A₀

PAGE

Services INC. Analytical

DATE 3.10.03 3902 East University Drive, Suite 4 • Phoenix, AZ 85034 • (602) 437-2001 • (800) 695-7222 x09 • FAX (602) 437-5308

REMARKS SAMPLE RECEIPT: Shipping VIA: Shipping #: D 0758 **ANALYSIS REQUESTED** INVOICE INFORMATION: 0158 DHG Paint Filter DHG Total T P.O.# REPORT REQUIREMENTS II. Report (includes DUP.MS. MSD, as required, may be charged as samples) I. Routine Report Aromatic Volatiles Halogenated Volatile Organics 3 3 NUMBER OF CONTAINERS PRESER-VATION PHY AZ 85044 PHONERY (180 496 4100 9830 S 51255 # 03103154 MATRIX 17 \mathcal{L} ÷)] G09202 00 BCT Ŝ 10-4610 50-9610 LAB I.D. el delection 05.01 12:45 0915 3.10-03 108.10 12.15 PROJECT MANAGER CHOCK SPECIAL INSTRUCTIONS/COMMENTS: BETR PROJECT NAME WYBA <u>~</u> ~ 421 Y -Ż AVB 72-0100-03130 ANB 29-0100-1911 AVB 71-0100-07125 ANB 74-0100-07088 SAMPLER'S SIGNATURE COMPANY/ADDRESS ANB71-0104-1000 AVR11-0102-1000 SAMPLE I.D.

090009

RUSH TAT - Surcharges Apply □ 24 Hours ☐ 48 Hours ☐ 72 Hours STANDARD 13:45 Date/Time Date/Time Organization Organization Received By (Signature) Received By (Signature) Date/Time 3. fo·O3 13.45. Date/Time Date/Time Organization Organization

0702

ANALYSIS TAT (Circle One)

Date/Time

Organization

Received By/(Signature)

Organization

Relinquished By (Signature)

Belinquished By (Signature)

Relinquished By (Signature)

-ab No: X2300196

Condition:

III. Data Validation Report (includes All Raw Data) IV. CLP Deliverable Report

Columbia Analytical Services, Inc. Phoenix, AZ

Sample Receipt and Preservation Form

CIII.	nt: BE4K		Project Name: WUB			
	ceived on: 3- Glass Bottle	- /0 - 0 3 da s□ F		and the second s		
MATRIX	: SOIL 🗆	WATER	<u>a</u>			
First Extr	action Holding T	ime Expiration		date	time (soils only)	
					S(soil)/7 DAYS (water)?	Yes □ No
	anderson in the section of the secti		Barana Maraka			
If YES, c	hemist notified o	n:	date	time	Chemist's Initials	
. Rush or standard turn-a-round time?						STANDARI
Are the custody seals present?					Yes □	Noll
If yes, how many and where?Are the signature and date correct?					Yes	No□
Did all containers arrive in good condition?					Yes D	_No□ _No□
Are all container labels complete (i.e. preservation, sample ID Were the correct containers used for the tests indicated?				(ID)?	Yes (NoU NoU
Temperati	ure of sample(s)	upon receipt:	4.50	(Hote proofens	in comments) Yes	
Temperati	ure of sample(s) to of discrepancies	upon receipt:	4.5		in comments)	
Temperati	ure of sample(s)	upon receipt:	4.5		,	No□ N/
Temperati	ure of sample(s)	upon receipt:	4.5		VOA Vial pH Verif	ication
Temperati	ure of sample(s)	upon receipt:	4.5		VOA Vial pH Verif (Tested After Ana	ication lysis)
Temperati	ure of sample(s)	upon receipt:	4.5		VOA Vial pH Verif (Tested After Ana □ All Samples ph	ĭcation lysis) H ≤ 2
Temperati	ure of sample(s)	upon receipt:	4.5		VOA Vial pH Verif (Tested After Ana	ĭcation lysis) H ≤ 2
Temperati	ure of sample(s)	upon receipt:	4.5		VOA Vial pH Verif (Tested After Ana □ All Samples ph	ĭcation lysis) H ≤ 2
Temperation	ure of sample(s)	upon receipt:	4.5		VOA Vial pH Verif (Tested After Ana □ All Samples ph	ĭcation lysis) H ≤ 2
Temperation	re of sample(s) of discrepancies Reagent	upon receipt:	4.5		VOA Vial pH Verif (Tested After Ana □ All Samples ph	ĭcation lysis) H ≤ 2
pH 12	Reagent NaOH	upon receipt:	4.5		VOA Vial pH Verif (Tested After Ana □ All Samples ph	ĭcation lysis) H ≤ 2
pH 12 2 2	Reagent NaOH HNO3 H ₂ SO ₄	upon receipt:	4.5		VOA Vial pH Verif (Tested After Ana □ All Samples ph	ĭcation lysis) H ≤ 2
pH 12	Reagent NaOH HNO3 H ₂ SO ₄	upon receipt:	4.5		VOA Vial pH Verif (Tested After Ana □ All Samples ph	ĭcation lysis) H ≤ 2

000061

March 28, 2003

Chuck Gordon BE&K Terranext 9830 S. 51st Street, Suite A-127 Phoenix, AZ 85044

Re: Re: WVB

Dear Chuck:

Enclosed are the results of the samples submitted to our laboratory on March 11, 2003. The samples were analyzed for Total and Dissolved Chromium by our Canoga Park, CA facility (L2300556). For your reference, the 8260B analyses have been assigned our service request number X230202.

All analyses were performed according to our laboratory's quality assurance program. All results are intended to be considered in their entirety, and Columbia Analytical Services, Inc. (CAS) is not responsible for use of less than the complete report. Results apply only to the samples analyzed. Columbia Analytical Services, Inc. is certified for environmental analyses by the Arizona Department of Health Services (Certificate #AZ0136; and #AZ0497).

Please call if you have any questions. My extension is 223.

Respectfully submitted,

Columbia Analytical Services, Inc.

Tracy L. Dutton
Laboratory Director

TLD/td

Page 1 of <u>67</u>

Client:

BE&K Terrnext

Project:

WVB

Sample Matrix:

Water

Service Request No.:

X200202

Date Received:

3/11/02

CASE NARRATIVE

All analyses were performed consistent with the quality assurance program of Columbia Analytical Services, Inc. (CAS). This report contains analytical results for sample(s) designated for Tier II data deliverables. When appropriate to the method, method blank results have been reported with each analytical test. Surrogate recoveries have been reported for all applicable organic analyses. Additional quality control analyses reported herein include: Matrix/Duplicate Matrix Spike (MS/DMS) and Laboratory Control Sample (LCS).

All EPA recommended holding times have been met for analyses in this sample delivery group.

The following difficulties were experienced during analysis of this batch:

CCV recovery for Dichlorodifluoromethane for 8260B on 3/19/03 and 2-Hexanone on 3/21/03 was below method acceptance limits. These compounds were detected in the method reporting limit standard that was analyzed with their batch. This verifies that the compounds would be detected if present in the samples.

Matrix spike recovery for several compounds for XWG0300365 and XWG0300373 for 8260B was high, the method control sample recovery was acceptable.

Matrix spike recovery for several compounds for XWG0300365 and 2-Butanone in XWG0300373 for 8260B was low, the method control sample recovery was acceptable.

The DLCS recovery for several compounds for XWG0300363-4 for 8260B was low, these compounds were recovered in the LCS within acceptance limits. All these compounds were also detected in the method reporting limit standard.

RPD for several compounds for XWG0300363-3,-4 and Trichlorofluoromethane for XWG0300373-,-4 for 8260B exceeded the laboratory control limit.

Approved by JMDate 3-28-03

ARIZONA DATA QUALIFIERS

Method Bl	ank:
B1	Target analyte detected in method blank at or above the method reporting limit.
B2	Non-target analyte detected in method blank and sample, producing interference.
В3	Target analyte detected in calibration blank at or above the method reporting limit.
B4	Target analyte detected in blank at/above method acceptance criteria.
Confirmat	
C1	Confirmatory analysis not performed as required by the method.
C2	Confirmatory analysis not performed. Confirmation of analyte presence established by site historical data.
C3	Qualitative confirmation performed. See case narrative.
C4	Confirmatory analysis was past holding time.
C5	Confirmatory analysis was past holding time. Original result not confirmed.
Dilution:	
D1	Sample required dilution due to matrix interference. See case narrative.
D2	Sample required dilution due to high concentration of target analyte.
D3	Sample dilution required due to insufficient sample.
D4	Minimum reporting level (MRL) adjusted to reflect sample amount received and analyzed.
Estimated	concentration:
E1	Concentration estimated. Analyte exceeded calibration range. Reanalysis not possible due to insufficient sample.
E2	Concentration estimated. Analyte exceeded calibration range. Reanalysis not performed due to sample matrix.
E3	Concentration estimated. Analyte exceeded calibration range. Reanalysis not performed due to holding time
	requirements.
E4	Concentration estimated. Analyte was detected below laboratory minimum reporting level (MRL).
E5	Concentration estimated. Analyte was detected below laboratory minimum reporting level (MRL), but not confirmed by alternate analysis.
E6	Confirmation estimated. Internal standard recoveries did not meet method acceptance criteria.
E7	Confirmation estimated. Internal standard recoveries did not meet laboratory acceptance criteria.
Hold Time	et.
H1	Sample analysis performed past holding time. See case narrative.
H2	Initial analysis within holding time. Reanalysis for the required dilution was past holding time.
H3	Sample was received and analyzed past holding time.
H4	Sample was extracted past required extraction holding time, but analyzed within analysis holding time. See case
	narrative.
BOD:	
K1	The sample dilutions set-up for the BOD analysis did not meet the oxygen depletion criteria of at least 2mg/L.
	Any reported result is an estimated value.
K2	The sample dilutions set up for the BOD analysis did not meet the criteria of a residual dissolved oxygen of at
	least 1 mg/L. Any reported result is an estimated value.
K3	The seed depletion was outside the method acceptance limits.

The seed depletion was outside the method and laboratory acceptance limits. The reported result is an estimated K4 value. The dilution water D.O. depletion was >0.2 mg/L. К5 Glucose/glutamic acid BOD was below method acceptance criteria. Κ6 The discrepancy between the BOD and COD results has been verified by reanalysis of the sample for COD. K7 Laboratory fortified blank/blank spike: The associated blank spike recovery was above laboratory acceptance limits. See case narrative. L1The associated blank spike recovery was below laboratory acceptance limits. See case narrative. 1.2 The associated blank spike recovery was above method acceptance limits. See case narrative. 1.3 The associated blank spike recovery was below method acceptance limits. See case narrative. 1.4 Note: The L1, L2, L3, & L4 footnotes need to be added to all corresponding analytes for a sample. Matrix spike: Matrix spike recovery was high, the method control sample recovery was acceptable. M1Matrix spike recovery was low, the method control sample was acceptable. M2The accuracy of the spike recovery value is reduced since the analyte concentration in the sample is M3 disproportionate to spike level. The method control sample recovery was acceptable. The analysis of the spiked sample required a dilution such that the spike concentrations was diluted below M4 the reporting limit. The method control sample recovery was acceptable. Analyte concentration was determined by the method of standard addition (MSA) M5 General: See case narrative. N1 See corrective action report. N2 Sample quality: Sample integrity was not maintained. See case narrative. 01 Sample received with head space. Q2 Sample received with improper chemical preservation. O_3 Sample received and analyzed without chemical preservation. Q4 Sample received with inadequate chemical preservation, but preserved by the laboratory. Q5 Sample was received above recommended temperature. Q6 Sample inadequately dechlorinated. Ο7 Insufficient sample received to meet QC requirements. QC requirements satisfy ADEQ policies 0154 and 0155 Ο8 Insufficient sample received to meet QC requirements. 09 Sample received in inappropriate sample container. Q10 Sample is heterogeneous. Sample homogeneity could not be readily achieved using routine laboratory practices. Q11 **Duplicates:** RPD exceeded the method control limit. See case narrative. R1 RPD exceeded the laboratory control limit. See case narrative. R2 Sample RPD between the primary and confirmatory analysis exceeded 40%. Per Method 8000B, the higher R3 value was reported. MS/MSD RPD exceeded the method control limit. Recovery met acceptance criteria. R4 MS/MSD RPD exceeded the laboratory control limit. Recovery met acceptance criteria. R5 LFB/LFBD RPD exceeded the method control limit. Recovery met acceptance criteria. R6 LFB/LFBD RPD exceeded the laboratory control limit. Recovery met acceptance criteria. R7

- Sample RPD exceeded the laboratory control limit. R9 Surrogate: Surrogate recovery was above laboratory acceptance limits, but within method acceptance limits. S1Surrogate recovery was above laboratory and method acceptance limits. S2Surrogate recovery was above laboratory acceptance limits, but within method acceptance limits. No target S3 analytes were detected in the sample. Surrogate recovery was above laboratory and method acceptance limits. No target analytes were detected in the S4 sample. Surrogate recovery was below laboratory acceptance limits, but within method acceptance limits. 85 Surrogate recovery was below laboratory and method acceptance limits. Reextraction and/or reanalysis confirms 86 low recovery caused by matrix effect. Surrogate recovery was below laboratory and method acceptance limits. Unable to confirm matrix effect. **S7** The analysis of the sample required a dilution such that the surrogate concentration was diluted below the method S8 acceptance criteria. The method control sample recovery was acceptable. The analysis of the sample required a dilution such that the surrogate concentration was diluted below the S9 laboratory acceptance criteria. The method control sample recovery was acceptable. Surrogate recovery was above laboratory and method acceptance limits. See case narrative. S10
- Method/analyte discrepancies:

R8

T1 Method promulgated by EPA, but not ADHS at this time.

Sample RPD exceeded the method control limit.

- T2 Cited ADHS licensed method does not contain this analyte as part of method compound list.
- T3 Method not promulgated either by EPA or ADHS.
- T4 Tentatively identified compound. Concentration is estimated and based on the closest internal standard.

Calibration verification:

- V1 CCV recovery was above method acceptance limits. This target analyte was not detected in the sample.
- V2 CCV recovery was above method acceptance limits. This target analyte was detected in the sample. The sample could not be reanalyzed due to insufficient sample.
- V3 CCV recovery was above method acceptance limits. This target analyte was detected in the sample, but the sample was not reanalyzed. See case narrative.
- V4 CCV recovery was below method acceptance limits. The sample could not be reanalyzed due to insufficient sample.
- V5 CCV recovery after a group of samples was above acceptance limits. This target analyte was not detected in the sample. Acceptable per EPA Method 8000B.

Inorganic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.
- U The compound was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- i The MRL/MDL has been elevated due to a matrix interference.
- X See case narrative.

Metals Data Qualifiers

- # The control limit criteria is not applicable. See case narrative.
- B The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.
- E The reported value is estimated because of the presence of matrix interference.
- M The duplicate injection precision was not met.
- N The Matrix Spike sample recovery is not within control limits. See case narrative.
- S The reported value was determined by the Method of Standard Additions (MSA).
- U The compound was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- W The post-digestion spike for furnace AA analysis is out of control limits, while sample absorbance is less than 50% of spike absorbance.
- i The MRL/MDL has been elevated due to a matrix interference.
- X See case narrative.
- * The duplicate analysis not within control limits. See case narrative.
- + The correlation coefficient for the MSA is less than 0.995.

Organic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- A A tentatively identified compound, a suspected aldol-condensation product.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result.
- C The analyte was qualitatively confirmed using GC/MS techniques, pattern recognition, or by comparing to historical data.
- D The reported result is from a dilution.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.
- N The result is presumptive. The analyte was tentatively identified, but a confirmation analysis was not performed.
- P The GC or HPLC confirmation criteria was exceeded. The relative percent difference is greater than 40% between the two analytical results (25% for CLP Pesticides).
- U The compound was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- The MRL/MDL has been elevated due to a chromatographic interference.
- X See case narrative.

Additional Petroleum Hydrocarbon Specific Qualifiers

- F The chromatographic fingerprint of the sample matches the elution pattern of the calibration standard.
- L The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of lighter molecular weight constituents than the calibration standard.
- H The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of heavier molecular weight constituents than the calibration standard.
- O The chromatographic fingerprint of the sample resembles an oil, but does not match the calibration standard.
- Y The chromatographic fingerprint of the sample resembles a petroleum product eluting in approximately the correct carbon range, but the elution pattern does not match the calibration standard.
- Z The chromatographic fingerprint does not resemble a petroleum product.

Client: Project: BE&K Terranext

WVB

Service Request:

X2300202

Cover Page - Organic Analysis Data Package Volatile Organic Compounds

Sample Name	Lab Code	Date Collected	Date Received
AVB91-0100-03131	X2300202-001	03/11/2003	03/11/2003
AVB81-0200-05107	X2300202-002	03/11/2003	03/11/2003
AVB96-0100-03125	X2300202-003	03/11/2003	03/11/2003
AVB94-0100-03132	X2300202-004	03/11/2003	03/11/2003
AVB94-0104-1000	X2300202-005	03/11/2003	03/11/2003
AVB94-0102-1000	X2300202-006	03/11/2003	03/11/2003

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed in the case narrative. Release of the data contained in this hardcopy data package and in the computer-readable data submitted on floppy diskette has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signature.

Signature: Jay

Date:

3-28-03

Name: Tracy Ditte

Title: Lab Manag

000097

RR3111

Analytical Results

Client:

BE&K Terranext

Project:

WVB

Sample Matrix:

Water

Service Request: X2300202

Date Collected: 03/11/2003

Date Received: 03/11/2003

Volatile Organic Compounds

Sample Name:

AVB91-0100-03131

Lab Code:

X2300202-001

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

				Dilution	Date	Date	Arizona Qualifier
Analyte Name	Result		MRL	Factor	Extracted		Alizona Quantier
Dichlorodifluoromethane	ND		3.0	1	03/21/03	03/21/03	
Chloromethane	ND		2.0	1	03/21/03	03/21/03 03/21/03	
Vinyl Chloride	ND	U	1.0	1	03/21/03		
Bromomethane	ND	U	1.0	1	03/21/03	03/21/03	
Chloroethane	ND		1.0	1	03/21/03	03/21/03	
Trichlorofluoromethane	ND	U	1.0	1	03/21/03	03/21/03	
1.1,2-Trichlorotrifluoroethane	ND	U	1.0	1	03/21/03	03/21/03	
1,1-Dichloroethene	ND	U	1.0	1	03/21/03	03/21/03	
Acetone	ND	U	10	1	03/21/03	03/21/03	
Iodomethane	ND	U	2.0	1	03/21/03	03/21/03	
Carbon Disulfide	ND		2.0	1	03/21/03	03/21/03	
Methylene Chloride	ND		1.0	1	03/21/03	03/21/03	
Methyl tert-Butyl Ether	ND	II	1.0	1	03/21/03	03/21/03	
trans-1,2-Dichloroethene	ND		0.50	1	03/21/03	03/21/03	
1,1-Dichloroethane	ND		0.50	1	03/21/03	03/21/03	
	ND		3.0	1	03/21/03	03/21/03	
Vinyl Acetate	ND ND		2.0	1	03/21/03	03/21/03	
2,2-Dichloropropane	ND		8.0	1	03/21/03	03/21/03	
2-Butanone (MEK)	ND		0.50	1	03/21/03	03/21/03	
cis-1,2-Dichloroethene	ND ND		0.50	1	03/21/03	03/21/03	
Bromochloromethane	ND ND		1.0	1	03/21/03	03/21/03	
Chloroform				1	03/21/03	03/21/03	
1,1,1-Trichloroethane	ND		0.50 0.50	1	03/21/03	03/21/03	
Carbon Tetrachloride	ND		0.50	1	03/21/03	03/21/03	
1,1-Dichloropropene	ND				03/21/03	03/21/03	
Benzene	ND		0.50	1	03/21/03	03/21/03	
1,2-Dichloroethane	ND		0.50	1	03/21/03	03/21/03	
Trichloroethene	ND		0.50	1			
1,2-Dichloropropane	ND		0.50	1	03/21/03	03/21/03	
Dibromomethane	ND		0.50	1	03/21/03	03/21/03	
Bromodichloromethane	ND	U	0.50	1	03/21/03	03/21/03	
cis-1,3-Dichloropropene	ND	U	0.50	1	03/21/03	03/21/03	
4-Methyl-2-pentanone (MIBK)	ND	U	8.0	1	03/21/03	03/21/03	
Toluene	ND	U	0.50	11	03/21/03	03/21/03	

Comments:

Printed: 03/25/2003 10:31:30 L:\STEALTH\CRYSTAL.RPT\Form\m.rpt

Form 1A - Organic

Merged

SuperSet Reference:

RR3111

Page 1 of 3

000008

Analytical Results

Client:

BE&K Terranext

Project:

WVB

Sample Matrix:

Water

Service Request: X2300202

Date Collected: 03/11/2003

Date Received: 03/11/2003

Volatile Organic Compounds

Sample Name:

AVB91-0100-03131

Lab Code:

X2300202-001

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

				Dilution	Date	Date	Arizona Qualifier
Analyte Name	Result		MRL	Factor	Extracted		Arizona Quantici
trans-1,3-Dichloropropene	ND		1.0	1	03/21/03	03/21/03	
1,1,2-Trichloroethane	ND		1.0	1	03/21/03	03/21/03	
Tetrachloroethene	ND	U	0.50	1	03/21/03	03/21/03	
2-Hexanone	ND	U	5.0	1	03/21/03	03/21/03	N1V4
1,3-Dichloropropane	ND	U	1.0	1	03/21/03	03/21/03	
Dibromochloromethane	ND	U	0.50	11	03/21/03	03/21/03	
1,2-Dibromoethane	ND	U	0.50	1	03/21/03	03/21/03	
Chlorobenzene	ND	U	0.50	1	03/21/03	03/21/03	
1,1,1,2-Tetrachloroethane	ND	U	0.50	1	03/21/03	03/21/03	
Ethylbenzene	ND	IJ	0.50	1	03/21/03	03/21/03	
m,p-Xylenes	ND		1.0	1	03/21/03	03/21/03	
o-Xylene	ND		0.50	1	03/21/03	03/21/03	
	ND		0.50	1	03/21/03	03/21/03	
Styrene	ND ND		0.50	1	03/21/03	03/21/03	
Isopropylbenzene	ND		0.50	1	03/21/03	03/21/03	
Bromobenzene	ND		1.0	1	03/21/03	03/21/03	
1,2,3-Trichloropropane	ND ND		0.50	1	03/21/03	03/21/03	
n-Propylbenzene	ND ND		0.50	1	03/21/03	03/21/03	
2-Chlorotoluene			0.50	1	03/21/03	03/21/03	
4-Chlorotoluene	ND ND		0.50	1	03/21/03	03/21/03	
1,3,5-Trimethylbenzene	ND ND		0.50	1	03/21/03	03/21/03	
tert-Butylbenzene					03/21/03	03/21/03	
1,2,4-Trimethylbenzene	ND		0.50	1	03/21/03	03/21/03	
sec-Butylbenzene	ND		0.50	1	03/21/03	03/21/03	
1,3-Dichlorobenzene	ND		0.50			03/21/03	
4-Isopropyltoluene	ND		0.50	1	03/21/03 03/21/03	03/21/03	
Bromoform	ND		0.50	1	03/21/03	03/21/03	
1,1,2,2-Tetrachloroethane	ND	U	1.0	1			
1,4-Dichlorobenzene	ND		0.50	1	03/21/03	03/21/03	
1,2-Dichlorobenzene	ND		0.50	1	03/21/03	03/21/03	
n-Butylbenzene	ND	U	0.50	1	03/21/03	03/21/03	
1,2-Dibromo-3-chloropropane	ND	U	5.0	1	03/21/03	03/21/03	
1,2,4-Trichlorobenzene	ND	U	0.50	1	03/21/03	03/21/03	
Hexachlorobutadiene	ND		0.50	1	03/21/03	03/21/03	

Comments:

Printed: 03/25/2003 10:31:30 L:\STEALTH\CRYSTAL.RPT\Form1m.rpt

Merged

Form 1A - Organic

2 of 3 Page

Analytical Results

Client:

BE&K Terranext

Project:

WVB

Sample Matrix:

Water

Service Request: X2300202

Date Collected: 03/11/2003

Date Received: 03/11/2003

Volatile Organic Compounds

Sample Name:

AVB91-0100-03131

Lab Code:

X2300202-001

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

			Dilution	Date	Date	A ' O-ralifian
Analyte Name	Result Q	MRL	Factor	Extracted	<u> </u>	Arizona Qualifier
Naphthalene	ND U	3.0	1	03/21/03	03/21/03	
1,2,3-Trichlorobenzene	ND U	0.50	1	03/21/03	03/21/03	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Arizona Qualifier	
Dibromofluoromethane	95	84-113	03/21/03		
Toluene-d8	111	68-126	03/21/03		
4-Bromofluorobenzene	95	79-113	03/21/03		

Comments:

000010

RR3111

Analytical Results

Client:

BE&K Terranext

Project: Sample Matrix: WVB

Water

Service Request: X2300202 **Date Collected:** 03/11/2003

Date Received: 03/11/2003

Volatile Organic Compounds

Sample Name:

AVB81-0200-05107

Lab Code:

X2300202-002

Extraction Method: EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

				Dilution	Date	Date	A ' Omalifian
Analyte Name	Result	Q	MRL	Factor	Extracted		Arizona Qualifier
Dichlorodifluoromethane	ND		3.0	1	03/21/03	03/21/03	
Chloromethane	ND		2.0	1	03/21/03	03/21/03	
Vinyl Chloride	ND	U	1.0	1 .	03/21/03	03/21/03	4.4
Bromomethane	ND	U	1.0	1	03/21/03	03/21/03	
Chloroethane	ND	U	1.0	1	03/21/03	03/21/03	
Trichlorofluoromethane	ND	U	1.0	1	03/21/03	03/21/03	
1,1,2-Trichlorotrifluoroethane	ND	U	1.0	1	03/21/03	03/21/03	
1,1-Dichloroethene	ND	U	1.0	1	03/21/03	03/21/03	
Acetone	ND	U	10	1	03/21/03	03/21/03	
Iodomethane	ND	U	2.0	1	03/21/03	03/21/03	
Carbon Disulfide	ND		2.0	1	03/21/03	03/21/03	
Methylene Chloride	ND	U	1.0	1	03/21/03	03/21/03	
Methyl tert-Butyl Ether	ND	U	1.0	1	03/21/03	03/21/03	
trans-1,2-Dichloroethene	ND		0.50	1	03/21/03	03/21/03	
1,1-Dichloroethane	ND		0.50	1	03/21/03	03/21/03	
Vinyl Acetate	ND		3.0	1	03/21/03	03/21/03	
2,2-Dichloropropane	ND		2.0	1	03/21/03	03/21/03	
2-Butanone (MEK)	ND		8.0	1	03/21/03	03/21/03	
cis-1,2-Dichloroethene	ND		0.50	1	03/21/03	03/21/03	,
Bromochloromethane	ND		0.50	1	03/21/03	03/21/03	
Chloroform	ND		1.0	1	03/21/03	03/21/03	
1,1,1-Trichloroethane	ND		0.50	1	03/21/03	03/21/03	
Carbon Tetrachloride	ND		0.50	1	03/21/03	03/21/03	
1,1-Dichloropropene	ND		0.50	1	03/21/03	03/21/03	
Renzene	ND		0.50	1	03/21/03	03/21/03	
1,2-Dichloroethane	ND		0.50	1	03/21/03	03/21/03	
Trichloroethene	ND		0.50	1	03/21/03	03/21/03	
	ND		0.50	1	03/21/03	03/21/03	
1,2-Dichloropropane	ND ND		0.50	î	03/21/03	03/21/03	
Dibromomethane Bromodichloromethane	ND ND		0.50	1	03/21/03	03/21/03	
	ND ND		0.50	1	03/21/03	03/21/03	
cis-1,3-Dichloropropene	ND ND		8.0	1	03/21/03	03/21/03	
4-Methyl-2-pentanone (MIBK)	ND		0.50	1	03/21/03	03/21/03	
Toluene	ND		0.50				

Comments:

Printed: 03/25/2003 10:31:43 L:\STEALTH\CRYSTAL.RPT\Form1m.rpt

Merged

Form 1A - Organic 000011

1 of 3 Page

Analytical Results

Client:

BE&K Terranext

Project: Sample Matrix: WVB

Water

Service Request: X2300202

Date Collected: 03/11/2003 **Date Received:** 03/11/2003

Volatile Organic Compounds

Sample Name:

AVB81-0200-05107

Lab Code:

X2300202-002

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

			Dilution	Date	Date	
Analyte Name	Result Q	MRL	Factor	Extracted		Arizona Qualifier
trans-1,3-Dichloropropene	ND U	1.0	1	03/21/03	03/21/03	
1,1,2-Trichloroethane	ND U	1.0	1	03/21/03	03/21/03	
Tetrachloroethene	ND U	0.50	1	03/21/03	03/21/03	
2-Hexanone	ND U	5.0	1	03/21/03	03/21/03	N1V4
1,3-Dichloropropane	ND U	1.0	1	03/21/03	03/21/03	
Dibromochloromethane	ND U	0.50	1	03/21/03	03/21/03	
1,2-Dibromoethane	ND U	0.50	1	03/21/03	03/21/03	
Chlorobenzene	ND U	0.50	1	03/21/03	03/21/03	
1,1,1,2-Tetrachloroethane	ND U	0.50	1	03/21/03	03/21/03	
Ethylbenzene	ND U	0.50	1	03/21/03	03/21/03	
m,p-Xylenes	ND U	1.0	1	03/21/03	03/21/03	
o-Xylene	ND U	0.50	1	03/21/03	03/21/03	
Styrene	ND U	0.50	1	03/21/03	03/21/03	
Isopropylbenzene	ND U	0.50	1	03/21/03	03/21/03	
Bromobenzene	ND U	0.50	1	03/21/03	03/21/03	
1,2,3-Trichloropropane	ND U	1.0	1	03/21/03	03/21/03	
n-Propylbenzene	ND U	0.50	1	03/21/03	03/21/03	
2-Chlorotoluene	ND U	0.50	1	03/21/03	03/21/03	
4-Chlorotoluene	ND U	0.50	1	03/21/03	03/21/03	
1,3,5-Trimethylbenzene	ND U	0.50	1	03/21/03	03/21/03	
tert-Butylbenzene	ND U	0.50	1	03/21/03	03/21/03	
1,2,4-Trimethylbenzene	ND U	0.50	1	03/21/03	03/21/03	
sec-Butylbenzene	ND U	0.50	1	03/21/03	03/21/03	
1,3-Dichlorobenzene	ND U	0.50	1	03/21/03	03/21/03	
4-Isopropyltoluene	ND U	0.50	1	03/21/03	03/21/03	
Bromoform	ND U	0.50	1	03/21/03	03/21/03	
1,1,2,2-Tetrachloroethane	ND U	1.0	1	03/21/03	03/21/03	
1.4-Dichlorobenzene	ND U	0.50	1	03/21/03	03/21/03	
1,2-Dichlorobenzene	ND U	0.50	1	03/21/03	03/21/03	
n-Butylbenzene	ND U	0.50	1	03/21/03	03/21/03	
1,2-Dibromo-3-chloropropane	ND U	5.0	1	03/21/03	03/21/03	
1,2,4-Trichlorobenzene	ND U	0.50	1	03/21/03	03/21/03	
Hexachlorobutadiene	ND U	0.50	1	03/21/03	03/21/03	
Ticacinorounadiche						

Comments:

Printed: 03/25/2003 10:31:43 L:\STEALTH\CRYSTAL.RPT\Form\m.rpt

Merged

Form 1A - Organic 000012

Page 2 of 3

SuperSet Reference: RR3111

Analytical Results

Client:

BE&K Terranext

Project:

WVB

Sample Matrix:

Water

Service Request: X2300202

Date Collected: 03/11/2003

Date Received: 03/11/2003

Volatile Organic Compounds

Sample Name:

AVB81-0200-05107

Lab Code:

X2300202-002

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

			Dilution	Date	Date	
Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed	Arizona Qualifier
Naphthalene 1,2,3-Trichlorobenzene	ND U ND U	3.0 0.50	1 1	03/21/03 03/21/03	03/21/03 03/21/03	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Arizona Qualifier
Dibromofluoromethane	99	84-113 68-126	03/21/03 03/21/03	
Toluene-d8 4-Bromofluorobenzene	111 99	79-113	03/21/03	

Comments:

Printed: 03/25/2003 10:31:43 L:\STEALTH\CRYSTAL.RPT\Formlm.rpt

Merged

Analytical Results

Client:

BE&K Terranext

Project:

WVB

Sample Matrix:

Water

Service Request: X2300202

Date Collected: 03/11/2003

Date Received: 03/11/2003

Volatile Organic Compounds

Sample Name:

AVB96-0100-03125

Lab Code:

X2300202-003

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA Level: Low

Date

			Dilution	Date	Date	
Analyte Name	Result	Q MRL	Factor	Extracted		Arizona Qualifier
Dichlorodifluoromethane	ND I	J 3.0	1	03/21/03	03/21/03	
Chloromethane	ND U	U 2.0	1	03/21/03	03/21/03	
Vinyl Chloride	ND U	U 1.0	1	03/21/03	03/21/03	
Bromomethane	ND I	U 1.0	1	03/21/03	03/21/03	
Chloroethane	ND I	U 1.0	1	03/21/03	03/21/03	
Trichlorofluoromethane	ND 1	U 1.0	1	03/21/03	03/21/03	
1.1.2-Trichlorotrifluoroethane	ND 1	U 1.0	1	03/21/03	03/21/03	
1,1-Dichloroethene	ND 1		1	03/21/03	03/21/03	
Acetone	ND 1	U 10	1	03/21/03	03/21/03	
Iodomethane	ND 1	U 2.0	1	03/21/03	03/21/03	
Carbon Disulfide	ND 1		1	03/21/03	03/21/03	
Methylene Chloride	ND T		1	03/21/03	03/21/03	
Methyl tert-Butyl Ether	ND		1	03/21/03	03/21/03	
trans-1,2-Dichloroethene	ND T	_	1	03/21/03	03/21/03	
1,1-Dichloroethane	ND '		1	03/21/03	03/21/03	
	ND		1	03/21/03	03/21/03	
Vinyl Acetate 2,2-Dichloropropane	ND 1	•	1	03/21/03	03/21/03	
2-Butanone (MEK)	ND	~	1	03/21/03	03/21/03	
cis-1,2-Dichloroethene	ND		1	03/21/03	03/21/03	
Bromochloromethane	ND	_	1	03/21/03	03/21/03	
Chloroform	ND		1	03/21/03	03/21/03	
1,1,1-Trichloroethane	ND	IJ 0.50	1	03/21/03	03/21/03	
Carbon Tetrachloride	ND	•	1	03/21/03	03/21/03	
1,1-Dichloropropene	ND	-	1	03/21/03	03/21/03	
		U 0.50	1	03/21/03	03/21/03	
Benzene 1,2-Dichloroethane	ND	_	1	03/21/03	03/21/03	
Trichloroethene	ND	-	1	03/21/03	03/21/03	
	ND		1	03/21/03	03/21/03	
1,2-Dichloropropane Dibromomethane	ND	_	1	03/21/03	03/21/03	
Bromodichloromethane	ND	_	1	03/21/03	03/21/03	
	ND		1	03/21/03	03/21/03	
cis-1,3-Dichloropropene 4-Methyl-2-pentanone (MIBK)	ND ND	=	1	03/21/03	03/21/03	
Toluene	ND		1	03/21/03	03/21/03	
1 Oldelle		0.50				

Comments:

Printed: 03/25/2003 10:31:55

L:\STEALTH\CRYSTAL.RPT\Form1m.rpt

Merged

Form 1A - Organic 000014

Page

1 of 3

RR3111 SuperSet Reference:

Analytical Results

Client:

BE&K Terranext

Project:

WVB

Sample Matrix:

Water

Service Request: X2300202

Date Collected: 03/11/2003 **Date Received:** 03/11/2003

Volatile Organic Compounds

Sample Name:

AVB96-0100-03125

Lab Code:

X2300202-003

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

			Dilution	Date	Date	
Analyte Name	Result Q	MRL	Factor	Extracted		Arizona Qualifier
trans-1,3-Dichloropropene	ND U	1.0	1	03/21/03	03/21/03	
1,1,2-Trichloroethane	ND U	1.0	1	03/21/03	03/21/03	
Tetrachloroethene	ND U	0.50	1	03/21/03	03/21/03	
2-Hexanone	ND U	5.0	1	03/21/03	03/21/03	N1V4
1,3-Dichloropropane	ND U	1.0	1	03/21/03	03/21/03	
Dibromochloromethane	ND U	0.50	1	03/21/03	03/21/03	
1,2-Dibromoethane	ND U	0.50	1	03/21/03	03/21/03	
Chlorobenzene	ND U	0.50	1	03/21/03	03/21/03	
1,1,1,2-Tetrachloroethane	ND U	0.50	1	03/21/03	03/21/03	
Ethylbenzene	ND U	0.50	1	03/21/03	03/21/03	
m,p-Xylenes	ND U	1.0	1	03/21/03	03/21/03	
o-Xylene	ND U	0.50	1	03/21/03	03/21/03	
Styrene	ND U	0.50	1	03/21/03	03/21/03	
Isopropylbenzene	ND U	0.50	1	03/21/03	03/21/03	
Bromobenzene	ND U	0.50	1	03/21/03	03/21/03	
1,2,3-Trichloropropane	ND U	1.0	1	03/21/03	03/21/03	
n-Propylbenzene	ND U	0.50	1	03/21/03	03/21/03	
2-Chlorotoluene	ND U	0.50	1	03/21/03	03/21/03	
4-Chlorotoluene	ND U	0.50	1	03/21/03	03/21/03	
1,3,5-Trimethylbenzene	ND U	0.50	1	03/21/03	03/21/03	
tert-Butylbenzene	ND U	0.50	1	03/21/03	03/21/03	
	ND U	0.50	1	03/21/03	03/21/03	
1,2,4-Trimethylbenzene	ND U	0.50	1	03/21/03	03/21/03	
sec-Butylbenzene 1,3-Dichlorobenzene	ND U	0.50	1	03/21/03	03/21/03	
<u> </u>	ND U	0.50	1	03/21/03	03/21/03	
4-Isopropyltoluene	ND U	0.50	1	03/21/03	03/21/03	
Bromoform 1,1,2,2-Tetrachloroethane	ND U	1.0	1	03/21/03	03/21/03	
		0.50	1	03/21/03	03/21/03	
1,4-Dichlorobenzene	ND U ND U	0.50	1	03/21/03	03/21/03	
1,2-Dichlorobenzene	ND U	0.50	1	03/21/03	03/21/03	
n-Butylbenzene				03/21/03	03/21/03	
1,2-Dibromo-3-chloropropane	ND U	5.0	1 1	03/21/03	03/21/03	
1,2,4-Trichlorobenzene	ND U	0.50 0.50	1	03/21/03	03/21/03	
Hexachlorobutadiene	ND U	0.30		03/21/03	03/21/03	

Comments:

Printed: 03/25/2003 10:31:55 L:\STEALTH\CRYSTAL.RPT\Formlm.rpt

Merged

Form 1A - Organic

SuperSet Reference:

2 of 3 Page

RR3111

Analytical Results

Client:

BE&K Terranext

Project:

WVB

Sample Matrix:

Water

Service Request: X2300202

Date Collected: 03/11/2003

Date Received: 03/11/2003

Volatile Organic Compounds

Sample Name:

AVB96-0100-03125

Lab Code:

X2300202-003

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

			Dilution	Date	Date	
Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed	Arizona Qualifier
Naphthalene 1,2,3-Trichlorobenzene	ND U ND U	3.0 0.50	1 1	03/21/03 03/21/03	03/21/03 03/21/03	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Arizona Qualifier	
Dibromofluoromethane	99	84-113	03/21/03		
Toluene-d8	110	68-126	03/21/03		
4-Bromofluorobenzene	95	79-113	03/21/03		

Comments:

Analytical Results

Client:

BE&K Terranext

Project:

WVB

Sample Matrix:

Water

Service Request: X2300202

Date Collected: 03/11/2003 **Date Received:** 03/11/2003

Volatile Organic Compounds

Sample Name:

AVB94-0100-03132

Lab Code:

X2300202-004

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

Allalysis Method.						
			Dilution	Date	Date	
Analyte Name	Result Q	MRL	Factor	Extracted		Arizona Qualifier
Dichlorodifluoromethane	53	3.0	1	03/21/03	03/21/03	
Chloromethane	ND U	2.0	1	03/21/03	03/21/03	
Vinyl Chloride	ND U	1.0	1	03/21/03	03/21/03	
Bromomethane	ND U	1.0	1	03/21/03	03/21/03	
Chloroethane	ND U	1.0	1	03/21/03	03/21/03	
Trichlorofluoromethane	ND U	1.0	1	03/21/03	03/21/03	
1,1,2-Trichlorotrifluoroethane	2.4	1.0	1	03/21/03	03/21/03	
· ·	11	1.0	1	03/21/03	03/21/03	
1,1-Dichloroethene	ND U	10	1	03/21/03	03/21/03	
Acetone	ND U	2.0	1	03/21/03	03/21/03	
Iodomethane	ND U	2.0	1	03/21/03	03/21/03	
Carbon Disulfide	ND U	1.0	1	03/21/03	03/21/03	
Methylene Chloride	ND U	1.0	1	03/21/03	03/21/03	
Methyl tert-Butyl Ether	ND U	0.50	1	03/21/03	03/21/03	
trans-1,2-Dichloroethene	ND U	0.50	1	03/21/03	03/21/03	
1,1-Dichloroethane			1	03/21/03	03/21/03	
Vinyl Acetate	ND U	3.0	1	03/21/03	03/21/03	
2,2-Dichloropropane	ND U	2.0 8.0	1	03/21/03	03/21/03	
2-Butanone (MEK)	ND U			03/21/03	03/21/03	
cis-1,2-Dichloroethene	0.66	0.50	1	03/21/03	03/21/03	
Bromochloromethane	ND U	0.50	1	03/21/03	03/21/03	
Chloroform	1.1	1.0	1			
1,1,1-Trichloroethane	ND U	0.50	1	03/21/03	03/21/03	
Carbon Tetrachloride	ND U	0.50	1	03/21/03	03/21/03	
1,1-Dichloropropene	ND U	0.50	1	03/21/03	03/21/03	
Benzene	ND U	0.50	1	03/21/03	03/21/03	
1,2-Dichloroethane	ND U	0.50	1	03/21/03	03/21/03	7.0
Trichloroethene	100 D	5.0	10	03/21/03	03/21/03	D2
1,2-Dichloropropane	ND U	0.50	1	03/21/03	03/21/03	
Dibromomethane	ND U	0.50	1	03/21/03	03/21/03	
Bromodichloromethane	ND U	0.50	1	03/21/03	03/21/03	
	ND U	0.50	1	03/21/03	03/21/03	
cis-1,3-Dichloropropene 4-Methyl-2-pentanone (MIBK)	ND U	8.0	1	03/21/03	03/21/03	
	ND U	0.50	1	03/21/03	03/21/03	
Toluene	1112					

Comments	
Communicities	•

Printed: 03/25/2003 10:32:07

Merged

Form 1A - Organic

Page 1 of 3

Analytical Results

Client:

BE&K Terranext

Project: Sample Matrix: WVB

Water

Service Request: X2300202

Date Collected: 03/11/2003 **Date Received:** 03/11/2003

Volatile Organic Compounds

Sample Name:

AVB94-0100-03132

Lab Code:

X2300202-004

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

	75. 14	0	MRL	Dilution Factor	Date Extracted	Date Analyzed	Arizona Qualifier
Analyte Name	Result	_			03/21/03	03/21/03	IIIIaaiii Quiii
trans-1,3-Dichloropropene	ND		1.0	1	03/21/03	03/21/03	
1,1,2-Trichloroethane	ND	U	1.0	1 1	03/21/03	03/21/03	
Tetrachloroethene	2.5		0.50				N1V4
2-Hexanone	ND		5.0	1	03/21/03	03/21/03	N1 V4
1,3-Dichloropropane	ND		1.0	1	03/21/03	03/21/03	
Dibromochloromethane	ND	U	0.50	1	03/21/03	03/21/03	
1,2-Dibromoethane	ND	U	0.50	1	03/21/03	03/21/03	
Chlorobenzene	ND	U	0.50	1	03/21/03	03/21/03	
1,1,1,2-Tetrachloroethane	ND	U	0.50	1	03/21/03	03/21/03	
Ethylbenzene	ND	U	0.50	1	03/21/03	03/21/03	
m,p-Xylenes	ND		1.0	1	03/21/03	03/21/03	
o-Xylene	ND		0.50	1	03/21/03	03/21/03	
	ND		0.50	1	03/21/03	03/21/03	
Styrene	ND		0.50	1	03/21/03	03/21/03	
Isopropylbenzene Bromobenzene	ND		0.50	1	03/21/03	03/21/03	
	ND		1.0	1	03/21/03	03/21/03	
1,2,3-Trichloropropane	ND ND		0.50	1	03/21/03	03/21/03	
n-Propylbenzene	ND ND		0.50	1	03/21/03	03/21/03	
2-Chlorotoluene				1	03/21/03	03/21/03	
4-Chlorotoluene	ND		0.50	1	03/21/03	03/21/03	
1,3,5-Trimethylbenzene	ND		0.50 0.50	1	03/21/03	03/21/03	
tert-Butylbenzene	ND					03/21/03	40
1,2,4-Trimethylbenzene	ND		0.50	1	03/21/03	03/21/03	
sec-Butylbenzene	ND		0.50	1	03/21/03 03/21/03	03/21/03	
1,3-Dichlorobenzene	ND		0.50	1			
4-Isopropyltoluene	ND		0.50	1	03/21/03	03/21/03	
Bromoform		U	0.50	1	03/21/03	03/21/03	
1,1,2,2-Tetrachloroethane	ND	U	1.0	1	03/21/03	03/21/03	
1,4-Dichlorobenzene	NE	U	0.50	1	03/21/03	03/21/03	
1,2-Dichlorobenzene	NE	U	0.50	1	03/21/03	03/21/03	
n-Butylbenzene		U	0.50	1	03/21/03	03/21/03	
1,2-Dibromo-3-chloropropane	NT	U	5.0	1	03/21/03	03/21/03	
1,2,4-Trichlorobenzene		U	0.50	1	03/21/03	03/21/03	
Hexachlorobutadiene		U	0.50	1	03/21/03	03/21/03	
Ticacinoroutatione							

Comments:

Printed: 03/25/2003 10:32:07 L:\STEALTH\CRYSTAL.RPT\Form\m.rpt

Merged

Form 1A - Organic

SuperSet Reference: RR3111

Page 2 of 3

Analytical Results

Client:

BE&K Terranext

Project:

WVB

Sample Matrix:

Water

Service Request: X2300202

Date Collected: 03/11/2003

Date Received: 03/11/2003

Volatile Organic Compounds

Sample Name:

AVB94-0100-03132

Lab Code:

X2300202-004

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

			Dilution	Date	Date	
Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed	Arizona Qualifier
Naphthalene 1,2,3-Trichlorobenzene	ND U	3.0 0.50	1 1	03/21/03 03/21/03	03/21/03 03/21/03	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Arizona Qualifier	
Dibromofluoromethane	98	84-113	03/21/03		
Toluene-d8	113	68-126	03/21/03		
4-Bromofluorobenzene	96	79-113	03/21/03		

Comments:

Printed: 03/25/2003 10:32:07 $L: \A TEALTH \CRYSTAL.RPT \Form \Im.rpt$

Merged

Form 1A - Organic

SuperSet Reference:

RR3111

Page

3 of 3

Analytical Results

Client:

BE&K Terranext

Project: Sample Matrix: WVB

Water

Service Request: X2300202

Date Collected: 03/11/2003 **Date Received:** 03/11/2003

Volatile Organic Compounds

Sample Name: Lab Code: AVB94-0104-1000 X2300202-005

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

			Dilution	Date	Date	
Analyte Name	Result Q	MRL	Factor	Extracted		Arizona Qualifier
Dichlorodifluoromethane	ND U	3.0	1	03/21/03	03/21/03	
Chloromethane	ND U	2.0	1	03/21/03	03/21/03	
Vinyl Chloride	ND U	1.0	1	03/21/03	03/21/03	
Bromomethane	ND U	1.0	1	03/21/03	03/21/03	
Chloroethane	ND U	1.0	1	03/21/03	03/21/03	
Trichlorofluoromethane	ND U	1.0	1	03/21/03	03/21/03	
1,1,2-Trichlorotrifluoroethane	ND U	1.0	1	03/21/03	03/21/03	
1,1-Dichloroethene	ND U	1.0	1	03/21/03	03/21/03	
Acetone	ND U	10	1	03/21/03	03/21/03	
	ND U	2.0	1	03/21/03	03/21/03	
Iodomethane Carbon Disulfide	ND U	2.0	1	03/21/03	03/21/03	
Methylene Chloride	ND U	1.0	1	03/21/03	03/21/03	
	ND U	1.0	1	03/21/03	03/21/03	
Methyl tert-Butyl Ether trans-1,2-Dichloroethene	ND U	0.50	1	03/21/03	03/21/03	
1,1-Dichloroethane	ND U	0.50	1	03/21/03	03/21/03	
	ND U	3.0	1	03/21/03	03/21/03	
Vinyl Acetate	ND U	2.0	1	03/21/03	03/21/03	
2,2-Dichloropropane 2-Butanone (MEK)	ND U	8.0	1	03/21/03	03/21/03	
	ND U	0.50	1	03/21/03	03/21/03	
cis-1,2-Dichloroethene	ND U	0.50	1	03/21/03	03/21/03	
Bromochloromethane Chloroform	ND U	1.0	1	03/21/03	03/21/03	
	ND U	0,50	1	03/21/03	03/21/03	
1,1,1-Trichloroethane	ND U	0.50	1	03/21/03	03/21/03	
Carbon Tetrachloride	ND U	0.50	î	03/21/03	03/21/03	
1,1-Dichloropropene	ND U	0.50	1	03/21/03	03/21/03	
Benzene	ND U	0.50	1	03/21/03	03/21/03	
1,2-Dichloroethane	ND U	0.50	1	03/21/03	03/21/03	
Trichloroethene			1	03/21/03	03/21/03	
1,2-Dichloropropane	ND U	0.50	1	03/21/03	03/21/03	
Dibromomethane	ND U		1	03/21/03	03/21/03	
Bromodichloromethane	ND U			03/21/03	03/21/03	
cis-1,3-Dichloropropene	ND U		1 1	03/21/03	03/21/03	
4-Methyl-2-pentanone (MIBK)	ND U		1	03/21/03	03/21/03	
Toluene	ND U	0.50	1	03121103	05/21/05	

Comments:

Printed: 03/25/2003 10:32:19 L:\STEALTH\CRYSTAL.RPT\Formlm.rpt

Merged

Form 1A - Organic

SuperSet Reference: RR3111

Page 1 of 3

Analytical Results

Client:

BE&K Terranext

Project:

WVB

Sample Matrix:

Water

Service Request: X2300202

Date Collected: 03/11/2003

Date Received: 03/11/2003

Date

Date

Volatile Organic Compounds

Dilution

Sample Name:

AVB94-0104-1000

Lab Code:

X2300202-005

Extraction Method: EPA 5030B

Units: ug/L Basis: NA

Level: Low

Extraction Method.	Et A 3030B
Analysis Method:	8260B

			Ditation	Date	Date	
Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed	Arizona Qualifier
trans-1,3-Dichloropropene	ND U	1.0	1	03/21/03	03/21/03	
1,1,2-Trichloroethane	ND U	1.0	1	03/21/03	03/21/03	
Tetrachloroethene	ND U	0.50	1	03/21/03	03/21/03	
2-Hexanone	ND U	5.0	1	03/21/03	03/21/03	N1V4
1,3-Dichloropropane	ND U	1.0	1	03/21/03	03/21/03	
Dibromochloromethane	ND U	0.50	1	03/21/03	03/21/03	
1,2-Dibromoethane	ND U	0.50	1	03/21/03	03/21/03	
Chlorobenzene	ND U	0.50	1	03/21/03	03/21/03	
1,1,1,2-Tetrachloroethane	ND U	0.50	1	03/21/03	03/21/03	
Ethylbenzene	ND U	0.50	1	03/21/03	03/21/03	
m,p-Xylenes	ND U	1.0	1	03/21/03	03/21/03	
o-Xylene	ND U	0.50	1	03/21/03	03/21/03	
Styrene	ND U	0.50	1	03/21/03	03/21/03	
Isopropylbenzene	ND U	0.50	1	03/21/03	03/21/03	
Bromobenzene	ND U	0.50	1	03/21/03	03/21/03	
1,2,3-Trichloropropane	ND U	1.0	1	03/21/03	03/21/03	
n-Propylbenzene	ND U	0.50	1	03/21/03	03/21/03	
2-Chlorotoluene	ND U	0.50	1	03/21/03	03/21/03	
4-Chlorotoluene	ND U	0.50	1	03/21/03	03/21/03	
1,3,5-Trimethylbenzene	ND U	0.50	1	03/21/03	03/21/03	
tert-Butylbenzene	ND U	0.50	1	03/21/03	03/21/03	
1,2,4-Trimethylbenzene	ND U	0.50	1	03/21/03	03/21/03	
sec-Butylbenzene	ND U	0.50	1	03/21/03	03/21/03	
1,3-Dichlorobenzene	ND U	0.50	1	03/21/03	03/21/03	
4-Isopropyltoluene	ND U	0.50	1	03/21/03	03/21/03	
Bromoform	ND U	0.50	1	03/21/03	03/21/03	
1,1,2,2-Tetrachloroethane	ND U	1.0	1	03/21/03	03/21/03	
1,4-Dichlorobenzene	ND U	0.50	1	03/21/03	03/21/03	
1,2-Dichlorobenzene	ND U	0.50	1	03/21/03	03/21/03	
n-Butylbenzene	ND U	0.50	1	03/21/03	03/21/03	
1.2-Dibromo-3-chloropropane	ND U	5.0	1	03/21/03	03/21/03	
1,2,4-Trichlorobenzene	ND U	0.50	1	03/21/03	03/21/03	
Hexachlorobutadiene	ND U	0.50	1	03/21/03	03/21/03	

Comments:

Printed: 03/25/2003 10:32:19 L:\STEALTH\CRYSTAL.RPT\Formlm.rpt

Merged

Analytical Results

Client:

BE&K Terranext

Project:

WVB

Sample Matrix:

Water

Service Request: X2300202

Date Collected: 03/11/2003

Date Received: 03/11/2003

Volatile Organic Compounds

Sample Name:

AVB94-0104-1000

Lab Code:

X2300202-005

Units: ug/L Basis: NA

Extraction Method:

EPA 5030B

Level: Low

Analysis Method:

8260B

			Dilution	Date	Date	
Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed	Arizona Qualifier
Naphthalene	ND U	3.0	1	03/21/03	03/21/03	
1,2,3-Trichlorobenzene	ND U	0.50	1	03/21/03	03/21/03	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Arizona Qualifier
Dibromofluoromethane	101	84-113	03/21/03	
Toluene-d8	112	68-126	03/21/03	
4-Bromofluorobenzene	98	79-113	03/21/03	

Comments:

Printed: 03/25/2003 10:32:19

Merged

Form 1A - Organic

RR3111

SuperSet Reference:

3 of 3 Page

000022

Analytical Results

Client:

BE&K Terranext

Project: Sample Matrix: WVB

Water

Service Request: X2300202

Date Collected: 03/11/2003 **Date Received:** 03/11/2003

Volatile Organic Compounds

Sample Name:

AVB94-0102-1000

Lab Code:

X2300202-006

Analysis Method:

Extraction Method: EPA 5030B

8260B

Units: ug/L Basis: NA

Level: Low

		Dilution	Date	Date	
Result Q	MRL	Factor	Extracted		Arizona Qualifier
ND U	3.0	1	03/20/03		
ND U	2.0	1			
ND U	1.0	1	03/20/03		
ND U	1.0	1	03/20/03		
ND U	1.0	1	03/20/03		
ND U	1.0	1	03/20/03	03/20/03	
ND U	1.0	1	03/20/03	03/20/03	
		1	03/20/03	03/20/03	
	10	1	03/20/03	03/20/03	
	2.0	1	03/20/03	03/20/03	
		1	03/20/03	03/20/03	
	1.0	1	03/20/03	03/20/03	
	1.0	1	03/20/03	03/20/03	
			03/20/03	03/20/03	
		1	03/20/03	03/20/03	
		1	03/20/03	03/20/03	
			03/20/03	03/20/03	
		1	03/20/03	03/20/03	
		1	03/20/03	03/20/03	
			03/20/03	03/20/03	
				03/20/03	
				03/20/03	
				03/20/03	
ND U					
ND U	0.50	1	03/20/03	03/20/03	
	ND U	ND U 3.0 ND U 1.0 ND U 2.0 ND U 2.0 ND U 1.0 ND U 2.0 ND U 3.0 ND U 0.50 ND U 0.50 ND U 3.0 ND U 0.50	ND U 3.0 1 ND U 2.0 1 ND U 1.0 1 ND U 0.50 1 ND U 0.50 1 ND U 3.0 1 ND U 0.50 1 ND U	NE NE NE NE NE NE NE NE	Nesult Q MRL Factor Extracted Analyzed

Comments:

Printed: 03/25/2003 10:32:31

Merged

Form 1A - Organic 000023

SuperSet Reference: RR3111

Analytical Results

Client:

BE&K Terranext

Project: Sample Matrix: WVB Water

Service Request: X2300202

Date Collected: 03/11/2003 **Date Received:** 03/11/2003

Volatile Organic Compounds

Sample Name: Lab Code:

AVB94-0102-1000 X2300202-006

ction Method: EPA 5030B

Units: ug/L Basis: NA

Level: Low

Extraction Method:	EFA 3030
Analysis Method:	8260B

Analyte Name Result Q MRL Factor Extracted Analyzed Arizona Qualiffer Irans-1,3-Dichloropropene ND U 1.0 1 03/20/03 03/20/03 1,1,2-Trichloroethane ND U 1.0 1 03/20/03 03/20/03 2-Hexanone ND U 5.0 1 03/20/03 03/20/03 1,3-Dichloropropane ND U 1.0 1 03/20/03 03/20/03 1,2-Dibromoethane ND U 0.50 1 03/20/03 03/20/03 1,2-Dibromoethane ND U 0.50 1 03/20/03 03/20/03 Chlorobenzene ND U 0.50 1 03/20/03 03/20/03 Ethylbenzene ND U 0.50 1 03/20/03 03/20/03 Ethylbenzene ND U 0.50 1 03/20/03 03/20/03 Styrene ND U 0.50 1 03/20/03 03/20/03 Styrene ND U 0.50 1 03/20/03 03/20/03				Dilution	Date Extracted	Date Analyzed	Arizona Qualifier
trans-1,3-Dichloropropene ND U 1.0 1 03/20/03 03/	Analyte Name	Result Q	MRL	Factor			Alizona Quantiei
1.1,2-Trichloroethane ND U 0.50 1 03/20/03 03/20/03 2-Hexanone ND U 5.0 1 03/20/03 03/20/03 1,3-Dichloropropane ND U 1.0 1 03/20/03 03/20/03 1,3-Dichloropropane ND U 0.50 1 03/20/03 03/20/03 1,1-1,2-Dibromoethane ND U 0.50 1 03/20/03 03/20/03 Chlorobenzene ND U 0.50 1 03/20/03 03/20/03 Chlorobenzene ND U 0.50 1 03/20/03 03/20/03 Chlorobenzene ND U 0.50 1 03/20/03 03/20/03 1,1,1,2-Tetrachloroethane ND U 0.50 1 03/20/03 03/20/03 Ethylenzene ND U 0.50 1 03/20/03 03/20/03 Ethylenzene ND U 0.50 1 03/20/03 03/20/03 Styrene ND U 0.50 1 03/20/03 03/20/03 Styrene	trans-1,3-Dichloropropene						
Tetrachlorocthene	1,1,2-Trichloroethane						
2-Hexanone ND U 1.0 1 03/20/03 03/20/03 1,3-Dichloropropane ND U 1.0 1 03/20/03 03/20/03 03/20/03 1,2-Dibromoethane ND U 0.50 1 03/20/03 03/20/03 03/20/03 1,1.2-Dibromoethane ND U 0.50 1 03/20/03 03/20/03 03/20/03 1,1.1,2-Tetrachloroethane ND U 0.50 1 03/20/03 03/20/03 03/20/03 1,1.1,2-Dibromoethane ND U 0.50 1 03/20/03 03/20	Tetrachloroethene	ND U					
1,3-Dichloropropane ND U 1.0 1 03/20/03 03/20/03 1,2-Dibromochloromethane ND U 0.50 1 03/20/03 03/20/03 1,2-Dibromochlane ND U 0.50 1 03/20/03 03/20/03 1,1,1,2-Tetrachloroethane ND U 0.50 1 03/20/03 03/20/03 1,2,4-Trimchoroethane ND U 0.50 1 03/20/03 03/20/03 1,2,2-Tetrachloroethane ND U 0.50 1 03/20/03 03/20/03 1,2-Tetrachloroethane ND U 0.50 1 03/20/	2-Hexanone						
Dibromochloromethane ND U 0.50 1 03/20/03 0							
1,2-Dibromoethane		ND U	0.50	1			
Chlorobenzene ND U 0.50 1 03/20/03 03/20/03 1,1,1,2-Tetrachloroethane ND U 0.50 1 03/20/03 03/20/03 Ethylbenzene ND U 0.50 1 03/20/03 03/20/03 m.p-Xylenes ND U 0.50 1 03/20/03 03/20/03 o-Xylene ND U 0.50 1 03/20/03 03/20/03 Styrene ND U 0.50 1 03/20/03 03/20/03 Isopropylbenzene ND U 0.50 1 03/20/03 03/20/03 Bromobenzene ND U 0.50 1 03/20/03 03/20/03 -2,-Tichloropropane ND U 0.50 1 03/20/03 03/20/03 -2,-Trimethylbenzene ND	1.2-Dibromoethane	ND U					
1,1,2-Tetrachloroethane		ND U					
Ethylbenzene		ND U	0.50	1	03/20/03		
ND U 1.0 1 03/20/03 03/20/03 03/20/03 0-Xylene ND U 0.50 1 03/20/03 03/20/03 03/20/03 0-Xylene ND U 0.50 1 03/20/03		ND U	0.50	1			
ND U 0.50 1 03/20/03 03/20/03			1.0	1			
Styrene	· ·		0.50	1	03/20/03	03/20/03	
Styrene		ND II	0.50	1	03/20/03		
Soprophylotelizetie ND U 0.50 1 03/20/03 03				1	03/20/03		
1,2,3-Trichloropropane	1 17			1	03/20/03	03/20/03	
1,2,3-1 richloropropane				1	03/20/03	03/20/03	
2-Chlorotoluene ND U 0.50 1 03/20/03 03/20/03 4-Chlorotoluene ND U 0.50 1 03/20/03 03/20/03 1,3,5-Trimethylbenzene ND U 0.50 1 03/20/03 03/20/03 tert-Butylbenzene ND U 0.50 1 03/20/03 03/20/03 1,2,4-Trimethylbenzene ND U 0.50 1 03/20/03 03/20/03 sec-Butylbenzene ND U 0.50 1 03/20/03 03/20/03 1,3-Dichlorobenzene ND U 0.50 1 03/20/03 03/20/03 4-Isopropyltoluene ND U 0.50 1 03/20/03 03/20/03 Bromoform ND U 0.50 1 03/20/03 03/20/03 1,1,2,2-Tetrachloroethane ND U 1.0 1 03/20/03 03/20/03 1,4-Dichlorobenzene ND U 0.50 1 03/20/03 03/20/03 1,4-Dichlorobenzene ND U 0.50 1 03/20/03 03/20/03 1,4-Dichlorobenzene ND U 0.50 1 03/20/03 03/20/03 1,2-Dichlorobenzene ND U 0.50 1 03/20/03 03/20/03 1,2-Dichlorobenzene ND U 0.50 1 03/20/03 03/20/03 1,2-Dichlorobenzene ND U 0.50 1 03/20/03 03/20/03 1,2-Dibromo-3-chloropropane ND U 5.0 1 03/20/03 03/20/03 1,2-Trichlorobenzene ND U 0.50 1 03/20/03 03/20/03 1,2-Dibromo-3-chloropropane ND U 0.50 1 03/20/03 03/20/03 1,2-Trichlorobenzene ND U 0.50 1 03/20/03 03/20/03					03/20/03	03/20/03	
4-Chlorotoluene ND U 0.50 1 03/20/03 03/20/03 1,3,5-Trimethylbenzene ND U 0.50 1 03/20/03 03/20/03 1,3,5-Trimethylbenzene ND U 0.50 1 03/20/03 03/20/03 1,2,4-Trimethylbenzene ND U 0.50 1 03/20/03 03/20/03 1,2,4-Trimethylbenzene ND U 0.50 1 03/20/03 03/20/03 1,3-Dichlorobenzene ND U 0.50 1 03/20/03 03/20/03 1,3-Dichlorobenzene ND U 0.50 1 03/20/03 03/20/03 1,3-Dichlorobenzene ND U 0.50 1 03/20/03 03/20/03 1,1,2,2-Tetrachloroethane ND U 0.50 1 03/20/03 03/20/03 1,1,2,2-Tetrachloroethane ND U 1.0 1 03/20/03 03/20/03 1,4-Dichlorobenzene ND U 0.50 1 03/20/03 03/20/03 1,2-Dichlorobenzene ND U 0.50 1 03/20/03 03/20/03 03/20/03 1,2-Dichlorobenzene				1	03/20/03	03/20/03	
4-Chlorotoluene ND U 0.50 1 03/20/03 03/20/03 1,3,5-Trimethylbenzene ND U 0.50 1 03/20/03 03/20/03 1,2,4-Trimethylbenzene ND U 0.50 1 03/20/03 03/20/03 sec-Butylbenzene ND U 0.50 1 03/20/03 03/20/03 1,3-Dichlorobenzene ND U 0.50 1 03/20/03 03/20/03 4-Isopropyltoluene ND U 0.50 1 03/20/03 03/20/03 Bromoform ND U 0.50 1 03/20/03 03/20/03 1,1,2,2-Tetrachloroethane ND U 1.0 1 03/20/03 03/20/03 1,4-Dichlorobenzene ND U 0.50 1 03/20/03 03/20/03 1,2-Dichlorobenzene ND U 0.50 1 03/20/03 03/20/03 1,2-Dibromo-3-chloropropane ND U 0.50 1 03/20/03 03/20/03 1,2,4-Trichlorobenzene ND U 0.50 1 03/20/03 03/20/03 1,2,4-Trichlorobenzene ND U 0.50 1 03/20/03				1	03/20/03	03/20/03	
1,3,5-Trimethylbenzene						03/20/03	
1,2,4-Trimethylbenzene	· / ·					03/20/03	
1,2,4-Trimethylbenzene ND U 0.50 1 03/20/03 03/20/03 sec-Butylbenzene ND U 0.50 1 03/20/03 03/20/03 1,3-Dichlorobenzene ND U 0.50 1 03/20/03 03/20/03 4-Isopropyltoluene ND U 0.50 1 03/20/03 03/20/03 Bromoform ND U 0.50 1 03/20/03 03/20/03 1,1,2,2-Tetrachloroethane ND U 0.50 1 03/20/03 03/20/03 1,4-Dichlorobenzene ND U 0.50 1 03/20/03 03/20/03 1,2-Dichlorobenzene ND U 0.50 1 03/20/03 03/20/03 1,2-Dibromo-3-chloropropane ND U 0.50 1 03/20/03 03/20/03 1,2,4-Trichlorobenzene ND U 0.50 1 03/20/03 03/20/03 1,2,4-Trichlorobenzene ND U 0.50 1 03/20/03 03/20/03	· · · · · · · · · · · · · · · · · · ·					03/20/03	
sec-Butylbenzene ND U 0.50 1 03/20/03 03/20/03 1,3-Dichlorobenzene ND U 0.50 1 03/20/03 03/20/03 4-Isopropyltoluene ND U 0.50 1 03/20/03 03/20/03 Bromoform ND U 0.50 1 03/20/03 03/20/03 1,1,2,2-Tetrachloroethane ND U 0.50 1 03/20/03 03/20/03 1,4-Dichlorobenzene ND U 0.50 1 03/20/03 03/20/03 1,2-Dichlorobenzene ND U 0.50 1 03/20/03 03/20/03 1,2-Dibromo-3-chloropropane ND U 5.0 1 03/20/03 03/20/03 1,2,4-Trichlorobenzene ND U 0.50 1 03/20/03 03/20/03 1,2,4-Trichlorobenzene ND U 0.50 1 03/20/03 03/20/03							
1,3-Dichlorobenzene ND U 0.50 1 03/20/03 03/20/03 4-Isopropyltoluene ND U 0.50 1 03/20/03 03/20/03 Bromoform ND U 0.50 1 03/20/03 03/20/03 1,1,2,2-Tetrachloroethane ND U 0.50 1 03/20/03 03/20/03 1,4-Dichlorobenzene ND U 0.50 1 03/20/03 03/20/03 1,2-Dichlorobenzene ND U 0.50 1 03/20/03 03/20/03 1,2-Dibromo-3-chloropropane ND U 5.0 1 03/20/03 03/20/03 1,2,4-Trichlorobenzene ND U 0.50 1 03/20/03 03/20/03 1,2,4-Trichlorobenzene ND U 0.50 1 03/20/03 03/20/03				-			
4-Isopropyltoluene ND U 0.50 1 03/20/03 03/20/03 Bromoform ND U 0.50 1 03/20/03 03/20/03 1,1,2,2-Tetrachloroethane ND U 1.0 1 03/20/03 03/20/03 1,4-Dichlorobenzene ND U 0.50 1 03/20/03 03/20/03 1,2-Dichlorobenzene ND U 0.50 1 03/20/03 03/20/03 1,2-Dibromo-3-chloropropane ND U 5.0 1 03/20/03 03/20/03 1,2,4-Trichlorobenzene ND U 0.50 1 03/20/03 03/20/03 1,2,4-Trichlorobenzene ND U 0.50 1 03/20/03 03/20/03	1,3-Dichlorobenzene						
Bromoform ND U 1.0 1 03/20/03 03/20/03 1,1,2,2-Tetrachloroethane ND U 1.0 1 03/20/03 03/20/03 1,4-Dichlorobenzene ND U 0.50 1 03/20/03 03/20/03 1,2-Dichlorobenzene ND U 0.50 1 03/20/03 03/20/03 n-Butylbenzene ND U 0.50 1 03/20/03 03/20/03 1,2-Dibromo-3-chloropropane ND U 5.0 1 03/20/03 03/20/03 1,2,4-Trichlorobenzene ND U 0.50 1 03/20/03 03/20/03	4-Isopropyltoluene						
1,1,2,2-Tetrachloroethane ND U 1.0 1,4-Dichlorobenzene ND U 0.50 1 03/20/03 03/20/03 1,2-Dichlorobenzene ND U 0.50 1 03/20/03 03/20/03 n-Butylbenzene ND U 0.50 1 03/20/03 03/20/03 1,2-Dibromo-3-chloropropane ND U 5.0 1 03/20/03 03/20/03 1,2,4-Trichlorobenzene ND U 0.50 1 03/20/03 03/20/03							
1,4-Dichlorobenzene ND U 0.50 1 03/20/03 03/20/03 1,2-Dichlorobenzene ND U 0.50 1 03/20/03 03/20/03 n-Butylbenzene ND U 0.50 1 03/20/03 03/20/03 1,2-Dibromo-3-chloropropane ND U 5.0 1 03/20/03 03/20/03 1,2,4-Trichlorobenzene ND U 0.50 1 03/20/03 03/20/03	1,1,2,2-Tetrachloroethane						
1,2-Dichlorobenzene ND U 0.50 1 03/20/03 03/20/03 n-Butylbenzene ND U 0.50 1 03/20/03 03/20/03 1,2-Dibromo-3-chloropropane ND U 5.0 1 03/20/03 03/20/03 1,2,4-Trichlorobenzene ND U 0.50 1 03/20/03 03/20/03 1,2,4-Trichlorobenzene ND U 0.50 1 03/20/03 03/20/03	1.4-Dichlorobenzene						
n-Butylbenzene ND U 0.50 1 03/20/03 03/20/03 1,2-Dibromo-3-chloropropane ND U 0.50 1 03/20/03 03/20/03 1,2,4-Trichlorobenzene ND U 0.50 1 03/20/03 03/20/03 03/20/03							
1,2-Dibromo-3-chloropropane ND U 5.0 1 03/20/03 03/20/03 1,2,4-Trichlorobenzene ND U 0.50 1 03/20/03 03/20/03		ND_U					
1,2,4-Trichlorobenzene ND U 0.50 1 03/20/03 03/20/03		ND U					
	The state of the s						
		ND U	0.50	1	03/20/03	05/20/03	

Comments:

Printed: 03/25/2003 10:32:31

Merged

Form 1A - Organic

000024

SuperSet Reference:

2 of 3 Page

RR3111

Analytical Results

Client:

BE&K Terranext

Project:

WVB

Water

Service Request: X2300202

Date Collected: 03/11/2003 **Date Received:** 03/11/2003

Volatile Organic Compounds

Sample Name:

Sample Matrix:

AVB94-0102-1000

Lab Code:

X2300202-006

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

			Dilution	Date	Date	
Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed	Arizona Qualifier
Naphthalene 1,2,3-Trichlorobenzene	ND U ND U	3.0 0.50	1 1	03/20/03 03/20/03	03/20/03 03/20/03	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Arizona Qualifier	
Dibromofluoromethane	103	84-113	03/20/03		
Toluene-d8	112	68-126	03/20/03		
4-Bromofluorobenzene	99	79-113	03/20/03		

Comments:

Printed: 03/25/2003 10:32:31 $L: \verb|STEALTH| CRYSTAL.RPT| Form lm.rpt$

Merged

Form 1A - Organic

000025

RR3111

Page 3 of 3

SuperSet Reference:

Analytical Results

Client:

BE&K Terranext

Project:

WVB

Sample Matrix:

Water

Service Request: X2300202

Date Collected: NA
Date Received: NA

Volatile Organic Compounds

Sample Name: Lab Code:

Method Blank XWG0300363-5

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA Level: Low

Dilution Date Date Analyzed Arizona Qualifier **Factor** Extracted MRL Result Q **Analyte Name** N1V4 03/19/03 03/19/03 3.0 ND U Dichlorodifluoromethane 03/19/03 03/19/03 1 ND U 2.0 Chloromethane 03/19/03 03/19/03 1 1.0 ND U Vinvl Chloride 1 03/19/03 03/19/03 1.0 ND U Bromomethane 03/19/03 1 03/19/03 1.0 ND U Chloroethane 03/19/03 03/19/03 1.0 1 ND U Trichlorofluoromethane 03/19/03 1 03/19/03 1.0 ND U 1 1 2-Trichlorotrifluoroethane 1 03/19/03 03/19/03 1.0 ND U 1.1-Dichloroethene 1 03/19/03 03/19/03 10 ND U Acetone 1 03/19/03 03/19/03 2.0 ND U Iodomethane 03/19/03 03/19/03 1 2.0 ND U Carbon Disulfide 03/19/03 03/19/03 1 1.0 ND U Methylene Chloride 03/19/03 03/19/03 1.0 ND U Methyl tert-Butyl Ether 03/19/03 03/19/03 1 0.50 ND U trans-1,2-Dichloroethene 03/19/03 1 03/19/03 0.50 ND U 1 1-Dichloroethane 03/19/03 1 03/19/03 3.0 ND U Vinyl Acetate 1 03/19/03 03/19/03 2.0 ND U 2.2-Dichloropropane 03/19/03 03/19/03 1 8.0 ND U 2-Butanone (MEK) 1 03/19/03 03/19/03 0.50 ND U cis-1.2-Dichloroethene 03/19/03 03/19/03 1 ND U 0.50 Bromochloromethane 03/19/03 03/19/03 1 1.0 ND U Chloroform 1 03/19/03 03/19/03 ND U 0.50 1.1.1-Trichloroethane 1 03/19/03 03/19/03 0.50 ND U Carbon Tetrachloride 03/19/03 03/19/03 1 ND U 0.50 1,1-Dichloropropene 1 03/19/03 03/19/03 0.50 ND U Benzene 03/19/03 03/19/03 1 0.50 ND U 1.2-Dichloroethane 03/19/03 1 03/19/03 ND U 0.50 Trichloroethene 03/19/03 1 03/19/03 0.50 ND U 1,2-Dichloropropane 03/19/03 03/19/03 0.50 1 ND U Dibromomethane 03/19/03 1 03/19/03 0.50 ND U Bromodichloromethane 03/19/03 03/19/03 1 0.50 ND U cis-1,3-Dichloropropene 1 03/19/03 03/19/03 ND U 8.0 4-Methyl-2-pentanone (MIBK) 03/19/03 03/19/03 1 0.50 ND U Toluene

Comments:

Printed: 03/25/2003 10:32:45 L:\STEALTH\CRYSTAL.RPT\Formlm.rpt

Merged

Form 1A - Organic

1C

SuperSet Reference: RR3111

Page 1 of 3

000026

Analytical Results

Client:

BE&K Terranext

Project:

WVB

Sample Matrix:

Water

Service Request: X2300202

Date Collected: NA
Date Received: NA

Volatile Organic Compounds

Sample Name: Lab Code: Method Blank XWG0300363-5

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

				Dilution	Date	Date	
Analyte Name	Result	Q	MRL	Factor	Extracted		Arizona Qualifier
trans-1,3-Dichloropropene	ND	U	1.0	1	03/19/03	03/19/03	
1,1,2-Trichloroethane	ND		1.0	1	03/19/03	03/19/03	
Tetrachloroethene	ND	U	0.50	1	03/19/03	03/19/03	
2-Hexanone	ND		5.0	1	03/19/03	03/19/03	
1,3-Dichloropropane	ND	U	1.0	1	03/19/03	03/19/03	
Dibromochloromethane	ND	U	0.50	1	03/19/03	03/19/03	
1,2-Dibromoethane	ND	U	0.50	1	03/19/03	03/19/03	
Chlorobenzene	ND	U	0.50	1	03/19/03	03/19/03	
1,1,1,2-Tetrachloroethane	ND	U	0.50	1	03/19/03	03/19/03	
Ethylbenzene	ND	U	0.50	1	03/19/03	03/19/03	
m,p-Xylenes	ND	U	1.0	1	03/19/03	03/19/03	
o-Xylene	ND	U	0.50	1	03/19/03	03/19/03	
Styrene	ND	U	0.50	1	03/19/03	03/19/03	
Isopropylbenzene	ND	U	0.50	1	03/19/03	03/19/03	
Bromobenzene	ND	U	0.50	1	03/19/03	03/19/03	
1,2,3-Trichloropropane	ND	U	1.0	1	03/19/03	03/19/03	
n-Propylbenzene	ND		0.50	1	03/19/03	03/19/03	
2-Chlorotoluene	ND	U	0.50	11	03/19/03	03/19/03	
4-Chlorotoluene	ND	U	0.50	1	03/19/03	03/19/03	
1,3,5-Trimethylbenzene	ND	U	0.50	1	03/19/03	03/19/03	
tert-Butylbenzene	ND	U	0.50	1	03/19/03	03/19/03	
1,2,4-Trimethylbenzene	ND	U	0.50	1	03/19/03	03/19/03	
sec-Butylbenzene	ND	U	0.50	1	03/19/03	03/19/03	
1,3-Dichlorobenzene	ND	U	0.50	1	03/19/03	03/19/03	
4-Isopropyltoluene	ND	U	0.50	1	03/19/03	03/19/03	
Bromoform	ND		0.50	1	03/19/03	03/19/03	
1,1,2,2-Tetrachloroethane	ND		1.0	1	03/19/03	03/19/03	
1.4-Dichlorobenzene	ND	U	0.50	1	03/19/03	03/19/03	
1,2-Dichlorobenzene	ND		0.50	1	03/19/03	03/19/03	
n-Butylbenzene	ND		0.50	1	03/19/03	03/19/03	
1,2-Dibromo-3-chloropropane	ND	U	5.0	1	03/19/03	03/19/03	
1,2,4-Trichlorobenzene	ND		0.50	1	03/19/03	03/19/03	
Hexachlorobutadiene	ND		0.50	1	03/19/03	03/19/03	
110100000000000000000000000000000000000							

Comments:

Printed: 03/25/2003 10:32:45 L:\STEALTH\CRYSTAL.RPT\Form\m.rpt

Page 2 of 3

Analytical Results

Client:

BE&K Terranext

Project:

WVB

Sample Matrix:

Water

Service Request: X2300202

Date Collected: NA

Date Received: NA

Volatile Organic Compounds

Sample Name:

Method Blank

Lab Code:

XWG0300363-5

Extraction Method:

EPA 5030B

Units: ug/L Basis: NA

Level: Low

8260B **Analysis Method:**

			Dilution	Date	Date	
Analyta Nama	Result Q	MRL	Factor	Extracted	Analyzed	Arizona Qualifier
Naphthalene 1,2,3-Trichlorobenzene	ND U ND U	3.0 0.50	1 1	03/19/03 03/19/03	03/19/03 03/19/03	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Arizona Qualifier
Dibromofluoromethane Toluene-d8 4-Bromofluorobenzene	90 104 87	84-113 68-126 79-113	03/19/03 03/19/03 03/19/03	

Comments:

Printed: 03/25/2003 10:32:45 L:\STEALTH\CRYSTAL.RPT\Formlm.rpt

Analytical Results

Client:

BE&K Terranext

Project: Sample Matrix: WVB Water ••, •••••

Service Request: X2300202

Date Collected: NA
Date Received: NA

Volatile Organic Compounds

Sample Name: Lab Code: Method Blank XWG0300365-5

Extraction Method: Analysis Method:

EPA 5030B 8260B Units: ug/L Basis: NA

Level: Low

Dichlorodifluoromethane		- v.o	MDI	Dilution Factor	Date Extracted	Date Analyzed	Arizona Qualifier
Dichlorodifluoromethane ND U 2.0 1 03/20/03 03/20	Analyte Name	Result Q	MRL				
Chloromethane ND U 1.0 1 03/20/03 03/20/03 Winyl Chloride ND U 1.0 1 03/20/03 03/20/03 Bromomethane ND U 1.0 1 03/20/03 03/20/03 Chioroethane ND U 1.0 1 03/20/03 03/20/03 1,1-Dichloroethane ND U 1.0 1 03/20/03 03/20/03 1,1-Dichloroethane ND U 1.0 1 03/20/03 03/20/03 Acetone ND U 1.0 1 03/20/03 03/20/03 Acetone ND U 2.0 1 03/20/03 03/20/03 Carbon Disulfide ND U 2.0 1 03/20/03 03/20/03 Methylene Chloride ND U 1.0 1 03/20/03 03/20/03 Methyl tert-Buyl Ether ND U 0.50 1 03/20/03 03/20/03 1,-Dichloroethane	Dichlorodifluoromethane						
Simple Chloride	Chloromethane						
Bromonethane	Vinyl Chloride						
Chloroethane ND U 1.0 1 03/20/03 03/20/03 Trichlorofluoromethane ND U 1.0 1 03/20/03 03/20/03 1,1-2-Trichlorotrifluoroethane ND U 1.0 1 03/20/03 03/20/03 1,1-Dichloroethene ND U 1.0 1 03/20/03 03/20/03 Acetone ND U 2.0 1 03/20/03 03/20/03 Iodomethane ND U 2.0 1 03/20/03 03/20/03 Carbon Disulfide ND U 1.0 1 03/20/03 03/20/03 Methylene Chloride ND U 1.0 1 03/20/03 03/20/03 Methyl tert-Buryl Ether ND U 1.0 1 03/20/03 03/20/03 Methyl tert-Buryl Ether ND U 0.50 1 03/20/03 03/20/03 I_1,1-Dichloroethane ND U 0.50 1 03/20/03 03/20/03 Vinyl Acetate ND U 3.0 1 03/20/03 03/20/03	Bromomethane						
Trichlorofluoromethane	Chloroethane						
1,12-Trichlorotrithurorethane	Trichlorofluoromethane	ND U					
1,1-Dichloroethene	1,1,2-Trichlorotrifluoroethane			_			
Acetone							
Carbon Disulfide		ND U	10				
Carbon Disulfide ND U 2.0 1 03/20/03 03/20/03 Methylene Chloride ND U 1.0 1 03/20/03 03/20/03 Methyl tert-Butyl Ether ND U 1.0 1 03/20/03 03/20/03 trans-1,2-Dichloroethene ND U 0.50 1 03/20/03 03/20/03 1,1-Dichloroethane ND U 0.50 1 03/20/03 03/20/03 Vinyl Acetate ND U 3.0 1 03/20/03 03/20/03 2,2-Dichloropropane ND U 2.0 1 03/20/03 03/20/03 2-Butanone (MEK) ND U 8.0 1 03/20/03 03/20/03 2-Butanone (MEK) ND U 0.50 1 03/20/03 03/20/03 2-Butanone (MEK) ND U 0.50 1 03/20/03 03/20/03 2-Butanone (MEK) ND U 0.50 1 03/20/03 03/20/03 Cis-1,2-Dichloroethane ND U 0.50 1 03/20/03 03/20/03	Iodomethane	ND U	2.0	1			
Methylene Chloride ND U 1.0 1 03/20/03 03/20/03 Methyl tert-Butyl Ether trans-1,2-Dichloroethene ND U 0.50 1 03/20/03 03/20/03 1,1-Dichloroethane ND U 0.50 1 03/20/03 03/20/03 Vinyl Acetate ND U 3.0 1 03/20/03 03/20/03 2,2-Dichloropropane ND U 2.0 1 03/20/03 03/20/03 2-Butanone (MEK) ND U 8.0 1 03/20/03 03/20/03 2-Butanone (MEK) ND U 0.50 1 03/20/03 03/20/03 1,1-Dichloroethene ND U 0.50 1 03/20/03 03/20/03		ND U	2.0				
Methyl tert-Butyl Ether ND U 1.0 1 03/20/03 03/20/03 trans-1,2-Dichloroethene ND U 0.50 1 03/20/03 03/20/03 1,1-Dichloroethane ND U 0.50 1 03/20/03 03/20/03 Vinyl Acetate ND U 3.0 1 03/20/03 03/20/03 2,2-Dichloropropane ND U 2.0 1 03/20/03 03/20/03 2-Butanone (MEK) ND U 8.0 1 03/20/03 03/20/03 2-Butanone (MEK) ND U 0.50 1 03/20/03 03/20/03 1,1-Trichloroethane ND U 0.50 1 03/20/03 03/20/03		ND U	1.0	1	03/20/03		
March Marc		ND U	1.0	1	03/20/03		
ND U 0.50 1 03/20/03 03				1			
Vinyl Acetate			0.50	1	03/20/03	03/20/03	
Villy Acetate 2,2-Dichloropropane ND U 2.0 1 03/20/03 03/20/03 2-Butanone (MEK) ND U 8.0 1 03/20/03 03/20/03 2-Butanone (MEK) ND U 0.50 1 03/20/03			3.0	1	03/20/03	03/20/03	
2-Butanone (MEK) ND U 8.0 1 03/20/03 03/20/03 03/20/03 cis-1,2-Dichloroethene ND U 0.50 1 03/20/03 03/20/03 03/20/03 Bromochloromethane ND U 1.0 1 03/20/03 03/20/03 03/20/03 1,1,1-Trichloroethane ND U 0.50 1 03/20/03 03/20/03 1,1-Trichloroethane ND U 0.50 1 03/20/03 03/20/03 1,1-Dichloropropene ND U 0.50 1 03/20/03 03/20/03 1,1-Dichloropropene ND U 0.50 1 03/20/03 03/20/03 1,2-Dichloroethane ND U 0.50 1 03/20/03 03/20/03 1,2-Dichloroethane ND U 0.50 1 03/20/03 03/20/03 1,2-Dichloroethane ND U 0.50 1 03/20/03 03/20/03 1,2-Dichloropropane ND U 0.50 1 03/20/03 03/20/03 1,2-Dichloropropane ND U 0.50 1 03/20/03 03/20/03 1,3-Dichloropropane ND U 0.50 1 03/20/03 03/20/03 03/20/03 1 03/20/03 03/20/03 1 03/20/03 03/20/03 03/20/03				1	03/20/03	03/20/03	
Z-Ditable (MEX) ND U 0.50 1 03/20/03 03/20/03 cis-1,2-Dichloroethene ND U 0.50 1 03/20/03 03/20/03 Bromochloromethane ND U 1.0 1 03/20/03 03/20/03 Chloroform ND U 0.50 1 03/20/03 03/20/03 1,1-Trichloroethane ND U 0.50 1 03/20/03 03/20/03 Carbon Tetrachloride ND U 0.50 1 03/20/03 03/20/03 1,1-Dichloropropene ND U 0.50 1 03/20/03 03/20/03 Benzene ND U 0.50 1 03/20/03 03/20/03 1,2-Dichloroethane ND U 0.50 1 03/20/03 03/20/03 1,2-Dichloropropane ND U 0.50 1 03/20/03 03/20/03 1,2-Dichloropropane ND U 0.50 1 03/20/03 03/20/03 Dibromomethane ND U 0.50 1 03/20/03 03/20/03				1	03/20/03	03/20/03	
State			0.50	1	03/20/03	03/20/03	
Bromochioronethane ND U 1.0 1 03/20/03 03/20/03 Chloroform ND U 0.50 1 03/20/03 03/20/03 1,1,1-Trichloroethane ND U 0.50 1 03/20/03 03/20/03 Carbon Tetrachloride ND U 0.50 1 03/20/03 03/20/03 1,1-Dichloropropene ND U 0.50 1 03/20/03 03/20/03 Benzene ND U 0.50 1 03/20/03 03/20/03 1,2-Dichloroethane ND U 0.50 1 03/20/03 03/20/03 Trichloropropane ND U 0.50 1 03/20/03 03/20/03 1,2-Dichloropropane ND U 0.50 1 03/20/03 03/20/03 1,2-Dichloropropane ND U 0.50 1 03/20/03 03/20/03 1,2-Dichloropropene ND U 0.50 1 03/20/03 03/20/03 1,2-Dichloropropene ND U 0.50 1 03/20/03 03/20/03					03/20/03	03/20/03	
Chloroform					03/20/03	03/20/03	
1,1,1-Trichloroethane				1	03/20/03	03/20/03	
Carbon Tetrachloride ND U 0.50 1 03/20/03 03/20/03 1,1-Dichloropropene ND U 0.50 1 03/20/03 03/20/03 Benzene ND U 0.50 1 03/20/03 03/20/03 1,2-Dichloropethane ND U 0.50 1 03/20/03 03/20/03 1,2-Dichloropropane ND U 0.50 1 03/20/03 03/20/03 1,2-Dichloropropane ND U 0.50 1 03/20/03 03/20/03 1,2-Dichloropropene ND U 0.50 1 03/20/03 03/20/03 2-Dichloropropene ND U 0.50 1 03/20/03 03/20/03 3-Zo/03 03/20/03 03/20/03 03/20/03 03/20/03 4-Methyl-2-pentanone (MIBK) ND U 8.0 1 03/20/03 03/20/03							
No				_		03/20/03	
Senzene				1	03/20/03	03/20/03	
1,2-Dichloroethane ND U 0.50 1 03/20/03 03/20/03 Trichloroethene ND U 0.50 1 03/20/03 03/20/03 1,2-Dichloropropane ND U 0.50 1 03/20/03 03/20/03 Dibromomethane ND U 0.50 1 03/20/03 03/20/03 Bromodichloromethane ND U 0.50 1 03/20/03 03/20/03 cis-1,3-Dichloropropene ND U 0.50 1 03/20/03 03/20/03 4-Methyl-2-pentanone (MIBK) ND U 8.0 1 03/20/03 03/20/03							
Trichloroethene ND U 0.50 1 03/20/03 03/20/03 1,2-Dichloropropane ND U 0.50 1 03/20/03 03/20/03 Dibromomethane ND U 0.50 1 03/20/03 03/20/03 Bromodichloromethane ND U 0.50 1 03/20/03 03/20/03 cis-1,3-Dichloropropene ND U 0.50 1 03/20/03 03/20/03 4-Methyl-2-pentanone (MIBK) ND U 8.0 1 03/20/03 03/20/03	,			_			
1,2-Dichloropropane ND U 0.50 1 03/20/03 03/20/03 Dibromomethane ND U 0.50 1 03/20/03 03/20/03 Bromodichloromethane ND U 0.50 1 03/20/03 03/20/03 cis-1,3-Dichloropropene ND U 0.50 1 03/20/03 03/20/03 4-Methyl-2-pentanone (MIBK) ND U 8.0 1 03/20/03 03/20/03	Trichloroethene						
Dibromomethane ND U 0.50 1 03/20/03 03/20/03 Bromodichloromethane ND U 0.50 1 03/20/03 03/20/03 cis-1,3-Dichloropropene ND U 0.50 1 03/20/03 03/20/03 4-Methyl-2-pentanone (MIBK) ND U 8.0 1 03/20/03 03/20/03 4-Methyl-2-pentanone (MIBK) ND U 0.50 1 03/20/03 03/20/03	,			1			
Bromodichloromethane ND U 0.50 1 03/20/03 03/20/03 cis-1,3-Dichloropropene ND U 0.50 1 03/20/03 03/20/03 4-Methyl-2-pentanone (MIBK) ND U 8.0 1 03/20/03 03/20/03 3 ND U 0.50 1 03/20/03 03/20/03				1 1			
Cis-1,3-Dichloropropene ND U 8.0 1 03/20/03 03/20/03 4-Methyl-2-pentanone (MIBK) ND U 8.0 1 03/20/03 03/20/03	Bromodichloromethane						
4-Methyl-2-pentanone (MIBK) ND U 6.0 1 03/20/03 03/20/03	cis-1,3-Dichloropropene						
Toluene ND U 0.50 1 03/20/03 03/20/03	4-Methyl-2-pentanone (MIBK)						
	Toluene	ND U	0.50	1	03/20/03	03/20/03	

Comments:

Printed: 03/25/2003 10:32:58 L:\STEALTH\CRYSTAL.RPT\Form1m.rpt

Merged

Form 1A - Organic 000029

Page 1 of 3

Analytical Results

Client:

BE&K Terranext

Project: Sample Matrix: WVB Water

Service Request: X2300202

Date Collected: NA Date Received: NA

Volatile Organic Compounds

Sample Name: Lab Code:

Method Blank XWG0300365-5

Extraction Method: Analysis Method:

EPA 5030B 8260B

Units: ug/L Basis: NA

Level: Low

				Dilution	Date	Date	
Analyte Name	Result	Q	MRL	Factor	Extracted	Analyzed	Arizona Qualifier
trans-1,3-Dichloropropene	ND	U	1.0	1	03/20/03	03/20/03	
1,1,2-Trichloroethane	ND	U	1.0	1	03/20/03	03/20/03	•
Tetrachloroethene	ND		0.50	1	03/20/03	03/20/03	
2-Hexanone	ND	U	5.0	1	03/20/03	03/20/03	
1.3-Dichloropropane	ND		1.0	1	03/20/03	03/20/03	
Dibromochloromethane	ND		0.50	1	03/20/03	03/20/03	
1,2-Dibromoethane	ND	IJ	0.50	1	03/20/03	03/20/03	
Chlorobenzene	ND		0.50	1	03/20/03	03/20/03	
1,1,1,2-Tetrachloroethane	ND		0.50	1	03/20/03	03/20/03	
	ND		0.50	1	03/20/03	03/20/03	
Ethylbenzene	ND ND		1.0	1	03/20/03	03/20/03	
m,p-Xylenes	ND		0.50	1	03/20/03	03/20/03	
o-Xylene	ND		0.50	1	03/20/03	03/20/03	
Styrene	ND ND		0.50	1	03/20/03	03/20/03	
Isopropylbenzene	ND ND		0.50	1	03/20/03	03/20/03	
Bromobenzene	ND		1.0	1	03/20/03	03/20/03	
1,2,3-Trichloropropane	ND ND		0.50	1	03/20/03	03/20/03	
n-Propylbenzene	ND		0.50	1	03/20/03	03/20/03	
2-Chlorotoluene			0.50	1	03/20/03	03/20/03	
4-Chlorotoluene	ND		0.50	1	03/20/03	03/20/03	
1,3,5-Trimethylbenzene	ND ND		0.50	1	03/20/03	03/20/03	
tert-Butylbenzene					03/20/03	03/20/03	
1,2,4-Trimethylbenzene	ND		0.50	1	03/20/03	03/20/03	
sec-Butylbenzene	ND		0.50	1 1	03/20/03	03/20/03	
1,3-Dichlorobenzene	ND		0.50			03/20/03	
4-Isopropyltoluene	ND		0.50	1	03/20/03	03/20/03	
Bromoform		U	0.50	1	03/20/03 03/20/03	03/20/03	
1,1,2,2-Tetrachloroethane	ND	U	1.0	1			
1,4-Dichlorobenzene	ND	U	0.50	1	03/20/03	03/20/03	
1,2-Dichlorobenzene		U	0.50	1	03/20/03	03/20/03	
n-Butylbenzene	NE	U	0.50	1	03/20/03	03/20/03	
1,2-Dibromo-3-chloropropane	NE	U	5.0	1	03/20/03	03/20/03	
1,2,4-Trichlorobenzene	NE	U	0.50	1	03/20/03	03/20/03	
Hexachlorobutadiene	NE	U	0.50	1	03/20/03	03/20/03	

Comments:

Printed: 03/25/2003 10:32:58 L:\STEALTH\CRYSTAL.RPT\Form1m.rpt

Form 1A - Organic

0000000

SuperSet Reference:

RR3111

Merged

Analytical Results

Client:

BE&K Terranext

Project:

WVB

Sample Matrix:

Water

Service Request: X2300202

Date Collected: NA Date Received: NA

Volatile Organic Compounds

Sample Name:

Method Blank

Lab Code:

XWG0300365-5

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

			Dilution	Date	Date
Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed Arizona Qualifier
Naphthalene 1,2,3-Trichlorobenzene	ND U ND U	3.0 0.50	1 1	03/20/03 03/20/03	03/20/03 03/20/03

Surrogate Name	%Rec	Control Limits	Date Analyzed	Arizona Qualifier	
Dibromofluoromethane Toluene-d8	98 105	84-113 68-126	03/20/03 03/20/03		
4-Bromofluorobenzene	97	79-113	03/20/03		

Comments:

SuperSet Reference:

Analytical Results

Client:

BE&K Terranext

Project: Sample Matrix: WVB Water Service Request: X2300202

Date Collected: NA Date Received: NA

Volatile Organic Compounds

Sample Name: Lab Code:

Method Blank XWG0300373-5

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

			Dilution	Date	Date	Arizona Qualifier
Analyte Name	Result Q	MRL	Factor	Extracted		Arizona Quanner
Dichlorodifluoromethane	ND U	3.0	1	03/21/03	03/21/03	
Chloromethane	ND U	2.0	1	03/21/03	03/21/03	
Vinyl Chloride	ND U	1.0	1	03/21/03	03/21/03	
Bromomethane	ND U	1.0	1	03/21/03	03/21/03	
Chloroethane	ND U	1.0	1	03/21/03	03/21/03	
Trichlorofluoromethane	ND U	1.0	1	03/21/03	03/21/03	
1,1,2-Trichlorotrifluoroethane	ND U	1.0	1	03/21/03	03/21/03	
1.1-Dichloroethene	ND U	1.0	1	03/21/03	03/21/03	
Acetone	ND U	10	1	03/21/03	03/21/03	
Iodomethane	ND U	2.0	1	03/21/03	03/21/03	
Carbon Disulfide	ND U	2.0	1	03/21/03	03/21/03	
Methylene Chloride	ND U	1.0	1	03/21/03	03/21/03	
	ND U	1.0	1	03/21/03	03/21/03	
Methyl tert-Butyl Ether	ND U	0.50	1	03/21/03	03/21/03	
trans-1,2-Dichloroethene 1,1-Dichloroethane	ND U	0.50	1	03/21/03	03/21/03	
	ND U	3.0	1	03/21/03	03/21/03	
Vinyl Acetate	ND U	2.0	1	03/21/03	03/21/03	
2,2-Dichloropropane	ND U	8.0	1	03/21/03	03/21/03	
2-Butanone (MEK)		0.50	1	03/21/03	03/21/03	
cis-1,2-Dichloroethene	ND U ND U	0.50	1	03/21/03	03/21/03	
Bromochloromethane	ND U	1.0	1	03/21/03	03/21/03	
Chloroform			1	03/21/03	03/21/03	
1,1,1-Trichloroethane	ND U	0.50	1	03/21/03	03/21/03	
Carbon Tetrachloride	ND U	0.50 0.50	1	03/21/03	03/21/03	
1,1-Dichloropropene	ND U			03/21/03	03/21/03	
Benzene	ND U	0.50	1 1	03/21/03	03/21/03	
1,2-Dichloroethane	ND U	0.50	1	03/21/03	03/21/03	
Trichloroethene	ND U	0.50			03/21/03	
1,2-Dichloropropane	ND U	0.50	1	03/21/03	03/21/03	
Dibromomethane	ND U	0.50	1	03/21/03	03/21/03	
Bromodichloromethane	ND U	0.50	1	03/21/03		
cis-1,3-Dichloropropene	ND U	0.50	1	03/21/03	03/21/03	
4-Methyl-2-pentanone (MIBK)	ND U	8.0	1	03/21/03	03/21/03	
Toluene	ND U	0.50	. 1	03/21/03	03/21/03	

Comments:

Printed: 03/25/2003 10:33:10

Merged

1 of 3 Page RR3111

SuperSet Reference:

Analytical Results

Client:

BE&K Terranext

Project:

WVB

Sample Matrix:

Water

Service Request: X2300202

Date Collected: NA

Date Received: NA

Volatile Organic Compounds

Sample Name: Lab Code:

Method Blank XWG0300373-5

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

Analyte Name Result Q MRL Factor Extracted Analyzed Arizona Qualiffer trans-1,3-Dichloropropene ND U 1.0 1 03/21/03 03/21/03 3/21/03 1,12-Trichloroethane ND U 0.50 1 03/21/03 03/21/03 03/21/03 2-Hexanone ND U 5.0 1 03/21/03 03/21/03 03/21/03 2-Hexanone ND U 1.0 1 03/21/03 03/21/03 03/21/03 1,3-Dichloropropane ND U 0.50 1 03/21/03 03/21/03 Dibromochloromethane ND U 0.50 1 03/21/03 03/21/03 1,1,2-Tetrachloroethane ND U 0.50 1 03/21/03 03/21/03 1,1,1,2-Tetrachloroethane ND U 0.50 1 03/21/03 03/21/03 Ethylbenzene ND U 0.50 1 03/21/03 03/21/03 Ethylbenzene ND U 0.50 1 03/21/03 03/21/03 Syrene					Dilution	Date	Date	Asisasa Ovalifian
Trans-1,3-1/Interpropries No 1	Analyte Name			MRL	Factor	Extracted		Arizona Quaimer
1,1,2-Trichiloroethene	trans-1,3-Dichloropropene							
Section	1,1,2-Trichloroethane							
2-Hexanone	Tetrachloroethene	ND	U	0.50	1			
1,3-Dichloropropane ND U 1.0 1 03/21/03 03/21/03 1,2-Dibromochloromethane ND U 0.50 1 03/21/03 03/21/03 1,2-Dibromochlane ND U 0.50 1 03/21/03 03/21/03 1,1,1,2-Tetrachloroethane ND U 0.50 1 03/21/03 03/21/03 1,1,1,2-Tetrachloroethane ND U 0.50 1 03/21/03 03/21/03 1,1,1,2-Tetrachloroethane ND U 0.50 1 03/21/03 03/21/03 1,1,2-Tetrachloroethane ND U 0.50 1 03/21/03 03/21/03 1,1,1,2-Tetrachloroethane ND U 0.50 1 03/21/03 03/21/03 1,1,1,2-Tetrachloroethane ND U 0.50 1 03/21/03 03/21/03 1,1,1,2-Tetrachloroethane ND U 0.50 1 03/21/03 03/21/03 1,2,3-Trichloropropane ND U 0.50 1 03/21/03 03/21/03 1,2,4-Trimethylbenzene ND U 0.50 1 03/21/03 03/21/03 1,2,4-Trimethylbenzene ND U 0.50 1 03/21/03 03/21/03 1,2,2-Tetrachloroethane ND U 0.50 1 03/21/03 03/21/03 1,2-Tetrachloroethane ND U 0.50 1 03/21/03 03/21/03 1,2-Tetrachloroethane ND U 0.50 1 03/21/03 03/21/03 1,2-Tetra	2-Hexanone	ND	U	5.0	1			N1V4
Dibromochloromethane ND U 0.50 1 03/21/03 03/21/03 03/21/03 1,2-Dibromocthane ND U 0.50 1 03/21/03 03/21/03 1,1,1,2-Etrachloroethane ND U 0.50 1 03/21/03 03/21/03 2,1,1,2-Etrachloroethane ND U 0.50 1 03/21/03 03/21/03 3,1,1,2-Etrachloroethane ND U 0.50 1 03/21/03 03/21/03 3,1,1,2-Etrachloroethane ND U 0.50 1 03/21/03 03/21/03 3,2,4-Trinethylbenzene ND U 0.50 1 03/21/03 03/21/03 3,2,4-Trinethylbenzene ND U 0.50 1 03/21/03 03/21/03 4,1,2-Etrachloroethane ND U 0.50 1 03/21/03 03/21/03 4,2-Etrachloroethane ND U 0.50 1 03/21/03 03/21/03 4,3-Etrachloroethane ND U 0.50 1 03/21/03 03/21/03 4,4-Etrachloroethane ND U 0.50 1 03/21/03 03/21/03 4,5-Etrachloroethane ND U 0.50 1 03/21/03 03/21/		ND	U	1.0	1			
1,2-Distribution No U 0.50 1 03/21/03 03/21/03 03/21/03 1,1,1,2-Tetrachloroethane ND U 0.50 1 03/21/03 03/21/03 03/21/03 1,1,1,2-Tetrachloroethane ND U 0.50 1 03/21/03 0		ND	U	0.50	1	03/21/03		103
Chlorobenzene	1.2-Dibromoethane	ND	U	0.50	1	03/21/03		
1,1,2-Tetrachloroethane	,	ND	U	0.50	1			
Ethylbenzene		ND	U	0.50	1	03/21/03	03/21/03	
ND U 1.0 1 03/21/03 03/21/03 03/21/03 0-Xylene ND U 0.50 1 03/21/03 03/21/03 03/21/03 0-Xylene ND U 0.50 1 03/21/03		ND	IJ	0.50	1	03/21/03	03/21/03	
ND U 0.50 1 03/21/03 03/21/03	•				1	03/21/03	03/21/03	
Styrene	**				1	03/21/03	03/21/03	
Stylene				0.50	1	03/21/03	03/21/03	
Stappopy	2					03/21/03	03/21/03	
1,2,3-Trichloropropane					1	03/21/03	03/21/03	
1,2,5-Titelhorophopane					1	03/21/03	03/21/03	
2-Chlorotoluene ND U 0.50 1 03/21/03 03/21/03 4-Chlorotoluene ND U 0.50 1 03/21/03 03/21/03 1,3,5-Trimethylbenzene ND U 0.50 1 03/21/03 03/21/03 tert-Butylbenzene ND U 0.50 1 03/21/03 03/21/03 1,2,4-Trimethylbenzene ND U 0.50 1 03/21/03 03/21/03 sec-Butylbenzene ND U 0.50 1 03/21/03 03/21/03 1,3-Dichlorobenzene ND U 0.50 1 03/21/03 03/21/03 4-Isopropyltoluene ND U 0.50 1 03/21/03 03/21/03 Bromoform ND U 0.50 1 03/21/03 03/21/03 1,1,2,2-Tetrachloroethane ND U 1.0 1 03/21/03 03/21/03 1,4-Dichlorobenzene ND U 0.50 1 03/21/03 03/21/03 1,4-Dichlorobenzene ND U 0.50 1 03/21/03 03/21/03 1,4-Dichlorobenzene ND U 0.50 1 03/21/03 03/21/03 1,2-Dichlorobenzene ND U 0.50 1 03/21/03 03/21/03 1,2-Dichlorobenzene ND U 0.50 1 03/21/03 03/21/03 1,2-Dibromo-3-chloropropane ND U 0.50 1 03/21/03 03/21/03 1,2-Dibromo-3-chloropropane ND U 0.50 1 03/21/03 03/21/03 1,2-Dibromo-3-chloropropane ND U 0.50 1 03/21/03 03/21/03 1,2-Trichlorobenzene ND U 0.50 1 03/21/03 03/21/03 1,2-Trichlorobenzene ND U 0.50 1 03/21/03 03/21/03	· ·						03/21/03	
4-Chlorotoluene ND U 0.50 1 03/21/03 03/21/03 1,3,5-Trimethylbenzene ND U 0.50 1 03/21/03 03/21/03 tert-Butylbenzene ND U 0.50 1 03/21/03 03/21/03 1,2,4-Trimethylbenzene ND U 0.50 1 03/21/03 03/21/03 sec-Butylbenzene ND U 0.50 1 03/21/03 03/21/03 1,3-Dichlorobenzene ND U 0.50 1 03/21/03 03/21/03 4-Isopropyltoluene ND U 0.50 1 03/21/03 03/21/03 Bromoform ND U 0.50 1 03/21/03 03/21/03 1,1,2,2-Tetrachloroethane ND U 1.0 1 03/21/03 03/21/03 1,4-Dichlorobenzene ND U 0.50 1 03/21/03 03/21/03 1,2-Dichlorobenzene ND U 0.50 1 03/21/03 03/21/03 1,2-Dibromo-3-chloropropane ND U 5.0 1 03/21/03 03/21/03						03/21/03	03/21/03	
1,3,5-Trimethylbenzene ND U 0.50 1 03/21/03 03/21/03 12,4-Trimethylbenzene ND U 0.50 1 03/21/03 03/21/03 12,4-Trimethylbenzene ND U 0.50 1 03/21/03 03/21/03 12,4-Trimethylbenzene ND U 0.50 1 03/21/03 03/21/03 12,3-Dichlorobenzene ND U 0.50 1 03/21/03 03/21/03 12,3-Dichlorobenzene ND U 0.50 1 03/21/03 03/21/03 12,3-Dichlorobenzene ND U 0.50 1 03/21/03 03/21/03 12,103 12,2-Tetrachloroethane ND U 0.50 1 03/21/03 03/21/03 12,103 12,2-Dichlorobenzene ND U 0.50 1 03/21/03 03/21/03 12,2-Dichlorobenzene ND U 0.50 1 03/					1	03/21/03	03/21/03	
tert-Butylbenzene ND U 0.50 1 03/21/03 03/21/03 1,2,4-Trimethylbenzene ND U 0.50 1 03/21/03 03/21/03 sec-Butylbenzene ND U 0.50 1 03/21/03 03/21/03 1,3-Dichlorobenzene ND U 0.50 1 03/21/03 03/21/03 4-Isopropyltoluene ND U 0.50 1 03/21/03 03/21/03 Bromoform ND U 0.50 1 03/21/03 03/21/03 1,1,2,2-Tetrachloroethane ND U 1.0 1 03/21/03 03/21/03 1,4-Dichlorobenzene ND U 0.50 1 03/21/03 03/21/03 1,4-Dichlorobenzene ND U 0.50 1 03/21/03 03/21/03 1,2-Dichlorobenzene ND U 0.50 1 03/21/03 03/21/03 1,2-Dichlorobenzene ND U 0.50 1 03/21/03 03/21/03 1,2-Dichlorobenzene ND U 0.50 1 03/21/03 03/21/03 1,2-Dibromo-3-chloropropane ND U 0.50 1 03/21/03 03/21/03 1,2,4-Trichlorobenzene ND U 0.50 1 03/21/03 03/21/03 1,2,4-Trichlorobenzene ND U 0.50 1 03/21/03 03/21/03					_		03/21/03	
1,2,4-Trimethylbenzene ND U 0.50 1 03/21/03 03/21/03 sec-Butylbenzene ND U 0.50 1 03/21/03 03/21/03 1,3-Dichlorobenzene ND U 0.50 1 03/21/03 03/21/03 4-Isopropyltoluene ND U 0.50 1 03/21/03 03/21/03 Bromoform ND U 0.50 1 03/21/03 03/21/03 1,1,2,2-Tetrachloroethane ND U 1.0 1 03/21/03 03/21/03 1,4-Dichlorobenzene ND U 0.50 1 03/21/03 03/21/03 1,2-Dichlorobenzene ND U 0.50 1 03/21/03 03/21/03 n-Butylbenzene ND U 0.50 1 03/21/03 03/21/03 1,2-Dibromo-3-chloropropane ND U 5.0 1 03/21/03 03/21/03 1,2,4-Trichlorobenzene ND U 0.50 1 03/21/03 03/21/03 1,2,4-Trichlorobenzene ND U 0.50 1 03/21/03 03/21/03	- · ·						03/21/03	
1,2,4-1 methyloenzene						03/21/03	03/21/03	
sec-Butybenzene ND U 0.50 1 03/21/03 03/21/03 4-Isopropyltoluene ND U 0.50 1 03/21/03 03/21/03 Bromoform ND U 0.50 1 03/21/03 03/21/03 1,1,2,2-Tetrachloroethane ND U 1.0 1 03/21/03 03/21/03 1,4-Dichlorobenzene ND U 0.50 1 03/21/03 03/21/03 1,2-Dichlorobenzene ND U 0.50 1 03/21/03 03/21/03 n-Butylbenzene ND U 0.50 1 03/21/03 03/21/03 1,2-Dibromo-3-chloropropane ND U 5.0 1 03/21/03 03/21/03 1,2,4-Trichlorobenzene ND U 0.50 1 03/21/03 03/21/03								
4-Isopropyltoluene ND U 0.50 1 03/21/03 03/21/03 Bromoform ND U 0.50 1 03/21/03 03/21/03 1,1,2,2-Tetrachloroethane ND U 1.0 1 03/21/03 03/21/03 1,4-Dichlorobenzene ND U 0.50 1 03/21/03 03/21/03 1,2-Dichlorobenzene ND U 0.50 1 03/21/03 03/21/03 n-Butylbenzene ND U 0.50 1 03/21/03 03/21/03 1,2-Dibromo-3-chloropropane ND U 5.0 1 03/21/03 03/21/03 1,2,4-Trichlorobenzene ND U 0.50 1 03/21/03 03/21/03								
Bromoform ND U 0.50 1 03/21/03 03/21/03 1,1,2,2-Tetrachloroethane ND U 1.0 1 03/21/03 03/21/03 1,4-Dichlorobenzene ND U 0.50 1 03/21/03 03/21/03 1,2-Dichlorobenzene ND U 0.50 1 03/21/03 03/21/03 n-Butylbenzene ND U 0.50 1 03/21/03 03/21/03 1,2-Dibromo-3-chloropropane ND U 5.0 1 03/21/03 03/21/03 1,2,4-Trichlorobenzene ND U 0.50 1 03/21/03 03/21/03	· · · · · · · · · · · · · · · · · · ·							
Instruction	1 1							
1,1,2,2-Tetractinoroetnane ND U 0.50 1 03/21/03 03/21/03 1,4-Dichlorobenzene ND U 0.50 1 03/21/03 03/21/03 1,2-Dichlorobenzene ND U 0.50 1 03/21/03 03/21/03 n-Butylbenzene ND U 0.50 1 03/21/03 03/21/03 1,2-Dibromo-3-chloropropane ND U 5.0 1 03/21/03 03/21/03 1,2,4-Trichlorobenzene ND U 0.50 1 03/21/03 03/21/03								
1,4-Dichlorobenzene ND U 0.50 1 03/21/03 03/21/03 1,2-Dichlorobenzene ND U 0.50 1 03/21/03 03/21/03 n-Butylbenzene ND U 0.50 1 03/21/03 03/21/03 1,2-Dibromo-3-chloropropane ND U 5.0 1 03/21/03 03/21/03 1,2,4-Trichlorobenzene ND U 0.50 1 03/21/03 03/21/03								
n-Butylbenzene ND U 0.50 1 03/21/03 03/21/03 1,2-Dibromo-3-chloropropane ND U 5.0 1 03/21/03 03/21/03 1,2,4-Trichlorobenzene ND U 0.50 1 03/21/03 03/21/03	,							
1,2-Dibromo-3-chloropropane ND U 5.0 1 03/21/03 03/21/03 1,2,4-Trichlorobenzene ND U 0.50 1 03/21/03 03/21/03								
1,2,4-Trichlorobenzene ND U 0.50 1 03/21/03 03/21/03 1,2,4-Trichlorobenzene ND U 0.50 1 03/21/03 03/21/03								
1,2,4-1 TICRIO TO DE 1/02 02/01/02	- -							
Hexachlorobutadiene ND U 0.50 1 03/21/03 03/21/03								
	Hexachlorobutadiene	ND	U	0.50	1	03/21/03	03/21/03	

Comments:

Printed: 03/25/2003 10:33:10 L:\STEALTH\CRYSTAL.RPT\Form1m.rpt

Merged

Form 1A - Organic 000033

Page 2 of 3

Analytical Results

Client:

BE&K Terranext

Project:

WVB

Sample Matrix:

Water

Service Request: X2300202

Date Collected: NA

Date Received: NA

03/21/03

03/21/03

Volatile Organic Compounds

Sample Name:

Method Blank

Lab Code:

XWG0300373-5

Extraction Method:

EPA 5030B

Analysis Method:

1,2,3-Trichlorobenzene

8260B

Units: ug/L Basis: NA

Level: Low

Analyte Name	Result O	MRL	Dilution Factor	Date Extracted	Date Analyzed	Arizona Qualifier
	ND U	3.0	1	03/21/03	03/21/03	
Naphthalene	TID 0			02/21/02	02/21/02	

0.50

ND U

Surrogate Name	%Rec	Control Limits	Date Analyzed	Arizona Qualifier	
Dibromofluoromethane	99	84-113	03/21/03		
Toluene-d8	114	68-126	03/21/03		
4-Bromofluorobenzene	97	79-113	03/21/03		

Comments:

Printed: 03/25/2003 10:33:10

RR3111 SuperSet Reference:

QA/QC Report

Client:

BE&K Terranext

Project:

WVB

Sample Matrix:

Water

Service Request: X2300202

Surrogate Recovery Summary Volatile Organic Compounds

Extraction Method: Analysis Method:

EPA 5030B

8260B

Units: PERCENT

Level: Low

Sample Name	Lab Code	Sur1	Sur2	Sur3
AVB91-0100-03131	X2300202-001	95	111	95
AVB81-0200-05107	X2300202-002	99	111	99
AVB96-0100-03125	X2300202-003	99	110	95
AVB94-0100-03122	X2300202-004	98	113	96
AVB94-0104-1000	X2300202-005	101	112	98
AVB94-0102-1000	X2300202-006	103	112	99
Method Blank	XWG0300363-5	90	104	87
Method Blank	XWG0300365-5	98	105	97
Method Blank	XWG0300373-5	99	114	97
Batch QC	X2300200-003	105	112	101
Batch QC	X2300200-010	99	114	97
Batch QCMS	XWG0300365-1	98	116	106
Batch QCDMS	XWG0300365-2	100	109	102
Batch QCMS	XWG0300373-1	105	123	111
Batch QCDMS	XWG0300373-2	98	116	103
Lab Control Sample	XWG0300363-3	94	108	100
Duplicate Lab Control Sample	XWG0300363-4	87	100	89
	XWG0300365-3	100	112	103
Lab Control Sample	XWG0300365-4	97	107	101
Duplicate Lab Control Sample	XWG0300373-3	97	111	101
Lab Control Sample Duplicate Lab Control Sample	XWG0300373-4	98	107	102

Surrogate Recovery Control Limits (%)

Sur1 =	Dibromofluoromethane	84-113
	Toluene-d8	68-126
Sur3 =	4-Bromofluorobenzene	79-113

Results flagged with an asterisk (*) indicate values outside control criteria. Results flagged with a pound (#) indicate the control criteria is not applicable.

Printed: 03/25/2003 10:33:29 L:\STEALTH\CRYSTAL.RPT\Form2.rpt

QA/QC Report

Client:

BE&K Terranext

Project:

WVB

Sample Matrix:

Water

Service Request: X2300202

Date Extracted: 03/20/2003 **Date Analyzed:** 03/20/2003

Matrix Spike/Duplicate Matrix Spike Summary Volatile Organic Compounds

Sample Name:

Batch QC

Lab Code:

X2300200-003

Extraction Method: Analysis Method:

EPA 5030B

8260B

Units: ug/L

Basis: NA

Level: Low

Extraction Lot: XWG0300365

	Commis	XV	atch QCMS VG0300365- Matrix Spike	1	XV	ntch QCDMS VG0300365-2 cate Matrix S	2	%Rec		RPD
Analyte Name	Sample Result	Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit
Dichlorodifluoromethane	ND	5.54	10.0	55 M2	5.45	10.0	55 M2	78-207	2	20
Chloromethane	ND	8.38	10.0	84	7.15	10.0	72	70-157	16	20
Vinyl Chloride	ND	9.73	10.0	97	9.13	10.0	91	79-174	6	20
Bromomethane	ND	11.0	10.0	110	10.2	10.0	102	44-150	8	20
	ND	12.0	10.0	120	9.56	10.0	96	74-150	23 R5	20
Chloroethane	ND	10.3	10.0	103	9.65	10.0	97	80-134	7	20
Trichlorofluoromethane 1,1,2-Trichlorotrifluoroethane	ND	10.7	10.0	107	10.3	10.0	103	67-128	5	20
* *	ND	10.6	10.0	106	9.77	10.0	98	71-142	8	20
1,1-Dichloroethene	ND	31.8	40.0	79	26.0	40.0	65	1-155	20	20
Acetone	ND	45.1	40.0	113	42.8	40.0	107	47-120	5	20
Iodomethane	ND	44.6	40.0	112	41.5	40.0	104	77-126	7	20
Carbon Disulfide	ND	11.4	10.0	114 M1	10.8	10.0	108 M1	83-106	6	20
Methylene Chloride	ND	9.42	10.0	94	8.35	10.0	84	70-118	12	20
Methyl tert-Butyl Ether	ND	10.6	10.0	106	10.3	10.0	103	86-115	3	20
trans-1,2-Dichloroethene	ND	11.4	10.0	114	10.9	10.0	109	77-127	5	20
1,1-Dichloroethane	ND	41.3	40.0	103	38.3	40.0	96	8-187	8	20
Vinyl Acetate	ND	10.7	10.0	107	10.7	10.0	107	25-154	0	20
2,2-Dichloropropane	ND	39.6	40.0	99	34.8	40.0	87 M2	90-112	13	20
2-Butanone (MEK)	ND ND	10.8	10.0	108	10.5	10.0	105	69-118	3	20
cis-1,2-Dichloroethene		11.1	10.0	111	10.7	10.0	107	47-136	4	20
Bromochloromethane	ND	10.7	10.0	107	10.6	10.0	106	48-143	1	20
Chloroform	ND	9.54	10.0	95	9.43	10.0	94	84-122	1	20
1,1,1-Trichloroethane	ND		10.0	96	9.35	10.0	94	79-120	2	20
Carbon Tetrachloride	ND	9.56	10.0	104	10.3	10.0	103	85-117	1	20
1,1-Dichloropropene	ND	10.4	10.0	99	9.62	10.0	96	88-114	3	20
Benzene	ND	9.89		91	8.73	10.0	87	75-112	4	20
1,2-Dichloroethane	ND	9.05	10.0	109	11.1	10.0	105	76-115	4	20
Trichloroethene	0.64	11.5	10.0		9.79	10.0	98	85-107	5	20
1,2-Dichloropropane	ND	10.3	10.0	103	9.79 8.64	10.0	86	82-106	14	20
Dibromomethane	ND	9.93	10.0	99 05	8.80	10.0	88	83-107	8	20
Bromodichloromethane	ND	9.53	10.0	95	8.80 8.78	10.0	88	70-114	10	20
cis-1,3-Dichloropropene	ND	9.74	10.0	97	32.2	40.0	80	54-129	15	20
4-Methyl-2-pentanone (MIBK)	ND	37.3	40.0	93 110	32.2 10.1	10.0	101	86-114	8	20

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

11.0

ND

Printed: 03/25/2003 10:33:36 L:\STEALTH\CRYSTAL.RPT\Form3DMS.rpt

Toluene

Form 3A - Organic 000036

110

10.0

10.0

10.1

RR3111 SuperSet Reference:

1 of 3

Page

QA/QC Report

Client:

BE&K Terranext

Project: Sample Matrix: WVB Water Service Request: X2300202

Date Extracted: 03/20/2003

Date Analyzed: 03/20/2003

Matrix Spike/Duplicate Matrix Spike Summary Volatile Organic Compounds

Sample Name: Lab Code:

Batch QC

X2300200-003

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

Extraction Lot: XWG0300365

	Sample	XV	atch QCMS VG0300365- Matrix Spike	1	XV	ntch QCDMS VG0300365-2 cate Matrix S	2	%Rec		RPD
Analyte Name	Result	Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit
trans-1,3-Dichloropropene	ND	9.74	10.0	97	8.53	10.0	85	73-112	13	20
1,1,2-Trichloroethane	ND	10.1	10.0	101	8.64	10.0	86	79-112	16	20
Tetrachloroethene	ND	11.0	10.0	110	10.2	10.0	102	78-130	8	20
2-Hexanone	ND	34.3	40.0	86	27.4	40.0	69 M2	77-112	22 R2	20
1,3-Dichloropropane	ND	9.92	10.0	99	8.68	10.0	87	45-133	13	20
Dibromochloromethane	ND	9.89	10.0	99	8.49	10.0	85	74-108	15	20
1,2-Dibromoethane	ND	9.68	10.0	97	8.48	10.0	85	73-113	13	20
Chlorobenzene	ND	10.3	10.0	103	9.89	10.0	99	84-111	4	20
1,1,1,2-Tetrachloroethane	ND	10.4	10.0	104	10.4	10.0	104	84-119	0	20
Ethylbenzene	ND	10.6	10.0	106	10.3	10.0	103	47-136	3	20
m,p-Xylenes	ND	22.1	20.0	110	21.2	20.0	106	84-120	4	20
o-Xylene	ND	10.4	10.0	104	10.1	10.0	101	47-143	3	20
Styrene	ND	10.8	10.0	108	10.5	10.0	105	72-121	3	20
Isopropylbenzene	ND	10.3	10.0	103	10.1	10.0	101	63-108	2	20
Bromobenzene	ND	10.6	10.0	106	10.3	10.0	103	80-113	3	20
1,2,3-Trichloropropane	ND	9.86	10.0	99	9.03	10.0	90	78-119	9	20
n-Propylbenzene	ND	11.1	10.0	111	10.8	10.0	108	76-117	3	20
2-Chlorotoluene	ND	10.6	10.0	106	10.3	10.0	103	79-121	2	20
4-Chlorotoluene	ND	10.5	10.0	105	10.3	10.0	103	70-133	2	20
1,3,5-Trimethylbenzene	ND	10.7	10.0	107	10.7	10.0	107	79-118	0	20
tert-Butylbenzene	ND	10.8	10.0	108	10.8	10.0	108	77-120	0	20
1,2,4-Trimethylbenzene	ND	11.0	10.0	110	11.0	10.0	110	68-127	0	20
sec-Butylbenzene	ND	10.8	10.0	108	10.7	10.0	107	78-123	1	20
1,3-Dichlorobenzene	ND	10.6	10.0	106	10.5	10.0	105	78-127	1	20
4-Isopropyltoluene	ND	11.1	10.0	111	11.0	10.0	110	79-142	1	20
Bromoform	ND	8.74	10.0	87	8.47	10.0	85	83-111	3	20
1,1,2,2-Tetrachloroethane	ND	9.76	10.0	98	9.12	10.0	91	66-133	7	20
1,4-Dichlorobenzene	ND	10.1	10.0	101	9.89	10.0	99	48-139	2	20
1,2-Dichlorobenzene	ND	10.0	10.0	100	9.84	10.0	98	64-109	2	20
n-Butylbenzene	ND	10.6	10.0	106	10.7	10.0	107	69-122	1	20
1,2-Dibromo-3-chloropropane	ND	7.85	10.0	79	7.37	10.0	74	54-160	6	20
1,2,4-Trichlorobenzene	ND	11.2	10.0	112	11.1	10.0	111	39-145	1	20
Hexachlorobutadiene	ND	11.4	10.0	114 M1		10.0	116 M1	74-113	2	20

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 03/25/2003 10:33:36 L:\STEALTH\CRYSTAL.RPT\Form3DMS.rpt Form 3A - Organic 000037

Page

2 of 3

SuperSet Reference: RR3111

QA/QC Report

Client:

BE&K Terranext

Project:

WVB

Sample Matrix:

Water

Service Request: X2300202

Date Extracted: 03/20/2003

Date Analyzed: 03/20/2003

Matrix Spike/Duplicate Matrix Spike Summary Volatile Organic Compounds

Sample Name:

Batch QC

X2300200-003

Units: ug/L Basis: NA

Lab Code: **Extraction Method:**

EPA 5030B

Level: Low

Analysis Method:

8260B

Extraction Lot: XWG0300365

Batch QCMS

XWG0300365-1

Batch QCDMS

XWG0300365-2

	Sample		VG0300365- Matrix Spike	1		cate Matrix S		%Rec		RPD
Analyte Name	Result	Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit
	ND	9.87	10.0	99	10.0	10.0	100	44-167	2	20
Naphthalene 1,2,3-Trichlorobenzene	ND	11.5	10.0	115	11.3	10.0	113	37-158	1	20

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 03/25/2003 10:33:36 Form 3A - Organic

000038

SuperSet Reference:

RR3111

Page

3 of 3

OA/OC Report

Client:

BE&K Terranext

Project:

WVB

Sample Matrix:

Water

Service Request: X2300202

Date Extracted: 03/21/2003 **Date Analyzed:** 03/21/2003

Matrix Spike/Duplicate Matrix Spike Summary Volatile Organic Compounds

Sample Name: Lab Code:

Batch QC

X2300200-010

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

Extraction Lot: XWG0300373

	Sample	XV	atch QCMS VG0300373- Vatrix Spike	1	XV	atch QCDMS VG0300373-2 cate Matrix Sp	2	%Rec		RPD
Analyte Name	Result	Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit
Dichlorodifluoromethane	ND	9.45	10.0	95	8.01	10.0	80	78-207	16	20
	ND	10.4	10.0	104	8.57	10.0	86	70-157	20	20
Chloromethane	ND	11.5	10.0	115	9.79	10.0	98	79-174	16	20
Vinyl Chloride	ND	12.8	10.0	128	10.7	10.0	107	44-150	18	20
Bromomethane	ND	12.2	10.0	122	10.5	10.0	105	74-150	15	20
Chloroethane	5.3	16.7	10.0	114	16.3	10.0	111	80-134	2	20
Trichlorofluoromethane	ND	12.0	10.0	120	9.91	10.0	99	67-128	19	20
1,1,2-Trichlorotrifluoroethane	ND	11.5	10.0	115	9.99	10.0	100	71-142	14	20
1,1-Dichloroethene	ND	43.9	40.0	110	31.5	40.0	79	1-155	33 R5	
Acetone	ND	52.1	40.0	130 M1	43.0	40.0	107	47-120	19	20
Iodomethane	ND	50.2	40.0	125	42.1	40.0	105	77-126	18	20
Carbon Disulfide	ND	12.1	10.0	121 M1	10.7	10.0	107 M1	83-106	12	20
Methylene Chloride	ND ND	9.65	10.0	97	8.81	10.0	88	70-118	9	20
Methyl tert-Butyl Ether	ND ND	11.6	10.0	116 M1	9.99	10.0	100	86-115	15	20
trans-1,2-Dichloroethene		11.0	10.0	119	10.2	10.0	102	77-127	16	20
1,1-Dichloroethane	ND	38.8	40.0	97	33.9	40.0	85	8-187	13	20
Vinyl Acetate	ND		10.0	117	10.1	10.0	101	25-154	15	20
2,2-Dichloropropane	ND	11.7	40.0	77 M2	38.5	40.0	96	90-112	22 R5	5 20
2-Butanone (MEK)	ND	30.8	10.0	120 M1	10.3	10.0	103	69-118	16	20
cis-1,2-Dichloroethene	ND	12.0	10.0	123	11.6	10.0	116	47-136	6	20
Bromochloromethane	ND	12.3	10.0	107	10.1	10.0	101	48-143	6	20
Chloroform	ND	10.7		107	9.44	10.0	94	84-122	7	20
1,1,1-Trichloroethane	ND	10.1	10.0	101	9.31	10.0	93	79-120	9	20
Carbon Tetrachloride	ND	10.2	10.0	102	10.3	10.0	103	85-117	5	20
1,1-Dichloropropene	ND	10.8	10.0	108	9.73	10.0	97	88-114	5	20
Benzene	ND	10.3	10.0		8.93	10.0	89	75-112	7	20
1,2-Dichloroethane	ND	9.53	10.0	95		10.0	109	76-115	6	20
Trichloroethene	0.52	12.1	10.0	116 M1	11.4	10.0	100	85-107	2	20
1.2-Dichloropropane	ND	10.2	10.0	102	9.95	10.0	97	82-106	3	20
Dibromomethane	ND	10.0	10.0	100	9.70	10.0	93	83-107	4	20
Bromodichloromethane	ND	9.63	10.0	96	9.28		95 95	70-114	6	20
cis-1,3-Dichloropropene	ND	10.1	10.0	101	9.53	10.0 40.0	93 93	54-129	0	20
4-Methyl-2-pentanone (MIBK)	ND	37.2	40.0	93	37.1		93 108	86-114	7	20
Toluene	ND	11.6	10.0	116 M1	10.8	10.0	108	00-114	,	20

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 03/25/2003 10:33:43 Form 3A - Organic 000039

SuperSet Reference: RR3111

1 of 3 Page

QA/QC Report

Client:

BE&K Terranext

Project:

WVB

Sample Matrix:

Water

Service Request: X2300202

Date Extracted: 03/21/2003

Date Analyzed: 03/21/2003

Matrix Spike/Duplicate Matrix Spike Summary Volatile Organic Compounds

Sample Name:

Batch QC

Lab Code:

X2300200-010

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

Extraction Lot: XWG0300373

	Sample	XV	atch QCMS VG0300373- Matrix Spike	1	XV	ntch QCDMS VG0300373-2 cate Matrix S	2	%Rec		RPD
Analyte Name	Result	Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit
trans-1,3-Dichloropropene	ND	9.53	10.0	95	9.11	10.0	91	73-112	5	20
1,1,2-Trichloroethane	ND	10.1	10.0	101	10.1	10.0	101	79-112	0	20
Tetrachloroethene	0.57	12.0	10.0	115	11.3	10.0	108	78-130	6	20
2-Hexanone	ND	33.0	40.0	83	31.7	40.0	79	77-112	4	20
1,3-Dichloropropane	ND	10.4	10.0	104	9.80	10.0	98	45-133	6	20
Dibromochloromethane	ND	10.1	10.0	101	9.25	10.0	93	74-108	9	20
1,2-Dibromoethane	ND	9.42	10.0	94	9.14	10.0	91	73-113	3	20
Chlorobenzene	ND	10.8	10.0	108	10.1	10.0	101	84-111	7	20
1,1,1,2-Tetrachloroethane	ND	10.9	10.0	109	10.2	10.0	102	84-119	6	20
	ND	11.1	10.0	111	10.5	10.0	105	47-136	5	20
Ethylbenzene	ND	23.1	20.0	115	21.7	20.0	109	84-120	6	20
m,p-Xylenes	ND	11.0	10.0	110	10.3	10.0	103	47-143	7	20
o-Xylene	ND	11.5	10.0	115	10.5	10.0	105	72-121	9	20
Styrene	ND	11.0	10.0	110 M1	9.97	10.0	100	63-108	9	20
Isopropylbenzene	ND	11.0	10.0	110	10.1	10.0	101	80-113	8	20
Bromobenzene	ND	9.87	10.0	99	9.09	10.0	91	78-119	8	20
1,2,3-Trichloropropane	ND	11.5	10.0	115	10.6	10.0	106	76-117	9	20
n-Propylbenzene	ND	11.2	10.0	112	10.1	10.0	101	79-121	11	20
2-Chlorotoluene	ND	10.9	10.0	109	9.90	10.0	99	70-133	10	20
4-Chlorotoluene	ND	11.4	10.0	114	10.4	10.0	104	79-118	9	20
1,3,5-Trimethylbenzene	ND	11.4	10.0	114	10.3	10.0	103	77-120	10	20
tert-Butylbenzene	ND	11.6	10.0	116	10.5	10.0	105	68-127	10	20
1,2,4-Trimethylbenzene	ND	11.2	10.0	112	10.1	10.0	101	78-123	10	20
sec-Butylbenzene	ND	11.1	10.0	111	10.3	10.0	103	78-127	8	20
1,3-Dichlorobenzene	ND	11.5	10.0	115	10.5	10.0	105	79-142	10	20
4-Isopropyltoluene	ND	9.28	10.0	93	9.21	10.0	92	83-111	1	20
Bromoform	ND	10.1	10.0	101	9.69	10.0	97	66-133	4	20
1,1,2,2-Tetrachloroethane	ND	10.3	10.0	103	9.99	10.0	100	48-139	3	20
1,4-Dichlorobenzene	ND	10.1	10.0	101	9.94	10.0	99	64-109	2	20
1,2-Dichlorobenzene	ND	10.1	10.0	109	10.4	10.0	104	69-122	5	20
n-Butylbenzene	ND	9.15	10.0	92	8.30	10.0	83	54-160	10	20
1,2-Dibromo-3-chloropropane	ND	11.0	10.0	110	11.1	10.0	111	39-145	1	20
1,2,4-Trichlorobenzene	ND	11.8	10.0	118 M1	12.0	10.0	120 M	74-113	2	20
Hexachlorobutadiene	ND	11.0	10.0		***					

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 03/25/2003 10:33:43 L:\STEALTH\CRYSTAL.RPT\Form3DMS.rpt Form 3A - Organic

000040

SuperSet Reference: RR3111

Page

2 of

QA/QC Report

Client:

BE&K Terranext

Project:

WVB

Sample Matrix:

Water

Service Request: X2300202

Date Extracted: 03/21/2003

Date Analyzed: 03/21/2003

Matrix Spike/Duplicate Matrix Spike Summary Volatile Organic Compounds

Sample Name: Lab Code: Batch QC

X2300200-010

Extraction Method: Analysis Method:

EPA 5030B

8260B

Units: ug/L Basis: NA

Dasis: INA

Level: Low

Extraction Lot: XWG0300373

Batch QCMS
XWG0300373-1
Matrix Spike

Batch QCDMS
XWG0300373-2
XWG0300373-2
Duplicate Matrix Spil

	Sample	XWG0300373-1 Matrix Spike			NWG03003/3-2 Duplicate Matrix Spike			%Rec		RPD
Analyte Name	Result	Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit
Naphthalene	ND	9.85	10.0	99	9.36	10.0	94	44-167	5	20
1,2,3-Trichlorobenzene	ND	11.8	10.0	118	11.2	10.0	112	37-158	6	20

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

 $\begin{array}{llll} Printed: & 03/25/2003 & 10:33:43 \\ \text{L:} \text{L$

Form 3A - Organic **000041**

SuperSet Reference: RR3111

Page 3 of 3

QA/QC Report

Client:

BE&K Terranext

Project: Sample Matrix: WVB Water

Service Request: X2300202 **Date Extracted:** 03/19/2003

Date Analyzed: 03/19/2003

Lab Control Spike/Duplicate Lab Control Spike Summary Volatile Organic Compounds

Extraction Method: Analysis Method:

EPA 5030B

8260B

Units: ug/L Basis: NA

Level: Low

Extraction Lot: XWG0300363

Lab Control Sample XWG0300363-3

Duplicate Lab Control Sample XWG0300363-4

	XWG0300363-3 Lab Control Spike			Duplicate Lab Control Spike			%Rec		RPD
Analyte Name	Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit
Dichlorodifluoromethane	8.50	10.0	85	8.31	10.0	83	1-233	2	20
Chloromethane	9.17	10.0	92	9.13	10.0	91	46-156	0	20
Vinyl Chloride	10.4	10.0	104	10.3	10.0	103	51-158	1	20
Bromomethane	11.7	10.0	117	12.9	10.0	129	37-149	10	20
Chloroethane	11.8	10.0	118	13.0	10.0	130	56-146	10	20
Trichlorofluoromethane	11.1	10.0	111	10.8	10.0	108	69-139	3	20
1,1,2-Trichlorotrifluoroethane	10.2	10.0	102	9.74	10.0	97	83-130	4	20
1,1-Dichloroethene	10.0	10.0	100	9.35	10.0	94	65-112	7	20
Acetone	27.8	40.0	70	14.6	40.0	37 L2	68-128	62 R2	20
Iodomethane	44.5	40.0	111	43.3	40.0	108	68-144	3	20
Carbon Disulfide	43.1	40.0	108	40.8	40.0	102	67-140	5	20
Methylene Chloride	10.9	10.0	109	9.58	10.0	96	70-113	12	20
Methyl tert-Butyl Ether	9.16	10.0	92	7.64	10.0	76	75-115	18	20
trans-1,2-Dichloroethene	10.1	10.0	101	9.77	10.0	98	73-118	4	20
1,1-Dichloroethane	10.2	10.0	102	9.96	10.0	100	77-127	3	20
Vinyl Acetate	32.5	40.0	81	27.6	40.0	69	51-202	16	39
2,2-Dichloropropane	9.81	10.0	98	9.24	10.0	92	75-132	6	20
2-Butanone (MEK)	35.6	40.0	89	25.9	40.0	65 L2	72-122	32 R2	20
cis-1,2-Dichloroethene	10.2	10.0	102	10.3	10.0	103	81-118	1	20
Bromochloromethane	10.8	10.0	108	10.4	10.0	104	82-114	4	20
Chloroform	9.53	10.0	95	9.05	10.0	91	78-119	5	20
1.1.1-Trichloroethane	9.28	10.0	93	9.21	10.0	92	71-125	1	20
Carbon Tetrachloride	8.96	10.0	90	8.86	10.0	89	69-130	1	20
1,1-Dichloropropene	9.98	10.0	100	9.79	10.0	98	77-114	2	20
Benzene	9.28	10.0	93	9.19	10.0	92	81-117	1	20
1.2-Dichloroethane	8.74	10.0	87	7.88	10.0	79	67-122	10	20
Trichloroethene	9.78	10.0	98	9.55	10.0	96	79-114	2	20
1.2-Dichloropropane	9.43	10.0	94	9.06	10.0	91	78-114	4	20
Dibromomethane	9.14	10.0	91	7.81	10.0	78	78-113	16	20
Bromodichloromethane	9.15	10.0	92	8.01	10.0	80	79-122	13	20
	9.67	10.0	97	8.59	10.0	86	82-118	12	20
cis-1,3-Dichloropropene 4-Methyl-2-pentanone (MIBK)	37.6	40.0	94	28.3	40.0	71 L2	75-115	28 R2	
	10.7	10.0	107	9.86	10.0	99	85-118	8	20
Toluene	9.23	10.0	92	8.04	10.0	80	79-121	14	20
trans-1,3-Dichloropropene	9.23	10.0	96	8.04	10.0	80	79-116	18	20
1,1,2-Trichloroethane	2.04	10.0							

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 03/25/2003 10:33:50 L:\STEALTH\CRYSTAL.RPT\Form3DLC.rpt Form 3C - Organic 000042 RR3111

SuperSet Reference:

QA/QC Report

Client:

BE&K Terranext

Project: Sample Matrix: WVB

Water

Service Request: X2300202

Date Extracted: 03/19/2003 **Date Analyzed:** 03/19/2003

Lab Control Spike/Duplicate Lab Control Spike Summary **Volatile Organic Compounds**

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

Extraction Lot: XWG0300363

Lab Control Sample XWG0300363-3

Duplicate Lab Control Sample XWG0300363-4

	Lab	Control Spik	e	Duplicate Lab Control Spike			%Rec		RPD
Analyte Name	Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit
Tetrachloroethene	10.8	10.0	108	9.89	10.0	99	76-127	8	20
2-Hexanone	31.2	40.0	78	23.1	40.0	58 L2	65-120	30 R2	20
1,3-Dichloropropane	9.55	10.0	96	8.07	10.0	81	81-116	17	20
Dibromochloromethane	9.17	10.0	92	7.96	10.0	80	77-119	14	20
1,2-Dibromoethane	9.56	10.0	96	7.82	10.0	78 L2	79-116	20	20
Chlorobenzene	10.0	10.0	100	9.42	10.0	94	84-114	6	20
1,1,1,2-Tetrachloroethane	10.1	10.0	101	9.64	10.0	96	78-118	5	20
Ethylbenzene	10.2	10.0	102	9.95	10.0	100	79-124	3	20
m,p-Xylenes	21.3	20.0	107	20.5	20.0	102	75-131	4	20
o-Xylene	10.1	10.0	101	9.78	10.0	98	78-122	4	20
Styrene	10.6	10.0	106	9.90	10.0	99	80-126	6	20
Isopropylbenzene	10.1	10.0	101	9.70	10.0	97	75-126	4	20
Bromobenzene	10.1	10.0	101	9.54	10.0	95	82-122	6	20
1,2,3-Trichloropropane	9.09	10.0	91	7.59	10.0	76 L2	77-118	18	20
n-Propylbenzene	10.5	10.0	105	10.1	10.0	101	75-129	4	20
2-Chlorotoluene	10.3	10.0	103	9.61	10.0	96	77-126	6	20
4-Chlorotoluene	9.95	10.0	100	9.49	10.0	95	82-120	5	20
1,3,5-Trimethylbenzene	10.3	10.0	103	9.99	10.0	100	75-130	3	20
tert-Butylbenzene	10.3	10.0	103	9.95	10.0	100	73-130	3	20
1,2,4-Trimethylbenzene	10.3	10.0	103	10.1	10.0	101	60-137	2	20
sec-Butylbenzene	10.1	10.0	101	9.99	10.0	100	68-131	1	20
1,3-Dichlorobenzene	10.2	10.0	102	9.40	10.0	94	71-137	8	20
4-Isopropyltoluene	10.5	10.0	105	10.2	10.0	102	68-134	3	20
Bromoform	8.48	10.0	85	7.32	10.0	73	70-118	15	20
1,1,2,2-Tetrachloroethane	9.10	10.0	91	7.53	10.0	75	72-122	19	20
1,4-Dichlorobenzene	9.81	10.0	98	9.16	10.0	92	82-114	7	20
1,2-Dichlorobenzene	9.67	10.0	97	8.88	10.0	89	81-118	9	20
n-Butylbenzene	9.91	10.0	99	9.81	10.0	98	71-125	1	20
1,2-Dibromo-3-chloropropane	7.56	10.0	76	5.60	10.0	56	55-131	30 R7	20
1,2,4-Trichlorobenzene	10.7	10.0	107	9.18	10.0	92	75-123	15	20
Hexachlorobutadiene	11.1	10.0	111	11.3	10.0	113	63-140	2	20
Naphthalene	9.54	10.0	95	6.59	10.0	66 L2	67-125	37 R2	
1,2,3-Trichlorobenzene	11.0	10.0	110	8.47	10.0	85	72-124	26 R7	20

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 03/25/2003 10:33:50 L:\STEALTH\CRYSTAL.RPT\Form3DLC.rpt

QA/QC Report

Client:

BE&K Terranext

Project: Sample Matrix: WVB

Water

Service Request: X2300202

Date Extracted: 03/20/2003 **Date Analyzed:** 03/20/2003

Lab Control Spike/Duplicate Lab Control Spike Summary Volatile Organic Compounds

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L

Basis: NA Level: Low

Extraction Lot: XWG0300365

Lab Control Sample XWG0300365-3

Duplicate Lab Control Sample XWG0300365-4

	Lab Control Spike			Duplicate Lab Control Spike			%Rec		RPD
Analyte Name	Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit
Dichlorodifluoromethane	5.85	10.0	59	5.39	10.0	54	1-233	8	20
Chloromethane	7.84	10.0	78	8.12	10.0	81	46-156	4	20
Vinyl Chloride	9.36	10.0	94	9.47	10.0	95	51-158	1	20
Bromomethane	11.2	10.0	112	10.7	10.0	107	37-149	5	20
Chloroethane	10.3	10.0	103	10.1	10.0	101	56-146	2	20
Trichlorofluoromethane	10.3	10.0	103	9.21	10.0	92	69-139	11	20
1,1,2-Trichlorotrifluoroethane	10.4	10.0	104	9.71	10.0	97	83-130	7	20
1,1-Dichloroethene	9.87	10.0	99	9.49	10.0	95	65-112	4	20
Acetone	30.0	40.0	75	36.8	40.0	92	68-128	20	20
Iodomethane	42.7	40.0	107	42.0	40.0	105	68-144	2	20
Carbon Disulfide	42.1	40.0	105	41.0	40.0	102	67-140	3	20
Methylene Chloride	10.8	10.0	108	11.3	10.0	113	70-113	5	20
Methyl tert-Butyl Ether	8.73	10.0	87	9.47	10.0	95	75-115	8	20
trans-1,2-Dichloroethene	9,91	10.0	99	9.96	10.0	100	73-118	1	20
1,1-Dichloroethane	10.4	10.0	104	10.7	10.0	107	77-127	3	20
Vinyl Acetate	37.5	40.0	94	41.9	40.0	105	51-202	11	39
2,2-Dichloropropane	10.2	10.0	102	10.1	10.0	101	75-132	1	20
2-Butanone (MEK)	28.9	40.0	72	29.2	40.0	73	72-122	1	20
cis-1,2-Dichloroethene	10.5	10.0	105	10.5	10.0	105	81-118	0	20
Bromochloromethane	10.9	10.0	109	11.4	10.0	114	82-114	4	20
Chloroform	9.52	10.0	95	9.80	10.0	98	78-119	3	20
1,1,1-Trichloroethane	9.52	10.0	95	9.22	10.0	92	71-125	3	20
Carbon Tetrachloride	9.48	10.0	95	9.04	10.0	90	69-130	5	20
1,1-Dichloropropene	10.1	10.0	101	9.89	10.0	99	77-114	2	20
Benzene	9.65	10.0	97	9.66	10.0	97	81-117	0	20
1,2-Dichloroethane	8.90	10.0	89	9.07	10.0	91	67-122	2	20
Trichloroethene	10.2	10.0	102	9.70	10.0	97	79-114	5	20
1,2-Dichloropropane	9.69	10.0	97	9.45	10.0	95	78-114	3	20
Dibromomethane	9.68	10.0	97	9.58	10.0	96	78-113	1	20
Bromodichloromethane	9.24	10.0	92	9.25	10.0	93	79-122	0	20
cis-1,3-Dichloropropene	9.84	10.0	98	9.77	10.0	98	82-118	1	20
4-Methyl-2-pentanone (MIBK)	38.4	40.0	96	38.1	40.0	95	75-115	1	20
Toluene	10.9	10.0	109	10.0	10.0	100	85-118	9	20
trans-1,3-Dichloropropene	9.62	10.0	96	9.36	10.0	94	79-121	3	20
1,1,2-Trichloroethane	9.88	10.0	99	10.2	10.0	102	79-116	3	20

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 03/25/2003 10:33:57 L:\STEALTH\CRYSTAL.RPT\Form3DLC.rpt Form 3C - Organic

SuperSet Reference: RR3111

1 of 2 Page

000044

QA/QC Report

Client:

BE&K Terranext

Project: Sample Matrix: WVB

Water

Service Request: X2300202 Date Extracted: 03/20/2003

Date Analyzed: 03/20/2003

Lab Control Spike/Duplicate Lab Control Spike Summary Volatile Organic Compounds

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

Extraction Lot: XWG0300365

Lab Control Sample XWG0300365-3

Duplicate Lab Control Sample XWG0300365-4

	XWG0300365-3 Lab Control Spike			XWG0300365-4 Duplicate Lab Control Spike			%Rec		RPD
Analyte Name	Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit
Tetrachloroethene	10.8	10.0	108	9.99	10.0	100	76-127	8	20
2-Hexanone	31.6	40.0	79	34.3	40.0	86	65-120	8	20
1,3-Dichloropropane	9.79	10.0	98	9.73	10.0	97	81-116	1	20
Dibromochloromethane	9.92	10.0	99	9.33	10.0	93	77-119	6	20
1,2-Dibromoethane	9.48	10.0	95	9.25	10.0	93	79-116	2	20
Chlorobenzene	10.4	10.0	104	9.90	10.0	99	84-114	5	20
1,1,1,2-Tetrachloroethane	10.3	10.0	103	10.2	10.0	102	78-118	1	20
Ethylbenzene	10.5	10.0	105	10.2	10.0	102	79-124	4	20
m,p-Xylenes	21.6	20.0	108	20.8	20.0	104	75-131	4	20
o-Xylene	10.3	10.0	103	10.1	10.0	101	78-122	2	20
Styrene	10.9	10.0	109	10.5	10.0	105	80-126	3	20
<u> </u>	10.2	10.0	102	9.88	10.0	99	75-126	3	20
Isopropylbenzene Bromobenzene	10.4	10.0	104	10.5	10.0	105	82-122	1	20
	9.63	10.0	96	9.79	10.0	98	77-118	2	20
1,2,3-Trichloropropane	10.9	10.0	109	10.6	10.0	106	75-129	3	20
n-Propylbenzene 2-Chlorotoluene	10.5	10.0	105	10.3	10.0	103	77-126	2	20
	10.3	10.0	104	10.3	10.0	103	82-120	2	20
4-Chlorotoluene	10.4	10.0	106	10.4	10.0	104	75-130	2	20
1,3,5-Trimethylbenzene	9.38	10.0	94	10.3	10.0	103	73-130	9	20
tert-Butylbenzene	10.8	10.0	108	10.7	10.0	107	60-137	0	20
1,2,4-Trimethylbenzene	10.5	10.0	105	10.2	10.0	102	68-131	2	20
sec-Butylbenzene	10.5	10.0	105	10.5	10.0	105	71-137	0	20
1,3-Dichlorobenzene	10.5	10.0	109	10.7	10.0	107	68-134	2	20
4-Isopropyltoluene	8.83	10.0	88	8.91	10.0	89	70-118	1	20
Bromoform	9.86	10.0	99	9.82	10.0	98	72-122	0	20
1,1,2,2-Tetrachloroethane	10.0	10.0	100	9.76	10.0	98	82-114	3	20
1,4-Dichlorobenzene	9.79	10.0	98	9.78	10.0	98	81-118	0	20
1,2-Dichlorobenzene	10.5	10.0	105	9.92	10.0	99	71-125	5	20
n-Butylbenzene	7.95	10.0	80	8.16	10.0	82	55-131	3	20
1,2-Dibromo-3-chloropropane	10.7	10.0	107	10.9	10.0	109	75-123	2	20
1,2,4-Trichlorobenzene			113	11.2	10.0	112	63-140	1	20
Hexachlorobutadiene	11.3	10.0 10.0	95	10.3	10.0	103	67-125	8	20
Naphthalene	9.54		110	11.6	10.0	116	72-124	5	20
1,2,3-Trichlorobenzene	11.0	10.0	110	11.0	10.0	110	, 12.1	-	_ •

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 03/25/2003 10:33:57 L:\STEALTH\CRYSTAL.RPT\Form3DLC.rpt

Form 3C - Organic

SuperSet Reference: RR3111

Page 2 of 2

000045

QA/QC Report

Client:

BE&K Terranext

Project: Sample Matrix: **WVB**

Water

Service Request: X2300202

Date Extracted: 03/21/2003 **Date Analyzed:** 03/21/2003

Lab Control Spike/Duplicate Lab Control Spike Summary Volatile Organic Compounds

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L

Basis: NA

Level: Low

Extraction Lot: XWG0300373

Lab Control Sample
XWG0300373-3

Duplicate Lab Control Sample XWG0300373-4

		Control Spik		Duplicate Lab Control Spike			%Rec		RPD
Analyte Name	Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit
Dichlorodifluoromethane	8.93	10.0	89	8.00	10.0	80	1-233	11	20
Chloromethane	9.31	10.0	93	8.70	10.0	87	46-156	7	20
Vinyl Chloride	10.7	10.0	107	10.0	10.0	100	51-158	6	20
Bromomethane	12.7	10.0	127	11.0	10.0	110	37-149	14	20
Chloroethane	11.9	10.0	119	9.96	10.0	100	56-146	17	20
Trichlorofluoromethane	11.9	10.0	119	9.23	10.0	92	69-139	25 R7	20
1,1,2-Trichlorotrifluoroethane	10.6	10.0	106	9.84	10.0	98	83-130	8	20
	10.2	10.0	102	9.32	10.0	93	65-112	9	20
1,1-Dichloroethene	31.0	40.0	78	29.6	40.0	74	68-128	5	20
Acetone	46.3	40.0	116	43.2	40.0	108	68-144	7	20
Iodomethane	44.6	40.0	112	41.4	40.0	103	67-140	8	20
Carbon Disulfide	11.1	10.0	111	10.3	10.0	103	70-113	8	20
Methylene Chloride	9.09	10.0	91	8.61	10.0	86	75-115	5	20
Methyl tert-Butyl Ether	10.2	10.0	102	9.76	10.0	98	73-118	4	20
trans-1,2-Dichloroethene	10.2	10.0	105	10.3	10.0	103	77-127	2	20
1,1-Dichloroethane	35.3	40.0	88	35.7	40.0	89	51-202	1	39
Vinyl Acetate	10.2	10.0	102	10.3	10.0	103	75-132	1	20
2,2-Dichloropropane	30.3	40.0	76	33.8	40.0	84	72-122	11	20
2-Butanone (MEK)	10.8	10.0	108	10.7	10.0	107	81-118	1	20
cis-1,2-Dichloroethene	10.8	10.0	109	10.9	10.0	109	82-114	0	20
Bromochloromethane	9.76	10.0	98	9.67	10.0	97	78-119	1	20
Chloroform	9.76 9.16	10.0	92	9.29	10.0	93	71-125	1	20
1,1,1-Trichloroethane	9.10	10.0	92	9.15	10.0	92	69-130	1	20
Carbon Tetrachloride	10.0	10.0	100	10.1	10.0	101	77-114	0	20
1,1-Dichloropropene		10.0	95	9.59	10.0	96	81-117	1	20
Benzene	9.46	10.0	93 87	8.91	10.0	89	67-122	3	20
1,2-Dichloroethane	8.65	10.0	98	9.92	10.0	99	79-114	1	20
Trichloroethene	9.80	10.0	92	9.51	10.0	95	78-114	4	20
1,2-Dichloropropane	9.18	10.0	92 95	9.35	10.0	94	78-113	1	20
Dibromomethane	9.45	10.0	90	9.02	10.0	90	79-122	1	20
Bromodichloromethane	8.95		96 96	9.63	10.0	96	82-118	1	20
cis-1,3-Dichloropropene	9.57	10.0	96 101	35.9	40.0	90	75-115	11	20
4-Methyl-2-pentanone (MIBK)	40.3	40.0	101	10.3	10.0	103	85-118	4	20
Toluene	10.7	10.0	92	8.80	10.0	88	79-121	5	20
trans-1,3-Dichloropropene	9.22	10.0	92 95	9.19	10.0	92	79-116	3	20
1,1,2-Trichloroethane	9.51	10.0	93	9.19	10.0	14	77 110	J	

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 03/25/2003 10:34:04 L:\STEALTH\CRYSTAL.RPT\Form3DLC.rpt Form 3C - Organic 000046

SuperSet Reference:

RR3111

Page

1 of 2

QA/QC Report

Client:

BE&K Terranext

Project:

WVB

Sample Matrix:

Water

Service Request: X2300202

Date Extracted: 03/21/2003 **Date Analyzed:** 03/21/2003

Lab Control Spike/Duplicate Lab Control Spike Summary Volatile Organic Compounds

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

Extraction Lot: XWG0300373

Lab Control Sample XWG0300373-3

Duplicate Lab Control Sample XWG0300373-4

	Lab Control Spike			Duplicate Lab Control Spike			%Rec		RPD
Analyte Name	Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit
Tetrachloroethene	10.8	10.0	108	10.0	10.0	100	76-127	7	20
	30.3	40.0	76	30.5	40.0	76	65-120	1	20
2-Hexanone	9.61	10.0	96	8.93	10.0	89	81-116	7	20
1,3-Dichloropropane Dibromochloromethane	9.36	10.0	94	9.17	10.0	92	77-119	2	20
1,2-Dibromoethane	9.35	10.0	94	8.87	10.0	89	79-116	5	20
Chlorobenzene	9.79	10.0	98	10.0	10.0	100	84-114	2	20
1,1,1,2-Tetrachloroethane	9.91	10.0	99	10.4	10.0	104	78-118	4	20
	10.1	10.0	101	10.2	10.0	102	79-124	2	20
Ethylbenzene	20.6	20.0	103	21.2	20.0	106	75-131	3	20
m,p-Xylenes	10.1	10.0	101	10.0	10.0	100	78-122	1	20
o-Xylene	10.3	10.0	103	10.6	10.0	106	80-126	2	20
Styrene	9.90	10.0	99	10.1	10.0	101	75-126	2	20
Isopropylbenzene Bromobenzene	10.3	10.0	103	10.4	10.0	104	82-122	1	20
1,2,3-Trichloropropane	9.31	10.0	93	9.49	10.0	95	77-118	2	20
	10.5	10.0	105	10.6	10.0	106	75-129	0	20
n-Propylbenzene 2-Chlorotoluene	10.3	10.0	103	10.2	10.0	102	77-126	1	20
4-Chlorotoluene	10.3	10.0	103	10.3	10.0	103	82-120	0	20
1,3,5-Trimethylbenzene	10.5	10.0	105	10.3	10.0	103	75-130	1	20
- · ·	10.5	10.0	105	9.22	10.0	92	73-130	13	20
tert-Butylbenzene 1,2,4-Trimethylbenzene	10.7	10.0	107	10.7	10.0	107	60-137	1	20
sec-Butylbenzene	10.4	10.0	104	10.4	10.0	104	68-131	0	20
1,3-Dichlorobenzene	10.6	10.0	106	10.6	10.0	106	71-137	0	20
4-Isopropyltoluene	10.9	10.0	109	10.8	10.0	108	68-134	0	20
Bromoform	8.19	10.0	82	9.08	10.0	91	70-118	10	20
1,1,2,2-Tetrachloroethane	9.18	10.0	92	9.45	10.0	95	72-122	3	20
1,4-Dichlorobenzene	9.65	10.0	97	9.62	10.0	96	82-114	0	20
1,2-Dichlorobenzene	9.63	10.0	96	9.76	10.0	98	81-118	1	20
n-Butylbenzene	9.78	10.0	98	9.88	10.0	99	71-125	1	20
1.2-Dibromo-3-chloropropane	8.24	10.0	82	8.73	10.0	87	55-131	6	20
1,2,4-Trichlorobenzene	10.3	10.0	103	11.4	10.0	114	75-123	10	20
Hexachlorobutadiene	11.0	10.0	110	11.0	10.0	110	63-140	0	20
Naphthalene	8.57	10.0	86	10.4	10.0	104	67-125	19	20
1,2,3-Trichlorobenzene	10.4	10.0	104	12.2	10.0	122	72-124	16	20

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 03/25/2003 10:34:04 L:\STEALTH\CRYSTAL.RPT\Form3DLC.rpt

000047

March 22, 2003

Chuck Gordon BE & K Terranext 9830 S. 51st A-127 Phoenix, AZ 85044

Re: WVBA

Dear Chuck:

Enclosed are the results of the samples submitted to our laboratory on March 11, 2003. For your reference, these analyses have been assigned our service request number L2300556.

All analyses were performed in accordance with our laboratory's quality assurance program. Results are intended to be considered in their entirety and apply only to the samples analyzed. Columbia Analytical Services is not responsible for use of less than the complete report.

Columbia Analytical Services - is certified for environmental analyses by the Arizona Department of Health Services (certificate number: AZ0544 and AZ0136, expiration: May 23, 2003).

If you have any questions, please call me at (818) 587-5550, extension 309.

Respectfully submitted,

Columbia Analytical Services, Inc.

Que Juleste

Sue Anderson Project Chemist

SA

Columbia Analytical Services, Inc.

Acronyms

California DHS LUFT Method 8015M American Society for Testing and Materials **ASTM** Biochemical Oxygen Demand BOD Benzene/Toluene/Ethylbenzene/Xylenes BTEX California Assessment Metals **CAM** Chemical Abstract Service Registry Number **CAS Number CFC** Chlorofluorocarbon Chemical Oxygen Demand COD CRDL Contract Required Detection Limit Detected; result must be greater than zero. D Detected; result must be greater than the detection limit. DL **Duplicate Laboratory Control Sample** DLCS Duplicate Matrix Spike **DMS** Department of Health Services DOH or DHS Environmental Laboratory Accreditation Program **ELAP** U.S. Environmental Protection Agency **EPA** Gas Chromatography GC Gas Chromatography/Mass Spectrometry GC/MS Ion Chromatography IC **ICB** Initial Calibration Blank sample Inductively Coupled Plasma atomic emission spectrometry **ICP** Initial Calibration Verification sample **ICV** Laboratory Control Sample LCS Leaking Underground Fuel Tank LUFT Modified M Methylene Blue Active Substances **MBAS** MDL Method Detection Limit Method Reporting Limit MRL Matrix Spike MS Methyl-tert-Butyl Ether **MTBE** Not Applicable NA Not Calculated NC None Detected at or above the Method Reporting/Detection Limit (MRL/MDL) ND Nephelometric Turbidity Units NTU Parts Per Billion ppb Parts Per Million ppm Practical Quantitation Limit POL Quality Assurance/Quality Control QA/QC Resource Conservation and Recovery Act **RCRA** Relative Percent Difference **RPD** Selected Ion Monitoring SIM Standard Methods for the Examination of Water and Wastewater, 18th Ed., 1992. SMSolubility Threshold Limit Concentration STLC Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW-846, SW Third Edition, 1986 and as amended by Updates I, II, IIA, and IIB. Toxicity Characteristics Leaching Procedure **TCLP** TDS Total Dissolved Solids Total Petroleum Hydrocarbons **TPH** Total Recoverable Petroleum Hydrocarbons **TRPH** Total Suspended Solids TSS **Total Threshold Limit Concentration** TTLC Volatile Organic Analyte(s) VOA **Oualifiers** U Undetected at or above MDL/MRL. Estimated concentration. Analyte detected above MDL but below MRL. J Hit above MRL also found in Method Blank. В Analyte concentration above high point of ICAL. E Presumptive evidence of compound. N

Result from dilution.

See case narrative.

D X

- Cover Page -INORGANIC ANALYSIS DATA PACKAGE

Client:

BE&K Terranext, LLC

Project Name:

WVB

Project No. :

NA

Service Request: L2300556

Sample Name :	<u>Lab Code :</u>
Laboratory Control Sample	L2300318-LCS
Method Blank	L2300318-MB
Batch QC	L2300521-001S
Batch QC	L2300521-001SD
AVB91-0100-03131	L2300556-001
AVB81-0200-05107	L2300556-002
AVB96-0100-03125	L2300556-003
AVB94-0100-03132	L2300556-004
AVB94-0104-1000	L2300556-005

pproved By: ______ Sul Judish

Data:

3/21/03

Analytical Report

Client:

BE&K Terranext, LLC

Project Name : Project No. :

WVB NA

Matrix:

Water

Service Request: L2300556

Date Collected: 03/11/03

Date Received: 03/11/03

Date Extracted: 03/18/03

Total Metals

Sample Name:

AVB91-0100-03131

Lab Code:

L2300556-001

Units: ug/L (ppb)

Basis: NA

Analyte Analysis Method MRL Date Analyzed Result Notes

Chromium 6010B 10 03/19/03 11

Analytical Report

Client :

BE&K Terranext, LLC

Project Name : Project No. :

WVB NA

Matrix:

Water

Service Request: L2300556

Date Collected: 03/11/03
Date Received: 03/11/03

Date Extracted: 03/18/03

Dissolved Metals

Sample Name:

AVB91-0100-03131

Lab Code:

L2300556-001

Units: ug/L (ppb)

Basis: NA

Analyte	Analysis Method	MRL	Date Analyzed	Sample Result	Result Notes
Chromium	6010B	10	03/20/03	13	

Analytical Report

Client:

BE&K Terranext, LLC

Project Name: Project No.:

WVB NA

Matrix:

Water

Service Request: L2300556

Date Collected: 03/11/03

Date Received: 03/11/03

Date Extracted: 03/18/03

Total Metals

Sample Name:

AVB81-0200-05107

Lab Code:

L2300556-002

Units: ug/L (ppb)

Basis: NA

Result Sample Result Notes **Date Analyzed** MRL **Analysis Method** Analyte 03/20/03 ND 10 6010B Chromium

Analytical Report

Client:

BE&K Terranext, LLC

Project Name: Project No.:

WVB NA

Matrix :

Water

Service Request: L2300556

Date Collected: 03/11/03
Date Received: 03/11/03

Date Extracted: 03/18/03

Dissolved Metals

Sample Name:

AVB81-0200-05107

Lab Code:

L2300556-002

Units: ug/L (ppb)

Basis: NA

Analyte	Analysis Method	MRL	Date Analyzed	Sample Result	Result Notes
Chromium	6010B	10	03/20/03	ND	

Analytical Report

Client:

BE&K Terranext, LLC

Project Name : Project No. :

WVB NA

Matrix:

Water

Service Request: L2300556

Date Collected: 03/11/03 **Date Received:** 03/11/03

Date Extracted: 03/18/03

Total Metals

Sample Name:

AVB96-0100-03125

Lab Code:

L2300556-003

Units: ug/L (ppb)

Basis: NA

Analyte	Analysis Method	MRL	Date Analyzed	Sample Result	Result Notes
Chromium	6010B	10	03/20/03	21	

Analytical Report

Client:

BE&K Terranext, LLC

Project Name : Project No. :

Matrix:

WVB NA Water .

Service Request: L2300556

Date Collected: 03/11/03

Date Received: 03/11/03

Date Extracted: 03/18/03

Dissolved Metals

Sample Name :

AVB96-0100-03125

Lab Code:

L2300556-003

Units: ug/L (ppb)

Basis: NA

Analyte	Analysis Method	MRL	Date Analyzed	Sample Result	Result Notes
Chromium	6010B	1()	03/20/03	18	

000056

Analytical Report

Client:

BE&K Terranext, LLC

Project Name: Project No.:

WVB NA

Matrix:

Water

Service Request: L2300556

Date Collected: 03/11/03

Date Received: 03/11/03

Date Extracted: 03/18/03

Total Metals

Sample Name:

AVB94-0100-03132

Lab Code:

Units: ug/L (ppb)

Basis: NA

L2300556-004

Result

Analyte

Analysis Method

MRL

Date Analyzed

Sample Result

Notes

Chromium

6010B

10

03/20/03

15

Analytical Report

Client:

Matrix:

BE&K Terranext, LLC

Project Name : Project No. : WVB NA

Water

Service Request: L2300556

Date Collected: 03/11/03 **Date Received:** 03/11/03

Date Extracted: 03/18/03

Dissolved Metals

Sample Name:

AVB94-0100-03132

Lab Code:

L2300556-004

Units: ug/L (ppb)

Basis: NA

Analyte	Analysis Method	MRL	Date Analyzed	Sample Result	Result Notes
Chromium	6010B	10	03/20/03	14	

Analytical Report

Client:

BE&K Terranext, LLC

Project Name: Project No.:

WVB NA Service Request: L2300556

Date Collected: 03/11/03 **Date Received:** 03/11/03

Matrix :

Water

Date Extracted: 03/18/03

Total Metals

Sample Name:

AVB94-0104-1000

Units: ug/L (ppb)

Basis: NA

Lab Code:

L2300556-005

Analyte Analysis Method MRL Date Analyzed Result Notes

Chromium 6010B 10 03/20/03 ND

Analytical Report

Client:

Matrix:

BE&K Terranext, LLC

Project Name : Project No. :

WVB

NA Water Service Request: L2300556

Date Collected: 03/11/03

Date Received: 03/11/03

Date Extracted: 03/18/03

Dissolved Metals

Sample Name:

AVB94-0104-1000

Lab Code:

L2300556-005

Units: ug/L (ppb)

Basis: NA

Analyte	Analysis Method	MRL	Date Analyzed	Sample Result	Result Notes
Chromium	6010B	10	03/20/03	ND	

Analytical Report

Client:

BE&K Terranext, LLC

Project Name : Project No. : WVB NA

Matrix:

Water

Service Request: L2300556

Date Collected: NA
Date Received: NA

Date Extracted: 03/18/03

Total Metals

Sample Name:

Method Blank

Units: ug/L (ppb)

Lab Code:

L2300318-MB

Basis: NA

Analyte Analysis Method MRL Date Analyzed Result Notes

Chromium 6010B 10 03/19/03 ND

QA/QC Report

Client:

BE&K Terranext, LLC

Project Name : Project No. :

WVB NA

Matrix:

Water

Service Request: L2300556

Date Collected: NA
Date Received: NA

Date Extracted: 03/18/03 **Date Analyzed:** 03/19/03

Laboratory Control Sample Summary

Total Metals

Sample Name:

Laboratory Control Sample

Lab Code:

L2300318-LCS

Units: ug/L (ppb)

Basis: NA

Analyte	Analysis Method	True Value	Result	Percent	CAS Percent Recovery Acceptance Limits	Result Notes
Chromium	6010B	500	521	104	87-111	

Analytical Report

Client:

BE&K Terranext, LLC

Project Name : Project No. :

WVB NA

Matrix:

Water

Service Request: L2300556

Date Collected: NA

Date Received: NA **Date Extracted:** 03/18/03

Date Analyzed: 03/19/03

Matrix Spike/Duplicate Matrix Spike Summary

Total Metals

Sample Name:

Lab Code:

Batch QC

L2300521-001S

L2300521-001SD

Units: ug/L (ppb)

Basis: NA

Analyte	Prep Method	Analysis Method	MRL	Spike MS	Level DMS	Sample Result	Spike MS	Result DMS	MS	DMS	CAS Acceptance Limits	Relative Percent Difference	Result Notes
Chromium	3010A	6010B	10	500	500	15.3	530	529	103	103	87-105	<1	

CHAIN OF CUSTODY/LABORATORY ANALYSIS REQUEST FORM

12300556

Analytical Services Inc.

Columbia

3902 East University Drive, Suite 4 • Phoenix, AZ 85034 • (602) 437-2001 • (800) 695-7222 x09 • FAX (602) 437-5308

DATE

5-11.03

PAGE

RUSH TAT - Surcharges Apply 0702 ANALYSIS TAT (Circle One) REMARKS Lab No: X2306262 SAMPLE RECEIPT: ☐ 72 Hours □ 24 Hours ☐ 48 Hours Shipping VIA: STANDARD Shipping #: Condition: Bate/Times 3 eg. Date/Time 3/11/03 ANALYSIS REQUESTED INVOICE INFORMATION: Date/Time Dielli inied DHQ D lefoT Organization Organization Organization (AS BIIITo P.O.# REPORT REQUIREMENTS

I. Roport (includes DUP MS. MSD. as required, may be MSD. as required, may be III. Data Validation Report (includes All Raw Data) IV. CLP Deliverable Report charged as samples) Received By (Signature) Fedex 3 'n A W \mathcal{O} \mathcal{U} NUMBER OF CONTAINERS 3-11-03 PRESER-VATION Date/Time Date/Time Date/Time PHONE/FAX 4804964100 MATRIX Ź 3 ŧ 3 Organization · Organization Organization 63 S 多才 1903-01 . Б.Б. B ANBY1-0100-03131 13-11-03 16750 924 0011 12.30 2.00 TIME SPECIAL INSTRUCTIONS/COMMENTS: DATE COMPANY/ADDRESS Reak _ 3 ζ testi mas Relinquished By (Signature) Relinquished By (Signature) Relinquished By (Signature) PROJECT NAME WUB AUB 96-0100-03125 ANG 81-0200-05107 AVB94-0100-63132 SAMPLER'S SIGNATURE Part-0102 1000 Deal-4004-1000 PROJECT MANAGER SAMPLE I.D.

000084

DISTRIBUTION: WHITE - return to originator; YELLOW - lab; PINK - retained by originator

SAMPLE RECEIPT FORM

Service Request No: L2300556 Client: BETK
Sample(s) delivered by: Client CAS Emp After Hours DHL
Golden State Overnight Fed X UPS Other Courier
Chain of Custody filled out accurately? Yes _/ No(See Comments)
Appropriate sample volume and containers? Yes/ No(See Comments)
Sufficient labeling on container(s)? Yes No (See Comments)
Container(s) supplied by CAS? Yes No(See Comments)
Custody seal(s) intact? $N/A $ Yes No(See Comments)
Trip Blank(s) received Yes No
If Trip Blank was supplied by CAS, record serial #
Temperature of sample(s)/cooler 3 °C Temp Blank! Y of N (Circle One)
Voa's Marked Preserved? Yes No Filled Properly? Yes No (See Comments)
Preserved Bottles Requiring pH check(s)? Yes Notified
RUSH Turn around time? Yes Notified Date & Time
Short Hold-Time Analysis (check all that apply)
ASAP Res Cl D.O Flash Diss S2 Ferrous Fe 24HR pH Odor Cr+6 48HR BOD Color MBAS Nitrate Nitrite O-PO4 Sett Sol Turbidity 72HR Vapors
Notified Date & Time
Container(s) received and their preservative(s):
-1->-5= 1-500m1P1 (HNO3)A 1-500m1P1 (NP)B
comments filter diss metals buttle in lab, Benny Clous
. 1
Initials, Date, Time

000095

Columbia Analytical Services Inc.

CHAIN OF CUSTODY/LABORATORY ANALYSIS REQUEST FORM

3902 East University Drive, Suite 4 • Phoenix, AZ 85034 • (602) 437-2001 • (800) 695-7222 x09 • FAX (602) 437-5308

PAGE DATE 3 - 11 - 03

P

950000 RUSH TAT - Surcharges Apply ANALYSIS TAT (Circle One) REMARKS Lab No: X2300262 SAMPLE RECEIPT: ☐ 24 Hours STANDARD Shipping VIA: Shipping #: _ Condition: C 0228 ANALYSIS REQUESTED Date/Time 3/11/03 INVOICE INFORMATION: D 0158 Date/Time Plash Point D pho Paint Filler D D loto! Organization Organization D d701 I. Routine Report
II. Report (includes DUP.MS.
MSD, as required, may be charged as samples) REPORT REQUIREMENTS IV. CLP Deliverable Report III. Data Validation Report (includes All Raw Data) Halogenafed & Aromatic Volatiles of 1508 To 203/108 Halogenated Volatile Organics Received By (Signature) 3 P) (A) N NUMBER OF CONTAINERS PRESER-VATION 3.11.03 Date/Time Date/Time PHONE/FAX 4804964100 MATRIX 1 1 3 3 Organization Organization B ٥ 40 S 农木 202 - 01 LAB ID 6750 5250 PROJECT MANAGER CHUCK GENARIN 1100 12.30 2.00 SPECIAL INSTRUCTIONS/COMMENTS: 3-11-03 DATE COMPANY/ADDRESS Kerk Ţ 3 F4 Relinquished By (Signature) Relinquished By (Signature) PROJECT NAME WV B ANB 96-0100-03125 ANB 81-0200-05107 4VB94-0100-63132 4891-0100-03131 SAMPLER'S SIGNATURE ANB94-4104-1000 WBAY-0102-1600 SAMPLE

DISTRIBUTION: WHITE - return to originator; YELLOW - lab; PINK - retained by originator

☐ 48 Hours ☐ 72 Hours

Date/Time

Organization

Received By (Signature)

Date/Time

Organization

Relinquished By (Signature)

Columbia Analytical Services, Inc. Phoenix, AZ

Sample Receipt and Preservation Form

Client:	WE BEK			Project Name: _	WUB
Sample(s) Re VOA's V	cceived on: 2- Glass Bottle	.3-11-03 _{da}	Plastic Bottles	time Jars	Sleeves 🗆
MATRIX First Extr	: SOIL □ action Holding T	WATER		date	time (soils only)
					S(soil)/7 DAYS (water)? Yes ☐ No ☐ Chemist's Initials
2. Are the cu If yes, how 3. Are the sig 4. Did all con 5. Are all con 6. Were the con 7. Have VOA 8. Temperatu	stody seals prese w many and wher gnature and date ntainers arrive in ntainer labels con correct containers A's been checked are of sample(s) w	nt? e? correct? good condition inplete (i.e. press s used for the te for the presence	n? servation, samplests indicated? se of air bubbles	?(note problems i	Yes □ No□ Yes ☑ No□
Explaination	of discrepancies	: Kacca	Church S	olauno -0	A su carried
			No		VOA Vial pH Verification (Tested After Analysis) □ All Samples pH ≤ 2 □ Following Samples Exhibited pH > 2
		YES	NO		Pollowing Samples Exhibited private
pH	Reagent				
2	NaOH HNO ₃				
2	H ₂ SO ₄	-			
					Received by (initials):

r:\common\forms\samprev.doc Revised: 09/27/02 4:19 PM

March 28, 2003

Chuck Gordon BE&K Terranext 9830 S. 51st Street, Suite A-127 Phoenix, AZ 85044

Re:

Re: WVBA/#03103154

Dear Chuck:

Enclosed are the results of the samples submitted to our laboratory on March 12, 2003. The samples were analyzed for Total and Dissolved Chromium by our Canoga Park, CA facility (L2300559). For your reference, the 8260B analyses have been assigned our service request number X2300207.

All analyses were performed according to our laboratory's quality assurance program. All results are intended to be considered in their entirety, and Columbia Analytical Services, Inc. (CAS) is not responsible for use of less than the complete report. Results apply only to the samples analyzed. Columbia Analytical Services, Inc. is certified for environmental analyses by the Arizona Department of Health Services (Certificate #AZ0136; and #AZ0497).

Please call if you have any questions. My extension is 223.

Respectfully submitted,

Columbia Analytical Services, Inc.

Tracy L. Dutton

Laboratory Director

TLD/td

Page 1 of **73**

Client:

BE&K Terranext

Project:

WVBA/#03103154

Sample Matrix:

Water

Service Request No.:

X2300207

Date Received:

3/12/03

CASE NARRATIVE

All analyses were performed consistent with the quality assurance program of Columbia Analytical Services, Inc. (CAS). This report contains analytical results for sample(s) designated for Tier II data deliverables. When appropriate to the method, method blank results have been reported with each analytical test. Surrogate recoveries have been reported for all applicable organic analyses. Additional quality control analyses reported herein include: Matrix/Duplicate Matrix Spike (MS/DMS) and Laboratory Control Sample (LCS).

All EPA recommended holding times have been met for analyses in this sample delivery group.

The following difficulties were experienced during analysis of this batch:

CCV recovery for Dichlorodifluoromethane for 8260B on 3/23/03 was below method acceptance limits. This compound was detected in the method reporting limit standard that was analyzed with this batch. This verifies that the compound would be detected if present in the samples.

Surrogate recovery for AVB101-0400-14000 and XWG0300385-4 for 8260B was above laboratory acceptance limits, but within method acceptance limits.

Matrix spike recovery for several compounds for XWG0300381 for 8260B was low, the method control sample recovery was acceptable.

Matrix spike recovery for Hexachlorobutadiene for XWG0300381-2 for 8260B was high, the method control sample recovery was acceptable.

The accuracy of the spike recovery value is reduced since the analyte concentration for Trichloroethene in the XWG0300381 is disproportionate to spike level. The method control sample recovery was acceptable.

Matrix spike recovery for several compounds for XWG0300385 for 8260B was high, the method control sample recovery was acceptable.

Matrix spike recovery for 2-Butanone in XWG0300385 for 8260B was low, the method control sample recovery was acceptable.

The LCS recovery for Methylene Chloride for XWG0300381-3 for 8260B was high. This compound was not detected in any of the samples analyzed with this batch.

A conserved by	M Date	3-28-03
Approved by		

present in the samples.			
Approved by	M Date_	3-28-03	

The LCS/DLCS recovery for 2-Butanone for XWG0300381 for 8260B was low. This compound was detected in the method reporting limit standard that was analyzed with this batch. This verifies that the compound would be detected if

ARIZONA DATA QUALIFIERS

Method Bla	<u>nnk:</u>
В1	Target analyte detected in method blank at or above the method reporting limit.
B2	Non-target analyte detected in method blank and sample, producing interference.
В3	Target analyte detected in calibration blank at or above the method reporting limit.
134	Target analyte detected in blank at/above method acceptance criteria.
Confirmati	
C1	Confirmatory analysis not performed as required by the method.
C2	Confirmatory analysis not performed. Confirmation of analyte presence established by site historical data.
C3	Qualitative confirmation performed. See case narrative.
C4	Confirmatory analysis was past holding time.
C5	Confirmatory analysis was past holding time. Original result not confirmed.
Dilution:	
D1	Sample required dilution due to matrix interference. See case narrative.
D2	Sample required dilution due to high concentration of target analyte.
D3	Sample dilution required due to insufficient sample.
1)4	Minimum reporting level (MRL) adjusted to reflect sample amount received and analyzed.
Estimated	concentration:
E1	Concentration estimated. Analyte exceeded calibration range. Reanalysis not possible due to insufficient sample.
E2	Concentration estimated. Analyte exceeded calibration range. Reanalysis not performed due to sample matrix.
E3	Concentration estimated. Analyte exceeded calibration range. Reanalysis not performed due to holding time
133	requirements.
E4	Concentration estimated. Analyte was detected below laboratory minimum reporting level (MRL).
E5	Concentration estimated. Analyte was detected below laboratory minimum reporting level (MRL), but not
1,747	confirmed by alternate analysis.
E6	Confirmation estimated. Internal standard recoveries did not meet method acceptance criteria.
E7	Confirmation estimated. Internal standard recoveries did not meet laboratory acceptance criteria.
67	Commingation Commission Liver and Commission
Hold Time	
H1	Sample analysis performed past holding time. See case narrative.
H2	Initial analysis within holding time. Reanalysis for the required dilution was past holding time.
H3	Sample was received and analyzed past holding time.
H4	Sample was extracted past required extraction holding time, but analyzed within analysis holding time. See case narrative.
BOD:	1 1.41- mitania of at locat 2mg/
K1	The sample dilutions set-up for the BOD analysis did not meet the oxygen depletion criteria of at least 2mg/L.
	Any reported result is an estimated value.
K2	The sample dilutions set up for the BOD analysis did not meet the criteria of a residual dissolved oxygen of at
	least 1 mg/L. Any reported result is an estimated value.
K3	The seed depletion was outside the method acceptance limits.

The seed depletion was outside the method and laboratory acceptance limits. The reported result is an estimated Κ4 value. The dilution water D.O. depletion was >0.2 mg/L. K5 Glucose/glutamic acid BOD was below method acceptance criteria. K6 The discrepancy between the BOD and COD results has been verified by reanalysis of the sample for COD. Κ7 Laboratory fortified blank/blank spike: The associated blank spike recovery was above laboratory acceptance limits. See case narrative. L1The associated blank spike recovery was below laboratory acceptance limits. See case narrative. L2The associated blank spike recovery was above method acceptance limits. See case narrative. 1.3 The associated blank spike recovery was below method acceptance limits. See case narrative 1.4 Note: The L1, L2, L3, & L4 footnotes need to be added to all corresponding analytes for a sample. Matrix spike: Matrix spike recovery was high, the method control sample recovery was acceptable. M1Matrix spike recovery was low, the method control sample was acceptable M2The accuracy of the spike recovery value is reduced since the analyte concentration in the sample is M3 disproportionate to spike level. The method control sample recovery was acceptable. The analysis of the spiked sample required a dilution such that the spike concentrations was diluted below M4 the reporting limit. The method control sample recovery was acceptable. Analyte concentration was determined by the method of standard addition (MSA). M5 General: N1See case narrative. N2See corrective action report. Sample quality: Sample integrity was not maintained. See case narrative. Q1 Sample received with head space. O2 Sample received with improper chemical preservation. O3 Sample received and analyzed without chemical preservation. Q4 Sample received with inadequate chemical preservation, but preserved by the laboratory Q5 Sample was received above recommended temperature. Q6 Sample inadequately dechlorinated. **Q**7 Insufficient sample received to meet QC requirements. QC requirements satisfy ADEQ policies 0154 and 0155. O8 Insufficient sample received to meet QC requirements. Ο9 Sample received in inappropriate sample container. O10 Sample is heterogeneous. Sample homogeneity could not be readily achieved using routine laboratory practices. 011 **Duplicates:** RPD exceeded the method control limit. See case narrative. R1RPD exceeded the laboratory control limit. See case narrative. R2 Sample RPD between the primary and confirmatory analysis exceeded 40%. Per Method 8000B, the higher R3 value was reported. MS/MSD RPD exceeded the method control limit. Recovery met acceptance criteria. R4 MS/MSD RPD exceeded the laboratory control limit. Recovery met acceptance criteria. **R5** LFB/LFBD RPD exceeded the method control limit. Recovery met acceptance criteria.

LFB/LFBD RPD exceeded the laboratory control limit. Recovery met acceptance criteria.

R6

R7

R8 Sample RPD exceeded the method control limit.
R9 Sample RPD exceeded the laboratory control limit.

Surrogate:

- S1 Surrogate recovery was above laboratory acceptance limits, but within method acceptance limits.
- S2 Surrogate recovery was above laboratory and method acceptance limits.
- Surrogate recovery was above laboratory acceptance limits, but within method acceptance limits. No target analytes were detected in the sample.
- Surrogate recovery was above laboratory and method acceptance limits. No target analytes were detected in the sample.
- Surrogate recovery was below laboratory acceptance limits, but within method acceptance limits.
- Surrogate recovery was below laboratory and method acceptance limits. Reextraction and/or reanalysis confirms low recovery caused by matrix effect.
- S7 Surrogate recovery was below laboratory and method acceptance limits. Unable to confirm matrix effect.
- The analysis of the sample required a dilution such that the surrogate concentration was diluted below the method acceptance criteria. The method control sample recovery was acceptable.
- The analysis of the sample required a dilution such that the surrogate concentration was diluted below the laboratory acceptance criteria. The method control sample recovery was acceptable.
- Surrogate recovery was above laboratory and method acceptance limits. See case narrative.

Method/analyte discrepancies:

- T1 Method promulgated by EPA, but not ADHS at this time.
- T2 Cited ADHS licensed method does not contain this analyte as part of method compound list.
- T3 Method not promulgated either by EPA or ADHS.
- Tentatively identified compound. Concentration is estimated and based on the closest internal standard.

Calibration verification:

- V1 CCV recovery was above method acceptance limits. This target analyte was not detected in the sample.
- V2 CCV recovery was above method acceptance limits. This target analyte was detected in the sample. The sample could not be reanalyzed due to insufficient sample.
- V3 CCV recovery was above method acceptance limits. This target analyte was detected in the sample, but the sample was not reanalyzed. See case narrative.
- V4 CCV recovery was below method acceptance limits. The sample could not be reanalyzed due to insufficient sample.
- V5 CCV recovery after a group of samples was above acceptance limits. This target analyte was not detected in the sample. Acceptable per EPA Method 8000B.

Inorganic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.
- U The compound was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- The MRL/MDL has been elevated due to a matrix interference.
- X See case narrative

Metals Data Qualifiers

- # The control limit criteria is not applicable. See case narrative
- B The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.
- E The reported value is estimated because of the presence of matrix interference.
- M The duplicate injection precision was not met.
- N The Matrix Spike sample recovery is not within control limits. See case narrative.
- S The reported value was determined by the Method of Standard Additions (MSA).
- U The compound was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- W The post-digestion spike for furnace AA analysis is out of control limits, while sample absorbance is less than 50% of spike
- i The MRL/MDL has been elevated due to a matrix interference.
- X See case narrative.
- * The duplicate analysis not within control limits. See case narrative.
- + The correlation coefficient for the MSA is less than 0.995

Organic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- A A tentatively identified compound, a suspected aldol-condensation product.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result.
- C The analyte was qualitatively confirmed using GC/MS techniques, pattern recognition, or by comparing to historical data.
- D The reported result is from a dilution.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.
- N The result is presumptive. The analyte was tentatively identified, but a confirmation analysis was not performed.
- P The GC or HPLC confirmation criteria was exceeded. The relative percent difference is greater than 40% between the two analytical results (25% for CLP Pesticides).
- U The compound was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- i The MRL/MDL has been elevated due to a chromatographic interference.
- X See case narrative.

Additional Petroleum Hydrocarbon Specific Qualifiers

- F The chromatographic fingerprint of the sample matches the elution pattern of the calibration standard.
- L The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of lighter molecular weight constituents than the calibration standard.
- H The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of heavier molecular weight constituents than the calibration standard.
- O The chromatographic fingerprint of the sample resembles an oil, but does not match the calibration standard.
- Y The chromatographic fingerprint of the sample resembles a petroleum product eluting in approximately the correct carbon range, but the elution pattern does not match the calibration standard.
- Z The chromatographic fingerprint does not resemble a petroleum product.

Client: Project: BE&K Terranext WVBA/#03103154 **Service Request:**

X2300207

Cover Page - Organic Analysis Data Package **Volatile Organic Compounds**

Sample Name	Lab Code	Date Collected	Date Received
AVB93-0100-03130	X2300207-001	03/12/2003	03/12/2003
AVB20-0300-02126	X2300207-002	03/12/2003	03/12/2003
AVB100-0100-02131	X2300207-003	03/12/2003	03/12/2003
AVB101-0100-13115	X2300207-004	03/12/2003	03/12/2003
AVB101-0400-14000	X2300207-005	03/12/2003	03/12/2003
AVB101-0404-1000	X2300207-006	03/12/2003	03/12/2003
AVB101-0401-14000	X2300207-007	03/12/2003	03/12/2003
AVB101-0402-1000	X2300207-008	03/12/2003	03/12/2003
AVB101-0400-14000MS	XWG0300381-1	03/12/2003	03/12/2003
AVB101-0400-14000DMS	XWG0300381-2	03/12/2003	03/12/2003

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed in the case narrative. Release of the data contained in this hardcopy data package and in the computer-readable data submitted on floppy diskette has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signature.

Date:

SuperSet Reference:

Analytical Results

Client: **Project:** BE&K Terranext WVBA/#03103154

Sample Matrix:

Water

Service Request: X2300207 **Date Collected:** 03/12/2003

Date Received: 03/12/2003

Volatile Organic Compounds

Sample Name:

AVB93-0100-03130

Lab Code:

X2300207-001

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

		XXDX	Dilution Factor	Date Extracted	Date Analyzed	Arizona Qualifier
Analyte Name	Result Q	MRL			03/23/03	N1V4
Dichlorodifluoromethane	ND U	3.0	1	03/23/03	03/23/03	N1 V4
Chloromethane	ND U	2.0	1	03/23/03	03/23/03	
Vinyl Chloride	ND U	1.0	1	03/23/03		
Bromomethane	ND U	1.0	1	03/23/03	03/23/03	
Chloroethane	ND U	1.0	1	03/23/03	03/23/03	
Trichlorofluoromethane	ND U	1.0	1	03/23/03	03/23/03	
1.1.2-Trichlorotrifluoroethane	ND U	1.0	1	03/23/03	03/23/03	
1,1-Dichloroethene	1.7	1.0	1	03/23/03	03/23/03	
Acetone	ND U	10	1	03/23/03	03/23/03	
Iodomethane	ND U	2.0	1	03/23/03	03/23/03	
Carbon Disulfide	ND U	2.0	1	03/23/03	03/23/03	
Methylene Chloride	ND U	1.0	1	03/23/03	03/23/03	L1
Methyl tert-Butyl Ether	ND U	1.0	1	03/23/03	03/23/03	
trans-1,2-Dichloroethene	ND U	0.50	1	03/23/03	03/23/03	
1,1-Dichloroethane	ND U	0.50	1	03/23/03	03/23/03	_
	ND U	3.0	1	03/23/03	03/23/03	
Vinyl Acetate	ND U	2.0	1	03/23/03	03/23/03	
2,2-Dichloropropane 2-Butanone (MEK)	ND U	8.0	1	03/23/03	03/23/03	L2
	0.59	0.50	1	03/23/03	03/23/03	
cis-1,2-Dichloroethene	ND U	0.50	1	03/23/03	03/23/03	
Bromochloromethane	ND U	1.0	1	03/23/03	03/23/03	
Chloroform		0.50	1	03/23/03	03/23/03	
1,1,1-Trichloroethane	ND U ND U	0.50	1	03/23/03	03/23/03	
Carbon Tetrachloride	ND U	0.50	î	03/23/03	03/23/03	
1,1-Dichloropropene		0.50	1	03/23/03	03/23/03	
Benzene	ND U	0.50	1	03/23/03	03/23/03	
1,2-Dichloroethane	ND U	0.50	1	03/23/03	03/23/03	
Trichloroethene	5.8			03/23/03	03/23/03	
1,2-Dichloropropane	ND U	0.50	1	03/23/03	03/23/03	
Dibromomethane	ND U	0.50	1	03/23/03	03/23/03	
Bromodichloromethane	ND U	0.50	1			
cis-1,3-Dichloropropene	ND U	0.50	1	03/23/03	03/23/03	
4-Methyl-2-pentanone (MIBK)	ND U	8.0	1	03/23/03	03/23/03	
Toluene	ND U	0.50	1	03/23/03	03/23/03	

Comments:

Printed: 03/26/2003 15:05:01 L:\STEALTH\CRYSTAL.RPT\Form1m.rpt

Form 1A - Organic

Merged

Page 1 of 3 RR3124

Analytical Results

Client: Project: BE&K Terranext WVBA/#03103154

Sample Matrix:

Water

Service Request: X2300207

Date Collected: 03/12/2003 **Date Received:** 03/12/2003

Volatile Organic Compounds

Sample Name: Lab Code:

AVB93-0100-03130

Extraction Method:

X2300207-001

Analysis Method:

EPA 5030B 8260B

Units: ug/L Basis: NA

Level: Low

Analyte Name Result Q MRL Factor Started (a) Analyzed (Arizona Qualiffer trans-1,3-Dichloropropene) ND U 1.0 1 03/23/03 03/23/03 03/23/03 1 1 1 03/23/03 03/					Dilution	Date	Date	
Trans-1,3-Dichloropropene	Analyte Name	Result	Q	MRL	Factor	Extracted		Arizona Qualifier
1,1,2-Trichloroethane		ND	U	1.0	1			
Tetrachloroethene 200 D 5.0 10 03/24/03 03/24/03 D2 2-Hexanone ND U 5.0 1 03/23/03 03/23/03 03/23/03 1,3-Dichloropropane ND U 0.50 1 03/23/03 03/23/03 1,2-Dibromoethane ND U 0.50 1 03/23/03 03/23/03 Chlorobenzene ND U 0.50 1 03/23/03 03/23/03 1,1,1,2-Tetrachloroethane ND U 0.50 1 03/23/03 03/23/03 Eithylbenzene ND U 0.50 1 03/23/03 03/23/03 Eithylbenzene ND U 0.50 1 03/23/03 03/23/03 Eithylbenzene ND U 0.50 1 03/23/03 03/23/03 Styrene ND U 0.50 1 03/23/03 03/23/03 Isopropylbenzene ND U 0.50 1 03/23/03 03/23/03 Isopropylbenzene ND U 0.50 1 03/23/03 03/23/03 <	,	ND	U	1.0				
2-Hexanone		200	D	5.0	10	03/24/03	03/24/03	D2
1,3-Dichloropropane ND U 1.0 1 03/23/03 03/23/03 1,2-Dibromochloromethane ND U 0.50 1 03/23/03 03/23/03 1,2-Dibromochlane ND U 0.50 1 03/23/03 03/23/03 1,1,1,2-Tetrachloroethane ND U 0.50 1 03/23/03 03/23/03 1,1 0.50 1 03/23/03 03/23/03 0.50 0.50 1 03/23/03 03/23/03 0.50 0.50 1 03/23/03 03/23/03 0.50 0.50 1 03/23/03 03/23/03 0.50 0.50 1 03/23/03 03/23/03 0.50 0.50 1 03/23/03 03/23/03 0.50 0.50 1 03/23/03 03/23/03 0.50 0.50 1 03/23/03 03/23/03 0.50 0.50 1 03/23/03 03/23/03 0.50 0.50 1 03/23/03 03/23/03 0.50 0.50 1 03/23/03 03/23/03 0.50 0.50 0.50 1 03/23/03 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50	2-Hexanone	ND	U	5.0	1			
Dibromochloromethane ND U 0.50 1 03/23/03 03/23/03 1,2-Dibromocthane ND U 0.50 1 03/23/03 03/23/03 Chlorobenzene ND U 0.50 1 03/23/03 03/23/03 1,1,1,2-Tetrachloroethane ND U 0.50 1 03/23/03 03/23/03 Ethylbenzene ND U 0.50 1 03/23/03 03/23/03 Berychylene ND U 0.50 1 03/23/03 03/23/03 Syrene ND U 0.50 1 03/23/03 03/23/03 Isopropylbenzene ND U 0.50 1 03/23/03 03/23/03 Isopropylbenzene ND U 0.50 1 03/23/03 03/23/03 Bromobenzene ND U 0.50 1 03/23/03 03/23/03 1,2,3-Trichloropropane ND U 0.50 1 03/23/03 03/23/03 1,2-Strinchloropropane ND U 0.50 1 03/23/03 03/23/03 4-Chlor		ND	U	1.0				
1,2-Dibromoethane		ND	U	0.50	1	03/23/03		
Chlorobenzene ND U 0.50 1 03/23/03 03/23/03 1,1,1,2-Tetrachlorochane ND U 0.50 1 03/23/03 03/23/03 Ethylbenzene ND U 0.50 1 03/23/03 03/23/03 mp-Xylenes ND U 0.50 1 03/23/03 03/23/03 o-Xylene ND U 0.50 1 03/23/03 03/23/03 Styrene ND U 0.50 1 03/23/03 03/23/03 Isopropylbenzene ND U 0.50 1 03/23/03 03/23/03 Bromobenzene ND U 0.50 1 03/23/03 03/23/03 Bromoformene ND U 0.50 1 03/23/03 03/23/03 2-Chlorotoluene ND U		ND	U	0.50	1			
1,1,2-Tetrachloroethane		ND	U	0.50	1			
Ethylbenzene ND U 0.50 1 03/23/03 03/23/03 m.p-Xylenes ND U 1.0 1 03/23/03 03/23/03 o-Xylene ND U 0.50 1 03/23/03 03/23/03 Styrene ND U 0.50 1 03/23/03 03/23/03 Isopropylbenzene ND U 0.50 1 03/23/03 03/23/03 Bromobenzene ND U 0.50 1 03/23/03 03/23/03 1,2,3-Trichloropropane ND U 0.50 1 03/23/03 03/23/03 1,2,3-Trichloropropane ND U 0.50 1 03/23/03 03/23/03 2-Chlorotoluene ND U 0.50 1 03/23/03 03/23/03 2-Chlorotoluene ND U 0.50 1 03/23/03 03/23/03 4-Chlorotoluene ND U 0.50 1 03/23/03 03/23/03 4-Chlorotoluene ND U 0.50 1 03/23/03 03/23/03 1,2,4-Trimethylbenzene		ND	U	0.50	1	03/23/03		
m,p-Xylenes ND U 1.0 1 03/23/03 03/23/03 c-Xylene ND U 0.50 1 03/23/03 03/23/03 Styrene ND U 0.50 1 03/23/03 03/23/03 Isopropylbenzene ND U 0.50 1 03/23/03 03/23/03 Bromobenzene ND U 0.50 1 03/23/03 03/23/03 1,2,3-Trichloropropane ND U 0.50 1 03/23/03 03/23/03 1-Propylbenzene ND U 0.50 1 03/23/03 03/23/03 2-Chlorotoluene ND U 0.50 1 03/23/03 03/23/03 4-Chlorotoluene ND U 0.50 1 03/23/03 03/23/03 1,3,5-Trimethylbenzene ND U 0.50 1 03/23/03 03/23/03 1,2,4-Trimethylbenzene ND U 0.50 1 03/23/03 03/23/03		ND	U	0.50	1			
o-Xylene ND U 0.50 1 03/23/03 03/23/03 Styrene ND U 0.50 1 03/23/03 03/23/03 Isopropylbenzene ND U 0.50 1 03/23/03 03/23/03 Bromobenzene ND U 0.50 1 03/23/03 03/23/03 1,2,3-Trichloropropane ND U 0.50 1 03/23/03 03/23/03 1,2,3-Trichloropropane ND U 0.50 1 03/23/03 03/23/03 2-Chlorotoluene ND U 0.50 1 03/23/03 03/23/03 4-Chlorotoluene ND U 0.50 1 03/23/03 03/23/03 1,3,5-Trimethylbenzene ND U 0.50 1 03/23/03 03/23/03 1,2,4-Trimethylbenzene ND U 0.50 1 03/23/03 03/23/03 1,2,4-Trimethylbenzene ND U 0.50 1 03/23/03 03/23/03 1,3-Dichlorobenzene ND U 0.50 1 03/23/03 03/23/03 <	•	ND	U	1.0				
Styrene	74	ND	U	0.50	1	03/23/03	03/23/03	
ND U 0.50 1 03/23/03 03		ND	U	0.50	1	03/23/03		
Bromobenzene ND U 0.50 1 03/23/03 03/23/03 1,2,3-Trichloropropane ND U 1.0 1 03/23/03 03/23/03 n-Propylbenzene ND U 0.50 1 03/23/03 03/23/03 2-Chlorotoluene ND U 0.50 1 03/23/03 03/23/03 4-Chlorotoluene ND U 0.50 1 03/23/03 03/23/03 1,3,5-Trimethylbenzene ND U 0.50 1 03/23/03 03/23/03 tert-Butylbenzene ND U 0.50 1 03/23/03 03/23/03 1,2,4-Trimethylbenzene ND U 0.50 1 03/23/03 03/23/03 1,2-Jeitrlorbenzene ND U 0.50 1 03/23/03 03/23/03 1,3-Dichlorobenzene ND U 0.50 1 03/23/03 03/23/03 4-Isopropyltoluene ND U 0.50 1 03/23/03 03/23/03 Bromoform ND U 0.50 1 03/23/03 03/23/03				0.50	1			
1,2,3-Trichloropropane		ND	U	0.50	1	03/23/03	03/23/03	
n-Propylbenzene ND U 0.50 1 03/23/03 03/23/03 2-Chlorotoluene ND U 0.50 1 03/23/03 03/23/03 4-Chlorotoluene ND U 0.50 1 03/23/03 03/23/03 1,3,5-Trimethylbenzene ND U 0.50 1 03/23/03 03/23/03 tert-Butylbenzene ND U 0.50 1 03/23/03 03/23/03 1,2,4-Trimethylbenzene ND U 0.50 1 03/23/03 03/23/03 see-Butylbenzene ND U 0.50 1 03/23/03 03/23/03 1,3-Dichlorobenzene ND U 0.50 1 03/23/03 03/23/03 4-Isopropyltoluene ND U 0.50 1 03/23/03 03/23/03 Bromoform ND U 0.50 1 03/23/03 03/23/03 1,1,2,2-Tetrachloroethane ND U 0.50 1 03/23/03 03/23/03 1,4-Dichlorobenzene ND U 0.50 1 03/23/03 03/23/03		ND	U	1.0	1	03/23/03		
2-Chlorotoluene ND U 0.50 1 03/23/03 03/23/03 4-Chlorotoluene ND U 0.50 1 03/23/03 03/23/03 1,3,5-Trimethylbenzene ND U 0.50 1 03/23/03 03/23/03 tert-Butylbenzene ND U 0.50 1 03/23/03 03/23/03 1,2,4-Trimethylbenzene ND U 0.50 1 03/23/03 03/23/03 sec-Butylbenzene ND U 0.50 1 03/23/03 03/23/03 1,3-Dichlorobenzene ND U 0.50 1 03/23/03 03/23/03 4-Isopropyltoluene ND U 0.50 1 03/23/03 03/23/03 Bromoform ND U 0.50 1 03/23/03 03/23/03 1,1,2,2-Tetrachloroethane ND U 0.50 1 03/23/03 03/23/03 1,4-Dichlorobenzene ND U 0.50 1 03/23/03 03/23/03 1,2-Dichlorobenzene ND U 0.50 1 03/23/03 03/23/03	, ,	ND	U	0.50	1			
4-Chlorotoluene ND U 0.50 1 03/23/03 03/23/03 1,3,5-Trimethylbenzene ND U 0.50 1 03/23/03 03/23/03 tert-Butylbenzene ND U 0.50 1 03/23/03 03/23/03 1,2,4-Trimethylbenzene ND U 0.50 1 03/23/03 03/23/03 sec-Butylbenzene ND U 0.50 1 03/23/03 03/23/03 1,3-Dichlorobenzene ND U 0.50 1 03/23/03 03/23/03 4-Isopropyltoluene ND U 0.50 1 03/23/03 03/23/03 Bromoform ND U 0.50 1 03/23/03 03/23/03 1,1,2,2-Tetrachloroethane ND U 0.50 1 03/23/03 03/23/03 1,4-Dichlorobenzene ND U 0.50 1 03/23/03 03/23/03 1,2-Dichlorobenzene ND U 0.50 1 03/23/03 03/23/03 1,2-Dibromo-3-chloropropane ND U 5.0 1 03/23/03 03/23/03		ND	U	0.50	1	03/23/03	03/23/03	
1,3,5-Trimethylbenzene ND U 0.50 1 03/23/03 03/23/03 tert-Butylbenzene ND U 0.50 1 03/23/03 03/23/03 1,2,4-Trimethylbenzene ND U 0.50 1 03/23/03 03/23/03 sec-Butylbenzene ND U 0.50 1 03/23/03 03/23/03 1,3-Dichlorobenzene ND U 0.50 1 03/23/03 03/23/03 4-Isopropyltoluene ND U 0.50 1 03/23/03 03/23/03 Bromoform ND U 0.50 1 03/23/03 03/23/03 1,1,2,2-Tetrachloroethane ND U 0.50 1 03/23/03 03/23/03 1,4-Dichlorobenzene ND U 0.50 1 03/23/03 03/23/03 1,2-Dichlorobenzene ND U 0.50 1 03/23/03 03/23/03 1,2-Dibromo-3-chloropropane ND U 5.0 1 03/23/03 03/23/03 1,2,4-Trichlorobenzene ND U 0.50 1 <td></td> <td>ND</td> <td>U</td> <td>0.50</td> <td>1</td> <td></td> <td></td> <td></td>		ND	U	0.50	1			
tert-Butylbenzene ND U 0.50 1 03/23/03 03/23/03 1,2,4-Trimethylbenzene ND U 0.50 1 03/23/03 03/23/03 sec-Butylbenzene ND U 0.50 1 03/23/03 03/23/03 1,3-Dichlorobenzene ND U 0.50 1 03/23/03 03/23/03 4-Isopropyltoluene ND U 0.50 1 03/23/03 03/23/03 Bromoform ND U 0.50 1 03/23/03 03/23/03 1,1,2,2-Tetrachloroethane ND U 1.0 1 03/23/03 03/23/03 1,4-Dichlorobenzene ND U 0.50 1 03/23/03 03/23/03 1,2-Dichlorobenzene ND U 0.50 1 03/23/03 03/23/03 1,2-Dichlorobenzene ND U 0.50 1 03/23/03 03/23/03 1,2-Dichlorobenzene ND U 0.50 1 03/23/03 03/23/03 1,2-Diblorobenzene ND U 0.50 1 03/23/03 03/23/03 1,2-Diblorobenzene ND U 0.50 1 03/23/03 03/23/03 1,2-Diblorobenzene ND U 0.50 1 03/23/03 03/23/03 1,2-Trichlorobenzene ND U 0.50 1 03/23/03 03/23/03 1,2-Trichlorobenzene ND U 0.50 1 03/23/03 03/23/03 1,2,4-Trichlorobenzene ND U 0.50 1 03/23/03 03/23/03		ND	U	0.50	1			
1,2,4-Trimethylbenzene ND U 0.50 1 03/23/03 03/23/03 sec-Butylbenzene ND U 0.50 1 03/23/03 03/23/03 1,3-Dichlorobenzene ND U 0.50 1 03/23/03 03/23/03 4-Isopropyltoluene ND U 0.50 1 03/23/03 03/23/03 Bromoform ND U 0.50 1 03/23/03 03/23/03 1,1,2,2-Tetrachloroethane ND U 1.0 1 03/23/03 03/23/03 1,4-Dichlorobenzene ND U 0.50 1 03/23/03 03/23/03 1,2-Dichlorobenzene ND U 0.50 1 03/23/03 03/23/03 1,2-Dibromo-3-chloropropane ND U 0.50 1 03/23/03 03/23/03 1,2,4-Trichlorobenzene ND U 0.50 1 03/23/03 03/23/03 1,2,4-Trichlorobenzene ND U 0.50 1 03/23/03 03/23/03		ND	U	0.50	1	03/23/03	03/23/03	
ND U 0.50 1 03/23/03 03/23/03 03/23/03 1,3-Dichlorobenzene ND U 0.50 1 03/23/03 03/23/03 03/23/03 4-Isopropyltoluene ND U 0.50 1 03/23/03 03/23/03 03/23/03 1,1,2,2-Tetrachloroethane ND U 1.0 1 03/23/03 03/23/03 1,1,2,2-Tetrachlorobenzene ND U 0.50 1 03/23/03 03/23/03 1,2-Dichlorobenzene ND U 0.50 1 03/23/03 03/23/03 1,2-Dichlorobenzene ND U 0.50 1 03/23/03 03/23/03 1,2-Dibromo-3-chloropropane ND U 0.50 1 03/23/03 03/23/03 1,2,4-Trichlorobenzene ND U 0.50 1 03/23/03 03/23/03 03/23/03 1,2,4-Trichlorobenzene ND U 0.50 1 03/23/03 03/23/03 1,2,4-Trichl		ND	U	0.50	1	03/23/03		
1,3-Dichlorobenzene ND U 0.50 1 03/23/03 03/23/03 4-Isopropyltoluene ND U 0.50 1 03/23/03 03/23/03 Bromoform ND U 0.50 1 03/23/03 03/23/03 1,1,2,2-Tetrachloroethane ND U 1.0 1 03/23/03 03/23/03 1,4-Dichlorobenzene ND U 0.50 1 03/23/03 03/23/03 1,2-Dichlorobenzene ND U 0.50 1 03/23/03 03/23/03 n-Butylbenzene ND U 0.50 1 03/23/03 03/23/03 1,2-Dibromo-3-chloropropane ND U 5.0 1 03/23/03 03/23/03 1,2,4-Trichlorobenzene ND U 0.50 1 03/23/03 03/23/03				0.50	1	03/23/03		
4-Isopropyltoluene ND U 0.50 1 03/23/03 03/23/03 Bromoform ND U 0.50 1 03/23/03 03/23/03 1,1,2,2-Tetrachloroethane ND U 1.0 1 03/23/03 03/23/03 1,4-Dichlorobenzene ND U 0.50 1 03/23/03 03/23/03 1,2-Dichlorobenzene ND U 0.50 1 03/23/03 03/23/03 n-Butylbenzene ND U 0.50 1 03/23/03 03/23/03 1,2-Dibromo-3-chloropropane ND U 5.0 1 03/23/03 03/23/03 1,2,4-Trichlorobenzene ND U 0.50 1 03/23/03 03/23/03		ND	U	0.50	1	03/23/03	03/23/03	
Bromoform ND U 0.50 1 03/23/03 03/23/03 1,1,2,2-Tetrachloroethane ND U 1.0 1 03/23/03 03/23/03 1,4-Dichlorobenzene ND U 0.50 1 03/23/03 03/23/03 1,2-Dichlorobenzene ND U 0.50 1 03/23/03 03/23/03 n-Butylbenzene ND U 0.50 1 03/23/03 03/23/03 1,2-Dibromo-3-chloropropane ND U 5.0 1 03/23/03 03/23/03 1,2,4-Trichlorobenzene ND U 0.50 1 03/23/03 03/23/03		ND	U	0.50	1	03/23/03		
1,1,2,2-Tetrachloroethane ND U 1.0 1 03/23/03 03/23/03 1,4-Dichlorobenzene ND U 0.50 1 03/23/03 03/23/03 1,2-Dichlorobenzene ND U 0.50 1 03/23/03 03/23/03 n-Butylbenzene ND U 0.50 1 03/23/03 03/23/03 1,2-Dibromo-3-chloropropane ND U 5.0 1 03/23/03 03/23/03 1,2,4-Trichlorobenzene ND U 0.50 1 03/23/03 03/23/03				0.50	1			
1,4-Dichlorobenzene ND U 0.50 1 03/23/03 03/23/03 1,2-Dichlorobenzene ND U 0.50 1 03/23/03 03/23/03 n-Butylbenzene ND U 0.50 1 03/23/03 03/23/03 1,2-Dibromo-3-chloropropane ND U 5.0 1 03/23/03 03/23/03 1,2,4-Trichlorobenzene ND U 0.50 1 03/23/03 03/23/03		ND	U	1.0	1	03/23/03	03/23/03	
1,2-Dichlorobenzene ND U 0.50 1 03/23/03 03/23/03 n-Butylbenzene ND U 0.50 1 03/23/03 03/23/03 1,2-Dibromo-3-chloropropane ND U 5.0 1 03/23/03 03/23/03 1,2,4-Trichlorobenzene ND U 0.50 1 03/23/03 03/23/03		ND	U	0.50	1			
n-Butylbenzene ND U 0.50 1 03/23/03 03/23/03 1,2-Dibromo-3-chloropropane ND U 5.0 1 03/23/03 03/23/03 1,2,4-Trichlorobenzene ND U 0.50 1 03/23/03 03/23/03	,			0.50	1			
1,2-Dibromo-3-chloropropane ND U 5.0 1 03/23/03 03/23/03 1,2,4-Trichlorobenzene ND U 0.50 1 03/23/03 03/23/03	,	ND	U	0.50	1	03/23/03	03/23/03	
1,2,4-Trichlorobenzene ND U 0.50 1 03/23/03 03/23/03		ND	U	5.0	1			
1, 00/00/00 00/00/00	· · · · · · · · · · · · · · · · · · ·			0.50	1			
	, ,			0.50	1	03/23/03	03/23/03	

Comments:

Printed: 03/26/2003 15:05:01 L:\STEALTH\CRYSTAL.RPT\Formlm.rpt

Merged

Form 1A - Organic

2 of 3 Page

Analytical Results

Client: Project: BE&K Terranext WVBA/#03103154

Sample Matrix:

Water

Service Request: X2300207 Date Collected: 03/12/2003

Date Received: 03/12/2003

Volatile Organic Compounds

Sample Name:

AVB93-0100-03130

Lab Code:

X2300207-001

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

			Dilution	Date	Date	
Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed	Arizona Qualifier
Naphthalene	ND U	3.0	1	03/23/03	03/23/03	
1,2,3-Trichlorobenzene	ND U	0.50	1	03/23/03	03/23/03	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Arizona Qualifier	
Dibromofluoromethane	88	84-113	03/23/03		
Toluene-d8	106	68-126	03/23/03		
4-Bromofluorobenzene	92	79-113	03/23/03		

Comments:

Printed: 03/26/2003 15:05:01 L:\STEALTH\CRYSTAL.RPT\Form1m.rpt

Merged

Form 1A - Organic

000011

SuperSet Reference:

Page 3 of 3

Analytical Results

Client: Project: BE&K Terranext WVBA/#03103154

Sample Matrix:

Water

Service Request: X2300207

Date Collected: 03/12/2003 **Date Received:** 03/12/2003

Volatile Organic Compounds

Sample Name: Lab Code:

AVB20-0300-02126 X2300207-002

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

				Dilution	Date	Date	
Analyte Name	Result	Q	MRL	Factor	Extracted		Arizona Qualifier
Dichlorodifluoromethane	ND	U	3.0	1	03/23/03		N1V4
Chloromethane	ND	U	2.0	1	03/23/03	03/23/03	
Vinyl Chloride	ND	U	1.0	1	03/23/03	03/23/03	
Bromomethane	ND	U	1.0	1	03/23/03	03/23/03	
Chloroethane	ND	U	1.0	1	03/23/03	03/23/03	
Trichlorofluoromethane	ND	U	1.0	1	03/23/03	03/23/03	
1,1,2-Trichlorotrifluoroethane	ND	U	1.0	1	03/23/03	03/23/03	
1,1-Dichloroethene	1.8		1.0	1	03/23/03	03/23/03	
Acetone	ND	U	10	1	03/23/03	03/23/03	
Iodomethane	ND	U	2.0	1	03/23/03	03/23/03	
Carbon Disulfide	ND	U	2.0	1	03/23/03	03/23/03	
Methylene Chloride	ND	U	1.0	1	03/23/03	03/23/03	L1
Methyl tert-Butyl Ether	ND	U	1.0	1	03/23/03	03/23/03	
trans-1,2-Dichloroethene	ND	U	0.50	1	03/23/03	03/23/03	
1,1-Dichloroethane	ND	U	0.50	1	03/23/03	03/23/03	
Vinyl Acetate	ND	U	3.0	1	03/23/03	03/23/03	
2,2-Dichloropropane	ND	U	2.0	1	03/23/03	03/23/03	
2-Butanone (MEK)	ND	U	8.0	1	03/23/03	03/23/03	L2
cis-1,2-Dichloroethene	3.9		0.50	1	03/23/03	03/23/03	
Bromochloromethane	ND		0.50	1	03/23/03	03/23/03	
Chloroform	1.9		1.0	1	03/23/03	03/23/03	
1,1,1-Trichloroethane	ND	U	0.50	1	03/23/03	03/23/03	
Carbon Tetrachloride	ND	U	0.50	1	03/23/03	03/23/03	
1,1-Dichloropropene	ND	U	0.50	1	03/23/03	03/23/03	
Benzene	1.3		0.50	1	03/23/03	03/23/03	
1,2-Dichloroethane	ND		0.50	1	03/23/03	03/23/03	
Trichloroethene	38	;	0.50	1	03/23/03	03/23/03	
1,2-Dichloropropane	ND	U	0.50	1	03/23/03	03/23/03	
Dibromomethane	ND		0.50	1	03/23/03	03/23/03	
Bromodichloromethane	0.59		0.50	1	03/23/03	03/23/03	
cis-1,3-Dichloropropene	ND	U	0.50	1	03/23/03	03/23/03	
4-Methyl-2-pentanone (MIBK)	ND		8.0	1	03/23/03	03/23/03	
Toluene	ND		0.50	1	03/23/03	03/23/03	
1 02.00							

Comments:

Printed: 03/26/2003 15:05:13

Form 1A - Organic

000012

1 of 3 Page

Analytical Results

Client: Project: BE&K Terranext WVBA/#03103154

Sample Matrix:

Water

Service Request: X2300207 **Date Collected:** 03/12/2003

Date Received: 03/12/2003

Volatile Organic Compounds

Sample Name:

AVB20-0300-02126

Lab Code:

X2300207-002

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

		_	NAME.	Dilution Factor	Date Extracted	Date Analyzed	Arizona Qualifier
Analyte Name	Result		MRL			03/23/03	Misour Quinion
trans-1,3-Dichloropropene	ND		1.0	1	03/23/03 03/23/03	03/23/03	
1,1,2-Trichloroethane	ND	U	1.0	1		03/23/03	
Tetrachloroethene	8.0		0.50	1	03/23/03		
2-Hexanone	ND	U	5.0	1	03/23/03	03/23/03	
1.3-Dichloropropane	ND	U	1.0	1	03/23/03	03/23/03	
Dibromochloromethane	ND	U	0.50	1	03/23/03	03/23/03	
1.2-Dibromoethane	ND	U	0.50	1	03/23/03	03/23/03	
Chlorobenzene	ND		0.50	1	03/23/03	03/23/03	
1,1,1,2-Tetrachloroethane	ND		0.50	1	03/23/03	03/23/03	
	ND	TT	0.50	1	03/23/03	03/23/03	
Ethylbenzene	ND		1.0	1	03/23/03	03/23/03	
m,p-Xylenes	ND		0.50	1	03/23/03	03/23/03	
o-Xylene	ND		0,50	1	03/23/03	03/23/03	
Styrene	ND ND		0.50	1	03/23/03	03/23/03	
Isopropylbenzene	ND ND		0.50	1	03/23/03	03/23/03	
Bromobenzene			1.0	1	03/23/03	03/23/03	
1,2,3-Trichloropropane	ND		0.50	1	03/23/03	03/23/03	
n-Propylbenzene	ND		0.50	1	03/23/03	03/23/03	
2-Chlorotoluene	ND				03/23/03	03/23/03	
4-Chlorotoluene	ND		0.50	1	03/23/03	03/23/03	
1,3,5-Trimethylbenzene	ND		0.50	1	03/23/03	03/23/03	
tert-Butylbenzene	ND		0.50				
1,2,4-Trimethylbenzene	ND		0.50	1	03/23/03	03/23/03	
sec-Butylbenzene	ND		0.50	1	03/23/03	03/23/03	
1,3-Dichlorobenzene	ND	U	0.50	1	03/23/03	03/23/03	
4-Isopropyltoluene	ND	U	0.50	1	03/23/03	03/23/03	
Bromoform	ND	U	0.50	1	03/23/03	03/23/03	
1,1,2,2-Tetrachloroethane	ND	U	1.0	1	03/23/03	03/23/03	
1.4-Dichlorobenzene	ND	U	0.50	1	03/23/03	03/23/03	
1,2-Dichlorobenzene	NE		0.50	1	03/23/03	03/23/03	
n-Butylbenzene	NE		0.50	1	03/23/03	03/23/03	
1,2-Dibromo-3-chloropropane		U	5.0	1	03/23/03	03/23/03	
1,2,4-Trichlorobenzene		U	0.50	1	03/23/03	03/23/03	
Hexachlorobutadiene		U	0.50	1	03/23/03	03/23/03	
riexaciliorouliamene							

Comments:

Printed: 03/26/2003 15:05:13

Merged

Form 1A - Organic

Page 2 of 3

SuperSet Reference:

Analytical Results

Client: Project: BE&K Terranext WVBA/#03103154

Sample Matrix:

Water

Service Request: X2300207 **Date Collected:** 03/12/2003

Date Received: 03/12/2003

Volatile Organic Compounds

Sample Name: Lab Code:

AVB20-0300-02126 X2300207-002

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

			Dilution	Date	Date	
Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed	Arizona Qualifier
Naphthalene	ND U	3.0	1	03/23/03	03/23/03	
1,2,3-Trichlorobenzene	ND U	0.50	1	03/23/03	03/23/03	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Arizona Qualifier	
Dibromofluoromethane	93	84-113	03/23/03		
Toluene-d8	110	68-126	03/23/03		
4-Bromofluorobenzene	96	79-113	03/23/03		

Comments:

RR3124

Merged

Analytical Results

Client: Project: BE&K Terranext WVBA/#03103154

Sample Matrix:

Water

Service Request: X2300207

Date Collected: 03/12/2003 **Date Received:** 03/12/2003

Volatile Organic Compounds

Sample Name:

AVB100-0100-02131

Lab Code:

X2300207-003

EPA 5030B

Units: ug/L Basis: NA

Level: Low

Extraction Method:	EPA JUJUL
Analysis Method:	8260B

			7.6DY	Dilution Factor	Date Extracted	Date	Arizona Qualifier
Analyte Name	Result		MRL				N1V4
Dichlorodifluoromethane	ND		3.0	1 1	03/23/03 03/23/03	03/23/03	111 74
Chloromethane	ND		2.0	1	03/23/03	03/23/03	
Vinyl Chloride	ND		1.0				
Bromomethane	ND		1.0	1	03/23/03	03/23/03 03/23/03	
Chloroethane	ND		1.0	1	03/23/03 03/23/03	03/23/03	
Trichlorofluoromethane	ND		1.0	1			
1,1,2-Trichlorotrifluoroethane	ND		1.0	1	03/23/03	03/23/03	
1,1-Dichloroethene	1.8		1.0	1	03/23/03	03/23/03	
Acetone	ND	U	10	1	03/23/03	03/23/03	
Iodomethane	ND	U	2.0	1	03/23/03	03/23/03	
Carbon Disulfide	ND	U	2.0	1	03/23/03	03/23/03	
Methylene Chloride	ND	U	1.0	1	03/23/03	03/23/03	L1
Methyl tert-Butyl Ether	ND	U	1.0	1	03/23/03	03/23/03	
trans-1,2-Dichloroethene	ND	U	0.50	1	03/23/03	03/23/03	
1,1-Dichloroethane	ND	U	0.50	1	03/23/03	03/23/03	
Vinyl Acetate	ND	U	3.0	1	03/23/03	03/23/03	
2,2-Dichloropropane	ND		2.0	1	03/23/03	03/23/03	
2-Butanone (MEK)	ND	U	8.0	1	03/23/03	03/23/03	L2
cis-1,2-Dichloroethene	1.1		0.50	1	03/23/03	03/23/03	
Bromochloromethane	ND	U	0.50	1	03/23/03	03/23/03	
Chloroform	ND	U	1.0	1	03/23/03	03/23/03	
1,1,1-Trichloroethane	ND	U	0.50	1	03/23/03	03/23/03	
Carbon Tetrachloride	ND	U	0.50	1	03/23/03	03/23/03	
1,1-Dichloropropene	ND	U	0.50	1	03/23/03	03/23/03	
Benzene	ND	U	0.50	1	03/23/03	03/23/03	
1,2-Dichloroethane	ND	U	0.50	1	03/23/03	03/23/03	
Trichloroethene	2.7	7	0.50	1	03/23/03	03/23/03	
1,2-Dichloropropane	ND	U	0.50	1	03/23/03	03/23/03	
Dibromomethane	ND	U	0.50	1	03/23/03	03/23/03	
Bromodichloromethane	NE	U	0.50	1	03/23/03	03/23/03	
cis-1,3-Dichloropropene	NE	U	0.50	1	03/23/03	03/23/03	
4-Methyl-2-pentanone (MIBK)	NE	U	8.0	1	03/23/03	03/23/03	
Toluene	NE	U	0.50	1	03/23/03	03/23/03	

Comments:

Printed: 03/26/2003 15:05:25 $L: \verb|\STEALTH| CRYSTAL.RPT \verb|\Form| lm.rpt|$

Form 1A - Organic

00004.5

Page 1 of 3

Analytical Results

Client: Project: BE&K Terranext WVBA/#03103154

Sample Matrix:

Water

Service Request: X2300207 **Date Collected:** 03/12/2003

Date Received: 03/12/2003

Volatile Organic Compounds

Sample Name:

AVB100-0100-02131

Lab Code:

X2300207-003

Extraction Method: Analysis Method:

EPA 5030B

8260B

Units: ug/L Basis: NA

Level: Low

			Dilution	Date	Date	Arizona Ovalifiar
Analyte Name	Result Q	MRL	Factor	Extracted		Arizona Qualifier
trans-1,3-Dichloropropene	ND U	1.0	1	03/23/03	03/23/03 03/23/03	
1,1,2-Trichloroethane	ND U	1.0	1	03/23/03	03/23/03	D2
Tetrachloroethene	370 D	5.0	10	03/24/03		D2
2-Hexanone	ND U	5.0	1	03/23/03	03/23/03	
1,3-Dichloropropane	ND U	1.0	1	03/23/03	03/23/03 03/23/03	
Dibromochloromethane	ND U	0.50	1	03/23/03		
1,2-Dibromoethane	ND U	0.50	1	03/23/03	03/23/03	
Chlorobenzene	ND U	0.50	1	03/23/03	03/23/03	
1,1,1,2-Tetrachloroethane	ND U	0.50	1	03/23/03	03/23/03	
Ethylbenzene	ND U	0.50	1	03/23/03	03/23/03	
m,p-Xylenes	ND U	1.0	1	03/23/03	03/23/03	
o-Xylene	ND U	0.50	1	03/23/03	03/23/03	
Styrene	ND U	0.50	1	03/23/03	03/23/03	
Isopropylbenzene	ND U	0.50	1	03/23/03	03/23/03	
Bromobenzene	ND U	0.50	1	03/23/03	03/23/03	
1,2,3-Trichloropropane	ND U	1.0	1	03/23/03	03/23/03	
n-Propylbenzene	ND U	0.50	1	03/23/03	03/23/03	
2-Chlorotoluene	ND U	0.50	1	03/23/03	03/23/03	
4-Chlorotoluene	ND U	0.50	1	03/23/03	03/23/03	
1,3,5-Trimethylbenzene	ND U	0.50	1	03/23/03	03/23/03	
tert-Butylbenzene	ND U	0.50	1	03/23/03	03/23/03	
1.2.4-Trimethylbenzene	ND U	0.50	1	03/23/03	03/23/03	
sec-Butylbenzene	ND U	0.50	1	03/23/03	03/23/03	
1,3-Dichlorobenzene	ND U	0.50	1	03/23/03	03/23/03	
	ND U	0.50	1	03/23/03	03/23/03	
4-Isopropyltoluene Bromoform	ND U	0.50	1	03/23/03	03/23/03	
1,1,2,2-Tetrachloroethane	ND U	1.0	1	03/23/03	03/23/03	
	ND U	0.50	1	03/23/03	03/23/03	
1,4-Dichlorobenzene	ND U	0.50	1	03/23/03	03/23/03	
1,2-Dichlorobenzene n-Butylbenzene	ND U	0.50	1	03/23/03	03/23/03	
1,2-Dibromo-3-chloropropane	ND U	5.0	1	03/23/03	03/23/03	
	ND U	0.50	1	03/23/03	03/23/03	
1,2,4-Trichlorobenzene Hexachlorobutadiene	ND U	0.50	1	03/23/03	03/23/03	
Hexachloroduladiene						

Comments:

Printed: 03/26/2003 15:05:25 L:\STEALTH\CRYSTAL.RPT\Form1m.rpt

Merged

Form 1A - Organic

RR3124

Page 2 of 3

Analytical Results

Client: Project: BE&K Terranext WVBA/#03103154

Sample Matrix:

Water

Service Request: X2300207

Date Collected: 03/12/2003 **Date Received:** 03/12/2003

Volatile Organic Compounds

Sample Name:

AVB100-0100-02131

Lab Code:

X2300207-003

Extraction Method: Analysis Method:

EPA 5030B 8260B

Units: ug/L

Basis: NA

Level: Low

			Dilution	Date	Date	
Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed	Arizona Qualifier
Naphthalene	ND U	3.0	1	03/23/03	03/23/03	
1,2,3-Trichlorobenzene	ND U	0.50	1	03/23/03	03/23/03	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Arizona Qualifier	
Dibromofluoromethane	92	84-113	03/23/03		
Toluene-d8	107	68-126	03/23/03		
4-Bromofluorobenzene	98	79-113	03/23/03		

Comments:

Printed: 03/26/2003 15:05:25 L:\STEALTH\CRYSTAL.RPT\Formlm.rpt

Form 1A - Organic

Merged

Page 3 of 3 SuperSet Reference:

Analytical Results

Client: Project: BE&K Terranext WVBA/#03103154

Sample Matrix:

Water

Service Request: X2300207 **Date Collected:** 03/12/2003

Date Received: 03/12/2003

Volatile Organic Compounds

Sample Name:

AVB101-0100-13115

Lab Code:

X2300207-004

Extraction Method: EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

Namight Name					Dilution	Date	Date	
Dichlorodifluoromethane	Analyte Name	Result	Q	MRL	Factor	Extracted		Arizona Qualifier
Chloromethane		ND	U	3.0	1			
Vinyl Chloride		ND	U	2.0	1			
Bromomethane		ND	U	1.0	1	03/24/03	03/24/03	
Chiloroethane		ND	U	1.0	1	03/24/03	03/24/03	
Trichlorofluoromethane				1.0	1	03/24/03	03/24/03	
1,1-2-Trichlorotrifluoroethane	=			1.0	1	03/24/03	03/24/03	
1.1-Dichloroethene		ND	IJ	1.0	1	03/24/03	03/24/03	
ND U	<i>, ,</i>		Ŭ		1	03/24/03	03/24/03	
Todomethane	•		U		1	03/24/03	03/24/03	
Carbon Disulfide ND U 2.0 1 03/24/03 03/24/03 Methylene Chloride ND U 1.0 1 03/24/03 03/24/03 Methyl tert-Butyl Ether trans-1,2-Dichloroethene ND U 0.50 1 03/24/03 03/24/03 1,1-Dichloroethane ND U 0.50 1 03/24/03 03/24/03 Vinyl Acetate ND U 3.0 1 03/24/03 03/24/03 2,2-Dichloropropane ND U 3.0 1 03/24/03 03/24/03 2,-Butanone (MEK) ND U 8.0 1 03/24/03 03/24/03 2-Butanone (MEK) ND U 0.50 1 03/24/03 03/24/03 Bromechloromethane ND U 0.50 1 03/24/03 03/24/03 <td></td> <td></td> <td></td> <td>2.0</td> <td>1</td> <td>03/24/03</td> <td>03/24/03</td> <td></td>				2.0	1	03/24/03	03/24/03	
Methylene Chloride ND U 1.0 1 03/24/03 03/24/03 Methyl tert-Butyl Ether ND U 1.0 1 03/24/03 03/24/03 trans-1,2-Dichloroethene ND U 0.50 1 03/24/03 03/24/03 1,1-Dichloroethane ND U 0.50 1 03/24/03 03/24/03 Vinyl Acetate ND U 3.0 1 03/24/03 03/24/03 2,2-Dichloropropane ND U 2.0 1 03/24/03 03/24/03 2-Butanone (MEK) ND U 8.0 1 03/24/03 03/24/03 2-Butanone (MEK) ND U 8.0 1 03/24/03 03/24/03 2-Butanone (MEK) ND U 0.50 1 03/24/03 03/24/03						03/24/03	03/24/03	
Methyl tert-Butyl Ether ND U 1.0 1 03/24/03 03/24/03 trans-1,2-Dichloroethene ND U 0.50 1 03/24/03 03/24/03 1,1-Dichloroethane ND U 0.50 1 03/24/03 03/24/03 Vinyl Acetate ND U 3.0 1 03/24/03 03/24/03 2,2-Dichloropropane ND U 2.0 1 03/24/03 03/24/03 2,Butanone (MEK) ND U 8.0 1 03/24/03 03/24/03 2-Butanone (MEK) ND U 8.0 1 03/24/03 03/24/03 2-Butanone (MEK) ND U 8.0 1 03/24/03 03/24/03 2-Butanone (MEK) ND U 0.50 1 03/24/03 03/24/03 3-2-Dichloroethane ND U 0.50 1 03/24/03 03/24/03 1,2-Dichloroethane ND U 0.50 1 03/24/03 03/24/03					1	03/24/03	03/24/03	
No. No.	•				1	03/24/03	03/24/03	
1,1-Dichloroethane						03/24/03	03/24/03	
Vinyl Acetate ND U 3.0 1 03/24/03 03/24/03 2,2-Dichloropropane ND U 2.0 1 03/24/03 03/24/03 2-Butanone (MEK) ND U 8.0 1 03/24/03 03/24/03 2-Butanone (MEK) ND U 8.0 1 03/24/03 03/24/03 2-Butanone (MEK) ND U 0.50 1 03/24/03 03/24/03 2-Butanone (MEK) ND U 0.50 1 03/24/03 03/24/03 Bromochloroethene ND U 0.50 1 03/24/03 03/24/03 1,1,1-Trichloroethane ND U 0.50 1 03/24/03 03/24/03 1,1-Dichloropropene ND U 0.50 1 03/24/03 03/24/03 1,1-Dichloropropene ND U 0.50 1 03/24/03 03/24/03 1,2-Dichloropropene ND U 0.50 1 03/24/03 03/24/03 <td></td> <td></td> <td></td> <td></td> <td>1</td> <td>03/24/03</td> <td>03/24/03</td> <td></td>					1	03/24/03	03/24/03	
Viright Acetate Vivin Acet	· · · · · · · · · · · · · · · · · · ·			3.0	1	03/24/03	03/24/03	
2-Butanone (MEK) ND U 8.0 1 03/24/03 03/24/03 cis-1,2-Dichloroethene 2.8 0.50 1 03/24/03 03/24/03 Bromochloromethane ND U 0.50 1 03/24/03 03/24/03 Chloroform 4.7 1.0 1 03/24/03 03/24/03 1,1,1-Trichloroethane ND U 0.50 1 03/24/03 03/24/03 Carbon Tetrachloride ND U 0.50 1 03/24/03 03/24/03 1,1-Dichloropropene ND U 0.50 1 03/24/03 03/24/03 Benzene ND U 0.50 1 03/24/03 03/24/03 1,2-Dichloroethane ND U 0.50 1 03/24/03 03/24/03 1,2-Dichloroethane ND U 0.50 1 03/24/03 03/24/03 Trichloroethene 77 0.50 1 03/24/03 03/24/03 1,2-Dichloropropane ND U 0.50 1 03/24/03 03/24/03 Cis-1,3-Dichloropropene ND U 0.50 1 03/24/03 03/24/03 Bromodichloromethane ND U 0.50 1 03/24/03 03/24/03 cis-1,3-Dichloropropene ND U 0.50 1 03/24/03 03/24/03 4-Methyl-2-pentanone (MIBK) ND U 8.0 1 03/24/03 03/24/03	-						03/24/03	
Cis-1,2-Dichloroethene 2.8 0.50 1 03/24/03 03/24/03 Bromochloromethane ND U 0.50 1 03/24/03 03/24/03 Chloroform 4.7 1.0 1 03/24/03 03/24/03 1,1,1-Trichloroethane ND U 0.50 1 03/24/03 03/24/03 Carbon Tetrachloride ND U 0.50 1 03/24/03 03/24/03 1,1-Dichloropropene ND U 0.50 1 03/24/03 03/24/03 Benzene ND U 0.50 1 03/24/03 03/24/03 1,2-Dichloroethane ND U 0.50 1 03/24/03 03/24/03 1,2-Dichloropropane ND U 0.50 1 03/24/03 03/24/03 1,2-Dichloropropane ND U 0.50 1 03/24/03 03/24/03 1,2-Dichloropropane ND U 0.50 1 03/24/03 03/24/03 Bromodich						03/24/03	03/24/03	
Bromochloromethane ND U 0.50 1 03/24/03 03/24/03					1	03/24/03	03/24/03	141
Chloroform 4.7 1.0 1 03/24/03 03/24/03 1,1,1-Trichloroethane ND U 0.50 1 03/24/03 03/24/03 Carbon Tetrachloride ND U 0.50 1 03/24/03 03/24/03 1,1-Dichloropropene ND U 0.50 1 03/24/03 03/24/03 Benzene ND U 0.50 1 03/24/03 03/24/03 1,2-Dichloroethane ND U 0.50 1 03/24/03 03/24/03 Trichloroethene 77 0.50 1 03/24/03 03/24/03 1,2-Dichloropropane ND U 0.50 1 03/24/03 03/24/03 1,2-Dichloropropane ND U 0.50 1 03/24/03 03/24/03 1,2-Dichloropropane ND U 0.50 1 03/24/03 03/24/03 Bromodichloromethane ND U 0.50 1 03/24/03 03/24/03 cis-1,3-Dichloropropene ND U 0.50 1 03/24/03 03/24/03			TT					
1,1,1-Trichloroethane			O				03/24/03	
Carbon Tetrachloride ND U 0.50 1 03/24/03 03/24/03 1,1-Dichloropropene ND U 0.50 1 03/24/03 03/24/03 Benzene ND U 0.50 1 03/24/03 03/24/03 1,2-Dichloroethane ND U 0.50 1 03/24/03 03/24/03 Trichloroethene 77 0.50 1 03/24/03 03/24/03 1,2-Dichloropropane ND U 0.50 1 03/24/03 03/24/03 Dibromomethane ND U 0.50 1 03/24/03 03/24/03 Bromodichloromethane ND U 0.50 1 03/24/03 03/24/03 cis-1,3-Dichloropropene ND U 0.50 1 03/24/03 03/24/03 4-Methyl-2-pentanone (MIBK) ND U 8.0 1 03/24/03 03/24/03			<u> </u>			03/24/03	03/24/03	
Carbon Tetrachloride ND U 0.50 1 03/24/03 03/24/03 1,1-Dichloropropene ND U 0.50 1 03/24/03 03/24/03 1,2-Dichloroethane ND U 0.50 1 03/24/03 03/24/03 1,2-Dichloropropane ND U 0.50 1 03/24/03 03/24/03 1,2-Dichloropropane ND U 0.50 1 03/24/03 03/24/03 Dibromomethane ND U 0.50 1 03/24/03 03/24/03 Bromodichloromethane ND U 0.50 1 03/24/03 03/24/03 cis-1,3-Dichloropropene ND U 0.50 1 03/24/03 03/24/03 4-Methyl-2-pentanone (MIBK) ND U 8.0 1 03/24/03 03/24/03	* *							
Renzene ND U 0.50 1 03/24/03 03/24/03 1,2-Dichloroethane ND U 0.50 1 03/24/03 03/24/03 1,2-Dichloroethene 77 0.50 1 03/24/03 03/24/03 1,2-Dichloropropane ND U 0.50 1								
Benzene ND U 0.50 1 03/24/03 03/24/03 1,2-Dichloroethene 77 0.50 1 03/24/03 03/24/03 1,2-Dichloropropane ND U 0.50 1 03/24/03 03/24/03 Dibromomethane ND U 0.50 1 03/24/03 03/24/03 Bromodichloromethane ND U 0.50 1 03/24/03 03/24/03 cis-1,3-Dichloropropene ND U 0.50 1 03/24/03 03/24/03 4-Methyl-2-pentanone (MIBK) ND U 8.0 1 03/24/03 03/24/03								
Trichloroethane 77 0.50 1 03/24/03 03/24/03 1,2-Dichloropropane ND U 0.50 1 03/24/03 03/24/03 1,2-Dichloropropane ND U 0.50 1 03/24/03 03/24/03 Bromodichloromethane ND U 0.50 1 03/24/03 03/24/03 cis-1,3-Dichloropropene ND U 0.50 1 03/24/03 03/24/03 4-Methyl-2-pentanone (MIBK) ND U 8.0 1 03/24/03 03/24/03								
1,2-Dichloropropane ND U 0.50 1 03/24/03 03/24/03 Dibromomethane ND U 0.50 1 03/24/03 03/24/03 Bromodichloromethane ND U 0.50 1 03/24/03 03/24/03 cis-1,3-Dichloropropene ND U 0.50 1 03/24/03 03/24/03 4-Methyl-2-pentanone (MIBK) ND U 8.0 1 03/24/03 03/24/03	,		U					
Dibromomethane	Trichloroethene							
Bromodichloromethane ND U 0.50 1 03/24/03 03/24/03 cis-1,3-Dichloropropene ND U 0.50 1 03/24/03 03/24/03 4-Methyl-2-pentanone (MIBK) ND U 8.0 1 03/24/03 03/24/03								
Bromodicinorometriane ND U 0.50 1 03/24/03 03/24/03 cis-1,3-Dichloropropene ND U 0.50 1 03/24/03 03/24/03 4-Methyl-2-pentanone (MIBK) ND U 8.0 1 03/24/03 03/24/03								
4-Methyl-2-pentanone (MIBK) ND U 8.0 1 03/24/03 03/24/03 03/24/03	Bromodichloromethane							
4-Methyl-2-pentatione (Mink) 17 0 0.50								
Toluene ND U 0.50 1 03/24/03 03/24/03	4-Methyl-2-pentanone (MIBK)							
	Toluene	ND	U	0.50	1	03/24/03	03/24/03	

Comments:

Printed: 03/26/2003 15:05:41 L:\STEALTH\CRYSTAL.RPT\Form1m.rpt

Form 1A - Organic

Merged

SuperSet Reference:

RR3124

Page

Analytical Results

Client: Project: BE&K Terranext WVBA/#03103154

Sample Matrix:

Water

Service Request: X2300207

Date Collected: 03/12/2003

Date Received: 03/12/2003

Volatile Organic Compounds

Sample Name:

AVB101-0100-13115

Lab Code:

X2300207-004

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

	7 2 1/	^	MRL	Dilution Factor	Date Extracted	Date Analyzed	Arizona Qualifier
Analyte Name	Result				03/24/03	03/24/03	Milbour Qualities
trans-1,3-Dichloropropene	ND		1.0	1 1	03/24/03	03/24/03	
1,1,2-Trichloroethane	ND	U	1.0 0.50	1	03/24/03	03/24/03	
Tetrachloroethene	22						10
2-Hexanone	ND		5.0	1	03/24/03	03/24/03	
1,3-Dichloropropane	ND		1.0	1	03/24/03	03/24/03 03/24/03	
Dibromochloromethane	ND	U	0.50	1	03/24/03		
1,2-Dibromoethane	ND		0.50	1	03/24/03	03/24/03	
Chlorobenzene	ND	U	0.50	1	03/24/03	03/24/03	
1,1,1,2-Tetrachloroethane	ND	U	0.50	11	03/24/03	03/24/03	
Ethylbenzene	ND	U	0.50	1	03/24/03	03/24/03	
m,p-Xylenes	ND		1.0	1	03/24/03	03/24/03	
o-Xylene	ND	U	0.50	1	03/24/03	03/24/03	
Styrene	ND	IJ	0.50	1	03/24/03	03/24/03	
Isopropylbenzene	ND		0.50	1	03/24/03	03/24/03	
Bromobenzene	ND		0.50	1	03/24/03	03/24/03	
	ND		1.0	1	03/24/03	03/24/03	
1,2,3-Trichloropropane	ND		0.50	1	03/24/03	03/24/03	
n-Propylbenzene 2-Chlorotoluene	ND		0.50	1	03/24/03	03/24/03	
	ND		0.50	1	03/24/03	03/24/03	
4-Chlorotoluene	ND ND		0.50	î	03/24/03	03/24/03	
1,3,5-Trimethylbenzene	ND		0.50	ı 1	03/24/03	03/24/03	
tert-Butylbenzene	ND		0.50	1	03/24/03	03/24/03	
1,2,4-Trimethylbenzene	ND ND		0.50	1	03/24/03	03/24/03	
sec-Butylbenzene	ND ND		0.50	1	03/24/03	03/24/03	
1,3-Dichlorobenzene				1	03/24/03	03/24/03	
4-Isopropyltoluene	ND		0.50	1	03/24/03	03/24/03	
Bromoform	ND		0.50	1	03/24/03	03/24/03	
1,1,2,2-Tetrachloroethane	ND		1.0				
1,4-Dichlorobenzene	ND		0.50	1	03/24/03	03/24/03	
1,2-Dichlorobenzene	ND		0.50	1	03/24/03	03/24/03	
n-Butylbenzene	ND		0.50	1	03/24/03	03/24/03	
1,2-Dibromo-3-chloropropane	ND		5.0	1	03/24/03	03/24/03	
1,2,4-Trichlorobenzene	ND		0.50	1	03/24/03	03/24/03	
Hexachlorobutadiene	ND	U	0.50	1	03/24/03	03/24/03	

Comments:

Printed: 03/26/2003 15:05:41 L:\STEALTH\CRYSTAL.RPT\Form\lm.rpt

Form 1A - Organic

Merged

000019

RR3124

SuperSet Reference:

2 of 3 Page

Analytical Results

Client:

BE&K Terranext WVBA/#03103154

Project: Sample Matrix:

Water

....

Service Request: X2300207 **Date Collected:** 03/12/2003

Date Received: 03/12/2003

Volatile Organic Compounds

Sample Name:

AVB101-0100-13115

Lab Code:

X2300207-004

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

			Dilution	Date	Date	
Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed	Arizona Qualifier
Naphthalene	ND U	3.0	1	03/24/03	03/24/03	
1,2,3-Trichlorobenzene	ND U	0.50	1	03/24/03	03/24/03	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Arizona Qualifier	
Dibromofluoromethane	111	84-113	03/24/03		
Toluene-d8	116	68-126	03/24/03		
4-Bromofluorobenzene	110	79-113	03/24/03		

Comments:

Printed: 03/26/2003 15:05:41 L:\STEALTH\CRYSTAL.RPT\Form\lm.rpt

Merged

Form 1A - Organic

Page 3 of 3

000020

Analytical Results

Client: Project: BE&K Terranext WVBA/#03103154

Sample Matrix:

Water

Service Request: X2300207 **Date Collected:** 03/12/2003

Date Collected: 03/12/2003 **Date Received:** 03/12/2003

Volatile Organic Compounds

Sample Name:

AVB101-0400-14000

Lab Code:

X2300207-005

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

			MDY	Dilution Factor	Date Extracted	Date	Arizona Qualifier
Analyte Name	Result		MRL		03/24/03	03/24/03	THEORIE Quarter
Dichlorodifluoromethane	ND		3.0	1	03/24/03	03/24/03	
Chloromethane	ND		2.0	1 1	03/24/03	03/24/03	
Vinyl Chloride	ND		1.0				
Bromomethane	ND		1.0	1	03/24/03	03/24/03	
Chloroethane	ND		1.0	1	03/24/03	03/24/03	
Trichlorofluoromethane	ND	U	1.0	1	03/24/03	03/24/03	
1,1,2-Trichlorotrifluoroethane	1.7		1.0	1	03/24/03	03/24/03	
1,1-Dichloroethene	1.3		1.0	1	03/24/03	03/24/03	
Acetone	ND	U	10	1	03/24/03	03/24/03	
Iodomethane	ND	U	2.0	1	03/24/03	03/24/03	
Carbon Disulfide	ND		2.0	1	03/24/03	03/24/03	
Methylene Chloride	ND		1.0	1	03/24/03	03/24/03	
Methyl tert-Butyl Ether	ND		1.0	1	03/24/03	03/24/03	
trans-1,2-Dichloroethene	ND		0.50	1	03/24/03	03/24/03	
1,1-Dichloroethane	ND		0.50	1	03/24/03	03/24/03	
<u> </u>	ND		3.0	1	03/24/03	03/24/03	
Vinyl Acetate	ND ND		2.0	1	03/24/03	03/24/03	
2,2-Dichloropropane	ND ND		8.0	1	03/24/03	03/24/03	
2-Butanone (MEK)	1.6		0.50	1	03/24/03	03/24/03	
cis-1,2-Dichloroethene	1.6 ND		0.50	1	03/24/03	03/24/03	
Bromochloromethane	3.3		1.0	1	03/24/03	03/24/03	
Chloroform				1	03/24/03	03/24/03	
1,1,1-Trichloroethane	ND		0.50	1	03/24/03	03/24/03	
Carbon Tetrachloride	ND		0.50	1	03/24/03	03/24/03	
1,1-Dichloropropene	ND		0.50			03/24/03	
Benzene	ND		0.50	1	03/24/03	03/24/03	
1,2-Dichloroethane	0.52		0.50	1	03/24/03	03/24/03	
Trichloroethene	60)	0.50	1	03/24/03		
1,2-Dichloropropane		U	0.50	1	03/24/03	03/24/03	
Dibromomethane		U	0.50	1	03/24/03	03/24/03	
Bromodichloromethane	ND	U	0.50	1	03/24/03	03/24/03	
cis-1,3-Dichloropropene	NE	U	0.50	1	03/24/03	03/24/03	
4-Methyl-2-pentanone (MIBK)		U	8.0	1	03/24/03	03/24/03	
Toluene		U	0.50	1	03/24/03	03/24/03	

Comments:

Printed: 03/26/2003 15:05:58 L:\STEALTH\CRYSTAL.RPT\Formlm.rpt

Merged

Form 1A - Organic

SuperSet Reference: RR3124

Page 1 of 3

Analytical Results

Client: Project: BE&K Terranext WVBA/#03103154

Sample Matrix:

Water

Service Request: X2300207

Date Collected: 03/12/2003

Date Received: 03/12/2003

Volatile Organic Compounds

Sample Name:

AVB101-0400-14000

Lab Code:

X2300207-005

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

		_	MON	Dilution	Date	Date	Arizona Qualifier
Analyte Name	Result		MRL	Factor	Extracted		Al izona Quantici
trans-1,3-Dichloropropene	ND		1.0	1	03/24/03	03/24/03 03/24/03	
1,1,2-Trichloroethane	ND	U	1.0	1	03/24/03	03/24/03	
Tetrachloroethene	17		0.50	1	03/24/03		
2-Hexanone	ND		5.0	1	03/24/03	03/24/03	
1,3-Dichloropropane	ND		1.0	1	03/24/03	03/24/03	
Dibromochloromethane	ND	U	0.50	1	03/24/03	03/24/03	
1,2-Dibromoethane	ND	U	0.50	1	03/24/03	03/24/03	
Chlorobenzene	ND	U	0.50	1	03/24/03	03/24/03	
1,1,1,2-Tetrachloroethane	ND	U	0.50	1	03/24/03	03/24/03	
Ethylbenzene	ND	U	0.50	1	03/24/03	03/24/03	
m,p-Xylenes	ND		1.0	1	03/24/03	03/24/03	
o-Xylene	ND	U	0.50	1	03/24/03	03/24/03	
Styrene	ND	IJ	0.50	1	03/24/03	03/24/03	
Isopropylbenzene	ND		0.50	1	03/24/03	03/24/03	
Bromobenzene	ND		0.50	1	03/24/03	03/24/03	
1,2,3-Trichloropropane	ND		1.0	1	03/24/03	03/24/03	
n-Propylbenzene	ND		0.50	1	03/24/03	03/24/03	
2-Chlorotoluene	ND		0.50	1	03/24/03	03/24/03	
4-Chlorotoluene	ND		0.50	1	03/24/03	03/24/03	
1,3,5-Trimethylbenzene	ND		0.50	1	03/24/03	03/24/03	
tert-Butylbenzene	ND		0.50	1	03/24/03	03/24/03	
1,2,4-Trimethylbenzene	ND		0.50	1	03/24/03	03/24/03	
sec-Butylbenzene	ND		0.50	1	03/24/03	03/24/03	
1,3-Dichlorobenzene	ND		0.50	1	03/24/03	03/24/03	
4-Isopropyltoluene	ND		0.50	1	03/24/03	03/24/03	
Bromoform	ND		0.50	1	03/24/03	03/24/03	
1,1,2,2-Tetrachloroethane	ND		1.0	1	03/24/03	03/24/03	
	ND		0.50	1	03/24/03	03/24/03	
1,4-Dichlorobenzene	ND ND		0.50	1	03/24/03	03/24/03	
1,2-Dichlorobenzene	ND ND		0.50	1	03/24/03	03/24/03	
n-Butylbenzene					03/24/03	03/24/03	
1,2-Dibromo-3-chloropropane	ND		5.0	1	03/24/03	03/24/03	
1,2,4-Trichlorobenzene	ND		0.50 0.50	1 1	03/24/03	03/24/03	
Hexachlorobutadiene	ND	U	0.30	<u> </u>	03127103	03124103	

Comments:

Printed: 03/26/2003 15:05:58 L:\STEALTH\CRYSTAL.RPT\Form\lm.rpt

Merged

Form 1A - Organic

SuperSet Reference:

RR3124

Page 2 of 3

Analytical Results

Client: Project: BE&K Terranext WVBA/#03103154

Sample Matrix:

Water

Service Request: X2300207

Date Collected: 03/12/2003 **Date Received:** 03/12/2003

Volatile Organic Compounds

Sample Name:

AVB101-0400-14000

Lab Code:

X2300207-005

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

			Dilution	Date	Date	
Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed	Arizona Qualifier
Naphthalene	ND U	3.0	1	03/24/03	03/24/03	
1,2,3-Trichlorobenzene	ND U	0.50	1	03/24/03	03/24/03	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Arizona Qualifier	
Dibromofluoromethane	114	84-113	03/24/03	S1	
Toluene-d8	116	68-126	03/24/03		
4-Bromofluorobenzene	108	79-113	03/24/03		

Comments:

Printed: 03/26/2003 15:05:58 L:\STEALTH\CRYSTAL.RPT\Form1m.rpt

Form 1A - Organic 000023

SuperSet Reference:

RR3124

3 of 3 Page

Analytical Results

Client: Project: BE&K Terranext WVBA/#03103154

Sample Matrix:

Water

Service Request: X2300207 **Date Collected:** 03/12/2003

Date Received: 03/12/2003

Volatile Organic Compounds

Sample Name: Lab Code:

AVB101-0404-1000 X2300207-006

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

				Dilution	Date	Date	
Analyte Name	Result	Q	MRL	Factor	Extracted		Arizona Qualifier
Dichlorodifluoromethane	ND	U	3.0	1	03/23/03	03/23/03	N1V4
Chloromethane	ND	U	2.0	1	03/23/03	03/23/03	
Vinyl Chloride	ND	U	1.0	1	03/23/03	03/23/03	
Bromomethane	ND	U	1.0	1	03/23/03	03/23/03	
Chloroethane	ND		1.0	1	03/23/03	03/23/03	
Trichlorofluoromethane	ND		1.0	1	03/23/03	03/23/03	
1,1,2-Trichlorotrifluoroethane	ND	U	1.0	1	03/23/03	03/23/03	
1,1-Dichloroethene	ND		1.0	1	03/23/03	03/23/03	
Acetone	ND		10	1	03/23/03	03/23/03	
Iodomethane	ND		2.0	1	03/23/03	03/23/03	,
Carbon Disulfide	ND		2.0	1	03/23/03	03/23/03	
Methylene Chloride	ND		1.0	1	03/23/03	03/23/03	L1
	ND		1.0	1	03/23/03	03/23/03	
Methyl tert-Butyl Ether trans-1,2-Dichloroethene	ND		0.50	1	03/23/03	03/23/03	
1,1-Dichloroethane	ND		0.50	1	03/23/03	03/23/03	
	ND		3.0	1	03/23/03	03/23/03	
Vinyl Acetate	ND		2.0	1	03/23/03	03/23/03	
2,2-Dichloropropane 2-Butanone (MEK)	ND		8.0	1	03/23/03	03/23/03	L2
	ND		0.50	1	03/23/03	03/23/03	
cis-1,2-Dichloroethene	ND ND		0.50	î	03/23/03	03/23/03	
Bromochloromethane	ND		1.0	ĩ	03/23/03	03/23/03	
Chloroform	ND ND		0.50	1	03/23/03	03/23/03	
1,1,1-Trichloroethane	ND ND		0.50	1	03/23/03	03/23/03	
Carbon Tetrachloride	ND ND		0.50	1	03/23/03	03/23/03	
1,1-Dichloropropene				1	03/23/03	03/23/03	
Benzene	ND		0.50 0.50	1	03/23/03	03/23/03	
1,2-Dichloroethane	ND		0.50	1	03/23/03	03/23/03	
Trichloroethene	ND				03/23/03	03/23/03	
1,2-Dichloropropane	ND		0.50	1	03/23/03	03/23/03	
Dibromomethane	ND		0.50	1	03/23/03	03/23/03	
Bromodichloromethane	ND		0.50	1			
cis-1,3-Dichloropropene	ND		0.50	1	03/23/03	03/23/03	
4-Methyl-2-pentanone (MIBK)	ND		8.0	. 1	03/23/03	03/23/03 03/23/03	
Toluene	ND	U	0.50	1	03/23/03	03/23/03	

Comments:

Printed: 03/26/2003 15:06:10 L:\STEALTH\CRYSTAL.RPT\Form1m.rpt

Merged

Form 1A - Organic

RR3124 SuperSet Reference:

Page 1 of 3

Analytical Results

Client: Project: BE&K Terranext WVBA/#03103154

Sample Matrix:

Water

Service Request: X2300207

Date Collected: 03/12/2003 **Date Received:** 03/12/2003

Volatile Organic Compounds

Sample Name: Lab Code:

AVB101-0404-1000 X2300207-006

Extraction Method: Analysis Method:

EPA 5030B 8260B

Units: ug/L Basis: NA

Level: Low

Anglesta Namo	Result Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Arizona Qualifier
Analyte Name	ND U	1.0	1	03/23/03	03/23/03	
trans-1,3-Dichloropropene 1,1,2-Trichloroethane	ND U	1.0	î	03/23/03	03/23/03	
Tetrachloroethene	ND U	0.50	1	03/23/03	03/23/03	
2-Hexanone	ND U	5.0	1	03/23/03	03/23/03	
1,3-Dichloropropane	ND U	1.0	1	03/23/03	03/23/03	
Dibromochloromethane	ND U	0.50	1	03/23/03	03/23/03	
1,2-Dibromoethane	ND U	0.50	1	03/23/03	03/23/03	
Chlorobenzene	ND U	0.50	1	03/23/03	03/23/03	
1,1,1,2-Tetrachloroethane	ND U	0.50	1	03/23/03	03/23/03	
Ethylbenzene	ND U	0.50	1	03/23/03	03/23/03	
m,p-Xylenes	ND U	1.0	1	03/23/03	03/23/03	
o-Xylene	ND U	0.50	1	03/23/03	03/23/03	
Styrene	ND U	0.50	1	03/23/03	03/23/03	
Isopropylbenzene	ND U	0.50	1	03/23/03	03/23/03	*
Bromobenzene	ND U	0.50	1	03/23/03	03/23/03	
1,2,3-Trichloropropane	ND U	1.0	1	03/23/03	03/23/03	
n-Propylbenzene	ND U	0.50	1	03/23/03	03/23/03	
2-Chlorotoluene	ND U	0.50	1	03/23/03	03/23/03	
4-Chlorotoluene	ND U	0.50	1	03/23/03	03/23/03	
1,3,5-Trimethylbenzene	ND U	0.50	1	03/23/03	03/23/03	
tert-Butylbenzene	ND U	0.50	1	03/23/03	03/23/03	
1,2,4-Trimethylbenzene	ND U	0.50	1	03/23/03	03/23/03	
sec-Butylbenzene	ND U	0.50	1	03/23/03	03/23/03	
1,3-Dichlorobenzene	ND U	0.50	1	03/23/03	03/23/03	
4-Isopropyltoluene	ND U	0.50	1	03/23/03	03/23/03	
Bromoform	ND U	0.50	1	03/23/03	03/23/03	
1,1,2,2-Tetrachloroethane	ND U	1.0	1	03/23/03	03/23/03	
1,4-Dichlorobenzene	ND U	0.50	1	03/23/03	03/23/03	
1,2-Dichlorobenzene	ND U	0.50	1	03/23/03	03/23/03	
n-Butylbenzene	ND U	0.50	11	03/23/03	03/23/03	
1,2-Dibromo-3-chloropropane	ND U	5.0	1	03/23/03	03/23/03	
1,2,4-Trichlorobenzene	ND U	0.50	1	03/23/03	03/23/03	
Hexachlorobutadiene	ND U	0.50	1	03/23/03	03/23/03	

Comments:

Printed: 03/26/2003 15:06:10 L:\STEALTH\CRYSTAL.RPT\Form1m.rpt

Merged

Form 1A - Organic

2 of 3 Page

Analytical Results

Client: Project:

BE&K Terranext WVBA/#03103154

Sample Matrix:

Water

our results

Service Request: X2300207

Date Collected: 03/12/2003

Date Received: 03/12/2003

Volatile Organic Compounds

Sample Name:

AVB101-0404-1000

Lab Code:

X2300207-006

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

			Dilution	Date	Date	
Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed	Arizona Qualifier
Naphthalene	ND U	3.0	1	03/23/03	03/23/03	
1,2,3-Trichlorobenzene	ND U	0.50	1	03/23/03	03/23/03	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Arizona Qualifier	
Dibromofluoromethane	92	84-113	03/23/03		
Toluene-d8	104	68-126	03/23/03		
4-Bromofluorobenzene	97	79-113	03/23/03		

Comments:

Merged

Analytical Results

Client: **Project:** BE&K Terranext WVBA/#03103154

Sample Matrix:

Water

Service Request: X2300207

Date Collected: 03/12/2003

Date Received: 03/12/2003

Volatile Organic Compounds

Sample Name:

AVB101-0401-14000

Lab Code:

X2300207-007

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

				Dilution	Date	Date	Arizona Qualifier
Analyte Name	Result		MRL	Factor	Extracted		Arizona Quanner
Dichlorodifluoromethane	ND		3.0	1	03/24/03	03/24/03	
Chloromethane	ND		2.0	1	03/24/03	03/24/03	
Vinyl Chloride	ND	U	1.0	1	03/24/03	03/24/03	
Bromomethane	ND	U	1.0	1	03/24/03	03/24/03	
Chloroethane	ND	U	1.0	1	03/24/03	03/24/03	
Trichlorofluoromethane	ND	U	1.0	1	03/24/03	03/24/03	
1,1,2-Trichlorotrifluoroethane	1.8		1.0	1	03/24/03	03/24/03	
1,1-Dichloroethene	ND	U	1.0	1	03/24/03	03/24/03	
Acetone	ND	U	10	1	03/24/03	03/24/03	
Iodomethane	ND	IJ	2.0	1	03/24/03	03/24/03	
Carbon Disulfide	ND		2.0	1	03/24/03	03/24/03	
Methylene Chloride	ND		1.0	1	03/24/03	03/24/03	
	ND		1.0	1	03/24/03	03/24/03	
Methyl tert-Butyl Ether trans-1,2-Dichloroethene	ND		0,50	1	03/24/03	03/24/03	
1.1-Dichloroethane	ND		0.50	1	03/24/03	03/24/03	
	ND		3.0	1	03/24/03	03/24/03	
Vinyl Acetate	ND ND		2.0	1	03/24/03	03/24/03	
2,2-Dichloropropane	ND ND		8.0	1	03/24/03	03/24/03	
2-Butanone (MEK)			0.50	1	03/24/03	03/24/03	
cis-1,2-Dichloroethene	1.6 ND		0.50	1	03/24/03	03/24/03	
Bromochloromethane	3.4		1.0	1	03/24/03	03/24/03	
Chloroform					03/24/03	03/24/03	
1,1,1-Trichloroethane	ND		0.50	1 1	03/24/03	03/24/03	
Carbon Tetrachloride	ND		0.50 0.50	1	03/24/03	03/24/03	
1,1-Dichloropropene	ND					03/24/03	
Benzene	ND		0.50	1	03/24/03 03/24/03	03/24/03	
1,2-Dichloroethane	0.54		0.50	1	03/24/03	03/24/03	
Trichloroethene	64		0.50	1			
1,2-Dichloropropane	ND		0.50	1	03/24/03	03/24/03	
Dibromomethane		U	0.50	1	03/24/03	03/24/03	
Bromodichloromethane	ND	Ų	0.50	1	03/24/03	03/24/03	
cis-1,3-Dichloropropene	NE	U	0.50	1	03/24/03	03/24/03	
4-Methyl-2-pentanone (MIBK)	NE	U	8.0	1	03/24/03	03/24/03	
Toluene	NE	U	0.50	1	03/24/03	03/24/03	

Comments:

Printed: 03/26/2003 15:06:22 L:\STEALTH\CRYSTAL.RPT\Form1m.rpt

Merged

Form 1A - Organic

000027

Page 1 of 3

Analytical Results

Client: Project: BE&K Terranext WVBA/#03103154

Sample Matrix:

Water

Service Request: X2300207

Date Collected: 03/12/2003 **Date Received:** 03/12/2003

Volatile Organic Compounds

Sample Name:

AVB101-0401-14000

Lab Code:

X2300207-007

Extraction Method:

EPA 5030B

X2300207-007

Units: ug/L Basis: NA Level: Low

Analysis Method: 8260B

			Dilution	Date	Date	
Analyte Name	Result Q	MRL	Factor	Extracted		Arizona Qualifier
trans-1,3-Dichloropropene	ND U	1.0	1	03/24/03	03/24/03	
1,1,2-Trichloroethane	ND U	1.0	1	03/24/03	03/24/03	
Tetrachloroethene	19	0.50	1	03/24/03	03/24/03	
2-Hexanone	ND U	5.0	1	03/24/03	03/24/03	
1,3-Dichloropropane	ND U	1.0	1	03/24/03	03/24/03	
Dibromochloromethane	ND U	0.50	1	03/24/03	03/24/03	
1,2-Dibromoethane	ND U	0.50	1	03/24/03	03/24/03	
Chlorobenzene	ND U	0.50	1	03/24/03	03/24/03	
1,1,1,2-Tetrachloroethane	ND U	0.50	1	03/24/03	03/24/03	
	ND U	0.50	1	03/24/03	03/24/03	
Ethylbenzene	ND U	1.0	1	03/24/03	03/24/03	
m,p-Xylenes o-Xylene	ND U	0.50	1	03/24/03	03/24/03	
	ND U	0.50	1	03/24/03	03/24/03	
Styrene Isopropylbenzene	ND U	0.50	1	03/24/03	03/24/03	
Bromobenzene	ND U	0.50	1	03/24/03	03/24/03	
	ND U	1.0	1	03/24/03	03/24/03	
1,2,3-Trichloropropane	ND U	0.50	1	03/24/03	03/24/03	
n-Propylbenzene	ND U	0.50	1	03/24/03	03/24/03	
2-Chlorotoluene		0.50	1	03/24/03	03/24/03	
4-Chlorotoluene	ND U	0.50	1	03/24/03	03/24/03	
1,3,5-Trimethylbenzene	ND U	0.50	1	03/24/03	03/24/03	
tert-Butylbenzene	ND U					
1,2,4-Trimethylbenzene	ND U	0.50	1	03/24/03	03/24/03 03/24/03	
sec-Butylbenzene	ND U	0.50	1	03/24/03		
1,3-Dichlorobenzene	ND U	0.50	1	03/24/03	03/24/03	
4-Isopropyltoluene	ND U	0.50	1	03/24/03	03/24/03	
Bromoform	ND U	0.50	1	03/24/03	03/24/03	
1,1,2,2-Tetrachloroethane	ND U	1.0	1	03/24/03	03/24/03	
1,4-Dichlorobenzene	ND U	0.50	1	03/24/03	03/24/03	
1,2-Dichlorobenzene	ND U	0.50	1	03/24/03	03/24/03	
n-Butylbenzene	ND U	0.50	1	03/24/03	03/24/03	
1.2-Dibromo-3-chloropropane	ND U	5.0	1	03/24/03	03/24/03	
1,2,4-Trichlorobenzene	ND U	0.50	1	03/24/03	03/24/03	
Hexachlorobutadiene	ND U	0.50	1	03/24/03	03/24/03	

Comments:

Printed: 03/26/2003 15:06:22 L:\STEALTH\CRYSTAL.RPT\Form\lm.rpt

Merged

Form 1A - Organic

Page 2 of 3

Analytical Results

Client: Project: BE&K Terranext WVBA/#03103154

Sample Matrix:

Water

Service Request: X2300207 Date Collected: 03/12/2003

Date Received: 03/12/2003

Volatile Organic Compounds

Sample Name:

AVB101-0401-14000

Lab Code:

X2300207-007

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

			Dilution	Date	Date	
Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed	Arizona Qualifier
Naphthalene	ND U	3.0	1	03/24/03	03/24/03	
1,2,3-Trichlorobenzene	ND U	0.50	1	03/24/03	03/24/03	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Arizona Qualifier	
Dibromofluoromethane	110	84-113	03/24/03		
Toluene-d8	115	68-126	03/24/03		
4-Bromofluorobenzene	108	79-113	03/24/03		

Comments:

Printed: 03/26/2003 15:06:22 L:\STEALTH\CRYSTAL.RPT\Form1m.rpt

Form 1A - Organic

Page

3 of 3

RR3124 SuperSet Reference:

Analytical Results

Client: Project: BE&K Terranext WVBA/#03103154

Sample Matrix:

Water

Service Request: X2300207 **Date Collected:** 03/12/2003

Date Received: 03/12/2003

Volatile Organic Compounds

Sample Name: Lab Code:

AVB101-0402-1000 X2300207-008

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

				Dilution	Date	Date	
Analyte Name	Result	Q	MRL	Factor	Extracted		Arizona Qualifier
Dichlorodifluoromethane	ND	U	3.0	1	03/23/03	03/23/03	N1V4
Chloromethane	ND	U	2.0	1	03/23/03	03/23/03	
Vinyl Chloride	ND	U	1.0	1	03/23/03	03/23/03	
Bromomethane	ND	U	1.0	1	03/23/03	03/23/03	
Chloroethane	ND	U	1.0	1	03/23/03	03/23/03	
Trichlorofluoromethane	ND	U	1.0	1	03/23/03	03/23/03	
1,1,2-Trichlorotrifluoroethane	ND	U	1.0	1	03/23/03	03/23/03	
1,1-Dichloroethene	ND	U	1.0	1	03/23/03	03/23/03	
Acetone	ND	U	10	1	03/23/03	03/23/03	4
Iodomethane	ND	U	2.0	1	03/23/03	03/23/03	
Carbon Disulfide	ND		2.0	1	03/23/03	03/23/03	
Methylene Chloride	ND	U	1.0	1	03/23/03	03/23/03	L1
Methyl tert-Butyl Ether	ND	U	1.0	1	03/23/03	03/23/03	
trans-1,2-Dichloroethene	ND		0.50	1	03/23/03	03/23/03	
1,1-Dichloroethane	ND		0.50	1	03/23/03	03/23/03	
Vinyl Acetate	ND	U	3.0	1	03/23/03	03/23/03	
2,2-Dichloropropane	ND		2.0	1	03/23/03	03/23/03	
2-Butanone (MEK)	ND		8.0	1	03/23/03	03/23/03	L2
cis-1,2-Dichloroethene	ND	U	0.50	1	03/23/03	03/23/03	
Bromochloromethane	ND	U	0.50	1	03/23/03	03/23/03	
Chloroform	ND	U	1.0	1	03/23/03	03/23/03	
1,1,1-Trichloroethane	ND	U	0.50	1	03/23/03	03/23/03	
Carbon Tetrachloride	ND		0.50	1	03/23/03	03/23/03	
1,1-Dichloropropene	ND	U	0.50	1	03/23/03	03/23/03	
Benzene	ND	U	0.50	1	03/23/03	03/23/03	
1,2-Dichloroethane	ND		0.50	1	03/23/03	03/23/03	
Trichloroethene	ND	U	0.50	1	03/23/03	03/23/03	
1,2-Dichloropropane	ND	U	0.50	1	03/23/03	03/23/03	
Dibromomethane	ND		0.50	1	03/23/03	03/23/03	
Bromodichloromethane	ND		0.50	1	03/23/03	03/23/03	
cis-1,3-Dichloropropene	ND	U	0.50	1	03/23/03	03/23/03	
4-Methyl-2-pentanone (MIBK)	ND		8.0	1	03/23/03	03/23/03	
Toluene	ND		0.50	1	03/23/03	03/23/03	

Comments:

Printed: 03/26/2003 15:06:34

Merged

Form 1A - Organic

1 of 3 Page

Analytical Results

Client: Project: BE&K Terranext WVBA/#03103154

Sample Matrix:

Water

Service Request: X2300207

Date Collected: 03/12/2003 **Date Received:** 03/12/2003

Volatile Organic Compounds

Sample Name:

AVB101-0402-1000

Lab Code:

X2300207-008

Extraction Method: Analysis Method:

EPA 5030B

8260B

Units: ug/L Basis: NA

Level: Low

				Dilution	Date	Date	~ ***
Analyte Name	Result	Q	MRL	Factor	Extracted		Arizona Qualifier
trans-1,3-Dichloropropene	ND	U	1.0	1	03/23/03	03/23/03	
1,1,2-Trichloroethane	ND	Ũ	1.0	1	03/23/03	03/23/03	
Tetrachloroethene	ND	U	0.50	1	03/23/03	03/23/03	
2-Hexanone	ND	U	5.0	1	03/23/03	03/23/03	
1,3-Dichloropropane	ND		1.0	1	03/23/03	03/23/03	
Dibromochloromethane	ND		0.50	1	03/23/03	03/23/03	
	ND		0.50	1	03/23/03	03/23/03	
1,2-Dibromoethane	ND		0.50	1	03/23/03	03/23/03	
Chlorobenzene 1,1,1,2-Tetrachloroethane	ND		0.50	1	03/23/03	03/23/03	
	ND		0.50	1	03/23/03	03/23/03	
Ethylbenzene	ND ND		1.0	1	03/23/03	03/23/03	
m,p-Xylenes	ND ND		0.50	1	03/23/03	03/23/03	
o-Xylene			0.50	1	03/23/03	03/23/03	
Styrene			0.50	1	03/23/03	03/23/03	
Isopropylbenzene	ND		0.50	1	03/23/03	03/23/03	
Bromobenzene	ND				03/23/03	03/23/03	
1,2,3-Trichloropropane	ND		1.0	1	03/23/03	03/23/03	
n-Propylbenzene	ND		0.50	1 1	03/23/03	03/23/03	
2-Chlorotoluene	ND		0.50			03/23/03	
4-Chlorotoluene	ND		0.50	1	03/23/03	03/23/03	
1,3,5-Trimethylbenzene	ND		0.50	1	03/23/03	03/23/03	
tert-Butylbenzene	ND	U	0.50	1	03/23/03		
1,2,4-Trimethylbenzene	ND	U	0.50	1	03/23/03	03/23/03	
sec-Butylbenzene	ND	U	0.50	1	03/23/03	03/23/03	
1,3-Dichlorobenzene	ND	U	0.50	1	03/23/03	03/23/03	
4-Isopropyltoluene	ND	U	0.50	1	03/23/03	03/23/03	
Bromoform	ND	U	0.50	1	03/23/03	03/23/03	
1,1,2,2-Tetrachloroethane	ND	U	1.0	1	03/23/03	03/23/03	
1,4-Dichlorobenzene	ND	U	0.50	1	03/23/03	03/23/03	
1,2-Dichlorobenzene	ND		0.50	1	03/23/03	03/23/03	
n-Butylbenzene	ND		0.50	1	03/23/03	03/23/03	
1,2-Dibromo-3-chloropropane	ND		5.0	1	03/23/03	03/23/03	
1,2,4-Trichlorobenzene		U	0.50	1	03/23/03	03/23/03	
Hexachlorobutadiene		U	0.50	1	03/23/03	03/23/03	
Ticacinorodutatione							

Comments:

Printed: 03/26/2003 15:06:34 L:\STEALTH\CRYSTAL.RPT\Form1m.rpt

Merged

Form 1A - Organic

SuperSet Reference:

RR3124

Page 2 of 3

Analytical Results

Client:

BE&K Terranext WVBA/#03103154

Project: Sample Matrix:

Water

Service Request: X2300207 **Date Collected:** 03/12/2003

Date Received: 03/12/2003

Volatile Organic Compounds

Sample Name:

AVB101-0402-1000

Lab Code:

X2300207-008

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

			Dilution	Date	Date	
Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed	Arizona Qualifier
Naphthalene 1,2,3-Trichlorobenzene	ND U ND U	3.0 0.50	1 1	03/23/03 03/23/03	03/23/03 03/23/03	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Arizona Qualifier	
Dibromofluoromethane	94	84-113	03/23/03		
Toluene-d8	112	68-126	03/23/03		
4-Bromofluorobenzene	94	79-113	03/23/03		

Comments:

Printed: 03/26/2003 15:06:34

Merged

Form 1A - Organic

SuperSet Reference:

RR3124

Page 3 of 3

000032

Analytical Results

Client: Project: BE&K Terranext WVBA/#03103154

Sample Matrix:

Water

Service Request: X2300207

Date Collected: NA Date Received: NA

Volatile Organic Compounds

Sample Name: Lab Code:

Method Blank XWG0300381-5

Extraction Method: EPA 5030B

Units: ug/L Basis: NA

Level: Low

	O11 1	
Analysis	Method:	8260B

	D14	0	MRL	Dilution Factor	Date Extracted	Date Analyzed	Arizona Qualifier
Analyte Name	Result				03/23/03	03/23/03	N1V4
Dichlorodifluoromethane	ND		3.0	1 1	03/23/03	03/23/03	INIVT
Chloromethane	ND ND		2.0 1.0	1	03/23/03	03/23/03	
Vinyl Chloride						03/23/03	
Bromomethane	ND		1.0	1	03/23/03 03/23/03	03/23/03	
Chloroethane	ND		1.0	1	03/23/03	03/23/03	
Trichlorofluoromethane	ND		1.0	1			
1,1,2-Trichlorotrifluoroethane	ND		1.0	1	03/23/03	03/23/03	
1,1-Dichloroethene	ND		1.0	1	03/23/03	03/23/03	
Acetone	ND	U	10	1	03/23/03	03/23/03	
Iodomethane	ND	U	2.0	1	03/23/03	03/23/03	
Carbon Disulfide	ND	U	2.0	1	03/23/03	03/23/03	
Methylene Chloride	ND	U	1.0	1	03/23/03	03/23/03	L1
Methyl tert-Butyl Ether	ND	U	1.0	1	03/23/03	03/23/03	
trans-1,2-Dichloroethene	ND	U	0.50	1	03/23/03	03/23/03	
1,1-Dichloroethane	ND	U	0.50	1	03/23/03	03/23/03	
Vinyl Acetate	ND	U	3.0	1	03/23/03	03/23/03	
2,2-Dichloropropane	ND	U	2.0	1	03/23/03	03/23/03	
2-Butanone (MEK)	ND	U	8.0	1	03/23/03	03/23/03	L2
cis-1,2-Dichloroethene	ND	U	0.50	1	03/23/03	03/23/03	
Bromochloromethane	ND	U	0.50	1	03/23/03	03/23/03	
Chloroform	ND	U	1.0	1	03/23/03	03/23/03	
1,1,1-Trichloroethane	ND	U	0.50	1	03/23/03	03/23/03	
Carbon Tetrachloride	ND	U	0.50	1	03/23/03	03/23/03	
1,1-Dichloropropene	ND	U	0.50	1	03/23/03	03/23/03	
Benzene	ND		0.50	1	03/23/03	03/23/03	
1,2-Dichloroethane	ND		0.50	1	03/23/03	03/23/03	
Trichloroethene	ND	U	0.50	1	03/23/03	03/23/03	
1,2-Dichloropropane	ND		0.50	1	03/23/03	03/23/03	
Dibromomethane	ND		0.50	1	03/23/03	03/23/03	
Bromodichloromethane	ND		0.50	11	03/23/03	03/23/03	
cis-1,3-Dichloropropene	ND		0.50	1	03/23/03	03/23/03	
4-Methyl-2-pentanone (MIBK)	ND		8.0	1	03/23/03	03/23/03	
Toluene	ND	Ŭ	0.50	1	03/23/03	03/23/03	

Comments:

Printed: 03/26/2003 15:06:46

Form 1A - Organic

Merged

SuperSet Reference:

RR3124

Page 1 of 3

Analytical Results

Client: **Project:** BE&K Terranext WVBA/#03103154

Sample Matrix:

Water

Service Request: X2300207

Date Collected: NA Date Received: NA

Volatile Organic Compounds

Sample Name: Lab Code:

Method Blank XWG0300381-5

Extraction Method: Analysis Method:

EPA 5030B 8260B

Units: ug/L Basis: NA

Level: Low

			Dilution	Date	Date	
Result	Q	MRL	Factor	Extracted	Analyzed	Arizona Qualifier
		1.0	1	03/23/03	03/23/03	
		1.0	1			
ND	U	0.50	1	03/23/03	03/23/03	
ND	U	5.0	1	03/23/03	03/23/03	
		1.0	1	03/23/03		
		0.50	1	03/23/03	03/23/03	
		0.50	1	03/23/03	03/23/03	
			1	03/23/03	03/23/03	
		0.50	1	03/23/03	03/23/03	
		0.50	1	03/23/03	03/23/03	
				03/23/03	03/23/03	
			1	03/23/03	03/23/03	
			1	03/23/03	03/23/03	
				03/23/03	03/23/03	
				03/23/03	03/23/03	
				03/23/03	03/23/03	
			1			
			1		03/23/03	
					03/23/03	
			1			
			1			
ND	U		Ţ			
			1			
ND	U					
ND	U	0.50	1			
ND	U	5.0	1			
		0.50	1			
NE	U	0.50	1	03/23/03	03/23/03	
		Result Q ND U ND	ND U 1.0 ND U 1.0 ND U 0.50 ND U 5.0 ND U 1.0 ND U 0.50	Result Q MRL Factor ND U 1.0 1 ND U 1.0 1 ND U 1.0 1 ND U 0.50 1 ND U 1.0 1 ND U 0.50 1	Result Q MRL Factor Extracted ND U 1.0 1 03/23/03 ND U 1.0 1 03/23/03 ND U 0.50 1 03/23/03 ND U 5.0 1 03/23/03 ND U 1.0 1 03/23/03 ND U 0.50 1 03/23/03 <td> NB U</td>	NB U

Comments:

Printed: 03/26/2003 15:06:46 L:\STEALTH\CRYSTAL.RPT\Form1m.rpt

Form 1A - Organic

2 of 3 Page

Merged

Analytical Results

Client:

BE&K Terranext WVBA/#03103154

Project: Sample Matrix:

Water

Service Request: X2300207

Date Collected: NA
Date Received: NA

Volatile Organic Compounds

Sample Name: Lab Code: Method Blank XWG0300381-5 Units: ug/L Basis: NA

Extraction Method:

EPA 5030B

Level: Low

Analysis Method:

8260B

			Dilution	Date	Date	
Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed	Arizona Qualifier
Naphthalene 1,2,3-Trichlorobenzene	ND U	3.0 0.50	1 1	03/23/03 03/23/03	03/23/03 03/23/03	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Arizona Qualifier
Dibromofluoromethane	92	84-113 68-126	03/23/03 03/23/03	
Toluene-d8 4-Bromofluorobenzene	102 96	79-113	03/23/03	

Comments:

Merged

Analytical Results

Client: Project: BE&K Terranext WVBA/#03103154

Sample Matrix:

Water

Service Request: X2300207

Date Collected: NA
Date Received: NA

Volatile Organic Compounds

Sample Name: Lab Code: Method Blank XWG0300385-3

Extraction Method: Analysis Method:

EPA 5030B 8260B Units: ug/L Basis: NA

Level: Low

				Dilution	Date	Date	
Analyte Name	Result	Q	MRL	Factor	Extracted	Analyzed	Arizona Qualifier
Dichlorodifluoromethane	ND	U	3.0	1	03/24/03	03/24/03	
Chloromethane	ND		2.0	1	03/24/03	03/24/03	
Vinyl Chloride	ND	U	1.0	1	03/24/03	03/24/03	
Bromomethane	ND	U	1.0	1	03/24/03	03/24/03	
Chloroethane			1.0	1	03/24/03	03/24/03	
Trichlorofluoromethane	ND		1.0	1	03/24/03	03/24/03	
1.1.2-Trichlorotrifluoroethane	ND	IJ	1.0	1	03/24/03	03/24/03	
1,1-Dichloroethene	ND		1.0	1	03/24/03	03/24/03	
Acetone	ND		10	1	03/24/03	03/24/03	
Iodomethane	ND	IJ	2.0	1	03/24/03	03/24/03	
Carbon Disulfide	ND		2.0	1	03/24/03	03/24/03	
Methylene Chloride	ND		1.0	1	03/24/03	03/24/03	
Methyl tert-Butyl Ether	ND		1.0	1	03/24/03	03/24/03	
trans-1,2-Dichloroethene	ND		0.50	1	03/24/03	03/24/03	
1,1-Dichloroethane	ND		0.50	1	03/24/03	03/24/03	
<u> </u>	ND		3.0	1	03/24/03	03/24/03	
Vinyl Acetate 2,2-Dichloropropane	ND		2.0	1	03/24/03	03/24/03	
2-Butanone (MEK)	ND		8.0	1	03/24/03	03/24/03	
cis-1,2-Dichloroethene	ND		0.50	1	03/24/03	03/24/03	
Bromochloromethane	ND		0.50	1	03/24/03	03/24/03	
Chloroform	ND		1.0	1	03/24/03	03/24/03	
	ND		0.50	1	03/24/03	03/24/03	
1,1,1-Trichloroethane Carbon Tetrachloride	ND ND		0.50	1	03/24/03	03/24/03	
1,1-Dichloropropene	ND		0.50	1	03/24/03	03/24/03	
	ND		0.50	1	03/24/03	03/24/03	
Benzene	ND ND		0.50	1	03/24/03	03/24/03	
1,2-Dichloroethane	ND ND		0.50	1	03/24/03	03/24/03	
Trichloroethene				1	03/24/03	03/24/03	
1,2-Dichloropropane	ND		0.50	1	03/24/03	03/24/03	
Dibromomethane	ND		0.50	1	03/24/03	03/24/03	
Bromodichloromethane	ND		0.50				
cis-1,3-Dichloropropene	ND		0.50	1	03/24/03	03/24/03 03/24/03	
4-Methyl-2-pentanone (MIBK)	ND		8.0	1	03/24/03 03/24/03	03/24/03	
Toluene	ND	U ———	0.50	1	03/24/03	03/24/03	

Comments:

Printed: 03/26/2003 15:06:58 L:\STEALTH\CRYSTAL.RPT\Form\m.rpt

Merged

Form 1A - Organic

Page 1 of 3

Analytical Results

Client: Project: BE&K Terranext WVBA/#03103154

Sample Matrix:

Water

Service Request: X2300207

Date Collected: NA Date Received: NA

Volatile Organic Compounds

Sample Name: Lab Code:

Method Blank XWG0300385-3

Extraction Method: EPA 5030B **Analysis Method:**

8260B

Units: ug/L Basis: NA

Level: Low

				Dilution	Date	Date	
Analyte Name	Result	Q	MRL	Factor	Extracted		Arizona Qualifier
trans-1,3-Dichloropropene	ND	U	1.0	1	03/24/03	03/24/03	
1,1,2-Trichloroethane	ND	U	1.0	1	03/24/03	03/24/03	
Tetrachloroethene	ND	U	0.50	1	03/24/03	03/24/03	
2-Hexanone	ND	U	5.0	1	03/24/03	03/24/03	
1,3-Dichloropropane	ND	U	1.0	1	03/24/03	03/24/03	
Dibromochloromethane	ND	U	0.50	1	03/24/03	03/24/03	
1,2-Dibromoethane	ND	U	0.50	1	03/24/03	03/24/03	
Chlorobenzene	ND		0.50	1	03/24/03	03/24/03	
1,1,1,2-Tetrachloroethane	ND		0.50	1	03/24/03	03/24/03	
Ethylbenzene	ND	U	0.50	1	03/24/03	03/24/03	
m,p-Xylenes	ND		1.0	1	03/24/03	03/24/03	
o-Xylene	ND		0.50	1	03/24/03	03/24/03	
Styrene	ND		0.50	1	03/24/03	03/24/03	
Isopropylbenzene	ND		0.50	1	03/24/03	03/24/03	
Bromobenzene	ND		0.50	1	03/24/03	03/24/03	
	ND		1.0	1	03/24/03	03/24/03	
1,2,3-Trichloropropane n-Propylbenzene	ND ND		0.50	î	03/24/03	03/24/03	
2-Chlorotoluene	ND		0.50	1	03/24/03	03/24/03	
	ND		0.50	1	03/24/03	03/24/03	
4-Chlorotoluene	ND ND		0.50	1	03/24/03	03/24/03	
1,3,5-Trimethylbenzene tert-Butylbenzene	ND ND		0.50	1	03/24/03	03/24/03	
	ND		0.50	1	03/24/03	03/24/03	
1,2,4-Trimethylbenzene	ND ND		0.50	1	03/24/03	03/24/03	
sec-Butylbenzene	ND ND		0.50	1	03/24/03	03/24/03	
1,3-Dichlorobenzene				1	03/24/03	03/24/03	
4-Isopropyltoluene	ND		0.50 0.50	1	03/24/03	03/24/03	
Bromoform	ND		1.0	1	03/24/03	03/24/03	
1,1,2,2-Tetrachloroethane	ND					03/24/03	
1,4-Dichlorobenzene	ND		0.50	1	03/24/03	03/24/03	
1,2-Dichlorobenzene	ND		0.50	1	03/24/03	03/24/03	
n-Butylbenzene	ND		0.50	1	03/24/03		
1,2-Dibromo-3-chloropropane	ND		5.0	1	03/24/03	03/24/03	
1,2,4-Trichlorobenzene	ND		0.50	1	03/24/03	03/24/03	
Hexachlorobutadiene	ND	U	0.50	1	03/24/03	03/24/03	

Comments:

Printed: 03/26/2003 15:06:58 $\verb|L:\STEALTH\CRYSTAL.RPT\Form\Im.rpt| \\$

Merged

Form 1A - Organic

Page 2 of 3

SuperSet Reference:

Analytical Results

Client:

BE&K Terranext WVBA/#03103154

Project: Sample Matrix:

Water

Service Request: X2300207

Date Collected: NA Date Received: NA

Volatile Organic Compounds

Sample Name: Lab Code:

Method Blank XWG0300385-3

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

			Dilution	Date	Date	`
Analyte Name	Result O	MRL	Factor	Extracted	Analyzed	Arizona Qualifier
Naphthalene 1,2,3-Trichlorobenzene	ND U ND U	3.0 0.50	1 1	03/24/03 03/24/03	03/24/03 03/24/03	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Arizona Qualifier
Dibromofluoromethane	104	84-113	03/24/03	
Toluene-d8	104	68-126	03/24/03	
4-Bromofluorobenzene	102	79-113	03/24/03	

Comments:

Printed: 03/26/2003 15:06:58 L:\STEALTH\CRYSTAL.RPT\Form1m.rpt

Merged

Form 1A - Organic

SuperSet Reference:

3 of 3 Page

QA/QC Report

Client:

BE&K Terranext WVBA/#03103154

Project: Sample Matrix:

Water

Service Request: X2300207

Surrogate Recovery Summary Volatile Organic Compounds

Extraction Method: Analysis Method:

EPA 5030B

8260B

Units: PERCENT

Level: Low

Sample Name	Lab Code	Sur1	Sur2	Sur3
AVB93-0100-03130	X2300207-001	88	106	92
AVB20-0300-02126	X2300207-002	93	110	96
AVB100-0100-02131	X2300207-003	92	107	98
AVB101-0100-13115	X2300207-004	111	116	110
AVB101-0400-14000	X2300207-005	114 S1	116	108
AVB101-0404-1000	X2300207-006	92	104	97
AVB101-0401-14000	X2300207-007	110	115	108
AVB101-0402-1000	X2300207-008	94	112	94
Method Blank	XWG0300381-5	92	102	96
Method Blank	XWG0300385-3	104	104	102
Batch QC	X2300213-004	110	112	107
AVB101-0400-14000MS	XWG0300381-1	93	110	100
AVB101-0400-14000DMS	XWG0300381-2	89	108	96
Batch QCMS	XWG0300385-4	105	112	115 S1
Batch QCDMS	XWG0300385-5	102	110	113
Lab Control Sample	XWG0300381-3	91	102	96
Duplicate Lab Control Sample	XWG0300381-4	87	100	94
Lab Control Sample	XWG0300385-1	100	103	109
Duplicate Lab Control Sample	XWG0300385-2	100	100	109

Surrogate Recovery Control Limits (%)

84-113 Sur1 = Dibromofluoromethane 68-126 Sur2 = Toluene-d879-113 Sur3 = 4-Bromofluorobenzene

Results flagged with an asterisk (*) indicate values outside control criteria. Results flagged with a pound (#) indicate the control criteria is not applicable.

Printed: 03/26/2003 15:07:17 L:\STEALTH\CRYSTAL.RPT\Form2.rpt

Form 2A - Organic

000039

Page

1 of 1

SuperSet Reference:

QA/QC Report

Client: Project: BF&K Terranext WVBA/#03103154

Sample Matrix:

Water

Service Request: X2300207

Date Extracted: 03/23/2003 **Date Analyzed:** 03/23/2003

Matrix Spike/Duplicate Matrix Spike Summary Volatile Organic Compounds

Sample Name:

AVB101-0400-14000

Lab Code:

X2300207-005

Extraction Method: Analysis Method:

EPA 5030B

8260B

Units: ug/L

Basis: NA

Level: Low

Extraction Lot: XWG0300381

AVB101-0400-14000MS XWG0300381-1

AVB101-0400-14000DMS XWG0300381-2

Duplicate Matrix Spike Matrix Spike **RPD** %Rec Sample Limit RPD %Rec Limits %Rec Expected Result Result Result **Expected Analyte Name** 8 20 77 M2 78-207 7.67 10.0 10.0 83 8.32 ND Dichlorodifluoromethane 20 84 70-157 10 8.39 10.0 10.0 93 9.31 ND Chloromethane 79-174 12 20 93 9.33 10.0 10.5 10.0 105 ND Vinyl Chloride 20 44-150 8 10.0 109 10.9 11.8 10.0 118 ND Bromomethane 74-150 20 109 1 10.0 110 10.9 11.0 10.0 ND Chloroethane 20 5 80-134 10.8 10.0 108 114 ND 11.4 10.0 Trichlorofluoromethane 20 93 67-128 4 10.0 11.6 10.0 98 11.1 1.7 1.1.2-Trichlorotrifluoroethane 20 5 10.4 10.0 91 71-142 97 1.3 11.0 10.0 1.1-Dichloroethene 20 1-155 11 40.0 81 32.5 36.3 40.0 91 NDAcetone 20 47-120 6 33.3 40.0 83 88 35.2 40.0 ND Iodomethane 7 20 77-126 42.2 40.0 106 40.0 113 45.3 ND Carbon Disulfide 20 10.0 99 83-106 11 9.94 10.0 111 ND 11.1 Methylene Chloride 70-118 6 20 10.0 83 88 8.26 10.0 ND 8.80 Methyl tert-Butyl Ether 5 20 99 86-115 10.0 9.91 10.4 10.0 104 ND trans-1,2-Dichloroethene 20 3 77-127 10.0 109 113 10.9 10.0 ND 11.3 1.1-Dichloroethane 10 20 69 8-187 27.7 40.0 30.7 40.0 77 ND Vinyl Acetate 20 93 25-154 6 99 9 33 10.0 ND 9.92 10.0 2.2-Dichloropropane 67 90-112 17 20 40.0 79 26.8 31.7 40.0 ND 2-Butanone (MEK) 6 20 102 69-118 10.0 11.8 12.5 10.0 109 1.6 cis-1,2-Dichloroethene 20 47-136 15 77 10.0 10.0 90 7.73 ND 8.98 Bromochloromethane 20 2 87 48-143 12.0 10.0 12.2 10.0 90 3.3 Chloroform

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

40.0

10.0

92

90

105

100

85

-20

99

82

87

91

83

104

M3m

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

9.15

8.96

10.5

10.0

8.99

58.4

9.91

8.16

8.66

9.12

33.3

10.4

ND

ND

ND

ND

0.52

60

ND

ND

ND

ND

ND

ND

Printed: 03/26/2003 15:07:24 L:\STEALTH\CRYSTAL.RPT\Form3DMS.rpt

1.1.1-Trichloroethane

Carbon Tetrachloride

1,1-Dichloropropene

1.2-Dichloroethane

1,2-Dichloropropane

Bromodichloromethane

cis-1,3-Dichloropropene

4-Methyl-2-pentanone (MIBK)

Trichloroethene

Dibromomethane

Benzene

Toluene

Form 3A - Organic

SuperSet Reference:

RR3124

84-122

79-120

85-117

88-114

75-112

85-107

82-106

83-107

70-114

54-129

86-114

M3 76-115

1

2

4

3

7

2

3

6

2

6

7

0

Page

20

20

20

20

20

20

20

20

20

20

20

20

1 of

9.25

8.75

10.1

9.73

8.38

57.4

9.57

7.70

8.50

8.60

35.6

10.4

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

40.0

10.0

93

88

101

97

79

-30

96

77 M2

85

86

89

104

OA/OC Report

Client: **Project:** BE&K Terranext WVBA/#03103154

Sample Matrix:

Water

Service Request: X2300207 **Date Extracted:** 03/23/2003

Date Analyzed: 03/23/2003

Matrix Spike/Duplicate Matrix Spike Summary Volatile Organic Compounds

Sample Name:

AVB101-0400-14000

Lab Code:

X2300207-005

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

Extraction Lot: XWG0300381

AVB101-0400-14000MS XWG0300381-1

AVB101-0400-14000DMS

XWG0300381-2

	Sample		VG0300381- Matrix Spike			cate Matrix S	pike	%Rec	RPD	RPD
Analyte Name	Result	Result	Expected	%Rec	Result	Expected	%Rec	Limits		Limit
trans-1,3-Dichloropropene	ND	8.19	10.0	82	8.09	10.0	81	73-112	1	20
1,1,2-Trichloroethane	ND	8.66	10.0	87	8.70	10.0	87	79-112	0	20
Tetrachloroethene	17	23.2	10.0	65 M2	22.9	10.0	62 M2	78-130	1	20
2-Hexanone	ND	28.6	40.0	72 M2	26.9	40.0	67 M2	77-112	6	20
1,3-Dichloropropane	ND	9.02	10.0	90	8.57	10.0	86	45-133	5	20
Dibromochloromethane	ND	8.44	10.0	84	8.14	10.0	81	74-108	4	20
1.2-Dibromoethane	ND	8.43	10.0	84	7.79	10.0	78	73-113	8	20
Chlorobenzene	ND	9.96	10.0	100	9.64	10.0	96	84-111	3	20
1,1,1,2-Tetrachloroethane	ND	9.74	10.0	97	9.42	10.0	94	84-119	3	20
Ethylbenzene	ND	10.3	10.0	103	10.3	10.0	103	47-136	0	20
m,p-Xylenes	ND	21.5	20.0	107	21.4	20.0	107	84-120	0	20
o-Xylene	ND	10.2	10.0	102	10.2	10.0	102	47-143	0	20
Styrene	ND	10.4	10.0	104	10.2	10.0	102	72-121	1	20
Isopropylbenzene	ND	9.99	10.0	100	9.95	10.0	100	63-108	0	20
Bromobenzene	ND	9.46	10.0	95	9.41	10.0	94	80-113	1	20
1,2,3-Trichloropropane	ND	8.71	10.0	87	8.70	10.0	87	78-119	0	20
n-Propylbenzene	ND	10.6	10.0	106	10.6	10.0	106	76-117	1	20
2-Chlorotoluene	ND	9.96	10.0	100	9.84	10.0	98	79-121	1	20
4-Chlorotoluene	ND	9.73	10.0	97	9.71	10.0	97	70-133	0	20
1,3,5-Trimethylbenzene	ND	10.3	10.0	103	10.1	10.0	101	79-118	3	20
tert-Butylbenzene	ND	10.3	10.0	103	10.1	10.0	101	77-120	2	20
1,2,4-Trimethylbenzene	ND	10.5	10.0	105	10.2	10.0	102	68-127	3	20
sec-Butylbenzene	ND	10.4	10.0	104	10.1	10.0	101	78-123	2	20
1,3-Dichlorobenzene	ND	9.84	10.0	98	9.39	10.0	94	78-127	5	20
4-Isopropyltoluene	ND	10.4	10.0	104	10.3	10.0	103	79-142	1	20
Bromoform	ND	7.97	10.0	80 M2	8.07	10.0	81 M2	83-111	1	20
1,1,2,2-Tetrachloroethane	ND	9.36	10.0	94	9.24	10.0	92	66-133	1	20
1,4-Dichlorobenzene	ND	9.59	10.0	96	9.72	10.0	97	48-139	1	20
1,2-Dichlorobenzene	ND	9.35	10.0	94	9.43	10.0	94	64-109	1	20
n-Butylbenzene	ND	10.5	10.0	105	10.7	10.0	107	69-122	2	20
1,2-Dibromo-3-chloropropane	ND	6.91	10.0	69	6.82	10.0	68	54-160	1	20
1,2,4-Trichlorobenzene	ND	10.2	10.0	102	10.1	10.0	101	39-145	1	20
Hexachlorobutadiene	ND	10.9	10.0	109	11.4	10.0	114 M1	74-113	4	20

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 03/26/2003 15:07:24 Form 3A - Organic 000041

Page 2 of 3

QA/QC Report

Client:

BE&K Terranext WVBA/#03103154

Project: Sample Matrix:

Water

Service Request: X2300207

Date Extracted: 03/23/2003

Date Analyzed: 03/23/2003

Matrix Spike/Duplicate Matrix Spike Summary Volatile Organic Compounds

Sample Name:

AVB101-0400-14000

Lab Code:

X2300207-005

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

Extraction Lot: XWG0300381

AVB101-0400-14000MS

AVB101-0400-14000DMS

XWG0300381-1

XWG0300381-2

	Comple	XWG0300381-1 Matrix Spike			Duplicate Matrix Spike			%Rec		RPD
Analyte Name	Sample Result	Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit
>	ND	8.99	10.0	90	8.41	10.0	84	44-167	7	20
Naphthalene 1,2,3-Trichlorobenzene	ND	9.87	10.0	99	10.1	10.0	101	37-158	2	20

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 03/26/2003 15:07:24 L:\STEALTH\CRYSTAL.RPT\Form3DMS.rpt Form 3A - Organic 000042 Page

3 of 3

QA/QC Report

Client: Project: BE&K Terranext WVBA/#03103154

Sample Matrix:

Water

Service Request: X2300207

Date Extracted: 03/24/2003 **Date Analyzed:** 03/24/2003

Matrix Spike/Duplicate Matrix Spike Summary Volatile Organic Compounds

Sample Name: Lab Code:

Batch QC

X2300213-004

Extraction Method: Analysis Method:

EPA 5030B

8260B

Units: ug/L

Basis: NA

Level: Low

Extraction Lot: XWG0300385

Batch QCMS XWG0300385-4

Batch OCDMS XWG0300385-5

	Sample	XWG0300385-4 Matrix Spike			Duplicate Matrix Spike			%Rec		RPD
Analyte Name	Result	Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit
Dichlorodifluoromethane	ND	13.9	10.0	139	13.4	10.0	134	78-207	4	20
Chloromethane	ND	10.7	10.0	107	10.5	10.0	105	70-157	2	20
Vinyl Chloride	ND	13.3	10.0	133	12.7	10.0	127	79-174	5	20
Bromomethane	ND	9.29	10.0	93	8.85	10.0	89	44-150	5	20
Chloroethane	ND	13.2	10.0	132	11.5	10.0	115	74-150	14	20
Trichlorofluoromethane	ND	13.9	10.0	139 M1	13.3	10.0	133	80-134	5	20
1,1,2-Trichlorotrifluoroethane	ND	13.4	10.0	134 M1	12.8	10.0	128	67-128	4	20
1,1-Dichloroethene	4.3	16.8	10.0	126	16.3	10.0	120	71-142	4	20
Acetone	ND	32.5	40.0	81	35.8	40.0	90	1-155	10	20
Iodomethane	ND	34.7	40.0	87	34.0	40.0	85	47-120	2	20
Carbon Disulfide	ND	54.2	40.0	135 M1	52.3	40.0	131 M1	77-126	4	20
Methylene Chloride	ND	10.4	10.0	104	10.1	10.0	101	83-106	3	20
Methyl tert-Butyl Ether	1.4	10.1	10.0	87	10.4	10.0	90	70-118	3	20
trans-1,2-Dichloroethene	ND	11.3	10.0	113	10.8	10.0	108	86-115	5	20
1,1-Dichloroethane	ND	11.5	10.0	115	11.2	10.0	112	77-127	3	20
Vinyl Acetate	ND	37.1	40.0	93	38.8	40.0	97	8-187	5	20
2,2-Dichloropropane	ND	12.3	10.0	123	12.0	10.0	120	25-154	3	20
2-Butanone (MEK)	ND	34.8	40.0	87 M2	37.5	40.0	94	90-112	8	20
cis-1,2-Dichloroethene	ND	10.9	10.0	109	10.5	10.0	105	69-118	3	20
Bromochloromethane	ND	9.96	10.0	100	9.94	10.0	99	47-136	0	20
Chloroform	ND	11.2	10.0	112	10.9	10.0	109	48-143	2	20
1,1,1-Trichloroethane	ND	12.2	10.0	122	11.7	10.0	117	84-122	5	20
Carbon Tetrachloride	ND	13.5	10.0	135 M1	13.2	10.0	132 M1	79-120	3	20
1,1-Dichloropropene	ND	13.3	10.0	133 M1	12.7	10.0	127 M1	85-117	4	20
Benzene	ND	11.4	10.0	114	11.1	10.0	111	88-114	3	20
1,2-Dichloroethane	ND	9.55	10.0	96	9.56	10.0	96	75-112	0	20
Trichloroethene	8.0	19.8	10.0	119 M1	19.2	10.0	112	76-115	3	20
1,2-Dichloropropane	ND	10.3	10.0	103	10.0	10.0	100	85-107	3	20
Dibromomethane	ND	9.59	10.0	96	9.62	10.0	96	82-106	0	20
Bromodichloromethane	ND	10.2	10.0	102	9.99	10.0	100	83-107	2	20
cis-1,3-Dichloropropene	ND	10.7	10.0	107	10.5	10.0	105	70-114	1	20
4-Methyl-2-pentanone (MIBK)	ND	36.5	40.0	91	37.4	40.0	94	54-129	3	20
Toluene	ND	11.9	10.0	119 M1	11.7	10.0	117 M1	86-114	2	20

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 03/26/2003 15:07:31 L:\STEALTH\CRYSTAL.RPT\Form3DMS.rpt Form 3A - Organic

Page 1 of 3

QA/QC Report

Client: Project: BE&K Terranext WVBA/#03103154

Sample Matrix:

Water

Service Request: X2300207 **Date Extracted:** 03/24/2003

Date Analyzed: 03/24/2003

Matrix Spike/Duplicate Matrix Spike Summary Volatile Organic Compounds

Sample Name: Lab Code:

Batch QC X2300213-004

Extraction Method: Analysis Method:

EPA 5030B

8260B

Units: ug/L Basis: NA

Level: Low

Extraction Lot: XWG0300385

	Sample	Batch QCMS XWG0300385-4 Matrix Spike			Batch QCDMS XWG0300385-5 Duplicate Matrix Spike			%Rec		RPD
Analyte Name	Result	Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit
trans-1,3-Dichloropropene	ND	10.4	10.0	104	10.4	10.0	104	73-112	0	20
1,1,2-Trichloroethane	ND	9.46	10.0	95	9.59	10.0	96	79-112	1	20
Tetrachloroethene	2.3	14.9	10.0	127	14.4	10.0	121	78-130	4	20
2-Hexanone	ND	35.3	40.0	88	38.0	40.0	95	77-112	7	20
1,3-Dichloropropane	ND	9.84	10.0	98	10.0	10.0	100	45-133	2	20
Dibromochloromethane	ND	9.83	10.0	98	9.73	10.0	97	74-108	1	20
1.2-Dibromoethane	ND	9.92	10.0	99	10.2	10.0	102	73-113	2	20
Chlorobenzene	ND	11.0	10.0	110	10.6	10.0	106	84-111	3	20
1,1,1,2-Tetrachloroethane	ND	10.2	10.0	102	10.1	10.0	101	84-119	1	20
Ethylbenzene	ND	12.2	10.0	122	11.8	10.0	118	47-136	3	20
m,p-Xylenes	ND	24.2	20.0	121 M1	23.7	20.0	118	84-120	2	20
o-Xylene	ND	11.6	10.0	116	11.1	10.0	111	47-143	4	20
Styrene	ND	11.3	10.0	113	11.0	10.0	110	72-121	3	20
Isopropylbenzene	ND	12.5	10.0	125 M1	12.1	10.0	121 M1	63-108	3	20
Bromobenzene	ND	10.5	10.0	105	10.5	10.0	105	80-113	0	20
1,2,3-Trichloropropane	ND	9.69	10.0	97	9.89	10.0	99	78-119	2	20
n-Propylbenzene	ND	12.7	10.0	127 M1	12.4	10.0	124 M1	76-117	2	20
2-Chlorotoluene	ND	11.7	10.0	117	11.5	10.0	115	79-121	2	20
4-Chlorotoluene	ND	11.6	10.0	116	11.4	10.0	114	70-133	2	20
1,3,5-Trimethylbenzene	ND	12.2	10.0	122 M1	12.0	10.0	120 M1	79-118	2	20
tert-Butylbenzene	ND	13.2	10.0	132 M1	12.9	10.0	129 M1	77-120	2	20
1,2,4-Trimethylbenzene	ND	11.9	10.0	119	11.6	10.0	116	68-127	3	20
sec-Butylbenzene	ND	12.5	10.0	125 M1	12.2	10.0	122	78-123	3	20
1,3-Dichlorobenzene	ND	10.7	10.0	107	10.6	10.0	106	78-127	1	20
4-Isopropyltoluene	ND	13.3	10.0	133	13.0	10.0	130	79-142	2	20
Bromoform	ND	9.38	10.0	94	9.70	10.0	97	83-111	3	20
1,1,2,2-Tetrachloroethane	ND	9.75	10.0	98	10.1	10.0	101	66-133	3	20
1,4-Dichlorobenzene	ND	10.8	10.0	108	10.6	10.0	106	48-139	3	20
1,2-Dichlorobenzene	ND	10.8	10.0	108	10.6	10.0	106	64-109	1	20
n-Butylbenzene	ND	12.9	10.0	129 M1	12.4	10.0	124 M1	69-122	4	20
1.2-Dibromo-3-chloropropane	ND	8.14	10.0	81	8.64	10.0	86	54-160	6	20
1,2,4-Trichlorobenzene	ND	10.7	10.0	107	10.8	10.0	108	39-145	0	20
Hexachlorobutadiene	ND	13.6	10.0	136 M1	13.4	10.0	134 M1	74-113	1	20

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 03/26/2003 15:07:31 L:\STEALTH\CRYSTAL.RPT\Form3DMS.rpt Form 3A - Organic

Page 2 of 3

RR3124 SuperSet Reference:

QA/QC Report

Client: Project: BE&K Terranext WVBA/#03103154

Sample Matrix:

Water

Service Request: X2300207

Date Extracted: 03/24/2003 **Date Analyzed:** 03/24/2003

Matrix Spike/Duplicate Matrix Spike Summary Volatile Organic Compounds

Sample Name: Lab Code:

Batch QC

X2300213-004

Extraction Method: Analysis Method:

EPA 5030B 8260B

Units: ug/L Basis: NA

Level: Low

Extraction Lot: XWG0300385

Batch OCMS

XWG0300385-4

Batch QCDMS

XWG0300385-5

	Comple	Matrix Spike			Duplicate Matrix Spike			%Rec		RPD
Analyte Name	Sample Result	Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit
Naphthalene	ND	9.84	10.0	98	10.3	10.0	103	44-167	5	20
1,2,3-Trichlorobenzene	ND	10.7	10.0	107	10.9	10.0	109	37-158	2	20

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 03/26/2003 15:07:31 L:\STEALTH\CRYSTAL.RPT\Form3DMS.rpt Form 3A - Organic **0**0004**5**

3 of 3 Page

SuperSet Reference:

QA/QC Report

Client: **Project:** BE&K Terranext WVBA/#03103154

Sample Matrix:

Water

Service Request: X2300207 **Date Extracted:** 03/23/2003

Date Analyzed: 03/23/2003

Lab Control Spike/Duplicate Lab Control Spike Summary Volatile Organic Compounds

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

Extraction Lot: XWG0300381

Lab Control Sample XWG0300381-3

Duplicate Lab Control Sample XWG0300381-4

		XWG0300381-3 Lab Control Spike		Duplicate Lab Control Spike			%Rec		RPD
Analyte Name	Result	Expected	%Rec	Result	Expected	%Rec		RPD	Limit
Dichlorodifluoromethane	7.96	10.0	80	7.17	10.0	72	1-233	10	20
Chloromethane	9.66	10.0	97	8.80	10.0	88	46-156	9	20
Vinyl Chloride	10.5	10.0	105	10.2	10.0	102	51-158	3	20
Bromomethane	12.5	10.0	125	10.8	10.0	108	37-149	15	20
Chloroethane	11.3	10.0	113	11.4	10.0	114	56-146	1	20
Trichlorofluoromethane	10.0	10.0	100	10.4	10.0	104	69-139	4	20
1,1,2-Trichlorotrifluoroethane	10.4	10.0	104	9.89	10.0	99	83-130	5	20
1,1-Dichloroethene	9.94	10.0	99	9.87	10.0	99	65-112	1	20
Acetone	34.2	40.0	86	35.8	40.0	89	68-128	5	20
Iodomethane	43.0	40.0	108	43.0	40.0	107	68-144	0	20
Carbon Disulfide	44.7	40.0	112	43.1	40.0	108	67-140	4	20
Methylene Chloride	11.5	10.0	115 L1	10.5	10.0	105	70-113	9	20
Methyl tert-Butyl Ether	9.08	10.0	91	8.62	10.0	86	75-115	5	20
trans-1,2-Dichloroethene	10.4	10.0	104	10.3	10.0	103	73-118	1	20
1,1-Dichloroethane	11.2	10.0	112	11.1	10.0	111	77-127	1	20
Vinyl Acetate	36.8	40.0	92	27.8	40.0	69	51-202	28	39
2,2-Dichloropropane	10.1	10.0	101	9.94	10.0	99	75-132	2	20
2-Butanone (MEK)	28.5	40.0	71 L2	27.2	40.0	68 L2	72-122	5	20
cis-1,2-Dichloroethene	10.4	10.0	104	10.6	10.0	106	81-118	2	20
Bromochloromethane	10.9	10.0	109	10.5	10.0	105	82-114	4	20
Chloroform	9.63	10.0	96	9.44	10.0	94	78-119	2	20
1,1,1-Trichloroethane	9.19	10.0	92	9.11	10.0	91	71-125	1	20
Carbon Tetrachloride	8.77	10.0	88	8.74	10.0	87	69-130	0	20
1,1-Dichloropropene	10.3	10.0	103	10.1	10.0	101	77-114	2	20
Benzene	9.72	10.0	97	9.68	10.0	97	81-117	0	20
1,2-Dichloroethane	8.78	10.0	88	8.56	10.0	86	67-122	3	20
Trichloroethene	9.61	10.0	96	9.70	10.0	97	79-114	1	20
1,2-Dichloropropane	10.5	10.0	105	9.75	10.0	98	78-114	8	20
Dibromomethane	9.21	10.0	92	8.94	10.0	89	78-113	3	20
Bromodichloromethane	8.74	10.0	87	8.57	10.0	86	79-122	2	20
cis-1,3-Dichloropropene	9.83	10.0	98	9.43	10.0	94	82-118	4	20
4-Methyl-2-pentanone (MIBK)	37.8	40.0	95	34.0	40.0	85	75-115	11	20
Toluene	10.5	10.0	105	10.3	10.0	103	85-118	2	20
trans-1,3-Dichloropropene	8.77	10.0	88	8.64	10.0	86	79-121	1	20
1,1,2-Trichloroethane	9.34	10.0	93	8.97	10.0	90	79-116	4	20

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 03/26/2003 15:07:38 L:\STEALTH\CRYSTAL.RPT\Form3DLC.rpt Form 3C - Organic

Page 1 of 2

SuperSet Reference:

QA/QC Report

Client: Project: BE&K Terranext WVBA/#03103154

Sample Matrix:

Water

Service Request: X2300207 Date Extracted: 03/23/2003

Date Analyzed: 03/23/2003

Lab Control Spike/Duplicate Lab Control Spike Summary Volatile Organic Compounds

Extraction Method: Analysis Method:

EPA 5030B

8260B

Units: ug/L

Basis: NA Level: Low

Extraction Lot: XWG0300381

Lab Control Sample
XWG0300381-3
XWG0300381-3

Duplicate Lab Control Sample XWG0300381-4

	Lab	Control Spik	e	Duplicate Lab Control Spike			%Rec		RPD
Analyte Name	Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit
Tetrachloroethene	9.76	10.0	98	9.85	10.0	99	76-127	1	20
2-Hexanone	31.7	40.0	79	28.5	40.0	71	65-120	11	20
1,3-Dichloropropane	9.09	10.0	91	8.83	10.0	88	81-116	3	20
Dibromochloromethane	8.67	10.0	87	8.42	10.0	84	77-119	3	20
1,2-Dibromoethane	9.07	10.0	91	8.32	10.0	83	79-116	9	20
Chlorobenzene	9.63	10.0	96	9.66	10.0	97	84-114	0	20
1,1,1,2-Tetrachloroethane	9.66	10.0	97	9.44	10.0	94	78-118	2	20
Ethylbenzene	9.99	10.0	100	10.0	10.0	100	79-124	0	20
m,p-Xylenes	20.8	20.0	104	20.5	20.0	103	75-131	1	20
· • ·	9.98	10.0	100	9.91	10.0	99	78-122	1	20
o-Xylene	10.3	10.0	103	10.3	10.0	103	80-126	0	20
Styrene Isopropylbenzene	9.74	10.0	97	9.67	10.0	97	75-126	1	20
Bromobenzene	9.57	10.0	96	9.26	10.0	93	82-122	3	20
	9.13	10.0	91	8.80	10.0	88	77-118	4	20
1,2,3-Trichloropropane	10.4	10.0	104	10.4	10.0	104	75-129	0	20
n-Propylbenzene	9.94	10.0	99	9.92	10.0	99	77-126	0	20
2-Chlorotoluene	9.79	10.0	98	9.60	10.0	96	82-120	2	20
4-Chlorotoluene	10.1	10.0	101	10.1	10.0	101	75-130	0	20
1,3,5-Trimethylbenzene	10.1	10.0	101	10.1	10.0	101	73-130	0	20
tert-Butylbenzene	10.1	10.0	104	10.4	10.0	104	60-137	1	20
1,2,4-Trimethylbenzene	10.4	10.0	104	10.2	10.0	102	68-131	2	20
sec-Butylbenzene	9.92	10.0	99	9.57	10.0	96	71-137	4	20
1,3-Dichlorobenzene	10.4	10.0	104	10.3	10.0	103	68-134	1	20
4-Isopropyltoluene	8.64	10.0	86	8.45	10.0	85	70-118	2	20
Bromoform	10.2	10.0	102	9.16	10.0	92	72-122	11	20
1,1,2,2-Tetrachloroethane	9.72	10.0	97	9.78	10.0	98	82-114	1	20
1,4-Dichlorobenzene	9.72	10.0	98	9.56	10.0	96	81-118	2	20
1,2-Dichlorobenzene	10.5	10.0	105	10.3	10.0	103	71-125	2	20
n-Butylbenzene	8.21	10.0	82	7.11	10.0	71	55-131	14	20
1,2-Dibromo-3-chloropropane	10.7	10.0	107	10.3	10.0	103	75-123	4	20
1,2,4-Trichlorobenzene		10.0	107	10.3	10.0	102	63-140	2	20
Hexachlorobutadiene	10.5	10.0	99	9.34	10.0	93	67-125	6	20
Naphthalene	9.94	10.0	108	10.2	10.0	102	72-124	6	20
1,2,3-Trichlorobenzene	10.8	10.0	100	10.2	10.0	102	, <u>2</u> 12 T	•	_~

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 03/26/2003 15:07:38 L:\STEALTH\CRYSTAL.RPT\Form3DLC.rpt Form 3C - Organic

2 of 2 Page

SuperSet Reference:

QA/QC Report

Client: Project: BE&K Terranext WVBA/#03103154

Sample Matrix:

Water

 Service Request:
 X2300207

 Date Extracted:
 03/24/2003

 Date Analyzed:
 03/24/2003

Lab Control Spike/Duplicate Lab Control Spike Summary Volatile Organic Compounds

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Basis: NA Level: Low

Extraction Lot: XWG0300385

Lab Control Sample XWG0300385-1

Duplicate Lab Control Sample XWG0300385-2

		Lab Control Spike		Duplicate Lab Control Spike			%Rec		RPD
Analyte Name	Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit
Dichlorodifluoromethane	10.6	10.0	106	9.26	10.0	93	1-233	14	20
Chloromethane	9.81	10.0	98	9.34	10.0	93	46-156	5	20
Vinyl Chloride	11.4	10.0	114	10.7	10.0	107	51-158	7	20
Bromomethane	8.48	10.0	85	8.43	10.0	84	37-149	1	20
Chloroethane	10.8	10.0	108	10.3	10.0	103	56-146	5	20
Trichlorofluoromethane	11.6	10.0	116	10.2	10.0	102	69-139	12	20
1,1,2-Trichlorotrifluoroethane	10.9	10.0	109	9.58	10.0	96	83-130	13	20
1,1-Dichloroethene	10.7	10.0	107	9.92	10.0	99	65-112	8	20
Acetone	35.8	40.0	89	34.9	40.0	87	68-128	2	20
Iodomethane	34.8	40.0	87	33.4	40.0	83	68-144	4	20
Carbon Disulfide	47.6	40.0	119	44.3	40.0	111	67-140	7	20
Methylene Chloride	10.1	10.0	101	9.94	10.0	99	70-113	1	20
Methyl tert-Butyl Ether	9.18	10.0	92	9.40	10.0	94	75-115	2	20
trans-1,2-Dichloroethene	10.2	10.0	102	9.77	10.0	98	73-118	4	20
1,1-Dichloroethane	10.8	10.0	108	10.4	10.0	104	77-127	4	20
Vinyl Acetate	39.5	40.0	99	37.7	40.0	94	51-202	4	39
2,2-Dichloropropane	11.1	10.0	111	10.3	10.0	103	75-132	8	20
2,2-Dichioropropane 2-Butanone (MEK)	35.8	40.0	89	36.8	40.0	92	72-122	3	20
cis-1,2-Dichloroethene	10.3	10.0	103	10.1	10.0	101	81-118	2	20
Bromochloromethane	9.84	10.0	98	9.89	10.0	99	82-114	1	20
	10.5	10.0	105	10.2	10.0	102	78-119	3	20
Chloroform	10.5	10.0	106	9.92	10.0	99	71-125	6	20
1,1,1-Trichloroethane	11.7	10.0	117	10.7	10.0	107	69-130	9	20
Carbon Tetrachloride	11.7	10.0	113	10.5	10.0	105	77-114	8	20
1,1-Dichloropropene	10.4	10.0	104	10.1	10.0	101	81-117	3	20
Benzene	9.42	10.0	94	9.33	10.0	93	67-122	1	20
1,2-Dichloroethane	10.5	10.0	105	10.0	10.0	100	79-114	5	20
Trichloroethene	9.73	10.0	97	9.69	10.0	97	78-114	0	20
1,2-Dichloropropane	9.73	10.0	94	9.38	10.0	94	78-113	0	20
Dibromomethane	9.86	10.0	99	9.81	10.0	98	79-122	1	20
Bromodichloromethane	10.3	10.0	103	10.4	10.0	104	82-118	0	20
cis-1,3-Dichloropropene	32.7	40.0	82	34.3	40.0	86	75-115	5	20
4-Methyl-2-pentanone (MIBK)	10.8	10.0	108	10.5	10.0	105	85-118	3	20
Toluene	10.8	10.0	103	10.0	10.0	100	79-121	1	20
trans-1,3-Dichloropropene 1,1,2-Trichloroethane	9.06	10.0	91	9.21	10.0	92	79-116	2	20

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 03/26/2003 15:07:45 L:\STEALTH\CRYSTAL.RPT\Form3DLC.rpt Form 3C - Organic

000048

Page 1 of 2

SuperSet Reference:

QA/QC Report

Client: Project: BE&K Terranext WVBA/#03103154

Sample Matrix:

Water

Service Request: X2300207 **Date Extracted:** 03/24/2003

Date Analyzed: 03/24/2003

Lab Control Spike/Duplicate Lab Control Spike Summary Volatile Organic Compounds

Extraction Method: Analysis Method:

EPA 5030B

8260B

Units: ug/L Basis: NA

Level: Low

Extraction Lot: XWG0300385

Lab Control Sample XWG0300385-1

Duplicate Lab Control Sample XWG0300385-2

	Lab	Control Spik	e	Duplicate Lab Control Spike			%Rec		RPD
Analyte Name	Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit
Tetrachloroethene	10.8	10.0	108	10.1	10.0	101	76-127	7	20
2-Hexanone	34.0	40.0	85	35.8	40.0	89	65-120	5	20
1,3-Dichloropropane	9.57	10.0	96	9.62	10.0	96	81-116	1	20
Dibromochloromethane	9.35	10.0	94	9.46	10.0	95	77-119	1	20
1,2-Dibromoethane	9.44	10.0	94	9.73	10.0	97	79-116	3	20
Chlorobenzene	10.2	10.0	102	10.0	10.0	100	84-114	1	20
1,1,1,2-Tetrachloroethane	9.73	10.0	97	9.60	10.0	96	78-118	1	20
	11.0	10.0	110	10.5	10.0	105	79-124	5	20
Ethylbenzene	21.8	20.0	109	20.9	20.0	105	75-131	4	20
m,p-Xylenes	10.6	10.0	106	10.3	10.0	103	78-122	3	20
o-Xylene	10.8	10.0	108	10.6	10.0	106	80-126	2	20
Styrene	10.8	10.0	110	10.3	10.0	103	75-126	6	20
Isopropylbenzene	10.1	10.0	101	9.86	10.0	99	82-122	2	20
Bromobenzene	9.42	10.0	94	9.44	10.0	94	77-118	0	20
1,2,3-Trichloropropane	11.3	10.0	113	10.6	10.0	106	75-129	6	20
n-Propylbenzene	11.0	10.0	110	10.6	10.0	106	77-126	4	20
2-Chlorotoluene	10.8	10.0	108	10.6	10.0	106	82-120	2	20
4-Chlorotoluene	11.2	10.0	112	10.6	10.0	106	75-130	5	20
1,3,5-Trimethylbenzene	11.2	10.0	117	11.1	10.0	111	73-130	6	20
tert-Butylbenzene	11.7	10.0	111	10.8	10.0	108	60-137	2	20
1,2,4-Trimethylbenzene		10.0	110	10.3	10.0	103	68-131	6	20
sec-Butylbenzene	11.0	10.0	102	10.3	10.0	101	71-137	1	20
1,3-Dichlorobenzene	10.2	10.0	118	11.2	10.0	112	68-134	5	20
4-Isopropyltoluene	11.8	10.0	90	9.01	10.0	90	70-118	0.	20
Bromoform	8.97	10.0	90	9.24	10.0	92	72-122	3	20
1,1,2,2-Tetrachloroethane	9.01	10.0	102	10.1	10.0	101	82-114	1	20
1,4-Dichlorobenzene	10.2	10.0	102	10.1	10.0	103	81-118	0	20
1,2-Dichlorobenzene	10.3	10.0	103	10.3	10.0	107	71-125	5	20
n-Butylbenzene	11.2		81	8.30	10.0	83	55-131	3	20
1,2-Dibromo-3-chloropropane	8.07	10.0		10.3	10.0	103	75-123	2	20
1,2,4-Trichlorobenzene	10.1	10.0	101	10.3	10.0	114	63-140	4	20
Hexachlorobutadiene	11.8	10.0	118	9.60	10.0	96	67-125	2	20
Naphthalene	9.40	10.0	94		10.0	103	72-124	1	20
1,2,3-Trichlorobenzene	10.2	10.0	102	10.3	10.0	103	/L 12T	•	

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 03/26/2003 15:07:45 L:\STEALTH\CRYSTAL.RPT\Form3DLC.rpt

SuperSet Reference:

March 25, 2003

Chuck Gordon BE & K Terranext 9830 S. 51st A-127 Phoenix, AZ 85044

Re: WVBA/Project #03103154

Dear Chuck:

Enclosed are the results of the samples submitted to our laboratory on March 12, 2003. For your reference, these analyses have been assigned our service request number L2300559.

All analyses were performed in accordance with our laboratory's quality assurance program. Results are intended to be considered in their entirety and apply only to the samples analyzed. Columbia Analytical Services is not responsible for use of less than the complete report.

Columbia Analytical Services - is certified for environmental analyses by the Arizona Department of Health Services (certificate number: AZ0544 and AZ0136, expiration: May 23, 2003).

If you have any questions, please call me at (818) 587-5550, extension 309.

Respectfully submitted,

Columbia Analytical Services, Inc.

ne Juderse

Sue Anderson Project Chemist

SA

Columbia Analytical Services, Inc.

Acronvms California DHS LUFT Method 8015M American Society for Testing and Materials **ASTM** Biochemical Oxygen Demand BOD Benzene/Toluene/Ethylbenzene/Xylenes BTEX California Assessment Metals CAM Chemical Abstract Service Registry Number **CAS Number CFC** Chlorofluorocarbon COD Chemical Oxygen Demand Contract Required Detection Limit **CRDL** Detected: result must be greater than zero. D Detected; result must be greater than the detection limit. DL **Duplicate Laboratory Control Sample DLCS** Duplicate Matrix Spike **DMS** Department of Health Services **DOH or DHS** Environmental Laboratory Accreditation Program **ELAP** EPA U.S. Environmental Protection Agency Gas Chromatography GC Gas Chromatography/Mass Spectrometry GC/MS Ion Chromatography IC Initial Calibration Blank sample **ICB** Inductively Coupled Plasma atomic emission spectrometry **ICP** Initial Calibration Verification sample **ICV** Laboratory Control Sample LCS Leaking Underground Fuel Tank LUFT Modified M Methylene Blue Active Substances **MBAS** Method Detection Limit MDL Method Reporting Limit MRL Matrix Spike MS Methyl-tert-Butyl Ether MTBE Not Applicable NA Not Calculated NC None Detected at or above the Method Reporting/Detection Limit (MRL/MDL) ND Nephelometric Turbidity Units NTU Parts Per Billion ppb Parts Per Million ppm **Practical Quantitation Limit PQL Quality Assurance/Quality Control** OA/QC Resource Conservation and Recovery Act **RCRA** Relative Percent Difference **RPD** Selected Ion Monitoring SIM Standard Methods for the Examination of Water and Wastewater, 18th Ed., 1992. **SM** Solubility Threshold Limit Concentration **STLC** Test Methods for Evaluating Solid Waste, Physical/Chemical Methods SW-846, SWThird Edition, 1986 and as amended by Updates I, II, IIA, and IIB. Toxicity Characteristics Leaching Procedure **TCLP** Total Dissolved Solids TDS Total Petroleum Hydrocarbons **TPH** Total Recoverable Petroleum Hydrocarbons **TRPH** Total Suspended Solids TSS Total Threshold Limit Concentration TTLC Volatile Organic Analyte(s) **VOA** Qualifiers

U	Undetected at or above MDL/MRL.
J	Estimated concentration. Analyte detected above MDL but below MRL.
В	Hit above MRL also found in Method Blank.
E	Analyte concentration above high point of ICAL.
N	Presumptive evidence of compound.
D	Result from dilution.

See case narrative.

 \mathbf{X}

- Cover Page -INORGANIC ANALYSIS DATA PACKAGE

Client:

BE&K Terranext, LLC

Project Name : Project No.:

WVBA

03103154

Service Request: L2300559

Sample Name :	<u>Lab Code :</u>
Laboratory Control Sample	L2300317-LCS
Method Blank	L2300317-MB
AVB93-0100-03130	L2300559-001
AVB20-0300-02126	L2300559-002
AVB100-0100-02131	L2300559-003
AVB101-0100-13115	L2300559-004
AVB101-0400-14000	L2300559-005
AVB101-0400-14000	L2300559-005S
AVB101-0400-14000	L2300559-005SD
AVB101-0404-1000	L2300559-006
AVB101-0401-14000	L2300559-007

Analytical Report

Client:

BE&K Terranext, LLC

Project Name : Project No. : WVBA 03103154

Matrix:

Water

Service Request: L2300559

Date Collected: 03/12/03

Date Received: 03/12/03

Date Extracted: 03/17/03

Total Metals

Sample Name:

AVB93-0100-03130

Lab Code:

L2300559-001

Units: ug/L (ppb)

Basis: NA

Analyte Analysis Method MRL Date Analyzed Result Notes

Chromium 6010B 10 03/24/03 25

Analytical Report

Client:

BE&K Terranext, LLC

Project Name : Project No. :

WVBA 03103154

Matrix:

Water

Service Request: L2300559

Date Collected: 03/12/03 **Date Received:** 03/12/03

Date Extracted: 03/20/03

Dissolved Metals

Sample Name:

AVB93-0100-03130

Lab Code:

L2300559-001

Units: ug/L (ppb)

Basis: NA

Analyte Analysis Method MRL Date Analyzed Result Notes

Chromium 6010B 10 03/24/03 22

Analytical Report

Client:

BE&K Terranext, LLC

Project Name : Project No. :

WVBA 03103154

Matrix:

Water

Service Request: L2300559

Date Collected: 03/12/03 **Date Received:** 03/12/03 **Date Extracted:** 03/17/03

Total Metals

Sample Name:

AVB20-0300-02126

Lab Code:

L2300559-002

Units: ug/L (ppb)

Basis: NA

Analyte

Analysis Method

MRL

Date Analyzed

Sample Result Result

Chromium

6010B

10

03/24/03

ND

Notes

000055

Analytical Report

Client:

BE&K Terranext, LLC

Project Name: Project No.:

WVBA 03103154

Matrix:

Water

Service Request: L2300559

Date Collected: 03/12/03

Date Received: 03/12/03

Date Extracted: 03/20/03

Dissolved Metals

Sample Name:

AVB20-0300-02126

Lab Code:

L2300559-002

Units: ug/L (ppb)

Basis: NA

Sample Result Result Notes **Date Analyzed** MRL **Analysis Method** Analyte ND

Chromium

6010B

03/24/03

10

Analytical Report

Client:

BE&K Terranext, LLC

Project Name: Project No.:

WVBA 03103154

Matrix:

Water

Service Request: L2300559

Date Collected: 03/12/03

Date Received: 03/12/03

Date Extracted: 03/17/03

Total Metals

Sample Name:

AVB100-0100-02131

Lab Code:

L2300559-003

Units: ug/L (ppb)

Basis: NA

Analyte Analysis Method MRL Date Analyzed Result Notes

Chromium 6010B 10 03/24/03 16

Analytical Report

Client:

BE&K Terranext, LLC

Project Name : Project No. : WVBA 03103154

Matrix:

Water

Service Request: L2300559

Date Collected: 03/12/03

Date Received: 03/12/03

Date Extracted: 03/20/03

Dissolved Metals

Sample Name:

AVB100-0100-02131

Lab Code:

L2300559-003

Units: ug/L (ppb)

Analyte	Analysis Method	MRL	Date Analyzed	Sample Result	Result Notes
Chromium	6010B	10	03/24/03	16	

Analytical Report

Client:

BE&K Terranext, LLC

Project Name : Project No. :

WVBA 03103154

Matrix :

Water

Service Request: L2300559

Date Collected: 03/12/03 **Date Received:** 03/12/03 **Date Extracted:** 03/17/03

Total Metals

Sample Name:

AVB101-0100-13115

Lab Code:

L2300559-004

Units: ug/L (ppb)

Analyte	Analysis Method	MRL	Date Analyzed	Sample Result	Result Notes
Chromium	6010B	10	03/24/03	ND	

Analytical Report

Client:

BE&K Terranext, LLC

Project Name : Project No. : WVBA 03103154

Matrix:

Water

Service Request: L2300559

Date Collected: 03/12/03

Date Received: 03/12/03 **Date Extracted:** 03/20/03

Dissolved Metals

Sample Name:

AVB101-0100-13115

Lab Code:

L2300559-004

Units: ug/L (ppb)

Analyte	Analysis Method	MRL	Date Analyzed	Sample Result	Result Notes
Chromium	6010B	10	03/24/03	ND	

Analytical Report

Client:

BE&K Terranext, LLC

Project Name : Project No. :

WVBA 03103154

Matrix:

Water

Service Request: L2300559

Date Collected: 03/12/03 **Date Received:** 03/12/03

Date Extracted: 03/17/03

Total Metals

Sample Name:

AVB101-0400-14000

Lab Code:

L2300559-005

Units: ug/L (ppb)

Basis: NA

Analyte Analysis Method MRL Date Analyzed Result Notes

Chromium 6010B 10 03/24/03 ND

Analytical Report

Client:

BE&K Terranext, LLC

Project Name : Project No. : WVBA 03103154

Matrix:

Water

Service Request: L2300559

Date Collected: 03/12/03 **Date Received:** 03/12/03

Date Extracted: 03/20/03

Dissolved Metals

Sample Name:

AVB101-0400-14000

Lab Code:

L2300559-005

Units: ug/L (ppb)

Basis: NA

Analyte Analysis Method MRL Date Analyzed Result Notes

Chromium 6010B 10 03/24/03 ND

Analytical Report

Client:

BE&K Terranext, LLC

Project Name : Project No. :

WVBA 03103154

Matrix:

Water

Service Request: L2300559

Date Collected: 03/12/03 **Date Received:** 03/12/03

Date Extracted: 03/17/03

Total Metals

Sample Name:

AVB101-0404-1000

Lab Code:

L2300559-006

Units: ug/L (ppb)

Basis: NA

Analyte Analysis Method MRL Date Analyzed Result Notes

Chromium 6010B 10 03/24/03 ND

Analytical Report

Client:

BE&K Terranext, LLC

Project Name : Project No. : WVBA 03103154

Matrix:

Water

Service Request: L2300559

Date Collected: 03/12/03

Date Received: 03/12/03

Date Extracted: 03/20/03

Dissolved Metals

Sample Name:

AVB101-0404-1000

Lab Code:

L2300559-006

Units: ug/L (ppb)

Analyte	Analysis Method	MRL	Date Analyzed	Sample Result	Result Notes
Chromium	6010B	10	03/24/03	ND	

Analytical Report

Client:

BE&K Terranext, LLC

Project Name: Project No.:

WVBA 03103154

Matrix:

Water

Service Request: L2300559

Date Collected: 03/12/03 **Date Received:** 03/12/03

Date Extracted: 03/17/03

Total Metals

Sample Name:

AVB101-0401-14000

Lab Code:

L2300559-007

Units: ug/L (ppb)

Basis: NA

Sample Result Result Notes **Date Analyzed Analysis Method** MRL Analyte ND 03/24/03 10 6010B Chromium

000065

Analytical Report

Client:

BE&K Terranext, LLC

Project Name:

WVBA 03103154

Project No.: 031033 Matrix: Water Service Request: L2300559

Date Collected: 03/12/03 **Date Received:** 03/12/03

Date Extracted: 03/20/03

Dissolved Metals

Sample Name:

AVB101-0401-14000

Lab Code:

L2300559-007

Units: ug/L (ppb)

Analyte	Analysis Method	MRL	Date Analyzed	Sample Result	Result Notes
Chromium	6010B	10	03/24/03	ND	

Analytical Report

Client:

BE&K Terranext, LLC

Project Name: Project No.:

WVBA 03103154

Matrix:

Water

Service Request: L2300559

Date Collected: NA Date Received: NA

Date Extracted: 03/17/03

Total Metals

Sample Name: Lab Code:

Method Blank

L2300317-MB

Units: ug/L (ppb)

Analyte	Analysis Method	MRL	Date Analyzed	Sample Result	Result Notes
Chromium	6010B	10	03/24/03	ND	

QA/QC Report

Client:

BE&K Terranext, LLC

Project Name : Project No. :

WVBA 03103154

Matrix:

Water

Service Request: L2300559

Date Collected: NA
Date Received: NA

Date Extracted: 03/17/03 **Date Analyzed:** 03/24/03

Laboratory Control Sample Summary

Total Metals

Sample Name:

Laboratory Control Sample

Lab Code:

L2300317-LCS

Units: ug/L (ppb)

Analyte	Analysis Method	True Value	Result	Percent	CAS Percent Recovery Acceptance Limits	Result Notes
Chromium	6010B	500	501	100	87-111	

Analytical Report

Client:

BE&K Terranext, LLC

Project Name : Project No. : WVBA 03103154

Matrix:

Water

Service Request: L2300559

Date Collected: 03/12/03

Date Received: 03/12/03 **Date Extracted:** 03/17/03

Date Analyzed: 03/24/03

Matrix Spike/Duplicate Matrix Spike Summary

Total Metals

Sample Name :

AVB101-0400-14000

Lab Code:

L2300559-005S

L2300559-005SD

Units: ug/L (ppb)

Analyte	Prep Method	Analysis Method	MRL	Spike MS	Level DMS	Sample Result	Spike MS	Result DMS	MS	DMS	CAS Acceptance Limits	Relative Percent Difference	Result Notes
Chromium	3010A	6010B	10	500	500	ND	468	498	94	100	87-105	6	

Columbia Analytical Services Inc.

222 C Liviversity Drive, Suite 4. Phoenix, AZ 85034 (602) 437-2001 (800) 695-7222 x09 FAX (602) 437-5308 DATE 3 · 12 · C 3 PAGE 1 OF 1

 Surcharges Apply ANALYSIS TAT (Circle One) REMARKS Lab No: X 23-00207 SAMPLE RECEIPT: ☐ 48 Hours ☐ 72 Hours ☐ 24 Hours Shipping VIA: STANDARD **RUSH TAT** Shipping #: Condition: 4 **ANALYSIS REQUESTED** Date/Time 3/13/03 3-12-03 INVOICE INFORMATION: Date/Time Date/Time D Tellia Inlea Diniod Asela Organization Organization Organization CAS. BIIITo P.O.# REPORT REQUIREMENTS XII. Report (includes DUP.MS. MSD, as required, may be IV. CLP Deliverable Report III. Data Validation Report (includes All Raw Data) <u>لا/ك</u> charged as samples) . Routine Report 8 Kelis May Received By (Signature) Received By (Signature) Received By (Signature) EXTTA Volume Faten Gr AVBIOI-ONDO-14000 for MS/MSD アクタ (F) M M 5 Ü 0 **(5)** M 0 NUMBER OF CONTAINERS Ø Date/Time 3.12.03 PRESER-VATION Date/Time 3-73-03 740S8 Date/Time # 83103154 9850 S SF ST MATRIX = 2 z 8 500 30 601 8 0307-00/ E Organization Organization Organization BETLE LAB .D. AZ PROJECT MANAGER CHUCK GORDON CAS abulnulus PEX 11.20 10.10 420 496 4100 PHONERY ANR 93-0100-03130 13-12-0310-335 112.10 12:430 TIME 12:30 12:40 SPECIAL INSTRUCTIONS/COMMENTS: COMPANY/ADDRESS BE+L DATE ~ Ì 2 SURFA AICH Jean Relinquished by (Signature) Refinduished By (Signature) Relinquished By (Signature) ANB 101-0401-14000 ANS 20-0300-02126 ANB 100-0100-02131 SAMPLER'S SIGNATURE_ ANB 101-0100-13115 AVB 101-0400-14000 0001 - hoho-101 gn ANBIO - CADE-1000 SAMPLE I.D. 00000

DISTRIBUTION: WHITE - return to originator, YELLOW - lab; PINK - retained by originator

0702

SAMPLE RECEIPT FORM

Service Request No: L230 0559 Client: BETK
Sample(s) delivered by: Client CAS Emp After Hours DHL
Golden State Overnight Fed X UPS Other Courier
Chain of Custody filled out accurately? Yes/ No(See Comments)
Appropriate sample volume and containers? Yes/ No(See Comments)
Sufficient labeling on container(s)? Yes No (See Comments)
Container(s) supplied by CAS? Yes No(See Comments)
Custody seal(s) intact? N/A Ves No (See Comments)
Trip Blank(s) received Yes No/_
If Trip Blank was supplied by CAS, record serial #TB
Temperature of sample(s)/cooler °C Temp Blank (Y) or N (Circle One)
Voa's Marked Preserved? Yes No Filled Properly? Yes No (See Comments)
Preserved Bottles Requiring pH check(s)? Yes Notified
RUSH Turn around time? Yes Notified Date & Time
Short Hold-Time Analysis (check all that apply)
ASAP Res Cl D.O Flash Diss S2 Ferrous Fe 24HR pH Odor Cr+6 48HR BOD Color MBAS Nitrate Nitrite O-PO4 Sett Sol Turbidity 72HR Vapors
Notified Date & Time
Container(s) received and their preservative(s): $-1, -2, -3, -4, -6, -7 = \begin{cases} -500 \text{ m} & \text{PI} (\text{HNO3}) \text{ A} \\ 1-560 \text{ m} & \text{PI} (\text{NP}) \text{ B} \end{cases}$
-5= \$2-500 ml P1 (HNO3) AB (
-5=82-500ml PI (HNO3) AB (2-500ml PI (NP) CD) Filter & preserve metals bottle in lab, Benny @ 1015

CHAIN OF CUSTODY/LABORATORY ANALYSIS REQUEST FORM

3902 East University Drive, Suite 4 • Phoenix, AZ 85034 • (602) 437-2001 • (800) 695-7222 x09 • FAX (602) 437-5308

Services INC.

Solumbia Analytical

DATE 3.12.03 PAGE 1 OF

 Surcharges Apply ANALYSIS TAT (Circle One) REMARKS Lab No: X 23-00207 SAMPLE RECEIPT: ☐ 48 Hours ☐ 72 Hours □ 24 Hours STANDARD **RUSH TAT** Shipping VIA: Shipping #: Condition: **ANALYSIS REQUESTED** 3-12.03 INVOICE INFORMATION: Date/Time Date/Time Date/Time D'Ieili? Inled DHQ Diniod Azela Organization Total PJOI Organization Organization Total D Total D T REPORT REQUIREMENTS II. Report (includes DUP.MS. MSD, as required, may be IV. CLP Deliverable Report III. Data Validation Report (includes All Raw Data) charged as samples) Routine Report Volatile Organics Lebi May Received By (Signature) Received By (Signature) Received By (Signature) EXTTA VOLUME Fater Gr AVISIOI-ONIND-14000 for MS/MSD M 3 M 3 Ü 2 (عار 6 NUMBER OF CONTAINERS 30 Date/Time PRESER-VATION Date/Time Date/Time \$ 50xt a Sio 3 ist SPS ST Ξ £ Ţ 500 cias 30 603 200 Organization 83 1000-2000 Organization Organization S E PB Location 9830 abulnulus PEX 11.20 0.0 12.10 4NB 93-0100-03130 13-12-0310-735 480 496 4100 PHONERY TIME 12.50 12:30 2:40 SPECIAL INSTRUCTIONS/COMMENTS: よろと COMPANY/ADDRESS BE+K DATE PROJECT NAME_NVBA È š Sure A127 Relinquished by (Signature) Refinduished By (Signature) Relinquished By (Signature) ANS 20-0300-02126 ANBINI-0401-14000 ANB 100-0100-02131 SAMPLER'S SIGNATURE_ Aub 101-0100-13115 AND IDI-0400-14000 AVB 101-0404 - 1000 ANB 101 - 0402 - 1000 PROJECT MANAGER SAMPLE I.D.

DISTRIBUTION: WHITE - return to originator; YELLOW - lab; PINK - retained by originator

0702

Columbia Analytical Services, Inc. Phoenix, AZ

Sample Receipt and Preservation Form

Client:	BEOK			Project Name:	NUBA	
	Received on: 3-	<u>/2-03</u> des□	ate <u>133</u> Plastic Bottles	5 time Jars □	Sleeves □	
Is first 6	straction Holding T	holding time e	n: expiration LESS	THAN 24 HOURS	time (soils only) (soil)/7 DAYS (water)? Chemist's Initials	
2. Are the of If yes, how as Are the state of the state o	standard turn-a-ro custody seals prese ow many and when signature and date containers arrive in container labels con e correct container DA's been checked ature of sample(s)	ent? re? correct? a good condition mplete (i.e. pressured for the to for the present upon receipt:	servation, samplests indicated? ce of air bubbles 5.7°C		RUSH Yes Z Yes Z Yes Z Yes Z Yes Z n comments)	No No No No No
		YES	NO		VOA Vial pH Verit (Tested After Ana All Samples pi Following Samples Ex	llysis) H ≤ 2
pН	Reagent					
12	NaOH					
2	HNO ₃	\				
2	H ₂ SO ₄					
Comments	5:	For	m Completed	and Sample(s)	Received by (initials):	Ln

April 1, 2003

Chuck Gordon BE&K Terranext 9830 S. 51st Street, Suite A-127 Phoenix, AZ 85044

Re: WVBA / Project #03103154

Dear Chuck:

Enclosed are the results of the samples submitted to our laboratory on March 13, 2003. The samples were analyzed for Total and Dissolved Chromium by our Canoga Park, CA facility (L2300579). For your reference, the 8260 analyses have been assigned our service request number X2300219.

All analyses were performed according to our laboratory's quality assurance program. All results are intended to be considered in their entirety, and Columbia Analytical Services, Inc. (CAS) is not responsible for use of less than the complete report. Results apply only to the samples analyzed. Columbia Analytical Services, Inc. is certified for environmental analyses by the Arizona Department of Health Services (Certificate #AZ0136; and #AZ0497).

Please call if you have any questions. My extension is 223.

Respectfully submitted,

Columbia Analytical Services, Inc.

Tracy L. Dutton Laboratory Director

TLD/lm

Page 1 of <u>62</u>

Client:

BE&K Terranext

Project:

WVBA / #03103154

Sample Matrix:

Water

Service Request No.:

X2300219

Date Received:

3/13/03

CASE NARRATIVE

All analyses were performed consistent with the quality assurance program of Columbia Analytical Services, Inc. (CAS). This report contains analytical results for sample(s) designated for Tier II data deliverables. When appropriate to the method, method blank results have been reported with each analytical test. Surrogate recoveries have been reported for all applicable organic analyses. Additional quality control analyses reported herein include: Matrix/Duplicate Matrix Spike (MS/DMS) and Laboratory Control Sample (LCS).

All EPA recommended holding times have been met for analyses in this sample delivery group.

The following difficulties were experienced during analysis of this batch:

The associated blnk spike (XWG0300410-3 and XWG0300410-4) recovery of Bromochloromethane, Dibromomethne, and 1,2,3-Trichloropropane, Method 8260B, was above laboratory acceptance limits. These compounds were not detected in any of the samples analyzed in this batch.

Matrix spike (XWG0300406-1 and XWG0300406-2) recovery of Dichlorodifluoromethane, Vinyl Chloride, and 2-Butanone (MEK), Method 8260B, was low. The method conrol sample recovery was acceptable.

MS/MSD (XWG0300406-2) RPD for Acetone, Method 8260B, exceeded the laboratory control limit. Recovery met acceptance criteria.

Matrix spike (XWG0300406-1 and XWG0300406-2) recovery of 1,2-Dichloropropane, Dibromomethane, and Hexachlorobutadiene, Method 8260B, was high. The method conrol sample recovery was acceptable.

Matrix spike (XWG0300410-1 and XWG0300410-2) recovery of Dichlorodifluoromethane, Chloromethne, and Vinyl Chloride, Method 8260B, was low. The method conrol sample recovery was acceptable.

Matrix spike (XWG0300406-1 and XWG0300406-2) recovery of Trichloroethene, 1,2-Dichloropropane, and Hexachlorobutadiene, Method 8260B, was high. The method conrol sample recovery was acceptable.

The accuracy of the spike (XWG0300410-1 and XWG0300410-2) recovery of Tetrachloroethene, Method 8260B, is reduced since the analyte concentration in the sample is disproportionate to spike level. The method control sample recovery was acceptable.

The associated blnk spike (XWG0300406-4) recovery of Bromochloromethane, Method 8260B, was above laboratory acceptance limits. These compounds were not detected in any of the samples analyzed in this batch.

Approved by	M Date_	41-03
-------------	---------	-------

ARIZONA DATA QUALIFIERS

Method Bl	
B1	Target analyte detected in method blank at or above the method reporting limit.
B2	Non-target analyte detected in method blank and sample, producing interference.
B3	Target analyte detected in calibration blank at or above the method reporting limit.
B4	Target analyte detected in blank at/above method acceptance criteria.
Confirmat	ion:
C1	Confirmatory analysis not performed as required by the method.
C2	Confirmatory analysis not performed. Confirmation of analyte presence established by site historical data.
C3	Qualitative confirmation performed. See case narrative.
C4	Confirmatory analysis was past holding time.
C5	Confirmatory analysis was past holding time. Original result not confirmed.
Dilution:	
D1	Sample required dilution due to matrix interference. See case narrative.
D2	Sample required dilution due to high concentration of target analyte.
D3	Sample dilution required due to insufficient sample.
D4	Minimum reporting level (MRL) adjusted to reflect sample amount received and analyzed.
Estimated	concentration:
E1	Concentration estimated. Analyte exceeded calibration range. Reanalysis not possible due to insufficient
	sample.
E2	Concentration estimated. Analyte exceeded calibration range. Reanalysis not performed due to sample matrix.
E3	Concentration estimated. Analyte exceeded calibration range. Reanalysis not performed due to holding time
	requirements.
E4	Concentration estimated. Analyte was detected below laboratory minimum reporting level (MRL).
E5	Concentration estimated. Analyte was detected below laboratory minimum reporting level (MRL), but not
	confirmed by alternate analysis.
E6	Confirmation estimated. Internal standard recoveries did not meet method acceptance criteria.
E7	Confirmation estimated. Internal standard recoveries did not meet laboratory acceptance criteria.
Zant /	
Hold Tim	e:
I-I 1	Sample analysis performed past holding time. See case narrative.
H2	Initial analysis within holding time. Reanalysis for the required dilution was past holding time.
Н3	Sample was received and analyzed past holding time.
H4	Sample was extracted past required extraction holding time, but analyzed within analysis holding time. See case
	narrative.
BOD:	
<u>K1</u>	The sample dilutions set-up for the BOD analysis did not meet the oxygen depletion criteria of at least 2mg/L.
	Any reported result is an estimated value.
K2	The sample dilutions set up for the BOD analysis did not meet the criteria of a residual dissolved oxygen of at
• ==	least 1 mg/L. Any reported result is an estimated value.
K3	The seed depletion was outside the method acceptance limits.
	·

The seed depletion was outside the method and laboratory acceptance limits. The reported result is an estimated Κ4 value The dilution water D.O. depletion was >0.2 mg/L. K5 Glucose/glutamic acid BOD was below method acceptance criteria. Κ6 The discrepancy between the BOD and COD results has been verified by reanalysis of the sample for COD. K7 Laboratory fortified blank/blank spike: The associated blank spike recovery was above laboratory acceptance limits. See case narrative. 1.1 The associated blank spike recovery was below laboratory acceptance limits. See case narrative. L2The associated blank spike recovery was above method acceptance limits. See case narrative. L3 The associated blank spike recovery was below method acceptance limits. See case narrative. L4 Note: The L1, L2, L3, & L4 footnotes need to be added to all corresponding analytes for a sample. Matrix spike: M1 Matrix spike recovery was high, the method control sample recovery was acceptable. Matrix spike recovery was low, the method control sample was acceptable. M2The accuracy of the spike recovery value is reduced since the analyte concentration in the sample is М3 disproportionate to spike level. The method control sample recovery was acceptable. The analysis of the spiked sample required a dilution such that the spike concentrations was diluted below M4 the reporting limit. The method control sample recovery was acceptable. Analyte concentration was determined by the method of standard addition (MSA). M5 General: N1 See case narrative. Nο See corrective action report. Sample quality: Sample integrity was not maintained. See case narrative. 01 Sample received with head space. Q2 Sample received with improper chemical preservation. О3 Q4 Sample received and analyzed without chemical preservation. Sample received with inadequate chemical preservation, but preserved by the laboratory. O5 Sample was received above recommended temperature. Q6 07 Sample inadequately dechlorinated. Insufficient sample received to meet QC requirements. QC requirements satisfy ADEQ policies 0154 and 0155. 08 O9 Insufficient sample received to meet QC requirements. Sample received in inappropriate sample container. Q10 Sample is heterogeneous. Sample homogeneity could not be readily achieved using routine laboratory practices. OH **Duplicates:** RPD exceeded the method control limit. See case narrative. R1RPD exceeded the laboratory control limit. See case narrative. R2 Sample RPD between the primary and confirmatory analysis exceeded 40%. Per Method 8000B, the higher R3 value was reported. MS/MSD RPD exceeded the method control limit. Recovery met acceptance criteria. R4 MS/MSD RPD exceeded the laboratory control limit. Recovery met acceptance criteria. R5 LFB/LFBD RPD exceeded the method control limit. Recovery met acceptance criteria. R6 LFB/LFBD RPD exceeded the laboratory control limit. Recovery met acceptance criteria. **R7**

R8 Sample RPD exceeded the method control limit.
R9 Sample RPD exceeded the laboratory control limit.

Surrogate:

- S1 Surrogate recovery was above laboratory acceptance limits, but within method acceptance limits.
- S2 Surrogate recovery was above laboratory and method acceptance limits.
- Surrogate recovery was above laboratory acceptance limits, but within method acceptance limits. No target analytes were detected in the sample.
- Surrogate recovery was above laboratory and method acceptance limits. No target analytes were detected in the sample.
- Surrogate recovery was below laboratory acceptance limits, but within method acceptance limits.
- Surrogate recovery was below laboratory and method acceptance limits. Reextraction and/or reanalysis confirms low recovery caused by matrix effect.
- S7 Surrogate recovery was below laboratory and method acceptance limits. Unable to confirm matrix effect.
- The analysis of the sample required a dilution such that the surrogate concentration was diluted below the method acceptance criteria. The method control sample recovery was acceptable.
- The analysis of the sample required a dilution such that the surrogate concentration was diluted below the laboratory acceptance criteria. The method control sample recovery was acceptable.
- S10 Surrogate recovery was above laboratory and method acceptance limits. See case narrative.

Method/analyte discrepancies:

- T1 Method promulgated by EPA, but not ADHS at this time.
- T2 Cited ADHS licensed method does not contain this analyte as part of method compound list.
- T3 Method not promulgated either by EPA or ADHS.
- T4 Tentatively identified compound. Concentration is estimated and based on the closest internal standard.

Calibration verification:

- VI CCV recovery was above method acceptance limits. This target analyte was not detected in the sample.
- V2 CCV recovery was above method acceptance limits. This target analyte was detected in the sample. The sample could not be reanalyzed due to insufficient sample.
- V3 (CV recovery was above method acceptance limits. This target analyte was detected in the sample, but the sample was not reanalyzed. See case narrative.
- V4 CCV recovery was below method acceptance limits. The sample could not be reanalyzed due to insufficient sample.
- V5 CCV recovery after a group of samples was above acceptance limits. This target analyte was not detected in the sample. Acceptable per EPA Method 8000B.

Inorganic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.
- U The compound was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- The MRI/MDI, has been elevated due to a matrix interference.
- X See case narrative.

Metals Data Qualifiers

- # The control limit criteria is not applicable. See case narrative.
- B The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.
- E The reported value is estimated because of the presence of matrix interference.
- M The duplicate injection precision was not met.
- N The Matrix Spike sample recovery is not within control limits. See case narrative.
- S The reported value was determined by the Method of Standard Additions (MSA).
- U The compound was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- W The post-digestion spike for furnace AA analysis is out of control limits, while sample absorbance is less than 50% of spike
- i The MRL/MDL has been elevated due to a matrix interference.
- X See case narrative.
- * The duplicate analysis not within control limits. See case narrative.
- + The correlation coefficient for the MSA is less than 0.995.

Organic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- A A tentatively identified compound, a suspected aldol-condensation product.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result.
- C The analyte was qualitatively confirmed using GC/MS techniques, pattern recognition, or by comparing to historical data.
- D The reported result is from a dilution.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.
- N The result is presumptive. The analyte was tentatively identified, but a confirmation analysis was not performed.
- P The GC or HPLC confirmation criteria was exceeded. The relative percent difference is greater than 40% between the two analytical results (25% for CLP Pesticides).
- U The compound was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- i The MRL/MDL has been elevated due to a chromatographic interference.
- X See case narrative.

Additional Petroleum Hydrocarbon Specific Qualifiers

- F The chromatographic fingerprint of the sample matches the elution pattern of the calibration standard.
- L The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of lighter molecular weight constituents than the calibration standard.
- H The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of heavier molecular weight constituents than the calibration standard.
- O The chromatographic tingerprint of the sample resembles an oil, but does not match the calibration standard.
- Y The chromatographic lingerprint of the sample resembles a petroleum product eluting in approximately the correct carbon range, but the elution pattern does not match the calibration standard.
- Z The chromatographic fingerprint does not resemble a petroleum product.

Client: Project: BE&K Terranext WVBA/#03103154

Service Request:

X2300219

Cover Page - Organic Analysis Data Package Volatile Organic Compounds

Sample Name	Lab Code	Date Collected	Received
AVB37-0400-01118	X2300219-001	03/13/2003	03/13/2003
AVB87-0100-04116	X2300219-002	03/13/2003	03/13/2003
AVB107-0100-05108	X2300219-003	03/13/2003	03/13/2003
AVB97-0100-03101	X2300219-004	03/13/2003	03/13/2003
AVB97-0104-1000	X2300219-005	03/13/2003	03/13/2003
AVB97-0102-1000	X2300219-006	03/13/2003	03/13/2003

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed in the case narrative. Release of the data contained in this hardcopy data package and in the computer-readable data submitted on floppy diskette has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signature.

Signature: Signature: 41-03

Tame: Tracy Dut 70n

Title: Lab Manager

1 of

Analytical Results

Client: Project: BE&K Terranext WVBA/#03103154

Sample Matrix:

Water

Service Request: X2300219

Date Collected: 03/13/2003

Date Received: 03/13/2003

Volatile Organic Compounds

Sample Name:

AVB37-0400-01118

Lab Code:

X2300219-001

Extraction Method: Analysis Method:

EPA 5030B 8260B

Units: ug/L Basis: NA

Level: Low

			Dilution	Date	Date	
Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed	Arizona Qualifier
Dichlorodifluoromethane	ND U	3.0	1	03/26/03	03/27/03	
Chloromethane	ND U	2.0	1	03/26/03	03/27/03	
Vinyl Chloride	ND U	1.0	1	03/26/03	03/27/03	
Bromomethane	ND U	1.0	1	03/26/03	03/27/03	
Chloroethane	ND U	1.0	1	03/26/03	03/27/03	
Trichlorofluoromethane	ND U	1.0	1	03/26/03	03/27/03	
1,1,2-Trichlorotrifluoroethane	ND U	1.0	1	03/26/03	03/27/03	
1,1-Dichloroethene	1.7	1.0	1	03/26/03	03/27/03	
Acetone	ND U	10	1	03/26/03	03/27/03	
Iodomethane	ND U	2.0	1	03/26/03	03/27/03	
Carbon Disulfide	ND U	2.0	1	03/26/03	03/27/03	
Methylene Chloride	ND U	1.0	1	03/26/03	03/27/03	
Methyl tert-Butyl Ether	ND U	1.0	1	03/26/03	03/27/03	
trans-1,2-Dichloroethene	ND U	0.50	1	03/26/03	03/27/03	
1,1-Dichloroethane	0.83	0.50	1	03/26/03	03/27/03	
Vinyl Acetate	ND U	3.0	1	03/26/03	03/27/03	
2,2-Dichloropropane	ND U	2.0	1	03/26/03	03/27/03	
2-Butanone (MEK)	ND U	8.0	1	03/26/03	03/27/03	
cis-1,2-Dichloroethene	ND U	0.50	1	03/26/03	03/27/03	
Bromochloromethane	ND U	0.50	1	03/26/03	03/27/03	
Chloroform	5.9	1.0	1	03/26/03	03/27/03	
1,1,1-Trichloroethane	ND U	0.50	1	03/26/03	03/27/03	
Carbon Tetrachloride	ND U	0.50	1	03/26/03	03/27/03	
1,1-Dichloropropene	ND U	0.50	1	03/26/03	03/27/03	
Benzene	ND U	0.50	1	03/26/03	03/27/03	
1.2-Dichloroethane	ND U	0.50	1	03/26/03	03/27/03	
Trichloroethene	7.7	0.50	1	03/26/03	03/27/03	
1,2-Dichloropropane	ND U	0.50	1	03/26/03	03/27/03	
Dibromomethane	ND U	0.50	1	03/26/03	03/27/03	
Bromodichloromethane	ND U	0.50	1	03/26/03	03/27/03	
cis-1,3-Dichloropropene	ND U	0.50	1	03/26/03	03/27/03	
4-Methyl-2-pentanone (MIBK)	ND U	8.0	1	03/26/03	03/27/03	
Toluene	ND U	0.50	1	03/26/03	03/27/03	

Comments:

Printed: 04/01/2003 08:08:20 L:\STEALTH\CRYSTAL.RPT\Form1m.rpt

Merged

Form 1A - Organic 000008

Page 1 of 3

SuperSet Reference: RR3132

Analytical Results

Client: Project: BE&K Terranext WVBA/#03103154

Sample Matrix:

Water

Service Request: X2300219

Date Collected: 03/13/2003 **Date Received:** 03/13/2003

Volatile Organic Compounds

Sample Name: Lab Code:

AVB37-0400-01118 X2300219-001

Extraction Method: Analysis Method:

EPA 5030B 8260B

Units: ug/L Basis: NA

Level: Low

				Dilution	Date	Date	
Analyte Name	Result	Q	MRL	Factor	Extracted	Analyzed	Arizona Qualifier
trans-1,3-Dichloropropene	ND	U	1.0	1	03/26/03	03/27/03	
1,1,2-Trichloroethane	ND	U	1.0	1	03/26/03	03/27/03	
Tetrachloroethene	23		0.50	1	03/26/03	03/27/03	
2-Hexanone	ND	U	5.0	1	03/26/03	03/27/03	
1,3-Dichloropropane	ND	U	1.0	1	03/26/03	03/27/03	
Dibromochloromethane	ND	U	0.50	1	03/26/03	03/27/03	
1,2-Dibromoethane	ND	U	0.50	1	03/26/03	03/27/03	
Chlorobenzene	ND		0.50	1	03/26/03	03/27/03	
1,1,1,2-Tetrachloroethane	ND		0.50	1	03/26/03	03/27/03	
Ethylbenzene	ND	TI	0.50	1	03/26/03	03/27/03	
m,p-Xylenes	ND		1.0	1	03/26/03	03/27/03	
o-Xylene	ND		0.50	1	03/26/03	03/27/03	
	ND		0.50	1	03/26/03	03/27/03	
Styrene Isopropylbenzene	ND		0.50	1	03/26/03	03/27/03	
Bromobenzene	ND		0.50	1	03/26/03	03/27/03	
	ND		1.0	1	03/26/03	03/27/03	
1,2,3-Trichloropropane	ND ND		0.50	1	03/26/03	03/27/03	
n-Propylbenzene 2-Chlorotoluene	ND		0,50	1	03/26/03	03/27/03	
	ND		0.50	1	03/26/03	03/27/03	
4-Chlorotoluene	ND ND		0.50	1	03/26/03	03/27/03	
1,3,5-Trimethylbenzene	ND ND		0.50	1	03/26/03	03/27/03	
tert-Butylbenzene				1	03/26/03	03/27/03	
1,2,4-Trimethylbenzene	ND		0.50 0.50	1	03/26/03	03/27/03	
sec-Butylbenzene	ND ND		0.50	1	03/26/03	03/27/03	
1,3-Dichlorobenzene					03/26/03	03/27/03	
4-Isopropyltoluene	ND		0.50	1 1	03/26/03	03/27/03	
Bromoform	ND		0.50	1	03/26/03	03/27/03	
1,1,2,2-Tetrachloroethane	ND		1.0				
1,4-Dichlorobenzene	ND		0.50	1	03/26/03	03/27/03	
1,2-Dichlorobenzene	ND		0.50	1	03/26/03	03/27/03	
n-Butylbenzene	ND		0.50	1	03/26/03	03/27/03	
1,2-Dibromo-3-chloropropane	ND		5.0	1	03/26/03	03/27/03	
1,2,4-Trichlorobenzene	ND		0.50	1	03/26/03	03/27/03	
Hexachlorobutadiene	ND	U	0.50	1	03/26/03	03/27/03	

Comments:

Printed: 04/01/2003 08:08:20 L:\STEALTH\CRYSTAL.RPT\Form1m.rpt

Merged

Form 1A - Organic

000009

Page 2 of 3

SuperSet Reference:

Analytical Results

Client: **Project:** BE&K Terranext WVBA/#03103154

Sample Matrix:

Water

Service Request: X2300219

Date Collected: 03/13/2003

Date Received: 03/13/2003

Volatile Organic Compounds

Sample Name:

AVB37-0400-01118

Lab Code:

X2300219-001

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L

Basis: NA

Level: Low

			Dilution	Date	Date	
Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed	Arizona Qualifier
Naphthalene 1,2,3-Trichlorobenzene	ND U ND U	3.0 0.50	1 1	03/26/03 03/26/03	03/27/03 03/27/03	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Arizona Qualifier	
Dibromofluoromethane Toluene-d8 4-Bromofluorobenzene	104 104 95	84-113 68-126 79-113	03/27/03 03/27/03 03/27/03		

Comments:

Analytical Results

Client: Project: BE&K Terranext WVBA/#03103154

Sample Matrix:

Water

Service Request: X2300219 **Date Collected:** 03/13/2003

Date Received: 03/13/2003

Volatile Organic Compounds

Sample Name: Lab Code:

AVB87-0100-04116 X2300219-002

Extraction Method: EPA 5030B **Analysis Method:**

8260B

Units: ug/L Basis: NA

Level: Low

				Dilution	Date	Date	
Analyte Name	Result	Q	MRL	Factor	Extracted	Analyzed	Arizona Qualifier
Dichlorodifluoromethane	ND	Ŭ	3.0	1	03/26/03	03/27/03	
Chloromethane	ND	U	2.0	1	03/26/03	03/27/03	
Vinyl Chloride	ND	U	1.0	1	03/26/03	03/27/03	
Bromomethane	ND	U	1.0	1	03/26/03	03/27/03	
Chloroethane	ND	U	1.0	1	03/26/03	03/27/03	
Trichlorofluoromethane	ND	U	1.0	1	03/26/03	03/27/03	
1,1,2-Trichlorotrifluoroethane	1.4		1.0	1	03/26/03	03/27/03	
1,1-Dichloroethene	3.2		1.0	1	03/26/03	03/27/03	
Acetone	ND	U	10	1	03/26/03	03/27/03	
Iodomethane	ND	U	2.0	1	03/26/03	03/27/03	
Carbon Disulfide	ND	U	2.0	1	03/26/03	03/27/03	
Methylene Chloride	ND	U	1.0	1	03/26/03	03/27/03	
Methyl tert-Butyl Ether	ND	U	1.0	1	03/26/03	03/27/03	
trans-1,2-Dichloroethene	ND	U	0.50	1	03/26/03	03/27/03	
1,1-Dichloroethane	ND	U	0.50	1	03/26/03	03/27/03	
Vinyl Acetate	ND	U	3.0	1	03/26/03	03/27/03	
2,2-Dichloropropane	ND	U	2.0	1	03/26/03	03/27/03	
2-Butanone (MEK)	ND	U	8.0	1	03/26/03	03/27/03	
cis-1,2-Dichloroethene	ND	U	0.50	1	03/26/03	03/27/03	
Bromochloromethane	ND	U	0.50	1	03/26/03	03/27/03	
Chloroform	6.2		1.0	1	03/26/03	03/27/03	
1,1,1-Trichloroethane	ND	U	0.50	1	03/26/03	03/27/03	
Carbon Tetrachloride	ND	U	0.50	1	03/26/03	03/27/03	
1,1-Dichloropropene	ND	U	0.50	1	03/26/03	03/27/03	
Benzene	ND	U	0.50	1	03/26/03	03/27/03	
1,2-Dichloroethane	ND	U	0.50	1	03/26/03	03/27/03	
Trichloroethene	5.3		0.50	11	03/26/03	03/27/03	
1,2-Dichloropropane	ND		0.50	1	03/26/03	03/27/03	
Dibromomethane	ND	U	0.50	1	03/26/03	03/27/03	
Bromodichloromethane	ND	U	0.50	1	03/26/03	03/27/03	
cis-1,3-Dichloropropene	ND		0.50	1	03/26/03	03/27/03	
4-Methyl-2-pentanone (MIBK)	ND		8.0	1	03/26/03	03/27/03	
Toluene	ND	U	0.50	1	03/26/03	03/27/03	

Comments:

Printed: 04/01/2003 08:08:31

Analytical Results

Client: Project: BE&K Terranext WVBA/#03103154

Sample Matrix:

Water

Service Request: X2300219

Date Collected: 03/13/2003 **Date Received:** 03/13/2003

Volatile Organic Compounds

Sample Name: Lab Code: AVB87-0100-04116 X2300219-002

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

				Dilution	Date	Date	
Analyte Name	Result	Q	MRL	Factor	Extracted	Analyzed	Arizona Qualifier
trans-1,3-Dichloropropene	ND	U	1.0	1	03/26/03	03/27/03	
1,1,2-Trichloroethane	ND	U	1.0	1	03/26/03	03/27/03	
Tetrachloroethene	28		0.50	1	03/26/03	03/27/03	
2-Hexanone	ND	U	5.0	1	03/26/03	03/27/03	
1,3-Dichloropropane	ND		1.0	1	03/26/03	03/27/03	
Dibromochloromethane	ND	U	0.50	1	03/26/03	03/27/03	
1,2-Dibromoethane	ND	U	0.50	1	03/26/03	03/27/03	
Chlorobenzene	ND		0.50	1	03/26/03	03/27/03	
1,1,1,2-Tetrachloroethane	ND		0.50	1	03/26/03	03/27/03	
Ethylbenzene	ND	U	0.50	1	03/26/03	03/27/03	
m,p-Xylenes	ND		1.0	1	03/26/03	03/27/03	
o-Xylene	ND		0.50	1	03/26/03	03/27/03	
Styrene	ND	U	0.50	1	03/26/03	03/27/03	
Isopropylbenzene	ND		0.50	1	03/26/03	03/27/03	
Bromobenzene	ND		0.50	1	03/26/03	03/27/03	
1,2,3-Trichloropropane	ND	U	1.0	1	03/26/03	03/27/03	
n-Propylbenzene	ND		0.50	1	03/26/03	03/27/03	
2-Chlorotoluene	ND		0.50	1	03/26/03	03/27/03	
4-Chlorotoluene	ND	U	0.50	1	03/26/03	03/27/03	
1,3,5-Trimethylbenzene	ND	U	0.50	1	03/26/03	03/27/03	
tert-Butylbenzene	ND	U	0.50	1	03/26/03	03/27/03	
1,2,4-Trimethylbenzene	ND	U	0.50	1	03/26/03	03/27/03	
sec-Butylbenzene	ND		0.50	1	03/26/03	03/27/03	
1,3-Dichlorobenzene	ND		0.50	1	03/26/03	03/27/03	
4-Isopropyltoluene	ND	U	0.50	1	03/26/03	03/27/03	
Bromoform	ND	U	0.50	1	03/26/03	03/27/03	
1,1,2,2-Tetrachloroethane	ND	U	1.0	1	03/26/03	03/27/03	
1,4-Dichlorobenzene	ND	U	0.50	1	03/26/03	03/27/03	
1,2-Dichlorobenzene	ND		0.50	1	03/26/03	03/27/03	
n-Butylbenzene	ND		0.50	1	03/26/03	03/27/03	
1,2-Dibromo-3-chloropropane	ND	U	5.0	1	03/26/03	03/27/03	
1,2,4-Trichlorobenzene	ND		0.50	1	03/26/03	03/27/03	
Hexachlorobutadiene	ND		0.50	1	03/26/03	03/27/03	

Comments:

Printed: 04/01/2003 08:08:31 L:\STEALTH\CRYSTAL.RPT\Form\lm.rpt

Merged

Form 1A - Organic

100012

Page 2 of 3

SuperSet Reference:

Analytical Results

Client:

BE&K Terranext WVBA/#03103154

Project: Sample Matrix:

Water

Service Request: X2300219

Date Collected: 03/13/2003 **Date Received:** 03/13/2003

Volatile Organic Compounds

Sample Name:

AVB87-0100-04116

Lab Code:

X2300219-002

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

Analyta Nama	Result O	MRL	Dilution Factor	Date Extracted	Date Analyzed	Arizona Qualifier
Naphthalene 1,2,3-Trichlorobenzene	ND U ND U	3.0 0.50	1 1	03/26/03 03/26/03	03/27/03 03/27/03	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Arizona Qualifier	
Dibromofluoromethane	105	84-113	03/27/03		
Toluene-d8	105	68-126	03/27/03		
4-Bromofluorobenzene	97	79-113	03/27/03		

Comments:

Analytical Results

Client: Project: BE&K Terranext WVBA/#03103154

Sample Matrix:

Water

Service Request: X2300219

Date Collected: 03/13/2003 **Date Received:** 03/13/2003

Volatile Organic Compounds

Sample Name:

AVB107-0100-05108

Lab Code:

X2300219-003

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

				Dilution	Date	Date	
Analyte Name	Result	Q	MRL	Factor	Extracted		Arizona Qualifier
Dichlorodifluoromethane	ND		3.0	1	03/26/03	03/27/03	
Chloromethane	ND		2.0	1	03/26/03	03/27/03	
Vinyl Chloride	ND	U	1.0	1	03/26/03	03/27/03	
Bromomethane	ND		1.0	1	03/26/03	03/27/03	
Chloroethane	ND		1.0	1	03/26/03	03/27/03	
Trichlorofluoromethane	ND	U	1.0	1	03/26/03	03/27/03	
1,1,2-Trichlorotrifluoroethane	ND	U	1.0	1	03/26/03	03/27/03	
1,1-Dichloroethene	5.0		1.0	1	03/26/03	03/27/03	
Acetone	ND	U	10	1	03/26/03	03/27/03	
Iodomethane	ND	U	2.0	1	03/26/03	03/27/03	
Carbon Disulfide	ND	U	2.0	1	03/26/03	03/27/03	
Methylene Chloride	ND	U	1.0	1	03/26/03	03/27/03	
Methyl tert-Butyl Ether	ND	U	1.0	1	03/26/03	03/27/03	
trans-1,2-Dichloroethene	ND	U	0.50	1	03/26/03	03/27/03	
1,1-Dichloroethane	2.0		0.50	1	03/26/03	03/27/03	
Vinyl Acetate	ND	U	3.0	1	03/26/03	03/27/03	
2,2-Dichloropropane	ND	U	2.0	1	03/26/03	03/27/03	
2-Butanone (MEK)	ND	U	8.0	1	03/26/03	03/27/03	
cis-1,2-Dichloroethene	7.4		0.50	1	03/26/03	03/27/03	
Bromochloromethane	ND	U	0.50	1	03/26/03	03/27/03	
Chloroform	1.8		1.0	1	03/26/03	03/27/03	
1,1,1-Trichloroethane	ND	U	0.50	1	03/26/03	03/27/03	
Carbon Tetrachloride	ND	U	0.50	1	03/26/03	03/27/03	
1,1-Dichloropropene	ND	U	0.50	1	03/26/03	03/27/03	
Benzene	ND	U	0.50	1	03/26/03	03/27/03	
1,2-Dichloroethane	ND	U	0.50	1	03/26/03	03/27/03	
Trichloroethene	43		0.50	1	03/26/03	03/27/03	
1,2-Dichloropropane	ND	U	0.50	1	03/26/03	03/27/03	
Dibromomethane	ND	U	0.50	1	03/26/03	03/27/03	
Bromodichloromethane	ND	U	0.50	1	03/26/03	03/27/03	
cis-1,3-Dichloropropene	ND	U	0.50	1	03/26/03	03/27/03	
4-Methyl-2-pentanone (MIBK)	ND	U	8.0	1	03/26/03	03/27/03	
Toluene	ND	U	0.50	1	03/26/03	03/27/03	

Comments:
Communicates.

Analytical Results

Client: Project: BE&K Terranext WVBA/#03103154

Sample Matrix:

Water

Service Request: X2300219

Date Collected: 03/13/2003 **Date Received:** 03/13/2003

Volatile Organic Compounds

Sample Name:

AVB107-0100-05108

Lab Code:

X2300219-003

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

			Dilution	Date	Date	
Analyte Name	Result Q	MRL	Factor	Extracted		Arizona Qualifier
trans-1,3-Dichloropropene	ND U	1.0	1	03/26/03	03/27/03	
1,1,2-Trichloroethane	ND U	1.0	1	03/26/03	03/27/03	
Tetrachloroethene	7.6	0.50	1	03/26/03	03/27/03	
2-Hexanone	ND U	5.0	1	03/26/03	03/27/03	
1,3-Dichloropropane	ND U	1.0	1	03/26/03	03/27/03	
Dibromochloromethane	ND U	0.50	1	03/26/03	03/27/03	
1,2-Dibromoethane	ND U	0.50	1	03/26/03	03/27/03	
Chlorobenzene	ND U	0.50	1	03/26/03	03/27/03	
1,1,1,2-Tetrachloroethane	ND U	0.50	1	03/26/03	03/27/03	
Ethylbenzene	ND U	0.50	1	03/26/03	03/27/03	
m,p-Xylenes	ND U	1.0	1	03/26/03	03/27/03	
o-Xylene	ND U	0.50	1	03/26/03	03/27/03	
Styrene	ND U	0.50	1	03/26/03	03/27/03	
Isopropylbenzene	ND U	0.50	1	03/26/03	03/27/03	
Bromobenzene	ND U	0.50	1	03/26/03	03/27/03	
1,2,3-Trichloropropane	ND U	1.0	1	03/26/03	03/27/03	
n-Propylbenzene	ND U	0.50	1	03/26/03	03/27/03	
2-Chlorotoluene	ND U	0.50	1	03/26/03	03/27/03	
4-Chlorotoluene	ND U	0.50	1	03/26/03	03/27/03	
1,3,5-Trimethylbenzene	ND U	0.50	1	03/26/03	03/27/03	
tert-Butylbenzene	ND U	0.50	1	03/26/03	03/27/03	
1,2,4-Trimethylbenzene	ND U	0.50	1	03/26/03	03/27/03	
sec-Butylbenzene	ND U	0.50	1	03/26/03	03/27/03	
1,3-Dichlorobenzene	ND U	0.50	1	03/26/03	03/27/03	
4-Isopropyltoluene	ND U	0.50	1	03/26/03	03/27/03	
Bromoform	ND U	0.50	1	03/26/03	03/27/03	
1,1,2,2-Tetrachloroethane	ND U	1.0	1	03/26/03	03/27/03	
1,4-Dichlorobenzene	ND U	0.50	1	03/26/03	03/27/03	
1,2-Dichlorobenzene	ND U	0.50	1	03/26/03	03/27/03	
n-Butylbenzene	ND U	0.50	1	03/26/03	03/27/03	
1,2-Dibromo-3-chloropropane	ND U	5.0	1	03/26/03	03/27/03	
1,2,4-Trichlorobenzene	ND U	0.50	1	03/26/03	03/27/03	
Hexachlorobutadiene	ND U	0.50	1	03/26/03	03/27/03	

Comments:

Printed: 04/01/2003 08:08:42 L:\STEALTH\CRYSTAL.RPT\Form1m.rpt

Form 1A - Organic

000015

Page 2 of 3

Analytical Results

Client: Project: BE&K Terranext WVBA/#03103154

Sample Matrix:

Water

Service Request: X2300219 **Date Collected:** 03/13/2003

Date Received: 03/13/2003

Volatile Organic Compounds

Sample Name:

AVB107-0100-05108

Lab Code:

X2300219-003

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

			Dilution	Date	Date	
Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed	Arizona Qualifier
Naphthalene	ND U	3.0	1	03/26/03	03/27/03	
1,2,3-Trichlorobenzene	ND U	0.50	1	03/26/03	03/27/03	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Arizona Qualifier	
Dibromofluoromethane	101	84-113	03/27/03		
Toluene-d8	107	68-126	03/27/03		
4-Bromofluorobenzene	94	79-113	03/27/03		

Comments:

Analytical Results

Client: Project:

BE&K Terranext WVBA/#03103154

Sample Matrix:

Water

Service Request: X2300219
Date Collected: 03/13/2003

Date Received: 03/13/2003

Volatile Organic Compounds

Sample Name: Lab Code:

AVB97-0100-03101

Extraction Method:

X2300219-004

Analysis Method:

EPA 5030B 8260B Units: ug/L Basis: NA

Level: Low

			Dilution	Date	Date	
Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed	Arizona Qualifier
Dichlorodifluoromethane	ND U	3.0	1	03/26/03	03/27/03	
Chloromethane	ND U	2.0	1	03/26/03	03/27/03	
Vinyl Chloride	ND U	1.0	1	03/26/03	03/27/03	
Bromomethane	ND U	1.0	1	03/26/03	03/27/03	
Chloroethane	ND U	1.0	1	03/26/03	03/27/03	
Trichlorofluoromethane	ND U	1.0	1	03/26/03	03/27/03	
	ND U	1.0	1	03/26/03	03/27/03	
1,1,2-Trichlorotrifluoroethane	ND U	1.0	1	03/26/03	03/27/03	
1,1-Dichloroethene	ND U	10	1	03/26/03	03/27/03	
Acetone				03/26/03	03/27/03	
Iodomethane	ND U	2.0	1	03/26/03	03/27/03	
Carbon Disulfide	ND U	2.0	1 1	03/26/03	03/27/03	
Methylene Chloride	ND U	1.0				
Methyl tert-Butyl Ether	ND U	1.0	1	03/26/03	03/27/03	
trans-1,2-Dichloroethene	ND U	0.50	1	03/26/03	03/27/03	
1,1-Dichloroethane	ND U	0.50	1	03/26/03	03/27/03	
Vinyl Acetate	ND U	3.0	1	03/26/03	03/27/03	
2,2-Dichloropropane	ND U	2.0	1	03/26/03	03/27/03	
2-Butanone (MEK)	ND U	8.0	1	03/26/03	03/27/03	
cis-1,2-Dichloroethene	2.3	0.50	1	03/26/03	03/27/03	
Bromochloromethane	ND U	0.50	1	03/26/03	03/27/03	
Chloroform	ND U	1.0	1	03/26/03	03/27/03	
	ND U	0.50	1	03/26/03	03/27/03	
1,1,1-Trichloroethane	ND U	0.50	1	03/26/03	03/27/03	
Carbon Tetrachloride	ND U	0.50	1	03/26/03	03/27/03	
1,1-Dichloropropene			1	03/26/03	03/27/03	
Benzene	ND U	0.50	1	03/26/03	03/27/03	
1,2-Dichloroethane	ND U	0.50	1	03/26/03	03/27/03	
Trichloroethene	3.0	0.50	1			
1,2-Dichloropropane	ND U	0.50	1	03/26/03	03/27/03	
Dibromomethane	ND U	0.50	1	03/26/03	03/27/03	
Bromodichloromethane	ND U	0.50	1	03/26/03	03/27/03	
cis-1,3-Dichloropropene	ND U	0.50	1	03/26/03	03/27/03	
4-Methyl-2-pentanone (MIBK)	ND U	8.0	1	03/26/03	03/27/03	
Toluene	ND U	0.50	1	03/26/03	03/27/03	
1 Oldono						

Comments:

Printed: 04/01/2003 08:08:53 L:\STEALTH\CRYSTAL.RPT\Formlm.rpt

Merged

Form 1A - Organic 000017

Page 1 of 3

Analytical Results

Client: Project: BE&K Terranext WVBA/#03103154

Sample Matrix:

Water

Service Request: X2300219

Date Collected: 03/13/2003

Date Collected: 03/13/2003 **Date Received:** 03/13/2003

Volatile Organic Compounds

Sample Name: Lab Code:

AVB97-0100-03101 X2300219-004

Extraction Method: Analysis Method:

EPA 5030B 8260B Units: ug/L Basis: NA

Level: Low

	.	0	MRL	Dilution Factor	Date Extracted	Date Analyzed	Arizona Qualifier_
Analyte Name	Result				03/26/03	03/27/03	THE DOME QUALITY
trans-1,3-Dichloropropene	ND		1.0 1.0	1 1	03/26/03	03/27/03	
1,1,2-Trichloroethane	ND	U		1	03/26/03	03/27/03	
Tetrachloroethene	3.0		0.50				
2-Hexanone	ND		5.0	1	03/26/03	03/27/03	
1,3-Dichloropropane	ND		1.0	1	03/26/03	03/27/03	
Dibromochloromethane	ND	U	0.50	1	03/26/03	03/27/03	
1.2-Dibromoethane	ND		0.50	1	03/26/03	03/27/03	
Chlorobenzene	ND	U	0.50	1	03/26/03	03/27/03	
1,1,1,2-Tetrachloroethane	ND	U	0.50	1	03/26/03	03/27/03	
Ethylbenzene	ND	U	0.50	1	03/26/03	03/27/03	
m,p-Xylenes	ND		1.0	1	03/26/03	03/27/03	
o-Xylene	ND		0.50	1	03/26/03	03/27/03	
Styrene	ND	IJ	0.50	1	03/26/03	03/27/03	
Isopropylbenzene	ND		0.50	1	03/26/03	03/27/03	
Bromobenzene	ND		0.50	1	03/26/03	03/27/03	
	ND		1.0	1	03/26/03	03/27/03	
1,2,3-Trichloropropane	ND ND		0.50	1	03/26/03	03/27/03	
n-Propylbenzene 2-Chlorotoluene	ND ND		0.50	1	03/26/03	03/27/03	
			0.50	1	03/26/03	03/27/03	
4-Chlorotoluene	ND		0.50	1	03/26/03	03/27/03	
1,3,5-Trimethylbenzene	ND ND		0.50	1	03/26/03	03/27/03	
tert-Butylbenzene					03/26/03	03/27/03	
1,2,4-Trimethylbenzene	ND		0.50	1	03/26/03	03/27/03	
sec-Butylbenzene	ND		0.50	1	03/26/03	03/27/03	
1,3-Dichlorobenzene	ND		0.50	1			
4-Isopropyltoluene	ND		0.50	1	03/26/03	03/27/03	
Bromoform	ND		0.50	1	03/26/03	03/27/03	
1,1,2,2-Tetrachloroethane	ND	U	1.0	1	03/26/03	03/27/03	
1,4-Dichlorobenzene	ND	U	0.50	1	03/26/03	03/27/03	
1,2-Dichlorobenzene	ND	U	0.50	1	03/26/03	03/27/03	
n-Butylbenzene	ND	U	0.50	1	03/26/03	03/27/03	
1,2-Dibromo-3-chloropropane	ND	U	5.0	1	03/26/03	03/27/03	
1,2,4-Trichlorobenzene		Ū	0.50	1	03/26/03	03/27/03	
Hexachlorobutadiene		Ū	0.50	1	03/26/03	03/27/03	
110/MOIIIO1 OO GAAGOOO	- 1-						

Comments:

Printed: 04/01/2003 08:08:53 L:\STEALTH\CRYSTAL.RPT\Form\lm.rpt

Merged

Form 1A - Organic

000018

Page 2 of 3

SuperSet Reference:

Analytical Results

Client:

BE&K Terranext WVBA/#03103154

Project: Sample Matrix:

Water

Service Request: X2300219

Date Collected: 03/13/2003

Date Received: 03/13/2003

Volatile Organic Compounds

Sample Name:

AVB97-0100-03101

Lab Code:

X2300219-004

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

			Dilution	Date	Date	
Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed	Arizona Qualifier
Naphthalene 1,2,3-Trichlorobenzene	ND U ND U	3.0 0.50	1 1	03/26/03 03/26/03	03/27/03 03/27/03	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Arizona Qualifier
Dibromofluoromethane	103	84-113	03/27/03	
Toluene-d8	105	68-126	03/27/03	
4-Bromofluorobenzene	99	79-113	03/27/03	

Comments:

Printed: 04/01/2003 08:08:53

Analytical Results

Client: Project: BE&K Terranext WVBA/#03103154

Sample Matrix:

Water

Service Request: X2300219

Date Collected: 03/13/2003 **Date Received:** 03/13/2003

Volatile Organic Compounds

Sample Name: Lab Code: AVB97-0104-1000 X2300219-005

Extraction Method: Analysis Method:

EPA 5030B 8260B Units: ug/L Basis: NA

Level: Low

			Dilution	Date	Date	
Analyte Name	Result Q	MRL	Factor	Extracted		Arizona Qualifier
Dichlorodifluoromethane	ND U	3.0	1	03/26/03	03/27/03	
Chloromethane	ND U	2.0	1	03/26/03	03/27/03	
Vinyl Chloride	ND U	1.0	1	03/26/03	03/27/03	
Bromomethane	ND U	1.0	1	03/26/03	03/27/03	
Chloroethane	ND U	1.0	1	03/26/03	03/27/03	
Trichlorofluoromethane	ND U	1.0	1	03/26/03	03/27/03	
1,1,2-Trichlorotrifluoroethane	ND U	1.0	1	03/26/03	03/27/03	
1.1-Dichloroethene	ND U	1.0	1	03/26/03	03/27/03	
Acetone	ND U	10	1	03/26/03	03/27/03	
Iodomethane	ND U	2.0	1	03/26/03	03/27/03	
Carbon Disulfide	ND U	2.0	1	03/26/03	03/27/03	
Methylene Chloride	ND U	1.0	1	03/26/03	03/27/03	
	ND U	1.0	1	03/26/03	03/27/03	
Methyl tert-Butyl Ether	ND U	0.50	1	03/26/03	03/27/03	
trans-1,2-Dichloroethene 1,1-Dichloroethane	ND U	0.50	1	03/26/03	03/27/03	
	ND U	3.0	1	03/26/03	03/27/03	
Vinyl Acetate	ND U	2.0	1	03/26/03	03/27/03	
2,2-Dichloropropane	ND U	8.0	1	03/26/03	03/27/03	
2-Butanone (MEK)		0.50	1	03/26/03	03/27/03	
cis-1,2-Dichloroethene	ND U ND U	0.50	1	03/26/03	03/27/03	
Bromochloromethane	ND U	1.0	1	03/26/03	03/27/03	
Chloroform			1	03/26/03	03/27/03	
1,1,1-Trichloroethane	ND U	0.50	1	03/26/03	03/27/03	
Carbon Tetrachloride	ND U	0.50 0.50	1	03/26/03	03/27/03	
1,1-Dichloropropene	ND U			03/26/03	03/27/03	
Benzene	ND U	0.50	1	03/26/03	03/27/03	
1,2-Dichloroethane	ND U	0.50	1	03/26/03	03/27/03	
Trichloroethene	ND U	0.50				
1,2-Dichloropropane	ND U	0.50	1	03/26/03	03/27/03 03/27/03	
Dibromomethane	ND U	0.50	1	03/26/03	03/27/03	
Bromodichloromethane	ND U	0.50	1	03/26/03		
cis-1,3-Dichloropropene	ND U	0.50	1	03/26/03	03/27/03	
4-Methyl-2-pentanone (MIBK)	ND U	8.0	1	03/26/03	03/27/03	
Toluene	ND U	0.50	1	03/26/03	03/27/03	

Comments:

 $\begin{array}{lll} Printed: & 04/01/2003 & 08:09:04 \\ \text{L:} \text{STEALTH:} CRYSTAL.RPT: Form! m.rpt} \end{array}$

Merged

Form 1A - Organic

000020

Page 1 of 3

SuperSet Reference:

Analytical Results

Client: Project: BE&K Terranext WVBA/#03103154

Sample Matrix:

Water

Service Request: X2300219

Date Collected: 03/13/2003 **Date Received:** 03/13/2003

Volatile Organic Compounds

Sample Name: Lab Code:

AVB97-0104-1000 X2300219-005

Extraction Method: Analysis Method:

EPA 5030B

8260B

Units: ug/L Basis: NA

Level: Low

				Dilution	Date	Date	
Analyte Name	Result	Q	MRL	Factor	Extracted	Analyzed	Arizona Qualifier
trans-1,3-Dichloropropene	ND	Ū	1.0	1	03/26/03	03/27/03	
1,1,2-Trichloroethane	ND		1.0	1	03/26/03	03/27/03	
Tetrachloroethene	ND	U	0.50	1	03/26/03	03/27/03	
2-Hexanone	ND	U	5.0	1	03/26/03	03/27/03	
1,3-Dichloropropane	ND		1.0	1	03/26/03	03/27/03	
Dibromochloromethane	ND		0.50	1	03/26/03	03/27/03	
1,2-Dibromoethane	ND		0.50	1	03/26/03	03/27/03	
Chlorobenzene	ND		0.50	1	03/26/03	03/27/03	
1,1,1,2-Tetrachloroethane	ND		0.50	1	03/26/03	03/27/03	
	ND		0.50	1	03/26/03	03/27/03	
Ethylbenzene	ND ND		1.0	1	03/26/03	03/27/03	
m,p-Xylenes	ND		0.50	1	03/26/03	03/27/03	
o-Xylene	ND		0.50	1	03/26/03	03/27/03	
Styrene	ND ND		0.50	î	03/26/03	03/27/03	
Isopropylbenzene Bromobenzene	ND		0.50	1	03/26/03	03/27/03	
	ND		1.0	1	03/26/03	03/27/03	
1,2,3-Trichloropropane	ND ND		0.50	1	03/26/03	03/27/03	
n-Propylbenzene	ND ND		0.50	1	03/26/03	03/27/03	
2-Chlorotoluene	ND		0.50	1	03/26/03	03/27/03	
4-Chlorotoluene	ND ND		0.50	1	03/26/03	03/27/03	
1,3,5-Trimethylbenzene	ND ND		0.50	1	03/26/03	03/27/03	
tert-Butylbenzene				1	03/26/03	03/27/03	
1,2,4-Trimethylbenzene	ND		0.50 0.50	1	03/26/03	03/27/03	
sec-Butylbenzene	ND		0.50	1	03/26/03	03/27/03	
1,3-Dichlorobenzene	ND				03/26/03	03/27/03	
4-Isopropyltoluene	ND		0.50	1 1	03/26/03	03/27/03	
Bromoform		U	0.50 1.0	1	03/26/03	03/27/03	
1,1,2,2-Tetrachloroethane		U				03/27/03	
1,4-Dichlorobenzene		U	0.50	1	03/26/03 03/26/03	03/27/03	
1,2-Dichlorobenzene		U	0.50	1	03/26/03	03/27/03	
n-Butylbenzene		U	0.50	1			
1,2-Dibromo-3-chloropropane		U	5.0	1	03/26/03	03/27/03	
1,2,4-Trichlorobenzene		U	0.50	1	03/26/03	03/27/03	
Hexachlorobutadiene	NE	U	0.50	1	03/26/03	03/27/03	

Comments:

Printed: 04/01/2003 08:09:04 L:\STEALTH\CRYSTAL.RPT\Form1m.rpt

Merged

Form 1A - Organic

2 of 3 Page

Analytical Results

Client:

BE&K Terranext WVBA/#03103154

Project: Sample Matrix:

Water

Service Request: X2300219 **Date Collected:** 03/13/2003

Date Received: 03/13/2003

Volatile Organic Compounds

Sample Name: Lab Code:

AVB97-0104-1000 X2300219-005

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

			Dilution	Date	Date	
Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed	Arizona Qualifier
Naphthalene	ND U	3.0	1	03/26/03	03/27/03	
1,2,3-Trichlorobenzene	ND U	0.50	1	03/26/03	03/27/03	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Arizona Qualifier	
Dibromofluoromethane	103	84-113	03/27/03		
Toluene-d8	108	68-126	03/27/03		
4-Bromofluorobenzene	99	79-113	03/27/03		

Comments:

Printed: 04/01/2003 08:09:04 L:\STEALTH\CRYSTAL.RPT\Form1m.rpt

Merged

Analytical Results

Client: Project: BE&K Terranext WVBA/#03103154

Sample Matrix:

Water

Service Request: X2300219

Date Collected: 03/13/2003 **Date Received:** 03/13/2003

Volatile Organic Compounds

Sample Name: Lab Code: AVB97-0102-1000 X2300219-006

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

	D 14	0	MRL	Dilution Factor	Date Extracted	Date Analyzed	Arizona Qualifier
Analyte Name	Result		3.0	1	03/27/03	03/27/03	
Dichlorodifluoromethane	ND		2.0	1	03/27/03	03/27/03	
Chloromethane	ND ND		1.0	1	03/27/03	03/27/03	
Vinyl Chloride				1	03/27/03	03/27/03	
Bromomethane	ND		1.0 1.0	1	03/27/03	03/27/03	
Chloroethane	ND		1.0	1	03/27/03	03/27/03	
Trichlorofluoromethane	ND				03/27/03	03/27/03	
1,1,2-Trichlorotrifluoroethane	ND		1.0	1	03/27/03	03/27/03	
1,1-Dichloroethene	ND		1.0	1 1	03/27/03	03/27/03	
Acetone	ND		10				
Iodomethane	ND		2.0	1	03/27/03	03/27/03	
Carbon Disulfide	ND		2.0	1	03/27/03	03/27/03	
Methylene Chloride	ND	U	1.0	1	03/27/03	03/27/03	
Methyl tert-Butyl Ether	ND	U	1.0	1	03/27/03	03/27/03	
trans-1,2-Dichloroethene	ND	U	0.50	1	03/27/03	03/27/03	
1,1-Dichloroethane	ND	U	0.50	1	03/27/03	03/27/03	
Vinyl Acetate	ND	U	3.0	1	03/27/03	03/27/03	
2,2-Dichloropropane	ND		2.0	1	03/27/03	03/27/03	
2-Butanone (MEK)	ND	U	8.0	1	03/27/03	03/27/03	
cis-1,2-Dichloroethene	ND	U	0.50	1	03/27/03	03/27/03	
Bromochloromethane	ND		0.50	1	03/27/03	03/27/03	Ll
Chloroform	ND	U	1.0	1	03/27/03	03/27/03	
1.1.1-Trichloroethane	ND		0.50	1	03/27/03	03/27/03	
Carbon Tetrachloride	ND		0.50	1	03/27/03	03/27/03	
1,1-Dichloropropene	ND		0.50	1	03/27/03	03/27/03	
		U	0.50	1	03/27/03	03/27/03	
Benzene		U	0.50	1	03/27/03	03/27/03	
1,2-Dichloroethane Trichloroethene		U	0.50	1	03/27/03	03/27/03	
		U	0.50	1	03/27/03	03/27/03	
1,2-Dichloropropane		U	0.50	1	03/27/03	03/27/03	L1
Dibromomethane		U	0.50	1	03/27/03	03/27/03	
Bromodichloromethane				1	03/27/03	03/27/03	
cis-1,3-Dichloropropene		U	0.50 8.0	1	03/27/03	03/27/03	
4-Methyl-2-pentanone (MIBK)		U	8.0 0.50	1	03/27/03	03/27/03	
Toluene	NL	U	0.50	1	03/27/03	05,2,,05	

Comments:

Printed: 04/01/2003 08:09:15 L:\STEALTH\CRYSTAL.RPT\Form1m.rpt

Merged

Form 1A - Organic

000023

Page 1 of 3

Analytical Results

Client:

BE&K Terranext WVBA/#03103154

Project: Sample Matrix:

Water

Service Request: X2300219

Date Collected: 03/13/2003 **Date Received:** 03/13/2003

Volatile Organic Compounds

Sample Name:

AVB97-0102-1000

Lab Code:

X2300219-006

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

ND ND ND ND ND ND	U U U	1.0 1.0 0.50 5.0	Factor 1 1 1	03/27/03 03/27/03 03/27/03	Analyzed 03/27/03 03/27/03	Arizona Qualifier
ND ND ND ND	U U U	1.0 0.50 5.0	1 1	03/27/03		
ND ND ND	U U	0.50 5.0	1		03/27/03	
ND ND	U	5.0		03/27/03		
ND			1	30.25	03/27/03	
ND			1	03/27/03	03/27/03	
		1.0	1	03/27/03	03/27/03	
	U	0.50	1	03/27/03	03/27/03	
ND	IJ	0.50	1	03/27/03	03/27/03	
			1	03/27/03	03/27/03	
		0.50	1	03/27/03	03/27/03	
		0.50	1	03/27/03	03/27/03	
			1	03/27/03	03/27/03	
			1	03/27/03	03/27/03	
			1	03/27/03	03/27/03	
					03/27/03	
				03/27/03	03/27/03	
				03/27/03	03/27/03	L1
			_			
ND	U	1.0	<u> </u>			
NE) U	0.50	1			
		0.50	1			
NE	U	0.50	1			
NE	U	5.0	1	03/27/03		
		0.50	1			
		0.50	1	03/27/03	03/27/03	
		ND U	ND U 0.50 ND U 0.50 ND U 0.50 ND U 1.0 ND U 0.50	ND U 0.50 1 ND U 0.50 <td< td=""><td>ND U 0.50 1 03/27/03 ND U 0.50 1 03/27/03 ND U 0.50 1 03/27/03 ND U 1.0 1 03/27/03 ND U 0.50 1 03/27/03 ND U 1.0 1 03/27/03 ND U 1.0 1 03/27/03 ND U 0.50 1 03/27/03</td><td>ND U 0.50 1 03/27/03 03/27/03 ND U 0.50 1 03/27/03 03/27/03 03/27/03 ND U 0.50 1</td></td<>	ND U 0.50 1 03/27/03 ND U 0.50 1 03/27/03 ND U 0.50 1 03/27/03 ND U 1.0 1 03/27/03 ND U 0.50 1 03/27/03 ND U 1.0 1 03/27/03 ND U 1.0 1 03/27/03 ND U 0.50 1 03/27/03	ND U 0.50 1 03/27/03 03/27/03 03/27/03 03/27/03 ND U 0.50 1

Comments:

Printed: 04/01/2003 08:09:15 L:\STEALTH\CRYSTAL.RPT\Formlm.rpt

Merged

Page

2 of 3

Analytical Results

Client: Project: BE&K Terranext WVBA/#03103154

Sample Matrix:

Water

Service Request: X2300219

Date Collected: 03/13/2003

Date Received: 03/13/2003

Volatile Organic Compounds

Sample Name:

AVB97-0102-1000

Lab Code:

X2300219-006

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

			Dilution	Date	Date	
Analyte Name	Result Q	\mathbf{MRL}	Factor	Extracted	Analyzed	Arizona Qualifier
Naphthalene 1,2,3-Trichlorobenzene	ND U ND U	3.0 0.50	1 1	03/27/03 03/27/03	03/27/03 03/27/03	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Arizona Qualifier	
Dibromofluoromethane	96	84-113	03/27/03		
Toluene-d8	105	68-126	03/27/03		
4-Bromofluorobenzene	93	79-113	03/27/03		

Comments:

Analytical Results

Client: Project:

BE&K Terranext WVBA/#03103154

Sample Matrix:

Water

Service Request: X2300219

Date Collected: NA
Date Received: NA

Volatile Organic Compounds

Sample Name: Lab Code: Method Blank XWG0300406-5

Extraction Method: Analysis Method:

EPA 5030B 8260B Units: ug/L Basis: NA

Level: Low

				Dilution	Date	Date	
Analyte Name	Result	Q	MRL	Factor	Extracted		Arizona Qualifier
Dichlorodifluoromethane	ND	U	3.0	1	03/26/03	03/27/03	
Chloromethane	ND	U	2.0	1	03/26/03	03/27/03	
Vinyl Chloride	ND	U	1.0	1	03/26/03	03/27/03	
Bromomethane	ND	U	1.0	1	03/26/03	03/27/03	
Chloroethane	ND	U	1.0	1	03/26/03	03/27/03	
Trichlorofluoromethane	ND	U	1.0	1	03/26/03	03/27/03	
1,1,2-Trichlorotrifluoroethane	ND	U	1.0	1	03/26/03	03/27/03	
1.1-Dichloroethene	ND		1.0	1	03/26/03	03/27/03	
Acetone	ND	U	10	1	03/26/03	03/27/03	
Iodomethane	ND	U	2.0	1	03/26/03	03/27/03	
Carbon Disulfide	ND		2.0	1	03/26/03	03/27/03	
Methylene Chloride	ND		1.0	1	03/26/03	03/27/03	
Methyl tert-Butyl Ether	ND	IJ	1.0	1	03/26/03	03/27/03	
trans-1,2-Dichloroethene	ND		0.50	1	03/26/03	03/27/03	
1,1-Dichloroethane	ND		0.50	1	03/26/03	03/27/03	
	ND	ΤŢ	3.0	1	03/26/03	03/27/03	
Vinyl Acetate 2,2-Dichloropropane	ND		2.0	1	03/26/03	03/27/03	
2-Butanone (MEK)	ND		8.0	1	03/26/03	03/27/03	
cis-1,2-Dichloroethene	ND		0.50	1	03/26/03	03/27/03	
Bromochloromethane	ND		0.50	1	03/26/03	03/27/03	
Chloroform	ND		1.0	1	03/26/03	03/27/03	
	ND		0.50	1	03/26/03	03/27/03	
1,1,1-Trichloroethane Carbon Tetrachloride	ND		0.50	1	03/26/03	03/27/03	
1,1-Dichloropropene	ND		0.50	1	03/26/03	03/27/03	
	ND		0.50	1	03/26/03	03/27/03	
Benzene 1,2-Dichloroethane	ND		0.50	1	03/26/03	03/27/03	
Trichloroethene		U	0.50	1	03/26/03	03/27/03	
		U	0.50	1	03/26/03	03/27/03	
1,2-Dichloropropane) U	0.50	$\overline{1}$	03/26/03	03/27/03	
Dibromomethane Bromodichloromethane		U	0.50	1	03/26/03	03/27/03	
		U	0.50	1	03/26/03	03/27/03	
cis-1,3-Dichloropropene) U	8.0	1	03/26/03	03/27/03	
4-Methyl-2-pentanone (MIBK)) U	0.50	ī	03/26/03	03/27/03	
Toluene	INL		0.00				

Comments:

Printed: 04/01/2003 08:09:26 L:\STEALTH\CRYSTAL.RPT\Formlm.rpt

Merged

Form 1A - Organic

0000086

Page 1 of 3

SuperSet Reference: RR3132

Analytical Results

Client: Project: BE&K Terranext WVBA/#03103154

Sample Matrix:

Water

Service Request: X2300219

Date Collected: NA Date Received: NA

Volatile Organic Compounds

Sample Name: Lab Code:

Method Blank XWG0300406-5

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

				Dilution	Date	Date	
Analyte Name	Result	Q	MRL	Factor	Extracted	Analyzed	Arizona Qualifier
trans-1,3-Dichloropropene	ND		1.0	1	03/26/03	03/27/03	
1,1,2-Trichloroethane	ND	U	1.0	1	03/26/03	03/27/03	
Tetrachloroethene	ND	U	0.50	1	03/26/03	03/27/03	
2-Hexanone	ND	U	5.0	1	03/26/03	03/27/03	
1,3-Dichloropropane	ND		1.0	1	03/26/03	03/27/03	
Dibromochloromethane	ND		0.50	1	03/26/03	03/27/03	
1,2-Dibromoethane	ND	U	0.50	1	03/26/03	03/27/03	
Chlorobenzene	ND		0.50	1	03/26/03	03/27/03	
1,1,1,2-Tetrachloroethane	ND		0.50	1	03/26/03	03/27/03	
Ethylbenzene	ND	IJ	0,50	1	03/26/03	03/27/03	
m,p-Xylenes	ND		1.0	1	03/26/03	03/27/03	
o-Xylene	ND		0.50	1	03/26/03	03/27/03	
	ND		0.50	1	03/26/03	03/27/03	
Styrene	ND ND		0.50	1	03/26/03	03/27/03	
Isopropylbenzene Bromobenzene	ND		0.50	1	03/26/03	03/27/03	
	ND		1.0	1	03/26/03	03/27/03	
1,2,3-Trichloropropane	ND ND		0.50	1	03/26/03	03/27/03	
n-Propylbenzene 2-Chlorotoluene	ND		0.50	1	03/26/03	03/27/03	
	ND		0.50	1	03/26/03	03/27/03	
4-Chlorotoluene	ND ND		0.50	1	03/26/03	03/27/03	
1,3,5-Trimethylbenzene	ND		0.50	1	03/26/03	03/27/03	
tert-Butylbenzene	ND		0.50	1	03/26/03	03/27/03	
1,2,4-Trimethylbenzene	ND ND		0.50	1	03/26/03	03/27/03	
sec-Butylbenzene	ND ND		0.50	1	03/26/03	03/27/03	
1,3-Dichlorobenzene			0.50	1	03/26/03	03/27/03	
4-Isopropyltoluene	NE	U	0.50	1	03/26/03	03/27/03	
Bromoform		U	1.0	î	03/26/03	03/27/03	
1,1,2,2-Tetrachloroethane				1	03/26/03	03/27/03	
1,4-Dichlorobenzene		U	0.50	1	03/26/03	03/27/03	
1,2-Dichlorobenzene		U	0.50 0.50	1	03/26/03	03/27/03	
n-Butylbenzene		U			03/26/03	03/27/03	
1,2-Dibromo-3-chloropropane		U	5.0	1	03/26/03	03/27/03	
1,2,4-Trichlorobenzene		U	0.50	1 1	03/26/03	03/27/03	
Hexachlorobutadiene	NI	U	0.50	ı l	03/20/03	03/2/103	

Comments:

Printed: 04/01/2003 08:09:26 L:\STEALTH\CRYSTAL.RPT\Form1m.rpt

000027 SuperSet Reference: RR3132

Analytical Results

Client: Project: BE&K Terranext WVBA/#03103154

Sample Matrix:

Water

Service Request: X2300219

Date Collected: NA Date Received: NA

Volatile Organic Compounds

Sample Name: Lab Code:

Method Blank XWG0300406-5

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

			Dilution	Date	Date	
Analyte Name	Result O	MRL	Factor	Extracted	Analyzed	Arizona Qualifier
Naphthalene	ND U	3.0	1	03/26/03 03/26/03	03/27/03 03/27/03	
1,2,3-Trichlorobenzene	ND U	0.50	1	03/20/03	03/2//02	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Arizona Qualifier	
Dibromofluoromethane Toluene-d8	98 101	84-113 68-126	03/27/03 03/27/03 03/27/03		
4-Bromofluorobenzene	96	79-113	03/2//03		

Comments:

Analytical Results

Client: Project: BE&K Terranext WVBA/#03103154

Sample Matrix:

Water

Service Request: X2300219

Units: ug/L

Date Collected: NA Date Received: NA

Volatile Organic Compounds

Dilution

Sample Name: Lab Code:

Method Blank

Extraction Method: EPA 5030B

XWG0300410-5

Basis: NA Level: Low

Date

Date

Analysis Method:	8260B	

			Diiuuu	Daic	Date	
Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed	Arizona Qualifier
Dichlorodifluoromethane	ND U	3.0	1	03/27/03	03/27/03	
Chloromethane	ND U	2.0	1	03/27/03	03/27/03	
Vinyl Chloride	ND U	1.0	1	03/27/03	03/27/03	
Bromomethane	ND U	1.0	1	03/27/03	03/27/03	
Chloroethane	ND U	1.0	1	03/27/03	03/27/03	
Trichlorofluoromethane	ND U	1.0	1	03/27/03	03/27/03	
1,1,2-Trichlorotrifluoroethane	ND U	1.0	1	03/27/03	03/27/03	
1,1-Dichloroethene	ND U	1.0	1	03/27/03	03/27/03	
Acetone	ND U	10	1	03/27/03	03/27/03	
Iodomethane	ND U	2.0	1	03/27/03	03/27/03	
Carbon Disulfide	ND U	2.0	1	03/27/03	03/27/03	
Methylene Chloride	ND U	1.0	1	03/27/03	03/27/03	
Methyl tert-Butyl Ether	ND U	1.0	1	03/27/03	03/27/03	
trans-1,2-Dichloroethene	ND U	0.50	1	03/27/03	03/27/03	
1,1-Dichloroethane	ND U	0.50	1	03/27/03	03/27/03	
Vinyl Acetate	ND U	3.0	1	03/27/03	03/27/03	
2,2-Dichloropropane	ND U	2.0	1	03/27/03	03/27/03	
2-Butanone (MEK)	ND U	8.0	1	03/27/03	03/27/03	
cis-1,2-Dichloroethene	ND U	0.50	1	03/27/03	03/27/03	
Bromochloromethane	ND U	0.50	1	03/27/03		L1
Chloroform	ND U	1.0	1	03/27/03	03/27/03	
1.1.1-Trichloroethane	ND U	0.50	1	03/27/03	03/27/03	
Carbon Tetrachloride	ND U	0.50	1	03/27/03	03/27/03	
1,1-Dichloropropene	ND U	0.50	1	03/27/03	03/27/03	
Benzene	ND U	0.50	1	03/27/03	03/27/03	
1,2-Dichloroethane	ND U	0.50	1	03/27/03	03/27/03	
Trichloroethene	ND U	0.50	1	03/27/03	03/27/03	
1,2-Dichloropropane	ND U	0.50	1	03/27/03	03/27/03	
Dibromomethane	ND U	0.50	1	03/27/03	03/27/03	L1
Bromodichloromethane	ND U	0.50	1	03/27/03	03/27/03	
cis-1,3-Dichloropropene	ND U	0.50	1	03/27/03	03/27/03	
4-Methyl-2-pentanone (MIBK)	ND U	8.0	1	03/27/03	03/27/03	
Toluene	ND U	0.50	1	03/27/03	03/27/03	

Comments:

Printed: 04/01/2003 08:09:37 L:\STEALTH\CRYSTAL.RPT\Form1m.rpt

Merged

Form 1A - Organic

000089

1 of 3 Page

RR3132 SuperSet Reference:

Analytical Results

Client: Project:

BE&K Terranext WVBA/#03103154

Sample Matrix:

Water

Service Request: X2300219

Date Collected: NA
Date Received: NA

Volatile Organic Compounds

Sample Name: Lab Code: Method Blank XWG0300410-5

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

Mary Name Result Q MRL Factor Extracted Analyzed Arizona Qualifier trans-1,3-Dichloropropene ND U 1.0 1 03/27/03					Dilution	Date	Date	
trans-1,3-Dichloropropene ND U 1,0 1 03/27/03 03/27/03 1,1,2-Trichloroethane ND U 1.0 1 03/27/03 03/27/03 2-Hexanone ND U 0.50 1 03/27/03 03/27/03 1,3-Dichloropropane ND U 1.0 1 03/27/03 03/27/03 Dibromochloromethane ND U 0.50 1 03/27/03 03/27/03 Chlorobenzene ND U 0.50 1 03/27/03 03/27/03 Typene ND U 0.50 1 03/27/03 03/27/03 S	Analyte Name	Result	Q	MRL	Factor	Extracted	Analyzed	Arizona Qualifier
1,1,2-Trichloroethane		ND	U	1.0	1			
Tetrachloroethene ND U 0.50 1 03/27/03 03/27/03 2-Hexanone ND U 5.0 1 03/27/03 03/27/03 1,3-Dichloropropane ND U 1.0 1 03/27/03 03/27/03 1,2-Dibromoethane ND U 0.50 1 03/27/03 03/27/03 1,1,1-2-Tetrachloroethane ND U 0.50 1 03/27/03 03/27/03 Chlorobenzene ND U 0.50 1 03/27/03 03/27/03 Litylbenzene ND U 0.50 1 03/27/03 03/27/03 Ethylbenzene ND U 0.50 1 03/27/03 03/27/03 Ethylbenzene ND U 0.50 1 03/27/03 03/27/03 Styrene ND U 0.50 1 03/27/03 03/27/03 Isopropylbenzene ND U 0.50 1 03/27/03 03/27/03 Isopro	· -	ND	U	1.0	1			
2-Heckatonic ND U 1.0 1 03/27/03 03/27/03	<i>*</i> *	ND	U	0.50	1	03/27/03	03/27/03	
1,3-Dichloropropane ND U	2-Hexanone	ND	U	5.0	1			
Dibromochloromethane ND U 0.50 1 03/27/03 03/27/03 1,2-Dibromocthane ND U 0.50 1 03/27/03 03/27/03 1,1,1-2-Tetrachloroethane ND U 0.50 1 03/27/03 03/27/03 1,1,1,2-Tetrachloroethane ND U 0.50 1 03/27/03 03/27/03 1,1,1,2-Tetrachloroethane ND U 0.50 1 03/27/03 03/27/03 1,1,2-Tetrachloroethane ND U 0.50 1 03/27/03 03/27/03 1,2,3-Trichloropropane ND U 0.50 1 03/27/03 03/27/03 1,2,3-Trichloropropane ND U 0.50 1 03/27/03 03/27/03 1,2,3-Trichloropropane ND U 0.50 1 03/27/03 03/27/03 1,2-Chlorotoluene ND U 0.50 1 03/27/03 03/27/03 1,3,5-Trimethylbenzene ND U 0.50 1 03/27/03 03/27/03 1,3,5-Trimethylbenzene ND U 0.50 1 03/27/03 03/27/03 1,2,4-Trimethylbenzene ND U 0.50 1 03/27/03 03/27/03 1,2,4-Trimethylbenzene ND U 0.50 1 03/27/03 03/27/03 1,3-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 1,3-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 1,4-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 1,4-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 1,2-Dirboros-chloropropane ND U 0.50 1 03/27/03 03/27/03 1,2-Dirboros-ch		ND	U	1.0	1			
1,2-Dirtollarie ND U 0.50 1 03/27/03 03/27/03 03/27/03 1,1,1,2-Tetrachloroethane ND U 0.50 1 03/27/03 03/2		ND	U	0.50	1	03/27/03		
Chlorobenzene	1.2-Dibromoethane	ND	U	0.50	1	03/27/03		
1,1,2-Tetrachloroethane	,	ND	U	0.50	1			
Ethylbenzene		ND	U	0.50	1	03/27/03	03/27/03	
ND U 1.0 1 03/27/03 03/27/03 03/27/03 0-Xylene ND U 0.50 1 03/27/03 03/27/0		ND	U	0.50	1	03/27/03	03/27/03	
o-Xylene ND U 0.50 1 03/27/03 03/27/03 Styrene ND U 0.50 1 03/27/03 03/27/03 Isopropylbenzene ND U 0.50 1 03/27/03 03/27/03 Bromobenzene ND U 0.50 1 03/27/03 03/27/03 1,2,3-Trichloropropane ND U 1.0 1 03/27/03 03/27/03 1,2,3-Trichloropropane ND U 0.50 1 03/27/03 03/27/03 1,2,3-Trichloropropane ND U 0.50 1 03/27/03 03/27/03 2-Chlorotoluene ND U 0.50 1 03/27/03 03/27/03 4-Chlorotoluene ND U 0.50 1 03/27/03 03/27/03 1,3,5-Trimethylbenzene ND U 0.50 1 03/27/03 03/27/03 1,2-4-Trimethylbenzene ND U 0.50 1 03/27/03 03/27/03 1,2-4-Trimethylbenzene ND U 0.50 1 03/27/03 03/27/03				1.0	1	03/27/03	03/27/03	
Styrene				0.50	1	03/27/03	03/27/03	
ND U 0.50 1 03/27/03 03/27/03 03/27/03 1 1 1 1 1 1 1 1 1		ND	U	0.50	1	03/27/03	03/27/03	
Bromobenzene ND U 0.50 1 03/27/03 03/27/03 1,2,3-Trichloropropane ND U 1.0 1 03/27/03 03/27/03 L1	•			0.50	1	03/27/03		
1,2,3-Trichloropropane	1 17	ND	U	0.50	1	03/27/03	03/27/03	
n-Propylbenzene ND U 0.50 1 03/27/03 03/27/03 2-Chlorotoluene ND U 0.50 1 03/27/03 03/27/03 4-Chlorotoluene ND U 0.50 1 03/27/03 03/27/03 1,3,5-Trimethylbenzene ND U 0.50 1 03/27/03 03/27/03 tert-Butylbenzene ND U 0.50 1 03/27/03 03/27/03 1,2,4-Trimethylbenzene ND U 0.50 1 03/27/03 03/27/03 sec-Butylbenzene ND U 0.50 1 03/27/03 03/27/03 1,3-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 4-Isopropyltoluene ND U 0.50 1 03/27/03 03/27/03 Bromoform ND U 0.50 1 03/27/03 03/27/03 1,1,2,2-Tetrachloroethane ND U 0.50 1 03/27/03 03/27/03 1,4-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03	1 2 3-Trichloropropane	ND	U	1.0	1			L1
2-Chlorotoluene ND U 0.50 1 03/27/03 03/27/03 4-Chlorotoluene ND U 0.50 1 03/27/03 03/27/03 1,3,5-Trimethylbenzene ND U 0.50 1 03/27/03 03/27/03 tert-Butylbenzene ND U 0.50 1 03/27/03 03/27/03 1,2,4-Trimethylbenzene ND U 0.50 1 03/27/03 03/27/03 sec-Butylbenzene ND U 0.50 1 03/27/03 03/27/03 1,3-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 4-Isopropyltoluene ND U 0.50 1 03/27/03 03/27/03 Bromoform ND U 0.50 1 03/27/03 03/27/03 1,1,2,2-Tetrachloroethane ND U 0.50 1 03/27/03 03/27/03 1,4-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 1,2-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03				0.50	1			
1,3,5-Trimethylbenzene ND U 0.50 1 03/27/03 03/27/03 1,2,4-Trimethylbenzene ND U 0.50 1 03/27/03 03/27/03 1,2,4-Trimethylbenzene ND U 0.50 1 03/27/03 03/27/03 sec-Butylbenzene ND U 0.50 1 03/27/03 03/27/03 1,3-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 4-Isopropyltoluene ND U 0.50 1 03/27/03 03/27/03 Bromoform ND U 0.50 1 03/27/03 03/27/03 1,1,2,2-Tetrachloroethane ND U 1.0 1 03/27/03 03/27/03 1,4-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 1,4-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 1,2-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 1,2-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 1,2-Dibromo-3-chloropropane ND U 0.50 1 03/27/03 03/27/03 1,2-Dibromo-3-chloropropane ND U 5.0 1 03/27/03 03/27/03 1,2,4-Trichlorobenzene ND U 0.50 1 03/27/03 03/27/03 1,2,4-Trichlorobenzene ND U 0.50 1 03/27/03 03/27/03		ND	U	0.50	1	03/27/03	03/27/03	
1,3,5-Trimethylbenzene ND U 0.50 1 03/27/03 03/27/03 tert-Butylbenzene ND U 0.50 1 03/27/03 03/27/03 1,2,4-Trimethylbenzene ND U 0.50 1 03/27/03 03/27/03 sec-Butylbenzene ND U 0.50 1 03/27/03 03/27/03 1,3-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 4-Isopropyltoluene ND U 0.50 1 03/27/03 03/27/03 Bromoform ND U 0.50 1 03/27/03 03/27/03 1,1,2,2-Tetrachloroethane ND U 1.0 1 03/27/03 03/27/03 1,4-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 1,2-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 1,2-Dibromo-3-chloropropane ND U 0.50 1 03/27/03 03/27/03 1,2,4-Trichlorobenzene ND U 0.50 1 03/27/03 03/27/03 1,2,4-Trichlorobenzene ND U 0.50 1 03/27/	4-Chlorotoluene	ND	U	0.50	1	03/27/03		
tert-Butylbenzene ND U 0.50 1 03/27/03 03/27/03 1,2,4-Trimethylbenzene ND U 0.50 1 03/27/03 03/27/03 sec-Butylbenzene ND U 0.50 1 03/27/03 03/27/03 1,3-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 4-Isopropyltoluene ND U 0.50 1 03/27/03 03/27/03 Bromoform ND U 0.50 1 03/27/03 03/27/03 1,1,2,2-Tetrachloroethane ND U 1.0 1 03/27/03 03/27/03 1,4-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 1,2-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 1,2-Dibromo-3-chloropropane ND U 0.50 1 03/27/03 03/27/03 1,2,4-Trichlorobenzene ND U 0.50 1 03/27/03 03/27/03 1,2,4-Trichlorobenzene ND U 0.50 1 03/27/03 03/27/03 </td <td></td> <td>ND</td> <td>U</td> <td>0.50</td> <td>1</td> <td></td> <td></td> <td></td>		ND	U	0.50	1			
1,2,4-Trimethylbenzene ND U 0.50 1 03/27/03 03/27/03 sec-Butylbenzene ND U 0.50 1 03/27/03 03/27/03 1,3-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 4-Isopropyltoluene ND U 0.50 1 03/27/03 03/27/03 Bromoform ND U 0.50 1 03/27/03 03/27/03 1,1,2,2-Tetrachloroethane ND U 0.50 1 03/27/03 03/27/03 1,4-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 1,2-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 n-Butylbenzene ND U 0.50 1 03/27/03 03/27/03 1,2-Dibromo-3-chloropropane ND U 5.0 1 03/27/03 03/27/03 1,2,4-Trichlorobenzene ND U 0.50 1 03/27/03 03/27/03 1,2,4-Trichlorobenzene ND U 0.50 1 03/27/03 03/27/03	- ·	ND	U	0.50	1	03/27/03	03/27/03	
Sec_Butylbenzene ND U 0.50 1 03/27/03 03/27/03 1,3-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 4-Isopropyltoluene ND U 0.50 1 03/27/03 03/27/03 Bromoform ND U 0.50 1 03/27/03 03/27/03 1,1,2,2-Tetrachloroethane ND U 1.0 1 03/27/03 03/27/03 1,4-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 1,2-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 1,2-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 1,2-Dibromo-3-chloropropane ND U 0.50 1 03/27/03 03/27/03 1,2-Dibromo-3-chloropropane ND U 0.50 1 03/27/03 03/27/03 1,2,4-Trichlorobenzene ND U 0.50 1 03/27/03 03/27/03		ND	U	0.50	1	03/27/03		
1,3-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 4-Isopropyltoluene ND U 0.50 1 03/27/03 03/27/03 Bromoform ND U 0.50 1 03/27/03 03/27/03 1,1,2,2-Tetrachloroethane ND U 1.0 1 03/27/03 03/27/03 1,4-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 1,2-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 n-Butylbenzene ND U 0.50 1 03/27/03 03/27/03 1,2-Dibromo-3-chloropropane ND U 5.0 1 03/27/03 03/27/03 1,2,4-Trichlorobenzene ND U 0.50 1 03/27/03 03/27/03 1,2,4-Trichlorobenzene ND U 0.50 1 03/27/03 03/27/03 1,2,4-Trichlorobenzene ND U 0.50 1 03/27/03 03/27/03 1,2,4-Trichlorobenzene ND U 0.50 1 03/27/03 03/27/03 1,2,4-Trichlorobenzene ND U	, , -			0.50	1	03/27/03		
4-Isopropyltoluene ND U 0.50 1 03/27/03 03/27/03 Bromoform ND U 0.50 1 03/27/03 03/27/03 1,1,2,2-Tetrachloroethane ND U 1.0 1 03/27/03 03/27/03 1,4-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 1,2-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 n-Butylbenzene ND U 0.50 1 03/27/03 03/27/03 1,2-Dibromo-3-chloropropane ND U 5.0 1 03/27/03 03/27/03 1,2,4-Trichlorobenzene ND U 0.50 1 03/27/03 03/27/03	2	ND	U	0.50	1	03/27/03	03/27/03	
Bromoform ND U 0.50 1 03/27/03 03/27/03 1,1,2,2-Tetrachloroethane ND U 1.0 1 03/27/03 03/27/03 1,4-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 1,2-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 n-Butylbenzene ND U 0.50 1 03/27/03 03/27/03 1,2-Dibromo-3-chloropropane ND U 5.0 1 03/27/03 03/27/03 1,2,4-Trichlorobenzene ND U 0.50 1 03/27/03 03/27/03		ND	U	0.50	1			
1,1,2,2-Tetrachloroethane ND U 1.0 1 03/27/03 03/27/03 1,4-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 1,2-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 n-Butylbenzene ND U 0.50 1 03/27/03 03/27/03 1,2-Dibromo-3-chloropropane ND U 5.0 1 03/27/03 03/27/03 1,2,4-Trichlorobenzene ND U 0.50 1 03/27/03 03/27/03		ND	U	0.50	1			
1,4-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 1,2-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 n-Butylbenzene ND U 0.50 1 03/27/03 03/27/03 1,2-Dibromo-3-chloropropane ND U 5.0 1 03/27/03 03/27/03 1,2,4-Trichlorobenzene ND U 0.50 1 03/27/03 03/27/03		ND	U	1.0	1	03/27/03	03/27/03	
1,2-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 n-Butylbenzene ND U 0.50 1 03/27/03 03/27/03 1,2-Dibromo-3-chloropropane ND U 5.0 1 03/27/03 03/27/03 1,2,4-Trichlorobenzene ND U 0.50 1 03/27/03 03/27/03		ND	U	0.50	1	03/27/03		
n-Butylbenzene ND U 0.50 1 03/27/03 03/27/03 1,2-Dibromo-3-chloropropane ND U 5.0 1 03/27/03 03/27/03 1,2,4-Trichlorobenzene ND U 0.50 1 03/27/03 03/27/03	,	ND	U	0.50	1			
1,2-Dibromo-3-chloropropane ND U 5.0 1 03/27/03 03/27/03 1,2,4-Trichlorobenzene ND U 0.50 1 03/27/03 03/27/03	,			0.50	1	03/27/03		
1,2,4-Trichlorobenzene ND U 0.50 1 03/27/03 03/27/03		ND	U	5.0	1			
1, 02/07/02				0.50	1			
	* *	ND	U	0.50	1	03/27/03	03/27/03	

Comments:

Printed: 04/01/2003 08:09:37 L:\STEALTH\CRYSTAL.RPT\Formlm.rpt

Merged

Form 1A - Organic

000000

Page 2 of 3

SuperSet Reference: RI

Analytical Results

Client:

BE&K Terranext

Project: **Sample Matrix:** WVBA/#03103154 Water

Service Request: X2300219

Date Collected: NA Date Received: NA

Volatile Organic Compounds

Sample Name:

Method Blank

Lab Code:

XWG0300410-5

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

Dilution Date **Factor** MRL

Date Analyzed Arizona Qualifier Extracted Result Q **Analyte Name** 03/27/03 03/27/03 1 3.0 ND U Naphthalene 03/27/03 03/27/03 1 0.50 ND U 1,2,3-Trichlorobenzene

Surrogate Name	%Rec	Control Limits	Date Analyzed	Arizona Qualifier
Dibromofluoromethane	103	84-113	03/27/03	
Toluene-d8	101	68-126	03/27/03	
4-Bromofluorobenzene	96	79-113	03/27/03	

Comments:

QA/QC Report

Client:

BE&K Terranext WVBA/#03103154

Project: Sample Matrix:

Water

Service Request: X2300219

Surrogate Recovery Summary Volatile Organic Compounds

Extraction Method: Analysis Method:

EPA 5030B

8260B

Units: PERCENT

Level: Low

Sample Name	Lab Code	Sur1	Sur2	Sur3
AVB37-0400-01118	X2300219-001	104	104	95
AVB87-0100-04116	X2300219-002	105	105	97
AVB107-0100-05108	X2300219-003	101	107	94
AVB97-0100-03101	X2300219-004	103	105	99
AVB97-0104-1000	X2300219-005	103	108	99
AVB97-0102-1000	X2300219-006	96	105	93
Method Blank	XWG0300406-5	98	101	96
Method Blank	XWG0300410-5	103	101	96
Batch QC	X2300223-002	102	107	99
Batch QC	X2300224-001	102	105	95
Batch QCMS	XWG0300406-1	106	112	106
Batch QCDMS	XWG0300406-2	105	104	104
Batch QCMS	XWG0300410-1	106	105	100
Batch QCDMS	XWG0300410-2	100	100	94
Lab Control Sample	XWG0300406-3	101	105	98
Duplicate Lab Control Sample	XWG0300406-4	100	100	96
Lab Control Sample	XWG0300410-3	106	105	105
Duplicate Lab Control Sample	XWG0300410-4	101	101	98

Surrogate Recovery Control Limits (%)

Sur1 =	Dibromofluoromethane	84-113
Sur2 =	Toluene-d8	68-126
Sur3 =	4-Bromofluorobenzene	79-113

Results flagged with an asterisk (*) indicate values outside control criteria. Results flagged with a pound (#) indicate the control criteria is not applicable.

000032

QA/QC Report

Client: Project: BE&K Terranext WVBA/#03103154

Sample Matrix:

Water

Service Request: X2300219

Date Extracted: 03/26/2003 **Date Analyzed:** 03/27/2003

Matrix Spike/Duplicate Matrix Spike Summary Volatile Organic Compounds

Sample Name:

Batch QC

Lab Code:

X2300223-002

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L

Basis: NA

Level: Low

Extraction Lot: XWG0300406

Matrix Spike	Duplicate Matrix Spi
XWG0300406-1	XWG0300406-2
Batch QCMS	Batch QCDMS

	G 1	Matrix Spike			Duplic	ate Matrix S	%Rec		RPD	
Analyte Name	Sample Result	Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit
Dichlorodifluoromethane	ND	4.74	10.0	47 M2	4.41	10.0	44 M2	78-207	7	20
Chloromethane	ND	7.11	10.0	71	7.34	10.0	73	70-157	3	20
Vinyl Chloride	ND	7.73	10.0	77 M2	7.68	10.0	77 M2	79-174	1	20
Bromomethane	ND	8.73	10.0	87	8.54	10.0	85	44-150	2	20
Chloroethane	ND	9.51	10.0	95	9.76	10.0	98	74-150	3	20
Trichlorofluoromethane	ND	8.93	10.0	89	8.42	10.0	84	80-134	6	20
1,1,2-Trichlorotrifluoroethane	ND	11.4	10.0	114	11.1	10.0	111	67-128	3	20
1,1-Dichloroethene	ND	9.64	10.0	96	9.71	10.0	97	71-142	1	20
Acetone	ND	36.7	40.0	92	48.8	40.0	122	1-155	28 R5	
Iodomethane	ND	38.1	40.0	95	38.6	40.0	96	47-120	1	20
Carbon Disulfide	ND	43.2	40.0	108	43.2	40.0	108	77-126	0	20
Methylene Chloride	ND	10.2	10.0	102	10.4	10.0	104	83-106	1	20
Methyl tert-Butyl Ether	ND	8.71	10.0	87	9.64	10.0	96	70-118	10	20
trans-1,2-Dichloroethene	ND	10.7	10.0	107	10.6	10.0	106	86-115	1	20
1,1-Dichloroethane	ND	11.6	10.0	116	11.6	10.0	116	77-127	1	20
Vinyl Acetate	ND	44.0	40.0	110	47.0	40.0	117	8-187	7	20
2,2-Dichloropropane	ND	11.0	10.0	110	10.9	10.0	109	25-154	1	20
2-Butanone (MEK)	ND	33.5	40.0	84 M2	41.0	40.0	103	90-112	20	20
cis-1,2-Dichloroethene	ND	10.3	10.0	103	9.97	10.0	100	69-118	3	20
Bromochloromethane	ND	11.1	10.0	111	11.5	10.0	115	47-136	4	20
Chloroform	ND	11.3	10.0	113	11.1	10.0	111	48-143	2	20
1,1,1-Trichloroethane	ND	9.55	10.0	96	9.33	10.0	93	84-122	2	20
Carbon Tetrachloride	ND	10.4	10.0	104	9.79	10.0	98	79-120	6	20
1,1-Dichloropropene	ND	10.7	10.0	107	10.3	10.0	103	85-117	4	20
Benzene	ND	10.4	10.0	104	10.1	10.0	101	88-114	3	20
1,2-Dichloroethane	ND	11.0	10.0	110	10.8	10.0	108	75-112	2	20
Trichloroethene	ND	11.4	10.0	114	10.6	10.0	106	76-115	8	20
1,2-Dichloropropane	ND	10.9	10.0	109 M1	10.9	10.0	109 M1	85-107	0	20
Dibromomethane	ND	11.2	10.0	112 M1	10.6	10.0	106	82-106	6	20
Bromodichloromethane	ND	9.92	10.0	99	9.72	10.0	97	83-107	2	20
cis-1,3-Dichloropropene	ND	11.1	10.0	111	10.9	10.0	109	70-114	2	20
4-Methyl-2-pentanone (MIBK)	ND	39.5	40.0	99	37.4	40.0	93	54-129	5	20
Toluene	ND	10.8	10.0	108	10.1	10.0	101	86-114	7	20
Toruene	1117	10.0	20.0							

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 04/01/2003 08:10:01 Form 3A - Organic 000033

1 of 3 Page

RR3132 SuperSet Reference:

QA/QC Report

Client: Project:

BE&K Terranext WVBA/#03103154

Sample Matrix:

Water

Service Request: X2300219 **Date Extracted:** 03/26/2003

Date Extracted: 03/20/2003 **Date Analyzed:** 03/27/2003

Matrix Spike/Duplicate Matrix Spike Summary Volatile Organic Compounds

Sample Name:

Batch QC

Lab Code:

X2300223-002

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Volatile Organic Compounds

Units: ug/L Basis: NA

Level: Low

Extraction Lot: XWG0300406

Sal		Batch QCMS XWG0300406-1 Matrix Spike			XV	ntch QCDMS VG0300406-2 cate Matrix Sp	%Rec	RPD	RPD Limit	
Analyte Name	Result	Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit
trans-1,3-Dichloropropene	ND	11.0	10.0	110	10.6	10.0	106	73-112	4	20
1,1,2-Trichloroethane	ND	9.65	10.0	97	9.55	10.0	96	79-112	1	20
Tetrachloroethene	ND	10.2	10.0	102	9.58	10.0	96	78-130	6	20
2-Hexanone	ND	38.2	40.0	96	39.4	40.0	98	77-112	3	20
1,3-Dichloropropane	ND	10.1	10.0	101	10.0	10.0	100	45-133	1	20
Dibromochloromethane	ND	9.30	10.0	93	9.31	10.0	93	74-108	0	20
1,2-Dibromoethane	ND	9.89	10.0	99	9.63	10.0	96	73-113	3	20
Chlorobenzene	ND	10.4	10.0	104	10.0	10.0	100	84-111	4	20
1,1,1,2-Tetrachloroethane	ND	9.88	10.0	99	9.69	10.0	97	84-119	2	20
Ethylbenzene	ND	11.3	10.0	113	10.7	10.0	107	47-136	6	20
	ND	22.5	20.0	112	21.3	20.0	107	84-120	5	20
m,p-Xylenes	ND	10.5	10.0	105	10.4	10.0	104	47-143	1	20
o-Xylene	ND	10.9	10.0	109	10.6	10.0	106	72-121	2	20
Styrene	ND	10.8	10.0	108	10.4	10.0	104	63-108	3	20
Isopropylbenzene	ND	10.8	10.0	108	10.5	10.0	105	80-113	3	20
Bromobenzene	ND	10.0	10.0	100	11.3	10.0	113	78-119	12	20
1,2,3-Trichloropropane	ND	11.2	10.0	112	11.2	10.0	112	76-117	0	20
n-Propylbenzene 2-Chlorotoluene	ND	10.6	10.0	106	10.9	10.0	109	79-121	2	20
4-Chlorotoluene	ND	11.2	10.0	112	11.0	10.0	110	70-133	2	20
	ND	10.9	10.0	109	10.9	10.0	109	79-118	0	20
1,3,5-Trimethylbenzene	ND	10.8	10.0	108	10.7	10.0	107	77-120	0	20
tert-Butylbenzene	ND	10.9	10.0	109	11.0	10.0	110	68-127	0	20
1,2,4-Trimethylbenzene	ND	10.3	10.0	103	10.3	10.0	103	78-123	0	20
sec-Butylbenzene	ND	9.99	10.0	100	10.3	10.0	103	78-127	3	20
1,3-Dichlorobenzene	ND	10.7	10.0	107	10.9	10.0	109	79-142	1	20
4-Isopropyltoluene	ND	9.52	10.0	95	8.83	10.0	88	83-111	8	20
Bromoform	ND	11.6	10.0	116	11.1	10.0	111	66-133	4	20
1,1,2,2-Tetrachloroethane	ND	9.99	10.0	100	9.96	10.0	100	48-139	0	20
1,4-Dichlorobenzene	ND	9.65	10.0	97	9.74	10.0	97	64-109	1	20
1,2-Dichlorobenzene	ND	11.2	10.0	112	10.9	10.0	109	69-122	2	20
n-Butylbenzene 1,2-Dibromo-3-chloropropane	ND	8.64	10.0	86	9.85	10.0	99	54-160	13	20
- "	ND	9.60	10.0	96	9.51	10.0	95	39-145	1	20
1,2,4-Trichlorobenzene Hexachlorobutadiene	ND	11.6	10.0	116 M1	11.3	10.0	113	74-113	3	20

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

 $\begin{array}{lll} Printed: & 04/01/2003 & 08:10:01 \\ \text{L:} \text{L:} \text{STEALTH} \text{CRYSTAL.RPT} \text{Form3DMS.rpt} \end{array}$

Form 3A - Organic 0000

1034

Page 2 of 3

SuperSet Reference: RR3132

OA/OC Report

Client:

BE&K Terranext WVBA/#03103154

Project: Sample Matrix:

Water

Service Request: X2300219

Date Extracted: 03/26/2003

Date Analyzed: 03/27/2003

Matrix Spike/Duplicate Matrix Spike Summary Volatile Organic Compounds

Sample Name: Lab Code:

Batch QC

X2300223-002

Sample

Result

ND

ND

Result

9.22

10.6

Extraction Method:

EPA 5030B

Analysis Method:

Analyte Name

1.2,3-Trichlorobenzene

Naphthalene

8260B

Units: ug/L Basis: NA

Level: Low

0

20

Extraction Lot: XWG0300406

37-158

Batch QCMS XWG0300406-1 Matrix Spike

Expected

10.0

10.0

92

106

Batch OCDMS

10.0

10.6

XWG0300406-2 **Duplicate Matrix Spike RPD** %Rec RPD Limit Limits %Rec **Expected** %Rec Result 20 2 44-167 94 9.41 10.0

106

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 04/01/2003 08:10:01 L:\STEALTH\CRYSTAL.RPT\Form3DMS.rpt Form 3A - Organic 000035

3 of 3 Page

SuperSet Reference: RR3132

QA/QC Report

Client: Project: BE&K Terranext WVBA/#03103154

Sample Matrix:

Water

Service Request: X2300219 **Date Extracted:** 03/27/2003

Date Analyzed: 03/27/2003

Matrix Spike/Duplicate Matrix Spike Summary **Volatile Organic Compounds**

Sample Name: Lab Code:

Batch QC

X2300224-001

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L

Basis: NA

Level: Low

Extraction Lot: XWG0300410

	Sample	Batch QCMS XWG0300410-1 Matrix Spike			XV	ntch QCDMS VG0300410-2 cate Matrix Sp	2	%Rec Limits		RPD
Analyte Name	Result	Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit
Dichlorodifluoromethane	ND	4.10	10.0	41 M2	3.93	10.0	39 M2	78-207	4	20
Chloromethane	ND	7.16	10.0	72	6.09	10.0	61 M2	70-157	16	20
Vinyl Chloride	ND	7.85	10.0	79	7.19	10.0	72 M2	79-174	9	20
Bromomethane	ND	9.14	10.0	91	7.68	10.0	77	44-150	17	20
Chloroethane	ND	11.1	10.0	111	9.52	10.0	95	74-150	16	20
Trichlorofluoromethane	ND	9.32	10.0	93	8.52	10.0	85	80-134	9	20
1,1,2-Trichlorotrifluoroethane	ND	11.2	10.0	112	10.2	10.0	102	67-128	9	20
1,1-Dichloroethene	ND	9.83	10.0	98	9.12	10.0	91	71-142	7	20
Acetone	ND	30.8	40.0	77	26.0	40.0	65	1-155	17	20
Iodomethane	ND	38.6	40.0	97	35.6	40.0	89	47-120	8	20
Carbon Disulfide	ND	43.2	40.0	108	39.6	40.0	99	77-126	9	20
Methylene Chloride	ND	10.5	10.0	105	9.43	10.0	94	83-106	10	20
Methyl tert-Butyl Ether	ND	9.32	10.0	93	8.58	10.0	86	70-118	8	20
trans-1,2-Dichloroethene	ND	10.8	10.0	108	9.89	10.0	99	86-115	9	20
1,1-Dichloroethane	ND	11.8	10.0	118	10.9	10.0	109	77-127	8	20
Vinyl Acetate	ND	46.0	40.0	115	41.2	40.0	103	8-187	11	20
2,2-Dichloropropane	ND	11.2	10.0	112	10.4	10.0	104	25-154	8	20
2-Butanone (MEK)	ND	35.9	40.0	90	36.9	40.0	92	90-112	3	20
cis-1,2-Dichloroethene	ND	10.3	10.0	103	10.0	10.0	100	69-118	3	20
Bromochloromethane	ND	11.0	10.0	110	10.6	10.0	106	47-136	4	20
Chloroform	ND	11.2	10.0	112	10.5	10.0	105	48-143	6	20
1,1,1-Trichloroethane	ND	9.68	10.0	97	9.02	10.0	90	84-122	7	20
Carbon Tetrachloride	ND	9.98	10.0	100	9.60	10.0	96	79-120	4	20
1,1-Dichloropropene	ND	10.7	10.0	107	9.97	10.0	100	85-117	7	20
Benzene	ND	10.3	10.0	103	9.67	10.0	97	88-114	6	20
1,2-Dichloroethane	ND	10.6	10.0	106	9.94	10.0	99	75-112	6	20
Trichloroethene	1.4	13.5	10.0	121 M1	12.6	10.0	112	76-115	7	20
1,2-Dichloropropane	ND	11.0	10.0	110 M1	10.3	10.0	103	85-107	7	20
Dibromomethane	ND	9.97	10.0	100	9.85	10.0	99	82-106	1	20
Bromodichloromethane	ND	9.78	10.0	98	9.01	10.0	90	83-107	8	20
cis-1,3-Dichloropropene	ND	11.1	10.0	111	9.94	10.0	99	70-114	11	20
4-Methyl-2-pentanone (MIBK)	ND	36.1	40.0	90	35.0	40.0	87	54-129	3	20
Toluene	ND	10.5	10.0	105	9.84	10.0	98	86-114	6	20

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 04/01/2003 08:10:08 L:\STEALTH\CRYSTAL.RPT\Form3DMS.rpt Form 3A - Organic 000036

Page 1 of 3

QA/QC Report

Client: Project: BE&K Terranext WVBA/#03103154

Sample Matrix:

Water

Service Request: X2300219 Date Extracted: 03/27/2003

Date Analyzed: 03/27/2003

Matrix Spike/Duplicate Matrix Spike Summary Volatile Organic Compounds

Sample Name: Lab Code:

Batch QC X2300224-001

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L

Basis: NA

Level: Low

Extraction Lot: XWG0300410

San		Batch QCMS XWG0300410-1 Matrix Spike			XV	atch QCDMS VG0300410- cate Matrix S	%Rec Limits		RPD Limit	
Analyte Name	Result	Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit
trans-1,3-Dichloropropene	ND	10.6	10.0	106	9.61	10.0	96	73-112	10	20
1,1,2-Trichloroethane	ND	9.73	10.0	97	9.03	10.0	90	79-112	7	20
Tetrachloroethene	47	60.5	10.0	131 M3	56.0	10.0	86 M3	78-130	8	20
2-Hexanone	ND	39.7	40.0	99	34.4	40.0	86	77-112	14	20
1,3-Dichloropropane	ND	9.92	10.0	99	9.30	10.0	93	45-133	6	20
Dibromochloromethane	ND	9.73	10.0	97	8.78	10.0	88	74-108	10	20
1.2-Dibromoethane	ND	10.1	10.0	101	9.24	10.0	92	73-113	8	20
Chlorobenzene	ND	10.4	10.0	104	9.75	10.0	98	84-111	6	20
1,1,1,2-Tetrachloroethane	ND	9.79	10.0	98	9.32	10.0	93	84-119	5	20
Ethylbenzene	ND	10.9	10.0	109	10.3	10.0	103	47-136	6	20
m,p-Xylenes	ND	21.5	20.0	107	20.7	20.0	104	84-120	4	20
o-Xylene	ND	10.2	10.0	102	9.76	10.0	98	47-143	5	20
Styrene	ND	10.8	10.0	108	9.93	10.0	99	72-121	8	20
Isopropylbenzene	ND	10.4	10.0	104	9.87	10.0	99	63-108	5	20
Bromobenzene	ND	10.6	10.0	106	10.2	10.0	102	80-113	4	20
1,2,3-Trichloropropane	ND	9.74	10.0	97	9.99	10.0	100	78-119	3	20
n-Propylbenzene	ND	10.9	10.0	109	10.3	10.0	103	76-117	6	20
2-Chlorotoluene	ND	10.5	10.0	105	9.88	10.0	99	79-121	6	20
4-Chlorotoluene	ND	10.7	10.0	107	10.2	10.0	102	70-133	5	20
1,3,5-Trimethylbenzene	ND	10.4	10.0	104	9.97	10.0	100	79-118	5	20
tert-Butylbenzene	ND	10.3	10.0	103	9.83	10.0	98	77-120	5	20
1,2,4-Trimethylbenzene	ND	10.5	10.0	105	9.89	10.0	99	68-127	6	20
sec-Butylbenzene	ND	9.93	10.0	99	9.45	10.0	95	78-123	5	20
1.3-Dichlorobenzene	ND	10.0	10.0	100	9.42	10.0	94	78-127	6	20
4-Isopropyltoluene	ND	10.4	10.0	104	9.89	10.0	99	79-142	5	20
Bromoform	ND	9.46	10.0	95	8.92	10.0	89	83-111	6	20
1,1,2,2-Tetrachloroethane	ND	11.2	10.0	112	10.6	10.0	106	66-133	5	20
1,4-Dichlorobenzene	ND	10.1	10.0	101	9.72	10.0	97	48-139	4	20
1,2-Dichlorobenzene	ND	9.82	10.0	98	9.27	10.0	93	64-109	6	20
n-Butylbenzene	ND	10.8	10.0	108	10.5	10.0	105	69-122	3	20
1,2-Dibromo-3-chloropropane	ND	10.1	10.0	101	9.18	10.0	92	54-160	9	20
1,2,4-Trichlorobenzene	ND	9.41	10.0	94	9.36	10.0	94	39-145	1	20
Hexachlorobutadiene	ND	11.4	10.0	114 M1	11.4	10.0	114 M1	74-113	0	20

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 04/01/2003 08:10:08 L:\STEALTH\CRYSTAL.RPT\Form3DMS.rpt Form 3A - Organic 000037

Page

RR3132 SuperSet Reference:

QA/QC Report

Client: **Project:** BE&K Terranext WVBA/#03103154

Sample Matrix:

Water

Service Request: X2300219 **Date Extracted:** 03/27/2003

Date Analyzed: 03/27/2003

Matrix Spike/Duplicate Matrix Spike Summary Volatile Organic Compounds

Sample Name:

Batch QC

Lab Code:

X2300224-001

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

Extraction Lot: XWG0300410

Batch QCMS

XWG0300410-1

Batch QCDMS

XWG0300410-2

	Sample	Matrix Spike			Duplicate Matrix Spike			%Rec		RPD
Analyte Name	Result	Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit
Naphthalene	ND ND	8.51 10.3	10.0 10.0	85 103	8.48 10.3	10.0 10.0	85 103	44-167 37-158	0 1	20 20
1,2,3-Trichlorobenzene	ND	10.5	1010							

Results flagged with an asterisk (*) indicate values outside control criteria. Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 04/01/2003 08:10:08 L:\STEALTH\CRYSTAL.RPT\Form3DMS.rpt Form 3A - Organic

000038 SuperSet Reference: RR3132

Page 3 of 3

QA/QC Report

Client: Project: BE&K Terranext WVBA/#03103154

Sample Matrix:

Water

Service Request: X2300219 **Date Extracted:** 03/26/2003 **Date Analyzed:** 03/27/2003

Lab Control Spike/Duplicate Lab Control Spike Summary Volatile Organic Compounds

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

Extraction Lot: XWG0300406

Lab Control Sample XWG0300406-3

Duplicate Lab Control Sample XWG0300406-4

	XWG0300400-3 Lab Control Spike				Lab Control	Spike	%Rec		RPD
Analyte Name	Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit
Dichlorodifluoromethane	4.61	10.0	46	4.36	10.0	44	1-233	6	20
Chloromethane	7.03	10.0	70	6.71	10.0	67	46-156	5	20
-	7.63	10.0	76	7.18	10.0	72	51-158	6	20
Vinyl Chloride	8.01	10.0	80	8.27	10.0	83	37-149	3	20
Bromomethane	9.24	10.0	92	8.78	10.0	88	56-146	5	20
Chloroethane	8.77	10.0	88	8.85	10.0	89	69-139	1	20
Trichlorofluoromethane 1,1,2-Trichlorotrifluoroethane	10.6	10.0	106	10.6	10.0	106	83-130	1	20
, ·	9.63	10.0	96	9.47	10.0	95	65-112	2	20
1,1-Dichloroethene	42.5	40.0	106	35.7	40.0	89	68-128	17	20
Acetone	39.6	40.0	99	39.5	40.0	99	68-144	0	20
Iodomethane	41.4	40.0	103	41.9	40.0	105	67-140	1	20
Carbon Disulfide	10.0	10.0	100	10.5	10.0	105	70-113	4	20
Methylene Chloride	9.10	10.0	91	9.89	10.0	99	75-115	. 8	20
Methyl tert-Butyl Ether	10.6	10.0	106	10.9	10.0	109	73-118	2	20
trans-1,2-Dichloroethene	11.2	10.0	112	11.0	10.0	110	77-127	1	20
1,1-Dichloroethane	34.3	40.0	86	43.7	40.0	109	51-202	24	39
Vinyl Acetate	9.74	10.0	97	9.65	10.0	97	75-132	1	20
2,2-Dichloropropane	34.9	40.0	87	40.4	40.0	101	72-122	15	20
2-Butanone (MEK)	9,77	10.0	98	10.1	10.0	101	81-118	3	20
cis-1,2-Dichloroethene	11.1	10.0	111	11.7	10.0	117 L1	82-114	5	20
Bromochloromethane	10.9	10.0	109	10.9	10.0	109	78-119	0	20
Chloroform	9.37	10.0	94	9.14	10.0	91	71-125	2	20
1,1,1-Trichloroethane	9.57 9.6 5	10.0	97	9.54	10.0	95	69-130	1	20
Carbon Tetrachloride	10.0	10.0	100	9.99	10.0	100	77-114	0	20
1,1-Dichloropropene		10.0	99	9.80	10.0	98	81-117	1	20
Benzene	9.88	10.0	104	10.5	10.0	105	67-122	1	20
1,2-Dichloroethane	10.4	10.0	104	10.6	10.0	106	79-114	2	20
Trichloroethene	10.8	10.0	108	10.7	10.0	107	78-114	1	20
1,2-Dichloropropane	10.9	10.0	105	11.0	10.0	110	78-113	5	20
Dibromomethane	10.5		99	9.74	10.0	97	79-122	2	20
Bromodichloromethane	9.92	10.0	99 111	10.5	10.0	105	82-118	5	20
cis-1,3-Dichloropropene	11.1	10.0	105	42.4	40.0	106	75-115	1	20
4-Methyl-2-pentanone (MIBK)	41.8	40.0		10.1	10.0	101	85-118	5	20
Toluene	10.6	10.0	106	10.1	10.0	107	79-121	2	20
trans-1,3-Dichloropropene	10.9	10.0	109	9.50	10.0	95	79-116	4	20
1,1,2-Trichloroethane	9.90	10.0	99	9.30	10.0	,,	,, ,,	•	

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 04/01/2003 08:10:15 L:\STEALTH\CRYSTAL.RPT\Form3DLC.rpt

QA/QC Report

Client: Project: BE&K Terranext WVBA/#03103154

Sample Matrix:

Water

Service Request: X2300219 **Date Extracted:** 03/26/2003

Date Analyzed: 03/27/2003

Lab Control Spike/Duplicate Lab Control Spike Summary Volatile Organic Compounds

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L

Basis: NA Level: Low

Extraction Lot: XWG0300406

Lab Control Sample XWG0300406-3

Duplicate Lab Control Sample XWG0300406-4

		Control Spik		Lab Control	Spike	%Rec		RPD	
Analyte Name	Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit
Tetrachloroethene	10.0	10.0	100	9.65	10.0	97	76-127	4	20
2-Hexanone	41.9	40.0	105	40.4	40.0	101	65-120	4	20
1,3-Dichloropropane	10.5	10.0	105	10.1	10.0	101	81-116	4	20
Dibromochloromethane	9.72	10.0	97	9.45	10.0	95	77-119	3	20
1,2-Dibromoethane	10.0	10.0	100	10.3	10.0	103	79-116	2	20
Chlorobenzene	10.2	10.0	102	9.98	10.0	100	84-114	2	20
1,1,1,2-Tetrachloroethane	9.61	10.0	96	9.51	10.0	95	78-118	1	20
Ethylbenzene	10.8	10.0	108	10.4	10.0	104	79-124	3	20
m,p-Xylenes	21.7	20.0	108	20.8	20.0	104	75-131	4	20
o-Xylene	10.1	10.0	101	10.2	10.0	102	78-122	1	20
Styrene	10.6	10.0	106	10.5	10.0	105	80-126	1	20
Isopropylbenzene	10.3	10.0	103	10.2	10.0	102	75-126	1	20
Bromobenzene	10.7	10.0	107	10.5	10.0	105	82-122	3	20
1,2,3-Trichloropropane	10.4	10.0	104	9.97	10.0	100	77-118	5	20
n-Propylbenzene	10.7	10.0	107	10.5	10.0	105	75-129	1	20
2-Chlorotoluene	10.5	10.0	105	10.4	10.0	104	77-126	1	20
4-Chlorotoluene	10.6	10.0	106	10.6	10.0	106	82-120	0	20
1,3,5-Trimethylbenzene	10.5	10.0	105	10.5	10.0	105	75-130	0	20
tert-Butylbenzene	10.3	10.0	103	10.3	10.0	103	73-130	0	20
1,2,4-Trimethylbenzene	10.5	10.0	105	10.4	10.0	104	60-137	0	20
sec-Butylbenzene	9.88	10.0	99	9.89	10.0	99	68-131	0	20
1,3-Dichlorobenzene	9.96	10.0	100	10.0	10.0	100	71-137	1	20
4-Isopropyltoluene	10.3	10.0	103	10.3	10.0	103	68-134	0	20
Bromoform	9.57	10.0	96	9.63	10.0	96	70-118	1	20
1,1,2,2-Tetrachloroethane	10.5	10.0	105	10.7	10.0	107	72-122	2	20
1,4-Dichlorobenzene	9.80	10.0	98	9.91	10.0	99	82-114	1	20
1,2-Dichlorobenzene	9.66	10.0	97	9.94	10.0	99	81-118	3	20
n-Butylbenzene	10.3	10.0	103	10.4	10.0	104	71-125	0	20
1,2-Dibromo-3-chloropropane	10.1	10.0	101	11.2	10.0	112	55-131	11	20
1,2,4-Trichlorobenzene	9.53	10.0	95	9.89	10.0	99	75-123	4	20
Hexachlorobutadiene	10.7	10.0	107	11.0	10.0	110	63-140	2	20
Naphthalene	9.84	10.0	98	9.85	10.0	99	67-125	0	20
1,2,3-Trichlorobenzene	11.0	10.0	110	11.1	10.0	111	72-124	1	20

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 04/01/2003 08:10:15 Form 3C - Organic

Page 2 of 2

SuperSet Reference:

QA/QC Report

Client: Project: BE&K Terranext WVBA/#03103154

Sample Matrix:

Water

Service Request: X2300219 Date Extracted: 03/27/2003

Date Analyzed: 03/27/2003

Lab Control Spike/Duplicate Lab Control Spike Summary Volatile Organic Compounds

Extraction Method: Analysis Method:

EPA 5030B

8260B

Units: ug/L

Basis: NA

Level: Low

Extraction Lot: XWG0300410

Lab Control Sample XWG0300410-3

Duplicate Lab Control Sample XWG0300410-4

	Lab	Control Spik	е	Duplicate	Lab Control	Spike	%Rec		RPD
Analyte Name	Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit
Dichlorodifluoromethane	3.98	10.0	40	4.08	10.0	41	1-233	2	20
Chloromethane	6.92	10.0	69	7.23	10.0	72	46-156	4	20
Vinyl Chloride	7.49	10.0	75	7.40	10.0	74	51-158	1	20
Bromomethane	8.51	10.0	85	8.50	10.0	85	37-149	0	20
Chloroethane	9.33	10.0	93	9.41	10.0	94	56-146	1	20
Trichlorofluoromethane	8.46	10.0	85	7.91	10.0	79	69-139	7	20
1,1,2-Trichlorotrifluoroethane	10.9	10.0	109	10.6	10.0	106	83-130	3	20
1,1-Dichloroethene	9.50	10.0	95	9.60	10.0	96	65-112	1	20
Acetone	38.9	40.0	97	43.3	40.0	108	68-128	11	20
Iodomethane	37.4	40.0	93	36.9	40.0	92	68-144	1	20
Carbon Disulfide	42.4	40.0	106	41.5	40.0	104	67-140	2	20
Methylene Chloride	11.0	10.0	110	10.6	10.0	106	70-113	4	20
Methyl tert-Butyl Ether	10.1	10.0	101	9.90	10.0	99	75-115	2	20
trans-1,2-Dichloroethene	10.9	10.0	109	10.4	10.0	104	73-118	5	20
1,1-Dichloroethane	11.7	10.0	117	11.1	10.0	111	77-127	. 5	20
Vinyl Acetate	47.8	40.0	120	48.2	40.0	120	51-202	1	39
2,2-Dichloropropane	10.7	10.0	107	10.0	10.0	100	75-132	6	20
2-Butanone (MEK)	47.5	40.0	119	40.5	40.0	101	72-122	16	20
cis-1,2-Dichloroethene	10.2	10.0	102	9.86	10.0	99	81-118	3	20
Bromochloromethane	12.0	10.0	120 L1	12.2	10.0	122 L1	82-114	2	20
Chloroform	11.4	10.0	114	10.6	10.0	106	78-119	7	20
1,1,1-Trichloroethane	9.49	10.0	95	8.95	10.0	90	71-125	6	20
Carbon Tetrachloride	9.55	10.0	96	9.16	10.0	92	69-130	4	20
1,1-Dichloropropene	10.3	10.0	103	9.99	10.0	100	77-114	3	20
Benzene	10.3	10.0	103	9.50	10.0	95	81-117	8	20
1,2-Dichloroethane	11.3	10.0	113	10.7	10.0	107	67-122	6	20
Trichloroethene	10.6	10.0	106	10.1	10.0	101	79-114	5	20
1,2-Dichloropropane	11.1	10.0	111	10.5	10.0	105	78-114	6	20
Dibromomethane	11.4	10.0	114 L1	11.5	10.0	115 L1	78-113	2	20
Bromodichloromethane	10.4	10.0	104	10.2	10.0	102	79-122	2	20
cis-1,3-Dichloropropene	11.5	10.0	115	11.1	10.0	111	82-118	3	20
4-Methyl-2-pentanone (MIBK)	40.4	40.0	101	42.9	40.0	107	75-115	6	20
Toluene	10.3	10.0	103	10.1	10.0	101	85-118	2	20
trans-1,3-Dichloropropene	11.2	10.0	112	11.1	10.0	111	79-121	0	20
1,1,2-Trichloroethane	10.5	10.0	105	10.2	10.0	102	79-116	3	20
1,1,2 11101110100000011	= - · · -								

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 04/01/2003 08:10:22 L:\STEALTH\CRYSTAL.RPT\Form3DLC.rpt

000041 Form 3C - Organic

Page

SuperSet Reference:

QA/QC Report

Client: Project: BE&K Terranext WVBA/#03103154

Sample Matrix:

Water

Service Request: X2300219 Date Extracted: 03/27/2003

Date Analyzed: 03/27/2003

Lab Control Spike/Duplicate Lab Control Spike Summary Volatile Organic Compounds

Extraction Method: EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

Extraction Lot: XWG0300410

Lab Control Sample XWG0300410-3

Duplicate Lab Control Sample XWG0300410-4

	Lab Control Spike			Duplicate	Lab Control	Spike	%Rec		RPD
Analyte Name	Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit
Tetrachloroethene	9.53	10.0	95	9.31	10.0	93	76-127	2	20
2-Hexanone	44.0	40.0	110	46.3	40.0	116	65-120	5	20
1,3-Dichloropropane	10.3	10.0	103	10.7	10.0	107	81-116	4	20
Dibromochloromethane	9.91	10.0	99	10.0	10.0	100	77-119	1	20
1,2-Dibromoethane	10.5	10.0	105	10.3	10.0	103	79-116	2	20
Chlorobenzene	10.2	10.0	102	9.72	10.0	97	84-114	5	20
1,1,1,2-Tetrachloroethane	9.81	10.0	98	9.46	10.0	95	78-118	4	20
	10.8	10.0	108	10.2	10.0	102	79-124	6	20
Ethylbenzene	21.4	20.0	107	20.3	20.0	101	75-131	6	20
m,p-Xylenes	10.4	10.0	104	9.83	10.0	98	78-122	5	20
o-Xylene	10.8	10.0	108	10.2	10.0	102	80-126	5	20
Styrene	10.5	10.0	105	9.60	10.0	96	75-126	8	20
Isopropylbenzene	11.1	10.0	111	10.2	10.0	102	82-122	8	20
Bromobenzene	12.2	10.0	122 L1	10.7	10.0	107	77-118	13	20
1,2,3-Trichloropropane	11.0	10.0	110	10.2	10.0	102	75-129	7	20
n-Propylbenzene	10.8	10.0	108	9.94	10.0	99	77-126	8	20
2-Chlorotoluene	11.1	10.0	111	10.4	10.0	104	82-120	7	20
4-Chlorotoluene	10.8	10.0	108	9.86	10.0	99	75-130	9	20
1,3,5-Trimethylbenzene	10.3	10.0	104	9.68	10.0	97	73-130	7	20
tert-Butylbenzene	10.4	10.0	108	9.97	10.0	100	60-137	8	20
1,2,4-Trimethylbenzene	10.8	10.0	101	9.32	10.0	93	68-131	8	20
sec-Butylbenzene	10.1	10.0	102	9.60	10.0	96	71-137	6	20
1,3-Dichlorobenzene	10.2	10.0	105	9.69	10.0	97	68-134	8	20
4-Isopropyltoluene	9.86	10.0	99	9.68	10.0	97	70-118	2	20
Bromoform	12.1	10.0	121	12.0	10.0	120	72-122	1	20
1,1,2,2-Tetrachloroethane	10.1	10.0	101	9,60	10.0	96	82-114	5	20
1,4-Dichlorobenzene	10.1	10.0	102	9.54	10.0	95	81-118	7	20
1,2-Dichlorobenzene	10.2	10.0	107	10.0	10.0	100	71-125	7	20
n-Butylbenzene	9.68	10.0	97	11.1	10.0	111	55-131	14	20
1,2-Dibromo-3-chloropropane	9.68 10.4	10.0	104	9.75	10.0	98	75-123	6	20
1,2,4-Trichlorobenzene	10.4	10.0	104	10.1	10.0	101	63-140	7	20
Hexachlorobutadiene		10.0	107	9.73	10.0	97	67-125	10	20
Naphthalene 1,2,3-Trichlorobenzene	10.7 11.9	10.0	119	11.5	10.0	115	72-124	3	20

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

000042

Form 3C - Organic

Page

2 of 2

Printed: 04/01/2003 08:10:22

March 22, 2003

Chuck Gordon BE & K Terranext 9830 S. 51st A-127 Phoenix, AZ 85044

Re: WVBA/Project #03103154

Dear Chuck:

Enclosed are the results of the samples submitted to our laboratory on March 13, 2003. For your reference, these analyses have been assigned our service request number L2300579.

All analyses were performed in accordance with our laboratory's quality assurance program. Results are intended to be considered in their entirety and apply only to the samples analyzed. Columbia Analytical Services is not responsible for use of less than the complete report.

Columbia Analytical Services - is certified for environmental analyses by the Arizona Department of Health Services (certificate number: AZ0544 and AZ0136, expiration: May 23, 2003).

If you have any questions, please call me at (818) 587-5550, extension 309.

Respectfully submitted,

Columbia Analytical Services, Inc.

Due Quelers

Sue Anderson Project Chemist

SA

Columbia Analytical Services, Inc.

Acronyms 8015M California DHS LUFT Method American Society for Testing and Materials **ASTM** Biochemical Oxygen Demand BOD Benzene/Toluene/Ethylbenzene/Xylenes **BTEX** California Assessment Metals CAM Chemical Abstract Service Registry Number **CAS Number CFC** Chlorofluorocarbon COD Chemical Oxygen Demand Contract Required Detection Limit **CRDL** Detected; result must be greater than zero. Detected; result must be greater than the detection limit. DL **Duplicate Laboratory Control Sample** DLCS Duplicate Matrix Spike **DMS** DOH or DHS Department of Health Services Environmental Laboratory Accreditation Program **ELAP** U.S. Environmental Protection Agency **EPA** Gas Chromatography GC Gas Chromatography/Mass Spectrometry GC/MS Ion Chromatography IC Initial Calibration Blank sample **ICB** Inductively Coupled Plasma atomic emission spectrometry **ICP** Initial Calibration Verification sample **ICV** Laboratory Control Sample LCS Leaking Underground Fuel Tank LUFT Modified M Methylene Blue Active Substances **MBAS** Method Detection Limit MDL Method Reporting Limit MRL Matrix Spike MS Methyl-tert-Butyl Ether MTBE Not Applicable NA Not Calculated NC None Detected at or above the Method Reporting/Detection Limit (MRL/MDL) ND Nephelometric Turbidity Units NTU Parts Per Billion ppb ppm Parts Per Million POL **Practical Quantitation Limit** Quality Assurance/Quality Control QA/QC Resource Conservation and Recovery Act **RCRA** Relative Percent Difference RPD Selected Ion Monitoring SIM Standard Methods for the Examination of Water and Wastewater, 18th Ed., 1992. SM STLC Solubility Threshold Limit Concentration Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW-846, SWThird Edition, 1986 and as amended by Updates I, II, IIA, and IIB. Toxicity Characteristics Leaching Procedure **TCLP** Total Dissolved Solids **TDS TPH** Total Petroleum Hydrocarbons Total Recoverable Petroleum Hydrocarbons **TRPH** Total Suspended Solids TSS Total Threshold Limit Concentration **TTLC** Volatile Organic Analyte(s) **VOA Oualifiers**

~
Undetected at or above MDL/MRL.
Estimated concentration. Analyte detected above MDL but below MRL.
Hit above MRL also found in Method Blank.
Analyte concentration above high point of ICAL.
Presumptive evidence of compound.
Result from dilution.
See case narrative.

- Cover Page - INORGANIC ANALYSIS DATA PACKAGE

Client:

BE&K Terranext, LLC

Project Name : Project No. :

WVBA

03103154

Service Request: L2300579

Sample Name:

Laboratory Control Sample Method Blank AVB37-0400-01118 AVB37-0400-01118 AVB37-0400-01118 AVB87-0100-04116 AVB107-0100-05108 AVB97-0100-03101 AVB97-0104-1000 Lab Code:

L2300318-LCS L2300318-MB L2300579-001 L2300579-001S L2300579-002 L2300579-002 L2300579-003 L2300579-004 L2300579-005

approved By:

Approved By:

Outline

Ou

Date:

3/1/03

Analytical Report

Client:

BE&K Terranext, LLC

Project Name: Project No. :

WVBA 03103154

Matrix:

Water

Service Request: L2300579 Date Collected: 03/13/03

Date Received: 03/13/03

Date Extracted: NA

Total Metals

Sample Name:

AVB37-0400-01118

Lab Code:

L2300579-001

Units: ug/L (ppb)

Amalinto	Analysis Method	MRL	Date Analyzed	Sample Result	Result Notes
Analyte	•	10	03/20/03	35	
Chromium	6010B	10	03/20/03		

Analytical Report

Client:

BE&K Terranext, LLC

Project Name : Project No. : WVBA 03103154

Matrix:

Water

Service Request: L2300579

Date Collected: 03/13/03

Date Received: 03/13/03 **Date Extracted:** 03/18/03

Dissolved Metals

Sample Name:

AVB37-0400-01118

Lab Code:

L2300579-001

Units: ug/L (ppb)

Analyte	Analysis Method	MRL	Date Analyzed	Sample Result	Result Notes
Chromium	6010B	10	03/20/03	ND	

Analytical Report

Client:

Matrix:

BE&K Terranext, LLC

Project Name : Project No. :

WVBA 03103154 Water Service Request: L2300579

Date Collected: 03/13/03
Date Received: 03/13/03

Date Extracted: NA

Total Metals

Sample Name:

AVB87-0100-04116

Lab Code :

L2300579-002

Units: ug/L (ppb)

Analyte	Analysis Method	MRL	Date Analyzed	Sample Result	Result Notes
Chromium	6010B	10	03/20/03	ND	

Analytical Report

Client: **Project Name:** BE&K Terranext, LLC

Project No.:

WVBA 03103154

Matrix:

Water

Service Request: L2300579

Date Collected: 03/13/03 Date Received: 03/13/03

Date Extracted: 03/18/03

Dissolved Metals

Sample Name:

AVB87-0100-04116

Lab Code:

L2300579-002

Units: ug/L (ppb)

Basis: NA

Sample Result Notes Result **Date Analyzed** MRL **Analysis Method** Analyte ND 03/20/03 6010B 10 Chromium

Analytical Report

Client:

BE&K Terranext, LLC

Project Name : Project No. : WVBA 03103154

Matrix:

Water

Service Request: L2300579

Date Collected: 03/13/03 Date Received: 03/13/03

Date Extracted: NA

Total Metals

Sample Name :

AVB107-0100-05108

Lab Code:

L2300579-003

Units: ug/L (ppb)

Analyte	Analysis Method	MRL	Date Analyzed	Sample Result	Result Notes
Chromium	6010B	1()	03/20/03	ND	

Analytical Report

Client:

BE&K Terranext, LLC

Project Name: Project No.:

WVBA 03103154

Matrix:

Water

Service Request: L2300579

Date Collected: 03/13/03

Date Received: 03/13/03

Date Extracted: 03/18/03

Dissolved Metals

Sample Name:

AVB107-0100-05108

Lab Code:

L2300579-003

Units: ug/L (ppb)

Basis: NA

Result Sample Notes Result MRL **Date Analyzed Analysis Method** Analyte ND 03/20/03 10 6010B Chromium

Analytical Report

Client:

BE&K Terranext, LLC

Project Name : Project No. :

WVBA 03103154

Matrix:

Water

Service Request: L2300579

Date Collected: 03/13/03 **Date Received:** 03/13/03

Date Extracted: NA

Total Metals

Sample Name:

AVB97-0100-03101

Lab Code:

L2300579-004

Units: ug/L (ppb)

Analyte	Analysis Method	MRL	Date Analyzed	Sample Result	Result Notes
Chromium	6010B	10	03/20/03	ND	

Analytical Report

Client:

BE&K Terranext, LLC

Project Name: Project No.:

WVBA 03103154

Matrix:

Water

Service Request: L2300579

Date Collected: 03/13/03

Date Received: 03/13/03

Date Extracted: 03/18/03

Dissolved Metals

Sample Name:

AVB97-0100-03101

Lab Code:

L2300579-004

Units: ug/L (ppb)

Basis: NA

Sample

Result

Analyte

Analysis Method

MRL

Date Analyzed

Result

Notes

6010B

10

03/20/03

Chromium

ND

Analytical Report

Client:

BE&K Terranext, LLC

Project Name: Project No.:

WVBA 03103154

Matrix:

Water

Service Request: L2300579

Date Collected: 03/13/03

Date Received: 03/13/03

Date Extracted: NA

Total Metals

Sample Name:

AVB97-0104-1000

Lab Code:

L2300579-005

Units: ug/L (ppb)

Basis: NA

Sample Result Result Notes **Date Analyzed Analysis Method** MRL Analyte ND 03/20/03 10 6010B Chromium

Analytical Report

Client:

BE&K Terranext, LLC

Project Name : Project No. :

WVBA 03103154

Matrix:

Water

Service Request: L2300579

Date Collected: 03/13/03 **Date Received:** 03/13/03

Date Extracted: 03/18/03

Dissolved Metals

Sample Name:

AVB97-0104-1000

Units: ug/L (ppb)

Basis: NA

Lab Code:

L2300579-005

Result

Analyte

Analysis Method

MRL

Date Analyzed

Sample Result

Result Notes

Chromium

6010B

10

03/20/03

ND

Analytical Report

Client:

BE&K Terranext, LLC

Project Name : Project No. :

WVBA 03103154

Matrix:

Water

Service Request: L2300579

Date Collected: NA
Date Received: NA

Date Extracted: NA

Total Metals

Sample Name:

Method Blank

Lab Code:

L2300318-MB

Units: ug/L (ppb)

Analyte	Analysis Method	MRL	Date Analyzed	Sample Result	Result Notes
Chromium	6010B	10	03/20/03	ND	

QA/QC Report

Client:

BE&K Terranext, LLC

Project Name : Project No. : WVBA 03103154

Matrix:

Water

Service Request: L2300579

Date Collected: NA
Date Received: NA
Date Extracted: NA

Date Analyzed: 03/20/03

Laboratory Control Sample Summary

Total Metals

Sample Name:

Laboratory Control Sample

Lab Code:

L2300318-LCS

Units: ug/L (ppb)

Analyte	Analysis Method	True Value	Result	Percent	CAS Percent Recovery Acceptance Limits	Result Notes
Chromium	6010B	500	528	106	87-111	

Analytical Report

Client:

BE&K Terranext, LLC

Project Name : Project No. :

WVBA 03103154

Matrix:

Water

Service Request: L2300579

Date Collected: 03/13/03 **Date Received:** 03/13/03

Date Extracted: NA

Date Analyzed: 03/20/03

Matrix Spike/Duplicate Matrix Spike Summary

Total Metals

Sample Name: Lab Code: AVB37-0400-01118

L2300579-001S

1S L2300579-001SD

Units: ug/L (ppb)

Analyte	Prep Method	Analysis Method	MRL	Spike MS	e Level DMS	Sample Result	Spike MS	Result DMS	MS	DMS	CAS Acceptance Limits	Relative Percent Difference	Result Notes
Chromium	3010A	6010B	10	500	500	35.1	543	543	102	102	87-105	<1	

CHAIN OF CUSTODY/LABORATORY ANALYSIS REQUEST FORM

Columbia
Analytical
Services No.

DATE 3.13.03 3902 East University Drive, Suite 4 • Phoenix, AZ 85034 • (602) 437-2001 • (800) 695-7222 x09 • FAX (602) 437-5308

P,

PAGE_

RUSH TAT - Surcharges Apply ANALYSIS TAT (Circle One) REMARKS ab No: X 23-00 2/9 SAMPLE RECEIPT: ☐ 48 Hours □ 72 Hours □ 24 Hours STANDARD Shipping VIA: 1 Shipping #: Condition: ANALYSIS REQUESTED Date/Time INVOICE INFORMATION: 2-13.03 01^{£8} Date/Time Date/Time DISTRIBUTION: WHITE return to originator; YELLOW - lab; PINK - retained by originator PHG Paint Filter D Daniod Asela Organization Organization Organization D d701 쪮70 SY P.O.# REPORT REQUIREMENTS II. Report (includes DUP.MS. MSD, as required, may be III. Data Validation Report (includes All Raw Data) IV. CLP Deliverable Report charged as samples) Routine Report Aromatic Volatiles YENN MET Received By (Signature) Received By (Signature) Received By (Signature) なるなり 3 3 NUMBER OF CONTAINERS S 10 Date/Time 3- (3-03) 13-45 PRESER-VATION 98% 5515T ST 3/3-03 Date/Time Date/Time 25044 4518 0180 # MATRIX Q \overline{z} 7 Lower 005 803 8 8 200 Organization Organization 03/8-001 Organization AZ . P 48 SY 0845 HK4VB 87-0100-04116 3-13-31 0950 480 496 460 PHONEJER AVB 107-8100-05108 3.13.23 11.25 13-13-03 12-30 3.0.63 12.45 TIME RE+ K PROJECT MANAGER (MC CK SPECIAL INSTRUCTIONS/COMMENTS: 3130 AVB 37-04-00-01118 3-13-03 DATE WIRA Arzz sale May Relinquished By (Signature) Relinquished By (Signature) Relinquisheg/By (Signature) ANB97-0700-03101 SAMPLER'S SIGNATURE # JE1-0102-1000 4 NPG- NOU-100 COMPANY/ADDRESS_ PROJECT NAME___ 5012E SAMPLE <u>.</u>

SAMPLE RECEIPT FORM

Service Request No: L2300579 Client: BE+1
Sample(s) delivered by: Client CAS Emp After Hours DHL
Golden State Overnight Fed X X UPS Other Courier
Chain of Custody filled out accurately? Yes X No (See Comments)
Appropriate sample volume and containers? Yes No(See Comments)
Sufficient labeling on container(s)? Yes No(See Comments)
Container(s) supplied by CAS? Yes NoX (See Comments)
Custody seal(s) intact?
Trip Blank(s) received Yes No X
If Trip Blank was supplied by CAS, record serial #
Temperature of sample(s)/cooler °C Temp Blank?(Y) or N (Circle One)
Voa's Marked Preserved? Yes No Filled Properly? Yes No (See Comments)
Preserved Bottles Requiring pH check(s)? Yes Notified KM DoNE
RUSH Turn around time? Yes Notified Date & Time
Short Hold-Time Analysis (check all that apply)
ASAP Res Cl D.O Flash Diss S2 Ferrous Fe 24HR pH Odor Cr+6 48HR BOD Color MBAS Nitrate Nitrite O-PO4 Sett Sol Turbidity 72HR Vapors
Notified Date & Time
Container(s) received and their preservative(s):
1-5=2 500 mips 1 HNO3AABCOEF INP BAB Swajzolo3
Comments Filler and Vrs Samples Notified Ben 3/14/03 0915 Am
-
Initials, Date, Time \\ \frac{1}{\sqrt{17/02}} \\ \frac{1}{17/02} \\ \frac{1}{\sqrt{17/02}} \\ \

CHAIN OF CUSTODY/LABORATORY ANALYSIS REQUEST FORM

Columbia
Analytical
Services Inc.
8e - Owned Company

3902 East University Drive, Suite 4 • Phoenix, AZ 85034 • (602) 437-2001 • (800) 695-7222 x09 • FAX (602) 437-5308

DATE 3.13.03

PAGE

Р

RUSH TAT - Surcharges Apply ANALYSIS TAT (Circle One) REMARKS Lab No: X 23-00 2/9 SAMPLE RECEIPT: ☐ 48 Hours ☐ 72 Hours ☐ 24 Hours STANDARD Shipping VIA: Shipping #:_ Condition: **ANALYSIS REQUESTED** INVOICE INFORMATION: 3.13.03 Date/Time Date/Time Date/Time D 191117 Inlied DHQ Daylod yseld $\sum_{D \in \mathcal{D}}^{D \text{ lotol}}$ Organization Organization Organization Total T Bill To P.O.# REPORT REQUIREMENTS II. Report (includes DUP.MS. MSD, as required, may be charged as samples) III. Data Validation Report (includes All Raw Data) IV. CLP Deliverable Report I. Routine Report Halogenated & Aromatic Volatiles Halogenated Volatile Organics Received By (Signature) Received By (Signature) Received By (Signature) 3 3 S S NUMBER OF CONTAINERS 2. (3. 03 /3.45 PRESER-VATION 9830 55155 57 Date/Time Date/Time 54058 Q MATRIX 003 Organization Organization (Johnson 003 SS goc Organization 8 0318-001 AZ LAB I.D. Chull der was MKK 08k5 0956 PHONE/FX AVB 107-8100-05108 3-13-03 11-25 13.03.03 12.45 TIME ANB97-0100-03101 |3-13-03| 12-30 SPECIAL INSTRUCTIONS/COMMENTS: PROJECT MANAGER CHUCK アゴナ 3130 ANB 87-0110-04116 3-13-3 3-17-03 DATE 430 496 460 FULL ALZZ Relinquished By (Signature) Relinquished By (Signature) Relinquisheg/By (Signature) AVB 37-04-00-10118 SAMPLER'S SIGNATURE 4W97-004-100 15/17-0102-1000 COMPANY/ADDRESS __ SAMPLE I.D. PROJECT NAME_

T90000

DISTRIBUTION: WHITE - return to originator; YELLOW - lab; PINK - retained by originator

Columbia Analytical Services, Inc. Phoenix, AZ

Sample Receipt and Preservation Form

Client:	WUP	PEAK		Project Name:	WUBA	
Sample(s)	Received on Glass	: <u>3-13 - 03</u> : Bottles□	date	3 <u>45</u> time ✓ Jars □	Sleeves □	
	Extraction Hol	lding Time Expi	TER Z ration: ime expiration LESS		time (soils only) (soil)/7 DAYS (water)?	Yes □ No□
If YES	S, chemist not	ified on:	date	time	Chemist's Initials	
 Are the If yes, I Are the Did all Are all Were the Have V Temper 	e custody seals how many and e signature an containers ar container lab he correct con /OA's been cl	s present? d where? d date correct? rive in good con els complete (i.e stainers used for necked for the pr ple(s) upon recei	dition? preservation, samp the tests indicated?	le ID)?	VOA Vial pH Verifi (Tested After Anal	No N
		YES	NO		Following Samples Exh	ibited pH > 2
рН	Reage					
12	NaO					
2	HNC	03				
2	H ₂ SC	D ₄				
Comment	ts:				eceived by (initials):	J.m.
•			Form Completed	and Sample(s) R	leceived by (initials): _	V-V-

r:\common\forms\samprev.doc Revised: 09/27/02 4:19 PM

April 2, 2003

Chuck Gordon BE&K Terranext 9830 S. 51st Street, Suite A-127 Phoenix, AZ 85044

Re: WVBA / Project #03103154

Dear Chuck:

Enclosed are the results of the samples submitted to our laboratory on March 14, 2003. The samples were analyzed for Total and Dissolved Chromium by our Canoga Park, CA facility (L2300592). For your reference, the 8260 analyses have been assigned our service request number X2300224.

All analyses were performed according to our laboratory's quality assurance program. All results are intended to be considered in their entirety, and Columbia Analytical Services, Inc. (CAS) is not responsible for use of less than the complete report. Results apply only to the samples analyzed. Columbia Analytical Services, Inc. is certified for environmental analyses by the Arizona Department of Health Services (Certificate #AZ0136; and #AZ0497).

Please call if you have any questions. My extension is 223.

Respectfully submitted,

Columbia Analytical Services, Inc.

Tracy L. Dutton
Laboratory Director

TLD/lm

Page 1 of <u>59</u>

Client:

BE&K Terranext

Project:

WVBA / #03103154

Sample Matrix:

Water

Service Request No.:

X2300224

Date Received:

3/14/03

CASE NARRATIVE

All analyses were performed consistent with the quality assurance program of Columbia Analytical Services, Inc. (CAS). This report contains analytical results for sample(s) designated for Tier II data deliverables. When appropriate to the method, method blank results have been reported with each analytical test. Surrogate recoveries have been reported for all applicable organic analyses. Additional quality control analyses reported herein include: Matrix/Duplicate Matrix Spike (MS/DMS) and Laboratory Control Sample (LCS).

All EPA recommended holding times have been met for analyses in this sample delivery group.

The following difficulties were experienced during analysis of this batch:

The associated blank spike (XWG0300410-3 and XWG0300410-4) recovery of Bromochloromethane, Dibromomethane, and 1,2,3-Trichloropropane, Method 8260, was above laboratory acceptance limits. These compounds were not detected in any of the samples analyzed in this batch.

Matrix spike (XWG0300410-1 and XWG0300410-2) recovery of Dichlorodifluoromethane, Chloromethane, and Vinyl Chloride, Method 8260B, was low. The method control sample recovery was acceptable.

Matrix spike (XWG0300410-1 and XWG0300410-2) recovery of Trichloroethene, 1,2-Dichloropropane, and Hexachlorobutadiene, Method 8260B, was high. The method control sample recovery was acceptable.

The accuracy of the spike (XWG0300410-1) recovery value of Tetrachloroethene, Method 8260B, is reduced since the analyte concentration in the sample is disproportionate to spike level. The method control sample recovery was acceptable.

ARIZONA DATA QUALIFIERS

Method Bl	ank:
B1	Target analyte detected in method blank at or above the method reporting limit.
B2	Non-target analyte detected in method blank and sample, producing interference.
В3	Target analyte detected in calibration blank at or above the method reporting limit.
B4	Target analyte detected in blank at/above method acceptance criteria.
Confirmat	ion:
C1	Confirmatory analysis not performed as required by the method.
C2	Confirmatory analysis not performed. Confirmation of analyte presence established by site historical data.
C3	Qualitative confirmation performed. See case narrative.
C4	Confirmatory analysis was past holding time.
C5	Confirmatory analysis was past holding time. Original result not confirmed.
Dilution:	
D1	Sample required dilution due to matrix interference. See case narrative.
D2	Sample required dilution due to high concentration of target analyte.
D3	Sample dilution required due to insufficient sample.
D4	Minimum reporting level (MRL) adjusted to reflect sample amount received and analyzed.
Estimated	concentration:
E1	Concentration estimated. Analyte exceeded calibration range. Reanalysis not possible due to insufficient
	sample.
E2	Concentration estimated. Analyte exceeded calibration range. Reanalysis not performed due to sample matrix.
E3	Concentration estimated. Analyte exceeded calibration range. Reanalysis not performed due to holding time requirements.
E4	Concentration estimated. Analyte was detected below laboratory minimum reporting level (MRL).
E5	Concentration estimated. Analyte was detected below laboratory minimum reporting level (MRL), but not confirmed by alternate analysis.
E6	Confirmation estimated. Internal standard recoveries did not meet method acceptance criteria.
E7	Confirmation estimated. Internal standard recoveries did not meet laboratory acceptance criteria.
Hold Time	:
H1	Sample analysis performed past holding time. See case narrative.
H2	Initial analysis within holding time. Reanalysis for the required dilution was past holding time.
Н3	Sample was received and analyzed past holding time.
[-]4	Sample was extracted past required extraction holding time, but analyzed within analysis holding time. See case
	narrative.
BOD:	
K1	The sample dilutions set-up for the BOD analysis did not meet the oxygen depletion criteria of at least 2mg/L.
	Any reported result is an estimated value.
K2	The sample dilutions set up for the BOD analysis did not meet the criteria of a residual dissolved oxygen of at
	least 1 mg/L. Any reported result is an estimated value.
K3	The seed depletion was outside the method acceptance limits.
	•

The seed depletion was outside the method and laboratory acceptance limits. The reported result is an estimated K4 valne The dilution water D.O. depletion was >0.2 mg/L. K5 Glucose/glutamic acid BOD was below method acceptance criteria. K6 The discrepancy between the BOD and COD results has been verified by reanalysis of the sample for COD. K7 Laboratory fortified blank/blank spike: The associated blank spike recovery was above laboratory acceptance limits. See case narrative L1The associated blank spike recovery was below laboratory acceptance limits. See case narrative. L2 The associated blank spike recovery was above method acceptance limits. See case narrative. L_3 The associated blank spike recovery was below method acceptance limits. See case narrative. 1.4 Note: The L1, L2, L3, & L4 footnotes need to be added to all corresponding analytes for a sample. Matrix spike: Matrix spike recovery was high, the method control sample recovery was acceptable. МІ Matrix spike recovery was low, the method control sample was acceptable. M2 The accuracy of the spike recovery value is reduced since the analyte concentration in the sample is M3 disproportionate to spike level. The method control sample recovery was acceptable. The analysis of the spiked sample required a dilution such that the spike concentrations was diluted below M4 the reporting limit. The method control sample recovery was acceptable Analyte concentration was determined by the method of standard addition (MSA). M5 General: N1See case narrative. See corrective action report. N2Sample quality: Sample integrity was not maintained. See case narrative. 01 Q2 Sample received with head space. O3 Sample received with improper chemical preservation. Sample received and analyzed without chemical preservation. Q4 Sample received with inadequate chemical preservation, but preserved by the laboratory. O5 Sample was received above recommended temperature. O6 Q7 Sample inadequately dechlorinated. Insufficient sample received to meet QC requirements. QC requirements satisfy ADEQ policies 0154 and 0155. Q8 Insufficient sample received to meet QC requirements. Q9 Sample received in inappropriate sample container. Q10 Sample is heterogeneous. Sample homogeneity could not be readily achieved using routine laboratory practices. Q11 **Duplicates:** R1RPD exceeded the method control limit. See case narrative. RPD exceeded the laboratory control limit. See case narrative. R2 Sample RPD between the primary and confirmatory analysis exceeded 40%. Per Method 8000B, the higher R3 value was reported. MS/MSD RPD exceeded the method control limit. Recovery met acceptance criteria. **R4** MS/MSD RPD exceeded the laboratory control limit. Recovery met acceptance criteria.

LFB/LFBD RPD exceeded the method control limit. Recovery met acceptance criteria.

LFB/LFBD RPD exceeded the laboratory control limit. Recovery met acceptance criteria.

R5

R6

R7

Sample RPD exceeded the laboratory control limit. R9 Surrogate: Surrogate recovery was above laboratory acceptance limits, but within method acceptance limits. S1 Surrogate recovery was above laboratory and method acceptance limits. S2Surrogate recovery was above laboratory acceptance limits, but within method acceptance limits. No target S3 analytes were detected in the sample. Surrogate recovery was above laboratory and method acceptance limits. No target analytes were detected in the S4 sample Surrogate recovery was below laboratory acceptance limits, but within method acceptance limits. S5 Surrogate recovery was below laboratory and method acceptance limits. Reextraction and/or reanalysis confirms **S**6 low recovery caused by matrix effect. Surrogate recovery was below laboratory and method acceptance limits. Unable to confirm matrix effect. **S7** The analysis of the sample required a dilution such that the surrogate concentration was diluted below the method S8acceptance criteria. The method control sample recovery was acceptable. The analysis of the sample required a dilution such that the surrogate concentration was diluted below the S9laboratory acceptance criteria. The method control sample recovery was acceptable.

Method/analyte discrepancies:

R8

S10

T1 Method promulgated by EPA, but not ADHS at this time.

Sample RPD exceeded the method control limit.

- T2 Cited ADHS licensed method does not contain this analyte as part of method compound list.
- T3 Method not promulgated either by EPA or ADHS.
- T4 Tentatively identified compound. Concentration is estimated and based on the closest internal standard.

Surrogate recovery was above laboratory and method acceptance limits. See case narrative.

Calibration verification:

- V1 CCV recovery was above method acceptance limits. This target analyte was not detected in the sample.
- V2 CCV recovery was above method acceptance limits. This target analyte was detected in the sample. The sample could not be reanalyzed due to insufficient sample.
- V3 CCV recovery was above method acceptance limits. This target analyte was detected in the sample, but the sample was not reanalyzed. See case narrative.
- V4 CCV recovery was below method acceptance limits. The sample could not be reanalyzed due to insufficient sample.
- V5 CCV recovery after a group of samples was above acceptance limits. This target analyte was not detected in the sample. Acceptable per EPA Method 8000B.

Inorganic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.
- IJ The compound was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- i The MRL/MDL has been elevated due to a matrix interference.
- X See case narrative.

Metals Data Qualifiers

- # The control limit criteria is not applicable. See case narrative.
- B The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.
- E The reported value is estimated because of the presence of matrix interference.
- M The duplicate injection precision was not met.
- N The Matrix Spike sample recovery is not within control limits. See case narrative.
- S The reported value was determined by the Method of Standard Additions (MSA).
- U The compound was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- W The post-digestion spike for furnace AA analysis is out of control limits, while sample absorbance is less than 50% of spike absorbance.
- i The MRL/MDL has been elevated due to a matrix interference.
- X See case narrative.
- * The duplicate analysis not within control limits. See case narrative.
- + The correlation coefficient for the MSA is less than 0.995.

Organic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- A A tentatively identified compound, a suspected aldol-condensation product.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result.
- C The analyte was qualitatively confirmed using GC/MS techniques, pattern recognition, or by comparing to historical data.
- D The reported result is from a dilution.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.
- N The result is presumptive. The analyte was tentatively identified, but a confirmation analysis was not performed.
- P The GC or HPLC confirmation criteria was exceeded. The relative percent difference is greater than 40% between the two analytical results (25% for CLP Pesticides).
- U The compound was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- i The MRL/MDL has been elevated due to a chromatographic interference.
- X See case narrative.

Additional Petroleum Hydrocarbon Specific Qualifiers

- F The chromatographic fingerprint of the sample matches the elution pattern of the calibration standard.
- L The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of lighter molecular weight constituents than the calibration standard.
- H The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of heavier molecular weight constituents than the calibration standard.
- O The chromatographic fingerprint of the sample resembles an oil, but does not match the calibration standard.
- Y The chromatographic fingerprint of the sample resembles a petroleum product eluting in approximately the correct carbon range, but the elution pattern does not match the calibration standard.
- Z The chromatographic fingerprint does not resemble a petroleum product.

Client: Project: BE&K Terranext WVBA/#03103154

Service Request:

X2300224

Cover Page - Organic Analysis Data Package Volatile Organic Compounds

		Date	Date
Sample Name	Lab Code	Collected	Received
AVB88-0100-05099	X2300224-001	03/14/2003	03/14/2003
AVB84-0100-05103	X2300224-002	03/14/2003	03/14/2003
AVB69-0200-07105	X2300224-003	03/14/2003	03/14/2003
AVB47-0100-16087	X2300224-004	03/14/2003	03/14/2003
AVB68-0200-07108	X2300224-005	03/14/2003	03/14/2003
AVB68-0204-1000	X2300224-006	03/14/2003	03/14/2003
AVB68-0202-1000	X2300224-007	03/14/2003	03/14/2003
AVB88-0100-05099MS	XWG0300410-1	03/14/2003	03/14/2003
AVB88-0100-05099MS AVB88-0100-05099DMS	XWG0300410-2	03/14/2003	03/14/2003
V A DOG-0100.02022DWD	**··		

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed in the case narrative. Release of the data contained in this hardcopy data package and in the computer-readable data submitted on floppy diskette has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signature.

Signature: 🔨	hacu	Dullon	
		4.2.03	

Name: Tracy Dutton

Title: Lah Manager

Analytical Results

Client: Project: BE&K Terranext WVBA/#03103154

Sample Matrix:

Water

Service Request: X2300224

Date Collected: 03/14/2003

Date Received: 03/14/2003

Volatile Organic Compounds

Sample Name:

AVB88-0100-05099

Lab Code:

X2300224-001

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

			Dilution	Date	Date	
Analyte Name	Result Q	MRL	Factor	Extracted		Arizona Qualifier
Dichlorodifluoromethane	ND U	3.0	1	03/27/03	03/27/03	
Chloromethane	ND U	2.0	1	03/27/03	03/27/03	
Vinyl Chloride	ND U	1.0	1	03/27/03	03/27/03	
Bromomethane	ND U	1.0	1	03/27/03	03/27/03	
Chloroethane	ND U	1.0	1	03/27/03	03/27/03	
Trichlorofluoromethane	ND U	1.0	1	03/27/03	03/27/03	
1,1,2-Trichlorotrifluoroethane	ND U	1.0	1	03/27/03	03/27/03	
1,1-Dichloroethene	ND U	1.0	1	03/27/03	03/27/03	
Acetone	ND U	10	1	03/27/03	03/27/03	
Iodomethane	ND U	2.0	1	03/27/03	03/27/03	
Carbon Disulfide	ND U	2.0	1	03/27/03	03/27/03	
Methylene Chloride	ND U	1.0	1	03/27/03	03/27/03	
Methyl tert-Butyl Ether	ND U	1.0	1	03/27/03	03/27/03	
trans-1,2-Dichloroethene	ND U	0.50	1	03/27/03	03/27/03	
1,1-Dichloroethane	ND U	0.50	1	03/27/03	03/27/03	
Vinyl Acetate	ND U	3.0	1	03/27/03	03/27/03	
2,2-Dichloropropane	ND U	2.0	1	03/27/03	03/27/03	
2-Butanone (MEK)	ND U	8.0	1	03/27/03	03/27/03	
cis-1,2-Dichloroethene	ND U	0.50	1	03/27/03	03/27/03	
Bromochloromethane	ND U	0.50	1	03/27/03	03/27/03	L1
Chloroform	ND U	1.0	1	03/27/03	03/27/03	
1,1,1-Trichloroethane	ND U	0.50	1	03/27/03	03/27/03	
Carbon Tetrachloride	ND U	0.50	1	03/27/03	03/27/03	
1,1-Dichloropropene	ND U	0.50	1	03/27/03	03/27/03	
Benzene	ND U	0.50	1	03/27/03	03/27/03	
1,2-Dichloroethane	ND U	0.50	1	03/27/03	03/27/03	
Trichloroethene	1.4	0.50	1	03/27/03	03/27/03	
	ND U	0.50	1	03/27/03	03/27/03	
1,2-Dichloropropane Dibromomethane	ND U	0.50	ī	03/27/03	03/27/03	L1
Bromodichloromethane	ND U	0.50	1	03/27/03	03/27/03	
	ND U	0.50	1	03/27/03	03/27/03	
cis-1,3-Dichloropropene 4-Methyl-2-pentanone (MIBK)	ND U	8.0	1	03/27/03	03/27/03	
Toluene	ND U	0.50	1	03/27/03	03/27/03	
TOTACHE	1100	2,00				

Comments:

Printed: 04/01/2003 15:09:09

Merged

Form 1A - Organic

Page 1 of 3

RR3138 SuperSet Reference:

Analytical Results

Client: Project: BE&K Terranext WVBA/#03103154

Sample Matrix:

Water

Service Request: X2300224

Date Collected: 03/14/2003

Date Received: 03/14/2003

Volatile Organic Compounds

Sample Name:

AVB88-0100-05099

Lab Code:

X2300224-001

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

	D14	0	MRL	Dilution Factor	Date Extracted	Date Analyzed	Arizona Qualifier
Analyte Name	Result		1.0	1	03/27/03	03/27/03	
trans-1,3-Dichloropropene	ND		1.0	. 1	03/27/03	03/27/03	
1,1,2-Trichloroethane	ND	U	0.50	1	03/27/03	03/27/03	
Tetrachloroethene	47				03/27/03	03/27/03	
2-Hexanone	ND		5.0	1	03/27/03	03/27/03	
1,3-Dichloropropane	ND		1.0	1 1	03/27/03	03/27/03	
Dibromochloromethane	ND		0.50				
1,2-Dibromoethane	ND		0.50	1	03/27/03	03/27/03	
Chlorobenzene	ND		0.50	1	03/27/03	03/27/03	
1,1,1,2-Tetrachloroethane	ND	U	0.50	11	03/27/03	03/27/03	
Ethylbenzene	ND	U	0.50	1	03/27/03	03/27/03	
m,p-Xylenes	ND	U	1.0	1	03/27/03	03/27/03	
o-Xylene	ND	U	0.50	1	03/27/03	03/27/03	
Styrene	ND	U	0.50	1	03/27/03	03/27/03	
Isopropylbenzene	ND		0.50	1	03/27/03	03/27/03	
Bromobenzene	ND		0.50	1	03/27/03	03/27/03	
1,2,3-Trichloropropane	ND		1.0	1	03/27/03	03/27/03	L1
n-Propylbenzene	ND		0.50	1	03/27/03	03/27/03	
2-Chlorotoluene	ND		0.50	1	03/27/03	03/27/03	
	ND		0.50	1	03/27/03	03/27/03	
4-Chlorotoluene	ND ND		0.50	1	03/27/03	03/27/03	
1,3,5-Trimethylbenzene	ND ND		0.50	1	03/27/03	03/27/03	
tert-Butylbenzene			0.50	1	03/27/03	03/27/03	
1,2,4-Trimethylbenzene	ND		0.50	1	03/27/03	03/27/03	
sec-Butylbenzene	ND		0.50	1	03/27/03	03/27/03	
1,3-Dichlorobenzene	ND				03/27/03	03/27/03	
4-Isopropyltoluene		U	0.50	1	03/27/03	03/27/03	
Bromoform		U	0.50	1	03/27/03	03/27/03	
1,1,2,2-Tetrachloroethane		U	1.0	1			
1,4-Dichlorobenzene		U	0.50	1	03/27/03	03/27/03	
1,2-Dichlorobenzene		U	0.50	1	03/27/03	03/27/03	
n-Butylbenzene	ND	U	0.50	1	03/27/03	03/27/03	
1,2-Dibromo-3-chloropropane	NE	U	5.0	I	03/27/03	03/27/03	
1.2.4-Trichlorobenzene		U	0.50	1	03/27/03	03/27/03	
Hexachlorobutadiene		U	0.50	1	03/27/03	03/27/03	

Comments:

Printed: 04/01/2003 15:09:09

Merged

Form 1A - Organic

0000019

2 of 3 Page

RR3138 SuperSet Reference:

Analytical Results

Client: Project:

BE&K Terranext WVBA/#03103154

Sample Matrix:

Water

ialytical Results

Service Request: X2300224 **Date Collected:** 03/14/2003

Date Received: 03/14/2003

Volatile Organic Compounds

Sample Name:

AVB88-0100-05099

Lab Code:

X2300224-001

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

			Dilution	Date	Date	
Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed	Arizona Qualifier
Naphthalene 1,2,3-Trichlorobenzene	ND U ND U	3.0 0.50	1 1	03/27/03 03/27/03	03/27/03 03/27/03	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Arizona Qualifier
Dibromofluoromethane	102	84-113	03/27/03	
Toluene-d8	105	68-126	03/27/03	
4-Bromofluorobenzene	95	79-113	03/27/03	

Comments:

Analytical Results

Client: **Project:** BE&K Terranext WVBA/#03103154

Sample Matrix:

Water

Service Request: X2300224

Date Collected: 03/14/2003 **Date Received:** 03/14/2003

Volatile Organic Compounds

Sample Name:

AVB84-0100-05103

Lab Code:

X2300224-002

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

	D a muld	0	MRL	Dilution Factor	Date Extracted	Date Analyzed	Arizona Qualifier
Analyte Name	Result		3.0	1	03/27/03	03/27/03	
Dichlorodifluoromethane	ND ND		2.0	1	03/27/03	03/27/03	
Chloromethane	ND ND		1.0	1	03/27/03	03/27/03	
Vinyl Chloride			1.0	1	03/27/03	03/27/03	
Bromomethane	ND ND		1.0	1	03/27/03	03/27/03	
Chloroethane	ND ND		1.0	1	03/27/03	03/27/03	
Trichlorofluoromethane				1	03/27/03	03/27/03	
1,1,2-Trichlorotrifluoroethane	ND ND		1.0 1.0	1	03/27/03	03/27/03	
1,1-Dichloroethene	ND ND		1.0	1	03/27/03	03/27/03	
Acetone				1	03/27/03	03/27/03	
Iodomethane	ND		2.0	1	03/27/03	03/27/03	
Carbon Disulfide	ND		2.0 1.0	1	03/27/03	03/27/03	
Methylene Chloride	ND				03/27/03	03/27/03	
Methyl tert-Butyl Ether	ND		1.0	1 1	03/27/03	03/27/03	
trans-1,2-Dichloroethene	ND		0.50	1	03/27/03	03/27/03	
1,1-Dichloroethane	ND		0.50			03/27/03	
Vinyl Acetate	ND		3.0	1	03/27/03 03/27/03	03/27/03	
2,2-Dichloropropane	ND		2.0	1	03/27/03	03/27/03	
2-Butanone (MEK)	ND		8.0	1			
cis-1,2-Dichloroethene	1.6		0.50	1	03/27/03	03/27/03 03/27/03	т 1
Bromochloromethane	ND		0.50	1	03/27/03	03/27/03	LI
Chloroform	ND	U	1.0	1	03/27/03		
1,1,1-Trichloroethane	ND		0.50	1	03/27/03	03/27/03	
Carbon Tetrachloride	ND		0.50	1	03/27/03	03/27/03	
1,1-Dichloropropene	ND	U	0.50	1	03/27/03	03/27/03	
Benzene	ND	U	0.50	1	03/27/03	03/27/03	
1,2-Dichloroethane	ND	U	0.50	1	03/27/03	03/27/03	
Trichloroethene	1.8	;	0.50	11	03/27/03	03/27/03	
1,2-Dichloropropane	ND	U	0.50	1	03/27/03	03/27/03	
Dibromomethane	ND	U	0.50	1	03/27/03	03/27/03	L1
Bromodichloromethane	NE	U	0.50	1	03/27/03	03/27/03	
cis-1,3-Dichloropropene	NE	U	0.50	1	03/27/03	03/27/03	
		U	8.0	1	03/27/03	03/27/03	
		U	0.50	1	03/27/03	03/27/03	
4-Methyl-2-pentanone (MIBK) Toluene						03/27/03	

RR3138

Analytical Results

Client: Project: BE&K Terranext WVBA/#03103154

Sample Matrix:

Water

Service Request: X2300224

Date Collected: 03/14/2003 **Date Received:** 03/14/2003

Volatile Organic Compounds

Sample Name: Lab Code: AVB84-0100-05103 X2300224-002

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

Analyte Name Result Ø MRL Factor Extracted Analyzed Arizona Qualifier trans-1,3-Dichloropropene ND U 1.0 1 03/27/03 03/27/03 1,1,2-Trichlorocethane 0.88 0.50 1 03/27/03 03/27/03 2-Hexanone ND U 5.0 1 03/27/03 03/27/03 1,3-Dichloropropane ND U 1.0 1 03/27/03 03/27/03 Dibromochloromethane ND U 0.50 1 03/27/03 03/27/03 1,2-Dibromocthane ND U 0.50 1 03/27/03 03/27/03 1,2-Dibromocthane ND U 0.50 1 03/27/03 03/27/03 1,1,1,2-Tetrachlorocthane ND U 0.50 1 03/27/03 03/27/03 Ethylbenzene ND U 0.50 1 03/27/03 03/27/03 In,1,2-Tetrachlorocthane ND U 0.50 1 03/27/03 03/27/03 Ethylbenzene ND U 0.50 1 03/27/03					Dilution	Date	Date	
Irans-1,3-Dichloropropene	Analyte Name	Result	Q	MRL	Factor	Extracted	Analyzed	Arizona Qualifier
1,1,2-Trichloroethane		ND	U	1.0	1			
Colorable Colo		ND	U	1.0	1			
1,3-Dichloropropane	Tetrachloroethene	0.88		0.50	1	03/27/03		
Dibromochloromethane	2-Hexanone	ND	U	5.0	1			
Dibromochloromethane ND U 0.50 1 03/27/03 03/27/03 1,2-Dibromoethane ND U 0.50 1 03/27/03 03/27/03 Chlorobenzene ND U 0.50 1 03/27/03 03/27/03 I,1,1,2-Tetrachloroethane ND U 0.50 1 03/27/03 03/27/03 Ethylbenzene ND U 0.50 1 03/27/03 03/27/03 Ethylbenzene ND U 0.50 1 03/27/03 03/27/03 Styrene ND U 0.50 1 03/27/03 03/27/03 Isopropylbenzene ND U 0.50 1 03/27/03 03/27/03 Bromobenzene ND U 0.50 1 03/27/03 03/27/03 Isopropylbenzene ND U 0.50 1 03/27/03 03/27/03 Propylbenzene ND U 0.50 1 03/27/03 03/27/03 2	1,3-Dichloropropane	ND	U	1.0	1			
1,2-protonement		ND	U	0.50	1	03/27/03	03/27/03	
Chlorobenzene ND U 0.50 1 03/27/03 03/27/03 1,1,1,2-Tetrachloroethane ND U 0.50 1 03/27/03 03/27/03 Ethylbenzene ND U 0.50 1 03/27/03 03/27/03 m,p-Xylenes ND U 0.50 1 03/27/03 03/27/03 o-Xylene ND U 0.50 1 03/27/03 03/27/03 Styrene ND U 0.50 1 03/27/03 03/27/03 Isopropylbenzene ND U 0.50 1 03/27/03 03/27/03 Bromobenzene ND U 0.50 1 03/27/03 03/27/03 2-Chlorotoluene ND U 0.50 1 03/27/03 03/27/03 1,3-5-Trimethylbenzene ND U	1.2-Dibromoethane	ND	U	0.50	1			
This		ND	U	0.50	1	03/27/03		
Distribution Color Color	1,1,1,2-Tetrachloroethane	ND	U	0.50	1	03/27/03	03/27/03	
m.p-Xylenes ND U 1.0 1 03/27/03 03/27/03 o-Xylene ND U 0.50 1 03/27/03 03/27/03 Styrene ND U 0.50 1 03/27/03 03/27/03 Isopropylbenzene ND U 0.50 1 03/27/03 03/27/03 Bromobenzene ND U 0.50 1 03/27/03 03/27/03 1,2,3-Trichloropropane ND U 1.0 1 03/27/03 03/27/03 1,2,3-Trichloropropane ND U 0.50 1 03/27/03 03/27/03 2-Chlorotoluene ND U 0.50 1 03/27/03 03/27/03 4-Chlorotoluene ND U 0.50 1 03/27/03 03/27/03 4-Chlorotoluene ND U 0.50 1 03/27/03 03/27/03 4-Springhthylbenzene ND U 0.50 1 03/27/03 03/27/03 1,2	Ethylbenzene	ND	U	0.50	1	03/27/03		
o-Xylene ND U 0.50 1 03/27/03 03/27/03 Styrene ND U 0.50 1 03/27/03 03/27/03 Isopropylbenzene ND U 0.50 1 03/27/03 03/27/03 Bromobenzene ND U 0.50 1 03/27/03 03/27/03 1,2,3-Trichloropropane ND U 0.50 1 03/27/03 03/27/03 1,2,3-Trichloropropane ND U 0.50 1 03/27/03 03/27/03 2-Chlorotoluene ND U 0.50 1 03/27/03 03/27/03 4-Chlorotoluene ND U 0.50 1 03/27/03 03/27/03 1,3,5-Trimethylbenzene ND U 0.50 1 03/27/03 03/27/03 1,2,4-Trimethylbenzene ND U 0.50 1 03/27/03 03/27/03 1,2,4-Trimethylbenzene ND U 0.50 1 03/27/03 03/27/03 1,3-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 <		ND	U	1.0	1	03/27/03		
Styrene		ND	U	0.50	1	03/27/03	03/27/03	
Isopropy benzene		ND	U	0.50	1	03/27/03	03/27/03	
Bromobenzene ND U 0.50 1 03/27/03 03/27/03 1,2,3-Trichloropropane ND U 1.0 1 03/27/03 03/27/03 L1	~			0.50	1	03/27/03	03/27/03	
n-Propylbenzene ND U 0.50 1 03/27/03 03/27/03 4-Chlorotoluene ND U 0.50 1 03/27/03 03/27/03 4-Chlorotoluene ND U 0.50 1 03/27/03 03/27/03 1,3,5-Trimethylbenzene ND U 0.50 1 03/27/03 03/27/03 tert-Butylbenzene ND U 0.50 1 03/27/03 03/27/03 1,2,4-Trimethylbenzene ND U 0.50 1 03/27/03 03/27/03 1,2,4-Trimethylbenzene ND U 0.50 1 03/27/03 03/27/03 1,3-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 4-Isopropyltoluene ND U 0.50 1 03/27/03 03/27/03 4-Isopropyltoluene ND U 0.50 1 03/27/03 03/27/03 Bromoform ND U 0.50 1 03/27/03 03/27/03 1,1,2,2-Tetrachloroethane ND U 1.0 1 03/27/03 03/27/03 1,4-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 1,4-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 1,2-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 1,2-Dibromo-3-chloropropane ND U 5.0 1 03/27/03 03/27/03 1,2-Trichlorobenzene ND U 0.50 1 03/27/03 03/27/03 1,2-Trichlorobenzene ND U 0.50 1 03/27/03 03/27/03		ND	U	0.50	1	03/27/03	03/27/03	
n-Propylbenzene ND U 0.50 1 03/27/03 03/27/03 2-Chlorotoluene ND U 0.50 1 03/27/03 03/27/03 4-Chlorotoluene ND U 0.50 1 03/27/03 03/27/03 1,3,5-Trimethylbenzene ND U 0.50 1 03/27/03 03/27/03 tert-Butylbenzene ND U 0.50 1 03/27/03 03/27/03 1,2,4-Trimethylbenzene ND U 0.50 1 03/27/03 03/27/03 see-Butylbenzene ND U 0.50 1 03/27/03 03/27/03 1,3-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 4-Isopropyltoluene ND U 0.50 1 03/27/03 03/27/03 Bromoform ND U 0.50 1 03/27/03 03/27/03 1,1,2,2-Tetrachloroethane ND U 0.50 1 03/27/03 03/27/03 1,4-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03	1 2 3-Trichloropropane	ND	U	1.0	1	03/27/03	03/27/03	L1
2-Chlorotoluene ND U 0.50 1 03/27/03 03/27/03 4-Chlorotoluene ND U 0.50 1 03/27/03 03/27/03 1,3,5-Trimethylbenzene ND U 0.50 1 03/27/03 03/27/03 tert-Butylbenzene ND U 0.50 1 03/27/03 03/27/03 1,2,4-Trimethylbenzene ND U 0.50 1 03/27/03 03/27/03 sec-Butylbenzene ND U 0.50 1 03/27/03 03/27/03 1,3-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 4-Isopropyltoluene ND U 0.50 1 03/27/03 03/27/03 Bromoform ND U 0.50 1 03/27/03 03/27/03 1,1,2,2-Tetrachloroethane ND U 0.50 1 03/27/03 03/27/03 1,4-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 1,2-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03	, , <u> </u>	ND	U	0.50	1	03/27/03	03/27/03	
1,3,5-Trimethylbenzene ND U 0.50 1 03/27/03 03/27/03 1,2,4-Trimethylbenzene ND U 0.50 1 03/27/03 03/27/03 1,2,4-Trimethylbenzene ND U 0.50 1 03/27/03 03/27/03 sec-Butylbenzene ND U 0.50 1 03/27/03 03/27/03 1,3-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 4-Isopropyltoluene ND U 0.50 1 03/27/03 03/27/03 Bromoform ND U 0.50 1 03/27/03 03/27/03 1,1,2,2-Tetrachloroethane ND U 1.0 1 03/27/03 03/27/03 1,4-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 1,4-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 1,2-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 1,2-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 1,2-Dibromo-3-chloropropane ND U 0.50 1 03/27/03 03/27/03 1,2-Dibromo-3-chloropropane ND U 5.0 1 03/27/03 03/27/03 1,2,4-Trichlorobenzene ND U 0.50 1 03/27/03 03/27/03 1,2,4-Trichlorobenzene ND U 0.50 1 03/27/03 03/27/03		ND	U	0.50	1	03/27/03	03/27/03	
tert-Butylbenzene ND U 0.50 1 03/27/03 03/27/03 1,2,4-Trimethylbenzene ND U 0.50 1 03/27/03 03/27/03 sec-Butylbenzene ND U 0.50 1 03/27/03 03/27/03 1,3-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 4-Isopropyltoluene ND U 0.50 1 03/27/03 03/27/03 Bromoform ND U 0.50 1 03/27/03 03/27/03 1,1,2,2-Tetrachloroethane ND U 1.0 1 03/27/03 03/27/03 1,4-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 1,4-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 1,2-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 1,2-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 1,2-Dibromo-3-chloropropane ND U 5.0 1 03/27/03 03/27/03 1,2,4-Trichlorobenzene ND U 0.50 1 03/27/03 03/27/03 1,2,4-Trichlorobenzene ND U 0.50 1 03/27/03 03/27/03	4-Chlorotoluene	ND	U	0.50	1			
tert-Butylbenzene ND U 0.50 1 03/27/03 03/27/03 1,2,4-Trimethylbenzene ND U 0.50 1 03/27/03 03/27/03 sec-Butylbenzene ND U 0.50 1 03/27/03 03/27/03 1,3-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 4-Isopropyltoluene ND U 0.50 1 03/27/03 03/27/03 Bromoform ND U 0.50 1 03/27/03 03/27/03 1,1,2,2-Tetrachloroethane ND U 1.0 1 03/27/03 03/27/03 1,4-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 1,2-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 1,2-Dibromo-3-chloropropane ND U 5.0 1 03/27/03 03/27/03 1,2,4-Trichlorobenzene ND U 0.50 1 03/27/03 03/27/03 1,2,4-Trichlorobenzene ND U 0.50 1 03/27/03 03/27/03 <td>1,3,5-Trimethylbenzene</td> <td>ND</td> <td>U</td> <td>0.50</td> <td>1</td> <td></td> <td></td> <td></td>	1,3,5-Trimethylbenzene	ND	U	0.50	1			
1,2,4-Trichlorobenzene		ND	U	0.50	1	03/27/03	03/27/03	
sec-Butylbenzene ND U 0.50 1 03/27/03 03/27/03 1,3-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 4-Isopropyltoluene ND U 0.50 1 03/27/03 03/27/03 Bromoform ND U 0.50 1 03/27/03 03/27/03 1,1,2,2-Tetrachloroethane ND U 1.0 1 03/27/03 03/27/03 1,4-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 1,2-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 n-Butylbenzene ND U 0.50 1 03/27/03 03/27/03 1,2-Dibromo-3-chloropropane ND U 5.0 1 03/27/03 03/27/03 1,2,4-Trichlorobenzene ND U 0.50 1 03/27/03 03/27/03	1.2.4-Trimethylbenzene	ND	U	0.50	1	03/27/03	03/27/03	
1,3-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 4-Isopropyltoluene ND U 0.50 1 03/27/03 03/27/03 Bromoform ND U 0.50 1 03/27/03 03/27/03 1,1,2,2-Tetrachloroethane ND U 1.0 1 03/27/03 03/27/03 1,4-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 1,2-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 n-Butylbenzene ND U 0.50 1 03/27/03 03/27/03 1,2-Dibromo-3-chloropropane ND U 5.0 1 03/27/03 03/27/03 1,2,4-Trichlorobenzene ND U 0.50 1 03/27/03 03/27/03		ND	U	0.50	1			
Bromoform ND U 0.50 1 03/27/03 03/27/03 1,1,2,2-Tetrachloroethane ND U 1.0 1 03/27/03 03/27/03 1,4-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 1,2-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 n-Butylbenzene ND U 0.50 1 03/27/03 03/27/03 1,2-Dibromo-3-chloropropane ND U 5.0 1 03/27/03 03/27/03 1,2,4-Trichlorobenzene ND U 0.50 1 03/27/03 03/27/03	2	ND	U	0.50	1	03/27/03	03/27/03	
Bromoform ND U 0.50 1 03/27/03 03/27/03 1,1,2,2-Tetrachloroethane ND U 1.0 1 03/27/03 03/27/03 1,4-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 1,2-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 n-Butylbenzene ND U 0.50 1 03/27/03 03/27/03 1,2-Dibromo-3-chloropropane ND U 5.0 1 03/27/03 03/27/03 1,2,4-Trichlorobenzene ND U 0.50 1 03/27/03 03/27/03	4-Isopropyltoluene	ND	U	0.50	1	03/27/03		
1,4-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 1,2-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 n-Butylbenzene ND U 0.50 1 03/27/03 03/27/03 1,2-Dibromo-3-chloropropane ND U 5.0 1 03/27/03 03/27/03 1,2,4-Trichlorobenzene ND U 0.50 1 03/27/03 03/27/03	* **	ND	U	0.50				
1,2-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 n-Butylbenzene ND U 0.50 1 03/27/03 03/27/03 1,2-Dibromo-3-chloropropane ND U 5.0 1 03/27/03 03/27/03 1,2,4-Trichlorobenzene ND U 0.50 1 03/27/03 03/27/03	1,1,2,2-Tetrachloroethane	ND	U	1.0	1	03/27/03	03/27/03	
n-Butylbenzene ND U 0.50 1 03/27/03 03/27/03 1,2-Dibromo-3-chloropropane ND U 5.0 1 03/27/03 03/27/03 1,2,4-Trichlorobenzene ND U 0.50 1 03/27/03 03/27/03	1.4-Dichlorobenzene	ND	U	0.50	1			
1,2-Dibromo-3-chloropropane ND U 5.0 1 03/27/03 03/27/03 1,2,4-Trichlorobenzene ND U 0.50 1 03/27/03 03/27/03	1,2-Dichlorobenzene	ND	U	0.50	1			
1,2,4-Trichlorobenzene ND U 0.50 1 03/27/03 03/27/03	*	ND	U	0.50	1	03/27/03		
1,2,4-Trichlorobenzene ND U 0.50 1 03/27/03 03/27/03	1,2-Dibromo-3-chloropropane	ND	U	5.0	1			
·	1,2,4-Trichlorobenzene	ND	U		1			
	* *	ND	U	0.50	1	03/27/03	03/27/03	

Form 1A - Organic

Comments:

000012

SuperSet Reference:

Page 2 of 3

 $\begin{array}{lll} Printed: & 04/01/2003 & 15:09:19 \\ \text{L:} \text{STEALTH:} CRYSTAL.RPT: Form lm.rpt} \end{array}$

Merged

RR3138

Analytical Results

Client: Project:

BE&K Terranext WVBA/#03103154

Sample Matrix:

Water

Service Request: X2300224

Date Collected: 03/14/2003

Date Received: 03/14/2003

Volatile Organic Compounds

Sample Name:

AVB84-0100-05103

Lab Code:

X2300224-002

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

Direct Date of Date

			Dilution	Date	Date	
Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed	Arizona Qualifier
Naphthalene	ND U	3.0	1	03/27/03	03/27/03	
1,2,3-Trichlorobenzene	ND U	0.50	1	03/27/03	03/27/03	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Arizona Qualifier	
Dibromofluoromethane	102	84-113	03/27/03		
Toluene-d8	103	68-126	03/27/03		
4-Bromofluorobenzene	97	79-113	03/27/03		

Comments:

SuperSet Reference:

Analytical Results

Client: Project: BE&K Terranext WVBA/#03103154

Sample Matrix:

Water

Service Request: X2300224

Date Collected: 03/14/2003 **Date Received:** 03/14/2003

Volatile Organic Compounds

Sample Name: Lab Code: AVB69-0200-07105

Extraction Method:

X2300224-003

Analysis Method:

EPA 5030B 8260B Units: ug/L Basis: NA

Level: Low

				Dilution	Date	Date	
Analyte Name	Result	Q	MRL	Factor	Extracted	Analyzed	Arizona Qualifier
Dichlorodifluoromethane	ND	U	3.0	1	03/27/03	03/27/03	
Chloromethane	ND	U	2.0	1	03/27/03	03/27/03	
Vinyl Chloride	ND	U	1.0	1	03/27/03	03/27/03	
Bromomethane	ND	U	1.0	1	03/27/03	03/27/03	
Chloroethane	ND	U	1.0	1	03/27/03	03/27/03	
Trichlorofluoromethane	ND	U	1.0	1	03/27/03	03/27/03	
1,1,2-Trichlorotrifluoroethane	ND	U	1.0	1	03/27/03	03/27/03	
1,1-Dichloroethene	1.0		1.0	1	03/27/03	03/27/03	
Acetone	ND	U	10	1	03/27/03	03/27/03	
Iodomethane	ND	U	2.0	1	03/27/03	03/27/03	
Carbon Disulfide	ND	U	2.0	1	03/27/03	03/27/03	
Methylene Chloride	ND	U	1.0	1	03/27/03	03/27/03	
Methyl tert-Butyl Ether	ND	U	1.0	1	03/27/03	03/27/03	
trans-1,2-Dichloroethene	ND		0.50	1	03/27/03	03/27/03	
1,1-Dichloroethane	ND	U	0.50	1	03/27/03	03/27/03	
Vinyl Acetate	ND	U	3.0	1	03/27/03	03/27/03	
2,2-Dichloropropane	ND	U	2.0	1	03/27/03	03/27/03	
2-Butanone (MEK)	ND	U	8.0	1	03/27/03	03/27/03	
cis-1,2-Dichloroethene	ND	U	0.50	1	03/27/03	03/27/03	
Bromochloromethane	ND	U	0.50	1	03/27/03	03/27/03	L1
Chloroform	1.1		1.0	1	03/27/03	03/27/03	
1,1,1-Trichloroethane	ND	U	0.50	1	03/27/03	03/27/03	
Carbon Tetrachloride	ND	U	0.50	1	03/27/03	03/27/03	
1,1-Dichloropropene	ND	U	0.50	1	03/27/03	03/27/03	
Benzene	0.79		0.50	1	03/27/03	03/27/03	
1,2-Dichloroethane	ND	U	0.50	1	03/27/03	03/27/03	
Trichloroethene	0.78		0.50	1	03/27/03	03/27/03	
1,2-Dichloropropane	ND	U	0.50	1	03/27/03	03/27/03	
Dibromomethane	ND		0.50	1	03/27/03		L1
Bromodichloromethane	ND	U	0.50	1	03/27/03	03/27/03	
cis-1,3-Dichloropropene	ND		0.50	1	03/27/03	03/27/03	
4-Methyl-2-pentanone (MIBK)	ND		8.0	1	03/27/03	03/27/03	
Toluene	ND	U.	0.50	1	03/27/03	03/27/03	

Comments:

000014

Analytical Results

Client: Project: BE&K Terranext WVBA/#03103154

Sample Matrix:

Water

Service Request: X2300224
Date Collected: 03/14/2003

Date Received: 03/14/2003

Volatile Organic Compounds

Sample Name: Lab Code: AVB69-0200-07105 X2300224-003

Extraction Method: Analysis Method:

EPA 5030B 8260B Units: ug/L Basis: NA

Level: Low

				Dilution	Date	Date	
Analyte Name	Result	Q	MRL	Factor	Extracted	Analyzed	Arizona Qualifier
trans-1,3-Dichloropropene	ND	U	1.0	1	03/27/03	03/27/03	
1,1,2-Trichloroethane	ND	U	1.0	1	03/27/03	03/27/03	
Tetrachloroethene	28		0.50	1	03/27/03	03/27/03	
2-Hexanone	ND	U	5.0	1	03/27/03	03/27/03	
1,3-Dichloropropane	ND	U	1.0	1	03/27/03	03/27/03	
Dibromochloromethane	ND	U	0.50	1	03/27/03	03/27/03	
1,2-Dibromoethane	ND	U	0.50	1	03/27/03	03/27/03	
Chlorobenzene	ND	U	0.50	1	03/27/03	03/27/03	
1,1,1,2-Tetrachloroethane	ND	U	0.50	1	03/27/03	03/27/03	
Ethylbenzene	ND	U	0.50	1	03/27/03	03/27/03	
m,p-Xylenes	ND	U	1.0	1	03/27/03	03/27/03	
o-Xylene	ND	U	0.50	1	03/27/03	03/27/03	
Styrene	ND	U	0.50	1	03/27/03	03/27/03	
Isopropylbenzene	ND	U	0.50	1	03/27/03	03/27/03	
Bromobenzene	ND	U	0.50	1	03/27/03	03/27/03	
1,2,3-Trichloropropane	ND	U	1.0	1	03/27/03		L1
n-Propylbenzene	ND	U	0.50	1	03/27/03	03/27/03	
2-Chlorotoluene	ND	U	0.50	1	03/27/03	03/27/03	
4-Chlorotoluene	ND	U	0.50	1	03/27/03	03/27/03	
1,3,5-Trimethylbenzene	ND	U	0.50	1	03/27/03	03/27/03	
tert-Butylbenzene	ND	U	0.50	1	03/27/03	03/27/03	
1,2,4-Trimethylbenzene	ND	U	0.50	1	03/27/03	03/27/03	
sec-Butylbenzene	ND	U	0.50	1	03/27/03	03/27/03	
1,3-Dichlorobenzene	ND	U	0.50	1	03/27/03	03/27/03	
4-Isopropyltoluene	ND	U	0.50	1	03/27/03	03/27/03	
Bromoform	ND	U	0.50	1	03/27/03	03/27/03	
1,1,2,2-Tetrachloroethane	ND	U	1.0	1	03/27/03	03/27/03	
1,4-Dichlorobenzene	ND	U	0.50	1	03/27/03	03/27/03	
1,2-Dichlorobenzene	ND	U	0.50	1	03/27/03	03/27/03	
n-Butylbenzene	ND	U	0.50	1	03/27/03	03/27/03	
1,2-Dibromo-3-chloropropane	ND	U	5.0	1	03/27/03	03/27/03	
1,2,4-Trichlorobenzene	ND	U	0.50	1	03/27/03	03/27/03	
Hexachlorobutadiene	ND	U	0.50	1	03/27/03	03/27/03	

Comments:

Analytical Results

Client: Project: BE&K Terranext WVBA/#03103154

Sample Matrix:

Water

Service Request: X2300224

Date Collected: 03/14/2003 **Date Received:** 03/14/2003

Volatile Organic Compounds

Sample Name:

AVB69-0200-07105

Lab Code:

X2300224-003

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

			Dilution	Date	Date	
Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed	Arizona Qualifier
Naphthalene	ND U	3.0	1	03/27/03	03/27/03	
1,2,3-Trichlorobenzene	ND U	0.50	1	03/27/03	03/27/03	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Arizona Qualifier	
Dibromofluoromethane	101	84-113	03/27/03		
Toluene-d8	106	68-126	03/27/03		
4-Bromofluorobenzene	97	79-113	03/27/03		

Comments:

Printed: 04/01/2003 15:09:29 L:\STEALTH\CRYSTAL.RPT\Form1m.rpt

Merged

RR3138

Analytical Results

Client: Project: BE&K Terranext WVBA/#03103154

Sample Matrix:

Water

Service Request: X2300224

Date Collected: 03/14/2003 **Date Received:** 03/14/2003

Volatile Organic Compounds

Sample Name:

AVB47-0100-16087

Lab Code:

X2300224-004

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

A . N . N	D14 O	MDY	Dilution	Date Extracted	Date Analyzad	Arizona Qualifier
Analyte Name	Result Q	MRL	Factor	Extracted	03/27/03	Alizona Quannel
Dichlorodifluoromethane	ND U	3.0 2.0	1 1	03/27/03 03/27/03	03/27/03	
Chloromethane	ND U ND U	1.0	1	03/27/03	03/27/03	
Vinyl Chloride					03/27/03	
Bromomethane	ND U	1.0	1	03/27/03	03/27/03	
Chloroethane	ND U ND U	1.0 1.0	1	03/27/03	03/27/03	
Trichlorofluoromethane						
1,1,2-Trichlorotrifluoroethane	ND U	1.0	1	03/27/03 03/27/03	03/27/03 03/27/03	
1,1-Dichloroethene	ND U	1.0	1 1	03/27/03	03/27/03	
Acetone	ND U	10				Al-
Iodomethane	ND U	2.0	1	03/27/03	03/27/03	
Carbon Disulfide	ND U	2.0	1	03/27/03	03/27/03	
Methylene Chloride	ND U	1.0	1	03/27/03	03/27/03	
Methyl tert-Butyl Ether	ND U	1.0	1	03/27/03	03/27/03	
trans-1,2-Dichloroethene	ND U	0.50	1	03/27/03	03/27/03	
1,1-Dichloroethane	ND U	0.50	1	03/27/03	03/27/03	
Vinyl Acetate	ND U	3.0	1	03/27/03	03/27/03	
2,2-Dichloropropane	ND U	2.0	1	03/27/03	03/27/03	
2-Butanone (MEK)	ND U	8.0	1	03/27/03	03/27/03	
cis-1,2-Dichloroethene	ND U	0.50	1	03/27/03	03/27/03	
Bromochloromethane	ND U	0.50	1	03/27/03		L1
Chloroform	ND U	1.0	1	03/27/03	03/27/03	
1,1,1-Trichloroethane	ND U	0.50	1	03/27/03	03/27/03	
Carbon Tetrachloride	ND U	0.50	1	03/27/03	03/27/03	
1,1-Dichloropropene	ND U	0.50	1	03/27/03	03/27/03	
Benzene	ND U	0.50	1	03/27/03	03/27/03	
1,2-Dichloroethane	ND U	0.50	1	03/27/03	03/27/03	
Trichloroethene	ND U	0.50	1	03/27/03	03/27/03	
1,2-Dichloropropane	ND U	0.50	1	03/27/03	03/27/03	
Dibromomethane	ND U	0.50	1	03/27/03	03/27/03	L1
Bromodichloromethane	ND U	0.50	1	03/27/03	03/27/03	
cis-1,3-Dichloropropene	ND U	0.50	1	03/27/03	03/27/03	
4-Methyl-2-pentanone (MIBK)	ND U	8.0	1	03/27/03	03/27/03	
Toluene	ND U	0.50	1	03/27/03	03/27/03	

Comments:

Printed: 04/01/2003 15:09:39 L:\STEALTH\CRYSTAL.RPT\Form1m.rpt

Page 1 of 3

Analytical Results

Client: Project: BE&K Terranext WVBA/#03103154

Sample Matrix:

Water

Service Request: X2300224 **Date Collected:** 03/14/2003

Date Received: 03/14/2003

Volatile Organic Compounds

Sample Name: Lab Code:

AVB47-0100-16087 X2300224-004

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

				Dilution	Date	Date	
Analyte Name	Result	Q	MRL	Factor	Extracted	Analyzed	Arizona Qualifier
trans-1,3-Dichloropropene	ND	U	1.0	1	03/27/03	03/27/03	
1,1,2-Trichloroethane	ND	U	1.0	1	03/27/03	03/27/03	
Tetrachloroethene	100		0.50	1	03/27/03	03/27/03	
2-Hexanone	ND	U	5.0	1	03/27/03	03/27/03	
1,3-Dichloropropane	ND	U	1.0	1	03/27/03	03/27/03	
Dibromochloromethane	ND	U	0.50	1	03/27/03	03/27/03	
1,2-Dibromoethane	ND	U	0.50	1	03/27/03	03/27/03	
Chlorobenzene	ND	U	0.50	1	03/27/03	03/27/03	
1,1,1,2-Tetrachloroethane	ND	U	0.50	1	03/27/03	03/27/03	
Ethylbenzene	ND	U	0.50	1	03/27/03	03/27/03	
m,p-Xylenes	ND	U	1.0	1	03/27/03	03/27/03	
o-Xylene	ND	U	0.50	1	03/27/03	03/27/03	
Styrene	ND	U	0.50	1	03/27/03	03/27/03	
Isopropylbenzene	ND		0.50	1	03/27/03	03/27/03	
Bromobenzene	ND		0.50	1	03/27/03	03/27/03	
1,2,3-Trichloropropane	ND	U	1.0	1	03/27/03	03/27/03	L1
n-Propylbenzene	ND		0.50	1	03/27/03	03/27/03	
2-Chlorotoluene	ND	U	0.50	1	03/27/03	03/27/03	
4-Chlorotoluene	ND	U	0.50	1	03/27/03	03/27/03	
1,3,5-Trimethylbenzene	ND		0.50	1	03/27/03	03/27/03	
tert-Butylbenzene	ND	U	0.50	1	03/27/03	03/27/03	
1,2,4-Trimethylbenzene	ND	U	0.50	1	03/27/03	03/27/03	
sec-Butylbenzene	ND		0.50	1	03/27/03	03/27/03	
1,3-Dichlorobenzene	ND	U	0.50	1	03/27/03	03/27/03	
4-Isopropyltoluene	ND	U	0.50	1	03/27/03	03/27/03	
Bromoform	ND		0.50	1	03/27/03	03/27/03	
1,1,2,2-Tetrachloroethane	ND	U	1.0	1	03/27/03	03/27/03	
1,4-Dichlorobenzene	ND	IJ	0.50	1	03/27/03	03/27/03	
1,2-Dichlorobenzene	ND		0.50	1	03/27/03	03/27/03	
n-Butylbenzene	ND		0.50	1	03/27/03	03/27/03	
1,2-Dibromo-3-chloropropane	ND		5.0	1	03/27/03	03/27/03	
1,2,4-Trichlorobenzene	ND		0.50	1	03/27/03	03/27/03	
Hexachlorobutadiene	ND		0.50	1	03/27/03	03/27/03	

Comments:

Printed: 04/01/2003 15:09:39 L:\STEALTH\CRYSTAL.RPT\Form1m.rpt

Merged

Form 1A - Organi

Page 2 of 3

Analytical Results

Client: Project: BE&K Terranext WVBA/#03103154

Sample Matrix:

Water

Service Request: X2300224 **Date Collected:** 03/14/2003

Date Received: 03/14/2003

Volatile Organic Compounds

Sample Name:

AVB47-0100-16087

Lab Code:

X2300224-004

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

			Dilution	Date	Date	
Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed	Arizona Qualifier
Naphthalene	ND U	3.0	1	03/27/03	03/27/03	
1,2,3-Trichlorobenzene	ND U	0.50	1	03/27/03	03/27/03	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Arizona Qualifier	
Dibromofluoromethane	102	84-113	03/27/03		
Toluene-d8	108	68-126	03/27/03		
4-Bromofluorobenzene	97	79-113	03/27/03	•	

Comments:

Printed: 04/01/2003 15:09:39 $L: \verb|\STEALTH| CRYSTAL.RPT| Form 1 m.rpt$

SuperSet Reference:

RR3138

Analytical Results

Client: Project: BE&K Terranext WVBA/#03103154

Sample Matrix:

Water

Service Request: X2300224

Date Collected: 03/14/2003 **Date Received:** 03/14/2003

Volatile Organic Compounds

Sample Name:

AVB68-0200-07108

Lab Code:

X2300224-005

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

				Dilution	Date	Date	0 10
Analyte Name	Result	Q	MRL	Factor	Extracted		Arizona Qualifier
Dichlorodifluoromethane	ND		3.0	1	03/27/03	03/27/03	
Chloromethane	ND		2.0	1	03/27/03	03/27/03	
Vinyl Chloride	ND	U	1.0	1	03/27/03	03/27/03	
Bromomethane	ND	U	1.0	1	03/27/03	03/27/03	
Chloroethane	ND		1.0	1	03/27/03	03/27/03	
Trichlorofluoromethane	ND	U	1.0	1	03/27/03	03/27/03	
1,1,2-Trichlorotrifluoroethane	ND	U	1.0	1	03/27/03	03/27/03	
1,1-Dichloroethene	9.0		1.0	1	03/27/03	03/27/03	
Acetone	ND	U	10	1	03/27/03	03/27/03	
Iodomethane	ND	U	2.0	1	03/27/03	03/27/03	
Carbon Disulfide	ND	U	2.0	1	03/27/03	03/27/03	
Methylene Chloride	ND	U	1.0	1	03/27/03	03/27/03	
Methyl tert-Butyl Ether	ND	U	1.0	1	03/27/03	03/27/03	
trans-1,2-Dichloroethene	0.63		0.50	1	03/27/03	03/27/03	
1,1-Dichloroethane	13		0.50	1	03/27/03	03/27/03	
Vinyl Acetate	ND	U	3.0	1	03/27/03	03/27/03	
2,2-Dichloropropane	ND	U	2.0	1	03/27/03	03/27/03	
2-Butanone (MEK)	ND	U	8.0	1	03/27/03	03/27/03	
cis-1,2-Dichloroethene	7.7		0.50	1	03/27/03	03/27/03	
Bromochloromethane	ND	U	0.50	1	03/27/03		L1
Chloroform	1.5		1.0	1	03/27/03	03/27/03	
1,1,1-Trichloroethane	ND	U	0.50	1	03/27/03	03/27/03	
Carbon Tetrachloride	ND	U	0.50	1	03/27/03	03/27/03	
1,1-Dichloropropene	ND	U	0.50	1	03/27/03	03/27/03	
Benzene	ND	U	0.50	1	03/27/03	03/27/03	
1,2-Dichloroethane	ND	U	0.50	1	03/27/03	03/27/03	
Trichloroethene	43		0.50	1	03/27/03	03/27/03	
1,2-Dichloropropane	ND		0.50	1	03/27/03	03/27/03	
Dibromomethane	ND	U	0.50	1	03/27/03	03/27/03	L1
Bromodichloromethane	ND	U	0.50	1	03/27/03	03/27/03	
cis-1,3-Dichloropropene	ND	U	0.50	1	03/27/03	03/27/03	
4-Methyl-2-pentanone (MIBK)	ND	U	8.0	1	03/27/03	03/27/03	
Toluene	ND	U	0.50	1	03/27/03	03/27/03	

Comments:

Printed: 04/01/2003 15:09:49 L:\STEALTH\CRYSTAL.RPT\Form1m.rpt

Form 1A - Organi 0 0 0 0 20

Page 1 of 3

Analytical Results

Client: Project: BE&K Terranext WVBA/#03103154

Sample Matrix:

Water

Service Request: X2300224 **Date Collected:** 03/14/2003 **Date Received:** 03/14/2003

Volatile Organic Compounds

Sample Name: Lab Code:

AVB68-0200-07108 X2300224-005

Extraction Method: Analysis Method:

EPA 5030B

8260B

Units: ug/L Basis: NA

Level: Low

1,1,2-Trichloroethane				Dilu	tion	Date	Date	
trans-1,3-Dichloropropene ND U 1.0 1 03/27/03 03/27/03 1,1,2-Trichlorocthane ND U 1.0 1 03/27/03 03/27/03 2-Hexanone ND U 5.0 1 03/27/03 03/27/03 2-Hexanone ND U 5.0 1 03/27/03 03/27/03 1,3-Dichloropropane ND U 1.0 1 03/27/03 03/27/03 1,2-Dibromochlane ND U 0.50 1 03/27/03 03/27/03 1,2-Dibromochlane ND U 0.50 1 03/27/03 03/27/03 1,1-1,2-Tetrachlorochane ND U 0.50 1 03/27/03 03/27/03 Chlorobenzene ND U 0.50 1 03/27/03 03/27/03 Li,1,2-Tetrachlorocthane ND U 0.50 1 03/27/03 03/27/03 1,1,1-2-Tetrachlorocthane ND U 0.50 1 03/27/03 03/27/03	Analyte Name	Result	Q MI	RL Fac	tor E	xtracted	Analyzed	Arizona Qualifier
Tetrachloroethene 3.7 0.50 1 03/27/03 03/27/03 2-Hexanone ND U 5.0 1 03/27/03 03/27/03 1,3-Dichloropropane ND U 1.0 1 03/27/03 03/27/03 Dibromochloromethane ND U 0.50 1 03/27/03 03/27/03 1,2-Dibromoethane ND U 0.50 1 03/27/03 03/27/03 1,1,1,2-Tetrachloroethane ND U 0.50 1 03/27/03 03/27/03 Elthylbenzene ND U 0.50 1 03/27/03 03/27/03 Elthylbenzene ND U 0.50 1 03/27/03 03/27/03 Syrene ND U 0.50 1 03/27/03 03/27/03 Syrene ND U 0.50 1 03/27/03 03/27/03 Syrene ND U 0.50 1 03/27/03 03/27/03 Isopropylbenzene ND U 0.50 1 03/27/03 03/27/03 Bromobenzene ND U	trans-1,3-Dichloropropene	ND	U 1.	0 1				
2-Hexanone ND U 5.0 1 03/27/03 03/27/03 1,3-Dichloropropane ND U 1.0 1 03/27/03 03/2	, <u> </u>	ND	U 1.	0 1				
1,3-Dichloropropane	Tetrachloroethene	3.7	0.:	50 1	. 0	3/27/03	03/27/03	
Dibromochloromethane	2-Hexanone	ND	U 5.	0 1				
1,2-Dibromoethane	1,3-Dichloropropane	ND	U 1.	0 1				
Chlorobenzene	Dibromochloromethane	ND	U 0.:	50 1	. (3/27/03	03/27/03	
Chlorobenzene ND U 0.50 1 03/27/03 03/27/03 1,1,1,2-Tetrachloroethane ND U 0.50 1 03/27/03 03/27/03 Ethylbenzene ND U 0.50 1 03/27/03 03/27/03 m,P-Xylenes ND U 0.50 1 03/27/03 03/27/03 o-Xylene ND U 0.50 1 03/27/03 03/27/03 Styrene ND U 0.50 1 03/27/03 03/27/03 Isopropylbenzene ND U 0.50 1 03/27/03 03/27/03 Bromobenzene ND U 0.50 1 03/27/03 03/27/03 Bromobenzene ND U 0.50 1 03/27/03 03/27/03 Bromobenzene ND U 0.50 1 03/27/03 03/27/03 2-Chlorotoluene ND U 0.50 1 03/27/03 03/27/03 4-Chlorotoluene	1.2-Dibromoethane	ND	U 0.:	50 1	. (3/27/03		
Ethylbenzene ND U 0.50 1 03/27/03 03/27/03 0.72ylene ND U 1.0 1 0.50 1 03/27/03 03/27/03 0.72ylene ND U 0.50 1 0.72ylene ND U 0.72ylene ND U 0.50 1 0.72ylene ND U 0.72ylene ND	Chlorobenzene	ND	U 0.:	50 1	. (3/27/03	03/27/03	
m.p-Xylenes ND U 1.0 1 03/27/03 03/27/03 o-Xylene ND U 0.50 1 03/27/03 03/27/03 Styrene ND U 0.50 1 03/27/03 03/27/03 Isopropylbenzene ND U 0.50 1 03/27/03 03/27/03 Bromobenzene ND U 0.50 1 03/27/03 03/27/03 2-Chlorotoluene ND U 0.50 1 03/27/03 03/27/03 4-Chlorotoluene ND U 0.50 1 03/27/03 03/27/03 4-Sprimethylbenzene ND U 0.50 1 03/27/03 03/27/03 1,2,4-Trimethylbenzene ND U	1,1,1,2-Tetrachloroethane	ND	U 0.:	50 1	. (3/27/03	03/27/03	
m.p-Xylenes ND U 1.0 1 03/27/03 03/27/03 o-Xylene ND U 0.50 1 03/27/03 03/27/03 Styrene ND U 0.50 1 03/27/03 03/27/03 Isopropylbenzene ND U 0.50 1 03/27/03 03/27/03 Bromobenzene ND U 0.50 1 03/27/03 03/27/03 1,2,3-Trichloropropane ND U 0.50 1 03/27/03 03/27/03 1,2,3-Trichloropropane ND U 0.50 1 03/27/03 03/27/03 2-Chlorotoluene ND U 0.50 1 03/27/03 03/27/03 4-Chlorotoluene ND U 0.50 1 03/27/03 03/27/03 4-Chlorotoluene ND U 0.50 1 03/27/03 03/27/03 4-Thirethylbenzene ND U 0.50 1 03/27/03 03/27/03 1,2,	Ethylbenzene	ND	U 0.:	50 1	. (3/27/03	03/27/03	
o-Xylene ND U 0.50 1 03/27/03 03/27/03 Styrene ND U 0.50 1 03/27/03 03/27/03 Isopropylbenzene ND U 0.50 1 03/27/03 03/27/03 Bromobenzene ND U 0.50 1 03/27/03 03/27/03 J.2,3-Trichloropropane ND U 1.0 1 03/27/03 03/27/03 n-Propylbenzene ND U 0.50 1 03/27/03 03/27/03 2-Chlorotoluene ND U 0.50 1 03/27/03 03/27/03 4-Chlorotoluene ND U 0.50 1 03/27/03 03/27/03 4-Chlorotoluene ND U 0.50 1 03/27/03 03/27/03 1,3,5-Trimethylbenzene ND U 0.50 1 03/27/03 03/27/03 1,2,4-Trimethylbenzene ND U 0.50 1 03/27/03 03/27/03 1,2-Teitylbenzene ND U 0.50 1 03/27/03 03/27/03 1,3-Dichlorobe	•	ND	U 1.	0 1	. (3/27/03	03/27/03	
Styrene ND U 0.50 1 03/27/03 03/27/03 Isopropylbenzene ND U 0.50 1 03/27/03 03/27/03 Bromobenzene ND U 0.50 1 03/27/03 03/27/03 1,2,3-Trichloropropane ND U 1.0 1 03/27/03 03/27/03 1,2-S-Trichloropropane ND U 0.50 1 03/27/03 03/27/03 2-Chlorotoluene ND U 0.50 1 03/27/03 03/27/03 2-Chlorotoluene ND U 0.50 1 03/27/03 03/27/03 4-Chlorotoluene ND U 0.50 1 03/27/03 03/27/03	· - ·	ND	U 0.:	50 1	. (3/27/03	03/27/03	
Isopropylbenzene		ND	U 0.:	50 1	(03/27/03	03/27/03	
Bromobenzene ND U 0.50 1 03/27/03 03/27/03 1,2,3-Trichloropropane ND U 1.0 1 03/27/03 03/27/03 L1 n-Propylbenzene ND U 0.50 1 03/27/03 03/27/03 03/27/03 2-Chlorotoluene ND U 0.50 1 03/27/03 03/27/03 4-Chlorotoluene ND U 0.50 1 03/27/03 03/27/03 1,3,5-Trimethylbenzene ND U 0.50 1 03/27/03 03/27/03 1,2,4-Trimethylbenzene ND U 0.50 1 03/27/03 03/27/03 1,2,4-Trimethylbenzene ND U 0.50 1 03/27/03 03/27/03 1,3-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 4-Isopropyltoluene ND U 0.50 1 03/27/03 03/27/03 4-Isopropyltoluene ND U 0.50 1 03/27/03 03/27/03 1,1,2,2-Tetrachloroethane ND U 0.50 1	•	ND	U 0.:	50 1	(3/27/03	03/27/03	
No	Bromobenzene	ND	U. 0.:	50 1	(3/27/03	03/27/03	
n-Propylbenzene ND U 0.50 1 03/27/03 03/27/03 2-Chlorotoluene ND U 0.50 1 03/27/03 03/27/03 4-Chlorotoluene ND U 0.50 1 03/27/03 03/27/03 1,3,5-Trimethylbenzene ND U 0.50 1 03/27/03 03/27/03 tert-Butylbenzene ND U 0.50 1 03/27/03 03/27/03 1,2,4-Trimethylbenzene ND U 0.50 1 03/27/03 03/27/03 sec-Butylbenzene ND U 0.50 1 03/27/03 03/27/03 1,3-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 1,3-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 4-Isopropyltoluene ND U 0.50 1 03/27/03 03/27/03 Bromoform ND U 0.50 1 03/27/03 03/27/03 1,1,2,2-Tetrachloroethane ND U 1.0 1 03/27/03 03/27/03 1,4-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 1,4-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 1,4-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 1,2-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 1,2-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 1,2-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 1,2-Dibromo-3-chloropropane ND U 5.0 1 03/27/03 03/27/03 1,2-Dibromo-3-chloropropane ND U 5.0 1 03/27/03 03/27/03 1,2-Dibromo-3-chloropropane ND U 5.0 1 03/27/03 03/27/03 1,2-Trichlorobenzene ND U 0.50 1 03/27/03 03/27/03 1,2-Trichlorobenzene ND U 5.0 1 03/27/03 03/27/03	1.2.3-Trichloropropane	ND	U 1.	0 1	. ()3/27/03	03/27/03	L1
2-Chlorotoluene ND U 0.50 1 03/27/03 03/27/03 4-Chlorotoluene ND U 0.50 1 03/27/03 03/27/03 1,3,5-Trimethylbenzene ND U 0.50 1 03/27/03 03/27/03 tert-Butylbenzene ND U 0.50 1 03/27/03 03/27/03 1,2,4-Trimethylbenzene ND U 0.50 1 03/27/03 03/27/03 sec-Butylbenzene ND U 0.50 1 03/27/03 03/27/03 1,3-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 4-Isopropyltoluene ND U 0.50 1 03/27/03 03/27/03 Bromoform ND U 0.50 1 03/27/03 03/27/03 1,1,2,2-Tetrachloroethane ND U 0.50 1 03/27/03 03/27/03 1,4-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 1,2-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03		ND	U 0.:	50 1		3/27/03	03/27/03	
1,3,5-Trimethylbenzene ND U 0.50 1 03/27/03 03/27/03 1,2,4-Trimethylbenzene ND U 0.50 1 03/27/03 03/27/03 1,2,4-Trimethylbenzene ND U 0.50 1 03/27/03 03/27/03 sec-Butylbenzene ND U 0.50 1 03/27/03 03/27/03 1,3-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 1,3-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 1,3-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 1,1,2,2-Tetrachloroethane ND U 0.50 1 03/27/03 03/27/03 1,1,2,2-Tetrachloroethane ND U 1.0 1 03/27/03 03/27/03 1,4-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 1,2-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 1,2-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 03/27/03 1,2-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 1,2-Dibromo-3-chloropropane ND U 5.0 1 03/27/03 03/27/03 1,2-Dibromo-3-chloropropane ND U 0.50 1 03/27/03 03/27/03 1,2-Dibromo-3-chloropropane ND U 0.50 1 03/27/03 03/27/03 1,2-Trichlorobenzene ND U 0.50 1 03/27/03 03/27/03 1,2-Dibromo-3-chloropropane ND U 0.50 1 03/27/03 03/27/03 1,2-Trichlorobenzene ND U 0.50 1 03/27/03 03/27/03 1,2-Trichlorobenzene ND U 0.50 1 03/27/03 03/27/03 1,2-Trichlorobenzene ND U 0.50 1 03/27/03 03/27/03	2-Chlorotoluene	ND	U 0.	50 1	()3/27/03	03/27/03	
1,3,5-Trimethylbenzene ND U 0.50 1 03/27/03 03/27/03 tert-Butylbenzene ND U 0.50 1 03/27/03 03/27/03 1,2,4-Trimethylbenzene ND U 0.50 1 03/27/03 03/27/03 sec-Butylbenzene ND U 0.50 1 03/27/03 03/27/03 1,3-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 4-Isopropyltoluene ND U 0.50 1 03/27/03 03/27/03 Bromoform ND U 0.50 1 03/27/03 03/27/03 1,1,2,2-Tetrachloroethane ND U 0.50 1 03/27/03 03/27/03 1,4-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 1,2-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 1,2-Dibromo-3-chloropropane ND U 5.0 1 03/27/03 03/27/03 1,2,4-Trichlorobenzene ND U 0.50 1 <td>4-Chlorotoluene</td> <td>ND</td> <td>U 0.:</td> <td>50 1</td> <td>(</td> <td>)3/27/03</td> <td>03/27/03</td> <td></td>	4-Chlorotoluene	ND	U 0.:	50 1	()3/27/03	03/27/03	
tert-Butylbenzene ND U 0.50 1 03/27/03 03/27/03 1,2,4-Trimethylbenzene ND U 0.50 1 03/27/03 03/27/03 sec-Butylbenzene ND U 0.50 1 03/27/03 03/27/03 1,3-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 4-Isopropyltoluene ND U 0.50 1 03/27/03 03/27/03 Bromoform ND U 0.50 1 03/27/03 03/27/03 1,1,2,2-Tetrachloroethane ND U 1.0 1 03/27/03 03/27/03 1,4-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 1,2-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 1,2-Dibromo-3-chloropropane ND U 0.50 1 03/27/03 03/27/03 1,2,4-Trichlorobenzene ND U 0.50 1 03/27/03 03/27/03 1,2,4-Trichlorobenzene ND U 0.50 1 03/27/03 03/27/03 </td <td></td> <td>ND</td> <td>U 0.</td> <td>50 1</td> <td>ι (</td> <td>)3/27/03</td> <td></td> <td></td>		ND	U 0.	50 1	ι ()3/27/03		
sec-Butylbenzene ND U 0.50 1 03/27/03 03/27/03 1,3-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 4-Isopropyltoluene ND U 0.50 1 03/27/03 03/27/03 Bromoform ND U 0.50 1 03/27/03 03/27/03 1,1,2,2-Tetrachloroethane ND U 1.0 1 03/27/03 03/27/03 1,4-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 1,2-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 1,2-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 n-Butylbenzene ND U 0.50 1 03/27/03 03/27/03 1,2-Dibromo-3-chloropropane ND U 0.50 1 03/27/03 03/27/03 1,2-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03	tert-Butylbenzene	ND	U 0.	50 1	()3/27/03	03/27/03	
sec-Butylbenzene ND U 0.50 1 03/27/03 03/27/03 1,3-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 4-Isopropyltoluene ND U 0.50 1 03/27/03 03/27/03 Bromoform ND U 0.50 1 03/27/03 03/27/03 1,1,2,2-Tetrachloroethane ND U 1.0 1 03/27/03 03/27/03 1,4-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 1,2-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 n-Butylbenzene ND U 0.50 1 03/27/03 03/27/03 1,2-Dibromo-3-chloropropane ND U 5.0 1 03/27/03 03/27/03 1,2,4-Trichlorobenzene ND U 0.50 1 03/27/03 03/27/03	1.2.4-Trimethylbenzene	ND	U 0	50	()3/27/03	03/27/03	
1,3-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 4-Isopropyltoluene ND U 0.50 1 03/27/03 03/27/03 Bromoform ND U 0.50 1 03/27/03 03/27/03 1,1,2,2-Tetrachloroethane ND U 1.0 1 03/27/03 03/27/03 1,4-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 1,2-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 n-Butylbenzene ND U 0.50 1 03/27/03 03/27/03 1,2-Dibromo-3-chloropropane ND U 5.0 1 03/27/03 03/27/03 1,2,4-Trichlorobenzene ND U 0.50 1 03/27/03 03/27/03	•	ND	U 0	50	()3/27/03	03/27/03	
Bromoform ND U 0.50 1 03/27/03 03/27/03 1,1,2,2-Tetrachloroethane ND U 1.0 1 03/27/03 03/27/03 1,4-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 1,2-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 n-Butylbenzene ND U 0.50 1 03/27/03 03/27/03 1,2-Dibromo-3-chloropropane ND U 0.50 1 03/27/03 03/27/03 1,2-Dibromo-3-chloropropane ND U 5.0 1 03/27/03 03/27/03 1,2,4-Trichlorobenzene ND U 0.50 1 03/27/03 03/27/03		ND	U 0.	50	()3/27/03	03/27/03	
Bromoform ND U 0.50 1 03/27/03 03/27/03 1,1,2,2-Tetrachloroethane ND U 1.0 1 03/27/03 03/27/03 1,4-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 1,2-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 n-Butylbenzene ND U 0.50 1 03/27/03 03/27/03 1,2-Dibromo-3-chloropropane ND U 5.0 1 03/27/03 03/27/03 1,2,4-Trichlorobenzene ND U 0.50 1 03/27/03 03/27/03	4-Isopropyltoluene	ND	U 0.	50 1	()3/27/03	03/27/03	
1,4-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 1,2-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 n-Butylbenzene ND U 0.50 1 03/27/03 03/27/03 1,2-Dibromo-3-chloropropane ND U 5.0 1 03/27/03 03/27/03 1,2,4-Trichlorobenzene ND U 0.50 1 03/27/03 03/27/03	Bromoform	ND	U 0.	50				
1,2-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 n-Butylbenzene ND U 0.50 1 03/27/03 03/27/03 1,2-Dibromo-3-chloropropane ND U 5.0 1 03/27/03 03/27/03 1,2,4-Trichlorobenzene ND U 0.50 1 03/27/03 03/27/03	1,1,2,2-Tetrachloroethane	ND	U 1	0	[()3/27/03	03/27/03	
n-Butylbenzene ND U 0.50 1 03/27/03 03/27/03 1,2-Dibromo-3-chloropropane ND U 5.0 1 03/27/03 03/27/03 1,2,4-Trichlorobenzene ND U 0.50 1 03/27/03 03/27/03	1,4-Dichlorobenzene	ND	U 0.	50				
1,2-Dibromo-3-chloropropane ND U 5.0 1 03/27/03 03/27/03 1,2,4-Trichlorobenzene ND U 0.50 1 03/27/03 03/27/03	1,2-Dichlorobenzene	ND	U 0.	50				
1,2,4-Trichlorobenzene ND U 0.50 1 03/27/03 03/27/03		ND	U 0.	50	<u> </u>)3/27/03		
1,2,4-1110111010001120110	1,2-Dibromo-3-chloropropane	ND						
Hexachlorobutadiene ND U 0.50 1 03/27/03 03/27/03	1,2,4-Trichlorobenzene							
	Hexachlorobutadiene	ND	U 0.	50	1 (03/27/03	03/27/03	

Comments:

Printed: 04/01/2003 15:09:49

Merged

Page 2 of 3

Analytical Results

Client: Project: BE&K Terranext WVBA/#03103154

Sample Matrix:

Water

Service Request: X2300224

Date Collected: 03/14/2003 **Date Received:** 03/14/2003

Volatile Organic Compounds

Sample Name:

AVB68-0200-07108

Lab Code:

X2300224-005

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

			Dilution	Date	Date	
Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed	Arizona Qualifier
Naphthalene	ND U	3.0	1	03/27/03	03/27/03	
1,2,3-Trichlorobenzene	ND U	0.50	1	03/27/03	03/27/03	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Arizona Qualifier	
Dibromofluoromethane	104	84-113	03/27/03		
Toluene-d8	102	68-126	03/27/03		
4-Bromofluorobenzene	97	79-113	03/27/03		

Analytical Results

Client: Project: BE&K Terranext WVBA/#03103154

Sample Matrix:

Water

Service Request: X2300224 **Date Collected:** 03/14/2003

Date Received: 03/14/2003

Volatile Organic Compounds

Sample Name: Lab Code:

AVB68-0204-1000 X2300224-006

Extraction Method: Analysis Method:

EPA 5030B 8260B

Units: ug/L Basis: NA

Level: Low

				Dilution	Date	Date	A in a Constitution
Analyte Name	Result		MRL	Factor	Extracted		Arizona Qualifier
Dichlorodifluoromethane	ND		3.0	1	03/27/03	03/27/03	
Chloromethane	ND		2.0	1	03/27/03	03/27/03	
Vinyl Chloride	ND	U	1.0	1	03/27/03	03/27/03	
Bromomethane	ND	U	1.0	1	03/27/03	03/27/03	
Chloroethane	ND	U	1.0	1	03/27/03	03/27/03	
Trichlorofluoromethane	ND	U	1.0	11	03/27/03	03/27/03	
1,1,2-Trichlorotrifluoroethane	ND	U	1.0	1	03/27/03	03/27/03	
1.1-Dichloroethene	ND	U	1.0	1	03/27/03	03/27/03	
Ácetone	ND	U	10	1	03/27/03	03/27/03	
Iodomethane	ND	U	2.0	1	03/27/03	03/27/03	
Carbon Disulfide	ND	U	2.0	1	03/27/03	03/27/03	
Methylene Chloride	ND	U	1.0	1	03/27/03	03/27/03	
Methyl tert-Butyl Ether	ND	U	1.0	1	03/27/03	03/27/03	
trans-1,2-Dichloroethene	ND	U	0.50	1	03/27/03	03/27/03	
1,1-Dichloroethane	ND	U	0.50	1	03/27/03	03/27/03	
Vinyl Acetate	ND	U	3.0	1	03/27/03	03/27/03	
2,2-Dichloropropane	ND		2.0	1	03/27/03	03/27/03	
2-Butanone (MEK)	ND	U	8.0	1	03/27/03	03/27/03	
cis-1,2-Dichloroethene	ND	U	0.50	1	03/27/03	03/27/03	
Bromochloromethane	ND		0.50	1	03/27/03	03/27/03	L1
Chloroform	ND	U	1.0	1	03/27/03	03/27/03	
1,1,1-Trichloroethane	ND	U	0.50	1	03/27/03	03/27/03	
Carbon Tetrachloride	ND		0.50	1	03/27/03	03/27/03	
1,1-Dichloropropene	ND	U	0.50	1	03/27/03	03/27/03	
Benzene	ND	U	0.50	1	03/27/03	03/27/03	
1,2-Dichloroethane	ND		0.50	1	03/27/03	03/27/03	
Trichloroethene	ND	U	0.50	1	03/27/03	03/27/03	
1,2-Dichloropropane	ND	U	0.50	1	03/27/03	03/27/03	
Dibromomethane	ND		0.50	1	03/27/03	03/27/03	L1
Bromodichloromethane	ND		0.50	1	03/27/03	03/27/03	
cis-1,3-Dichloropropene	ND		0,50	1	03/27/03	03/27/03	
4-Methyl-2-pentanone (MIBK)	ND		8.0	1	03/27/03	03/27/03	
Toluene	ND		0.50	1	03/27/03	03/27/03	

Comments:

Printed: 04/01/2003 15:09:59 L:\STEALTH\CRYSTAL.RPT\Form1m.rpt

Merged

Form 1A - Organ 000023

Page 1 of 3

Analytical Results

Client: Project: BE&K Terranext WVBA/#03103154

Sample Matrix:

Water

Service Request: X2300224

Date Collected: 03/14/2003 **Date Received:** 03/14/2003

Units: ug/L

Basis: NA

Volatile Organic Compounds

Sample Name: Lab Code: AVB68-0204-1000 X2300224-006

Extraction Method: Analysis Method:

EPA 5030B 8260B Level: Low

Analyte Name Result Q MRL Factor Extracted Analyzed Arizona Qualifier trans-1,3-Dichloropropene ND U 1.0 1 03/27/03 03/27/03 1,1,2-Trichloroethane ND U 0.50 1 03/27/03 03/27/03 2-Hexanone ND U 5.0 1 03/27/03 03/27/03 2-Hexanone ND U 1.0 1 03/27/03 03/27/03 1,3-Dichloropropane ND U 1.0 1 03/27/03 03/27/03 Dibromochlane ND U 0.50 1 03/27/03 03/27/03 1,2-Dibromochhane ND U 0.50 1 03/27/03 03/27/03 Chlorobenzene ND U 0.50 1 03/27/03 03/27/03 L1,1,2-Tetrachlorocthane ND U 0.50 1 03/27/03 03/27/03 Ethylbenzene ND U 0.50 1 03/27/03 03/27/03 Styrene ND U 0.50 1 03/27/03 03/27/03 </th <th></th> <th></th> <th></th> <th>Dilution</th> <th>Date</th> <th>Date</th> <th></th>				Dilution	Date	Date	
trans-1,3-Dichloropropene ND U 1,0 1 03/27/03 3/27/03 1,1,2-Trichloroethane ND U 1.0 1 03/27/03 03/27/03 2-Hexanone ND U 0.50 1 03/27/03 03/27/03 2-Hexanone ND U 1.0 1 03/27/03 03/27/03 1,3-Dichloropropane ND U 0.50 1 03/27/03 03/27/03 Dibromochlane ND U 0.50 1 03/27/03 03/27/03 Chlorobenzene ND U 0.50 1 03/27/03 03/27/03 Tyrene ND U 0.50 1 03/27/03 03/27/03 Bromobenzene	Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed	Arizona Qualifier
1,1,2-Trichloroethane		ND U	1.0	1	03/27/03		
Tetrachloroethene ND U 0.50 1 03/27/03 03/27/03 1.3 - 1.4 - 1.5 -			1.0	1	03/27/03		
2-Hexanone			0.50	1	03/27/03	03/27/03	
1,3-Dichloropropane		ND U	5.0	1	03/27/03	03/27/03	
Dibromochloromethane				1	03/27/03	03/27/03	
1,2-Dibromoethane	,			1	03/27/03	03/27/03	
1,2-problemente			0.50	1	03/27/03	03/27/03	
1,1,1,2-Tetrachloroethane ND U 0.50 1 03/27/03 03/27/03 Ethylbenzene ND U 0.50 1 03/27/03 03/27/03 m,p-Xylenes ND U 1.0 1 03/27/03 03/27/03 o-Xylene ND U 0.50 1 03/27/03 03/27/03 Styrene ND U 0.50 1 03/27/03 03/27/03 Isopropylbenzene ND U 0.50 1 03/27/03 03/27/03 Bromobenzene ND U 0.50 1 03/27/03 03/27/03 Bromobenzene ND U 0.50 1 03/27/03 03/27/03 1,2,3-Trichloropropane ND U 0.50 1 03/27/03 03/27/03 1,2,3-Trichloropropane ND U 0.50 1 03/27/03 03/27/03 2-Chlorotoluene ND U 0.50 1 03/27/03 03/27/03 4-Chlorotoluene ND U 0.50 1 03/27/03 03/27/03 1,3,5-Trimethylbenzene<	· ·				03/27/03	03/27/03	
This Technology This T				1	03/27/03	03/27/03	
Entrylibenzene ND U 1.0 1 03/27/03				1	03/27/03	03/27/03	
In.pAylenes ND U 0.50 1 03/27/03 03/27/03 Styrene ND U 0.50 1 03/27/03 03/27/03 Isopropylbenzene ND U 0.50 1 03/27/03 03/27/03 Bromobenzene ND U 0.50 1 03/27/03 03/27/03 1,2,3-Trichloropropane ND U 0.50 1 03/27/03 03/27/03 1,2,3-Trichloropropane ND U 0.50 1 03/27/03 03/27/03 2-Chlorotoluene ND U 0.50 1 03/27/03 03/27/03 4-Chlorotoluene ND U 0.50 1 03/27/03 03/27/03 4-Chlorotoluene ND U 0.50 1 03/27/03 03/27/03 4-Chlorotoluene ND U 0.50 1 03/27/03 03/27/03 1,3,5-Trimethylbenzene ND U 0.50 1 03/27/03 03/27/03	2						
Styrene				1		03/27/03	
Styrene				1	03/27/03	03/27/03	
Sopropyloetizetie ND U 0.50 1 03/27/03 03/27/03 03/27/03 1,2,3-Trichloropropane ND U 0.50 1 03/27/03 03/27	•						
1,2,3-Trichloropropane ND U 1.0 1 03/27/03 03/27/03 1 03/27/03 1							
1,2,3-Trichloropropane ND U 0.50 1 03/27/03 03/27/03 n-Propylbenzene ND U 0.50 1 03/27/03 03/27/03 2-Chlorotoluene ND U 0.50 1 03/27/03 03/27/03 4-Chlorotoluene ND U 0.50 1 03/27/03 03/27/03 1,3,5-Trimethylbenzene ND U 0.50 1 03/27/03 03/27/03 tert-Butylbenzene ND U 0.50 1 03/27/03 03/27/03 1,2,4-Trimethylbenzene ND U 0.50 1 03/27/03 03/27/03 1,3-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 1,3-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 4-Isopropyltoluene ND U 0.50 1 03/27/03 03/27/03 Bromoform ND U 0.50 1 03/27/03 03/27/03 1,4-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03						03/27/03	L1
2-Chlorotoluene ND U 0.50 1 03/27/03 03/27/03 4-Chlorotoluene ND U 0.50 1 03/27/03 03/27/03 1,3,5-Trimethylbenzene ND U 0.50 1 03/27/03 03/27/03 tert-Butylbenzene ND U 0.50 1 03/27/03 03/27/03 1,2,4-Trimethylbenzene ND U 0.50 1 03/27/03 03/27/03 sec-Butylbenzene ND U 0.50 1 03/27/03 03/27/03 1,3-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 4-Isopropyltoluene ND U 0.50 1 03/27/03 03/27/03 Bromoform ND U 0.50 1 03/27/03 03/27/03 1,1,2,2-Tetrachloroethane ND U 0.50 1 03/27/03 03/27/03 1,4-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 1,4-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 1,2-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 1,2-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 1,2-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 1,2-Dibromo-3-chloropropane ND U 5.0 1 03/27/03 03/27/03 1,2-Dibromo-3-chloropropane ND U 5.0 1 03/27/03 03/27/03 1,2-Trichlorobenzene ND U 0.50 1 03/27/03 03/27/03 1,2-Trichlorobenzene ND U 0.50 1 03/27/03 03/27/03 1,2-Trichlorobenzene ND U 0.50 1 03/27/03 03/27/03							27
4-Chlorotoluene ND U 0.50 1 03/27/03 03/27/03 1,3,5-Trimethylbenzene ND U 0.50 1 03/27/03 03/27/03 tert-Butylbenzene ND U 0.50 1 03/27/03 03/27/03 1,2,4-Trimethylbenzene ND U 0.50 1 03/27/03 03/27/03 sec-Butylbenzene ND U 0.50 1 03/27/03 03/27/03 1,3-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 4-Isopropyltoluene ND U 0.50 1 03/27/03 03/27/03 Bromoform ND U 0.50 1 03/27/03 03/27/03 1,1,2,2-Tetrachloroethane ND U 0.50 1 03/27/03 03/27/03 1,4-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 1,2-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03				_			
4-Chorotolitele ND U 0.50 1 03/27/03 03/27/03 1,3,5-Trimethylbenzene ND U 0.50 1 03/27/03 03/27/03 1,2,4-Trimethylbenzene ND U 0.50 1 03/27/03 03/27/03 sec-Butylbenzene ND U 0.50 1 03/27/03 03/27/03 1,3-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 4-Isopropyltoluene ND U 0.50 1 03/27/03 03/27/03 Bromoform ND U 0.50 1 03/27/03 03/27/03 1,1,2,2-Tetrachloroethane ND U 1.0 1 03/27/03 03/27/03 1,4-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 1,2-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 1,2-Dibromo-3-chloropropane ND U 5.0 1 03/27/03 03/27/03 1,2,4-Trichlorobenzene ND U 0.50 1 03/27/03 03/27/03 1,2,4-Trichlorobenzene ND U 0.50 1 03/27/03<							
tert-Butylbenzene ND U 0.50 1 03/27/03 03/27/03 1,2,4-Trimethylbenzene ND U 0.50 1 03/27/03 03/27/03 sec-Butylbenzene ND U 0.50 1 03/27/03 03/27/03 1,3-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 4-Isopropyltoluene ND U 0.50 1 03/27/03 03/27/03 Bromoform ND U 0.50 1 03/27/03 03/27/03 1,1,2,2-Tetrachloroethane ND U 1.0 1 03/27/03 03/27/03 1,4-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 1,4-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 1,2-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 1,2-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 1,2-Dibromo-3-chloropropane ND U 0.50 1 03/27/03 03/27/03 1,2-Dibromo-3-chloropropane ND U 5.0 1 03/27/03 03/27/03 1,2,4-Trichlorobenzene ND U 0.50 1 03/27/03 03/27/03 1,2,4-Trichlorobenzene ND U 0.50 1 03/27/03 03/27/03				-			
Interpolation Interpol							
1,2,4-1 methylbenzene							
1,3-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 4-Isopropyltoluene ND U 0.50 1 03/27/03 03/27/03 Bromoform ND U 0.50 1 03/27/03 03/27/03 1,1,2,2-Tetrachloroethane ND U 1.0 1 03/27/03 03/27/03 1,4-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 1,2-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 n-Butylbenzene ND U 0.50 1 03/27/03 03/27/03 1,2-Dibromo-3-chloropropane ND U 5.0 1 03/27/03 03/27/03 1,2,4-Trichlorobenzene ND U 0.50 1 03/27/03 03/27/03	, ,						
1,3-Dictribition ND U 0.50 1 03/27/03 03/27/03 4-Isopropyltoluene ND U 0.50 1 03/27/03 03/27/03 Bromoform ND U 0.50 1 03/27/03 03/27/03 1,1,2,2-Tetrachloroethane ND U 0.50 1 03/27/03 03/27/03 1,4-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 1,2-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 n-Butylbenzene ND U 0.50 1 03/27/03 03/27/03 1,2-Dibromo-3-chloropropane ND U 5.0 1 03/27/03 03/27/03 1,2,4-Trichlorobenzene ND U 0.50 1 03/27/03 03/27/03							
Bromoform	1,3-Dichlorobenzene						
Bromotorm ND U 1.0 1 03/27/03 03/27/03 1,4-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 1,2-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 n-Butylbenzene ND U 0.50 1 03/27/03 03/27/03 1,2-Dibromo-3-chloropropane ND U 5.0 1 03/27/03 03/27/03 1,2,4-Trichlorobenzene ND U 0.50 1 03/27/03 03/27/03							
1,1,2,2-Tetrachlorobentalie ND U 0.50 1 03/27/03 03/27/03 1,4-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 1,2-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 n-Butylbenzene ND U 0.50 1 03/27/03 03/27/03 1,2-Dibromo-3-chloropropane ND U 5.0 1 03/27/03 03/27/03 1,2,4-Trichlorobenzene ND U 0.50 1 03/27/03 03/27/03							
1,4-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 1,2-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 n-Butylbenzene ND U 0.50 1 03/27/03 03/27/03 1,2-Dibromo-3-chloropropane ND U 5.0 1 03/27/03 03/27/03 1,2,4-Trichlorobenzene ND U 0.50 1 03/27/03 03/27/03	1,1,2,2-Tetrachloroethane	ND U					
n-Butylbenzene ND U 0.50 1 03/27/03 03/27/03 1,2-Dibromo-3-chloropropane ND U 5.0 1 03/27/03 03/27/03 1,2,4-Trichlorobenzene ND U 0.50 1 03/27/03 03/27/03	1,4-Dichlorobenzene						
1,2-Dibromo-3-chloropropane ND U 5.0 1 03/27/03 03/27/03 1,2,4-Trichlorobenzene ND U 0.50 1 03/27/03 03/27/03	1,2-Dichlorobenzene						
1,2,4-Trichlorobenzene ND U 0.50 1 03/27/03 03/27/03	n-Butylbenzene	ND U		1			
1,2,4-Trichlorobenzene ND U 0.50 1 03/27/03 03/27/03	1,2-Dibromo-3-chloropropane						
Hexachlorobutadiene ND U 0.50 1 03/27/03 03/27/03	1,2,4-Trichlorobenzene			1			
	Hexachlorobutadiene	ND U	0.50	1	03/27/03	03/27/03	

Analytical Results

Client:

BE&K Terranext WVBA/#03103154

Project: Sample Matrix:

Water

Service Request: X2300224

Date Collected: 03/14/2003

Date Received: 03/14/2003

Volatile Organic Compounds

Sample Name:

AVB68-0204-1000

Lab Code:

X2300224-006

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

			Dilution	Date	Date	
Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed	Arizona Qualifier
Naphthalene	ND U	3.0	1	03/27/03	03/27/03	
1,2,3-Trichlorobenzene	ND U	0.50	1	03/27/03	03/27/03	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Arizona Qualifier	
Dibromofluoromethane Toluene-d8	100 103	84-113 68-126	03/27/03 03/27/03		
4-Bromofluorobenzene	96	79-113	03/27/03		

Analytical Results

Client: Project: BE&K Terranext WVBA/#03103154

Sample Matrix:

Water

Service Request: X2300224

Date Collected: 03/14/2003 **Date Received:** 03/14/2003

Volatile Organic Compounds

Sample Name: Lab Code:

AVB68-0202-1000 X2300224-007

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

				Dilution	Date	Date	
Analyte Name	Result		MRL	Factor	Extracted		Arizona Qualifier
Dichlorodifluoromethane	ND	U	3.0	1	03/27/03	03/27/03	
Chloromethane	ND		2.0	1	03/27/03	03/27/03	
Vinyl Chloride	ND	U	1.0	1	03/27/03	03/27/03	
Bromomethane	ND	U	1.0	1	03/27/03	03/27/03	
Chloroethane	ND	U	1.0	1	03/27/03	03/27/03	
Trichlorofluoromethane	ND	U	1.0	1	03/27/03	03/27/03	
1,1,2-Trichlorotrifluoroethane	ND	U	1.0	1	03/27/03	03/27/03	
1,1-Dichloroethene	ND	U	1.0	1	03/27/03	03/27/03	
Acetone	ND	U	10	1	03/27/03	03/27/03	
Iodomethane	ND	U	2.0	l	03/27/03	03/27/03	
Carbon Disulfide	ND	U	2.0	1	03/27/03	03/27/03	
Methylene Chloride	ND	U	1.0	1	03/27/03	03/27/03	
Methyl tert-Butyl Ether	ND	U	1.0	1	03/27/03	03/27/03	
trans-1,2-Dichloroethene	ND	U	0.50	1	03/27/03	03/27/03	
1,1-Dichloroethane	ND	U	0.50	1	03/27/03	03/27/03	
Vinyl Acetate	ND	U	3.0	1	03/27/03	03/27/03	
2,2-Dichloropropane	ND	U	2.0	1	03/27/03	03/27/03	
2-Butanone (MEK)	ND	U	8.0	1	03/27/03	03/27/03	
cis-1,2-Dichloroethene	ND	U	0.50	1	03/27/03	03/27/03	
Bromochloromethane	ND	U	0.50	1	03/27/03	03/27/03	L1
Chloroform	ND	U	1.0	1	03/27/03	03/27/03	
1,1,1-Trichloroethane	ND	U	0.50	1	03/27/03	03/27/03	
Carbon Tetrachloride	ND	U	0.50	1	03/27/03	03/27/03	
1,1-Dichloropropene	ND	U	0.50	1	03/27/03	03/27/03	
Benzene	ND	U	0.50	1	03/27/03	03/27/03	
1,2-Dichloroethane	ND	U	0.50	1	03/27/03	03/27/03	
Trichloroethene	ND	U	0.50	1	03/27/03	03/27/03	
1,2-Dichloropropane	ND	U	0.50	1	03/27/03	03/27/03	
Dibromomethane	ND	U	0.50	1	03/27/03	03/27/03	Ll
Bromodichloromethane	ND	U	0.50	1	03/27/03	03/27/03	
cis-1,3-Dichloropropene	ND	U	0.50	1	03/27/03	03/27/03	
4-Methyl-2-pentanone (MIBK)	ND		8.0	1	03/27/03	03/27/03	
Toluene	ND	U	0.50	1	03/27/03	03/27/03	

Analytical Results

Client: Project:

BE&K Terranext WVBA/#03103154

Sample Matrix:

Water

Service Request: X2300224 **Date Collected:** 03/14/2003

Date Received: 03/14/2003

Volatile Organic Compounds

Sample Name: Lab Code: AVB68-0202-1000 X2300224-007

Extraction Method: Analysis Method:

EPA 5030B 8260B Units: ug/L Basis: NA

Level: Low

		Dilution	Date	Date	
Result Q	MRL	Factor	Extracted		Arizona Qualifier
ND U	1.0	1	03/27/03		
ND U	1.0	1			
ND U	0.50	1	03/27/03	03/27/03	
ND U	5.0	1	03/27/03	03/27/03	
ND U	1.0	1			
ND U	0.50	1	03/27/03	03/27/03	
ND U	0.50	1	03/27/03	03/27/03	
ND U	0.50	1			
ND U	0.50	1	03/27/03	03/27/03	
ND U	0.50	1	03/27/03	03/27/03	
ND U	1.0	1	03/27/03		
ND U	0.50	1	03/27/03	03/27/03	
ND U	0.50	1	03/27/03	03/27/03	
ND U	0.50	1	03/27/03		
ND U	0.50	1	03/27/03	03/27/03	
ND U	1.0	1	03/27/03	03/27/03	L1
ND U	0.50	1			
ND U	0.50	1	03/27/03	03/27/03	
ND U	0.50	1	03/27/03	03/27/03	
ND U	0.50	1			
ND U	0.50	1	03/27/03	03/27/03	
ND U	0.50	1	03/27/03	03/27/03	
ND U	0.50	1	03/27/03		
ND U	0.50	1	03/27/03	03/27/03	
ND U	0.50	1	03/27/03	03/27/03	
ND U	0.50	1	03/27/03		
ND U	1.0	1	03/27/03	03/27/03	
ND U	0.50	1	03/27/03	03/27/03	
ND U	0.50	1			
ND U	0.50	1	03/27/03	03/27/03	
ND U	5.0	1	03/27/03	03/27/03	
ND U	0.50	1	03/27/03		
ND U	0.50	1	03/27/03	03/27/03	
	ND U	ND U 1.0 ND U 1.0 ND U 0.50 ND U 5.0 ND U 1.0 ND U 0.50	Result Q MRL Factor ND U 1.0 1 ND U 1.0 1 ND U 0.50 1 ND U 5.0 1 ND U 1.0 1 ND U 0.50 1	NE NE NE NE NE NE NE NE	Result Q MRL Factor Extracted Analyzed ND U 1.0 1 03/27/03 03/27/03 ND U 1.0 1 03/27/03 03/27/03 ND U 0.50 1 03/27/03 03/27/03 ND U 5.0 1 03/27/03 03/27/03 ND U 1.0 1 03/27/03 03/27/03 ND U 0.50 1 03/27/03 03/27/03 ND U

Comments:

Printed: 04/01/2003 15:10:09 L:\STEALTH\CRYSTAL.RPT\Formlm.rpt

Merged

Analytical Results

Client: Project: BE&K Terranext WVBA/#03103154

Sample Matrix:

Water

Service Request: X2300224

Date Collected: 03/14/2003

Date Received: 03/14/2003

Volatile Organic Compounds

Sample Name: Lab Code: AVB68-0202-1000 X2300224-007

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

			Dilution	Date	Date	
Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed	Arizona Qualifier
Naphthalene	ND U	3.0	1	03/27/03	03/27/03	
1,2,3-Trichlorobenzene	ND U	0.50	1	03/27/03	03/27/03	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Arizona Qualifier	
Dibromofluoromethane	101	84-113	03/27/03		
Toluene-d8	103	68-126	03/27/03		
4-Bromofluorobenzene	95	79-113	03/27/03		

Comments:

Merged

RR3138

Analytical Results

Client: Project: BE&K Terranext WVBA/#03103154

Sample Matrix:

Water

Service Request: X2300224

Date Collected: NA Date Received: NA

Volatile Organic Compounds

Sample Name: Lab Code:

Method Blank XWG0300410-5

EPA 5030B

Units: ug/L Basis: NA

Level: Low

Extraction Method:	EPA 3030E
Analysis Method:	8260B

		0	MRL	Dilution Factor	Date Extracted	Date Analyzed	Arizona Qualifier
Analyte Name	Result			1	03/27/03	03/27/03	THE COME OF THE COME
Dichlorodifluoromethane	ND		3.0	1	03/27/03	03/27/03	
Chloromethane	ND		2.0 1.0	1	03/27/03	03/27/03	
Vinyl Chloride	ND				03/27/03	03/27/03	
Bromomethane	ND		1.0	1	03/27/03	03/27/03	
Chloroethane	ND		1.0	1 1	03/27/03	03/27/03	
Trichlorofluoromethane	ND		1.0				
1,1,2-Trichlorotrifluoroethane	ND		1.0	1	03/27/03	03/27/03 03/27/03	
1,1-Dichloroethene	ND		1.0	1	03/27/03		
Acetone	ND	U	10	1	03/27/03	03/27/03	
Iodomethane	ND	U	2.0	1	03/27/03	03/27/03	
Carbon Disulfide	ND	U	2.0	1	03/27/03	03/27/03	
Methylene Chloride	ND	U	1.0	1	03/27/03	03/27/03	
Methyl tert-Butyl Ether	ND	U	1.0	1	03/27/03	03/27/03	
trans-1,2-Dichloroethene	ND		0.50	1	03/27/03	03/27/03	
1,1-Dichloroethane	ND		0.50	1	03/27/03	03/27/03	
Vinyl Acetate	ND	U	3.0	1	03/27/03	03/27/03	
2,2-Dichloropropane	ND	_	2.0	1	03/27/03	03/27/03	
2-Butanone (MEK)	ND		8.0	1	03/27/03	03/27/03	
cis-1,2-Dichloroethene	ND		0.50	1	03/27/03	03/27/03	
Bromochloromethane	ND		0.50	1	03/27/03	03/27/03	L1
Chloroform	ND		1.0	1	03/27/03	03/27/03	
	ND		0.50	1	03/27/03	03/27/03	
1,1,1-Trichloroethane Carbon Tetrachloride	ND		0.50	1	03/27/03	03/27/03	
1,1-Dichloropropene	ND		0.50	1	03/27/03	03/27/03	
	ND		0.50	1	03/27/03	03/27/03	
Benzene 1,2-Dichloroethane	ND		0.50	1	03/27/03	03/27/03	
Trichloroethene	ND		0.50	1	03/27/03	03/27/03	
		U	0.50	1	03/27/03	03/27/03	
1,2-Dichloropropane		U	0.50	1	03/27/03	03/27/03	L1
Dibromomethane) U	0.50	1	03/27/03	03/27/03	
Bromodichloromethane			0.50	1	03/27/03	03/27/03	
cis-1,3-Dichloropropene		U	8.0	1	03/27/03	03/27/03	
4-Methyl-2-pentanone (MIBK)		U	0.50	1	03/27/03	03/27/03	
Toluene	NL	U	0.30	1	03121103	03,2.,03	

Comments:

Merged

Analytical Results

Client: Project: BE&K Terranext WVBA/#03103154

Sample Matrix:

Water

Service Request: X2300224

Date Collected: NA

Date Received: NA

Volatile Organic Compounds

Sample Name: Lab Code:

Method Blank XWG0300410-5

Extraction Method: EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

Analyte Name Result Q MRL Factor Extracted Analyzed Arizona Qualifier trans-1,3-Dichloropropene ND U 1.0 1 03/27/03 03/27/03 1,1,2-Trichloroethane ND U 1.0 1 03/27/03 03/27/03 Tetrachloroethane ND U 0.50 1 03/27/03 03/27/03 2-Hexanone ND U 5.0 1 03/27/03 03/27/03 1,3-Dichloropropane ND U 0.50 1 03/27/03 03/27/03 1,2-Dibromochloromethane ND U 0.50 1 03/27/03 03/27/03 Chlorobenzene ND U 0.50 1 03/27/03 03/27/03 Chlorobenzene ND U 0.50 1 03/27/03 03/27/03 1,1,1,2-Tetrachloroethane ND U 0.50 1 03/27/03 03/27/03 Ethylbenzene ND U 0.50 1 03/27/03 03/27/03 Styrene ND U 0.50 1 03/27/03 03/27					Dilution	Date	Date	
trans-1,3-Dichloropropene ND U 1.0 1 03/27/03 03/27/03 1,1,2-Trichlorocthane ND U 1.0 1 03/27/03 03/27/03 Tetrachlorocthene ND U 0.50 1 03/27/03 03/27/03 2-Hexanone ND U 5.0 1 03/27/03 03/27/03 1,3-Dichloropropane ND U 1.0 1 03/27/03 03/27/03 Dibromochloromethane ND U 0.50 1 03/27/03 03/27/03 1,2-Dibromoethane ND U 0.50 1 03/27/03 03/27/03 1,1,2-Tetrachloroethane ND U 0.50 1 03/27/03 03/27/03 Ethylbenzene ND U 0.50 1 03/27/03 03/27/03 mp-Xylenes ND U 0.50 1 03/27/03 03/27/03 e-Xylene ND U 0.50 1 03/27/03 03/27/03 <tr< th=""><th>Analyte Name</th><th>Result</th><th>Q</th><th>MRL</th><th>Factor</th><th>Extracted</th><th>Analyzed</th><th>Arizona Qualifier</th></tr<>	Analyte Name	Result	Q	MRL	Factor	Extracted	Analyzed	Arizona Qualifier
1,1,2-Trichloroethane		ND	U	1.0	1			
Tetrachloroethene ND U 0.50 1 03/27/03 03/27/03 2-Hexanone ND U 5.0 1 03/27/03 03/27/03 1,3-Dichloropropane ND U 1.0 1 03/27/03 03/27/03 Dibromochloromethane ND U 0.50 1 03/27/03 03/27/03 1,2-Dibromoethane ND U 0.50 1 03/27/03 03/27/03 Chlorobenzene ND U 0.50 1 03/27/03 03/27/03 1,1,1,2-Tetrachloroethane ND U 0.50 1 03/27/03 03/27/03 Ethylbenzene ND U 0.50 1 03/27/03 03/27/03 Ethylbenzene ND U 0.50 1 03/27/03 03/27/03 Styrene ND U 0.50 1 03/27/03 03/27/03 Isopropylbenzene ND U 0.50 1 03/27/03 03/27/03 <t< td=""><td>, <u> </u></td><td>ND</td><td>U</td><td>1.0</td><td>1</td><td></td><td></td><td></td></t<>	, <u> </u>	ND	U	1.0	1			
1,3-Dichloropropane	, , , , , , , , , , , , , , , , , , ,	ND	U	0.50	1	03/27/03	03/27/03	
1,3-Dichloropropane	2-Hexanone	ND	U	5.0	1	03/27/03	03/27/03	
Dibromochloromethane ND U 0.50 1 03/27/03 03/27/03 1,2-Dibromoethane ND U 0.50 1 03/27/03 03/27/03 1,1,2-Tetrachloroethane ND U 0.50 1 03/27/03 03/27/03 1,2,3-Trichloropropane ND U 0.50 1 03/27/03 03/27/03 1,2,4-Trimethylbenzene ND U 0.50 1 03/27/03 03/27/03 1,3,5-Trimethylbenzene ND U 0.50 1 03/27/03 03/27/03 1,2,4-Trimethylbenzene ND U 0.50 1 03/27/03 03/27/03 1,3-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03		ND	U	1.0	1	03/27/03		
Chlorobenzene		ND	U	0.50	1	03/27/03	03/27/03	
Chlorobenzene ND U 0.50 1 03/27/03 03/27/03 1,1,1,2-Tetrachloroethane ND U 0.50 1 03/27/03 03/27/03 Ethylbenzene ND U 0.50 1 03/27/03 03/27/03 m,p-Xylenes ND U 1.0 1 03/27/03 03/27/03 o-Xylene ND U 0.50 1 03/27/03 03/27/03 Styrene ND U 0.50 1 03/27/03 03/27/03 Isopropylbenzene ND U 0.50 1 03/27/03 03/27/03 Bromobenzene ND U 0.50 1 03/27/03 03/27/03 1,2,3-Trichloropropane ND U 0.50 1 03/27/03 03/27/03 1,2,3-Trichloropropane ND U 0.50 1 03/27/03 03/27/03 2-Chlorotoluene ND U 0.50 1 03/27/03 03/27/03 4-Chlorotoluene ND U 0.50 1 03/27/03 03/27/03 1,3,5-Trimethylbenzene	1.2-Dibromoethane	ND	U	0.50	1	03/27/03	03/27/03	
1,1,1,2-Tetrachloroethane	•			0.50	1	03/27/03	03/27/03	
Ethylbenzene ND U 0.50 1 03/27/03 03/27/03 m,p-Xylenes ND U 1.0 1 03/27/03 03/27/03 o-Xylene ND U 0.50 1 03/27/03 03/27/03 Styrene ND U 0.50 1 03/27/03 03/27/03 Isopropylbenzene ND U 0.50 1 03/27/03 03/27/03 Bromobenzene ND U 0.50 1 03/27/03 03/27/03 Bromobenzene ND U 0.50 1 03/27/03 03/27/03 1,2,3-Trichloropropane ND U 0.50 1 03/27/03 03/27/03 1,2,3-Trichloropropane ND U 0.50 1 03/27/03 03/27/03 1,2,4-Trichloropropane ND U 0.50 1 03/27/03 03/27/03 2-Chlorotoluene ND U 0.50 1 03/27/03 03/27/03 4-Chlorotoluene ND U 0.50 1 03/27/03 03/27/03 1,2,4-Trimethylbenzene <td></td> <td></td> <td></td> <td>0.50</td> <td>1</td> <td>03/27/03</td> <td>03/27/03</td> <td></td>				0.50	1	03/27/03	03/27/03	
m,p-Xylenes ND U 1.0 1 03/27/03 03/27/03 o-Xylene ND U 0.50 1 03/27/03 03/27/03 Styrene ND U 0.50 1 03/27/03 03/27/03 Isopropylbenzene ND U 0.50 1 03/27/03 03/27/03 Bromobenzene ND U 0.50 1 03/27/03 03/27/03 1,2,3-Trichloropropane ND U 1.0 1 03/27/03 03/27/03 1,2,3-Trichloropropane ND U 0.50 1 03/27/03 03/27/03 1-Propylbenzene ND U 0.50 1 03/27/03 03/27/03 2-Chlorotoluene ND U 0.50 1 03/27/03 03/27/03 4-Chlorotoluene ND U 0.50 1 03/27/03 03/27/03 1,3,5-Trimethylbenzene ND U 0.50 1 03/27/03 03/27/03 tert-Butylbenzene ND U 0.50 1 03/27/03 03/27/03 1,2,4-Trimethylbenz		ND	U	0.50	1	03/27/03	03/27/03	
o-Xylene ND U 0.50 1 03/27/03 03/27/03 Styrene ND U 0.50 1 03/27/03 03/27/03 Isopropylbenzene ND U 0.50 1 03/27/03 03/27/03 Bromobenzene ND U 0.50 1 03/27/03 03/27/03 1,2,3-Trichloropropane ND U 1.0 1 03/27/03 03/27/03 1,2,3-Trichloropropane ND U 0.50 1 03/27/03 03/27/03 2-Chlorotoluene ND U 0.50 1 03/27/03 03/27/03 4-Chlorotoluene ND U 0.50 1 03/27/03 03/27/03 1,3,5-Trimethylbenzene ND U 0.50 1 03/27/03 03/27/03 tert-Butylbenzene ND U 0.50 1 03/27/03 03/27/03 1,2,4-Trimethylbenzene ND U 0.50 1 03/27/03 03/27/03 sec-Butylbenzene ND U 0.50 1 03/27/03 03/27/03 4-Isop		ND	U	1.0	1	03/27/03	03/27/03	
Styrene ND U 0.50 1 03/27/03 03/27/03 Isopropylbenzene ND U 0.50 1 03/27/03 03/27/03 Bromobenzene ND U 0.50 1 03/27/03 03/27/03 1,2,3-Trichloropropane ND U 1.0 1 03/27/03 03/27/03 1-Propylbenzene ND U 0.50 1 03/27/03 03/27/03 2-Chlorotoluene ND U 0.50 1 03/27/03 03/27/03 4-Chlorotoluene ND U 0.50 1 03/27/03 03/27/03 1,3,5-Trimethylbenzene ND U 0.50 1 03/27/03 03/27/03 1,2,4-Trimethylbenzene ND U 0.50 1 03/27/03 03/27/03 1,3-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 4-Isopropyltoluene ND U 0.50 1 03/27/03 03/27/03				0.50	1	03/27/03	03/27/03	
Sopropylbenzene ND U 0.50 1 03/27/03 03/27/03		ND	U	0.50	1	03/27/03	03/27/03	
Bromobenzene ND U 0.50 1 03/27/03 03/27/03 1,2,3-Trichloropropane ND U 1.0 1 03/27/03 03/27/03 L1 n-Propylbenzene ND U 0.50 1 03/27/03 03/27/03 2-Chlorotoluene ND U 0.50 1 03/27/03 03/27/03 4-Chlorotoluene ND U 0.50 1 03/27/03 03/27/03 1,3,5-Trimethylbenzene ND U 0.50 1 03/27/03 03/27/03 tert-Butylbenzene ND U 0.50 1 03/27/03 03/27/03 1,2,4-Trimethylbenzene ND U 0.50 1 03/27/03 03/27/03 sec-Butylbenzene ND U 0.50 1 03/27/03 03/27/03 1,3-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 4-Isopropyltoluene ND U 0.50 1 03/27/03 03/27/03	•				1	03/27/03	03/27/03	
1,2,3-Trichloropropane ND U 1.0 1 03/27/03 03/27/03 L1 n-Propylbenzene ND U 0.50 1 03/27/03 03/27/03 03/27/03 2-Chlorotoluene ND U 0.50 1 03/27/03 03/27/03 4-Chlorotoluene ND U 0.50 1 03/27/03 03/27/03 1,3,5-Trimethylbenzene ND U 0.50 1 03/27/03 03/27/03 tert-Butylbenzene ND U 0.50 1 03/27/03 03/27/03 1,2,4-Trimethylbenzene ND U 0.50 1 03/27/03 03/27/03 sec-Butylbenzene ND U 0.50 1 03/27/03 03/27/03 1,3-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 4-Isopropyltoluene ND U 0.50 1 03/27/03 03/27/03	* **				1	03/27/03	03/27/03	
n-Propylbenzene ND U 0.50 1 03/27/03 03/27/03 2-Chlorotoluene ND U 0.50 1 03/27/03 03/27/03 4-Chlorotoluene ND U 0.50 1 03/27/03 03/27/03 1,3,5-Trimethylbenzene ND U 0.50 1 03/27/03 03/27/03 tert-Butylbenzene ND U 0.50 1 03/27/03 03/27/03 1,2,4-Trimethylbenzene ND U 0.50 1 03/27/03 03/27/03 sec-Butylbenzene ND U 0.50 1 03/27/03 03/27/03 sec-Butylbenzene ND U 0.50 1 03/27/03 03/27/03 1,3-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 4-Isopropyltoluene ND U 0.50 1 03/27/03 03/27/03		ND	IJ	1.0	1	03/27/03	03/27/03	Ll
2-Chlorotoluene ND U 0.50 1 03/27/03 03/27/03 4-Chlorotoluene ND U 0.50 1 03/27/03 03/27/03 1,3,5-Trimethylbenzene ND U 0.50 1 03/27/03 03/27/03 tert-Butylbenzene ND U 0.50 1 03/27/03 03/27/03 1,2,4-Trimethylbenzene ND U 0.50 1 03/27/03 03/27/03 sec-Butylbenzene ND U 0.50 1 03/27/03 03/27/03 sec-Butylbenzene ND U 0.50 1 03/27/03 03/27/03 1,3-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 4-Isopropyltoluene ND U 0.50 1 03/27/03 03/27/03	, ,				1	03/27/03	03/27/03	
4-Chlorotoluene ND U 0.50 1 03/27/03 03/27/03 1,3,5-Trimethylbenzene ND U 0.50 1 03/27/03 03/27/03 tert-Butylbenzene ND U 0.50 1 03/27/03 03/27/03 1,2,4-Trimethylbenzene ND U 0.50 1 03/27/03 03/27/03 sec-Butylbenzene ND U 0.50 1 03/27/03 03/27/03 1,3-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 4-Isopropyltoluene ND U 0.50 1 03/27/03 03/27/03				0.50	1	03/27/03	03/27/03	
1,3,5-Trimethylbenzene ND U 0.50 1 03/27/03 03/27/03 tert-Butylbenzene ND U 0.50 1 03/27/03 03/27/03 1,2,4-Trimethylbenzene ND U 0.50 1 03/27/03 03/27/03 sec-Butylbenzene ND U 0.50 1 03/27/03 03/27/03 1,3-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 4-Isopropyltoluene ND U 0.50 1 03/27/03 03/27/03		ND	U	0.50	1	03/27/03	03/27/03	
tert-Butylbenzene ND U 0.50 1 03/27/03 03/27/03 1,2,4-Trimethylbenzene ND U 0.50 1 03/27/03 03/27/03 sec-Butylbenzene ND U 0.50 1 03/27/03 03/27/03 1,3-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 4-Isopropyltoluene ND U 0.50 1 03/27/03 03/27/03				0.50	1	03/27/03	03/27/03	
1,2,4-Trimethylbenzene ND U 0.50 1 03/27/03 03/27/03 sec-Butylbenzene ND U 0.50 1 03/27/03 03/27/03 1,3-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 4-Isopropyltoluene ND U 0.50 1 03/27/03 03/27/03	· ·	ND	U	0.50	1	03/27/03	03/27/03	
sec-Butylbenzene ND U 0.50 1 03/27/03 03/27/03 1,3-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 4-Isopropyltoluene ND U 0.50 1 03/27/03 03/27/03		ND	U	0.50	1	03/27/03	03/27/03	
1,3-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03 4-Isopropyltoluene ND U 0.50 1 03/27/03 03/27/03				0.50	1	03/27/03	03/27/03	
4-Isopropyltoluene ND U 0.50 1 03/27/03 03/27/03	•	ND	U	0.50	1	03/27/03	03/27/03	
		ND	U	0.50	1	03/27/03	03/27/03	
Bromoform ND U 0.50 1 03/27/03 03/27/03				0.50	1	03/27/03	03/27/03	
1,1,2,2-Tetrachloroethane ND U 1.0 1 03/27/03 03/27/03				1.0	1	03/27/03	03/27/03	
1,4-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03		ND	U	0.50	1	03/27/03	03/27/03	
1,2-Dichlorobenzene ND U 0.50 1 03/27/03 03/27/03				0.50	1	03/27/03	03/27/03	
n-Butylbenzene ND U 0.50 1 03/27/03 03/27/03				0.50	1	03/27/03	03/27/03	
1,2-Dibromo-3-chloropropane ND U 5.0 1 03/27/03 03/27/03		ND	U	5.0	1	03/27/03		
1.2.4-Trichlorobenzene ND U 0.50 1 03/27/03 03/27/03				0.50	1			
Hexachlorobutadiene ND U 0.50 1 03/27/03 03/27/03				0.50	1	03/27/03	03/27/03	

Comments:

Printed: 04/01/2003 15:10:19 L:\STEALTH\CRYSTAL.RPT\Form1m.rpt

Merged

Form 1A - Organic 000000

2 of 3 Page

Analytical Results

Client: Project: BE&K Terranext WVBA/#03103154

Sample Matrix:

Water

Service Request: X2300224

Date Collected: NA Date Received: NA

Volatile Organic Compounds

Sample Name: Lab Code:

Method Blank XWG0300410-5

Extraction Method:

EPA 5030B

Units: ug/L Basis: NA

Level: Low

Analysis Method:

8260B

			Dilution	Date	Date	
Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed	Arizona Qualifier
Naphthalene	ND U	3.0	1	03/27/03	03/27/03	
1,2,3-Trichlorobenzene	ND U	0.50	1	03/27/03	03/27/03	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Arizona Qualifier	
Dibromofluoromethane	103	84-113	03/27/03		
Toluene-d8	101	68-126	03/27/03		
4-Bromofluorobenzene	96	79-113	03/27/03		

Comments:

Printed: 04/01/2003 15:10:19

Merged

Form 1A - Organic

000031

RR3138 SuperSet Reference:

3 of 3 Page

QA/QC Report

Client:

BE&K Terranext WVBA/#03103154

Project: Sample Matrix:

Water

Service Request: X2300224

Surrogate Recovery Summary Volatile Organic Compounds

Extraction Method: EPA 5030B **Analysis Method:**

8260B

Units: PERCENT

Level: Low

Lab Code	Sur1	Sur2	<u>Sur3</u>
X2300224-001	102	105	95
X2300224-002	102	103	97
X2300224-003	101	106	97
X2300224-004	102	108	97
X2300224-005	104	102	97
X2300224-006	100	103	96
X2300224-007	101	103	95
XWG0300410-5	103	101	96
	106	105	100
	100	100	94
	106	105	105
XWG0300410-4	101	101	98
	X2300224-001 X2300224-002 X2300224-003 X2300224-004 X2300224-005 X2300224-006 X2300224-007 XWG0300410-5 XWG0300410-1 XWG0300410-2 XWG0300410-3	X2300224-001 102 X2300224-002 102 X2300224-003 101 X2300224-004 102 X2300224-005 104 X2300224-006 100 X2300224-007 101 XWG0300410-5 103 XWG0300410-1 106 XWG0300410-2 100 XWG0300410-3 106	X2300224-001 102 105 X2300224-002 102 103 X2300224-003 101 106 X2300224-004 102 108 X2300224-005 104 102 X2300224-006 100 103 X2300224-007 101 103 XWG0300410-5 103 101 XWG0300410-1 106 105 XWG0300410-2 100 100 XWG0300410-3 106 105

Surrogate Recovery Control Limits (%)

84-113 Sur1 = Dibromofluoromethane 68-126 Sur2 = Toluene-d879-113 Sur3 = 4-Bromofluorobenzene

Results flagged with an asterisk (*) indicate values outside control criteria. Results flagged with a pound (#) indicate the control criteria is not applicable.

Printed: 04/01/2003 15:10:34 L:\STEALTH\CRYSTAL.RPT\Form2.rpt

Form 2A - Organic

000032

Page 1 of 1

SuperSet Reference: RR3138

QA/QC Report

Client: Project: BE&K Terranext WVBA/#03103154

Sample Matrix:

Water

Service Request: X2300224

Date Extracted: 03/27/2003

Date Analyzed: 03/27/2003

Matrix Spike/Duplicate Matrix Spike Summary Volatile Organic Compounds

Sample Name:

AVB88-0100-05099

Lab Code:

X2300224-001

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L NA

Basis:

Level: Low Extraction Lot: XWG0300410

AVB88-0100-05099MS XWG0300410-1

AVB88-0100-05099DMS XWG0300410-2

Duplicate Matrix Spike Matrix Spike RPD %Rec Sample **RPD** Limits Limit %Rec **Expected** Result %Rec Result Result Expected **Analyte Name** 78-207 4 20 M2 3.93 10.0 39 M2 41 4.10 10.0 ND Dichlorodifluoromethane 20 M2 70-157 16 10.0 61 72 6.09 7,16 10.0 NDChloromethane 9 20 72 M2 79-174 7.19 10.0 10.0 79 ND 7.85 Vinyl Chloride 20 77 44-150 17 7.68 10.0 91 ND 9.14 10.0 Bromomethane 20 74-150 16 95 9.52 10.0 10.0 111 11.1 ND Chloroethane 20 10.0 85 80-134 9 8.52 93 ND 9.32 10.0 Trichlorofluoromethane 67-128 9 20 102 10.0 112 10.2 10.0 11.2 ND 1.1.2-Trichlorotrifluoroethane 20 10.0 91 71-142 7 9.12 ND 9.83 10.0 98 1.1-Dichloroethene 1-155 17 20 26.0 40.0 65 40.0 77 30.8 ND Acetone 20 47-120 8 89 35.6 40.0 40.0 97 ND 38.6 Iodomethane 20 77-126 9 40.0 99 108 39.6 43.2 40.0 ND Carbon Disulfide 94 83-106 10 20 9.43 10.0 105 10.5 10.0 ND Methylene Chloride 20 10.0 86 70-118 8 93 8.58 ND 9.32 10.0 Methyl tert-Butyl Ether 9 20 99 86-115 10.0 9.89 10.8 10.0 108 ND trans-1,2-Dichloroethene 20 8 77-127 109 118 10.9 10.0 10.0 ND 11.8 1.1-Dichloroethane 20 8-187 11 40.0 103 46.0 40.0 115 41.2 ND Vinyl Acetate 20 104 25-154 8 10.4 10.0 112 11.2 10.0 ND 2.2-Dichloropropane 92 90-112 3 20 40.0 36.9 40.0 90 ND 35.9 2-Butanone (MEK) 20 69-118 3 10.0 100 10.0 10.3 10.0 103 ND cis-1,2-Dichloroethene 4 20 47-136 106 110 10.6 10.0 11.0 10.0 ND Bromochloromethane 20 48-143 6 10.5 10.0 105 11.2 10.0 112 ND Chloroform 7 2.0 9.02 10.0 90 84-122 97 9.68 10.0 ND 1.1.1-Trichloroethane 96 79-120 4 20 9.60 10.0 100 9.98 10.0 ND Carbon Tetrachloride 85-117 7 20 9.97 10.0 100 107 10.7 10.0 ND 1,1-Dichloropropene 6 20 97 88-114 10.0 10.0 103 9.67 ND10.3 Benzene 20 75-112 6 106 9.94 10.0 99 10.0 ND 10.6 1.2-Dichloroethane 7 20 10.0 112 76-115 121 M1 12.6 13.5 10.0 1.4 Trichloroethene 103 85-107 7 20 10.3 10.0 110 M1 10.0 ND 11.0 1.2-Dichloropropane 82-106 1 20 99 100 9.85 10.0 9.97 10.0 ND Dibromomethane 8 20 90 83-107 9.01 10.0 9.78 10.0 98 ND Bromodichloromethane 20 99 70-114 11 10.0 111 9.94 10.0 ND11.1 cis-1.3-Dichloropropene 20 35.0 40.0 87 54-129 3 90 36.1 40.0 ND4-Methyl-2-pentanone (MIBK) 20 98 86-114 6 9.84 10.0 10.0 105 10.5 ND Toluene

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 04/01/2003 15:10:40 L:\STEALTH\CRYSTAL.RPT\Form3DMS.rpt Form 3A - Organic

000033

Page 1 of

SuperSet Reference: RR3138

QA/QC Report

Client: Project: BE&K Terranext WVBA/#03103154

Sample Matrix:

Water

Service Request: X2300224

Date Extracted: 03/27/2003

Date Analyzed: 03/27/2003

Matrix Spike/Duplicate Matrix Spike Summary Volatile Organic Compounds

Sample Name:

AVB88-0100-05099

Lab Code:

X2300224-001

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

Extraction Lot: XWG0300410

AVB88-0100-05099MS

XWG0300410-1

AVB88-0100-05099DMS

XWG0300410-2

	C1-		Matrix Spike			Duplicate Matrix Spike				RPD
Analyte Name	Sample Result	Result	Expected	%Rec	Result	Expected	%Rec	%Rec Limits	RPD	Limit
trans-1,3-Dichloropropene	ND	10.6	10.0	106	9.61	10.0	96	73-112	10	20
1,1,2-Trichloroethane	ND	9.73	10.0	97	9.03	10.0	90	79-112	7	20
Tetrachloroethene	47	60.5	10.0	131 M3	56.0	10.0	86	78-130	8	20
2-Hexanone	ND	39.7	40.0	99	34.4	40.0	86	77-112	14	20
1,3-Dichloropropane	ND	9.92	10.0	99	9.30	10.0	93	45-133	6	20
Dibromochloromethane	ND	9.73	10.0	97	8.78	10.0	88	74-108	10	20
1,2-Dibromoethane	ND	10.1	10.0	101	9.24	10.0	92	73-113	8	20
Chlorobenzene	ND	10.4	10.0	104	9.75	10.0	98	84-111	6	20
1,1,1,2-Tetrachloroethane	ND	9.79	10.0	98	9.32	10.0	93	84-119	5	20
Ethylbenzene	ND	10.9	10.0	109	10.3	10.0	103	47-136	6	20
m,p-Xylenes	ND	21.5	20.0	107	20.7	20.0	104	84-120	4	20
o-Xylene	ND	10.2	10.0	102	9.76	10.0	98	47-143	5	20
Styrene	ND	10.8	10.0	108	9.93	10.0	99	72-121	8	20
Isopropylbenzene	ND	10.4	10.0	104	9.87	10.0	99	63-108	5	20
Bromobenzene	ND	10.6	10.0	106	10.2	10.0	102	80-113	4	20
1,2,3-Trichloropropane	ND	9.74	10.0	97	9.99	10.0	100	78-119	3	20
n-Propylbenzene	ND	10.9	10.0	109	10.3	10.0	103	76-117	6	20
2-Chlorotoluene	ND	10.5	10.0	105	9.88	10.0	99	79-121	6	20
4-Chlorotoluene	ND	10.7	10.0	107	10.2	10.0	102	70-133	5	20
1,3,5-Trimethylbenzene	ND	10.4	10.0	104	9.97	10.0	100	79-118	5	20
tert-Butylbenzene	ND	10.3	10.0	103	9.83	10.0	98	77-120	5	20
1,2,4-Trimethylbenzene	ND	10.5	10.0	105	9.89	10.0	99	68-127	6	20
sec-Butylbenzene	ND	9.93	10.0	99	9.45	10.0	95	78-123	5	20
1,3-Dichlorobenzene	ND	10.0	10.0	100	9.42	10.0	94	78-127	6	20
4-Isopropyltoluene	ND	10.4	10.0	104	9.89	10.0	99	79-142	5	20
Bromoform	ND	9.46	10.0	95	8.92	10.0	89	83-111	6	20
1,1,2,2-Tetrachloroethane	ND	11.2	10.0	112	10.6	10.0	106	66-133	5	20
1.4-Dichlorobenzene	ND	10.1	10.0	101	9.72	10.0	97	48-139	4	20
1,2-Dichlorobenzene	ND	9.82	10.0	98	9.27	10.0	93	64-109	6	20
n-Butylbenzene	ND	10.8	10.0	108	10.5	10.0	105	69-122	3	20
1,2-Dibromo-3-chloropropane	ND	10.1	10.0	101	9.18	10.0	92	54-160	9	20
1,2,4-Trichlorobenzene	ND	9.41	10.0	94	9.36	10.0	94	39-145	1	20
Hexachlorobutadiene	ND	11.4	10.0	114 M1	11.4	10.0	114 M1	74-113	0	20

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 04/01/2003 15:10:40 L:\STEALTH\CRYSTAL.RPT\Form3DMS.rpt Form 3A - Organic 000034

Page 2 of 3

SuperSet Reference: RR3138

QA/QC Report

Client: Project: BE&K Terranext WVBA/#03103154

Sample Matrix:

Water

Service Request: X2300224

Date Extracted: 03/27/2003

Date Analyzed: 03/27/2003

Matrix Spike/Duplicate Matrix Spike Summary Volatile Organic Compounds

Sample Name:

AVB88-0100-05099

Lab Code:

X2300224-001

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

Extraction Lot: XWG0300410

AVB88-0100-05099MS

XWG0300410-1

AVB88-0100-05099DMS

XWG0300410-2

	Campla	Sample Matrix Spike			Duplio	ate Matrix S	%Rec		RPD	
Analyte Name	Result	Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit
Naphthalene	ND	8.51	10.0	85	8.48	10.0	85	44-167	0	20
1,2,3-Trichlorobenzene	ND	10.3	10.0	103	10.3	10.0	103	37-158	1	20

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 04/01/2003 15:10:40 L:\STEALTH\CRYSTAL.RPT\Form3DMS.rpt Form 3A - Organic 000035

3 of 3 Page

SuperSet Reference: RR3138

QA/QC Report

Client: Project: BE&K Terranext WVBA/#03103154

Sample Matrix:

Water

Service Request: X2300224 Date Extracted: 03/27/2003 **Date Analyzed:** 03/27/2003

Lab Control Spike/Duplicate Lab Control Spike Summary **Volatile Organic Compounds**

Lab Control Sample

Duplicate Lab Control Sample

Extraction Method: **Analysis Method:**

EPA 5030B

8260B

Units: ug/L Basis: NA

Level: Low

Extraction Lot: XWG0300410

	XV	XWG0300410-3 Lab Control Spike			VG0300410-4 Lab Control	-	%Rec		RPD
Analyte Name	Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit
Dichlorodifluoromethane	3.98	10.0	40	4.08	10.0	41	1-233	2	20
Chloromethane	6.92	10.0	69	7.23	10.0	72	46-156	4	20
Vinyl Chloride	7.49	10.0	75	7.40	10.0	74	51-158	1	20
Bromomethane	8.51	10.0	85	8.50	10.0	85	37-149	0	20
Chloroethane	9.33	10.0	93	9.41	10.0	94	56-146	1	20
Trichlorofluoromethane	8.46	10.0	85	7.91	10.0	79	69-139	7	20
1,1,2-Trichlorotrifluoroethane	10.9	10.0	109	10.6	10.0	106	83-130	3	20
1,1-Dichloroethene	9.50	10.0	95	9.60	10.0	96	65-112	1	20
Acetone	38.9	40.0	97	43.3	40.0	108	68-128	11	20
Iodomethane	37.4	40.0	93	36.9	40.0	92	68-144	1	20
Carbon Disulfide	42.4	40.0	106	41.5	40.0	104	67-140	2	20
Methylene Chloride	11.0	10.0	110	10.6	10.0	106	70-113	4	20
Methyl tert-Butyl Ether	10.1	10.0	101	9.90	10.0	99	75-115	2	20
trans-1,2-Dichloroethene	10.9	10.0	109	10.4	10.0	104	73-118	5	20
1,1-Dichloroethane	11.7	10.0	117	11.1	10.0	111	77-127	5	20
Vinyl Acetate	47.8	40.0	120	48.2	40.0	120	51-202	1	39
2,2-Dichloropropane	10.7	10.0	107	10.0	10.0	100	75-132	6	20
2-Butanone (MEK)	47.5	40.0	119	40.5	40.0	101	72-122	16	20
cis-1,2-Dichloroethene	10.2	10.0	102	9.86	10.0	99	81-118	3	20
Bromochloromethane	12.0	10.0	120 L1	12.2	10.0	122 L1	82-114	2	20
Chloroform	11.4	10.0	114	10.6	10.0	106	78-119	7	20
1.1.1-Trichloroethane	9.49	10.0	95	8.95	10.0	90	71-125	6	20
Carbon Tetrachloride	9.55	10.0	96	9.16	10.0	92	69-130	4	20
1,1-Dichloropropene	10.3	10.0	103	9.99	10.0	100	77-114	3	20
Benzene	10.3	10.0	103	9.50	10.0	95	81-117	8	20
1.2-Dichloroethane	11.3	10.0	113	10.7	10.0	107	67-122	6	20

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

10.0

10.0

10.0

10.0

10.0

40.0

10.0

10.0

10.0

10.6

11.1

11.4

10.4

11.5

40.4

10.3

11.2

10.5

106

111

104

115

101

103

112

105

114 L1

000036

10.0

10.0

10.0

10.0

10.0

40.0

10.0

10.0

10.0

10.1

10.5

11.5

10.2

11.1

42.9

10.1

11.1

10.2

101

105

102

111

107

101

111

102

115 L1

5

6

2

2

3

6

2

0

3

79-114

78-114

78-113

79-122

82-118

75-115

85-118

79-121

79-116

20

20

20

20

20

20

20

20

20

1.2-Dichloropropane

Bromodichloromethane

cis-1,3-Dichloropropene

4-Methyl-2-pentanone (MIBK)

trans-1,3-Dichloropropene

1,1,2-Trichloroethane

Trichloroethene

Dibromomethane

Toluene

QA/QC Report

Client: Project: BE&K Terranext WVBA/#03103154

Sample Matrix:

Water

Service Request: X2300224 Date Extracted: 03/27/2003

Date Analyzed: 03/27/2003

Lab Control Spike/Duplicate Lab Control Spike Summary Volatile Organic Compounds

Extraction Method: Analysis Method:

EPA 5030B

8260B

Units: ug/L Basis: NA

Level: Low

Extraction Lot: XWG0300410

Lab Control Sample XWG0300410-3

Duplicate Lab Control Sample XWG0300410-4

	XWG0300410-3 Lab Control Spike		Duplicate Lab Control Spike		%Rec		RPD		
Analyte Name	Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit
Tetrachloroethene	9.53	10.0	95	9,31	10.0	93	76-127	2	20
2-Hexanone	44.0	40.0	110	46.3	40.0	116	65-120	5	20
1,3-Dichloropropane	10.3	10.0	103	10.7	10.0	107	81-116	4	20
Dibromochloromethane	9.91	10.0	99	10.0	10.0	100	77-119	1	20
1,2-Dibromoethane	10.5	10.0	105	10.3	10.0	103	79-116	2	20
Chlorobenzene	10.2	10.0	102	9.72	10.0	97	84-114	5	20
1,1,1,2-Tetrachloroethane	9.81	10.0	98	9.46	10.0	95	78-118	4	20
Ethylbenzene	10.8	10.0	108	10.2	10.0	102	79-124	6	20
m,p-Xylenes	21.4	20.0	107	20.3	20.0	101	75-131	6	20
o-Xylene	10.4	10.0	104	9.83	10.0	98	78-122	5	20
Styrene	10.8	10.0	108	10.2	10.0	102	80-126	5	20
Isopropylbenzene	10.5	10.0	105	9.60	10.0	96	75-126	8	20
Bromobenzene	11.1	10.0	111	10.2	10.0	102	82-122	8	20
1,2,3-Trichloropropane	12.2	10.0	122 L1	10.7	10.0	107	77-118	13	20
n-Propylbenzene	11.0	10.0	110	10.2	10.0	102	75-129	7	20
2-Chlorotoluene	10.8	10.0	108	9.94	10.0	99	77-126	8	20
4-Chlorotoluene	11.1	10.0	111	10.4	10.0	104	82-120	7	20
1,3,5-Trimethylbenzene	10.8	10.0	108	9.86	10.0	99	75-130	9	20
tert-Butylbenzene	10.4	10.0	104	9.68	10.0	97	73-130	7	20
1,2,4-Trimethylbenzene	10.8	10.0	108	9.97	10.0	100	60-137	8	20
sec-Butylbenzene	10.1	10.0	101	9.32	10.0	93	68-131	8	20
1,3-Dichlorobenzene	10.2	10.0	102	9.60	10.0	96	71-137	6	20
4-Isopropyltoluene	10.5	10.0	105	9.69	10.0	97	68-134	8	20
Bromoform	9.86	10.0	99	9.68	10.0	97	70-118	2	20
1,1,2,2-Tetrachloroethane	12.1	10.0	121	12.0	10.0	120	72-122	1	20
1,4-Dichlorobenzene	10.1	10.0	101	9.60	10.0	96	82-114	5	20
1,2-Dichlorobenzene	10.2	10.0	102	9.54	10.0	95	81-118	7	20
n-Butylbenzene	10.7	10.0	107	10.0	10.0	100	71-125	7	20
1,2-Dibromo-3-chloropropane	9.68	10.0	97	11.1	10.0	111	55-131	14	20
1,2,4-Trichlorobenzene	10.4	10.0	104	9.75	10.0	98	75-123	6	20
Hexachlorobutadiene	10.9	10.0	109	10.1	10.0	101	63-140	7	20
Naphthalene	10.7	10.0	107	9.73	10.0	97	67-125	10	20
1,2,3-Trichlorobenzene	11.9	10.0	119	11.5	10.0	115	72-124	3	20

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 04/01/2003 15:10:47 L:\STEALTH\CRYSTAL.RPT\Form3DLC.rpt Form 3C - Organic 000037

Page 2 of 2

March 27, 2003

Chuck Gordon BE & K/Terranext 9830 S. 51st A-127 Phoenix, AZ 85044

RE: WVBA/Project #03103154

Dear Chuck:

Enclosed are the results of the samples submitted to our laboratory on March 14, 2003. For your reference, these analyses have been assigned our service request number L2300592.

All analyses were performed in accordance with our laboratory's quality assurance program. Results are intended to be considered in their entirety and apply only to the samples analyzed. Columbia Analytical Services is not responsible for use of less than the complete report.

Columbia Analytical Services is certified for environmental analyses by the California Department of Health Services (certificate number: 1296A); NELAP (certificate number: 02115CA); Los Angeles County Laboratory ID (No. 10151); and Arizona Department of Health Services (License number: AZ0136 and AZ0544).

If you have any questions, please call me at (818) 587-5550, extension 309.

Respectfully submitted,

Columbia Analytical Services, Inc.

ne Onders

Sue Anderson Project Chemist

SA

Page 1 of $\rightarrow \bigcirc$

000038

Columbia Analytical Services, Inc.

Acronyms 8015M California DHS LUFT Method ASTM American Society for Testing and Materials Biochemical Oxygen Demand BOD Benzene/Toluene/Ethylbenzene/Xylenes BTEX California Assessment Metals CAM Chemical Abstract Service Registry Number **CAS Number** CFC Chlorofluorocarbon Chemical Oxygen Demand COD CRDL Contract Required Detection Limit Detected; result must be greater than zero. D Detected; result must be greater than the detection limit. DL **Duplicate Laboratory Control Sample DLCS** Duplicate Matrix Spike **DMS** DOH or DHS Department of Health Services Environmental Laboratory Accreditation Program **ELAP** U.S. Environmental Protection Agency **EPA** GC Gas Chromatography Gas Chromatography/Mass Spectrometry GC/MS Ion Chromatography IC Initial Calibration Blank sample **ICB** Inductively Coupled Plasma atomic emission spectrometry **ICP** Initial Calibration Verification sample **ICV** Laboratory Control Sample LCS Leaking Underground Fuel Tank LUFT Modified M Methylene Blue Active Substances **MBAS** Method Detection Limit **MDL** Method Reporting Limit MRL Matrix Spike MS **MTBE** Methyl-tert-Butyl Ether NA Not Applicable Not Calculated NC None Detected at or above the Method Reporting/Detection Limit (MRL/MDL) ND Nephelometric Turbidity Units NTU Parts Per Billion ppb Parts Per Million ppm **Practical Quantitation Limit PQL Ouality Assurance/Quality Control** QA/QC Resource Conservation and Recovery Act **RCRA** Relative Percent Difference **RPD** Selected Ion Monitoring SIM Standard Methods for the Examination of Water and Wastewater, 18th Ed., 1992. SM STLC Solubility Threshold Limit Concentration Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW-846, SW Third Edition, 1986 and as amended by Updates I, II, IIA, and IIB. Toxicity Characteristics Leaching Procedure **TCLP** Total Dissolved Solids TDS Total Petroleum Hydrocarbons TPH Total Recoverable Petroleum Hydrocarbons **TRPH** Total Suspended Solids TSS Total Threshold Limit Concentration TTLC Volatile Organic Analyte(s) VOA **Qualifiers**

U Undetected at or above MDL/MRL.

J Estimated concentration. Analyte detected above MDL but below MRL.

B Hit above MRL also found in Method Blank.

E Analyte concentration above high point of ICAL.

N Presumptive evidence of compound.

D Result from dilution.

X See case narrative.

- Cover Page -INORGANIC ANALYSIS DATA PACKAGE

Client:

BE&K Terranext, LLC

Project Name: Project No.:

WVBA

03103154

Service Request: L2300592

Sample Name :	<u>Lab Code :</u>
Laboratory Control Sample	L2300321-LCS
Method Blank	L2300321-MB
AVB88-0100-05099	L2300592-001
AVB84-0100-05103	L2300592-002
AVB69-0200-07105	L2300592-003
AVB47-0100-16087	L2300592-004
AVB68-0200-07108	L2300592-005
AVB68-0204-1000	L2300592-006
Batch QC	L2300624-001S
Batch QC	L2300624-001SD

Sue Judestr Date: 0

Analytical Report

Client:

BE&K Terranext, LLC

Project Name: Project No.:

WVBA 03103154

Matrix:

Water

Service Request: L2300592

Date Collected: 03/14/03 Date Received: 03/14/03

Date Extracted: 03/21/03

Total Metals

Sample Name :

AVB88-0100-05099

Lab Code:

L2300592-001

Units: ug/L (ppb)
Basis: NA

Analyte	Analysis Method	MRL	Date Analyzed	Sample Result	Result Notes
Chromium	6010B	10	03/26/03	31	

Analytical Report

Client:

BE&K Terranext, LLC

Project Name: Project No.:

WVBA 03103154

Matrix:

Water

Service Request: L2300592

Date Collected: 03/14/03

Date Received: 03/14/03

Date Extracted: 03/21/03

Dissolved Metals

Sample Name:

AVB88-0100-05099

Lab Code:

L2300592-001

Units: ug/L (ppb)
Basis: NA

Analyte	Analysis Method	MRL	Date Analyzed	Sample Result	Result Notes
Chromium	6010B	10	03/26/03	27	

Analytical Report

Client:

BE&K Terranext, LLC

Project Name: Project No.:

WVBA 03103154

Matrix:

Water

Service Request: L2300592

Date Collected: 03/14/03 **Date Received:** 03/14/03

Date Extracted: 03/21/03

Total Metals

Sample Name:

AVB84-0100-05103

Lab Code:

L2300592-002

Units: ug/L (ppb)

Basis: NA

Analyte Analysis Method MRL Date Analyzed Sample Result Notes

Chromium 6010B 10 03/26/03 ND

Analytical Report

Client:

BE&K Terranext, LLC

Project Name : Project No. :

WVBA 03103154

Matrix:

Water

Service Request: L2300592

Date Collected: 03/14/03 **Date Received:** 03/14/03

Date Extracted: 03/21/03

Dissolved Metals

Sample Name:

AVB84-0100-05103

Lab Code:

L2300592-002

Units: ug/L (ppb)

Basis: NA

Analyte Analysis Method MRL Date Analyzed Result Notes

Chromium 6010B 10 03/26/03 ND

Analytical Report

Client:

BE&K Terranext, LLC

Project Name: Project No.:

WVBA 03103154

Matrix:

Water

Service Request: L2300592

Date Collected: 03/14/03 **Date Received:** 03/14/03

Date Extracted: 03/21/03

Total Metals

Sample Name:

AVB69-0200-07105

Lab Code:

L2300592-003

Units: ug/L (ppb)

Basis: NA

Result Sample Notes **Date Analyzed** Result MRL **Analysis Method** Analyte 1750 03/26/03 6010B 10 Chromium

Analytical Report

Client:

BE&K Terranext, LLC

Project Name : Project No. :

WVBA 03103154

Matrix:

Water

Service Request: L2300592

Date Collected: 03/14/03 **Date Received:** 03/14/03

Date Extracted: 03/21/03

Dissolved Metals

Sample Name:

AVB69-0200-07105

Lab Code:

L2300592-003

Units: ug/L (ppb)

Basis: NA

Analyte Analysis Method MRL Date Analyzed Result Notes

Chromium 6010B 10 03/26/03 ND

Analytical Report

Client:

BE&K Terranext, LLC

Project Name : Project No. :

WVBA 03103154

Matrix:

Water

Service Request: L2300592

Date Collected: 03/14/03

Date Received: 03/14/03

Date Extracted: 03/21/03

Total Metals

Sample Name:

AVB47-0100-16087

Lab Code:

L2300592-004

Units: ug/L (ppb)

Basis: NA

Analyte Analysis Method MRL Date Analyzed Result Notes

Chromium 6010B 10 03/26/03 300

Analytical Report

Client: **Project Name:** BE&K Terranext, LLC

Project No.:

WVBA 03103154

Matrix:

Water

Service Request : L2300592 **Date Collected :** 03/14/03 Date Received: 03/14/03 Date Extracted: 03/21/03

Dissolved Metals

Sample Name:

AVB47-0100-16087

Lab Code:

L2300592-004

Units: ug/L (ppb)

Basis: NA

Analyte	Analysis Method	MRL	Date Analyzed	Sample Result	Result Notes
Chromium	6010B	10	03/26/03	ND	

Analytical Report

Client:

BE&K Terranext, LLC

Project Name: Project No.:

WVBA 03103154

Matrix:

Water

Service Request: L2300592 **Date Collected:** 03/14/03

Date Received: 03/14/03

Date Extracted: 03/21/03

Total Metals

Sample Name:

AVB68-0200-07108

Lab Code:

L2300592-005

Units: ug/L (ppb)

Basis: NA

Analyte	Analysis Method	MRL	Date Analyzed	Sample Result	Result Notes
Chromium	6010B	10	03/26/03	21	

Analytical Report

Client:

BE&K Terranext, LLC

Project Name : Project No. : WVBA

Matrix:

03103154 Water Service Request: L2300592

Date Collected: 03/14/03

Date Received: 03/14/03

Date Extracted: 03/21/03

Dissolved Metals

Sample Name:

AVB68-0200-07108

Lab Code:

L2300592-005

Units: ug/L (ppb)

Basis: NA

Analyte Analysis Method MRL Date Analyzed Result Notes

Chromium 6010B 10 03/26/03 ND

Analytical Report

Client:

BE&K Terranext, LLC

Project Name : Project No. :

WVBA 03103154

Matrix:

Water

Service Request: L2300592

Date Collected: 03/14/03 **Date Received:** 03/14/03

Date Extracted: 03/21/03

Total Metals

Sample Name:

AVB68-0204-1000

Lab Code:

L2300592-006

Units: ug/L (ppb)

Basis: NA

Analyte Analysis Method MRL Date Analyzed Sample Result Notes

Chromium 6010B 10 03/26/03 ND

Analytical Report

Client:

BE&K Terranext, LLC

Project Name : Project No. :

WVBA 03103154

Matrix:

Water

Service Request: L2300592

Date Collected: 03/14/03 **Date Received:** 03/14/03

Date Extracted: 03/21/03

Dissolved Metals

Sample Name:

AVB68-0204-1000

Lab Code:

L2300592-006

Units: ug/L (ppb)

Basis: NA

Analyte Analysis Method MRL Date Analyzed Result Notes

Chromium 6010B 10 03/26/03 ND

Analytical Report

Client:

BE&K Terranext, LLC

Project Name: Project No.:

WVBA 03103154

Matrix:

Water

Service Request: L2300592 Date Collected: NA Date Received: NA

Date Extracted: 03/21/03

Total Metals

Sample Name:

Method Blank

Lab Code:

L2300321-MB

Units: ug/L (ppb)

Basis: NA

Analyte	Analysis Method	MRL	Date Analyzed	Sample Result	Result Notes
Chromium	6010B	10	03/26/03	ND	

QA/QC Report

Client:

BE&K Terranext, LLC

Project Name : Project No. :

WVBA 03103154

Matrix:

Water

Service Request: L2300592

Date Collected: NA
Date Received: NA

Date Extracted: 03/21/03

Date Analyzed: 03/26/03

Laboratory Control Sample Summary

Total Metals

Sample Name:

Laboratory Control Sample

Lab Code:

L2300321-LCS

Units: ug/L (ppb)

Basis: NA

Analyte	Analysis Method	True Value	Result	Percent	CAS Percent Recovery Acceptance Limits	Result Notes
Chromium	6010B	500	526	105	87-111	

Analytical Report

Client:

BE&K Terranext, LLC

Project Name : Project No. : WVBA 03103154

Matrix:

Water

Service Request: L2300592

Date Collected: NA
Date Received: NA

Date Extracted: 03/21/03

Date Analyzed: 03/26/03

Matrix Spike/Duplicate Matrix Spike Summary

Total Metals

Sample Name:

Batch QC

Lab Code:

L2300624-001S

0016

L2300624-001SD

Units: ug/L (ppb)

Basis: NA

Analyte	Prep Method	Analysis Method	MRL	Spike MS	Level DMS	Sample Result	Spike MS	Result DMS	MS	DMS	CAS Acceptance Limits	Relative Percent Difference	Result Notes
Chromium	3010A	6010B	10	500	500	ND	503	525	101	105	87-105	4	

Columbia Analytical Services Inc.

PROJECT NAME_

2302 East University Drive, Suite 4 • Phoenix, AZ 85034 • (602) 437-2001 • (800) 695-7222 x09 • FAX (602) 437-5308 DATE 3 · (4 · 0 · 3 PAGE 1 OF 1

REMARKS **ANALYSIS REQUESTED** Paint Filter O **(**0) NUMBER OF CONTAINERS PRESER-VATION 85044 # O310 3154 9855 55,575 5T Agi (JORDIN ₹ CE DHX AN Ø 200 002 $\alpha 0$ 003 100-166 .D. 10.25 12:25 3-14.03 O 800 09.10 3 4 20 Gab 41000 PHONE/FAX CHUCK 11.20 TIME COMPANY/ADDRESS BET K WUSA SUITE ALZY DATE ζ, PROJECT MANAGER

AVB 88-0100-05099

SAMPLE I.D.

SAMPLER'S SIGNATURE

AVB 84-0100-05103 AVB 690200-07105 AUB 680200-07108

ARBEITE TOO 418 680204-1000

4VB 47-080-16087

-						
Relinquished by (Signature)	Organization	Date/Time	Received By (Signature)	Organization	Date/Time	ANALYSIS TAT (Circle One)
Mandanna	BEFLE	300	Lalie Hay	CAS	7300	STANDARD
Relinquished By (Signature)	Organization	Date/Time	Received By (Signature)	Organization	Date/Time	RUSH TAT - Surcharges Apply
Longe, may	3 8	3-77-02	Fedex			☐ 24 Hours
Relinquished By (Signature)	Organization	Date/Time	Received By (Signature)	Organization	Date/Time	☐ 72 Hours

SAMPLE RECEIPT:

INVOICE INFORMATION:

REPORT REQUIREMENTS

SPECIAL INSTRUCTIONS/COMMENTS:

I. Routine Report

Shipping VIA: Shipping #: _ Condition:

> 일 P.O.#

| X | I. Report (includes DUP.MS. MSD, as required, may be charged as samples)

III. Data Validation Report (includes All Raw Data) IV. CLP Deliverable Report

Lab No: X 33.00234

DISTRIBUTION: WHITE - return to originator; YELLOW - lab; PINK - retained by originator

SAMPLE RECEIPT FORM

Service Request No: L230 0592 Client: BE+K						
Sample(s) delivered by: Client CAS Emp After Hours DHL						
Golden State Overnight Fed X UPS Other Courier						
Chain of Custody filled out accurately? Yes ✓ No(See Comments)						
Appropriate sample volume and containers? Yes/ No(See Comments)						
Sufficient labeling on container(s)? Yes No(See Comments)						
Container(s) supplied by CAS? Yes No (See Comments)						
Custody seal(s) intact?						
Trip Blank(s) received Yes No						
If Trip Blank was supplied by CAS, record serial #TB						
Temperature of sample(s)/cooler3 °C Temp Blank? Y o(N)Circle One)						
Voa's Marked Preserved? Yes No Filled Properly? Yes No (See Comments)						
Preserved Bottles Requiring pH check(s)? Yes Notified						
RUSH Turn around time? Yes Notified Date & Time						
Short Hold-Time Analysis (check all that apply)						
ASAP Res Cl D.O Flash Diss S2 Ferrous Fe 24HR pH Odor Cr+6 48HR BOD Color MBAS Nitrate Nitrite O-PO4 Sett Sol Turbidity 72HR Vapors						
Notified Date & Time						
Container(s) received and their preservative(s): $-1 \rightarrow -6 = \begin{cases} 1 - 500 \text{m} P (NP) A \\ 1 - 500 \text{m} P (HNOS) B \end{cases}$						
comments Diss Metals bottle to be filtered & preserved in 196 Benny Notified @ 3/18/03 0950						
Initials, Date, Time <u>LK 3/18/03 0915</u> (r/sr_forms/cooler.doc Rev. 1/17/02						

20

Columbia Analytical Services no.

CHAIN OF CUSTODY/LABORATORY ANALYSIS REQUEST FORM PAGE DATE 3.14.03 3902 East University Drive, Suite 4 • Phoenix, AZ 85034 • (602) 437-2001 • (800) 695-7222 x09 • FAX (602) 437-5308

P

REMARKS **ANALYSIS REQUESTED** 0188 DHO Paint Filter D Total D Aromatic Volatiles Halogenafed Volatile Organics NUMBER OF CONTAINERS 8504¢ PRESER-VATION # 0310 3154 9855 55157 ST (TORDAN MATRIX ₹ 65 7 COD 200 8 Ø 200 190-488 LAB LD PHX 10.25 AVB 89-0100-05099 3-14-03 0800 のだりのな 4200 4100 PHONEIFAX 59.10 2.00 12:27 IME 07.11 SE+K WU &A A127 DATE AVB 84-0100-05103 AVB 690200-07105 AUB 680200-07108 SAMPLER'S SIGNATURE COMPANY/ADDRESS_ AV) 47-080-16087 PROJECT MANAGER ANB 660/201-1000 1/8 6800v1-1000 SURE PROJECT NAME SAMPLE I.D.

Lab No: X 33.00 234	ANALYSIS TAT (Circle One) STANDARD	RUSH TAT - Surcharges Apply 24 Hours	_ 40 Hours
	Date/Time 3/4.03 /300	Date/Time	Date/Time
	Organization CAS	Organization	Organization
	Received By (Signature) Laborature	Received By (Signature)	Received By (Signature)
	Date/Time 3.14-03 i 3.0.5	Date/Time	Date/Time
	Organization SE+1L	Organization	Organization
7	Relinquished by (Signature)	Relinquished By (Signature)	Relinquished By (Signature)

SAMPLE RECEIPT:

INVOICE INFORMATION:

REPORT REQUIREMENTS

SPECIAL INSTRUCTIONS/COMMENTS:

1. Routine Report

×

Shipping VIA: Shipping #: Condition:

P.O.#

MSD, as required, may be charged as samples)

IV. CLP Deliverable Report III. Data Validation Report (includes All Raw Data)

DISTRIBUTION: WHITE - return to originator; YELLOW - lab; PINK - retained by originator

0702

Columbia Analytical Services, Inc. Phoenix, AZ

Sample Receipt and Preservation Form

Client:	Terranes	t		Project Name:	WUB,	A	
	eceived on: 3	-14-03 d	ate 125 Plastic Bottles	time		Sleeves 🗆	
Is first ex	: SOIL □ :action Holding T traction/analysis	ime Expiration	n: xpiration LESS 1	ΓΗΑΝ 24 HOU	RS(soil)/7 D	AYS (water)?	Yes □ No□
2. Are the cu If yes, how 3. Are the si 4. Did all co 5. Are all co 6. Were the 7. Have VO 8. Temperate	andard turn-a-roustody seals present with many and where gnature and date intainers arrive in intainer labels concorrect containers A's been checked ure of sample(s) un of discrepancies	nt? e? correct? good conditio nplete (i.e. pre s used for the t for the presentation receipt:	n? servation, sample ests indicated? ce of air bubbles?	: ID)? (note problem	s in comment	Yes D Yes D Yes D Yes D Yes D	No□ No□ No□ No□ No□ No□
			Γ 7		VO	A Vial pH Verifi	cation
					(Te	ested After Anal All Samples pl	lysis) H ≤ 2
		YES	NO		Followii	ng Samples Exh	iorreg bit > 2
pН	Reagent			-			
12	NaOH						
2	HNO ₃						
2	H ₂ SO ₄						Lan and the second
Comments:		For	m Completed :	and Sample(s	s) Received	by (initials):	Luc

June 16, 2003

Chuck Gordon BE&K Terranext 9830 S. 51st Street, Suite A-127 Phoenix, AZ 85044

Re: WVB / Project #03103154

Dear Chuck:

Enclosed are the results of the samples submitted to our laboratory on May 28, 2003. The samples were analyzed for Total Chromium and Dissolved Chromium by our Canoga Park, CA facility (L2301140). For your reference, the 8260 analyses have been assigned our service request number X2300458.

All analyses were performed according to our laboratory's quality assurance program. All results are intended to be considered in their entirety, and Columbia Analytical Services, Inc. (CAS) is not responsible for use of less than the complete report. Results apply only to the samples analyzed. Columbia Analytical Services, Inc. is certified for environmental analyses by the Arizona Department of Health Services (Certificate #AZ0136; and #AZ0497).

Please call if you have any questions. My extension is 223.

Respectfully submitted,

Columbia Analytical Services, Inc.

Tracy L. Dutton

Laboratory Director

TLD/lm

Page 1 of <u>60</u>

Client: Project:

BE&K Terranext

WVB / #03103154

Sample Matrix:

Water

Service Request No.:

X2300458

Date Received:

5/28/03

CASE NARRATIVE

All analyses were performed consistent with the quality assurance program of Columbia Analytical Services, Inc. (CAS). This report contains analytical results for sample(s) designated for Tier II data detiverables. When appropriate to the method, method blank results have been reported with each analytical test. Surrogate recoveries have been reported for all applicable organic analyses. Additional quality control analyses reported herein include: Matrix/Duplicate Matrix Spike (MS/DMS) and Laboratory Control Sample (LCS).

All EPA recommended holding times have been met for analyses in this sample delivery group.

The following difficulties were experienced during analysis of this batch:

Sample AVB115-0100-01122 (X2300458-001) required dilution of Method 8260B due to high concentration of target analytes.

The associated blank spike (XWG0300710-3 and XWG0300710-4) recovery of several analytes for Method 8260B was above laboratory acceptance limits. These compounds were not detected in the samples.

The associated blank spike (XWG0300710-3) recovery of Trichloroehtene for Method 8260B was above laboratory acceptance limits but within method default limits of 70-130%. This compound was recovered within acceptable levels in the DLCS and the CCV that was analyzed with this batch of samples.

Surrogate recovery of Dibromofluoromethane and 4-Bromofluorobenzene, Method 8260B, was above laboratory acceptance limits for samples AVB115-0104-1000 (X2300458-002) and AVB121-0100-01122 (X2300458-005), but within method acceptance limits.

Surrogate recovery of 4-Bromofluorobenzene, Method 8260B, was above laboratory acceptance limits for samples AVB121-0102-1000 (X2300458-007), MS (XWG0300710-1), and DMS (XWG0300710-2), but within method acceptance limits.

MS/DMS (XWG0300710-1 and XWG0300710-2) RPD for Chloroethane, Method 8260B, exceeded the laboratory control limit. Recovery met acceptance criteria.

The accuracy of the spike (XWG0300710-1 and XWG0300710-2) recovery value of several analytes for Method 8260B is reduced since the analyte concentration in the sample is disproportionate to spike level. The method control sample recovery was acceptable.

	Man	/ // 02
Approved by	Date	0-10-03

Matrix spike (XWG0300710-1 and XWG0300710-2) recovery of several analytes for Method 8260B was high. The method control sample recovery was acceptable.

Matrix spike (XWG0300710-1 and XWG0300710-2) recovery of Bromoform, Method 8260B, was low. The method control sample recovery was acceptable.

Approved by _______ Date 6-16-03

ARIZONA DATA QUALIFIERS

Method Blank: В1 Target analyte detected in method blank at or above the method reporting limit. B2 Non-target analyte detected in method blank and sample, producing interference. Target analyte detected in calibration blank at or above the method reporting limit. В3 **B4** Target analyte detected in blank at/above method acceptance criteria. B5 Target analyte detected in method blank at or above the method reporting limit, but below trigger level or MCL. Target analyte detected in calibration blank at or above the method reporting limit, but below trigger level or MCL. В6 Target analyte detected in method blank at or above method reporting limit. Concentration found in the sample B7 was 10 times above the concentration found in the method blank. Confirmation: C1Confirmatory analysis not performed as required by the method.

Confirmatory analysis not performed. Confirmation of analyte presence established by site historical data.

Dilution:

C2

C3

C4

C5

D1 Sample required dilution due to matrix interference. See case narrative.

Qualitative confirmation performed. See case narrative.

Confirmatory analysis was past holding time.

- D2 Sample required dilution due to high concentration of target analyte.
- D3 Sample dilution required due to insufficient sample.
- D4 Minimum reporting level (MRL) adjusted to reflect sample amount received and analyzed.

Confirmatory analysis was past holding time. Original result not confirmed.

Estimated concentration:

- E1 Concentration estimated. Analyte exceeded calibration range. Reanalysis not possible due to insufficient sample.
- E2 Concentration estimated. Analyte exceeded calibration range. Reanalysis not performed due to sample matrix.
- E3 Concentration estimated. Analyte exceeded calibration range. Reanalysis not performed due to holding time requirements.
- E4 Concentration estimated. Analyte was detected below laboratory minimum reporting level (MRL).
- E5 Concentration estimated. Analyte was detected below laboratory minimum reporting level (MRL), but not confirmed by alternate analysis.
- E6 Confirmation estimated. Internal standard recoveries did not meet method acceptance criteria.
- E7 Confirmation estimated. Internal standard recoveries did not meet laboratory acceptance criteria.

Hold Time:

- H1 Sample analysis performed past holding time. See case narrative.
- H2 Initial analysis within holding time. Reanalysis for the required dilution was past holding time.
- H3 Sample was received and analyzed past holding time.
- H4 Sample was extracted past required extraction holding time, but analyzed within analysis holding time. See case narrative.

Laboratory fortified blank/blank spike:

L1 The associated blank spike recovery was above laboratory acceptance limits. See case narrative.

The associated blank spike recovery was below laboratory acceptance limits. See case narrative.

The associated blank spike recovery was above method acceptance limits. See case narrative.

The associated blank spike recovery was below method acceptance limits. See case narrative.

Note: The L1, L2, L3, & L4 footnotes need to be added to all corresponding analytes for a sample.

Matrix spike:

M1	Matrix spike recovery was high, the method control sample recovery was acceptable.
M2	Matrix spike recovery was low, the method control sample recovery was acceptable.
M3	The accuracy of the spike recovery value is reduced since the analyte concentration in the sample is
	disproportionate to spike level. The method control sample recovery was acceptable.
M4	The analysis of the spiked sample required a dilution such that the spike concentrations was diluted below
	the reporting limit. The method control sample recovery was acceptable.
M5	Analyte concentration was determined by the method of standard addition (MSA).
M6	Matrix spike recovery was high. Data reported per ADEQ policy 0154.000.
M7	Matrix sipke recovery was low. Data reported per ADEQ policy 0154.000.

General:

N1 See case narrative.

N2 See corrective action report.

Sample quality:

Q1	Sample integrity was not maintained. See case narrative.
Q2	Sample received with head space.
Q3	Sample received with improper chemical preservation.
Q4	Sample received and analyzed without chemical preservation.
Q5	Sample received with inadequate chemical preservation, but preserved by the laboratory.
Q6	Sample was received above recommended temperature.
Q7	Sample inadequately dechlorinated.
Q8	Insufficient sample received to meet QC requirements. QC requirements satisfy ADEQ policies 0154 and 0155.
Q9	Insufficient sample received to meet QC requirements.
Q10	Sample received in inappropriate sample container.
Q11	Sample is heterogeneous. Sample homogeneity could not be readily achieved using routine laboratory practices.

Duplicates:

R1	RPD exceeded the method control limit. See case narrative.
R2	RPD exceeded the laboratory control limit. See case narrative.
R3	Sample RPD between the primary and confirmatory analysis exceeded 40%. Per Method 8000B, the higher
	value was reported.
R4	MS/MSD RPD exceeded the method control limit. Recovery met acceptance criteria.
R5	MS/MSD RPD exceeded the laboratory control limit. Recovery met acceptance criteria.
R6	LFB/LFBD RPD exceeded the method control limit. Recovery met acceptance criteria.
R7	LFB/LFBD RPD exceeded the laboratory control limit. Recovery met acceptance criteria.
R8	Sample RPD exceeded the method control limit.
R9	Sample RPD exceeded the laboratory control limit.

Surrogate:

S1	Surrogate recovery was above laboratory acceptance limits, but within method acceptance limits.
S2	Surrogate recovery was above laboratory and method acceptance limits.

Surrogate recovery was above laboratory acceptance limits, but within method acceptance limits. No target S3 analytes were detected in the sample. Surrogate recovery was above laboratory and method acceptance limits. No target analytes were detected in the S4 sample. Surrogate recovery was below laboratory acceptance limits, but within method acceptance limits. S5Surrogate recovery was below laboratory and method acceptance limits. Reextraction and/or reanalysis confirms S6 low recovery caused by matrix effect. **S7** Surrogate recovery was below laboratory and method acceptance limits. Unable to confirm matrix effect. The analysis of the sample required a dilution such that the surrogate concentration was diluted below the method S8 acceptance criteria. The method control sample recovery was acceptable. The analysis of the sample required a dilution such that the surrogate concentration was diluted below the S9 laboratory acceptance criteria. The method control sample recovery was acceptable. Surrogate recovery was above laboratory and method acceptance limits. See case narrative. S10 Surrogate recovery was high. Data reported per ADEQ policy 0154.000. S11 Surrogate recovery was low. Data reported per ADEQ policy 0154.000. S12

Method/analyte discrepancies:

- T1 Method promulgated by EPA, but not ADHS at this time.
- T2 Cited ADHS licensed method does not contain this analyte as part of method compound list.
- T3 Method not promulgated either by EPA or ADHS.
- T4 Tentatively identified compound. Concentration is estimated and based on the closest internal standard.

Calibration verification:

- V1 CCV recovery was above method acceptance limits. This target analyte was not detected in the sample.
- V2 CCV recovery was above method acceptance limits. This target analyte was detected in the sample. The sample could not be reanalyzed due to insufficient sample.
- V3 CCV recovery was above method acceptance limits. This target analyte was detected in the sample, but the sample was not reanalyzed. See case narrative.
- CCV recovery was below method acceptance limits. The sample could not be reanalyzed due to insufficient sample.
- V5 CCV recovery after a group of samples was above acceptance limits. This target analyte was not detected in the sample. Acceptable per EPA Method 8000B.
- V6 Data reported from one-point calibration criteria per ADEQ policy 0155.000.
- V7 Calibration verification recovery was above the method control limit for this analyte however the average % difference or % drift for all the analytes met method criteria.
- Calibration verification recovery was below the method control limit for this analyte however the average % difference or % drift for all the analytes met method criteria.

Calibration:

W1 The % RSD for this compound was above 15%. The average % RSD for all compounds in the calibration met the 15% criteria as specified in EPA method 8000B.

Inorganic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.
- U The compound was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- i The MRL/MDL has been elevated due to a matrix interference.
- X See case narrative.

Metals Data Qualifiers

- # The control limit criteria is not applicable. See case narrative.
- B The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.
- E The reported value is estimated because of the presence of matrix interference.
- M The duplicate injection precision was not met.
- N The Matrix Spike sample recovery is not within control limits. See case narrative.
- S The reported value was determined by the Method of Standard Additions (MSA).
- U The compound was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- W The post-digestion spike for furnace AA analysis is out of control limits, while sample absorbance is less than 50% of spike absorbance.
- i The MRL/MDL has been elevated due to a matrix interference.
- X See case narrative.
- * The duplicate analysis not within control limits. See case narrative.
- + The correlation coefficient for the MSA is less than 0.995.

Organic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- A A tentatively identified compound, a suspected aldol-condensation product.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result.
- C The analyte was qualitatively confirmed using GC/MS techniques, pattern recognition, or by comparing to historical data.
- D The reported result is from a dilution.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.
- N The result is presumptive. The analyte was tentatively identified, but a confirmation analysis was not performed.
- P The GC or HPLC confirmation criteria was exceeded. The relative percent difference is greater than 40% between the two analytical results (25% for CLP Pesticides).
- U The compound was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- i The MRL/MDL has been elevated due to a chromatographic interference.
- X See case narrative.

Additional Petroleum Hydrocarbon Specific Qualifiers

- F The chromatographic fingerprint of the sample matches the elution pattern of the calibration standard.
- L The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of lighter molecular weight constituents than the calibration standard.
- H The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of heavier molecular weight constituents than the calibration standard.
- O The chromatographic fingerprint of the sample resembles an oil, but does not match the calibration standard.
- Y The chromatographic fingerprint of the sample resembles a petroleum product eluting in approximately the correct carbon range, but the elution pattern does not match the calibration standard.
- Z The chromatographic fingerprint does not resemble a petroleum product.

Client: Project: BE&K Terranext WVB/#03103154 **Service Request:**

X2300458

Cover Page - Organic Analysis Data Package Volatile Organic Compounds

		Date	Date
Sample Name	Lab Code	Collected	Received
AVB115-0100-01122	X2300458-001	05/27/2003	05/28/2003
AVB115-0104-1000	X2300458-002	05/27/2003	05/28/2003
AVB122-0100-01144	X2300458-003	05/28/2003	05/28/2003
AVB120-0100-01130	X2300458-004	05/28/2003	05/28/2003
AVB121-0100-01122	X2300458-005	05/28/2003	05/28/2003
AVB121-0104-1000	X2300458-006	05/28/2003	05/28/2003
AVB121-0102-1000	X2300458-007	05/28/2003	05/28/2003
AVB115-0100-01122MS	XWG0300710-1	05/27/2003	05/28/2003
AVB115-0100-01122DMS	XWG0300710-2	05/27/2003	05/28/2003

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed in the case narrative. Release of the data contained in this hardcopy data package and in the computer-readable data submitted on floppy diskette has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signature.

Signature:	Macy	Lutton	 ,
		•	

1 of

Analytical Results

Client: Project: BE&K Terranext WVB/#03103154

Sample Matrix:

Water

Service Request: X2300458

Date Collected: 05/27/2003

Date Received: 05/28/2003

Volatile Organic Compounds

Sample Name:

AVB115-0100-01122

Lab Code:

X2300458-001

Extraction Method: Analysis Method:

EPA 5030B

8260B

Units: ug/L Basis: NA

Level: Low

				Dilution	Date	Date	
Analyte Name	Result	Q	MRL	Factor	Extracted	Analyzed	Arizona Qualifier
Dichlorodifluoromethane	ND	U	30	10	06/06/03	06/09/03	D2
Chloromethane	ND	U	20	10	06/06/03	06/09/03	D2
Vinyl Chloride	ND	U	10	10	06/06/03	06/09/03	D2
Bromomethane	ND	U	10	10	06/06/03	06/09/03	D2
Chloroethane	ND	U	10	10	06/06/03	06/09/03	D2
Trichlorofluoromethane	17	D	10	10	06/06/03	06/09/03	D2
1,1,2-Trichlorotrifluoroethane	16	D	10	10	06/06/03	06/09/03	D2
1,1-Dichloroethene	ND	U	10	10	06/06/03	06/09/03	D2L1
Acetone	ND	U	100	10	06/06/03	06/09/03	D2
Iodomethane	ND	U	20	10	06/06/03	06/09/03	D2
Carbon Disulfide	ND	U	20	10	06/06/03	06/09/03	D2
Methylene Chloride	ND	U	10	10	06/06/03	06/09/03	D2
Methyl tert-Butyl Ether	ND	U	10	10	06/06/03	06/09/03	D2
trans-1,2-Dichloroethene	ND	U	5.0	10	06/06/03	06/09/03	D2
1,1-Dichloroethane	ND	U	5.0	10	06/06/03	06/09/03	D2
Vinyl Acetate	ND	U	30	10	06/06/03	06/09/03	D2
2,2-Dichloropropane	ND	U	20	10	06/06/03	06/09/03	D2
2-Butanone (MEK)	ND	U	80	10	06/06/03	06/09/03	D2
cis-1,2-Dichloroethene	38	D	5.0	10	06/06/03	06/09/03	D2
Bromochloromethane	ND	U	5.0	10	06/06/03	06/09/03	D2
Chloroform	ND	U	10	10	06/06/03	06/09/03	D2
1.1.1-Trichloroethane	ND	U	5.0	10	06/06/03	06/09/03	D2
Carbon Tetrachloride	ND		5.0	10	06/06/03	06/09/03	D2L1
1,1-Dichloropropene	ND	U	5.0	10	06/06/03	06/09/03	D2L1
Benzene	ND	U	5.0	10	06/06/03	06/09/03	D2
1,2-Dichloroethane	ND	U	5.0	10	06/06/03	06/09/03	D2
Trichloroethene	210	D	5.0	10	06/06/03	06/09/03	D2L1
1,2-Dichloropropane	ND	U	5.0	10	06/06/03	06/09/03	D2
Dibromomethane	ND		5.0	10	06/06/03	06/09/03	D2
Bromodichloromethane	ND	U	5.0	10	06/06/03	06/09/03	D2
cis-1,3-Dichloropropene	ND	U	5.0	10	06/06/03	06/09/03	D2
4-Methyl-2-pentanone (MIBK)	ND		80	10	06/06/03	06/09/03	D2
Toluene	ND	U	5.0	10	06/06/03	06/09/03	D2

Comments:

Printed: 06/11/2003 13:22:32 L:\STEALTH\CRYSTAL.RPT\Form1m.rpt

Merged

Form 1A - Organic

Page 1 of 3

SuperSet Reference: RR3428

Analytical Results

Client: Project: BE&K Terranext WVB/#03103154

Sample Matrix:

Water

Service Request: X2300458

Date Collected: 05/27/2003 **Date Received:** 05/28/2003

Volatile Organic Compounds

Sample Name:

AVB115-0100-01122

Lab Code:

X2300458-001

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

Analyte Name	Result	0	MRL	Dilution Factor	Date Extracted	Date Analyzed	Arizona Qualifier
trans-1,3-Dichloropropene	ND		10	10	06/06/03	06/09/03	D2
1,1,2-Trichloroethane	ND		10	10	06/06/03	06/09/03	D2
Tetrachloroethene	9.2		5.0	10	06/06/03	06/09/03	D2
2-Hexanone	ND		50	10	06/06/03	06/09/03	D2
1,3-Dichloropropane	ND		10	10	06/06/03	06/09/03	D2
Dibromochloromethane	ND		5.0	10	06/06/03	06/09/03	D2
1,2-Dibromoethane	ND	U	5.0	10	06/06/03	06/09/03	D2
Chlorobenzene	ND		5.0	10	06/06/03	06/09/03	D2
1,1,1,2-Tetrachloroethane	ND	U	5.0	10	06/06/03	06/09/03	D2
Ethylbenzene	ND	U	5.0	10	06/06/03	06/09/03	D2
m,p-Xylenes	ND		10	10	06/06/03	06/09/03	D2
o-Xylene	ND	U	5.0	10	06/06/03	06/09/03	D2
Styrene	ND	U	5.0	10	06/06/03	06/09/03	D2
Isopropylbenzene	ND		5.0	10	06/06/03	06/09/03	D2
Bromobenzene	ND	U	5.0	10	06/06/03	06/09/03	D2
1,2,3-Trichloropropane	ND	U	10	10	06/06/03	06/09/03	D2
n-Propylbenzene	ND	U	5.0	10	06/06/03	06/09/03	D2
2-Chlorotoluene	ND	U	5.0	10	06/06/03	06/09/03	D2
4-Chlorotoluene	ND	U	5.0	10	06/06/03	06/09/03	D2
1,3,5-Trimethylbenzene	ND	U	5.0	10	06/06/03	06/09/03	D2
tert-Butylbenzene	ND	U	5.0	10	06/06/03	06/09/03	D2
1,2,4-Trimethylbenzene	ND	U	5.0	10	06/06/03	06/09/03	D2
sec-Butylbenzene	ND	U	5.0	10	06/06/03	06/09/03	D2
1,3-Dichlorobenzene	ND	U	5.0	10	06/06/03	06/09/03	D2
4-Isopropyltoluene	ND	U	5.0	10	06/06/03	06/09/03	D2
Bromoform	ND	U	5.0	10	06/06/03	06/09/03	D2
1,1,2,2-Tetrachloroethane	ND	U	10	10	06/06/03	06/09/03	D2
1,4-Dichlorobenzene	ND	U	5.0	10	06/06/03	06/09/03	D2
1,2-Dichlorobenzene	ND	U	5.0	10	06/06/03	06/09/03	D2
n-Butylbenzene	ND	U	5.0	10	06/06/03	06/09/03	D2
1,2-Dibromo-3-chloropropane	ND	U	50	10	06/06/03	06/09/03	D2
1,2,4-Trichlorobenzene	ND	U	5.0	10	06/06/03	06/09/03	D2
Hexachlorobutadiene	ND	U	10	10	06/06/03	06/09/03	D2

Comments:

000010

Printed: 06/11/2003 13:22:32 L:\STEALTH\CRYSTAL.RPT\Form\m.rpt

Merged

Form 1A - Organic

Page 2 of 3

Analytical Results

Client: Project: BE&K Terranext WVB/#03103154

Sample Matrix:

Water

Service Request: X2300458

Date Collected: 05/27/2003

Date Received: 05/28/2003

Volatile Organic Compounds

Sample Name:

AVB115-0100-01122

Lab Code:

X2300458-001

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

			Dilution	Date	Date	
Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed	Arizona Qualifier
Naphthalene	ND U	30	10	06/06/03	06/09/03	D2
1,2,3-Trichlorobenzene	ND U	5.0	10	06/06/03	06/09/03	D2

Surrogate Name	%Rec	Control Limits	Date Analyzed	Arizona Qualifier	
Dibromofluoromethane	109	84-113	06/09/03	D2	
Toluene-d8	117	68-126	06/09/03	D2	
4-Bromofluorobenzene	110	79-113	06/09/03	D2	

Comments:

Analytical Results

Client: Project: BE&K Terranext WVB/#03103154

Sample Matrix:

Water

Service Request: X2300458 Date Collected: 05/27/2003

Date Received: 05/28/2003

Units: ug/L

Volatile Organic Compounds

Sample Name: Lab Code:

AVB115-0104-1000

Extraction Method:

EPA 5030B

X2300458-002

Basis: NA Level: Low

8260B **Analysis Method:**

	D. m.l4	0	MRL	Dilution Factor	Date Extracted	Date Analyzed	Arizona Qualifier
Analyte Name	Result		3.0	1	06/06/03	06/09/03	TITIZOTIA QUATTICE
Dichlorodifluoromethane	ND ND		2.0	1	06/06/03	06/09/03	
Chloromethane	ND ND		1.0	1	06/06/03	06/09/03	
Vinyl Chloride				1	06/06/03	06/09/03	
Bromomethane	ND ND		1.0 1.0	1	06/06/03	06/09/03	
Chloroethane	ND ND		1.0	1	06/06/03	06/09/03	
Trichlorofluoromethane				1	06/06/03	06/09/03	A.W. A.V. W. A
1,1,2-Trichlorotrifluoroethane	ND		1.0	1	06/06/03	06/09/03	L1
1,1-Dichloroethene	ND		1.0 10	i 1	06/06/03	06/09/03	LI
Acetone	ND			1			
Iodomethane	ND		2.0	l ı	06/06/03	06/09/03	
Carbon Disulfide	ND		2.0	1	06/06/03 06/06/03	06/09/03 06/09/03	
Methylene Chloride	ND		1.0	1			
Methyl tert-Butyl Ether	ND		1.0	1	06/06/03	06/09/03	
trans-1,2-Dichloroethene	ND		0.50	1	06/06/03	06/09/03	
1,1-Dichloroethane	ND	U	0.50	1	06/06/03	06/09/03	
Vinyl Acetate	ND		3.0	1	06/06/03	06/09/03	
2,2-Dichloropropane	ND		2.0	1	06/06/03	06/09/03	
2-Butanone (MEK)	ND	U	8.0	1	06/06/03	06/09/03	
cis-1,2-Dichloroethene	ND	U	0.50	1	06/06/03	06/09/03	
Bromochloromethane	ND	U	0.50	1	06/06/03	06/09/03	
Chloroform	ND	U	1.0	1	06/06/03	06/09/03	
1.1.1-Trichloroethane	ND	U	0.50	1	06/06/03	06/09/03	
Carbon Tetrachloride	ND	U	0.50	1	06/06/03	06/09/03	L1
1,1-Dichloropropene	ND	U	0.50	1	06/06/03	06/09/03	L1
Benzene	ND	U	0.50	1	06/06/03	06/09/03	
1,2-Dichloroethane	ND		0.50	1	06/06/03	06/09/03	
Trichloroethene	ND	U	0.50	1	06/06/03	06/09/03	Ll
1,2-Dichloropropane	ND	U	0.50	1	06/06/03	06/09/03	
Dibromomethane	ND	U	0.50	1	06/06/03	06/09/03	
Bromodichloromethane	ND	U	0.50	1	06/06/03	06/09/03	
cis-1,3-Dichloropropene	ND	U	0.50	l	06/06/03	06/09/03	
4-Methyl-2-pentanone (MIBK)	ND	U	8.0	1	06/06/03	06/09/03	
Toluene	ND	U	0.50	1	06/06/03	06/09/03	

Comments:

000012

Printed: 06/11/2003 13:22:42 L:\STEALTH\CRYSTAL.RPT\Formlm.rpt

Merged

Form 1A - Organic

Page 1 of 3

SuperSet Reference: RR3428

Analytical Results

Client: Project: BE&K Terranext WVB/#03103154

Sample Matrix:

Water

Service Request: X2300458

Date Collected: 05/27/2003

Date Received: 05/28/2003

Volatile Organic Compounds

Sample Name:

AVB115-0104-1000

Lab Code:

X2300458-002

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

	7 11 0	MDI	Dilution Factor	Date Extracted	Date	Arizona Qualifier
Analyte Name	Result Q	MRL			06/09/03	Alizona Quantier
trans-1,3-Dichloropropene	ND U	1.0	1	06/06/03 06/06/03	06/09/03	
1,1,2-Trichloroethane	ND U	1.0	1	06/06/03	06/09/03	
Tetrachloroethene	ND U	0.50				
2-Hexanone	ND U	5.0	. 1	06/06/03	06/09/03	
1,3-Dichloropropane	ND U	1.0	1	06/06/03	06/09/03	
Dibromochloromethane	ND U	0.50	1	06/06/03	06/09/03	
1,2-Dibromoethane	ND U	0.50	1	06/06/03	06/09/03	
Chlorobenzene	ND U	0.50	1	06/06/03	06/09/03	
1,1,1,2-Tetrachloroethane	ND U	0.50	<u>l</u>	06/06/03	06/09/03	
Ethylbenzene	ND U	0.50	1	06/06/03	06/09/03	
m,p-Xylenes	ND U	1.0	1	06/06/03	06/09/03	
o-Xylene	ND U	0.50	1	06/06/03	06/09/03	
Styrene	ND U	0.50	1	06/06/03	06/09/03	
Isopropylbenzene	ND U	0.50	1	06/06/03	06/09/03	
Bromobenzene	ND U	0.50	1	06/06/03	06/09/03	
1,2,3-Trichloropropane	ND U	1.0	1	06/06/03	06/09/03	
n-Propylbenzene	ND U	0.50	1	06/06/03	06/09/03	
2-Chlorotoluene	ND U	0.50	1	06/06/03	06/09/03	
4-Chlorotoluene	ND U	0.50	1	06/06/03	06/09/03	
1,3,5-Trimethylbenzene	ND U	0.50	1	06/06/03	06/09/03	
tert-Butylbenzene	ND U	0.50	1	06/06/03	06/09/03	
1,2,4-Trimethylbenzene	ND U	0.50	1	06/06/03	06/09/03	
sec-Butylbenzene	ND U	0.50	1	06/06/03	06/09/03	
1,3-Dichlorobenzene	ND U	0.50	1	06/06/03	06/09/03	
4-Isopropyltoluene	ND U	0.50	1	06/06/03	06/09/03	
Bromoform	ND U	0.50	1	06/06/03	06/09/03	
1,1,2,2-Tetrachloroethane	ND U	1.0	1	06/06/03	06/09/03	
1,4-Dichlorobenzene	ND U	0.50	1	06/06/03	06/09/03	
1,2-Dichlorobenzene	ND U	0.50	1	06/06/03	06/09/03	
n-Butylbenzene	ND U	0.50	1	06/06/03	06/09/03	
1,2-Dibromo-3-chloropropane	ND U	5.0	1	06/06/03	06/09/03	
1,2,4-Trichlorobenzene	ND U	0.50	1	06/06/03	06/09/03	
Hexachlorobutadiene	ND U	1.0	1	06/06/03	06/09/03	

Comments:

000613

Printed: 06/11/2003 13:22:42 L:\STEALTH\CRYSTAL.RPT\Form\m.rpt

Merged

Form 1A - Organic

Page 2 of 3

SuperSet Reference: RR3428

Analytical Results

Client:

BE&K Terranext WVB/#03103154

Project: Sample Matrix:

Water

Service Request: X2300458

Date Collected: 05/27/2003

Date Received: 05/28/2003

Volatile Organic Compounds

Sample Name:

AVB115-0104-1000

Lab Code:

X2300458-002

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L

Basis: NA

Level: Low

			Dilution	Date	Date	
Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed	Arizona Qualifier
Naphthalene	ND U	3.0	1	06/06/03	06/09/03	
1,2,3-Trichlorobenzene	ND U	0.50	1	06/06/03	06/09/03	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Arizona Qualifier	
Dibromofluoromethane	117	84-113	06/09/03	S1	
Toluene-d8	121	68-126	06/09/03		
4-Bromofluorobenzene	116	79-113	06/09/03	S1	

Comments:

000014

Merged

Printed: 06/11/2003 13:22:42 L:\STEALTH\CRYSTAL.RPT\Form1m.rpt

3 of 3

Analytical Results

Client: Project: BE&K Terranext WVB/#03103154

Sample Matrix:

Water

Service Request: X2300458

Date Collected: 05/28/2003 **Date Received:** 05/28/2003

Volatile Organic Compounds

Sample Name:

AVB122-0100-01144

Lab Code:

X2300458-003

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

			Dilution	Date	Date	
Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed	Arizona Qualifier
Dichlorodifluoromethane	ND U	3.0	1	06/06/03	06/09/03	
Chloromethane	ND U	2.0	1	06/06/03	06/09/03	
Vinyl Chloride	ND U	1.0	1	06/06/03	06/09/03	
Bromomethane	ND U	1.0	1	06/06/03	06/09/03	
Chloroethane	ND U	1.0	1	06/06/03	06/09/03	
Trichlorofluoromethane	1.9	1.0	1	06/06/03	06/09/03	
1,1,2-Trichlorotrifluoroethane	3.5	1.0	1	06/06/03	06/09/03	
1,1-Dichloroethene	4.1	1.0	1	06/06/03	06/09/03	Ll
Acetone	ND U	10	1	06/06/03	06/09/03	
Iodomethane	ND U	2.0	1	06/06/03	06/09/03	
Carbon Disulfide	ND U	2.0	1	06/06/03	06/09/03	
Methylene Chloride	ND U	1.0	1	06/06/03	06/09/03	
Methyl tert-Butyl Ether	ND U	1.0	1	06/06/03	06/09/03	
trans-1,2-Dichloroethene	ND U	0.50	1	06/06/03	06/09/03	
1,1-Dichloroethane	ND U	0.50	1	06/06/03	06/09/03	
Vinyl Acetate	ND U	3.0	1	06/06/03	06/09/03	
2,2-Dichloropropane	ND U	2.0	1	06/06/03	06/09/03	
2-Butanone (MEK)	ND U	8.0	1	06/06/03	06/09/03	
cis-1,2-Dichloroethene	0.68	0.50	1	06/06/03	06/09/03	
Bromochloromethane	ND U	0.50	1	06/06/03	06/09/03	
Chloroform	9.3	1.0	1	06/06/03	06/09/03	
1,1,1-Trichloroethane	ND U	0.50	1	06/06/03	06/09/03	
Carbon Tetrachloride	ND U	0.50	1	06/06/03	06/09/03	Ll
1,1-Dichloropropene	ND U	0.50	1	06/06/03	06/09/03	Ll
Benzene	ND U	0.50	1	06/06/03	06/09/03	
1,2-Dichloroethane	ND U	0.50	1	06/06/03	06/09/03	
Trichloroethene	8.0	0.50	1	06/06/03	06/09/03	L1
1,2-Dichloropropane	ND U	0.50	1	06/06/03	06/09/03	
Dibromomethane	ND U	0.50	1	06/06/03	06/09/03	
Bromodichloromethane	ND U	0.50	1	06/06/03	06/09/03	
cis-1,3-Dichloropropene	ND U	0.50	1	06/06/03	06/09/03	
4-Methyl-2-pentanone (MIBK)	ND U	8.0	I	06/06/03	06/09/03	
Toluene	ND U	0.50	1	06/06/03	06/09/03	

Comments:

000015

Printed: 06/11/2003 13:22:52 L:\STEALTH\CRYSTAL.RPT\Form\lm.rpt

Merged

Form 1A - Organic

Page 1 of 3

SuperSet Reference: RR3428

Analytical Results

Client: Project:

BE&K Terranext WVB/#03103154

Sample Matrix:

Water

Service Request: X2300458
Date Collected: 05/28/2003

Date Received: 05/28/2003

Volatile Organic Compounds

Sample Name:

AVB122-0100-01144

Lab Code:

X2300458-003

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

			Dilution	Date	Date	
Analyte Name	Result Q	MRL	Factor	Extracted		Arizona Qualifier
trans-1,3-Dichloropropene	ND U	1.0	1	06/06/03	06/09/03	
1,1,2-Trichloroethane	ND U	1.0	1	06/06/03	06/09/03	
Tetrachloroethene	32	0.50	1	06/06/03	06/09/03	
2-Hexanone	ND U	5.0	1	06/06/03	06/09/03	
1,3-Dichloropropane	ND U	1.0	1	06/06/03	06/09/03	
Dibromochloromethane	ND U	0.50	1	06/06/03	06/09/03	
1,2-Dibromoethane	ND U	0.50	1	06/06/03	06/09/03	
Chlorobenzene	ND U	0.50	1	06/06/03	06/09/03	
1,1,1,2-Tetrachloroethane	ND U	0.50	1	06/06/03	06/09/03	
Ethylbenzene	ND U	0.50	1	06/06/03	06/09/03	
m,p-Xylenes	ND U	1.0	1	06/06/03	06/09/03	
o-Xylene	ND U	0.50	1	06/06/03	06/09/03	
Styrene	ND U	0.50	1	06/06/03	06/09/03	
Isopropylbenzene	ND U	0.50	1	06/06/03	06/09/03	
Bromobenzene	ND U	0.50	1	06/06/03	06/09/03	
1,2,3-Trichloropropane	ND U	1.0	1	06/06/03	06/09/03	
n-Propylbenzene	ND U	0.50	1	06/06/03	06/09/03	
2-Chlorotoluene	ND U	0.50	1	06/06/03	06/09/03	
4-Chlorotoluene	ND U	0.50	1	06/06/03	06/09/03	
1,3,5-Trimethylbenzene	ND U	0.50	1	06/06/03	06/09/03	
tert-Butylbenzene	ND U	0.50	1	06/06/03	06/09/03	
1,2,4-Trimethylbenzene	ND U	0.50	1	06/06/03	06/09/03	
sec-Butylbenzene	ND U	0.50	1	06/06/03	06/09/03	
1,3-Dichlorobenzene	ND U	0.50	1	06/06/03	06/09/03	
4-Isopropyltoluene	ND U	0.50	1	06/06/03	06/09/03	
Bromoform	ND U	0.50	1	06/06/03	06/09/03	
1,1,2,2-Tetrachloroethane	ND U	1.0	1	06/06/03	06/09/03	
1,4-Dichlorobenzene	ND U	0.50	1	06/06/03	06/09/03	
1,2-Dichlorobenzene	ND U	0.50	1	06/06/03	06/09/03	
n-Butylbenzene	ND U	0.50	1	06/06/03	06/09/03	
1,2-Dibromo-3-chloropropane	ND U	5.0	1	06/06/03	06/09/03	
1,2,4-Trichlorobenzene	ND U	0.50	1	06/06/03	06/09/03	
Hexachlorobutadiene	ND U	1.0	1	06/06/03	06/09/03	

Comments:

000016

Printed: 06/11/2003 13:22:52 L:\STEALTH\CRYSTAL.RPT\Form1m.rpt

Merged

Form 1A - Organic

Page 2 of 3

SuperSet Reference: RR3428

Analytical Results

Client:

BE&K Terranext WVB/#03103154

Project: Sample Matrix:

Water

Service Request: X2300458

Date Collected: 05/28/2003

Date Received: 05/28/2003

Volatile Organic Compounds

Sample Name:

AVB122-0100-01144

Lab Code:

X2300458-003

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L

Basis: NA

Level: Low

			Dilution	Date	Date	
Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed	Arizona Qualifier
Naphthalene	ND U	3.0	. 1	06/06/03	06/09/03	
1,2,3-Trichlorobenzene	ND U	0.50	1	06/06/03	06/09/03	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Arizona Qualifier	
Dibromofluoromethane	113	84-113	06/09/03		
Toluene-d8	122	68-126	06/09/03		
4-Bromofluorobenzene	112	79-113	06/09/03		

Comments:

000017

Merged

Printed: 06/11/2003 13:22:52 L:\STEALTH\CRYSTAL.RPT\Form1m.rpt

Analytical Results

Client: **Project:** BE&K Terranext WVB/#03103154

Sample Matrix:

Water

Service Request: X2300458

Date Collected: 05/28/2003 **Date Received:** 05/28/2003

Volatile Organic Compounds

Sample Name:

AVB120-0100-01130

Lab Code:

X2300458-004

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

			Dilution	Date	Date	
Analyte Name	Result Q	MRL	Factor	Extracted		Arizona Qualifier
Dichlorodifluoromethane	ND U	3.0	1	06/06/03	06/09/03	
Chloromethane	ND U	2.0	1	06/06/03	06/09/03	
Vinyl Chloride	ND U	1.0	1	06/06/03	06/09/03	
Bromomethane	ND U	1.0	1	06/06/03	06/09/03	
Chloroethane	ND U	1.0	1	06/06/03	06/09/03	
Trichlorofluoromethane	1.6	1.0	1	06/06/03	06/09/03	
1,1,2-Trichlorotrifluoroethane	1.9	1.0	1	06/06/03	06/09/03	
1,1-Dichloroethene	1.9	1.0	1	06/06/03		L1
Acetone	ND U	10	1	06/06/03	06/09/03	
Iodomethane	ND U	2.0	1	06/06/03	06/09/03	
Carbon Disulfide	ND U	2.0	l	06/06/03	06/09/03	
Methylene Chloride	ND U	1.0	1	06/06/03	06/09/03	
Methyl tert-Butyl Ether	ND U	1.0	1	06/06/03	06/09/03	
trans-1,2-Dichloroethene	ND U	0.50	1	06/06/03	06/09/03	
1,1-Dichloroethane	0.51	0.50	1	06/06/03	06/09/03	
Vinyl Acetate	ND U	3.0	1	06/06/03	06/09/03	
2,2-Dichloropropane	ND U	2.0	1	06/06/03	06/09/03	
2-Butanone (MEK)	ND U	8.0	1	06/06/03	06/09/03	
cis-1,2-Dichloroethene	3.5	0.50	1	06/06/03	06/09/03	
Bromochloromethane	ND U	0.50	1	06/06/03	06/09/03	
Chloroform	5.0	1.0	1	06/06/03	06/09/03	
1,1,1-Trichloroethane	ND U	0.50	1	06/06/03	06/09/03	
Carbon Tetrachloride	ND U	0.50	1	06/06/03	06/09/03	L1
1,1-Dichloropropene	ND U	0.50	1	06/06/03	06/09/03	Ll
Benzene	ND U	0.50	1	06/06/03	06/09/03	
1,2-Dichloroethane	ND U	0.50	1	06/06/03	06/09/03	
Trichloroethene	55	0.50	1	06/06/03	06/09/03	L1
1,2-Dichloropropane	ND U	0.50	1	06/06/03	06/09/03	
Dibromomethane	ND U	0.50	1	06/06/03	06/09/03	
Bromodichloromethane	ND U	0.50	1	06/06/03	06/09/03	
cis-1,3-Dichloropropene	ND U	0.50	1	06/06/03	06/09/03	
4-Methyl-2-pentanone (MIBK)	ND U	8.0	l	06/06/03	06/09/03	
Toluene	ND U	0.50	1	06/06/03	06/09/03	

Comments:

Printed: 06/11/2003 13:23:02 $\verb|L:\STEALTH\CRYSTAL.RPT\Form\lm.rpt|$

000018 Merged

Form 1A - Organic

1 of 3 Page

Analytical Results

Client: Project: BE&K Terranext WVB/#03103154

Sample Matrix:

Water

Service Request: X2300458

Date Collected: 05/28/2003 **Date Received:** 05/28/2003

Volatile Organic Compounds

Sample Name:

AVB120-0100-01130

Lab Code:

X2300458-004

Extraction Method:

EPA 5030B

Units: ug/L Basis: NA

Level: Low

Analysis Method: 8260B

Analyte Name Result Q MRL Factor Extracted Analyzed Arizona Qualifier trans-1,3-Dichloroptopene ND U 1.0 1 06/06/03 06/09/03 1,12-Trichlorocthane ND U 1.0 1 06/06/03 06/09/03 2-Hexanone ND U 5.0 1 06/06/03 06/09/03 2-Hexanone ND U 1.0 1 06/06/03 06/09/03 1,3-Dichloropropane ND U 1.0 0.50 1 06/06/03 06/09/03 1,2-Dibromoethane ND U 0.50 1 06/06/03 06/09/03 1,2-Dibromoethane ND U 0.50 1 06/06/03 06/09/03 Chlorobenzene ND U 0.50 1 06/06/03 06/09/03 Li,1,2-Tetrachloroethane ND U 0.50 1 06/06/03 06/09/03 Ethylbenzene ND U 0.50 1 06/06/03 06/09/03 Ethylbenzene ND U 0.50 1 06/06/03					Dilution	Date	Date	
Trans-1,3-Dichloropropene	Analyte Name	Result	Q	MRL	Factor	Extracted	Analyzed	Arizona Qualifier
1,1,2-Trichloroethane		ND	U	1.0	1	06/06/03		
Tetrachloroethene 17 0.50 1 06/06/03 06/09/03 2-Hexanone ND U 5.0 1 06/06/03 06/09/03 1,3-Dichloropropane ND U 1.0 1 06/06/03 06/09/03 1,2-Dibromoethane ND U 0.50 1 06/06/03 06/09/03 1,1,1-Tetrachloroethane ND U 0.50 1 06/06/03 06/09/03 1,1,1,2-Tetrachloroethane ND U 0.50 1 06/06/03 06/09/03 Ethylbenzene ND U 0.50 1 06/06/03 06/09/03 Ethylbenzene ND U 0.50 1 06/06/03 06/09/03 Ethylbenzene ND U 0.50 1 06/06/03 06/09/03 Styrene ND U 0.50 1 06/06/03 06/09/03 Isopropylbenzene ND U 0.50 1 06/06/03 06/09/03 Isopropylbenzene ND U 0.50 1 06/06/03 06/09/03 1,2,3-Trichloropr		ND	U	1.0	1	06/06/03		
2-Hexanone		17		0.50	1	06/06/03	06/09/03	
1,3-Dichtoropropane		ND	U	5.0	1	06/06/03	06/09/03	
Dibromochloromethane				1.0	l	06/06/03		
		ND	U	0.50	1	06/06/03	06/09/03	
Chlorobenzene ND U 0.50 1 06/06/03 06/09/03 1,1,1,2-Tetrachloroethane ND U 0.50 1 06/06/03 06/09/03 Ethylbenzene ND U 0.50 1 06/06/03 06/09/03 mp-Xylenes ND U 0.50 1 06/06/03 06/09/03 o-Xylene ND U 0.50 1 06/06/03 06/09/03 Styrene ND U 0.50 1 06/06/03 06/09/03 Isopropylbenzene ND U 0.50 1 06/06/03 06/09/03 Bromobenzene ND U 0.50 1 06/06/03 06/09/03 Bromobenzene ND U 0.50 1 06/06/03 06/09/03 Bromobenzene ND U 0.50 1 06/06/03 06/09/03 1,2,3-Trichloropropane ND U 0.50 1 06/06/03 06/09/03 1-Chlorotoluene ND U 0.50 1 06/06/03 06/09/03 1-Ghorotoluene ND	1 2-Dibromoethane	ND	U	0.50	1	06/06/03	06/09/03	
1,1,2-Tetrachloroethane	,	ND	U	0.50	1	06/06/03	06/09/03	
Ethylbenzene		ND	U	0.50	1	06/06/03	06/09/03	
m,p-Xylenes ND U 1.0 1 06/06/03 06/09/03 o-Xylene ND U 0.50 1 06/06/03 06/09/03 Styrene ND U 0.50 1 06/06/03 06/09/03 Isopropylbenzene ND U 0.50 1 06/06/03 06/09/03 Bromobenzene ND U 0.50 1 06/06/03 06/09/03 Bromobenzene ND U 0.50 1 06/06/03 06/09/03 1,2,3-Trichloropropane ND U 0.50 1 06/06/03 06/09/03 n-Propylbenzene ND U 0.50 1 06/06/03 06/09/03 2-Chlorotoluene ND U 0.50 1 06/06/03 06/09/03 4-Chlorotoluene ND U 0.50 1 06/06/03 06/09/03 1,3,5-Trimethylbenzene ND U 0.50 1 06/06/03 06/09/03 1,2,4-Trimethylbenzene ND U 0.50 1 06/06/03 06/09/03 1,2,4-Trimethylbenzene ND U 0.50 1 06/06/03 06/09/03 1,3-Dichlorobenzene ND U 0.50 1 06/06/03 06/09/03 4-Isopropyltoluene ND U 0.50 1 06/06/03 06/09/03 Bromoform		ND	U	0.50	1	06/06/03	06/09/03	
o-Xylene ND U 0.50 1 06/06/03 06/09/03 Styrene ND U 0.50 1 06/06/03 06/09/03 Isopropylbenzene ND U 0.50 1 06/06/03 06/09/03 Bromobenzene ND U 0.50 1 06/06/03 06/09/03 1,2,3-Trichloropropane ND U 1.0 1 06/06/03 06/09/03 n-Propylbenzene ND U 0.50 1 06/06/03 06/09/03 2-Chlorotoluene ND U 0.50 1 06/06/03 06/09/03 4-Chlorotoluene ND U 0.50 1 06/06/03 06/09/03 1,3,5-Trimethylbenzene ND U 0.50 1 06/06/03 06/09/03 1,2,4-Trimethylbenzene ND U 0.50 1 06/06/03 06/09/03 1,2,2-Trimethylbenzene ND U 0.50 1 06/06/03 06/09/03 1,2-4-Trimethylbenzene ND U 0.50 1 06/06/03 06/09/03 1,				1.0	1	06/06/03	06/09/03	
Styrene					1	06/06/03	06/09/03	
Sopropylbenzene ND U 0.50 1 06/06/03 06/09/03		ND	IJ	0.50	1	06/06/03	06/09/03	
ND U 0.50 1 06/06/03 06/09/03	•				1	06/06/03	06/09/03	
1,2,3-Trichloropropane					1	06/06/03	06/09/03	
n-Propylbenzene ND U 0.50 1 06/06/03 06/09/03 2-Chlorotoluene ND U 0.50 1 06/06/03 06/09/03 4-Chlorotoluene ND U 0.50 1 06/06/03 06/09/03 1,3,5-Trimethylbenzene ND U 0.50 1 06/06/03 06/09/03 tert-Butylbenzene ND U 0.50 1 06/06/03 06/09/03 1,2,4-Trimethylbenzene ND U 0.50 1 06/06/03 06/09/03 sec-Butylbenzene ND U 0.50 1 06/06/03 06/09/03 1,3-Dichlorobenzene ND U 0.50 1 06/06/03 06/09/03 4-Isopropyltoluene ND U 0.50 1 06/06/03 06/09/03 1,1,2,2-Tetrachloroethane ND U 0.50 1 06/06/03 06/09/03 1,1,2,2-Tetrachloroethane ND U 0.50 1 06/06/03 06/09/03 1,4-Dichlorobenzene ND U 0.50 1 06/06/03 06/09/03 1,2-Dichlorobenzene ND U 0.50 1 06/06/03 06/09/03 1,2-Dichlorobenzene ND U 0.50 1 06/06/03 06/09/03 1,2-Dichlorobenzene ND U 0.50 1 06/06/03 06/09/03 1,2-Dibromo-3-chloropropane ND U 5.0 1 06/06/03 06/09/03 1,2-Trichlorobenzene ND U 0.50 1 06/06/03 06/09/03		ND	U	1.0	1	06/06/03	06/09/03	
2-Chlorotoluene ND U 0.50 1 06/06/03 06/09/03 4-Chlorotoluene ND U 0.50 1 06/06/03 06/09/03 1,3,5-Trimethylbenzene ND U 0.50 1 06/06/03 06/09/03 tert-Butylbenzene ND U 0.50 1 06/06/03 06/09/03 1,2,4-Trimethylbenzene ND U 0.50 1 06/06/03 06/09/03 sec-Butylbenzene ND U 0.50 1 06/06/03 06/09/03 1,3-Dichlorobenzene ND U 0.50 1 06/06/03 06/09/03 4-Isopropyltoluene ND U 0.50 1 06/06/03 06/09/03 Bromoform ND U 0.50 1 06/06/03 06/09/03 1,1,2,2-Tetrachloroethane ND U 0.50 1 06/06/03 06/09/03 1,1,2,2-Tetrachloroethane ND U 0.50 1 06/06/03 06/09/03 1,4-Dichlorobenzene ND U 0.50 1 06/06/03 06/09/03 1,4-Dichlorobenzene ND U 0.50 1 06/06/03 06/09/03 1,2-Dichlorobenzene ND U 0.50 1 06/06/03 06/09/03 1,2-Dichlorobenzene ND U 0.50 1 06/06/03 06/09/03 1,2-Dichlorobenzene ND U 0.50 1 06/06/03 06/09/03 1,2-Dibromo-3-chloropropane ND U 5.0 1 06/06/03 06/09/03 1,2-Trichlorobenzene ND U 0.50 1 06/06/03 06/09/03 1,2-Trichlorobenzene ND U 0.50 1 06/06/03 06/09/03					1	06/06/03	06/09/03	
4-Chlorotoluene ND U 0.50 1 06/06/03 06/09/03 1,3,5-Trimethylbenzene ND U 0.50 1 06/06/03 06/09/03 tert-Butylbenzene ND U 0.50 1 06/06/03 06/09/03 1,2,4-Trimethylbenzene ND U 0.50 1 06/06/03 06/09/03 sec-Butylbenzene ND U 0.50 1 06/06/03 06/09/03 1,3-Dichlorobenzene ND U 0.50 1 06/06/03 06/09/03 4-Isopropyltoluene ND U 0.50 1 06/06/03 06/09/03 Bromoform ND U 0.50 1 06/06/03 06/09/03 1,1,2,2-Tetrachloroethane ND U 1.0 1 06/06/03 06/09/03 1,4-Dichlorobenzene ND U 0.50 1 06/06/03 06/09/03 1,2-Dichlorobenzene ND U 0.50 1 06/06/03 06/09/03 1,2-Dibromo-3-chloropropane ND U 5.0 1 06/06/03 06/09/03				0.50	1	06/06/03	06/09/03	
1,3,5-Trimethylbenzene ND U 0.50 1 06/06/03 06/09/03 tert-Butylbenzene ND U 0.50 1 06/06/03 06/09/03 1,2,4-Trimethylbenzene ND U 0.50 1 06/06/03 06/09/03 sec-Butylbenzene ND U 0.50 1 06/06/03 06/09/03 1,3-Dichlorobenzene ND U 0.50 1 06/06/03 06/09/03 4-Isopropyltoluene ND U 0.50 1 06/06/03 06/09/03 Bromoform ND U 0.50 1 06/06/03 06/09/03 1,1,2,2-Tetrachloroethane ND U 0.50 1 06/06/03 06/09/03 1,4-Dichlorobenzene ND U 0.50 1 06/06/03 06/09/03 1,2-Dichlorobenzene ND U 0.50 1 06/06/03 06/09/03 1,2-Dibromo-3-chloropropane ND U 5.0 1 06/06/03 <		ND	U	0.50	1	06/06/03	06/09/03	
tert-Butylbenzene ND U 0.50 l 06/06/03 06/09/03 1,2,4-Trimethylbenzene ND U 0.50 l 06/06/03 06/09/03 sec-Butylbenzene ND U 0.50 l 06/06/03 06/09/03 1,3-Dichlorobenzene ND U 0.50 l 06/06/03 06/09/03 4-Isopropyltoluene ND U 0.50 l 06/06/03 06/09/03 Bromoform ND U 0.50 l 06/06/03 06/09/03 1,1,2,2-Tetrachloroethane ND U 1.0 l 06/06/03 06/09/03 1,4-Dichlorobenzene ND U 0.50 l 06/06/03 06/09/03 1,4-Dichlorobenzene ND U 0.50 l 06/06/03 06/09/03 1,2-Dichlorobenzene ND U 0.50 l 06/06/03 06/09/03 1,2-Dichlorobenzene ND U 0.50 l 06/06/03 06/09/03 1,2-Dibromo-3-chloropropane ND U 0.50 l 06/06/03 06/09/03 1,2-Dibromo-3-chloropropane ND U 0.50 l 06/06/03 06/09/03 1,2-Trichlorobenzene ND U 0.50 l 06/06/03 06/09/03 1,2,4-Trichlorobenzene ND U 0.50 l 06/06/03 06/09/03 1,2,4-Trichlorobenzene ND U 0.50 l 06/06/03 06/09/03		ND	U	0.50	1	06/06/03	06/09/03	
1,2,4-Trimethylbenzene ND U 0.50 1 06/06/03 06/09/03 sec-Butylbenzene ND U 0.50 1 06/06/03 06/09/03 1,3-Dichlorobenzene ND U 0.50 1 06/06/03 06/09/03 4-Isopropyltoluene ND U 0.50 1 06/06/03 06/09/03 Bromoform ND U 0.50 1 06/06/03 06/09/03 1,1,2,2-Tetrachloroethane ND U 1.0 1 06/06/03 06/09/03 1,4-Dichlorobenzene ND U 0.50 1 06/06/03 06/09/03 1,2-Dichlorobenzene ND U 0.50 1 06/06/03 06/09/03 n-Butylbenzene ND U 0.50 1 06/06/03 06/09/03 1,2-Dibromo-3-chloropropane ND U 5.0 1 06/06/03 06/09/03 1,2,4-Trichlorobenzene ND U 0.50 1 06/06/03 06/09/03 1,2,4-Trichlorobenzene ND U 0.50 1 06/06/03 06/09/03		ND	U	0.50	1	06/06/03	06/09/03	
sec-Butylbenzene ND U 0.50 1 06/06/03 06/09/03 1,3-Dichlorobenzene ND U 0.50 1 06/06/03 06/09/03 4-Isopropyltoluene ND U 0.50 1 06/06/03 06/09/03 Bromoform ND U 0.50 1 06/06/03 06/09/03 1,1,2,2-Tetrachloroethane ND U 1.0 1 06/06/03 06/09/03 1,4-Dichlorobenzene ND U 0.50 1 06/06/03 06/09/03 1,2-Dichlorobenzene ND U 0.50 1 06/06/03 06/09/03 n-Butylbenzene ND U 0.50 1 06/06/03 06/09/03 1,2-Dibromo-3-chloropropane ND U 0.50 1 06/06/03 06/09/03 1,2,4-Trichlorobenzene ND U 0.50 1 06/06/03 06/09/03 1,2,4-Trichlorobenzene ND U 0.50 1 06/06/03 06/09/03		ND	U	0.50	1	06/06/03	06/09/03	
1,3-Dichlorobenzene ND U 0.50 1 06/06/03 06/09/03 4-Isopropyltoluene ND U 0.50 1 06/06/03 06/09/03 Bromoform ND U 0.50 1 06/06/03 06/09/03 1,1,2,2-Tetrachloroethane ND U 1.0 1 06/06/03 06/09/03 1,4-Dichlorobenzene ND U 0.50 1 06/06/03 06/09/03 1,2-Dichlorobenzene ND U 0.50 1 06/06/03 06/09/03 n-Butylbenzene ND U 0.50 1 06/06/03 06/09/03 1,2-Dibromo-3-chloropropane ND U 5.0 1 06/06/03 06/09/03 1,2,4-Trichlorobenzene ND U 0.50 1 06/06/03 06/09/03				0.50	1	06/06/03	06/09/03	
4-Isopropyltoluene ND U 0.50 1 06/06/03 06/09/03 Bromoform ND U 0.50 1 06/06/03 06/09/03 1,1,2,2-Tetrachloroethane ND U 1.0 1 06/06/03 06/09/03 1,4-Dichlorobenzene ND U 0.50 1 06/06/03 06/09/03 1,2-Dichlorobenzene ND U 0.50 1 06/06/03 06/09/03 n-Butylbenzene ND U 0.50 1 06/06/03 06/09/03 1,2-Dibromo-3-chloropropane ND U 5.0 1 06/06/03 06/09/03 1,2,4-Trichlorobenzene ND U 0.50 1 06/06/03 06/09/03				0.50	1	06/06/03	06/09/03	
ND U 0.50 1 06/06/03 06/09/03 1,1,2,2-Tetrachloroethane ND U 1.0 1 06/06/03 06/09/03 1,4-Dichlorobenzene ND U 0.50 1 06/06/03 06/09/03 1,2-Dichlorobenzene ND U 0.50 1 06/06/03 06/09/03 1,2-Dibromo-3-chloropropane ND U 0.50 1 06/06/03 06/09/03 1,2,4-Trichlorobenzene ND U 0.50 1 06/06/03		ND	U	0.50	1	06/06/03	06/09/03	
1,1,2,2-Tetrachloroethane ND U 1.0 1 06/06/03 06/09/03 1,4-Dichlorobenzene ND U 0.50 1 06/06/03 06/09/03 1,2-Dichlorobenzene ND U 0.50 1 06/06/03 06/09/03 n-Butylbenzene ND U 0.50 1 06/06/03 06/09/03 1,2-Dibromo-3-chloropropane ND U 5.0 1 06/06/03 06/09/03 1,2,4-Trichlorobenzene ND U 0.50 1 06/06/03 06/09/03					1	06/06/03	06/09/03	
1,4-Dichlorobenzene ND U 0.50 1 06/06/03 06/09/03 1,2-Dichlorobenzene ND U 0.50 1 06/06/03 06/09/03 n-Butylbenzene ND U 0.50 1 06/06/03 06/09/03 1,2-Dibromo-3-chloropropane ND U 5.0 1 06/06/03 06/09/03 1,2,4-Trichlorobenzene ND U 0.50 1 06/06/03 06/09/03				1.0	1	06/06/03	06/09/03	
1,2-Dichlorobenzene ND U 0.50 1 06/06/03 06/09/03 n-Butylbenzene ND U 0.50 1 06/06/03 06/09/03 1,2-Dibromo-3-chloropropane ND U 5.0 1 06/06/03 06/09/03 1,2,4-Trichlorobenzene ND U 0.50 1 06/06/03 06/09/03		ND	U	0.50	1	06/06/03	06/09/03	
n-Butylbenzene ND U 0.50 1 06/06/03 06/09/03 1,2-Dibromo-3-chloropropane ND U 5.0 1 06/06/03 06/09/03 1,2,4-Trichlorobenzene ND U 0.50 1 06/06/03 06/09/03	*			0.50	1	06/06/03	06/09/03	
1,2-Dibromo-3-chloropropane ND U 5.0 1 06/06/03 06/09/03 1,2,4-Trichlorobenzene ND U 0.50 1 06/06/03 06/09/03	,				1	06/06/03	06/09/03	
1,2,4-Trichlorobenzene ND U 0.50 1 06/06/03 06/09/03				5.0	1	06/06/03	06/09/03	
1,2,1	- "				1	06/06/03		
	Hexachlorobutadiene			1.0	1	06/06/03	06/09/03	

Comments:

000019

Printed: 06/11/2003 13:23:02 L:\STEALTH\CRYSTAL.RPT\Formlm.rpt

Merged

Form 1A - Organic

Page 2 of 3

SuperSet Reference: RR3428

Analytical Results

Client: Project:

BE&K Terranext WVB/#03103154

Sample Matrix:

Water

Service Request: X2300458

Date Collected: 05/28/2003

Date Received: 05/28/2003

Volatile Organic Compounds

Sample Name:

AVB120-0100-01130

Lab Code:

X2300458-004

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

			Dilution	Date	Date	
Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed	Arizona Qualifier
Naphthalene	ND U	3.0	1	06/06/03	06/09/03	
1,2,3-Trichlorobenzene	ND U	0.50	1	06/06/03	06/09/03	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Arizona Qualifier	
Dibromofluoromethane	112	84-113	06/09/03		
Toluene-d8	123	68-126	06/09/03		
4-Bromofluorobenzene	112	79-113	06/09/03		

Comments:

Printed: 06/11/2003 13:23:02

Printed: 06/11/2003 13:23:02 L:\STEALTH\CRYSTAL.RPT\Form\m.rpt

000626 Merged

Form 1A - Organic

Page 3 of 3

SuperSet Reference:

RR3428

Analytical Results

Client: Project: BE&K Terranext WVB/#03103154

Sample Matrix:

Water

Service Request: X2300458

Date Collected: 05/28/2003

Date Collected: 05/28/2003 **Date Received:** 05/28/2003

Volatile Organic Compounds

Sample Name:

AVB121-0100-01122

Lab Code:

X2300458-005

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

				Dilution	Date	Date	
Analyte Name	Result	Q	MRL	Factor	Extracted		Arizona Qualifier
Dichlorodifluoromethane	ND		3.0	1	06/06/03	06/09/03	
Chloromethane	ND		2.0	1	06/06/03	06/09/03	
Vinyl Chloride	ND	U	1.0	1	06/06/03	06/09/03	
Bromomethane	ND	U	1.0	1	06/06/03	06/09/03	
Chloroethane	ND	-	1.0	1	06/06/03	06/09/03	
Trichlorofluoromethane	ND	U	1.0	1	06/06/03	06/09/03	
1,1,2-Trichlorotrifluoroethane	ND	U	1.0	1	06/06/03	06/09/03	
1,1-Dichloroethene	ND	U	1.0	1	06/06/03		Ll
Acetone	ND	U	10	1	06/06/03	06/09/03	
Iodomethane	ND	U	2.0	1	06/06/03	06/09/03	
Carbon Disulfide	ND	U	2.0	1	06/06/03	06/09/03	
Methylene Chloride	ND	U	1.0	1	06/06/03	06/09/03	
Methyl tert-Butyl Ether	ND	U	1.0	1	06/06/03	06/09/03	
trans-1,2-Dichloroethene	ND	U	0.50	1	06/06/03	06/09/03	
1,1-Dichloroethane	ND	U	0.50	1	06/06/03	06/09/03	
Vinyl Acetate	ND	U	3.0	1	06/06/03	06/09/03	
2,2-Dichloropropane	ND	U	2.0	1	06/06/03	06/09/03	
2-Butanone (MEK)	ND	U	8.0	1	06/06/03	06/09/03	
cis-1,2-Dichloroethene	ND	U	0.50	1	06/06/03	06/09/03	
Bromochloromethane	ND	U	0.50	1	06/06/03	06/09/03	
Chloroform	ND	U	1.0	1	06/06/03	06/09/03	
1,1,1-Trichloroethane	ND	U	0.50	1	06/06/03	06/09/03	
Carbon Tetrachloride	ND	U	0.50	1	06/06/03	06/09/03	LI
1,1-Dichloropropene	ND	U	0.50	1	06/06/03	06/09/03	Ll
Benzene	ND	U	0.50	1	06/06/03	06/09/03	
1,2-Dichloroethane	ND	U	0.50	1	06/06/03	06/09/03	
Trichloroethene	ND	U	0.50	1	06/06/03	06/09/03	L1
1,2-Dichloropropane	ND	U	0.50	1	06/06/03	06/09/03	
Dibromomethane	ND	U	0.50	1	06/06/03	06/09/03	
Bromodichloromethane	ND	U	0.50	1	06/06/03	06/09/03	
cis-1,3-Dichloropropene	ND	U	0.50	1	06/06/03	06/09/03	
4-Methyl-2-pentanone (MIBK)	ND		8.0	1	06/06/03	06/09/03	
Toluene	ND	U	0.50	11	06/06/03	06/09/03	

Comments:

000021

Printed: 06/11/2003 13:23:12 L:\STEALTH\CRYSTAL.RPT\Form\Im.rpt

Merged

Form 1A - Organic

Page 1 of 3

SuperSet Reference: RR3428

Analytical Results

Client: Project:

BE&K Terranext WVB/#03103154

Sample Matrix:

Water

Service Request: X2300458

Date Collected: 05/28/2003

Date Received: 05/28/2003

Volatile Organic Compounds

Sample Name:

AVB121-0100-01122

Lab Code:

X2300458-005

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

		_		Dilution	Date	Date	0.10
Analyte Name	Result		MRL	Factor	Extracted		Arizona Qualifier
trans-1,3-Dichloropropene	ND		1.0	1	06/06/03	06/09/03	
1,1,2-Trichloroethane	ND		1.0	1	06/06/03	06/09/03	
Tetrachloroethene	ND	U	0.50	1	06/06/03	06/09/03	
2-Hexanone	ND		5.0	1	06/06/03	06/09/03	
1,3-Dichloropropane	ND		1.0	1	06/06/03	06/09/03	
Dibromochloromethane	ND	U	0.50	1 .	06/06/03	06/09/03	
1,2-Dibromoethane	ND	U	0.50	l	06/06/03	06/09/03	
Chlorobenzene	ND	U	0.50	1	06/06/03	06/09/03	
1,1,1,2-Tetrachloroethane	ND	U	0.50	1	06/06/03	06/09/03	
Ethylbenzene	ND	U	0.50	1	06/06/03	06/09/03	
m,p-Xylenes	ND	U	1.0	1	06/06/03	06/09/03	
o-Xylene	ND	U	0.50	1	06/06/03	06/09/03	
Styrene	ND	U	0.50	1	06/06/03	06/09/03	
Isopropylbenzene	ND	U	0.50	1	06/06/03	06/09/03	
Bromobenzene	ND	U	0.50	1	06/06/03	06/09/03	
1,2,3-Trichloropropane	ND	U	1.0	1	06/06/03	06/09/03	
n-Propylbenzene	ND	U	0.50	1	06/06/03	06/09/03	
2-Chlorotoluene	ND	U	0.50	1	06/06/03	06/09/03	
4-Chlorotoluene	ND	U	0.50	1	06/06/03	06/09/03	
1,3,5-Trimethylbenzene	ND	U	0.50	1	06/06/03	06/09/03	
tert-Butylbenzene	ND	U	0.50	1	06/06/03	06/09/03	
1,2,4-Trimethylbenzene	ND	U	0.50	1	06/06/03	06/09/03	
sec-Butylbenzene	ND	U	0.50	1	06/06/03	06/09/03	
1,3-Dichlorobenzene	ND	U	0.50	1	06/06/03	06/09/03	
4-Isopropyltoluene	ND	U	0.50	1	06/06/03	06/09/03	
Bromoform	ND	U	0.50	1	06/06/03	06/09/03	
1,1,2,2-Tetrachloroethane	ND	U	1.0	1	06/06/03	06/09/03	
1,4-Dichlorobenzene	ND	U	0.50	1	06/06/03	06/09/03	
1,2-Dichlorobenzene	ND	U	0.50	l	06/06/03	06/09/03	
n-Butylbenzene	ND	U	0.50	1	06/06/03	06/09/03	
1,2-Dibromo-3-chloropropane	ND	U	5.0	1	06/06/03	06/09/03	
1,2,4-Trichlorobenzene	ND	U	0.50	1	06/06/03	06/09/03	
Hexachlorobutadiene	ND	U	1.0	<u>l</u>	06/06/03	06/09/03	

Comments:

Printed: 06/11/2003 13:23:12 L:\STEALTH\CRYSTAL.RPT\Formlm.rpt

000022

Merged

Form 1A - Organic

Page 2 of 3
SuperSet Reference: RR3428

Analytical Results

Client: Project:

BE&K Terranext WVB/#03103154

Sample Matrix:

Water

Service Request: X2300458

Date Collected: 05/28/2003

Date Received: 05/28/2003

Volatile Organic Compounds

Sample Name:

AVB121-0100-01122

Lab Code:

X2300458-005

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L

Basis: NA

Level: Low

			Dilution	Date	Date	
Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed	Arizona Qualifier
Naphthalene	ND U	3.0	1	06/06/03	06/09/03	
1,2,3-Trichlorobenzene	ND U	0.50	1	06/06/03	06/09/03	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Arizona Qualifier	
Dibromofluoromethane	114	84-113	06/09/03	S1	
Toluene-d8	121	68-126	06/09/03		
4-Bromofluorobenzene	114	79-113	06/09/03	S1	

Comments:

Printed: 06/11/2003 13:23:12 L:\STEALTH\CRYSTAL.RPT\Form\m.rpt

000023

Form 1A - Organic

Page 3 of RR3428

SuperSet Reference:

Analytical Results

Client: Project: BE&K Terranext WVB/#03103154

Sample Matrix:

Water

Service Request: X2300458

Date Collected: 05/28/2003 **Date Received:** 05/28/2003

Volatile Organic Compounds

Sample Name: Lab Code:

AVB121-0104-1000 X2300458-006

Extraction Method: EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

Analyte Name Result Q MRL Factor Extracted Analyzed Arizona Qualifier Dichlorodifluoromethane ND U 3.0 1 06/06/03 06/09/03 Chloromethane ND U 1.0 1 06/06/03 06/09/03 Vinyl Chloride ND U 1.0 1 06/06/03 06/09/03 Bromomethane ND U 1.0 1 06/06/03 06/09/03 Chloroethane ND U 1.0 1 06/06/03 06/09/03 Trichlorofluoromethane ND U 1.0 1 06/06/03 06/09/03 Trichlorotifluoromethane ND U 1.0 1 06/06/03 06/09/03 1,1,2-Trichlorotifluoromethane ND U 1.0 1 06/06/03 06/09/03 1,1,2-Trichlorotifluoromethane ND U 1.0 1 06/06/03 06/09/03 Icathon Disulfide ND U 2.0 1 06/06/03 06/09/03 Methyle tert-Butyl Ether ND U 0.50 1 06					Dilution	Date	Date	
Dichlorodifluoromethane	Analyte Name	Result	Q	MRL	Factor	Extracted	Analyzed	Arizona Qualifier
Chloromethane		ND	U	3.0	1			
No		ND	U	2.0	1			
Chloroethane ND U 1.0	Vinyl Chloride	ND	U	1.0	1	06/06/03	06/09/03	
Chloroethane	Bromomethane	ND	U	1.0	1	06/06/03		
Trichlorofluoromethane		ND	U	1.0	1			
1,1-Dichloroethene		ND	U	1.0	1	06/06/03	06/09/03	
Acetone	1,1,2-Trichlorotrifluoroethane	ND	U	1.0	1			
Acetone	• •	ND	U	1.0	1	06/06/03	06/09/03	Ll
Carbon Disulfide		ND	U	10	1	06/06/03	06/09/03	
Carbon Disulfide ND U 2.0 1 06/06/03 06/09/03 Methylene Chloride ND U 1.0 1 06/06/03 06/09/03 Methyl tert-Butyl Ether ND U 1.0 1 06/06/03 06/09/03 Itans-1,2-Dichloroethene ND U 0.50 1 06/06/03 06/09/03 1,1-Dichloroethane ND U 0.50 1 06/06/03 06/09/03 Vinyl Acetate ND U 3.0 1 06/06/03 06/09/03 2,2-Dichloropropane ND U 2.0 1 06/06/03 06/09/03 2-Butanone (MEK) ND U 8.0 1 06/06/03 06/09/03 2-Butanone (MEK) ND U 8.0 1 06/06/03 06/09/03 2-Butanone (MEK) ND U 0.50 1 06/06/03 06/09/03 2-Butanone (MEK) ND U 0.50 1 06/06/03 06/09/03 3-Chlorofrem ND U 0.50 1 06/06/03 06/09/03 <th< td=""><td>Iodomethane</td><td>ND</td><td>U</td><td>2.0</td><td>1</td><td>06/06/03</td><td>06/09/03</td><td></td></th<>	Iodomethane	ND	U	2.0	1	06/06/03	06/09/03	
Methylene Chloride ND U 1.0 1 06/06/03 06/09/03 Methyl tert-Butyl Ether ND U 1.0 1 06/06/03 06/09/03 trans-1,2-Dichloroethene ND U 0.50 1 06/06/03 06/09/03 1,1-Dichloroethane ND U 0.50 1 06/06/03 06/09/03 Vinyl Acetate ND U 3.0 1 06/06/03 06/09/03 2,2-Dichloropropane ND U 2.0 1 06/06/03 06/09/03 2-Butanone (MEK) ND U 8.0 1 06/06/03 06/09/03 2-Butanone (MEK) ND U 8.0 1 06/06/03 06/09/03 2-Butanone (MEK) ND U 0.50 1 06/06/03 06/09/03 cis-1,2-Dichloroethene ND U 0.50 1 06/06/03 06/09/03 1,1,1-Trichloroethane ND U 0.50 1 06/06/03 06/09/03<		ND	U	2.0	1	06/06/03	06/09/03	
Methyl tert-Butyl Ether ND U 1.0 1 06/06/03 06/09/03 trans-1,2-Dichloroethene ND U 0.50 1 06/06/03 06/09/03 1,1-Dichloroethane ND U 0.50 1 06/06/03 06/09/03 Vinyl Acetate ND U 3.0 1 06/06/03 06/09/03 2,2-Dichloropropane ND U 2.0 1 06/06/03 06/09/03 2-Butanone (MEK) ND U 8.0 1 06/06/03 06/09/03 2-Butanone (MEK) ND U 8.0 1 06/06/03 06/09/03 2-Butanone (MEK) ND U 0.50 1 06/06/03 06/09/03 2-Butanone (MEK) ND U 0.50 1 06/06/03 06/09/03 Cis-1,2-Dichloroethane ND U 0.50 1 06/06/03 06/09/03 1,2-Dichloroethane ND U 0.50 1 06/06/03 06/09/03		ND	U	1.0	1	06/06/03	06/09/03	
trans-1,2-Dichloroethene ND U 0.50 1 06/06/03 06/09/03 1,1-Dichloroethane ND U 0.50 1 06/06/03 06/09/03 Vinyl Acetate ND U 3.0 1 06/06/03 06/09/03 2,2-Dichloropropane ND U 2.0 1 06/06/03 06/09/03 2-Butanone (MEK) ND U 8.0 1 06/06/03 06/09/03 2-Butanone (MEK) ND U 0.50 1 06/06/03 06/09/03 2-Butanone (MEK) ND U 0.50 1 06/06/03 06/09/03 2-Butanone (MEK) ND U 0.50 1 06/06/03 06/09/03 Bromechloridenee ND U 0.50 1 06/06/03 06/09/03 1,1,1-Trichloroethane ND U 0.50 1 06/06/03 06/09/03 1,1-Dichloropropene ND U 0.50 1 06/06/03 06/09/03 L1 1,2-Dichloroethane ND U 0.50 1 06/06/03 06/09/03		ND	U	1.0	1	06/06/03	06/09/03	
1,1-Dichloroethane	-	ND	U	0.50	1	06/06/03		
Vinyl Acetate ND U 3.0 1 06/06/03 06/09/03 2,2-Dichloropropane ND U 2.0 1 06/06/03 06/09/03 2-Butanone (MEK) ND U 8.0 1 06/06/03 06/09/03 2-Butanone (MEK) ND U 0.50 1 06/06/03 06/09/03 cis-1,2-Dichloroethane ND U 0.50 1 06/06/03 06/09/03 Bromochloromethane ND U 0.50 1 06/06/03 06/09/03 Chloroform ND U 0.50 1 06/06/03 06/09/03 Chloroform ND U 0.50 1 06/06/03 06/09/03 1,1,1-Trichloroethane ND U 0.50 1 06/06/03 06/09/03 Carbon Tetrachloride ND U 0.50 1 06/06/03 06/09/03 L1 1,1-Dichloropropene ND U 0.50 1 06/06/03 06/09/03	,	ND	Ü	0.50	1	06/06/03	06/09/03	
2,2-Dichloropropane ND U 2.0 1 06/06/03 06/09/03 2-Butanone (MEK) ND U 8.0 1 06/06/03 06/09/03 cis-1,2-Dichloroethene ND U 0.50 1 06/06/03 06/09/03 Bromochloromethane ND U 0.50 1 06/06/03 06/09/03 Chloroform ND U 1.0 1 06/06/03 06/09/03 1,1,1-Trichloroethane ND U 0.50 1 06/06/03 06/09/03 Carbon Tetrachloride ND U 0.50 1 06/06/03 06/09/03 L1 1,1-Dichloropropene ND U 0.50 1 06/06/03 06/09/03 L1 Benzene ND U 0.50 1 06/06/03 06/09/03 L1 1,2-Dichloroethane ND U 0.50 1 06/06/03 06/09/03 1,2-Dichloropropane ND U 0.50 1 06/06/03 06/09/03 1,2-Dichloropropane ND U 0.50 1 06/06		ND	U	3.0	1	06/06/03	06/09/03	
2-Butanone (MEK) ND U 8.0 1 06/06/03 06/09/03 cis-1,2-Dichloroethene ND U 0.50 1 06/06/03 06/09/03 Bromochloromethane ND U 0.50 1 06/06/03 06/09/03 Chloroform ND U 1.0 1 06/06/03 06/09/03 1,1,1-Trichloroethane ND U 0.50 1 06/06/03 06/09/03 Carbon Tetrachloride ND U 0.50 1 06/06/03 06/09/03 L1 1,1-Dichloropropene ND U 0.50 1 06/06/03 06/09/03 L1 Benzene ND U 0.50 1 06/06/03 06/09/03 L1 1,2-Dichloroethane ND U 0.50 1 06/06/03 06/09/03 Trichloroethane ND U 0.50 1 06/06/03 06/09/03 1,2-Dichloropropane ND U 0.50 1 06/06/03 06/09/03 Dibromomethane ND U 0.50 1 06/06/03	•	ND	U	2.0	1	06/06/03	06/09/03	
cis-1,2-Dichloroethene ND U 0.50 1 06/06/03 06/09/03 Bromochloromethane ND U 0.50 1 06/06/03 06/09/03 Chloroform ND U 1.0 1 06/06/03 06/09/03 1,1,1-Trichloroethane ND U 0.50 1 06/06/03 06/09/03 Carbon Tetrachloride ND U 0.50 1 06/06/03 06/09/03 L1 1,1-Dichloropropene ND U 0.50 1 06/06/03 06/09/03 L1 1,2-Dichloroethane ND U 0.50 1 06/06/03 06/09/03 L1 1,2-Dichloroethane ND U 0.50 1 06/06/03 06/09/03 L1 1,2-Dichloropropane ND U 0.50 1 06/06/03 06/09/03 L1 1,2-Dichloropropane ND U 0.50 1 06/06/03 06/09/03 L1 1,2-Dichloropropene ND U 0.50 1 06/06/03 06/09/03 Bromodichloromethane	, .	ND	U	8.0	1	06/06/03	06/09/03	
Bromochloromethane ND U 0.50 1 06/06/03 06/09/03 Chloroform ND U 1.0 1 06/06/03 06/09/03 1,1,1-Trichloroethane ND U 0.50 1 06/06/03 06/09/03 L1 Carbon Tetrachloride ND U 0.50 1 06/06/03 06/09/03 L1 1,1-Dichloropropene ND U 0.50 1 06/06/03 06/09/03 L1 Benzene ND U 0.50 1 06/06/03 06/09/03 L1 1,2-Dichloroethane ND U 0.50 1 06/06/03 06/09/03 L1 1,2-Dichloropropane ND U 0.50 1 06/06/03 06/09/03 L1 1,2-Dichloropropane ND U 0.50 1 06/06/03 06/09/03 L1 Dibromomethane ND U 0.50 1 06/06/03 06/09/03 D6/09/03 Bromodichloromethane ND U 0.50 1 06/06/03 06/09/03 4		ND	U	0.50	1	06/06/03	06/09/03	
Chloroform ND U 1.0 1 06/06/03 06/09/03 1,1,1-Trichloroethane ND U 0.50 1 06/06/03 06/09/03 Carbon Tetrachloride ND U 0.50 1 06/06/03 06/09/03 L1 1,1-Dichloropropene ND U 0.50 1 06/06/03 06/09/03 L1 Benzene ND U 0.50 1 06/06/03 06/09/03 L1 1,2-Dichloroethane ND U 0.50 1 06/06/03 06/09/03 L1 1,2-Dichloropropane ND U 0.50 1 06/06/03 06/09/03 L1 1,2-Dichloropropane ND U 0.50 1 06/06/03 06/09/03 L1 1,2-Dichloropropane ND U 0.50 1 06/06/03 06/09/03 L1 Dibromomethane ND U 0.50 1 06/06/03 06/09/03 D0/09/03 eis-1,3-Dichloropropene ND U 0.50 1 06/06/03 06/09/03 D0/09/03	· · · · · · · · · · · · · · · · · · ·	ND	U	0.50	1	06/06/03		
Carbon Tetrachloride ND U 0.50 1 06/06/03 06/09/03 L1 1,1-Dichloropropene ND U 0.50 1 06/06/03 06/09/03 L1 Benzene ND U 0.50 1 06/06/03 06/09/03 L1 Benzene ND U 0.50 1 06/06/03 06/09/03 1,2-Dichloroethane ND U 0.50 1 06/06/03 06/09/03 Trichloroethene ND U 0.50 1 06/06/03 06/09/03 L1 1,2-Dichloropropane ND U 0.50 1 06/06/03 06/09/03 Dibromomethane ND U 0.50 1 06/06/03 06/09/03 Dibromomethane ND U 0.50 1 06/06/03 06/09/03 Bromodichloromethane ND U 0.50 1 06/06/03 06/09/03 Bromodichloropropene ND U 0.50 1 06/06/03 06/09/03 Bromodichloropropene ND U 0.50 1 06/06/03 06/09/03 Bromodichloropropene ND U 0.50 1 06/06/03 06/09/03 Cis-1,3-Dichloropropene		ND	U	1.0	1	06/06/03	06/09/03	
Carbon Tetrachloride ND U 0.50 1 06/06/03 06/09/03 L1 1,1-Dichloropropene ND U 0.50 1 06/06/03 06/09/03 L1 Benzene ND U 0.50 1 06/06/03 06/09/03 1,2-Dichloroethane ND U 0.50 1 06/06/03 06/09/03 Trichloroethene ND U 0.50 1 06/06/03 06/09/03 1,2-Dichloropropane ND U 0.50 1 06/06/03 06/09/03 Dibromomethane ND U 0.50 1 06/06/03 06/09/03 Bromodichloromethane ND U 0.50 1 06/06/03 06/09/03 cis-1,3-Dichloropropene ND U 0.50 1 06/06/03 06/09/03 4-Methyl-2-pentanone (MIBK) ND U 8.0 1 06/06/03 06/09/03	1 1 1-Trichloroethane	ND	U	0.50	1	06/06/03	06/09/03	
1,1-Dichloropropene ND U 0.50 1 06/06/03 06/09/03 L1				0.50	1	06/06/03		
Benzene		ND	U	0.50	1	06/06/03	06/09/03	L1
1,2-Dichloroethane ND U 0.50 1 06/06/03 06/09/03 Trichloroethene ND U 0.50 1 06/06/03 06/09/03 L1 1,2-Dichloropropane ND U 0.50 1 06/06/03 06/09/03 Dibromomethane ND U 0.50 1 06/06/03 06/09/03 Bromodichloromethane ND U 0.50 1 06/06/03 06/09/03 cis-1,3-Dichloropropene ND U 0.50 1 06/06/03 06/09/03 4-Methyl-2-pentanone (MIBK) ND U 8.0 1 06/06/03 06/09/03		ND	U	0.50	1	06/06/03		
Trichloroethene ND U 0.50 1 06/06/03 06/09/03 L1 1,2-Dichloropropane ND U 0.50 1 06/06/03 06/09/03 Dibromomethane ND U 0.50 1 06/06/03 06/09/03 Bromodichloromethane ND U 0.50 1 06/06/03 06/09/03 cis-1,3-Dichloropropene ND U 0.50 1 06/06/03 06/09/03 4-Methyl-2-pentanone (MIBK) ND U 8.0 1 06/06/03 06/09/03				0.50	1	06/06/03		
Dibromomethane	,	ND	U	0.50	. 1	06/06/03	06/09/03	Ll
Dibromomethane ND U 0.50 1 06/06/03 06/09/03 Bromodichloromethane ND U 0.50 1 06/06/03 06/09/03 cis-1,3-Dichloropropene ND U 0.50 1 06/06/03 06/09/03 4-Methyl-2-pentanone (MIBK) ND U 8.0 1 06/06/03 06/09/03	1 2-Dichloropropane	ND	U	0.50	1	06/06/03	06/09/03	
Bromodichloromethane ND U 0.50 1 06/06/03 06/09/03 cis-1,3-Dichloropropene ND U 0.50 1 06/06/03 06/09/03 4-Methyl-2-pentanone (MIBK) ND U 8.0 1 06/06/03 06/09/03		ND	U	0.50	1	06/06/03		
4-Methyl-2-pentanone (MIBK) ND U 8.0 1 06/06/03 06/09/03		ND	U	0.50	1	06/06/03	06/09/03	
4-Methyl-2-pentanone (MIBK) ND U 8.0 1 06/06/03 06/09/03	cis-1.3-Dichloropropene	ND	U	0.50	1	06/06/03		
1 00/00/02 06/00/02				8.0	1			
	• •	· ND	U.	0.50	1	06/06/03	06/09/03	

Comments:

000024

Printed: 06/11/2003 13:23:22 L:\STEALTH\CRYSTAL.RPT\Form1m.rpt

Merged

Form 1A - Organic

1 of 3 Page

SuperSet Reference: RR3428

Analytical Results

Client: Project: BE&K Terranext WVB/#03103154

Sample Matrix:

Water

Service Request: X2300458

Date Collected: 05/28/2003

Date Collected: 05/28/2003 **Date Received:** 05/28/2003

Volatile Organic Compounds

Sample Name:

AVB121-0104-1000

Lab Code:

X2300458-006

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

Analyte Name	Result	o	MRL	Dilution Factor	Date Extracted	Date Analyzed	Arizona Qualifier
trans-1,3-Dichloropropene	ND		1.0	1	06/06/03	06/09/03	
1,1,2-Trichloroethane	ND		1.0	1	06/06/03	06/09/03	
Tetrachloroethene	ND		0.50	1	06/06/03	06/09/03	
2-Hexanone	ND	U	5.0	1	06/06/03	06/09/03	
1,3-Dichloropropane	ND	U	1.0	1	06/06/03	06/09/03	
Dibromochloromethane	ND	U	0.50	1	06/06/03	06/09/03	
1,2-Dibromoethane	ND	U	0.50	1	06/06/03	06/09/03	
Chlorobenzene	ND	U	0.50	1	06/06/03	06/09/03	
1,1,1,2-Tetrachloroethane	ND	U	0.50	1	06/06/03	06/09/03	
Ethylbenzene	ND	U	0.50	1	06/06/03	06/09/03	
m,p-Xylenes	ND	U	1.0	1	06/06/03	06/09/03	
o-Xylene	ND	U	0.50	1	06/06/03	06/09/03	
Styrene	ND	U	0.50	1	06/06/03	06/09/03	
Isopropylbenzene	ND	U	0.50	1	06/06/03	06/09/03	
Bromobenzene	ND	U	0.50	1	06/06/03	06/09/03	
1,2,3-Trichloropropane	ND	U	1.0	1	06/06/03	06/09/03	
n-Propylbenzene	ND		0.50	1	06/06/03	06/09/03	
2-Chlorotoluene	ND	U	0.50	1	06/06/03	06/09/03	
4-Chlorotoluene	ND	U	0.50	1	06/06/03	06/09/03	
1,3,5-Trimethylbenzene	ND		0.50	1	, 06/06/03	06/09/03	
tert-Butylbenzene	ND	U	0.50	1	06/06/03	06/09/03	
1,2,4-Trimethylbenzene	ND	U	0.50	1	06/06/03	06/09/03	
sec-Butylbenzene	ND	U	0.50	1	06/06/03	06/09/03	
1,3-Dichlorobenzene	ND	U	0.50	1	06/06/03	06/09/03	
4-Isopropyltoluene	ND	U	0.50	1	06/06/03	06/09/03	
Bromoform	ND	U	0.50	1	06/06/03	06/09/03	
1,1,2,2-Tetrachloroethane	ND	U	1.0	1	06/06/03	06/09/03	
1,4-Dichlorobenzene	ND	U	0.50	1	06/06/03	06/09/03	
1,2-Dichlorobenzene	ND	U	0.50	l	06/06/03	06/09/03	
n-Butylbenzene	ND	U	0.50	1	06/06/03	06/09/03	
1,2-Dibromo-3-chloropropane	ND		5.0	1	06/06/03	06/09/03	
1,2,4-Trichlorobenzene	ND		0.50	1	06/06/03	06/09/03	
Hexachlorobutadiene	ND	U	1.0	1	06/06/03	06/09/03	

Comments:

000025

Merged

Printed: 06/11/2003 13:23:22 L:\STEALTH\CRYSTAL.RPT\Form\m.rpt

Form 1A - Organic

SuperSet Reference:

Page 2 of 3

RR3428

Analytical Results

Client: Project: BE&K Terranext WVB/#03103154

Sample Matrix:

Water

Service Request: X2300458

Date Collected: 05/28/2003

Date Received: 05/28/2003

Volatile Organic Compounds

Sample Name:

AVB121-0104-1000

Lab Code:

X2300458-006

Units: ug/L Basis: NA

Extraction Method:

EPA 5030B

Level: Low

Analysis Method:

8260B

			Dilution	Date	Date	
Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed	Arizona Qualifier
Naphthalene	ND U	3.0	1	06/06/03	06/09/03	
1,2,3-Trichlorobenzene	ND U	0.50	1	06/06/03	06/09/03	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Arizona Qualifier	
Dibromofluoromethane	112	84-113	06/09/03		
Toluene-d8	120	68-126	06/09/03		
4-Bromofluorobenzene	112	79-113	06/09/03		

Comments:

Printed: 06/11/2003 13:23:22 L:\STEALTH\CRYSTAL.RPT\Form\lm.rpt

Analytical Results

Client: Project: BE&K Terranext WVB/#03103154

Sample Matrix:

Water

Service Request: X2300458 **Date Collected:** 05/28/2003

Date Received: 05/28/2003

Volatile Organic Compounds

Sample Name:

AVB121-0102-1000

Lab Code:

X2300458-007

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

				Dilution	Date	Date	
Analyte Name	Result		MRL	Factor	Extracted		Arizona Qualifier
Dichlorodifluoromethane	ND		3.0	1	06/06/03	06/09/03	
Chloromethane	ND		2.0	1	06/06/03	06/09/03	
Vinyl Chloride	ND	U	1.0	1	06/06/03	06/09/03	
Bromomethane	ND		1.0	1	06/06/03	06/09/03	
Chloroethane	ND		1.0	1	06/06/03	06/09/03	
Trichlorofluoromethane	ND	U	1.0	1	06/06/03	06/09/03	
1,1,2-Trichlorotrifluoroethane	ND		1.0	1	06/06/03	06/09/03	
1,1-Dichloroethene	ND	U	1.0	1	06/06/03	06/09/03	L1
Acetone	ND	U	10	1	06/06/03	06/09/03	
Iodomethane	ND	U	2.0	1	06/06/03	06/09/03	
Carbon Disulfide	ND	U	2.0	1	06/06/03	06/09/03	
Methylene Chloride	ND	U	1.0	1	06/06/03	06/09/03	
Methyl tert-Butyl Ether	ND	U	1.0	1	06/06/03	06/09/03	
trans-1,2-Dichloroethene	ND	U	0.50	1	06/06/03	06/09/03	
1,1-Dichloroethane	ND	U	0.50	1	06/06/03	06/09/03	
Vinyl Acetate	ND	U	3.0	1	06/06/03	06/09/03	
2,2-Dichloropropane	ND		2.0	1	06/06/03	06/09/03	
2-Butanone (MEK)	ND	U	8.0	1	06/06/03	06/09/03	
cis-1,2-Dichloroethene	ND		0.50	1	06/06/03	06/09/03	
Bromochloromethane	ND		0.50	1	06/06/03	06/09/03	
Chloroform	ND	U	1.0	1	06/06/03	06/09/03	
1,1,1-Trichloroethane	ND	U	0.50	1	06/06/03	06/09/03	
Carbon Tetrachloride	ND	U	0.50	1	06/06/03	06/09/03	L1
1,1-Dichloropropene	ND	U	0.50	1	06/06/03	06/09/03	Ll
Benzene	ND	U	0.50	1	06/06/03	06/09/03	
1,2-Dichloroethane	ND	U	0.50	1	06/06/03	06/09/03	
Trichloroethene	ND	U	0.50	1	06/06/03	06/09/03	Ll
1,2-Dichloropropane	ND	U	0.50	1	06/06/03	06/09/03	
Dibromomethane	ND	U	0.50	1	06/06/03	06/09/03	
Bromodichloromethane	ND	U	0.50	1	06/06/03	06/09/03	
cis-1,3-Dichloropropene	ND		0.50	1	06/06/03	06/09/03	
4-Methyl-2-pentanone (MIBK)	ND	U	8.0	1	06/06/03	06/09/03	
Toluene	ND	U	0.50	1	06/06/03	06/09/03	

Comments:

000027

Merged

Printed: 06/11/2003 13:23:32 L:\STEALTH\CRYSTAL.RPT\Form1m.rpt

Form 1A - Organic

Page 1 of 3

SuperSet Reference:

RR3428

Analytical Results

Client: Project:

BE&K Terranext WVB/#03103154

Sample Matrix:

Water

Service Request: X2300458

Date Collected: 05/28/2003 **Date Received:** 05/28/2003

Volatile Organic Compounds

Sample Name:

AVB121-0102-1000

Lab Code:

X2300458-007

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

			Dilution	Date	Date	
Analyte Name	Result Q	MRL	Factor	Extracted		Arizona Qualifier
trans-1,3-Dichloropropene	ND U	1.0	1	06/06/03	06/09/03	
1,1,2-Trichloroethane	ND U	1.0	1	06/06/03	06/09/03	
Tetrachloroethene	ND U	0.50	1	06/06/03	06/09/03	
2-Hexanone	ND U	5.0	1	06/06/03	06/09/03	
1,3-Dichloropropane	ND U	1.0	1	06/06/03	06/09/03	
Dibromochloromethane	ND U	0.50	1	06/06/03	06/09/03	
1,2-Dibromoethane	ND U	0.50	1	06/06/03	06/09/03	
Chlorobenzene	ND U	0.50	1	06/06/03	06/09/03	
1,1,1,2-Tetrachloroethane	ND U	0.50	1	06/06/03	06/09/03	
Ethylbenzene	ND U	0.50	1	06/06/03	06/09/03	
m,p-Xylenes	ND U	1.0	1	06/06/03	06/09/03	
o-Xylene	ND U	0.50	1	06/06/03	06/09/03	
Styrene	ND U	0.50	1	06/06/03	06/09/03	
Isopropylbenzene	ND U	0.50	1	06/06/03	06/09/03	
Bromobenzene	ND U	0.50	1	06/06/03	06/09/03	
1,2,3-Trichloropropane	ND U	1.0	1	06/06/03	06/09/03	
n-Propylbenzene	ND U	0.50	1	06/06/03	06/09/03	
2-Chlorotoluene	ND U	0.50	1	06/06/03	06/09/03	
4-Chlorotoluene	ND U	0.50	l	06/06/03	06/09/03	
1,3,5-Trimethylbenzene	ND U	0.50	1	06/06/03	06/09/03	
tert-Butylbenzene	ND U	0.50	1	06/06/03	06/09/03	
1,2,4-Trimethylbenzene	ND U	0.50	1	06/06/03	06/09/03	
sec-Butylbenzene	ND U	0.50	1	06/06/03	06/09/03	
1,3-Dichlorobenzene	ND U	0.50	1	06/06/03	06/09/03	
4-Isopropyltoluene	ND U	0.50	1	06/06/03	06/09/03	
Bromoform	ND U	0.50	1	06/06/03	06/09/03	
1,1,2,2-Tetrachloroethane	ND U	1.0	1	06/06/03	06/09/03	
1,4-Dichlorobenzene	ND U	0.50	1	06/06/03	06/09/03	
1,2-Dichlorobenzene	ND U	0.50	1	06/06/03	06/09/03	
n-Butylbenzene	ND U	0.50	1	06/06/03	06/09/03	4.50
1,2-Dibromo-3-chloropropane	ND U	5.0	1	06/06/03	06/09/03	
1,2,4-Trichlorobenzene	ND U	0.50	1	06/06/03	06/09/03	
Hexachlorobutadiene	ND U	1.0	11	06/06/03	06/09/03	

Comments:

000028

Printed: 06/11/2003 13:23:32 L:\STEALTH\CRYSTAL.RPT\Form\Im.rpt

Merged

Form 1A - Organic

Page 2 of 3

SuperSet Reference: RR3428

Analytical Results

Client: Project: BE&K Terranext WVB/#03103154

Sample Matrix:

Water

Service Request: X2300458

Date Collected: 05/28/2003

Date Received: 05/28/2003

Volatile Organic Compounds

Sample Name:

AVB121-0102-1000

Lab Code:

X2300458-007

Units: ug/L Basis: NA

Extraction Method:

EPA 5030B

Level: Low

Analysis Method:

8260B

Dilution Date Date Analyzed Arizona Qualifier MRL **Factor** Extracted Result O **Analyte Name** ND U 3.0 1 06/06/03 06/09/03

Naphthalene 0.50 1 06/06/03 06/09/03 1,2,3-Trichlorobenzene ND U

Surrogate Name	%Rec	Control Limits	Date Analyzed	Arizona Qualifier	
Dibromofluoromethane	113	84-113	06/09/03		
Toluene-d8	122	68-126	06/09/03		
4-Bromofluorobenzene	115	79-113	06/09/03	S1	

Comments:

000029

Printed: 06/11/2003 13:23:32

Merged

Form 1A - Organic

Page 3 of 3

SuperSet Reference:

RR3428

Analytical Results

Client: Project: BE&K Terranext WVB/#03103154

Sample Matrix:

Water

Service Request: X2300458

Date Collected: NA
Date Received: NA

Volatile Organic Compounds

Sample Name: Lab Code: Method Blank XWG0300710-5

Extraction Method: Analysis Method:

EPA 5030B 8260B Units: ug/L Basis: NA

Level: Low

Name				Dilution	Date	Date	
Chloromethane	Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed	Arizona Qualifier
Vinyl Chloride ND U 1.0 1 06/06/03 06/09/03 Bromomethane ND U 1.0 1 06/06/03 06/09/03 Chloroethane ND U 1.0 1 06/06/03 06/09/03 Trichloroffluoromethane ND U 1.0 1 06/06/03 06/09/03 1,1,2-Trichlorotrifluoroethane ND U 1.0 1 06/06/03 06/09/03 1,1,2-Trichlorotrifluoroethane ND U 1.0 1 06/06/03 06/09/03 1,1,2-Trichlorotrifluoroethane ND U 1.0 1 06/06/03 06/09/03 Acetone ND U 1.0 1 06/06/03 06/09/03 Iodomethane ND U 2.0 1 06/06/03 06/09/03 Carbon Disulfide ND U 2.0 1 06/06/03 06/09/03 Methyl ert-Butyl Ether ND U 1.0 1 06/06/03 06/09/03 Methyl ert-Butyl Ether ND U 1.0 1 06/06/03 06/09/03	Dichlorodifluoromethane	ND U	3.0	1	06/06/03		
Bromomethane	Chloromethane	ND U	2.0	1	06/06/03	06/09/03	
Chloroethane	Vinyl Chloride	ND U	1.0	1	06/06/03	06/09/03	
Trichlorofiluoromethane	Bromomethane	ND U	1.0	1	06/06/03	06/09/03	
1,1,2-Trichlorotrifluoroethane	Chloroethane	ND U	1.0	1	06/06/03		
1,1-Dichloroethene	Trichlorofluoromethane	ND U	1.0	1	06/06/03	06/09/03	
Acetone ND U 10 1 06/06/03 06/09/03 Iodomethane ND U 2.0 1 06/06/03 06/09/03 Carbon Disulfide ND U 2.0 1 06/06/03 06/09/03 Methylene Chloride ND U 1.0 1 06/06/03 06/09/03 Methyl tert-Butyl Ether ND U 1.0 1 06/06/03 06/09/03 Methyl tert-Butyl Ether ND U 0.50 1 06/06/03 06/09/03 Methyl tert-Butyl Ether ND U 0.50 1 06/06/03 06/09/03 Methyl tert-Butyl Ether ND U 0.50 1 06/06/03 06/09/03 I.1-Dichloroethane ND U 0.50 1 06/06/03 06/09/03 Vinyl Acetate ND U 3.0 1 06/06/03 06/09/03 Vinyl Acetate ND U 3.0 1 06/06/03 06/09/03 2,2-Dichloroptopane ND U 2.0 1 06/06/03 06/09/03 2	1,1,2-Trichlorotrifluoroethane	ND U	1.0	1	06/06/03	06/09/03	
Carbon Disulfide	1,1-Dichloroethene	ND U	1.0	1	06/06/03	06/09/03	Ll
Carbon Disulfide ND U 2.0 1 06/06/03 06/09/03 Methylene Chloride ND U 1.0 1 06/06/03 06/09/03 Methyl tert-Butyl Ether ND U 1.0 1 06/06/03 06/09/03 trans-1,2-Dichloroethene ND U 0.50 1 06/06/03 06/09/03 1,1-Dichloroethane ND U 0.50 1 06/06/03 06/09/03 Vinyl Acetate ND U 3.0 1 06/06/03 06/09/03 2,2-Dichloropropane ND U 3.0 1 06/06/03 06/09/03 2-Butanone (MEK) ND U 8.0 1 06/06/03 06/09/03 2-Butanone (MEK) ND U 8.0 1 06/06/03 06/09/03 2-Butanone (MEK) ND U 0.50 1 06/06/03 06/09/03 3-Cis-1,2-Dichloroethene ND U 0.50 1 06/06/03 06/09/03 4-I,1-Trichloroethane ND U 0.50 1 06/06/03 06/09/03 1	Acetone	ND U	10	1	06/06/03	06/09/03	
Methylene Chloride ND U 1.0 1 06/06/03 06/09/03 Methyl tert-Butyl Ether ND U 1.0 1 06/06/03 06/09/03 trans-1,2-Dichloroethene ND U 0.50 1 06/06/03 06/09/03 1,1-Dichloroethane ND U 0.50 1 06/06/03 06/09/03 Vinyl Acetate ND U 3.0 1 06/06/03 06/09/03 2,2-Dichloropropane ND U 2.0 1 06/06/03 06/09/03 2-Butanone (MEK) ND U 8.0 1 06/06/03 06/09/03 2-Butanone (MEK) ND U 0.50 1 06/06/03 06/09/03 1,1-1-Trichloroethane ND U 0.50 1 06/06/03 06/09/03	Iodomethane	ND U	2.0	1	06/06/03	06/09/03	
Methyl tert-Butyl Ether ND U 1.0 1 06/06/03 06/09/03 1,1-Dichloroethene ND U 0.50 1 06/06/03 06/09/03 1,1-Dichloroethene ND U 3.0 1 06/06/03 06/09/03 2,2-Dichloropropane ND U 2.0 1 06/06/03 06/09/03 2-Butanone (MEK) ND U 8.0 1 06/06/03 06/09/03 2-Butanone (MEK) ND U 0.50 1 06/06/03 06/09/03 2-Butanone (MD U 0.50 1 06/06/03 06/09/03 2-Butan	Carbon Disulfide	ND U	2.0	1	06/06/03	06/09/03	
trans-1,2-Dichloroethene ND U 0.50 1 06/06/03 06/09/03 1,1-Dichloroethane ND U 0.50 1 06/06/03 06/09/03 Vinyl Acetate ND U 3.0 1 06/06/03 06/09/03 2,2-Dichloropropane ND U 2.0 1 06/06/03 06/09/03 2-Butanone (MEK) ND U 8.0 1 06/06/03 06/09/03 2-Butanone (MEK) ND U 0.50 1 06/06/03 06/09/03 2-Butanone (MEK) ND U 0.50 1 06/06/03 06/09/03 2-Butanone (MEK) ND U 0.50 1 06/06/03 06/09/03 3-Bromochloroethene ND U 0.50 1 06/06/03 06/09/03 1,1-Trichloroethane ND U 0.50 1 06/06/03 06/09/03 1,1-Dichloroethane ND U 0.50 1 06/06/03 06/09/03 L1 Benzene ND U 0.50 1 06/06/03 06/09/03	Methylene Chloride	ND U	1.0	1	06/06/03	06/09/03	
1,1-Dichloroethane	Methyl tert-Butyl Ether	ND U	1.0	1	06/06/03		
Vinyl Acetate ND U 3.0 1 06/06/03 06/09/03 2,2-Dichloropropane ND U 2.0 1 06/06/03 06/09/03 2-Butanone (MEK) ND U 8.0 1 06/06/03 06/09/03 2-Butanone (MEK) ND U 0.50 1 06/06/03 06/09/03 2-Butanone (MEK) ND U 0.50 1 06/06/03 06/09/03 Bromochloromethane ND U 0.50 1 06/06/03 06/09/03 Chloroform ND U 0.50 1 06/06/03 06/09/03 1,1,1-Trichloroethane ND U 0.50 1 06/06/03 06/09/03 Carbon Tetrachloride ND U 0.50 1 06/06/03 06/09/03 L1 1,1-Dichloropropene ND U 0.50 1 06/06/03 06/09/03 L1 1,2-Dichloroethane ND U 0.50 1 06/06/03 06/09/03 L1 1,2-Dichloropropane ND U 0.50 1 06/06/03	trans-1,2-Dichloroethene	ND U	0.50	1	06/06/03	06/09/03	
2,2-Dichloropropane ND U 2.0 1 06/06/03 06/09/03 2-Butanone (MEK) ND U 8.0 1 06/06/03 06/09/03 cis-1,2-Dichloroethene ND U 0.50 1 06/06/03 06/09/03 Bromochloromethane ND U 0.50 1 06/06/03 06/09/03 Chloroform ND U 1.0 1 06/06/03 06/09/03 1,1,1-Trichloroethane ND U 0.50 1 06/06/03 06/09/03 Carbon Tetrachloride ND U 0.50 1 06/06/03 06/09/03 Carbon Tetrachloride ND U 0.50 1 06/06/03 06/09/03 L1-Dichloropropene ND U 0.50 1 06/06/03 06/09/03 1,2-Dichloroethane ND U 0.50 1 06/06/03 06/09/03 1,2-Dichloropropane ND U 0.50 1 06/06/03 06/09/03 Dibromomethane ND U 0.50 1 06/06/03 06/09/03		ND U	0.50	1	06/06/03	06/09/03	
2-Butanone (MEK) ND U 8.0 1 06/06/03 06/09/03 cis-1,2-Dichloroethene ND U 0.50 1 06/06/03 06/09/03 Bromochloromethane ND U 0.50 1 06/06/03 06/09/03 Chloroform ND U 1.0 1 06/06/03 06/09/03 1,1,1-Trichloroethane ND U 0.50 1 06/06/03 06/09/03 Carbon Tetrachloride ND U 0.50 1 06/06/03 06/09/03 L1 1,1-Dichloropropene ND U 0.50 1 06/06/03 06/09/03 L1 Benzene ND U 0.50 1 06/06/03 06/09/03 L1 Benzene ND U 0.50 1 06/06/03 06/09/03 1,2-Dichloroethane ND U 0.50 1 06/06/03 06/09/03 Trichloroethene ND U 0.50 1 06/06/03 06/09/03 Trichloroethene ND U 0.50 1 06/06/03 06/09/03 Trichloroethene ND U 0.50 1 06/06/03 06/09/03 Bromodichloromethane ND U 0.50 1 06/06/03 06/09/03 Dibromomethane ND U 0.50 1 06/06/03 06/09/03 Bromodichloromethane ND U 0.50 1 06/06/03 06/09/03 Bromodichloromethane ND U 0.50 1 06/06/03 06/09/03 Cis-1,3-Dichloropropene ND U 0.50 1 06/06/03 06/09/03 4-Methyl-2-pentanone (MIBK) ND U 8.0 1 06/06/03 06/09/03	Vinyl Acetate	ND U	3.0	1			
cis-1,2-Dichloroethene ND U 0.50 1 06/06/03 06/09/03 Bromochloromethane ND U 0.50 1 06/06/03 06/09/03 Chloroform ND U 1.0 1 06/06/03 06/09/03 1,1,1-Trichloroethane ND U 0.50 1 06/06/03 06/09/03 Carbon Tetrachloride ND U 0.50 1 06/06/03 06/09/03 L1 1,1-Dichloropropene ND U 0.50 1 06/06/03 06/09/03 L1 Benzene ND U 0.50 1 06/06/03 06/09/03 L1 Benzene ND U 0.50 1 06/06/03 06/09/03 L1 Trichloroethane ND U 0.50 1 06/06/03 06/09/03 L1 1,2-Dichloropropane ND U 0.50 1 06/06/03 06/09/03 L1 1,2-Dichloropropane ND U 0.50 1 06/06/03 06/09/03 Dibromomethane ND U 0	2,2-Dichloropropane	ND U	2.0	1	06/06/03	06/09/03	
Bromochloromethane	2-Butanone (MEK)	ND U	8.0	1	06/06/03	06/09/03	
Chloroform ND U 1.0 1 06/06/03 06/09/03 1,1,1-Trichloroethane ND U 0.50 1 06/06/03 06/09/03 Carbon Tetrachloride ND U 0.50 1 06/06/03 06/09/03 L1 1,1-Dichloropropene ND U 0.50 1 06/06/03 06/09/03 L1 Benzene ND U 0.50 1 06/06/03 06/09/03 L1 1,2-Dichloroethane ND U 0.50 1 06/06/03 06/09/03 L1 1,2-Dichloropropane ND U 0.50 1 06/06/03 06/09/03 D6/09/03 Bromodichloromethane ND U 0.50 1 06/06/03 06/09/03	cis-1,2-Dichloroethene	ND U	0.50	1			
1,1,1-Trichloroethane ND U 0.50 1 06/06/03 06/09/03 Carbon Tetrachloride ND U 0.50 1 06/06/03 06/09/03 L1 1,1-Dichloropropene ND U 0.50 1 06/06/03 06/09/03 L1 Benzene ND U 0.50 1 06/06/03 06/09/03 L1 1,2-Dichloroethane ND U 0.50 1 06/06/03 06/09/03 Trichloroethene ND U 0.50 1 06/06/03 06/09/03 L1 1,2-Dichloropropane ND U 0.50 1 06/06/03 06/09/03 L1 1,2-Dichloropropane ND U 0.50 1 06/06/03 06/09/03 Dibromomethane ND U 0.50 1 06/06/03 06/09/03 Bromodichloromethane ND U 0.50 1 06/06/03 06/09/03 cis-1,3-Dichloropropene ND U 0.50 1 06/06/03 06/09/03 4-Methyl-2-pentanone (MIBK) ND U	Bromochloromethane	ND U	0.50	1			
Carbon Tetrachloride ND U 0.50 1 06/06/03 06/09/03 L1 1,1-Dichloropropene ND U 0.50 1 06/06/03 06/09/03 L1 Benzene ND U 0.50 1 06/06/03 06/09/03 1,2-Dichloroethane ND U 0.50 1 06/06/03 06/09/03 Trichloroethene ND U 0.50 1 06/06/03 06/09/03 1,2-Dichloropropane ND U 0.50 1 06/06/03 06/09/03 Dibromomethane ND U 0.50 1 06/06/03 06/09/03 Bromodichloromethane ND U 0.50 1 06/06/03 06/09/03 cis-1,3-Dichloropropene ND U 0.50 1 06/06/03 06/09/03 4-Methyl-2-pentanone (MIBK) ND U 8.0 1 06/06/03 06/09/03	Chloroform	ND U	1.0	1	06/06/03	06/09/03	
1,1-Dichloropropene ND U 0.50 1 06/06/03 06/09/03 L1 Benzene ND U 0.50 1 06/06/03 06/09/03 1 1,2-Dichloroethane ND U 0.50 1 06/06/03 06/09/03 L1 Trichloroethene ND U 0.50 1 06/06/03 06/09/03 L1 1,2-Dichloropropane ND U 0.50 1 06/06/03 06/09/03 Dibromomethane ND U 0.50 1 06/06/03 06/09/03 Bromodichloromethane ND U 0.50 1 06/06/03 06/09/03 cis-1,3-Dichloropropene ND U 0.50 1 06/06/03 06/09/03 4-Methyl-2-pentanone (MIBK) ND U 8.0 1 06/06/03 06/09/03	1,1,1-Trichloroethane	ND U	0.50	l			
Benzene	Carbon Tetrachloride	ND U	0.50	1	06/06/03		
1,2-Dichloroethane ND U 0.50 1 06/06/03 06/09/03 Trichloroethene ND U 0.50 1 06/06/03 06/09/03 L1 1,2-Dichloropropane ND U 0.50 1 06/06/03 06/09/03 Dibromomethane ND U 0.50 1 06/06/03 06/09/03 Bromodichloromethane ND U 0.50 1 06/06/03 06/09/03 cis-1,3-Dichloropropene ND U 0.50 1 06/06/03 06/09/03 4-Methyl-2-pentanone (MIBK) ND U 8.0 1 06/06/03 06/09/03	1,1-Dichloropropene	ND U	0.50	1	06/06/03	06/09/03	Ll
Trichloroethene ND U 0.50 1 06/06/03 06/09/03 L1 1,2-Dichloropropane ND U 0.50 1 06/06/03 06/09/03 Dibromomethane ND U 0.50 1 06/06/03 06/09/03 Bromodichloromethane ND U 0.50 1 06/06/03 06/09/03 cis-1,3-Dichloropropene ND U 0.50 1 06/06/03 06/09/03 4-Methyl-2-pentanone (MIBK) ND U 8.0 1 06/06/03 06/09/03	Benzene	ND U	0.50	1	06/06/03	06/09/03	
1,2-Dichloropropane ND U 0.50 1 06/06/03 06/09/03 Dibromomethane ND U 0.50 1 06/06/03 06/09/03 Bromodichloromethane ND U 0.50 1 06/06/03 06/09/03 cis-1,3-Dichloropropene ND U 0.50 1 06/06/03 06/09/03 4-Methyl-2-pentanone (MIBK) ND U 8.0 1 06/06/03 06/09/03	1,2-Dichloroethane	ND U	0.50	1	06/06/03		
Dibromomethane ND U 0.50 1 06/06/03 06/09/03 Bromodichloromethane ND U 0.50 1 06/06/03 06/09/03 cis-1,3-Dichloropropene ND U 0.50 1 06/06/03 06/09/03 4-Methyl-2-pentanone (MIBK) ND U 8.0 1 06/06/03 06/09/03	Trichloroethene	ND U	0.50	1	06/06/03	06/09/03	L1
Bromodichloromethane ND U 0.50 1 06/06/03 06/09/03 cis-1,3-Dichloropropene ND U 0.50 1 06/06/03 06/09/03 4-Methyl-2-pentanone (MIBK) ND U 8.0 1 06/06/03 06/09/03	1,2-Dichloropropane	ND U		1			
cis-1,3-Dichloropropene ND U 0.50 1 06/06/03 06/09/03 4-Methyl-2-pentanone (MIBK) ND U 8.0 1 06/06/03 06/09/03	Dibromomethane	ND U	0.50	1			
4-Methyl-2-pentanone (MIBK) ND U 8.0 1 06/06/03 06/09/03	Bromodichloromethane	ND U	0.50	1	06/06/03	06/09/03	
4-Methyl-2-pentanone (MIBK) ND U 8.0 1 06/06/03 06/09/03		ND U		1			
0.000.000		ND U	8.0	1			
Toluene ND U 0.50 1 06/06/03 06/09/03	Toluene	ND U	0.50	1	06/06/03	06/09/03	

Comments:

000030

Printed: 06/11/2003 13:23:42 L:\STEALTH\CRYSTAL.RPT\Form\lm.rpt

Merged

Form 1A Organic

Page 1 of 3

SuperSet Reference: RR3428

Analytical Results

Client: Project: BE&K Terranext WVB/#03103154

Sample Matrix:

Water

Service Request: X2300458

Date Collected: NA Date Received: NA

Volatile Organic Compounds

Sample Name: Lab Code:

Method Blank XWG0300710-5

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

Analyte Name	Result	0	MRL	Dilution Factor	Date Extracted	Date Analyzed	Arizona Qualifier
trans-1,3-Dichloropropene	ND		1.0	1	06/06/03	06/09/03	
1,1,2-Trichloroethane	ND		1.0	1	06/06/03	06/09/03	
Tetrachloroethene	ND		0.50	1	06/06/03	06/09/03	
2-Hexanone	ND		5.0	1	06/06/03	06/09/03	
1,3-Dichloropropane	ND		1.0	ĩ	06/06/03	06/09/03	
Dibromochloromethane	ND		0.50	1	06/06/03	06/09/03	
1,2-Dibromoethane	ND		0.50	1	06/06/03	06/09/03	
Chlorobenzene	ND		0.50	1	06/06/03	06/09/03	
1,1,1,2-Tetrachloroethane	ND		0.50	1	06/06/03	06/09/03	
Ethylbenzene	ND		0.50	1	06/06/03	06/09/03	
m,p-Xylenes	ND		1.0	1	06/06/03	06/09/03	
o-Xylene	ND		0.50	1	06/06/03	06/09/03	
Styrene	ND	IJ	0.50	1	06/06/03	06/09/03	
Isopropylbenzene	ND		0.50	1	06/06/03	06/09/03	
Bromobenzene	ND		0.50	1	06/06/03	06/09/03	
1,2,3-Trichloropropane	ND	U	1.0	1	06/06/03	06/09/03	
n-Propylbenzene	ND		0.50	1	06/06/03	06/09/03	
2-Chlorotoluene	ND	U	0.50	1	06/06/03	06/09/03	
4-Chlorotoluene	ND	U	0.50	1	06/06/03	06/09/03	
1,3,5-Trimethylbenzene	ND	U	0.50	1	06/06/03	06/09/03	
tert-Butylbenzene	ND	U	0.50	1	06/06/03	06/09/03	
1,2,4-Trimethylbenzene	ND	U	0.50	1	06/06/03	06/09/03	
sec-Butylbenzene	ND	U	0.50	1	06/06/03	06/09/03	
1,3-Dichlorobenzene	ND	U	0.50	1	06/06/03	06/09/03	
4-Isopropyltoluene	ND	U	0.50	1	06/06/03	06/09/03	
Bromoform	ND		0.50	1	06/06/03	06/09/03	
1,1,2,2-Tetrachloroethane	ND	U	1.0	1	06/06/03	06/09/03	
1,4-Dichlorobenzene	ND	U	0.50	1	06/06/03	06/09/03	
1,2-Dichlorobenzene	ND	U	0.50	1	06/06/03	06/09/03	
n-Butylbenzene	ND	U	0.50	1	06/06/03	06/09/03	
1,2-Dibromo-3-chloropropane	ND	U	5.0	1	06/06/03	06/09/03	
1,2,4-Trichlorobenzene	ND	U	0.50	1	06/06/03	06/09/03	
Hexachlorobutadiene	ND	U	1.0	1	06/06/03	06/09/03	

Comments:

Printed: 06/11/2003 13:23:42 L:\STEALTH\CRYSTAL.RPT\Form1m.rpt

000031

Merged

Form 1A - Organic

Page 2 of 3

Analytical Results

Client: Project: BE&K Terranext WVB/#03103154

Sample Matrix:

Water

Service Request: X2300458

Date Collected: NA

Date Received: NA

Volatile Organic Compounds

Sample Name: Lab Code:

Method Blank XWG0300710-5 Units: ug/L Basis: NA

Extraction Method:

Level: Low

Analysis Method:

EPA 5030B

8260B

			Dilution	Date	Date	
Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed	Arizona Qualifier
Naphthalene	ND U	3.0	1	06/06/03	06/09/03	
1,2,3-Trichlorobenzene	ND U	0.50	1	06/06/03	06/09/03	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Arizona Qualifier	
Dibromofluoromethane	108	84-113	06/09/03		
Toluene-d8	117	68-126	06/09/03		
4-Bromofluorobenzene	111	79-113	06/09/03		

Comments:

Merged

QA/QC Report

Client: Project:

BE&K Terranext WVB/#03103154

Sample Matrix:

Water

Service Request: X2300458

Surrogate Recovery Summary Volatile Organic Compounds

Extraction Method: Analysis Method:

EPA 5030B

8260B

Units: PERCENT

Level: Low

Sample Name	Lab Code	<u>Sur1</u>	Sur2	Sur3
AVB115-0100-01122	X2300458-001	109	117	110
AVB115-0104-1000	X2300458-002	117 S1	121	116 S1
AVB122-0100-01144	X2300458-003	113	122	112
AVB120-0100-01130	X2300458-004	112	123	112
AVB121-0100-01122	X2300458-005	114 S1	121	114 S1
AVB121-0104-1000	X2300458-006	112	120	112
AVB121-0102-1000	X2300458-007	113	122	115 S1
Method Blank	XWG0300710-5	108	117	111
AVB115-0100-01122MS	XWG0300710-1	112	121	116 S1
AVB115-0100-01122DMS	XWG0300710-2	112	120	114 S1
Lab Control Sample	XWG0300710-3	105	114	111
Duplicate Lab Control Sample	XWG0300710-4	107	116	112

Surrogate Recovery Control Limits (%)

Sur1 = Dibromofluoromethane	84-113	
Sur2 = Toluene-d8	68-126	
Sur3 = 4-Bromofluorobenzene	79-113	
	•	

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Printed: 06/11/2003 13:23:57 L:\STEALTH\CRYSTAL.RPT\Form2.rpt

606033

Form 2A - Organic

Page 1 of 1

SuperSet Reference: RR3428

QA/QC Report

Client: Project: BE&K Terranext WVB/#03103154

Sample Matrix:

Water

Service Request: X2300458

Date Extracted: 06/06/2003

Date Analyzed: 06/09/2003

Matrix Spike/Duplicate Matrix Spike Summary Volatile Organic Compounds

Sample Name:

AVB115-0100-01122

Lab Code:

X2300458-001

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L

Basis: NA

Level: Low

Extraction Lot: XWG0300710

AVB115-0100-01122MS

XWG0300710-1

AVB115-0100-01122DMS

XWG0300710-2

Duplicate Matrix Spike Matrix Spike **RPD** %Rec Sample RPD Limit Limits Result **Expected** %Rec %Rec Result Expected Result Analyte Name 20 78-207 6 12.0 10.0 120 ND 12.8 10.0 128 Dichlorodifluoromethane 10.0 104 70-157 6 20 110 10.4 ND 11.0 10.0 Chloromethane 10.0 113 79-174 6 20 10.0 119 11.3 ND 11.9 Vinyl Chloride 80 44-150 5 20 84 7.99 10.0 ND 8.41 10.0 Bromomethane 10.0 95 74-150 25 R5 20 10.0 123 9.50 ND 12.3 Chloroethane 80-134 4 20 10.0 11 M3 19 17.6 17 18.4 10.0 M3 Trichlorofluoromethane M3 67-128 4 20 14.7 10.0 -8 M3 14.1 10.0 -14 1.1.2-Trichlorotrifluoroethane 16 8 20 10.0 169 M1 71-142 ND 18.3 10.0 183 M1 16.9 1.1-Dichloroethene 1-155 2 20 37.1 40.0 93 36.2 40.0 91 ND Acetone 99 47-120 1 20 40.0 100 39.6 ND 40.0 40.0 Iodomethane 77-126 5 20 40.0 133 M1 139 M1 53.2 Carbon Disulfide ND 55.8 40.0 5 20 83-106 105 ND 11.1 10.0 111 MI 10.5 10.0 Methylene Chloride 70-118 0 20 92 9.22 10.0 92 ND9.20 10.0 Methyl tert-Butyl Ether 10.0 111 86-115 2 2.0 11.3 10.0 113 11.1 ND trans-1.2-Dichloroethene 139 M1 77-127 2 20 10.0 142 M1 13.9 ND14.2 10.0 1.1-Dichloroethane 5 8-187 20 40.0 87 40.0 82 34.6 ND33.0 Vinyl Acetate 12.9 129 25-154 2 20 10.0 13.2 10.0 132 ND 2,2-Dichloropropane 2 44.8 40.0 112 46.0 40.0 115 M1 90-112 20 ND 2-Butanone (MEK) 10.0 129 M3 69-118 2 20 10.0 140 M3 50.9 38 52.0 cis-1.2-Dichloroethene 47-136 3 20 9.10 10.0 91 10.0 94 9.37 Bromochloromethane ND 20 2 125 48-143 127 12.5 10.0 ND 12.7 10.0 Chloroform 2 20 10.0 84-122 ND 11.6 10.0 116 11.4 114 1,1,1-Trichloroethane 2.0 14.1 10.0 141 M1 13.7 10.0 137 M1 79-120 3 ND Carbon Tetrachloride 12.8 10.0 128 M1 85-117 2 20 130 M1 ND 13.0 10.0 1,1-Dichloropropene 88-114 2 20 11.0 10.0 110 11.2 10.0 112 ND Benzene 20 102 75-112 0 10.2 10.0 102 ND 10.2 10.0 1.2-Dichloroethane 0 20 231E 10.0 250 M3 76-115 210 230E 10.0 241 M3 Trichloroethene 20 95 99 85-107 4 ND 9.51 10.0 9.89 10.0 1,2-Dichloropropane 20 9.56 10.0 96 9.88 10.0 99 82-106 3 ND Dibromomethane 96 20 9.57 10.0 83-107 1 95 ND 9.50 10.0 Bromodichloromethane 20 9.90 10.0 99 70-114 1 9.97 10.0 100 NDcis-1.3-Dichloropropene 97 54-129 6 20 40.0 38.9 4-Methyl-2-pentanone (MIBK) ND36.5 40.0 91 2 20 10.0 114 11.2 10.0 112 86-114 ND11.4 Toluene

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 06/11/2003 13:24:04 L:\STEALTH\CRYSTAL.RPT\Form3DMS.rpt 000034

Form 3A - Organic

Page 1 of

RR3428 SuperSet Reference:

QA/QC Report

Client: **Project:** BE&K Terranext WVB/#03103154

Sample Matrix:

Water

Service Request: X2300458 **Date Extracted:** 06/06/2003

Date Analyzed: 06/09/2003

Matrix Spike/Duplicate Matrix Spike Summary Volatile Organic Compounds

Sample Name:

AVB115-0100-01122

Lab Code:

X2300458-001

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L

Basis: NA

Level: Low

Extraction Lot: XWG0300710

AVB115-0100-01122MS

XWG0300710-1

AVB115-0100-01122DMS

XWG0300710-2

	Sample	Matrix Spike		Duplic	cate Matrix S	%Rec		RPD		
Analyte Name	Result	Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit
trans-1,3-Dichloropropene	ND	9.47	10.0	95	9.54	10.0	95	73-112	1	20
1,1,2-Trichloroethane	ND	9.14	10.0	91	9.32	10.0	93	79-112	2	20
Tetrachloroethene	9.2	22.8	10.0	136 M3	22.5	10.0	133 M3	78-130	1	20
2-Hexanone	ND	31.0	40.0	78	31.7	40.0	79	77-112	2	20
1,3-Dichloropropane	ND	9.50	10.0	95	9.49	10.0	95	45-133	0	20
Dibromochloromethane	ND	8.89	10.0	89	9.06	10.0	91	74-108	2	20
1,2-Dibromoethane	ND	9.10	10.0	91	9.38	10.0	94	73-113	3	20
Chlorobenzene	ND	10.9	10.0	109	10.8	10.0	108	84-111	1	20
1,1,1,2-Tetrachloroethane	ND	10.2	10.0	102	10.0	10.0	100	84-119	2	20
Ethylbenzene	ND	12.1	10.0	121	11.9	10.0	119	47-136	2	20
m,p-Xylenes	ND	23.7	20.0	119	23.6	20.0	118	84-120	1	20
o-Xylene	ND	11.4	10.0	114	11.1	10.0	111	47-143	3	20
Styrene	ND	11.3	10.0	113	11.1	10.0	111	72-121	2	20
Isopropylbenzene	ND	12.3	10.0	123 M1	12.0	10.0	120 M1	63-108	2	20
Bromobenzene	ND	10.4	10.0	104	10.1	10.0	101	80-113	3	20
1,2,3-Trichloropropane	ND	9.57	10.0	96	9.71	10.0	97	78-119	1	20
n-Propylbenzene	ND	12.7	10.0	127 M1	12.3	10.0	123 MI	76-117	3	20
2-Chlorotoluene	ND	11.7	10.0	117	11.4	10.0	114	79-121	3	20
4-Chlorotoluene	ND	11.2	10.0	112	10.8	10.0	108	70-133	4	20
1,3,5-Trimethylbenzene	ND	12.1	10.0	121 M1	11.7	10.0	117	79-118	4	20
tert-Butylbenzene	ND	12.1	10.0	121 M1	11.5	10.0	115	77-120	5	20
1,2,4-Trimethylbenzene	ND	11.7	10.0	117	11.4	10.0	114	68-127	3	20
sec-Butylbenzene	ND	12.5	10.0	125 M1	12.1	10.0	121	78-123	3	20
1,3-Dichlorobenzene	ND	10.7	10.0	107	10.2	10.0	102	78-127	4	20
4-Isopropyltoluene	ND	12.7	10.0	127	12.2	10.0	122	79-142	4	20
Bromoform	ND	8.01	10.0	80 M2	8.13	10.0	81 M2	83-111	1	20
1,1,2,2-Tetrachloroethane	ND	8.82	10.0	88	9.38	10.0	94	66-133	6	20
1,4-Dichlorobenzene	ND	10.5	10.0	105	10.4	10.0	104	48-139	1	20
1,2-Dichlorobenzene	ND	10.1	10.0	101	9.95	10.0	100	64-109	2	20
n-Butylbenzene	ND	12.7	10.0	127 M1	12.4	10.0	124 M1	69-122	2	20
1,2-Dibromo-3-chloropropane	ND	7.39	10.0	74	8.78	10.0	88	54-160	17	20
1,2,4-Trichlorobenzene	ND	9.48	10.0	95	9.66	10.0	97	39-145	2	20
Hexachlorobutadiene	ND .	11.9	10.0	119 MI	12.1	10.0	121 M1	74-113	2	20

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

000035

Printed: 06/11/2003 13:24:04 L:\STEALTH\CRYSTAL.RPT\Form3DMS.rpt Form 3A - Organic

Page 2 of 3

RR3428 SuperSet Reference:

QA/QC Report

Client: Project: BE&K Terranext WVB/#03103154

Sample Matrix:

Water

Service Request: X2300458

Date Extracted: 06/06/2003

Date Analyzed: 06/09/2003

Matrix Spike/Duplicate Matrix Spike Summary Volatile Organic Compounds

Sample Name:

AVB115-0100-01122

Lab Code:

X2300458-001

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

Extraction Lot: XWG0300710

AVB115-0100-01122MS

XWG0300710-1

AVB115-0100-01122DMS

XWG0300710-2

Duplicate Matrix Spike Matrix Spike %Rec RPD Sample RPD Limits Limit Result Result Expected %Rec Result **Expected** %Rec **Analyte Name** 97 5 20 9.70 10.0 44-167 ND 9.20 10.0 92 Naphthalene 37-158 20 10.4 10.0 104 6 ND 9.76 10.0 98 1,2,3-Trichlorobenzene

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 06/11/2003 13:24:04 L:\STEALTH\CRYSTAL.RPT\Form3DMS.rpt 000036

Form 3A - Organic

Page 3 of 3

SuperSet Reference: RR3428

QA/QC Report

Client: Project: BE&K Terranext WVB/#03103154

Sample Matrix:

Water

Service Request: X2300458

Date Extracted: 06/06/2003 **Date Analyzed:** 06/09/2003

Lab Control Spike/Duplicate Lab Control Spike Summary Volatile Organic Compounds

Extraction Method: EPA 5030B

Analysis Method:

8260B

Units: ug/L

Basis: NA Level: Low

Extraction Lot: XWG0300710

Lab Control Sample XWG0300710-3

Duplicate Lab Control Sample XWG0300710-4

	Lab Control Spike			Duplicate Lab Control Spike			%Rec		RPD
Analyte Name	Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit
Dichlorodifluoromethane	11.6	10.0	116	11.8	10.0	118	1-233	2	20
Chloromethane	10.3	10.0	103	10.2	10.0	102	46-156	1	20
Vinyl Chloride	10.9	10.0	109	10.6	10.0	106	51-158	3	20
Bromomethane	8.07	10.0	81	7.96	10.0	80	37-149	1	20
Chloroethane	9.44	10.0	94	8.92	10.0	89	56-146	6	20
Trichlorofluoromethane	12.0	10.0	120	11.9	10.0	119	69-139	1	20
1,1,2-Trichlorotrifluoroethane	12.6	10.0	126	12.5	10.0	125	83-130	1	20
1,1-Dichloroethene	11.6	10.0	116 L1	11.1	10.0	111	65-112	5	20
Acetone	34.8	40.0	87	39.1	40.0	98	68-128	12	20
Iodomethane	38.0	40.0	95	39.6	40.0	99	68-144	4	20
Carbon Disulfide	51.3	40.0	128	50.8	40.0	127	67-140	1	20
Methylene Chloride	10.6	10.0	106	10.6	10.0	106	70-113	0	20
Methyl tert-Butyl Ether	8.93	10.0	89	9.08	10.0	91	75-115	2	20
trans-1,2-Dichloroethene	10.4	10.0	104	10.5	10.0	105	73-118	1	20
1,1-Dichloroethane	11.4	10.0	114	11.1	10.0	111	77-127	2	20
Vinyl Acetate	28.5	40.0	71	34.6	40.0	87	51-202	19	39
2,2-Dichloropropane	12.3	10.0	123	12.9	10.0	129	75-132	5	20
2-Butanone (MEK)	38.2	40.0	96	38.9	40.0	97	72-122	2	20
cis-1,2-Dichloroethene	10.7	10.0	107	10.5	10.0	105	81-118	2	20
Bromochloromethane	9.18	10.0	92	9.43	10.0	94	82-114	3	20
Chloroform	10.6	10.0	106	10.5	10.0	105	78-119	1	20
1,1,1-Trichloroethane	11.2	10.0	112	11.1	10.0	111	71-125	1	20
Carbon Tetrachloride	13.3	10.0	133 L1	13.3	10.0	133 L1	69-130	1	20
1,1-Dichloropropene	12.4	10.0	124 L1	12.4	10.0	124 L1	77-114	0	20
Benzene	11.0	10.0	110	10.8	10.0	108	81-117	2	20
1,2-Dichloroethane	10.1	10.0	101	10.2	10.0	102	67-122	1	20
Trichloroethene	11.7	10.0	117 L1	11.2	10.0	112	79-114	4	20
1,2-Dichloropropane	9.72	10.0	97	9.64	10.0	96	78-114	1	20
Dibromomethane	9.98	10.0	100	9.81	10.0	98	78-113	2	20
Bromodichloromethane	9.32	10.0	93	9.41	10.0	94	79-122	1	20
cis-1,3-Dichloropropene	10.1	10.0	101	9.98	10.0	100	82-118	1	20
4-Methyl-2-pentanone (MIBK)	37.7	40.0	94	36.2	40.0	90	75-115	4	20
Toluene	11.1	10.0	111	10.9	10.0	109	85-118	2	20
trans-1,3-Dichloropropene	9.64	10.0	96	9.63	10.0	96	79-121	0	20
1,1,2-Trichloroethane	9.39	10.0	94	9.26	10.0	93	79-116	1	20

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 06/11/2003 13:24:11 L:\STEALTH\CRYSTAL.RPT\Form3DLC.rpt 000037

Form 3C - Organic

Page 1 of 2

SuperSet Reference: RR3428

QA/QC Report

Client: Project: BE&K Terranext WVB/#03103154

Sample Matrix:

Water

Service Request: X2300458 **Date Extracted:** 06/06/2003

Date Analyzed: 06/09/2003

Lab Control Spike/Duplicate Lab Control Spike Summary Volatile Organic Compounds

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L

Basis: NA Level: Low

Extraction Lot: XWG0300710

Lab Control Sample XWG0300710-3

Duplicate Lab Control Sample

XWG0300710-4

		Control Spik		Duplicate	Duplicate Lab Control Spike				RPD
Analyte Name	Result	Expected	%Rec	Result	Expected	%Rec	%Rec Limits	RPD	Limit
Tetrachloroethene	11.9	10.0	119	11.7	10.0	117	76-127	1	20
2-Hexanone	33.5	40.0	84	34.0	40.0	85	65-120	1	20
1,3-Dichloropropane	9.49	10.0	95	9.54	10.0	95	81-116	1	20
Dibromochloromethane	8.80	10.0	88	8.74	10.0	87	77-119	1	20
1,2-Dibromoethane	9.41	10.0	94	9.59	10.0	96	79-116	2	20
Chlorobenzene	10.6	10.0	106	10.5	10.0	105	84-114	1	20
1,1,1,2-Tetrachloroethane	9.85	10.0	99	9.82	10.0	98	78-118	0	20
Ethylbenzene	11.6	10.0	116	11.5	10.0	115	79-124	1	20
m,p-Xylenes	23.4	20.0	117	22.9	20.0	115	75-131	2	20
o-Xylene	10.9	10.0	109	10.8	10.0	108	78-122	l	20
Styrene	11.0	10.0	110	11.1	10.0	111	80-126	1	20
Isopropylbenzene	11.8	10.0	118	11.5	10.0	115	75-126	2	20
Bromobenzene	10.3	10.0	103	10.2	10.0	102	82-122	1	20
1,2,3-Trichloropropane	9.65	10.0	97	9.64	10.0	96	77-118	0	20
n-Propylbenzene	12.0	10.0	120	11.9	10.0	119	75-129	1	20
2-Chlorotoluene	11.4	10.0	114	11.2	10.0	112	77-126	2	20
4-Chlorotoluene	10.8	10.0	108	10.6	10.0	106	82-120	2	20
1,3,5-Trimethylbenzene	11.5	10.0	115	11.3	10.0	113	75-130	2	20
tert-Butylbenzene	11.4	10.0	114	11.1	10.0	111	73-130	3	20
1,2,4-Trimethylbenzene	11.3	10.0	113	11.0	10.0	110	60-137	3	20
sec-Butylbenzene	11.8	10.0	118	11.6	10.0	116	68-131	2	20
1,3-Dichlorobenzene	10.5	10.0	105	10.2	10.0	102	71-137	2	20
4-Isopropyltoluene	11.9	10.0	119	11.6	10.0	116	68-134	2	20
Bromoform	8.33	10.0	83	8.50	10.0	85	70-118	2	20
1,1,2,2-Tetrachloroethane	9.09	10.0	91	9.65	10.0	97	72-122	6	20
1,4-Dichlorobenzene	10.5	10.0	105	10.3	10.0	103	82-114	2	20
1,2-Dichlorobenzene	10.2	10.0	102	10.0	10.0	100	81-118	1	20
n-Butylbenzene	11.9	10.0	119	12.0	10.0	120	71-125	0	20
1,2-Dibromo-3-chloropropane	8.56	10.0	86	8.57	10.0	86	55-131	0	20
1,2,4-Trichlorobenzene	9.85	10.0	99	9.66	10.0	97	75-123	2	20
Hexachlorobutadiene	11.7	10.0	117	11.7	10.0	117	63-140	1	20
Naphthalene	9.91	10.0	99	9.81	10.0	98	67-125	1	20
1,2,3-Trichlorobenzene	10.4	10.0	104	10.3	10.0	103	72-124	l	20

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 06/11/2003 13:24:11 L:\STEALTH\CRYSTAL.RPT\Form3DLC.rpt 000038

Form 3C - Organic

Page 2 of 2

RR3428 SuperSet Reference:

June 11, 2003

Chuck Gordon BE & K/Terranext 9830 S. 51st A-127 Phoenix, AZ 85044

RE: WVB/Project #03103154

Dear Chuck:

Enclosed are the results of the samples submitted to our laboratory on May 28, 2003. For your reference, these analyses have been assigned our service request number L2301140.

All analyses were performed in accordance with our laboratory's quality assurance program. Results are intended to be considered in their entirety and apply only to the samples analyzed. Columbia Analytical Services is not responsible for use of less than the complete report.

Columbia Analytical Services is certified for environmental analyses by the California Department of Health Services (certificate number: 1296A); NELAP (certificate number: 02115CA); Los Angeles County Laboratory ID (No. 10151); and Arizona Department of Health Services (License number: AZ0136 and AZ0544).

If you have any questions, please call me at (818) 587-5550, extension 309.

adersn

Respectfully submitted,

Columbia Analytical Services, Inc.

Sue Anderson Project Chemist

SA

uve039

Columbia Analytical Services, Inc.

Acronvms

California DHS LUFT Method 8015M American Society for Testing and Materials **ASTM** BOD Biochemical Oxygen Demand Benzene/Toluene/Ethylbenzene/Xylenes BTEX California Assessment Metals CAM **CAS Number** Chemical Abstract Service Registry Number **CFC** Chlorofluorocarbon COD Chemical Oxygen Demand **CRDL** Contract Required Detection Limit D Detected: result must be greater than zero. DL Detected; result must be greater than the detection limit. DLCS **Duplicate Laboratory Control Sample** Duplicate Matrix Spike **DMS DOH or DHS** Department of Health Services **ELAP** Environmental Laboratory Accreditation Program U.S. Environmental Protection Agency **EPA** GCGas Chromatography Gas Chromatography/Mass Spectrometry GC/MS Ion Chromatography IC **ICB** Initial Calibration Blank sample **ICP** Inductively Coupled Plasma atomic emission spectrometry Initial Calibration Verification sample **ICV** LCS Laboratory Control Sample Leaking Underground Fuel Tank LUFT Modified **MBAS** Methylene Blue Active Substances MDL Method Detection Limit Method Reporting Limit MRL Matrix Spike MS Methyl-tert-Butyl Ether **MTBE** Not Applicable NA NC Not Calculated None Detected at or above the Method Reporting/Detection Limit (MRL/MDL) ND Nephelometric Turbidity Units NTU Parts Per Billion ppb Parts Per Million ppm **Practical Quantitation Limit PQL** Quality Assurance/Quality Control QA/QC **RCRA** Resource Conservation and Recovery Act RPD Relative Percent Difference SIM Selected Ion Monitoring Standard Methods for the Examination of Water and Wastewater, 18th Ed., 1992. SM Solubility Threshold Limit Concentration STLC Test Methods for Evaluating Solid Waste, Physical/Chemical Methods SW-846, SWThird Edition, 1986 and as amended by Updates I, II, IIA, and IIB. TCLP Toxicity Characteristics Leaching Procedure Total Dissolved Solids TDS TPH Total Petroleum Hydrocarbons Total Recoverable Petroleum Hydrocarbons **TRPH Total Suspended Solids** TSS TTLC Total Threshold Limit Concentration VOA Volatile Organic Analyte(s) **Oualifiers** Undetected at or above MDL/MRL. U Estimated concentration. Analyte detected above MDL but below MRL. J Hit above MRL also found in Method Blank. В Analyte concentration above high point of ICAL. E N Presumptive evidence of compound. Result from dilution. D

See case narrative.

X

- Cover Page -INORGANIC ANALYSIS DATA PACKAGE

Client:

BE&K Terranext, LLC

Project Name : Project No. : WVB 03103154 Service Request: L2301140

Sample Name :	<u>Lab Code :</u>
Batch QC	L2301139-004S
Batch QC	L2301139-004SD
AVB115-0100-01122	L2301140-001
AVB115-0104-1000	L2301140-002
AVB122-0100-01144	L2301140-003
AVB120-0100 - 01130	L2301140-004
AVB121-0100-01122	L2301140-005
AVB121-0104-1000	L2301140-006
Laboratory Control Sample	L2301140-LCS
Method Blank	L2301140-MB

50000A4

Analytical Report

Client:

BE&K Terranext, LLC

Project Name: Project No.:

WVB 03103154

Matrix:

Water

Service Request: L2301140

Date Collected: 05/27/03 **Date Received:** 05/28/03

Date Extracted: 06/04/03

Total Metals

Sample Name :

AVB115-0100-01122

Lab Code:

L2301140-001

Units: ug/L (ppb)

Analyte	Analysis Method	MRL	Date Analyzed	Sample Result	Result Notes
Chromium	6010B	10	06/10/03	ND	

Analytical Report

Client:

BE&K Terranext, LLC

Project Name : Project No. :

WVB 03103154

Matrix:

Water

Service Request: L2301140

Date Collected: 05/27/03 **Date Received:** 05/28/03

Date Extracted: 06/04/03

Dissolved Metals

Sample Name:

AVB115-0100-01122

Lab Code:

L2301140-001

Units: ug/L (ppb)

Analyte	Analysis Method	MRL	Date Analyzed	Sample Result	Result Notes
Chromium	6010B	10	06/10/03	ND	

Analytical Report

Client:

BE&K Terranext, LLC

Project Name: Project No.:

WVB 03103154

Matrix:

Water

Service Request: L2301140

Date Collected: 05/27/03 Date Received: 05/28/03

Date Extracted: 06/04/03

Total Metals

Sample Name:

AVB115-0104-1000

Lab Code:

L2301140-002

Units: ug/L (ppb)

Analyte	Analysis Method	MRL	Date Analyzed	Sample Result	Result Notes
Chromium	6010B	10	06/10/03	ND	

Analytical Report

Client:

BE&K Terranext, LLC

Project Name : Project No. :

WVB 03103154

Matrix:

Water

Service Request: L2301140

Date Collected: 05/27/03 **Date Received:** 05/28/03

Date Extracted: 06/04/03

Dissolved Metals

Sample Name:

AVB115-0104-1000

Lab Code:

L2301140-002

Units: ug/L (ppb)

Basis: NA

Analyte Analysis Method MRL Date Analyzed Result Notes

Chromium 6010B 10 06/10/03 ND

Analytical Report

Client:

BE&K Terranext, LLC

Project Name: Project No.:

WVB 03103154

Matrix:

Water

Service Request: L2301140

Date Collected: 05/27/03

Date Received: 05/28/03

Date Extracted: 06/04/03

Total Metals

Sample Name:

AVB122-0100-01144

Lab Code:

L2301140-003

Units: ug/L (ppb)

Basis: NA

Sample Result Result Notes **Date Analyzed Analysis Method** MRL Analyte 11 10 06/10/03 6010B Chromium

Analytical Report

Client:

BE&K Terranext, LLC

Project Name: Project No.:

WVB 03103154

Matrix:

Water

Service Request: L2301140 Date Collected: 05/27/03

Date Received: 05/28/03

Date Extracted: 06/04/03

Dissolved Metals

Sample Name:

AVB122-0100-01144

Lab Code:

L2301140-003

Units: ug/L (ppb)

Analyte	Analysis Method	MRL	Date Analyzed	Sample Result	Result Notes
Chromium	6010B	10	06/10/03	ND	

Analytical Report

Client:

BE&K Terranext, LLC

Project Name : Project No. : WVB 03103154

Matrix:

Water

Service Request: L2301140

Date Collected: 05/27/03

Date Received: 05/28/03

Date Extracted: 06/04/03

Total Metals

Sample Name:

AVB120-0100-01130

Lab Code:

L2301140-004

Units: ug/L (ppb)

Analyte	Analysis Method	MRL	Date Analyzed	Sample Result	Result Notes
Chromium	6010B	10	06/10/03	16	

Analytical Report

Client:

BE&K Terranext, LLC

Project Name : Project No. : WVB 03103154

Matrix:

Water

Service Request: L2301140

Date Collected: 05/27/03

Date Received: 05/28/03

Date Extracted: 06/04/03

Dissolved Metals

Sample Name:

AVB120-0100-01130

Lab Code:

L2301140-004

Units: ug/L (ppb)

Analyte	Analysis Method	MRL	Date Analyzed	Sample Result	Result Notes
Chromium	6010B	10	06/10/03	ND	

Analytical Report

Client:

BE&K Terranext, LLC

Project Name: Project No.:

WVB 03103154

Matrix:

Water

Service Request: L2301140

Date Collected: 05/27/03

Date Received: 05/28/03

Date Extracted: 06/04/03

Total Metals

Sample Name:

AVB121-0100-01122

Lab Code:

L2301140-005

Units: ug/L (ppb)

Analyte	Analysis Method	MRL	Date Analyzed	Sample Result	Result Notes
Chromium	6010B	10	06/10/03	ND	

Analytical Report

Client:

BE&K Terranext, LLC

Project Name: Project No.: WVB

Matrix:

03103154 Water Service Request: L2301140

Date Collected: 05/27/03

Date Received: 05/28/03

Date Extracted: 06/04/03

Dissolved Metals

Sample Name:

AVB121-0100-01122

Lab Code:

L2301140-005

Units: ug/L (ppb)

Analyte	Analysis Method	MRL	Date Analyzed	Sample Result	Result Notes
Chromium	6010B	10	06/10/03	ND	

Analytical Report

Client:

BE&K Terranext, LLC

Project Name: Project No.:

WVB 03103154

Matrix:

Water

Service Request: L2301140

Date Collected: 05/27/03

Date Received: 05/28/03

Date Extracted: 06/04/03

Total Metals

Sample Name:

AVB121-0104-1000

Lab Code:

L2301140-006

Units: ug/L (ppb)

Analyte	Analysis Method	MRL	Date Analyzed	Sample Result	Result Notes	
Chromium	6010B	10	06/10/03	ND		

Analytical Report

Client:

Matrix:

BE&K Terranext, LLC

Project Name: Project No.:

WVB 03103154

Water

Service Request: L2301140

Date Collected: 05/27/03 Date Received: 05/28/03

Date Extracted: 06/04/03

Dissolved Metals

Sample Name:

AVB121-0104-1000

Units: ug/L (ppb)

Basis: NA

Lab Code:

L2301140-006

Result Sample Result Notes **Date Analyzed** MRL **Analysis Method** Analyte 06/10/03 ND 10 6010B Chromium

Analytical Report

Client:

BE&K Terranext, LLC

Project Name: Project No.:

WVB 03103154

Matrix:

Water

Service Request: L2301140

Date Collected: NA
Date Received: NA

Date Extracted: 06/04/03

Total Metals

Sample Name: Lab Code: Method Blank

•

L2301140-MB

Units: ug/L (ppb)

Analyte	Analysis Method	MRL	Date Analyzed	Sample Result	Result Notes
Chromium	6010B	10	06/10/03	ND	

QA/QC Report

Client:

BE&K Terranext, LLC

Project Name : Project No. :

WVB 03103154

Matrix:

Water

Service Request: L2301140

Date Collected: NA

Date Received: NA

Date Extracted: 06/04/03

Date Analyzed: 06/10/03

Laboratory Control Sample Summary

Total Metals

Sample Name:

Laboratory Control Sample

Lab Code:

L2301140-LCS

Units: ug/L (ppb)

Analyte	Analysis Method	True Value	Result	Percent	CAS Percent Recovery Acceptance Limits	Result Notes
Chromium	6010B	500	500	100	87-111	

Analytical Report

Client:

BE&K Terranext, LLC

Project Name : Project No. : WVB

Matrix:

03103154 Water Service Request: L2301140

Date Collected: NA
Date Received: NA

Date Extracted: 06/04/03

Date Analyzed: 06/10/03

Matrix Spike/Duplicate Matrix Spike Summary

Total Metals

Sample Name : Lab Code :

Batch QC

1

L2301139-004S

L2301139-004SD

Units: ug/L (ppb)

Analyte	Prep Method	Analysis Method	MRL	Spike MS	Level DMS	Sample Result	Spike MS	Result DMS	MS	DMS	CAS Acceptance Limits	Relative Percent Difference	Result Notes
Chromium	3010A	6010B	10	500	500	ND	482	482	96	96	87-105	<1	

CHAIN OF CUSTODY/LABORATORY ANALYSIS REQUEST FORM 75301140

Columbia Analytical Services MC

000057

3902 East University Drive, Suite 4 • Phoenix, AZ 85034 • (602) 437-2001 • (800) 695-7222 x09 • FAX (602) 437-5308

DATE 5.28.03

Р

PAGE

RUSH TAT - Surcharges Apply REMARKS ANALYSIS TAT (Circle One) Lab No: X23-00458 SAMPLE RECEIPT: □ 24 Hours □ 48 Hours □ 72 Hours **ETANDARD** Shipping VIA: Shipping #: Condition: X X K D 0758 **ANALYSIS REQUESTED** ĭ INVOICE INFORMATION: Date/Time 1230 Date/Time Date/Time Cietifa Inied CHQ Organization Organization Organization D d70 CAS Bill To P.O.# REPORT REQUIREMENTS II. Report (includes DUP.MS. MSD, as required, may be IV. CLP Deliverable Report III. Data Validation Report (includes All Raw Data) charged as samples) I. Routine Report selitelov olietiles Volatile Organics Lesli nay Received By (Signature) Received By (Signature) Repetived By (Signature) Pelex 10 S NUMBER OF CONTAINERS \$\frac{1}{2}\text{\lambda}{\frac{\frac{1}{2}\text{\lambda}{\frac{1}{2}\text{\lambda}{\frac{1}{2}\text{\lambda}{\frac{1}{2}\text{\lambda}{\frac{\frac{1}{2}\text{\lambda}{\frac{1}{2}\text{\lambda}{\frac{\frac{1}{2}\text{\lambda} PRESER-VATION 5.28.03.30 ٤ Date/Time Date/Time Date/Time 000 4 03103134 MATRIX A ž ` HW. 500 909 B 803 600 Organization Organization Organization 458-00 なって EP PB F. PROJECT MANAGER Churck Gardon 10.45 HONE/FAX 15°C 7.30 TIME 6.70 J-20 9 3 SPECIAL INSTRUCTIONS/COMMENTS: なって DATE 8.5 82.5 5.8 825 5.17 5.20 Sim Relinquished By (Signature) Relinquished By (Signature) Relinquished By (Signature) PROJECT NAME NV(3 SAMPLER'S SIGNATURE 4×621-0102-1000 Leslic may COMPANY/ADDRESS __ AND120-0:00-01130 AVBIZI-0164-1000 AYB122-0100-01144 47315-0100-01122 NB121-0100 - 01122 ANBAIS-DIDY - 1000 SAMPLE Ξ.

DISTRIBUTION: WHITE - return to originator; YELLOW - lab; PINK - retained by originator

0702

SAMPLE RECEIPT FORM

Service Request No: L230 1140 Client: BE+K
Sample(s) delivered by: Client CAS Emp After Hours DHL
Golden State Overnight Fed X UPS Other Courier
Chain of Custody filled out accurately? Yes V No (See Comments)
Appropriate sample volume and containers? Yes No(See Comments)
Sufficient labeling on container(s)? Yes No(See Comments)
Container(s) supplied by CAS? Yes No (See Comments)
Custody seal(s) intact? N/A / Yes No(See Comments)
Trip Blank(s) received Yes No
If Trip Blank was supplied by CAS, record serial #TB
Temperature of sample(s)/cooler °C Temp Blank? (Y or N (Circle One)
Voa's Marked Preserved? Yes No Filled Properly? Yes No (See Comments)
Preserved Bottles Requiring pH check(s)? Yes/ Appropriate Preservation? Yes/ No
RUSH Turn around time? Yes Notified Date & Time
Short Hold-Time Analysis (check all that apply)
ASAP Res Cl D.O Flash Diss S2- Ferrous Fe 24HR pH Odor Cr+6 48HR BOD Color MBAS Nitrate Nitrite O-PO4 Sett Sol Turbidity 72HR Vapors
Notified Date & Time
Container(s) received and their preservative(s):
-1 -> -6 = 1-500m1 P1(NP)A
1-500m1 P1 (HN03)B
Comments Filter & preserve diss metals bottle in lab. CAUED BARBARA 5/29/63 0940
20 /29/03
Initials Date Time 15 5/29/03 0900 r:\sr forms\cooler.doc Rev. 2/25/02

CHAIN OF CUSTODY/LABORATORY ANALYSIS REQUEST FORM

3902 East University Drive, Suite 4 • Phoenix, AZ 85034 • (602) 437-2001 • (800) 695-7222 x09 • FAX (602) 437-5308

Analytical Services INC.

olumbia

DATE 5.28 63

PAGE

땅

RUSH TAT - Surcharges Apply ANALYSIS TAT (Circle One) REMARKS Lab No: X 33-00458 SAMPLE RECEIPT: □ 24 Hours □ 48 Hours ☐ 72 Hours STANDARD Shipping VIA: Shipping #: _ Condition: X X C 0458 **ANALYSIS REQUESTED** X INVOICE INFORMATION: Date/Time S: 38:03 0188 Date/Time Date/Time Dyallia iniba CHa Diniod Asela Organization Organization Organization Total T Bill 70 P.O.# 8PCPA Metals REPORT REQUIREMENTS II. Report (includes DUP.MS. MSD, as required, may be III. Data Validation Report (includes All Raw Data) IV. CLP Deliverable Report charged as samples) Routine Report Halogenated & Aromatic Volatiles of the second state of the second secon Volatile Organics Received By (Signature) Received By (Signature) Received By (Signature) Kelle X X 10 S S NUMBER OF CONTAINERS 大公司 5:28:03.50 #5/#VD.3. PRESER-VATION ٤ Ž, Date/Time Date/Time Date/Time 4 0310313Y MATRIX AG 9 • * 8 e B 600 003 600 Organization Organization Organization 500 10 458-00 LAB I.D. PROJECT MANAGER Churck Gordon 10.45 PHONE/FAX 15°00 7.30 11.20 TIME 9 43 SPECIAL INSTRUCTIONS/COMMENTS: なって DATE 97·S S. S. 92.S 5.8 5.17 Sin 5.28 Relinquished By (Signature) Relinquished By (Signature) Relinquished By (Signature) PROJECT NAME WITH SAMPLER'S SIGNATURE COMPANY/ADDRESS_ 4vBiz1-0102-pod AVBIZI-0164-1000 AVB122-0100-01144 945120-0,00-01130 AVBIIS-0100-01122 AVBIZI-0100 - 01122 AVBIS-0104-1000 SAMPLE I.D.

DISTRIBUTION: WHITE - return to originator; YELLOW - lab; PINK - retained by originator

0702

Columbia Analytical Services, Inc. Phoenix, AZ

Sample Receipt and Preservation Form

Client:	BEXK	•		Project Nam	ne:	UB	
Sample(s) J	Received on: <u>5</u> Glass Bot	-28.03 iles□	date $\frac{\sqrt{\partial}}{\partial x}$ Plastic Bottles	3C time D Jar	s 🗆	Sleeves □	
	traction Holding		m:	date		e (soils only)	
ls first e	xtraction/analysi	s holding time	expiration LESS	THAN 24 HO	URS(soil)/7	DAYS (water)?	Yes □ No□
If YES,	chemist notified	on:	date	time		Chemist's Initial	3
If yes, ho 3 Are the s 4. Did all co 5 Are all co 6. Were the 7 Have VO 8. Temperat	ustody seals pressive many and who ignature and date ignature and date intainers arrive is mainer labels or correct containe. As been checked are of sample(s) in of discrepancies.	ere? correct? n good condition proplete (i.e. pre rs used for the t d for the presen upon receipt:	servation, samp ests indicated?		ns in comm	Yes □ Yes □ Yes □	No No No No No No No No
		T					
					(OA Vial pH Verif Tested After Ana ☐ All Samples pH	lysis)
1		YES	NO		· ·	ving Samples Exh	
pН	Reagent				: .		
12	NaOH						
2	HNO ₃						
2	H ₂ SO ₄		·				
Comments:							
•		Forn	n Completed	and Sample(s	s) Receive	d by (initials):	LW

June 16, 2003

Chuck Gordon BE&K Terranext 9830 S. 51st Street, Suite A-127 Phoenix, AZ 85044

Re: ADEQ WVBA WQARF / Project #03103154

Dear Chuck:

Enclosed are the results of the samples submitted to our laboratory on May 29, 2003. The samples were analyzed for Total Chromium and Dissolved Chromium by our Canoga Park, CA facility (L2301156). For your reference, the 8260 analyses have been assigned our service request number X2300461.

All analyses were performed according to our laboratory's quality assurance program. All results are intended to be considered in their entirety, and Columbia Analytical Services, Inc. (CAS) is not responsible for use of less than the complete report. Results apply only to the samples analyzed. Columbia Analytical Services, Inc. is certified for environmental analyses by the Arizona Department of Health Services (Certificate #AZ0136; and #AZ0497).

Please call if you have any questions. My extension is 223.

Respectfully submitted,

Columbia Analytical Services, Inc.

Tracy L. Dutton
Laboratory Director

TLD/lm

Page 1 of <u>54</u>

Client:

BE&K Terranext

Service Request No.:

X2300461

Project:

ADEO WVBA WQARF / #03103154

Date Received:

5/29/03

Sample Matrix:

Water

CASE NARRATIVE

All analyses were performed consistent with the quality assurance program of Columbia Analytical Services, Inc. (CAS). This report contains analytical results for sample(s) designated for Tier II data deliverables. When appropriate to the method, method blank results have been reported with each analytical test. Surrogate recoveries have been reported for all applicable organic analyses. Additional quality control analyses reported herein include: Matrix/Duplicate Matrix Spike (MS/DMS) and Laboratory Control Sample (LCS).

All EPA recommended holding times have been met for analyses in this sample delivery group.

The following difficulties were experienced during analysis of this batch:

Surrogate recovery of Dibromofluoromethane and 4-Bromofluorobenzene, Method 8260B, was above laboratory acceptance limits for sample AVB108-0102-1000 (X2300461-006), but within method acceptance limits.

Matrix spike (XWG0300706-1 and XWG0300706-2) recovery of several analytes for Method 8260B was high. The method control sample recovery was acceptable.

Matrix spike (XWG0300706-1 and XWG0300706-2) recovery of Bromoform, Method 8260B, was low. The method control sample recovery was acceptable.

M Date 6-16-03

Approved by

ARIZONA DATA QUALIFIERS

Method Bla	
B1	Target analyte detected in method blank at or above the method reporting limit.
B2	Non-target analyte detected in method blank and sample, producing interference.
B3	Target analyte detected in calibration blank at or above the method reporting limit.
B4	Target analyte detected in blank at/above method acceptance criteria.
B5	Target analyte detected in method blank at or above the method reporting limit, but below trigger level or MCL.
В6	Target analyte detected in calibration blank at or above the method reporting limit, but below trigger level or MCI
B7	Target analyte detected in method blank at or above method reporting limit. Concentration found in the sample
	was 10 times above the concentration found in the method blank.
Confirmati	
C1	Confirmatory analysis not performed as required by the method.
C2	Confirmatory analysis not performed. Confirmation of analyte presence established by site historical data.
C3	Qualitative confirmation performed. See case narrative.
C4	Confirmatory analysis was past holding time.
C5	Confirmatory analysis was past holding time. Original result not confirmed.
Dilution:	
D1	Sample required dilution due to matrix interference. See case narrative.
D2	Sample required dilution due to high concentration of target analyte.
D3	Sample dilution required due to insufficient sample.
D4	Minimum reporting level (MRL) adjusted to reflect sample amount received and analyzed.
Estimated	concentration:
E1	Concentration estimated. Analyte exceeded calibration range. Reanalysis not possible due to insufficient
	sample.
E2	Concentration estimated. Analyte exceeded calibration range. Reanalysis not performed due to sample matrix.
E3	Concentration estimated. Analyte exceeded calibration range. Reanalysis not performed due to holding time
	requirements.
E4	Concentration estimated. Analyte was detected below laboratory minimum reporting level (MRL).
E5	Concentration estimated. Analyte was detected below laboratory minimum reporting level (MRL), but not confirmed by alternate analysis.
E6	Confirmation estimated. Internal standard recoveries did not meet method acceptance criteria.
E7	Confirmation estimated. Internal standard recoveries did not meet laboratory acceptance criteria.
Hold Time	
H1	Sample analysis performed past holding time. See case narrative.
H2	Initial analysis within holding time. Reanalysis for the required dilution was past holding time.
H3	Sample was received and analyzed past holding time.
H4	Sample was extracted past required extraction holding time, but analyzed within analysis holding time. See case
	narrative.

Laboratory fortified blank/blank spike:

L1 The associated blank spike recovery was above laboratory acceptance limits. See case narrative.

The associated blank spike recovery was below laboratory acceptance limits. See case narrative. L2 The associated blank spike recovery was above method acceptance limits. See case narrative. L3 The associated blank spike recovery was below method acceptance limits. See case narrative. L4 Note: The L1, L2, L3, & L4 footnotes need to be added to all corresponding analytes for a sample. Matrix spike: Matrix spike recovery was high, the method control sample recovery was acceptable. M1 Matrix spike recovery was low, the method control sample recovery was acceptable. M2 The accuracy of the spike recovery value is reduced since the analyte concentration in the sample is M3 disproportionate to spike level. The method control sample recovery was acceptable. The analysis of the spiked sample required a dilution such that the spike concentrations was diluted below M4 the reporting limit. The method control sample recovery was acceptable. Analyte concentration was determined by the method of standard addition (MSA). M5 Matrix spike recovery was high. Data reported per ADEQ policy 0154.000. M6 Matrix sipke recovery was low. Data reported per ADEQ policy 0154.000. M7 General: N1See case narrative. See corrective action report. N2 Sample quality: Sample integrity was not maintained. See case narrative. Q1 Sample received with head space. Q2 Sample received with improper chemical preservation. Q3 Sample received and analyzed without chemical preservation. Q4 Sample received with inadequate chemical preservation, but preserved by the laboratory. Q5 Sample was received above recommended temperature. Q6 Sample inadequately dechlorinated. 07 Insufficient sample received to meet QC requirements. QC requirements satisfy ADEQ policies 0154 and 0155. Q8 Insufficient sample received to meet QC requirements. Q9 Sample received in inappropriate sample container. Q10 Sample is heterogeneous. Sample homogeneity could not be readily achieved using routine laboratory practices. Q11 **Duplicates:** RPD exceeded the method control limit. See case narrative. R1 RPD exceeded the laboratory control limit. See case narrative. R2 Sample RPD between the primary and confirmatory analysis exceeded 40%. Per Method 8000B, the higher R3 value was reported. MS/MSD RPD exceeded the method control limit. Recovery met acceptance criteria. R4 MS/MSD RPD exceeded the laboratory control limit. Recovery met acceptance criteria. R5

Surrogate:

R6

R7

R8

R9

S1 Surrogate recovery was above laboratory acceptance limits, but within method acceptance limits.

LFB/LFBD RPD exceeded the method control limit. Recovery met acceptance criteria.

LFB/LFBD RPD exceeded the laboratory control limit. Recovery met acceptance criteria.

S2 Surrogate recovery was above laboratory and method acceptance limits.

Sample RPD exceeded the method control limit.

Sample RPD exceeded the laboratory control limit.

Surrogate recovery was above laboratory acceptance limits, but within method acceptance limits. No target S3 analytes were detected in the sample. Surrogate recovery was above laboratory and method acceptance limits. No target analytes were detected in the S4 Surrogate recovery was below laboratory acceptance limits, but within method acceptance limits. S5 Surrogate recovery was below laboratory and method acceptance limits. Reextraction and/or reanalysis confirms S6 low recovery caused by matrix effect. Surrogate recovery was below laboratory and method acceptance limits. Unable to confirm matrix effect. **S7** The analysis of the sample required a dilution such that the surrogate concentration was diluted below the method S8 acceptance criteria. The method control sample recovery was acceptable. The analysis of the sample required a dilution such that the surrogate concentration was diluted below the S9laboratory acceptance criteria. The method control sample recovery was acceptable. Surrogate recovery was above laboratory and method acceptance limits. See case narrative. S10 Surrogate recovery was high. Data reported per ADEQ policy 0154.000. S11 Surrogate recovery was low. Data reported per ADEQ policy 0154.000. S12

Method/analyte discrepancies:

- T1 Method promulgated by EPA, but not ADHS at this time.
- T2 Cited ADHS licensed method does not contain this analyte as part of method compound list.
- T3 Method not promulgated either by EPA or ADHS.
- Tentatively identified compound. Concentration is estimated and based on the closest internal standard.

Calibration verification:

- V1 CCV recovery was above method acceptance limits. This target analyte was not detected in the sample.
 V2 CCV recovery was above method acceptance limits. This target analyte was detected in the sample. The sample
- could not be reanalyzed due to insufficient sample.
- V3 CCV recovery was above method acceptance limits. This target analyte was detected in the sample, but the sample was not reanalyzed. See case narrative.
- V4 CCV recovery was below method acceptance limits. The sample could not be reanalyzed due to insufficient sample.
- V5 CCV recovery after a group of samples was above acceptance limits. This target analyte was not detected in the sample. Acceptable per EPA Method 8000B.
- V6 Data reported from one-point calibration criteria per ADEQ policy 0155.000.
- V7 Calibration verification recovery was above the method control limit for this analyte however the average % difference or % drift for all the analytes met method criteria.
- V8 Calibration verification recovery was below the method control limit for this analyte however the average % difference or % drift for all the analytes met method criteria.

Calibration:

W1 The % RSD for this compound was above 15%. The average % RSD for all compounds in the calibration met the 15% criteria as specified in EPA method 8000B.

Inorganic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.
- U The compound was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- i The MRL/MDL has been elevated due to a matrix interference.
- X See case narrative.

Metals Data Qualifiers

- # The control limit criteria is not applicable. See case narrative.
- B The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.
- E The reported value is estimated because of the presence of matrix interference.
- M The duplicate injection precision was not met.
- N The Matrix Spike sample recovery is not within control limits. See case narrative.
- S The reported value was determined by the Method of Standard Additions (MSA).
- U The compound was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- W The post-digestion spike for furnace AA analysis is out of control limits, while sample absorbance is less than 50% of spike
- i The MRL/MDL has been elevated due to a matrix interference.
- X See case narrative.
- * The duplicate analysis not within control limits. See case narrative.
- + The correlation coefficient for the MSA is less than 0.995.

Organic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- A A tentatively identified compound, a suspected aldol-condensation product.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result.
- C The analyte was qualitatively confirmed using GC/MS techniques, pattern recognition, or by comparing to historical data.
- D The reported result is from a dilution.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.
- N The result is presumptive. The analyte was tentatively identified, but a confirmation analysis was not performed.
- P The GC or HPLC confirmation criteria was exceeded. The relative percent difference is greater than 40% between the two analytical results (25% for CLP Pesticides).
- U The compound was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- i The MRL/MDL has been elevated due to a chromatographic interference.
- X See case narrative.

Additional Petroleum Hydrocarbon Specific Qualifiers

- F The chromatographic fingerprint of the sample matches the elution pattern of the calibration standard.
- L The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of lighter molecular weight constituents than the calibration standard.
- H The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of heavier molecular weight constituents than the calibration standard.
- O The chromatographic fingerprint of the sample resembles an oil, but does not match the calibration standard.
- Y The chromatographic fingerprint of the sample resembles a petroleum product eluting in approximately the correct carbon range, but the elution pattern does not match the calibration standard.
- Z The chromatographic fingerprint does not resemble a petroleum product.

Client: Project: BE&K Terranext

ADEQ WVBA WQARF/#03103154

Service Request:

X2300461

Cover Page - Organic Analysis Data Package Volatile Organic Compounds

Sample Name	Lab Code	Date Collected	Date Received
AVB117-0100-01135	X2300461-001	05/29/2003	05/29/2003
AVB116-0100-01126	X2300461-002	05/29/2003	05/29/2003
AVB116-0101-01126	X2300461-003	05/29/2003	05/29/2003
AVB108-0100-01141	X2300461-004	05/29/2003	05/29/2003
AVB108-0104-1000	X2300461-005	05/29/2003	05/29/2003
AVB108-0102-1000	X2300461-006	05/29/2003	05/29/2003

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed in the case narrative. Release of the data contained in this hardcopy data package and in the computer-readable data submitted on floppy diskette has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signature.

Signature: Macy Du

Date: 6-16-03

Name: Tracy Dutto

Title: Lab Manager

RR3429

Analytical Results

Client:

BE&K Terranext

Project:

ADEQ WVBA WQARF/#03103154

Sample Matrix:

Water

Service Request: X2300461

Date Collected: 05/29/2003

Date Received: 05/29/2003

Volatile Organic Compounds

Sample Name:

AVB117-0100-01135

Lab Code:

X2300461-001

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

			Dilution	Date	Date	
Result	Q	MRL	Factor	Extracted	Analyzed	Arizona Qualifier
ND	U	3.0	1	06/06/03	06/06/03	
ND	U	2.0	1	06/06/03		
ND	U	1.0	1	06/06/03	06/06/03	
ND	U	1.0	1	06/06/03	06/06/03	
ND	U	1.0	1			
ND	U	1.0	1	06/06/03	06/06/03	
ND	U	1.0	1	06/06/03	06/06/03	
ND	U	1.0	1	06/06/03	06/06/03	
ND	U	10	1	06/06/03	06/06/03	
ND	U	2.0	1	06/06/03	06/06/03	
		2.0	1	06/06/03		
ND	U	1.0	1	06/06/03	06/06/03	
ND	U	1.0	1	06/06/03	06/06/03	
		0.50	1	06/06/03	06/06/03	
ND	U	0.50	1	06/06/03	06/06/03	
ND	U	3.0	1	06/06/03	06/06/03	
		2.0	1	06/06/03	06/06/03	
ND	U	8.0	1	06/06/03	06/06/03	
ND	U	0.50	1	06/06/03	06/06/03	
ND	U	0.50	1			
3.0		1.0	1	06/06/03	06/06/03	
ND	U	0.50	1	06/06/03	06/06/03	
ND	U	0.50	1			
ND	U	0.50	1	06/06/03	06/06/03	
ND	U	0.50	1	06/06/03	06/06/03	
ND	U	0.50	1	06/06/03		
0.86		0.50	1	06/06/03	06/06/03	
ND	U	0.50	1	06/06/03	06/06/03	
ND	U	0.50	1			
ND	U	0.50	1	06/06/03		
ND	U	0.50	1	06/06/03	06/06/03	
		8.0	1	06/06/03		
ND	U	0.50	1	06/06/03	06/06/03	
	ND ND ND ND ND ND ND ND	ND U 3.0 ND U ND	ND U 3.0 ND U 1.0 ND U 2.0 ND U 2.0 ND U 1.0 ND U 1.0 ND U 0.50	Result Q MRL Factor ND U 3.0 1 ND U 2.0 1 ND U 1.0 1 ND U 2.0 1 ND U 2.0 1 ND U 1.0 1 ND U 1.0 1 ND U 0.50 1 <td>Result Q MRL Factor Extracted ND U 3.0 1 06/06/03 ND U 2.0 1 06/06/03 ND U 1.0 1 06/06/03 ND U 2.0 1 06/06/03 ND U 2.0 1 06/06/03 ND U 2.0 1 06/06/03 ND U 1.0 1 06/06/03 ND U 1.0 1 06/06/03 ND U 0.50 1 06/06/03 ND U 3.0 1 06/06/03 ND U 3.0 1 06/06/03 ND U 0.50 1 06/06/03</td> <td> NE</td>	Result Q MRL Factor Extracted ND U 3.0 1 06/06/03 ND U 2.0 1 06/06/03 ND U 1.0 1 06/06/03 ND U 2.0 1 06/06/03 ND U 2.0 1 06/06/03 ND U 2.0 1 06/06/03 ND U 1.0 1 06/06/03 ND U 1.0 1 06/06/03 ND U 0.50 1 06/06/03 ND U 3.0 1 06/06/03 ND U 3.0 1 06/06/03 ND U 0.50 1 06/06/03	NE

Comments:

000008

Merged

Printed: 06/11/2003 13:57:20 L:\STEALTH\CRYSTAL.RPT\Form1m.rpt

Form 1A - Organic

Page 1 of 3

Analytical Results

Client:

BE&K Terranext

Project:

ADEQ WVBA WQARF/#03103154

Sample Matrix:

Water

Service Request: X2300461

Date Collected: 05/29/2003

Date Received: 05/29/2003

Volatile Organic Compounds

Sample Name:

AVB117-0100-01135

Lab Code:

X2300461-001

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

				Dilution	Date	Date	
Analyte Name	Result	Q	MRL	Factor_	Extracted		Arizona Qualifier
trans-1,3-Dichloropropene	ND	U	1.0	1	06/06/03	06/06/03	
1,1,2-Trichloroethane	ND	U	1.0	1	06/06/03	06/06/03	
Tetrachloroethene	3.7		0.50	1	06/06/03	06/06/03	
2-Hexanone	ND	U	5.0	1	06/06/03	06/06/03	
1,3-Dichloropropane	ND		1.0	1	06/06/03	06/06/03	
Dibromochloromethane	ND	U	0.50	1	06/06/03	06/06/03	
1,2-Dibromoethane	ND	U	0.50	1	06/06/03	06/06/03	
Chlorobenzene	ND		0.50	1	06/06/03	06/06/03	
1,1,1,2-Tetrachloroethane	ND		0.50	1	06/06/03	06/06/03	
Ethylbenzene	ND	IJ	0.50	1	06/06/03	06/06/03	
m,p-Xylenes	ND		1.0	1	06/06/03	06/06/03	
o-Xylene	ND		0.50	1	06/06/03	06/06/03	
Styrene	ND		0.50	1	06/06/03	06/06/03	
Isopropylbenzene	ND		0.50	1	06/06/03	06/06/03	
Bromobenzene	ND		0.50	1	06/06/03	06/06/03	
	ND		1.0	1	06/06/03	06/06/03	
1,2,3-Trichloropropane	ND		0.50	1	06/06/03	06/06/03	
n-Propylbenzene 2-Chlorotoluene	ND		0.50	1	06/06/03	06/06/03	
	ND		0.50	1	06/06/03	06/06/03	
4-Chlorotoluene	ND ND		0.50	1	06/06/03	06/06/03	
1,3,5-Trimethylbenzene	ND ND		0.50	1	06/06/03	06/06/03	
tert-Butylbenzene			0.50		06/06/03	06/06/03	
1,2,4-Trimethylbenzene	ND ND		0.50	1	06/06/03	06/06/03	
sec-Butylbenzene	ND ND		0.50	1	06/06/03	06/06/03	
1,3-Dichlorobenzene					06/06/03	06/06/03	
4-Isopropyltoluene	ND		0.50	1	06/06/03	06/06/03	
Bromoform	ND		0.50	1	06/06/03	06/06/03	
1,1,2,2-Tetrachloroethane	ND		1.0				
1,4-Dichlorobenzene	ND		0.50	1	06/06/03	06/06/03	
1,2-Dichlorobenzene	ND		0.50	1	06/06/03	06/06/03	
n-Butylbenzene	ND		0.50	1	06/06/03	06/06/03	
1,2-Dibromo-3-chloropropane	ND		5.0	1	06/06/03	06/06/03	
1,2,4-Trichlorobenzene	ND		0.50	1	06/06/03	06/06/03	
Hexachlorobutadiene	ND	U	1.0	1	06/06/03	06/06/03	

Comments:

Printed: 06/11/2003 13:57:20 L:\STEALTH\CRYSTAL.RPT\Form\m.rpt

Merged

Form 1A - Organic

Page 2 of 3

SuperSet Reference:

RR3429

Analytical Results

Client:

BE&K Terranext

Project:

ADEQ WVBA WQARF/#03103154

Sample Matrix:

Water

Service Request: X2300461

Date Collected: 05/29/2003

Date Received: 05/29/2003

Volatile Organic Compounds

Sample Name:

AVB117-0100-01135

Lab Code:

X2300461-001

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

			Dilution	Date	Date	
Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed A	Arizona Qualifier
Naphthalene 1,2,3-Trichlorobenzene	ND U ND U	3.0 0.50	1	06/06/03 06/06/03	06/06/03 06/06/03	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Arizona Qualifier	
Dibromofluoromethane Toluene-d8 4-Bromofluorobenzene	109 120 110	84-113 68-126 79-113	06/06/03 06/06/03 06/06/03		

Comments:

Analytical Results

Client:

BE&K Terranext

Project:

ADEQ WVBA WQARF/#03103154

Sample Matrix:

Water

Service Request: X2300461

Date Collected: 05/29/2003

Date Received: 05/29/2003

Volatile Organic Compounds

Sample Name:

AVB116-0100-01126

Lab Code:

X2300461-002

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

Result	_					
rcsuit	Q	MRL	Factor	Extracted	Analyzed	Arizona Qualifier
ND	U	3.0	1	06/06/03	06/06/03	
ND	U	2.0	1	06/06/03		
ND	U	1.0	1	06/06/03	06/06/03	
ND	U	1.0	1	06/06/03	06/06/03	
ND	U	1.0	1			
1.4		1.0	1	06/06/03	06/06/03	
1.8		1.0	1	06/06/03	06/06/03	
28		1.0	l	06/06/03		
ND	U	10	1	06/06/03	06/06/03	1
ND	U	2.0	1	06/06/03	06/06/03	
ND	U	2.0	1	06/06/03	06/06/03	
ND	U	1.0	1	06/06/03	06/06/03	
ND	IJ	1.0	1	06/06/03	06/06/03	
		0.50	1	06/06/03	06/06/03	
14	_	0.50	1	06/06/03	06/06/03	
ND	U	3.0	1	06/06/03	06/06/03	
		2.0	1	06/06/03	06/06/03	
ND	U	8.0	1	06/06/03	06/06/03	
15		0.50	1	06/06/03	06/06/03	
		0.50	1			
1.9		1.0	1	06/06/03	06/06/03	
ND	U	0.50	1	06/06/03	06/06/03	
		0.50	1	06/06/03	06/06/03	
		0.50	1	06/06/03	06/06/03	
ND	U	0.50	1	06/06/03	06/06/03	
		0.50	1	06/06/03	06/06/03	
		0.50	1	06/06/03	06/06/03	
ND	U	0.50	1	06/06/03	06/06/03	
		0.50	1	06/06/03	06/06/03	
		0.50	1	06/06/03	06/06/03	
ND	U	0.50	1	06/06/03	06/06/03	
		8.0	1	06/06/03	06/06/03	
		0.50	1	06/06/03	06/06/03	
	ND N	ND U ND U ND U 1.4 1.8 28 ND U	ND U 2.0 ND U 1.0 ND U 1.0 ND U 1.0 ND U 1.0 1.4 1.0 1.8 1.0 28 1.0 ND U 10 ND U 2.0 ND U 2.0 ND U 1.0 ND U 1.0 ND U 0.50 ND U 3.0 ND U 3.0 ND U 3.0 ND U 3.0 ND U 2.0 ND U 3.0 ND U 3.0 ND U 3.0 ND U 0.50	ND U 2.0	ND U 2.0	ND U 1.0 1 06/06/03 06/06/03 1.4 1.0 1 06/06/03 06/06/03 1.4 1.0 1 06/06/03 06/06/03 1.4 1.0 1 06/06/03 06/06/03 1.4 1.0 1 06/06/03 06/06/03 1.4 1.0 1 06/06/03 06/06/03 06/06/03 1.4 1.0 1 06/06/03 06/06/03 06/06/03 28 1.0 1 06/06/03 06/0

Comments:

041011

Printed: 06/11/2003 13:57:31 L:\STEALTH\CRYSTAL.RPT\Formlm.rpt

Merged

Form 1A - Organic

Page 1 of 3

Analytical Results

Client:

BE&K Terranext

Project:

ADEQ WVBA WQARF/#03103154

Sample Matrix:

Water

Service Request: X2300461

Date Collected: 05/29/2003

Date Received: 05/29/2003

Volatile Organic Compounds

Sample Name:

AVB116-0100-01126

Lab Code:

X2300461-002

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

			Dilution	Date	Date	
Result	Q	MRL	Factor	Extracted	Analyzed	Arizona Qualifier
ND	U	1.0	1	06/06/03	06/06/03	
ND	U	1.0	1	06/06/03		
4.2		0.50	1	06/06/03	06/06/03	
ND	U	5.0	1	06/06/03	06/06/03	
ND	U	1.0	l			
ND	U	0.50	1	06/06/03	06/06/03	
ND	U	0.50	1	06/06/03	06/06/03	
ND	U	0.50	1	06/06/03	06/06/03	
ND	U	0.50	1	06/06/03	06/06/03	
ND	U	0.50	1	06/06/03	06/06/03	
ND	U	1.0	1	06/06/03	06/06/03	
ND	U	0.50	1	06/06/03	06/06/03	
ND	U	0.50	1	06/06/03	06/06/03	
			1	06/06/03	06/06/03	
		0.50	1	06/06/03	06/06/03	
ND	U	1.0	1	06/06/03	06/06/03	
ND	U	0.50	1	06/06/03	06/06/03	
ND	U	0.50	1	06/06/03	06/06/03	
ND	U	0.50	1	06/06/03	06/06/03	
ND	U	0.50	1	06/06/03		
ND	U	0.50	1	06/06/03	06/06/03	
ND	U	0.50	1	06/06/03	06/06/03	
ND	U	0.50	1	06/06/03	06/06/03	
ND	U	0.50	1	06/06/03	06/06/03	
ND	U	0.50	1	06/06/03	06/06/03	
ND	U	0.50	1	06/06/03	06/06/03	
ND	U	1.0	1	06/06/03	06/06/03	
ND	U	0.50	1	06/06/03	06/06/03	
		0.50	1	06/06/03	06/06/03	
ND	U	0.50	1	06/06/03	06/06/03	
ND	U	5.0	1	06/06/03	06/06/03	
		0.50	1	06/06/03	06/06/03	
ND	U	1.0	1	06/06/03	06/06/03	
	ND 4.2 ND 4.2 ND ND ND ND <td>ND U ND U</td> <td>ND U 1.0 ND U 1.0 ND U 1.0 4.2 0.50 ND U 5.0 ND U 1.0 ND U 0.50 ND U 0.50</td> <td> NE NE NE NE NE NE NE NE</td> <td> NESURE Variated NRL Factor Extracted ND U</td> <td> No U</td>	ND U	ND U 1.0 ND U 1.0 ND U 1.0 4.2 0.50 ND U 5.0 ND U 1.0 ND U 0.50	NE NE NE NE NE NE NE NE	NESURE Variated NRL Factor Extracted ND U	No U

Comments:

210012

Merged

Printed: 06/11/2003 13:57:31

SuperSet Reference:

Analytical Results

Client:

BE&K Terranext

Project:

ADEQ WVBA WQARF/#03103154

Sample Matrix:

Water

Service Request: X2300461

Date Collected: 05/29/2003

Date Received: 05/29/2003

Volatile Organic Compounds

Sample Name:

AVB116-0100-01126

Lab Code:

X2300461-002

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

			Dilution	Date	Date	
Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed	Arizona Qualifier
Naphthalene	ND U	3.0	1	06/06/03	06/06/03	
1,2,3-Trichlorobenzene	ND U	0.50	1	06/06/03	06/06/03	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Arizona Qualifier	
Dibromofluoromethane	110	84-113	06/06/03		
Toluene-d8	120	68-126	06/06/03		
4-Bromofluorobenzene	107	79-113	06/06/03		

Comments:

v===013

Printed: 06/11/2003 13:57:31

Merged

Form 1A - Organic

RR3429

Page 3 of 3

SuperSet Reference:

Analytical Results

Client:

BE&K Terranext

Project:

ADEQ WVBA WQARF/#03103154

Sample Matrix:

Water

Service Request: X2300461

Date Collected: 05/29/2003

Date Received: 05/29/2003

Volatile Organic Compounds

Sample Name:

AVB116-0101-01126

Lab Code:

X2300461-003

Extraction Method: EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

				Dilution	Date	Date	
Analyte Name	Result	Q	MRL	Factor	Extracted	Analyzed	Arizona Qualifier
Dichlorodifluoromethane	ND	U	3.0	1	06/06/03	06/06/03	
Chloromethane	ND	U	2.0	1	06/06/03	06/06/03	
Vinyl Chloride	ND	U	1.0	1	06/06/03	06/06/03	
Bromomethane	ND	U	1.0	1	06/06/03	06/06/03	
Chloroethane	ND		1.0	1	06/06/03	06/06/03	
Trichlorofluoromethane	1.4		1.0	1	06/06/03	06/06/03	
1,1,2-Trichlorotrifluoroethane	1.7		1.0	1	06/06/03	06/06/03	
1,1-Dichloroethene	28		1.0	1	06/06/03	06/06/03	
Acetone	ND	U	10	1	06/06/03	06/06/03	
Iodomethane	ND	IJ	2.0	1	06/06/03	06/06/03	
Carbon Disulfide	ND		2.0	1	06/06/03	06/06/03	
Methylene Chloride	ND		1.0	1	06/06/03	06/06/03	
Methyl tert-Butyl Ether	ND		1.0	1	06/06/03	06/06/03	
trans-1,2-Dichloroethene	ND		0.50	1	06/06/03	06/06/03	
1,1-Dichloroethane	14		0.50	1	06/06/03	06/06/03	
Vinyl Acetate	ND	IJ	3.0	1	06/06/03	06/06/03	
2,2-Dichloropropane	ND		2.0	1	06/06/03	06/06/03	
2-Butanone (MEK)	ND		8.0	1	06/06/03	06/06/03	
cis-1,2-Dichloroethene	14		0.50	1	06/06/03	06/06/03	
Bromochloromethane	ND	U	0.50	1	06/06/03	06/06/03	
Chloroform	1.9		1.0	1	06/06/03	06/06/03	
1.1.1-Trichloroethane	ND	IJ	0.50	1	06/06/03	06/06/03	
Carbon Tetrachloride	ND		0.50	1	06/06/03	06/06/03	
1,1-Dichloropropene	ND		0.50	1	06/06/03	06/06/03	
Benzene	ND	U	0.50	1	06/06/03	06/06/03	
1.2-Dichloroethane	ND		0.50	1	06/06/03	06/06/03	
Trichloroethene	77		0.50	I	06/06/03	06/06/03	
1,2-Dichloropropane	ND	U	0.50	1	06/06/03	06/06/03	
Dibromomethane	ND		0.50	1	06/06/03	06/06/03	
Bromodichloromethane	ND		0.50	1	06/06/03	06/06/03	
cis-1,3-Dichloropropene	ND	U	0.50	1	06/06/03	06/06/03	
4-Methyl-2-pentanone (MIBK)	ND		8.0	1	06/06/03	06/06/03	
Toluene	ND		0.50	1	06/06/03	06/06/03	
1 0140110							

Comments:

046014

Printed: 06/11/2003 13:57:42 L:\STEALTH\CRYSTAL.RPT\Form1m.rpt

Merged

Form 1A - Organic

Page 1 of 3

SuperSet Reference: RR3429

Analytical Results

Client:

BE&K Terranext

Project:

ADEQ WVBA WQARF/#03103154

Sample Matrix:

Water

Service Request: X2300461

Date Collected: 05/29/2003 **Date Received:** 05/29/2003

Volatile Organic Compounds

Sample Name:

AVB116-0101-01126

Lab Code:

X2300461-003

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

	D14	0	MRL	Dilution Factor	Date Extracted	Date	Arizona Qualifier
Analyte Name	Result				06/06/03	06/06/03	Arizona Quanner
trans-1,3-Dichloropropene	ND		1.0	1	06/06/03	06/06/03	
1,1,2-Trichloroethane	ND	U	1.0	1	06/06/03	06/06/03	
Tetrachloroethene	4.2		0.50				
2-Hexanone	ND		5.0	1	06/06/03	06/06/03	
1,3-Dichloropropane	ND		1.0	1	06/06/03	06/06/03	
Dibromochloromethane	ND	U	0.50	l	06/06/03	06/06/03	
1,2-Dibromoethane	ND	U	0.50	1	06/06/03	06/06/03	
Chlorobenzene	ND		0.50	l	06/06/03	06/06/03	
1,1,1,2-Tetrachloroethane	ND	U	0.50	l	06/06/03	06/06/03	
Ethylbenzene	ND	U	0.50	1	06/06/03	06/06/03	
m,p-Xylenes	ND	U	1.0	1	06/06/03	06/06/03	
o-Xylene	ND	U	0.50	1	06/06/03	06/06/03	
Styrene	ND	U	0.50	1	06/06/03	06/06/03	
Isopropylbenzene	ND		0.50	1	06/06/03	06/06/03	
Bromobenzene	ND		0.50	1	06/06/03	06/06/03	
1,2,3-Trichloropropane	ND		1.0	1	06/06/03	06/06/03	
n-Propylbenzene	ND		0.50	1	06/06/03	06/06/03	
2-Chlorotoluene	ND		0.50	1	06/06/03	06/06/03	
	ND		0.50	1	06/06/03	06/06/03	
4-Chlorotoluene	ND ND		0.50	1	06/06/03	06/06/03	
1,3,5-Trimethylbenzene	ND ND		0.50	· 1	06/06/03	06/06/03	
tert-Butylbenzene						06/06/03	
1,2,4-Trimethylbenzene	ND		0.50	1	06/06/03		
sec-Butylbenzene	ND		0.50	1	06/06/03	06/06/03	
1,3-Dichlorobenzene	ND		0.50	1	06/06/03	06/06/03	
4-Isopropyltoluene	ND		0.50	1	06/06/03	06/06/03	
Bromoform	ND		0.50	1	06/06/03	06/06/03	
1,1,2,2-Tetrachloroethane	ND	U	1.0	1	06/06/03	06/06/03	
1,4-Dichlorobenzene	ND	U	0.50	1	06/06/03	06/06/03	
1,2-Dichlorobenzene	ND	U	0.50	1	06/06/03	06/06/03	
n-Butylbenzene	ND	U	0.50	1	06/06/03	06/06/03	
1,2-Dibromo-3-chloropropane	ND	U	5.0	1	06/06/03	06/06/03	
1,2,4-Trichlorobenzene	ND		0.50	1	06/06/03	06/06/03	
Hexachlorobutadiene	ND	U	1.0	1	06/06/03	06/06/03	

Comments:

0 15

Merged

Printed: 06/11/2003 13:57:42

Form 1A - Organic

Page 2 of 3

Analytical Results

Client:

BE&K Terranext

Project:

ADEQ WVBA WQARF/#03103154

Sample Matrix:

Water

Service Request: X2300461

Date Collected: 05/29/2003

Date Received: 05/29/2003

Volatile Organic Compounds

Sample Name:

AVB116-0101-01126

Lab Code:

X2300461-003

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L

Basis: NA

Level: Low

Analyte Name	Result Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Arizona Qualifier
Naphthalene	ND U	3.0	1	06/06/03	06/06/03	
1,2,3-Trichlorobenzene	ND U	0.50	1	06/06/03	06/06/03	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Arizona Qualifier
Dibromofluoromethane Toluene-d8	108 119	84-113 68-126	06/06/03 06/06/03	
4-Bromofluorobenzene	108	79-113	06/06/03	

Comments:

000016

Printed: 06/11/2003 13:57:42

Analytical Results

Client:

BE&K Terranext

Project:

ADEQ WVBA WQARF/#03103154

Sample Matrix:

Water

Service Request: X2300461

Date Collected: 05/29/2003 **Date Received:** 05/29/2003

Volatile Organic Compounds

Sample Name:

AVB108-0100-01141

Lab Code:

X2300461-004

Extraction Method: EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

A. D. N	Result Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Arizona Qualifier
Analyte Name	ND U	3.0	1	06/06/03	06/06/03	
Dichlorodifluoromethane	ND U ND U	2.0	1	06/06/03	06/06/03	
Chlorida	ND U	1.0	1	06/06/03	06/06/03	
Vinyl Chloride	ND U	1.0	1	06/06/03	06/06/03	
Bromomethane	ND U	1.0	1	06/06/03	06/06/03	
Chloroethane Trichlorofluoromethane	1.3	1.0	Î	06/06/03	06/06/03	
	1.7	1.0	1	06/06/03	06/06/03	
1,1,2-Trichlorotrifluoroethane	1. / 2.1	1.0	1	06/06/03	06/06/03	
1,1-Dichloroethene	ND U	10	1	06/06/03	06/06/03	
Acetone	ND U	2.0	1	06/06/03	06/06/03	
Iodomethane	ND U	2.0	1	06/06/03	06/06/03	
Carbon Disulfide	ND U	1.0	1	06/06/03	06/06/03	
Methylene Chloride	ND U	1.0	1	06/06/03	06/06/03	
Methyl tert-Butyl Ether	ND U	0.50	1	06/06/03	06/06/03	
trans-1,2-Dichloroethene	ND U	0.50	1	06/06/03	06/06/03	
1,1-Dichloroethane		3.0	1	06/06/03	06/06/03	
Vinyl Acetate	ND U ND U	2.0	1	06/06/03	06/06/03	
2,2-Dichloropropane	ND U	8.0	1	06/06/03	06/06/03	
2-Butanone (MEK)	ND U	0.50	1	06/06/03	06/06/03	
cis-1,2-Dichloroethene	ND U ND U	0.50	1	06/06/03	06/06/03	•
Bromochloromethane	5.1	1.0	1	06/06/03	06/06/03	
Chloroform	ND U	0.50	1	06/06/03	06/06/03	
1,1,1-Trichloroethane	ND U ND U	0.50	1	06/06/03	06/06/03	
Carbon Tetrachloride	ND U	0.50	1	06/06/03	06/06/03	
1,1-Dichloropropene	ND U	0.50	1	06/06/03	06/06/03	
Benzene	ND U ND U	0.50	1	06/06/03	06/06/03	
1,2-Dichloroethane	7.2	0.50	1	06/06/03	06/06/03	
Trichloroethene			1	06/06/03	06/06/03	
1,2-Dichloropropane	ND U	0.50 0.50	1	06/06/03	06/06/03	
Dibromomethane	ND U ND U	0.50	1	06/06/03	06/06/03	
Bromodichloromethane		0.50	1	06/06/03	06/06/03	MAN
cis-1,3-Dichloropropene	ND U ND U	0.50 8.0	1	06/06/03	06/06/03	
4-Methyl-2-pentanone (MIBK)	ND U ND U	0.50	1	06/06/03	06/06/03	
Toluene	ט עאַ	0.50				

Comments:

Printed: 06/11/2003 13:57:53 L:\STEALTH\CRYSTAL.RPT\Form1m.rpt

U=10017

Merged

Form 1A - Organic

1 of 3 Page

Analytical Results

Client:

BE&K Terranext

Project:

ADEQ WVBA WQARF/#03103154

Sample Matrix:

Water

Service Request: X2300461

Date Collected: 05/29/2003

Date Received: 05/29/2003

Volatile Organic Compounds

Sample Name:

AVB108-0100-01141

Lab Code:

X2300461-004

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

				Dilution	Date	Date	
Analyte Name	Result	Q	MRL	Factor	Extracted		Arizona Qualifier
trans-1,3-Dichloropropene	ND	U	1.0	1	06/06/03	06/06/03	
1,1,2-Trichloroethane	ND	U	1.0	1	06/06/03	06/06/03	
Tetrachloroethene	18		0.50	1	06/06/03	06/06/03	
2-Hexanone	ND	U	5.0	1	06/06/03	06/06/03	
1,3-Dichloropropane	ND	U	1.0	1	06/06/03	06/06/03	
Dibromochloromethane	ND	U	0.50	1	06/06/03	06/06/03	
1,2-Dibromoethane	ND	U	0.50	1	06/06/03	06/06/03	
Chlorobenzene	ND		0.50	1	06/06/03	06/06/03	
1,1,1,2-Tetrachloroethane	ND		0.50	l	06/06/03	06/06/03	
	ND		0.50	<u> </u>	06/06/03	06/06/03	
Ethylbenzene Vydenes	ND		1.0	1	06/06/03	06/06/03	
m,p-Xylenes o-Xylene	ND		0.50	1	06/06/03	06/06/03	
	ND		0.50		06/06/03	06/06/03	
Styrene	ND ND		0.50	1	06/06/03	06/06/03	
Isopropylbenzene	ND ND		0.50	1	06/06/03	06/06/03	
Bromobenzene					06/06/03	06/06/03	
1,2,3-Trichloropropane	ND		1.0	1	06/06/03	06/06/03	
n-Propylbenzene	ND		0.50	1	06/06/03	06/06/03	
2-Chlorotoluene	ND		0.50	. 1			
4-Chlorotoluene	ND		0.50	1	06/06/03	06/06/03	
1,3,5-Trimethylbenzene	ND		0.50	1	06/06/03	06/06/03	
tert-Butylbenzene	ND	U	0.50	11	06/06/03	06/06/03	
1,2,4-Trimethylbenzene	ND	U	0.50	1	06/06/03	06/06/03	
sec-Butylbenzene	ND	U	0.50	1	06/06/03	06/06/03	
1,3-Dichlorobenzene	ND	U	0.50	1	06/06/03	06/06/03	
4-Isopropyltoluene	ND	U	0.50	1	06/06/03	06/06/03	
Bromoform	ND		0.50	1	06/06/03	06/06/03	
1,1,2,2-Tetrachloroethane	ND		1.0	1	06/06/03	06/06/03	
1,4-Dichlorobenzene	ND		0.50	1	06/06/03	06/06/03	
1,2-Dichlorobenzene	ND		0.50	1	06/06/03	06/06/03	
n-Butylbenzene	ND		0.50	1	06/06/03	06/06/03	
<u> </u>	ND		5.0	1	06/06/03	06/06/03	
1,2-Dibromo-3-chloropropane	ND ND		0.50	1	06/06/03	06/06/03	
1,2,4-Trichlorobenzene Hexachlorobutadiene	ND ND		1.0	ì	06/06/03	06/06/03	
nexacmorooutagiene	110		1.0				

Comments:

UNG 013

Printed: 06/11/2003 13:57:53 $L: \verb|\STEALTH| CRYSTAL.RPT \verb|\Form| lm.rpt|$

Merged

Form 1A - Organic

2 of 3 Page

SuperSet Reference:

RR3429

Analytical Results

Client:

BE&K Terranext

Project:

ADEQ WVBA WQARF/#03103154

Sample Matrix:

Water

Service Request: X2300461

Date Collected: 05/29/2003

Date Received: 05/29/2003

Volatile Organic Compounds

Sample Name:

AVB108-0100-01141

Lab Code:

X2300461-004

Units: ug/L Basis: NA

Extraction Method:

EPA 5030B

Level: Low

Analysis Method:

8260B

			Dilution	Date	Date	
Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed	Arizona Qualifier
Naphthalene	ND U	3.0	1	06/06/03	06/06/03	
1,2,3-Trichlorobenzene	ND U	0.50	1	06/06/03	06/06/03	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Arizona Qualifier	
Dibromofluoromethane	106	84-113	06/06/03		
Toluene-d8	118	68-126	06/06/03		
4-Bromofluorobenzene	108	79-113	06/06/03		

Comments:

Printed: 06/11/2003 13:57:53 L:\STEALTH\CRYSTAL.RPT\Form1m.rpt

0110019

Merged

Form 1A - Organic

Page 3 of 3

Analytical Results

Client:

BE&K Terranext

Project:

ADEQ WVBA WQARF/#03103154

Sample Matrix:

Water

Service Request: X2300461

Date Collected: 05/29/2003 **Date Received:** 05/29/2003

Volatile Organic Compounds

Sample Name:

AVB108-0104-1000

Lab Code:

X2300461-005

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

		_		Dilution	Date	Date	Avisona Ovalifian
Analyte Name	Result		MRL	Factor	Extracted		Arizona Qualifier
Dichlorodifluoromethane	ND		3.0	1	06/06/03	06/06/03	
Chloromethane	ND		2.0	1	06/06/03	06/06/03	
Vinyl Chloride	ND	U	1.0	1	06/06/03	06/06/03	
Bromomethane	ND		1.0	1	06/06/03	06/06/03	
Chloroethane	ND		1.0	1	06/06/03	06/06/03	
Trichlorofluoromethane	ND	U	1.0	1	06/06/03	06/06/03	- Annual Control of the Control of t
1,1,2-Trichlorotrifluoroethane	ND	U	1.0	1	06/06/03	06/06/03	
1,1-Dichloroethene	ND	U	1.0	1	06/06/03	06/06/03	
Acetone	ND	U	10	1	06/06/03	06/06/03	
Iodomethane	ND	U	2.0	1	06/06/03	06/06/03	
Carbon Disulfide	ND		2.0	1	06/06/03	06/06/03	
Methylene Chloride	ND		1.0	1	06/06/03	06/06/03	
Methyl tert-Butyl Ether	ND		1.0	1	06/06/03	06/06/03	
trans-1,2-Dichloroethene	ND		0.50	1	06/06/03	06/06/03	
1,1-Dichloroethane	ND		0.50	1	06/06/03	06/06/03	
	ND		3.0	1	06/06/03	06/06/03	
Vinyl Acetate 2,2-Dichloropropane	ND		2.0	1	06/06/03	06/06/03	
2-Butanone (MEK)	ND		8.0	1	06/06/03	06/06/03	
	ND		0.50	1	06/06/03	06/06/03	
cis-1,2-Dichloroethene	ND ND		0.50	1	06/06/03	06/06/03	
Bromochloromethane	25	U	1.0	i	06/06/03	06/06/03	
Chloroform		т т		1	06/06/03	06/06/03	
1,1,1-Trichloroethane	ND		0.50	1	06/06/03	06/06/03	
Carbon Tetrachloride	ND ND		0.50 0.50	1	06/06/03	06/06/03	
1,1-Dichloropropene						06/06/03	
Benzene	ND		0.50	1	06/06/03 06/06/03	06/06/03	
1,2-Dichloroethane	ND		0.50	1	06/06/03	06/06/03	
Trichloroethene	ND		0.50	1			
1,2-Dichloropropane	ND		0.50	1	06/06/03	06/06/03	
Dibromomethane	ND		0.50	1	06/06/03	06/06/03	
Bromodichloromethane	13		0.50	1	06/06/03	06/06/03	
cis-1,3-Dichloropropene	ND	U	0.50	1	06/06/03	06/06/03	
4-Methyl-2-pentanone (MIBK)	ND	U	8.0	1	06/06/03	06/06/03	
Toluene	ND	U	0.50	1	06/06/03	06/06/03	

Comments:

WH 020

Printed: 06/11/2003 13:58:04
L:\STEALTH\CRYSTAL.RPT\Form\m.rpt Merged

Form 1A - Organic

Page 1 of 3

SuperSet Reference: RR3429

Analytical Results

Client:

BE&K Terranext

Project:

ADEQ WVBA WQARF/#03103154

Sample Matrix:

Water

Service Request: X2300461

Date Collected: 05/29/2003

Date Received: 05/29/2003

Volatile Organic Compounds

Sample Name:

AVB108-0104-1000

Lab Code:

X2300461-005

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

	n . k 0	MRL	Dilution Factor	Date Extracted	Date Analyzed	Arizona Qualifier
Analyte Name	Result Q		Factor	06/06/03	06/06/03	THE COURT OF THE C
trans-1,3-Dichloropropene	ND U	1.0 1.0	1	06/06/03	06/06/03	
1,1,2-Trichloroethane	ND U	0.50	1	06/06/03	06/06/03	
Tetrachloroethene	ND U				06/06/03	
2-Hexanone	ND U	5.0	Į,	06/06/03	06/06/03	
1,3-Dichloropropane	ND U	1.0	1	06/06/03 06/06/03	06/06/03	
Dibromochloromethane	2.9	0.50	1			
1,2-Dibromoethane	ND U	0.50	1	06/06/03	06/06/03	
Chlorobenzene	ND U	0.50	1	06/06/03	06/06/03	
1,1,1,2-Tetrachloroethane	ND U	0.50	1	06/06/03	06/06/03	
Ethylbenzene	ND U	0.50	1	06/06/03	06/06/03	
m,p-Xylenes	ND U	1.0	1	06/06/03	06/06/03	
o-Xylene	ND U	0.50	1	06/06/03	06/06/03	
Styrene	ND U	0.50	1	06/06/03	06/06/03	N
Isopropylbenzene	ND U	0.50	1	06/06/03	06/06/03	
Bromobenzene	ND U	0.50	1	06/06/03	06/06/03	
	ND U	1.0	1	06/06/03	06/06/03	
1,2,3-Trichloropropane	ND U	0.50	1	06/06/03	06/06/03	
n-Propylbenzene	ND U	0.50	1	06/06/03	06/06/03	
2-Chlorotoluene			1	06/06/03	06/06/03	
4-Chlorotoluene	ND U	0.50	<u>I</u>	06/06/03	06/06/03	
1,3,5-Trimethylbenzene	ND U	0.50	1	06/06/03	06/06/03	
tert-Butylbenzene	ND U	0.50				
1,2,4-Trimethylbenzene	ND U	0.50	. 1	06/06/03	06/06/03	
sec-Butylbenzene	ND U	0.50	l	06/06/03	06/06/03	
1,3-Dichlorobenzene	ND U	0.50	<u>l</u>	06/06/03	06/06/03	
4-Isopropyltoluene	ND U	0.50	1	06/06/03	06/06/03	
Bromoform	ND U	0.50	1	06/06/03	06/06/03	
1,1,2,2-Tetrachloroethane	ND U	1.0	1	06/06/03	06/06/03	
1,4-Dichlorobenzene	ND U	0.50	1	06/06/03	06/06/03	
1,2-Dichlorobenzene	ND U	0.50	1	06/06/03	06/06/03	
n-Butylbenzene	ND U	0.50	1	06/06/03	06/06/03	
	ND U	5.0	1	06/06/03	06/06/03	
1,2-Dibromo-3-chloropropane	ND U	0.50	1	06/06/03	06/06/03	
1,2,4-Trichlorobenzene	ND U	1.0	1	06/06/03	06/06/03	
Hexachlorobutadiene	ND U	1.0			A A STATE OF THE S	

Comments:

0.00021

Merged

Printed: 06/11/2003 13:58:04 L:\STEALTH\CRYSTAL.RPT\Form\m.rpt

Form 1A - Organic

Page 2 of 3

Analytical Results

Client:

BE&K Terranext

Project:

ADEQ WVBA WQARF/#03103154

Sample Matrix:

Water

Service Request: X2300461

Date Collected: 05/29/2003 **Date Received:** 05/29/2003

Volatile Organic Compounds

Sample Name:

AVB108-0104-1000

Lab Code:

X2300461-005

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

			Dilution	Date	Date	
Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed	Arizona Qualifier
Naphthalene	ND U	3.0	1	06/06/03	06/06/03	
1,2,3-Trichlorobenzene	ND U	0.50	1	06/06/03	06/06/03	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Arizona Qualifier	
Dibromofluoromethane	109	84-113	06/06/03		
Toluene-d8	121	68-126	06/06/03		
4-Bromofluorobenzene	109	79-113	06/06/03		

Comments:

Printed: 06/11/2003 13:58:04

Merged

Analytical Results

Client:

BE&K Terranext

Project:

ADEQ WVBA WQARF/#03103154

Sample Matrix:

Water

Service Request: X2300461

Date Collected: 05/29/2003

Date Received: 05/29/2003

Volatile Organic Compounds

Sample Name:

AVB108-0102-1000

Lab Code:

X2300461-006

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

				Dilution	Date	Date	
Analyte Name	Result	Q	MRL	Factor	Extracted		Arizona Qualifier
Dichlorodifluoromethane	ND	U	3.0	1	06/06/03	06/06/03	
Chloromethane	ND	U	2.0	1	06/06/03	06/06/03	
Vinyl Chloride	ND	U	1.0	1	06/06/03	06/06/03	
Bromomethane	ND	U	1.0	1	06/06/03	06/06/03	
Chloroethane	ND		1.0	1	06/06/03	06/06/03	
Trichlorofluoromethane	ND	U	1.0	1	06/06/03	06/06/03	
1,1,2-Trichlorotrifluoroethane	ND	IJ	1.0	1	06/06/03	06/06/03	
1,1-Dichloroethene	ND		1.0	1	06/06/03	06/06/03	
Acetone	ND		10	l	06/06/03	06/06/03	
Iodomethane	ND	II	2.0	1	06/06/03	06/06/03	
Carbon Disulfide	ND		2.0	1	06/06/03	06/06/03	
Methylene Chloride	ND		1.0	1	06/06/03	06/06/03	
	ND		1.0	1	06/06/03	06/06/03	
Methyl tert-Butyl Ether trans-1,2-Dichloroethene	ND		0.50	ī	06/06/03	06/06/03	
1,1-Dichloroethane	ND		0.50	1	06/06/03	06/06/03	
	ND		3.0	1	06/06/03	06/06/03	
Vinyl Acetate	ND ND		2.0	1	06/06/03	06/06/03	
2,2-Dichloropropane	ND ND		8.0	î	06/06/03	06/06/03	
2-Butanone (MEK)	ND		0.50		06/06/03	06/06/03	
cis-1,2-Dichloroethene	ND ND		0.50	1	06/06/03	06/06/03	
Bromochloromethane	ND ND		1.0	1	06/06/03	06/06/03	
Chloroform					06/06/03	06/06/03	
1,1,1-Trichloroethane	ND		0.50	1	06/06/03	06/06/03	
Carbon Tetrachloride	ND		0.50	1	06/06/03	06/06/03	
1,1-Dichloropropene	ND		0.50			06/06/03	
Benzene	ND		0.50	1	06/06/03		
1,2-Dichloroethane	ND		0.50	1	06/06/03	06/06/03	
Trichloroethene	ND		0.50	<u> </u>	06/06/03		
1,2-Dichloropropane	ND		0.50	1	06/06/03	06/06/03	
Dibromomethane	ND		0.50	1	06/06/03	06/06/03	
Bromodichloromethane	ND	U	0.50	1	06/06/03	06/06/03	
cis-1,3-Dichloropropene	ND	U	0.50	1	06/06/03	06/06/03	
4-Methyl-2-pentanone (MIBK)	ND	U	8.0	1	06/06/03	06/06/03	
Toluene	ND	U	0.50	1	06/06/03	06/06/03	

Comments:

0.00023

Merged

Printed: 06/11/2003 13:58:15 L:\STEALTH\CRYSTAL.RPT\Form1m.rpt

Form 1A - Organic

SuperSet Reference:

Page 1 of 3

RR3429

Analytical Results

Client:

BE&K Terranext

Project:

ADEQ WVBA WQARF/#03103154

Sample Matrix:

Water

Service Request: X2300461

Date Collected: 05/29/2003

Date Received: 05/29/2003

Volatile Organic Compounds

Sample Name:

AVB108-0102-1000

Lab Code:

X2300461-006

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

			Dilution	Date	Date	
Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed	Arizona Qualifier
trans-1,3-Dichloropropene	ND U	1.0	1	06/06/03	06/06/03	
1,1,2-Trichloroethane	ND U	1.0	1	06/06/03	06/06/03	
Tetrachloroethene	ND U	0.50	11	06/06/03	06/06/03	
2-Hexanone	ND U	5.0	1	06/06/03	06/06/03	
1,3-Dichloropropane	ND U	1.0	1	06/06/03	06/06/03	
Dibromochloromethane	ND U	0.50	1	06/06/03	06/06/03	
1,2-Dibromoethane	ND U	0.50	1	06/06/03	06/06/03	
Chlorobenzene	ND U	0.50	1	06/06/03	06/06/03	
1,1,1,2-Tetrachloroethane	ND U	0.50	1	06/06/03	06/06/03	
Ethylbenzene	ND U	0.50	1	06/06/03	06/06/03	
m,p-Xylenes	ND U	1.0	1	06/06/03	06/06/03	
o-Xylene	ND U	0.50	1	06/06/03	06/06/03	
Styrene	ND U	0.50	1	06/06/03	06/06/03	
Isopropylbenzene	ND U	0.50	1	06/06/03	06/06/03	
Bromobenzene	ND U	0.50	1	06/06/03	06/06/03	
1,2,3-Trichloropropane	ND U	1.0	1	06/06/03	06/06/03	
n-Propylbenzene	ND U	0.50	1	06/06/03	06/06/03	
2-Chlorotoluene	ND U	0.50	1	06/06/03	06/06/03	
4-Chlorotoluene	ND U	0.50	1	06/06/03	06/06/03	
1,3,5-Trimethylbenzene	ND U	0.50	1	06/06/03	06/06/03	
tert-Butylbenzene	ND U	0.50	1	06/06/03	06/06/03	1
1,2,4-Trimethylbenzene	ND U	0.50	1	06/06/03	06/06/03	
sec-Butylbenzene	ND U	0.50	1	06/06/03	06/06/03	
1,3-Dichlorobenzene	ND U	0.50	1	06/06/03	06/06/03	
4-Isopropyltoluene	ND U	0.50	1	06/06/03	06/06/03	
Bromoform	ND U	0.50	1	06/06/03	06/06/03	
1,1,2,2-Tetrachloroethane	ND U	1.0	1	06/06/03	06/06/03	
1,4-Dichlorobenzene	ND U	0.50	1	06/06/03	06/06/03	
1,2-Dichlorobenzene	ND U	0.50	1	06/06/03	06/06/03	
n-Butylbenzene	ND U	0.50	1	06/06/03	06/06/03	
1,2-Dibromo-3-chloropropane	ND U	5.0	1	06/06/03	06/06/03	
1,2,4-Trichlorobenzene	ND U	0.50	1	06/06/03	06/06/03	
Hexachlorobutadiene	ND U	1.0	1	06/06/03	06/06/03	

Comments:

V-10024

Merged

Form 1A - Organic

Page 2 of 3

Analytical Results

Client:

BE&K Terranext

Project:

ADEQ WVBA WQARF/#03103154

Sample Matrix:

Water

Service Request: X2300461

Date Collected: 05/29/2003

Date Received: 05/29/2003

Volatile Organic Compounds

Sample Name:

AVB108-0102-1000

Lab Code:

X2300461-006

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L

Basis: NA

Level: Low

			Dilution	Date	Date	
Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed	Arizona Qualifier
Naphthalene	ND U ND U	3.0 0.50	1	06/06/03 06/06/03	06/06/03 06/06/03	
1,2,3-Trichlorobenzene	ND U	0.50	*	00,00,00	00,00,00	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Arizona Qualifier	
Dibromofluoromethane	119	84-113	06/06/03	S1	
Toluene-d8	124	68-126	06/06/03		
4-Bromofluorobenzene	116	79-113	06/06/03	S1	

Comments:

Union 25

Printed: 06/11/2003 13:58:15 L:\STEALTH\CRYSTAL.RPT\Form1m.rpt

Form 1A - Organic

RR3429 SuperSet Reference:

Page 3 of 3

Analytical Results

Client:

BE&K Terranext

Project:

ADEQ WVBA WQARF/#03103154

Sample Matrix:

Water

Service Request: X2300461

Date Collected: NA
Date Received: NA

Volatile Organic Compounds

Sample Name: Lab Code: Method Blank XWG0300706-5

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

			Dilution	Date	Date	
Analyte Name	Result Q	MRL	Factor	Extracted		Arizona Qualifier
Dichlorodifluoromethane	ND U	3.0	1	06/06/03	06/06/03	
Chloromethane	ND U	2.0	1	06/06/03	06/06/03	
Vinyl Chloride	ND U	1.0	1	06/06/03	06/06/03	
Bromomethane	ND U	1.0	1	06/06/03	06/06/03	
Chloroethane	ND U	1.0	1	06/06/03	06/06/03	
Trichlorofluoromethane	ND U	1.0	- 1	06/06/03	06/06/03	
1.1.2-Trichlorotrifluoroethane	ND U	1.0	1	06/06/03	06/06/03	
1,1-Dichloroethene	ND U	1.0	1	06/06/03	06/06/03	
Acetone	ND U	10	1	06/06/03	06/06/03	
Iodomethane	ND U	2.0	1	06/06/03	06/06/03	
Carbon Disulfide	ND U	2.0	1	06/06/03	06/06/03	
Methylene Chloride	ND U	1.0	1	06/06/03	06/06/03	
Methyl tert-Butyl Ether	ND U	1.0	1	06/06/03	06/06/03	
trans-1,2-Dichloroethene	ND U	0.50	1	06/06/03	06/06/03	
1,1-Dichloroethane	» ND U	0.50	1	06/06/03	06/06/03	
<u></u>	ND U	3.0	1	06/06/03	06/06/03	
Vinyl Acetate 2,2-Dichloropropane	ND U	2.0	1	06/06/03	06/06/03	
2-Butanone (MEK)	ND U	8.0	1	06/06/03	06/06/03	
cis-1,2-Dichloroethene	ND U	0.50	1	06/06/03	06/06/03	
Bromochloromethane	ND U	0.50	1	06/06/03	06/06/03	
Chloroform	ND U	1.0	1	06/06/03	06/06/03	
	ND U	0.50	1	06/06/03	06/06/03	
1,1,1-Trichloroethane Carbon Tetrachloride	ND U	0.50	î	06/06/03	06/06/03	
1,1-Dichloropropene	ND U	0.50	1	06/06/03	06/06/03	
	ND U	0.50	l	06/06/03	06/06/03	
Benzene	ND U	0.50	1	06/06/03	06/06/03	
1,2-Dichloroethane	ND U	0.50	ĺ	06/06/03	06/06/03	
Trichloroethene		0.50	1	06/06/03	06/06/03	
1,2-Dichloropropane	ND U ND U	0.50	1	06/06/03	06/06/03	
Dibromomethane	ND U	0.50	1	06/06/03	06/06/03	
Bromodichloromethane			1	06/06/03	06/06/03	
cis-1,3-Dichloropropene	ND U	0.50 8.0	1	06/06/03	06/06/03	
4-Methyl-2-pentanone (MIBK)	ND U ND U	0.50	1	06/06/03	06/06/03	
Toluene	עמון	0.50	1	00,00,00		

Comments:

UNIO 26

Merged

Form 1A - Organic

Page 1 of 3

Analytical Results

Client:

BE&K Terranext

Project:

ADEQ WVBA WQARF/#03103154

Sample Matrix:

Water

Service Request: X2300461

Date Collected: NA

Date Received: NA

Volatile Organic Compounds

Sample Name:

Method Blank

Lab Code:

XWG0300706-5

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

			7407	Dilution	Date Extracted	Date Analyzed	Arizona Qualifier
Analyte Name	Result		MRL	Factor			Arizona Quantier
trans-1,3-Dichloropropene	ND		1.0	l	06/06/03	06/06/03 06/06/03	
1,1,2-Trichloroethane	ND		1.0	1	06/06/03 06/06/03	06/06/03	
Tetrachloroethene	ND		0.50	1			
2-Hexanone	ND		5.0	1	06/06/03	06/06/03	
1,3-Dichloropropane	ND		1.0	1	06/06/03	06/06/03	
Dibromochloromethane	ND	U	0.50	1	06/06/03	06/06/03	
1.2-Dibromoethane	ND	U	0.50	1	06/06/03	06/06/03	
Chlorobenzene	ND	U	0.50	1	06/06/03	06/06/03	
1,1,1,2-Tetrachloroethane	ND	U	0.50	1	06/06/03	06/06/03	
Ethylbenzene	ND	IJ	0.50	1	06/06/03	06/06/03	
m,p-Xylenes	ND		1.0	1	06/06/03	06/06/03	
o-Xylene	ND		0.50	1	06/06/03	06/06/03	
	ND		0,50	1	06/06/03	06/06/03	
Styrene	ND ND		0.50	1	06/06/03	06/06/03	
Isopropylbenzene Bromobenzene	ND		0.50	1	06/06/03	06/06/03	
	ND		1.0	1	06/06/03	06/06/03	
1,2,3-Trichloropropane	ND ND		0.50	1	06/06/03	06/06/03	
n-Propylbenzene	ND ND		0.50	1	06/06/03	06/06/03	
2-Chlorotoluene			0.50	1	06/06/03	06/06/03	
4-Chlorotoluene	ND		0.50	1	06/06/03	06/06/03	
1,3,5-Trimethylbenzene	ND		0.50	1	06/06/03	06/06/03	
tert-Butylbenzene	ND					06/06/03	
1,2,4-Trimethylbenzene	ND		0.50	1	06/06/03 06/06/03	06/06/03	
sec-Butylbenzene	ND		0.50	Į 1	06/06/03	06/06/03	
1,3-Dichlorobenzene	ND		0.50	I			
4-Isopropyltoluene	ND		0.50	1	06/06/03	06/06/03	
Bromoform	ND		0.50	1	06/06/03	06/06/03	
1,1,2,2-Tetrachloroethane	ND	U	1.0	1	06/06/03	06/06/03	
1,4-Dichlorobenzene	ND	U	0.50	1	06/06/03	06/06/03	
1,2-Dichlorobenzene	ND	U	0.50	1	06/06/03	06/06/03	
n-Butylbenzene	ND	U	0.50	1	06/06/03	06/06/03	
1,2-Dibromo-3-chloropropane	ND	U	5.0	1	06/06/03	06/06/03	
1,2,4-Trichlorobenzene	ND		0.50	1	06/06/03	06/06/03	
Hexachlorobutadiene	ND		1.0	1	06/06/03	06/06/03	
- Italian or							

Comments:

Printed: 06/11/2003 13:58:26 L:\STEALTH\CRYSTAL.RPT\Form\m.rpt

V110027

Merged

Form 1A - Organic

Page 2 of 3

SuperSet Reference: RR3429

Analytical Results

Client:

BE&K Terranext

Project:

ADEQ WVBA WQARF/#03103154

Sample Matrix:

Water

Service Request: X2300461

Date Collected: NA

Date Received: NA

Volatile Organic Compounds

Sample Name:

Method Blank

Lab Code:

XWG0300706-5

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

			Dilution	Date	Date	
Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed	Arizona Qualifier
Naphthalene	ND U	3.0	1	06/06/03 06/06/03	06/06/03 06/06/03	
1,2,3-Trichlorobenzene	ND Ü	0.50	1	00/00/03	00/00/03	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Arizona Qualifier	
Dibromofluoromethane	109	84-113	06/06/03		
Toluene-d8	115	68-126	06/06/03		
4-Bromofluorobenzene	111	79-113	06/06/03		

Comments:

0.10028

Printed: 06/11/2003 13:58:26 L:\STEALTH\CRYSTAL.RPT\Form1m.rpt

Merged

Form 1A - Organic

RR3429

Page 3 of 3

SuperSet Reference:

OA/OC Report

Client: Project: BE&K Terranext

ADEQ WVBA WQARF/#03103154

Sample Matrix:

Water

Service Request: X2300461

Surrogate Recovery Summary Volatile Organic Compounds

Extraction Method: Analysis Method:

EPA 5030B

8260B

Units: PERCENT

Level: Low

Sample Name	Lab Code	Sur1	Sur2	Sur3
AVB117-0100-01135	X2300461-001	109	120	110
AVB116-0100-01126	X2300461-002	110	120	107
AVB116-0101-01126	X2300461-003	108	119	108
AVB108-0100-01141	X2300461-004	106	118	108
AVB108-0104-1000	X2300461-005	109	121	109
AVB108-0102-1000	X2300461-006	119 S1	124	116 S1
Method Blank	XWG0300706-5	109	115	111
	X2300457-001	112	119	112
Batch QC	XWG0300706-1	108	112	109
Batch QCMS	XWG0300706-1 XWG0300706-2	104	106	104
Batch QCDMS	XWG0300706-2 XWG0300706-3	96	102	100
Lab Control Sample	XWG0300706-3	106	107	110
Duplicate Lab Control Sample	XWG0300700-4	100	107	

Surrogate Recovery Control Limits (%)

84-113 Surl = Dibromofluoromethane 68-126 Sur2 = Toluene-d879-113 Sur3 = 4-Bromofluorobenzene

Results flagged with an asterisk (*) indicate values outside control criteria. Results flagged with a pound (#) indicate the control criteria is not applicable.

Printed: 06/11/2003 13:58:41 L:\STEALTH\CRYSTAL.RPT\Form2.rpt

VIII 029

Form 2A - Organic

Page

1 of 1

QA/QC Report

Client:

BE&K Terranext

Project:

ADEQ WVBA WQARF/#03103154

Sample Matrix:

Water

Service Request: X2300461

Date Extracted: 06/06/2003

Date Analyzed: 06/06/2003

Matrix Spike/Duplicate Matrix Spike Summary Volatile Organic Compounds

Sample Name: Lab Code:

Batch QC

X2300457-001

Units: ug/L Basis: NA

Extraction Method:

EPA 5030B

Level: Low

Analysis Method:

8260B

Extraction Lot: XWG0300706

	Sample	Batch QCMS XWG0300706-1 Matrix Spike Batch QCDMS XWG0300706-2 Duplicate Matrix Spike			2	%Rec		RPD		
Analyte Name	Result	Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit
Dichlorodifluoromethane	ND	13.4	10.0	134	12.3	10.0	123	78-207	9.	20
Chloromethane	ND	11.2	10.0	112	10.5	10.0	105	70-157	6	20
Vinyl Chloride	ND	12.2	10.0	122	11.4	10.0	114	79-174	7	20
Bromomethane	ND	8.67	10.0	87	8.46	10.0	85	44-150	2	20
Chloroethane	ND	10.4	10.0	104	9.96	10.0	100	74-150	4	20
Trichlorofluoromethane	ND	14.0	10.0	140 M1	13.0	10.0	130	80-134	8	20
1,1,2-Trichlorotrifluoroethane	ND	13.7	10.0	137 M1	12.9	10.0	129 M1	67-128	6	20
1,1-Dichloroethene	ND	13.1	10.0	131	12.0	10.0	120	71-142	8	20
Acetone	ND	37.6	40.0	94	39.7	40.0	99	1-155	5	20
Iodomethane	ND	44.1	40.0	110	42.3	40.0	106	47-120	4	20
Carbon Disulfide	ND	57.4	40.0	144 M1	54.3	40.0	136 M1	77-126	6	20
Methylene Chloride	ND	11.6	10.0	116 M1	11.1	10.0	111 M1	83-106	5	20
Methyl tert-Butyl Ether	ND	9.46	10.0	95	9.27	10.0	93	70-118	2	20
trans-1,2-Dichloroethene	ND	11.7	10.0	117 M1	10.7	10.0	107	86-115	9	20
1,1-Dichloroethane	ND	12.1	10.0	121	11.2	10.0	112	77-127	8	20
Vinyl Acetate	ND	36.4	40.0	91	35.2	40.0	88	8-187	3	20
2,2-Dichloropropane	ND	14.2	10.0	142	13.2	10.0	132	25-154	7	20
2,2-Dictioropropane 2-Butanone (MEK)	ND	42.8	40.0	107	41.2	40.0	103	90-112	4	20
cis-1,2-Dichloroethene	ND	11.4	10.0	114	10.8	10.0	108	69-118	5	20
Bromochloromethane	ND	10.2	10.0	102	9.94	10.0	99	47-136	3	20
Chloroform	19	30.8	10.0	123	29.4	10.0	109	48-143	5	20
1.1.1-Trichloroethane	ND	12.0	10.0	120	11.8	10.0	118	84-122	2	20
Carbon Tetrachloride	ND	14.4	10.0	144 M1	13.9	10.0	139 M1	79-120	4	20
	ND	13.3	10.0	133 M1	12.6	10.0	126 M1	85-117	5	20
1,1-Dichloropropene	ND	11.1	10.0	311	10.8	10.0	108	88-114	3	20
Benzene	ND	10.6	10.0	106	10.2	10.0	102	75-112	4	20
1,2-Dichloroethane Trichloroethene	ND	11.6	10.0	116 M1	11.4	10.0	114	76-115	2	20
	ND	9.64	10.0	96	9.30	10.0	93	85-107	4	20
1,2-Dichloropropane	ND	10.2	10.0	102	10.1	10.0	101	82-106	1	20
Dibromomethane	ND	9.57	10.0	96	9.32	10.0	93	83-107	3	20
Bromodichloromethane	ND	9.85	10.0	99	9.58	10.0	96	70-114	3	20
cis-1,3-Dichloropropene 4-Methyl-2-pentanone (MIBK)	ND	38.1	40.0	95	36.4	40.0	91	54-129	4	20
Toluene	ND	11.4	10.0	114	10.9	10.0	109	86-114	4	20

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 06/11/2003 13:58:47 L:\STEALTH\CRYSTAL.RPT\Form3DMS.rpt Je 19630

Form 3A - Organic

1 of 3 Page

OA/QC Report

Client:

BE&K Terranext

Project:

ADEQ WVBA WQARF/#03103154

Sample Matrix:

Water

Service Request: X2300461 **Date Extracted:** 06/06/2003

Date Analyzed: 06/06/2003

Matrix Spike/Duplicate Matrix Spike Summary Volatile Organic Compounds

Sample Name:

Batch QC

Lab Code:

X2300457-001

Extraction Method: Analysis Method:

EPA 5030B

8260B

Units: ug/L Basis: NA

Level: Low

Extraction Lot: XWG0300706

Sample Result Expected %Rec	Result	Expected	%		
Batch QCMS	Batch QCDMS				
XWG0300706-1	XWG0300706-2				
Matrix Spike	Duplicate Matrix Spik				

	~ 1		Matrix Spike	L	Duplic	cate Matrix S	pike	%Rec		RPD
Analyte Name	Sample Result	Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit
trans-1,3-Dichloropropene	ND	9.71	10.0	97	9.54	10.0	95	73-112	2	20
1,1,2-Trichloroethane	ND	9.36	10.0	94	9.21	10.0	92	79-112	2	20
Tetrachloroethene	ND	12.1	10.0	121	11.5	10.0	115	78-130	5	20
2-Hexanone	ND	32.3	40.0	81	31.7	40.0	79	77-112	2	20
1,3-Dichloropropane	ND	9.67	10.0	97	9.20	10.0	92	45-133	5	20
Dibromochloromethane	ND	9.27	10.0	93	8.73	10.0	87	74-108	6	20
1,2-Dibromoethane	ND	9.63	10.0	96	9.15	10.0	92	73-113	5	20
Chlorobenzene	ND	10.8	10.0	108	10.2	10.0	102	84-111	5	20
1,1,1,2-Tetrachloroethane	ND	10.2	10.0	102	9.83	10.0	98	84-119	3	20
Ethylbenzene	ND	11.9	10.0	119	11.3	10.0	113	47-136	5	20
m,p-Xylenes	ND	24.1	20.0	121 MI	23.2	20.0	116	84-120	4	20
o-Xylene	ND	11.1	10.0	111	11.0	10.0	110	47-143	1	20
Styrene Styrene	ND	11.4	10.0	114	10.9	10.0	109	72-121	5	20
Isopropylbenzene	ND	12.4	10.0	124 M1	11.7	10.0	117 M1	63-108	6	20
Bromobenzene	ND	11.0	10.0	110	10.4	10.0	104	80-113	6	20
1,2,3-Trichloropropane	ND	10.2	10.0	102	9.86	10.0	99	78-119	4	20
n-Propylbenzene	ND	12.9	10.0	129 M1	12.0	10.0	120 M1	76-117	7	20
2-Chlorotoluene	ND	11.9	10.0	119	11.3	10.0	113	79-121	5	20
4-Chlorotoluene	ND	11.6	10.0	116	10.8	10.0	108	70-133	6	20
1,3,5-Trimethylbenzene	ND	12.5	10.0	125 M1	11.6	10.0	116	79-118	7	20
tert-Butylbenzene	ND	12.4	10.0	124 M1	11.6	10.0	116	77-120	7	20
1,2,4-Trimethylbenzene	ND	12.3	10.0	123	11.4	10.0	114	68-127	7	20
sec-Butylbenzene	ND	12.9	10.0	129 M1	12.1	10.0	121	78-123	7	20
1,3-Dichlorobenzene	ND	11.3	10.0	113	10.4	10.0	104	78-127	8	20
4-Isopropyltoluene	ND	13.1	10.0	131	12.1	10.0	121	79-142	8	20
Bromoform	ND	8.07	10.0	81 M2	7.98	10.0	80 M2	83-111	1	20
1,1,2,2-Tetrachloroethane	ND	9.02	10.0	90	9.10	10.0	91	66-133	1	20
1,4-Dichlorobenzene	ND	10.5	10.0	105	10.2	10.0	102	48-139	3	20
1,2-Dichlorobenzene	ND	10.3	10.0	103	10.1	10.0	101	64-109	2	20
n-Butylbenzene	ND	12.3	10.0	123 M1	11.8	10.0	118	69-122	4	20
1,2-Dibromo-3-chloropropane	ND	9.46	10.0	95	8.88	10.0	89	54-160	6	20
1,2,4-Trichlorobenzene	ND	10.2	10.0	102	10.1	10.0	101	39-145	1	20
Hexachlorobutadiene	ND	12.2	10.0	122 M!	11.9	10.0	119 M1	74-113	2	20

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 06/11/2003 13:58:47 L:\STEALTH\CRYSTAL.RPT\Form3DMS.rpt and 31

Form 3A - Organic

Page 2 of 3

QA/QC Report

Client:

BE&K Terranext

Project:

ADEQ WVBA WQARF/#03103154

Sample Matrix:

Water

Service Request: X2300461

Date Extracted: 06/06/2003

Date Analyzed: 06/06/2003

Matrix Spike/Duplicate Matrix Spike Summary Volatile Organic Compounds

Sample Name:

Batch QC

Lab Code:

X2300457-001

Extraction Method:

EPA 5030B

Analysis Method:

Analyte Name

Naphthalene

8260B

Units: ug/L

Basis: NA

Level: Low

Extraction Lot: XWG0300706

Batch QCMS

Batch QCDMS XWG0300706-2

XWG0300706-1 **Duplicate Matrix Spike** Matrix Spike %Rec RPD Sample RPD Limit Limits %Rec Expected Result Expected %Rec Result Result 20 10.0 105 44-167 10.5 ND 10.4 10.0 104 37-158 0 20 10.0 105 10.0 105 10.5 10.5 ND 1,2,3-Trichlorobenzene

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 06/11/2003 13:58:47 L:\STEALTH\CRYSTAL.RPT\Form3DMS.rpt

000032

Form 3A - Organic

Page

3 of 3

QA/QC Report

Client:

BE&K Terranext

Project:

ADEQ WVBA WQARF/#03103154

Sample Matrix:

Water

Service Request: X2300461 **Date Extracted:** 06/06/2003

Date Analyzed: 06/06/2003

Lab Control Spike/Duplicate Lab Control Spike Summary Volatile Organic Compounds

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L

Basis: NA Level: Low

Extraction Lot: XWG0300706

Lab Control Sample XWG0300706-3

Duplicate Lab Control Sample XWG0300706-4

		Control Spik	e	Duplicate	Lab Control	Spike	%Rec		RPD
Analyte Name	Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit
Dichlorodifluoromethane	9.56	10.0	96	11.3	10.0	113	1-233	17	20
Chloromethane	8.76	10.0	88	9.47	10.0	95	46-156	8	20
Vinyl Chloride	9.26	10.0	93	10.2	10.0	102	51-158	10	20
Bromomethane	8.05	10.0	81	8.08	10.0	81	37-149	0	20
Chloroethane	10.6	10.0	106	9.22	10.0	92	56-146	14	20
Trichlorofluoromethane	10.2	10.0	102	11.4	10.0	114	69-139	12	20
1,1,2-Trichlorotrifluoroethane	10.1	10.0	101	11.4	10.0	114	83-130	12	20
1,1-Dichloroethene	9.75	10.0	98	10.7	10.0	107	65-112	9	20
Acetone	36.0	40.0	90	38.6	40.0	96	68-128	7	20
Iodomethane	37.1	40.0	93	38.3	40.0	96	68-144	3	20
Carbon Disulfide	43.1	40.0	108	46.7	40.0	117	67-140	8	20
Methylene Chloride	10.2	10.0	102	10.9	10.0	109	70-113	7	20
Methyl tert-Butyl Ether	8.66	10.0	87	8.98	10.0	90	75-115	4	20
trans-1,2-Dichloroethene	9.34	10.0	93	9.67	10.0	97	73-118	3	20
1,1-Dichloroethane	9.65	10.0	97	10.4	10.0	104	77-127	7	20
Vinyl Acetate	28.8	40.0	72	30.7	40.0	77	51-202	6	39
2,2-Dichloropropane	10.2	10.0	102	11.4	10.0	114	75-132	12	20
2-Butanone (MEK)	32.8	40.0	82	35.5	40.0	89	72-122	8	20
cis-1,2-Dichloroethene	9.76	10.0	98	9,89	10.0	99	81-118	1	20
Bromochloromethane	8.68	10.0	87	9.31	10.0	93	82-114	7	20
Chloroform	9.47	10.0	95	9.68	10.0	97	78-119	2	20
1,1,1-Trichloroethane	9.29	10.0	93	10.0	10.0	100	71-125	8	20
Carbon Tetrachloride	11.0	10.0	110	11.6	10.0	116	69-130	5	20
1,1-Dichloropropene	10.0	10.0	100	10.6	10.0	106	77-114	6	20
Benzene	9.55	10.0	96	9.70	10.0	97	81-117	2	20
1,2-Dichloroethane	9.63	10.0	96	9.81	10.0	98	67-122	2	20
Trichloroethene	9.87	10.0	99	10.3	10.0	103	79-114	4	20
1,2-Dichloropropane	8.75	10.0	88	8.88	10.0	89	78-114	i	20
Dibromomethane	9.39	10.0	94	9.77	10.0	98	78-113	4	20
Bromodichloromethane	8.81	10.0	88	9.08	10.0	91	79-122	3	20
cis-1,3-Dichloropropene	9.39	10.0	94	9.54	10.0	95	82-118	2	20
4-Methyl-2-pentanone (MIBK)	37.8	40.0	94	35.3	40.0	88	75-115	7	20
Toluene	9.96	10.0	100	9.94	10.0	99	85-118	0	20
trans-1,3-Dichloropropene	9.38	10.0	94	9.36	10.0	94	79-121	0	20
1,1,2-Trichloroethane	8.86	10.0	89	9.34	10.0	93	79-116	5	20

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 06/11/2003 13:58:54 L:\STEALTH\CRYSTAL.RPT\Form3DLC.rpt 000033

Form 3C - Organic

Page 1 of 2

QA/QC Report

Client:

BE&K Terranext

Project:

ADEO WVBA WQARF/#03103154

Sample Matrix:

Water

Service Request: X2300461 Date Extracted: 06/06/2003

Date Analyzed: 06/06/2003

Lab Control Spike/Duplicate Lab Control Spike Summary Volatile Organic Compounds

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L

Basis: NA

Level: Low

Extraction Lot: XWG0300706

Lab Control Sample XWG0300706-3

Duplicate Lab Control Sample XWG0300706-4

		Control Spik		Duplicate	Lab Control	Spike	%Rec		RPD
Analyte Name	Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit
Tetrachloroethene	9.92	10.0	99	10.4	10.0	104	76-127	5	20
2-Hexanone	30.5	40.0	76	31.7	40.0	79	65-120	4	20
1,3-Dichloropropane	9.30	10.0	93	9.38	10.0	94	81-116	1	20
Dibromochloromethane	8.55	10.0	86	9.02	10.0	90	77-119	5	20
1,2-Dibromoethane	9.23	10.0	92	9.35	10.0	94	79-116	1	20
Chlorobenzene	9.72	10.0	97	9.81	10.0	98	84-114	l	20
1,1,1,2-Tetrachloroethane	9.15	10.0	92	9.42	10.0	94	78-118	3	20
Ethylbenzene	10.1	10.0	101	10.4	10.0	104	79-124	3	20
m,p-Xylenes	20.5	20.0	102	21.2	20.0	106	75-131	3	20
o-Xylene	9.76	10.0	98	10.2	10.0	102	78-122	4	20
Styrene	10.3	10.0	103	10.5	10.0	105	80-126	2	20
Isopropylbenzene	10.1	10.0	101	10.7	10.0	107	75-126	6	20
Bromobenzene	9.61	10.0	96	10.1	10.0	101	82-122	5	20
1,2,3-Trichloropropane	9.00	10.0	90	9.84	10.0	98	77-118	9	20
n-Propylbenzene	10.2	10.0	102	11.1	10.0	111	75-129	8	20
2-Chlorotoluene	10.2	10.0	102	10.7	10.0	107	77-126	5	20
4-Chlorotoluene	10.0	10.0	100	10.4	10.0	104	82-120	4	20
1,3,5-Trimethylbenzene	10.2	10.0	102	11.0	10.0	110	75-130	7	20
tert-Butylbenzene	9.88	10.0	99	10.7	10.0	107	73-130	8	20
1,2,4-Trimethylbenzene	10.1	10.0	101	10.8	10.0	108	60-137	6	20
sec-Butylbenzene	9.91	10.0	99	10.9	10.0	109	68-131	10	20
1,3-Dichlorobenzene	9.40	10.0	94	10.2	10.0	102	71-137	8	20
4-Isopropyltoluene	10.2	10.0	102	11.1	10.0	111	68-134	8	20
Bromoform	7.70	10.0	77	7.91	10.0	79	70-118	3	20
1,1,2,2-Tetrachloroethane	8.75	10.0	88	8.54	10.0	85	72-122	2	20
1,4-Dichlorobenzene	9.66	10.0	97	9.75	10.0	98	82-114	1	20
1,2-Dichlorobenzene	9.33	10.0	93	9.48	10.0	95	81-118	2	20
n-Butylbenzene	9.96	10.0	100	10.4	10.0	104	71-125	4	20
1,2-Dibromo-3-chloropropane	8.75	10.0	88	8.69	10.0	87	55-131	1	20
1,2,4-Trichlorobenzene	8.66	10.0	87	9.18	10.0	92	75-123	6	20
Hexachlorobutadiene	9.27	10.0	93	9.79	10.0	98	63-140	5	20
Naphthalene	8.74	10.0	87	9.38	10.0	94	67-125	7	20
1,2,3-Trichlorobenzene	8.73	10.0	87	9.35	10.0	94	72-124	7	20

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 06/11/2003 13:58:54 L:\STEALTH\CRYSTAL.RPT\Form3DLC.rpt

0.0034

Form 3C - Organic

2 of 2 Page

June 11, 2003

Chuck Gordon BE & K/Terranext 9830 S. 51st A-127 Phoenix, AZ 85044

RE: ADEQ WVBA WQARF/Project #03103154

Dear Chuck:

Enclosed are the results of the samples submitted to our laboratory on May 29, 2003. For your reference, these analyses have been assigned our service request number L2301156.

All analyses were performed in accordance with our laboratory's quality assurance program. Results are intended to be considered in their entirety and apply only to the samples analyzed. Columbia Analytical Services is not responsible for use of less than the complete report.

Columbia Analytical Services is certified for environmental analyses by the California Department of Health Services (certificate number: 1296A); NELAP (certificate number: 02115CA); Los Angeles County Laboratory ID (No. 10151); and Arizona Department of Health Services (License number: AZ0136 and AZ0544).

If you have any questions, please call me at (818) 587-5550, extension 309.

auleste

Respectfully submitted,

Columbia Analytical Services, Inc.

Sue Anderson Project Chemist

SA

Columbia Analytical Services, Inc.

Acronyms

California DHS LUFT Method 8015M American Society for Testing and Materials **ASTM** Biochemical Oxygen Demand BOD Benzene/Toluene/Ethylbenzene/Xylenes **BTEX** California Assessment Metals CAM Chemical Abstract Service Registry Number **CAS Number** Chlorofluorocarbon **CFC** Chemical Oxygen Demand COD Contract Required Detection Limit **CRDL** Detected; result must be greater than zero. D Detected; result must be greater than the detection limit. DL **Duplicate Laboratory Control Sample** DLCS DMS **Duplicate Matrix Spike** DOH or DHS Department of Health Services Environmental Laboratory Accreditation Program **ELAP** U.S. Environmental Protection Agency **EPA** Gas Chromatography GCGas Chromatography/Mass Spectrometry GC/MS Ion Chromatography IC **ICB** Initial Calibration Blank sample Inductively Coupled Plasma atomic emission spectrometry **ICP** Initial Calibration Verification sample **ICV** Laboratory Control Sample LCS LUFT Leaking Underground Fuel Tank M Modified **MBAS** Methylene Blue Active Substances Method Detection Limit MDL Method Reporting Limit MRL Matrix Spike MS Methyl-tert-Butyl Ether **MTBE** Not Applicable NA Not Calculated NC None Detected at or above the Method Reporting/Detection Limit (MRL/MDL) ND Nephelometric Turbidity Units NTU Parts Per Billion ppb Parts Per Million ppm **PQL Practical Quantitation Limit** Quality Assurance/Quality Control QA/QC Resource Conservation and Recovery Act **RCRA** Relative Percent Difference **RPD** Selected Ion Monitoring SIM Standard Methods for the Examination of Water and Wastewater, 18th Ed., 1992. SM Solubility Threshold Limit Concentration **STLC** Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW-846, SWThird Edition, 1986 and as amended by Updates I, II, IIA, and IIB. Toxicity Characteristics Leaching Procedure TCLP Total Dissolved Solids TDS Total Petroleum Hydrocarbons TPH Total Recoverable Petroleum Hydrocarbons TRPH Total Suspended Solids TSS Total Threshold Limit Concentration TTLC Volatile Organic Analyte(s) VOA Qualifiers Undetected at or above MDL/MRL. U Estimated concentration. Analyte detected above MDL but below MRL. J Hit above MRL also found in Method Blank. В Analyte concentration above high point of ICAL. \mathbf{E} Presumptive evidence of compound. N Result from dilution. D

See case narrative.

X

- Cover Page -INORGANIC ANALYSIS DATA PACKAGE

Client:

BE&K Terranext, LLC

Project Name:

ADEQ WVBA WQARF

Project No.:

03103154

Service Request: L2301156

Sample Name:	<u>Lab Code :</u>
AVB117-0100-01135	L2301156-001
AVB116-0100-01126	L2301156-002
AVB116-0101-01126	L2301156-003
AVB108-0100-01141	L2301156-004
AVB108-0104-1000	L2301156-005
Laboratory Control Sample	L2301156-LCS
Method Blank	L2301156-MB
Batch QC	L2301158-001S
Batch QC	L2301158-001SD

Date: 6/11/03

Analytical Report

Client:

BE&K Terranext, LLC

Project Name: Project No.: ADEQ WVBA WQARF

Matrix:

03103154

Water

Service Request: L2301156

Date Collected: 05/29/03

Date Received: 05/29/03

Date Extracted: 06/04/03

Total Metals

Sample Name:

AVB117-0100-01135

Lab Code:

L2301156-001

Units: ug/L (ppb)

Analyte	Analysis Method	MRL	Date Analyzed	Sample Result	Result Notes
Chromium	6010B	10	06/10/03	ND	

Analytical Report

Client:

BE&K Terranext, LLC

Project Name:

ADEQ WVBA WQARF

Project No.:

03103154

Matrix:

Water

Service Request: L2301156

Date Collected: 05/29/03

Date Received: 05/29/03

Date Extracted: 06/04/03

Dissolved Metals

Sample Name:

AVB117-0100-01135

Lab Code:

L2301156-001

Units: ug/L (ppb)

Analyte	Analysis Method	MRL	Date Analyzed	Sample Result	Result Notes
Chromium	6010B	10	06/10/03	ND	

Analytical Report

Client:

BE&K Terranext, LLC

Project Name: Project No.:

ADEQ WVBA WQARF

Matrix:

03103154

Water

Service Request: L2301156

Date Collected: 05/29/03

Date Received: 05/29/03

Date Extracted: 06/04/03

Total Metals

Sample Name:

AVB116-0100-01126

Lab Code:

L2301156-002

Units: ug/L (ppb)

Analyte	Analysis Method	MRL	Date Analyzed	Sample Result	Result Notes
Chromium	6010B	10	06/10/03	ND	

Analytical Report

Client:

BE&K Terranext, LLC

Project Name:

ADEQ WVBA WQARF

Project No. :
Matrix :

03103154

Water

Service Request: L2301156

Date Collected: 05/29/03 **Date Received:** 05/29/03

Date Extracted: 06/04/03

Dissolved Metals

Sample Name:

AVB116-0100-01126

Lab Code:

L2301156-002

Units: ug/L (ppb)

Analyte	Analysis Method	MRL	Date Analyzed	Sample Result	Result Notes
Chromium	6010B	10	06/10/03	ND	

Analytical Report

Client:

BE&K Terranext, LLC

Project Name: Project No.:

ADEQ WVBA WQARF

Matrix:

03103154

Water

Service Request: L2301156

Date Collected: 05/29/03

Date Received: 05/29/03

Date Extracted: 06/04/03

Total Metals

Sample Name:

AVB116-0101-01126

Lab Code:

L2301156-003

Units: ug/L (ppb)

Analyte	Analysis Method	MRL	Date Analyzed	Sample Result	Result Notes
Chromium	6010B	10	06/10/03	12	

Analytical Report

Client:

BE&K Terranext, LLC

Project Name: Project No.:

ADEQ WVBA WQARF

Matrix:

03103154

Water

Service Request: L2301156

Date Collected: 05/29/03

Date Received: 05/29/03

Date Extracted: 06/04/03

Dissolved Metals

Sample Name:

AVB116-0101-01126

Lab Code:

L2301156-003

Units: ug/L (ppb)

Analyte	Analysis Method	MRL	Date Analyzed	Sample Result	Result Notes
Chromium	6010B	10	06/10/03	ND	

Analytical Report

Client:

BE&K Terranext, LLC

Project Name : Project No. :

ADEQ WVBA WQARF

Matrix:

03103154

Water

Service Request: L2301156

Date Collected: 05/29/03

Date Received: 05/29/03

Date Extracted: 06/04/03

Total Metals

Sample Name:

AVB108-0100-01141

Lab Code:

L2301156-004

Units: ug/L (ppb)

Analyte	Analysis Method	MRL	Date Analyzed	Sample Result	Result Notes
Chromium	6010B	10	06/10/03	52	

Analytical Report

Client:

BE&K Terranext, LLC

Project Name:

ADEQ WVBA WQARF

Project No. : Matrix :

03103154

Water

Service Request: L2301156

Date Collected: 05/29/03

Date Received: 05/29/03

Date Extracted: 06/04/03

Dissolved Metals

Sample Name:

AVB108-0100-01141

Lab Code:

L2301156-004

Units: ug/L (ppb)

Analyte	Analysis Method	MRL	Date Analyzed	Sample Result	Result Notes
Chromium	6010B	10	06/10/03	ND	

Analytical Report

Client:

BE&K Terranext, LLC

Project Name: Project No.:

ADEQ WVBA WQARF

Matrix:

03103154

Water

Service Request: L2301156

Date Collected: 05/29/03

Date Received: 05/29/03

Date Extracted: 06/04/03

Total Metals

Sample Name:

AVB108-0104-1000

Lab Code:

L2301156-005

Units: ug/L (ppb)

Analyte	Analysis Method	MRL	Date Analyzed	Sample Result	Result Notes
Chromium	6010B	10	06/10/03	ND	

Analytical Report

Client:

BE&K Terranext, LLC

Project Name: Project No.:

ADEQ WVBA WQARF

Matrix:

03103154

Water

Service Request: L2301156 Date Collected: 05/29/03

Date Received: 05/29/03

Date Extracted: 06/04/03

Dissolved Metals

Sample Name:

AVB108-0104-1000

Lab Code:

L2301156-005

Units: ug/L (ppb)

Analyte	Analysis Method	MRL	Date Analyzed	Sample Result	Result Notes
Chromium	6010B	10	06/10/03	ND	

Analytical Report

Client:

BE&K Terranext, LLC

Project Name: Project No.:

ADEQ WVBA WQARF

Matrix:

03103154

Water

Service Request: L2301156

Date Collected: NA
Date Received: NA

Date Extracted: 06/04/03

Total Metals

Sample Name:

Method Blank

Lab Code:

L2301156-MB

Units: ug/L (ppb)

Analyte	Analysis Method	MRL	Date Analyzed	Sample Result	Result Notes
Chromium	6010B	10	06/10/03	ND	

QA/QC Report

Client:

BE&K Terranext, LLC

Project Name:

ADEQ WVBA WQARF

Project No.:

03103154

Matrix:

Water

Service Request: L2301156

Date Collected: NA

Date Received: NA

Date Extracted: 06/04/03

Date Analyzed: 06/10/03

Laboratory Control Sample Summary

Total Metals

Sample Name:

Laboratory Control Sample

Lab Code:

L2301156-LCS

Units: ug/L (ppb)

Analyte	Analysis Method	True Value	Result	Percent	CAS Percent Recovery Acceptance Limits	Result Notes
Chromium	6010B	500	511	102	87-111	

Analytical Report

Client:

BE&K Terranext, LLC

Project Name:

ADEQ WVBA WQARF

Project No.:

03103154

Matrix:

Water

Service Request: L2301156
Date Collected: NA

Date Received: NA

Date Extracted: 06/04/03 Date Analyzed: 06/10/03

Matrix Spike/Duplicate Matrix Spike Summary

Total Metals

Sample Name:

Lab Code:

Batch QC

L2301158-001S

L2301158-001SD

Units: ug/L (ppb)

Analyte	Prep Method	Analysis Method	MRL	Spike MS	Level DMS	Sample Result	Spike MS	Result DMS	MS	DMS	CAS Acceptance Limits	Relative Percent Difference	Result Notes
Chromium	3010A	6010B	10	500	500	18.2	508	508	98	98	87-105	<1	

220//56 chain of custody/Laboratory analysis request form

An Employee - Owned Company

3902 East University Drive, Suite 4 • Phoenix, AZ 85034 • (602) 437-2001 • (800) 695-7222 x09 • FAX (602) 437-5308

PAGE

DATE

۳,

RUSH TAT - Surcharges Apply REMARKS ANALYSIS TAT (Circle One) Lab No: XJ 300 46 1 SAMPLE RECEIPT: ☐ 48 Hours □ 72 Hours ☐ 24 Hours Shipping VIA: STANDARD) Shipping #: Condition: 55/0 × ¥ **ANALYSIS REQUESTED** Date/Time 5-15-19-3 × INVOICE INFORMATION: × × Date/Time 5/49/03 16.40 Date/Time $\mathcal{M}_{\mathcal{S}}$ $\mathcal{S}_{\mathcal{S}}$ $\mathcal{S}_{\mathcal{S}}$ DISTRIBUTION: WHITE - return to originator, YELLOW - lab; PINK - retained by originator DalliA Inied Organization Organization Organization BRIK D d70 Bill To P.O.# MSD, as required, may be charged as samples) REPORT REQUIREMENTS IV. CLP Deliverable Report III. Data Validation Report (includes All Raw Data) I. Routine Report Selifielo Volatile Solatiles Volatile Organics Received By (Signature) Received By (Signature) Received By (Signature) 200 A X X × S NUMBER OF CONTAINERS N N p Date/Time 5-29-03 1640 PRESER-VATION Date/Time 3 Date/Time S/30/03 Z z. Z B 14:17 # 03:03:54 MATRIX 3 40 3 z Z 3 3 3 × Organization BEYK Organization Organization d d ÇQ 65 50 10-194 BEAK 02 LAB I.D. (AS COMPANY/ADDRESS BFK/ TERRANENT WUBA WAARA GORDOR AVB108-0120-01141 5-29 15:02 AUBIO8-0104-1000 5-29/15:35 10:15 12:35 TIME AWB 116-0101-01126 5-29 12:35 SPECIAL INSTRUCTIONS/COMMENTS: 高· \$ \$ \$ \$ 7.77 CHOCK AVB/16-0100-0426 5-29 ANDIT-0100-01135 5-29 5-29 Relinquished By (Signature) Relinquished By (Signature) Relinquished By (Signature) PROJECT NAME ADE & States Library 442/08 me 100 SAMPLER'S SIGNATURE PROJECT MANAGER SAMPLE 16. a. X

0702

SAMPLE RECEIPT FORM

Service Request No: L230 1156 Client: BETK
Sample(s) delivered by: Client CAS Emp After Hours DHL
Golden State Overnight Fed X UPS Other Courier
Chain of Custody filled out accurately? Yes No(See Comments)
Appropriate sample volume and containers? Yes/ No(See Comments)
Sufficient labeling on container(s)? Yes No(See Comments)
Container(s) supplied by CAS? Yes No(See Comments)
Custody seal(s) intact? N/A / Yes No (See Comments)
Trip Blank(s) received Yes No
If Trip Blank was supplied by CAS, record serial #TB
Temperature of sample(s)/cooler3 °C Temp Blank (Y) or N (Circle One)
Voa's Marked Preserved? Yes No Filled Properly? Yes No (See Comments)
Preserved Bottles Requiring pH check(s)? Yes Appropriate Preservation? Yes No
RUSH Turn around time? Yes Notified Date & Time
Short Hold-Time Analysis (check all that apply)
ASAP Res Cl D.O Flash Diss S2- Ferrous Fe 24HR pH Odor Cr+6 48HR BOD Color MBAS Nitrate Nitrite O-PO4 Sett Sol Turbidity 72HR Vapors
Notified Date & Time
Container(s) received and their preservative(s): $-1 \rightarrow -5 = 1-500 \text{ml Pl}(NP) \text{A}$ $1-500 \text{ml Pl}(HN03) \text{B}$
comments Filter & preserve diss metals bottle in lab.
Initials, Date, Time LK 5/31/03 0930 r:\sr_forms\cooler.doc Rev. 2/25/02

RUSH TAT - Surcharges Apply

STANDARD

☐ 24 Hours ☐ 48 Hours ☐ 72 Hours

Date/Time 5/49/03

Organization

⊀eceived By (Signature)

Date/Time (5-29-0)

Organization

Relinquished By (Signature)

BESK

1:0

BEYK

BEZK

Date/Time

Organization

Received By (Signature)

Date/Time

Organization

Relinquished By (Signature)

CHAIN OF CUSTODY/LABORATORY ANALYSIS REQUEST FORM

Ą,

PAGE

Services INC. Analytical

DATE 3902 East University Drive, Suite 4 • Phoenix, AZ 85034 • (602) 437-2001 • (800) 695-7222 x09 • FAX (602) 437-5308

REMARKS ANALYSIS TAT (Circle One) SAMPLE RECEIPT: Lab No: XJ 300 46 Shipping VIA: Shipping #: _ Condition: 55/0 × ¥ D 0758 **ANALYSIS REQUESTED** Date/Time 5-15-19 1613 INVOICE INFORMATION: × × × 0158 Drettia Inipa DHa Day boint a Organization Total D pee7 P.O.# 8PCPA Metals REPORT REQUIREMENTS II. Report (includes DUP.MS. MSD, as required, may be IV. CLP Deliverable Report III. Data Validation Report (includes All Raw Data) charged as samples) Routine Report 8021 Diatic Volatiles Volatile Organics Received By (Signature) × X × × S N NUMBER OF CONTAINERS Ŋ 1.08 J. PRESER-VATION Date/Time 3 Z Z E Z Ž 03103154 MATRIX 3 4 3 3 3 3 1 Z 3 × Organization 65 9 70 Ç 02 LAB I.D. 461-01 TERRAMENT GORDOR PROJECT NAME ADER WORR WORRE Zo:51 62-5 16110-0210-801814 AVB108-0104-1000 5-23/15:35 PHONE/FAX 12:35 TIME 10:15 AVB 116-0101-01126 5-29 12:35 6.00 SPECIAL INSTRUCTIONS/COMMENTS: AVB/16-0100-0426 5-29 5-29 となって DATE 5-29 COMPANY/ADDRESS BFK/ Relinquished By (Signature) AVO 108 -0102-1000 AVBIT-0100-01135 SAMPLER'S SIGNATURE PROJECT MANAGER SAMPLE I.D.

DISTRIBUTION: WHITE - return to originator; YELLOW - lab; PINK - retained by originator

0702

Columbia Analytical Services, Inc. Phoenix, AZ

Sample Receipt and Preservation Form

VOA's Z	Received on: 6	29.03 c	late /42	ime Jars		Sleeves □	
				Jars L		Sieeves 🗆	
MATRE	X: SOIL□	WATER	2 0				
First Ex	traction Holding	Time Expiratio	n:	date	time (soils only)	
Is first e	xtraction/analysi	s holding time (expiration LESS TI	HAN 24 HOUR	S(soil)/7 E	AYS (water)?	Yes □ N
If YES,	chemist notified	on!	date	_time	C	hemist's Initials	
5 <u>44</u> 5573.44750 15 1 1	Williams in Engagement the sea	Carteron, educinoscentoscen		no processor and brooms to acco	5		
	tandard turn-a-ro	errorgenagen varejoner tersoriste o				RUSH	STANDAL
	ustody seals preson with many and whe					Yes □	No₽
Are the si	ignature and date	correct?				Yes Zi	200000000000000000000000000000000000000
	ontainers arrive in		n? servation, sample I	man di salah s	Tirong and the second	Yes ∕☐	 A. A. Lander, March 1988
VIC WILLO	memer indeiz co			D)?		Yes,⊿	
	correct container			opini: www.stoncononincononinci.	recupio podenta en secuci		No□
Have VO.	A's been checked	l for the present	ce of air bubbles? ()	note problems	n commen		
Have VO. Temperat		I for the present upon receipt:	ce of air bubbles? ()	note problems	n commen		
Have VO. Temperat	A's been checked ure of sample(s)	I for the present upon receipt:	ce of air bubbles? ()	note problems i	n commen		
Have VO. Temperat	A's been checked ure of sample(s)	I for the present upon receipt:	ce of air bubbles? ()	note problems		is) Yes Z	NoO N
Have VO. Temperat	A's been checked ure of sample(s)	I for the present upon receipt:	ce of air bubbles? ()	note problems	VOA	Yes Z	No□ N
Have VO. Temperat	A's been checked ure of sample(s)	I for the present upon receipt:	ce of air bubbles? ()	note problems	VOV (Tr	Yes Z	No□ N cation ysis)
Have VO. Temperat	A's been checked ure of sample(s)	I for the present upon receipt: s:	ce of air bubbles? ()		VOA	A Vial pH Verificested After Analy	No□ N cation ysis) ≤ 2
Have VO, Temperate	A's been checker cure of sample(s) n of discrepancies	I for the present upon receipt:	ce of air bubbles? ()		VOA	Yes Z	No□ N cation ysis) ≤ 2
Have VO. Temperates splaination pH	A s been checked cure of sample(s) n of discrepancies	I for the present upon receipt: s:	ce of air bubbles? ()		VOA	A Vial pH Verificested After Analy	No□ N cation ysis) ≤ 2
Have VO. Temperate explaination pH 12	A s been checker cure of sample(s) n of discrepancies Reagent NaOH	I for the present upon receipt: s:	ce of air bubbles? ()		VOA	A Vial pH Verificested After Analy	No□ N cation ysis) ≤ 2
Have VO, Temperate explaination pH 12 2	A s been checker cure of sample(s) n of discrepancies Reagent NaOH HNO3	I for the present upon receipt: s:	ce of air bubbles? ()		VOA	A Vial pH Verificested After Analy	No□ N cation ysis) ≤ 2
Have VO. Temperate splaination pH 12 2 2	A s been checker cure of sample(s) n of discrepancies Reagent NaOH	I for the present upon receipt: s:	ce of air bubbles? ()		VOA	A Vial pH Verificested After Analy	No□ N cation ysis) ≤ 2
Have VO. Temperate splaination pH 12 2	A s been checker cure of sample(s) n of discrepancies Reagent NaOH HNO3	I for the present upon receipt: s:	ce of air bubbles? ()		VOA	A Vial pH Verificested After Analy	No□ N cation ysis) ≤ 2

r:\common\forms\samprev.doc Revised: 09/27/02 4:19 PM

June 18, 2003

Chuck Gordon BE&K Terranext 9830 S. 51st Street, Suite A-127 Phoenix, AZ 85044

Re: WVBA / Project #03103154

Dear Chuck:

Enclosed are the results of the samples submitted to our laboratory on June 3, 2003. The samples were analyzed for Total Chromium and Dissolved Chromium by our Canoga Park, CA facility (L2301168). For your reference, the 8260 analyses have been assigned our service request number X2300467.

All analyses were performed according to our laboratory's quality assurance program. All results are intended to be considered in their entirety, and Columbia Analytical Services, Inc. (CAS) is not responsible for use of less than the complete report. Results apply only to the samples analyzed. Columbia Analytical Services, Inc. is certified for environmental analyses by the Arizona Department of Health Services (Certificate #AZ0136; and #AZ0497).

Please call if you have any questions. My extension is 223.

Respectfully submitted,

Columbia Analytical Services, Inc.

Tracy L. Dutton

Laboratory Director

TLD/lm

Page 1 of <u>5</u>**6**

Client:

BE&K Terranext

Project:

WVBA / #03103154

Sample Matrix:

Water

Service Request No.:

X2300467

Date Received:

6/3/03

CASE NARRATIVE

All analyses were performed consistent with the quality assurance program of Columbia Analytical Services, Inc. (CAS). This report contains analytical results for sample(s) designated for Tier II date deliverables. When appropriate to the method, method blank results have been reported with each analytical test. Surrogate recoveries have been reported for all applicable organic analyses. Additional quality control analyses reported herein include: Matrix/Duplicate Matrix Spike (MS/DMS) and Laboratory Control Sample (LCS).

All EPA recommended holding times have been met for analyses in this sample delivery group.

The following difficulties were experienced during analysis of this batch:

Surrogate recovery of Dibromofluoromethane and 4-Bromofluorobenzene, Method 8260B, was above laboratory acceptance limits for sample AVB122-0202-1000 (X2300467-001), but within method acceptance limits.

The associated blank spike (XWG0300710-3 and XWG0300710-4) recovery of several analytes for Method 8260B was above laboratory acceptance limits. These compounds were not detected in the samples analyzed in this batch.

The associated blank spike (XWG0300710-3) recovery of 1,1-Dichloroethene and Trichloroethene for Method 8260B was above laboratory acceptance limits but within method acceptance limits. These compounds were recovered within acceptance limits in the DLCS and CCV analyzed with this batch of samples

Sample AVB122-0200-01245 (X2300467-002) required dilution of Trichloroethene, Method 8260B, due to high concentration of target analytes.

Surrogate recovery of 4-Bromofluorobenzene, Method 8260B, was above laboratory acceptance limits for MS (XWG0300710-1) and DMS (XWG0300710-2), but within method acceptance criteria.

Matrix spike (XWG0300706-1, XWG0300706-2, XWG0300710-1, and XWG0300710-2) recovery of several analytes for Method 8260B was high. The method control sample recovery was acceptable.

Matrix spike (XWG0300706-1, XWG0300706-2, XWG0300710-1, and XWG0300710-2) recovery of Bromoform, Method 8260B, was low. The method control sample recovery was acceptable.

MS/DMS (XWG0300710-1 and XWG0300710-2) RPD for Chloroethane, Method 8260B, exceeded the laboratory control limit. Recovery met acceptance criteria.

Approved by	Date_	6-19-03

The accuracy of the spike (XWG0300710-1 and XWG0300710-2) recovery value for several analytes for Method 8260B is reduced since the analyte concentration in the sample is disproportionate to spike level. The method control sample recovery was acceptable. 600063 MDate 6-19-03

Approved by_____

ARIZONA DATA QUALIFIERS

Method Bla	
B1	Target analyte detected in method blank at or above the method reporting limit.
B2	Non-target analyte detected in method blank and sample, producing interference.
B3	Target analyte detected in calibration blank at or above the method reporting limit.
B4	Target analyte detected in blank at/above method acceptance criteria.
B5	Target analyte detected in method blank at or above the method reporting limit, but below trigger level or MCL.
B6	Target analyte detected in calibration blank at or above the method reporting limit, but below trigger level or MCL
B7	Target analyte detected in method blank at or above method reporting limit. Concentration found in the sample
	was 10 times above the concentration found in the method blank.
Confirmat	
C1	Confirmatory analysis not performed as required by the method.
C2	Confirmatory analysis not performed. Confirmation of analyte presence established by site historical data.
C3	Qualitative confirmation performed. See case narrative.
C4	Confirmatory analysis was past holding time.
C5	Confirmatory analysis was past holding time. Original result not confirmed.
Dilution:	
D1	Sample required dilution due to matrix interference. See case narrative.
D2	Sample required dilution due to high concentration of target analyte.
D3	Sample dilution required due to insufficient sample.
D4	Minimum reporting level (MRL) adjusted to reflect sample amount received and analyzed.
	concentration:
E1	Concentration estimated. Analyte exceeded calibration range. Reanalysis not possible due to insufficient
	sample.
E2	Concentration estimated. Analyte exceeded calibration range. Reanalysis not performed due to sample matrix.
E3	Concentration estimated. Analyte exceeded calibration range. Reanalysis not performed due to holding time
	requirements.
E4	Concentration estimated. Analyte was detected below laboratory minimum reporting level (MRL).
E5	Concentration estimated. Analyte was detected below laboratory minimum reporting level (MRL), but not confirmed by alternate analysis.
E6	Confirmation estimated. Internal standard recoveries did not meet method acceptance criteria.
E7	Confirmation estimated. Internal standard recoveries did not meet laboratory acceptance criteria.
Hold Time	
H1	Sample analysis performed past holding time. See case narrative.
H2	Initial analysis within holding time. Reanalysis for the required dilution was past holding time.
H3	Sample was received and analyzed past holding time.
H4	Sample was extracted past required extraction holding time, but analyzed within analysis holding time. See case
	narrative.

Laboratory fortified blank/blank spike:

L1 The associated blank spike recovery was above laboratory acceptance limits. See case narrative.

- The associated blank spike recovery was below laboratory acceptance limits. See case narrative. L2 The associated blank spike recovery was above method acceptance limits. See case narrative. L3 The associated blank spike recovery was below method acceptance limits. See case narrative. L4 Note: The L1, L2, L3, & L4 footnotes need to be added to all corresponding analytes for a sample. Matrix spike: Matrix spike recovery was high, the method control sample recovery was acceptable. M1 Matrix spike recovery was low, the method control sample recovery was acceptable. M2 The accuracy of the spike recovery value is reduced since the analyte concentration in the sample is M3 disproportionate to spike level. The method control sample recovery was acceptable. The analysis of the spiked sample required a dilution such that the spike concentrations was diluted below M4 the reporting limit. The method control sample recovery was acceptable. Analyte concentration was determined by the method of standard addition (MSA). M5 Matrix spike recovery was high. Data reported per ADEQ policy 0154.000. M6 Matrix sipke recovery was low. Data reported per ADEQ policy 0154.000. M7 General: See case narrative. N1 N2 See corrective action report. Sample quality: Sample integrity was not maintained. See case narrative. Q1 Sample received with head space. Q2 Sample received with improper chemical preservation. Q3 Sample received and analyzed without chemical preservation. **Q**4 Sample received with inadequate chemical preservation, but preserved by the laboratory. Q5 Sample was received above recommended temperature. 06 Q7 Sample inadequately dechlorinated. Insufficient sample received to meet QC requirements. QC requirements satisfy ADEQ policies 0154 and 0155. Q8 Insufficient sample received to meet QC requirements. Q9 Sample received in inappropriate sample container. Q10 Sample is heterogeneous. Sample homogeneity could not be readily achieved using routine laboratory practices. Q11 **Duplicates:** RPD exceeded the method control limit. See case narrative. R1 RPD exceeded the laboratory control limit. See case narrative. R2
- R3 Sample RPD between the primary and confirmatory analysis exceeded 40%. Per Method 8000B, the higher value was reported.
- R4 MS/MSD RPD exceeded the method control limit. Recovery met acceptance criteria.
- R5 MS/MSD RPD exceeded the laboratory control limit. Recovery met acceptance criteria.
- R6 LFB/LFBD RPD exceeded the method control limit. Recovery met acceptance criteria.
- R7 LFB/LFBD RPD exceeded the laboratory control limit. Recovery met acceptance criteria.
- R8 Sample RPD exceeded the method control limit.
- R9 Sample RPD exceeded the laboratory control limit.

Surrogate:

- S1 Surrogate recovery was above laboratory acceptance limits, but within method acceptance limits.
- S2 Surrogate recovery was above laboratory and method acceptance limits.

Surrogate recovery was above laboratory acceptance limits, but within method acceptance limits. No target S3 analytes were detected in the sample. Surrogate recovery was above laboratory and method acceptance limits. No target analytes were detected in the S4 Surrogate recovery was below laboratory acceptance limits, but within method acceptance limits. S5 Surrogate recovery was below laboratory and method acceptance limits. Reextraction and/or reanalysis confirms S6 low recovery caused by matrix effect. Surrogate recovery was below laboratory and method acceptance limits. Unable to confirm matrix effect. **S7** The analysis of the sample required a dilution such that the surrogate concentration was diluted below the method S8 acceptance criteria. The method control sample recovery was acceptable. The analysis of the sample required a dilution such that the surrogate concentration was diluted below the S9 laboratory acceptance criteria. The method control sample recovery was acceptable. Surrogate recovery was above laboratory and method acceptance limits. See case narrative. S10 Surrogate recovery was high. Data reported per ADEQ policy 0154.000. S11 Surrogate recovery was low. Data reported per ADEQ policy 0154.000. S12

Method/analyte discrepancies:

- T1 Method promulgated by EPA, but not ADHS at this time.
- T2 Cited ADHS licensed method does not contain this analyte as part of method compound list.
- T3 Method not promulgated either by EPA or ADHS.
- T4 Tentatively identified compound. Concentration is estimated and based on the closest internal standard.

Calibration verification:

- V1 CCV recovery was above method acceptance limits. This target analyte was not detected in the sample.
- V2 CCV recovery was above method acceptance limits. This target analyte was detected in the sample. The sample could not be reanalyzed due to insufficient sample.
- V3 CCV recovery was above method acceptance limits. This target analyte was detected in the sample, but the sample was not reanalyzed. See case narrative.
- V4 CCV recovery was below method acceptance limits. The sample could not be reanalyzed due to insufficient sample.
- V5 CCV recovery after a group of samples was above acceptance limits. This target analyte was not detected in the sample. Acceptable per EPA Method 8000B.
- V6 Data reported from one-point calibration criteria per ADEQ policy 0155.000.
- V7 Calibration verification recovery was above the method control limit for this analyte however the average % difference or % drift for all the analytes met method criteria.
- V8 Calibration verification recovery was below the method control limit for this analyte however the average % difference or % drift for all the analytes met method criteria.

Calibration:

W1 The % RSD for this compound was above 15%. The average % RSD for all compounds in the calibration met the 15% criteria as specified in EPA method 8000B.

Inorganic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.
- U The compound was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- i The MRL/MDL has been elevated due to a matrix interference.
- X See case narrative.

Metals Data Qualifiers

- # The control limit criteria is not applicable. See case narrative.
- B The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.
- E The reported value is estimated because of the presence of matrix interference.
- M The duplicate injection precision was not met.
- N The Matrix Spike sample recovery is not within control limits. See case narrative.
- S The reported value was determined by the Method of Standard Additions (MSA).
- U The compound was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- W The post-digestion spike for furnace AA analysis is out of control limits, while sample absorbance is less than 50% of spike absorbance.
- i The MRL/MDL has been elevated due to a matrix interference.
- X See case narrative.
- * The duplicate analysis not within control limits. See case narrative.
- + The correlation coefficient for the MSA is less than 0.995.

Organic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- A A tentatively identified compound, a suspected aldol-condensation product.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result.
- C The analyte was qualitatively confirmed using GC/MS techniques, pattern recognition, or by comparing to historical data.
- D The reported result is from a dilution.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.
- N The result is presumptive. The analyte was tentatively identified, but a confirmation analysis was not performed.
- P The GC or HPLC confirmation criteria was exceeded. The relative percent difference is greater than 40% between the two analytical results (25% for CLP Pesticides).
- U The compound was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- i The MRL/MDL has been elevated due to a chromatographic interference.
- X See case narrative.

Additional Petroleum Hydrocarbon Specific Qualifiers

- F The chromatographic fingerprint of the sample matches the elution pattern of the calibration standard.
- L The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of lighter molecular weight constituents than the calibration standard.
- H The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of heavier molecular weight constituents than the calibration standard.
- O The chromatographic fingerprint of the sample resembles an oil, but does not match the calibration standard.
- Y The chromatographic fingerprint of the sample resembles a petroleum product eluting in approximately the correct carbon range, but the elution pattern does not match the calibration standard.
- Z The chromatographic fingerprint does not resemble a petroleum product.

Client: Project: BE&K Terranext WVBA/#0310-3154 **Service Request:**

X2300467

Cover Page - Organic Analysis Data Package Volatile Organic Compounds

Sample Name La	ab Code	Date Collected	Received
AVB122-0200-01245 X: AVB122-0204-1000 X: AVB120-0200-01245 X:	2300467-001 2300467-002 2300467-003 2300467-004 2300467-005	06/03/2003 06/03/2003 06/03/2003 06/03/2003	06/03/2003 06/03/2003 06/03/2003 06/03/2003

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed in the case narrative. Release of the data contained in this hardcopy data package and in the computer-readable data submitted on floppy diskette has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signature.

Signature: Many Lutton

10-19-03

Title: Lab Manager

Page 1 of

Analytical Results

Client: Project: BE&K Terranext WVBA/#0310-3154

Sample Matrix:

Water

Service Request: X2300467

Date Collected: 06/03/2003 **Date Received:** 06/03/2003

Volatile Organic Compounds

Sample Name:

AVB122-0202-1000

Lab Code:

X2300467-001

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

			Dilution	Date	Date	2 114
Analyte Name	Result Q	MRL	Factor	Extracted		Arizona Qualifier
Dichlorodifluoromethane	ND U	3.0	1	06/06/03	06/06/03	
Chloromethane	ND U	2.0	1	06/06/03	06/06/03	
Vinyl Chloride	ND U	1.0	1	06/06/03	06/06/03	
	ND U	1.0	1	06/06/03	06/06/03	
Bromomethane	ND U	1.0	1	06/06/03	06/06/03	
Chloroethane Trichlorofluoromethane	ND U	1.0	1	06/06/03	06/06/03	
	ND U	1.0	1	06/06/03	06/06/03	
1,1,2-Trichlorotrifluoroethane	ND U	1.0	1	06/06/03	06/06/03	
1,1-Dichloroethene	ND U	10	1	06/06/03	06/06/03	
Acetone		2.0	1	06/06/03	06/06/03	
Iodomethane	ND U	2.0	1	06/06/03	06/06/03	
Carbon Disulfide	ND U ND U	1.0	1	06/06/03	06/06/03	
Methylene Chloride			1	06/06/03	06/06/03	
Methyl tert-Butyl Ether	ND U	1.0	1	06/06/03	06/06/03	
trans-1,2-Dichloroethene	ND U	0.50	1	06/06/03	06/06/03	
1,1-Dichloroethane	ND U	0.50		06/06/03	06/06/03	
Vinyl Acetate	ND U	3.0	1	06/06/03	06/06/03	
2.2-Dichloropropane	ND U	2.0	1	06/06/03	06/06/03	
2-Butanone (MEK)	ND U	8.0	1			
cis-1,2-Dichloroethene	ND U	0.50	1	06/06/03	06/06/03	
Bromochloromethane	ND U	0.50	1	06/06/03	06/06/03	
Chloroform	ND U	1.0	1	06/06/03	06/06/03	
1,1,1-Trichloroethane	ND U	0.50	1	06/06/03	06/06/03	
Carbon Tetrachloride	ND U	0.50	. 1	06/06/03	06/06/03	
1,1-Dichloropropene	ND U	0.50	1	06/06/03	06/06/03	
	ND U	0.50	1	06/06/03	06/06/03	
Benzene 1.2-Dichloroethane	ND U	0.50	1	06/06/03	06/06/03	
,	ND U	0.50	1	06/06/03	06/06/03	
Trichloroethene	ND U	0.50	1	06/06/03	06/06/03	
1,2-Dichloropropane	ND U	0.50	1	06/06/03	06/06/03	
Dibromomethane	ND U	0.50	1	06/06/03	06/06/03	
Bromodichloromethane		0.50	1	06/06/03	06/06/03	
cis-1,3-Dichloropropene	ND U	8.0	1	06/06/03	06/06/03	
4-Methyl-2-pentanone (MIBK)	ND U	0.50	1	06/06/03	06/06/03	
Toluene	ND U	0.00				

Comments:

RR3426

SuperSet Reference:

Merged

Analytical Results

Client: Project: BE&K Terranext WVBA/#0310-3154

Sample Matrix:

Water

Service Request: X2300467

Date Collected: 06/03/2003

Date Received: 06/03/2003

Volatile Organic Compounds

Sample Name:

AVB122-0202-1000

Lab Code:

X2300467-001

Extraction Method: Analysis Method:

EPA 5030B

8260B

Units: ug/L Basis: NA

Level: Low

ND ND ND ND ND ND	U U U	1.0 1.0 0.50 5.0	Factor	06/06/03 06/06/03 06/06/03	06/06/03 06/06/03	Arizona Qualifier
ND ND ND ND	U U	1.0 0.50	1	06/06/03	06/06/03	
ND ND ND	U U	0.50	1			
ND ND	U			06/06/03		
ND		5.0			06/06/03	
	IJ		1	06/06/03	06/06/03	
ND	~	1.0	1	06/06/03	06/06/03	
	U	0.50	1	06/06/03	06/06/03	
ND	U	0.50	1			
ND	U	0.50	1	06/06/03		
ND	U	0.50	1	06/06/03	06/06/03	
ND	IJ	0.50	1	06/06/03	06/06/03	
			1	06/06/03	06/06/03	
		0.50	1	06/06/03	06/06/03	
		0.50	1	06/06/03	06/06/03	
			1	06/06/03	06/06/03	
			1	06/06/03	06/06/03	
			1	06/06/03	06/06/03	
			-			
			1			
ND	U		1			
ND	U	1.0	1			
ND	U	0.50	1			
ND	U	0.50	l			
ND	U	0.50	1	06/06/03		
ND	U	5.0	1	06/06/03	06/06/03	
		0.50	1	06/06/03	06/06/03	
		1.0	1	06/06/03	06/06/03	
			ND U 0.50 ND U 0.50 ND U 1.0 ND U 0.50 ND U 0.50	ND U 0.50 1 ND U 0.50 <td< td=""><td>ND U 0.50 1 06/06/03 ND U<!--</td--><td>ND U 0.50</td></td></td<>	ND U 0.50 1 06/06/03 ND U </td <td>ND U 0.50</td>	ND U 0.50

Comments:

Printed: 06/11/2003 13:01:58 L:\STEALTH\CRYSTAL.RPT\Form1m.rpt

Merged

Form 1A - Organic

00010 Page

2 of 3

Analytical Results

Client:

BE&K Terranext

Project:

WVBA/#0310-3154

Sample Matrix:

Water

Service Request: X2300467

Date Collected: 06/03/2003

Date Received: 06/03/2003

Volatile Organic Compounds

Sample Name:

AVB122-0202-1000

Lab Code:

X2300467-001

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

Analyte Name	Result O	MRL	Dilution Factor	Date Extracted	Date Analyzed	Arizona Qualifier
Naphthalene	ND U	3.0	1	06/06/03	06/06/03	
1,2,3-Trichlorobenzene	ND U	0.50	1	06/06/03	06/06/03	

%Rec	Control Limits	Date Analyzed	Arizona Qualifier
123	84-113	06/06/03	S1
123 118	68-126 79-113	06/06/03 06/06/03	S1
	123 123	%Rec Limits 123 84-113 123 68-126	%Rec Limits Analyzed 123 84-113 06/06/03 123 68-126 06/06/03

Comments:

Merged

Analytical Results

Client: Project: BE&K Terranext WVBA/#0310-3154

Sample Matrix:

Water

Service Request: X2300467

Date Collected: 06/03/2003

Date Received: 06/03/2003

Volatile Organic Compounds

Sample Name:

AVB122-0200-01245

Lab Code:

X2300467-002

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

Analyte Name Result Q MRI. Factor Extracted Analyzed Arizona Qualifice Dichlorodifluoromethane 5.3 3.0 1 06/06/030 06/09/03 06/09/03 Chloromethane ND U 1.0 1 06/06/03 06/09/03 06/09/03 Bromomethane ND U 1.0 1 06/06/03 06/09/03 06/09/03 Chlorocthane ND U 1.0 1 06/06/03 06/09/03 06/09/03 1,12-Trichlorotrifluoroethane 1.1 1.0 1 06/06/03 06/09/03 1 1,1-Dichloroethene 1.0 1.0 1 06/06/03 06/09/03 1 Acetone ND U 10 1 06/06/03 06/09/03 1 Carbon Disulfide ND U 2.0 1 06/06/03 06/09/03 Methylene Chloride ND U 1.0 1 06/06/03 06/09/03 Methylene Chloride ND U 0.50 1 06/06/03 06/09/				Dilution	Date	Date	
Dichlorodifluoromethane	Analyte Name	Result Q	MRL	Factor	Extracted		Arizona Qualifier
Chloromethane			3.0	1	06/06/03	06/09/03	
ND U			2.0	1	06/06/03		
Promomethane				1	06/06/03	06/09/03	
Trichlorothane			1.0	1	06/06/03	06/09/03	
Trichlorofluoromethane	 -			1	06/06/03	06/09/03	
1,1-Dichlorotethane				1	06/06/03	06/09/03	
1,1-2-Prichlorotrinuoroenane				1	06/06/03	06/09/03	
Acetone ND U 10 1 06/06/03 06/09/03 Acetone ND U 2.0 1 06/06/03 06/09/03 Acetone ND U 1.0 1 06/06/03 06/09/03 Acetone ND U 1.0 1 06/06/03 06/09/03 Acetone Carbon Disulfide ND U 1.0 1 06/06/03 06/09/03 Acetone Chloride ND U 1.0 1 06/06/03 06/09/03 Acetone ND U 0.50 1 06/06/03 06/09/03 Acetone Tetrachloride ND U 0.50 1 06/06/03 06/09/03 Acetone ND U 0.50 1 06/06/03 06/09/03 Acetone Tetrachloride ND U 0.50 1 06/06/03 06/09/03 Acetone ND U 0.50 1 06/06/03 06/09/03	* *						Ll
Acetone	,			-		06/09/03	
Carbon Disulfide				1		06/09/03	
Carbon Distillide ND U 1.0 1 06/06/03 06/09/03 Methylene Chloride ND U 1.0 1 06/06/03 06/09/03 Methyl tert-Butyl Ether ND U 0.50 1 06/06/03 06/09/03 trans-1,2-Dichloroethene ND U 0.50 1 06/06/03 06/09/03 1,1-Dichloroethane ND U 3.0 1 06/06/03 06/09/03 Vinyl Acetate ND U 3.0 1 06/06/03 06/09/03 2,2-Dichloropropane ND U 2.0 1 06/06/03 06/09/03 2-Butanone (MEK) ND U 8.0 1 06/06/03 06/09/03 2-Butanone (MEK) ND U 0.50 1 06/06/03 06/09/03 cis-1,2-Dichloroethene 0.77 0.50 1 06/06/03 06/09/03 Bromechloromethane ND U 0.50 1 06/06/03 06/09/03 1,1-Trichloroethane ND U 0.50 1 06/06/03 06/09/03				•			
Methylene Chloride ND U 1.0 1 06/06/03 06/09/03 Methyl tert-Butyl Ether ND U 0.50 1 06/06/03 06/09/03 trans-1,2-Dichloroethene ND U 0.50 1 06/06/03 06/09/03 1,1-Dichloroethane ND U 3.0 1 06/06/03 06/09/03 Vinyl Acetate ND U 2.0 1 06/06/03 06/09/03 2,2-Dichloropropane ND U 8.0 1 06/06/03 06/09/03 2-Butanone (MEK) ND U 8.0 1 06/06/03 06/09/03 2-Butanone (MEK) ND U 8.0 1 06/06/03 06/09/03 2-Butanone (MEK) ND U 0.50 1 06/06/03 06/09/03 2-Butanone (MEK) ND U 0.50 1 06/06/03 06/09/03 cis-1,2-Dichloroethane ND U 0.50 1 06/06/03 06/09/03 1,1-Trichloroethane ND U 0.50 1 06/06/03 06/09/03 <t< td=""><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td></t<>				-			
Methyl tert-Butyl Ether ND U 0.50 1 06/06/03 06/09/03 1,1-Dichloroethane ND U 0.50 1 06/06/03 06/09/03 Vinyl Acetate ND U 3.0 1 06/06/03 06/09/03 2,2-Dichloropropane ND U 2.0 1 06/06/03 06/09/03 2-Butanone (MEK) ND U 8.0 1 06/06/03 06/09/03 2-Butanone (MEK) ND U 8.0 1 06/06/03 06/09/03 2-Butanone (MEK) ND U 8.0 1 06/06/03 06/09/03 2-Butanone (MEK) ND U 0.50 1 06/06/03 06/09/03 cis-1,2-Dichloroethene ND U 0.50 1 06/06/03 06/09/03 1,1,1-Trichloroethane ND U 0.50 1 06/06/03 06/09/03 L1 1,1-Dichloropropene ND U 0.50 1 06/06/03	Methylene Chloride						
trans-1,2-Dichloroethene ND U 0.50 1 06/06/03 06/09/03 1,1-Dichloroethane ND U 0.50 1 06/06/03 06/09/03 Vinyl Acetate ND U 3.0 1 06/06/03 06/09/03 2,2-Dichloropropane ND U 2.0 1 06/06/03 06/09/03 2-Butanone (MEK) ND U 8.0 1 06/06/03 06/09/03 2-Butanone (MEK) ND U 8.0 1 06/06/03 06/09/03 2-Butanone (MEK) ND U 0.50 1 06/06/03 06/09/03 1,1-1-Trichloroethane ND U 0.50 1 06/06/03 06/09/03 <td>Methyl tert-Butyl Ether</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Methyl tert-Butyl Ether						
1,1-Dichloroethane	trans-1,2-Dichloroethene			1			
Vinyl Acetate ND U 3.0 1 06/06/03 06/09/03 2,2-Dichloropropane ND U 8.0 1 06/06/03 06/09/03 2-Butanone (MEK) ND U 8.0 1 06/06/03 06/09/03 cis-1,2-Dichloroethene 0.77 0.50 1 06/06/03 06/09/03 Bromochloromethane ND U 0.50 1 06/06/03 06/09/03 Chloroform 2.4 1.0 1 06/06/03 06/09/03 1,1-Trichloroethane ND U 0.50 1 06/06/03 06/09/03 Carbon Tetrachloride ND U 0.50 1 06/06/03 06/09/03 L1 1,1-Dichloropropene ND U 0.50 1 06/06/03 06/09/03 L1 1,2-Dichloropropene ND U 0.50 1 06/06/03 06/09/03 1,2-Dichloropropane ND U 0.50 1 06/06/03 06/09/03 1,2-Dichloropropane ND U 0.50 1 06/06/03	1,1-Dichloroethane	ND U	0.50	<u> </u>			
2,2-Dichloropropane ND U 2.0 1 06/06/03 06/09/03 2-Butanone (MEK) ND U 8.0 1 06/06/03 06/09/03 cis-1,2-Dichloroethene 0.77 0.50 1 06/06/03 06/09/03 Bromochloromethane ND U 0.50 1 06/06/03 06/09/03 Chloroform 2.4 1.0 1 06/06/03 06/09/03 1,1,1-Trichloroethane ND U 0.50 1 06/06/03 06/09/03 Carbon Tetrachloride ND U 0.50 1 06/06/03 06/09/03 L1 1,1-Dichloropropene ND U 0.50 1 06/06/03 06/09/03 L1 Benzene ND U 0.50 1 06/06/03 06/09/03 L1 1,2-Dichloroethane ND U 0.50 1 06/06/03 06/09/03 1,2-Dichloropropane ND U 0.50 1 06/06/03 06/09/03 1,2-Dichloropropane ND U 0.50 1 06/06/	Vinyl Acetate	ND U					
2-Butanone (MEK) ND U 8.0 1 06/06/03 06/09/03 Cis-1,2-Dichloroethene ND U 0.50 1 06/06/03 06/09/03 Chloroform 2.4 1.0 1 06/06/03 06/09/03 Carbon Tetrachloride ND U 0.50 1 06/06/03 06/09/03 L1 1,1-Dichloropropene ND U 0.50 1 06/06/03 06/09/03 L1 1,1-Dichloropropene ND U 0.50 1 06/06/03 06/09/03 L1 1,1-Dichloropropene ND U 0.50 1 06/06/03 06/09/03 L1 Dichloropropene ND U 0.50 1 06/06/03 06/09/03 L1 Dichloropropene ND U 0.50 1 06/06/03 06/09/03 L1 Dichloropropane ND U 0.50 1 06/06/03 06/09/03 D2L1 Trichloroethene 160 D 5.0 1 06/06/03 06/09/03 D2L1 Dibromomethane ND U 0.50 1 06/06/03 06/09/03 D2L1 Dibromomethane ND U 0.50 1 06/06/03 06/09/03 D2L1 Dibromomethane ND U 0.50 Dibromomethane N		ND U					
cis-1,2-Dichloroethene 0.77 0.50 1 06/06/03 06/09/03 Bromochloromethane ND U 0.50 1 06/06/03 06/09/03 Chloroform 2.4 1.0 1 06/06/03 06/09/03 1,1,1-Trichloroethane ND U 0.50 1 06/06/03 06/09/03 L1 Carbon Tetrachloride ND U 0.50 1 06/06/03 06/09/03 L1 1,1-Dichloropropene ND U 0.50 1 06/06/03 06/09/03 L1 Benzene ND U 0.50 1 06/06/03 06/09/03 L1 1,2-Dichloroethane ND U 0.50 1 06/06/03 06/09/03 D2L1 Trichloropropane ND U 0.50 1 06/06/03 06/09/03 D2L1 1,2-Dichloropropane ND U 0.50 1 06/06/03 06/09/03 Dibromomethane ND U 0.50 1 06/06/03 06/09/03 4 Methyl-2-mentanone (MIBK)		ND U	8.0	1			
ND U 0.50 1 06/06/03 06/09/03		0.77	0.50	1			
Chloroform 2.4 1.0 1 06/06/03 06/09/03 1,1,1-Trichloroethane ND U 0.50 1 06/06/03 06/09/03 Carbon Tetrachloride ND U 0.50 1 06/06/03 06/09/03 L1 1,1-Dichloropropene ND U 0.50 1 06/06/03 06/09/03 L1 Benzene ND U 0.50 1 06/06/03 06/09/03 L1 1,2-Dichloroethane ND U 0.50 1 06/06/03 06/09/03 D2L1 1,2-Dichloropropane ND U 0.50 1 06/06/03 06/09/03 D2L1 1,2-Dichloropropane ND U 0.50 1 06/06/03 06/09/03 D2L1 1promodichloromethane ND U 0.50 1 06/06/03 06/09/03 O6/09/03 0s-1,3-Dichloropropene ND U 0.50 1 06/06/03 06/09/03 O6/09/03 0s-1,3-Dichloropropene ND U 0.50 1 06/06/03 06/09/03 <td> ,</td> <td>ND U</td> <td>0.50</td> <td>1</td> <td></td> <td></td> <td></td>	,	ND U	0.50	1			
1,1,1-Trichloroethane		2.4	1.0	1	06/06/03		
Carbon Tetrachloride ND U 0.50 1 06/06/03 06/09/03 L1 1,1-Dichloropropene ND U 0.50 1 06/06/03 06/09/03 L1 Benzene ND U 0.50 1 06/06/03 06/09/03 1,2-Dichloroethane ND U 0.50 1 06/06/03 06/09/03 Trichloroethene 160 D 5.0 10 06/06/03 06/09/03 1,2-Dichloropropane ND U 0.50 1 06/06/03 06/09/03 1,2-Dichloropropane ND U 0.50 1 06/06/03 06/09/03 0-0bromomethane ND U 0.50 1 06/06/03 06/09/03 Bromodichloromethane 0.54 0.50 1 06/06/03 06/09/03 cis-1,3-Dichloropropene ND U 0.50 1 06/06/03 06/09/03 4 Methyl-2-pentanone (MIBK) ND U 8.0 1 06/06/03 06/09/03		ND U	0.50	1	06/06/03		
1,1-Dichloropropene ND U 0.50 1 06/06/03 06/09/03 L1 Benzene ND U 0.50 1 06/06/03 06/09/03 1,2-Dichloroethane ND U 0.50 1 06/06/03 06/09/03 Trichloroethene 160 D 5.0 10 06/06/03 06/09/03 1,2-Dichloropropane ND U 0.50 1 06/06/03 06/09/03 Dibromomethane ND U 0.50 1 06/06/03 06/09/03 Bromodichloromethane 0.54 0.50 1 06/06/03 06/09/03 cis-1,3-Dichloropropene ND U 0.50 1 06/06/03 06/09/03 d Methyl-2-pentanone (MIBK) ND U 8.0 1 06/06/03 06/09/03				1			
ND U 0.50 1 06/06/03 06/09/03			0.50	1	06/06/03	06/09/03	Ll
Trichloroethane ND U 0.50 1 06/06/03 06/09/03 D2L1 Trichloroethene 160 D 5.0 10 06/06/03 06/09/03 D2L1 1,2-Dichloropropane ND U 0.50 1 06/06/03 06/09/03 1,2-Dichloropropane ND U 0.50 1 06/06/03 06/09/03 Dibromomethane 0.54 0.50 1 06/06/03 06/09/03 Bromodichloropropene ND U 0.50 1 06/06/03 06/09/03 4 Methyl-2-pentanone (MIBK) ND U 8.0 1 06/06/03 06/09/03			0.50	1	06/06/03	06/09/03	
Trichloroethene 160 D 5.0 10 06/06/03 06/09/03 D2L1 1,2-Dichloropropane ND U 0.50 1 06/06/03 06/09/03 1,2-Dichloropropane ND U 0.50 1 06/06/03 06/09/03 Dibromomethane 0.54 0.50 1 06/06/03 06/09/03 Bromodichloromethane ND U 0.50 1 06/06/03 06/09/03 cis-1,3-Dichloropropene ND U 0.50 1 06/06/03 06/09/03 4 Methyl-2-pentanone (MIBK) ND U 8.0 1 06/06/03 06/09/03				1	06/06/03	06/09/03	
1,2-Dichloropropane ND U 0.50 1 06/06/03 06/09/03 Dibromomethane ND U 0.50 1 06/06/03 06/09/03 Bromodichloromethane 0.54 0.50 1 06/06/03 06/09/03 cis-1,3-Dichloropropene ND U 0.50 1 06/06/03 06/09/03 4 Methyl-2-pentanone (MIBK) ND U 8.0 1 06/06/03 06/09/03				10	06/06/03	06/09/03	D2L1
1,2-Dichloropropane ND U 0.50 1 06/06/03 06/09/03 Dibromomethane ND U 0.50 1 06/06/03 06/09/03 Bromodichloromethane 0.54 0.50 1 06/06/03 06/09/03 cis-1,3-Dichloropropene ND U 0.50 1 06/06/03 06/09/03 4 Methyl-2-pentanone (MIBK) ND U 8.0 1 06/06/03 06/09/03	war to the same of			1	06/06/03	06/09/03	
Bromodichloromethane 0.54 0.50 1 06/06/03 06/09/03 cis-1,3-Dichloropropene ND U 0.50 1 06/06/03 06/09/03 4 Methyl-2-pentanone (MIBK) ND U 8.0 1 06/06/03 06/09/03	,					06/09/03	
Bromodichloromethane 0.34 0.50 1 06/06/03 06/09/03 cis-1,3-Dichloropropene ND U 0.50 1 06/06/03 06/09/03 d_Methyl-2-pentanone (MIBK) ND U 8.0 1 06/06/03 06/09/03				-			
cis-1,3-Dichloropropene ND U 8.0 1 06/06/03 06/09/03							
4 Methyl-2-pentanone (MIBK) ND U 9.0				_			
1 06/06/03 06/09/03	4-Methyl-2-pentanone (MIBK)			_		06/09/03	
Toluene ND U 0.50 1 06/06/03 06/09/03	Toluene	ND U	0.30	1	00,00,00		

Comments:

Printed: 06/11/2003 13:02:10

Merged

Form 1A - Organic

00012

1 of 3 Page

Analytical Results

Client: Project: BE&K Terranext WVBA/#0310-3154

Sample Matrix:

Water

Service Request: X2300467

Date Collected: 06/03/2003

Date Received: 06/03/2003

Volatile Organic Compounds

Sample Name:

AVB122-0200-01245

Lab Code:

X2300467-002

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

Name		_		Dilution	Date	Date	Arizona Qualifier
Trans-1,3-Dichloroptoptoptoptoptoptoptoptoptoptoptoptopto	Analyte Name						Arizona Quantici
1,12-Prichioroetehane 30	trans-1,3-Dichloropropene						
Company Comp	1,1,2-Trichloroethane						
2-Hexanone	Tetrachloroethene	30	0.50	<u> </u>			
1.3-Dichloropropane ND U 1.0 1 06/06/03 06/09/03 1.2-Dibromochloromethane ND U 0.50 1 06/06/03 06/09/03 1.2-Dibromochlane ND U 0.50 1 06/06/03 06/09/03 1.1,1,2-Tetrachloroethane ND U 0.50 1 06/06/03 06/09/03 1.2-Dibromochloromethane ND U 0.50 1 06/06/03 06/09/03 1.2-Dichlorobenzene ND U	2-Hexanone	ND U		1			
Dibromochloromethane ND U 0.50 1 06/06/03 06/09/03 1,2-Dibromoethane ND U 0.50 1 06/06/03 06/09/03 1,1,1,2-Tetrachloroethane ND U 0.50 1 06/06/03 06/09/03 1,1,1,2-Tetrachloroethane ND U 0.50 1 06/06/03 06/09/03		ND U					
1,2-Distromoctanae		ND U	0.50	1			
Chlorobenzene	1.2-Dibromoethane	ND U	0.50	1			
1,1,2-Tetrachloroethane	,	ND U	0.50	1			
Ethylbenzene		ND U	0.50	1	06/06/03	06/09/03	
ND U 1.0		ND U	0.50	1	06/06/03	06/09/03	
ND U	J			1	06/06/03	06/09/03	
Styrene				1	06/06/03	06/09/03	
ND U 0.50 1 06/06/03 06/09/03			0.50	1	06/06/03	06/09/03	
Soprophylocetic ND U 0.50	•				06/06/03	06/09/03	
1,2,3-Trichloropropane					06/06/03	06/09/03	
1,2,4-Trimethylbenzene				1	06/06/03	06/09/03	
2-Chlorotoluene ND U 0.50 1 06/06/03 06/09/03 4-Chlorotoluene ND U 0.50 1 06/06/03 06/09/03 1,3,5-Trimethylbenzene ND U 0.50 1 06/06/03 06/09/03 tert-Butylbenzene ND U 0.50 1 06/06/03 06/09/03 1,2,4-Trimethylbenzene ND U 0.50 1 06/06/03 06/09/03 sec-Butylbenzene ND U 0.50 1 06/06/03 06/09/03 1,3-Dichlorobenzene ND U 0.50 1 06/06/03 06/09/03 4-Isopropyltoluene ND U 0.50 1 06/06/03 06/09/03 4-Isopropyltoluene ND U 0.50 1 06/06/03 06/09/03 Bromoform ND U 0.50 1 06/06/03 06/09/03 1,1,2,2-Tetrachloroethane ND U 1.0 1 06/06/03 06/09/03 1,4-Dichlorobenzene ND U 0.50 1 06/06/03 06/09/03 1,4-Dichlorobenzene ND U 0.50 1 06/06/03 06/09/03 1,2-Dichlorobenzene ND U 0.50 1 06/06/03 06/09/03 1,2-Dichlorobenzene ND U 0.50 1 06/06/03 06/09/03 1,2-Diblorobenzene ND U 0.50 1 06/06/03 06/09/03 1,2-Dibromo-3-chloropropane ND U 0.50 1 06/06/03 06/09/03 1,2-Trichlorobenzene ND U 0.50 1 06/06/03 06/09/03				~			
4-Chlorotoluene ND U 0.50 1 06/06/03 06/09/03 1,3,5-Trimethylbenzene ND U 0.50 1 06/06/03 06/09/03 tert-Butylbenzene ND U 0.50 1 06/06/03 06/09/03 1,2,4-Trimethylbenzene ND U 0.50 1 06/06/03 06/09/03 sec-Butylbenzene ND U 0.50 1 06/06/03 06/09/03 1,3-Dichlorobenzene ND U 0.50 1 06/06/03 06/09/03 4-Isopropyltoluene ND U 0.50 1 06/06/03 06/09/03 Bromoform ND U 0.50 1 06/06/03 06/09/03 1,1,2,2-Tetrachloroethane ND U 0.50 1 06/06/03 06/09/03 1,4-Dichlorobenzene ND U 0.50 1 06/06/03 06/09/03 1,2-Dichlorobenzene ND U 0.50 1 06/06/03 06/09/03				1			
4-Chlorotolitene ND U 0.50 1 06/06/03 06/09/03 1,3,5-Trimethylbenzene ND U 0.50 1 06/06/03 06/09/03 1,2,4-Trimethylbenzene ND U 0.50 1 06/06/03 06/09/03 sec-Butylbenzene ND U 0.50 1 06/06/03 06/09/03 1,3-Dichlorobenzene ND U 0.50 1 06/06/03 06/09/03 4-Isopropyltoluene ND U 0.50 1 06/06/03 06/09/03 Bromoform ND U 0.50 1 06/06/03 06/09/03 1,1,2,2-Tetrachloroethane ND U 1.0 1 06/06/03 06/09/03 1,4-Dichlorobenzene ND U 0.50 1 06/06/03 06/09/03 1,2-Dichlorobenzene ND U 0.50 1 06/06/03 06/09/03 1,2-Dibromo-3-chloropropane ND U 0.50 1 06/06/03 06/09/03 1,2,4-Trichlorobenzene ND U 0.50 1 06/06/03 06/09/03 1,2,4-Trichlorobenzene ND U 0.50 1 06/06/0				1			
tert-Butylbenzene ND U 0.50 1 06/06/03 06/09/03 1,2,4-Trimethylbenzene ND U 0.50 1 06/06/03 06/09/03 sec-Butylbenzene ND U 0.50 1 06/06/03 06/09/03 1,3-Dichlorobenzene ND U 0.50 1 06/06/03 06/09/03 4-Isopropyltoluene ND U 0.50 1 06/06/03 06/09/03 Bromoform ND U 0.50 1 06/06/03 06/09/03 1,1,2,2-Tetrachloroethane ND U 1.0 1 06/06/03 06/09/03 1,4-Dichlorobenzene ND U 0.50 1 06/06/03 06/09/03 1,4-Dichlorobenzene ND U 0.50 1 06/06/03 06/09/03 1,2-Dichlorobenzene ND U 0.50 1 06/06/03 06/09/03 1,2-Dichlorobenzene ND U 0.50 1 06/06/03 06/09/03 1,2-Dichlorobenzene ND U 0.50 1 06/06/03 06/09/03 1,2-Dibromo-3-chloropropane ND U 5.0 1 06/06/03 06/09/03 1,2-Trichlorobenzene ND U 0.50 1 06/06/03 06/09/03 1,2-Trichlorobenzene ND U 0.50 1 06/06/03 06/09/03				1			
1,2,4-Trimethylbenzene	· · · · · · · · · · · · · · · · · · ·			1			
1,2,4-1 1 1 1 1 1 1 1 1 1	tert-Butylbenzene						
1,3-Dichlorobenzene ND U 0.50 1 06/06/03 06/09/03	1,2,4-Trimethylbenzene						
1,3-Dichlorobenzene ND U 0.50 1 06/06/03 06/09/03 Bromoform ND U 0.50 1 06/06/03 06/09/03 1,1,2,2-Tetrachloroethane ND U 1.0 1 06/06/03 06/09/03 1,4-Dichlorobenzene ND U 0.50 1 06/06/03 06/09/03 1,2-Dichlorobenzene ND U 0.50 1 06/06/03 06/09/03 n-Butylbenzene ND U 0.50 1 06/06/03 06/09/03 1,2-Dibromo-3-chloropropane ND U 5.0 1 06/06/03 06/09/03 1,2,4-Trichlorobenzene ND U 0.50 1 06/06/03 06/09/03	-						
4-Isopropyltoruene ND U 0.50 1 06/06/03 06/09/03 1,1,2,2-Tetrachloroethane ND U 1.0 1 06/06/03 06/09/03 1,4-Dichlorobenzene ND U 0.50 1 06/06/03 06/09/03 1,2-Dichlorobenzene ND U 0.50 1 06/06/03 06/09/03 n-Butylbenzene ND U 0.50 1 06/06/03 06/09/03 1,2-Dibromo-3-chloropropane ND U 5.0 1 06/06/03 06/09/03 1,2,4-Trichlorobenzene ND U 0.50 1 06/06/03 06/09/03	1,3-Dichlorobenzene						
Bromoform ND U 1.0 1 06/06/03 06/09/03 1,4-Dichlorobenzene ND U 0.50 1 06/06/03 06/09/03 1,2-Dichlorobenzene ND U 0.50 1 06/06/03 06/09/03 n-Butylbenzene ND U 0.50 1 06/06/03 06/09/03 1,2-Dibromo-3-chloropropane ND U 5.0 1 06/06/03 06/09/03 1,2,4-Trichlorobenzene ND U 0.50 1 06/06/03 06/09/03	4-Isopropyltoluene						
1,1,2,2-1etrachlorobentane ND U 0.50 1 06/06/03 06/09/03 1,4-Dichlorobenzene ND U 0.50 1 06/06/03 06/09/03 1,2-Dichlorobenzene ND U 0.50 1 06/06/03 06/09/03 n-Butylbenzene ND U 0.50 1 06/06/03 06/09/03 1,2-Dibromo-3-chloropropane ND U 5.0 1 06/06/03 06/09/03 1,2,4-Trichlorobenzene ND U 0.50 1 06/06/03 06/09/03	Bromoform						
1,4-Dichloroberizene ND U 0.50 1 06/06/03 06/09/03 1,2-Dichlorobenzene ND U 0.50 1 06/06/03 06/09/03 n-Butylbenzene ND U 0.50 1 06/06/03 06/09/03 1,2-Dibromo-3-chloropropane ND U 5.0 1 06/06/03 06/09/03 1,2,4-Trichlorobenzene ND U 0.50 1 06/06/03 06/09/03	1,1,2,2-Tetrachloroethane	ND U	1.0	1			
1,2-Dichlorobenzene ND U 0.50 1 06/06/03 06/09/03 n-Butylbenzene ND U 0.50 1 06/06/03 06/09/03 1,2-Dibromo-3-chloropropane ND U 5.0 1 06/06/03 06/09/03 1,2,4-Trichlorobenzene ND U 0.50 1 06/06/03 06/09/03	1 4-Dichlorobenzene	ND U	0.50	1			
n-Butylbenzene ND U 0.50 1 06/06/03 06/09/03 1,2-Dibromo-3-chloropropane ND U 5.0 1 06/06/03 06/09/03 1,2,4-Trichlorobenzene ND U 0.50 1 06/06/03 06/09/03		ND U	0.50	1			
1,2-Dibromo-3-chloropropane ND U 5.0 1 06/06/03 06/09/03 1,2,4-Trichlorobenzene ND U 0.50 1 06/06/03 06/09/03	,	ND U	0.50	1	06/06/03		
1,2,4-Trichlorobenzene ND U 0.50 1 06/06/03 06/09/03		ND U	5.0	1			
1,2,4 Themoreochisene	- ·		0.50	1			
Hexacinologication 140 c 210	Hexachlorobutadiene	ND U	1.0	1	06/06/03	06/09/03	

Comments:

Printed: 06/11/2003 13:02:10 L:\STEALTH\CRYSTAL.RPT\Form1m.rpt

1 Page 2 of 3

SuperSet Reference:

Analytical Results

Client: **Project:** BE&K Terranext WVBA/#0310-3154

Sample Matrix:

Water

Service Request: X2300467 **Date Collected:** 06/03/2003

Date Received: 06/03/2003

Volatile Organic Compounds

Sample Name:

AVB122-0200-01245

Lab Code:

X2300467-002

Extraction Method: EPA 5030B

Units: ug/L Basis: NA

Level: Low

8260B **Analysis Method:**

			Dilution	Date	Date	A.i.a.a Onalifion
Analyte Name	Result Q	MRL	Factor	Extracted		Arizona Qualifier
Naphthalene	ND U	3.0	1	06/06/03	06/09/03	
1,2,3-Trichlorobenzene	ND U	0.50	1	06/06/03	06/09/03	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Arizona Qualifier	
Dibromofluoromethane	113	84-113	06/09/03		
Toluene-d8	122	68-126	06/09/03		
4-Bromofluorobenzene	111	79-113	06/09/03		

Comments:

Merged

Analytical Results

Client: **Project:** BE&K Terranext WVBA/#0310-3154

Sample Matrix:

Water

Service Request: X2300467

Date Collected: 06/03/2003 **Date Received:** 06/03/2003

Volatile Organic Compounds

Sample Name:

AVB122-0204-1000

Lab Code:

X2300467-003

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

				Dilution	Date	Date	Awigana Qualifiar
Analyte Name	Result	Q	MRL	Factor	Extracted		Arizona Qualifier
Dichlorodifluoromethane	ND	U	3.0	1	06/06/03	06/06/03	
Chloromethane	ND	U	2.0	1	06/06/03	06/06/03	
Vinyl Chloride	ND	U	1.0	1	06/06/03	06/06/03	
Bromomethane	ND	U	1.0	1	06/06/03	06/06/03	
Chloroethane	ND	U	1.0	1	06/06/03	06/06/03	
Trichlorofluoromethane	ND	U	1.0	1	06/06/03	06/06/03	
1,1,2-Trichlorotrifluoroethane	ND	U	1.0	1	06/06/03	06/06/03	
1.1-Dichloroethene	ND		1.0	1	06/06/03	06/06/03	
Acetone	ND	U	10	1	06/06/03	06/06/03	
Iodomethane	ND	II	2.0	1	06/06/03	06/06/03	
Carbon Disulfide	ND		2.0	1	06/06/03	06/06/03	
Methylene Chloride	ND		1.0	1	06/06/03	06/06/03	
· · · · · · · · · · · · · · · · · · ·	ND		1.0	1	06/06/03	06/06/03	
Methyl tert-Butyl Ether trans-1,2-Dichloroethene	ND		0.50	1	06/06/03	06/06/03	
1,1-Dichloroethane	ND		0.50	1	06/06/03	06/06/03	
	ND		3.0	1	06/06/03	06/06/03	
Vinyl Acetate	ND ND		2.0	1	06/06/03	06/06/03	
2,2-Dichloropropane	ND ND		8.0	1	06/06/03	06/06/03	
2-Butanone (MEK)			0.50	1	06/06/03	06/06/03	
cis-1,2-Dichloroethene	ND		0.50	1	06/06/03	06/06/03	
Bromochloromethane	ND ND		1.0	1	06/06/03	06/06/03	
Chloroform				1	06/06/03	06/06/03	
1,1,1-Trichloroethane	ND		0.50	1	06/06/03	06/06/03	
Carbon Tetrachloride	ND		0.50	1	06/06/03	06/06/03	
1,1-Dichloropropene	ND		0.50			06/06/03	
Benzene		U	0.50	1	06/06/03 06/06/03	06/06/03	
1,2-Dichloroethane		U	0.50	1	06/06/03	06/06/03	
Trichloroethene	ND	U	0.50	1			
1,2-Dichloropropane		U	0.50	1	06/06/03	06/06/03	
Dibromomethane		U	0.50	1	06/06/03	06/06/03	
Bromodichloromethane	NE) U _	0.50	1	06/06/03	06/06/03	
cis-1,3-Dichloropropene	NI	U	0.50	1	06/06/03	06/06/03	
4-Methyl-2-pentanone (MIBK)		U	8.0	1	06/06/03	06/06/03	
Toluene	NI	U	0.50	1	06/06/03	06/06/03	

Comments: 00015

Analytical Results

Client: Project: BE&K Terranext WVBA/#0310-3154

Sample Matrix:

Water

Service Request: X2300467

Date Collected: 06/03/2003

Date Received: 06/03/2003

Volatile Organic Compounds

Sample Name:

AVB122-0204-1000

Lab Code:

X2300467-003

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

			Dilution	Date	Date	
Analyte Name	Result Q	MRL	Factor	Extracted		Arizona Qualifier
trans-1,3-Dichloropropene	ND U	1.0	1	06/06/03	06/06/03	
1,1,2-Trichloroethane	ND U	1.0	1	06/06/03	06/06/03	
Tetrachloroethene	ND U	0.50	11	06/06/03	06/06/03	
2-Hexanone	ND U	5.0	- 1	06/06/03	06/06/03	
1,3-Dichloropropane	ND U	1.0	1	06/06/03	06/06/03	
Dibromochloromethane	ND U	0.50	1	06/06/03	06/06/03	
1,2-Dibromoethane	ND U	0.50	1	06/06/03	06/06/03	
Chlorobenzene	ND U	0.50	1	06/06/03	06/06/03	
1,1,1,2-Tetrachloroethane	ND U	0.50	1	06/06/03	06/06/03	
Ethylbenzene	ND U	0.50	1	06/06/03	06/06/03	
m,p-Xylenes	ND U	1.0	1	06/06/03	06/06/03	
o-Xylene	ND U	0.50	1	06/06/03	06/06/03	
Styrene	ND U	0.50	1	06/06/03	06/06/03	
Isopropylbenzene	ND U	0.50	1	06/06/03	06/06/03	
Bromobenzene	ND U	0.50	1	06/06/03	06/06/03	
1,2,3-Trichloropropane	ND U	1.0	1	06/06/03	06/06/03	
n-Propylbenzene	ND U	0.50	1	06/06/03	06/06/03	
2-Chlorotoluene	ND U	0.50	1	06/06/03	06/06/03	
4-Chlorotoluene	ND U	0.50	1	06/06/03	06/06/03	
1,3,5-Trimethylbenzene	ND U	0.50	1	06/06/03	06/06/03	
tert-Butylbenzene	ND U	0.50	1	06/06/03	06/06/03	
1,2,4-Trimethylbenzene	ND U	0.50	1	06/06/03	06/06/03	
sec-Butylbenzene	ND U	0.50	1	06/06/03	06/06/03	
1,3-Dichlorobenzene	ND U	0.50	1	06/06/03	06/06/03	
4-Isopropyltoluene	ND U	0.50	1	06/06/03	06/06/03	
Bromoform	ND U	0.50	1	06/06/03	06/06/03	
1,1,2,2-Tetrachloroethane	ND U	1.0	1	06/06/03	06/06/03	
1,4-Dichlorobenzene	ND U	0.50	1	06/06/03	06/06/03	
1.2-Dichlorobenzene	ND U	0.50	1	06/06/03	06/06/03	
n-Butylbenzene	ND U	0.50	1	06/06/03	06/06/03	
1,2-Dibromo-3-chloropropane	ND U	5.0	1	06/06/03	06/06/03	
1,2,4-Trichlorobenzene	ND U	0.50	1	06/06/03	06/06/03	,
Hexachlorobutadiene	ND U	1.0	1	06/06/03	06/06/03	

Comments:

000018

Analytical Results

Client: Project: BE&K Terranext WVBA/#0310-3154

Sample Matrix:

Water

Service Request: X2300467

Date Collected: 06/03/2003 **Date Received:** 06/03/2003

Volatile Organic Compounds

Sample Name:

AVB122-0204-1000

Lab Code:

X2300467-003

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

			Dilution	Date	Date	
Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed	Arizona Qualifier
Naphthalene	ND U	3.0	1	06/06/03	06/06/03	
1,2,3-Trichlorobenzene	ND U	0.50	1	06/06/03	06/06/03	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Arizona Qualifier	
Dibromofluoromethane	106	84-113	06/06/03		
Toluene-d8	122	68-126	06/06/03		
4-Bromofluorobenzene	106	79-113	06/06/03		

Comments:

Merged

Analytical Results

Client: Project:

BE&K Terranext WVBA/#0310-3154

Sample Matrix:

Water

Service Request: X2300467

Date Collected: 06/03/2003

Date Received: 06/03/2003

Volatile Organic Compounds

Sample Name:

AVB120-0200-01245

Lab Code:

X2300467-004

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

		_	MDI	Dilution Factor	Date Extracted	Date Analyzed Arizona Qualifier
Analyte Name	Result		MRL		06/06/03	06/07/03
Dichlorodifluoromethane	ND		3.0	1	06/06/03	06/07/03
Chloromethane	ND		2.0	1	06/06/03	06/07/03
Vinyl Chloride	ND		1.0			
Bromomethane	ND		1.0	1	06/06/03	06/07/03
Chloroethane	ND	U	1.0	1	06/06/03	06/07/03
Trichlorofluoromethane	1.4		1.0	1	06/06/03	06/07/03
1,1,2-Trichlorotrifluoroethane	2.0		1.0	1	06/06/03	06/07/03
1,1-Dichloroethene	1.4		1.0	1	06/06/03	06/07/03
Acetone	ND	U	10	1	06/06/03	06/07/03
Iodomethane	ND	U	2.0	1	06/06/03	06/07/03
Carbon Disulfide	ND		2.0	1	06/06/03	06/07/03
Methylene Chloride	ND		1.0	1	06/06/03	06/07/03
Methyl tert-Butyl Ether	ND	II	1.0	l	06/06/03	06/07/03
trans-1,2-Dichloroethene	ND		0.50	l	06/06/03	06/07/03
1,1-Dichloroethane	ND		0.50	1	06/06/03	06/07/03
	ND		3.0	1	06/06/03	06/07/03
Vinyl Acetate	ND		2.0	1	06/06/03	06/07/03
2,2-Dichloropropane	ND		8.0	ī	06/06/03	06/07/03
2-Butanone (MEK)			0.50	1	06/06/03	06/07/03
cis-1,2-Dichloroethene	ND		0.50	1	06/06/03	06/07/03
Bromochloromethane	ND	U	1.0	1	06/06/03	06/07/03
Chloroform	19			1	06/06/03	06/07/03
1,1,1-Trichloroethane	ND		0.50	1	06/06/03	06/07/03
Carbon Tetrachloride	ND		0.50	1 1	06/06/03	06/07/03
1,1-Dichloropropene	ND		0.50			06/07/03
Benzene	ND		0.50	1	06/06/03	06/07/03
1,2-Dichloroethane	ND	U	0.50	1	06/06/03	06/07/03
Trichloroethene	3.1		0.50	1	06/06/03	
1,2-Dichloropropane	ND		0.50	1	06/06/03	06/07/03
Dibromomethane	ND	U	0.50	1	06/06/03	06/07/03
Bromodichloromethane	11		0.50	1	06/06/03	06/07/03
cis-1,3-Dichloropropene	ND	U	0.50	1	06/06/03	06/07/03
4-Methyl-2-pentanone (MIBK)	ND		8.0	l	06/06/03	06/07/03
Toluene	7.2		0.50	1	06/06/03	06/07/03

Comments:

Printed: 06/11/2003 13:02:34 L:\STEALTH\CRYSTAL.RPT\Form\m.rpt

Merged

Form 1A - Organic

Page 1 of 3

SuperSet Reference:

RR3426

Analytical Results

Client: Project: BE&K Terranext WVBA/#0310-3154

Sample Matrix:

Water

Service Request: X2300467

Date Collected: 06/03/2003

Date Received: 06/03/2003

Volatile Organic Compounds

Sample Name:

AVB120-0200-01245

Lab Code:

X2300467-004

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

				Dilution	Date	Date	
Analyte Name	Result	Q	MRL	Factor	Extracted		Arizona Qualifier
trans-1,3-Dichloropropene	ND		1.0	1	06/06/03	06/07/03	
1.1.2-Trichloroethane	ND		1.0	1	06/06/03	06/07/03	
Tetrachloroethene	6.1		0.50	1	06/06/03	06/07/03	
2-Hexanone	ND	II	5.0	1	06/06/03	06/07/03	
	ND		1.0	l	06/06/03	06/07/03	
1,3-Dichloropropane Dibromochloromethane	6.4	Ü	0.50	1	06/06/03	06/07/03	
	ND	Τĭ	0.50	1	06/06/03	06/07/03	
1,2-Dibromoethane	ND ND		0.50	1	06/06/03	06/07/03	
Chlorobenzene	ND ND		0.50	1	06/06/03	06/07/03	
1,1,1,2-Tetrachloroethane			0.50	1	06/06/03	06/07/03	
Ethylbenzene	ND		1.0	1	06/06/03	06/07/03	
m,p-Xylenes	ND		0.50	1	06/06/03	06/07/03	
o-Xylene	ND			1	06/06/03	06/07/03	
Styrene	ND		0.50		06/06/03	06/07/03	
Isopropylbenzene	ND		0.50	1 1	06/06/03	06/07/03	
Bromobenzene	ND		0.50				
1,2,3-Trichloropropane	ND		1.0	1	06/06/03	06/07/03	
n-Propylbenzene	ND		0.50	1	06/06/03	06/07/03	
2-Chlorotoluene	ND	U	0.50	1	06/06/03	06/07/03	
4-Chlorotoluene	ND	U	0.50	1	06/06/03	06/07/03	
1,3,5-Trimethylbenzene	ND	U	0.50	1	06/06/03	06/07/03	
tert-Butylbenzene	ND	U	0.50	1	06/06/03	06/07/03	
1.2,4-Trimethylbenzene	ND	IJ	0.50	1	06/06/03	06/07/03	
sec-Butylbenzene	ND		0.50	1	06/06/03	06/07/03	
1,3-Dichlorobenzene	ND		0.50	l	06/06/03	06/07/03	
	ND		0.50	1	06/06/03	06/07/03	
4-Isopropyltoluene	1.2		0.50	1	06/06/03	06/07/03	
Bromoform	ND		1.0	1	06/06/03	06/07/03	
1,1,2,2-Tetrachloroethane		U	0.50	1	06/06/03	06/07/03	
1,4-Dichlorobenzene		U	0.50	î	06/06/03	06/07/03	
1,2-Dichlorobenzene		U	0.50	1	06/06/03	06/07/03	
n-Butylbenzene				1	06/06/03	06/07/03	
1,2-Dibromo-3-chloropropane		U	5.0	1	06/06/03	06/07/03	
1,2,4-Trichlorobenzene		U	0.50	1	06/06/03	06/07/03	
Hexachlorobutadiene	NL	U	1.0	1	00,00,00		

Comments:

Cran.

Printed: 06/11/2003 13:02:34 L:\STEALTH\CRYSTAL.RPT\Form1m.rpt

Merged

Form 1A - Organic

2 of 3 Page

Analytical Results

Client:

BE&K Terranext WVBA/#0310-3154

Project: Sample Matrix:

Water

Service Request: X2300467

Date Collected: 06/03/2003

Date Received: 06/03/2003

Volatile Organic Compounds

Sample Name:

AVB120-0200-01245

Lab Code:

X2300467-004

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

			Dilution	Date	Date	
Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed	Arizona Qualifier
Naphthalene 1,2,3-Trichlorobenzene	ND U ND U	3.0 0.50	1 1	06/06/03 06/06/03	06/07/03 06/07/03	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Arizona Qualifier	
Dibromofluoromethane	107	84-113	06/07/03		
Toluene-d8	118	68-126	06/07/03		
4-Bromofluorobenzene	107	79-113	06/07/03		

Comments:

000020

Printed: 06/11/2003 13:02:34

Form 1A - Organic

Merged

3 of 3 Page

Analytical Results

Client: Project: BE&K Terranext WVBA/#0310-3154

Sample Matrix:

Water

Service Request: X2300467

Date Collected: 06/03/2003

Date Received: 06/03/2003

Volatile Organic Compounds

Sample Name:

AVB119-0100-01140

Lab Code:

X2300467-005

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

	~ 1	0	MDI	Dilution Factor	Date Extracted	Date	Arizona Qualifier
Analyte Name	Result		MRL				Alizona Quantier
Dichlorodifluoromethane	ND		3.0	$_{1}$	06/06/03	06/07/03 06/07/03	
Chloromethane	ND		2.0	1	06/06/03	06/07/03	
Vinyl Chloride	ND	U	1.0	1	06/06/03		
Bromomethane	ND		1.0	1	06/06/03	06/07/03	
Chloroethane	ND		1.0	1	06/06/03	06/07/03	
Trichlorofluoromethane	ND	U	1.0	1	06/06/03	06/07/03	
1,1,2-Trichlorotrifluoroethane	ND	U	1.0	1	06/06/03	06/07/03	
1,1-Dichloroethene	ND	U	1.0	1	06/06/03	06/07/03	
Acetone	ND	U	10	1	06/06/03	06/07/03	
Iodomethane	ND	U	2.0	1	06/06/03	06/07/03	
Carbon Disulfide	ND		2.0	1	06/06/03	06/07/03	
Methylene Chloride	ND		1.0	1	06/06/03	06/07/03	
Methyl tert-Butyl Ether	ND	ŢŢ	1.0	1	06/06/03	06/07/03	
trans-1,2-Dichloroethene	ND		0.50	1	06/06/03	06/07/03	
1,1-Dichloroethane	ND		0.50	1	06/06/03	06/07/03	
	ND		3.0	1	06/06/03	06/07/03	
Vinyl Acetate	ND ND		2.0	1	06/06/03	06/07/03	7
2,2-Dichloropropane 2-Butanone (MEK)	ND		8.0	1	06/06/03	06/07/03	
	ND		0.50	1	06/06/03	06/07/03	
cis-1,2-Dichloroethene	ND ND		0.50	1	06/06/03	06/07/03	
Bromochloromethane	ND ND		1.0	1	06/06/03	06/07/03	
Chloroform					06/06/03	06/07/03	
1,1,1-Trichloroethane	ND		0.50	1	06/06/03	06/07/03	
Carbon Tetrachloride	ND		0.50	1	06/06/03	06/07/03	
1,1-Dichloropropene	ND		0.50				
Benzene	ND		0.50	1	06/06/03	06/07/03	
1,2-Dichloroethane	ND		0.50	1	06/06/03	06/07/03	
Trichloroethene	ND	U	0.50	1	06/06/03	06/07/03	
1,2-Dichloropropane	ND	U	0.50	1	06/06/03	06/07/03	
Dibromomethane	ND	U	0.50	1	06/06/03	06/07/03	
Bromodichloromethane	ND	U	0.50	1	06/06/03	06/07/03	and the second s
cis-1,3-Dichloropropene	ND	U	0.50	1	06/06/03	06/07/03	
4-Methyl-2-pentanone (MIBK)	ND		8.0	1	06/06/03	06/07/03	
Toluene	ND		0.50	1	06/06/03	06/07/03	•
LOIGONIO							

Comments:

000021

Merged

Analytical Results

Client: Project:

BE&K Terranext WVBA/#0310-3154

Sample Matrix:

Water

Service Request: X2300467

Date Collected: 06/03/2003

Date Received: 06/03/2003

Volatile Organic Compounds

Sample Name:

AVB119-0100-01140

Lab Code:

X2300467-005

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

Analyta Nama	Result	0	MRL	Dilution Factor	Date Extracted	Date Analyzed	Arizona Qualifier
Analyte Name trans-1,3-Dichloropropene	ND		1.0	1	06/06/03	06/07/03	
1,1,2-Trichloroethane	ND		1.0	î	06/06/03	06/07/03	
Tetrachloroethene	ND		0.50	ì	06/06/03	06/07/03	
	ND		5.0	1	06/06/03	06/07/03	
2-Hexanone	ND ND		1.0	1	06/06/03	06/07/03	
1,3-Dichloropropane Dibromochloromethane	ND ND		0.50	1	06/06/03	06/07/03	
			0.50	1	06/06/03	06/07/03	
1,2-Dibromoethane	ND		0.50	1	06/06/03	06/07/03	
Chlorobenzene	ND ND		0.50	1	06/06/03	06/07/03	
1,1,1,2-Tetrachloroethane							
Ethylbenzene	ND		0.50	1	06/06/03	06/07/03	
m,p-Xylenes	ND		1.0	1	06/06/03	06/07/03 06/07/03	
o-Xylene	ND		0.50	1	06/06/03		
Styrene	ND		0.50	1	06/06/03	06/07/03	
Isopropylbenzene	ND		0.50	1	06/06/03	06/07/03	
Bromobenzene	ND	Ŭ	0.50	1	06/06/03	06/07/03	
1,2,3-Trichloropropane	ND	U	1.0	1	06/06/03	06/07/03	
n-Propylbenzene	ND	U	0.50	1	06/06/03	06/07/03	
2-Chlorotoluene	ND	U	0.50	1	06/06/03	06/07/03	
4-Chlorotoluene	ND	U	0.50	1	06/06/03	06/07/03	
1,3,5-Trimethylbenzene	ND	U	0.50	1	06/06/03	06/07/03	
tert-Butylbenzene	ND	U	0.50	1	06/06/03	06/07/03	
1,2,4-Trimethylbenzene	ND	IJ	0.50	1	06/06/03	06/07/03	
sec-Butylbenzene	ND		0.50	1	06/06/03	06/07/03	
1,3-Dichlorobenzene	ND	U	0.50	1	06/06/03	06/07/03	
4-Isopropyltoluene	ND	U	0.50	1	06/06/03	06/07/03	
Bromoform	ND		0.50	1	06/06/03	06/07/03	
1,1,2,2-Tetrachloroethane	ND		1.0	1	06/06/03	06/07/03	
1,4-Dichlorobenzene	ND		0.50	1	06/06/03	06/07/03	
1,2-Dichlorobenzene	ND ND		0.50	1	06/06/03	06/07/03	
n-Butylbenzene	ND		0.50	1	06/06/03	06/07/03	
1,2-Dibromo-3-chloropropane	ND		5.0	1	06/06/03	06/07/03	
	ND ND		0.50	1	06/06/03	06/07/03	
1,2,4-Trichlorobenzene Hexachlorobutadiene	ND ND		1.0	1	06/06/03	06/07/03	
riexaciii0i00utauiciic	1117		1.0				

Comments:

Merged

Analytical Results

Client:

BE&K Terranext WVBA/#0310-3154

Project: Sample Matrix:

Water

Service Request: X2300467 **Date Collected:** 06/03/2003

Date Received: 06/03/2003

Volatile Organic Compounds

Sample Name:

AVB119-0100-01140

Lab Code:

X2300467-005

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

			Dilution	Date	Date	
Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed	Arizona Qualifier
Naphthalene	ND U	3.0	1	06/06/03	06/07/03	
1,2,3-Trichlorobenzene	ND U	0.50	1	06/06/03	06/07/03	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Arizona Qualifier	
Dibromofluoromethane	107	84-113	06/07/03		
Toluene-d8	119	68-126	06/07/03		
4-Bromofluorobenzene	108	79-113	06/07/03		

Comments:

Analytical Results

Client: Project: BE&K Terranext WVBA/#0310-3154

Sample Matrix:

Water

Service Request: X2300467

Date Received: NA

Date Collected: NA

Volatile Organic Compounds

Sample Name: Lab Code:

Method Blank XWG0300706-5

EPA 5030B

Units: ug/L Basis: NA

Level: Low

Extraction Method: 8260B **Analysis Method:**

			Dilution	Date	Date	
Analyte Name	Result Q	MRL	Factor	Extracted		Arizona Qualifier
Dichlorodifluoromethane	ND U	3.0	1	06/06/03	06/06/03	
Chloromethane	ND U	2.0	1	06/06/03	06/06/03	
Vinyl Chloride	ND U	1.0	1	06/06/03	06/06/03	
Bromomethane	ND U	1.0	1	06/06/03	06/06/03	
Chloroethane	ND U	1.0	1	06/06/03	06/06/03	
Trichlorofluoromethane	ND U	1.0	1	06/06/03	06/06/03	
1.1.2-Trichlorotrifluoroethane	ND U	1.0	1	06/06/03	06/06/03	
1,1-Dichloroethene	ND U	1.0	1	06/06/03	06/06/03	
Acetone	ND U	10	1	06/06/03	06/06/03	
Iodomethane	ND U	2.0	1	06/06/03	06/06/03	
Carbon Disulfide	ND U	2.0	1	06/06/03	06/06/03	
Methylene Chloride	ND U	1.0	1	06/06/03	06/06/03	
Methyl tert-Butyl Ether	ND U	1.0	1	06/06/03	06/06/03	
trans-1,2-Dichloroethene	ND U	0.50	1	06/06/03	06/06/03	
1.1-Dichloroethane	ND U	0.50	1	06/06/03	06/06/03	
	ND U	3.0	1	06/06/03	06/06/03	
Vinyl Acetate 2,2-Dichloropropane	ND U	2.0	1	06/06/03	06/06/03	
2-Butanone (MEK)	ND U	8.0	1	06/06/03	06/06/03	
	ND U	0.50	1	06/06/03	06/06/03	
cis-1,2-Dichloroethene Bromochloromethane	ND U	0.50	1	06/06/03	06/06/03	
Chloroform	ND U	1.0	1	06/06/03	06/06/03	
	ND U	0.50	1	06/06/03	06/06/03	
1,1,1-Trichloroethane Carbon Tetrachloride	ND U	0.50	1	06/06/03	06/06/03	
1,1-Dichloropropene	ND U	0.50	1	06/06/03	06/06/03	
	ND U	0.50]	06/06/03	06/06/03	
Benzene	ND U	0.50	1	06/06/03	06/06/03	
1,2-Dichloroethane Trichloroethene	ND U	0.50	1	06/06/03	06/06/03	
	ND U	0.50	1	06/06/03	06/06/03	
1,2-Dichloropropane	ND U	0.50	l	06/06/03	06/06/03	
Dibromomethane Bromodichloromethane	ND U	0.50	î	06/06/03	06/06/03	
	ND U	0.50	1	06/06/03	06/06/03	
cis-1,3-Dichloropropene	ND U ND U	8.0	1	06/06/03	06/06/03	
4-Methyl-2-pentanone (MIBK)	ND U ND U	0.50	1	06/06/03	06/06/03	•
Toluene	ND U	0.50	*			

Comments:

Printed: 06/11/2003 13:02:58 L:\STEALTH\CRYSTAL.RPT\Form1m.rpt

Merged

Form 1A - Organic

Page 1 of 3

Analytical Results

Client: Project: BE&K Terranext WVBA/#0310-3154

Sample Matrix:

Water

Service Request: X2300467

Date Collected: NA Date Received: NA

Volatile Organic Compounds

Sample Name: Lab Code:

Method Blank XWG0300706-5

Extraction Method: EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

Mary Name Result Q MRL Factor Extracted Analyzed Arizona Qualifier					Dilution	Date	Date	
Trans-1,3-Dichloropropene	Analyte Name	Result	Q	MRL	Factor	Extracted	Analyzed	Arizona Qualifier
1,1,2-Trichloroethane		ND	U	1.0	1	06/06/03		
Tetrachloroethene ND U 0.50 1 06/06/03 06/06/03 2-Hexanone ND U 5.0 1 06/06/03 06/06/03 1,3-Dichloropropane ND U 1.0 1 06/06/03 06/06/03 1,2-Dibromoethane ND U 0.50 1 06/06/03 06/06/03 1,1,1,2-Tetrachloroethane ND U 0.50 1 06/06/03 06/06/03 1,1,1,2-Tetrachloroethane ND U 0.50 1 06/06/03 06/06/03 Elthylbenzene ND U 0.50 1 06/06/03 06/06/03 Elthylbenzene ND U 0.50 1 06/06/03 06/06/03 Ethylene ND U 0.50 1 06/06/03 06/06/03 Styrene ND U 0.50 1 06/06/03 06/06/03 Isopropylbenzene ND U 0.50 1 06/06/03 06/06/03	,	ND	U	1.0	1	06/06/03		
1.3-Dichloropropane ND U 1.0 1 06/06/03 06/06/03 1.3-Dichloropropane ND U 0.50 1 06/06/03 06/06/03 1.2-Dibromochloromethane ND U 0.50 1 06/06/03 06/06/03 1.2-Dibromochloromethane ND U 0.50 1 06/06/03 06/06/03 1.1,1,2-Tetrachloroethane ND U 0.50 1 06/06/03 06/06/03 1.2,3-Trichloropropane ND U 0.50 1 06/06/03 06/06/03 1.2,3-Trichloropropane ND U 0.50 1 06/06/03 06/06/03 1.2,4-Trimethylbenzene ND U 0.50 1 06/06/03 06/06/03 1.2,4-Trimethylbenzene ND U 0.50 1 06/06/03 06/06/03 1.2,4-Trimethylbenzene ND U 0.50 1 06/06/03 06/06/03 1.2,4-Trinchlorobenzene ND U 0.50 1 06/06/03 06/06/03 1.2,2-Tetrachloroethane ND U 0.50 1 06/06/03 06/06/03		ND	U	0.50	1	06/06/03	06/06/03	
1,3-Dichloropropane	2-Hexanone	ND	U	5.0	1	06/06/03	06/06/03	
Dibromochloromethane		ND	U	1.0	1	06/06/03	06/06/03	
1,2-Ditothoretraine		ND	U	0.50	1	06/06/03	06/06/03	
Chlorobenzene	1 2-Dibromoethane	ND	U	0.50	1			
1,1,2-Tetrachloroethane		ND	U	0.50	1	06/06/03		
Styrene ND U 0.50		ND	U	0.50	1	06/06/03	06/06/03	
m,p-Xylenes ND U 1.0 1 06/06/03 06/06/03 o-Xylene ND U 0.50 1 06/06/03 06/06/03 Styrene ND U 0.50 1 06/06/03 06/06/03 Isopropylbenzene ND U 0.50 1 06/06/03 06/06/03 Bromobenzene ND U 0.50 1 06/06/03 06/06/03 12,3-Trichloropropane ND U 1.0 1 06/06/03 06/06/03 n-Propylbenzene ND U 0.50 1 06/06/03 06/06/03 2-Chlorotoluene ND U 0.50 1 06/06/03 06/06/03 4-Chlorotoluene ND U 0.50 1 06/06/03 06/06/03 1,3,5-Trimethylbenzene ND U 0.50 1 06/06/03 06/06/03 tert-Butylbenzene ND U 0.50 1 06/06/03 06/06/03 1,2,4-Trimethylbenzene ND U 0.50 1 06/06/03 06/06/03 1,3-Dichlorobenzene<	Ethylbenzene	ND	U	0.50	1			
o-Xylene ND U 0.50 1 06/06/03 06/06/03 Styrene ND U 0.50 1 06/06/03 06/06/03 Isopropylbenzene ND U 0.50 1 06/06/03 06/06/03 Bromobenzene ND U 0.50 1 06/06/03 06/06/03 Bromobenzene ND U 0.50 1 06/06/03 06/06/03 1,2,3-Trichloropropane ND U 0.50 1 06/06/03 06/06/03 2-Chlorotoluene ND U 0.50 1 06/06/03 06/06/03 4-Chlorotoluene ND U 0.50 1 06/06/03 06/06/03 4-Chlorotoluene ND U 0.50 1 06/06/03 06/06/03 1,3,5-Trimethylbenzene ND U 0.50 1 06/06/03 06/06/03 1,2,4-Trimethylbenzene ND U 0.50 1 06/06/03 06/06/03 <t< td=""><td>•</td><td>ND</td><td>U</td><td>1.0</td><td>1</td><td></td><td></td><td></td></t<>	•	ND	U	1.0	1			
Styrene	• •	ND	U	0.50	1	06/06/03	06/06/03	
Isopropylbenzene		ND	U	0.50	1			
Bromobenzene ND U 0.50 1 06/06/03 06/06/03 1,2,3-Trichloropropane ND U 1.0 1 06/06/03 06/06/03 n-Propylbenzene ND U 0.50 1 06/06/03 06/06/03 2-Chlorotoluene ND U 0.50 1 06/06/03 06/06/03 4-Chlorotoluene ND U 0.50 1 06/06/03 06/06/03 1,3,5-Trimethylbenzene ND U 0.50 1 06/06/03 06/06/03 1,3,5-Trimethylbenzene ND U 0.50 1 06/06/03 06/06/03 1,2,4-Trimethylbenzene ND U 0.50 1 06/06/03 06/06/03 1,2,4-Trimethylbenzene ND U 0.50 1 06/06/03 06/06/03 1,3-Dichlorobenzene ND U 0.50 1 06/06/03 06/06/03 1,3-Dichlorobenzene ND U 0.50 1 06/06/03 06/06/03 1,3-Dichlorobenzene ND U 0.50 1 06/06/03 06/06/03 1,1,2,2-Tetrachloroethane ND U 0.50 1 06/06/03 06/06/03 1,4-Dichlorobenzene ND U 0.50 1 06/06/03 06/06/03 1,2-Dichlorobenzene ND U 0.50 1 06/06/03 06/06/03	*	ND	U	0.50	1			
1,2,4-Trimethylbenzene ND U 0.50 1 06/06/03 06/06/03	1 1	ND	U	0.50	1	06/06/03	06/06/03	
n-Propylbenzene ND U 0.50 1 06/06/03 06/06/03 2-Chlorotoluene ND U 0.50 1 06/06/03 06/06/03 4-Chlorotoluene ND U 0.50 1 06/06/03 06/06/03 1,3,5-Trimethylbenzene ND U 0.50 1 06/06/03 06/06/03 tert-Butylbenzene ND U 0.50 1 06/06/03 06/06/03 1,2,4-Trimethylbenzene ND U 0.50 1 06/06/03 06/06/03 sec-Butylbenzene ND U 0.50 1 06/06/03 06/06/03 1,3-Dichlorobenzene ND U 0.50 1 06/06/03 06/06/03 4-Isopropyltoluene ND U 0.50 1 06/06/03 06/06/03 Bromoform ND U 0.50 1 06/06/03 06/06/03 1,1,2,2-Tetrachloroethane ND U 0.50 1 06/06/03 06/06/03 1,2-Dichlorobenzene ND U 0.50 1 06/06/03 06/06/03	1 2.3-Trichloropropane	ND	U	1.0	1			
2-Chlorotoluene ND U 0.50 1 06/06/03 06/06/03 4-Chlorotoluene ND U 0.50 1 06/06/03 06/06/03 1,3,5-Trimethylbenzene ND U 0.50 1 06/06/03 06/06/03 tert-Butylbenzene ND U 0.50 1 06/06/03 06/06/03 1,2,4-Trimethylbenzene ND U 0.50 1 06/06/03 06/06/03 sec-Butylbenzene ND U 0.50 1 06/06/03 06/06/03 1,3-Dichlorobenzene ND U 0.50 1 06/06/03 06/06/03 4-Isopropyltoluene ND U 0.50 1 06/06/03 06/06/03 Bromoform ND U 0.50 1 06/06/03 06/06/03 1,1,2,2-Tetrachloroethane ND U 1.0 1 06/06/03 06/06/03 1,4-Dichlorobenzene ND U 0.50 1 06/06/03 06/06/03 1,2-Dichlorobenzene ND U 0.50 1 06/06/03 06/06/03 <		ND	U	0.50	1			
1,3,5-Trimethylbenzene ND U 0.50 1 06/06/03 06/06/03 1,2,4-Trimethylbenzene ND U 0.50 1 06/06/03 06/06/03 sec-Butylbenzene ND U 0.50 1 06/06/03 06/06/03 1,3-Dichlorobenzene ND U 0.50 1 06/06/03 06/06/03 4-Isopropyltoluene ND U 0.50 1 06/06/03 06/06/03 Bromoform ND U 0.50 1 06/06/03 06/06/03 1,1,2,2-Tetrachloroethane ND U 1.0 1 06/06/03 06/06/03 1,4-Dichlorobenzene ND U 0.50 1 06/06/03 06/06/03 1,4-Dichlorobenzene ND U 0.50 1 06/06/03 06/06/03 1,4-Dichlorobenzene ND U 0.50 1 06/06/03 06/06/03 1,2-Dichlorobenzene ND U 0.50 1 06/06/03 06/06/03 1,2-Dichlorobenzene ND U 0.50 1 06/06/03 06/06/03 1,2-Dibromo-3-chloropropane ND U 0.50 1 06/06/03 06/06/03 1,2-Dibromo-3-chloropropane ND U 0.50 1 06/06/03 06/06/03 1,2-Trichlorobenzene ND U 0.50 1 06/06/03 06/06/03 1,2-Trichlorobenzene ND U 0.50 1 06/06/03 06/06/03		ND	U	0.50	1	06/06/03		
tert-Butylbenzene ND U 0.50 1 06/06/03 06/06/03 1,2,4-Trimethylbenzene ND U 0.50 1 06/06/03 06/06/03 sec-Butylbenzene ND U 0.50 1 06/06/03 06/06/03 1,3-Dichlorobenzene ND U 0.50 1 06/06/03 06/06/03 4-Isopropyltoluene ND U 0.50 1 06/06/03 06/06/03 Bromoform ND U 0.50 1 06/06/03 06/06/03 1,1,2,2-Tetrachloroethane ND U 1.0 1 06/06/03 06/06/03 1,4-Dichlorobenzene ND U 0.50 1 06/06/03 06/06/03 1,4-Dichlorobenzene ND U 0.50 1 06/06/03 06/06/03 1,2-Dichlorobenzene ND U 0.50 1 06/06/03 06/06/03 1,2-Dichlorobenzene ND U 0.50 1 06/06/03 06/06/03 1,2-Dibromo-3-chloropropane ND U 0.50 1 06/06/03 06/06/03 1,2,4-Trichlorobenzene ND U 0.50 0 0.50 06/06/03 06/06/03 06/06/03 1,2,4-Trichlorobenzene ND U 0.50 0 0.50 06/06/03 06/0	4-Chlorotoluene	ND	U	0.50	1			
tert-Butylbenzene ND U 0.50 1 06/06/03 06/06/03 1,2,4-Trimethylbenzene ND U 0.50 1 06/06/03 06/06/03 sec-Butylbenzene ND U 0.50 1 06/06/03 06/06/03 1,3-Dichlorobenzene ND U 0.50 1 06/06/03 06/06/03 4-Isopropyltoluene ND U 0.50 1 06/06/03 06/06/03 Bromoform ND U 0.50 1 06/06/03 06/06/03 1,1,2,2-Tetrachloroethane ND U 1.0 1 06/06/03 06/06/03 1,4-Dichlorobenzene ND U 0.50 1 06/06/03 06/06/03 1,2-Dichlorobenzene ND U 0.50 1 06/06/03 06/06/03 1,2-Dibromo-3-chloropropane ND U 5.0 1 06/06/03 06/06/03 1,2,4-Trichlorobenzene ND U 0.50 1 06/06/03 06/06/03 1,2,4-Trichlorobenzene ND U 0.50 1 06/06/03 06/06/03 <td>1,3,5-Trimethylbenzene</td> <td>ND</td> <td>U</td> <td>0.50</td> <td>1</td> <td></td> <td></td> <td></td>	1,3,5-Trimethylbenzene	ND	U	0.50	1			
Sec-Butylbenzene ND U 0.50 1 06/06/03 06/06/03 1,3-Dichlorobenzene ND U 0.50 1 06/06/03 06/06/03 4-Isopropyltoluene ND U 0.50 1 06/06/03 06/06/03 Bromoform ND U 0.50 1 06/06/03 06/06/03 1,1,2,2-Tetrachloroethane ND U 1.0 1 06/06/03 06/06/03 1,4-Dichlorobenzene ND U 0.50 1 06/06/03 06/06/03 1,2-Dichlorobenzene ND U 0.50 1 06/06/03 06/06/03 1,2-Dichlorobenzene ND U 0.50 1 06/06/03 06/06/03 1,2-Dibromo-3-chloropropane ND U 0.50 1 06/06/03 06/06/03 1,2,4-Trichlorobenzene ND U 0.50 1 06/06/03 06/06/03	· · ·	ND	U	0.50	1			
sec-Butylbenzene ND U 0.50 1 06/06/03 06/06/03 1,3-Dichlorobenzene ND U 0.50 1 06/06/03 06/06/03 4-Isopropyltoluene ND U 0.50 1 06/06/03 06/06/03 Bromoform ND U 0.50 1 06/06/03 06/06/03 1,1,2,2-Tetrachloroethane ND U 1.0 1 06/06/03 06/06/03 1,4-Dichlorobenzene ND U 0.50 1 06/06/03 06/06/03 1,2-Dichlorobenzene ND U 0.50 1 06/06/03 06/06/03 n-Butylbenzene ND U 0.50 1 06/06/03 06/06/03 1,2-Dibromo-3-chloropropane ND U 5.0 1 06/06/03 06/06/03 1,2,4-Trichlorobenzene ND U 0.50 1 06/06/03 06/06/03 1,2,4-Trichlorobenzene ND U 0.50 1 06/06/03 06/06/03	1.2.4-Trimethylbenzene	ND	U	0.50	1			
1,3-Dichlorobenzene ND U 0.50 1 06/06/03 06/06/03 4-Isopropyltoluene ND U 0.50 1 06/06/03 06/06/03 Bromoform ND U 0.50 1 06/06/03 06/06/03 1,1,2,2-Tetrachloroethane ND U 1.0 1 06/06/03 06/06/03 1,4-Dichlorobenzene ND U 0.50 1 06/06/03 06/06/03 1,2-Dichlorobenzene ND U 0.50 1 06/06/03 06/06/03 n-Butylbenzene ND U 0.50 1 06/06/03 06/06/03 1,2-Dibromo-3-chloropropane ND U 5.0 1 06/06/03 06/06/03 1,2,4-Trichlorobenzene ND U 0.50 1 06/06/03 06/06/03		ND	U	0.50	1			
Bromoform ND U 0.50 1 06/06/03 06/06/03 1,1,2,2-Tetrachloroethane ND U 1.0 1 06/06/03 06/06/03 1,4-Dichlorobenzene ND U 0.50 1 06/06/03 06/06/03 1,2-Dichlorobenzene ND U 0.50 1 06/06/03 06/06/03 n-Butylbenzene ND U 0.50 1 06/06/03 06/06/03 1,2-Dibromo-3-chloropropane ND U 5.0 1 06/06/03 06/06/03 1,2,4-Trichlorobenzene ND U 0.50 1 06/06/03 06/06/03	•	ND	U	0.50	1	06/06/03	06/06/03	
Bromoform ND U 0.50 1 06/06/03 06/06/03 1,1,2,2-Tetrachloroethane ND U 1.0 1 06/06/03 06/06/03 1,4-Dichlorobenzene ND U 0.50 1 06/06/03 06/06/03 1,2-Dichlorobenzene ND U 0.50 1 06/06/03 06/06/03 n-Butylbenzene ND U 0.50 1 06/06/03 06/06/03 1,2-Dibromo-3-chloropropane ND U 5.0 1 06/06/03 06/06/03 1,2,4-Trichlorobenzene ND U 0.50 1 06/06/03 06/06/03	4-Isopropyltoluene	ND	U	0.50	1			
1,1,2,2-Tetractinoroemanc ND U 0.50 1 06/06/03 06/06/03 1,4-Dichlorobenzene ND U 0.50 1 06/06/03 06/06/03 1,2-Dichlorobenzene ND U 0.50 1 06/06/03 06/06/03 n-Butylbenzene ND U 0.50 1 06/06/03 06/06/03 1,2-Dibromo-3-chloropropane ND U 5.0 1 06/06/03 06/06/03 1,2,4-Trichlorobenzene ND U 0.50 1 06/06/03 06/06/03		ND	U	0.50	1			
1,4-Dichlorobenzene ND U 0.50 1 06/06/03 06/06/03 1,2-Dichlorobenzene ND U 0.50 1 06/06/03 06/06/03 n-Butylbenzene ND U 0.50 1 06/06/03 06/06/03 1,2-Dibromo-3-chloropropane ND U 5.0 1 06/06/03 06/06/03 1,2,4-Trichlorobenzene ND U 0.50 1 06/06/03 06/06/03	1,1,2,2-Tetrachloroethane	ND	U	1.0	1	06/06/03	06/06/03	
n-Butylbenzene ND U 0.50 1 06/06/03 06/06/03 1,2-Dibromo-3-chloropropane ND U 5.0 1 06/06/03 06/06/03 1,2,4-Trichlorobenzene ND U 0.50 1 06/06/03 06/06/03	1,4-Dichlorobenzene	ND	U		1			
n-Butylbenzene ND U 0.50 1 06/06/03 06/06/03 1,2-Dibromo-3-chloropropane ND U 5.0 1 06/06/03 06/06/03 1,2,4-Trichlorobenzene ND U 0.50 1 06/06/03 06/06/03	1.2-Dichlorobenzene	ND	U	0.50	I			
1,2,4-Trichlorobenzene ND U 0.50 1 06/06/03 06/06/03	· · · · · · · · · · · · · · · · · · ·	ND	U	0.50	1			
1,2,4-1110110100001120110	1,2-Dibromo-3-chloropropane				1			
	1,2,4-Trichlorobenzene				1			·
		ND	U	1.0	<u> </u>	06/06/03	06/06/03	

Comments:

Printed: 06/11/2003 13:02:58

Merged

Form 1A - Organic

RR3426

Analytical Results

Client:

BE&K Terranext

Project: Sample Matrix: WVBA/#0310-3154 Water

Service Request: X2300467

Date Collected: NA
Date Received: NA

Volatile Organic Compounds

Sample Name:

Method Blank

Lab Code:

XWG0300706-5

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

			Dilution	Date	Date	
Analyte Name	Result O	MRL	Factor	Extracted	Analyzed	Arizona Qualifier
Naphthalene 1,2,3-Trichlorobenzene	ND U ND U	3.0 0.50	1 1	06/06/03 06/06/03	06/06/03 06/06/03	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Arizona Qualifier	
Dibromofluoromethane	109	84-113	06/06/03		
Toluene-d8	115	68-126	06/06/03		
4-Bromofluorobenzene	111	79-113	06/06/03		

Comments:

28

Analytical Results

Client: Project: BE&K Terranext WVBA/#0310-3154

Sample Matrix:

Water

Service Request: X2300467

Date Collected: NA Date Received: NA

Volatile Organic Compounds

Sample Name: Lab Code:

Method Blank XWG0300710-5

Extraction Method:

EPA 5030B

Units: ug/L Basis: NA

Level: Low

8260B **Analysis Method:**

				Dilution	Date	Date	
Analyte Name	Result (\mathbf{Q}	MRL	Factor	Extracted		Arizona Qualifier
Dichlorodifluoromethane	ND U	J	3.0	1	06/06/03	06/09/03	
Chloromethane	ND U	J	2.0	1	06/06/03	06/09/03	
Vinyl Chloride	ND U	J	1.0	1	06/06/03	06/09/03	
Bromomethane	ND U	J	1.0	1	06/06/03	06/09/03	
Chloroethane	ND U	IJ	1.0	1	06/06/03	06/09/03	
Trichlorofluoromethane	ND U	IJ	1.0	1	06/06/03	06/09/03	
1,1,2-Trichlorotrifluoroethane	ND U	U	1.0	1	06/06/03	06/09/03	
1,1-Dichloroethene	ND U		1.0	1	06/06/03	06/09/03	Ll
Acetone	ND U		10	1	06/06/03	06/09/03	
Iodomethane	ND U	[]	2.0	1	06/06/03	06/09/03	
Carbon Disulfide	ND I		2.0	1	06/06/03	06/09/03	
Methylene Chloride	ND U		1.0	1	06/06/03	06/09/03	
	ND I		1.0	1	06/06/03	06/09/03	
Methyl tert-Butyl Ether trans-1,2-Dichloroethene	ND I		0.50	1	06/06/03	06/09/03	
1.1-Dichloroethane	ND I		0.50	1	06/06/03	06/09/03	
	ND 1		3.0	1	06/06/03	06/09/03	
Vinyl Acetate	ND 1		2.0	1	06/06/03	06/09/03	
2,2-Dichloropropane 2-Butanone (MEK)	ND 1		8.0	1	06/06/03	06/09/03	
	ND 1		0.50	1	06/06/03	06/09/03	
cis-1,2-Dichloroethene	ND ND		0.50	1	06/06/03	06/09/03	
Bromochloromethane Chloroform	ND 1		1.0	1	06/06/03	06/09/03	
	ND		0.50	1	06/06/03	06/09/03	
1,1,1-Trichloroethane	ND ND		0.50	1	06/06/03	06/09/03	Ll
Carbon Tetrachloride	ND ND		0.50	1	06/06/03	06/09/03	Ll
1,1-Dichloropropene	ND		0.50	1	06/06/03	06/09/03	
Benzene	ND ND		0.50	1	06/06/03	06/09/03	
1,2-Dichloroethane	ND ND		0.50	1	06/06/03	06/09/03	L1
Trichloroethene			0.50	1	06/06/03	06/09/03	
1,2-Dichloropropane	ND		0.50	1	06/06/03	06/09/03	
Dibromomethane	ND		0.50	1	06/06/03	06/09/03	
Bromodichloromethane	ND			1	06/06/03	06/09/03	
cis-1,3-Dichloropropene	ND		0.50	L 1	06/06/03	06/09/03	
4-Methyl-2-pentanone (MIBK)	ND		8.0	1	06/06/03	06/09/03	
Toluene	ND	U	0.50	1	00100103		

Comments:

Printed: 06/11/2003 13:03:10 L:\STEALTH\CRYSTAL.RPT\Form1m.rpt

Merged

Form 1A - Organic

1 of 3 Page

Analytical Results

Client: Project: BE&K Terranext WVBA/#0310-3154

Sample Matrix:

Water

Service Request: X2300467

Date

Date

Date Collected: NA Date Received: NA

Volatile Organic Compounds

Dilution

Sample Name: Lab Code:

Method Blank XWG0300710-5

Extraction Method: EPA 5030B

Units: ug/L Basis: NA

Level: Low

Analysis Method:	8260B	
Analyte Name		

Analyte Name	Result	Q	MRL	Factor	Extracted		Arizona Qualifier
trans-1,3-Dichloropropene	ND	U	1.0	1	06/06/03	06/09/03	
1,1,2-Trichloroethane	ND	U	1.0	1	06/06/03	06/09/03	
Tetrachloroethene	ND	U	0.50	1	06/06/03	06/09/03	
2-Hexanone	ND	U	5.0	1	06/06/03	06/09/03	
1,3-Dichloropropane	ND	U	1.0	1	06/06/03	06/09/03	
Dibromochloromethane	ND	U	0.50	1	06/06/03	06/09/03	
1,2-Dibromoethane	ND	U	0.50	1	06/06/03	06/09/03	
Chlorobenzene	ND	U	0.50	1	06/06/03	06/09/03	
1,1,1,2-Tetrachloroethane	ND	U	0.50	1	06/06/03	06/09/03	
Ethylbenzene	ND	U	0.50	1	06/06/03	06/09/03	
m,p-Xylenes	ND	U	1.0	1	06/06/03	06/09/03	
o-Xylene	ND	U	0.50	. 1	06/06/03	06/09/03	
Styrene	ND	U	0.50	1	06/06/03	06/09/03	
Isopropylbenzene	ND	U	0.50	1	06/06/03	06/09/03	
Bromobenzene	ND	U	0.50	1	06/06/03	06/09/03	
1,2,3-Trichloropropane	ND	U	1.0	1	06/06/03	06/09/03	
n-Propylbenzene	ND	U	0.50	1	06/06/03	06/09/03	
2-Chlorotoluene	ND	U	0.50	1	06/06/03	06/09/03	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
4-Chlorotoluene	ND	U	0.50	1	06/06/03	06/09/03	
1,3,5-Trimethylbenzene	ND	U	0.50	1	06/06/03	06/09/03	
tert-Butylbenzene	ND	U	0.50	1	06/06/03	06/09/03	
1,2,4-Trimethylbenzene	ND	U	0.50	1	06/06/03	06/09/03	
sec-Butylbenzene	ND	U	0.50	1	06/06/03	06/09/03	
1,3-Dichlorobenzene	ND	U	0.50	1	06/06/03	06/09/03	
4-Isopropyltoluene	ND	U	0.50	l	06/06/03	06/09/03	
Bromoform	ND	U	0.50	1	06/06/03	06/09/03	
1,1,2,2-Tetrachloroethane	ND	U	1.0	1	06/06/03	06/09/03	
1,4-Dichlorobenzene	ND	U	0.50	1	06/06/03	06/09/03	
1,2-Dichlorobenzene	ND	U	0.50	1	06/06/03	06/09/03	
n-Butylbenzene	ND	U	0.50	1	06/06/03	06/09/03	
1,2-Dibromo-3-chloropropane	ND	U	5.0	1	06/06/03	06/09/03	
1,2,4-Trichlorobenzene	ND	U	0.50	1	06/06/03	06/09/03	
Hexachlorobutadiene	ND	U	1.0	1	06/06/03	06/09/03	

Comments:	

Merged

Analytical Results

Client: Project: BE&K Terranext WVBA/#0310-3154

Sample Matrix:

Water

Service Request: X2300467

Date Collected: NA Date Received: NA

Volatile Organic Compounds

Sample Name:

Method Blank

Lab Code:

XWG0300710-5

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

			Dilution	Date	Date	
Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed	Arizona Qualifier
Naphthalene	ND U	3.0	1	06/06/03	06/09/03	
1,2,3-Trichlorobenzene	ND U	0.50	1	06/06/03	06/09/03	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Arizona Qualifier	
Dibromofluoromethane	108	84-113	06/09/03		
Toluene-d8	117	68-126	06/09/03		
4-Bromofluorobenzene	111	79-113	06/09/03		

Comments:

QA/QC Report

Client:

BE&K Terranext WVBA/#0310-3154

Project: **Sample Matrix:**

Water

Service Request: X2300467

Surrogate Recovery Summary Volatile Organic Compounds

Extraction Method: EPA 5030B

Analysis Method:

8260B

Units: PERCENT

Level: Low

Sample Name	Lab Code	Sur1	Sur2	Sur3
AVB122-0202-1000	X2300467-001	123 S1	123	118 S1
AVB122-0200-01245	X2300467-002	113	122	111
AVB122-0204-1000	X2300467-003	106	122	106
AVB120-0200-01245	X2300467-004	107	118	107
AVB119-0100-01140	X2300467-005	107	119	108
Method Blank	XWG0300706-5	109	115	111
Method Blank	XWG0300710-5	108	117	111
Batch QC	X2300457-001	112	119	112
Batch QC	X2300458-001	109	117	110
Batch QCMS	XWG0300706-1	108	112	109
Batch QCDMS	XWG0300706-2	104	106	104
Batch QCMS	XWG0300710-1	112	121	116 S1
Batch QCDMS	XWG0300710-2	112	120	114 S1
Lab Control Sample	XWG0300706-3	96	102	100
Duplicate Lab Control Sample	XWG0300706-4	106	107	110
Lab Control Sample	XWG0300710-3	105	114	111
Duplicate Lab Control Sample	XWG0300710-4	107	116	112

Surrogate Recovery Control Limits (%)

Sur1 = Dibromofluoromethane	84-113
Sur2 = Toluene-d8	68-126
Sur3 = 4-Bromofluorobenzene	79-113

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

RR3426

QA/QC Report

Client: Project: BE&K Terranext WVBA/#0310-3154

Sample Matrix:

Water

Service Request: X2300467

Date Extracted: 06/06/2003

Date Analyzed: 06/06/2003

Matrix Spike/Duplicate Matrix Spike Summary Volatile Organic Compounds

Sample Name:

Batch QC

Lab Code:

X2300457-001

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

Extraction Lot: XWG0300706

Batch OCMS XWG0300706-1

Batch QCDMS XWG0300706-2

	Cl-	Matrix Spike			Duplic	ate Matrix S	%Rec		RPD	
Analyte Name	Sample Result	Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit
Dichlorodifluoromethane	ND	13.4	10.0	134	12.3	10.0	123	78-207	9	20
Chloromethane	ND	11.2	10.0	112	10.5	10.0	105	70-157	6	20
Vinyl Chloride	ND	12.2	10.0	122	11.4	10.0	114	79-174	7	20
Bromomethane	ND	8.67	10.0	87	8.46	10.0	85	44-150	2	20
Chloroethane	ND	10.4	10.0	104	9.96	10.0	100	74-150	4	20
Trichlorofluoromethane	ND	14.0	10.0	140 M1	13.0	10.0	130	80-134	8	20
1,1,2-Trichlorotrifluoroethane	ND	13.7	10.0	137 M1	12.9	10.0	129 M1	67-128	6	20
1,1-Dichloroethene	ND	13.1	10.0	131	12.0	10.0	120	71-142	8	20
Acetone	ND	37.6	40.0	94	39.7	40.0	99	1-155	5	20
Iodomethane	ND	44.1	40.0	110	42.3	40.0	106	47-120	4	20
Carbon Disulfide	ND	57.4	40.0	144 M1	54.3	40.0	136 M1	77-126	6	20
Methylene Chloride	ND	11.6	10.0	116 M1	11.1	10.0	111 M1	83-106	5	20
Methyl tert-Butyl Ether	ND	9.46	10.0	95	9.27	10.0	93	70-118	2	20
trans-1,2-Dichloroethene	ND	11.7	10.0	117 Ml	10.7	10.0	107	86-115	9	20
1,1-Dichloroethane	ND	12.1	10.0	121	11.2	10.0	112	77-127	8	20
Vinyl Acetate	ND	36.4	40.0	91	35.2	40.0	88	8-187	3	20
2,2-Dichloropropane	ND	14.2	10.0	142	13.2	10.0	132	25-154	7	20
2-Butanone (MEK)	ND	42.8	40.0	107	41.2	40.0	103	90-112	4	20
cis-1,2-Dichloroethene	ND	11.4	10.0	114	10.8	10.0	108	69-118	5	20
Bromochloromethane	ND	10.2	10.0	102	9.94	10.0	99	47-136	3	20
Chloroform	19	30.8	10.0	123	29.4	10.0	109	48-143	5	20
1,1,1-Trichloroethane	ND	12.0	10.0	120	11.8	10.0	118	84-122	2	20
Carbon Tetrachloride	ND	14.4	10.0	144 M1	13.9	10.0	139 M1	79-120	4	20
1,1-Dichloropropene	ND	13.3	10.0	133 M1	12.6	10.0	126 M1	85-117	5	20
Benzene	ND	11.1	10.0	111	10.8	10.0	108	88-114	3	20
1,2-Dichloroethane	ND	10.6	10.0	106	10.2	10.0	102	75-112	4	20
Trichloroethene	ND	11.6	10.0	116 M1	11.4	10.0	114	76-115	2	20
1,2-Dichloropropane	ND	9.64	10.0	96	9.30	10.0	93	85-107	4	20
Dibromomethane	ND	10.2	10.0	102	10.1	10.0	101	82-106	1	20
Bromodichloromethane	ND	9.57	10.0	96	9.32	10.0	93	83-107	3	20
cis-1,3-Dichloropropene	ND	9.85	10.0	99	9.58	10.0	96	70-114	3	20
4-Methyl-2-pentanone (MIBK)	ND	38.1	40.0	95	36.4	40.0	91	54-129	4	20
Toluene	ND	11.4	10.0	114	10.9	10.0	109	86-114	4	20

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 06/11/2003 13:03:35 L:\STEALTH\CRYSTAL.RPT\Form3DMS.rpt Form 3A - Organic

Page 1 of 3

QA/QC Report

Client: Project: BE&K Terranext WVBA/#0310-3154

Sample Matrix:

Water

Service Request: X2300467

Date Extracted: 06/06/2003

Date Analyzed: 06/06/2003

Matrix Spike/Duplicate Matrix Spike Summary Volatile Organic Compounds

Sample Name:

Batch QC

Lab Code:

X2300457-001

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

Extraction Lot: XWG0300706

Batch QCMS XWG0300706-1

Batch QCDMS XWG0300706-2

	Sample Matrix Spike Duplicate Matrix Spil		pike	%Rec		RPD				
Analyte Name	Result	Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit
trans-1,3-Dichloropropene	ND	9.71	10.0	97	9.54	10.0	95	73-112	2	20
1,1,2-Trichloroethane	ND	9.36	10.0	94	9.21	10.0	92	79-112	2	20
Tetrachloroethene	ND	12.1	10.0	121	11.5	10.0	115	78-130	5	20
2-Hexanone	ND	32.3	40.0	81	31.7	40.0	79	77-112	2	20
1,3-Dichloropropane	ND	9.67	10.0	97	9.20	10.0	92	45-133	5	20
Dibromochloromethane	ND	9.27	10.0	93	8.73	10.0	87	74-108	6	20
1,2-Dibromoethane	ND	9.63	10.0	96	9.15	10.0	92	73-113	5	20
Chlorobenzene	ND	10.8	10.0	108	10.2	10.0	102	84-111	5	20
1,1,1,2-Tetrachloroethane	ND	10.2	10.0	102	9.83	10.0	98	84-119	3	20
Ethylbenzene	ND	11.9	10.0	119	11.3	10.0	113	47-136	5	20
m,p-Xylenes	ND	24.1	20.0	121 M1	23.2	20.0	116	84-120	4	20
o-Xylene	ND	11.1	10.0	11!	11.0	10.0	110	47-143	1	20
Styrene	ND	11.4	10.0	114	10.9	10.0	109	72-121	5	20
Isopropylbenzene	ND	12.4	10.0	124 Ml	11.7	10.0	117 M1	63-108	6	20
Bromobenzene	ND	11.0	10.0	110	10.4	10.0	104	80-113	6	20
1,2,3-Trichloropropane	ND	10.2	10.0	102	9.86	10.0	99	78-119	4	20
n-Propylbenzene	ND	12.9	10.0	129 M1	12.0	10.0	120 M1	76-117	7	20
2-Chlorotoluene	ND	11.9	10.0	119	11.3	10.0	113	79-121	5	20
4-Chlorotoluene	ND	11.6	10.0	116	10.8	10.0	108	70-133	6	20
1,3,5-Trimethylbenzene	ND	12.5	10.0	125 M1	11.6	10.0	116	79-118	7	20
tert-Butylbenzene	ND	12.4	10.0	124 M1	11.6	10.0	116	77-120	7	20
1,2,4-Trimethylbenzene	ND	12.3	10.0	123	11.4	10.0	114	68-127	7	20
sec-Butylbenzene	ND	12.9	10.0	129 Ml	12.1	10.0	121	78-123	7	20
1,3-Dichlorobenzene	ND	11.3	10.0	113	10.4	10.0	104	78-127	8	20
4-Isopropyltoluene	ND	13.1	10.0	131	12.1	10.0	121	79-142	8	20
Bromoform	ND	8.07	10.0	81 M2	7.98	10.0	80 M2	83-111	1	20
1,1,2,2-Tetrachloroethane	ND	9.02	10.0	90	9.10	10.0	91	66-133	1	20
1,4-Dichlorobenzene	ND	10.5	10.0	105	10.2	10.0	102	48-139	3	20
1,2-Dichlorobenzene	ND	10.3	10.0	103	10.1	10.0	101	64-109	2	20
n-Butylbenzene	ND	12.3	10.0	123 M1	11.8	10.0	118	69-122	4	20
1,2-Dibromo-3-chloropropane	ND	9.46	10.0	95	8.88	10.0	89	54-160	6	20
1,2,4-Trichlorobenzene	ND	10.2	10.0	102	10.1	10.0	101	39-145	1	20
Hexachlorobutadiene	ND	12.2	10.0	122 M1	11.9	10.0	119 M1	74-113	2	20

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Page 2 of 3

QA/QC Report

Client:

BE&K Terranext WVBA/#0310-3154

Project: Sample Matrix:

Water

Service Request: X2300467 **Date Extracted:** 06/06/2003

Date Analyzed: 06/06/2003

Matrix Spike/Duplicate Matrix Spike Summary Volatile Organic Compounds

Sample Name:

Batch QC

Lab Code:

X2300457-001

Extraction Method: Analysis Method:

EPA 5030B

8260B

Units: ug/L

Basis: NA

Level: Low

Extraction Lot: XWG0300706

Batch QCMS

XWG0300706-1

Batch QCDMS

XWG0300706-2

	Sample	Matrix Spike			Duplicate Matrix Spike			%Rec		RPD
Analyte Name	Result	Result	Expected	%Rec	Result	Expected	%Rec		RPD	Limit
Naphthalene	ND	10.4	10.0	104	10.5	10.0	105	44-167	1	20
1,2,3-Trichlorobenzene	ND	10.5	10.0	105	10.5	10.0	105	37-158	0	20

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 06/11/2003 13:03:35 L:\STEALTH\CRYSTAL.RPT\Form3DMS.rpt Form 3A - Organic

SuperSet Reference: RR3426 3 of 3

QA/QC Report

Client: Project: BE&K Terranext WVBA/#0310-3154

Sample Matrix:

Water

Service Request: X2300467 **Date Extracted:** 06/06/2003

Date Analyzed: 06/09/2003

Matrix Spike/Duplicate Matrix Spike Summary Volatile Organic Compounds

Sample Name:

Batch QC

Lab Code:

X2300458-001

Extraction Method: Analysis Method:

EPA 5030B 8260B

Units: ug/L

Basis: NA

Level: Low

Extraction Lot: XWG0300710

Batch OCMS XWG0300710-1

Batch QCDMS XWG0300710-2

	Sample	1	Matrix Spike	-	Duplic	ate Matrix S	%Rec		RPD	
Analyte Name	Result	Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit
Dichlorodifluoromethane	ND	12.8	10.0	128	12.0	10.0	120	78-207	6	20
Chloromethane	ND	11.0	10.0	110	10.4	10.0	104	70-157	6	20
Vinyl Chloride	ND	11.9	10.0	119	11.3	10.0	113	79-174	6	20
Bromomethane	ND	8.41	10.0	84	7.99	10.0	80	44-150	5	20
Chloroethane	ND	12.3	10.0	123	9.50	10.0	95	74-150	25 R5	20
Trichlorofluoromethane	17	18.4	10.0	19 M3	17.6	10.0	11 M3	80-134	4	20
1,1,2-Trichlorotrifluoroethane	16	14.7	10.0	-8 M3	14.1	10.0	-14 M3	67-128	4	20
1,1-Dichloroethene	ND	18.3	10.0	183 M1	16.9	10.0	169 M1	71-142	8	20
Acetone	ND	37.1	40.0	93	36.2	40.0	91	1-155	2	20
Iodomethane	ND	40.0	40.0	100	39.6	40.0	99	47-120	1	20
Carbon Disulfide	ND	55.8	40.0	139 M1	53.2	40.0	133 M1	77-126	5	20
Methylene Chloride	ND	11.1	10.0	111 M1	10.5	10.0	105	83-106	5	20
Methyl tert-Butyl Ether	ND	9.20	10.0	92	9.22	10.0	92	70-118	0	20
trans-1,2-Dichloroethene	ND	11.3	10.0	113	11.1	10.0	111	86-115	2	20
1,1-Dichloroethane	ND	14.2	10.0	142 M1	13.9	10.0	139 M1	77-127	2	20
Vinyl Acetate	ND	33.0	40.0	82	34.6	40.0	87	8-187	5	20
2,2-Dichloropropane	ND	13.2	10.0	132	12.9	10.0	129	25-154	2	20
2-Butanone (MEK)	ND	44.8	40.0	112	46.0	40.0	115 M1	90-112	2	20
cis-1,2-Dichloroethene	38	52.0	10.0	140 M3	50.9	10.0	129 M3	69-118	2	20
Bromochloromethane	ND	9.37	10.0	94	9.10	10.0	91	47-136	3	20
Chloroform	ND	12.7	10.0	127	12.5	10.0	125	48-143	2	20
1,1,1-Trichloroethane	ND	11.6	10.0	116	11.4	10.0	114	84-122	2	20
Carbon Tetrachloride	ND	14.1	10.0	141 M1	13.7	10.0	137 M1	79-120	3	20
1,1-Dichloropropene	ND	13.0	10.0	130 M1	12.8	10.0	128 M1	85-117	2	20
Benzene	ND	11.2	10.0	112	11.0	10.0	110	88-114	2	20
1,2-Dichloroethane	ND	10.2	10.0	102	10.2	10.0	102	75-112	0	20
Trichloroethene	210	230E	10.0	241 M3	231E	10.0	250 M3	76-115	0	20
1,2-Dichloropropane	ND	9.51	10.0	95	9.89	10.0	99	85-107	4	20
Dibromomethane	ND	9.56	10.0	96	9.88	10.0	99	82-106	3	20
Bromodichloromethane	ND	9.50	10.0	95	9.57	10.0	96	83-107	1	20
cis-1,3-Dichloropropene	ND	9.97	10.0	100	9.90	10.0	99	70-114	1	20
4-Methyl-2-pentanone (MIBK)	ND	36.5	40.0	91	38.9	40.0	97	54-129	6	20
Toluene	ND	11.4	10.0	114	11.2	10.0	112	86-114	2	20

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

000034

Printed: 06/11/2003 13:03:42 L:\STEALTH\CRYSTAL.RPT\Form3DMS.rpt Form 3A - Organic

1 of 3 Page

RR3426

QA/QC Report

Client: Project: BE&K Terranext WVBA/#0310-3154

Sample Matrix:

Water

Service Request: X2300467

Date Extracted: 06/06/2003

Date Analyzed: 06/09/2003

Matrix Spike/Duplicate Matrix Spike Summary Volatile Organic Compounds

Sample Name:

Batch QC

Lab Code:

X2300458-001

Extraction Method: Analysis Method:

EPA 5030B

8260B

Units: ug/L Basis: NA

Level: Low

Extraction Lot: XWG0300710

Batch QCMS XWG0300710-1

Batch QCDMS XWG0300710-2

	Sample Matrix Spike Duplicate Matrix Spike		pike	%Rec		RPD				
Analyte Name	Result	Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit
trans-1,3-Dichloropropene	ND	9.47	10.0	95	9.54	10.0	95	73-112	1	20
1,1,2-Trichloroethane	ND	9.14	10.0	91	9.32	10.0	93	79-112	2	20
Tetrachloroethene	9.2	22.8	10.0	136 M3	22.5	10.0	133 M3	78-130	1	20
2-Hexanone	ND	31.0	40.0	78	31.7	40.0	79	77-112	2	20
1,3-Dichloropropane	ND	9.50	10.0	95	9.49	10.0	95	45-133	0	20
Dibromochloromethane	ND	8.89	10.0	89	9.06	10.0	91	74-108	2	20
1,2-Dibromoethane	ND	9.10	10.0	91	9.38	10.0	94	73-113	3	20
Chlorobenzene	ND	10.9	10.0	109	10.8	10.0	108	84-111	1	20
1,1,1,2-Tetrachloroethane	ND	10.2	10.0	102	10.0	10.0	100	84-119	2	20
Ethylbenzene	ND	12.1	10.0	121	11.9	10.0	119	47-136	2	20
m,p-Xylenes	ND	23.7	20.0	119	23.6	20.0	118	84-120	1	20
o-Xylene	ND	11.4	10.0	114	11.1	10.0	111	47-143	3	20
Styrene	ND	11.3	10.0	113	11.1	10.0	111	72-121	2	20
Isopropylbenzene	ND	12.3	10.0	123 M1	12.0	10.0	120 M1	63-108	2	20
Bromobenzene	ND	10.4	10.0	104	10.1	10.0	101	80-113	3	20
1,2,3-Trichloropropane	ND	9.57	10.0	96	9.71	10.0	97	78-119	1	20
n-Propylbenzene	ND	12.7	10.0	127 M1	12.3	10.0	123 M1	76-117	3	20
2-Chlorotoluene	ND	11.7	10.0	117	11.4	10.0	114	79-121	3	20
4-Chlorotoluene	ND	11.2	10.0	112	10.8	10.0	108	70-133	4	20
1,3,5-Trimethylbenzene	ND	12.1	10.0	121 M1	11.7	10.0	117	79-118	4	20
tert-Butylbenzene	ND	12.1	10.0	121 M1	11.5	10.0	115	77-120	5	20
1,2,4-Trimethylbenzene	ND	11.7	10.0	117	11.4	10.0	114	68-127	3	20
sec-Butylbenzene	ND	12.5	10.0	125 M1	12.1	10.0	121	78-123	3	20
1,3-Dichlorobenzene	ND	10.7	10.0	107	10.2	10.0	102	78-127	4	20
4-Isopropyltoluene	ND	12.7	10.0	127	12.2	10.0	122	79-142	4	20
Bromoform	ND	8.01	10.0	80 M2	8.13	10.0	81 M2	83-111	1	20
1,1,2,2-Tetrachloroethane	ND	8.82	10.0	88	9.38	10.0	94	66-133	6	20
1,4-Dichlorobenzene	ND	10.5	10.0	105	10.4	10.0	104	48-139	1	20
1,2-Dichlorobenzene	ND	10.1	10.0	101	9.95	10.0	100	64-109	2	20
n-Butylbenzene	ND	12.7	10.0	127 M1	12.4	10.0	124 M1	69-122	2	20
1,2-Dibromo-3-chloropropane	ND	7.39	10.0	74	8.78	10.0	88	54-160	17	20
1,2,4-Trichlorobenzene	ND	9.48	10.0	95	9.66	10.0	97	39-145	2	20
Hexachlorobutadiene	ND	11.9	10.0	119 M1	12.1	10.0	121 M1	74-113	2	20

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

000035

Printed: 06/11/2003 13:03:42 L:\STEALTH\CRYSTAL.RPT\Form3DMS.rpt Form 3A - Organic

Page 2 of 3

RR3426 SuperSet Reference:

QA/QC Report

Client: Project: BE&K Terranext WVBA/#0310-3154

Sample Matrix:

Water

Service Request: X2300467

Date Extracted: 06/06/2003 **Date Analyzed:** 06/09/2003

Matrix Spike/Duplicate Matrix Spike Summary Volatile Organic Compounds

Sample Name:

Batch OC

Lab Code:

X2300458-001

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

Extraction Lot: XWG0300710

Batch OCMS

XWG0300710-1

Batch QCDMS

XWG0300710-2

Duplicate Matrix Spike Matrix Spike RPD %Rec Sample Limits RPD Limit Result Expected %Rec Result Expected %Rec Result **Analyte Name** 5 20 9.70 10.0 97 44-167 92 ND 9.20 10.0 Naphthalene 20 10.0 104 37-158 6 98 10.4 9.76 10.0 ND 1,2,3-Trichlorobenzene

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 06/11/2003 13:03:42 L:\STEALTH\CRYSTAL.RPT\Form3DMS.rpt Form 3A - Organic

SuperSet Reference: RR3426 Page 3 of

QA/QC Report

Client: Project: BE&K Terranext WVBA/#0310-3154

Sample Matrix:

Water

Service Request: X2300467 **Date Extracted:** 06/06/2003

Date Analyzed: 06/06/2003

Lab Control Spike/Duplicate Lab Control Spike Summary Volatile Organic Compounds

Extraction Method: EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

Extraction Lot: XWG0300706

Lab Control Sample
XWG0300706-3

Duplicate Lab Control Sample XWG0300706-4

	Lab Control Spike			Duplicate Lab Control Spike			%Rec		RPD
Analyte Name	Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit
Dichlorodifluoromethane	9.56	10.0	96	11.3	10.0	113	1-233	17	20
Chloromethane	8.76	10.0	88	9.47	10.0	95	46-156	8	20
Vinyl Chloride	9.26	10.0	93	10.2	10.0	102	51-158	10	20
Bromomethane	8.05	10.0	81	8.08	10.0	81	37-149	0	20
Chloroethane	10.6	10.0	106	9.22	10.0	92	56-146	14	20
Trichlorofluoromethane	10.2	10.0	102	11.4	10.0	114	69-139	12	20
1,1,2-Trichlorotrifluoroethane	10.1	10.0	101	11.4	10.0	114	83-130	12	20
1.1-Dichloroethene	9.75	10.0	98	10.7	10.0	107	65-112	9	20
Acetone	36.0	40.0	90	38.6	40.0	96	68-128	7	20
Iodomethane	37.1	40.0	93	38.3	40.0	96	68-144	3	20
Carbon Disulfide	43.1	40.0	108	46.7	40.0	117	67-140	8	20
Methylene Chloride	10.2	10.0	102	10.9	10.0	109	70-113	7	20
Methyl tert-Butyl Ether	8.66	10.0	87	8.98	10.0	90	75-115	4	20
trans-1,2-Dichloroethene	9.34	10.0	93	9.67	10.0	97	73-118	3	20
1,1-Dichloroethane	9.65	10.0	97	10.4	10.0	104	77-127	7	20
Vinyl Acetate	28.8	40.0	72	30.7	40.0	77	51-202	6	39
2,2-Dichloropropane	10.2	10.0	102	11.4	10.0	114	75-132	12	20
2-Butanone (MEK)	32.8	40.0	82	35.5	40.0	89	72-122	8	20
cis-1,2-Dichloroethene	9.76	10.0	98	9.89	10.0	99	81-118	1	20
Bromochloromethane	8.68	10.0	87	9.31	10.0	93	82-114	7	20
Chloroform	9.47	10.0	95	9.68	10.0	97	78-119	2	20
1,1,1-Trichloroethane	9.29	10.0	93	10.0	10.0	100	71-125	8	20
Carbon Tetrachloride	11.0	10.0	110	11.6	10.0	116	69-130	5	20
1,1-Dichloropropene	10.0	10.0	100	10.6	10.0	106	77-114	6	20
Benzene	9.55	10.0	96	9.70	10.0	97	81-117	2	20
1,2-Dichloroethane	9.63	10.0	96	9.81	10.0	98	67-122	2	20
Trichloroethene	9.87	10.0	99	10.3	10.0	103	79-114	4	20
1,2-Dichloropropane	8.75	10.0	88	8,88	10.0	89	78-114	1	20
Dibromomethane	9.39	10.0	94	9.77	10.0	98	78-113	4	20
Bromodichloromethane	8.81	10.0	88	9.08	10.0	91	79-122	3	20
cis-1,3-Dichloropropene	9.39	10.0	94	9.54	10.0	95	82-118	2	20
4-Methyl-2-pentanone (MIBK)	37.8	40.0	94	35.3	40.0	88	75-115	7	20
Toluene	9.96	10.0	100	9.94	10.0	99	85-118	0	20
trans-1,3-Dichloropropene	9.38	10.0	94	9.36	10.0	94	79-121	0	20
1,1,2-Trichloroethane	8.86	10.0	89	9.34	10.0	93 -	79-116	5	20

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 06/11/2003 13:03:49 L:\STEALTH\CRYSTAL.RPT\Form3DLC.rpt Form 3C - Organic

Page 1 of 2

QA/QC Report

Client: Project: BE&K Terranext WVBA/#0310-3154

Sample Matrix:

Water

Service Request: X2300467 **Date Extracted:** 06/06/2003

Date Analyzed: 06/06/2003

Lab Control Spike/Duplicate Lab Control Spike Summary Volatile Organic Compounds

Extraction Method: EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

Extraction Lot: XWG0300706

Lab Control Sample XWG0300706-3

Duplicate Lab Control Sample XWG0300706-4

	Lab Control Spike			Duplicate Lab Control Spike			%Rec		RPD
Analyte Name	Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit
Tetrachloroethene	9.92	10.0	99	10.4	10.0	104	76-127	5	20
2-Hexanone	30.5	40.0	76	31.7	40.0	79	65-120	4	20
1,3-Dichloropropane	9.30	10.0	93	9.38	10.0	94	81-116	1	20
Dibromochloromethane	8.55	10.0	86	9.02	10.0	90	77-119	5	20
1,2-Dibromoethane	9.23	10.0	92	9.35	10.0	94	79-116	1	20
Chlorobenzene	9.72	10.0	97	9.81	10.0	98	84-114	1	20
1,1,1,2-Tetrachloroethane	9.15	10.0	92	9.42	10.0	94	78-118	3	20
Ethylbenzene	10.1	10.0	101	10.4	10.0	104	79-124	3	20
m,p-Xylenes	20.5	20.0	102	21.2	20.0	106	75-131	3	20
o-Xylene	9.76	10.0	98	10.2	10.0	102	78-122	4	20
Styrene	10.3	10.0	103	10.5	10.0	105	80-126	2	20
Isopropylbenzene	10.1	10.0	101	10.7	10.0	107	75-126	6	20
Bromobenzene	9.61	10.0	96	10.1	10.0	101	82-122	5	20
1,2,3-Trichloropropane	9.00	10.0	90	9.84	10.0	98	77-118	9	20
n-Propylbenzene	10.2	10.0	102	11.1	10.0	111	75-129	8	20
2-Chlorotoluene	10.2	10.0	102	10.7	10.0	107	77-126	5	20
4-Chlorotoluene	10.0	10.0	100	10.4	10.0	104	82-120	4	20
1,3,5-Trimethylbenzene	10.2	10.0	102	11.0	10.0	110	75-130	7	20
tert-Butylbenzene	9.88	10.0	99	10.7	10.0	107	73-130	8	20
1,2,4-Trimethylbenzene	10.1	10.0	101	10.8	10.0	108	60-137	6	20
sec-Butylbenzene	9.91	10.0	99	10.9	10.0	109	68-131	10	20
1,3-Dichlorobenzene	9.40	10.0	94	10.2	10.0	102	71-137	8	20
4-Isopropyltoluene	10.2	10.0	102	11.1	10.0	111	68-134	8	20
Bromoform	7.70	10.0	77	7.91	10.0	79	70-118	3	20
1,1,2,2-Tetrachloroethane	8.75	10.0	88	8.54	10.0	85	72-122	2	20
1,4-Dichlorobenzene	9.66	10.0	97	9.75	10.0	98	82-114	1	20
1,2-Dichlorobenzene	9.33	10.0	93	9.48	10.0	95	81-118	2	20
n-Butylbenzene	9.96	10.0	100	10.4	10.0	104	71-125	4	20
1,2-Dibromo-3-chloropropane	8.75	10.0	88	8.69	10.0	87	55-131	1	20
1,2,4-Trichlorobenzene	8.66	10.0	87	9.18	10.0	92	75-123	6	20
Hexachlorobutadiene	9.27	10.0	93	9.79	10.0	98	63-140	5	20
Naphthalene	8.74	10.0	87	9.38	10.0	94 .	67-125	. 7	20
1,2,3-Trichlorobenzene	8.73	10.0	87	9.35	10.0	94	72-124	7	20

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

000038

SuperSet Reference:

Printed: 06/11/2003 13:03:49 L:\STEALTH\CRYSTAL.RPT\Form3DLC.rpt Form 3C - Organic

Page

RR3426

2 of 2

QA/QC Report

Client: Project: BE&K Terranext WVBA/#0310-3154

Sample Matrix:

Water

Service Request: X2300467

Date Extracted: 06/06/2003 **Date Analyzed:** 06/09/2003

Lab Control Spike/Duplicate Lab Control Spike Summary Volatile Organic Compounds

Extraction Method: EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

Extraction Lot: XWG0300710

Lab Control Sample XWG0300710-3

Duplicate Lab Control Sample

XWG0300710-4

	Lab Control Spike			Duplicate Lab Control Spike			%Rec		RPD
Analyte Name	Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit
Dichlorodifluoromethane	11.6	10.0	116	11.8	10.0	118	1-233	2	20
Chloromethane	10.3	10.0	103	10.2	10.0	102	46-156	1	20
Vinyl Chloride	10.9	10.0	109	10.6	10.0	106	51-158	3	20
Bromomethane	8.07	10.0	81	7.96	10.0	80	37-149	1	20
Chloroethane	9.44	10.0	94	8.92	10.0	89	56-146	6	20
Trichlorofluoromethane	12.0	10.0	120	11.9	10.0	119	69-139	1	20
1,1,2-Trichlorotrifluoroethane	12.6	10.0	126	12.5	10.0	125	83-130	1	20
1,1-Dichloroethene	11.6	10.0	116 L1	11.1	10.0	111	65-112	5	20
Acetone	34.8	40.0	87	39.1	40.0	98	68-128	12	20
Iodomethane	38.0	40.0	95	39.6	40.0	99	68-144	4	20
Carbon Disulfide	51.3	40.0	128	50.8	40.0	127	67-140	l	20
Methylene Chloride	10.6	10.0	106	10.6	10.0	106	70-113	0	20
Methyl tert-Butyl Ether	8.93	10.0	89	9.08	10.0	91	75-115	2	20
trans-1,2-Dichloroethene	10.4	10.0	104	10.5	10.0	105	73-118	1	20
1,1-Dichloroethane	11.4	10.0	114	11.1	10.0	111	77-127	2	20
Vinyl Acetate	28.5	40.0	71	34.6	40.0	87	51-202	19	39
2,2-Dichloropropane	12.3	10.0	123	12.9	10.0	129	75-132	5	20
2-Butanone (MEK)	38.2	40.0	96	38.9	40.0	97	72-122	2	20
cis-1,2-Dichloroethene	10.7	10.0	107	10.5	10.0	105	81-118	2	20
Bromochloromethane	9.18	10.0	92	9.43	10.0	94	82-114	3	20
Chloroform	10.6	10.0	106	10.5	10.0	105	78-119	1	20
1,1,1-Trichloroethane	11.2	10.0	112	11.1	10.0	111	71-125	1	20
Carbon Tetrachloride	13.3	10.0	133 L1	13.3	10.0	133 L1	69-130	1	20
1,1-Dichloropropene	12.4	10.0	124 L1	12.4	10.0	124 L1	77-114	0	20
Benzene	11.0	10.0	110	10.8	10.0	108	81-117	2	20
1,2-Dichloroethane	10.1	10.0	101	10.2	10.0	102	67-122	1	20
Trichloroethene	11.7	10.0	117 L1	11.2	10.0	112	79-114	4	20
1,2-Dichloropropane	9.72	10.0	97	9.64	10.0	96	78-114	1	20
Dibromomethane	9.98	10.0	100	9.81	10.0	98	78-113	2	20
Bromodichloromethane	9.32	10.0	93	9.41	10.0	94	79-122	1	20
cis-1,3-Dichloropropene	10.1	10.0	101	9.98	10.0	100	82-118	1	20
4-Methyl-2-pentanone (MIBK)	37.7	40.0	94	36.2	40.0	90	75-115	4	20
Toluene	11.1	10.0	111	10.9	10.0	109	85-118	2	20
trans-1,3-Dichloropropene	9.64	10.0	96	9.63	10.0	96	79-121	0	20
1,1,2-Trichloroethane	9.39	10.0	94	9.26	10.0	93	79-116	1	20

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 06/11/2003 13:03:56 L:\STEALTH\CRYSTAL.RPT\Form3DLC.rpt Form 3C - Organic

Page

1 of 2

QA/QC Report

Client: Project: BE&K Terranext WVBA/#0310-3154

Sample Matrix:

Water

Service Request: X2300467 **Date Extracted:** 06/06/2003 **Date Analyzed:** 06/09/2003

Lab Control Spike/Duplicate Lab Control Spike Summary Volatile Organic Compounds

Extraction Method: Analysis Method:

EPA 5030B

8260B

Units: ug/L

Basis: NA Level: Low

Extraction Lot: XWG0300710

Lab Control Sample XWG0300710-3

Duplicate Lab Control Sample XWG0300710-4

Result Result Expected Result Expected Result Expected Result Retrachloroethene 11.9 10.0 119 11.7 10.0 117 76-127 1 20			Lab Control Spike			Duplicate Lab Control Spike				RPD
2-Hexanone 33.5 40.0 84 34.0 40.0 85 65-120 1 20 1,3-Dichloropropane 9.49 10.0 95 9.54 10.0 95 81-116 1 20 20 20 20 20 20 20 20 20 20 20 20 20	Analyte Name	Result	Expected	%Rec	Result	Expected	%Rec		RPD	Limit
1,3-Dichloropropane	Tetrachloroethene	11.9	10.0	119	11.7	10.0	117	76-127	1	20
Dibromochloromethane 8.80 10.0 88 8.74 10.0 87 77-119 1 20 (1,2-Dibromochlane 9.41 10.0 94 9.59 10.0 96 79-116 2 20 (1,1,1,2-Tetrachloroethane 9.85 10.0 99 9.82 10.0 98 78-118 0 20 (1,1,1,2-Tetrachloroethane 9.85 10.0 99 9.82 10.0 98 78-118 0 20 (1,1,1,2-Tetrachloroethane 9.85 10.0 99 9.82 10.0 98 78-118 0 20 (1,1,1,2-Tetrachloroethane 9.85 10.0 99 9.82 10.0 98 78-118 0 20 (1,1,2-Tetrachloroethane 11.6 10.0 116 11.5 10.0 115 79-124 1 20 (1,1,2-Tetrachloroethane 23.4 20.0 117 22.9 20.0 115 75-131 2 20 (2,1,1,2-Tetrachloroethane 10.9 10.0 109 10.8 10.0 108 78-122 1 20 (2,1,1,2-Tetrachloroethane 11.0 10.0 110 11.1 10.0 111 80-126 1 20 (2,1,1,2-Tetrachloroethane 11.8 10.0 118 11.5 10.0 115 75-131 2 20 (2,3-Trichloropropane 11.8 10.0 118 11.5 10.0 115 75-126 2 20 (2,3-Trichloropropane 9.65 10.0 97 9.64 10.0 96 77-118 0 20 (2,3-Trichlorotoluene 11.4 10.0 114 11.2 10.0 119 75-129 1 20 (2,3-Trimethylbenzene 11.5 10.0 115 11.3 10.0 112 77-126 2 20 (2,3,5-Trimethylbenzene 11.5 10.0 115 11.3 10.0 111 73-130 3 20 (2,4-Trimethylbenzene 11.4 10.0 114 11.1 10.0 111 73-130 3 20 (2,4-Trimethylbenzene 11.8 10.0 118 11.6 10.0 116 68-131 2 20 (3,1-Trimethylbenzene 11.8 10.0 118 11.6 10.0 116 68-131 2 20 (3,1-Trimethylbenzene 11.8 10.0 119 11.6 10.0 116 68-131 2 20 (3,1-Trimethylbenzene 10.5 10.0 105 10.2 10.0 102 71-137 2 20 (3,1-Trimethylbenzene 10.5 10.0 105 10.2 10.0 102 71-137 2 20 (3,1-Trimethylbenzene 10.5 10.0 105 10.0 100 85 70-118 2 20 (3,1-Trimethylbenzene 10.5 10.0 105 10.0 100 85 70-118 2 20 (3,1-Tr	2-Hexanone	33.5	40.0	84	34.0	40.0	85	65-120	1	20
Dibromochloromethane 8.80 10.0 88 8.74 10.0 87 77-119 1 20 1,2-Dibromochlane 9.41 10.0 94 9.59 10.0 96 79-116 2 20 1,1,1,2-Tetrachloroethane 9.85 10.0 99 9.82 10.0 98 78-118 0 20 1,1,1,2-Tetrachloroethane 11.6 10.0 116 11.5 10.0 115 79-124 1 20 2,34 20.0 117 22.9 20.0 115 75-131 2 20 2,5-Xylene 10.9 10.0 109 10.8 10.0 108 78-122 1 20 2,5-Xylene 11.0 10.0 110 11.1 10.0 111 80-126 1 20 3,5-Trimethylbenzene 11.8 10.0 118 11.5 10.0 115 75-126 2 20 1,2,3-Trimethylbenzene 12.0 10.0 120 11.9 10.0 119 75-129 1 20 1,3,5-Trimethylbenzene 11.4 10.0 114 11.2 10.0 112 77-126 2 20 1,3,5-Trimethylbenzene 11.5 10.0 115 11.3 10.0 113 75-130 2 20 1,3,5-Trimethylbenzene 11.8 10.0 115 11.3 10.0 116 82-120 20 1,3,5-Trimethylbenzene 11.5 10.0 115 11.3 10.0 111 77-126 2 20 1,3,5-Trimethylbenzene 11.5 10.0 115 11.3 10.0 111 77-126 2 20 1,3,5-Trimethylbenzene 11.8 10.0 115 11.3 10.0 116 88-131 2 20 1,3,5-Trimethylbenzene 11.8 10.0 115 11.3 10.0 116 68-131 2 20 1,3,5-Trimethylbenzene 11.5 10.0 115 11.3 10.0 116 68-131 2 20 1,3,5-Trimethylbenzene 11.8 10.0 115 11.3 10.0 116 68-131 2 20 1,3,5-Trimethylbenzene 11.8 10.0 115 11.3 10.0 116 68-131 2 20 1,3,5-Trimethylbenzene 11.5 10.0 105 10.2 10.0 100 117 13-130 3 20 1,2,4-Trimethylbenzene 11.5 10.0 105 10.2 10.0 106 68-131 2 20 1,3-Dichlorobenzene 10.5 10.0 105 10.2 10.0 100 100 81-118 100	1,3-Dichloropropane	9.49	10.0	95	9.54	10.0	95	81-116	1	20
Chlorobenzene 10.6 10.0 106 10.5 10.0 105 84-114 1 20 1,1,1,2-Tetrachloroethane 9.85 10.0 99 9.82 10.0 98 78-118 0 20 20 20 20 11.6 10.0 116 11.5 10.0 115 79-124 1 20 20 20 20 20 20 20 20 20 20 20 20 20	Dibromochloromethane	8,80	10.0	88	8.74	10.0	87	77-119	1	
Chlorobenzene 10.6 10.0 106 10.5 10.0 105 84-114 1 20 1,1,1,2-Tetrachloroethane 9.85 10.0 99 9.82 10.0 98 78-118 0 20 Ethylbenzene 11.6 10.0 116 11.5 10.0 115 79-124 1 20 m,p-Xylenes 23.4 20.0 117 22.9 20.0 115 75-131 2 20 20-Xylene 10.9 10.0 109 10.8 10.0 118 75-131 2 20 20 20 20 20 20 20 20 20 20 20 20 2	1,2-Dibromoethane	9.41	10.0	94	9.59	10.0	96	79-116	2	
Ethylbenzene 11.6 10.0 116 11.5 10.0 115 79-124 1 20 m.p-Xylenes 23.4 20.0 117 22.9 20.0 115 75-131 2 20 D-Xylene 10.9 10.0 109 10.8 10.0 108 78-122 1 20 Styrene 11.0 11.0 110 11.1 10.0 111 80-126 1 20 Styrene 11.8 10.0 118 11.5 10.0 115 75-126 1 20 styrene 11.8 10.0 118 11.5 10.0 115 75-126 1 20 styrene 11.8 10.0 118 11.5 10.0 115 75-126 2 20 3rombobarcene 11.3 10.0 103 10.2 10.0 102 20 20 21 27-126 2 20 1,2-Chlorothuene 11.4	Chlorobenzene	10.6	10.0	106	10.5	10.0	105	84-114	l	20
Ethylbenzene	1,1,1,2-Tetrachloroethane	9.85	10.0	99	9.82	10.0	98	78-118	0	
m.pXylenes	Ethylbenzene	11.6	10.0	116	11.5	10.0	115	79-124	1	20
D-Xylene 10.9 10.0 109 10.8 10.0 108 78-122 1 20 Styrene 11.0 10.0 110 11.1 10.0 111 80-126 1 20 sopropylbenzene 11.8 10.0 118 11.5 10.0 115 75-126 2 20 3 Sopropylbenzene 10.3 10.0 103 10.2 10.0 102 82-122 1 20 3 10.2 10.0 102 82-122 1 20 3 10.2 10.0 10.0 102 82-122 1 20 3 10.2 10.0 10.0 102 82-122 1 20 3 10.0 10.0 10.0 10.0 10.0 10.0 10.0 1	•	23.4	20.0	117	22.9	20.0	115	75-131	2	20
Styrene 11.0 10.0 110 11.1 10.0 111 80-126 1 20 Isopropylbenzene 11.8 10.0 118 11.5 10.0 115 75-126 2 20 Bromobenzene 10.3 10.0 103 10.2 10.0 102 82-122 1 20 1,2,3-Trichloropropane 9.65 10.0 97 9.64 10.0 96 77-118 0 20 1-Propylbenzene 12.0 10.0 120 11.9 10.0 119 75-129 1 20 2-Chlorotoluene 11.4 10.0 114 11.2 10.0 112 77-126 2 20 1,3,5-Trimethylbenzene 11.5 10.0 115 11.3 10.0 113 75-130 2 20 ert-Butylbenzene 11.4 10.0 114 11.1 10.0 111 73-130 3 20 eer-Butylbenzene 11.3 10.0	o-Xylene	10.9	10.0	109	10.8	10.0	108	78-122	1	
Supropylbenzene 11.8 10.0 118 11.5 10.0 115 75-126 2 20	-	11.0	10.0	110	11.1	10.0	111	80-126	1	20
Saromobenzene 10.3 10.0 103 10.2 10.0 102 82-122 1 20		11.8	10.0	118	11.5	10.0	115	75-126	2	20
1,2,3-Trichloropropane 9.65 10.0 97 9.64 10.0 96 77-118 0 20 n-Propylbenzene 12.0 10.0 120 11.9 10.0 119 75-129 1 20 2-Chlorotoluene 11.4 10.0 114 11.2 10.0 112 77-126 2 20 4-Chlorotoluene 10.8 10.0 108 10.6 10.0 106 82-120 2 20 4-Chlorotoluene 11.5 10.0 115 11.3 10.0 113 75-130 2 20 1,3,5-Trimethylbenzene 11.4 10.0 114 11.1 10.0 111 73-130 3 20 eer-Butylbenzene 11.3 10.0 113 11.0 10.0 110 60-137 3 20 1,2-Hrimethylbenzene 11.8 10.0 118 11.6 10.0 116 68-131 2 20 1,2-Hrimethylbenzene 11.8 10.0 115 10.0 10.0 10.0 10.0 10.0 11	· ·	10.3	10.0	103	10.2	10.0	102	82-122	1	20
1-Propylbenzene 12.0 10.0 120 11.9 10.0 119 75-129 1 20 2-Chlorotoluene 11.4 10.0 114 11.2 10.0 112 77-126 2 20 4-Chlorotoluene 10.8 10.0 108 10.6 10.0 106 82-120 2 20 1,3,5-Trimethylbenzene 11.5 10.0 115 11.3 10.0 113 75-130 2 20 ert-Butylbenzene 11.4 10.0 114 11.1 10.0 111 73-130 3 20 1,2,4-Trimethylbenzene 11.3 10.0 113 11.0 10.0 110 60-137 3 20 sec-Butylbenzene 11.8 10.0 118 11.6 10.0 116 68-131 2 20 1,3-Dichlorobenzene 10.5 10.0 105 10.2 10.0 102 71-137 2 20 1-Isopropyltoluene 11.9 10.0 119 11.6 10.0 116 68-134 2 20 1,1,2,2-Tetrachloroethane 9.09 10.0 83 8.50 10.0 85 70-118 2 20 1,1,2,2-Tetrachloroethane 9.09 10.0 91 9.65 10.0 97 72-122 6 20 1,2-Dichlorobenzene 10.5 10.0 105 10.3 10.0 103 82-114 2 20 1,2-Dichlorobenzene 10.5 10.0 102 10.0 100 81-118 1 20 1,2-Dichlorobenzene 10.9 10.0 102 10.0 100 81-118 1 20 1,2-Dichlorobenzene 10.5 10.0 105 10.3 10.0 103 82-114 2 20 1,2-Dichlorobenzene 10.5 10.0 109 99 9.66 10.0 97 75-123 2 20 1,2-Dibromo-3-chloropropane 8.56 10.0 86 8.57 10.0 86 55-131 0 20 1,2-Dichlorobenzene 9.85 10.0 99 9.66 10.0 97 75-123 2 20 1,2-Dibromo-3-chloropropane 8.56 10.0 86 8.57 10.0 86 55-131 0 20 1,2,4-Trichlorobenzene 9.85 10.0 99 9.66 10.0 97 75-123 2 20 1,2-Dibromo-3-chloropropane 8.56 10.0 99 9.81 10.0 98 67-125 1 20 10.0 10.0 10.0 117 63-140 1 20 10.0 117 11.7 11.7 10.0 117 63-140 1 20 10.0 117 11.7 11.7 10.0 117 63-140 1 20 10.0 117 11.7 11.7 10.0 117 63-140 1 20 10.0 10.0 10.0 10.0 10.0 10.0 10.			10.0	97	9.64	10.0	96	77-118	0	20
2-Chlorotoluene		12.0	10.0	120	11.9	10.0	119	75-129	l	20
4-Chlorotoluene 10.8 10.0 108 10.6 10.0 106 82-120 2 20 1,3,5-Trimethylbenzene 11.5 10.0 115 11.3 10.0 113 75-130 2 20 ert-Butylbenzene 11.4 10.0 114 11.1 10.0 111 73-130 3 20 1,2,4-Trimethylbenzene 11.3 10.0 113 11.0 10.0 110 60-137 3 20 sec-Butylbenzene 11.8 10.0 118 11.6 10.0 116 68-131 2 20 1,3-Dichlorobenzene 10.5 10.0 105 10.2 10.0 102 71-137 2 20 4-Isopropyltoluene 11.9 10.0 119 11.6 10.0 116 68-134 2 20 1,1,2,2-Tetrachlorobenzene 10.5 10.0 83 8.50 10.0 85 70-118 2 20 1,1,2,2-Tetrachlorobenzene 10.5 10.0 105 10.3 10.0 85 70-118 2 20 1,2-Dichlorobenzene 10.5 10.0 105 10.3 10.0 103 82-114 2 20 1,2-Dichlorobenzene 10.2 10.0 102 10.0 100 103 82-114 2 20 1,2-Dichlorobenzene 11.9 10.0 119 12.0 10.0 100 81-118 1 20 n-Butylbenzene 11.9 10.0 119 12.0 10.0 120 71-125 0 20 1,2-Dibromo-3-chloropropane 8.56 10.0 86 8.57 10.0 86 55-131 0 20 1,2,4-Trichlorobenzene 9.85 10.0 99 9.66 10.0 97 75-123 2 20 Hexachlorobutadiene 11.7 10.0 117 11.7 10.0 117 63-140 1 20 Naphthalene 9.91 10.0 99 9.81 10.0 98 67-125 1 20		11.4	10.0	114	11.2	10.0	112	77-126	2	20
1,3,5-Trimethylbenzene 11.5 10.0 115 11.3 10.0 113 75-130 2 20 ert-Butylbenzene 11.4 10.0 114 11.1 10.0 111 73-130 3 20 1,2,4-Trimethylbenzene 11.3 10.0 113 11.0 10.0 110 60-137 3 20 1,3-Dichlorobenzene 11.8 10.0 118 11.6 10.0 116 68-131 2 20 1,3-Dichlorobenzene 10.5 10.0 105 10.2 10.0 102 71-137 2 20 1,3-Dichlorobenzene 11.9 10.0 119 11.6 10.0 102 71-137 2 20 1,4-Stopropyltoluene 11.9 10.0 119 11.6 10.0 116 68-134 2 20 3-romoform 8.33 10.0 83 8.50 10.0 85 70-118 2 20 1,2,2-Tetrachloroethane 9.09 10.0 105 10.3 10.0 97 72-122 6	4-Chlorotoluene	10.8	10.0	108	10.6	10.0	106	82-120	2	20
ert-Butylbenzene 11.4 10.0 114 11.1 10.0 111 73-130 3 20 1,2,4-Trimethylbenzene 11.3 10.0 113 11.0 10.0 110 60-137 3 20 sec-Butylbenzene 11.8 10.0 118 11.6 10.0 116 68-131 2 20 1,3-Dichlorobenzene 10.5 10.0 105 10.2 10.0 102 71-137 2 20 14-Isopropyltoluene 11.9 10.0 119 11.6 10.0 116 68-134 2 20 1,1,2,2-Tetrachloroethane 9.09 10.0 83 8.50 10.0 85 70-118 2 20 1,4-Dichlorobenzene 10.5 10.0 105 10.3 10.0 97 72-122 6 20 1,4-Dichlorobenzene 10.5 10.0 105 10.3 10.0 103 82-114 2 20 1,4-Dichlorobenzene 10.2 10.0 102 10.0 103 82-114 2 20 1,2-Dichlorobenzene 10.2 10.0 102 10.0 10.0 10.0 100 81-118 1 20 1-Butylbenzene 11.9 10.0 119 12.0 10.0 120 71-125 0 20 1,2-Dibromo-3-chloropropane 8.56 10.0 86 8.57 10.0 86 55-131 0 20 1,2-Dibromo-3-chloropropane 8.56 10.0 99 9.66 10.0 97 75-123 2 20 1,2,4-Trichlorobenzene 11.7 10.0 117 11.7 10.0 117 63-140 1 20 Naphthalene 9.91 10.0 99 9.81 10.0 98 67-125 1 20		11.5	10.0	115	11.3	10.0	113	75-130	2	20
1,2,4-Trimethylbenzene 11.3 10.0 113 11.0 10.0 110 60-137 3 20 sec-Butylbenzene 11.8 10.0 118 11.6 10.0 116 68-131 2 20 1,3-Dichlorobenzene 10.5 10.0 105 10.2 10.0 102 71-137 2 20 4-Isopropyltoluene 11.9 10.0 119 11.6 10.0 116 68-134 2 20 3romoform 8.33 10.0 83 8.50 10.0 85 70-118 2 20 1,1,2,2-Tetrachloroethane 9.09 10.0 91 9.65 10.0 97 72-122 6 20 1,4-Dichlorobenzene 10.5 10.0 105 10.3 10.0 103 82-114 2 20 1,2-Dichlorobenzene 10.2 10.0 102 10.0 10.0 10.0 81-118 1 20 1,2-Dibromo-3-chloropropane 8.56 10.0 86 8.57 10.0 86 55-131 0			10.0	114	11.1	10.0	111	73-130	3	20
Sec-Butylbenzene 11.8 10.0 118 11.6 10.0 116 68-131 2 20	2	11.3	10.0	113	11.0	10.0	110	60-137	3	20
1,3-Dichlorobenzene 10.5 10.0 105 10.2 10.0 102 71-137 2 20 4-Isopropyltoluene 11.9 10.0 119 11.6 10.0 116 68-134 2 20 Bromoform 8.33 10.0 83 8.50 10.0 85 70-118 2 20 1,1,2,2-Tetrachloroethane 9.09 10.0 91 9.65 10.0 97 72-122 6 20 1,4-Dichlorobenzene 10.5 10.0 105 10.3 10.0 103 82-114 2 20 1,2-Dichlorobenzene 10.2 10.0 102 10.0 10.0 100 81-118 1 20 1,2-Dibromo-3-chloropropane 8.56 10.0 86 8.57 10.0 86 55-131 0 20 1,2,4-Trichlorobenzene 9.85 10.0 99 9.66 10.0 97 75-123 2 20 Hexachlorobutadiene 11.7 10.0 117 11.7 10.0 117 63-140 1	•		10.0	118	11.6	10.0	116	68-131	2	20
H-Isopropyltoluene 11.9 10.0 119 11.6 10.0 116 68-134 2 20 83 10.0 83 8.50 10.0 85 70-118 2 20 1,1,2,2-Tetrachloroethane 9.09 10.0 91 9.65 10.0 97 72-122 6 20 1,4-Dichlorobenzene 10.5 10.0 105 10.3 10.0 103 82-114 2 20 1,2-Dichlorobenzene 10.2 10.0 102 10.0 10.0 10.0 100 81-118 1 20 1,2-Dibromo-3-chloropropane 8.56 10.0 86 8.57 10.0 120 71-125 0 20 1,2-Dibromo-3-chloropropane 8.56 10.0 86 8.57 10.0 86 55-131 0 20 1,2,4-Trichlorobenzene 9.85 10.0 99 9.66 10.0 97 75-123 2 20 Hexachlorobutadiene 11.7 10.0 117 11.7 10.0 117 63-140 1 20 Naphthalene 9.91 10.0 99 9.81 10.0 98 67-125 1 20		10.5	10.0	105	10.2	10.0	102	71-137	2	20
Bromoform 8.33 10.0 83 8.50 10.0 85 70-118 2 20 1,1,2,2-Tetrachloroethane 9.09 10.0 91 9.65 10.0 97 72-122 6 20 1,4-Dichlorobenzene 10.5 10.0 105 10.3 10.0 103 82-114 2 20 1,2-Dichlorobenzene 10.2 10.0 102 10.0 10.0 100 81-118 1 20 1,2-Dibromo-3-chloropropane 8.56 10.0 86 8.57 10.0 86 55-131 0 20 1,2,4-Trichlorobenzene 9.85 10.0 99 9.66 10.0 97 75-123 2 20 Hexachlorobutadiene 11.7 10.0 117 11.7 10.0 117 63-140 1 20 Naphthalene 9.91 10.0 99 9.81 10.0 98 67-125 1 20	,	11.9	10.0	119	11.6	10.0	116	68-134	2	20
1,1,2,2-Tetrachloroethane 9.09 10.0 91 9.65 10.0 97 72-122 6 20 1,4-Dichlorobenzene 10.5 10.0 105 10.3 10.0 103 82-114 2 20 1,2-Dichlorobenzene 10.2 10.0 102 10.0 10.0 100 81-118 1 20 n-Butylbenzene 11.9 10.0 119 12.0 10.0 120 71-125 0 20 1,2-Dibromo-3-chloropropane 8.56 10.0 86 8.57 10.0 86 55-131 0 20 1,2,4-Trichlorobenzene 9.85 10.0 99 9.66 10.0 97 75-123 2 20 Hexachlorobutadiene 11.7 10.0 117 11.7 10.0 117 63-140 1 20 Naphthalene 9.91 10.0 99 9.81 10.0 98 67-125 1 20		8.33	10.0	83	8.50	10.0	85	70-118	2	20
1,4-Dichlorobenzene 10.5 10.0 105 10.3 10.0 103 82-114 2 20 1,2-Dichlorobenzene 10.2 10.0 102 10.0 10.0 100 81-118 1 20 n-Butylbenzene 11.9 10.0 119 12.0 10.0 120 71-125 0 20 1,2-Dibromo-3-chloropropane 8.56 10.0 86 8.57 10.0 86 55-131 0 20 1,2,4-Trichlorobenzene 9.85 10.0 99 9.66 10.0 97 75-123 2 20 Hexachlorobutadiene 11.7 10.0 117 11.7 10.0 117 63-140 1 20 Naphthalene 9.91 10.0 99 9.81 10.0 98 67-125 1 20		9.09	10.0	91	9.65	10.0	97	72-122	6	20
1,2-Dichlorobenzene 10.2 10.0 102 10.0 10.0 100 81-118 1 20 n-Butylbenzene 11.9 10.0 119 12.0 10.0 120 71-125 0 20 1,2-Dibromo-3-chloropropane 8.56 10.0 86 8.57 10.0 86 55-131 0 20 1,2,4-Trichlorobenzene 9.85 10.0 99 9.66 10.0 97 75-123 2 20 Hexachlorobutadiene 11.7 10.0 117 11.7 10.0 117 63-140 1 20 Naphthalene 9.91 10.0 99 9.81 10.0 98 67-125 1 20		10.5	10.0	105	10.3	10.0	103	82-114	2	20
1,2-Dibromo-3-chloropropane 8.56 10.0 86 8.57 10.0 86 55-131 0 20 1,2,4-Trichlorobenzene 9.85 10.0 99 9.66 10.0 97 75-123 2 20 Hexachlorobutadiene 11.7 10.0 117 11.7 10.0 117 63-140 1 20 Naphthalene 9.91 10.0 99 9.81 10.0 98 67-125 1 20	1,2-Dichlorobenzene	10.2	10.0	102	10.0	10.0	100	81-118	1	
1,2-Dibromo-3-chloropropane 8.56 10.0 86 8.57 10.0 86 55-131 0 20 1,2,4-Trichlorobenzene 9.85 10.0 99 9.66 10.0 97 75-123 2 20 Hexachlorobutadiene 11.7 10.0 117 11.7 10.0 117 63-140 1 20 Naphthalene 9.91 10.0 99 9.81 10.0 98 67-125 1 20	n-Butylbenzene	11.9	10.0	119	12.0	10.0	120	71-125	0	20
1,2,4-Trichlorobenzene 9.85 10.0 99 9.66 10.0 97 75-123 2 20 Hexachlorobutadiene 11.7 10.0 117 11.7 10.0 117 63-140 1 20 Naphthalene 9.91 10.0 99 9.81 10.0 98 67-125 1 20	1,2-Dibromo-3-chloropropane		10.0	86	8.57	10.0	86	55-131	0	
Hexachlorobutadiene 11.7 10.0 117 11.7 10.0 117 63-140 1 20 Naphthalene 9.91 10.0 99 9.81 10.0 98 67-125 1 20		9.85	10.0	99	9.66	10.0	97	75-123	2	
Naphthalene 9.91 10.0 99 9.81 10.0 98 67-125 1 20	Hexachlorobutadiene			117	11.7	10.0	117	63-140	1	20
•			10.0	99	9.81	10.0	98	67-125	1	20
	1,2,3-Trichlorobenzene	10.4	10.0	104	10.3	10.0	103	72-124	1	20

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 06/11/2003 13:03:56 L:\STEALTH\CRYSTAL.RPT\Form3DLC.rpt Form 3C - Organic

Page 2 of 2

SuperSet Reference:

RR3426

June 12, 2003

Chuck Gordon BE & K/Terranext 9830 S. 51st A-127 Phoenix, AZ 85044

RE: WVBA/Project #0310-3154

Dear Chuck:

Enclosed are the results of the samples submitted to our laboratory on June 3, 2003. For your reference, these analyses have been assigned our service request number L2301168.

All analyses were performed in accordance with our laboratory's quality assurance program. Results are intended to be considered in their entirety and apply only to the samples analyzed. Columbia Analytical Services is not responsible for use of less than the complete report.

Columbia Analytical Services is certified for environmental analyses by the California Department of Health Services (certificate number: 1296A); NELAP (certificate number: 02115CA); Los Angeles County Laboratory ID (No. 10151); and Arizona Department of Health Services (License number: AZ0136 and AZ0544).

If you have any questions, please call me at (818) 587-5550, extension 309.

Respectfully submitted,

Sue Julys

Sue Anderson Project Chemist

SA

Columbia Analytical Services, Inc.

Acronyms

California DHS LUFT Method 8015M American Society for Testing and Materials **ASTM** Biochemical Oxygen Demand BOD BTEX Benzene/Toluene/Ethylbenzene/Xylenes CAM California Assessment Metals **CAS Number** Chemical Abstract Service Registry Number **CFC** Chlorofluorocarbon Chemical Oxygen Demand COD Contract Required Detection Limit **CRDL** Detected; result must be greater than zero. D Detected; result must be greater than the detection limit. DL **Duplicate Laboratory Control Sample DLCS** Duplicate Matrix Spike **DMS** Department of Health Services DOH or DHS Environmental Laboratory Accreditation Program ELAP U.S. Environmental Protection Agency **EPA** Gas Chromatography GCGC/MS Gas Chromatography/Mass Spectrometry Ion Chromatography IC Initial Calibration Blank sample **ICB** Inductively Coupled Plasma atomic emission spectrometry **ICP** Initial Calibration Verification sample **ICV** Laboratory Control Sample LCS Leaking Underground Fuel Tank LUFT Modified M Methylene Blue Active Substances **MBAS** Method Detection Limit MDL Method Reporting Limit MRL MS Matrix Spike Methyl-tert-Butyl Ether **MTBE** NA Not Applicable NC Not Calculated None Detected at or above the Method Reporting/Detection Limit (MRL/MDL) ND Nephelometric Turbidity Units NTU Parts Per Billion ppb Parts Per Million ppm Practical Quantitation Limit **PQL** Quality Assurance/Quality Control QA/QC Resource Conservation and Recovery Act **RCRA** Relative Percent Difference **RPD** SIM Selected Ion Monitoring Standard Methods for the Examination of Water and Wastewater, 18th Ed., 1992. SM STLC Solubility Threshold Limit Concentration Test Methods for Evaluating Solid Waste, Physical/Chemical Methods SW-846, SWThird Edition, 1986 and as amended by Updates I, II, IIA, and IIB. Toxicity Characteristics Leaching Procedure **TCLP** Total Dissolved Solids TDS Total Petroleum Hydrocarbons TPH Total Recoverable Petroleum Hydrocarbons **TRPH** Total Suspended Solids **TSS** Total Threshold Limit Concentration TTLC Volatile Organic Analyte(s) VOA **Qualifiers** Undetected at or above MDL/MRL. U Estimated concentration. Analyte detected above MDL but below MRL. J Hit above MRL also found in Method Blank. В Analyte concentration above high point of ICAL. E Presumptive evidence of compound.

N

D

X

Result from dilution.

See case narrative.

. 000042

- Cover Page -INORGANIC ANALYSIS DATA PACKAGE

Client:

BE&K Terranext, LLC

Project Name: Project No.:

WVBA

0310-3154

Service Request: L2301168

Sample Name:	<u>Lab Code :</u>
Batch QC	L2301122-001S
Batch QC	L2301122-001SD
AVB122-0200-01245	L2301168-001
AVB122-0204-1000	L2301168-002
AVB120-0200-01245	L2301168-003
AVB119-0100-01140	L2301168-004
Laboratory Control Sample	L2301168-LCS
Method Blank	L2301168-MB

Analytical Report

Client:

BE&K Terranext, LLC

Project Name: Project No.:

WVBA 0310-3154

Matrix:

Water

Service Request: L2301168

Date Collected: 06/03/03

Date Received: 06/03/03

Date Extracted: 06/05/03

Total Metals

Sample Name:

AVB122-0200-01245

Lab Code:

L2301168-001

Units: ug/L (ppb)

Analyte	Analysis Meth	od MRL	Date Analyzed	Sample Result	Result Notes
Chromium	6010B	10	06/11/03	ND	

Analytical Report

Client:

BE&K Terranext, LLC

Project Name:

WVBA

Project No.:

0310-3154

Matrix:

Water

Service Request: L2301168

Date Collected: 06/03/03

Date Received: 06/03/03

Date Extracted: 06/05/03

Dissolved Metals

Sample Name:

AVB122-0200-01245

Lab Code:

L2301168-001

Units: ug/L (ppb)

Analyte	Analysis Method	MRL	Date Analyzed	Sample Result	Result Notes
Chromium	6010B	10	06/11/03	ND	

Analytical Report

Client:

BE&K Terranext, LLC

Project Name : Project No. : WVBA 0310-3154

Matrix:

Water

Service Request: L2301168

Date Collected: 06/03/03 **Date Received:** 06/03/03

Date Extracted: 06/05/03

Total Metals

Sample Name:

AVB122-0204-1000

Lab Code:

L2301168-002

Units: ug/L (ppb)

Analyte	Analysis Method	MRL	Date Analyzed	Sample Result	Result Notes
Chromium	6010B	10	06/11/03	ND	

Analytical Report

Client:

BE&K Terranext, LLC

Project Name: Project No.:

WVBA

Matrix:

0310-3154 Water Service Request: L2301168

Date Collected: 06/03/03

Date Received: 06/03/03 **Date Extracted:** 06/05/03

Dissolved Metals

Sample Name:

AVB122-0204-1000

Lab Code:

L2301168-002

Units: ug/L (ppb)

Basis: NA

Analyte Analysis Method MRL Date Analyzed Result Notes

Chromium 6010B 10 06/11/03 ND

Analytical Report

Client:

BE&K Terranext, LLC

Project Name: Project No.:

WVBA 0310-3154

Matrix:

Water

Service Request: L2301168

Date Collected: 06/03/03

Date Received: 06/03/03

Date Extracted: 06/05/03

Total Metals

Sample Name:

AVB120-0200-01245

Lab Code:

L2301168-003

Units: ug/L (ppb)

Analyte	Analysis Method	MRL	Date Analyzed	Sample Result	Result Notes
Chromium	6010B	10	06/11/03	17	

Analytical Report

Client:

BE&K Terranext, LLC

Project Name: Project No.:

WVBA 0310-3154

Matrix:

Water

Service Request: L2301168

Date Collected: 06/03/03

Date Received: 06/03/03

Date Extracted: 06/05/03

Dissolved Metals

Sample Name:

AVB120-0200-01245

Lab Code:

L2301168-003

Units: ug/L (ppb)

Basis: NA

Analyte Analysis Method MRL Date Analyzed Result Notes

Chromium 6010B 10 06/11/03 14

Analytical Report

Client:

BE&K Terranext, LLC

Project Name: Project No.:

WVBA 0310-3154

Matrix:

Water

Service Request: L2301168

Date Collected: 06/03/03

Date Received: 06/03/03 **Date Extracted:** 06/05/03

Total Metals

Sample Name:

AVB119-0100-01140

Lab Code:

L2301168-004

Units: ug/L (ppb)

Analyte	Analysis Method	MRL	Date Analyzed	Sample Result	Result Notes
Chromium	6010B	10	06/11/03	24	

Analytical Report

Client:

BE&K Terranext, LLC

Project Name : Project No. : WVBA 0310-3154

Matrix:

Water

Service Request: L2301168

Date Collected: 06/03/03

Date Received: 06/03/03

Date Extracted: 06/05/03

Dissolved Metals

Sample Name:

AVB119-0100-01140

Lab Code:

L2301168-004

Units: ug/L (ppb)

Analyte	Analysis Method	MRL	Date Analyzed	Sample Result	Result Notes
Chromium	6010B	10	06/11/03	21	

Analytical Report

Client:

BE&K Terranext, LLC

Project Name: Project No.:

WVBA 0310-3154

Matrix:

Water

Service Request: L2301168

Date Collected: NA
Date Received: NA

Date Extracted: 06/05/03

Total Metals

Sample Name :

Lab Code:

Method Blank

L2301168-MB

Units: ug/L (ppb)

Analyte	Analysis Method	MRL	Date Analyzed	Sample Result	Result Notes
Chromium	6010B	10	06/11/03	ND	

QA/QC Report

Client : Project Name : BE&K Terranext, LLC

Project Name Project No.: WVBA 0310-3154

Matrix:

Water

Service Request: L2301168

Date Collected: NA
Date Received: NA
Date Extracted: 06/05/03

Date Analyzed: 06/11/03

Laboratory Control Sample Summary

Total Metals

Sample Name:

Laboratory Control Sample

Lab Code:

L2301168-LCS

Units: ug/L (ppb)

					CAS Percent Recovery Acceptance	Result
Analyte	Analysis Method	True Value	Result	Percent	Limits	Notes
Chromium	6010B	500	505	101	87-111	

Analytical Report

Client:

BE&K Terranext, LLC

Project Name : Project No. :

WVBA 0310-3154

Matrix:

Water

Service Request: L2301168

Date Collected: NA
Date Received: NA
Date Extracted: 06/05/03

Date Analyzed: 06/11/03

Matrix Spike/Duplicate Matrix Spike Summary

Total Metals

Sample Name:

Lab Code:

Batch QC

L2301122-001S

L2301122-001SD

Units: ug/L (ppb)

Analyte	Prep Method	Analysis Method	MRL	Spike MS	Level DMS	Sample Result	Spike MS	Result DMS	MS	DMS	CAS Acceptance Limits	Relative Percent Difference	Result Notes
Chromium	3010A	6010B	10	500	500	44.8	555	553	102	102	87-105	<1	

Analytical Services Inc. Columbia

CHAIN OF CUSTODY/LABORATORY ANALYSIS REQUEST FORM 75301/68

3902 East University Drive, Suite 4 • Phoenix, AZ 85034 • (602) 437-2001 • (800) 695-7222 x09 • FAX (602) 437-5308

DATE 6-3-03 PAGE

 Surcharges Apply ANALYSIS TAT (Circle One) REMARKS Lab No: X23 00 467 SAMPLE RECEIPT: ☐ 72 Hours □ 24 Hours □ 48 Hours Shipping VIA: STANDARD **RUSH TAT** Shipping #: Condition: **ANALYSIS REQUESTED** INVOICE INFORMATION: Date/Time Date/Time Organization Organization Organization P.O.# II. Report (includes DUP.MS. MSD, as required, may be charged as samples) REPORT REQUIREMENTS III. Data Validation Report (includes All Raw Data) IV. CLP Deliverable Report Routine Report Received By (Signature) Received By (Signature) Recejved By (Signature) あるみ NUMBER OF CONTAINERS PRESER-VATION Date/Time 6-3-03 Dissolved Cr regines (16 Filtering Date/Time 4515-0180# Date/Time MATRIX 457001 h 004 Organization Organization BEALL LAB ... AVO 122-0202-100 6703 716 97.16 ah,'01 14:10 00121 PHONE/FAX TIME SPECIAL INSTRUCTIONS/COMMENTS: DATE PROJECT NAME LY I'M H AVE 120-0200-021 BVA COMPANY/ADDRESS BE SHELLO-DED-LEIBYA Relinquished By (Signature) Relinquished By (Signature) Relinquished By (Signature) SAMPLER'S SIGNATURE_ AVB (22-18204-1000 PILO-0010-011210 Thater Thay 形を表 PROJECT MANAGER SAMPLE 15

DISTRIBUTION: WHITE - return to originator; YELLOW - lab; PINK - retained by originator

SAMPLE RECEIPT FORM

Service Request No: L230 1168 Client: BETK
Sample(s) delivered by: Client CAS Emp After Hours DHL
Golden State Overnight Fed X VPS Other Courier
Chain of Custody filled out accurately? Yes No(See Comments)
Appropriate sample volume and containers? Yes No(See Comments)
Sufficient labeling on container(s)? Yes No(See Comments)
Container(s) supplied by CAS? Yes No(See Comments)
Custody seal(s) intact?
Trip Blank(s) received Yes No
If Trip Blank was supplied by CAS, record serial #TB
Temperature of sample(s)/cooler 3 °C Temp Blank (Yor N (Circle One)
Voa's Marked Preserved? Yes No Filled Properly? Yes No (See Comments)
Preserved Bottles Requiring pH check(s)? Yes Appropriate Preservation? Yes No
RUSH Turn around time? Yes Notified Date & Time
Short Hold-Time Analysis (check all that apply)
ASAP Res Cl D.O Flash Diss S2 Ferrous Fe 24HR pH Odor Cr+6 48HR BOD Color MBAS Nitrate Nitrite O-PO4 Sett Sol Turbidity 72HR Vapors
Notified Date & Time
Container(s) received and their preservative(s): $-1 \rightarrow -4 = 1 - 500 \text{ml Pl (NP)A}$ $1 - 500 \text{ml Pl (HNB)B}$
Comments Filter & preserve diss metals bottle in lab
Initials Date Time 1 K G/4/03 1(1) 5 r.\sr forms\cooler.doc Rev. 2/25/02

CHAIN OF CUSTODY/LABORATORY ANALYSIS REQUEST FORM

Columbia
Analytical
Services Inc.
An Employee - Owned Company

DATE 6-3-03 3902 East University Drive, Suite 4 • Phoenix, AZ 85034 • (602) 437-2001 • (800) 695-7222 x09 • FAX (602) 437-5308

PAGE

REMARKS 450000 **ANALYSIS REQUESTED** 0188 Dreilier Drice Diriog debit pe_e7 8 Aromatic Volatiles Volatile Organics NUMBER OF CONTAINERS PRESER-VATION C)04 g 467-001 - PB - D: JIL EARS DON-COTO-TOIONO 9.40 ah, 01 14:10 12100 PHONE/FAX TIME PROJECT MANAGER C-OFCEN COMPANY/ADDRESS BEAK DATE = - 345-000-001 8/H) = 2/1612-000-6018/P ANB 122-13204-1000 016 19 011 0 011 3 SAMPLER'S SIGNATURE PROJECT NAME SAMPLE I.D.

			IV. CLP Deliverable report			Lab No: X2300467
Relinquished By (Signature)	Organization $eta \subset \mathcal{A}$	Date/Time $6-3-0.3$	Received By (Signature) $\mathcal{H}_{\mathcal{U}}$	Organization \mathcal{CAS}	Date/Time 6-3-03	ANALYSIS TAT (Circle One)
Relinquished By (Signature)	Organization	Date/Time	Received By (Signature)	Organization	Date/Time	RUSH TAT - Surcharges Apply ☐ 24 Hours ☐ 48 Hours
Relinquished By (Signature)	Organization	Date/Time	Received By (Signature)	Organization	Date/Time	□ 72 Hours

SAMPLE RECEIPT:

INVOICE INFORMATION:

REPORT REQUIREMENTS

1. Routine Report

Shipping VIA: Shipping #: Condition:

P.O.# Bill To

charged as samples)

III. Data Validation Report (includes All Raw Data) IV. CLP Deliverable Report

II. Report (includes DUP.MS. MSD, as required, may be

Dissolved Cr regues (16 Filtering

SPECIAL INSTRUCTIONS/COMMENTS:

Columbia Analytical Services, Inc. Phoenix, AZ

Sample Receipt and Preservation Form

iample(s) R /OA's	eceived on:		date <u>/4</u> Plastic Bottles	time Jars		Sleeves	
MATRIX First Exti		WATE		date	time (s	oils only)	
Is first ex	traction/analysi	s holding time	expiration LESS	THAN 24 HOL	IRS(soil)/7 D	AYS (water)?	Yes □ No
If YES, c	hemist notified	on:	date	time	CI	nemist's Initials	
Are the cu If yes, how	andard turn-a-re stody seals pres many and whe mature and date	ent? re?	1			RUSH Yes □ Yes □	STANDAR No□ No□
Did all cor Are all cor Were the c Have VOA Temperatu	tainers arrive in tainer labels co orrect container 's been checked	n good condition mplete (i.e. pressured for the telepronal for the presentation receipt:	servation, samplests indicated? ce of air bubbles	ie ID)? ? (note problem:	in comment	Yes □ Yes □ Yes □ s) Yes □	No□
Did all cor Are all cor Were the c Have VOA Temperatu	tainers arrive in tainer labels co orrect container 's been checked re of sample(s)	n good condition mplete (i.e. pressured for the telepronal for the presentation receipt:	servation, samplests indicated? ce of air bubbles		in comment	Yes □ Yes □	No□ No□
Did all cor Are all cor Were the c Have VOA Temperatu	tainers arrive in tainer labels co orrect container 's been checked re of sample(s)	n good condition mplete (i.e. press used for the transfer the presentation receipt:	servation, samplests indicated? ce of air bubbles		VOA (Tes	Yes □ Yes □ Yes □ Yes □ Yes □ Vial pH Verifice Sted After Analy All Samples pH	No□ No□ No□ No□ No□ Sis) ≤ 2
Did all cor Are all cor Were the c Have VOA Temperatu plaination	tainers arrive in tainer labels co orrect container 's been checked re of sample(s) of discrepancies	n good condition mplete (i.e. pressured for the telepronal for the presentation receipt:	servation, samplests indicated? ce of air bubbles		VOA (Tes	Yes □ Yes □ Yes □ Yes □ Yes □ Vial pH Verifice Sted After Analy	No
Did all cor Are all cor Were the c Have VOA Temperatu plaination	tainers arrive in tainer labels co orrect container 's been checker re of sample(s) of discrepancies	n good condition mplete (i.e. press used for the transfer the presentation receipt:	servation, samplests indicated? ce of air bubbles		VOA (Tes	Yes □ Yes □ Yes □ Yes □ Yes □ Vial pH Verifice Sted After Analy All Samples pH	No
Did all cor Are all cor Are all cor Were the c Have VOA Temperatu plaination pH 12	Reagent NaOH	n good condition mplete (i.e. press used for the transfer the presentation receipt:	servation, samplests indicated? ce of air bubbles		VOA (Tes	Yes □ Yes □ Yes □ Yes □ Yes □ Vial pH Verifice Sted After Analy All Samples pH	No
Did all cor Are all cor Are all cor Were the c Have VOA Temperatu plaination pH 12 2	tainers arrive intainer labels co orrect container 's been checked re of sample(s) of discrepancies Reagent NaOH HNO ₃	n good condition mplete (i.e. press used for the transfer the presentation receipt:	servation, samplests indicated? ce of air bubbles		VOA (Tes	Yes □ Yes □ Yes □ Yes □ Yes □ Vial pH Verifice Sted After Analy All Samples pH	No
Did all cor Are all cor Were the c Have VOA Temperatur cplaination	Reagent NaOH	n good condition mplete (i.e. press used for the transfer the presentation receipt:	servation, samplests indicated? ce of air bubbles		VOA (Tes	Yes □ Yes □ Yes □ Yes □ Yes □ Vial pH Verifice Sted After Analy All Samples pH	No□ No□ No□ No□ No□ Sis) ≤ 2

April 17, 2003

Chuck Gordon BE&K Terranext 9830 S. 51st Street, Suite A-127 Phoenix, AZ 85044

Re: WVB / Project #03103154

Dear Chuck:

Enclosed are the results of the samples submitted to our laboratory on March 21, 2003. The samples were analyzed for Total & Dissolved Chromium by our Canoga Park, CA facility (L2300648). For your reference, the 8260 analyses have been assigned our service request number X2300257.

All analyses were performed according to our laboratory's quality assurance program. All results are intended to be considered in their entirety, and Columbia Analytical Services, Inc. (CAS) is not responsible for use of less than the complete report. Results apply only to the samples analyzed. Columbia Analytical Services, Inc. is certified for environmental analyses by the Arizona Department of Health Services (Certificate #AZ0136; and #AZ0497).

Please call if you have any questions. My extension is 223.

Respectfully submitted,

Columbia Analytical Services, Inc.

ery & Dutton

Tracy L. Dutton Laboratory Director

TLD/lm

Page 1 of <u>473</u>

Client:

BE&K Terranext

Project:

WVB / #03103154

Sample Matrix:

Water

Service Request No.:

X2300257

Date Received:

3/21/03

CASE NARRATIVE

All analyses were performed consistent with the quality assurance program of Columbia Analytical Services, Inc. (CAS). This report contains analytical results for sample(s) designated for Tier III data deliverables. When appropriate to the method, method blank results have been reported with each analytical test. Surrogate recoveries have been reported for all applicable organic analyses. Additional quality control analyses reported herein include: Matrix/Duplicate Matrix Spike (MS/DMS) and Laboratory Control Sample (LCS).

All EPA recommended holding times have been met for analyses in this sample delivery group.

The following difficulties were experienced during analysis of this batch:

The associated blank spike (XWG0300444-3 and XWG0300444-4) recovery of Bromochloromethane, Method 8260, was above laboratory acceptance limits. This compound was not detected in any of the samples analyzed in this batch.

Matrix spike (XWG0300444-1 and XWG0300444-2) recovery of several analytes for Method 8260B was low. The method control sample recovery was acceptable.

Matrix spike (XWG0300444-1) recovery of Hexachlorobutadiene, Method 8260B, was high. The method control sample recovery was acceptable.

MDate 4-18-03

Approved by

ARIZONA DATA QUALIFIERS

Method B	lank:
B1	Target analyte detected in method blank at or above the method reporting limit.
B2	Non-target analyte detected in method blank and sample, producing interference.
B3	Target analyte detected in calibration blank at or above the method reporting limit.
B4	Target analyte detected in blank at/above method acceptance criteria.
B5	Target analyte detected in method blank at or above the method reporting limit, but below trigger level or MCL.
В6	Target analyte detected in calibration blank at or above the method reporting limit, but below trigger level or MCI
В7	Target analyte detected in method blank at or above method reporting limit. Concentration found in the sample
	was 10 times above the concentration found in the method blank.
Confirmat	tion:
CI	Confirmatory analysis not performed as required by the method.
C2	Confirmatory analysis not performed. Confirmation of analyte presence established by site historical data.
(*3	Qualitative confirmation performed. See case narrative.
C4	Confirmatory analysis was past holding time.
C5	Confirmatory analysis was past holding time. Original result not confirmed.
Dilution:	
D1	Sample required dilution due to matrix interference. See case narrative.
D2	Sample required dilution due to high concentration of target analyte.
D3	Sample dilution required due to insufficient sample.
D4	Minimum reporting level (MRL) adjusted to reflect sample amount received and analyzed.
Estimated	concentration:
Εl	Concentration estimated. Analyte exceeded calibration range. Reanalysis not possible due to insufficient sample.
E2	Concentration estimated. Analyte exceeded calibration range. Reanalysis not performed due to sample matrix.
E3	Concentration estimated. Analyte exceeded calibration range. Reanalysis not performed due to holding time requirements.
E4	Concentration estimated. Analyte was detected below laboratory minimum reporting level (MRL).
E5	Concentration estimated. Analyte was detected below laboratory minimum reporting level (MRL), but not confirmed by alternate analysis.
E6	Confirmation estimated. Internal standard recoveries did not meet method acceptance criteria.
E7	Confirmation estimated. Internal standard recoveries did not meet laboratory acceptance criteria.
Hold Tim	
I-I 1	Sample analysis performed past holding time. See case narrative.
H2	Initial analysis within holding time. Reanalysis for the required dilution was past holding time.
H3	Sample was received and analyzed past holding time.
H4	Sample was extracted past required extraction holding time, but analyzed within analysis holding time. See case narrative.

The associated blank spike recovery was above laboratory acceptance limits. See case narrative.

Laboratory fortified blank/blank spike:

Lī

The associated blank spike recovery was below laboratory acceptance limits. See case narrative. 1.2 The associated blank spike recovery was above method acceptance limits. See case narrative. L3 The associated blank spike recovery was below method acceptance limits. See case narrative. L4 Note: The L1, L2, L3, & L4 footnotes need to be added to all corresponding analytes for a sample. Matrix spike: Matrix spike recovery was high, the method control sample recovery was acceptable. Μl Matrix spike recovery was low, the method control sample recovery was acceptable. M2The accuracy of the spike recovery value is reduced since the analyte concentration in the sample is M3 disproportionate to spike level. The method control sample recovery was acceptable. The analysis of the spiked sample required a dilution such that the spike concentrations was diluted below M4the reporting limit. The method control sample recovery was acceptable. Analyte concentration was determined by the method of standard addition (MSA). M5 Matrix spike recovery was high. Data reported per ADEQ policy 0154,000. M6 Matrix sipke recovery was low. Data reported per ADEQ policy 0154.000. M7 General: See case narrative. N1 N2See corrective action report. Sample quality: Sample integrity was not maintained. See case narrative. O1 Sample received with head space. O2Sample received with improper chemical preservation. Q3 Sample received and analyzed without chemical preservation. 04 Sample received with inadequate chemical preservation, but preserved by the laboratory. Q5 Sample was received above recommended temperature. **Q6** Sample inadequately dechlorinated. **Q**7 Insufficient sample received to meet QC requirements. QC requirements satisfy ADEQ policies 0154 and 0155. $\odot 8$ Insufficient sample received to meet QC requirements. 09 Sample received in inappropriate sample container. 010 Sample is heterogeneous. Sample homogeneity could not be readily achieved using routine laboratory practices. QH **Duplicates:** RPD exceeded the method control limit. See case narrative. R1 RPD exceeded the laboratory control limit. See case narrative. R2 Sample RPD between the primary and confirmatory analysis exceeded 40%. Per Method 8000B, the higher R3 value was reported. MS/MSD RPD exceeded the method control limit. Recovery met acceptance criteria. R4 MS/MSD RPD exceeded the laboratory control limit. Recovery met acceptance criteria. R.5 LFB/LFBD RPD exceeded the method control limit. Recovery met acceptance criteria. R6 LFB/LFBD RPD exceeded the laboratory control limit. Recovery met acceptance criteria. R7 Sample RPD exceeded the method control limit. **R8** Sample RPD exceeded the laboratory control limit. R9 Surrogate: Surrogate recovery was above laboratory acceptance limits, but within method acceptance limits. S1

S2

Surrogate recovery was above laboratory and method acceptance limits.

Surrogate recovery was above laboratory acceptance limits, but within method acceptance limits. No target 83 analytes were detected in the sample. Surrogate recovery was above laboratory and method acceptance limits. No target analytes were detected in the S4 sample Surrogate recovery was below laboratory acceptance limits, but within method acceptance limits. \$5 Surrogate recovery was below laboratory and method acceptance limits. Reextraction and/or reanalysis confirms 86 low recovery caused by matrix effect. Surrogate recovery was below laboratory and method acceptance limits. Unable to confirm matrix effect. 87 The analysis of the sample required a dilution such that the surrogate concentration was diluted below the method 88 acceptance criteria. The method control sample recovery was acceptable. The analysis of the sample required a dilution such that the surrogate concentration was diluted below the 20 laboratory acceptance criteria. The method control sample recovery was acceptable. Surrogate recovery was above laboratory and method acceptance limits. See case narrative. S10 Surrogate recovery was high. Data reported per ADEQ policy 0154.000. S11

Method/analyte discrepancies:

S12

- T1 Method promulgated by EPA, but not ADHS at this time.
- T2 Cited ADHS licensed method does not contain this analyte as part of method compound list.

Surrogate recovery was low. Data reported per ADEQ policy 0154.000.

- T3 Method not promulgated either by EPA or ADHS.
- T4 Tentatively identified compound. Concentration is estimated and based on the closest internal standard.

Calibration verification:

- V1 CCV recovery was above method acceptance limits. This target analyte was not detected in the sample.
- V2 CCV recovery was above method acceptance limits. This target analyte was detected in the sample. The sample could not be reanalyzed due to insufficient sample.
- V3 CCV recovery was above method acceptance limits. This target analyte was detected in the sample, but the sample was not reanalyzed. See case narrative.
- V4 ("CV recovery was below method acceptance limits. The sample could not be reanalyzed due to insufficient sample.
- V5 CCV recovery after a group of samples was above acceptance limits. This target analyte was not detected in the sample. Acceptable per EPA Method 8000B.
- V6 Data reported from one-point calibration criteria per ADEQ policy 0155.000.
- Calibration verification recovery was above the method control limit for this analyte however the average % difference or % drift for all the analytes met method criteria.
- Calibration verification recovery was below the method control limit for this analyte however the average % difference or % drift for all the analytes met method criteria.

Calibration:

W1 The % RSD for this compound was above 15%. The average % RSD for all compounds in the calibration met the 15% criteria as specified in EPA method 8000B.

Inorganic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.
- U The compound was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- i The MRL/MDL has been elevated due to a matrix interference.
- X See case narrative

Metals Data Qualifiers

- # The control limit criteria is not applicable. See case narrative.
- B The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.
- E The reported value is estimated because of the presence of matrix interference.
- M The duplicate injection precision was not met.
- N The Matrix Spike sample recovery is not within control limits. See case narrative.
- S The reported value was determined by the Method of Standard Additions (MSA).
- U The compound was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- W The post-digestion spike for furnace AA analysis is out of control limits, while sample absorbance is less than 50% of spike absorbance.
- i The MRL/MDL has been elevated due to a matrix interference.
- X See case narrative.
- * The duplicate analysis not within control limits. See case narrative.
- + The correlation coefficient for the MSA is less than 0.995.

Organic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- A A tentatively identified compound, a suspected aldol-condensation product.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result.
- C The analyte was qualitatively confirmed using GC/MS techniques, pattern recognition, or by comparing to historical data.
- D The reported result is from a dilution.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.
- N The result is presumptive. The analyte was tentatively identified, but a confirmation analysis was not performed.
- P The GC or HPLC confirmation criteria was exceeded. The relative percent difference is greater than 40% between the two analytical results (25% for CLP Pesticides).
- U The compound was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- The MRL/MDL has been elevated due to a chromatographic interference.
- X See case narrative.

Additional Petroleum Hydrocarbon Specific Qualifiers

- F The chromatographic lingerprint of the sample matches the elution pattern of the calibration standard.
- The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of lighter molecular weight constituents than the calibration standard.
- H The chromatographic lingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of heavier molecular weight constituents than the calibration standard.
- O The chromatographic fingerprint of the sample resembles an oil, but does not match the calibration standard.
- Y The chromatographic fingerprint of the sample resembles a petroleum product eluting in approximately the correct carbon range, but the elution pattern does not match the calibration standard.
- Z The chromatographic fingerprint does not resemble a petroleum product.

Organic Analysis: Volatile Organic Compounds

Summary Package

Sample and QC Results

Client: Project: BE&K Terranext WVB/#03103154 Service Request:

X2300257

Cover Page - Organic Analysis Data Package Volatile Organic Compounds

		Date	Date
Sample Name	Lab Code	Collected	Received
AVB40-0500-17093	X2300257-001	03/21/2003	03/21/2003
AVB40-0700-16096	X2300257-002	03/21/2003	03/21/2003
AVB77-0300-07119	X2300257-003	03/21/2003	03/21/2003
AVB77-0100-07098	X2300257-004	03/21/2003	03/21/2003
AVB77-0400-07099	X2300257-005	03/21/2003	03/21/2003
AVB40-0600-07095	X2300257-006	03/21/2003	03/21/2003
AVB40-0800-01095	X2300257-007	03/21/2003	03/21/2003
=::::	X2300257-008	03/21/2003	03/21/2003
AVB40-0804-1000	X2300257-008 X2300257-009	03/21/2003	03/21/2003
AVB40-0802-1000	AZ300Z37=009	03121/2003	05.21/2005

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed in the case narrative. Release of the data contained in this hardcopy data package and in the computer-readable data submitted on floppy diskette has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signature.

Date:

Analytical Results

Client:

BE&K Terranext WVB/#03103154

Project: Sample Matrix:

Water

Service Request: X2300257

Date Collected: 03/21/2003 **Date Received:** 03/21/2003

Volatile Organic Compounds

Sample Name:

AVB40-0500-17093

Lab Code:

X2300257-001

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

Name					Dilution	Date	Date	
Dichlorodifiluoromethane	Analyte Name	Result	Q	MRL	Factor	Extracted	Analyzed	Arizona Qualifier
Chloromethane		ND	U	3.0	1	04/02/03		
Vinyl Chloride ND U 1.0 1 04/02/03 04/02/03 Bromomethane ND U 1.0 1 04/02/03 04/02/03 Chloroethane ND U 1.0 1 04/02/03 04/02/03 Trichlorofluoromethane ND U 1.0 1 04/02/03 04/02/03 1,1,2-Trichlorotrifluoroethane ND U 1.0 1 04/02/03 04/02/03 1,1,2-Trichlorotrifluoroethane ND U 1.0 1 04/02/03 04/02/03 Acetone ND U 1.0 1 04/02/03 04/02/03 Acetone ND U 1.0 1 04/02/03 04/02/03 Garbon Disulfide ND U 2.0 1 04/02/03 04/02/03 Methylene Chloride ND U 1.0 1 04/02/03 04/02/03 Methyleter-Butyl Ether ND U 1.0 1 04/02/03 04/02/03 Methyleter-Butyl Ether ND U 0.50 1 04/02/03 04/02/03 Vinyl Acetate ND U 0.50 1 04/02/03 04/02/03 2,-Dichloroethane ND U 3.0 1 04/02/03 04/02/03 2,-Dichloropropane ND U 3.0 1 04/02/03 04/02/03 2,-Dic				2.0	1	04/02/03	04/02/03	
Bromomethane	=	ND	U	1.0	1	04/02/03	04/02/03	
No.		ND	IJ	1.0	1	04/02/03	04/02/03	
Trichlorofluoromethane					1	04/02/03	04/02/03	
1,1,2-Trichlorotrifluoroethane ND U 1,0 1 04/02/03 04/02/03 1,1-02/03 04/02/03 <	= -	ND	U	1.0	1	04/02/03	04/02/03	
1,1-Dichloroethene				1.0	1	04/02/03	04/02/03	
ND U					1	04/02/03	04/02/03	
Iodomethane	,				1	04/02/03	04/02/03	
Carbon Disulfide ND U 2.0 1 04/02/03 04/02/03 Methylene Chloride ND U 1.0 1 04/02/03 04/02/03 Methyl tert-Butyl Ether ND U 1.0 1 04/02/03 04/02/03 Itams-1,2-Dichloroethene ND U 0.50 1 04/02/03 04/02/03 J,1-Dichloroethane ND U 0.50 1 04/02/03 04/02/03 Vinyl Acetate ND U 3.0 1 04/02/03 04/02/03 2,2-Dichloropropane ND U 2.0 1 04/02/03 04/02/03 2,3-Dichloropropane ND U 8.0 1 04/02/03 04/02/03 2,3-Dichloropropane ND U 8.0 1 04/02/03 04/02/03 2,3-Dichloropropane ND U 0.50 1 04/02/03 04/02/03 1 Bromochloromethane ND U 0.50 1 04/02/03				2.0	l	04/02/03	04/02/03	
Methylene Chloride ND U 1.0 1 04/02/03 04/02/03 Methyl tert-Butyl Ether ND U 1.0 1 04/02/03 04/02/03 Itrans-1,2-Dichloroethene ND U 0.50 1 04/02/03 04/02/03 I,1-Dichloroethane ND U 0.50 1 04/02/03 04/02/03 Vinyl Acetate ND U 3.0 1 04/02/03 04/02/03 2,2-Dichloropropane ND U 2.0 1 04/02/03 04/02/03 2-Butanone (MEK) ND U 8.0 1 04/02/03 04/02/03 2-Butanone (MEK) ND U 8.0 1 04/02/03 04/02/03 2-Butanone (MEK) ND U 8.0 1 04/02/03 04/02/03 2-Butanone (MEK) ND U 0.50 1 04/02/03 04/02/03 2-Butanone (MEK) ND U 0.50 1 04/02/03 04/02/03 </td <td>- </td> <td></td> <td></td> <td></td> <td>1</td> <td>04/02/03</td> <td>04/02/03</td> <td></td>	- 				1	04/02/03	04/02/03	
Methyl tert-Butyl Ether ND U 1.0 1 04/02/03 04/02/03 1,1-Dichloroethane ND U 0.50 1 04/02/03 04/02/03 04/02/03 04/02/03 1,1-Dichloroethane ND U 0.50 1 04/02/03 04/02					1	04/02/03	04/02/03	
No.				1.0	1	04/02/03	04/02/03	
1,1-Dichloroethane					1	04/02/03	04/02/03	
Vinyl Acetate					l	04/02/03	04/02/03	
2,2-Dichloropropane ND U 2.0 1 04/02/03 04/02/03 2,2-Dichloropropane ND U 8.0 1 04/02/03 04/02/03 2-Butanone (MEK) ND U 0.50 1 04/02/03 04/02/03 cis-1,2-Dichloroethene ND U 0.50 1 04/02/03 04/02/03 Bromochloromethane ND U 0.50 1 04/02/03 04/02/03 Chloroform ND U 0.50 1 04/02/03 04/02/03 1,1,1-Trichloroethane ND U 0.50 1 04/02/03 04/02/03 1,1-Dichloropropene ND U 0.50 1 04/02/03 04/02/03 1,1-Dichloropropene ND U 0.50 1 04/02/03 04/02/03 1,2-Dichloroethane ND U 0.50 1 04/02/03 04/02/03 1,2-Dichloropropane ND U 0.50 1 04/02/03 04/02/03 1,2-Dichloropropane ND U 0.50 1 04/02/03 04/02/03				3.0	1	04/02/03	04/02/03	
2-Butanone (MEK) ND U 8.0 1 04/02/03 04/02/03 cis-1,2-Dichloroethene ND U 0.50 1 04/02/03 04/02/03 Bromochloromethane ND U 0.50 1 04/02/03 04/02/03 L1 Chloroform ND U 1.0 1 04/02/03 04/02/03 1,1,1-Trichloroethane ND U 0.50 1 04/02/03 04/02/03 Carbon Tetrachloride ND U 0.50 1 04/02/03 04/02/03 1,1-Dichloropropene ND U 0.50 1 04/02/03 04/02/03 Benzene ND U 0.50 1 04/02/03 04/02/03 Benzene ND U 0.50 1 04/02/03 04/02/03 1,2-Dichloroethane ND U 0.50 1 04/02/03 04/02/03 Trichloroethene ND U 0.50 1 04/02/03 04/02/03 Trichloroethene ND U 0.50 1 04/02/03 04/02/03 1,2-Dichloropropane ND U 0.50 1 04/02/03 04/02/03 Trichloroethene ND U 0.50 1 04/02/03 04/02/03 Dibromomethane ND U 0.50 1 04/02/03 04/02/03 Dibromomethane ND U 0.50 1 04/02/03 04/02/03 Bromodichloromethane ND U 0.50 1 04/02/03 04/02/03 Cis-1,3-Dichloropropene ND U 0.50 1 04/02/03 04/02/03 cis-1,3-Dichloropropene ND U 0.50 1 04/02/03 04/02/03 4-Methyl-2-pentanone (MIBK) ND U 8.0 1 04/02/03 04/02/03					1	04/02/03	04/02/03	
cis-1,2-Dichloroethene ND U 0.50 1 04/02/03 04/02/03 Bromochloromethane ND U 0.50 1 04/02/03 04/02/03 L1 Chloroform ND U 1.0 1 04/02/03 04/02/03 L1 1,1,1-Trichloroethane ND U 0.50 1 04/02/03 04/02/03 Carbon Tetrachloride ND U 0.50 1 04/02/03 04/02/03 1,1-Dichloropropene ND U 0.50 1 04/02/03 04/02/03 1,1-Dichloropropene ND U 0.50 1 04/02/03 04/02/03 1,2-Dichloropropene ND U 0.50 1 04/02/03 04/02/03 1,2-Dichloropropane ND U 0.50 1 04/02/03 04/02/03 1,2-Dichloropropane ND U 0.50 1 04/02/03 04/02/03 1,2-Dichloropropane ND U 0.50 1					1	04/02/03	04/02/03	
ND U 0.50 1 04/02/03 04/02/03 L1		ND	U	0.50	1	04/02/03	04/02/03	
Chloroform ND U 1.0 1 04/02/03 04/02/03 1,1,1-Trichloroethane ND U 0.50 1 04/02/03 04/02/03 Carbon Tetrachloride ND U 0.50 1 04/02/03 04/02/03 1,1-Dichloropropene ND U 0.50 1 04/02/03 04/02/03 Benzene ND U 0.50 1 04/02/03 04/02/03 1,2-Dichloroethane ND U 0.50 1 04/02/03 04/02/03 Trichloroethene ND U 0.50 1 04/02/03 04/02/03 1,2-Dichloropropane ND U 0.50 1 04/02/03 04/02/03 1,2-Dichloropropane ND U 0.50 1 04/02/03 04/02/03 1,2-Dichloropropane ND U 0.50 1 04/02/03 04/02/03 Bromodichloromethane ND U 0.50 1 04/02/03 04/02/03 cis-1,3-Dichloropropene ND U 0.50 1 04/02/03 04/02/03				0.50	1	04/02/03	04/02/03	L1
1,1,1-Trichloroethane ND U 0.50 1 04/02/03 04/02/03 Carbon Tetrachloride ND U 0.50 1 04/02/03 04/02/03 1,1-Dichloropropene ND U 0.50 1 04/02/03 04/02/03 Benzene ND U 0.50 1 04/02/03 04/02/03 1,2-Dichloroethane ND U 0.50 1 04/02/03 04/02/03 Trichloroethene ND U 0.50 1 04/02/03 04/02/03 1,2-Dichloropropane ND U 0.50 1 04/02/03 04/02/03 1,2-Dichloropropane ND U 0.50 1 04/02/03 04/02/03 04/02/03 04/02/03 04/02/03 04/02/03 04/02/03 04/02/03 04/02/03 04/02/03 04/02/03 04/04/03/03 04/02/03 04/02/03 04/02/03 04/02/03 04/02/03 04/02/03 04/02/03 04/02/03 04/02/03 04/02/03 04/02/03 04/02/03 04/02/03 04/02/03 04/02/03 04/02/03 04/02/03		ND	U	1.0	1	04/02/03	04/02/03	
Carbon Tetrachloride ND U 0.50 1 04/02/03 04/02/03 1,1-Dichloropropene ND U 0.50 1 04/02/03 04/02/03 04/02/03 1,2-Dichloroethane ND U 0.50 1 04/02/03 04/02/03 04/02/03 1,2-Dichloroethane ND U 0.50 1 04/02/03 04/02/03 1,2-Dichloropropane ND U 0.50 1 04/02/03 04/02/03 1,2-Dichloropropane ND U 0.50 1 04/02/03 04/02/03 1,2-Dichloropropane ND U 0.50 1 04/02/03 04/02/03 Dibromomethane ND U 0.50 1 04/02/03 04/02/03 Bromodichloromethane ND U 0.50 1 04/02/03 04/02/03 04/02/03 04/02/03 04/02/03 04/02/03 04/02/03 04/02/03 04/02/03 04/02/03 04/02/03 04/02/03 04/02/03 04/02/03 04/02/03 04/02/03 04/02/03		ND	U	0.50	1	04/02/03	04/02/03	
Interest of the following of the f				0.50	1	04/02/03		
Benzene				0.50	1	04/02/03	04/02/03	
1,2-Dichloroethane		ND	U	0.50	1	04/02/03	04/02/03	
Trichloroethene ND U 0.50 1 04/02/03 04/02/03 1,2-Dichloropropane ND U 0.50 1 04/02/03 04/02/03 Dibromomethane ND U 0.50 1 04/02/03 04/02/03 Bromodichloromethane ND U 0.50 1 04/02/03 04/02/03 cis-1,3-Dichloropropene ND U 0.50 1 04/02/03 04/02/03 4-Methyl-2-pentanone (MIBK) ND U 8.0 1 04/02/03 04/02/03				0.50	1	04/02/03		
1,2-Dichloropropane ND U 0.50 1 04/02/03 04/02/03 Dibromomethane ND U 0.50 1 04/02/03 04/02/03 Bromodichloromethane ND U 0.50 1 04/02/03 04/02/03 cis-1,3-Dichloropropene ND U 0.50 1 04/02/03 04/02/03 4-Methyl-2-pentanone (MIBK) ND U 8.0 1 04/02/03 04/02/03				0.50	1	04/02/03	04/02/03	
Dibromomethane ND U 0.50 1 04/02/03 04/02/03 Bromodichloromethane ND U 0.50 1 04/02/03 04/02/03 cis-1,3-Dichloropropene ND U 0.50 1 04/02/03 04/02/03 4-Methyl-2-pentanone (MIBK) ND U 8.0 1 04/02/03 04/02/03		ND	U	0.50	1			
Bromodichloromethane ND U 0.50 1 04/02/03 04/02/03 cis-1,3-Dichloropropene ND U 0.50 1 04/02/03 04/02/03 4-Methyl-2-pentanone (MIBK) ND U 8.0 1 04/02/03 04/02/03 04/02/03 04/02/03 04/02/03 04/02/03 04/02/03	,			0.50	1			
cis-1,3-Dichloropropene ND U 0.50 1 04/02/03 04/02/03 4-Methyl-2-pentanone (MIBK) ND U 8.0 1 04/02/03 04/02/03	—	ND	U	0.50	1	04/02/03	04/02/03	
4-Methyl-2-pentanone (MIBK) ND U 8.0 1 04/02/03 04/02/03		ND	U	0.50	1			
$1 \qquad \Delta A/\Delta A/\Delta A/\Delta A/\Delta A/\Delta A/\Delta A/\Delta A/\Delta A/\Delta A$				8.0	1			
I UNDOID	Toluene	ND	U	0.50	1	04/02/03	04/02/03	

Comments:

000009

Printed: 04/07/2003 13:03:23 LASTEALTH\CRYSTAL.RPT\Formim.rpt

Merged

Form 1A - Organic

Page 1 of 3

SuperSet Reference: RR3162

Analytical Results

Client: Project: BE&K Terranext WVB/#03103154

Sample Matrix:

Water

Service Request: X2300257

Date Collected: 03/21/2003 Date Received: 03/21/2003

Volatile Organic Compounds

Sample Name:

AVB40-0500-17093

Lab Code:

X2300257-001

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L NA Basis: Level: Low

Date Dilution Date Analyzed Arizona Qualifier Extracted Factor MRL Result Q Analyte Name 04/02/03 04/02/03 ND U 1.0 1 trans-1,3-Dichloropropene 04/02/03 04/02/03 1 1.0 ND U 1,1,2-Trichloroethane 04/02/03 1 04/02/03 0.50 ND U Tetrachloroethene 04/02/03 1 04/02/03 5.0 ND U 2-Hexanone 04/02/03 04/02/03 1 ND U 1.0 1.3-Dichloropropane 04/02/03 04/02/03 1 0.50 Dibromochloromethane ND U 04/02/03 04/02/03 1 ND U 0.50 1.2-Dibromoethane 04/02/03 04/02/03 1 ND U 0.50 Chlorobenzene 04/02/03 04/02/03 1 0.50 ND U 1,1,1,2-Tetrachloroethane 04/02/03 04/02/03 1 ND U 0.50 Ethylbenzene 04/02/03 04/02/03 1 1.0 ND U m,p-Xylenes 04/02/03 04/02/03 1 ND U 0.50 o-Xylene 04/02/03 04/02/03 1 0.50 ND U Styrene 04/02/03 04/02/03 1 0.50ND U Isopropylbenzene 04/02/03 04/02/03 1 ND U 0.50 Bromobenzene 04/02/03 04/02/03 1 1.0 ND U 1.2.3-Trichloropropane 04/02/03 04/02/03 1 ND U 0.50 n-Propylbenzene 04/02/03 04/02/03 1 0.50 ND U 2-Chlorotoluene 04/02/03 1 04/02/03 0.50 ND U 4-Chlorotoluene 04/02/03 04/02/03 1 ND U 0.50 1.3.5-Trimethylbenzene 04/02/03 04/02/03 1 0.50 ND U tert-Butylbenzene 04/02/03 04/02/03 1 ND U 0.501.2.4-Trimethylbenzene 04/02/03 1 04/02/03 0.50 ND U sec-Butylbenzene 1 04/02/03 04/02/03 0.50 ND U 1.3-Dichlorobenzene 04/02/03 1 04/02/03 ND U 0.50 4-Isopropyltoluene 04/02/03 04/02/03 1 0.50 ND U Bromoform 04/02/03 04/02/03 l ND U 1.0 1,1,2,2-Tetrachloroethane 04/02/03 04/02/03 1 0.50 ND U 1,4-Dichlorobenzene 04/02/03 04/02/03 1 0.50 ND U 1.2-Dichlorobenzene 04/02/03 04/02/03 1 ND U 0.50 n-Butylbenzene 04/02/03 1 04/02/03 5.0 ND U 1,2-Dibromo-3-chloropropane 04/02/03 1 04/02/03 0.50 ND U 1,2,4-Trichlorobenzene 04/02/03 04/02/03 1 0.50 ND U Hexachlorobutadiene

Comments:

000016

Merged

Form 1A - Organic

Page SuperSet Reference: RR3162

2. of

Analytical Results

Client: Project: BE&K Terranext WVB/#03103154

Sample Matrix:

Water

Service Request: X2300257

Date Collected: 03/21/2003

Date Received: 03/21/2003

Volatile Organic Compounds

Sample Name:

AVB40-0500-17093

Lab Code:

X2300257-001

Extraction Method: EPA 5030B

1,2,3-Trichlorobenzene

Analysis Method:

8260B

Units: ug/L Basis: NA

Arizona Qualifier

Level: Low

			Dilution	Date	Date
Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed .
Naphthalene	ND U	3.0	The state of the s	04/02/03	04/02/03
1.2.3-Trichlorobenzene	ND U	0.50	1	04/02/03	04/02/03

Surrogate Name	%Rec	Control Limits	Date Analyzed	Arizona Qualifier	
Dibromofluoromethane	107	84-113	04/02/03		
Toluene-d8	104	68-126	04/02/03		
4-Bromofluorobenzene	95	79-113	04/02/03		

Comments:

Page

3 of 3

Analytical Results

Client: Project: BE&K Terranext WVB/#03103154

Sample Matrix:

Water

Service Request: X2300257

Date Collected: 03/21/2003

Date Received: 03/21/2003

Volatile Organic Compounds

Sample Name:

AVB40-0700-16096

Lab Code:

X2300257-002

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

A N	Result	0	MRL	Dilution Factor	Date Extracted	Date	Arizona Qualifier
Analyte Name					04/02/03	04/02/03	Attzona Quanner
Dichlorodifluoromethane	ND		3.0	1 1	04/02/03	04/02/03	
Chloromethane	ND		2.0 1.0	1	04/02/03	04/02/03	
Vinyl Chloride	ND						MA MYSTER .
Bromomethane	ND		1.0	1	04/02/03	04/02/03	
Chloroethane	ND		1.0	1	04/02/03	04/02/03	
Trichlorofluoromethane	ND		1.0	1	04/02/03	04/02/03	
1,1,2-Trichlorotrifluoroethane	ND	U	1.0	1	04/02/03	04/02/03	
1,1-Dichloroethene	ND		1.0	1	04/02/03	04/02/03	
Acetone	ND	U	10	1	04/02/03	04/02/03	
Iodomethane	ND	U	2.0	1	04/02/03	04/02/03	
Carbon Disulfide	ND	U	2.0	1	04/02/03	04/02/03	
Methylene Chloride	ND	U	1.0	1	04/02/03	04/02/03	
Methyl tert-Butyl Ether	ND	IJ	1.0	1	04/02/03	04/02/03	
trans-1,2-Dichloroethene	ND		0.50	1	04/02/03	04/02/03	
1,1-Dichloroethane	ND		0.50	1	04/02/03	04/02/03	
Vinyl Acetate	ND	IJ	3.0	1	04/02/03	04/02/03	
2,2-Dichloropropane	ND		2.0	1	04/02/03	04/02/03	
2-Butanone (MEK)	ND		8.0	1	04/02/03	04/02/03	
cis-1,2-Dichloroethene	ND		0.50	1	04/02/03	04/02/03	
Bromochloromethane	ND		0.50	1	04/02/03	04/02/03	L1
Chloroform	ND		1.0	1	04/02/03	04/02/03	
1,1,1-Trichloroethane	ND		0.50	1	04/02/03	04/02/03	
Carbon Tetrachloride	ND		0.50	1	04/02/03	04/02/03	
1,1-Dichloropropene	ND		0.50	1	04/02/03	04/02/03	
	ND		0.50	1	04/02/03	04/02/03	
Benzene 1,2-Dichloroethane	ND		0.50	1	04/02/03	04/02/03	
Trichloroethene	14	U	0.50	1	04/02/03	04/02/03	
	ND	T T	0.50		04/02/03	04/02/03	
1,2-Dichloropropane			0.50	1	04/02/03	04/02/03	
Dibromomethane	ND ND		0.50	1	04/02/03	04/02/03	
Bromodichloromethane						04/02/03	
cis-1,3-Dichloropropene	ND		0.50	1	04/02/03 04/02/03	04/02/03	
4-Methyl-2-pentanone (MIBK)	ND		8.0	<u>l</u> 1	04/02/03	04/02/03	
Toluene	ND	U	0.50	<u>.I</u>	04/02/03	04/02/03	

Comments:

Printed: 04/07/2003 13:03:34 L:\STEALTH\CRYSTAL.RPT\Form\im.rpt

Merged

000012 Form 1A - Organic

Page 1 of 3

Analytical Results

Client: Project: BE&K Terranext WVB/#03103154

Sample Matrix:

Water

Service Request: X2300257

Date Collected: 03/21/2003

Date Received: 03/21/2003

Volatile Organic Compounds

Sample Name:

AVB40-0700-16096

Lab Code:

X2300257-002

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

				Dilution	Date	Date	
Analyte Name	Result	Q	MRL	Factor	Extracted	Analyzed	Arizona Qualifier
trans-1,3-Dichloropropene	ND	U	1.0	1	04/02/03	04/02/03	,
1,1,2-Trichloroethane	ND	U	1.0	1	04/02/03	04/02/03	
Tetrachloroethene	16		0.50	1	04/02/03	04/02/03	
2-Hexanone	ND	U	5.0	1	04/02/03	04/02/03	
1,3-Dichloropropane	ND		1.0	1	04/02/03	04/02/03	
Dibromochloromethane	ND	U	0.50	1	04/02/03	04/02/03	
1,2-Dibromoethane	ND	U	0,50	1	04/02/03	04/02/03	
Chlorobenzene	ND	Ŭ	0.50	1	04/02/03	04/02/03	
1,1,1,2-Tetrachloroethane	ND	U	0.50	1	04/02/03	04/02/03	
Ethylbenzene	ND	U	0.50	1	04/02/03	04/02/03	
m,p-Xylenes	ND	U	1.0	1	04/02/03	04/02/03	
o-Xylene	ND	U	0.50	1	04/02/03	04/02/03	
Styrene	ND	U	0.50	1	04/02/03	04/02/03	
Isopropylbenzene	ND	U	0.50	1	04/02/03	04/02/03	
Bromobenzene	ND	U	0.50	1	04/02/03	04/02/03	
1,2,3-Trichloropropane	ND	U	1.0	1	04/02/03	04/02/03	
n-Propylbenzene	ND	Ŭ	0.50	1	04/02/03	04/02/03	
2-Chlorotoluene	ND	U	0.50	1	04/02/03	04/02/03	
4-Chlorotoluene	ND	U	0.50	1	04/02/03	04/02/03	
1,3,5-Trimethylbenzene	ND	U	0.50	1	04/02/03	04/02/03	
tert-Butylbenzene	ND	U	0.50	1	04/02/03	04/02/03	
1,2,4-Trimethylbenzene	ND	U	0.50	1	04/02/03	04/02/03	
sec-Butylbenzene	ND	U	0,50	1	04/02/03	04/02/03	
1,3-Dichlorobenzene	ND	U	0.50	1	04/02/03	04/02/03	
4-Isopropyltoluene	ND	U	0.50	1	04/02/03	04/02/03	
Bromoform	ND	U	0.50	1	04/02/03	04/02/03	
1,1,2,2-Tetrachloroethane	ND	U	1.0	1	04/02/03	04/02/03	
1,4-Dichlorobenzene	ND	U	0.50	1	04/02/03	04/02/03	
1,2-Dichlorobenzene	ND	U	0.50	1	04/02/03	04/02/03	
n-Butylbenzene	ND	U	0.50	1	04/02/03	04/02/03	
1,2-Dibromo-3-chloropropane	ND	U	5.0	l	04/02/03	04/02/03	
1,2,4-Trichlorobenzene	ND		0.50	1	04/02/03	04/02/03	
Hexachlorobutadiene	ND	U	0.50	1	04/02/03	04/02/03	

Comments:

000013

Form 1A - Organic

Page 2 of 3

Printed: 04/07/2003 13:03:34 $\verb|L:\STEALTH|\CRYSTAL.RPT\\\Form\Im.rpt$

Merged

SuperSet Reference: RR3162

Analytical Results

Client: Project: BE&K Terranext WVB/#03103154

Sample Matrix:

Water

Service Request: X2300257

Date Collected: 03/21/2003 **Date Received:** 03/21/2003

Volatile Organic Compounds

Sample Name:

AVB40-0700-16096

Lab Code:

X2300257-002

Extraction Method:

1,2,3-Trichlorobenzene

EPA 5030B

Analysis Method:

8260B

Units: ug/L

Basis: NA

Level: Low

				Dilution	Date	Date	
Analyte Name	Result	Q	MRL	Factor	Extracted	Analyzed	Arizona Qualifier
Naphthalene	ND	U	3.0	1	04/02/03	04/02/03	
1.2.3-Trichlorobenzene	ND	U	0.50	1	04/02/03	04/02/03	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Arizona Qualifier	
Dibromofluoromethane	101	84-113	04/02/03		
Toluene-d8	101	68-126	04/02/03		
4-Bromofluorobenzene	95	79-113	04/02/03		

Comments:

Printed: 04/07/2003 13:03:34 LASTEALTH/CRYSTAL.RPT/Form/Im.rpt

000014

Merged

Form 1A - Organic

Page 3 of 3

SuperSet Reference: RR3162

Analytical Results

Client: Project: BE&K Terranext WVB/#03103154

Sample Matrix:

Water

Service Request: X2300257 Date Collected: 03/21/2003

Date Received: 03/21/2003

Volatile Organic Compounds

Sample Name:

AVB77-0300-07119

Lab Code:

X2300257-003

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

				Dilution	Date	Date	
Analyte Name	Result	Q	MRL	Factor	Extracted	Analyzed	Arizona Qualifier
Dichlorodifluoromethane	ND	U	3.0	1	04/02/03	04/02/03	•
Chloromethane	ND	U	2.0	1	04/02/03	04/02/03	
Vinyl Chloride	ND	U	1.0	1	04/02/03	04/02/03	
Bromomethane	ND	U	1.0	1	04/02/03	04/02/03	
Chloroethane	ND	U	1.0	1	04/02/03	04/02/03	
Trichlorofluoromethane	ND	U	1.0	1	04/02/03	04/02/03	
1,1,2-Trichlorotrifluoroethane	ND	U	1.0	1	04/02/03	04/02/03	
1,1-Dichloroethene	ND	U	1.0	1	04/02/03	04/02/03	
Acetone	ND	U	10	1	04/02/03	04/02/03	
Iodomethane	ND	U	2.0	1	04/02/03	04/02/03	
Carbon Disulfide	ND	U	2.0	1	04/02/03	04/02/03	
Methylene Chloride	ND	U	1.0	1	04/02/03	04/02/03	
Methyl tert-Butyl Ether	ND	U	1.0	1	04/02/03	04/02/03	
trans-1,2-Dichloroethene	ND	U	0.50	1	04/02/03	04/02/03	
1,1-Dichloroethane	ND	U	0.50	1	04/02/03	04/02/03	
Vinyl Acetate	ND	U	3.0	1	04/02/03	04/02/03	
2,2-Dichloropropane	ND	U	2.0	1	04/02/03	04/02/03	
2-Butanone (MEK)	ND	U	0.8	1	04/02/03	04/02/03	
cis-1,2-Dichloroethene	ND	U	0.50	1	04/02/03	04/02/03	
Bromochloromethane	ND	U	0.50	1	04/02/03		Ll
Chloroform	1.1		1.0	1	04/02/03	04/02/03	
1,1,1-Trichloroethane	ND	U	0.50	1	04/02/03	04/02/03	
Carbon Tetrachloride	ND	U	0.50	1	04/02/03	04/02/03	
1,1-Dichloropropene	ND	U	0.50	1	04/02/03	04/02/03	
Benzene	0.56		0.50	1	04/02/03	04/02/03	
1,2-Dichloroethane	ND	U	0.50	1	04/02/03	04/02/03	
Trichloroethene	1.7		0.50	1	04/02/03	04/02/03	
1,2-Dichloropropane	ND	U	0.50	I	04/02/03	04/02/03	
Dibromomethane	ND	U	0.50	1	04/02/03	04/02/03	
Bromodichloromethane	0.97		0.50	1	04/02/03	04/02/03	
cis-1,3-Dichloropropene	ND	U	0.50	1	04/02/03	04/02/03	
4-Methyl-2-pentanone (MIBK)		U	8.0	1	04/02/03	04/02/03	
Toluene	ND	U	0.50	1	04/02/03	04/02/03	

Comments:

RR3162

Analytical Results

Client: Project:

BE&K Terranext WVB/#03103154

Sample Matrix:

Water

Service Request: X2300257

Date Collected: 03/21/2003

Date Received: 03/21/2003

Volatile Organic Compounds

Sample Name:

AVB77-0300-07119

Lab Code:

X2300257-003

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

A. V. N.	Result	0	MRL	Dilution Factor	Date Extracted	Date Analyzed	Arizona Qualifier
Analyte Name			1.0	1	04/02/03	04/02/03	zareona Zaminor
trans-1,3-Dichloropropene	ND ND		1.0	1	04/02/03	04/02/03	
1,1,2-Trichloroethane	2.0	U	0.50	1	04/02/03	04/02/03	
Tetrachloroethene							
2-Hexanone	ND		5.0	1	04/02/03	04/02/03	
1,3-Dichloropropane	ND	U	1.0	1	04/02/03	04/02/03	
Dibromochloromethane	0.60		0.50	1	04/02/03	04/02/03	
1,2-Dibromoethane	ND		0.50	1	04/02/03	04/02/03	
Chlorobenzene	ND		0.50	1	04/02/03	04/02/03	
1,1,1,2-Tetrachloroethane	ND	U	0.50	1	04/02/03	04/02/03	
Ethylbenzene	ND	U	0.50	1	04/02/03	04/02/03	
m,p-Xylenes	ND	U	1.0	1	04/02/03	04/02/03	
o-Xylene	ND	U	0.50	1	04/02/03	04/02/03	
Styrene	ND	IJ	0.50	1	04/02/03	04/02/03	
Isopropylbenzene	ND		0.50	1	04/02/03	04/02/03	
Bromobenzene	ND		0.50	1	04/02/03	04/02/03	
	ND		1.0	1	04/02/03	04/02/03	
1,2,3-Trichloropropane n-Propylbenzene	ND		0.50	î	04/02/03	04/02/03	
2-Chlorotoluene	ND		0.50	Î	04/02/03	04/02/03	
	ND		0.50	1	04/02/03	04/02/03	
4-Chlorotoluene	ND ND		0.50	1	04/02/03	04/02/03	
1,3,5-Trimethylbenzene	ND ND		0.50	1	04/02/03	04/02/03	
tert-Butylbenzene				-			
1,2,4-Trimethylbenzene	ND		0.50	1	04/02/03	04/02/03 04/02/03	
sec-Butylbenzene	ND		0.50	1	04/02/03	04/02/03	
1,3-Dichlorobenzene	ND		0.50	1	04/02/03		
4-Isopropyltoluene	ND	U	0.50	1	04/02/03	04/02/03	
Bromoform	0.75		0.50	1	04/02/03	04/02/03	
1,1,2,2-Tetrachloroethane	ND	U	1.0	1	04/02/03	04/02/03	
1,4-Dichlorobenzene	ND	U	0.50	1	04/02/03	04/02/03	•
1,2-Dichlorobenzene	ND	U	0.50	1	04/02/03	04/02/03	
n-Butylbenzene	ND	U	0.50	1	04/02/03	04/02/03	
1,2-Dibromo-3-chloropropane	ND	U	5.0	1	04/02/03	04/02/03	
1,2,4-Trichlorobenzene	ND		0.50	1	04/02/03	04/02/03	
Hexachlorobutadiene	ND		0.50	1	04/02/03	04/02/03	
1111000110100101							MINOR OF THE PARTY

Comments:

Analytical Results

Client: Project: BE&K Terranext WVB/#03103154

Sample Matrix:

Water

Service Request: X2300257

Date Collected: 03/21/2003 **Date Received:** 03/21/2003

Volatile Organic Compounds

Sample Name:

AVB77-0300-07119

Lab Code:

X2300257-003

Units: ug/L Basis: NA

Extraction Method:

EPA 5030B

Level: Low

Analysis Method:

8260B

			Dilution	Date	Date	
Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed	Arizona Qualifier
Naphthalene	ND U	3.0	1	04/02/03	04/02/03	
1,2,3-Trichlorobenzene	ND U	0.50	1	04/02/03	04/02/03	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Arizona Qualifier	
Dibromofluoromethane	104	84-113	04/02/03		
Toluene-d8	106	68-126	04/02/03		
4-Bromofluorobenzene	95	79-113	04/02/03		

Comments:

Merged

Analytical Results

Client: Project:

BE&K Terranext WVB/#03103154

Sample Matrix:

Water

Sarvica Da

Data

Data

Service Request: X2300257

Date Collected: 03/21/2003

Date Collected: 03/21/2003 **Date Received:** 03/21/2003

Volatile Organic Compounds

Dilution

Sample Name:

AVB77-0100**-**07098

Lab Code:

X2300257-004

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

			Dilution	Date	Date	
Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed	Arizona Qualifier
Dichlorodifluoromethane	ND U	3.0	1	04/02/03	04/02/03	
Chloromethane	ND U	2.0	1	04/02/03	04/02/03	
Vinyl Chloride	ND U	1.0	1	04/02/03	04/02/03	
Bromomethane	ND U	1.0	1	04/02/03	04/02/03	
Chloroethane	ND U	1.0	1	04/02/03	04/02/03	
Trichlorofluoromethane	ND U	1.0	1	04/02/03	04/02/03	
1,1,2-Trichlorotrifluoroethane	ND U	1.0	I	04/02/03	04/02/03	
1,1-Dichloroethene	ND U	1.0	1	04/02/03	04/02/03	
Acetone	ND U	10	1	04/02/03	04/02/03	
Iodomethane	ND U	2.0	1	04/02/03	04/02/03	
Carbon Disulfide	ND U	2.0	1	04/02/03	04/02/03	
Methylene Chloride	ND U	1.0	1	04/02/03	04/02/03	
Methyl tert-Butyl Ether	ND U	1.0	1	04/02/03	04/02/03	
trans-1,2-Dichloroethene	ND U	0.50	1	04/02/03	04/02/03	
1,1-Dichloroethane	ND U	0.50	1	04/02/03	04/02/03	
Vinyl Acetate	ND U	3.0	1	04/02/03	04/02/03	
2,2-Dichloropropane	ND U	2.0	1	04/02/03	04/02/03	
2-Butanone (MEK)	ND U	8.0	1	04/02/03	04/02/03	
cis-1,2-Dichloroethene	ND U	0.50	1	04/02/03	04/02/03	
Bromochloromethane	ND U	0.50	1	04/02/03		L1
Chloroform	ND U	1.0	1	04/02/03	04/02/03	
1,1,1-Trichloroethane	ND U	0.50	1	04/02/03	04/02/03	
Carbon Tetrachloride	ND U	0.50	1.	04/02/03	04/02/03	
1,1-Dichloropropene	ND U	0.50	1	04/02/03	04/02/03	
Benzene	ND U	0.50	1	04/02/03	04/02/03	
1,2-Dichloroethane	ND U	0.50	1	04/02/03	04/02/03	
Trichloroethene	11	0.50	1	04/02/03	04/02/03	
1,2-Dichloropropane	ND U	0.50	1	04/02/03	04/02/03	
Dibromomethane	ND U	0.50	1	04/02/03	04/02/03	
Bromodichloromethane	ND U	0.50	1	04/02/03	04/02/03	
cis-1,3-Dichloropropene	ND U	0.50	1	04/02/03	04/02/03	
4-Methyl-2-pentanone (MIBK)	ND U	8.0	1	04/02/03	04/02/03	
Toluene	ND U	0.50	l	04/02/03	04/02/03	

Comments:

Printed: 04/07/2003 13:03:56 LASTEALTH\CRYSTAL.RPT\Form\m.rpt 000018

Merged

Form 1A - Organic

Page 1 of 3

RR3162

Analytical Results

Client: Project: BE&K Terranext WVB/#03103154

Sample Matrix:

Water

Service Request: X2300257

Date Collected: 03/21/2003 **Date Received:** 03/21/2003

Volatile Organic Compounds

Sample Name:

AVB77-0100-07098

Lab Code:

X2300257-004

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

Analyte Name Result Q MRL Factor trans-1,3-Dichloropropene ND U 1.0 1 1,1,2-Trichloroethane ND U 1.0 1 Tetrachloroethene 3.5 0.50 1 2-Hexanone ND U 5.0 1 1,3-Dichloropropane ND U 1.0 1	04/02/03 04/02/03 04/02/03 04/02/03 04/02/03 04/02/03	04/02/03 04/02/03 04/02/03 04/02/03 04/02/03	Arizona Qualifier
1,1,2-Trichloroethane ND U 1.0 1 Tetrachloroethene 3.5 0.50 1 2-Hexanone ND U 5.0 1	04/02/03 04/02/03 04/02/03 04/02/03	04/02/03 04/02/03 04/02/03	
Tetrachloroethene 3.5 0.50 1 2-Hexanone ND U 5.0 1	04/02/03 04/02/03 04/02/03	04/02/03 04/02/03	
2-Hexanone ND U 5.0 1	04/02/03 04/02/03	04/02/03	
	04/02/03		
1.3-Dichloropropane ND U 1.0 1		04/02/03	
x,0 = 1111070P-1P	04/02/03		
Dibromochloromethane ND U 0.50 1		04/02/03	
1,2-Dibromoethane ND U 0.50 1	04/02/03	04/02/03	
Chlorobenzene ND U 0.50 1	04/02/03	04/02/03	
1,1,1,2-Tetrachloroethane ND U 0.50	04/02/03	04/02/03	
Ethylbenzene ND U 0.50 1	04/02/03	04/02/03	
m,p-Xylenes ND U 1.0 1	04/02/03	04/02/03	
o-Xylene ND U 0.50 l	04/02/03	04/02/03	
Styrene ND U 0.50 1	04/02/03	04/02/03	
Isopropylbenzene ND U 0.50 1	04/02/03	04/02/03	
Bromobenzene ND U 0.50 1	04/02/03	04/02/03	
1,2,3-Trichloropropane ND U 1.0 1	04/02/03	04/02/03	
n-Propylbenzene ND U 0.50 l	04/02/03	04/02/03	
2-Chlorotoluene ND U 0.50 1	04/02/03	04/02/03	
4-Chlorotoluene ND U 0.50 1	04/02/03	04/02/03	
1,3,5-Trimethylbenzene ND U 0.50 1	04/02/03	04/02/03	
tert-Butylbenzene ND U 0.50 1	04/02/03	04/02/03	
1,2,4-Trimethylbenzene ND U 0.50 1	04/02/03	04/02/03	
sec-Butylbenzene ND U 0.50 1	04/02/03	04/02/03	
1,3-Dichlorobenzene ND U 0.50 1	04/02/03	04/02/03	
4-Isopropyltoluene ND U 0.50 1	04/02/03	04/02/03	
Bromoform ND U 0.50 1	04/02/03	04/02/03	
1,1,2,2-Tetrachloroethane ND U 1.0 l	04/02/03	04/02/03	
1,4-Dichlorobenzene ND U 0.50 1	04/02/03	04/02/03	
1,2-Dichlorobenzene ND U 0.50 1	04/02/03	04/02/03	
n-Butylbenzene ND U 0.50 1	04/02/03	04/02/03	
1,2-Dibromo-3-chloropropane ND U 5.0 1	04/02/03	04/02/03	
1,2,4-Trichlorobenzene ND U 0.50 1	04/02/03	04/02/03	
Hexachlorobutadiene ND U 0.50 1	04/02/03	04/02/03	

Comments:

000019

Printed: 04/07/2003 13:03:56 L:\STEALTF\CRYSTAL.RPT\Form1m.rpt

Form 1A - Organic

Page 2 of 3

Analytical Results

Client:

BE&K Terranext WVB/#03103154

Project: Sample Matrix:

Water

Service Request: X2300257

Date Collected: 03/21/2003 **Date Received:** 03/21/2003

Volatile Organic Compounds

Sample Name:

AVB77-0100-07098

Lab Code:

X2300257-004

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L

Basis: NA

Level: Low

			Dilution	Date	Date	
Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed	Arizona Qualifier
Naphthalene	ND U	3.0	1	04/02/03	04/02/03	h.
1,2,3-Trichlorobenzene	ND U	0.50	1	04/02/03	04/02/03	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Arizona Qualifier	
Dibromofluoromethane	100	84-113	04/02/03		
Toluene-d8	107	68-126	04/02/03		
4-Bromofluorobenzene	94	79-113	04/02/03		

Comments:

000020

Merged

Printed: 04/07/2003 13:03:56 L:\STEALTH\CRYSTAL.RPT\Formim.rpt

Form 1A - Organic

3 of 3 Page

SuperSet Reference: RR3162

Analytical Results

Client: Project: BE&K Terranext WVB/#03103154

Sample Matrix:

Water

Com

Date

Service Request: X2300257

Date Collected: 03/21/2003 **Date Received:** 03/21/2003

Volatile Organic Compounds

Dilution

Sample Name:

AVB77-0400-07099

Lab Code:

X2300257-005

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Date

Level: Low

				Dilution	Date	Date	
Analyte Name	Result	Q	MRL	Factor	Extracted	Analyzed	Arizona Qualifier
Dichlorodifluoromethane	ND	Ŭ	3.0	1	04/02/03	04/02/03	
Chloromethane	ND	U	2.0	1	04/02/03	04/02/03	
Vinyl Chloride	ND	U	1.0	1	04/02/03	04/02/03	
Bromomethane	ND	U	1.0	1	04/02/03	04/02/03	
Chloroethane	ND	U	1.0	1	04/02/03	04/02/03	
Trichlorofluoromethane	ND	U	1.0	1	04/02/03	04/02/03	
1,1,2-Trichlorotrifluoroethane	ND	U	1.0	1	04/02/03	04/02/03	
1,1-Dichloroethene	ND	U	1.0	1	04/02/03	04/02/03	
Acetone	ND	U	10	1	04/02/03	04/02/03	
Iodomethane	ND	U	2.0	1	04/02/03	04/02/03	
Carbon Disulfide	ND	U	2.0	1	04/02/03	04/02/03	
Methylene Chloride	ND	U	1.0	1	04/02/03	04/02/03	
Methyl tert-Butyl Ether	ND	U	1.0	1	04/02/03	04/02/03	
trans-1,2-Dichloroethene	ND	U	0.50	1	04/02/03	04/02/03	
l,1-Dichloroethane	ND	U	0.50	1	04/02/03	04/02/03	
Vinyl Acetate	ND		3.0	1	04/02/03	04/02/03	
2,2-Dichloropropane	ND	U	2.0	1	04/02/03	04/02/03	
2-Butanone (MEK)	ND	U	8.0	1	04/02/03	04/02/03	
cis-1,2-Dichloroethene	ND	U	0.50	1	04/02/03	04/02/03	
Bromochloromethane	ND	U	0.50	1	04/02/03		Ll
Chloroform	ND	U	1.0	1	04/02/03	04/02/03	
1,1,1-Trichloroethane	ND	U	0.50	1	04/02/03	04/02/03	
Carbon Tetrachloride	ND	U	0.50	1	04/02/03	04/02/03	
1,1-Dichloropropene	ND	U	0.50	1	04/02/03	04/02/03	
Benzene	ND	U	0.50	1	04/02/03	04/02/03	
1,2-Dichloroethane	ND	U	0.50	1	04/02/03	04/02/03	
Trichloroethene	7.2		0.50	1	04/02/03	04/02/03	
1,2-Dichloropropane	ND		0.50	1	04/02/03	04/02/03	
Dibromomethane	ND	U	0.50	1	04/02/03	04/02/03	
Bromodichloromethane	ND	U	0.50	1	04/02/03	04/02/03	
cis-1,3-Dichloropropene	ND		0.50	1	04/02/03	04/02/03	
4-Methyl-2-pentanone (MIBK)	ND		8.0	1	04/02/03	04/02/03	
Toluene	ND	U	0.50	1	04/02/03	04/02/03	

Comments:

000021

Merged

Printed: 04/07/2003 13:04:07 LASTEALTHACRYSTAL.RPT\Form\m.rpt

Form 1A - Organic

Page 1 of 3

SuperSet Reference:

RR3162

Analytical Results

Client: Project: BE&K Terranext WVB/#03103154

Sample Matrix:

Water

Service Request: X2300257

Date Collected: 03/21/2003

Date Received: 03/21/2003

Volatile Organic Compounds

Sample Name:

AVB77-0400-07099

Lab Code:

X2300257-005

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

			Dilution	Date	Date	
Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed	Arizona Qualifier
trans-1,3-Dichloropropene	ND U	1.0	1	04/02/03	04/02/03	
1,1,2-Trichloroethane	ND U	1.0	1	04/02/03	04/02/03	
Tetrachloroethene	3,8	0.50	1	04/02/03	04/02/03	
2-Hexanone	ND U	5.0	1	04/02/03	04/02/03	
1,3-Dichloropropane	ND U	1.0	1	04/02/03	04/02/03	
Dibromochloromethane	ND U	0.50	1	04/02/03	04/02/03	
1,2-Dibromoethane	ND U	0.50	1	04/02/03	04/02/03	
Chlorobenzene	ND U	0,50	1	04/02/03	04/02/03	
1,1,1,2-Tetrachloroethane	ND U	0.50	1	04/02/03	04/02/03	
Ethylbenzene	ND U	0.50	1	04/02/03	04/02/03	
m,p-Xylenes	ND U	1.0	1	04/02/03	04/02/03	
o-Xylene	ND U	0.50	1	04/02/03	04/02/03	
Styrene	ND U	0.50	1	04/02/03	04/02/03	
Isopropylbenzene	ND U	0,50	1	04/02/03	04/02/03	
Bromobenzene	ND U	0.50	l	04/02/03	04/02/03	
1,2,3-Trichloropropane	ND U	1.0	1	04/02/03	04/02/03	
n-Propylbenzene	ND U	0.50	1	04/02/03	04/02/03	
2-Chlorotoluene	ND U	0.50	1	04/02/03	04/02/03	
4-Chlorotoluene	ND U	0.50	1	04/02/03	04/02/03	
1,3,5-Trimethylbenzene	ND U	0.50	1	04/02/03	04/02/03	
tert-Butylbenzene	ND U	0.50	1	04/02/03	04/02/03	
1,2,4-Trimethylbenzene	ND U	0.50	1	04/02/03	04/02/03	
sec-Butylbenzene	ND U	0.50	1	04/02/03	04/02/03	
1,3-Dichlorobenzene	ND U	0.50	1	04/02/03	04/02/03	
4-Isopropyltoluene	ND U	0.50	1	04/02/03	04/02/03	
Bromoform	ND U	0.50	1	04/02/03	04/02/03	
1,1,2,2-Tetrachloroethane	ND U	1.0	1	04/02/03	04/02/03	
1,4-Dichlorobenzene	ND U	0.50	1	04/02/03	04/02/03	
1,2-Dichlorobenzene	ND U	0.50	1	04/02/03	04/02/03	
n-Butylbenzene	ND U	0,50	1	04/02/03	04/02/03	
1,2-Dibromo-3-chloropropane	ND U	5.0	I	04/02/03	04/02/03	
1,2,4-Trichlorobenzene	ND U	0.50	1	04/02/03	04/02/03	
Hexachlorobutadiene	ND U	0.50	1	04/02/03	04/02/03	

Comments:

000022

Form 1A - Organic

Page RR3162

2 of 3

Printed: 04/07/2003 13:04:07 L:\STEALTH\CRYSTAL.RPT\Form1m.rpt

Merged

SuperSet Reference:

Analytical Results

Client: Project: BE&K Terranext WVB/#03103154

Sample Matrix:

Water

C:

Service Request: X2300257

Date Collected: 03/21/2003

Date Received: 03/21/2003

Volatile Organic Compounds

Sample Name:

AVB77-0400-07099

Lab Code:

X2300257-005

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Basis: NA

Level: Low

			Dilution	Date	Date	
Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed	Arizona Qualifier
Naphthalene	ND U	3.0	1	04/02/03	04/02/03	
1,2,3-Trichlorobenzene	ND U	0.50	1	04/02/03	04/02/03	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Arizona Qualifier	
Dibromofluoromethane	100	84-113	04/02/03		
Toluene-d8	104	68-126	04/02/03		
4-Bromofluorobenzene	97	79-113	04/02/03		

Comments:

000023

Form 1A - Organic

Page 3 of 3

Analytical Results

Client:

BE&K Terranext WVB/#03103154

Project: Sample Matrix:

Water

Service Request: X2300257

Date Collected: 03/21/2003

Date Received: 03/21/2003

Volatile Organic Compounds

Sample Name:

AVB40-0600-07095

Lab Code:

X2300257-006

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

				Dilution	Date	Date	
Analyte Name	Result	Q	MRL	Factor	Extracted	Analyzed	Arizona Qualifier
Dichlorodifluoromethane	ND	U	3.0	1	04/02/03	04/02/03	
Chloromethane	ND	U	2.0	1	04/02/03	04/02/03	
Vinyl Chloride	ND	U	1.0	1	04/02/03	04/02/03	
Bromomethane	ND	U	1.0	1	04/02/03	04/02/03	
Chloroethane	ND	U	1.0	1	04/02/03	04/02/03	
Trichlorofluoromethane	ND	U	1.0	1	04/02/03	04/02/03	
1.1.2-Trichlorotrifluoroethane	ND	U	1.0	1	04/02/03	04/02/03	
1,1-Dichloroethene	ND	U	1.0	1	04/02/03	04/02/03	
Acetone	ND	U	10	1	04/02/03	04/02/03	
Iodomethane	ND	U	2.0	1	04/02/03	04/02/03	
Carbon Disulfide	ND		2.0	1	04/02/03	04/02/03	
Methylene Chloride	ND	U	1.0	l	04/02/03	04/02/03	
Methyl tert-Butyl Ether	ND	U	1.0	1	04/02/03	04/02/03	
trans-1,2-Dichloroethene	ND		0.50	1	04/02/03	04/02/03	
1,1-Dichloroethane	ND		0.50	1	04/02/03	04/02/03	
Vinyl Acetate	ND	U	3.0	l	04/02/03	04/02/03	
2,2-Dichloropropane	ND	U	2.0	1	04/02/03	04/02/03	
2-Butanone (MEK)	ND	U	8.0	1	04/02/03	04/02/03	
cis-1,2-Dichloroethene	ND	U	0.50	1	04/02/03	04/02/03	
Bromochloromethane	ND	U	0.50	1	04/02/03		L1
Chloroform	ND	U	1.0	1	04/02/03	04/02/03	
1.1.1-Trichloroethane	ND	U	0.50	1	04/02/03	04/02/03	
Carbon Tetrachloride	ND		0.50	1	04/02/03	04/02/03	
1,1-Dichloropropene	ND	U	0.50	1	04/02/03	04/02/03	
Benzene	ND	IJ	0.50	1	04/02/03	04/02/03	
1,2-Dichloroethane	ND		0.50	1	04/02/03	04/02/03	
Trichloroethene	ND	U	0.50	1	04/02/03	04/02/03	
1,2-Dichloropropane	ND	U	0,50	1	04/02/03	04/02/03	
Dibromomethane	ND		0.50	1	04/02/03	04/02/03	
Bromodichloromethane	ND		0.50	1	04/02/03	04/02/03	
cis-1,3-Dichloropropene	ND		0.50	1	04/02/03	04/02/03	
4-Methyl-2-pentanone (MIBK)	ND		8.0	1	04/02/03	04/02/03	
Toluene	ND		0.50	1	04/02/03	04/02/03	

Comments:

000024

Merged

Form 1A - Organic

Printed: 04/07/2003 13:04:18 L:\STEALTH\CRYSTAL.RPT\Form\tm.rpt

Page 1 of 3

RR3162

SuperSet Reference:

Analytical Results

Client: Project: BE&K Terranext WVB/#03103154

Sample Matrix:

Water

Service Request: X2300257

Date Collected: 03/21/2003 **Date Received:** 03/21/2003

Volatile Organic Compounds

Sample Name:

AVB40-0600-07095

Lab Code:

X2300257-006

Extraction Method: EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

				Dilution	Date	Date	
Analyte Name	Result	Q	MRL	Factor	Extracted		Arizona Qualifier
trans-1,3-Dichloropropene	ND	U	1.0	1	04/02/03	04/02/03	
1,1,2-Trichloroethane	ND	U	1.0	1	04/02/03	04/02/03	
Tetrachloroethene	2.3		0.50	1	04/02/03	04/02/03	
2-Hexanone	ND	ŢŢ	5.0	1	04/02/03	04/02/03	WANT.
1,3-Dichloropropane	ND		1.0	1	04/02/03	04/02/03	
Dibromochloromethane	ND		0.50	1	04/02/03	04/02/03	
	ND		0.50	1	04/02/03	04/02/03	
1,2-Dibromoethane Chlorobenzene	ND		0.50	1	04/02/03	04/02/03	
1.1.1.2-Tetrachloroethane	ND		0.50	1	04/02/03	04/02/03	
	ND		0.50	1	04/02/03	04/02/03	
Ethylbenzene	ND ND		1.0	1	04/02/03	04/02/03	
m,p-Xylenes	ND ND		0.50	1	04/02/03	04/02/03	
o-Xylene			0.50		04/02/03	04/02/03	WIN .
Styrene	ND		0.50		04/02/03	04/02/03	
Isopropylbenzene	ND		0.50	1	04/02/03	04/02/03	
Bromobenzene	ND					04/02/03	
1,2,3-Trichloropropane	ND		1.0	1	04/02/03 04/02/03	04/02/03	
n-Propylbenzene	ND		0.50	1	04/02/03	04/02/03	
2-Chlorotoluene	ND		0.50	1			
4-Chlorotoluene	ND		0.50	1	04/02/03	04/02/03	
1.3.5-Trimethylbenzene	ND		0.50	1	04/02/03	04/02/03	
tert-Butylbenzene	ND	U	0.50	1	04/02/03	04/02/03	
1,2,4-Trimethylbenzene	ND	U	0.50	1	04/02/03	04/02/03	
sec-Butylbenzene	ND		0.50	1	04/02/03	04/02/03	
1,3-Dichlorobenzene	ND	U	0.50	1	04/02/03	04/02/03	
4-Isopropyltoluene	ND	U	0.50	1	04/02/03	04/02/03	
Bromoform	ND		0.50	1	04/02/03	04/02/03	
1,1,2,2-Tetrachloroethane	ND		1.0	1	04/02/03	04/02/03	
2 / / · · · · · · · · · · · · · · · · ·	ND		0.50	1	04/02/03	04/02/03	
1,4-Dichlorobenzene 1,2-Dichlorobenzene	ND		0.50	î	04/02/03	04/02/03	
n-Butylbenzene	ND		0.50	1	04/02/03	04/02/03	
	ND		5.0	1	04/02/03	04/02/03	
1,2-Dibromo-3-chloropropane	ND		0.50	l	04/02/03	04/02/03	
1,2,4-Trichlorobenzene	ND		0.50	1	04/02/03	04/02/03	
Hexachlorobutadiene	TAID		0.50				

Comments:

Printed: 04/07/2003 13:04:18 L:\STEALTH\CRYSTAL.RPT\Formlm.rpt

000025

Merged

Form 1A - Organic

Page 2 of 3

RR3162 SuperSet Reference:

Analytical Results

Client:

BE&K Terranext WVB/#03103154

Project: Sample Matrix:

Water

Service Request: X2300257

Date Collected: 03/21/2003 Date Received: 03/21/2003

Volatile Organic Compounds

Sample Name:

AVB40-0600-07095

ND U

Lab Code:

Naphthalene

X2300257-006

Extraction Method:

1,2,3-Trichlorobenzene

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

Dilution Date Date Analyzed Arizona Qualifier Result Q MRL Factor Extracted Analyte Name 04/02/03 3.0 1 04/02/03 ND U 04/02/03 04/02/03

1

Surrogate Name	%Rec	Control Limits	Date Analyzed	Arizona Qualifier	
Dibromofluoromethane	103	84-113	04/02/03	-	
Toluene-d8	104	68-126	04/02/03		
4-Bromofluorobenzene	94	79-113	04/02/03		

0.50

Comments:

Analytical Results

Client: Project: BE&K Terranext WVB/#03103154

Sample Matrix:

Water

Service Request: X2300257

Date Collected: 03/21/2003 **Date Received:** 03/21/2003

Volatile Organic Compounds

Sample Name:

AVB40-0800-01095

Lab Code:

X2300257-007

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

			Dilution	Date	Date	
Analyte Name	Result (Q MRL	Factor	Extracted	Analyzed	Arizona Qualifier
Dichlorodifluoromethane	ND I	U 3.0	1	04/02/03	04/02/03	
Chloromethane	ND I	U 2.0	1	04/02/03	04/02/03	
Vinyl Chloride	ND (U 1.0	1	04/02/03	04/02/03	
Bromomethane	ND I		1	04/02/03	04/02/03	
Chloroethane	ND U		1	04/02/03	04/02/03	
Trichlorofluoromethane	ND (U 1.0	1	04/02/03	04/02/03	
1,1,2-Trichlorotrifluoroethane	ND (J 1.0	1	04/02/03	04/02/03	•
1,1-Dichloroethene	ND U		1	04/02/03	04/02/03	
Acetone	ND U	J 10	1	04/02/03	04/02/03	
Iodomethane	ND (I	04/02/03	04/02/03	
Carbon Disulfide	ND U		1	04/02/03	04/02/03	
Methylene Chloride	ND (J 1.0	1	04/02/03	04/02/03	
Methyl tert-Butyl Ether	ND U	J 1.0	1	04/02/03	04/02/03	
trans-1,2-Dichloroethene	ND (1	04/02/03	04/02/03	
1,1-Dichloroethane	ND U	J 0,50	l	04/02/03	04/02/03	
Vinyl Acetate	ND (J 3.0	1	04/02/03	04/02/03	
2,2-Dichloropropane	ND (1	04/02/03	04/02/03	
2-Butanone (MEK)	ND U	J 8.0	1	04/02/03	04/02/03	
cis-1,2-Dichloroethene	ND U		1	04/02/03	04/02/03	
Bromochloromethane	ND U		1	04/02/03		Ll
Chloroform	ND U	J 1.0	1	04/02/03	04/02/03	
1,1,1-Trichloroethane	ND (1	04/02/03	04/02/03	
Carbon Tetrachloride	ND U		1	04/02/03	04/02/03	
1,1-Dichloropropene	ND (J 0,50	1	04/02/03	04/02/03	
Benzene	ND (1	04/02/03	04/02/03	
1,2-Dichloroethane	ND U		1	04/02/03	04/02/03	
Trichloroethene	27	0.50	I	04/02/03	04/02/03	
1,2-Dichloropropane	ND U		I	04/02/03	04/02/03	
Dibromomethane	ND U		1	04/02/03	04/02/03	
Bromodichloromethane	0.53	0.50	1	04/02/03	04/02/03	
cis-1,3-Dichloropropene	ND U		1	04/02/03	04/02/03	
4-Methyl-2-pentanone (MIBK)	ND U		1	04/02/03	04/02/03	
Toluene	ND U	J 0.50	1	04/02/03	04/02/03	

Comments:

Printed: 04/07/2003 13:04:29 LASTEALTHACRYSTAL.RPTVForm1m.rpt

000027

Merged

Form 1A - Organic

Page 1 of 3

Analytical Results

Client: Project: BE&K Terranext WVB/#03103154

Sample Matrix:

Water

Service Request: X2300257

Date Collected: 03/21/2003 **Date Received:** 03/21/2003

Volatile Organic Compounds

Sample Name:

AVB40-0800-01095

Lab Code:

X2300257-007

Extraction Method: EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

			Dilution	Date	Date	
Analyte Name	Result Q	MRL	Factor	Extracted		Arizona Qualifier
trans-1,3-Dichloropropene	ND U	1.0	1	04/02/03	04/02/03	
1,1,2-Trichloroethane	ND U	1.0	1	04/02/03	04/02/03	
Tetrachloroethene	8.2	0.50	1	04/02/03	04/02/03	
2-Hexanone	ND U	5.0	1	04/02/03	04/02/03	
1,3-Dichloropropane	ND U	1.0	1	04/02/03	04/02/03	
Dibromochloromethane	ND U	0.50	1	04/02/03	04/02/03	
1,2-Dibromoethane	ND U	0.50	1	04/02/03	04/02/03	
Chlorobenzene	ND U	0.50	1	04/02/03	04/02/03	
1,1,1,2-Tetrachloroethane	ND U	0.50	1	04/02/03	04/02/03	
Ethylbenzene	ND U	0.50	1	04/02/03	04/02/03	
m,p-Xylenes	ND U	1.0	1	04/02/03	04/02/03	
o-Xylene	ND U	0.50	1	04/02/03	04/02/03	
Styrene	ND U	0.50	1	04/02/03	04/02/03	
Isopropylbenzene	ND U	0.50	1	04/02/03	04/02/03	
Bromobenzene	ND U	0.50	1	04/02/03	04/02/03	
1,2,3-Trichloropropane	ND U	1.0	1	04/02/03	04/02/03	
n-Propylbenzene	ND U	0.50	1	04/02/03	04/02/03	
2-Chlorotoluene	ND U	0.50	1	04/02/03	04/02/03	
4-Chlorotoluene	ND U	0.50	1	04/02/03	04/02/03	
1,3,5-Trimethylbenzene	ND U	0.50	1	04/02/03	04/02/03	
tert-Butylbenzene	ND U	0.50	1	04/02/03	04/02/03	
1,2,4-Trimethylbenzene	ND U	0.50	1	04/02/03	04/02/03	
sec-Butylbenzene	ND U	0.50	1	04/02/03	04/02/03	
1,3-Dichlorobenzene	ND U	0,50	1	04/02/03	04/02/03	
4-Isopropyltoluene	ND U	0.50	1	04/02/03	04/02/03	
Bromoform	ND U	0.50	1	04/02/03	04/02/03	
1,1,2,2-Tetrachloroethane	ND U	1.0	1	04/02/03	04/02/03	
1,4-Dichlorobenzene	ND U	0.50	I	04/02/03	04/02/03	
1,2-Dichlorobenzene	ND U	0.50	1	04/02/03	04/02/03	
n-Butylbenzene	ND U	0.50	1	04/02/03	04/02/03	
1,2-Dibromo-3-chloropropane	ND U	5.0	1	04/02/03	04/02/03	
1,2,4-Trichlorobenzene	ND U	0.50	1	04/02/03	04/02/03	
Hexachlorobutadiene	ND U	0.50	1	04/02/03	04/02/03	- HLANDANA AND PROPERTY OF THE PARTY OF THE

Comments:

Printed: 04/07/2003 13:04:29 $\verb|LASTEALTH| CRYSTAL.RPT| Form lm.rpt$ Merged

000028

Form 1A - Organic

Page 2 of 3

SuperSet Reference: RR3162

Analytical Results

Client:

BE&K Terranext WVB/#03103154

Project: Sample Matrix:

Water

Service Request: X2300257

Date Collected: 03/21/2003

Date Received: 03/21/2003

Volatile Organic Compounds

Sample Name:

AVB40-0800-01095

Lab Code:

X2300257-007

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

			Dilution	Date	Date	
Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed	Arizona Qualifier
Naphthalene	ND U	3.0	1	04/02/03	04/02/03	
1,2,3-Trichlorobenzene	ND U	0.50	1	04/02/03	04/02/03	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Arizona Qualifier	
Dibromofluoromethane	101	84-113	04/02/03		
Toluene-d8	100	68-126	04/02/03		
4-Bromofluorobenzene	92	79-113	04/02/03		

Comments:

Printed: 04/07/2003 13:04:29 L:\STEALTH\CRYSTAL.RPT\Formlm.rpt

000025

Merged

Form 1A - Organic

SuperSet Reference: RR3162 Page 3 of 3

Analytical Results

Client: Project: BE&K Terranext WVB/#03103154

Sample Matrix:

Water

Service Request: X2300257 Date Collected: 03/21/2003

Date Received: 03/21/2003

Volatile Organic Compounds

Sample Name: Lab Code:

AVB40-0804-1000

Extraction Method:

X2300257-008

Analysis Method:

EPA 5030B 8260B

Units: ug/L Basis: NA

Level: Low

				Dilution	Date	Date	
Analyte Name	Result		MRL	Factor	Extracted		Arizona Qualifier
Dichlorodifluoromethane	ND		3.0	1	04/02/03	04/02/03	
Chloromethane	ND		2.0	1	04/02/03	04/02/03	
Vinyl Chloride	ND	U	1.0	1	04/02/03	04/02/03	
Bromomethane	ND		1.0	1	04/02/03	04/02/03	
Chloroethane	ND		1.0	1	04/02/03	04/02/03	
Trichlorofluoromethane	ND	U	1.0	1	04/02/03	04/02/03	
1,1,2-Trichlorotrifluoroethane	ND		1.0	1	04/02/03	04/02/03	
1,1-Dichloroethene	ND		1.0	1	04/02/03	04/02/03	
Acetone	ND	U	10	1	04/02/03	04/02/03	
Iodomethane	ND	U	2.0	1	04/02/03	04/02/03	
Carbon Disulfide	ND		2.0	1	04/02/03	04/02/03	
Methylene Chloride	ND	U	1.0	1	04/02/03	04/02/03	
Methyl tert-Butyl Ether	ND	U	1.0	1	04/02/03	04/02/03	
trans-1,2-Dichloroethene	ND	U	0.50	1	04/02/03	04/02/03	
1,1-Dichloroethane	ND	U	0.50	1	04/02/03	04/02/03	
Vinyl Acetate	ND	U	3.0	1	04/02/03	04/02/03	
2,2-Dichloropropane	ND		2.0	1	04/02/03	04/02/03	
2-Butanone (MEK)	ND	U	8.0	1	04/02/03	04/02/03	
cis-1,2-Dichloroethene	ND	U	0.50	1	04/02/03	04/02/03	
Bromochloromethane	ND	U	0.50	1	04/02/03		LI
Chloroform	ND	U	1.0	1	04/02/03	04/02/03	
1,1,1-Trichloroethane	ND	U	0.50	1	04/02/03	04/02/03	
Carbon Tetrachloride	ND		0.50	1	04/02/03	04/02/03	
1,1-Dichloropropene	ND	U	0.50	1	04/02/03	04/02/03	
Benzene	ND	U	0,50	1	04/02/03	04/02/03	
1,2-Dichloroethane	ND		0.50	1	04/02/03	04/02/03	
Trichloroethene	ND	U	0.50	1	04/02/03	04/02/03	
1,2-Dichloropropane	ND	U	0.50	1	04/02/03	04/02/03	
Dibromomethane	ND	U	0.50	1	04/02/03	04/02/03	
Bromodichloromethane	ND	U	0,50	1	04/02/03	04/02/03	
cis-1,3-Dichloropropene	ND	U	0,50	1	04/02/03	04/02/03	ALL MANAGEMENT AND THE STATE OF
4-Methyl-2-pentanone (MIBK)	ND		8.0	1	04/02/03	04/02/03	
Toluene	ND	U	0.50	1	04/02/03	04/02/03	

Comments:

Merged

Analytical Results

Client: Project: BE&K Terranext WVB/#03103154

Sample Matrix:

Water

Service Request: X2300257

Date Collected: 03/21/2003

Date Received: 03/21/2003

Volatile Organic Compounds

Sample Name:

AVB40-0804-1000

Lab Code:

X2300257-008

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

				Dilution	Date	Date	
Analyte Name	Result	Q	MRL	Factor	Extracted	Analyzed	Arizona Qualifier
trans-1,3-Dichloropropene	ND	U	1.0	1	04/02/03	04/02/03	
1,1,2-Trichloroethane	ND	U	1.0	1	04/02/03	04/02/03	
Tetrachloroethene	ND	U	0.50	1	04/02/03	04/02/03	
2-Hexanone	ND	U	5.0	1	04/02/03	04/02/03	
1,3-Dichloropropane	ND	U	1.0	1	04/02/03	04/02/03	
Dibromochloromethane	ND	U	0.50	1	04/02/03	04/02/03	
1,2-Dibromoethane	ND		0.50	1	04/02/03	04/02/03	
Chlorobenzene	ND		0.50	1	04/02/03	04/02/03	
1,1,1,2-Tetrachloroethane	ND	U	0.50	1	04/02/03	04/02/03	
Ethylbenzene	ND	U	0.50	1	04/02/03	04/02/03	
m,p-Xylenes	ND	U	1.0	1	04/02/03	04/02/03	
o-Xylene	ND	U	0.50	1	04/02/03	04/02/03	
Styrene	ND	U	0.50 '	1	04/02/03	04/02/03	
Isopropylbenzene	ND	U	0.50	1	04/02/03	04/02/03	
Bromobenzene	ND	U	0.50	1	04/02/03	04/02/03	
1,2,3-Trichloropropane	ND	U	1.0	1	04/02/03	04/02/03	
n-Propylbenzene	ND	U	0.50	1	04/02/03	04/02/03	
2-Chlorotoluene	ND	U	0.50	1	04/02/03	04/02/03	
4-Chlorotoluene	ND	U	0.50	1	04/02/03	04/02/03	
1,3,5-Trimethylbenzene	ND	U	0.50	1	04/02/03	04/02/03	
tert-Butylbenzene	ND	U	0.50	1	04/02/03	04/02/03	
1,2,4-Trimethylbenzene	ND	U	0.50	1	04/02/03	04/02/03	
sec-Butylbenzene	ND	U	0.50	1	04/02/03	04/02/03	
1,3-Dichlorobenzene	ND	U	0.50	1	04/02/03	04/02/03	
4-Isopropyltoluene	ND	U	0.50	1	04/02/03	04/02/03	
Bromoform	ND	U	0.50	1	04/02/03	04/02/03	
1,1,2,2-Tetrachloroethane	ND	U	1.0	1	04/02/03	04/02/03	
1,4-Dichlorobenzene	ND		0,50	1	04/02/03	04/02/03	
1,2-Dichlorobenzene	ND		0.50	1	04/02/03	04/02/03	
n-Butylbenzene	ND	U	0.50	1	04/02/03	04/02/03	
1,2-Dibromo-3-chloropropane	ND		5.0	1	04/02/03	04/02/03	
1,2,4-Trichlorobenzene	ND		0.50	1	04/02/03	04/02/03	
Hexachlorobutadiene	ND	U	0.50	1	04/02/03	04/02/03	

Comments:

Analytical Results

Client: Project: BE&K Terranext WVB/#03103154

Sample Matrix:

Water

Service Request: X2300257

Date Collected: 03/21/2003

Date Received: 03/21/2003

Volatile Organic Compounds

Sample Name:

AVB40-0804-1000

Lab Code:

X2300257-008

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

			Dilution	Date	Date	
Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed	Arizona Qualifier
Naphthalene	ND U	3.0	1	04/02/03	04/02/03	
1,2,3-Trichlorobenzene	ND U	0.50	1	04/02/03	04/02/03	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Arizona Qualifier	
Dibromofluoromethane	99	84-113	04/02/03		
Toluene-d8	102	68-126	04/02/03		
4-Bromofluorobenzene	94	79-113	04/02/03		

Comments:

000032

Merged

Form 1A - Organic

3 of 3 Page

Analytical Results

Client: Project: BE&K Terranext WVB/#03103154

Sample Matrix:

Water

Service Request: X2300257 Date Collected: 03/21/2003

Date Received: 03/21/2003

Volatile Organic Compounds

Sample Name:

AVB40-0802-1000

Lab Code:

X2300257-009

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

Analyte Name Result Q MRL Factor Extracted Analyzed Arizona Qualifier Dichlorodifilorodifiloromethane ND U 3.0 1 04/02/03 04/02/03 Chloromethane ND U 1.0 1 04/02/03 04/02/03 Vinyl Chloride ND U 1.0 1 04/02/03 04/02/03 Bromomethane ND U 1.0 1 04/02/03 04/02/03 Chloroethane ND U 1.0 1 04/02/03 04/02/03 Trichlorofluoromethane ND U 1.0 1 04/02/03 04/02/03 1,1,2-Trichloroethane ND U 1.0 1 04/02/03 04/02/03 Acctone ND U 1.0 1 04/02/03 04/02/03 Acctone ND U 2.0 1 04/02/03 04/02/03 Iodomethane ND U 2.0 1 04/02/03 04/02/03 Methyl tert-Buryl Ether ND U 1.0 1 04/02/03 04/02/03 Inja-Dichloroe					Dilution	Date	Date	
Chloromethane	Analyte Name	Result	Q	MRL	Factor	Extracted	Analyzed	Arizona Qualifier
Vinyl Chloride ND U 1.0 1 04/02/03 04/02/03 Bromomethane ND U 1.0 1 04/02/03 04/02/03 Chloroethane ND U 1.0 1 04/02/03 04/02/03 Trichloroftinoromethane ND U 1.0 1 04/02/03 04/02/03 1,1-2-Trichloroethane ND U 1.0 1 04/02/03 04/02/03 1,1-1-Dichloroethane ND U 1.0 1 04/02/03 04/02/03 Acetone ND U 1.0 1 04/02/03 04/02/03 Garbon Disulfide ND U 2.0 1 04/02/03 04/02/03 Methylene Chloride ND U 1.0 1 04/02/03 04/02/03 Itans-1,2-Dich	Dichlorodifluoromethane	ND	U	3.0	1	04/02/03	04/02/03	
Bromemethane	Chloromethane	ND	U	2.0	1	04/02/03	04/02/03	
Chloroethane	Vinyl Chloride	ND	U	1.0	1	04/02/03	04/02/03	
Trichloroffloromethane ND U 1.0 1 04/02/03 04/02/03 1,1,2-Trichlorotrifluoroethane ND U 1.0 1 04/02/03 04/02/03 1,1-Dichloroethene ND U 1.0 1 04/02/03 04/02/03 Acetone ND U 10 1 04/02/03 04/02/03 Iodomethane ND U 2.0 1 04/02/03 04/02/03 Carbon Disulfide ND U 2.0 1 04/02/03 04/02/03 Methylene Chloride ND U 1.0 1 04/02/03 04/02/03 Methylene Chloride ND U 0.50 1 04/02/03 04/02/03	Bromomethane	ND	U	1.0	1	04/02/03	04/02/03	
1,12-Trichlorotrifluoroethane	Chloroethane	ND	U	1.0	1			
1,1-Dichloroethene	Trichlorofluoromethane	ND	U	1.0	1	04/02/03	04/02/03	
Acetone ND U 10 1 04/02/03 04/02/03 Iodomethane ND U 2.0 1 04/02/03 04/02/03 Carbon Disulfide ND U 2.0 1 04/02/03 04/02/03 Methylene Chloride ND U 1.0 1 04/02/03 04/02/03 Methyl tert-Butyl Ether ND U 1.0 1 04/02/03 04/02/03 Methyl tert-Butyl Ether ND U 0.50 1 04/02/03 04/02/03 I.1-Dichloroethene ND U 0.50 1 04/02/03 04/02/03 I.1-Dichloroethane ND U 3.0 1 04/02/03 04/02/03 Vinyl Acetate ND U 3.0 1 04/02/03 04/02/03 2,2-Dichloropropane ND U 2.0 1 04/02/03 04/02/03 2-Butanone (MEK) ND U 8.0 1 04/02/03 04/02/03 2-Butanone (MEK) ND U 0.50 1 04/02/03 04/02/03 Bromochloro	1,1,2-Trichlorotrifluoroethane	ND	U	1.0	1		04/02/03	
Carbon Disulfide	1,1-Dichloroethene	ND	U	1.0	1			•
Carbon Disulfide ND U 2.0 1 04/02/03 04/02/03 Methylene Chloride ND U 1.0 1 04/02/03 04/02/03 Methyl tert-Butyl Ether ND U 1.0 1 04/02/03 04/02/03 Itans-1,2-Dichloroethene ND U 0.50 1 04/02/03 04/02/03 1,1-Dichloroethane ND U 0.50 1 04/02/03 04/02/03 Vinyl Acetate ND U 3.0 1 04/02/03 04/02/03 2,2-Dichloropropane ND U 3.0 1 04/02/03 04/02/03 2,3-Dichloroethene ND U 8.0 1 04/02/03 04/02/03 2-Butanone (MEK) ND U 8.0 1 04/02/03 04/02/03 2-Butanone (MEK) ND U 8.0 1 04/02/03 04/02/03 2-Butanone (MEK) ND U 0.50 1 04/02/03 04/02/03 3-Cabinare ND U 0.50 1 04/02/03 04/02/03 04/02/03 <	Acetone	ND	U	10	1	04/02/03	04/02/03	
Methylene Chloride ND U 1.0 1 04/02/03 04/02/03 Methyl tert-Butyl Ether ND U 1.0 1 04/02/03 04/02/03 trans-1,2-Dichloroethene ND U 0.50 1 04/02/03 04/02/03 1,1-Dichloroethane ND U 0.50 1 04/02/03 04/02/03 Vinyl Acetate ND U 3.0 1 04/02/03 04/02/03 2,2-Dichloropropane ND U 2.0 1 04/02/03 04/02/03 2-Butanone (MEK) ND U 8.0 1 04/02/03 04/02/03 2-Butanone (MEK) ND U 8.0 1 04/02/03 04/02/03 2-Butanone (MEK) ND U 8.0 1 04/02/03 04/02/03 2-Butanone (MEK) ND U 0.50 1 04/02/03 04/02/03 Bromochloromethane ND U 0.50 1 04/02/03 04/02/03 1,1-Trichloroethane ND U 0.50 1 04/02/03 04/02/03	Iodomethane	ND	U	2.0	1			
Methyl tert-Butyl Ether ND U 1.0 1 04/02/03 04/02/03 trans-1,2-Dichloroethene ND U 0.50 1 04/02/03 04/02/03 I,1-Dichloroethane ND U 0.50 1 04/02/03 04/02/03 Vinyl Acetate ND U 3.0 1 04/02/03 04/02/03 2,2-Dichloropropane ND U 2.0 1 04/02/03 04/02/03 2-Butanone (MEK) ND U 8.0 1 04/02/03 04/02/03 2-Butanone (MEK) ND U 8.0 1 04/02/03 04/02/03 2-Butanone (MEK) ND U 8.0 1 04/02/03 04/02/03 2-Butanone (MEK) ND U 0.50 1 04/02/03 04/02/03 Bromochloromethane ND U 0.50 1 04/02/03 04/02/03 1,1-Trichloroethane ND U 0.50 1 04/02/03 04/02/03	Carbon Disulfide	ND	U	2.0	1			
trans-1,2-Dichloroethene ND U 0.50 1 04/02/03 04/02/03 1,1-Dichloroethane ND U 0.50 1 04/02/03 04/02/03 04/02/03 2,2-Dichloropropane ND U 2.0 1 04/02/03 04/02/03 04/02/03 2-Butanone (MEK) ND U 8.0 1 04/02/03 04/02/03 04/02/03 cis-1,2-Dichloroethane ND U 0.50 1 04/02/03 04/02/03 04/02/03 Cis-1,2-Dichloroethane ND U 0.50 1 04/02/03 04/02/03 L1 Chloroform ND U 1.0 1 04/02/03 04/02/03 04/02/03 1,1-Dichloroethane ND U 0.50 1 04/02/03 04/02/03 04/02/03 1,1-Dichloropropene ND U 0.50 1 04/02/03 04/02/03 1,1-Dichloropropene ND U 0.50 1 04/02/03 04/02/03 1,2-Dichloroethane ND U 0.50 1 04/02/03 04/02/03 1,2-Dichloropropane ND U 0.50 1 04/02/03 04/02/03 1,2-Dichloroethane ND U 0.50 1 04/02/03 04/02/03 04/02/03 1,2-Dichloropropane ND U 0.50 1 04/02/03 04/02	Methylene Chloride	ND	U	1.0	1	04/02/03	04/02/03	
1,1-Dichloroethane	Methyl tert-Butyl Ether	ND	U	1.0	1			
Vinyl Acetate	trans-1,2-Dichloroethene	ND	Ų	0.50	1		04/02/03	
2,2-Dichloropropane ND U 2.0 1 04/02/03 04/02/03 2-Butanone (MEK) ND U 8.0 1 04/02/03 04/02/03 3	1,1-Dichloroethane	ND	U	0.50	1	04/02/03	04/02/03	
2-Butanone (MEK) ND U 8.0 1 04/02/03 04/02/03 cis-1,2-Dichloroethene ND U 0.50 1 04/02/03 04/02/03 Bromochloromethane ND U 0.50 1 04/02/03 04/02/03 L1 Chloroform ND U 1.0 1 04/02/03 04/02/03 1,1,1-Trichloroethane ND U 0.50 1 04/02/03 04/02/03 Carbon Tetrachloride ND U 0.50 1 04/02/03 04/02/03 1,1-Dichloropropene ND U 0.50 1 04/02/03 04/02/03 Benzene ND U 0.50 1 04/02/03 04/02/03 1,2-Dichloroethane ND U 0.50 1 04/02/03 04/02/03 1,2-Dichloroethane ND U 0.50 1 04/02/03 04/02/03 Trichloroethene ND U 0.50 1 04/02/03 04/02/03 Trichloropropane ND U 0.50 1 04/02/03 04/02/03 1,2-Dichloropropane ND U 0.50 1 04/02/03 04/02/03 Trichloroethene ND U 0.50 1 04/02/03 04/02/03 1,2-Dichloropropane ND U 0.50 1 04/02/03 04/02/03 Trichloropropane ND U 0.50 1 04/02/03 04/02/03 Cis-1,3-Dichloropropene ND U 0.50 1 04/02/03 04/02/03 Bromodichloromethane ND U 0.50 1 04/02/03 04/02/03 cis-1,3-Dichloropropene ND U 0.50 1 04/02/03 04/02/03 4-Methyl-2-pentanone (MIBK) ND U 8.0 1 04/02/03 04/02/03	Vinyl Acetate	ND	U	3.0	1			
z Statistics (MSA) ND U 0.50 1 04/02/03 04/02/03 Bromochloromethane ND U 0.50 1 04/02/03 04/02/03 L1 Chloroform ND U 1.0 1 04/02/03 04/02/03 L1 Chloroform ND U 0.50 1 04/02/03 04/02/03 1,1,1-Trichloroethane ND U 0.50 1 04/02/03 04/02/03 Carbon Tetrachloride ND U 0.50 1 04/02/03 04/02/03 1,1-Dichloropropene ND U 0.50 1 04/02/03 04/02/03 1,1-Dichloropropene ND U 0.50 1 04/02/03 04/02/03 1,2-Dichloropropene ND U 0.50 1 04/02/03 04/02/03 1,2-Dichloropropene ND U 0.50 1 04/02/03 04/02/03 1,2-Dichloropropene ND U 0.50 1 04/0	2,2-Dichloropropane	ND	U	2.0	1			
Bromochloromethane	2-Butanone (MEK)	ND	U	8.0	1	04/02/03	04/02/03	
Chloroform ND U 1.0 1 04/02/03 04/02/03 1,1,1-Trichloroethane ND U 0.50 1 04/02/03 04/02/03 Carbon Tetrachloride ND U 0.50 1 04/02/03 04/02/03 1,1-Dichloropropene ND U 0.50 1 04/02/03 04/02/03 Benzene ND U 0.50 1 04/02/03 04/02/03 1,2-Dichloroethane ND U 0.50 1 04/02/03 04/02/03 Trichloroethene ND U 0.50 1 04/02/03 04/02/03 1,2-Dichloropropane ND U 0.50 1 04/02/03 04/02/03 1,2-Dichloropropane ND U 0.50 1 04/02/03 04/02/03 1,2-Dichloropropane ND U 0.50 1 04/02/03 04/02/03 Bromodichloromethane ND U 0.50 1 04/02/03 04/02/03 cis-1,3-Dichloropropene ND U 0.50 1 04/02/03 04/02/03	cis-1,2-Dichloroethene	ND	U	0.50	1			
1,1,1-Trichloroethane ND U 0.50 1 04/02/03 04/02/03 Carbon Tetrachloride ND U 0.50 1 04/02/03 04/02/03 1,1-Dichloropropene ND U 0.50 1 04/02/03 04/02/03 Benzene ND U 0.50 1 04/02/03 04/02/03 1,2-Dichloroethane ND U 0.50 1 04/02/03 04/02/03 Trichloroethene ND U 0.50 1 04/02/03 04/02/03 1,2-Dichloropropane ND U 0.50 1 04/02/03 04/02/03 1,2-Dichloropropane ND U 0.50 1 04/02/03 04/02/03 1,2-Dichloropropane ND U 0.50 1 04/02/03 04/02/03 Bromodichloromethane ND U 0.50 1 04/02/03 04/02/03 cis-1,3-Dichloropropene ND U 0.50 1 04/02/03 04/02/03 4-Methyl-2-pentanone (MIBK) ND U 8.0 1 04/02/03 04/02/03	Bromochloromethane				1			Ll
Carbon Tetrachloride ND U 0.50 1 04/02/03 04/02/03 1,1-Dichloropropene ND U 0.50 1 04/02/03 04/02/03 04/02/03 Benzene ND U 0.50 1 04/02/03 04/02/03 1,2-Dichloroethane ND U 0.50 1 04/02/03 04/02/03 Trichloroethene ND U 0.50 1 04/02/03 04/02/03 1,2-Dichloropropane ND U 0.50 1 04/02/03 04/02/03 Trichloroethene ND U 0.50 1 04/02/03 04/02/03 Dibromomethane ND U 0.50 1 04/02/03 04/02/03 Bromodichloromethane ND U 0.50 1 04/02/03 04/02/03 Bromodichloropropene ND U 0.50 1 04/02/03 04/02/03 Cis-1,3-Dichloropropene ND U 0.50 1 04/02/03 04/02/03 4-Methyl-2-pentanone (MIBK) ND U 8.0 1 04/02/03 04/02/03	Chloroform	ND	U	1.0	1	04/02/03	04/02/03	
1,1-Dichloropropene ND U 0.50 1 04/02/03 04/02/03 Benzene ND U 0.50 1 04/02/03 04/02/03 1,2-Dichloroethane ND U 0.50 1 04/02/03 04/02/03 Trichloroethene ND U 0.50 1 04/02/03 04/02/03 1,2-Dichloropropane ND U 0.50 1 04/02/03 04/02/03 Dibromomethane ND U 0.50 1 04/02/03 04/02/03 Bromodichloromethane ND U 0.50 1 04/02/03 04/02/03 cis-1,3-Dichloropropene ND U 0.50 1 04/02/03 04/02/03 4-Methyl-2-pentanone (MIBK) ND U 8.0 1 04/02/03 04/02/03	1,1,1-Trichloroethane	ND	U	0.50	1			
Benzene	Carbon Tetrachloride	ND	U	0.50	1			
1,2-Dichloroethane ND U 0.50 1 04/02/03 04/02/03 Trichloroethene ND U 0.50 1 04/02/03 04/02/03 1,2-Dichloropropane ND U 0.50 1 04/02/03 04/02/03 Dibromomethane ND U 0.50 1 04/02/03 04/02/03 Bromodichloromethane ND U 0.50 1 04/02/03 04/02/03 cis-1,3-Dichloropropene ND U 0.50 1 04/02/03 04/02/03 4-Methyl-2-pentanone (MIBK) ND U 8.0 1 04/02/03 04/02/03	1,1-Dichloropropene	ND	U	0.50	1	04/02/03	04/02/03	
Trichloroethene ND U 0.50 1 04/02/03 04/02/03 1,2-Dichloropropane ND U 0.50 1 04/02/03 04/02/03 Dibromomethane ND U 0.50 1 04/02/03 04/02/03 Bromodichloromethane ND U 0.50 1 04/02/03 04/02/03 cis-1,3-Dichloropropene ND U 0.50 1 04/02/03 04/02/03 4-Methyl-2-pentanone (MIBK) ND U 8.0 1 04/02/03 04/02/03	Benzene	ND	U	0,50	1	04/02/03	04/02/03	
1,2-Dichloropropane ND U 0.50 1 04/02/03 04/02/03 Dibromomethane ND U 0.50 1 04/02/03 04/02/03 Bromodichloromethane ND U 0.50 1 04/02/03 04/02/03 cis-1,3-Dichloropropene ND U 0.50 1 04/02/03 04/02/03 4-Methyl-2-pentanone (MIBK) ND U 8.0 1 04/02/03 04/02/03	1,2-Dichloroethane	ND	U	0.50	I	04/02/03		
Dibromomethane ND U 0.50 1 04/02/03 04/02/03 Bromodichloromethane ND U 0.50 1 04/02/03 04/02/03 cis-1,3-Dichloropropene ND U 0.50 1 04/02/03 04/02/03 4-Methyl-2-pentanone (MIBK) ND U 8.0 1 04/02/03 04/02/03	Trichloroethene	ND	U	0.50	1	04/02/03	04/02/03	
Bromodichloromethane ND U 0.50 1 04/02/03 04/02/03 cis-1,3-Dichloropropene ND U 0.50 1 04/02/03 04/02/03 4-Methyl-2-pentanone (MIBK) ND U 8.0 1 04/02/03 04/02/03	1,2-Dichloropropane	ND	U	0.50	1			
cis-1,3-Dichloropropene ND U 0.50 1 04/02/03 04/02/03 4-Methyl-2-pentanone (MIBK) ND U 8.0 1 04/02/03 04/02/03	Dibromomethane	ND	U	0.50	1		04/02/03	
4-Methyl-2-pentanone (MIBK) ND U 8.0 1 04/02/03 04/02/03	Bromodichloromethane	ND	U	0.50	1	04/02/03	04/02/03	
	cis-1,3-Dichloropropene	ND	U		1			
Toluene ND U 0.50 1 04/02/03 04/02/03	4-Methyl-2-pentanone (MIBK)				1			
	Toluene	ND	U	0.50	1	04/02/03	04/02/03	· · · · · · · · · · · · · · · · · · ·

Comments:

Printed: 04/07/2003 13:04:51 L:\STEALTH\CRYSTAL.RPT\Form1m.rpt Merged

000033

Form 1A - Organic

Page 1 of 3

SuperSet Reference: RR3162

Analytical Results

Client: Project: BE&K Terranext WVB/#03103154

Sample Matrix:

Water

Service Request: X2300257

Date Collected: 03/21/2003

Date Received: 03/21/2003

Volatile Organic Compounds

Sample Name:

AVB40-0802-1000

Lab Code:

X2300257-009

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

•			Dilution	Date	Date	
Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed	Arizona Qualifier
trans-1,3-Dichloropropene	ND U	1.0	1	04/02/03	04/02/03	
1,1,2-Trichloroethane	ND U	1.0	1	04/02/03	04/02/03	
Tetrachloroethene	ND U	0.50	1	04/02/03	04/02/03	
2-Hexanone	ND U	5.0	1	04/02/03	04/02/03	
1,3-Dichloropropane	ND U	1.0	1	04/02/03	04/02/03	
Dibromochloromethane	ND U	0.50	1	04/02/03	04/02/03	
1,2-Dibromoethane	ND U	0.50	1	04/02/03	04/02/03	MA MAROUT /
Chlorobenzene	ND U	0.50	1	04/02/03	04/02/03	
1,1,1,2-Tetrachloroethane	ND U	0.50	1	04/02/03	04/02/03	
Ethylbenzene	ND U	0.50	1	04/02/03	04/02/03	
m,p-Xylenes	ND U	1.0	1	04/02/03	04/02/03	
o-Xylene	ND U	0.50	1	04/02/03	04/02/03	
Styrene	ND U	0.50	1	04/02/03	04/02/03	
Isopropylbenzene	ND U	0.50	1	04/02/03	04/02/03	
Bromobenzene	ND U	0.50	1	04/02/03	04/02/03	
1,2,3-Trichloropropane	ND U	1.0	1	04/02/03	04/02/03	
n-Propylbenzene	ND U	0.50	1	04/02/03	04/02/03	
2-Chlorotoluene	ND U	0.50	1	04/02/03	04/02/03	
4-Chlorotoluene	ND U	0.50	1	04/02/03	04/02/03	
1,3,5-Trimethylbenzene	ND U	0.50	1	04/02/03	04/02/03	
tert-Butylbenzene	ND U	0.50	1	04/02/03	04/02/03	
1,2,4-Trimethylbenzene	ND U	0.50	1	04/02/03	04/02/03	- Lawring - Lawr
sec-Butylbenzene	ND U	0.50	1	04/02/03	04/02/03	
1,3-Dichlorobenzene	ND U	0.50	1	04/02/03	04/02/03	
4-Isopropyltoluene	ND U	0.50	1	04/02/03	04/02/03	
Bromoform	ND U	0.50	1	04/02/03	04/02/03	
1,1,2,2-Tetrachloroethane	ND U	1.0	1	04/02/03	04/02/03	
1,4-Dichlorobenzene	ND U	0.50	Į.	04/02/03	04/02/03	
1,2-Dichlorobenzene	ND U	0.50	1	04/02/03	04/02/03	
n-Butylbenzene	ND U	0.50	1	04/02/03	04/02/03	
1,2-Dibromo-3-chloropropane	ND U	5.0	1	04/02/03	04/02/03	
1,2,4-Trichlorobenzene	ND U	0.50	1	04/02/03	04/02/03	
Hexachlorobutadiene	ND U	0.50	1	04/02/03	04/02/03	

Comments:

Merged

Analytical Results

Client: Project: BE&K Terranext WVB/#03103154

Sample Matrix:

Water

00420

Service Request: X2300257

Date Collected: 03/21/2003

Date Received: 03/21/2003

Volatile Organic Compounds

Sample Name:

AVB40-0802-1000

Lab Code:

X2300257-009

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L

Basis: NA

Level: Low

			Dilution	Date	Date	
Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed	Arizona Qualifier
Naphthalene	ND U	3.0	1	04/02/03	04/02/03	
1,2,3-Trichlorobenzene	ND U	0.50	1	04/02/03	04/02/03	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Arizona Qualifier	
Dibromofluoromethane	103	84-113	04/02/03		
Toluene-d8	104	68-126	04/02/03		
4-Bromofluorobenzene	94	79-113	04/02/03		

Comments:

Printed: 04/07/2003 13:04:51 LASTEALTH\CRYSTAL.RPT\Form\Im.rpt

000035

Merged

Form 1A - Organic

Page 3 of 3

Analytical Results

Client:

BE&K Terranext WVB/#03103154

Project: Sample Matrix:

Water

iaiyticai Kesuiis

Service Request: X2300257

Date Collected: NA
Date Received: NA

Volatile Organic Compounds

Sample Name: Lab Code: Method Blank XWG0300444-5

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

			Dilution	Date	Date	
Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed	Arizona Qualifier
Dichlorodifluoromethane	ND U	3.0	1	04/02/03	04/02/03	
Chloromethane	ND U	2.0	1-	04/02/03	04/02/03	
Vinyl Chloride	ND U	1.0	1	04/02/03	04/02/03	
Bromomethane	ND U	1.0	1	04/02/03	04/02/03	
Chloroethane	ND U	1.0	1	04/02/03	04/02/03	
Trichlorofluoromethane	ND U	1.0	1	04/02/03	04/02/03	
1,1,2-Trichlorotrifluoroethane	ND U	1.0	1	04/02/03	04/02/03	
1,1-Dichloroethene	ND U	1.0	1	04/02/03	04/02/03	
Acetone	ND U	10	1	04/02/03	04/02/03	
Iodomethane	ND U	2.0	l	04/02/03	04/02/03	
Carbon Disulfide	ND U	2.0	1	04/02/03	04/02/03	
Methylene Chloride	ND U	1.0	1 .	04/02/03	04/02/03	
Methyl tert-Butyl Ether	ND U	1.0	1	04/02/03	04/02/03	
trans-1,2-Dichloroethene	ND U	0.50	1	04/02/03	04/02/03	
1,1-Dichloroethane	ND U	0.50	1	04/02/03	04/02/03	
Vinyl Acetate	ND U	3.0	1	04/02/03	04/02/03	
2,2-Dichloropropane	ND U	2.0	1	04/02/03	04/02/03	
2-Butanone (MEK)	ND U	8.0	1	04/02/03	04/02/03	
cis-1,2-Dichloroethene	ND U	0.50	1	04/02/03	04/02/03	
Bromochloromethane	ND U	0.50	1	04/02/03		L1
Chloroform	ND U	1.0	1	04/02/03	04/02/03	
1,1,1-Trichloroethane	ND U	0.50	1	04/02/03	04/02/03	
Carbon Tetrachloride	ND U	0.50	1	04/02/03	04/02/03	
1,1-Dichloropropene	ND U	0.50	I	04/02/03	04/02/03	
Benzene	ND U	0.50	1	04/02/03	04/02/03	
1,2-Dichloroethane	ND U	0.50	I	04/02/03	04/02/03	
Trichloroethene	ND U	0.50	1	04/02/03	04/02/03	
1,2-Dichloropropane	ND U	0.50	1	04/02/03	04/02/03	
Dibromomethane	ND U	0.50	1	04/02/03	04/02/03	
Bromodichloromethane	ND U	0.50	1	04/02/03	04/02/03	
cis-1,3-Dichloropropene	ND U	0,50	1	04/02/03	04/02/03	
4-Methyl-2-pentanone (MIBK)	ND U	8.0	1	04/02/03	04/02/03	
Toluene	ND U	0.50	<u> </u>	04/02/03	04/02/03	

Comments:

RR3162

Analytical Results

Client:

BE&K Terranext WVB/#03103154

Project: Sample Matrix:

Water

. 11000000

Service Request: X2300257

Date Collected: NA
Date Received: NA

Volatile Organic Compounds

Sample Name: Lab Code:

Method Blank XWG0300444-5

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

				Dilution	Date	Date	
Analyte Name	Result	Q	MRL	Factor	Extracted	Analyzed	Arizona Qualifier
trans-1,3-Dichloropropene	ND	U	1.0	1	04/02/03	04/02/03	
1,1,2-Trichloroethane	ND	U	1.0	1	04/02/03	04/02/03	
Tetrachloroethene	ND	U	0.50	1	04/02/03	04/02/03	
2-Hexanone	ND	U	5,0	1	04/02/03	04/02/03	
1,3-Dichloropropane	ND		1.0	1	04/02/03	04/02/03	
Dibromochloromethane	ND	U	0.50	1	04/02/03	04/02/03	
1,2-Dibromoethane	ND	U	0.50	1	04/02/03	04/02/03	
Chlorobenzene	ND		0.50	1	04/02/03	04/02/03	
1,1,1,2-Tetrachloroethane	ND		0.50	1	04/02/03	04/02/03	
Ethylbenzene	ND	Ū	0.50	1	04/02/03	04/02/03	4477
m,p-Xylenes	ND		1.0	1	04/02/03	04/02/03	
o-Xylene	ND		0.50	1	04/02/03	04/02/03	
Styrene	ND		0.50	1	04/02/03	04/02/03	AMILES
Isopropylbenzene	ND		0.50	1	04/02/03	04/02/03	
Bromobenzene	ND		0.50	1	04/02/03	04/02/03	
1,2,3-Trichloropropane	ND	U	1.0	1	04/02/03	04/02/03	
n-Propylbenzene	ND	U	0.50	1	04/02/03	04/02/03	
2-Chlorotoluene	ND	U	0.50	1	04/02/03	04/02/03	
4-Chlorotoluene	ND	U	0.50	1	04/02/03	04/02/03	
1,3,5-Trimethylbenzene	ND	U	0.50	1	04/02/03	04/02/03	
tert-Butylbenzene	ND	U	0.50	1	04/02/03	04/02/03	
1,2,4-Trimethylbenzene	ND	U	0,50	1	04/02/03	04/02/03	
sec-Butylbenzene	ND	U	0.50	1	04/02/03	04/02/03	
1,3-Dichlorobenzene	ND	U	0.50	1	04/02/03	04/02/03	
4-Isopropyltoluene	ND	U	0.50	1	04/02/03	04/02/03	
Bromoform	ND		0.50	1	04/02/03	04/02/03	
1,1,2,2-Tetrachloroethane	ND	U	1.0	1	04/02/03	04/02/03	
1.4-Dichlorobenzene	ND	U	0.50	1	04/02/03	04/02/03	
1,2-Dichlorobenzene	ND		0.50	1	04/02/03	04/02/03	
n-Butylbenzene	ND		0.50	1	04/02/03	04/02/03	
1,2-Dibromo-3-chloropropane	ND	U	5.0	1	04/02/03	04/02/03	
1.2,4-Trichlorobenzene	ND		0.50	1	04/02/03	04/02/03	
Hexachlorobutadiene	ND	U	0.50	1	04/02/03	04/02/03	***************************************

Comments:

000037

Merged

Printed: 04/07/2003 13:05:02 L:\STEALTH\CRYSTAL.RPT\Form\Im.cpt

Form 1A - Organic

Page 2 of 3

SuperSet Reference: RR3162

Analytical Results

Client:

BE&K Terranext WVB/#03103154

Project: Sample Matrix:

Water

Service Request: X2300257

Date Collected: NA Date Received: NA

Volatile Organic Compounds

Sample Name:

Method Blank

Lab Code:

XWG0300444-5

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

		Dilution	Date	Date	
Result Q	MRL	Factor	Extracted	Analyzed	Arizona Qualifier
ND U	3.0	1	04/02/03	04/02/03	
ND U	0.50	1	04/02/03	04/02/03	
	ND U	ND U 3.0	Result Q MRL Factor ND U 3.0 1	Result Q MRL Factor Extracted ND U 3.0 1 04/02/03	Result Q MRL Factor Extracted Analyzed ND U 3.0 1 04/02/03 04/02/03

Surrogate Name	%Rec	Control Limits	Date Analyzed	Arizona Qualifier	
Dibromofluoromethane	100	84-113	04/02/03		
Toluene-d8	102	68-126	04/02/03		
4-Bromofluorobenzene	93	79-113	04/02/03		

Comments:

Printed: 04/07/2003 13:05:02 $\verb|L\STEALTH\CRYSTAL.RPT\Form1m.rpt|$

000038

Merged

Form IA - Organic

3 of 3 Page

SuperSet Reference:

QA/QC Report

Client:

BE&K Terranext

Project:

WVB/#03103154

Sample Matrix:

Water

Service Request: X2300257

Surrogate Recovery Summary Volatile Organic Compounds

Extraction Method: Analysis Method:

EPA 5030B

8260B

Units: PERCENT

Level: Low

Sample Name	Lab Code	<u>Sur1</u>	Sur2	<u>Sur3</u>
AVB40-0500-17093	X2300257-001	107	104	95
AVB40-0700-16096	X2300257-002	101	101	95
AVB77-0300-07119	X2300257-003	104	106	95
AVB77-0100-07098	X2300257-004	100	107	94
AVB77-0400-07099	X2300257-005	100	104	97
AVB40-0600-07095	X2300257-006	103	104	94
AVB40-0800-01095	X2300257-007	101	100	92
AVB40-0804-1000	X2300257-008	99	102	94
AVB40-0802-1000	X2300257-009	103	104	94
Method Blank	XWG0300444-5	100	102	93
Batch QC	X2300263-001	102	107	94
Batch QCMS	XWG0300444-1	103	104	98
Batch QCDMS	XWG0300444-2	98	99	93
Lab Control Sample	XWG0300444-3	100	106	96
Duplicate Lab Control Sample	XWG0300444-4	98	95	96

Surrogate Recovery Control Limits (%)

Sur1 =	Dibromofluoromethane	84-113
Sur2 =	Toluene-d8	68-126
Sur3 =	4-Bromofluorobenzene	79-113

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Printed: 04/07/2003 13:05:18 L:\STEALTH\CRYSTAL.RPT\Form2.rpt

000035

Form 2A - Organic

Page 1 of 1

SuperSet Reference: RR3162

QA/QC Report

Client: Project: BE&K Terranext WVB/#03103154 Service Request: X2300257

Date Analyzed: 04/02/2003 Time Analyzed: 08:16

Internal Standard Area and RT Summary Volatile Organic Compounds

File ID:

J:\MS02\APR03\040203\02APR003.D

Lab Code: XWG0300443-2

Instrument ID:

GC-MS02

Analysis Method:

8260B

Analysis Lot: XWG0300443

		1,4-Difluorobenzene		Chlorobenzene-d5		1,4-Dichlorobe	nzene-d4
		<u>Area</u>	RT	<u>Area</u>	<u>RT</u>	<u>Area</u>	RT
	Results ==>	968,056	10.56	943,973	15.07	419,309	18.04
	Upper Limit ==>	1,936,112	11.06	1,887,946	15.57	838,618	18.54
	Lower Limit ==>	484,028	10.06	471,987	14.57	209,655	17.54
	ICAL Result ==>	655,795	NA	617,977	NA	288,331	NA
Associated Analyses				AMERICAN CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CO			
Lab Control Sample	XWG0300444-3	979,791	10.56	977,540	15.06	442,584	18.04
Duplicate Lab Control Sample	XWG0300444-4	1,025,928	10.56	975,787	15.06	471,152	18.04
Batch QCMS	XWG0300444-1	1,012,440	10.56	989,576	15.06	455,174	18.04
Batch QCDMS	XWG0300444-2	1,027,003	10.56	948,419	15.06	442,640	18.04
Method Blank	XWG0300444-5	1,003,661	10.56	978,144	15.06	421,580	18.04
AVB40-0802-1000	X2300257-009	1,012,378	10.56	917,273	15.07	401,603	18.04
Batch QC	X2300263-001	927,884	10.56	952,942	15.06	418,287	18.04
AVB40-0500-17093	X2300257-001	873,326	10.56	832,062	15.07	387,040	18.04
AVB40-0700-16096	X2300257-002	892,341	10.56	819,201	15.07	376,354	18.04

Results flagged with an asterisk (*) indicate values outside control criteria.

QA/QC Report

Client: Project: BE&K Terranext WVB/#03103154 Service Request: X2300257

Date Analyzed: 04/02/2003 Time Analyzed: 16:41

Internal Standard Area and RT Summary Volatile Organic Compounds

File ID:

J:\MS02\APR03\040203\02APR019.D

Lab Code: XWG0300451-2

Instrument ID:

GC-MS02

Analysis Method:

8260B

Analysis Lot: XWG0300451

	_	1,4-Difluorobenzene Chlorob		Chlorobenzo	ene-d5	1,4-Dichlorobe	nzene-d4
		Area	RT	<u>Area</u>	RT	Area	RT
	Results ==>	925,621	10.57	922,003	15.06	435,097	18.04
	Upper Limit ==>	1,851,242	11.07	1,844,006	15.56	870,194	18.54
	Lower Limit ==>	462,811	10.07	461,002	14.56	217,549	17.54
	ICAL Result ==>	655,795	NA	617,977	NA	288,331	NA
Associated Analyses							
AVB77-0300-07119	X2300257-003	736,502	10.57	767,655	15.06	347,028	18.05
AVB77-0100-07098	X2300257-004	776,264	10.57	814,223	15.06	355,546	18.04
AVB77-0400-07099	X2300257-005	714,420	10.56	715,167	15.07	329,160	18.04
AVB40-0600-07095	X2300257-006	694,157	10.56	708,937	15.06	317,449	18.04
AVB40-0800-01095	X2300257-007	708,691	10.57	666,462	15.06	303,808	18.04
AVB40-0804-1000	X2300257-008	702,515	10.56	655,680	15.07	298,865	18.04

Results flagged with an asterisk (*) indicate values outside control criteria.

QA/QC Report

Client: Project: BE&K Terranext WVB/#03103154

Sample Matrix:

Water

Service Request: X2300257

Date Extracted: 04/02/2003 Date Analyzed: 04/02/2003

Matrix Spike/Duplicate Matrix Spike Summary Volatile Organic Compounds

Sample Name:

Batch QC

Lab Code:

X2300263-001

Extraction Method: Analysis Method:

EPA 5030B

8260B

Units: ug/L

Basis: NA

Level: Low

Extraction Lot: XWG0300444

	Sample	Batch QCMS XWG0300444-1 Matrix Spike		Batch QCDMS XWG0300444-2 Duplicate Matrix Spike			%Rec		RPD	
Analyte Name	Result	Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit
Dichlorodifluoromethane	ND	2,82	10.0	28 M2	2.52	10.0	25 M2	78-207	11	20
Chloromethane	ND	5.79	10.0	58 M2	4.92	10.0	49 M2	70-157	16	20
Vinyl Chloride	ND	6.71	10.0	67 M2	5.90	10.0	59 M2	79-174	13	20
Bromomethane	ND	8.08	10.0	81	6.74	10.0	67	44-150	18	20
Chloroethane	ND	8.97	10.0	90	7.91	10.0	79	74-150	13	20
Trichlorofluoromethane	ND	8.21	10.0	82	7.79	10.0	78 M2	80-134	5	20
1,1,2-Trichlorotrifluoroethane	ND	11.2	10.0	112	9.69	10.0	97	67-128	15	20
1,1-Dichloroethene	ND	9.76	10.0	98	8.24	10.0	82	71-142	17	20
Acetone	ND	33.4	40.0	83	36.7	40.0	92	1-155	10	20
Iodomethane	ND .	42.6	40.0	107	36.5	40.0	91	47-120	16	20
Carbon Disulfide	ND	42.4	40.0	106	36.7	40.0	92	77-126	14	20
Methylene Chloride	ND	10.5	10.0	105	9.78	10.0	98	83-106	7	20
Methyl tert-Butyl Ether	ND	8.56	10.0	86	8.68	10.0	87	70-118	1	20
trans-1,2-Dichloroethene	ND	11.1	10.0	111	9.79	10.0	98	86-115	13	20
1.1-Dichloroethane	ND	11.3	10.0	113	10.1	10.0	101	77-127	11	20
Vinyl Acetate	ND	40.1	40.0	100	39.9	40.0	100	8-187	0	20
2,2-Dichloropropane	ND	10.7	10.0	107	9.76	10.0	98	25-154	9	20
2-Butanone (MEK)	ND	31.2	40.0	78 M2	37.8	40.0	94	90-112	19	20
cis-1,2-Dichloroethene	ND	10.2	10.0	102	9.65	10.0	97	69-118	5	20
Bromochloromethane	ND	11.2	10.0	112	10.8	10.0	108	47-136	4	20
Chloroform	ND	10.7	10.0	107	10.1	10.0	101	48-143	6	20
1,1,1-Trichloroethane	ND	9.01	10.0	90	8.54	10.0	85	84-122	5	20
Carbon Tetrachloride	ND	9.83	10.0	98	9.18	10.0	92	79-120	7	20
1,1-Dichloropropene	ND	10.3	10.0	103	9.76	10.0	98	85-117	5	20
Benzene	ND	9.84	10.0	98	9.51	10.0	95	88-114	3	20
1,2-Dichloroethane	ND	9.65	10.0	97	10.0	10.0	100	75-112	4	20
Trichloroethene	ND	10.5	10.0	105	10.3	10.0	103	76-115	2	20
1,2-Dichloropropane	ND	10.0	10.0	100	9.81	10.0	98	85-107	2	20
Dibromomethane	ND	9.75	10.0	98	10.5	10.0	105	82-106	8	20
Bromodichloromethane	ND	9.28	10.0	93	9.13	10.0	91	83-107	2	20
cis-1,3-Dichloropropene	ND	10.3	10.0	103	10.2	10.0	102	70-114	1	20
4-Methyl-2-pentanone (MIBK)	ND	32.9	40.0	82	39.0	40.0	98	54-129	17	20
Toluene	ND	10.5	10.0	105	9.92	10.0	99	86-114	5	20

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 04/07/2003 13:05:41 L:\STEALTH\CRYSTAL.RPT\Form3DMS.rpt

000042

Form 3A - Organic

Page

SuperSet Reference: RR3162

QA/QC Report

Client: Project: BE&K Terranext WVB/#03103154

Sample Matrix:

Water

Service Request: X2300257

Date Extracted: 04/02/2003 **Date Analyzed:** 04/02/2003

Matrix Spike/Duplicate Matrix Spike Summary Volatile Organic Compounds

Sample Name: Lab Code:

Batch QC

X2300263-001

Extraction Method: Analysis Method:

EPA 5030B 8260B

Units: ug/L

Basis: NA

Level: Low

Extraction Lot: XWG0300444

Batch QCMS XWG0300444-1

Batch QCDMS XWG0300444-2

	Sample	Matrix Spike		Duplic	Duplicate Matrix Spike				RPD	
Analyte Name	Result	Result	Expected	%Rec	Result	Expected	%Rec	%Rec Limits	RPD	Limit
trans-1,3-Dichloropropene	ND	9.78	10.0	98	9.80	10.0	98	73-112	0	20
1,1,2-Trichloroethane	ND	8.92	10.0	89	9.48	10.0	95	79-112	6	20
Tetrachloroethene	ND	10.3	10.0	103	9.77	10.0	98	78-130	5	20
2-Hexanone	ND	32.7	40.0	82	37.4	40.0	94	77-112	13	20
1,3-Dichloropropane	ND	9.36	0.01	94	9.34	10.0	93	45-133	0	20
Dibromochloromethane	ND	9.35	10.0	94	9.33	10.0	93	74-108	0	20
1,2-Dibromoethane	ND	9.29	10.0	93	9.13	10.0	91	73-113	2	20
Chlorobenzene	ND	10.4	10.0	104	9.83	10.0	98	84-111	5	20
1,1,1,2-Tetrachloroethane	ND	9.60	10.0	96	9.75	10.0	98	84-119	2	20
Ethylbenzene	ND	10.8	10.0	108	10.2	10.0	102	47-136	6	20
m,p-Xylenes	ND	22.0	20.0	110	20.9	20.0	105	84-120	5	20
o-Xylene	ND	10.6	10.0	106	9.85	10.0	99	47-143	7	20
Styrene	ND	10.8	10.0	108	10.3	10.0	103	72-121	5	20
Isopropylbenzene	ND	10.5	10.0	105	9.80	10.0	98	63-108	7	20
Bromobenzene	ND	11.0	10.0	110	10.6	10.0	106	80-113	4	20
1,2,3-Trichloropropane	ND	9.84	10.0	98	10.0	10.0	100	78-119	2	20
n-Propylbenzene	ND	11.0	10.0	110	10.2	10.0	102	76-117	7	20
2-Chlorotoluene	ND	10.7	10.0	107	9.95	10.0	100	79-121	7	20
4-Chlorotoluene	ND	10.8	10.0	108	10.1	0.01	101	70-133	6	20
1,3,5-Trimethylbenzene	ND	10.9	10.0	109	10.0	10.0	100	79-118	8	20
tert-Butylbenzene	ND	11.1	10.0	111	10.2	10.0	102	77-120	8	20
1,2,4-Trimethylbenzene	ND	10.9	10.0	109	10.1	10.0	101	68-127	7	20
sec-Butylbenzene	ND	10.4	10.0	104	9.63	10.0	96	78-123	8	20
1,3-Dichlorobenzene	ND	10.6	10.0	106	10.1	10.0	101	78-127	5	20
4-Isopropyltoluene	ND	11.2	10.0	112	10.1	10.0	101	79-142	10	20
Bromoform	ND	9.19	10.0	92	9.36	10.0	94	83-111	2	20
1,1,2,2-Tetrachloroethane	ND	10.0	10.0	100	10.7	10.0	107	66-133	6	20
1,4-Dichlorobenzene	ND	10.3	10.0	103	9.76	10.0	98	48-139	5	20
1,2-Dichlorobenzene	ND	9.81	10.0	98	9.68	10.0	97	64-109	1	20
n-Butylbenzene	ND	10.8	10.0	108	9.90	10.0	99	69-122	9	20
1,2-Dibromo-3-chloropropane	ND	8.71	10.0	87	8.64	10.0	86	54-160	1	20
1,2,4-Trichlorobenzene	ND	9.34	10.0	93	9.88	10.0	99	39-145	6	20
Hexachlorobutadiene	ND	11.9	10.0	119 M1	11.3	10.0	113	74-113	5	20

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 04/07/2003 13:05:41 LASTEALTH\CRYSTAL.RPT\Form3DMS.rpt

000043

Form 3A - Organic

Page 2 of

RR3162 SuperSet Reference:

QA/QC Report

Client:

BE&K Terranext WVB/#03103154

Project: Sample Matrix:

Water

Service Request: X2300257

Date Extracted: 04/02/2003

Date Analyzed: 04/02/2003

Matrix Spike/Duplicate Matrix Spike Summary Volatile Organic Compounds

Sample Name:

Batch QC

Lab Code:

X2300263-001

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L

Basis: NA

Level: Low

Extraction Lot: XWG0300444

Batch QCMS

XWG0300444-1

Batch QCDMS

XWG0300444-2

Matrix Spike Duplicate Matrix Spike %Rec RPD Sample RPD Limit Result %Rec Limits %Rec Expected **Analyte Name** Result Expected Result 10.0 13 20 8.85 10.0 89 10.1 101 44-167 ND Naphthalene 10.0 117 37-158 7 20 108 11.7 10.0 1,2,3-Trichlorobenzene ND 10.8

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 04/07/2003 13:05:41 LASTEALTHACRYSTAL.RPT\Form3DMS.rpt

000044

Form 3A - Organic

Page

3 of

RR3162 SuperSet Reference:

QA/QC Report

Client: Project: BE&K Terranext WVB/#03103154

Sample Matrix:

Water

Service Request: X2300257

Date Extracted: 04/02/2003

Date Analyzed: 04/02/2003

Lab Control Spike/Duplicate Lab Control Spike Summary Volatile Organic Compounds

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L

Basis: NA

Level: Low

Extraction Lot: XWG0300444

Lab Control Sample XWG0300444-3 Lab Control Snike

Duplicate Lab Control Sample XWG0300444-4 Dunlicate Lab Control Spike

	Lab Control Spike			Duplicate Lab Control Spike			%Rec		RPD
Analyte Name	Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit
Dichlorodifluoromethane	2.79	10.0	28	2.58	10.0	26	1-233	8	20
Chloromethane	6.04	10.0	60	5.39	10.0	54	46-156	11	20
Vinyl Chloride	6.62	10.0	66	6.47	10.0	65	51-158	2	20
Bromomethane	8.05	10.0	81	7.72	10.0	77	37-149	4	20
Chloroethane	8.65	10.0	87	8.35	10.0	84	56-146	4	20
Trichlorofluoromethane	8.59	10.0	86	8.15	10.0	82	69-139	5	20
1,1,2-Trichlorotrifluoroethane	10.2	10.0	102	10.5	10.0	105	83-130	3	20
1,1-Dichloroethene	9.13	10.0	91	9.17	10.0	92	65-112	0	20
Acetone	38.5	40.0	96	42.1	40.0	105	68-128	9	20
Iodomethane	38.5	40.0	96	37.9	40.0	95	68-144	2	20
Carbon Disulfide	38.8	40.0	97	39.4	40.0	98	67-140	1	20
Methylene Chloride	10.2	10.0	102	10.2	10.0	102	70-113	1	20
Methyl tert-Butyl Ether	9.37	10.0	94	9.11	10.0	91	75-115	3	20
trans-1,2-Dichloroethene	10.4	10.0	104	10.5	10.0	105	73-118	1	20
1,1-Dichloroethane	10.7	10.0	107	10.9	10.0	109	77-127	2	20
Vinyl Acetate	42.6	40.0	107	41.5	40.0	104	51-202	3	39
2,2-Dichloropropane	9.97	10.0	100	10.2	10.0	102	75-132	2	20
2-Butanone (MEK)	38.1	40.0	95	37.1	40.0	93	72-122	3	20
cis-1,2-Dichloroethene	9.90	10.0	99	10.1	10.0	101	81-118	2	20
Bromochloromethane	12.2	10.0	122 L1	12.4	10.0	124 LI	82-114	2	20
Chloroform	10.7	10.0	107	10.7	10.0	107	78-119	1	20
1,1,1-Trichloroethane	8.75	10.0	88	8.95	10.0	90	71-125	2	20
Carbon Tetrachloride	9.52	10.0	95	9.41	10.0	94	69-130	1	20
1,1-Dichloropropene	10.2	10.0	102	9,83	10.0	98	77-114	3	20
Benzene	9.64	10.0	96	9,63	10.0	96	81-117	0	20
1,2-Dichloroethane	10.5	10.0	105	9.99	10.0	100	67-122	5	20
Trichloroethene	10.5	10.0	105	10.2	10.0	102	79-114	3	20
1,2-Dichloropropane	10.5	10.0	105	10.1	10.0	101	78-114	4.	20
Dibromomethane	11,3	10.0	113	10.7	10.0	107	78-113	6	20
Bromodichloromethane	10.0	10.0	100	9.25	10,0	93	79-122	8	20
cis-1,3-Dichloropropene	11.6	10.0	116	10.9	10.0	109	82-118	6	20
4-Methyl-2-pentanone (MIBK)	45.5	40.0	114	41.6	40.0	104	75-115	9	20
Toluene	10.9	10.0	109	10.1	10.0	101	85-118	8	20
trans-1,3-Dichloropropene	11.4	10.0	114	10.6	10.0	106	79-121	7	20
1,1,2-Trichloroethane	10.6	10.0	106	9.82	10.0	98	79-116	8	20

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

000045

Printed: 04/07/2003 13:05:48 LASTEALTHACRYSTAL.RPT\Form3DLC.rpt Form 3C - Organic

Page 1 of

SuperSet Reference: RR3162

QA/QC Report

Client: Project: BE&K Terranext WVB/#03103154

Sample Matrix:

Water

Service Request: X2300257

Date Extracted: 04/02/2003

Date Analyzed: 04/02/2003

Lab Control Spike/Duplicate Lab Control Spike Summary **Volatile Organic Compounds**

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L

Basis: NA

Level: Low Extraction Lot: XWG0300444

Lab Control Sample

Duplicate Lab Control Sample XWG0300444-3 XWG0300444-4 Lab Control Spike Dunlicate Lab Control Snike

	Lab	Control Spik	e	Duplicate Lab Control Spike			%Rec		RPD
Analyte Name	Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit
Tetrachloroethene	10.5	10.0	105	9.88	10.0	99	76-127	6	20
2-Hexanone	41.7	40.0	104	39.9	40.0	100	65-120	4	20
1,3-Dichloropropane	10.8	10.0	108	9.91	10.0	99	81-116	8	20
Dibromochloromethane	10.6	10.0	106	9.73	10.0	97	77-119	8	20
1,2-Dibromoethane	10.4	10.0	104	10.2	10.0	102	79-116	2	20
Chlorobenzene	10.5	10.0	105	10.1	10.0	101	84-114	5	20
1,1,1,2-Tetrachloroethane	10.1	10.0	101	9.87	10.0	99	78-118	2	20
Ethylbenzene	10.6	10.0	106	10.4	10.0	104	79-124	3	20
m,p-Xylenes	21.7	20.0	109	21.1	20.0	106	75-131	3	20
o-Xylene	10.5	10.0	105	10.4	10.0	104	78-122	2	20
Styrene	10.8	10.0	108	10.7	10.0	107	80-126	1	20
Isopropylbenzene	10.3	10.0	103	10.3	10.0	103	75-126	1	20
Bromobenzene	11.0	10.0	110	11.6	10.0	116	82-122	5	20
1,2,3-Trichloropropane	11.1	10.0	111	11.1	10.0	111	77-118	0	20
n-Propylbenzene	10.4	10.0	104	10,6	10.0	106	75-129	2	20
2-Chlorotoluene	10.2	10.0	102	10.3	10.0	103	77-126	1	20
4-Chlorotoluene	10.6	10.0	106	10.6	10.0	106	82-120	0	20
1,3,5-Trimethylbenzene	10.4	10.0	104	10.7	10.0	107	75-130	3	20
tert-Butylbenzene	10.5	10.0	105	10.7	10.0	107	73-130	2	20
1,2,4-Trimethylbenzene	10.4	10.0	104	10.5	10.0	105	60-137	1	20
sec-Butylbenzene	9.80	10.0	98	10.2	10.0	102	68-131	4	20
1,3-Dichlorobenzene	10.4	10.0	104	10.6	10.0	106	71-137	2	20
4-Isopropyltoluene	10.4	10.0	104	10.7	10.0	107	68-134	3	20
Bromoform	10.3	10.0	103	9,62	10.0	96	70-118	7	20
1,1,2,2-Tetrachloroethane	11.5	10.0	115	11.1	10.0	111	72-122	3	20
1,4-Dichlorobenzene	10.4	10.0	104	10.1	10.0	101	82-114	3	20
1,2-Dichlorobenzene	10.0	10.0	100	10.0	10.0	100	81-118	0	20
n-Butylbenzene	10.1	10.0	101	10.1	10.0	101	71-125	0	20
1,2-Dibromo-3-chloropropane	9.76	10.0	98	11.1	10.0	111	55-131	12	20
1,2,4-Trichlorobenzene	10.0	10.0	100	10.3	10.0	103	75-123	3	20
Hexachlorobutadiene	10.9	10.0	109	10.8	10.0	108	63-140	1	20
Naphthalene	9.87	10.0	99	10.2	10.0	102	67-125	3	20
1,2,3-Trichlorobenzene	11.3	10.0	113	11.7	10.0	117	72-124	3	20

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 04/07/2003 13:05:48 LASTEALTH\CRYSTAL.RPT\Form3DLC.rpt 000046

Form 3C - Organic

Page 2 of

SuperSet Reference: RR3162

April 3, 2003

Chuck Gordon BE & K Terranext 9830 S. 51st A-127 Phoenix, AZ 85044

Re: WVB/Project #03103154

Dear Chuck:

Enclosed are the results of the samples submitted to our laboratory on March 21, 2003. For your reference, these analyses have been assigned our service request number L2300648.

All analyses were performed in accordance with our laboratory's quality assurance program. Results are intended to be considered in their entirety and apply only to the samples analyzed. Columbia Analytical Services is not responsible for use of less than the complete report.

Columbia Analytical Services - is certified for environmental analyses by the Arizona Department of Health Services (certificate number: AZ0544 and AZ0136, expiration: May 23, 2003).

If you have any questions, please call me at (818) 587-5550, extension 309.

Respectfully submitted,

Columbia Analytical Services, Inc.

ne Colleton

Sue Anderson Project Chemist

SA

Page 1 of <u>a5</u>

000376

April 11, 2003

Chuck Gordon BE & K Terranext 9830 S. 51st A-127 Phoenix, AZ 85044

Re: WVB/Project #03103154

Dear Chuck:

Enclosed are the additional pages for the Tier III package for the samples submitted to our laboratory on March 21, 2003. For your reference, these analyses have been assigned our service request number L2300648.

All analyses were performed in accordance with our laboratory's quality assurance program. Results are intended to be considered in their entirety and apply only to the samples analyzed. Columbia Analytical Services is not responsible for use of less than the complete report.

Columbia Analytical Services - is certified for environmental analyses by the Arizona Department of Health Services (certificate number: AZ0544 and AZ0136, expiration: May 23, 2003).

If you have any questions, please call me at (818) 587-5550, extension 309.

Respectfully submitted,

Columbia Analytical Services, Inc.

Sue Anderson Project Chemist

SA

Columbia Analytical Services, Inc.

Acronyms California DHS LUFT Method 8015M ASTM American Society for Testing and Materials Biochemical Oxygen Demand BOD BTEX Benzene/Toluene/Ethylbenzene/Xylenes California Assessment Metals CAM Chemical Abstract Service Registry Number CAS Number **CFC** Chlorofluorocarbon COD Chemical Oxygen Demand **CRDL** Contract Required Detection Limit D Detected; result must be greater than zero. Detected; result must be greater than the detection limit. DL DLCS Duplicate Laboratory Control Sample DMS Duplicate Matrix Spike DOH or DHS Department of Health Services Environmental Laboratory Accreditation Program ELAP U.S. Environmental Protection Agency **EPA** Gas Chromatography GCGC/MS Gas Chromatography/Mass Spectrometry Ion Chromatography IC Initial Calibration Blank sample **ICB** Inductively Coupled Plasma atomic emission spectrometry **ICP** Initial Calibration Verification sample **ICV** Laboratory Control Sample LCS LUFT Leaking Underground Fuel Tank Modified M **MBAS** Methylene Blue Active Substances MDL Method Detection Limit MRL Method Reporting Limit MS Matrix Spike Methyl-tert-Butyl Ether MTBE Not Applicable NA Not Calculated NC None Detected at or above the Method Reporting/Detection Limit (MRL/MDL) ND Nephelometric Turbidity Units NTU Parts Per Billion ppb Parts Per Million ppm Practical Quantitation Limit **PQL** Quality Assurance/Quality Control QA/QC Resource Conservation and Recovery Act **RCRA** RPD Relative Percent Difference Selected Ion Monitoring SIM SMStandard Methods for the Examination of Water and Wastewater, 18th Ed., 1992. STLC Solubility Threshold Limit Concentration Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW-846, SWThird Edition, 1986 and as amended by Updates I, II, IIA, and IIB. Toxicity Characteristics Leaching Procedure TCLP Total Dissolved Solids TDS Total Petroleum Hydrocarbons TPH TRPH Total Recoverable Petroleum Hydrocarbons Total Suspended Solids TSS Total Threshold Limit Concentration TTLC VOA Volatile Organic Analyte(s) Qualifiers Undetected at or above MDL/MRL. U Estimated concentration. Analyte detected above MDL but below MRL. J В Hit above MRL also found in Method Blank.

U Undetected at or above MDL/MRL.

J Estimated concentration. Analyte detected above MDL but below MRL.

B Hit above MRL also found in Method Blank.

E Analyte concentration above high point of ICAL.

N Presumptive evidence of compound.

D Result from dilution.

X See case narrative.

Client:

BE&K Terranext, LLC

Project:

WVB/03103154

Sample Matrix: Water

Service Request No.:

L2300648

Date Received:

3/21/03

CASE NARRATIVE

All analyses were performed in accordance with our laboratory's quality assurance program. This report contains analytical results for sample(s) designated for Tier II data deliverables. When appropriate to the method, method blank results have been reported with each analytical test. Additional quality control analyses reported herein include: Matrix/Duplicate Matrix Spike (MS/DMS) and Laboratory Control Sample (LCS).

All EPA recommended holding times have been met for analyses in this sample delivery group.

The following difficulties were experienced during analysis of this batch:

Metals, Method 6010B:

Result footnote for Matrix Spike/Duplicate Matrix Spike Summary page: M1 = Matrix spike recovery was high, the method control sample recovery was acceptable.

Approved by: She Audlish Date: 4/3/03

- Cover Page -INORGANIC ANALYSIS DATA PACKAGE

Client:

BE&K Terranext, LLC

Project Name : Project No. : WVB 03103154 Service Request: L2300648

Sample Name:	Lab Code:
AVB40-0500-17093	L2300648-001
AVB40-0500-17093	L2300648-001S
AVB40-0500-17093	L2300648-001SD
AVB40-0700-16096	L2300648-002
AVB77-0300-07119	L2300648-003
AVB77-0100-07098	L2300648-004
AVB77-0400-07099	L2300648-005
AVB40-0600-07095	L2300648-006
AVB40-0800-01095	L2300648-007
AVB40-0804-1000	L2300648-008
Laboratory Control Sample	L2300648-LCS
Method Blank	L2300648-MB

000380

Analytical Report

Client:

BE&K Terranext, LLC

Project Name : Project No. : WVB 03103154

Matrix:

Water

Service Request: L2300648

Date Collected: 03/21/03
Date Received: 03/21/03

Date Extracted: 03/26/03

Total Metals

Sample Name:

AVB40-0500-17093

Lab Code:

L2300648-001

Units: ug/L (ppb)

Analyte	Analysis Method	MRL	Date Analyzed	Sample Result	Result Notes
Chromium	6010B	10	03/31/03	ND	

Analytical Report

Client:

BE&K Terranext, LLC

Project Name : Project No. : WVB 03103154

Matrix:

Water

Service Request: L2300648

Date Collected: 03/21/03 Date Received: 03/21/03 Date Extracted: 03/26/03

Dissolved Metals

Sample Name :

AVB40-0500-17093

Lab Code:

L2300648-001

Units: ug/L (ppb)

—Analyte	Analysis Method	MRL	Date Analyzed	Sample Result	Result Notes
Chromium	6010B	10.0	04/01/03	ND	

Analytical Report

Client:

BE&K Terranext, LLC

Project Name:

WVB

Project No.: Matrix:

03103154 Water

Service Request: L2300648

Date Collected: 03/21/03 Date Received: 03/21/03

Date Extracted: 03/26/03

Total Metals

Sample Name:

AVB40-0700-16096

Lab Code:

L2300648-002

Units: ug/L (ppb)

Basis: NA

Sample **Analysis Method** MRL Date Analyzed - Analyte

10

Result

19

Result Notes

6010B 03/31/03 Chromium

Analytical Report

Client:

BE&K Terranext, LLC

Project Name :

WVB

Project No.: Matrix:

03103154

Water

Service Request: L2300648

Date Collected: 03/21/03 **Date Received:** 03/21/03 **Date Extracted:** 03/26/03

Dissolved Metals

Sample Name: AVB40-0700-16096

Lab Code: L2300648-002

Units: ug/L (ppb)

— Analyte	Analysis Method	MRL	Date Analyzed	Sample Result	Result Notes
Chromium	6010B	10.0	04/01/03	ND	

Analytical Report

Client:

BE&K Terranext, LLC

Project Name : Project No. :

WVB

Matrix:

03103154 Water

Service Request: L2300648

Date Collected: 03/21/03 Date Received: 03/21/03

Date Extracted: 03/26/03

Total Metals

Sample Name: AVB77-0300-07119

Units: ug/L (ppb)

Basis: NA

Lab Code:

L2300648-003

— Analyte	Analysis Method	MRL	Date Analyzed	Sample Result	Result Notes
Chromium	6010B	10	03/31/03	ND	

Analytical Report

Client:

BE&K Terranext, LLC

Project Name : Project No. : WVB

03103154

Matrix:

Water

Service Request: L2300648

Date Collected: 03/21/03 **Date Received**: 03/21/03 **Date Extracted**: 03/26/03

Date Extracted: 03/26/03

Dissolved Metals

Sample Name:

AVB77-0300-07119

Lab Code:

L2300648-003

Units: ug/L (ppb)

Basis: NA

Analyte Analysis Method MRL Date Analyzed Result Notes

Chromium 6010B 10.0 04/01/03 ND

Analytical Report

Client:

BE&K Terranext, LLC

Project Name: Project No.:

WVB

03103154

Matrix:

Water

Service Request: L2300648

Date Collected: 03/21/03 Date Received: 03/21/03

Date Extracted: 03/26/03

Total Metals

Sample Name:

AVB77-0100-07098

Lab Code :

L2300648-004

Units: ug/L (ppb)
Basis: NA

Analyte	Analysis Method	MRL	Date Analyzed	Sample Result	Result Notes
Chromium	6010B	10	03/31/03	12	

Analytical Report

Client:

BE&K Terranext, LLC

Project Name: Project No.:

WVB

Matrix:

Water

03103154

Service Request: L2300648 Date Collected: 03/21/03

Date Received: 03/21/03 Date Extracted: 03/26/03

Dissolved Metals

Sample Name:

AVB77-0100-07098

Lab Code:

L2300648-004

Units: ug/L (ppb)

— Analyte	Analysis Method	MRL	Date Analyzed	Sample Result	Result Notes
Chromium	6010B	10.0	04/01/03	ND	

Analytical Report

Client:

BE&K Terranext, LLC

Project Name : Project No. : WVB

Matrix:

03103154

Water

Service Request: L2300648

Date Collected: 03/21/03 Date Received: 03/21/03

Date Extracted: 03/26/03

Total Metals

Sample Name:

AVB77-0400-07099

Lab Code:

L2300648-005

Units: ug/L (ppb)

—Analyte	Analysis Method	MRL	Date Analyzed	Sample Result	Result Notes
Chromium	6010B	10	03/31/03	15	

Analytical Report

Client:

BE&K Terranext, LLC

Project Name:

WVB

Project No.:

03103154

Matrix:

Water

Service Request: L2300648

Date Collected: 03/21/03 **Date Received:** 03/21/03

Date Extracted: 03/26/03

Dissolved Metals

Sample Name:

AVB77-0400-07099

Lab Code:

L2300648-005

Units: ug/L (ppb)

Basis: NA

— Analyte Analysis Method MRL Date Analyzed

Chromium

6010B

10.0

04/01/03

Sample Result Result Notes

`

ND

Analytical Report

Client:

BE&K Terranext, LLC

Project Name: Project No.:

WVB

Matrix:

03103154 Water

Service Request: L2300648 Date Collected: 03/21/03

Date Received: 03/21/03 Date Extracted: 03/26/03

Total Metals

Sample Name:

AVB40-0600-07095

Lab Code:

L2300648-006

Units: ug/L (ppb)

Basis: NA

Sample Result Result **Date Analyzed** Notes **Analysis Method** MRL Analyte 03/31/03 ND 10 6010B Chromium

Analytical Report

Client:

Matrix:

BE&K Terranext, LLC

Project Name: Project No.:

WVB

03103154 Water

Service Request: L2300648

Date Collected: 03/21/03

Date Received: 03/21/03 Date Extracted: 03/26/03

Dissolved Metals

Sample Name:

AVB40-0600-07095

Lab Code:

L2300648-006

Units: ug/L (ppb)

Analyte	Analysis Method	MRL	Date Analyzed	Sample Result	Result Notes
Chromium	6010B	10.0	04/01/03	ND	

Analytical Report

Client:

BE&K Terranext, LLC

Project Name:

WVB

Project No.: Matrix:

03103154

Water

Service Request: L2300648

Date Collected: 03/21/03

Date Received: 03/21/03

Date Extracted: 03/26/03

Total Metals

Sample Name:

AVB40-0800-01095

Lab Code:

L2300648-007

Units: ug/L (ppb)

A	nalyte	Analysis Method	MRL	Date Analyzed	Sample Result	Result Notes
C	hromium	6010B	10	03/31/03	ND	

Analytical Report

Client:

BE&K Terranext, LLC

Project Name : Project No. : WVB 03103154

Matrix:

Water

Service Request: L2300648

Date Collected: 03/21/03 Date Received: 03/21/03 Date Extracted: 03/26/03

Dissolved Metals

Sample Name:

AVB40-0800-01095

Lab Code:

L2300648-007

Units: ug/L (ppb)

—Analyte	Analysis Method	MRL	Date Analyzed	Sample Result	Result Notes
Chromium	6010B	10.0	04/01/03	ND	

Analytical Report

Client:

BE&K Terranext, LLC

Project Name:

WVB

Project No.:

03103154

Matrix:

Water

Service Request: L2300648

Date Collected: 03/21/03 Date Received: 03/21/03 Date Extracted: 03/26/03

Total Metals

Sample Name:

AVB40-0804-1000

Lab Code:

L2300648-008

Units: ug/L (ppb)

—Analyte	Analysis Method	MRL	Date Analyzed	Sample Result	Result Notes
Chromium	6010B	10	03/31/03	ND	

Analytical Report

Client:

BE&K Terranext, LLC

Project Name:

WVB

Project No. : Matrix : 03103154

Water

Service Request: L2300648

Date Collected: 03/21/03 **Date Received:** 03/21/03

Date Extracted: 03/26/03

Dissolved Metals

Sample Name:

AVB40-0804-1000

Lab Code:

L2300648-008

Units: ug/L (ppb)

Analyte	Analysis Method	MRL	Date Analyzed	Sample Result	Result Notes
Chromium	6010B	10.0	04/01/03	ND	

Analytical Report

Client:

BE&K Terranext, LLC

Project Name: Project No.:

WVB 03103154

Matrix:

Water

Service Request: L2300648
Date Collected: NA Date Received: NA Date Extracted: 03/26/03

Total Metals

Sample Name:

Method Blank

Lab Code:

L2300648-MB

Units: ug/L (ppb)

— Analyte	Analysis Method	MRL	Date Analyzed	Sample Result	Result Notes
Chromium	6010B	10	03/31/03	ND	

QA/QC Report

Client:

BE&K Terranext, LLC

Project Name: Project No.:

WVB 03103154

Matrix:

Water

Service Request: L2300648

Date Collected: NA

Date Received: NA Date Extracted: 03/26/03

Date Analyzed: 03/31/03

Laboratory Control Sample Summary Total Metals

Sample Name:

Laboratory Control Sample

Lab Code:

L2300648-LCS

Units: ug/L (ppb)

					CAS Percent Recovery Acceptance	Result
Analyte	Analysis Method	True Value	Result	Percent	Limits	Notes
Chromium	6010B	500	542	108	87-111	

Analytical Report

Client:

BE&K Terranext, LLC

Project Name: Project No.:

WVB 03103154

Matrix:

Water

Service Request: L2300648

Date Collected: 03/21/03

Date Received: 03/21/03

Date Extracted: 03/26/03

Date Analyzed: 03/31/03

Matrix Spike/Duplicate Matrix Spike Summary

Total Metals

Sample Name:

AVB40-0500-17093

Lab Code:

L2300648-001S

L2300648-001SD

Units: ug/L (ppb)

Analyte	Prep Method	Analysis Method	MRL	Spike MS	Level DMS	Sample Result	Spike MS	Result DMS	MS	DMS	CAS Acceptance Limits	Relative Percent Difference	Result Notes
Chromium	3010A	6010B	10	500	500	ND	527	541	105	108	87-105	3	M1

Services NG. Analytical Columbia

CHAIN OF CUSTODY/LABORALORY ANALYSIS REQUEST FORM 1.2300648

DATE 3.21.03

3902 East University Drive, Suite 4 • Phoenix, AZ 85034 • (602) 437-2001 • (800) 695-7222 x09 • FAX (602) 437-5308

- HO PAGE_

RUSH TAT - Surcharges Apply ANALYSIS TAT (Circle One) REMARKS SAMPLE RECEIPT: 2 32 13 0 72 Hours ☐ 24 Hours ☐ 48 Hours Lab No: X33-00-00 STANDARD Shipping VIA: Shipping #: _ Condition: 551Q D 0/58 **ANALYSIS REQUESTED** Star 103 INVOICE INFORMATION 9310 Date/Time 3-2/-03 /342 OF FO Date/Time Daint Filter O Organization Organization Organization D d70, <u>1</u> P.O.# 3 Z REPORT REQUIREMENTS II. Report (includes DUP.MS. MSD, as required, may be | Mil. Data Validation Report (includes All Raw Data) IV. CLP Deliverable Report charged as samples) 1. Routine Report Aromatic Volatiles Volatile Organics that was Received By (Signature) Received By (Signature) Réceived By (Signature) rdex v P 10 S NUMBER OF CONTAINERS Ę PRESER-VATION 13:42 Date/Time 3-3/-03 Date/Time Date/Time 4 ٢ 2 1 # 03103164 MATRIX ۲. ¥ 400 gos 700 7,00 200 % 000 000 g Organization Organization 357. Oc LAB I.D. CAS 105/105/1 878 Gerake 01.68 PHONE/FAX TIME 13.10 15.30 e R R 7 8 SPECIAL INSTRUCTIONS/COMMENTS: Chuele Beth 3200 DATE SAMPLER'S SIGNATURE_ ۶, 7 7 Z 1 Relinquished By (Signature) ned By (Signature) nquished By (Signature) TONG! PROJECT NAME WVB ANKY 60 - 0 (000 - 0 70K) MOTT-010-07078 AVR40-0000-01095 ANG777-0300-0711A AUBT7-0400-07099 ANEMO-DECISION 4/840-0804-1000 4 Jan 250 - 1709 3 なるな AUDIO 1500-16096 COMPANY/ADDRESS PROJECT MANAGER SAMPLE I.D. 000406

DISTRIBUTION: WHITE · return to originator; YELLOW · lab; PINK · retained by originator

SAMPLE RECEIPT FORM

Service Request No: L2300648 Client: BE+K
Sample(s) delivered by: Client CAS Emp After Hours DHL
Golden State Overnight Fed X UPS Other Courier
Chain of Custody filled out accurately? Yes No(See Comments)
Appropriate sample volume and containers? Yes No(See Comments)
Sufficient labeling on container(s)? Yes No(See Comments)
Container(s) supplied by CAS? Yes No (See Comments)
Custody seal(s) intact? N/A / Yes No(See Comments)
Trip Blank(s) received Yes No
If Trip Blank was supplied by CAS, record serial #TB
Temperature of sample(s)/cooler °C Temp Blank?(Y) or N (Circle One)
Voa's Marked Preserved? Yes No Filled Properly? Yes No (See Comments)
Preserved Bottles Requiring pH check(s)? Yes Notified
RUSH Turn around time? Yes Notified Date & Time
Short Hold-Time Analysis (check all that apply)
ASAP Res Cl D.O Flash Diss S2 Ferrous Fe
24HR pH Odor Cr+6 48HR BOD Color MBAS Nîtrate
NitriteO-PO4Sett SolTurbidity 72HR Vapors
Notified Date & Time
Container(s) received and their preservative(s):
$-1 \rightarrow -8 = 1 - 1L PL(NP) A$
1-500ml P1(HN03)B
a Eiltrac de accomo doco a de la lactilla o
Comments Filter & preserve diss metals bottle in lab. Copy of Chain put in metals box 3/21/03 1000
-0117 0, Cath 1 14 (40 1)01 2/24 103 1000
. 7
Initials, Date, Time LK 3/21/03/1000 r:\sr_forms\cooler.doc Rev. 1/17/02
Initials, Date, Time CC D/J-1002 r:\sr_forms\cooler.doc Rev. 1/17/02

000401

CHAIN OF CUSTODY/LABORAIORY ANALYSIS REQUEST FORM

3902 East University Drive, Suite 4 • Phoenix, AZ 85034 • (602) 437-2001 • (800) 695-7222 x09 • FAX (602) 437-5308

Services INC.

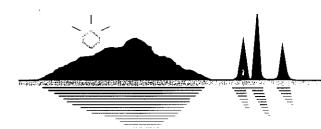
Analytical Columbia

DATE

3.21.03

QF. PAGE ANALYSIS REQUESTED

RUSH TAT - Surcharges Apply REMARKS ANALYSIS TAT (Circle One) SAMPLE RECEIPT ☐ 48 Hours □ 72 Hours ☐ 24 Hours Lab No: X33-00-358 STANDARD Shipping VIA: Shipping #: __ Condition: 221Q D 0428 INVOICE INFORMATION 0188 Date/Time 3-24-03 /3-4ス Date/Time Date/Time DHO paint Filter O Diniod Asela D letoT Organization Organization Organization D d TOL 1 1 1 1 1 P.O.* Z 8PCPA Metals II. Report (includes DUP.MS. MSD, as required, may be charged as samples) REPORT REQUIREMENTS III. Data Validation Report (includes All Raw Data) IV. CLP Deliverable Report Routine Report 8021 District Volatiles Volatile Organics hall your Received By (Signature) Received By (Signature) Received By (Signature) 3 3 3 (3 S S D 10 S ĵν NUMBER OF CONTAINERS 1 PRESER-VATION 13:42 五 Date/Time * 4 ۲ Date/Time Date/Time \$ 2 2 03103164 MATRIX ₹, ¥ . 800 700 SOS dol *∖,00* 80% 80 357. Out Organization Organization LAB I.D. 105/11/25/1 Ge748 8 1.10 01.10 9.88 PHONE/FAX TIME 13.10 5.30 e S ر ج SPECIAL INSTRUCTIONS/COMMENTS: Chuele BOTH 3.4.03 DATE 7 E 2 ~ Relinquished By (Signature) Re¶nquish∳d By (Signature) Relinquished By (Signature) ANRY 60 - 00000 -07005 PROJECT NAME_WVB ANBT7-00-00-67098 AVB-778-0300-071FB 4/940-0000-0105 AUST7-0400-67099 A116410-0802-WW 4/640-0004-1000 4000 CEO-11093 COMPANY/ADDRESS PROJECT MANAGER AUXIO -0700-16096 SAMPLE 9


DISTRIBUTION: WHITE - return to originator, YELLOW - lab; PINK - retained by originator

0702

Columbia Analytical Services, Inc. Phoenix, AZ

Sample Receipt and Preservation Form

Client:	BE+K		Project Name: WVB			
Sample(s) R VOA's	Received on: 3-, Glass Bottl	21-03 les 🗆	date 133 Plastic Bottles	Otime		
MATRE	X: SOIL 🗆	WATE	R.Z		A Annual Angelon Marie Control of the Control of th	
First Ext	raction Holding	Time Expirati	on;	_date	time (soils only)	
Is first e	xtraction/analysis	s holding time	expiration LESS 1	HAN 24 HOUI	RS(soil)/7 DAYS (water)	? Yes□ No
If YES,	chemist notified		date		Chemist's Initi	als
	tandard turn-a-re					SH STANDAR
2. Are the custody seals present? If yes, how many and where? 3. Are the signature and date correct? 4. Did all containers arrive in good condition? 5. Are all container labels complete (i.e. preservation, sample ID)? 6. Were the correct containers used for the tests indicated? 7. Have VOA's been checked for the presence of air bubbles? (note problems in comments) 8. Temperature of sample(s) upon receipt: 36°C						
Explaination	n of discrepancie	s:				
					VOA Vial pH Verification (Tested After Analysis) □ All Samples pH ≤ 2	
		YES	NO	ļ	☐ Following Samples E	xhibited pH > 2
рН	Reagent					
12	NaOH			<u> </u>		
2	HNO ₃	\ i				
2	H ₂ SO ₄					
Comments:						
		Fo	rm Completed a	nd Sample(s)	Received by (initials): Low

May 22, 2003

Jeff C. Yentes Hargis and Associates 1640 S. Stapley, Suite 124 Mesa, AZ 85204

RE: ChemResearch/525.11

Work Order No.:

0304431

Dear Jeff,

Transwest Geochem, Inc. received 8 samples on 4/29/2003 2:00:00 PM for the analyses presented in the following report.

The Case Narrative of this report addresses any Quality Control and/or Quality Assurance issues associated with this Work Order.

If you have any questions regarding these test results, please feel free to call us at (602) 437-0330.

Sincerely,

Matt Hill

Project Manager

ADHS License No. AZM133/AZ0133

TRANSWEST

Geochem

Date Printed: 22-May-03

Client:

Hargis and Associates

Work Order:

0304431

Project Name:

ChemResearch

Project Number: 525.11

CASE NARRATIVE

Transwest Geochem, Inc. uses the methods outlined in the following references:

Code of Federal Regulations, 40CFR, Part 136, Revised July 1995.

Standard Methods for the Examination of Water and Wastewater, 18th Edition, 1992 and 19th Edition, 1995.

Methods for Chemical Analysis of Water and Wastes, EPA-600/4-79-020, Revised March 1983.

Methods for the Determination of Inorganic Substances in Environmental Samples, EPA/600/R-93/100, Revised August 1993.

Methods for the Determination of Metals in Environmental Samples, EPA/600/R-94/111, Revised May 1994.

Hach, Water Analysis Handbook, 2nd Edition, 1992.

Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW846, 3rd Edition.

Metals were analyzed using multi-element ICP instrumentation. Some metals reported in the QC report may not be associated with this Work Order.

Secondary Source QC Sample (LCSV) results may not be reported for all methods and/or analysis dates.

All method blanks, laboratory spikes, and/or matrix spikes met quality control objectives for the parameters associated with this Work Order except as detailed below or on the Data Qualifier page of this report. Data Qualifiers used in this report are in accordance with ADEQ Arizona Data Qualifiers, Revision 1.0 05/13/2002.

Data qualifiers ("flags") contained within this analytical report have been issued to explain a quality control deficiency, and do not affect the quality (validity) of the data unless noted otherwise in the case narrative.

License No. AZM133/AZ0133

CLIENT:

Hargis and Associates

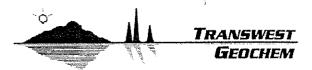
Project Name:

ChemResearch

Project Number: 525.11 Work Order:

0304431

Date Received:


29-Apr-03

Case Narrative

Data Qualifiers

One or more of the following data qualifiers may be associated with your analytical and/or quality control data.

D2 Sample required dilution due to high concentration of target analyte.

Work Order Sample Summary

License No. AZM133/AZ0133

CLIENT:

Hargis and Associates

Project Name:

ChemResearch

Project Number: 525.11 Work Order:

0304431

Date Received:

29-Apr-03

Client Sample ID	Lab Sample ID	Test Code	Collection Date
TB-042903	0304431-01A	SW8260B	4/29/2003 7:00:00 AM
WVB-2	0304431-02A	SW8260B	4/29/2003 8:00:00 AM
	0304431-02B	Calculation	4/29/2003 8:00:00 AM
		SM3500-Cr D	4/29/2003 8:00:00 AM
	0304431-02C	EPA200.7	4/29/2003 8:00:00 AM
		EPA200.9	4/29/2003 8:00:00 AM
	0304431-02D	SM4500-CN CE	4/29/2003 8:00:00 AM
AVB88-01	0304431-03A	SW8260B	4/29/2003 9:15:00 AM
	0304431-03B	Calculation	4/29/2003 9:15:00 AM
		SM3500-Cr D	4/29/2003 9:15:00 AM
	0304431-03C	EPA200.7	4/29/2003 9:15:00 AM
		EPA200.9	4/29/2003 9:15:00 AM
	0304431-03D	SM4500-CN CE	4/29/2003 9:15:00 AM
WVB-4	0304431-04A	SW8260B	4/29/2003 10:05:00 AM
V V B-4	0304431-04B	Calculation	4/29/2003 10:05:00 AM
		SM3500-Cr D	4/29/2003 10:05:00 AM
	0304431-04C	EPA200.7	4/29/2003 10:05:00 AM
		EPA200.9	4/29/2003 10:05:00 AM
	0304431-04D	SM4500-CN CE	4/29/2003 10:05:00 AM
WVB-1	0304431-05A	SW8260B	4/29/2003 10:45:00 AM
	0304431-05B	Calculation	4/29/2003 10:45:00 AM
		SM3500-Cr D	4/29/2003 10:45:00 AM
	0304431-05C	EPA200.7	4/29/2003 10:45:00 AM
		EPA200.9	4/29/2003 10:45:00 AM
	0304431-05D	SM4500-CN CE	4/29/2003 10:45:00 AM
CMW-3	0304431-06A	SW8260B	4/29/2003 11:45:00 AM
	0304431-06B	Calculation	4/29/2003 11:45:00 AM
		SM3500-Cr D	4/29/2003 11:45:00 AM
	0304431-06C	EPA200.7	4/29/2003 11:45:00 AM
		EPA200.9	4/29/2003 11:45:00 AM
	0304431-06D	SM4500-CN CE	4/29/2003 11:45:00 AM
CMW-5	0304431-07A	SW8260B	4/29/2003 12:30:00 PM

0304431-07B

Calculation

SM3500-Cr D

4/29/2003 12:30:00 PM

4/29/2003 12:30:00 PM

CLIENT:

Hargis and Associates

Project Name:

ChemResearch

Project Number: 525.11 Work Order:

0304431

29-Apr-03 Date Received:

Work Order Sample Summary

Client Sample ID	Lab Sample ID	Test Code	Collection Date
CMW-5	0304431-07C	EPA200.7	4/29/2003 12:30:00 PM
		EPA200.9	4/29/2003 12:30:00 PM
	0304431-07D	SM4500-CN CE	4/29/2003 12:30:00 PM
CMW-1	0304431-08A	SW8260B	4/29/2003 1:20:00 PM
	0304431-08B	Calculation	4/29/2003 1:20:00 PM
		SM3500-Cr D	4/29/2003 1:20:00 PM
	0304431-08C	EPA200.7	4/29/2003 1:20:00 PM
		EPA200.9	4/29/2003 1:20:00 PM
	0304431-08D	SM4500-CN CE	4/29/2003 1:20:00 PM

Definitions

License No. AZM133/AZ0133

CLIENT:

Hargis and Associates

Project Name:

ChemResearch

Project Number:

525.11 0304431

Work Order: Date Received:

29-Apr-03

Analytical Spike (AS)

The AS is a known amount of a target analyte added to a sample after it has been distilled, digested, or extracted and is ready for analysis. The AS is generally performed if the MS has failed. It is used to indicate interference that arises from sample distillation, digestion, or extraction as opposed to interference that is innate to the matrix.

Continuing Curve Verification (CCV) The CCV is also referred to as a curve check. This is a standard analyzed at specified intervals during an analysis. The CCV verifies the stability and accuracy of the calibration curve. There are specific CCV recovery acceptance criteria for each method.

Dilution Factor (DF)

The DF is an indication of how much a sample had to be diluted in order to quantitate it on a standard curve. The DF is indicated in the reported sample result. The sample PQL increases as the dilution increases.

Internal Standard (IS)

The IS is a compound that is similar to the organic compound of interest in terms of chemical composition but is unique in that it is rare in the environment. The same concentration of IS is added to every sample for some organic methods.

Laboratory Control Sample (LCS) The LCS is also referred to as a blank spike. The LCS is an addition of a known amount of a target analyte (from the same source as calibration standards or spikes) to an aliquot of deionized water or other appropriate clean matrix. The LCS is processed through the entire method procedure in the same manner as samples.

Matrix Spike (MS)

The MS is a known amount of a target analyte added to a sample. The MS is processed through the entire method procedure in the same manner as samples.

Method Blank (MB)

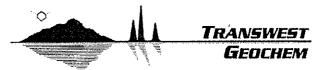
The MB is an aliquot of deionized water or other appropriate clean matrix that is thought to be free of the analyte in question. The MB is processed through the entire extraction or analysis procedure and is used to indicate contamination in the lab.

Method Detection Limit (MDL) The MDL is the lowest level of detection of which a method is capable.

Practical Quantitation Limit (PQL) The PQL is the lowest value at which Transwest Geochem can detect an analyte in matrix with a high degree of confidence. The PQL will increase as the DF increases. The PQL is greater than or equal to the MDL.

Relative Percent Difference (RPD) The RPD is a measure of precision (the ability to obtain the same result on re-analysis of the same sample). It is calculated using the result of a sample, MS, LCS, or LCSV and its associated duplicate result.

Secondary Source QC Sample (LCSV)


The LCSV is also referred to as a second source laboratory control sample. It is the same type of standard as a calibration or spiking standard but is obtained from a different source. The LCSV is an indication of the primary standard quality, method performance, and instrument performance.

Surrogate

A surrogate compound is similar to the organic compound of interest in terms of chemical composition but is unique in that it is rare in the environment. When surrogates are used, they are added to every sample, blank and standard. Surrogate recovery is used as an indication of extraction and/or analytical success.

Trip Blank (TB)

The TB is a portion of deionized water preserved in the same manner as the samples. The TB travels from the lab, to the field, and then back to the lab with the samples from the field. The TB serves as an indication of contamination introduced during sample transportation.

0304431

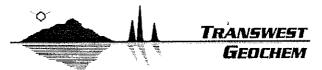
Date Printed 21-May-03

License No. AZM133/AZ0133

Hargis and Associates Client Sample ID: TB-042903

Collection Date: 4/29/2003 7:00:00 AM

Matrix: TRIP BLANK


Lab ID: 0304431-01
Project Name: ChemResearch

Project Number: 525.11

CLIENT:

Work Order:

						Test	Date	Date		
Analyte	Result	PQL	Qual	Units	DF	Code	Prepared	Analyzed	Analyst	Batch ID
Acetone	<20	20		μg/L	1.0	SW8260B	N/A	5/12/03 18:37	J∺	N30512B
Benzene	<0.50	0.50		µg/L	1.0	SW8260B	N/A	5/12/03 18:37	JH	N30512B
Bromobenzene	<1.5	1.5		µg/L	1.0	SW8260B	N/A	5/12/03 18:37	JH	N30512B
Bromochloromethane	<0.50	0.50		μg/L	1.0	SW8260B	N/A	5/12/03 18:37	JH	N30512B
Bromodichioromethane	<0.50	0.50		µg/L	1.0	SW8260B	N/A	5/12/03 18:37	JH	N30512B
Bromoform	<1.0	1.0		µg/L	1.0	SW8260B	N/A	5/12/03 18:37	JH	N30512B
Bromomethane	<5.0	5.0		µg/L	1.0	SW8260B	N/A	5/12/03 18:37	JH	N30512B
2-Butanone	<5.0	5.0		μg/L	1.0	SW82608	N/A	5/12/03 18:37	JH	N30512B
n-Butylbenzene	<2.5	2.5		µg/L	1.0	SW8260B	N/A	5/12/03 18:37	JH	N305128
sec-Butylbenzene	<1.5	1.5		μg/L	1.0	SW8260B	N/A	5/12/03 18:37	JH	N30512B
tert-Butylbenzene	<2.5	2.5		μg/L	1.0	SW8260B	N/A	5/12/03 18:37	JH	N30512B
Carbon disulfide	<0.50	0.50		µg/L	1.0	SW8260B	N/A	5/12/03 18:37	JH	N30512B
Carbon tetrachloride	<0.50	0.50		µg/L	1.0	SW8260B	N/A	5/12/03 18:37	JH	N30512B
Chlorobenzene	<0.50	0.50		µg/L	1.0	SW8260B	N/A	5/12/03 18:37	JH	N30512B
Dibromochloromethane	<0.50	0.50		µg/L	1.0	SW8260B	N/A	5/12/03 18:37	JH	N30512B
Chloroethane	<1.0	1.0		μg/L	1.0	SW8260B	N/A	5/12/03 18:37	JH	N305128
Chloroform	<0.50	0.50		µg/L	1.0	SW8260B	N/A	5/12/03 18:37	JH	N30512B
Chioromethane	<5.0	5.0		µg/L	1.0	SW8260B	N/A	5/12/03 18:37	JH	N30512B
2-Chlorotoluene	<1.5	1.5		µg/L	1.0	SW8260B	N/A	5/12/03 18:37	jΗ	N30512B
4-Chlorotoluene	<2.0	2.0		µg/L	1.0	SW8260B	N/A	5/12/03 18:37	JH	N30512B
1,2-Dibromo-3-chloropropane	<2.0	2.0		µg/L	1.0	SW8260B	N/A	5/12/03 18:37	JH	N30512B
1,2-Dibromoethane	<0.50	0.50		μg/L	1.0	SW8260B	N/A	5/12/03 18:37	JH	N30512B
Dibromomethane	<0.50	0.50		μg/L	1.0	SW8260B	N/A	5/12/03 18:37	JH	N30512B
1,2-Dichlorobenzene	<0.50 <1.5	1.5		µg/L	1.0	SW8260B	N/A	5/12/03 18:37	JH	N30512B
1,3-Dichlorobenzene	<1.5 <1.5	1.5		µg/L	1.0	SW8260B	N/A	5/12/03 18:37	JH	N30512B
1,4-Dichlorobenzene	<1.5	1.5		µg/L	1.0	SW8260B	N/A	5/12/03 18:37	JH	N30512B
Dichlorodifluoromethane	<2.0	2.0		μg/L	1.0	SW8260B	N/A	5/12/03 18:37	JH	N30512B
1,1-Dichloroethane	<1.0	1.0		µg/L	1.0	SW8260B	N/A	5/12/03 18:37	JH	N30512B
1,2-Dichloroethane	<1.0	1.0		µg/L	1.0	SW8260B	N/A	5/12/03 18:37	JH	N30512B
1,1-Dichloroethene	<0.50	0.50		µg/L	1.0	SW8260B	N/A	5/12/03 18:37	JH	N30512B
cis-1,2-Dichloroethene	<0.50	0.50		µg/L	1.0	SW8260B	N/A	5/12/03 18:37	JН	N30512B
trans-1,2-Dichloroethene	<0.50	0.50		μg/L	1.0	SW8260B	N/A	5/12/03 18:37	JH	N30512B
1,2-Dichloropropane	<0.50	0.50		µg/L	1.0	SW8260B	N/A	5/12/03 18:37	JН	N30512B
1,3-Dichloropropane	<1.0	1.0		μg/L	1.0	SW8260B	N/A	5/12/03 18:37		N30512B
2,2-Dichloropropane	<0.50	0.50		µg/L	1.0	SW8260B	N/A	5/12/03 18:37		N30512B
1,1-Dichloropropene	<1.0	1.0		µg/L	1.0	SW8260B	N/A	5/12/03 18:37		N30512B
cis-1,3-Dichloropropene	<1.0	1.0		µg/L	1.0	SW8260B	N/A	5/12/03 18:37		N30512B
trans-1,3-Dichloropropene	<0.50	0.50		μg/L	1.0	SW8260B	N/A	5/12/03 18:37		N30512B
Ethylbenzene	<2.0	2.0		μg/L	1.0	SW8260B	N/A	5/12/03 18:37		N30512B
Hexachlorobutadiene	<2.5	2.5		ha\r ha\r	1.0	SW8260B	N/A	5/12/03 18:37		N30512B
2-Hexanone	<5.0	5.0		µg/L	1.0	SW8260B	N/A	5/12/03 18:37		N30512B
lodomethane	<1.0			μg/L	1.0	SW8260B	N/A	5/12/03 18:37		N30512B
iodonactiane	<1.0	1.0		hAir	1.0	0.100000	1303	3 00 ,0,01	oi i	

License No. AZM133/AZ0133

CLIENT:

Hargis and Associates

Work Order:

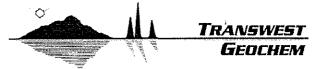
0304431

Lab ID:

0304431-01

Project Name:

ChemResearch


Project Number: 525.11

Client Sample ID: TB-042903

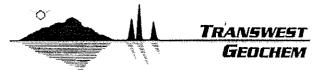
Collection Date: 4/29/2003 7:00:00 AM

Matrix: TRIP BLANK

						Test	Date	Date		
Analyte	Result	PQL	Qual	Units	DF	Code	Prepared	Analyzed	Analyst	Batch ID
Isopropylbenzene	<2.5	2.5		μg/L	1.0	SW8260B	N/A	5/12/03 18:37	JH	N30512B
4-Isopropyltoluene	<1.5	1.5		μg/L	1.0	SW82608	N/A	5/12/03 18:37	JH	N30512B
Methylene chloride	<3.0	3.0		μg/L	1.0	SW8260B	N/A	5/12/03 18:37	JH	N30512B
4-Methyl-2-pentanone	<5.0	5.0		µg/L	1.0	SW8260B	N/A	5/12/03 18:37	JH	N30512B
Methyl tert-butyl ether	<2.0	2.0		µg/L	1.0	SW8260B	N/A	5/12/03 18:37	JH	N30512B
Naphthalene	<5.0	5.0		μg/L	1.0	SW8260B	N/A	5/12/03 18:37	JH	N30512B
n-Propylbenzene	<2.0	2.0		μg/L	1.0	SW8260B	N/A	5/12/03 18:37	JH	N30512B
Styrene	<1.0	1.0		μg/L	1.0	SW8260B	N/A	5/12/03 18:37	JH	N30512B
1,1,2-Tetrachloroethane	< 0.50	0.50		μg/L	1.0	SW8260B	N/A	5/12/03 18:37	JH	N30512B
1,1,2,2-Tetrachloroethane	< 0.50	0.50		μg/L	1.0	SW8260B	N/A	5/12/03 18:37	JH	N30512B
Tetrachloroethene	<0.50	0.50		μg/L	1.0	SW8260B	N/A	5/12/03 18:37	JH	N30512B
Toluene	<3.0	3.0		µg/L	1.0	SW8260B	N/A	5/12/03 18:37	JH	N30512B
1,2,3-Trichlorobenzene	<5.0	5.0		μg/L	1.0	SW8260B	N/A	5/12/03 18:37	JH	N30512B
1,2,4-Trichlorobenzene	<5.0	5.0		μg/L	1.0	SW8260B	N/A	5/12/03 18:37	JH	N30512B
1,1,1-Trichloroethane	< 0.50	0.50		μg/L	1.0	SW8260B	N/A	5/12/03 18:37	JH	N30512B
1,1,2-Trichloroethane	< 0.50	0.50		μg/L	1.0	SW8260B	N/A	5/12/03 18:37	JH	N30512B
Trichtoroethene	< 0.50	0.50		μg/L	1.0	SW8260B	N/A	5/12/03 18:37	JH	N30512B
Trichlorofluoromethane	<2.0	2.0		μg/L	1.0	SW8260B	N/A	5/12/03 18:37	JH	N30512B
1,2,3-Trichloropropane	<1.0	1.0		µg/L	1.0	SW8260B	N/A	5/12/03 18:37	JH	N30512B
1,2,4-Trimethylbenzene	<2.0	2.0		μg/L	1.0	SW8260B	N/A	5/12/03 18:37	JH	N30512B
1,3,5-Trimethylbenzene	<1.5	1.5		µg/L	1.0	SW8260B	N/A	5/12/03 18:37	JH	N30512B
Vinyl acetate	<5.0	5.0		μg/L	1.0	SW8260B	N/A	5/12/03 18:37	JH	N30512B
Vinyl chloride	<0.50	0.50		μg/L	1.0	SW8260B	N/A	5/12/03 18:37	JH	N30512B
Xylenes, Total	<3.0	3.0		μg/L	1.0	SW8260B	N/A	5/12/03 18:37	JH	N30512B
4-Bromofluorobenzene(Surrogate)	92	80-107		%REC	1.0	SW8260B	N/A	5/12/03 18:37	JH	N30512B
Dibromofluoromethane(Surrogate)	91	77-104		%REC	1.0	SW8260B	N/A	5/12/03 18:37	JH	N30512B
1,2-Dichloroethane-d4(Surrogate)	85	72-111		%REC	1.0	SW8260B	N/A	5/12/03 18:37	JH	N30512B
Toluene-d8(Surrogate)	93	84-105		%REC	1.0	SW8260B	N/A	5/12/03 18:37	JH	N30512B

License No. AZM133/AZ0133

Hargis and Associates Client Sample ID: WVB-2


Work Order: 0304431 Collection Date: 4/29/2003 8:00:00 AM

Lab ID:0304431-02Matrix:GROUNDWATERProject Name:ChemResearch

Project Number: 525.11

CLIENT:

_						Test	Date	Date		D (L ID
Analyte	Result	PQL	Qual	Units	DF	Code	Prepared	Analyzed	Analyst	Batch ID
Chromium, Hexavalent	<0.020	0.020		mg/L	1.0	SM3500-Cr D	N/A	4/30/03 07:44	NMM	CR6_W-4/30/2003
Cyanide, Total	<0.010	0.010		mg/L	1.0	SM4500-CN CE	5/12/03	5/12/03	KMB	CN_W-5/12/2003
Trivalent Chromium	2.8	0.050		mg/L	1.0	Calculation	N/A	5/9/03	NMM	CR3_W-5/9/2003
Cadmium	<0.02	0.02		mg/L	1.0	EPA200.7	5/5/03	5/6/03	AD	6146A
Chromium	2.8	0.05		mg/L	1.0	EPA200.7	5/5/03	5/6/03	AD	6146A
Nickel	0.22	0.05		mg/L	1.0	EPA200.7	5/5/03	5/6/03	AD	6146A
Lead	0.0075	0.0030		mg/L	1.0	EPA200.9	5/1/03	5/12/03	KMB	6135A
Acetone	<20	20		μg/L	1.0	SW8260B	N/A	5/9/03 12:59	JH	N30509B
Benzene	< 0.50	0.50		μg/L	1.0	SW8260B	N/A	5/9/03 12:59	JH	N30509B
Bromobenzene	<1.5	1.5		µg/L	1.0	SW8260B	N/A	5/9/03 12:59	JH	N30509B
Bromochloromethane	<0.50	0.50		μg/L	1.0	SW8260B	N/A	5/9/03 12:59	JH	N30509B
Bromodichloromethane	< 0.50	0.50		μg/L	1.0	SW8260B	N/A	5/9/03 12:59	JH	N30509B
Bromoform	<1.0	1.0		μg/L	1.0	SW8260B	N/A	5/9/03 12:59	JH	N30509B
Bromomethane	<5.0	5.0		μg/L	1.0	SW8260B	N/A	5/9/03 12:59	JΗ	N30509B
2-Butanone	<5.0	5.0		μg/L	1.0	SW8260B	N/A	5/9/03 12:59	JH	N30509B
n-Butylbenzene	<2.5	2.5		μg/L	1.0	SW8260B	N/A	5/9/03 12:59	JH	N30509B
sec-Butylbenzene	<1.5	1.5		µg/L	1.0	SW8260B	N/A	5/9/03 12:59	JH	N30509B
tert-Butylbenzene	<2.5	2.5		μg/L	1.0	SW8260B	N/A	5/9/03 12:59	JH	N30509B
Carbon disulfide	< 0.50	0.50		µg/L	1.0	SW8260B	N/A	5/9/03 12:59	JH	N30509B
Carbon tetrachloride	< 0.50	0.50		μg/L	1.0	SW8260B	N/A	5/9/03 12:59	JH	N30509B
Chlorobenzene	< 0.50	0.50		µg/L	1.0	SW8260B	N/A	5/9/03 12:59	JH	N30509B
Dibromochloromethane	< 0.50	0.50		μg/L	1.0	SW8260B	N/A	5/9/03 12:59	JH	N30509B
Chloroethane	<1.0	1.0		µg/L	1.0	SW8260B	N/A	5/9/03 12:59	JH	N30509B
Chloroform	< 0.50	0.50		μg/L	1.0	SW8260B	N/A	5/9/03 12:59	JH	N30509B
Chloromethane	<5.0	5.0		µg/L	1.0	SW8260B	N/A	5/9/03 12:59	JH	N30509B
2-Chlorotoluene	<1.5	1.5		µg/L	1.0	SW8260B	N/A	5/9/03 12:59	JH	N30509B
4-Chlorotoluene	<2.0	2.0		µg/L	1.0	SW8260B	N/A	5/9/03 12:59	JH	N30509B
1,2-Dibromo-3-chloropropane	<2.0	2.0		μg/L	1.0	SW8260B	N/A	5/9/03 12:59	JH	N30509B
1,2-Dibromoethane	< 0.50	0.50		μg/L	1.0	SW8260B	N/A	5/9/03 12:59	JH	N30509B
Dibromomethane	< 0.50	0.50		µg/L	1.0	SW8260B	N/A	5/9/03 12:59	JH	N30509B
1,2-Dichlorobenzene	<1.5	1.5		μg/L	1.0	SW8260B	N/A	5/9/03 12:59	JH	N30509B
1,3-Dichlorobenzene	<1.5	1.5		μg/L	1.0	SW8260B	N/A	5/9/03 12:59	***	N30509B
1,4-Dichlorobenzene	<1.5	1.5		μg/L	1.0	SW8260B	N/A	5/9/03 12:59	JH	N30509B
Dichlorodifluoromethane	<2.0	2.0		μg/L	1.0	SW8260B	N/A	5/9/03 12:59		N30509B
1,1-Dichloroethane	<1.0	1.0		μg/L	1.0	SW8260B	N/A	5/9/03 12:59	JH	N30509B
1,2-Dichloroethane	<1.0	1.0		μg/L	1.0	SW8260B	N/A	5/9/03 12:59	JH	N30509B
1,1-Dichloroethene	< 0.50	0.50		μg/L	1.0	SW8260B	N/A	5/9/03 12:59	JH	N30509B

License No. AZM133/AZ0133

CLIENT:

Hargis and Associates

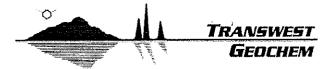
Work Order:

0304431

Lab ID:

0304431-02

Project Name:


Project Number: 525.11

ChemResearch

Client Sample ID: WVB-2

Collection Date: 4/29/2003 8:00:00 AM

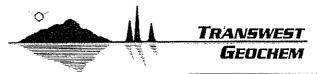
						Test	Date	Date		
Analyte	Result	PQL	Qual	Units	DF	Code	Prepared	Analyzed	Analyst	Batch ID
cis-1,2-Dichloroethene	<0.50	0.50		µg/L	1.0	SW8260B	N/A	5/9/03 12:59	JH	N30509B
trans-1,2-Dichloroethene	<0.50	0.50		µg/L	1.0	SW8260B	N/A	5/9/03 12:59	jΗ	N30509B
1,2-Dichloropropane	< 0.50	0.50		µg/L	1.0	SW8260B	N/A	5/9/03 12:59	JH	N30509B
1,3-Dichloropropane	<1.0	1.0		µg/L	1.0	SW8260B	N/A	5/9/03 12:59	JH	N30509B
2,2-Dichloropropane	< 0.50	0.50		μg/L	1.0	SW8260B	N/A	5/9/03 12:59	JH	N30509B
1,1-Dichloropropene	<1.0	1.0		μg/L	1.0	SW8260B	N/A	5/9/03 12:59	JH	N30509B
cis-1,3-Dichloropropene	<1.0	1.0		μg/L	1.0	SW8260B	N/A	5/9/03 12:59	JH	N30509B
trans-1,3-Dichloropropene	< 0.50	0.50		μg/L	1.0	SW8260B	N/A	5/9/03 12:59	JH	N30509B
Ethylbenzene	<2.0	2.0		μg/Ľ	1.0	SW8260B	N/A	5/9/03 12:59	JH	N30509B
Hexachtorobutadiene	<2.5	2.5		μg/L	1.0	SW8260B	N/A	5/9/03 12:59	JH	N30509B
2-Hexanone	<5.0	5.0		µg/L	1.0	SW8260B	N/A	5/9/03 12:59	JH	N30509B
lodomethane	<1.0	1.0		μg/L	1.0	SW8260B	N/A	5/9/03 12:59	JH	N30509B
Isopropylbenzene	<2.5	2.5		μg/L	1.0	SW8260B	N/A	5/9/03 12:59	JH	N30509B
4-Isopropyltoluene	<1.5	1.5		µg/L	1.0	SW8260B	N/A	5/9/03 12:59	JH	N305098
Methylene chloride	<3.0	3.0		μg/L	1.0	SW8260B	N/A	5/9/03 12:59	JH	N30509B
4-Methyl-2-pentanone	<5.0	5.0		µg/L	1.0	SW8260B	N/A	5/9/03 12:59	JH	N30509B
Methyl tert-butyl ether	9.3	2.0		μg/L	1.0	SW8260B	N/A	5/9/03 12:59	JH	N30509B
Naphthalene	<5.0	5.0		µg/L	1.0	SW8260B	N/A	5/9/03 12:59	jΗ	N30509B
n-Propylbenzene	<2.0	2.0		μg/L	1.0	SW8260B	N/A	5/9/03 12:59	JH	N30509B
Styrene	<1.0	1.0		μg/L	1.0	SW8260B	N/A	5/9/03 12:59	JH	N30509B
1,1,1,2-Tetrachloroethane	<0.50	0.50		µg/L	1.0	SW8260B	N/A	5/9/03 12:59	JH	N30509B
1,1,2,2-Tetrachloroethane	< 0.50	0.50		μg/L	1.0	SW8260B	N/A	5/9/03 12:59	JH	N30509B
Tetrachloroethene	< 0.50	0.50		μg/L	1.0	SW8260B	N/A	5/9/03 12:59	JH	N30509B
Toluene	<3.0	3.0		μg/L	1.0	SW82608	N/A	5/9/03 12:59	JH	N30509B
1,2,3-Trichlorobenzene	<5.0	5.0		μg/L	1.0	SW8260B	N/A	5/9/03 12:59	JH	N30509B
1,2,4-Trichlorobenzene	<5.0	5.0		µg/L	1.0	SW8260B	N/A	5/9/03 12:59	JH	N30509B
1,1,1-Trichloroethane	< 0.50	0.50		µg/L	1.0	SW8260B	N/A	5/9/03 12:59	JH	N30509B
1,1,2-Trichloroethane	< 0.50	0.50		µg/L	1.0	SW8260B	N/A	5/9/03 12:59	JH	N30509B
Trichloroethene	< 0.50	0.50		µg/L	1.0	SW8260B	N/A	5/9/03 12:59	JH	N30509B
Trichlorofluoromethane	<2.0	2.0		μg/L	1.0	SW8260B	N/A	5/9/03 12:59	JH	N30509B
1,2,3-Trichloropropane	<1.0	1.0		µg/L	1.0	SW8260B	N/A	5/9/03 12:59	JH	N30509B
1,2,4-Trimethylbenzene	<2.0	2.0		μg/L	1.0	SW8260B	N/A	5/9/03 12:59	JH	N30509B
1,3,5-Trimethylbenzene	<1.5	1.5		μg/L	1.0	SW8260B	N/A	5/9/03 12:59	JH	N30509B
Vinyl acetate	<5.0	5.0		μg/L	1.0	SW8260B	N/A	5/9/03 12:59	JH	N30509B
Vinyl chloride	< 0.50	0.50		µg/L	1.0	SW8260B	N/A	5/9/03 12:59	JH	N30509B
Xylenes, Total	<3.0	3.0		µg/L	1.0	SW8260B	N/A	5/9/03 12:59	JH	N30509B
4-Bromofluorobenzene(Surrogate)	90	80-107		%REC	1.0	SW8260B	N/A	5/9/03 12:59	JH	N30509B
Dibromofluoromethane(Surrogate)	92	77-104		%REC	1.0	SW8260B	N/A	5/9/03 12:59	JH	N30509B
1,2-Dichloroethane-d4(Surrogate)	89	72-111		%REC	1.0	SW8260B	N/A	5/9/03 12:59	JH	N30509B
Toluene-d8(Surrogate)	94	84-105		%REC	1.0	SW8260B	N/A	5/9/03 12:59	JH	N30509B

License No. AZM133/AZ0133

CLIENT: Hargis and Associates

Work Order:

0304431


Lab ID: 0304431-03
Project Name: ChemResearch

Project Number: 525.11

Client Sample ID: AVB88-01

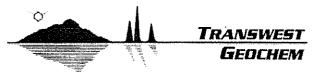
Collection Date: 4/29/2003 9:15:00 AM

						Test	Date	Date		
Analyte	Result	PQL	Qual	Units	DF	Code	Prepared	Analyzed	Analyst	Batch ID
Chromium, Hexavalent	0.036	0.020		mg/L	1.0	SM3500-Cr D	N/A	4/30/03 07:44	NMM	CR6_W-4/30/2003
Cyanide, Total	<0.010	0.010		mg/L	1.0	SM4500-CN CE	5/12/03	5/12/03	KMB	CN_W-5/12/2003
Trivalent Chromium	<0.050	0.050		mg/L	1.0	Calculation	N/A	5/9/03	NMM	CR3_W-5/9/2003
Cadmium	<0.02	0.02		mg/L	1.0	EPA200.7	5/5/03	5/6/03	AD	6146A
Chromium	< 0.05	0.05		mg/L	1.0	EPA200.7	5/5/03	5/6/03	AD	6146A
Nickel	<0.05	0.05		mg/L	1.0	EPA200.7	5/5/03	5/6/03	AD	6146A
Lead	<0.0030	0.0030		mg/L	1.0	EPA200.9	5/1/03	5/12/03	KMB	6135A
Acetone	<20	20		μg/L	1.0	SW8260B	N/A	5/9/03 13:38	JH	N30509B
Benzene	< 0.50	0.50		μg/L	1.0	SW8260B	N/A	5/9/03 13:38	JH	N30509B
Bromobenzene	<1.5	1.5		µg/L	1.0	SW8260B	N/A	5/9/03 13:38	JH	N30509B
Bromochloromethane	< 0.50	0.50		μg/L	1.0	SW8260B	N/A	5/9/03 13:38	JH	N30509B
Bromodichloromethane	< 0.50	0.50		µg/L	1.0	SW8260B	N/A	5/9/03 13:38	JH	N30509B
Bromoform	<1.0	1.0		μg/L	1.0	SW8260B	N/A	5/9/03 13:38	JH	N30509B
Bromomethane	<5.0	5.0		μg/L	1.0	SW8260B	N/A	5/9/03 13:38	JH	N30509B
2-Butanone	<5.0	5.0		µg/L	1.0	SW8260B	N/A	5/9/03 13:38	JH	N30509B
n-Butylbenzene	<2.5	2.5		µg/L	1.0	SW8260B	N/A	5/9/03 13:38	JH	N30509B
sec-Butylbenzene	<1.5	1.5		μg/L	1.0	SW8260B	N/A	5/9/03 13:38	JH	N30509B
tert-Butylbenzene	<2.5	2.5		µg/L	1.0	SW8260B	N/A	5/9/03 13:38	JH	N30509B
Carbon disulfide	<0.50	0.50		μg/L	1.0	SW8260B	N/A	5/9/03 13:38	JH	N30509B
Carbon tetrachloride	< 0.50	0.50		μg/L	1.0	SW8260B	N/A	5/9/03 13:38	JH	N30509B
Chlorobenzene	< 0.50	0.50		µg/L	1.0	SW8260B	N/A	5/9/03 13:38	JH	N30509B
Dibromochloromethane	< 0.50	0.50		μg/L	1.0	SW8260B	N/A	5/9/03 13:38	JH	N30509B
Chloroethane	<1.0	1.0		μg/L	1.0	SW8260B	N/A	5/9/03 13:38	JH	N30509B
Chloroform	< 0.50	0.50		μg/L	1.0	SW8260B	N/A	5/9/03 13:38	JH	N30509B
Chloromethane	<5.0	5.0		μg/L	1.0	SW8260B	N/A	5/9/03 13:38	JН	N30509B
2-Chlorotoluene	<1.5	1.5		μg/L	1.0	SW8260B	N/A	5/9/03 13:38	JH	N30509B
4-Chlorotoluene	<2.0	2.0		µg/L	1.0	SW8260B	N/A	5/9/03 13:38	JH	N30509B
1,2-Dibromo-3-chloropropane	<2.0	2.0		μg/L	1.0	SW8260B	N/A	5/9/03 13:38	JH	N30509B
1,2-Dibromoethane	<0.50	0.50		μg/L	1.0	SW8260B	N/A	5/9/03 13:38	JH	N30509B
Dibromomethane	< 0.50	0.50		μg/L	1.0	SW8260B	N/A	5/9/03 13:38	JH	N30509B
1,2-Dichlorobenzene	<1.5	1.5		μg/L	1.0	SW8260B	N/A	5/9/03 13:38	JH	N30509B
1,3-Dichlorobenzene	<1.5	1.5		μg/L	1.0	SW82608	N/A	5/9/03 13:38	JH	N30509B
1,4-Dichlorobenzene	<1.5	1.5		µg/L	1.0	SW8260B	N/A	5/9/03 13:38	JН	N30509B
Dichlorodifluoromethane	<2.0	2.0		μg/L	1.0	SW8260B	N/A	5/9/03 13:38	JH	N305098
1,1-Dichloroethane	<1.0	1.0		μg/L	1.0	SW8260B	N/A	5/9/03 13:38	JН	N30509B
1,2-Dichloroethane	<1.0	1.0		µg/L	1.0	SW8260B	N/A	5/9/03 13:38	JH	N30509B
1,1-Dichloroethene	<0.50	0.50		μg/L	1.0	SW8260B	N/A	5/9/03 13:38	JH	N30509B

License No. AZM133/AZ0133

CLIENT: Hargis and Associates

Work Order: 0304431


Lab ID:0304431-03Project Name:ChemResearch

Project Number: 525.11

Client Sample ID: AVB88-01

Collection Date: 4/29/2003 9:15:00 AM

						Test	Date	Date		
Analyte	Result	PQL	Qual	Units	DF	Code	Prepared	Analyzed	Analyst	Batch ID
cis-1,2-Dichloroethene	<0.50	0.50		μg/L	1.0	SW8260B	N/A	5/9/03 13:38	JH	N30509B
trans-1,2-Dichloroethene	<0.50	0.50		µg/L	1.0	SW8260B	N/A	5/9/03 13:38	JH	N30509B
1,2-Dichloropropane	<0.50	0.50		μg/L	1.0	SW8260B	N/A	5/9/03 13:38	JH	N30509B
1,3-Dichloropropane	<1.0	1.0		μg/L	1.0	SW8260B	N/A	5/9/03 13:38	JH	N30509B
2,2-Dichloropropane	<0.50	0.50		µg/∟	1.0	SW8260B	N/A	5/9/03 13:38	JH	N30509B
1,1-Dichloropropene	<1.0	1.0		μg/L	1.0	SW8260B	N/A	5/9/03 13:38	JH	N30509B
cis-1,3-Dichloropropene	<1.0	1.0		μg/L	1.0	SW8260B	N/A	5/9/03 13:38	JH	N30509B
trans-1,3-Dichloropropene	< 0.50	0.50		μg/L	1.0	SW8260B	N/A	5/9/03 13:38	JH	N30509B
Ethylbenzene	<2.0	2.0		µg/L	1.0	SW8260B	N/A	5/9/03 13:38	JH	N30509B
Hexachlorobutadiene	<2.5	2.5		μg/L	1.0	SW8260B	N/A	5/9/03 13:38	JH	N30509B
2-Hexanone	<5.0	5.0		µg/L	1.0	SW8260B	N/A	5/9/03 13:38	JH	N30509B
lodomethane	<1.0	1.0		μg/L	1.0	SW8260B	N/A	5/9/03 13:38	JH	N30509B
Isopropylbenzene	<2.5	2.5		μg/L	1.0	SW8260B	N/A	5/9/03 13:38	JH	N30509B
4-Isopropyltoluene	<1.5	1.5		μg/L	1.0	SW8260B	N/A	5/9/03 13:38	JH	N30509B
Methylene chloride	<3.0	3.0		μg/L	1.0	SW8260B	N/A	5/9/03 13:38	JH	N30509B
4-Methyl-2-pentanone	<5.0	5.0		μg/L	1.0	SW8260B	N/A	5/9/03 13:38	JH	N30509B
Methyl tert-butyl ether	<2.0	2.0		μg/L	1.0	SW8260B	N/A	5/9/03 13:38	JH	N30509B
Naphthalene	<5.0	5.0		μg/L	1.0	SW8260B	N/A	5/9/03 13:38	JH	N30509B
n-Propylbenzene	<2.0	2.0		μg/L	1.0	S;W8260B	N/A	5/9/03 13:38	JH	N30509B
Styrene	<1.0	1.0		μg/L	1.0	SW82608	N/A	5/9/03 13:38	JH	N30509B
1,1,1,2-Tetrachloroethane	< 0.50	0.50		μg/L	1.0	SW8260B	N/A	5/9/03 13:38	JН	N30509B
1,1,2,2-Tetrachloroethane	< 0.50	0.50		μg/L	1.0	SW8260B	N/A	5/9/03 13:38	JH	N30509B
Tetrachloroethene	63	2.5	D2	µg/L	5.0	SW8260B	N/A	5/12/03 13:28	JH	N30512B
Toluene	<3.0	3.0		μg/L	1.0	SW82608	N/A	5/9/03 13:38	JH	N30509B
1,2,3-Trichlorobenzene	<5.0	5.0		μg/L	1.0	SW8260B	N/A	5/9/03 13:38	JH	N30509B
1,2,4-Trichlorobenzene	<5.0	5.0		μg/L	1.0	SW8260B	N/A	5/9/03 13:38	JH	N30509B
1,1,1-Trichloroethane	< 0.50	0.50		μg/L	1.0	SW8260B	N/A	5/9/03 13:38	JH	N30509B
1,1,2-Trichloroethane	< 0.50	0.50		μg/L	1.0	SW8260B	N/A	5/9/03 13:38	JH	N30509B
Trichloroethene	2.4	0.50		µg/L	1.0	SW8260B	N/A	5/9/03 13:38	JH	N30509B
Trichlorofluoromethane	<2.0	2.0		μg/L	1.0	SW8260B	N/A	5/9/03 13:38	JH	N30509B
1,2,3-Trichloropropane	<1.0	1.0		μg/L	1.0	SW8260B	N/A	5/9/03 13:38	JH	N30509B
1,2,4-Trimethylbenzene	<2.0	2.0		μg/L	1.0	SW8260B	N/A	5/9/03 13:38	JH	N30509B
1,3,5-Trimethylbenzene	<1.5	1.5		μg/L	1.0	SW8260B	N/A	5/9/03 13:38	JН	N30509B
Vinyl acetate	<5.0	5.0		μg/L	1.0	SW8260B	N/A	5/9/03 13:38	JH	N30509B
Vinyl chloride	< 0.50	0.50		μg/L	1.0	SW8260B	N/A	5/9/03 13:38	JH	N30509B
Xylenes, Total	<3.0	3.0		μg/L	1.0	SW8260B	N/A	5/9/03 13:38	JH	N30509B
4-Bromofluorobenzene(Surrogate)	93	80-107		%REC	1.0	SW8260B	N/A	5/9/03 13:38	JH	N30509B
Dibromofluoromethane(Surrogate)	95	77-104		%REC	1.0	SW8260B	N/A	5/9/03 13:38	JH	N30509B
1,2-Dichloroethane-d4(Surrogate)	93	72-111		%REC	1.0	SW82608	N/A	5/9/03 13:38	JH	N30509B
Toluene-d8(Surrogate)	97	84-105		%REC	1.0	SW8260B	N/A	5/9/03 13:38	JH	N30509B

CLIENT:

Hargis and Associates

Work Order:

0304431

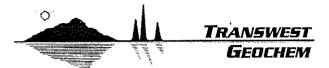
Lab ID:

0304431-04

Project Name:

ChemResearch

Project Number: 525.11


Date Printed 21-May-03

License No. AZM133/AZ0133

Client Sample ID: WVB-4

Collection Date: 4/29/2003 10:05:00 AM

Analyte Result PQL Qual Units DF Code Prepared Analyzed Analyst Batch ID Chromium, Hexavalent <0.020 0.020 mg/L 1.0 SM3503-Cr D N/A 4/5003 07-44 NMM CR6_W-4/50/2003 Cyanide, Total <0.010 0.010 mg/L 1.0 SM4509-CN CE 5/13/03 5/13/03 KMB CN_W-5/13/2003 Cyanide, Total <0.050 0.050 mg/L 1.0 Calculation N/A 5/9/03 NMM CR3_W-5/9/2003 Cadmium <0.02 0.02 mg/L 1.0 EPA200.7 5/5/03 5/6/03 AD 6/46A Chromium <0.05 0.05 mg/L 1.0 EPA200.7 5/5/03 5/6/03 AD 6/46A Chromium <0.05 0.05 mg/L 1.0 EPA200.7 5/5/03 5/6/03 AD 6/46A Chromium <0.05 0.05 mg/L 1.0 EPA200.7 5/5/03 5/6/03 AD 6/46A Chromium <0.05 0.05 mg/L 1.0 EPA200.7 5/5/03 5/6/03 AD 6/46A Chromium <0.05 0.05 mg/L 1.0 EPA200.7 5/5/03 5/6/03 AD 6/46A Chromium <0.05 0.05 mg/L 1.0 EPA200.7 5/5/03 5/6/03 AD 6/46A Chromium <0.05 0.05 mg/L 1.0 EPA200.7 5/5/03 5/6/03 AD 6/46A Chromium <0.050 0.05 mg/L 1.0 EPA200.7 5/5/03 5/6/03 AD 6/46A Chromium <0.050 0.05 mg/L 1.0 EPA200.7 5/5/03 5/6/03 AD 6/46A Chromium <0.050 0.05 mg/L 1.0 EPA200.7 5/5/03 5/6/03 AD 6/46A Chromium <0.050 0.050 mg/L 1.0 EPA200.7 5/5/03 5/6/03 AD 6/46A Chromium <0.050 0.050 mg/L 1.0 EPA200.7 5/5/03 5/6/03 AD 6/46A Chromium <0.050 0.50 mg/L 1.0 EPA200.9 5/1/03 5/1/03 5/1/03 HMB 6/1/5A Chromobenzene <0.050 0.50 mg/L 1.0 SW8260B N/A 5/6/03/14-17 JH N30509B Bromochloromethane <0.050 0.50 mg/L 1.0 SW8260B N/A 5/6/03/14-17 JH N30509B Bromochloromethane <0.050 0.50 mg/L 1.0 SW8260B N/A 5/6/03/14-17 JH N30509B Bromomethane <0.050 0.50 mg/L 1.0 SW8260B N/A 5/6/03/14-17 JH N30509B Bromomethane <0.050 0.50 mg/L 1.0 SW8260B N/A 5/6/03/14-17 JH N30509B Bromomethane <0.050 0.50 mg/L 1.0 SW8260B N/A 5/6/03/14-17 JH N30509B Carbon disulfide <0.050 0.50 mg/L 1.0 SW8260B N/A 5/6/03/14-17 JH N30509B Chromochloromethane <0.050 0.50 mg/L 1.0 SW8260B N/A 5/6/03/14-17 JH N30509B Chromochloromethane <0.050 0.50 mg/L 1.0 SW8260B N/A 5/6/03/14-17 JH N30509B Chromochloromethane <0.050 0.50 mg/L 1.0 SW8260B N/A 5/6/03/14-17 JH N30509B Chromochloromethane <0.050 0.50 mg/L 1.0 SW8260B N/A 5/6/03/14-17 JH N30509B Chr
Cyanide, Total Co.010 O.010 O.010 mg/L 1.0 SM4500-CN CE S/13/03 S/13/03 KMB CN_W-S/13/2003 Crivalent Chromium Co.050 O.050 mg/L 1.0 Calculation N/A S/9/03 NMM CR3_W-S/9/2003 Cadmium Co.02 O.02 mg/L 1.0 EPA200.7 S/5/03 S/6/03 AD 6146A Chromium Co.05 O.05 mg/L 1.0 EPA200.7 S/5/03 S/6/03 AD 6146A Chromium Co.05 O.05 mg/L 1.0 EPA200.7 S/5/03 S/6/03 AD 6146A Chromium Co.05 O.05 mg/L 1.0 EPA200.7 S/5/03 S/6/03 AD 6146A Chromium Co.05 O.05 mg/L 1.0 EPA200.7 S/5/03 S/6/03 AD 6146A Chromium Co.05 O.05 mg/L 1.0 EPA200.7 S/5/03 S/6/03 AD 6146A Chromium Co.05 O.050 mg/L 1.0 EPA200.7 S/5/03 S/6/03 AD 6146A Chromium Co.05 O.050 mg/L 1.0 EPA200.7 S/5/03 S/6/03 AD 6146A Chromium Co.05 O.050 mg/L 1.0 EPA200.7 S/5/03 S/6/03 AD 6146A Chromium Co.05 O.050 mg/L 1.0 EPA200.7 S/5/03 S/6/03 AD 6146A Chromium Co.05 O.050 mg/L 1.0 SW8260B N/A S/9/03 14:17 JH N30509B Bromobenzene Co.05 O.050 mg/L 1.0 SW8260B N/A S/9/03 14:17 JH N30509B Bromodichromethane Co.05 O.050 mg/L 1.0 SW8260B N/A S/9/03 14:17 JH N30509B Bromodichromethane Co.05 O.050 mg/L 1.0 SW8260B N/A S/9/03 14:17 JH N30509B Bromodichromethane Co.05 O.050 mg/L 1.0 SW8260B N/A S/9/03 14:17 JH N30509B Bromodichromethane Co.05 O.050 mg/L 1.0 SW8260B N/A S/9/03 14:17 JH N30509B Bromodichromethane Co.05 O.050 mg/L 1.0 SW8260B N/A S/9/03 14:17 JH N30509B Sec-Butylbenzene Co.05 O.050 mg/L 1.0 SW8260B N/A S/9/03 14:17 JH N30509B Sec-Butylbenzene Co.05 O.050 mg/L 1.0 SW8260B N/A S/9/03 14:17 JH N30509B Carbon disulfide Co.050 O.050 mg/L 1.0 SW8260B N/A S/9/03 14:17 JH N30509B Chromothromethane Co.050 O.050 mg/L 1.0 SW8260B N/A S/9/03 14:
Cyanide, Total Co.010 O.010 O.010 mg/L 1.0 SM4500-CN CE S/13/03 S/13/03 KMB CN_W-S/13/2003 Crivalent Chromium Co.050 O.050 mg/L 1.0 Calculation N/A S/9/03 NMM CR3_W-S/9/2003 Cadmium Co.02 O.02 mg/L 1.0 EPA200.7 S/5/03 S/6/03 AD 6146A Chromium Co.05 O.05 mg/L 1.0 EPA200.7 S/5/03 S/6/03 AD 6146A Chromium Co.05 O.05 mg/L 1.0 EPA200.7 S/5/03 S/6/03 AD 6146A Chromium Co.05 O.05 mg/L 1.0 EPA200.7 S/5/03 S/6/03 AD 6146A Chromium Co.05 O.05 mg/L 1.0 EPA200.7 S/5/03 S/6/03 AD 6146A Chromium Co.05 O.05 mg/L 1.0 EPA200.7 S/5/03 S/6/03 AD 6146A Chromium Co.05 O.050 mg/L 1.0 EPA200.7 S/5/03 S/6/03 AD 6146A Chromium Co.05 O.050 mg/L 1.0 EPA200.7 S/5/03 S/6/03 AD 6146A Chromium Co.05 O.050 mg/L 1.0 EPA200.7 S/5/03 S/6/03 AD 6146A Chromium Co.05 O.050 mg/L 1.0 EPA200.7 S/5/03 S/6/03 AD 6146A Chromium Co.05 O.050 mg/L 1.0 SW8260B N/A S/9/03 14:17 JH N30509B Bromobenzene Co.05 O.050 mg/L 1.0 SW8260B N/A S/9/03 14:17 JH N30509B Bromodichromethane Co.05 O.050 mg/L 1.0 SW8260B N/A S/9/03 14:17 JH N30509B Bromodichromethane Co.05 O.050 mg/L 1.0 SW8260B N/A S/9/03 14:17 JH N30509B Bromodichromethane Co.05 O.050 mg/L 1.0 SW8260B N/A S/9/03 14:17 JH N30509B Bromodichromethane Co.05 O.050 mg/L 1.0 SW8260B N/A S/9/03 14:17 JH N30509B Bromodichromethane Co.05 O.050 mg/L 1.0 SW8260B N/A S/9/03 14:17 JH N30509B Sec-Butylbenzene Co.05 O.050 mg/L 1.0 SW8260B N/A S/9/03 14:17 JH N30509B Sec-Butylbenzene Co.05 O.050 mg/L 1.0 SW8260B N/A S/9/03 14:17 JH N30509B Carbon disulfide Co.050 O.050 mg/L 1.0 SW8260B N/A S/9/03 14:17 JH N30509B Chromothromethane Co.050 O.050 mg/L 1.0 SW8260B N/A S/9/03 14:
Calculation
Cadmium
Chromium
Nickel
Lead <
Acetone
Acetone
Benzene
Benzene Country Coun
Bromobenzene Carbon disulfide Carbon disulfid
Bromochloromethane
Bromodichloromethane <0.50 0.50 µg/L 1.0 SW8260B N/A 5/9/03 14:17 JH N30509B
Bromoform < 1.0 1.0 µg/L 1.0 SW8260B N/A 5/9/03 14:17 JH N30509B Bromomethane < 5.0 5.0 µg/L 1.0 SW8260B N/A 5/9/03 14:17 JH N30509B 2-Butanone < 5.0 5.0 µg/L 1.0 SW8260B N/A 5/9/03 14:17 JH N30509B n-Butylbenzene < 2.5 2.5 µg/L 1.0 SW8260B N/A 5/9/03 14:17 JH N30509B sec-Butylbenzene < 1.5 1.5 µg/L 1.0 SW8260B N/A 5/9/03 14:17 JH N30509B tert-Butylbenzene < 2.5 2.5 µg/L 1.0 SW8260B N/A 5/9/03 14:17 JH N30509B cert-Butylbenzene < 2.5 2.5 µg/L 1.0 SW8260B N/A 5/9/03 14:17 JH N30509B Carbon disulfide < 0.50 0.50 µg/L 1.0 SW8260B N/A 5/9/03 14:17 JH N30509B Carbon tetrachloride < 0.50 0.50 µg/L 1.0 SW8260B N/A 5/9/03 14:17 JH N30509B Chlorobenzene < 0.50 0.50 µg/L 1.0 SW8260B N/A 5/9/03 14:17 JH N30509B Chlorobenzene < 0.50 0.50 µg/L 1.0 SW8260B N/A 5/9/03 14:17 JH N30509B Chlorobenzene < 0.50 0.50 µg/L 1.0 SW8260B N/A 5/9/03 14:17 JH N30509B Chlorobenzene < 0.50 0.50 µg/L 1.0 SW8260B N/A 5/9/03 14:17 JH N30509B
2-Butanone
n-Butylbenzene <2.5 2.5 µg/L 1.0 SW8260B N/A 5/9/03 14:17 JH N30509B sec-Butylbenzene <1.5 1.5 µg/L 1.0 SW8260B N/A 5/9/03 14:17 JH N30509B tert-Butylbenzene <2.5 2.5 µg/L 1.0 SW8260B N/A 5/9/03 14:17 JH N30509B Carbon disulfide <0.50 0.50 µg/L 1.0 SW8260B N/A 5/9/03 14:17 JH N30509B Carbon tetrachloride <0.50 0.50 µg/L 1.0 SW8260B N/A 5/9/03 14:17 JH N30509B Chlorobenzene <0.50 0.50 µg/L 1.0 SW8260B N/A 5/9/03 14:17 JH N30509B Chlorobenzene <0.50 0.50 µg/L 1.0 SW8260B N/A 5/9/03 14:17 JH N30509B Dibromochloromethane <0.50 0.50 µg/L 1.0 SW8260B N/A 5/9/03 14:17 JH N30509B
n-Butylbenzene <2.5 2.5 µg/L 1.0 SW8260B N/A 5/9/03 14:17 JH N30509B sec-Butylbenzene <1.5 1.5 µg/L 1.0 SW8260B N/A 5/9/03 14:17 JH N30509B tert-Butylbenzene <2.5 2.5 µg/L 1.0 SW8260B N/A 5/9/03 14:17 JH N30509B Carbon disulfide <0.50 0.50 µg/L 1.0 SW8260B N/A 5/9/03 14:17 JH N30509B Carbon tetrachloride <0.50 0.50 µg/L 1.0 SW8260B N/A 5/9/03 14:17 JH N30509B Chlorobenzene <0.50 0.50 µg/L 1.0 SW8260B N/A 5/9/03 14:17 JH N30509B Chlorobenzene <0.50 0.50 µg/L 1.0 SW8260B N/A 5/9/03 14:17 JH N30509B Dibromochloromethane <0.50 0.50 µg/L 1.0 SW8260B N/A 5/9/03 14:17 JH N30509B
sec-Butylbenzene <1.5 µg/L 1.0 SW8260B N/A 5/9/03 14:17 JH N30509B tert-Butylbenzene <2.5 2.5 µg/L 1.0 SW8260B N/A 5/9/03 14:17 JH N30509B Carbon disulfide <0.50 0.50 µg/L 1.0 SW8260B N/A 5/9/03 14:17 JH N30509B Carbon tetrachloride <0.50 0.50 µg/L 1.0 SW8260B N/A 5/9/03 14:17 JH N30509B Chlorobenzene <0.50 0.50 µg/L 1.0 SW8260B N/A 5/9/03 14:17 JH N30509B Dibromochloromethane <0.50
Carbon disulfide <0.50 0.50 μg/L 1.0 SW8260B N/A 5/9/03 14:17 JH N30509B Carbon tetrachloride <0.50
Carbon tetrachloride <0.50 0.50 μg/L 1.0 SW8260B N/A 5/9/03 14:17 JH N30509B Chlorobenzene <0.50 0.50 μg/L 1.0 SW8260B N/A 5/9/03 14:17 JH N30509B Dibromochloromethane <0.50
Chlorobenzene <0.50 0.50 µg/L 1.0 SW8260B N/A 5/9/03 14:17 JH N30509B Dibromochioromethane <0.50 0.50 µg/L 1.0 SW8260B N/A 5/9/03 14:17 JH N30509B
Chlorobenzene <0.50 0.50 µg/L 1.0 SW8260B N/A 5/9/03 14:17 JH N30509B Dibromochloromethane <0.50
25.5
Chlorophono 44.0 4.0 Mg/L 4.0 SW/92600 N/A F/0/03 4A-47 ILL N/206000
Chloroethane <1.0 1.0 µg/L 1.0 SW8260B N/A 5/9/03 14:17 JH N30509B
Chloroform <0.50 0.50 μg/L 1.0 SW8260B N/A 5/9/03 14:17 JH N30509B
Chloromethane <5.0 5.0 µg/L 1.0 SW8260B N/A 5/9/03 14:17 JH N30509B
2-Chlorotoluene <1.5 1.5 µg/L 1.0 SW8260B N/A 5/9/03 14:17 JH N30509B
4-Chlorotoluene <2.0 2.0 µg/L 1.0 SW8260B N/A 5/9/03 14:17 JH N30509B
1,2-Dibromo-3-chloropropane <2.0 2.0 µg/L 1.0 SW8260B N/A 5/9/03 14:17 JH N30509B
1,2-Dibromoethane <0.50 0.50 µg/L 1.0 SW8260B N/A 5/9/03 14:17 JH N30509B
Dibromomethane <0.50 0.50 µg/L 1.0 SW8260B N/A 5/9/03 14:17 JH N30509B
1,2-Dichlorobenzene <1.5 1.5 µg/L 1.0 SW8260B N/A 5/9/03 14:17 JH N30509B
1,3-Dichlorobenzene <1.5 1.5 µg/L 1.0 SW8260B N/A 5/9/03 14:17 JH N30509B
1,4-Dichlorobenzene <1.5 1.5 µg/L 1.0 SW6260B N/A 5/9/03 14:17 JH N30509B
Dichlorodifluoromethane <2.0 2.0 µg/L 1.0 SW8260B N/A 5/9/03 14:17 JH N30509B
1,1-Dichloroethane <1.0 1.0 µg/L 1.0 SW8260B N/A 5/9/03 14:17 JH N30509B
1,2-Dichloroethane <1.0 1.0 µg/L 1.0 SW8260B N/A 5/9/03 14:17 JH N30509B
1,1-Dichloroethene <0.50 0.50 µg/L 1.0 SW82608 N/A 5/9/03 14:17 JH N305098

License No. AZM133/AZ0133

CLIENT:

Hargis and Associates

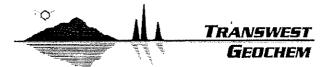
Work Order:

0304431

Lab ID:

0304431-04

Project Name:


ChemResearch

Project Number: 525.11

Client Sample ID: WVB-4

Collection Date: 4/29/2003 10:05:00 AM

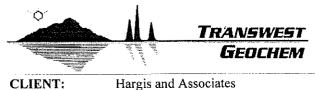
•						Test	Date	Date		
Analyte	Result	PQL	Qual	Units	DF	Code	Prepared	Analyzed	Analyst	Batch ID
cis-1,2-Dichloroethene	<0.50	0.50		μg/L	1.0	SW8260B	N/A	5/9/03 14:17	JH	N30509B
trans-1,2-Dichloroethene	<0.50	0.50		µg/L	1.0	SW8260B	N/A	5/9/03 14:17	JH	N30509B
1,2-Dichloropropane	<0.50	0.50		μg/L	1.0	SW8260B	N/A	5/9/03 14:17	JH	N30509B
1,3-Dichloropropane	<1.0	1.0		μg/L	1.0	SW8260B	N/A	5/9/03 14:17	JH	N30509B
2,2-Dichloropropane	< 0.50	0.50		μg/L	1.0	SW8260B	N/A	5/9/03 14:17	JH	N30509B
1,1-Dichloropropene	<1.0	1.0		µg/L	1.0	SW8260B	N/A	5/9/03 14:17	JH	N30509B
cis-1,3-Dichloropropene	<1.0	1.0		μg/L	1.0	SW8260B	N/A	5/9/03 14:17	JH	N30509B
trans-1,3-Dichloropropene	< 0.50	0.50		μg/L	1.0	SW8260B	N/A	5/9/03 14:17	JH	N30509B
Ethylbenzene	<2.0	2.0		μg/L	1.0	SW8260B	N/A	5/9/03 14:17	JH	N30509B
Hexachlorobutadiene	<2.5	2.5		μg/L	1.0	SW8260B	N/A	5/9/03 14:17	JH	N30509B
2-Hexanone	<5.0	5.0		μg/L	1.0	SW8260B	N/A	5/9/03 14:17	JH	N30509B
lodomethane	<1.0	1.0		μg/L	1.0	SW8260B	N/A	5/9/03 14:17	JH	N30509B
Isopropylbenzene	<2.5	2.5		µg/L	1.0	SW8260B	N/A	5/9/03 14:17	JH	N30509B
4-Isopropyltoluene	<1.5	1.5		μg/L	1.0	SW8260B	N/A	5/9/03 14:17	jΗ	N30509B
Methylene chloride	<3.0	3.0		μg/L	1.0	SW8260B	N/A	5/9/03 14:17	JH	N30509B
4-Methyl-2-pentanone	<5.0	5.0		µg/L	1.0	SW8260B	N/A	5/9/03 14:17	JH	N30509B
Methyl tert-butyl ether	<2.0	2.0		µg/L	1.0	SW8260B	N/A	5/9/03 14:17	JH	N30509B
Naphthalene	<5.0	5.0		μg/L	1.0	SW8260B	N/A	5/9/03 14:17	JH	N30509B
n-Propylbenzene	<2.0	2.0		µg/L	1.0	SW8260B	N/A	5/9/03 14:17	JH	N30509B
Styrene	<1.0	1.0		µg/L	1.0	SW8260B	N/A	5/9/03 14:17	JH	N30509B
1,1,1,2-Tetrachloroethane	<0.50	0.50		μg/L.	1.0	SW8260B	N/A	5/9/03 14:17	JΗ	N30509B
1,1,2,2-Tetrachloroethane	< 0.50	0.50		μg/L	1.0	SW8260B	N/A	5/9/03 14:17	JH	N30509B
Tetrachloroethene	240	5.0	D2	μg/L	10	SW8260B	N/A	5/12/03 14:07	JH	N30512B
Toluene	<3.0	3.0		µg/L	1.0	SW8260B	N/A	5/9/03 14:17	JH	N30509B
1,2,3-Trichlorobenzene	<5.0	5.0		hã/r	1.0	SW8260B	N/A	5/9/03 14:17	JH	N30509B
1,2,4-Trichlorobenzene	<5.0	5.0		µg/L	1.0	SW82608	N/A	5/9/03 14:17	JH	N30509B
1,1,1-Trichloroethane	< 0.50	0.50		µg/L	1.0	SW8260B	N/A	5/9/03 14:17	JH	N30509B
1,1,2-Trichloroethane	<0.50	0.50		µg/L	1.0	SW8260B	N/A	5/9/03 14:17	JH	N30509B
Trichloroethene	0.62	0.50		μg/L	1.0	SW8260B	N/A	5/9/03 14:17	JH	N30509B
Trichlorofluoromethane	<2.0	2.0		µg/L	1.0	SW8260B	N/A	5/9/03 14:17	JH	N30509B
1,2,3-Trichioropropane	<1.0	1.0		μg/L	1,0	SW8260B	N/A	5/9/03 14:17	JH	N30509B
1,2,4-Trimethylbenzene	<2.0	2.0		µg/L	1.0	SW8260B	N/A	5/9/03 14:17	JH	N30509B
1,3,5-Trimethylbenzene	<1.5	1.5		μg/L	1.0	SW8260B	N/A	5/9/03 14:17	jΗ	N30509B
Vinyl acetate	<5.0	5.0		µg/L	1.0	SW8260B	N/A	5/9/03 14:17	JH	N30509B
Vinyl chloride	< 0.50	0.50		µg/L	1.0	SW8260B	N/A	5/9/03 14:17	JH	N30509B
Xylenes, Total	<3.0	3.0		µg/L	1.0	SW8260B	N/A	5/9/03 14:17		N30509B
4-Bromofluorobenzene(Surrogate)	90	80-107		%REC	1.0	SW8260B	N/A	5/9/03 14:17		N30509B
Dibromofluoromethane(Surrogate)	93	77-104		%REC	1.0	SW8260B	N/A	5/9/03 14:17		N30509B
1,2-Dichloroethane-d4(Surrogate)	91	72-111		%REC	1.0	SW8260B		5/9/03 14:17		N30509B
Toluene-d8(Surrogate)	94	84-105		%REC	1.0	SW8260B	N/A	5/9/03 14:17	JH	N30509B

License No. AZM133/AZ0133

CLIENT: Hargis and Associates

0304431 Work Order: Lab ID:

0304431-05


ChemResearch Project Name:

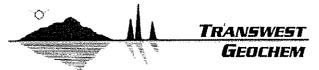
Project Number: 525.11

Client Sample ID: WVB-1

Collection Date: 4/29/2003 10:45:00 AM

					D .D	Test	Date	Date	A 1	. D-4-E ID
Analyte	Result	PQL	Qual	Units	DF	Code	Prepared	Analyzed	Analys	t Batch ID
Chromium, Hexavalent	<0.020	0.020		mg/L	1.0	SM3500-Cr D	N/A	4/30/03 07:44	NMM	CR6_W-4/30/2003
Cyanide, Total	<0.010	0.010		mg/L	1.0	SM4500-CN CE	5/13/03	5/13/03	KMB	CN_W-5/13/2003
Trivalent Chromium	0.53	0.050		mg/L	1.0	Calculation	N/A	5/9/03	ММИ	CR3_W-5/9/2003
Cadmium	<0.02	0.02		mg/L	1.0	EPA200.7	5/5/03	5/6/03	AD	6146A
Chromium	0.53	0.05		mg/L	1.0	EPA200.7	5/5/03	5/6/03	AD	6146A
Nickel	0.19	0.05		mg/L	1.0	EPA200.7	5/5/03	5/6/03	AD	6146A
Lead	<0.0030	0.0030		mg/L	1.0	EPA200.9	5/1/03	5/12/03	KMB	6135A
Acetone	<20	20		μg/L	1.0	SW8260B	N/A	5/12/03 12:50	JH	N30512B
Benzene	<0.50	0.50		μg/L	1.0	SW8260B	N/A	5/12/03 12:50	JH	N30512B
Bromobenzene	<1.5	1.5		µg/L	1.0	SW8260B	N/A	5/12/03 12:50	JH	N30512B
Bromochloromethane	< 0.50	0.50		µg/L	1.0	SW8260B	N/A	5/12/03 12:50	JH	N30512B
Bromodichloromethane	<0.50	0.50		µg/L	1.0	SW8260B	N/A	5/12/03 12:50	JH	N30512B
Bromoform	<1.0	1.0		µg/L	1.0	SW8260B	N/A	5/12/03 12:50	JH	N30512B
Bromomethane	<5.0	5.0		μg/L	1.0	SW8260B	N/A	5/12/03 12:50	JΗ	N30512B
2-Butanone	<5.0	5.0		µg/L	1.0	SW8260B	N/A	5/12/03 12:50	JH	N30512B
n-Butylbenzene	<2.5	2.5		μg/L	1.0	SW8260B	N/A	5/12/03 12:50	JH	N30512B
sec-Butylbenzene	<1.5	1.5		µg/L	1.0	SW8260B	N/A	5/12/03 12:50	JH	N30512B
tert-Butylbenzene	<2.5	2.5		µg/L	1.0	SW8260B	N/A	5/12/03 12:50	JH	N30512B
Carbon disulfide	<0.50	0.50		µg/L	1.0	SW8260B	N/A	5/12/03 12:50	JH	N30512B
Carbon tetrachloride	< 0.50	0.50		μg/L	1.0	SW8260B	N/A	5/12/03 12:50	JH	N30512B
Chlorobenzene	<0.50	0.50		μg/L	1.0	SW8260B	N/A	5/12/03 12:50	JΗ	N30512B
Dibromochloromethane	< 0.50	0.50		μg/L	1.0	SW8260B	N/A	5/12/03 12:50	JH	N30512B
Chloroethane	<1.0	1.0		µg/L	1.0	SW8260B	N/A	5/12/03 12:50	JH	N30512B
Chloroform	< 0.50	0.50		μg/L	1.0	SW8260B	N/A	5/12/03 12:50	JH	N30512B
Chloromethane	<5.0	5.0		µg/L	1.0	SW8260B	N/A	5/12/03 12:50	JH	N30512B
2-Chlorotoluene	<1.5	1.5		µg/L	1.0	SW8260B	N/A	5/12/03 12:50		N30512B
4-Chlorotoluene	<2.0	2.0		μg/L	1.0	SW8260B	N/A	5/12/03 12:50	JH	N30512B
1,2-Dibromo-3-chloropropane	<2.0	2.0		µg/L	1.0	SW8260B	N/A	5/12/03 12:50		N30512B
1,2-Dibromoethane	<0.50	0.50		μg/L	1.0	SW8260B	N/A	5/12/03 12:50	JH	N30512B
Dibromomethane	< 0.50	0.50		µg/L	1.0	SW8260B	N/A	5/12/03 12:50	JH	N30512B
1,2-Dichlorobenzene	<1.5	1.5		μg/L	1.0	SW8260B	N/A	5/12/03 12:50		N30512B
1,3-Dichlorobenzene	<1.5	1.5		µg/L	1.0	SW8260B	N/A	5/12/03 12:50) JH	N30512B
1,4-Dichlorobenzene	<1.5	1.5		μg/L	1.0	SW8260B	N/A	5/12/03 12:50) JH	N30512B
Dichlorodifluoromethane	<2.0	2.0		µg/L	1.0	SW8260B	N/A	5/12/03 12:50		N30512B
1,1-Dichloroethane	<1.0	1.0		μg/L	1.0	SW8260B	N/A	5/12/03 12:50		N30512B
1,2-Dichloroethane	<1.0	1.0		μg/L	1.0	SW8260B	N/A	5/12/03 12:50		N30512B
1,1-Dichloroethene	< 0.50	0.50		μg/L	1.0	SW8260B	N/A	5/12/03 12:50) JH	N30512B

License No. AZM133/AZ0133


Hargis and Associates Client Sample ID: WVB-1

Work Order: 0304431 Collection Date: 4/29/2003 10:45:00 AM

Lab ID:0304431-05Matrix: GROUNDWATERProject Name:ChemResearch

Project Number: 525.11

						Test	Date	Date		
Analyte	Result	PQL	Qual	Units	DF	Code	Prepared	Analyzed	Analyst	Batch ID
cis-1,2-Dichloroethene	<0.50	0.50		µg/L	1.0	SW8260B	N/A	5/12/03 12:50	JH	N30512B
trans-1,2-Dichloroethene	<0.50	0.50		μg/L	1.0	SW8260B	N/A	5/12/03 12:50	JH	N30512B
1,2-Dichloropropane	<0.50	0.50		µg/L	1.0	SW8260B	N/A	5/12/03 12:50	JH	N30512B
1,3-Dichloropropane	<1.0	1.0		µg/L	1.0	SW8260B	N/A	5/12/03 12:50	JH	N30512B
2,2-Dichloropropane	< 0.50	0.50		μg/L	1.0	SW8260B	N/A	5/12/03 12:50	JH	N30512B
1,1-Dichloropropene	<1.0	1.0		µg/L	1.0	SW8260B	N/A	5/12/03 12:50	JH	N30512B
cis-1,3-Dichloropropene	<1.0	1.0		μg/L	1.0	SW8260B	N/A	5/12/03 12:50	JH	N30512B
trans-1,3-Dichloropropene	< 0.50	0.50		μg/L	1.0	SW8260B	N/A	5/12/03 12:50	JH	N30512B
Ethylbenzene	<2.0	2.0		µg/L	1.0	SW8260B	N/A	5/12/03 12:50	JH	N30512B
Hexachlorobutadiene	<2.5	2.5		µg/L	1.0	SW8260B	N/A	5/12/03 12:50	JH	N30512B
2-Hexanone	<5.0	5.0		µg/L	1.0	SW8260B	N/A	5/12/03 12:50	JH	N30512B
lodomethane	<1.0	1.0		μg/L	1.0	SW8260B	N/A	5/12/03 12:50	JH	N30512B
Isopropylbenzene	<2.5	2.5		μg/L	1.0	SW8260B	N/A	5/12/03 12:50	JH	N30512B
4-Isopropyltoluene	<1.5	1.5		μg/L	1.0	SW8260B	N/A	5/12/03 12:50	JH	N30512B
Methylene chloride	<3.0	3.0		μg/L	1.0	SW8260B	N/A	5/12/03 12:50	JH	N30512B
4-Methyl-2-pentanone	<5.0	5.0		µg/L	1.0	SW8260B	N/A	5/12/03 12:50	JН	N30512B
Methyl tert-butyl ether	5.3	2.0		μg/L	1.0	SW8260B	N/A	5/12/03 12:50	JH	N30512B
Naphthalene	<5.0	5.0		μg/L	1.0	SW8260B	N/A	5/12/03 12:50	JH	N30512B
n-Propylbenzene	<2.0	2.0		μg/L	1.0	SW8260B	N/A	5/12/03 12:50	JH	N30512B
Styrene	<1.0	1.0		μg/L	1.0	SW8260B	N/A	5/12/03 12:50	JH	N30512B
1,1,1,2-Tetrachloroethane	<0.50	0.50		μg/L	1.0	SW8260B	N/A	5/12/03 12:50	JH	N30512B
1,1,2,2-Tetrachloroethane	< 0.50	0.50		μg/L	1.0	SW8260B	N/A	5/12/03 12:50	JH	N30512B
Tetrachloroethene	< 0.50	0.50		µg/L	1.0	SW8260B	N/A	5/12/03 12:50	JH	N30512B
Toluene	<3.0	3.0		µg/L	1.0	SW8260B	N/A	5/12/03 12:50	JH	N30512B
1,2,3-Trichlorobenzene	<5.0	5.0		μg/L	1.0	SW8260B	N/A	5/12/03 12:50	JH	N30512B
1,2,4-Trichlorobenzene	<5.0	5.0		μg/L	1.0	SW8260B	N/A	5/12/03 12:50	JH	N30512B
1,1,1-Trichloroethane	< 0.50	0.50		μg/L	1.0	SW8260B	N/A	5/12/03 12:50	JH	N30512B
1,1,2-Trichloroethane	< 0.50	0.50		µg/L	1.0	SW8260B	N/A	5/12/03 12:50	JH	N305129
Trichloroethene	< 0.50	0.50		μg/L	1.0	SW8260B	N/A	5/12/03 12:50	JH	N30512B
Trichlorofluoromethane	<2.0	2.0		µg/L	1.0	SW8260B	N/A	5/12/03 12:50	JH	N30512B
1,2,3-Trichloropropane	<1.0	1.0		μg/L	1.0	SW8260B	N/A	5/12/03 12:50	JH	N30512B
1,2,4-Trimethylbenzene	<2.0	2.0		µg/L	1.0	SW8260B	N/A	5/12/03 12:50	JH	N30512B
1,3,5-Trimethylbenzene	<1.5	1.5		µg/L	1.0	SW8260B	N/A	5/12/03 12:50	JH	N30512B
Vinyl acetate	<5.0	5.0		μg/L	1.0	SW8260B	N/A	5/12/03 12:50	JH	N30512B
Vinyl chloride	< 0.50	0.50		µg/∟	1.0	SW8260B	N/A	5/12/03 12:50	JH	N30512B
Xylenes, Total	<3.0	3.0		µg/L	1.0	SW8260B	N/A	5/12/03 12:50	JH	N305128
4-Bromofluorobenzene(Surrogate)	94	80-107		%REC	1.0	SW8260B	N/A	5/12/03 12:50	JH	N30512B
Dibromofluoromethane(Surrogate)	95	77-104		%REC	1.0	SW8260B	N/A	5/12/03 12:50	JH	N30512B
1,2-Dichloroethane-d4(Surrogate)	90	72-111		%REC	1.0	SW8260B	N/A	5/12/03 12:50) JH	N30512B
Toluene-d8(Surrogate)	96	84-105		%REC	1.0	SW82608	N/A	5/12/03 12:50	HL (N30512B

CLIENT:

Hargis and Associates

Work Order:

0304431

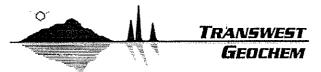
Lab ID:

0304431-06

Project Name:

ChemResearch

Project Number: 525.11


Date Printed 21-May-03

License No. AZM133/AZ0133

Client Sample ID: CMW-3

Collection Date: 4/29/2003 11:45:00 AM

Analyte	Result	PQL	Qual	Units	DF	Test Code	Date Prepared	Date Analyzed	Analys	t Batch ID
Chromium, Hexavalent	<0.020	0.020		mg/L	1.0	SM3500-Cr D	N/A	4/30/03 07:44	NMM	CR6_W-4/30/2003
Cyanide, Total	<0.010	0.010		mg/L	1.0	SM4500-CN CE	5/13/03	5/13/03	KMB	CN_W-5/13/2003
Trivalent Chromium	<0.050	0.050		mg/L	1.0	Calculation	N/A	5/9/03	NMM	CR3_W-5/9/2003
Cadmium	<0.02	0.02		mg/L	1.0	EPA200.7	5/5/03	5/6/03	ΑĐ	6146A
Chromium	< 0.05	0.05		mg/L	1.0	EPA200.7	5/5/03	5/6/03	AD	6146A
Nickel	<0.05	0.05		mg/L	1.0	EPA200.7	5/5/03	5/6/03	AD	6146A
Lead	<0.0030	0.0030		mg/L	1.0	EPA200.9	5/1/03	5/12/03	KMB	6135A
Acetone	<20	20		μg/L	1.0	SW8260B	N/A	5/9/03 15:34	JН	N30509B
Benzene	< 0.50	0.50		µg/L	1.0	SW8260B	N/A	5/9/03 15:34	JH	N30509B
Bromobenzene	<1.5	1.5		μg/L	1.0	SW8260B	N/A	5/9/03 15:34	JH	N30509B
Bromochloromethane	< 0.50	0.50		µg/L	1.0	SW8260B	N/A	5/9/03 15:34	JH	N30509B
Bromodichloromethane	< 0.50	0.50		μg/L	1.0	SW8260B	N/A	5/9/03 15:34	JH	N30509B
Bromoform	<1.0	1.0		µg/L	1.0	SW8260B	N/A	5/9/03 15:34	JН	N30509B
Bromomethane	<5.0	5.0		μg/L	1.0	SW8260B	N/A	5/9/03 15:34	JH	N30509B
2-Butanone	<5.0	5.0		μg/L	1.0	SW8260B	N/A	5/9/03 15:34	JH	N30509B
n-Butylbenzene	<2.5	2.5		µg/L	1.0	SW8260B	N/A	5/9/03 15:34	JH	N30509B
sec-Butylbenzene	<1.5	1.5		µg/L	1.0	SW8260B	N/A	5/9/03 15:34	JH	N30509B
tert-Butylbenzene	<2.5	2.5		µg/L	1.0	SW8260B	N/A	5/9/03 15:34	JH	N30509B
Carbon disulfide	< 0.50	0.50		μg/L	1.0	SW8260B	N/A	5/9/03 15:34	JH	N30509B
Carbon tetrachloride	< 0.50	0.50		µg/L	1.0	SW8260B	N/A	5/9/03 15:34	JH	N30509B
Chlorobenzene	< 0.50	0.50		μg/L	1.0	SW8260B	N/A	5/9/03 15:34	JH	N30509B
Dibromochloromethane	<0.50	0.50		μg/L	1.0	SW82608	N/A	5/9/03 15:34	JH	N30509B
Chloroethane	<1.0	1.0		μg/L	1.0	SW8260B	N/A	5/9/03 15:34	JH	N30509B
Chloroform	< 0.50	0.50		μg/L	1.0	SW8260B	N/A	5/9/03 15:34	JH	N30509B
Chloromethane	<5.0	5.0		μg/L	1.0	SW8260B	N/A	5/9/03 15:34	JH	N30509B
2-Chlorotoluene	<1.5	1.5		μg/L	1.0	SW8260B	N/A	5/9/03 15:34	JH	N30509B
4-Chlorotoluene	<2.0	2.0		μg/L	1.0	SW82608	N/A	5/9/03 15:34	JH	N30509B
1,2-Dibromo-3-chioropropane	<2.0	2.0		μg/L	1.0	SW8260B	N/A	5/9/03 15:34	JH	N30509B
1,2-Dibromoethane	< 0.50	0.50		µg/L	1.0	SW8260B	N/A	5/9/03 15:34	JH	N30509B
Dibromomethane	< 0.50	0.50		μg/L	1.0	SW8260B	N/A	5/9/03 15:34	JH	N30509B
1,2-Dichlorobenzene	<1.5	1.5		µg/L	1.0	SW8260B	N/A	5/9/03 15:34	JH	N30509B
1,3-Dichlorobenzene	<1.5	1.5		μg/L	1.0	SW8260B	N/A	5/9/03 15:34	JH	N30509B
1,4-Dichlorobenzene	<1.5	1.5		µg/L	1.0	SW8260B	N/A	5/9/03 15:34	JН	N30509B
Dichlorodifluoromethane	<2.0	2.0		μg/L	1.0	SW8260B	N/A	5/9/03 15:34	JH	N30509B
1,1-Dichloroethane	<1.0	1.0		µg/L	1.0	SW8260B	N/A	5/9/03 15:34	JH	N30509B
1,2-Dichloroethane	<1.0	1.0		μg/L	1.0	SW8260B	N/A	5/9/03 15:34	JH	N30509B
1,1-Dichloroethene	0.50	0.50		μg/L	1.0	SW8260B	N/A	5/9/03 15:34	JH	N30509B

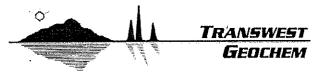
ChemResearch

Date Printed 21-May-03

License No. AZM133/AZ0133

Hargis and Associates Client Sample ID: CMW-3

Work Order: 0304431 Collection Date: 4/29/2003 11:45:00 AM


Lab ID: 0304431-06 Matrix: GROUNDWATER

Project Number: 525.11

CLIENT:

Project Name:

Analyte Result PQL Qual Units DF Code Prepared Analyzed Analyzed Batch dei-12-Dichloroethene <0,50 0,50 µpl. 1.0 898208 NA \$9003 15:34 JH N05009 12-Dichloroptopane <0,50 0,50 µpl. 1.0 \$90000 NA \$9003 15:34 JH N05009 1.2-Dichloroptopane <1,0 1.0 1.0 µpl. 1.0 \$900000 NA \$9003 15:34 JH N05009 1.1-Dichloroptopane <1,0 0.50 µpl. 1.0 \$900000 NA \$9000 15:34 JH N05009 51-3-Dichloroptopane <1,0 1.0 µpl. 1.0 \$900000 NA \$9000 15:34 JH N05009 51-3-Dichloroptopane <1,0 1.0 µpl. 1.0 \$900000 NA \$9000 15:34 JH N050000 Ethylocazie <0,0 0.50 µpl. 1.0 \$900000 NA <							Test	Date	Date		//.4/
Internal 2,Dichiorochrome 0,50 0,50 Upl. 1.0 SW22008 NA SW33 15.34 JH N05908 NA SW35 15.34 JH N0	Analyte	Result	PQL	Qual	Units	DF		Prepared	Analyzed	Analyst	Batch ID
trans-1,2-Dichloroethene	cis-1,2-Dichloroethene	<0.50	0.50		µg/L	1.0	SW8260B	N/A	5/9/03 15:34	JH	N30509B
1.2.Dichloropropane	trans-1,2-Dichloroethene					1.0	SW8260B	N/A	5/9/03 15:34	JH	N30509B
2,2,0-bichioropropane	1,2-Dichloropropane					1.0	SW8260B	N/A	5/9/03 15:34	JH	N30509B
2,2.Dichforopropane <0,50 0,50 µg/L 1,0 SW8200B N/A S903 15.34 J.H N30509E 1,1-Dichforopropene <1,0						1.0	SW8260B	N/A	5/9/03 15:34	JH	N30509B
1.1 Dichloropropene < 1.0 1.0 Ug/L 1.0 SW850SB N/A 6903 15:34 JH N3050GB 6ia 1-3 Dichloropropene < 1.0	2,2-Dichloropropane				μg/L	1.0	SW8260B	N/A	5/9/03 15:34	JH	N30509B
cis-1,3-Dichloropropene <1.0 1.0 Lyg/L 1.0 SW8566B NA 5903 15:34 JH N30566B trans-1,3-Dichloropropene <0.50 Lyg/L 1.0 SW856BB NA 5903 15:34 JH N30566B Ethylenzene <2.0 2.0 Lyg/L 1.0 SW856BB NA 5903 15:34 JH N3056BB Ethylenzene <2.0 2.0 Lyg/L 1.0 SW856BB NA 5903 15:34 JH N3056BB 2-Hexanone <5.0 5.0 Lyg/L 1.0 SW856BB NA 5903 15:34 JH N3056BB Isopropylborzene <2.5 2.5 1.5 Lyg/L 1.0 SW856BB NA 5903 15:34 JH N3058BB 4-sborropylbouene <1.5 1.5 Lyg/L 1.0 SW856BB NA 5903 15:34 JH N3058BB 4-bettyl-ze-pertanone <1.5 1.5 Lyg/L 1.0 SW856BB NA 5903 15:34 JH	1,1-Dichloropropene				µg/L	1.0	SW8260B	N/A	5/9/03 15:34	JH	N30509B
trans-1,3-Dichloropropene <0,50 0,50 µg/L 1,0 SWR260B N/A 5903 15-34 JH N03050E Effybenzene <2,0	cis-1,3-Dichloropropene				μg/L	1.0	SW8260B	N/A	5/9/03 15:34	JH	N30509B
Part	trans-1,3-Dichloropropene		0.50		μg/L	1.0	SW8260B	N/A	5/9/03 15:34	JH	N30509B
Hexachlorobutadiene	Ethylbenzene	<2.0	2.0		μg/L	1.0	SW8260B	N/A	5/9/03 15:34	JH	N30509B
2-Hexanone <5,0 5,0 µg/L 1.0 SM8260B N/A \$5803 15:34 JH N305096 lodométhane <1,0	Hexachlorobutadiene				μg/L	1.0	SW8260B	N/A	5/9/03 15:34	JH	N30509B
Suppose	2-Hexanone		5.0		μg/L	1.0	SW8260B	N/A	5/9/03 15:34	JH	N30509B
Sopropylbenzene	lodomethane		1.0		μg/L	1.0	SW8260B	N/A	5/9/03 15:34	JH	N30509B
Methylner Chloride	Isopropylbenzene		2.5		µg/L	1.0	SW8260B	N/A	5/9/03 15:34	JH	N30509B
Methylene chloride <3.0 3.0 µg/L 1.0 SW82608 N/A 5903 15:34 JH N305991 4-Methyl-2-pentanone <5.0 5.0 µg/L 1.0 SW82608 N/A 5903 15:34 JH N305091 Methyl tert-butyl ether <2.0 2.0 µg/L 1.0 SW82608 N/A 5903 15:34 JH N305091 Maphthalene <5.0 5.0 µg/L 1.0 SW82608 N/A 5903 15:34 JH N305091 P-ropylbenzene <2.0 2.0 µg/L 1.0 SW82608 N/A 5903 15:34 JH N305091 Styrene <1.0 1.0 yg/L 1.0 SW82608 N/A 5903 15:34 JH N305091 1,1,2-Tetrachloroethane <0.50 0.50 µg/L 1.0 SW82608 N/A 5903 15:34 JH N305091 1,1,2-Tetrachloroethane <0.50 0.50 µg/L 1.0 SW82608 N/A 5903 15:34 JH	4-Isopropyltoluene				μg/L	1.0	SW8260B	N/A	5/9/03 15:34	JH	N30509B
4-Methyl-2-pentanone < 5.0 5.0 μg/L 1.0 SW8260B N/A 56/00 15:34 JH N305091 Methyl tert-butyl ether < 2.0 2.0 μg/L 1.0 SW8260B N/A 59/03 15:34 JH N305091 Naphthalene < 5.0 5.0 μg/L 1.0 SW8260B N/A 59/03 15:34 JH N305091 n-Propylbenzene < 2.0 2.0 μg/L 1.0 SW8260B N/A 59/03 15:34 JH N305091 Styrene < 1.0 1.0 Lyg/L 1.0 SW8260B N/A 59/03 15:34 JH N305091 1,1,2-Tetrachloroethane < 0.50 0.50 μg/L 1.0 SW8260B N/A 59/03 15:34 JH N305091 1,1,2-Tetrachloroethane < 0.50 0.50 μg/L 1.0 SW8260B N/A 59/03 15:34 JH N305091 1,1,2-Trichloroethane < 3.0 3.0 μg/L 1.0 SW8260B N/A 59/03 15:34 <td>Methylene chloride</td> <td></td> <td></td> <td></td> <td>μg/L</td> <td>1.0</td> <td>SW8260B</td> <td>N/A</td> <td>5/9/03 15:34</td> <td>JH</td> <td>N30509B</td>	Methylene chloride				μg/L	1.0	SW8260B	N/A	5/9/03 15:34	JH	N30509B
Methyl tert-butyl ether <2.0 2.0 µg/L 1.0 SW8260B N/A 5903 15:34 JH N305991 Naphthalene <5.0	•				μg/L	1.0	SW8260B	N/A	5/9/03 15:34	JH	N30509B
Naphthalene <5.0 5.0 µg/L 1.0 SW8260B N/A 54903 15:34 JH N305091 n-Propylbenzene <2.0	Methyl tert-butyl ether		2.0		μg/L	1.0	SW8260B	N/A	5/9/03 15:34	JH	N30509B
Styrene	•				µg/L	1.0	SW8260B	N/A	5/9/03 15:34	jΗ	N30509B
Styrene <1.0 1.0 µg/L 1.0 SW8260B N/A 5/9/03 15:34 JH N30509 1,1,1,2-Tetrachloroethane <0.50	n-Propylbenzene				μg/L	1.0	SW8260B	N/A	5/9/03 15:34	JH	N30509B
1,1,1,2-Tetrachloroethane <0.50	Styrene				μg/L	1.0	SW8260B	N/A	5/9/03 15:34	JH	N30509B
1,1,2,2-Tetrachloroethane <0.50 0.50 µg/L 1.0 SW82608 N/A 59/03 15:34 JH N30509 Tetrachloroethene 28 0.50 µg/L 1.0 SW82608 N/A 5/903 15:34 JH N30509 Toluéne <3.0	1,1,2-Tetrachloroethane				µg/t.	1.0	SW8260B	N/A	5/9/03 15:34	JH	N30509B
Toluéne	1,1,2,2-Tetrachloroethane				μg/L	1.0	SW8260B	N/A	5/9/03 15:34	JH	N30509B
1,2,3-Trichlorobenzene <5,0 5,0 µg/L 1,0 SW8260B N/A 5,9/03 15:34 JH N30509 1,2,4-Trichlorobenzene <5,0 5,0 µg/L 1,0 SW8260B N/A 5,9/03 15:34 JH N30509 1,1,1-Trichloroethane <0,50 0.50 µg/L 1,0 SW8260B N/A 5,9/03 15:34 JH N30509 1,1,2-Trichloroethane <0,50 0.50 µg/L 1,0 SW8260B N/A 5,9/03 15:34 JH N30509 Trichloroethane <0,59 0.50 µg/L 1,0 SW8260B N/A 5,9/03 15:34 JH N30509 Trichloroptopathene <0,59 0.50 µg/L 1,0 SW8260B N/A 5,9/03 15:34 JH N30509 1,2,3-Trichloroptopathene <1.0 1,0 µg/L 1,0 SW8260B N/A 5,9/03 15:34 JH N30509 1,2,3-Trichloroptopathene <1.0 1,0 µg/L 1,0 SW8260B N/A	Tetrachloroethene	28	0.50		µg/L	1.0	SW8260B	N/A	5/9/03 15:34	JH	N30509B
1,2,4-Trichloroethazene <5.0	Toluêne	<3.0	3.0		μg/L	1.0	SW8260B	N/A	5/9/03 15:34	JH	N30509B
1,1,2-Trichloroethane <0.50 0.50 µg/L 1.0 SW8260B N/A 5/9/03 15:34 JH N30509 1,1,2-Trichloroethane <0.50 0.50 µg/L 1.0 SW8260B N/A 5/9/03 15:34 JH N30509 Trichloroethane <0.59 0.50 µg/L 1.0 SW8260B N/A 5/9/03 15:34 JH N30509 Trichlorofluoromethane <2.0 2.0 µg/L 1.0 SW8260B N/A 5/9/03 15:34 JH N30509 1,2,3-Trichloropropane <1.0 1.0 µg/L 1.0 SW8260B N/A 5/9/03 15:34 JH N30509 1,2,4-Trimethylbenzene <2.0 2.0 µg/L 1.0 SW8260B N/A 5/9/03 15:34 JH N30509 1,3,5-Trimethylbenzene <1.5 µg/L 1.0 SW8260B N/A 5/9/03 15:34 JH N30509 Vinyl acetate <5.0 5.0 µg/L 1.0 SW8260B N/A 5/9/03 15:34 <th< td=""><td>1,2,3-Trichlorobenzene</td><td><5.0</td><td>5.0</td><td></td><td>µg/L</td><td>1.0</td><td>SW8260B</td><td>N/A</td><td>5/9/03 15:34</td><td>JH</td><td>N30509B</td></th<>	1,2,3-Trichlorobenzene	<5.0	5.0		µg/L	1.0	SW8260B	N/A	5/9/03 15:34	JH	N30509B
1,1,2-Trichloroethane <0.50 0.50 µg/L 1.0 SW8260B N/A 5/9/03 15:34 JH N30509 Trichloroethane 0.59 0.50 µg/L 1.0 SW8260B N/A 5/9/03 15:34 JH N30509 Trichlorofluoromethane <2.0	1,2,4-Trichlorobenzene	<5.0	5.0		µg/L	1.0	SW8260B	N/A	5/9/03 15:34	JH	N30509B
Trichloroethane 0.59 0.50 µg/L 1.0 SW8260B N/A 5/9/03 15:34 JH N30509 Trichlorofluoromethane <2.0 2.0 µg/L 1.0 SW8260B N/A 5/9/03 15:34 JH N30509 1,2,3-Trichloropropane <1.0 1.0 µg/L 1.0 SW8260B N/A 5/9/03 15:34 JH N30509 1,2,4-Trimethylbenzene <2.0 2.0 µg/L 1.0 SW8260B N/A 5/9/03 15:34 JH N30509 1,3,5-Trimethylbenzene <1.5 1.5 µg/L 1.0 SW8260B N/A 5/9/03 15:34 JH N30509 Vinyl acetate <5.0 5.0 µg/L 1.0 SW8260B N/A 5/9/03 15:34 JH N30509 Vinyl chloride <0.50 0.50 µg/L 1.0 SW8260B N/A 5/9/03 15:34 JH N30509 Xylenes, Total <3.0 3.0 µg/L 1.0 SW8260B N/A 5/9/03 15:34 JH N30509 Xylenes, Total <3.0 3.0 µg/L 1.0 SW8260B N/A 5/9/03 15:34 JH N30509 4-Bromofluorobenzene(Surrogate) 91 80-107 %REC 1.0 SW8260B N/A 5/9/03 15:34 JH N30509 Dibromofluoromethane(Surrogate) 93 77-104 %REC 1.0 SW8260B N/A 5/9/03 15:34 JH N30509 1,2-Dichloroethane-d4(Surrogate) 92 72-111 %REC 1.0 SW8260B N/A 5/9/03 15:34 JH N30509	1,1,1-Trichloroethane				µg/L	1.0	SW8260B	N/A	5/9/03 15:34	JH	N30509B
Trichlorofluoromethane	1,1,2-Trichloroethane	<0.50	0.50		μg/L	1.0	SW8260B	N/A	5/9/03 15:34	JH	N30509B
1,2,3-Trichloropropane	Trichloroethene	0.59	0.50		μg/L	1.0	SW8260B	N/A	5/9/03 15:34	JH	N30509B
1,2,3-1 inchioropropane	Trichlorofiuoromethane	<2.0	2.0		μg/L	1.0	SW8260B	N/A	5/9/03 15:34	JH	N30509B
1,3,5-Trimethylbenzene	1,2,3-Trichloropropane	<1.0	1.0		μg/L	1.0	SW8260B	N/A	5/9/03 15:34	JH	N30509B
Vinyl acetate	1,2,4-Trimethylbenzene	<2.0	2.0		µg/L	1.0	SW8260B	N/A			N30509B
Vinyl acetate < 5.0 5.0 pg/L 1.0 SW8260B N/A 5/9/03 15:34 JH N30503 Vinyl chloride < 0.50	1,3,5-Trimethylbenzene	<1.5	1.5		μg/L	1.0	SW8260B	N/A			N30509B
Xylenes, Total <3.0 3.0 µg/L 1.0 SW8260B N/A 5/9/03 15:34 JH N30509 4-Bromofluorobenzene(Surrogate) 91 80-107 %REC 1.0 SW8260B N/A 5/9/03 15:34 JH N30509 Dibromofluoromethane(Surrogate) 93 77-104 %REC 1.0 SW8260B N/A 5/9/03 15:34 JH N30509 1,2-Dichloroethane-d4(Surrogate) 92 72-111 %REC 1.0 SW8260B N/A 5/9/03 15:34 JH N30509	Vinyl acetate	<5.0	5.0		μg/L	1.0	SW8260B	N/A	5/9/03 15:34	JH	N30509B
Aylenes, Total 23.0 3.0	Vinyl chloride	< 0.50	0.50		μg/L	1.0	SW8260B	N/A	5/9/03 15:34	JH	N30509B
Dibromofluoromethane(Surrogate) 93 77-104 %REC 1.0 SW8260B N/A 5/9/03 15:34 JH N30500 1,2-Dichloroethane-d4(Surrogate) 92 72-111 %REC 1.0 SW8260B N/A 5/9/03 15:34 JH N30500 N/A 5/9/03	Xylenes, Total	<3.0	3.0		μg/L	1.0		N/A			N30509B
Dibromofluoromethane(Surrogate) 93 77-104 %REC 1.0 SW8260B N/A 5/9/03 15:34 JH N30508 1,2-Dichloroethane-d4(Surrogate) 92 72-111 %REC 1.0 SW8260B N/A 5/9/03 15:34 JH N30508 N/A 5/9/03 JH NASO8 N/A 5/9/03 JH N/A 5/9/0	4-Bromofluorobenzene(Surrogate)	91	80-107		%REC	1.0	SW8260B	N/A			N30509B
1,2-Dichloroethane-d4(Surrogate) 92 72-111 %REC 1.0 SW8260B N/A 5/9/03 15:34 JH N3050	Dibromofluoromethane(Surrogate)	93	77-104		%REC	1.0					N30509B
Toluene-d8(Surrogate) 95 84-105 %REC 1.0 SW8260B N/A 5/9/03 15:34 JH N3050	1,2-Dichioroethane-d4(Surrogate)		72-111		%REC	1.0	SW8260B	N/A			N30509B
	Toluene-d8(Surrogate)	95	84-105		%REC	1.0	SW8260B	N/A	5/9/03 15:34	JH	N30509B

License No. AZM133/AZ0133

Client Sample ID: CMW-5

Collection Date: 4/29/2003 12:30:00 PM

Matrix: GROUNDWATER

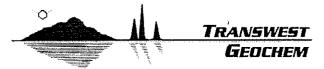
CLIENT:

Hargis and Associates

Work Order:

0304431

Lab ID:


0304431-07

Project Name:

ChemResearch

Project Number: 525.11

	**	D.O.4	A 1		D.D.	Test	Date	Date	A	Datel IP
Analyte	Result	PQL	Qual	Units	DF	Code	Prepared	Analyzed	Anaiysi	Batch ID
Chromium, Hexavalent	0.030	0.020		mg/L	1.0	SM3500-Cr D	N/A	4/30/03 07:44	NMM	CR6_W-4/30/2003
Cyanide, Total	<0.010	0.010		mg/L	1.0	SM4500-CN CE	5/13/03	5/13/03	KMB	CN_W-5/13/2003
Trivalent Chromium	<0.050	0.050		mg/L	1.0	Calculation	N/A	5/9/03	NMM	CR3_W-5/9/2003
Cadmium	<0.02	0.02		mg/L	1.0	EPA200.7	5/5/03	5/6/03	AD	6146A
Chromium	< 0.05	0.05		mg/L	1.0	EPA200.7	5/5/03	5/6/03	AD	6146A
Nickel	<0.05	0.05		mg/L	1.0	EPA200.7	5/5/03	5/6/03	AD	6146A
Lead	<0.0030	0.0030		mg/L	1.0	EPA200.9	5/1/03	5/12/03	KMB	6135A
Acetone	<20	20		μg/L.	1.0	SW8260B	N/A	5/9/03 16:13	JH	N30509B
Benzene	< 0.50	0.50		μg/L	1.0	SW82608	N/A	5/9/03 16:13	JH	N30509B
Bromobenzene	<1.5	1.5		μg/L	1.0	SW8260B	N/A	5/9/03 16:13	JH	N30509B
Bromochloromethane	<0.50	0.50		µg/L	1.0	SW8260B	N/A	5/9/03 16:13	JH	N30509B
Bromodichloromethane	<0.50	0.50		μg/L	1.0	SW8260B	N/A	5/9/03 16:13	JH	N30509B
Bromoform	<1.0	1.0		μg/L	1.0	S,W8260B	N/A	5/9/03 16:13	JH	N30509B
Bromomethane	<5.0	5.0		μg/L	1.0	SW8260B	N/A	5/9/03 16:13	JH	N30509B
2-Butanone	<5.0	5.0		μg/L	1.0	SW8260B	N/A	5/9/03 16:13	JH	N30509B
n-Butylbenzene	<2.5	2.5		µg/L	1.0	SW8260B	N/A	5/9/03 16:13	JH	N30509B
sec-Butylbenzene	<1.5	1.5		μg/L	1.0	SW8260B	N/A	5/9/03 16:13	JH	N30509B
tert-Butylbenzene	<2.5	2.5		µg/L	1.0	SW8260B	N/A	5/9/03 16:13	JH	N30509B
Carbon disulfide	<0.50	0.50		µg/L	1.0	SW8260B	N/A	5/9/03 16:13	JH	N30509B
Carbon tetrachloride	<0.50	0.50		μg/L	1.0	SW8260B	N/A	5/9/03 16:13	JH	N30509B
Chlorobenzene	<0.50	0.50		μg/L	1.0	SW8260B	N/A	5/9/03 16:13	JH	N305098
Dibromochloromethane	<0.50	0.50		µg/L	1.0	SW8260B	N/A	5/9/03 16:13	JH	N30509B
Chloroethane	<1.0	1,0		μg/L	1.0	SW8260B	N/A	5/9/03 16:13	JH	N30509B
Chloroform	<0.50	0.50		μg/L	1.0	SW8260B	N/A	5/9/03 16:13	JH	N30509B
Chloromethane	<5.0	5.0		µg/L	1.0	SW8260B	N/A	5/9/03 16:13	JH	N30509B
2-Chlorotoluene	<1.5	1.5		µg/L	1.0	SW8260B	N/A	5/9/03 16:13	JH	N30509B
				µg/L	1.0	SW8260B	N/A	5/9/03 16:13	JH	N30509B
4-Chlorotoluene	<2.0	2.0 2.0		µg/L	1.0	SW8260B	N/A	5/9/03 16:13	JH	N30509B
1,2-Dibromo-3-chloropropane	<2.0			μg/L	1.0	SW8260B	N/A	5/9/03 16:13	JH	N30509B
1,2-Dibromoethane	<0.50	0.50		µg/L	1.0	SW8260B	N/A	5/9/03 16:13		N30509B
Dibromomethane	<0.50	0.50			1.0	SW8260B	N/A	5/9/03 16:13		N30509B
1,2-Dichlorobenzene	<1.5	1.5		µg/L	1.0	SW8260B	N/A	5/9/03 16:13		N30509B
1,3-Dichlorobenzene	<1.5	1.5		μg/L μg/L	1.0	SW8260B	N/A	5/9/03 16:13		N30509B
1,4-Dichlorobenzene	<1.5	1.5			1.0	SW8260B	N/A	5/9/03 16:13		N30509B
Dichlorodifluoromethane	<2.0	2.0		μg/L ug/l	1.0	SW8260B	N/A	5/9/03 16:13		N30509B
1,1-Dichloroethane	<1.0	1.0		μg/L		SW8260B	N/A	5/9/03 16:13		N30509B
1,2-Dichioroethane	<1.0	1.0		µg/L	1.0	SW8260B	N/A	5/9/03 16:13		N30509B
1,1-Dichloroethene	< 0.50	0.50		μg/L	1.0	SAAQTOOR	IWA	SH2/U3 10:13	JII	19303030

License No. AZM133/AZ0133

CLIENT:

Hargis and Associates

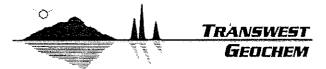
Work Order:

0304431

Lab ID:

0304431-07

Project Name:


ChemResearch

Project Number: 525.11

Client Sample ID: CMW-5

Collection Date: 4/29/2003 12:30:00 PM

						Test	Date	Date		
Analyte	Result	PQL	Qual	Units	DF	Code	Prepared	Analyzed	Analyst	Batch ID
cis-1,2-Dichloroethene	<0.50	0.50		μg/L	1.0	SW8260B	N/A	5/9/03 16:13	JH	N30509B
trans-1,2-Dichloroethene	< 0.50	0.50		µg/L	1.0	SW8260B	N/A	5/9/03 16:13	JH	N30509B
1,2-Dichloropropane	< 0.50	0.50		μg/L	1.0	SW8260B	N/A	5/9/03 16:13	JH	N30509B
1,3-Dichloropropane	<1.0	1.0		µg/L	1.0	SW8260B	N/A	5/9/03 16:13	JH	N30509B
2,2-Dichloropropane	<0.50	0.50		μg/L	1.0	SW82608	N/A	5/9/03 16:13	JH	N30509B
1,1-Dichloropropene	<1.0	1.0		μg/L	1.0	SW8260B	N/A	5/9/03 16:13	JH	N30509B
cis-1,3-Dichioropropene	<1.0	1.0		μg/L	1.0	SW8260B	N/A	5/9/03 16:13	JH	N30509B
trans-1,3-Dichloropropene	< 0.50	0.50		μg/L	1.0	SW8260B	N/A	5/9/03 16:13	jΗ	N30509B
Ethylbenzene	<2.0	2.0		µg/L	1.0	SW8260B	N/A	5/9/03 16:13	JH	N30509B
Hexachlorobutadiene	<2.5	2.5		µg/L	1.0	SW8260B	N/A	5/9/03 16:13	JH	N30509B
2-Hexanone	<5.0	5.0		μg/L	1.0	SW8260B	N/A	5/9/03 16:13	JH	N30509B
lodomethane	<1.0	1.0		μg/L	1.0	SW8260B	N/A	5/9/03 16:13	JH	N30509B
Isopropylbenzene	<2.5	2.5		μg/L	1.0	SW8260B	N/A	5/9/03 16:13	JH	N30509B
4-Isopropyltoluene	<1.5	1.5		µg/L	1.0	SW8260B	N/A	5/9/03 16:13	JH	N30509B
Methylene chloride	<3.0	3.0		μg/L	1.0	SW8260B	N/A	5/9/03 16:13	JH	N30509B
4-Methyl-2-pentanone	<5.0	5.0		μg/L	1.0	SW8260B	N/A	5/9/03 16:13	JH	N30509B
Methyl tert-butyl ether	<2.0	2.0		μg/L	1.0	SW8260B	N/A	5/9/03 16:13	JН	N30509B
Naphthalene	<5.0	5.0		μg/L	1.0	SW8260B	N/A	5/9/03 16:13	JH	N30509B
n-Propylbenzene	<2.0	2.0		μg/L	1.0	SW8260B	N/A	5/9/03 16:13	JH	N30509B
Styrene	<1.0	1.0		μg/L	1.0	SW8260B	N/A	5/9/03 16:13	JH	N30509B
1,1,1,2-Tetrachloroethane	<0.50	0.50		μg/L	1.0	SW8260B	N/A	5/9/03 16:13	JH	N30509B
1,1,2,2-Tetrachloroethane	<0.50	0.50		μg/L	1.0	SW8260B	N/A	5/9/03 16:13	JH	N30509B
Tetrachloroethene	26	0.50		µg/L	1.0	SW8260B	N/A	5/9/03 16:13	JH	N30509B
Toluene	<3.0	3.0		μg/L	1.0	SW8260B	N/A	5/9/03 16:13	JH	N30509B
1,2,3-Trichlorobenzene	<5.0	5.0		µg/L	1.0	SW8260B	N/A	5/9/03 16:13	JH	N30509B
1,2,4-Trichlorobenzene	<5.0	5.0		μg/L	1.0	SW8260B	N/A	5/9/03 16:13	JH	N30509B
1,1,1-Trichloroethane	<0.50	0.50		μg/L	1.0	SW8260B	N/A	5/9/03 16:13	JH	N30509B
1,1,2-Trichloroethane	<0.50	0.50		μg/L	1.0	SW8260B	N/A	5/9/03 16:13	JH	N30509B
Trichloroethene	< 0.50	0.50		μg/L	1.0	SW8260B	N/A	5/9/03 16:13	JH	N30509B
Trichlorofluoromethane	<2.0	2.0		μg/L	1.0	SW8260B	N/A	5/9/03 16:13	JH	N30509B
1,2,3-Trichioropropane	<1.0	1.0		μg/L	1.0	SW8260B	N/A	5/9/03 16:13	JH	N305098
1,2,4-Trimethylbenzene	<2.0	2.0		μg/L	1.0	SW8260B	N/A	5/9/03 16:13	JH	N30509B
1,3,5-Trimethylbenzene	<1.5	1.5		μg/L	1.0	SW8260B	N/A	5/9/03 16:13	JH	N30509B
Vinyl acetate	<5.0	5.0		μg/L	1.0	SW8260B	N/A	5/9/03 16:13	JH	N30509B
Vinyl chloride	<0.50	0.50		μg/L	1.0	SW8260B	N/A	5/9/03 16:13	JH	N30509B
Xylenes, Total	<3.0	3.0		µg/L	1.0	SW8260B	N/A	5/9/03 16:13	JH	N30509B
4-Bromofluorobenzene(Surrogate)	92	80-107		%REC	1.0	SW8260B	N/A	5/9/03 16:13	JH	N30509B
Dibromofluoromethane(Surrogate)	93	77-104		%REC	1.0	SW8260B	N/A	5/9/03 16:13	JH	N30509B
1,2-Dichloroethane-d4(Surrogate)	91	72-111		%REC	1.0	SW8260B	N/A	5/9/03 16:13	JH	N30509B
Toluene-d8(Surrogate)	95	84-105		%REC	1.0	SW8260B	N/A	5/9/03 16:13	JH	N30509B

License No. AZM133/AZ0133

CLIENT:

Hargis and Associates

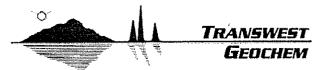
Work Order:

0304431

Lab ID:

0304431-08

Project Name:


ChemResearch

Project Number: 525.11

Client Sample ID: CMW-1

Collection Date: 4/29/2003 1:20:00 PM

Analyte	Result	PQL	Qual	Units	DF	Test Code	Date Prepared	Date Analyzed	Analys	t Batch ID
Chromium, Hexavalent	0.54	0.080	D2	mg/L	4.0	SM3500-Cr D	N/A	4/30/03 07:44	NMM	CR6_W-4/30/2003
Cyanide, Total	<0.010	0.010		mg/L	1.0	SM4500-CN CE	5/13/03	5/13/03	KMB	CN_W-5/13/2003
Trivalent Chromium	<0.050	0.050		mg/L	1.0	Calculation	N/A	5/9/03	NMM	CR3_W-5/9/2003
Cadmium	<0.02	0.02		mg/L	1.0	EPA200.7	5/5/03	5/6/03	AD	6146A
Chromium	0.48	0.05		mg/L	1.0	EPA200.7	5/5/03	5/6/03	AD	6146A
Nickel	<0.05	0.05		mg/L	1.0	EPA200.7	5/5/03	5/6/03	AD	6146A
Lead	<0.0030	0.0030		mg/L	1.0	EPA200.9	5/1/03	5/12/03	KMB	6135A
Acetone	<20	20		μg/L	1.0	SW8260B	N/A	5/9/03 16:52	JH	N30509B
Benzene	<0.50	0.50		µg/L	1.0	SW8260B	N/A	5/9/03 16:52	JH	N30509B
Bromobenzene	<1.5	1.5		μg/L	1.0	SW8260B	N/A	5/9/03 16:52	JH	N30509B
Bromochloromethane	<0.50	0.50		µg/L	1.0	SW8260B	N/A	5/9/03 16:52	JH	N30509B
Bromodichloromethane	< 0.50	0.50		µg/L	1.0	SW8260B	N/A	5/9/03 16:52	JH	N30509B
Bromoform	<1.0	1.0		µg/L	1.0	SW8260B	N/A	5/9/03 16:52	JH	N30509B
Bromomethane	<5.0	5.0		μg/L	1.0	SW8260B	N/A	5/9/03 16:52	JH	N30509B
2-Butanone	<5.0	5.0		μg/L	1.0	SW8260B	N/A	5/9/03 16:52	JH	N30509B
n-Butylbenzene	<2.5	2.5		μg/L	1.0	SW8260B	N/A	5/9/03 16:52	JH	N30509B
sec-Butylbenzene	<1.5	1.5		μg/L	1.0	SW8260B	N/A	5/9/03 16:52	JH	N30509B
tert-Butylbenzene	<2.5	2.5		μg/L	1.0	SW8260B	N/A	5/9/03 16:52	JH	N30509B
Carbon disulfide	< 0.50	0.50		μg/L	1.0	SW8260B	N/A	5/9/03 16:52	JH	N30509B
Carbon tetrachloride	< 0.50	0.50		μg/L	1.0	SW8260B	N/A	5/9/03 16:52	JH	N30509B
Chlorobenzene	< 0.50	0.50		μg/L	1.0	SW8260B	N/A	5/9/03 16:52	JH	N30509B
Dibromochloromethane	< 0.50	0.50		μg/L	1.0	SW8260B	N/A	5/9/03 16:52	JH	N30509B
Chloroethane	<1.0	1.0		μg/L	1.0	SW8260B	N/A	5/9/03 16:52	JH	N30509B
Chloroform	< 0.50	0.50		µg/L	1.0	SW8260B	N/A	5/9/03 16:52	JH	N30509B
Chloromethane	<5.0	5.0		μg/L	1.0	SW8260B	N/A	5/9/03 16:52	JH	N30509B
2-Chlorotoluene	<1.5	1.5		μg/L	1.0	SW8260B	N/A	5/9/03 16:52	JH	N30509B
4-Chlorotoluene	<2.0	2.0		µg/L	1.0	SW8260B	N/A	5/9/03 16:52	JН	N30509B
1,2-Dibromo-3-chloropropane	<2.0	2.0		μg/L	1.0	SW8260B	N/A	5/9/03 16:52	JH	N30509B
1,2-Dibromoethane	<0.50	0.50		µg/L	1.0	SW8260B	N/A	5/9/03 16:52	JH	N30509B
Dibromomethane	< 0.50	0.50		µg/L	1.0	SW8260B	N/A	5/9/03 16:52	JH	N30509B
1,2-Dichlorobenzene	<1.5	1.5		µg/L	1.0	SW8260B	N/A	5/9/03 16:52	JH	N30509B
1,3-Dichlorobenzene	<1.5	1.5		μg/L	1.0	SW8260B	N/A	5/9/03 16:52	JH	N30509B
1,4-Dichlorobenzene	<1.5	1.5		µg/L	1.0	SW8260B	N/A	5/9/03 16:52	JΗ	N30509B
Dichlorodifluoromethane	<2.0	2.0		μg/L	1.0	SW8260B	N/A	5/9/03 16:52		N30509B
1,1-Dichloroethane	<1.0	1.0		μg/L	1.0	SW8260B	N/A	5/9/03 16:52	JН	N30509B
1,2-Dichloroethane	<1.0	1.0		μg/L	1.0	SW8260B	N/A	5/9/03 16:52	JH	N30509B
1,1-Dichloroethene	< 0.50	0.50		µg/L	1.0	SW8260B	N/A	5/9/03 16:52	JH	N30509B

License No. AZM133/AZ0133

CLIENT:

Hargis and Associates

Work Order:

0304431

Lab ID:

0304431-08

Project Name:


ChemResearch

Project Number: 525.11

Client Sample ID: CMW-1

Collection Date: 4/29/2003 1:20:00 PM

						Test	Date	Date		
Analyte	Result	PQL	Qual	Units	DF	Code	Prepared	Analyzed	Analyst	Batch ID
cis-1,2-Dichloroethene	<0.50	0.50		μg/L	1.0	SW8260B	N/A	5/9/03 16:52	JH	N30509B
trans-1,2-Dichloroethene	< 0.50	0.50		μg/L	1.0	SW8260B	N/A	5/9/03 16:52	JH	N305098
1,2-Dichloropropane	<0.50	0.50		µg/L	1.0	SW8260B	N/A	5/9/03 16:52	JH	N30509B
1,3-Dichloropropane	<1.0	1.0		μg/L	1.0	SW8260B	N/A	5/9/03 16:52	JH	N30509B
2,2-Dichloropropane	< 0.50	0.50		μg/L	1.0	SW8260B	N/A	5/9/03 16:52	JH	N30509B
1,1-Dichloropropene	<1.0	1.0		µg/L	1.0	SW8260B	N/A	5/9/03 16:52	JH	N30509B
cis-1,3-Dichloropropene	<1.0	1.0		μg/L	1.0	SW8260B	N/A	5/9/03 16:52	JH	N30509B
trans-1,3-Dichloropropene	< 0.50	0.50		μg/L	1.0	SW8260B	N/A	5/9/03 16:52	JH	N30509B
Ethylbenzene	<2.0	2.0		µg/L	1.0	SW8260B	N/A	5/9/03 16:52	JH	N30509B
Hexachlorobutadiene	<2.5	2.5		μg/L	1.0	SW8260B	N/A	5/9/03 16:52	JH	N30509B
2-Hexanone	<5.0	5.0		μg/L	1.0	SW8260B	N/A	5/9/03 16:52	JH	N30509B
lodomethane	<1.0	1.0		µg/L	1.0	SW8260B	N/A	5/9/03 16:52	JH	N30509B
Isopropylbenzene	<2.5	2.5		μg/L	1.0	SW8260B	N/A	5/9/03 16:52	JH	N30509B
4-Isopropyitoluene	<1.5	1.5		μg/L	1.0	SW8260B	N/A	5/9/03 16:52	JH	N30509B
Methylene chloride	<3.0	3.0		μg/L	1.0	SW8260B	N/A	5/9/03 16:52	JH	N30509B
4-Methyl-2-pentanone	<5.0	5.0		μg/L	1.0	SW8260B	N/A	5/9/03 16:52	JH	N30509B
Methyl tert-butyl ether	<2.0	2.0		μg/L	1.0	SW8260B	N/A	5/9/03 16:52	JH	N30509B
Naphthalene	<5.0	5.0		µg/L	1.0	SW8260B	N/A	5/9/03 16:52	JH	N30509B
n-Propylbenzene	<2.0	2.0		μg/L	1.0	SW8260B	N/A	5/9/03 16:52	JH	N305098
Styrene	<1.0	1.0		µg/L	1.0	SW8260B	N/A	5/9/03 16:52	JH	N30509B
1,1,1,2-Tetrachloroethane	<0.50	0.50		μg/L	1.0	SW8260B	N/A	5/9/03 16:52	JH	N30509B
1,1,2,2-Tetrachloroethane	<0.50	0.50		μg/L	1.0	SW8260B	N/A	5/9/03 16:52	JH	N30509B
Tetrachloroethene	51	1.0	D2	µg/L	2.0	SW8260B	N/A	5/12/03 14:45	JH	N30512B
Toluene	<3.0	3.0		μg/L	1.0	SW8260B	N/A	5/9/03 16:52	JH	N30509B
1,2,3-Trichlorobenzene	<5.0	5.0		µg/L	1.0	SW8260B	N/A	5/9/03 16:52	JH	N30509B
1,2,4-Trichiorobenzene	<5.0	5.0		μg/L	1.0	SW8260B	N/A	5/9/03 16:52	JH	N30509B
1,1,1-Trichloroethane	< 0.50	0.50		μg/L	1.0	SW8260B	N/A	5/9/03 16:52	JH	N30509B
1,1,2-Trichloroethane	< 0.50	0.50		μg/L	1.0	SW8260B	N/A	5/9/03 16:52	JH	N30509B
Trichloroethene	< 0.50	0.50		μg/L	1.0	SW8260B	N/A	5/9/03 16:52	JH	N30509B
Trichlorofluoromethane	<2.0	2.0		μg/L	1.0	SW8260B	N/A	5/9/03 16:52	JH	N30509B
1,2,3-Trichloropropane	<1.0	1.0		μg/L	1.0	SW8260B	N/A	5/9/03 16:52	JH	N30509B
1,2,4-Trimethylbenzene	<2.0	2.0		μg/L	1.0	SW8260B	N/A	5/9/03 16:52	JH	N30509B
1,3,5-Trimethylbenzene	<1.5	1.5		μg/L	1.0	SW8260B	N/A	5/9/03 16:52	JH	N30509B
Vinyl acetate	<5.0	5.0		µg/L	1.0	SW8260B	N/A	5/9/03 16:52	JH	N30509B
Vinyl chloride	<0.50	0.50		μg/L	1.0	SW8260B	N/A	5/9/03 16:52	JH	N30509B
Xylenes, Total	<3.0	3.0		μg/L	1.0	SW8260B	N/A	5/9/03 16:52	JH	N30509B
4-Bromofluorobenzene(Surrogate)	91	80-107		%REC	1.0	SW8260B	N/A	5/9/03 16:52	JH	N30509B
Dibromofluoromethane(Surrogate)	94	77-104		%REC	1.0	SW8260B	N/A	5/9/03 16:52	JH	N30509B
1,2-Dichloroethane-d4(Surrogate)	92	72-111		%REC	1.0	SW8260B	N/A	5/9/03 16:52	JH	N30509B
Toluene-d8(Surrogate)	95	84-105		%REC	1.0	SW8260B	N/A	5/9/03 16:52	JH	N305098

21-May-03

License No. AZM133/AZ0133

CLIENT:

Hargis and Associates

Work Order:


0304431

Project:

ChemResearch/525.11

QC SUMMARY REPORT

Analyte	Result	PQL	Qual	Units	DF	Test Code	Date Prepared	Date Analyzed	Analyst	Batch ID
Chromium, Hexavalent	<0.020	0.020	****	mg/L	1	SM3500-Cr D	N/A	4/30/03 7:44:00 AM	NMM	CR6_W-4/30/2003
Cyanide, Total	<0.010	0.010		mg/L	1	SM4500-CN CE	5/12/03	5/12/03	KMB	CN_W-5/12/2003
Cyanide, Total	<0.010	0.010		mg/L	1	SM4500-CN CE	5/13/03	5/13/03	KMB	CN_W-5/13/2003
Cadmium	<0.02	0.02		mg/L	1	EPA200.7	5/5/03	5/6/03	AD	6146A
Chromium	<0.05	0.05		mg/L	1	EPA200.7	5/5/03	5/6/03	AD	6146A
Nickel	<0.05	0.05		mg/L	1	EPA200.7	5/5/03	5/6/03	AD	6146A
Lead	<0.0030	0.0030		mg/L	1	EPA200.9	5/1/03	5/12/03	KMB	6135A

21-May-03

License No. AZM133/AZ0133

CLIENT:

Hargis and Associates

Work Order:


0304431

Project:

ChemResearch/525.11

QC SUMMARY REPORT

						Test	Date	Date		
Analyte	Result	PQL	Qual	Units	DF	Code	Prepared	Analyzed Ar	alyst	Batch ID
Acetone	<20	20		μg/L	1	SW8260B	N/A	5/9/03 11:02:00 AM	JH	N30509B
Benzene	<0.50	0.50		μg/L	1	SW8260B	N/A	5/9/03 11:02:00 AM	JH	N30509B
Bromobenzene	<1.5	1.5		μg/L	1	SW8260B	N/A	5/9/03 11:02:00 AM	JH	N30509B
Bromochloromethane	< 0.50	0.50		µg/L	1	SW8260B	N/A	5/9/03 11:02:00 AM	JH	N30509B
Bromodichloromethane	< 0.50	0.50		μg/L	1	SW8260B	N/A	5/9/03 11:02:00 AM	JH	N30509B
Bromoform	<1.0	1.0		µg/L	1	SW8260B	N/A	5/9/03 11:02:00 AM	JΗ	N30509B
Bromomethane	< 5.0	5.0		µg/L	1	SW8260B	N/A	5/9/03 11:02:00 AM	JH	N30509B
2-Butanone	<5.0	5.0		µg/L	1	SW8260B	N/A	5/9/03 11:02:00 AM	JH	N30509B
n-Butylbenzene	<2.5	2.5		μg/L	1	SW8260B	N/A	5/9/03 11:02:00 AM	JH	N30509B
sec-Butylbenzene	<1.5	1.5		µg/L	1	SW8260B	N/A	5/9/03 11:02:00 AM	JH	N30509B
tert-Butylbenzene	<2.5	2.5		μg/L	1	SW8260B	N/A	5/9/03 11:02:00 AM	JH	N30509B
Carbon disulfide	<0.50	0.50		µg/L	1	SW8260B	N/A	5/9/03 11:02:00 AM	JH	N30509B
Carbon tetrachloride	<0.50	0.50		μg/L	1	SW8260B	N/A	5/9/03 11:02:00 AM	JH	N30509B
Chlorobenzene	<0.50	0.50		μg/L	1	SW8260B	N/A	5/9/03 11:02:00 AM	JH	N30509B
Dibromochloromethane	<0.50	0.50		µg/L	1	SW8260B	N/A	5/9/03 11:02:00 AM	JH	N30509B
Chloroethane	<1.0	1.0		µg/L	1	SW8260B	N/A	5/9/03 11:02:00 AM	JH	N30509B
Chloroform	<0.50	0.50		μg/L	1	SW8260B	N/A	5/9/03 11:02:00 AM	JH	N30509B
Chloromethane	<5.0	5.0		µg/L	1	SW8260B	N/A	5/9/03 11:02:00 AM	JH	N30509B
2-Chlorotoluene	<1.5	1.5		μg/L	1	SW8260B	N/A	5/9/03 11:02:00 AM	JH	N30509B
4-Chlorotoluene	<2.0	2.0		μg/L	1	SW8260B /	N/A	5/9/03 11:02:00 AM	JH	N30509B
1,2-Dibromo-3-chloropropane	<2.0	2.0		μg/L	1	SW8260B	N/A	5/9/03 11:02:00 AM	JH	N30509B
1,2-Dibromoethane	<0.50	0.50		μg/L	1	SW8260B	N/A	5/9/03 11:02:00 AM	JH	N30509B
Dibromomethane	<0.50	0.50		μg/L	1	SW8260B	N/A	5/9/03 11:02:00 AM	JH	N30509B
1,2-Dichlorobenzene	<1.5	1.5		µg/L	1	SW8260B	N/A	5/9/03 11:02:00 AM	JH	N30509B
1,3-Dichlorobenzene	<1.5	1.5		µg/L	1	SW8260B	N/A	5/9/03 11:02:00 AM	JH	N30509B
1,4-Dichlorobenzene	<1.5	1.5		μg/L	1	SW8260B	N/A	5/9/03 11:02:00 AM	JH	N305098
Dichlorodifluoromethane	<2.0	2.0		µg/L	1	SW8260B	N/A	5/9/03 11:02:00 AM	JH	N30509B
1,1-Dichloroethane	<1.0	1.0		μg/L	1	SW8260B	N/A	5/9/03 11:02:00 AM	JΗ	N30509B
1,2-Dichloroethane	<1.0	1.0		µg/L	1	SW8260B	N/A	5/9/03 11:02:00 AM	JH	N30509B
1,1-Dichloroethene	< 0.50	0.50		µg/L	1	SW8260B	N/A	5/9/03 11:02:00 AM	JH	N30509B
cis-1,2-Dichloroethene	< 0.50	0.50		µg/L	1	SW8260B	N/A	5/9/03 11:02:00 AM	JH	N30509B
trans-1,2-Dichloroethene	< 0.50	0.50		µg/L	1	SW8260B	N/A	5/9/03 11:02:00 AM	JH	N30509B
1,2-Dichloropropane	<0.50	0.50		μg/L	1	SW8260B	N/A	5/9/03 11:02:00 AM	JH	N30509B
1,3-Dichloropropane	<1.0	1.0		µg/L	1	SW8260B	N/A	5/9/03 11:02:00 AM	JН	N30509B
2,2-Dichloropropane	<0.50	0.50		μg/L	1	SW8260B	N/A	5/9/03 11:02:00 AM	JH	N30509B
1.1-Dichloropropene	<1.0	1.0		μg/L	1	SW8260B	N/A	5/9/03 11:02:00 AM	JH	N30509B
cis-1,3-Dichloropropene	<1.0	1.0		μg/L	1	SW8260B	N/A	5/9/03 11:02:00 AM	JH	N30509B
trans-1,3-Dichloropropene	<0.50	0.50		μg/L	1	SW8260B	N/A	5/9/03 11:02:00 AM	JH	N30509B
Ethylbenzene	<2.0	2.0		μg/L	1	SW8260B	N/A	5/9/03 11:02:00 AM	JH	N30509B
Hexachlorobutadiene	<2.5	2.5		μg/L	1	SW8260B	N/A	5/9/03 11:02:00 AM	JH	N30509B
2-Hexanone	<5.0	5.0		μg/L	1	SW8260B	N/A	5/9/03 11:02:00 AM	JH	N30509B
Iodomethane	<1.0	1.0		μg/L	1	SW8260B	N/A	5/9/03 11:02:00 AM	JH	N30509B
Isopropylbenzene	<2.5	2.5		μg/L	1	SW8260B	N/A	5/9/03 11:02:00 AM	JH	N30509B
4-Isopropyltoluene	<1.5	1.5		µg/L	1	SW8260B	N/A	5/9/03 11:02:00 AM	JН	N30509B
Methylene chloride	<3.0	3.0		µg/L	1	SW8260B	N/A	5/9/03 11:02:00 AM	JH	N30509B

21-May-03

License No. AZM133/AZ0133

CLIENT:

Hargis and Associates

Work Order:


0304431

Project:

ChemResearch/525.11

QC SUMMARY REPORT

						Test	Date	Date		
Analyte	Result	PQL	Qual	Units	DF	Code	Prepared	Analyzed A	nalyst	Batch ID
4-Methyi-2-pentanone	<5.0	5.0		µg/L	1	SW8260B	N/A	5/9/03 11:02:00 AM	JH	N305098
Methyl tert-butyl ether	<2.0	2.0		μg/L	1	SW8260B	N/A	5/9/03 11:02:00 AM	JΗ	N30509B
Naphthalene	<5.0	5.0		μg/L	1	SW8260B	N/A	5/9/03 11:02:00 AM	JH	N30509B
n-Propylbenzene	<2.0	2.0		μg/L	1	SW8260B	N/A	5/9/03 11:02:00 AM	JH	N30509B
Styrene	<1.0	1.0		μg/L	1	SW8260B	N/A	5/9/03 11:02:00 AM	JH	N30509B
1,1,1,2-Tetrachloroethane	< 0.50	0.50		μg/L	1	SW8260B	N/A	5/9/03 11:02:00 AM	JH	N30509B
1,1,2,2-Tetrachloroethane	< 0.50	0.50		μg/L	1	SW8260B	N/A	5/9/03 11:02:00 AM	JH	N30509B
Tetrachioroethene	< 0.50	0.50		µg/L	1	SW8260B	N/A	5/9/03 11:02:00 AM	JH	N30509B
Toluene	<3.0	3.0		μg/L	1	SW8260B	N/A	5/9/03 11:02:00 AM	JH	N30509B
1,2,3-Trichlorobenzene	<5.0	5.0		μg/L	1	SW8260B	N/A	5/9/03 11:02:00 AM	JH	N30509B
1,2,4-Trichlorobenzene	<5.0	5.0		μg/L	1	SW8260B	N/A	5/9/03 11:02:00 AM	JH	N30509B
1,1,1-Trichloroethane	<0.50	0.50		μg/L	1	SW8260B	N/A	5/9/03 11:02:00 AM	JH	N30509B
1,1,2-Trichloroethane	<0.50	0.50		μg/L	1	SW8260B	N/A	5/9/03 11:02:00 AM	JH	N305098
Trichloroethene	<0.50	0.50		µg/L	1	SW8260B	N/A	5/9/03 11:02:00 AM	JH	N30509B
Trichlorofluoromethane	<2.0	2.0		µg/L	1	SW8260B	N/A	5/9/03 11:02:00 AM	JH	N30509B
1,2,3-Trichloropropane	<1.0	1.0		µg/L	1	SW8260B	N/A	5/9/03 11:02:00 AM	JH	N30509B
1,2,4-Trimethylbenzene	<2.0	2.0		μg/L	1	SW8260B	N/A	5/9/03 11:02:00 AM	JH	N30509B
1,3,5-Trimethylbenzene	<1.5	1.5		μg/L	1	SW8260B	N/A	5/9/03 11:02:00 AM	JH	N30509B
Vinyl acetate	<5.0	5.0		μg/L	1	SW8260B	N/A	5/9/03 11:02:00 AM	JH	N30509B
Vinyl chloride	<0.50	0.50		μg/L	1	SW8260B -	N/A	5/9/03 11:02:00 AM	JH	N30509B
Xylenes, Total	<3.0	3.0		μg/L	1	SW8260B	N/A	5/9/03 11:02:00 AM	JH	N30509B
4-Bromofluorobenzene	94	80-107		%REC	1	SW8260B	N/A	5/9/03 11:02:00 AM	JH	N30509B
Dibromofluoromethane	94	77-104		%REC	1	SW8260B	N/A	5/9/03 11:02:00 AM	JH	N30509B
1,2-Dichloroethane-d4	91	72-111		%REC	1	SW8260B	N/A	5/9/03 11:02:00 AM	JH	N30509B
Toluene-d8	97	84-105		%REC	1	SW8260B	N/A	5/9/03 11:02:00 AM	JH	N30509B

21-May-03

License No. AZM133/AZ0133

CLIENT:

Hargis and Associates

Work Order:

0304431

Project:

ChemResearch/525.11

QC SUMMARY REPORT

Analyte	Result	PQL	Qual	Units	DF	Test Code	Date Prepared	Date Analyzed A	Analyst	Batch ID
Acetone	<20	20		μg/L	1	SW8260B	N/A	5/12/03 12:05:00 PM	JH	N30512B
Benzene	<0.50	0.50		µg/L	1	SW8260B	N/A	5/12/03 12:05:00 PM	JH	N30512B
Bromobenzene	<1.5	1.5		µg/L	1	SW8260B	N/A	5/12/03 12:05:00 PM	JH	N30512B
Bromochloromethane	<0.50	0.50		μg/L	1	SW8260B	N/A	5/12/03 12:05:00 PM	JH	N30512B
Bromodichloromethane	<0.50	0.50		μg/L	1	SW8260B	N/A	5/12/03 12:05:00 PM		N30512B
Bromoform	<1.0	1.0		μg/L	1	SW8260B	N/A	5/12/03 12:05:00 PM	JН	N30512B
Bromomethane	<5.0	5.0		μg/L	1	SW8260B	N/A	5/12/03 12:05:00 PM	JH	N30512B
2-Butanone	<5.0	5.0		μg/L	1	SW8260B	N/A	5/12/03 12:05:00 PM	JH	N30512B
n-Butylbenzene	<2.5	2.5		µg/L	1	SW8260B	N/A	5/12/03 12:05:00 PM	JH	N30512B
sec-Butylbenzene	<1.5	1.5		μg/L	1	SW8260B	N/A	5/12/03 12:05:00 PM	JH	N30512B
tert-Butylbenzene	<2.5	2.5		µg/L	1	SW8260B	N/A	5/12/03 12:05:00 PM	i JH	N30512B
Carbon disulfide	< 0.50	0.50		μg/L	1	SW8260B	N/A	5/12/03 12:05:00 PM		N30512B
Carbon tetrachloride	<0.50	0.50		hâ\r hâ\r	1	SW8260B	N/A	5/12/03 12:05:00 PM		N30512B
Chlorobenzene	<0.50	0.50		µg/L	1	SW8260B	N/A	5/12/03 12:05:00 PM		N30512B
Dibromochloromethane	< 0.50	0.50		μg/L	1	SW8260B	N/A	5/12/03 12:05:00 PM		N30512B
Chloroethane	<1.0	1.0		μg/L	1	SW8260B	N/A	5/12/03 12:05:00 PM		N30512B
Chloroform	<0.50	0.50		μg/L	1	SW8260B	N/A	5/12/03 12:05:00 PM		N30512B
Chloromethane		5.0		µg/∟ µg/L	1	SW8260B	N/A	5/12/03 12:05:00 PM		N30512B
2-Chlorotoluene	<5.0			µg/L	1	SW8260B	N/A	5/12/03 12:05:00 PM	***	N30512B
4-Chlorotoluene	<1.5	1.5		µg/∟ µg/L	1	SW8260B ,	N/A	5/12/03 12:05:00 PN		N30512B
***************************************	<2.0	2.0		μg/L	1	SW8260B	N/A	5/12/03 12:05:00 PM	• • •	N30512B
1,2-Dibromo-3-chloropropane	<2.0	2.0			1	SW8260B	N/A	5/12/03 12:05:00 PM		N30512B
1,2-Dibromoethane	< 0.50	0.50		μg/L	1	SW8260B	N/A	5/12/03 12:05:00 PN		N30512B
Dibromomethane	<0.50	0.50		µg/L	1	SW8260B	N/A	5/12/03 12:05:00 PA		N30512B
1,2-Dichlorobenzene	<1.5	1.5		µg/L		SW8260B	N/A	5/12/03 12:05:00 PM	-	N30512B
1,3-Dichlorobenzene	<1.5	1.5		μg/L	1	SW8260B	N/A	5/12/03 12:05:00 PM		N30512B
1,4-Dichlorobenzene	<1.5	1.5		μg/L	1	SW8260B	N/A	5/12/03 12:05:00 PM		N30512B
Dichlorodifluoromethane	<2.0	2.0		μg/L	1			5/12/03 12:05:00 PM	•	N30512B
1,1-Dichloroethane	<1.0	1.0		µg/L	1	SW8260B	N/A N/A	5/12/03 12:05:00 PF		N30512B
1,2-Dichloroethane	<1.0	1.0		µg/L	1	SW8260B		5/12/03 12:05:00 PM		N30512B
1,1-Dichloroethene	<0.50	0.50		μg/L	1	SW82608	N/A	5/12/03 12:05:00 PI		N30512B
cis-1,2-Dichloroethene	<0.50	0.50		μg/L	1	SW8260B	N/A	5/12/03 12:05:00 Pt		N30512B
trans-1,2-Dichloroethene	<0.50	0.50		μg/L	1	SW8260B	N/A	5/12/03 12:05:00 PI		N30512B
1,2-Dichloropropane	<0.50	0.50		µg/L	1	SW8260B	N/A	5/12/03 12:05:00 PI		N30512B
1,3-Dichloropropane	<1.0	1.0		μg/L "	1	SW8260B	N/A	5/12/03 12:05:00 PI	-	N30512B
2,2-Dichloropropane	< 0.50	0.50		hg/r	1	SW8260B	N/A	5/12/03 12:05:00 PI		N30512B
1,1-Dichloropropene	<1.0	1.0		µg/L 	1	SW8260B	N/A			
cis-1,3-Dichloropropene	<1.0	1.0		μg/L	1	SW8260B	N/A	5/12/03 12:05:00 P		N30512B N30512B
trans-1,3-Dichloropropene	<0.50	0.50		µg/L	1	SW8260B	N/A	5/12/03 12:05:00 P		
Ethylbenzene	<2.0	2.0		µg/L "	1	SW8260B	N/A	5/12/03 12:05:00 P		N30512B
Hexachlorobutadiene	<2.5	2.5		µg/L	1	SW8260B	N/A	5/12/03 12:05:00 P		N30512B
2-Hexanone	<5.0	5.0		µg/L	1	SW8260B	N/A	5/12/03 12:05:00 P		N30512B
lodomethane	<1.0	1.0		μg/L	1	SW8260B	N/A	5/12/03 12:05:00 P		N30512B
Isopropylbenzene	<2.5	2.5		µg/L	1	SW8260B	N/A	5/12/03 12:05:00 P		N30512B
4-Isopropyltoluene	<1.5	1.5		µg/L	1	SW8260B	N/A	5/12/03 12:05:00 P		N30512B
Methylene chloride	<3.0	3.0		µg/L	1	SW8260B	N/A	5/12/03 12:05:00 P	M JH	N30512B

21-May-03

License No. AZM133/AZ0133

CLIENT:

Hargis and Associates

Work Order:

0304431

Project:

ChemResearch/525.11

QC SUMMARY REPORT

· · · · · · · · · · · · · · · · · · ·				·		Test	Date	Date		***************************************
Analyte	Result	PQL	Qual	Units	DF	Code	Prepared	Analyzed A	nalyst	Batch ID
4-Methyl-2-pentanone	<5.0	5.0		μg/L	1	SW8260B	N/A	5/12/03 12:05:00 PM	jН	N30512B
Methyl tert-butyl ether	<2.0	2.0		μg/L	1	SW8260B	N/A	5/12/03 12:05:00 PM	JH	N30512B
Naphthalene	<5.0	5.0		μg/L	1	SW8260B	N/A	5/12/03 12:05:00 PM	JH	N30512B
n-Propylbenzene	<2.0	2.0		μg/L	1	SW8260B	N/A	5/12/03 12:05:00 PM	JН	N30512B
Styrene	<1.0	1.0		μg/L	1	SW8260B	N/A	5/12/03 12:05:00 PM	JH	N30512B
1,1,1,2-Tetrachioroethane	< 0.50	0.50		μg/L	1	SW8260B	N/A	5/12/03 12:05:00 PM	JH	N30512B
1,1,2,2-Tetrachloroethane	< 0.50	0.50		μg/L	1	SW8260B	N/A	5/12/03 12:05:00 PM	JH	N30512B
Tetrachloroethene	< 0.50	0.50		μg/L	1	SW8260B	N/A	5/12/03 12:05:00 PM	JH	N30512B
Toluene	<3.0	3.0		μg/L	1	SW8260B	N/A	5/12/03 12:05:00 PM	JH	N30512B
1,2,3-Trichlorobenzene	<5.0	5.0		μg/L	1	SW8260B	N/A	5/12/03 12:05:00 PM	JH	N30512B
1,2,4-Trichlorobenzene	<5.0	5.0		μg/L	1	SW8260B	N/A	5/12/03 12:05:00 PM	JH	N30512B
1,1,1-Trichloroethane	< 0.50	0.50		μg/L	1	SW8260B	N/A	5/12/03 12:05:00 PM	JH	N30512B
1,1,2-Trichloroethane	< 0.50	0.50		μg/L	1	SW8260B	N/A	5/12/03 12:05:00 PM	JH	N30512B
Trichloroethene	< 0.50	0.50		µg/L	1	SW8260B	N/A	5/12/03 12:05:00 PM	JH	N30512B
Trichlorofluoromethane	<2.0	2.0		μg/L	1	SW8260B	N/A	5/12/03 12:05:00 PM	JH	N30512B
1,2,3-Trichloropropane	<1.0	1.0		μg/L	1	SW8260B	N/A	5/12/03 12:05:00 PM	JH	N30512B
1,2,4-Trimethylbenzene	<2.0	2.0		µg/L	1	SW8260B	N/A	5/12/03 12:05:00 PM	JH	N30512B
1,3,5-Trimethylbenzene	<1.5	1.5		μg/Ľ	1	SW8260B	N/A	5/12/03 12:05:00 PM	JH	N30512B
Vinyl acetate	<5.0	5.0		μg/L	1	SW8260B	N/A	5/12/03 12:05:00 PM	JH	N30512B
Vinyl chloride	<0.50	0.50		µg/L	1	SW8260B -	N/A	5/12/03 12:05:00 PM	JH	N30512B
Xylenes, Total	<3.0	3.0		µg/L	1	SW8260B	N/A	5/12/03 12:05:00 PM	JH	N30512B
4-Bromofluorobenzene	94	80-107		%REC	1	SW8260B	N/A	5/12/03 12:05:00 PM	JH	N30512B
Dibromofluoromethane	93	77-104		%REC	1	SW8260B	N/A	5/12/03 12:05:00 PM	JH	N30512B
1,2-Dichloroethane-d4	90	72-111		%REC	1	SW8260B	N/A	5/12/03 12:05:00 PM	JH	N30512B
Toluene-d8	95	84-105		%REC	1	SW8260B	N/A	5/12/03 12:05:00 PM	JH	N30512B

21-May-03

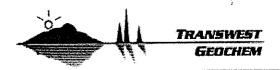
License No. AZM133/AZ0133

CLIENT:

Hargis and Associates

Work Order:

0304431


Project:

ChemResearch/525.11

QC SUMMARY REPORT

Sample Matrix Spike

Analyte	Result	PQL	SPK value	SPK Ref Val	% Rec	Low Limit	High Limit	RPD % RPD Ref Val RPD Limit Qual
Sample ID: 0304431-07BS	Batch ID: CR	6_W-4/30/2	2003	Test	Code: S	M3500-Cr l	D	Date Analyzed: 04/30/03 07:44
Client ID: CMW-5				Units	g; mg/L			Date Prepared: N/A
Chromium, Hexavalent	0.1306	0.020	0.1000	0.02960	101%	80	120	
Sample ID: 0304431-07BSD	Batch ID: CR	6_W-4/30/2	2003	Test	Code: S	M3500-Cr	D	Date Analyzed: 04/30/03 07:44
Client ID: CMW-5				Units	s: mg/L			Date Prepared: N/A
Chromium, Hexavalent	0.1308	0.020	0.1000	0.02960	101%	80	120	0.1306 0% 20
Sample ID: 0304431-03DSD	Batch ID: CN	_W-5/12/2	003	Test	Code: S	M4500-CN	CE	Date Analyzed: 05/12/03 00:00
Client ID: AVB88-01				Unit	s; mg/L			Date Prepared: 5/12/03
Cyanide, Total	0.1387	0.010	0.1250	<0.010	111%	68	125	0.1355 2% 14
Sample ID: 0304408-05DS	Batch ID: CN	_W-5/12/2	003	Test	Code: S	M4500-CN	CE	Date Analyzed: 05/12/03 00:00
Client ID:				Unit	s: mg/L			Date Prepared: 5/12/03
Cyanide, Total	0,1107	0.010	0.1250	<0.010	89%	68	125	
Sample ID: 0304431-03DS	Batch ID: CN	 I_W-5/12/2	.003	Test	Code: 5	M4500-CN	CE	Date Analyzed: 05/12/03 00:00
Client ID: AVB88-01				Unit	s: mg/L			Date Prepared: 5/12/03
Cyanide, Total	0.1355	0.010	0.1250	<0.010	108%	68	125	
Sample ID: 0304408-05DSD	Batch ID: CN	I_W-5/12/2	.003	Test	Code:	M4500-CN	CE	Date Analyzed: 05/12/03 00:00
Client ID:				Unit	s: mg/L			Date Prepared: 5/12/03
Cyanide, Total	0.1156	0.010	0.1250	<0.010	92%	68	125	0.1107 4% 14
Sample ID: 0304459-01ASD	Batch ID: CN	N_W-5/13/2	2003	Test	Code:	SM4500-CN	I CE	Date Analyzed: 05/13/03 00:00
Client ID:				Unit	s; mg/L			Date Prepared: 5/13/03
Cyanide, Total	0.1106	0.010	0.1250	<0.010	88%	68	125	0.1089 2% 14
Sample ID: 0304459-01AS	Batch ID: Ch	N_W-5/13/2	2003	Test	Code:	SM4500-C1	1 CE	Date Analyzed: 05/13/03 00:00
Client ID:				Unit	ts: mg/L			Date Prepared: 5/13/03
Cyanide, Total	0.1089	0.010	0.1250	<0.010	87%	68	125	
Sample ID: 0304431-04DSD	Batch ID: Cl	N_W-5/13/2	2003	Test	Code:	SM4500-C1	N CE	Date Analyzed: 05/13/03 00:00
Client ID: WVB-4				Uni	ts: mg/L			Date Prepared: 5/13/03
Cyanide, Total	0.1386	0.010	0.1250	<0.010	111%	68	125	0.1370 1% 14
Sample ID: 0304431-04DS	Batch ID: Cl	N_W-5/13/	2003	Tes	t Code:	SM4500-C1	N CE	Date Analyzed: 05/13/03 00:00
Client ID: WVB-4				Uni	ts: mg/L			Date Prepared: 5/13/03
Cyanide, Total	0,1370	0.010	0.1250	<0.010	1109	68	125	

21-May-03

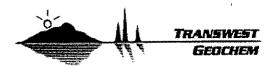
Sample Matrix Spike

License No. AZM133/AZ0133

CLIENT:

Hargis and Associates

Work Order:


0304431

Project:

ChemResearch/525.11

QC SUMMARY REPORT

			SPK	SPK	%	Low	High	RPD	%	RPD	
Analyte	Result	PQL	value	Ref Val	Rec	Limit	Limit	Ref Val	RPD		Qual
Sample ID: 0304433-01CSD	Batch ID: 614	6A			Code: E	PA200.7		Date Analy:			00
Client ID:				Units	: mg/L			Date Prepar	ed: 5/5	/03	
Cadmium	0.9228	0.02	1.000	<0.02	92%	70	130	0.9290	1%	20	
Chromium	0.9276	0.05	1.000	<0.05	93%	70	130	0.9307	0%	20	
Nickel	1.174	0.05	1.000	0.1981	98%	70	130	1.178	0%	20	
Sample ID: 0304433-01CS	Batch ID: 614	6A		Test	Code: E	PA200.7		Date Analy	zed: 05	/06/03 00:	:00
Client ID:				Unit	s; mg/L			Date Prepar	red: 5/5	/03	
Cadmium	0.9290	0.02	1.000	<0.02	93%	70	130				
Chromium	0.9307	0.05	1.000	< 0.05	93%	70	130				
Nickel	1.178	0.05	1.000	0.1981	98%	70	130				
Sample ID: 0304431-08CSD	Batch ID: 61-	16A		Test	Code: E	EPA200.7		Date Analy	zed: 05	/06/03 00	:00
Client ID: CMW-1				Unit	s: mg/L			Date Prepar	red: 5/5	/03	
Cadmium	0.9266	0.02	1.000	<0.02	93%	70	130	0.9182	1%	20	
Chromium	1.387	0.05	1.000	0.4797	91%		130	1.381	0%	20	
Nickel	0.9969	0.05	1.000	<0.05	100%	70	130	0.9913	1%	20	
Sample ID: 0304431-08CS	Batch ID: 61	46A	Test Code: EPA200,7					Date Analy	zed: 05	5/06/03 00	:00
Client ID: CMW-1			Units: mg/L					Date Prepa	red: 5/5	5/03	
Cadmium	0.9182	0.02	1.000	<0.02	92%	70	130				
Chromium	1.381	0.05	1.000	0.4797	90%	70	130				
Nickel	0.9913	0.05	1.000	<0.05	99%	70	130		,		
Sample ID: 0304408-01CS	Batch ID: 61	35A		Test	Code: 1	EPA200.9		Date Analy	zed: 0	5/12/03 00	00:00
Client ID:				Unit	s: mg/L			Date Prepa	red: 5/	1/03	
Lead	0.01641	0.0030	0.01500	<0.0030	109%	70	130			·	
Sample ID: 0304408-01CSD	Batch ID: 61	35A		Test	Code:	EPA200.9		Date Analy	zed: 0	5/12/03 00	00:00
Client ID:				Uni	ts: mg/L			Date Prepa	red: 5/	1/03	
Lead	0.01596	0.0030	0.01500	<0.0030	106%	, 70	130	0.01641	3%	20	
Sample ID: 0304408-01AS	Batch ID: N	30509B		Tes	t Code:	SW8260B		Date Analy	yzed: 0	5/09/03 1	8:09
Client ID:					ts: μg/L			Date Prepa			
Benzene	21.39	0.50	20.00	<0.50	107%	82	119				
Chlorobenzene	20.39	0.50	20.00	< 0.50	102%		110				
1,1-Dichioroethene	24.25	0.50	20.00	< 0.50	121%		140				
Toluene	20.97	3.0	20.00	<3.0	105%		114				
Trichloroethene	20.97	0.50	20.00	<0.50	105%		119				
4-Bromofluorobenzene	36.82	N/A	39.90	N/A	929		107				
Dibromofluoromethane	37.60	N/A	39.90	N/A	949		104				
1,2-Dichloroethane-d4	36.37	N/A	39.90	N/A	919						
Toluene-d8	37.36	N/A	39.90	N/A							

21-May-03

License No. AZM133/AZ0133

CLIENT:

Hargis and Associates

Work Order:

0304431

Project:

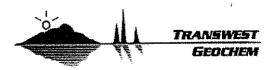
ChemResearch/525.11

QC SUMMARY REPORT

Sample Matrix Spike

Analyte	Result	PQL	SPK value	SPK Ref Val	% Rec	Low Limit	High Limit	RPD Ref Val	% RPD	RPD Limit	Qual	
Sample ID: 0304408-01ASD	Batch ID: N30)509B	Test Code: SW8260B					Date Analyzed: 05/09/03 18:47				
Client ID:				Units	3; μg/L			Date Prepared: N/A				
Benzene	21,40	0.50	20.00	<0.50	107%	82	119	21.39	0%	13		
Chlorobenzene	20.51	0.50	20.00	< 0.50	103%	82	110	20.39	1%	13		
1,1-Dichloroethene	24.42	0.50	20.00	< 0.50	122%	84	140	24.25	1%	15		
Toluene	21.37	3.0	20.00	<3.0	107%	81	114	20.97	2%	14		
Trichloroethene	20.89	0.50	20.00	< 0.50	104%	78	119	20.97	0%	16		
4-Bromofluorobenzene	36.15	N/A	39.90	N/A	91%	80	107					
Dibromofluoromethane	37.38	N/A	39.90	N/A	94%	77	104					
1,2-Dichloroethane-d4	35.60	N/A	39.90	N/A	89%	72	111					
Toluene-d8	37.38	N/A	39.90	N/A	94%	84	105					
Sample ID: 0304408-04AS	Batch ID: N3	0512B		Test	Code: S	SW8260B		Date Analy	zed: 05	/12/03 17:	20	
Client ID:				Unit	s; μg/L			Date Prepa	red: N/A	4		
Benzene	21.40	0.50	20.00	<0.50	107%	82	119					
Chlorobenzene	20.70	0.50	20.00	< 0.50	104%	82	110					
1,1-Dichloroethene	23.49	0.50	20.00	< 0.50	117%	84	140					
Toluene	21.35	3.0	20.00	<3.0	107%	81	114					
Trichloroethene	20.92	0.50	20.00	< 0.50	105%	78	119					
4-Bromofiuorobenzene	37.64	N/A	39.90	N/A	94%	80	107					
Dibromofluoromethane	37.58	N/A	39.90	N/A	94%	77	104					
1,2-Dichloroethane-d4	35.10	N/A	39.90	N/A	88%	72	111					
Toluene-d8	37.79	N/A	39.90	N/A	95%	84	105					
Sample ID: 0304408-04ASD	Batch ID: N3	0512B		Test	Code: 5	SW8260B		Date Analy	zed: 05	5/12/03 17:	59	
Client ID:				Unit	s: μg/L			Date Prepa	red: N/	A		
Benzene	21.37	0.50	20.00	<0.50	107%	82	119	21.40	0%	13		
Chlorobenzene	20.58	0.50	20.00	< 0.50	103%	82	110	20.70	1%	13		
1,1-Dichloroethene	23.44	0.50	20.00	< 0.50	117%	84	140	23.49	0%	15		
Toluene	21.29	3.0	20.00	<3.0	106%	81	114	21.35	0%	14		
Trichloroethene	21.09	0.50	20.00	< 0.50	105%	78	119	20.92	1%	16		
4-Bromofluorobenzene	36.87	N/A	39.90	N/A	92%	80	107					
Dibromofluoromethane	36.45	N/A	39.90	N/A	91%	77	104					
1,2-Dichloroethane-d4	34.02	N/A	39.90	N/A	85%	72	111					
Toluene-d8	36.79	N/A	39.90	N/A	92%	6 84	105					

21-May-03


License No. AZM133/AZ0133

CLIENT:

Hargis and Associates

QC SUMMARY REPORT

Work Order:	0304431									В	lank Spike
Project:	ChemResearch/52	3.11		···							
Analyte	Resu	lt PQL	SPK value	SPK Ref Val	% Rec	Low Limit	High Limit		% RPD	RPD Limit	Qual
Sample ID: LCSD	Batch I	D; CR6_W-4/30/	2003		Code: S ;; mg/L	M3500-Cr	D	Date Analyzed Date Prepared			44
Chromium, Hexavalent	0.10	0.020	0.1000	<0.020	102%	85	115	0.1020	0%	20	
Sample ID: LCS	Batch	ID: CR6_W-4/30/	2003		Code: S	M3500-Cr	D .	Date Analyzed Date Prepared			:44
Chromium, Hexavalent	0.10	0.020	0.1000	<0.020	102%	85	115				
Sample ID: LCS	Batch	ID: CN_W-5/12/2	.003		Code: S s; mg/L	5M4500-CN	I CE	Date Analyze			:00
Cyanide, Total	0.1	254 0.010	0.1250	<0.010	100%	72	124				nor tipe no objett / stans and properties for no seek it / above
Sample ID: LCS	Batch	ID: CN_W-5/13/2	2003		Code: S	SM4500-CN	I CE	Date Analyze			:00
Cyanide, Total	0.1	159 0.010	0.1250	<0.010	93%	72	124				
Sample ID: LCSD-	6146 Batch	ID: 6146A		Test	Code:	EPA200.7		Date Analyze	d: 05	5/06/03 00	:00
•				Unit	s; mg/L			Date Prepared	1: 5/5	5/03	
Cadmium Chromium Nickel	0.0	0.02 0515 0.05 0.044 0.05	1.000 1.000 1.000	<0.02 <0.05 <0.05	98% 95% 104%	85	115 115 115	0.9538 0.9354 1.017	2% 2% 3%	20 20 20	
Sample ID: LCS-6	146 Batch	ID: 6146A		Test Code: EPA200.7 Units: mg/L				Date Analyze		5/06/03 00 5/03):00
Cadmium Chromium Nickel	0.0	9538 0.02 9354 0.05 .017 0.05	1.000 1.000 1.000	<0.02 <0.05 <0.05	95% 94% 102%	85	115 115 115				
Sample ID: LCSD	-6135 Batch	ID: 6135A			t Code: ts: mg/L	EPA200.9		Date Analyze			0:00
Lead	0.0	1619 0.0030	0.01500	<0.0030	1089	6 85	115	0.01573	3%	20	
Sample ID: LCS-6	Batch	ID: 6135A			t Code: ts: mg/L	EPA200.9		Date Analyzed: 05/12/03 00:00 Date Prepared: 5/1/03			0:00
Lead	0.0	1573 0.0030	0.01500	<0.0030	105%		115				

21-May-03

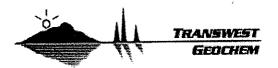
License No. AZM133/AZ0133

CLIENT:

Hargis and Associates

Work Order:

0304431


Project:

ChemResearch/525.11

QC SUMMARY REPORT

Secondary Source Blank Spike

Analyte	Result	PQL	SPK value	SPK Ref Val	% Rec	Low Limit	High Limit	RPD Ref Val	% RPD	RPD Limit	Qual
Sample ID: LCSV-N30509A	Batch ID: N3	0509B		Test	Code: S	W8260B		Date Analy	zed: 05	/09/03 09:	45
				Units	;; μg/L			Date Prepar	red: N/A	1	
Benzene	20.78	0.50	20.00	<0.50	104%	81	120				
Chlorobenzene	19.95	0.50	20.00	< 0.50	100%	85	111				
1,1-Dichloroethene	22.36	0.50	20.00	< 0.50	112%	66	151				
Toluene	20.60	3.0	20.00	<3.0	103%	82	115				
Trichloroethene	20.05	0.50	20.00	< 0.50	100%	79	112				
4-Bromofluorobenzene	35.45	N/A	39.90	N/A	89%	80	107				
Dibromofluoromethane	36.32	N/A	39.90	N/A	91%	77	104				
1,2-Dichloroethane-d4	35.15	N/A	39.90	N/A	88%	72	111				
Toluene-d8	36.75	N/A	39.90	N/A	92%	84	105		-,		
Sample ID: LCSVD-N30509A	Batch ID: N3	0509B	Test Code: SW8260B					Date Analyzed: 05/09/03 10:23			
			Units: µg/L					Date Prepared: N/A			
Benzene	19.98	0,50	20.00	<0.50	100%	81	120	20.78	4%	16	
Chlorobenzene	19.38	0.50	20.00	< 0.50	97%	85	111	19.95	3%	14	
1,1-Dichloroethene	21.21	0.50	20.00	< 0.50	106%	66	151	22.36	5%	16	
Toluene	19.50	3.0	20.00	<3.0	98%	82	115	20.60	5%	16	
Trichloroethene	19.36	0.50	20.00	< 0.50	97%	79	112	20.05	4%	18	
4-Bromofluorobenzene	35.97	N/A	39.90	N/A	90%	80	107				
Dibromofluoromethane	36.86	N/A	39.90	N/A	92%	77	104				
1,2-Dichloroethane-d4	35.08	N/A	39.90	N/A	88%	72	111				
Toluene-d8	36.84	N/A	39.90	N/A	92%	84	105				
Sample ID: LCSV-N30512A	Batch ID: No	30512B		Test	Code: 5	SW8260B		Date Anal	yzed: 0:	5/12/03 10	:48
			Units: µg/L					Date Prepa	ared: N	Ά	
Benzene	20.14	0.50	20.00	<0.50	101%	81	120				
Chlorobenzene	19.69	0.50	20.00	< 0.50	98%	85	111				
1,1-Dichloroethene	21.49	0.50	20.00	< 0.50	107%	66	151				
Toluene	20.04	3.0	20.00	<3.0	100%	82	115				
Trichloroethene	19.50	0.50	20.00	< 0.50	98%	79	112				
4-Bromofluorobenzene	36.74	N/A	39.90	N/A	92%	80	107				
Dibromofluoromethane	36.90	N/A	39.90	N/A	92%	77	104				
1,2-Dichloroethane-d4	34.70	N/A	39.90	N/A	87%	72	111				
Toluene-d8	36.83	N/A	39.90	N/A	92%	84	105				

21-May-03

License No. AZM133/AZ0133

CLIENT:

Hargis and Associates

Work Order:

0304431

Project:

ChemResearch/525.11

QC SUMMARY REPORT

Secondary Source Blank Spike Duplicate

Analyte	Result	PQL	SPK value	SPK Ref Val	% Rec	Low Limit	High Limit	RPD Ref Val	% RPD	RPD Limit Qual		
Sample ID: LCSVD-N30512A	Batch ID: N30512B		Test Code: SW8260B				Date Analyzed: 05/12/03 11:26					
•	Units: µg/L						Date Prepared: N/A					
Benzene	20.87	0.50	20.00	<0.50	104%	81	120	20.14	4%	16		
Chlorobenzene	20.09	0.50	20.00	< 0.50	100%	85	111	19.69	2%	14		
1,1-Dichloroethene	22.17	0.50	20.00	< 0.50	111%	66	151	21.49	3%	16		
Toluene	20.62	3.0	20.00	<3.0	103%	82	115	20.04	3%	16		
Trichloroethene	20.20	0.50	20.00	< 0.50	101%	79	112	19.50	4%	18		
4-Bromofluorobenzene	37.65	N/A	39.90	N/A	94%	80	107					
Dibromofluoromethane	37.07	N/A	39.90	N/A	93%	77	104					
1,2-Dichloroethane-d4	35.12	N/A	39.90	N/A	88%	72	111					
Toluene-d8	37.42	N/A	39.90	N/A	94%	84	105					

みらくいとしゃ REMARKS # 112 36 July 514 * Chenjed por J.Y. 9 INFORMATION 16 10 S top lay St. 1400 EAST SOUTHERN AVENUE, SUITE 620 LABORATORY TEMPE, AZ 85282 M 250 6 5204 Geo Cheny 1 FONSUMENT 2365 NORTHSIDE DRIVE, SUITE C-100 SAN DIEGO, CA 92108 (619) 521-0165 1820 EAST RIVER ROAD, SUITE 100 TUCSON, AZ 85718 (520) 881-7300 Total No. of Containers: Send invoice to San Diego, CA PAGE Send Results to: 12H-Shipment Method: 12 400× Attn: Accounts Payable 0301451 0ATE 4.28.03 MESS HANDLING SPECIAL ESTIMATED CONCENTRATION RANGE (ppb) FOR VOA'S Tracelved good condition/cold CHAIN-OF-CUSTODY RECORD AND ANALYSIS REQUEST FORM Conforms to COC document Indicate number of sample containers in analysis request (lab use only); sign only after verified for completeness. 5. Consult project QA documents for specific instructions. 2. Complete in ballpoint pen. Draw one line through errors, and deviations from typical environmental samples. 77 4. Note applicable preservatives, special instructions, 1. Fill out form completely except for shaded areas ANALYSES REQUESTED するご space; indicate choice with / or x. 00 L Σ initial and date correction. No. of containers correct SAMPLE CONTAINERS T CUTTON SORIE EAGURE Med ∞ S WOF M Sample Receipt: M M INSTRUCTIONS Phone No. (490)345-0888 720.0508 ... HERON CAR PRESER-VATION PROJECT No./TASK No. +0\$ZH HOPN SAMPLER (PRINTED) EONH 124 Time Time) (3) Date нсі Date MATRIX Suriace FAX No. Ground Tefaw 1105 1320 いっこ 1230 0800 09EU 10CO 0760 5401 COLLECTION TETTOMU PENTS **amiT** Received by SAMPLE Received by Laboratory Total number of Containers per analysis: DA MANAGER JE How CYENTED Company 4.39.03 Oate Ξ <u>_</u> = -ु Date Date Time Time SAMPLE 16-042503 MARGIS + ASSOCIATES, INC. GO SEN O AVB48-01 オーミアニ MW/ 3 WVB-4 WVB-2 WWB-リタダリ SAMPLERY (SIGNATURE) PROJECT MANAGER PROJECT NAME Relinquished by: 4+4 3 Relinquished by **Q** Q Soldier. Company Company

LABORATORY REPORT

Prepared For: Blaes Environmental Mgmt., Inc.

Project: 007-1992-08

1433 North 3rd Ave. Phoenix, AZ 85003

Attention: Brett McDaniel Sampled: 06/27/03 Received: 06/27/03

Issued: 07/11/03

AZ DHS #AZ0426

The results listed within this Laboratory Report pertain only to the samples tested in the laboratory. All soil samples are reported on a wet weight basis unless otherwise noted in the report. This Laboratory Report is confidential and is intended for the sole use of Del Mar Analytical and its client. This report shall not be reproduced, except in full, without written permission from Del Mar Analytical. This entire report was reviewed and approved for release.

CASE NARRATIVE

SAMPLE RECEIPT:

Samples were received intact, at 6°C, on ice and with chain of custody documentation.

HOLDING TIMES:

Holding times were met.

PRESERVATION:

Samples requiring preservation were verified prior to sample analysis.

QA/QC CRITERIA:

All analyses met method criteria, except as noted in the report with data qualifiers.

COMMENTS:

No significant observations were made.

SUBCONTRACTED: No analyses were subcontracted to an outside laboratory.

ABORATORY ID	CLIENT ID	MATRIX
PMF0803-01	MW-11a	Water
PMF0803-02	MW-12	Water
PMF0803-03	MW-14	Water

Linda Eshelman For Tamara Saunders

Project Manager

Blaes Environmental Mgmt., Inc.

Project ID: 007-1992-08

1433 North 3rd Ave. Phoenix, AZ 85003

Attention: Brett McDaniel

Report Number: PMF0803

Sampled: 06/27/03 Received: 06/27/03

VOLATILE ORGANICS BY GC/MS (EPA 5030B/8260B)

)	Reporting	Sample	Dilution	Date	Date	Data	
Analyte	Method	Batch	Limit	Result	Factor	Extracted	Analyzed	Qualifiers	
Sample ID: PMF0803-01 (MW-11a -	· Water)								
Reporting Units: ug/l	,								
Acetone	EPA 8260B	P3G1009	20	ND	1	7/10/2003	7/10/2003		
Benzene	EPA 8260B	P3G1009	1.0	ND	1	7/10/2003	7/10/2003		
Bromobenzene	EPA 8260B	P3G1009	5.0	ND	1	7/10/2003	7/10/2003		
Bromochloromethane	EPA 8260B	P3G1009	5.0	ND	1	7/10/2003	7/10/2003		
Bromodichloromethane	EPA 8260B	P3G1009	2.0	ND	1	7/10/2003	7/10/2003		
Bromoform	EPA 8260B	P3G1009	5.0	ND	1	7/10/2003	7/10/2003		
Bromomethane	EPA 8260B	P3G1009	5.0	ND	· 1	7/10/2003	7/10/2003		
2-Butanone (MEK)	EPA 8260B	P3G1009	10	ND	1	7/10/2003	7/10/2003		
n-Butylbenzene	EPA 8260B	P3G1009	5.0	ND	1	7/10/2003	7/10/2003		
sec-Butylbenzene	EPA 8260B	P3G1009	5.0	ND	1	7/10/2003	7/10/2003		
tert-Butylbenzene	EPA 8260B	P3G1009	5.0	ND	1	7/10/2003	7/10/2003		
Carbon Disulfide	EPA 8260B	P3G1009	5.0	ND	1	7/10/2003	7/10/2003		
Carbon tetrachloride	EPA 8260B	P3G1009	5.0	ND	1	7/10/2003	7/10/2003		
Chlorobenzene	EPA 8260B	P3G1009	1.0	ND	1	7/10/2003	7/10/2003		
Chloroethane	EPA 8260B	P3G1009	5.0	ND	1	7/10/2003	7/10/2003		
Chloroform	EPA 8260B	P3G1009	2.0	ND	1	7/10/2003	7/10/2003		
Chloromethane	EPA 8260B	P3G1009	5.0	ND	1	7/10/2003	7/10/2003		
2-Chlorotoluene	EPA 8260B	P3G1009	5.0	ND	1	7/10/2003	7/10/2003		
4-Chlorotoluene	EPA 8260B	P3G1009	5.0	ND	1	7/10/2003	7/10/2003		
Dibromochloromethane	EPA 8260B	P3G1009	2.0	ND	1	7/10/2003	7/10/2003		
1,2-Dibromo-3-chloropropane	EPA 8260B	P3G1009	5.0	ND	1	7/10/2003	7/10/2003		
1,2-Dibromoethane (EDB)	EPA 8260B	P3G1009	2.0	ND	1	7/10/2003	7/10/2003		
Dibromomethane	EPA 8260B	P3G1009	2.0	ND	1	7/10/2003	7/10/2003		
1,2-Dichlorobenzene	EPA 8260B	P3G1009	1.0	ND	1	7/10/2003	7/10/2003		
1,3-Dichlorobenzene	EPA 8260B	P3G1009	1.0	ND	1	7/10/2003	7/10/2003		
1,4-Dichlorobenzene	EPA 8260B	P3G1009	1.0	ND	1	7/10/2003	7/10/2003		
Dichlorodifluoromethane	EPA 8260B	P3G1009	5.0	ND	1	7/10/2003	7/10/2003		
1,1-Dichloroethane	EPA 8260B	P3G1009	2.0	ND	1	7/10/2003	7/10/2003		
1,2-Dichloroethane	EPA 8260B	P3G1009	1.0	ND	1	7/10/2003	7/10/2003		
1,1-Dichloroethene	EPA 8260B	P3G1009	5.0	ND	1	7/10/2003	7/10/2003		
cis-1,2-Dichloroethene	EPA 8260B	P3G1009	2.0	ND	1	7/10/2003	7/10/2003		
trans-1,2-Dichloroethene	EPA 8260B	P3G1009	2.0	ND	1	7/10/2003	7/10/2003		
1,2-Dichloropropane	EPA 8260B	P3G1009	2.0	ND	1	7/10/2003	7/10/2003		
1,3-Dichloropropane	EPA 8260B	P3G1009	2.0	ND	1	7/10/2003	7/10/2003		
2,2-Dichloropropane	EPA 8260B	P3G1009	2.0	ND	. 1		7/10/2003		
1,1-Dichloropropene	EPA 8260B	P3G1009	2.0	ND	1	7/10/2003	7/10/2003		
cis-1,3-Dichloropropene	EPA 8260B	P3G1009	2.0	ND	1		7/10/2003		
trans-1,3-Dichloropropene	EPA 8260B	P3G1009	2.0	ND	1		7/10/2003		
Ethylbenzene	EPA 8260B	P3G1009	2.0	ND	1		7/10/2003		
Hexachlorobutadiene	EPA 8260B	P3G1009	5.0	ND	1		7/10/2003		

Del Mar Analytical - Phoenix

Linda Eshelman For Tamara Saunders

Project Manager

1433 North 3rd Ave. Phoenix, AZ 85003

Attention: Brett McDaniel

Project ID: 007-1992-08

Report Number: PMF0803

Sampled: 06/27/03 Received: 06/27/03

VOLATILE ORGANICS BY GC/MS (EPA 5030B/8260B)

Analyte	Method	Batch	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: PMF0803-01 (MW-11a - Wa	ater) - cont.							
Reporting Units: ug/l	•							
2-Hexanone	EPA 8260B	P3G1009	10	ND	1	7/10/2003	7/10/2003	
Iodomethane	EPA 8260B	P3G1009	2.0	ND	1	7/10/2003	7/10/2003	
Isopropylbenzene	EPA 8260B	P3G1009	2.0	ND	1	7/10/2003	7/10/2003	
p-Isopropyltoluene	EPA 8260B	P3G1009	2.0	ND	1	7/10/2003	7/10/2003	
Methylene chloride	EPA 8260B	P3G1009	5.0	ND	1	7/10/2003	7/10/2003	
4-Methyl-2-pentanone (MIBK)	EPA 8260B	P3G1009	10	ND	1	7/10/2003	7/10/2003	
Naphthalene	EPA 8260B	P3G1009	2.0	ND	1		7/10/2003	
n-Propylbenzene	EPA 8260B	P3G1009	2.0	ND	1	7/10/2003	7/10/2003	
Styrene	EPA 8260B	P3G1009	2.0	ND	1		7/10/2003	
1,1,1,2-Tetrachloroethane	EPA 8260B	P3G1009	5.0	ND	1		7/10/2003	
1,1,2,2-Tetrachloroethane	EPA 8260B	P3G1009	2.0	ND	1		7/10/2003	
Tetrachloroethene	EPA 8260B	P3G1009	2.0	ND	1		7/10/2003	
Toluene	EPA 8260B	P3G1009	2.0	ND	1		7/10/2003	
1,2,3-Trichlorobenzene	EPA 8260B	P3G1009	5.0	ND	1		7/10/2003	
1,2,4-Trichlorobenzene	EPA 8260B	P3G1009	5.0	ND	1	7/10/2003	7/10/2003	
1,1,1-Trichloroethane	EPA 8260B	P3G1009	2.0	ND	1		7/10/2003	
1,1,2-Trichloroethane	EPA 8260B	P3G1009	2.0	ND	1	7/10/2003	7/10/2003	
Trichloroethene	EPA 8260B	P3G1009	2.0	ND	1	7/10/2003	7/10/2003	
Trichlorofluoromethane	EPA 8260B	P3G1009	5.0	ND	1	7/10/2003	7/10/2003	
1,2,3-Trichloropropane	EPA 8260B	P3G1009	10	ND	1	7/10/2003	7/10/2003	
1,2,4-Trimethylbenzene	EPA 8260B	P3G1009	2.0	ND	1		7/10/2003	
1,3,5-Trimethylbenzene	EPA 8260B	P3G1009	2.0	ND	1	7/10/2003	7/10/2003	
Vinyl acetate	EPA 8260B	P3G1009	25	ND	1	7/10/2003	7/10/2003	
Vinyl chloride	EPA 8260B	P3G1009	5.0	ND	1	7/10/2003	7/10/2003	
Xylenes, Total	EPA 8260B	P3G1009	3.0	ND	1	7/10/2003	7/10/2003	
Surrogate: Dibromofluoromethane (80-1	35%)			104 %				
Surrogate: Toluene-d8 (80-125%)				108 %				
Surrogate: 4-Bromofluorobenzene (75-1	25%)			106 %				
Sample ID: PMF0803-01RE1 (MW-11a Reporting Units: ug/l	- Water)							
Methyl-tert-butyl Ether (MTBE)	EPA 8260B	P3G1005	1.0	ND	1	7/10/2003	7/10/2003	
Surrogate: Dibromofluoromethane (80-1	(35%)			106 %				
Surrogate: Toluene-d8 (80-125%)	-			110 %				
Surrogate: 4-Bromofluorobenzene (75-1	25%)			102 %				

Del Mar Analytical - Phoenix

Linda Eshelman For Tamara Saunders

1433 North 3rd Ave. Phoenix, AZ 85003

Attention: Brett McDaniel

Project ID: 007-1992-08

Report Number: PMF0803

Sampled: 06/27/03 Received: 06/27/03

VOLATILE ORGANICS BY GC/MS (EPA 5030B/8260B)

Analyte	Method	Batch	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: PMF0803-02 (MW-12 -	Water)							
Reporting Units: ug/l	,							
Acetone	EPA 8260B	P3G1009	20	ND	1	7/10/2003	7/10/2003	
Benzene	EPA 8260B	P3G1009	1.0	ND	1	7/10/2003	7/10/2003	
Bromobenzene	EPA 8260B	P3G1009	5.0	ND	1	7/10/2003	7/10/2003	
Bromochloromethane	EPA 8260B	P3G1009	5.0	ND	1	7/10/2003	7/10/2003	
Bromodichloromethane	EPA 8260B	P3G1009	2.0	ND	1	7/10/2003	7/10/2003	
Bromoform	EPA 8260B	P3G1009	5.0	ND	1	7/10/2003	7/10/2003	
Bromomethane	EPA 8260B	P3G1009	5.0	ND	1	7/10/2003	7/10/2003	
2-Butanone (MEK)	EPA 8260B	P3G1009	10	ND	1	7/10/2003	7/10/2003	
n-Butylbenzene	EPA 8260B	P3G1009	5.0	ND	1	7/10/2003	7/10/2003	
sec-Butylbenzene	EPA 8260B	P3G1009	5.0	ND	1	7/10/2003	7/10/2003	
tert-Butylbenzene	EPA 8260B	P3G1009	5.0	ND	1	7/10/2003	7/10/2003	
Carbon Disulfide	EPA 8260B	P3G1009	5.0	ND	1	7/10/2003	7/10/2003	
Carbon tetrachloride	EPA 8260B	P3G1009	5.0	ND	1	7/10/2003	7/10/2003	
Chlorobenzene	EPA 8260B	P3G1009	1.0	ND	1	7/10/2003	7/10/2003	
Chloroethane	EPA 8260B	P3G1009	5.0	ND	1	7/10/2003	7/10/2003	
Chloroform	EPA 8260B	P3G1009	2.0	ND	1	7/10/2003	7/10/2003	
Chloromethane	EPA 8260B	P3G1009	5.0	ND	1	7/10/2003	7/10/2003	
2-Chlorotoluene	EPA 8260B	P3G1009	5.0	ND	1	7/10/2003	7/10/2003	
4-Chlorotoluene	EPA 8260B	P3G1009	5.0	ND	1	7/10/2003	7/10/2003	
Dibromochloromethane	EPA 8260B	P3G1009	2.0	ND	1	7/10/2003	7/10/2003	
1,2-Dibromo-3-chloropropane	EPA 8260B	P3G1009	5.0	ND	1	7/10/2003	7/10/2003	
1,2-Dibromoethane (EDB)	EPA 8260B	P3G1009	2.0	ND	1	7/10/2003	7/10/2003	
Dibromomethane	EPA 8260B	P3G1009	2.0	ND	1	7/10/2003	7/10/2003	
1,2-Dichlorobenzene	EPA 8260B	P3G1009	1.0	ND	1	7/10/2003	7/10/2003	
1,3-Dichlorobenzene	EPA 8260B	P3G1009	1.0	ND	1	7/10/2003	7/10/2003	
1,4-Dichlorobenzene	EPA 8260B	P3G1009	1.0	ND	1	7/10/2003	7/10/2003	
Dichlorodifluoromethane	EPA 8260B	P3G1009	5.0	ND	1	7/10/2003	7/10/2003	
1,1-Dichloroethane	EPA 8260B	P3G1009	2.0	ND	1	7/10/2003	7/10/2003	
1,2-Dichloroethane	EPA 8260B	P3G1009	1.0	ND	1	7/10/2003	7/10/2003	
1,1-Dichloroethene	EPA 8260B	P3G1009	5.0	ND	1	7/10/2003	7/10/2003	
cis-1,2-Dichloroethene	EPA 8260B	P3G1009	2.0	ND	1	7/10/2003	7/10/2003	
trans-1,2-Dichloroethene	EPA 8260B	P3G1009	2.0	ND	1		7/10/2003	
1,2-Dichloropropane	EPA 8260B	P3G1009	2.0	ND	1	7/10/2003	7/10/2003	
1,3-Dichloropropane	EPA 8260B	P3G1009	2.0	ND	1	7/10/2003	7/10/2003	
2,2-Dichloropropane	EPA 8260B	P3G1009	2.0	ND	1		7/10/2003	
1,1-Dichloropropene	EPA 8260B	P3G1009	2.0	ND	1		7/10/2003	
cis-1,3-Dichloropropene	EPA 8260B	P3G1009	2.0	ND	1		7/10/2003	
trans-1,3-Dichloropropene	EPA 8260B	P3G1009	2.0	ND	1		7/10/2003	
Ethylbenzene	EPA 8260B	P3G1009	2.0	ND	1		7/10/2003	
Hexachlorobutadiene	EPA 8260B	P3G1009		ND	1		7/10/2003	
					-			

Del Mar Analytical - Phoenix

Linda Eshelman For Tamara Saunders Project Manager

1433 North 3rd Ave. Phoenix, AZ 85003 Project ID: 007-1992-08

Sampled: 06/27/03 Received: 06/27/03

Attention: Brett McDaniel

Report Number: PMF0803

VOLATILE ORGANICS BY GC/MS (EPA 5030B/8260B)

	** / T		Reporting		Dilution	Date Extracted	Date	Data Qualifiers
Analyte	Method	Batch	Limit	Result	ractor	Extracted	Anaiyzeu	Quantiers
Sample ID: PMF0803-02 (MW-12 - Water	r) - cont.							
Reporting Units: ug/l								
2-Hexanone	EPA 8260B	P3G1009	10	ND	1		7/10/2003	
Iodomethane	EPA 8260B	P3G1009	2.0	ND	1		7/10/2003	
Isopropylbenzene	EPA 8260B	P3G1009	2.0	ND	1		7/10/2003	
p-Isopropyltoluene	EPA 8260B	P3G1009	2.0	ND	1		7/10/2003	
Methylene chloride	EPA 8260B	P3G1009	5.0	ND	. 1		7/10/2003	
4-Methyl-2-pentanone (MIBK)	EPA 8260B	P3G1009	10	ND	1		7/10/2003	
Naphthalene	EPA 8260B	P3G1009	2.0	ND	1		7/10/2003	
n-Propylbenzene	EPA 8260B	P3G1009	2.0	ND	1		7/10/2003	
Styrene	EPA 8260B	P3G1009	2.0	ND	1		7/10/2003	
1,1,1,2-Tetrachloroethane	EPA 8260B	P3G1009	5.0	ND	1		7/10/2003	
1,1,2,2-Tetrachloroethane	EPA 8260B	P3G1009	2.0	ND	1		7/10/2003	
Tetrachloroethene	EPA 8260B	P3G1009	2.0	ND	1		7/10/2003	
Toluene	EPA 8260B	P3G1009	2.0	ND	1		7/10/2003	
1,2,3-Trichlorobenzene	EPA 8260B	P3G1009	5.0	ND	1		7/10/2003	
1,2,4-Trichlorobenzene	EPA 8260B	P3G1009	5.0	ND	1		7/10/2003	
1,1,1-Trichloroethane	EPA 8260B	P3G1009	2.0	ND	1		7/10/2003	
1,1,2-Trichloroethane	EPA 8260B	P3G1009	2.0	ND.	1		7/10/2003	
Trichloroethene	EPA 8260B	P3G1009		ND	1		7/10/2003	
Trichlorofluoromethane	EPA 8260B	P3G1009		ND	1		7/10/2003	
1,2,3-Trichloropropane	EPA 8260B	P3G1009		ND	1		7/10/2003	
1,2,4-Trimethylbenzene	EPA 8260B	P3G1009		ND	1		7/10/2003	
1,3,5-Trimethylbenzene	EPA 8260B	P3G1009		ND	1		7/10/2003	
Vinyl acetate	EPA 8260B	P3G1009		ND	1		7/10/2003	
Vinyl chloride	EPA 8260B	P3G1009		ND	1		7/10/2003	
Xylenes, Total	EPA 8260B	P3G1009	3.0	ND	1	7/10/2003	7/10/2003	
Surrogate: Dibromofluoromethane (80-1.	35%)			108%				
Surrogate: Toluene-d8 (80-125%)				109 %				
Surrogate: 4-Bromofluorobenzene (75-12	(5%)			108 %				
Sample ID: PMF0803-02RE1 (MW-12 -	Water)							
Reporting Units: ug/l	ŕ							
Methyl-tert-butyl Ether (MTBE)	EPA 8260B	P3G1005	1.0	ND	1	7/10/2003	7/10/2003	
Surrogate: Dibromofluoromethane (80-1.				106 %				
Surrogate: Toluene-d8 (80-125%)	,			111 %				
Surrogate: 4-Bromofluorobenzene (75-12	25%)			106 %				
	/							

Del Mar Analytical - Phoenix

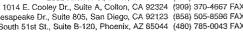
Linda Eshelman For Tamara Saunders

1433 North 3rd Ave. Phoenix, AZ 85003

Attention: Brett McDaniel

Project ID: 007-1992-08

Report Number: PMF0803


Sampled: 06/27/03 Received: 06/27/03

VOLATILE ORGANICS BY GC/MS (EPA 5030B/8260B)

	N. A 3 . 3		Reporting	-	Dilution		Date	Data Qualifiers
Analyte	Method	Batch	Limit	Result	гасиог	Extracted	Anaryzeu	Quanners
Sample ID: PMF0803-03 (MW-14 - Wat	er)							
Reporting Units: ug/l					_	# /# O /O O O O	# (1 A /A A A	
Acetone	EPA 8260B	P3G1009	20	ND	1	7/10/2003		
Benzene	EPA 8260B	P3G1009	1.0	ND	1		7/10/2003	
Bromobenzene	EPA 8260B	P3G1009	5.0	ND	1		7/10/2003	
Bromochloromethane	EPA 8260B	P3G1009	5.0	ND	1		7/10/2003	
Bromodichloromethane	EPA 8260B	P3G1009	2.0	ND	1		7/10/2003	
Bromoform	EPA 8260B	P3G1009	5.0	ND	. 1		7/10/2003	
Bromomethane	EPA 8260B	P3G1009	5.0	ND	1		7/10/2003	
2-Butanone (MEK)	EPA 8260B	P3G1009	10	ND	1		7/10/2003	
n-Butylbenzene	EPA 8260B	P3G1009	5.0	ND	1		7/10/2003	
sec-Butylbenzene	EPA 8260B	P3G1009	5.0	ND	1		7/10/2003	
tert-Butylbenzene	EPA 8260B	P3G1009	5.0	ND	1		7/10/2003	
Carbon Disulfide	EPA 8260B	P3G1009	5.0	ND	1		7/10/2003	
Carbon tetrachloride	EPA 8260B	P3G1009	5.0	ND	1		7/10/2003	
Chlorobenzene	EPA 8260B	P3G1009	1.0	ND	1		7/10/2003	
Chloroethane	EPA 8260B	P3G1009	5.0	ND	1		7/10/2003	
Chloroform	EPA 8260B	P3G1009	2.0	ND	1		7/10/2003	
Chloromethane	EPA 8260B	P3G1009	5.0	ND	1		7/10/2003	
2-Chlorotoluene	EPA 8260B	P3G1009	5.0	ND	1		7/10/2003	
4-Chlorotoluene	EPA 8260B	P3G1009	5.0	ND	1		7/10/2003	
Dibromochloromethane	EPA 8260B	P3G1009	2.0	ND	1		7/10/2003	
1,2-Dibromo-3-chloropropane	EPA 8260B	P3G1009	5.0	ND	1		7/10/2003	
1,2-Dibromoethane (EDB)	EPA 8260B	P3G1009	2.0	ND	1		7/10/2003	
Dibromomethane	EPA 8260B	P3G1009	2.0	ND	1		7/10/2003	
1,2-Dichlorobenzene	EPA 8260B	P3G1009	1.0	ND	1		7/10/2003	
1,3-Dichlorobenzene	EPA 8260B	P3G1009	1.0	ND	1		7/10/2003	
1,4-Dichlorobenzene	EPA 8260B	P3G1009	1.0	ND	1		7/10/2003	
Dichlorodifluoromethane	EPA 8260B	P3G1009	5.0	ND	1		7/10/2003	
1,1-Dichloroethane	EPA 8260B	P3G1009	2.0	ND	1	7/10/2003	7/10/2003	
1,2-Dichloroethane	EPA 8260B	P3G1009	1.0	ND	1	7/10/2003	7/10/2003	
1,1-Dichloroethene	EPA 8260B	P3G1009	5.0	ND	1	7/10/2003	7/10/2003	
cis-1,2-Dichloroethene	EPA 8260B	P3G1009	2.0	ND	1	7/10/2003	7/10/2003	
trans-1,2-Dichloroethene	EPA 8260B	P3G1009	2.0	ND	1	7/10/2003	7/10/2003	
1,2-Dichloropropane	EPA 8260B	P3G1009	2.0	ND	1	7/10/2003	7/10/2003	
1,3-Dichloropropane	EPA 8260B	P3G1009	2.0	ND	1	7/10/2003	7/10/2003	
2,2-Dichloropropane	EPA 8260B	P3G1009	2.0	ND	1	7/10/2003	7/10/2003	
1,1-Dichloropropene	EPA 8260B	P3G1009	2.0	ND	1	7/10/2003	7/10/2003	
cis-1,3-Dichloropropene	EPA 8260B	P3G1009		ND	1	7/10/2003	7/10/2003	
trans-1,3-Dichloropropene	EPA 8260B	P3G1009		ND	1	7/10/2003	7/10/2003	
Ethylbenzene	EPA 8260B	P3G1009		ND	1	7/10/2003	7/10/2003	
Hexachlorobutadiene	EPA 8260B	P3G1009		ND	1	7/10/2003	7/10/2003	
·*								

Del Mar Analytical - Phoenix

Linda Eshelman For Tamara Saunders Project Manager

Blaes Environmental Mgmt., Inc.

Del Mar Analytical

Project ID: 007-1992-08

1433 North 3rd Ave. Phoenix, AZ 85003

Attention: Brett McDaniel

Report Number: PMF0803

Sampled: 06/27/03 Received: 06/27/03

VOLATILE ORGANICS BY GC/MS (EPA 5030B/8260B)

Analyte Method Batch Limit Result Factor Extracted Analyzed Qualified Sample ID: PMF0803-03 (MW-14 - Water) - cont. Reporting Units: ug/l 2-Hexanone EPA 8260B P3G1009 10 ND 1 7/10/2003 7/10/2003	
Reporting Units: ug/l	
Iodomethane EPA 8260B P3G1009 2.0 ND 1 7/10/2003 7/10/2003	
Isopropylbenzene EPA 8260B P3G1009 2.0 ND 1 7/10/2003 7/10/2003	
p-Isopropyltoluene EPA 8260B P3G1009 2.0 ND 1 7/10/2003 7/10/2003	
Methylene chloride EPA 8260B P3G1009 5.0 ND 1 7/10/2003 7/10/2003	
4-Methyl-2-pentanone (MIBK) EPA 8260B P3G1009 10 ND 1 7/10/2003 7/10/2003	
Naphthalene EPA 8260B P3G1009 2.0 ND 1 7/10/2003 7/10/2003	
n-Propylbenzene EPA 8260B P3G1009 2.0 ND 1 7/10/2003 7/10/2003	
Styrene EPA 8260B P3G1009 2.0 ND 1 7/10/2003 7/10/2003	
1,1,1,2-Tetrachloroethane EPA 8260B P3G1009 5.0 ND 1 7/10/2003 7/10/2003	
1,1,2,2-Tetrachloroethane EPA 8260B P3G1009 2.0 ND 1 7/10/2003 7/10/2003	
Tetrachloroethene EPA 8260B P3G1009 2.0 ND 1 7/10/2003 7/10/2003	
Toluene EPA 8260B P3G1009 2.0 ND 1 7/10/2003 7/10/2003	
1,2,3-Trichlorobenzene EPA 8260B P3G1009 5.0 ND 1 7/10/2003 7/10/2003	
1,2,4-Trichlorobenzene EPA 8260B P3G1009 5.0 ND 1 7/10/2003 7/10/2003	
1,1,1-Trichloroethane EPA 8260B P3G1009 2.0 ND 1 7/10/2003 7/10/2003	
1,1,2-Trichloroethane EPA 8260B P3G1009 2.0 ND 1 7/10/2003 7/10/2003	
Trichloroethene EPA 8260B P3G1009 2.0 ND 1 7/10/2003 7/10/2003	
Trichlorofluoromethane EPA 8260B P3G1009 5.0 ND 1 7/10/2003 7/10/2003	
1,2,3-Trichloropropane EPA 8260B P3G1009 10 ND 1 7/10/2003 7/10/2003	
1,2,4-Trimethylbenzene EPA 8260B P3G1009 2.0 ND 1 7/10/2003 7/10/2003	
1,3,5-Trimethylbenzene EPA 8260B P3G1009 2.0 ND 1 7/10/2003 7/10/2003	
Vinyl acetate EPA 8260B P3G1009 25 ND 1 7/10/2003 7/10/2003	
Vinyl chloride EPA 8260B P3G1009 5.0 ND 1 7/10/2003 7/10/2003	
Xylenes, Total EPA 8260B P3G1009 3.0 ND 1 7/10/2003 7/10/2003	
Surrogate: Dibromofluoromethane (80-135%) 102 %	
Surrogate: Toluene-d8 (80-125%) 107 %	
Surrogate: 4-Bromofluorobenzene (75-125%) 108 %	
Sample ID: PMF0803-03RE1 (MW-14 - Water) Reporting Units: ug/l	
Methyl-tert-butyl Ether (MTBE) EPA 8260B P3G1005 1.0 ND 1 7/10/2003 7/10/2003	
Surrogate: Dibromofluoromethane (80-135%) 107 %	
Surrogate: Toluene-d8 (80-125%) 108 %	
Surrogate: 4-Bromofluorobenzene (75-125%) 107 %	

Del Mar Analytical - Phoenix

Linda Eshelman For Tamara Saunders

1433 North 3rd Ave. Phoenix, AZ 85003 Attention: Brett McDaniel Project ID: 007-1992-08

Sampled: 06/27/03

Report Number: PMF0803

Sampled: 06/27/03

Received: 06/27/03

METHOD BLANK/QC DATA

VOLATILE ORGANICS BY GC/MS (EPA 5030B/8260B)

	Dagult	Reporting Limit	Units	Spike Level	Source	%REC	%REC		RPD Limit	Data Qualifiers
Analyte	Result	Limit	Umis	Lievei	Result	/orche	Limits	KI D	*3******	Z
Batch: P3G1005 Extracted: 07/10	<u>/03</u>									
Blank Analyzed: 07/10/03 (P3G10	05-BLK1)									
Methyl-tert-butyl Ether (MTBE)	ND	1.0	ug/l							
Surrogate: Dibromofluoromethane	22.8		ug/l	25.0		91	80-135			
Surrogate: Toluene-d8	26.8		ug/l	25.0		107	80-125			
Surrogate: 4-Bromofluorobenzene	24.6		ug/l	25.0		98	75-125			
LCS Analyzed: 07/10/03 (P3G100	5-BS1)									
Methyl-tert-butyl Ether (MTBE)	25.2	1.0	ug/l	25.0		101	70-130			
Surrogate: Dibromofluoromethane	24.1		ug/l	25.0		96	80-135			
Surrogate: Toluene-d8	26.7		ug/l	25.0		107	80-125			
Surrogate: 4-Bromofluorobenzene	27.2		ug/l	25.0		109	75-125			
LCS Dup Analyzed: 07/10/03 (P3	G1005-BSD	1)								
Methyl-tert-butyl Ether (MTBE)	26.0	1.0	ug/l	25.0		104	70-130		20	
Surrogate: Dibromofluoromethane	24.3		ug/l	25.0		97	80-135			
Surrogate: Toluene-d8	26.9		ug/l	25.0		108	80-125			
Surrogate: 4-Bromofluorobenzene	27.7		ug/l	25.0		111	75-125			
Matrix Spike Analyzed: 07/10/03	(P3G1005-	MS1)			Source:	PMF084	47-01			
Methyl-tert-butyl Ether (MTBE)	33.2	1.0	ug/l	25.0	4.6	114	60-140			
Surrogate: Dibromofluoromethane	24.4		ug/l	25.0		98	80-135			
Surrogate: Toluene-d8	26.7		ug/l	25.0		107	80-125			
Surrogate: 4-Bromofluorobenzene	27.9		ug/l	25.0		112	75-125			
Matrix Spike Dup Analyzed: 07/1	0/03 (P3G1	005-MSD1)			Source:	PMF08				
Methyl-tert-butyl Ether (MTBE)	32.5	1.0	ug/l	25.0	4.6	112	60-140		20	
Surrogate: Dibromofluoromethane	24.2		ug/l	25.0		97	80-135			
Surrogate: Toluene-d8	27.1		ug/l	25.0		108	80-125			
Surrogate: 4-Bromofluorobenzene	28.3		ug/l	25.0		113	75-125			

Del Mar Analytical - Phoenix

Linda Eshelman For Tamara Saunders

Blaes Environmental Mgmt., Inc.

1433 North 3rd Ave. Phoenix, AZ 85003

Attention: Brett McDaniel

Project ID: 007-1992-08

Report Number: PMF0803

Sampled: 06/27/03 Received: 06/27/03

METHOD BLANK/QC DATA

VOLATILE ORGANICS BY GC/MS (EPA 5030B/8260B)

		Reporting	~~ ·.		Source	%REC	%REC	ria a	RPD Limit	Data Qualifiers
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	KrD	Lilitat	Quanticis
Batch: P3G1009 Extracted: 0	07/10/03									
Blank Analyzed: 07/10/03 (P3	3G1009-BLK1)		٠							
Acetone	ND	20	ug/l							
Benzene	ND	1.0	ug/l							
Bromobenzene	ND	5.0	ug/l							
Bromochloromethane	ND	5.0	ug/l							
Bromodichloromethane	ND	2.0	ug/l							
Bromoform	ND	5.0	ug/l							
Bromomethane	ND	5.0	ug/I							
2-Butanone (MEK)	ND	10	ug/l							
n-Butylbenzene	ND	5.0	ug/l							
sec-Butylbenzene	ND	5.0	ug/l							
tert-Butylbenzene	ND	5.0	ug/l							
Carbon Disulfide	ND	5.0	ug/l							
Carbon tetrachloride	ND	5.0	ug/l							
Chlorobenzene	ND	1.0	ug/l							
Chloroethane	ND	5.0	ug/l							
Chloroform	ND	2.0	ug/l							
Chloromethane	ND	5.0	ug/l							
2-Chlorotoluene	ND	5.0	ug/l							
4-Chlorotoluene	ND	5.0	ug/l							
Dibromochloromethane	ND	2.0	ug/l							
1,2-Dibromo-3-chloropropane	ND	5.0	ug/l							
1,2-Dibromoethane (EDB)	ND	2.0	ug/l							
Dibromomethane	ND	2.0	ug/l							
1,2-Dichlorobenzene	ND	1.0	ug/l							
1,3-Dichlorobenzene	ND	1.0	ug/l							
1,4-Dichlorobenzene	ND	1.0	ug/l							
Dichlorodifluoromethane	ND	5.0	ug/l							
1,1-Dichloroethane	ND	2.0	ug/l							
1,2-Dichloroethane	ND	1.0	ug/I							
1,1-Dichloroethene	ND	5.0	ug/l							
cis-1,2-Dichloroethene	ND	2.0	ug/l							
trans-1,2-Dichloroethene	ND	2.0	ug/l							
1,2-Dichloropropane	ND	2.0	ug/l							
1,3-Dichloropropane	ND	2.0	ug/l							
2,2-Dichloropropane	ND	2.0	ug/l							
2,2 Dienioropropuno			Ü							

Del Mar Analytical - Phoenix

Linda Eshelman For Tamara Saunders

Blaes Environmental Mgmt., Inc.

1433 North 3rd Ave. Phoenix, AZ 85003

Attention: Brett McDaniel

Project ID: 007-1992-08

Report Number: PMF0803

Sampled: 06/27/03

Received: 06/27/03

METHOD BLANK/QC DATA

VOLATILE ORGANICS BY GC/MS (EPA 5030B/8260B)

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC	RPD	RPD Limit	Data Qualifiers
Batch: P3G1009 Extracted: 07/10	0/03									
Blank Analyzed: 07/10/03 (P3G10	009-BLK1)									
1,1-Dichloropropene	ND	2.0	ug/l							
cis-1,3-Dichloropropene	ND	2.0	ug/l							
trans-1,3-Dichloropropene	ND	2.0	ug/l							
Ethylbenzene	ND	2.0	ug/l							
Hexachlorobutadiene	ND	5.0	ug/l							
2-Hexanone	ND	10	ug/l							
Iodomethane	ND	2.0	ug/I							
Isopropylbenzene	ND	2.0	ug/l							
p-lsopropyltoluene	ND	2.0	ug/l							
Methylene chloride	ND	5.0	ug/l							
4-Methyl-2-pentanone (MIBK)	ND	10	ug/l							
Naphthalene	ND	2.0	ug/l							
n-Propylbenzene	ND	2.0	ug/l							
Styrene	ND	2.0	ug/l							
1,1,1,2-Tetrachloroethane	ND	5.0	ug/l							
1,1,2,2-Tetrachloroethane	ND	2.0	ug/l							
Tetrachloroethene	ND	2.0	ug/l							
Toluene	ND	2.0	ug/l							
1,2,3-Trichlorobenzene	ND	5.0	ug/l							
1,2,4-Trichlorobenzene	ND	5.0	ug/I							
1,1,1-Trichloroethane	ND	2.0	ug/l							
1,1,2-Trichloroethane	ND	2.0	ug/l							
Trichloroethene	ND	2.0	ug/l							
Trichlorofluoromethane	ND	5.0	ug/l							
1,2,3-Trichloropropane	ND	10	ug/I							
1,2,4-Trimethylbenzene	ND	2.0	ug/l							
1,3,5-Trimethylbenzene	ND	2.0	ug/I							
Vinyl acetate	ND	25	ug/l							
Vinyl chloride	ND	5.0	ug/l							
Xylenes, Total	ND	3.0	ug/l					_		
Surrogate: Dibromofluoromethane	25.1		ug/l	25.0		100	80-135			
Surrogate: Toluene-d8	26.8		ug/l	25.0		107	80-125			
Surrogate: 4-Bromofluorobenzene	26.7		ug/l	25.0		107	75-125)		

Del Mar Analytical - Phoenix

Linda Eshelman For Tamara Saunders

Blaes Environmental Mgmt., Inc.

1433 North 3rd Ave. Phoenix, AZ 85003

Attention: Brett McDaniel

Project ID: 007-1992-08

Report Number: PMF0803

Sampled: 06/27/03 Received: 06/27/03

METHOD BLANK/QC DATA

VOLATILE ORGANICS BY GC/MS (EPA 5030B/8260B)

		Reporting		Spike	Source	%REC	RPD	Data Oualifiers
Analyte	Result	Limit	Units	Level	Result %RE	C Limits RPD	Limit	Quanners
Batch: P3G1009 Extracted: 07/10	0/03							
LCS Analyzed: 07/10/03 (P3G100)9-BS1)					10.150		
Acetone	21.2	20	ug/l	25.0	85	40-150		
Benzene	27.6	1.0	ug/l	25.0	110			
Bromobenzene	28.1	5.0	ug/l	25.0	112	80-120		
Bromochloromethane	26.6	5.0	ug/l	25.0	106			
Bromodichloromethane	27.8	2.0	ug/l	25.0	111	80-125		
Bromoform	22.7	5.0	ug/l	25.0	91	75-140		
Bromomethane	28.4	5.0	ug/l	25.0	114			
2-Butanone (MEK)	20.4	10	ug/l	25.0	82	55-140		
n-Butylbenzene	26.7	5.0	ug/l	25.0	107			
sec-Butylbenzene	28.1	5.0	ug/l	25.0	112			
tert-Butylbenzene	28.6	5.0	ug/l	25.0	114			
Carbon Disulfide	26.2	5.0	ug/l	25.0	105			
Carbon tetrachloride	28.6	5.0	ug/l	25.0	114			
Chlorobenzene	28.1	1.0	ug/l	25.0	112			
Chloroethane	28.5	5.0	ug/l	25.0	114			
Chloroform	26.6	2.0	ug/l	25.0	100			
Chloromethane	28.6	5.0	ug/l	25.0	114			
2-Chlorotoluene	28.5	5.0	ug/l	25.0	114			
4-Chlorotoluene	29.1	5.0	ug/l	25.0	110			
Dibromochloromethane	24.7	2.0	ug/l	25.0	99			
1,2-Dibromo-3-chloropropane	19.5	5.0	ug/l	25.0	78			
1,2-Dibromoethane (EDB)	24.8	2.0	ug/l	25.0	99			
Dibromomethane	25.3	2.0	ug/l	25.0	10			
1,2-Dichlorobenzene	28.2	1.0	ug/l	25.0	11			
1,3-Dichlorobenzene	29.0	1.0	ug/l	25.0	11			
1,4-Dichlorobenzene	28.7	1.0	ug/l	25.0	11			
Dichlorodifluoromethane	29.6	5.0	ug/l	25.0	11			
1,1-Dichloroethane	27.2	2.0	ug/l	25.0	10			
1,2-Dichloroethane	24.8	1.0	ug/l	25.0	99			
1,1-Dichloroethene	27.3	5.0	ug/l	25.0	10			
cis-1,2-Dichloroethene	26.9	2.0	ug/l	25.0	10			
trans-1,2-Dichloroethene	26.7	2.0	ug/l	25.0	10			
1,2-Dichloropropane	28.0	2.0	ug/l	25.0	11			
1,3-Dichloropropane	25.1	2.0	ug/l	25.0	10			
2,2-Dichloropropane	29.8	2.0	ug/l	25.0	11	9 75-135		

Del Mar Analytical - Phoenix

Linda Eshelman For Tamara Saunders

Blaes Environmental Mgmt., Inc.

1433 North 3rd Ave. Phoenix, AZ 85003

Attention: Brett McDaniel

Project ID: 007-1992-08

Report Number: PMF0803

Sampled: 06/27/03 Received: 06/27/03

METHOD BLANK/QC DATA

VOLATILE ORGANICS BY GC/MS (EPA 5030B/8260B)

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC	RPD	RPD Limit	Data Qualifiers
Batch: P3G1009 Extracted: 07/10	0/03									
LCS Analyzed: 07/10/03 (P3G100										
1,1-Dichloropropene	28.7	2.0	ug/l	25.0		115	80-120			
cis-1,3-Dichloropropene	28.1	2.0	ug/l	25.0		112	80-120			
trans-1,3-Dichloropropene	26.7	2.0	ug/l	25.0		107	80-120			
Ethylbenzene	27.8	2.0	ug/l	25.0		111	80-120			
Hexachlorobutadiene	27.2	5.0	ug/l	25.0		109	60-140			
2-Hexanone	20.4	10	ug/l	25.0		82	60-135			
Iodomethane	26.7	2.0	ug/l	25.0		107	60-145			
Isopropylbenzene	29.3	2.0	ug/l	25.0		117	80-120			
p-Isopropyltoluene	27.6	2.0	ug/l	25.0		110	75-120			
Methylene chloride	26.6	5.0	ug/l	25.0		106	75-120			
4-Methyl-2-pentanone (MIBK)	19.4	10	ug/l	25.0		78	70-130			
Naphthalene	23.9	2.0	ug/l	25.0		96	70-130			
n-Propylbenzene	27.3	2.0	ug/l	25.0		109	80-130			
Styrene	29.2	2.0	ug/l	25.0		117	70-120			
1,1,1,2-Tetrachloroethane	27.8	5.0	ug/l	25.0		111	80-130			
1,1,2,2-Tetrachloroethane	24.4	2.0	ug/l	25.0		98	70-125			
Tetrachloroethene	27.2	2.0	ug/l	25.0		109	80-130			
Toluene	27.8	2.0	ug/l	25.0		111	75-120			
1,2,3-Trichlorobenzene	26.2	5.0	ug/l	25.0		105	70-120			
1,2,4-Trichlorobenzene	27.6	5.0	ug/l	25.0		110	75-120	•		
1,1,1-Trichloroethane	27.7	2.0	ug/l	25.0		111	80-125			
1,1,2-Trichloroethane	25.6	2.0	ug/l	25.0		102	75-120			
Trichloroethene	27.9	2.0	ug/l	25.0		112	80-120			
Trichlorofluoromethane	30.3	5.0	ug/l	25.0		121	70-140			
1,2,3-Trichloropropane	23.4	10	ug/l	25.0		94	70-125			
1,2,4-Trimethylbenzene	28.5	2.0	ug/l	25.0		114	80-120			
1,3,5-Trimethylbenzene	28.5	2.0	ug/l	25.0		114	80-120			
Vinyl acetate	22.2	25	ug/l	25.0		89	75-150			
Vinyl chloride	27.8	5.0	ug/l	25.0		111	80-130			
Xylenes, Total	82.9	3.0	ug/l	75.0		111	70-125			
Surrogate: Dibromofluoromethane	25.9		ug/l	25.0		104	80-135			
Surrogate: Toluene-d8	26.8		ug/l	25.0		107	80-125			
Surrogate: 4-Bromofluorobenzene	26.5		ug/l	25.0		106	75-125	i		

Del Mar Analytical - Phoenix

Linda Eshelman For Tamara Saunders

Blaes Environmental Mgmt., Inc.

1433 North 3rd Ave. Phoenix, AZ 85003

Attention: Brett McDaniel

Project ID: 007-1992-08

Report Number: PMF0803

Sampled: 06/27/03 Received: 06/27/03

METHOD BLANK/QC DATA

VOLATILE ORGANICS BY GC/MS (EPA 5030B/8260B)

		Reporting	-v •.		Source	%REC	%REC	DDD	RPD Limit	Data Qualifiers
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	KFD	Limit	Quantiers
Batch: P3G1009 Extracted: 0'	7/10/03									
LCS Dup Analyzed: 07/10/03	(P3G1009-BSD1					25	10.150	2	20	
Acetone	21.8	20	ug/l	25.0		87	40-150	3	20 20	
Benzene	28.1	1.0	ug/l	25.0		112	80-120	2	20	
Bromobenzene	28.4	5.0	ug/l	25.0		114	80-120	1		
Bromochloromethane	26.6	5.0	ug/l	25.0		106	80-120	0	20 20	
Bromodichloromethane	28.1	2.0	ug/l	25.0		112	80-125	1	20	
Bromoform	22.4	5.0	ug/l	25.0		90	75-140	1	20	
Bromomethane	28.4	5.0	ug/l	25.0		114	80-135	0	20	
2-Butanone (MEK)	21.4	10	ug/l	25.0		86	55-140	5		
n-Butylbenzene	27.1	5.0	ug/l	25.0		108	80-125	1	20	
sec-Butylbenzene	28.5	5.0	ug/l	25.0		114	80-125	1	20	
tert-Butylbenzene	29.0	5.0	ug/l	25.0		116	80-130	1	20	
Carbon Disulfide	26.7	5.0	ug/l	25.0		107	70-125	2	20	
Carbon tetrachloride	29.8	5.0	ug/l	25.0		119	80-140	4	20	
Chlorobenzene	28.6	1.0	ug/l	25.0		114	80-120	2	20	
Chloroethane	29.2	5.0	ug/l	25.0		117	80-125	2	20	
Chloroform	27.1	2.0	ug/l	25.0		108	80-120	2	20	
Chloromethane	28.7	5.0	ug/l	25.0		115	60-125	0	20	
2-Chlorotoluene	29.0	5.0	ug/l	25.0		116	80-120	2	20	
4-Chlorotoluene	29.5	5.0	ug/l	25.0		118	80-120	1	20	
Dibromochloromethane	25.1	2.0	ug/l	25.0		100	80-130	2	20	
1,2-Dibromo-3-chloropropane	18.9	5.0	ug/l	25.0		76	55-125		20	
1,2-Dibromoethane (EDB)	24.6	2.0	ug/l	25.0		98	70-130		20	
Dibromomethane	24.8	2.0	ug/l	25.0		99	80-120		20	
1,2-Dichlorobenzene	28.2	1.0	ug/l	25.0		113	80-120		20	
1,3-Dichlorobenzene	28.9	1.0	ug/l	25.0		116	80-120		20	
1,4-Dichlorobenzene	28.9	1.0	ug/l	25.0		116	80-120		20	
Dichlorodifluoromethane	30.5	5.0	ug/l	25.0		122	55-155	3	20	
1,1-Dichloroethane	27.9	2.0	ug/l	25.0		112	80-120	3	20	
1,2-Dichloroethane	24.9	1.0	ug/l	25.0		100	70-120	0	20	
1,1-Dichloroethene	27.7	5.0	ug/l	25.0		111	80-125	1	20	
cis-1,2-Dichloroethene	27.4	2.0	ug/l	25.0		110	80-125	2	20	
trans-1,2-Dichloroethene	27.6	2.0	ug/I	25.0		110	80-120	3	20	
1,2-Dichloropropane	28.3	2.0	ug/l	25.0		113	75-120	1	20	
1,3-Dichloropropane	24.7	2.0	ug/l	25.0		99	80-120	2	20	
2,2-Dichloropropane	31.6	2.0	ug/l	25.0		126	75-135	6	20	
2,2-Dictioropropano	2									

Del Mar Analytical - Phoenix

Linda Eshelman For Tamara Saunders

1433 North 3rd Ave. Phoenix, AZ 85003

Attention: Brett McDaniel

Project ID: 007-1992-08

Report Number: PMF0803

Sampled: 06/27/03 Received: 06/27/03

METHOD BLANK/QC DATA

VOLATILE ORGANICS BY GC/MS (EPA 5030B/8260B)

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: P3G1009 Extracted: 0	7/10/03									
LCS Dup Analyzed: 07/10/03				25.0		110	80-120	3	20	
1,1-Dichloropropene	29.7	2.0	ug/l	25.0		119	80-120	1	20	
cis-1,3-Dichloropropene	28.3	2.0	ug/l	25.0		113	80-120	1	20	
trans-1,3-Dichloropropene	26.9	2.0	ug/l	25.0		108	80-120	1	20	
Ethylbenzene	28.2	2.0	ug/l	25.0		113 110	60-140	1	20	
Hexachlorobutadiene	27.4	5.0	ug/l	25.0			60-135	8	20	
2-Hexanone	22.0	10	ug/l	25.0		88	60-133	1	20	
Iodomethane	27.0	2.0	ug/l	25.0		108	80-143	1	20	
Isopropylbenzene	29.5	2.0	ug/l	25.0		118			20	
p-Isopropyltoluene	27.8	2.0	ug/l	25.0		111	75-120	1	20	
Methylene chloride	26.7	5.0	ug/l	25.0		107	75-120		20	
4-Methyl-2-pentanone (MIBK)	19.3	10	ug/l	25.0		77	70-130	1	20	
Naphthalene	23.1	2.0	ug/l	25.0		92	70-130	3	20	
n-Propylbenzene	27.7	2.0	ug/l	25.0		111	80-130	1	20	
Styrene	29.6	2.0	ug/l	25.0		118	70-120	1	20	
1,1,1,2-Tetrachloroethane	28.3	5.0	ug/l	25.0		113	80-130	2		
1,1,2,2-Tetrachloroethane	23.5	2.0	ug/l	25.0		94	70-125	4	20	
Tetrachloroethene	27.9	2.0	ug/l	25.0		112	80-130	3	20	
Toluene	28.5	2.0	ug/l	25.0		114	75-120	2	20	
1,2,3-Trichlorobenzene	25.9	5.0	ug/l	25.0		104	70-120	1	20	
1,2,4-Trichlorobenzene	27.4	5.0	ug/l	25.0		110	75-120	1	20	
1,1,1-Trichloroethane	28.2	2.0	ug/l	25.0		113	80-125	2	20	
1,1,2-Trichloroethane	25.2	2.0	ug/l	25.0		101	75-120		20	
Trichloroethene	28.4	2.0	ug/l	25.0		114	80-120		20	
Trichlorofluoromethane	30.6	5.0	ug/l	25.0		122	70-140		20	
1,2,3-Trichloropropane	22.8	10	ug/l	25.0		91	70-125		20	
1,2,4-Trimethylbenzene	28.9	2.0	ug/l	25.0		116	80-120		20	
1,3,5-Trimethylbenzene	28.6	2.0	ug/l	25.0		114	80-120		20	
Vinyl acetate	22.2	25	ug/l	25.0		89	75-150		20	
Vinyl chloride	31.5	5.0	ug/l	25.0		126	80-130		20	
Xylenes, Total	84.7	3.0	ug/l	75.0		113	70-125		20	
Surrogate: Dibromofluoromethan	25.6		ug/l	25.0		102	80-135			
Surrogate: Toluene-d8	27.2		ug/l	25.0		109	80-125			
Surrogate: 4-Bromofluorobenzene	26.2		ug/l	25.0		105	75-125	ī		

Del Mar Analytical - Phoenix

Linda Eshelman For Tamara Saunders

Blaes Environmental Mgmt., Inc.

1433 North 3rd Ave. Phoenix, AZ 85003

Attention: Brett McDaniel

Project ID: 007-1992-08

Report Number: PMF0803

Sampled: 06/27/03 Received: 06/27/03

METHOD BLANK/QC DATA

VOLATILE ORGANICS BY GC/MS (EPA 5030B/8260B)

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: P3G1009 Extracted: 07/1	0/03									
Matrix Spike Analyzed: 07/10/03	(P3G1009-M	IS1)	2		Source:	PMF081	6-01			
Acetone	11.4	20	ug/l	25.0	ND	46	25-150			
Benzene	27.9	1.0	ug/l	25.0	ND	112	70-125			
Bromobenzene	28.2	5.0	ug/l	25.0	ND	113	75-125			
Bromochloromethane	28.3	5.0	ug/l	25.0	ND	113	70-130			
Bromodichloromethane	29.0	2.0	ug/l	25.0	ND	116	70-130			
Bromoform	26.5	5.0	ug/l	25.0	ND	106	40-140			
Bromomethane	26.9	5.0	ug/l	25.0	ND	108	65-150			
2-Butanone (MEK)	18.7	10	ug/l	25.0	ND	75	20-160			
n-Butylbenzene	26.7	5.0	ug/l	25.0	ND	107	80-125			
sec-Butylbenzene	27.7	5.0	ug/l	25.0	ND	111	75-130			
tert-Butylbenzene	28.5	5.0	ug/l	25.0	ND	114	75-130			
Carbon Disulfide	25.7	5.0	ug/l	25.0	ND	103	50-150			
Carbon tetrachloride	30.3	5.0	ug/l	25.0	ND	121	70-150			
Chlorobenzene	28.4	1.0	ug/l	25.0	ND	114	80-130			
Chloroethane	27.0	5.0	ug/l	25.0	ND	108	70-130			
Chloroform	27.6	2.0	ug/l	25.0	ND	110	80-135			
Chloromethane	27.2	5.0	ug/l	25.0	ND	109	50-130			
2-Chlorotoluene	28.2	5.0	ug/l	25.0	ND	113	75-130			
4-Chlorotoluene	28.8	5.0	ug/l	25.0	ND	115	75-130			
Dibromochloromethane	27.8	2.0	ug/l	25.0	ND	111	80-130			
1,2-Dibromo-3-chloropropane	25.7	5.0	ug/l	25.0	ND	103	60-120			
1,2-Dibromoethane (EDB)	28.5	2.0	ug/l	25.0	ND	114	75-125			
Dibromomethane	28.0	2.0	ug/l	25.0	ND	112	65-135			
1,2-Dichlorobenzene	29.1	1.0	ug/l	25.0	ND	116	75-120			
1,3-Dichlorobenzene	28.8	1.0	ug/l	25.0	ND	115	80-120			
1,4-Dichlorobenzene	29.2	1.0	ug/l	25.0	ND	117	80-120			
Dichlorodifluoromethane	30.2	5.0	ug/l	25.0	ND	121	50-155			
1,1-Dichloroethane	27.3	2.0	ug/l	25.0	ND	109	70-130			
1,2-Dichloroethane	27.5	1.0	ug/l	25.0	ND	110	70-120			
1,1-Dichloroethene	26.6	5.0	ug/l	25.0	ND	106	65-130			
cis-1,2-Dichloroethene	27.5	2.0	ug/l	25.0	ND	110	70-130			
trans-1,2-Dichloroethene	27.6	2.0	ug/l	25.0	ND	110	80-125			
1,2-Dichloropropane	28.6	2.0	ug/l	25.0	ND	114	70-120			
1,3-Dichloropropane	27.7	2.0	ug/l	25.0	ND	111	70-125			
2,2-Dichloropropane	32.2	2.0	ug/l	25.0	ND	129	65-155			
• •										

Del Mar Analytical - Phoenix

Linda Eshelman For Tamara Saunders

Blaes Environmental Mgmt., Inc.

1433 North 3rd Ave. Phoenix, AZ 85003

Attention: Brett McDaniel

Project ID: 007-1992-08

Report Number: PMF0803

Sampled: 06/27/03 Received: 06/27/03

METHOD BLANK/QC DATA

VOLATILE ORGANICS BY GC/MS (EPA 5030B/8260B)

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: P3G1009 Extracted: 07/1	0/03_									
					^	DA CUADA	< 0.1			
Matrix Spike Analyzed: 07/10/03	(P3G1009-M	IS1)	,,,	05.0	Source:		70-120			
1,1-Dichloropropene	29.3	2.0	ug/l	25.0	ND	117	70-120			
cis-1,3-Dichloropropene	29.7	2.0	ug/l	25.0	ND	119	70-123			
trans-1,3-Dichloropropene	29.7	2.0	ug/l	25.0	ND	119 112	75-135			
Ethylbenzene	28.1	2.0	ug/l	25.0	ND	110	60-140			
Hexachlorobutadiene	27.5	5.0	ug/l	25.0	ND	86	20-140			
2-Hexanone	21.6	10	ug/l	25.0	ND	105	50-150			
Iodomethane	26.2	2.0	ug/l	25.0	ND		80-120			
Isopropylbenzene	28.9	2.0	ug/l	25.0	ND	116	70-130			
p-Isopropyltoluene	27.2	2.0	ug/l	25.0	ND	109	70-130			
Methylene chloride	25.6	5.0	ug/l	25.0	ND	102	20-165			
4-Methyl-2-pentanone (MIBK)	25.9	10	ug/l	25.0	ND	104	35-135			
Naphthalene	28.6	2.0	ug/I	25.0	ND	114	80-130			
n-Propylbenzene	27.3	2.0	ug/l	25.0	ND	109				
Styrene	28.9	2.0	ug/l	25.0	ND	116	65-130			
1,1,1,2-Tetrachloroethane	28.7	5.0	ug/l	25.0	ND	115	75-130			
1,1,2,2-Tetrachloroethane	29.5	2.0	ug/l	25.0	ND	118	70-125			
Tetrachloroethene	27.6	2.0	ug/l	25.0	ND	110	70-130			
Toluene	28.4	2.0	ug/l	25.0	ND	114	70-130			
1,2,3-Trichlorobenzene	28.0	5.0	ug/l	25.0	ND	112	50-120			
1,2,4-Trichlorobenzene	28.4	5.0	ug/l	25.0	ND	114	60-120			
1,1,1-Trichloroethane	29.1	2.0	ug/l	25.0	ND	116	75-125			
1,1,2-Trichloroethane	28.9	2.0	ug/l	25.0	ND	116	75-120			
Trichloroethene	27.9	2.0	ug/l	25.0	·ND	112	70-135			
Trichlorofluoromethane	28.5	5.0	ug/l	25.0	ND	114	70-145			
1,2,3-Trichloropropane	28.2	10	ug/l	25.0	ND	113	65-130			
1,2,4-Trimethylbenzene	28.3	2.0	ug/l	25.0	ND	113	75-120			
1,3,5-Trimethylbenzene	28.4	2.0	ug/l	25.0	ND	114	75-125			
Vinyl acetate	28.0	25	ug/l	25.0	ND	112	50-165			
Vinyl chloride	31.5	5.0	ug/l	25.0	ND	126	70-150			
Xylenes, Total	82.8	3.0	ug/l	75.0	ND	110	70-125			
Surrogate: Dibromofluoromethane	26.8		ug/l	25.0		107	80-135			
Surrogate: Toluene-d8	26.9		ug/l	25.0		108	80-125			
Surrogate: 4-Bromofluorobenzene	26.3		ug/l	25.0		105	75-125	i		

Del Mar Analytical - Phoenix

Linda Eshelman For Tamara Saunders

Blaes Environmental Mgmt., Inc.

1433 North 3rd Ave. Phoenix, AZ 85003

Phoenix, AZ 85003 Attention: Brett McDaniel Project ID: 007-1992-08

Report Number: PMF0803

Sampled: 06/27/03 Received: 06/27/03

METHOD BLANK/QC DATA

VOLATILE ORGANICS BY GC/MS (EPA 5030B/8260B)

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: P3G1009 Extracted: 07/	10/03									
Matrix Spike Dup Analyzed: 07.	/10/03 (P3G10	009-MSD1)			Source:	PMF081	6-01			
Acetone	12.6	20	ug/l	25.0	ND	50	25-150	10	20	
Benzene	28.0	1.0	ug/l	25.0	ND	112	70-125	0	20	
Bromobenzene	28.7	5.0	ug/l	25.0	ND	115	75-125	2	20	
Bromochloromethane	28.4	5.0	ug/l	25.0	ND	114	70-130	0	20	
Bromodichloromethane	29.1	2.0	ug/l	25.0	ND	116	70-130	0	20	
Bromoform	27.1	5.0	ug/l	25.0	ND	108	40-140	2	20	
Bromomethane	26.7	5.0	ug/l	25.0	ND	107	65-150	i	20	
2-Butanone (MEK)	18.9	10	ug/l	25.0	ND	76	20-160	1	20	
n-Butylbenzene	26.7	5.0	ug/l	25.0	ND	107	80-125	0	20	
sec-Butylbenzene	28.0	5.0	ug/l	25.0	ND	112	75-130	1	20	
tert-Butylbenzene	28.2	5.0	ug/l	25.0	ND	113	75-130	1	20	
Carbon Disulfide	25.9	5.0	ug/l	25.0	ND	104	50-150	1	20	
Carbon tetrachloride	29.9	5.0	ug/l	25.0	ND	120	70-150	1	20	
Chlorobenzene	28.3	1.0	ug/l	25.0	ND	113	80-130	0	20	
Chloroethane	27.0	5.0	ug/l	25.0	ND	108	70-130	0	20	
Chloroform	27.2	2.0	ug/l	25.0	ND	109	80-135	1	20	
Chloromethane	27.2	5.0	ug/l	25.0	ND	109	50-130	0	20	
2-Chlorotoluene	28.6	5.0	ug/l	25.0	ND	114	75-130	1	20	
4-Chlorotoluene	29.1	5.0	ug/l	25.0	ND	116	75-130	1	20	
Dibromochloromethane	27.9	2.0	ug/l	25.0	ND	112	80-130	0	20	
1,2-Dibromo-3-chloropropane	26.1	5.0	ug/l	25.0	ND	104	60-120	2	20	
1,2-Dibromoethane (EDB)	28.4	2.0	ug/l	25.0	ND	114	75-125	0	20	
Dibromomethane	27.9	2.0	ug/l	25.0	ND	112	65-135	0	20	
1,2-Dichlorobenzene	28.9	1.0	ug/l	25.0	ND	116	75-120	1	20	
1,3-Dichlorobenzene	29.0	1.0	ug/l	25.0	ND	116	80-120		20	
1,4-Dichlorobenzene	28.9	1.0	ug/l	25.0	ND	116	80-120		20	
Dichlorodifluoromethane	29.5	5.0	ug/l	25.0	ND	118	50-155		20	
1,1-Dichloroethane	27.3	2.0	ug/l	25.0	ND	109	70-130		20	
1,2-Dichloroethane	27.5	1.0	ug/l	25.0	ND	110	70-120		20	
1,1-Dichloroethene	26.5	5.0	ug/l	25.0	ND	106	65-130	0	20	
cis-1,2-Dichloroethene	27.6	2.0	ug/l	25.0	ND	110	70-130	0	20	
trans-1,2-Dichloroethene	27.2	2.0	ug/l	25.0	ND	109	80-125	1	20	
1,2-Dichloropropane	28.8	2.0	ug/l	25.0	ND	115	70-120	1	20	
1,3-Dichloropropane	27.9	2.0	ug/l	25.0	ND	112	70-125	1	20	
2,2-Dichloropropane	30.9	2.0	ug/l	25.0	ND	124	65-155	4	20	
z,z ziemoropropuno			~							

Del Mar Analytical - Phoenix

Linda Eshelman For Tamara Saunders

Blaes Environmental Mgmt., Inc.

1433 North 3rd Ave. Phoenix, AZ 85003

Attention: Brett McDaniel

Project ID: 007-1992-08

Report Number: PMF0803

Sampled: 06/27/03 Received: 06/27/03

METHOD BLANK/QC DATA

VOLATILE ORGANICS BY GC/MS (EPA 5030B/8260B)

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: P3G1009 Extracted: 07/16	0/03									
		00 340754)			Comment	PMF081	6_01			
Matrix Spike Dup Analyzed: 07/1	0/03 (P3G10	09-MSD1)		25.0	ND	116	70-120	1	20	
1,1-Dichloropropene	29.0	2.0	ug/l		ND ND	118	70-125	1	20	
cis-1,3-Dichloropropene	29.5	2.0	ug/l	25.0	ND ND	118	70-120	0	20	
trans-1,3-Dichloropropene	29.6	2.0	ug/l	25.0	ND	112	75-135	1	20	
Ethylbenzene	27.9	2.0	ug/l	25.0	ND ND	108	60-140	2	20	
Hexachlorobutadiene	26.9	5.0	ug/l	25.0	ND ND	86	20-140	1	20	
2-Hexanone	21.5	10	ug/l	25.0		105	50-150	0	20	
Iodomethane	26.2	2.0	ug/l	25.0	ND	115	80-120	0	20	
Isopropylbenzene	28.8	2.0	ug/l	25.0	ND		70-130	1	20	
p-Isopropyltoluene	26.9	2.0	ug/l	25.0	ND	108	70-130	2	20	
Methylene chloride	26.0	5.0	ug/l	25.0	ND	104 104	20-165	0	20	
4-Methyl-2-pentanone (MIBK)	25.9	10	ug/l	25.0	ND			1	20	
Naphthalene	29.0	2.0	ug/l	25.0	ND	116	35-135 80-130	1	20	
n-Propylbenzene	27.6	2.0	ug/l	25.0	ND	110		1 1	20	
Styrene	28.6	2.0	ug/l	25.0	ND	114	65-130	1	20	
1,1,1,2-Tetrachloroethane	28.9	5.0	ug/l	25.0	ND	116	75-130	2	20	
1,1,2,2-Tetrachloroethane	30.0	2.0	ug/I	25.0	ND	120	70-125		20	
Tetrachloroethene	27.5	2.0	ug/l	25.0	ND	110	70-130	0	20	
Toluene	28.2	2.0	ug/l	25.0	ND	113	70-130		20 20	
1,2,3-Trichlorobenzene	28.1	5.0	ug/l	25.0	ND	112	50-120		20	
1,2,4-Trichlorobenzene	28.5	5.0	ug/l	25.0	ND	114	60-120			
1,1,1-Trichloroethane	28.5	2.0	ug/l	25.0	ND	114	75-125		20	
1,1,2-Trichloroethane	28.8	2.0	ug/l	25.0	ND	115	75-120		20	
Trichloroethene	27.7	2.0	ug/l	25.0	ND	111	70-135		20	
Trichlorofluoromethane	28.5	5.0	ug/l	25.0	ND	114	70-145		20	
1,2,3-Trichloropropane	28.6	10	ug/l	25.0	ND	114	65-130		20	
1,2,4-Trimethylbenzene	28.4	2.0	ug/l	25.0	ND	114	75-120		20	
1,3,5-Trimethylbenzene	28.0	2.0	ug/l	25.0	ND	112	75-125		20	
Vinyl acetate	27.2	25	ug/l	25.0	ND	109	50-165		20	
Vinyl chloride	31.0	5.0	ug/l	25.0	ND	124	70-150		20	
Xylenes, Total	82.8	3.0	ug/l	75.0	ND	110	70-125		20	
Surrogate: Dibromofluoromethane	26.5		ug/l	25.0		106	80-135			
Surrogate: Toluene-d8	27.1		ug/l	25.0		108	80-123			
Surrogate: 4-Bromofluorobenzene	26.5		ug/l	25.0		106	75-123	5		

Del Mar Analytical - Phoenix

Linda Eshelman For Tamara Saunders

Blaes Environmental Mgmt., Inc.

1433 North 3rd Ave. Phoenix, AZ 85003

Attention: Brett McDaniel

Project ID: 007-1992-08

Report Number: PMF0803

Sampled: 06/27/03 Received: 06/27/03

DATA QUALIFIERS AND DEFINITIONS

ND

Analyte NOT DETECTED at or above the reporting limit or MDL, if MDL is specified.

RPD

Relative Percent Difference

ADDITIONAL COMMENTS

For 8260 analyses:

Due to the high water solubility of alcohols and ketones, the calibration criteria for these compounds is <30% RSD. The average % RSD of all compounds in the calibration is 15%, in accordance with EPA methods.

Del Mar Analytical - Phoenix Linda Eshelman For Tamara Saunders Project Manager

Del Mar Analytical

2852 Alton Ave., Irvine, CA 92606 (949) 261-1022 FAX (949) 261-1022 FAX (949) 261-1022 FAX (909) 370-4667 FAX (909) 370-1046 1014 E. Cooley Dr. Suite 805, San Diego, CA 92123 (858) 505-8596 FAX (858) 505-9689 9830 South 51st St., Suite B-120, Phoenix, AZ 85044 (480) 785-0043 FAX (480) 785-6851 2520 E. Sunset Rd. #3, Las Vegas, NV 89120 (702) 798-3620 FAX (702) 798-3621

CHAIN OF CUSTODY FORM

Ö

alives 5 6075 Tender Instructions Special Instructi	Project/PO Number:
Special Instructions	80-2551-290
Special Instructions	
Special Instructions Special Instructions Special Instructions Special Instructions Special Instructions Special Instructions Special Instructions Special Instructions Turnaround Time: Sample Integrity: (Check) Instact Instact Sample Integrity: (Check) Instact Insta	Phone Number: (512)
Special Instructions Special Instructions Special Instructions	D
Date /Time: Date	Preservatives
Date / Time: Date / Time: Date / Time: Date / Time: A8 hours Date / Time: Date / Time: A8 hours Date / Time: Date / Tim	3 6077103 HC1 X
Date /Time: Date	
Date /Time: Date	1 /// 50/22/9
Date /Time: Check) California Californi	+
Date /Time: Date	
Date /Time: Date /Time: Turnaround Time: (Check) T2 hours T2 hours T2 hours 5 days T4 hours T4 hours T4 hours T4 hours T5 hours T2 hours T2 hours T4 hours T4 hours T5 days	
Date /Time: Date	
Date /Time: Date /Time: Date /Time: Check Date /Time: Check Date /Time: Check Date /Time: Check C	
Date /Time: Date /Time: Turnaround Time: (Check) Same day 72 hours 5 days 24 hours 5 days 24 hours 5 days 24 hours 148 hours 15 days 24 hours 15 days 25 da	
Date /Time: Date /Time: Turnaround Time: (Check) Same day 72 hours 5 days 5 days	
Date /Time: Date /Time: Date /Time: Date /Time: Sample Integrity: (Check) Check Chours Chours Chours Chours Check Chours Check Chours Check Ch	
Date /Time: Check Date /Time: Check Chours Ch	
Date /Time: Turnaround Time: (Check) Same day 72 hours Date /Time: 24 hours 5 days A8 hours normal 48 hours Date /Time: Sample Integrity: (Check) 0 C Intact on ice 2 (0 C	
Date /Time: Turnaround Time: (Check) Same day 72 hours Date /Time: 24 hours 5 days Habours normal Sample Integrity: (Check) (Check) Intact on ice (Check)	
Date /Time: Turnaround Time: Check) Date /Time: 24 hours 5 days A8 hours normal 100 C	
Date /Time: 5 days 5.10 Intact on ice K (0 C	Received by:
Date /Time: Sample Integrity: (Check)	12:10 / S
Sample Integrity: (Check) Or 27 53 (2:10) intact on ice K (0 C	Date /Time:
5 527 63 (2:10 Intact on ice X 6 /	Received in Lab by

Note: By relinquishing samples to Del Mar Analytical, client agrees to pay for the services requested on the chain of custody due within 30 days from the date of invoice. Sample(s) will be disposed of after 30 days.

80000

LABORATORY REPORT

Prepared For: Blaes Environmental Mgmt., Inc.

Project: 007-1992-08

1433 North 3rd Ave. Phoenix, AZ 85003

Phoenix, AZ 85003 Attention: Brett McDaniel

Sampled: 06/27/03 Received: 06/27/03 Issued: 07/10/03

AZ DHS #AZ0426

The results listed within this Laboratory Report pertain only to the samples tested in the laboratory. All soil samples are reported on a wet weight basis unless otherwise noted in the report. This Laboratory Report is confidential and is intended for the sole use of Del Mar Analytical and its client. This report shall not be reproduced, except in full, without written permission from Del Mar Analytical.

This entire report was reviewed and approved for release.

CASE NARRATIVE

SAMPLE RECEIPT:

Samples were received intact, at 6°C, on ice and with chain of custody documentation.

HOLDING TIMES:

Holding times were met.

PRESERVATION:

Samples requiring preservation were verified prior to sample analysis.

QA/QC CRITERIA:

All analyses met method criteria, except as noted in the report with data qualifiers.

COMMENTS:

No significant observations were made.

SUBCONTRACTED:

No analyses were subcontracted to an outside laboratory.

LABORATORY ID

CLIENT ID

MATRIX

PMF0804-01

IDW-1992-0603

Water

Da Mar Analytical - Phoenix Linda Eshelman For Tamara Saunders Project Manager

Blaes Environmental Mgmt., Inc.

1433 North 3rd Ave.

Phoenix, AZ 85003 Attention: Brett McDaniel Project ID: 007-1992-08

Sampled: 06/27/03

Report Number: PMF0804

Received: 06/27/03

BTEX & MTBE (EPA 5030B/8260B)

			`		•			
Analyte	Method	Batch	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: PMF0804-01 (IDW-1992-0	603 - Water)							
Reporting Units: ug/l								
· · · · · · · · · · · · · · · · · · ·	EPA 8260B	P3G0920	1.0	ND	1	7/9/2003	7/10/2003	
Benzene	EPA 8260B	P3G0920	2.0	ND	1	7/9/2003	7/10/2003	
Ethylbenzene					1		7/10/2003	
Methyl-tert-butyl Ether (MTBE)	EPA 8260B	P3G0920	5.0	ND	i	7/9/2003		
Toluene	EPA 8260B	P3G0920	2.0	ND	1	7/9/2003	7/10/2003	
 	EPA 8260B	P3G0920	3.0	ND	1	7/9/2003	7/10/2003	
Xylenes, Total		1300720	5.0	_				
Surrogate: Dibromofluoromethane (80-	-135%)			102 %				
Surrogate: Toluene-d8 (80-125%)				106 %				
Surrogate: 4-Bromofluorobenzene (75-	125%)			96 %				

Blaes Environmental Mgmt., Inc.

1433 North 3rd Ave.

Phoenix, AZ 85003 Attention: Brett McDaniel Project ID: 007-1992-08

Report Number: PMF0804

Sampled: 06/27/03 Received: 06/27/03

METHOD BLANK/QC DATA

BTEX & MTBE (EPA 5030B/8260B)

		Reporting	T 7 */.	Spike	Source	%REC	%REC	DDD	RPD Limit	Data Qualifiers
Analyte	Result	Limit	Units	Level	Resuit	70RE/C	Lilitio	KI D	Dillit	Qualitation
Batch: P3G0920 Extracted: 07/09	9/03									
Blank Analyzed: 07/09/03 (P3G0)	920-BLK1)		_							
Benzene	ND	1.0	ug/l							
Ethylbenzene	ND	2.0	ug/l							
Methyl-tert-butyl Ether (MTBE)	ND	5.0	ug/l							
Toluene	ND	2.0	ug/l							
Xylenes, Total	ND	3.0	ug/l							
Surrogate: Dibromofluoromethane	24.0		ug/l	25.0		96	80-135			
Surrogate: Toluene-d8	26.5		ug/l	25.0		106	80-125			
Surrogate: 4-Bromofluorobenzene	24.6		ug/l	25.0		98	75-125			
LCS Analyzed: 07/09/03 (P3G09	20-BS1)									
Benzene	26.3	1.0	ug/l	25.0		105	80-120			
Ethylbenzene	27.2	2.0	ug/l	25.0		109	80-120			
Methyl-tert-butyl Ether (MTBE)	26.0	5.0	ug/l	25.0		104	70-130			
Toluene	26.3	2.0	ug/l	25.0		105	75-120			
Xylenes, Total	79.5	3.0	ug/I	75.0		106	70-125			
Surrogate: Dibromofluoromethane	23.1		ug/l	25.0		92	80-135			
Surrogate: Toluene-d8	25.0		ug/l	25.0		100	80-125			
Surrogate: 4-Bromofluorobenzene	26.6		ug/l	25.0		106	75-125			
LCS Dup Analyzed: 07/09/03 (P.	3G0920-BSD	1)						_		
Benzene	26.7	1.0	ug/l	25.0		107	80-120		20	
Ethylbenzene	26.5	2.0	ug/l	25.0		106	80-120		20	
Methyl-tert-butyl Ether (MTBE)	26.5	5.0	ug/1	25.0		106	70-130		20	
Toluene	27.4	2.0	ug/l	25.0		110	75-120	4	20	
Xylenes, Total	78.9	3.0	ug/l	75.0		105	70-125		20	
Surrogate: Dibromofluoromethane	23.7		ug/l	25.0		95	80-135	5		
Surrogate: Toluene-d8	26.7		ug/l	25.0		107	80-125	5		
Surrogate: 4-Bromofluorobenzene	27.2		ug/l	25.0		109	75-125	3		

Del Mar Analytical - Phoenix

Linda Eshelman For Tamara Saunders

Blaes Environmental Mgmt., Inc.

1433 North 3rd Ave.

Phoenix, AZ 85003 Attention: Brett McDaniel Project ID: 007-1992-08

Report Number: PMF0804

Sampled: 06/27/03 Received: 06/27/03

METHOD BLANK/QC DATA

BTEX & MTBE (EPA 5030B/8260B)

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits		RPD Limit	Data Qualifiers
·										
Batch: P3G0920 Extracted: 07/09	9/03									
Matrix Spike Analyzed: 07/09/03	(P3G0920-l	MS1)			Source:	PMF078	2-01			
Benzene	26.0	1.0	ug/l	25.0	ND	104	70-125			
Ethylbenzene	27.4	2.0	ug/l	25.0	ND	110	75-135			
Methyl-tert-butyl Ether (MTBE)	26.6	5.0	ug/l	25.0	ND	106	60-140			
Toluene	27.6	2.0	ug/l	25.0	ND	110	70-130			
Xylenes, Total	80.5	3.0	ug/l	75.0	ND	107	70-125			
Surrogate: Dibromofluoromethane	24.1		ug/l	25.0		96	80-135			
Surrogate: Toluene-d8	26.5		ug/l	25.0		106	80-125			
Surrogate: 4-Bromofluorobenzene	28.4		ug/l	25.0		114	75-125			
Matrix Spike Dup Analyzed: 07/0	19/03 <i>(</i> P3 <i>C</i> :0	920-MSD1)			Source:	PMF07	82-01			
Benzene	26.1	1.0	ug/l	25.0	ND	104	70-125	0	20	
Ethylbenzene	27.4	2.0	ug/l	25.0	ND	110	75-135	0	20	
Methyl-tert-butyl Ether (MTBE)	26.4	5.0	ug/l	25.0	ND	106	60-140	1	20	
Toluene	27.6	2.0	ug/l	25.0	ND	110	70-130		20	
Xylenes, Total	79.8	3.0	ug/l	75.0	ND	106	70-125		20	
Surrogate: Dibromofluoromethane	24.1		ug/l	25.0		96	80-135			
Surrogate: Toluene-d8	26.7		ug/l	25.0		107	80-125			
Surrogate: 4-Bromofluorobenzene	27.9		ug/l	25.0		112	75-125			

Blaes Environmental Mgmt., Inc.

Project ID: 007-1992-08

1433 North 3rd Ave. Phoenix, AZ 85003

Attention: Brett McDaniel

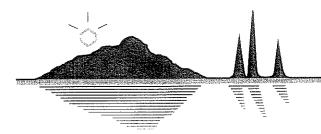
Report Number: PMF0804

Sampled: 06/27/03 Received: 06/27/03

DATA QUALIFIERS AND DEFINITIONS

ND Analyte NOT DETECTED at or above the reporting limit or MDL, if MDL is specified.

RPD Relative Percent Difference


CHAIN OF CUSTODY FORM

jo) eb

Client Name/Address:		Project/F	Project/PO Number:				Analysis Required					
Blang Comment		00	80-281-200	⊗.	7					Bluket	and a second	
Them, the SECOS					1 <u>1</u> 13 <u>1</u>					3,0		
Project Manager: Bre 44 M. Dand		Phone Number: (602) 728	Phone Number: (6 <i>0</i> 12) 72.8-6707		کا اکر			· · · · · · · · · · · · · · · · · · ·			enellement del divet i CANSTON	
Sampler:		Fax Nun (67	Fax Number: (しれ)77 & 1710 ら	26	1097						MOCALISTA PARAGUITAN	
Sample Description	Sample Container Matrix Type	# of Cont.	Sampling Date/Time	Preservatives	225					Special In	Special Instructions	
102 dept. 0805	HO WA	М	36.01 30/2 2/9	171	×		MF-804				-	
											370	
Management and Additional Section 1.												
MATERIAL PROPERTY OF THE PROPE												
A ANALYSIS OF THE PROPERTY OF												
The second secon				· · · · · · · · · · · · · · · · · · ·								
		4									La Calabana de Securito de Calabana de Cal	
	-		*								And it is a second to the seco	
							, while the second seco				THE PROPERTY OF THE PROPERTY O	
												57 1
	7.00	3			si .			¢.				
\$ N.											and the state of t	
Relinquished By:	Date /Time: 6 / / /	7 7	7 7	Received by:	(0	Date /Time:		Turnarour same day	id Time:	(Check) 72 hours	· ·	
Relinquished BY.	Date /Time:			Received by:		Date /Time:		24 hours 48 hours	δ. δ.	5 days normal		
Relinquished By:	Date /Time	$\sqrt{}$		Received in Lab by		bate /Time.	100	Sample intact	Sample Integrity: (Check) intact	ack) Le Le	200	
Note: By relinquishing samples to Del Mar Analytical, client agrees to pay for the service	Del Mar Analytical, cli	ent agree	s to pay for the	services requeste	ed on this c	hain of custody form	is requested on this chain of custody form and any additional analyses performed on this project. Payment for services is	inalyses perfo	ormed on this pro	oject. Payment for	services is	4

due within 30 days from the date of invoice. Sample(s) will be disposed of affer 30 days.

00000 0000

April 08, 2003

Jeannie Chang Brown & Caldwell 201 E. Washington Suite 500 Phoenix, AZ 85004

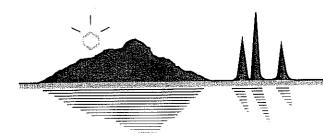
RE: Dolphin/22413.400

0303291 Work Order No.:

Dear Jeannie,

Transwest Geochem, Inc. received 18 samples on 3/20/2003 4:30:00 PM for the analyses presented in the following report.

The Case Narrative of this report addresses any Quality Control and/or Quality Assurance issues associated with this Work Order.


If you have any questions regarding these test results, please feel free to call us at (602) 437-0330.

Sincerely,

Beth Proffitt

Project Manager

ADHS License No. AZM133/AZ0133

April 08, 2003

Jeannie Chang Brown & Caldwell 201 E. Washington Suite 500 Phoenix, AZ 85004

RE: Dolphin/22413.400

0303291 Work Order No.:

Dear Jeannie,

Transwest Geochem, Inc. received 18 samples on 3/20/2003 4:30:00 PM for the analyses presented in the following report.

The Case Narrative of this report addresses any Quality Control and/or Quality Assurance issues associated with this Work Order.

If you have any questions regarding these test results, please feel free to call us at (602) 437-0330.

Sincerely,

Beth Proffitt

Project Manager

ADHS License No. AZM133/AZ0133

Elizabeth Stoff To

Centher.

Date Printed: 08-Apr-03

Client:

Brown & Caldwell

Work Order:

0303291

Project Name:

Dolphin

Project Number: 22413.400

CASE NARRATIVE

Transwest Geochem, Inc. uses the methods outlined in the following references:

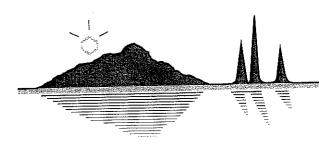
Code of Federal Regulations, 40CFR, Part 136, Revised July 1995.

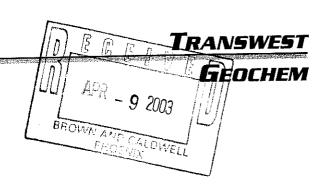
Standard Methods for the Examination of Water and Wastewater, 18th Edition, 1992 and 19th Edition, 1995.

Methods for Chemical Analysis of Water and Wastes, EPA-600/4-79-020, Revised March 1983.

Methods for the Determination of Inorganic Substances in Environmental Samples, EPA/600/R-93/100, Revised August 1993.

Methods for the Determination of Metals in Environmental Samples, EPA/600/R-94/111, Revised May 1994.


Hach, Water Analysis Handbook, 2nd Edition, 1992.


Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW846, 3rd Edition.

Secondary Source QC Sample (LCSV) results may not be reported for all methods and/or analysis dates.

All method blanks, laboratory spikes, and/or matrix spikes met quality control objectives for the parameters associated with this Work Order except as detailed below or on the Data Qualifier page of this report. Data Qualifiers used in this report are in accordance with ADEQ Arizona Data Qualifiers, Revision 1.0 05/13/2002.

Data qualifiers ("flags") contained within this analytical report have been issued to explain a quality control deficiency, and do not affect the quality (validity) of the data unless noted otherwise in the case narrative.

April 08, 2003

Jeannie Chang Brown & Caldwell 201 E. Washington Suite 500 Phoenix, AZ 85004

RE: Dolphin/22413.400

0303291 Work Order No.:

Dear Jeannie,

Transwest Geochem, Inc. received 18 samples on 3/20/2003 4:30:00 PM for the analyses presented in the following report.

The Case Narrative of this report addresses any Quality Control and/or Quality Assurance issues associated with this Work Order.

If you have any questions regarding these test results, please feel free to call us at (602) 437-0330.

Sincerely,

Beth Proffitt

Project Manager

ADHS License No. AZM133/AZ0133

Date Printed: 08-Apr-03

Client:

Brown & Caldwell

Work Order:

0303291 Dolphin

Project Name: Dolphin
Project Number: 22413.400

CASE NARRATIVE

Transwest Geochem, Inc. uses the methods outlined in the following references:

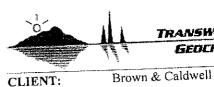
Code of Federal Regulations, 40CFR, Part 136, Revised July 1995.

Standard Methods for the Examination of Water and Wastewater, 18th Edition, 1992 and 19th Edition, 1995.

Methods for Chemical Analysis of Water and Wastes, EPA-600/4-79-020, Revised March 1983.

Methods for the Determination of Inorganic Substances in Environmental Samples, EPA/600/R-93/100, Revised August 1993.

Methods for the Determination of Metals in Environmental Samples, EPA/600/R-94/111, Revised May 1994.


Hach, Water Analysis Handbook, 2nd Edition, 1992.

Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW846, 3rd Edition.

Secondary Source QC Sample (LCSV) results may not be reported for all methods and/or analysis dates.

All method blanks, laboratory spikes, and/or matrix spikes met quality control objectives for the parameters associated with this Work Order except as detailed below or on the Data Qualifier page of this report. Data Qualifiers used in this report are in accordance with ADEQ Arizona Data Qualifiers, Revision 1.0 05/13/2002.

Data qualifiers ("flags") contained within this analytical report have been issued to explain a quality control deficiency, and do not affect the quality (validity) of the data unless noted otherwise in the case narrative.

TRANSWEST GEOCHEM

Amended Report

Date Printed 08-Apr-03

License No. AZM133/AZ0133

Case Narrative

Data Qualifiers

Project Name:

V7

Dolphin 22413.400

Project Number: 0303291 Work Order: 20-Mar-03 Date Received:

One or more of the following data qualifiers may be associated with your analytical and/or quality control data.

Surrogate recovery was below laboratory and method acceptance limits. Unable to confirm matrix effect. **S7**

Calibration verification recovery was above the method control limit for this analyte, however the average %

difference or % drift for all the analytes met method criteria.

TRANSWEST GEOCHEM

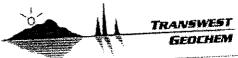
Amended Report

Date Printed 08-Apr-03

License No. AZM133/AZ0133

CLIENT:

Brown & Caldwell


Project Name:

Dolphin

Project Number: Work Order:

22413.400 0303291 Work Order Sample Summary

Date Received: 20-Mar-03			
	Lab Sample ID	Test Code	Collection Date
Client Sample ID	0303291-01A	SW8260B	3/20/2003 8:43:00 AM
DIMW3-410	0303291-02A	SW8260B	3/20/2003 9:05:00 AM
DIMW3-345	0303291-03A	SW8260B	3/20/2003 9:16:00 AM
DIMW3-240	0303291-0374 0303291-04A	SW8260B	3/20/2003 9:33:00 AM
DIMW3-165	0303291-04A 0303291-05A	SW8260B	3/20/2003 9:57:00 AM
DIMW1-410	0303291-05A	SW8260B	3/20/2003 10:17:00 AM
DIMW1-345	0303291-00A 0303291-07A	SW8260B	3/20/2003 10:30:00 AM
DIMW1-240	0303291-07A	SW8260B	3/20/2003 10:49:00 AM
DIMW1-165	0303291-09A	SW8260B	3/20/2003 11:00:00 AM
DIMW1-120	0303291-09A 0303291-10A	SW8260B	3/20/2003 11:20:00 AM
DIMW1-FB	0303291-10A 0303291-11A	SW8260B	3/20/2003 12:30:00 PM
DIMW5A	0303291-11A 0303291-12A	SW8260B	3/20/2003 1:04:00 PM
DIMW9D	0303291-12A 0303291-13A	SW8260B	3/20/2003 1:30:00 PM
DIMW8D		SW8260B	3/20/2003 2:10:00 PM
DIMW7A	0303291-14A	SW8260B	3/20/2003 2:20:00 PM
DIMW8A	0303291-15A	SW8260B	3/20/2003 2:40:00 PM
DIMW6A	0303291-16A	SW8260B	3/20/2003 3:12:00 PM
DIMW4A	0303291-17A	SW8260B	3/20/2003 8:43:00 AM
ТВ	0303291-18A	01102002	
JB			

Date Printed 08-Apr-03

Definitions

License No. AZM133/AZ0133

CLIENT:

Brown & Caldwell

Project Name:

Dolphin 22413.400

Project Number: Work Order:

0303291

Date Received:

20-Mar-03

Analytical Spike (AS)

The AS is a known amount of a target analyte added to a sample after it has been distilled, digested, or extracted and is ready for analysis. The AS is generally performed if the MS has failed. It is used to indicate interference that arises from sample distillation, digestion, or extraction as opposed to interference that is innate to the matrix.

Continuing Curve Verification (CCV) The CCV is also referred to as a curve check. This is a standard analyzed at specified intervals during an analysis. The CCV verifies the stability and accuracy of the calibration curve. There are specific CCV recovery acceptance criteria for each method.

Dilution Factor (DF)

The DF is an indication of how much a sample had to be diluted in order to quantitate it on a standard curve. The DF is indicated in the reported sample result. The sample PQL increases as the dilution increases.

Internal Standard (IS)

The IS is a compound that is similar to the organic compound of interest in terms of chemical composition but is unique in that it is rare in the environment. The same concentration of IS is added to every sample for some organic methods.

Laboratory Control Sample (LCS) The LCS is also referred to as a blank spike. The LCS is an addition of a known amount of a target analyte (from the same source as calibration standards or spikes) to an aliquot of deionized water or other appropriate clean matrix. The LCS is processed through the entire method procedure in the same manner as samples.

Matrix Spike (MS)

The MS is a known amount of a target analyte added to a sample. The MS is processed through the entire method procedure in the same manner as samples.

Method Blank (MB)

The MB is an aliquot of deionized water or other appropriate clean matrix that is thought to be free of the analyte in question. The MB is processed through the entire extraction or analysis procedure and is used to indicate contamination in the lab.

Method Detection Limit (MDL) The MDL is the lowest level of detection of which a method is capable.

Practical Quantitation Limit (PQL) The PQL is the lowest value at which Transwest Geochem can detect an analyte in matrix with a high degree of confidence. The PQL will increase as the DF increases. The PQL is greater than or equal to the MDL.

Relative Percent Difference (RPD) The RPD is a measure of precision (the ability to obtain the same result on re-analysis of the same sample). It is calculated using the result of a sample, MS, LCS, or LCSV and its associated duplicate result.

Secondary Source QC Sample (LCSV) The LCSV is also referred to as a second source laboratory control sample. It is the same type of standard as a calibration or spiking standard but is obtained from a different source. The LCSV is an indication of the primary standard quality, method performance, and instrument performance.

Surrogate

A surrogate compound is similar to the organic compound of interest in terms of chemical composition but is unique in that it is rare in the environment. When surrogates are used, they are added to every sample, blank and standard. Surrogate recovery is used as an indication of extraction and/or analytical success.

Trip Blank (TB)

The TB is a portion of deionized water preserved in the same manner as the samples. The TB travels from the lab, to the field, and then back to the lab with the samples from the field. The TB serves as an indication of contamination introduced during sample transportation.

TRANSWEST GEOCHEM

Amended Report

Date Printed 08-Apr-03

License No. AZM133/AZ0133

Brown & Caldwell CLIENT:

Work Order: Lab ID:

0303291 0303291-01

Dolphin Project Name:

Client Sample ID: DIMW3-410

Collection Date: 3/20/2003 8:43:00 AM

Matrix: WATER

Project Number: 22413.40				Units	DF	Test Code	Date Prepared	Date Analyzed	Analyst	Batch ID
Analyte	Result	PQL	Qual	Units					15.1	D30322A
				μg/L	1.0	SW8260B	N/A	3/22/03 21:32	JH	D30322A
A cotono	<20	20		μg/L	1.0	SW8260B	N/A	3/22/03 21:32	JH 	D30322A
cetone	< 0.50	0,50			1.0	SW8260B	N/A	3/22/03 21:32	JH	D30322A
Benzene	<1.5	1.5		μg/L	1.0	SW8260B	NA	3/22/03 21:32	JH	D30322A
Bromobenzene	< 0.50	0.50		hâ\r	1.0	SW8260B	N/A	3/22/03 21:32	JH	
Bromochloromethane	< 0.50	0.50		hâ\r	1.0	SW8260B	N/A	3/22/03 21:32	JH	D30322A
Bromodichloromethane	<1.0	1.0		µg/L ″		SW8260B	N/A	3/22/03 21:32	JH	D30322A
Bromoform	<5.0	5.0		µg/L	1.0	SW8260B	N/A	3/22/03 21:32	JH	D30322A
Bromomethane	<5.0	5.0		µg/L	1.0	SW8260B	N/A	3/22/03 21:32	JН	D30322A
2-Butanone	<2.5	2,5		µg/L	1.0	SW8260B	N/A	3/22/03 21:32	JH	D30322A
n-Butylbenzene	<1.5	1.5		µg/L	1.0	SW8260B	N/A	3/22/03 21:32	JH	D30322A
sec-Butylbenzene	<2.5	2.5		µg/L	1.0	SW8260B	N/A	3/22/03 21:32	JH	D30322A
tert-Butylbenzene		0.50		µg/L	1.0	•	N/A	3/22/03 21:32	JH	D30322A
Carbon disulfide	<0.50	0.50		µg/L	1.0	SW8260B	N/A	3/22/03 21:32	JH	D30322A
Carbon tetrachloride	<0.50	0.50		µg/L	1.0	SW8260B		3/22/03 21:32	JH	D30322A
Chlorobenzene	<0.50			μg/L	1.0	SW8260B	N/A	3/22/03 21:32	JH	D30322A
Dibromochioromethane	<0.50	0.50		μg/L	1.0	SW8260B	N/A	3/22/03 21:32		D30322A
Chloroethane	<1.0	1.0		μg/L	1.0	SW8260B	N/A			D30322A
Chloroform	<0.50	0.50		µg/L	1.0	SW8260B	N/A	3/22/03 21:32		D30322A
Chloromethane	<5.0	5.0		µg/L	1.0	SW8260B	N/A	3/22/03 21:32		D30322A
2-Chlorotoluene	<1.5	1.5		µg/L	1.0	SW8260B	N/A	3/22/03 21:32		D30322A
4-Chlorotoluene	<2.0	2.0		μg/L	1.0	SW8260B	N/A	3/22/03 21:32		D30322A
1,2-Dibromo-3-chloropropane	<2.0	2.0			1.0	SW8260B	N/A	3/22/03 21:33		D30322A
	<0.50	0.50		μg/L	1.0	SW8260B	N/A	3/22/03 21:3		D30322A
1,2-Dibromoethane	<0.50	0.50		μg/L	1.0	SW8260B	N/A	3/22/03 21:3		D30322A
Dibromomethane	<1.5	1.5		μg/L "	1.0	SW8260B	N/A	3/22/03 21:3		
1,2-Dichlorobenzene	<1.5	1.5		μg/L "	1.0	SW8260B		3/22/03 21:3		D30322A
1,3-Dichlorobenzene	<1.5	1.5		μg/L		SW8260E		3/22/03 21:3	12 JH	D30322A
1,4-Dichlorobenzene	<2.0	2.0		µg/L	1.0	SW82608		3/22/03 21:3	32 JH	D30322A
Dichlorodifluoromethane	<1.0	1.0		μg/L	1.0	SW8260F		3/22/03 21:	32 JH	D30322A
1,1-Dichloroethane	<1.0	1.0		ha/r	1.0	SW82601		3/22/03 21:	32 JH	D30322A
1,2-Dichloroethane	<0.50	0.50		µg/L	1.0	SW8260		* ** * * * * * * * * * * * * * * * * *	32 JH	D30322A
1,1-Dichloroethene	<0.50	0.50		µg/L	1.0					D30322A
cis-1,2-Dichloroethene		0.50		µg/L	1.0	SW8260				D30322A
trans-1,2-Dichloroethene	<0.50	0.50		µg/L	1.0	SW8260				D30322A
1,2-Dichloropropane	<0.50	1.0		µg/L	1.0	SW8260		200000000		D30322A
1,3-Dichloropropane	<1.0			μg/L	1.0	SW8260				D30322A
2,2-Dichloropropane	<0.50			µg/L	1.0	SW8266				D30322A
1,1-Dichloropropene	<1.0			µg/L	1.0	SW826				D30322A
cis-1,3-Dichloropropene	<1.0			µg/L						~~~~
trans-1,3-Dichloropropene	<0.50			μg/L		5141666				
Ethylbenzene	<2.0	_		μg/L				/A 3/22/03 2		200000
Hexachiorobutadiene	<2.5						508 N	/A 3/22/03 2		
	<5.0			μg/l 			50B N	/A 3/22/03 2	:1:32 JH	l Dadorer
2-Hexanone	<1.0	ე 1.	.0	ha _\ /	- 1.0					of 36
lodomethane									λ 6	<i>y</i> = -

CLIENT:

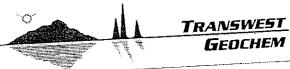
GEOCHEM

Amended Report

Date Printed 08-Apr-03

License No. AZM133/AZ0133

Client Sample ID: DIMW3-410 Brown & Caldwell


Collection Date: 3/20/2003 8:43:00 AM

Matrix: WATER

0303291 Work Order: 0303291-01 Lab ID:

Dolphin Project Name:

Project Number: 22413.400	times of transcriptions observed printing plants of species		Oual	Units	DF	Test Code	Date Prepared	Date Analyzed	Analyst	Batch ID
Analyte	Result	PQL	Qual		1.0	SW8260B	N/A	3/22/03 21:32	JH	D30322A
sopropylbenzene	<2.5	2.5		μg/L	1.0	SW8260B	N/A	3/22/03 21:32	JH	D30322A
4-Isopropyltoluene	<1.5	1.5		μg/L	1.0	SW8260B	N/A	3/22/03 21:32	JH	D30322A
Methylene chloride	<3.0	3.0		µg/L	1.0	SW8260B	N/A	3/22/03 21:32	jΗ	D30322A
4-Methyl-2-pentanone	<5.0	5.0		μg/L	1.0	SW8260B	N/A	3/22/03 21:32	JH	D30322A
Methyl tert-butyl ether	<2.0	2.0		μg/L	1.0	SW8260B	N/A	3/22/03 21:32	JH	D30322A
Naphthalene	<5.0	5.0		µg/L	1.0	SW8260B	N/A	3/22/03 21:32	JH	D30322A
n-Propylbenzene	<2.0	2.0		µg/L	1.0	SW8260B	N/A	3/22/03 21:32	ЛН	D30322A
Styrene	<1.0	1.0		µg/L	1.0	SW8260B	N/A	3/22/03 21:32	JH	D30322A
1,1,1,2-Tetrachloroethane	<0.50	0.50		μg/L	1.0	SW8260B	N/A	3/22/03 21:32	JH	D30322A
1,1,2,2-Tetrachioroethane	<0.50	0.50		µg/L	1.0	SW8260B	N/A	3/22/03 21:32	JH	D30322A
Tetrachloroethene	0.80	0.50		µg/L	1.0	SW8260B	N/A	3/22/03 21:32	JH	D30322A
Toluene	<3.0	3.0		µg/L	1.0	SW8260B	N/A	3/22/03 21:32		D30322A
1,2,3-Trichlorobenzene	<5.0	5.0		µg/L	1.0	SW8260B	N/A	3/22/03 21:32		D30322A
1,2,4-Trichlorobenzene	<5.0	5.0		µg/L	1.0	SW8260B	N/A	3/22/03 21:32		D30322A
1,1,1-Trichloroethane	<0.50	0.50		μg/L	1.0	SW8260B	N/A	3/22/03 21:32		D30322A
1,1,2-Trichloroethane	<0.50	0.50		μg/L	1.0	SW8260B	N/A	3/22/03 21:32		D30322A
Trichloroethene	< 0.50	0.50		μg/L	1.0	SW8260B	N/A	3/22/03 21:32		D30322A
Trichlorofluoromethane	<2.0	2.0		µg/L	1.0	SW8260B	N/A	3/22/03 21:3		D30322A
Trichlorotrifluoroethane	<5.0	5.0		μg/L	1.0	SW8260B	N/A	3/22/03 21:3		D30322A
1,2,3-Trichloropropane	<1.0	1.0		μg/L	1.0	SW8260B	N/A	3/22/03 21:3		D30322A
1,2,4-Trimethylbenzene	<2.0	2.0		μg/L	1.0	SW8260B	N/A	3/22/03 21:3		D30322A
1,3,5-Trimethylbenzene	<1.5	1.5		µg/L	1.0	SW8260E	N/A	3/22/03 21:3		D30322A
Vinyl acetate	<5.0	5.0		hâ\r	1.0	SW8260E	N/A	3/22/03 21:3		D30322A
Vinyl acetate Vinyl chloride	<0.50	0.50		µg/L	1.0	SW8260E	N/A	3/22/03 21:3		D30322A
Xylenes, Total	<3.0	3.0		μg/L	1.0	SW8260	3 N/A	3/22/03 21:	32 JH	D30322A
4-Bromofluorobenzene(Surrogate)	85	80-107		%REC	1.0	SW82601		3/22/03 21:		D30322A
4-Bromofluoromethane(Surrogate)	95	77-104		%REC	1.0	SW82601		3/22/03 21:		D30322A
Dibromotiuorometriane(Surrogate) 1,2-Dichloroethane-d4(Surrogate) Toluene-d8(Surrogate)	105 87	72-111 84-105		%REC %REC	1.0	SW8260		3/22/03 21:	32 JH	D30322#

Date Printed 08-Apr-03

License No. AZM133/AZ0133

Client Sample ID: DIMW3-345

Collection Date: 3/20/2003 9:05:00 AM

Matrix: WATER

Brown & Caldwell CLIENT:

Work Order:

0303291

Lab ID:

0303291-02

Project Name: Dolphin Project Number: 22413.400			Outal	Units	DF	Test Code	Date Prepared	Date Analyzed	Analyst	Batch ID
nalyte	Result	PQL	Qual	Onto		<u></u>			JH	D30322A
				µg/L	1.0	SW8260B	NIA	3/22/03 22:10	JH JF1	D30322A
Acetone	<20	20		μg/L	1.0	SW8260B	N/A	3/22/03 22:10		D30322A
	<0.50	0.50		µg/L	1.0	SW8260B	N/A	3/22/03 22:10	JH	D30322A
Benzene	<1.5	1.5		μg/L	1.0	SW8260B	N/A	3/22/03 22:10	JH	D30322A
Bromobenzene Bromochloromethane	<0,50	0.50			1.0	SW8260B	N/A	3/22/03 22:10	JH	D30322A
	< 0.50	0.50		µg/L	1.0	SW8260B	N/A	3/22/03 22:10	JН	D30322A
Bromodichioromethane	<1.0	1.0		μg/L ″	1.0	SW8260B	N/A	3/22/03 22:10	JH	
Bromoform	<5.0	5.0		µg/L	1.0	SW8260B	N/A	3/22/03 22:10	jΗ	D30322A
Bromomethane	<5.0	5.0		μg/L		SW8260B	N/A	3/22/03 22:10	jΗ	D30322A
2-Butanone	<2.5	2.5		µg/L	1.0	SW8260B	N/A	3/22/03 22:10	JН	D30322A
n-Butylbenzene	<1.5	1.5		µg/L	1.0	SW8260B	N/A	3/22/03 22:10	JН	D30322A
sec-Butylbenzene	<2.5	2.5		µg/L	1.0	SW8260B	N/A	3/22/03 22:10	JH	D30322A
tert-Butylbenzene	<0.50	0.50		µg/L	1.0	SW8260B	N/A	3/22/03 22:10	HL i	D30322A
Carbon disulfide		0.50		µg/L	1.0		N/A	3/22/03 22:10) JH	D30322A
Carbon tetrachloride	<0.50	0.50		µg/L	1.0	SW8260B	N/A	3/22/03 22:1) JH	D30322A
Chlorobenzene	<0.50	0.50		µg/L	1.0	SW8260B	N/A	3/22/03 22:1		D30322A
Dibromochloromethane	<0.50	1.0		µg/L	1.0	SW8260B		3/22/03 22:1		D30322A
Chloroethane	<1.0			µg/L	1.0	SW82608	N/A	3/22/03 22:1		D30322A
Chloroform	<0.50	0,50		μg/L	1.0	SW8260B	N/A	3/22/03 22:1		D30322A
Chloromethane	<5.0	5.0		μg/L	1.0	SW82608	N/A			D30322A
2-Chlorotoluene	<1.5	1.5		µg/L	1.0	SW8260B	N/A	3/22/03 22:1		D30322A
4-Chlorotoluene	<2.0	2.0		μg/L	1.0	SW8260B	N/A	3/22/03 22:		D30322A
1,2-Dibromo-3-chloropropane	<2.0	2.0		µg/L	1.0	SW82608	N/A	3/22/03 22:		D30322A
1,2-Dibromoethane	<0.50	0.50		μg/L	1.0	SW8260B	N/A	3/22/03 22:		D30322A
1,2-Dibromomethane	<0.50	0.50			1.0	SW8260B	N/A	3/22/03 22:		D30322A
	<1.5	1.5		µg/L	1.0	SW8260B	N/A	3/22/03 22		D30322A
1,2-Dichlorobenzene	<1.5	1.5	5	ha\r	1.0	SW8260E	N/A	3/22/03 22		D30322A
1,3-Dichlorobenzene	<1.5	1.9	5	hâ/r	1.0	SW8260E	N/A	3/22/03 22		
1,4-Dichlorobenzene	<2.0	2.0)	µg/L		SW82608	N/A	3/22/03 22		D30322A
Dichlorodifluoromethane	<1.0	1.	0	μg/L	1.0	SW82601		3/22/03 22		D30322A
1,1-Dichloroethane	<1.0	1.	0	ha\r	1.0	SW8260		3/22/03 23	2:10 JH	D30322A
1,2-Dichloroethane	<0.50	0.5		µg/L	1.0	SW8260		3/22/03 2	2:10 JH	D30322A
1,1-Dichloroethene	<0.50	0.5		µg/L	1.0	SW8260			2:10 JH	D30322A
cis-1,2-Dichloroethene	<0.50	0.5		µg/L	1.0	SW8260			2:10 JH	D30322A
trans-1,2-Dichloroethene		0.0		µg/L	1.0	SW8260 SW8260			2:10 JH	
1,2-Dichloropropane	<0.50		.0	µg/L	1.0				2:10 JH	
1,3-Dichloropropane	<1.0			µg/L	1.0	SW8260				D30322A
2,2-Dichloropropane	<0.50		1.0	µg/L	1.0	SW826				
1,1-Dichloropropene	<1.0		1.0	µg/L	1.0	SW826				
cis-1,3-Dichloropropene	<1.0	_		µg/L	1.0					
trans-1,3-Dichloropropene	<0.50		50	μg/L						
Ethylbenzene	<2.0	•	2.0	μg/L	4.0					******
Hexachlorobutadiene	<2.	•	2.5	ha\r		SW82				
2-Hexanone	<5.	•	5.0	μg/l		SW82	60B N	IA 3/22/03	22.10 J	
Jodomethane	<1.	0	1.0	hair	_			,		of 36

TRANSWEST GEOCHEM

Amended Report

Date Printed 08-Apr-03

License No. AZM133/AZ0133

CLIENT:

Brown & Caldwell

Work Order:

0303291

Lab ID:

0303291-02

Project Name:

Dolphin

Project Number: 22413.400

Client Sample ID: DIMW3-345

Collection Date: 3/20/2003 9:05:00 AM

Matrix: WATER

						Test	Date	Date		
Analyte	Result	PQL	Qual	Units	DF	Code	Prepared	Analyzed	Analyst	Batch ID
Isopropylbenzene	<2.5	2.5		μg/L	1.0	SW8260B	N/A	3/22/03 22:10	JH	D30322A
4-isopropyltoluene	<1.5	1.5		μg/L	1.0	SW8260B	N/A	3/22/03 22:10	JH	D30322A
Methylene chloride	<3.0	3.0		μg/L	1.0	SW8260B	N/A	3/22/03 22:10	JH	D30322A
4-Methyl-2-pentanone	<5.0	5.0		μg/L	1.0	SW8260B	N/A	3/22/03 22:10	JH	D30322A
Methyl tert-butyl ether	<2.0	2.0		µg/L	1.0	SW8260B	N/A	3/22/03 22:10	JH	D30322A
Naphthalene	<5.0	5.0		μg/L	1.0	SW8260B	N/A	3/22/03 22:10	JH	D30322A
n-Propylbenzene	<2.0	2.0		μg/L	1.0	SW8260B	N/A	3/22/03 22:10	JH	D30322A
Styrene	<1.0	1.0		μg/L	1.0	SW8260B	N/A	3/22/03 22:10	JH	D30322A
1.1.1.2-Tetrachloroethane	< 0.50	0.50		μg/L	1.0	SW8260B	N/A	3/22/03 22:10	JH	D30322A
1,1,2,2-Tetrachloroethane	< 0.50	0.50		μg/L	1.0	SW8260B	N/A	3/22/03 22:10	JH	D30322A
Tetrachloroethene	0.54	0.50		μg/L	1.0	SW8260B	N/A	3/22/03 22:10	JH	D30322A
Toluene	<3.0	3.0		μg/L	1.0	SW8260B	N/A	3/22/03 22:10	JH	D30322A
1,2,3-Trichlorobenzene	<5.0	5.0		μg/L	1.0	SW8260B	N/A	3/22/03 22:10	JH	D30322A
1,2,4-Trichlorobenzene	<5.0	5.0		μg/L	1.0	\$W8260B	N/A	3/22/03 22:10	JH	D30322A
1,1,1-Trichloroethane	<0.50	0.50		μg/L	1.0	SW8260B	N/A	3/22/03 22:10	JH	D30322A
1,1,2-Trichloroethane	< 0.50	0.50		μg/L	1.0	SW8260B	N/A	3/22/03 22:10	JH	D30322A
Trichloroethene	< 0.50	0.50		μg/L	1.0	SW8260B	N/A	3/22/03 22:10	JH	D30322A
Trichlorofluoromethane	<2.0	2.0		µg/L	1.0	SW8260B	N/A	3/22/03 22:10	JH	D30322A
Trichlorotrifluoroethane	<5.0	5.0		μg/L	1.0	SW8260B	N/A	3/22/03 22:10	JH	D30322A
1,2,3-Trichloropropane	<1.0	1.0		μg/L	1.0	SW8260B	N/A	3/22/03 22:10	JH	D30322A
1.2.4-Trimethylbenzene	<2.0	2.0		μg/L	1.0	SW8260B	N/A	3/22/03 22:10	JH	D30322A
1,3,5-Trimethylbenzene	<1.5	1.5		μg/L	1.0	SW8260B	N/A	3/22/03 22:10	JH	D30322A
Vinyl acetate	<5.0	5.0		μg/L	1.0	SW8260B	N/A	3/22/03 22:10	JH	D30322A
Vinyl chloride	< 0.50	0.50		μg/L	1.0	SW8260B	N/A	3/22/03 22:10	JH	D30322A
Xylenes, Total	<3.0	3.0		μg/L	1.0	SW8260B	N/A	3/22/03 22:10	JH	D30322A
4-Bromofluorobenzene(Surrogate)	84	80-107		%REC	1.0	SW8260B	N/A	3/22/03 22:10	JH	D30322A
Dibromofluoromethane(Surrogate)	97	77-104		%REC	1.0	SW8260B	N/A	3/22/03 22:10	JH	D30322A
1,2-Dichioroethane-d4(Surrogate)	106	72-111		%REC	1.0	SW8260B	N/A	3/22/03 22:10	JH	D30322A
Toluene-d8(Surrogate)	88	84-105		%REC	1.0	SW8260B	N/A	3/22/03 22:10	JH	D30322A

GEOCHEM

Amended Report

Date Printed 08-Apr-03

License No. AZM133/AZ0133

Client Sample ID: DIMW3-240

Collection Date: 3/20/2003 9:16:00 AM

Matrix: WATER

CLIENT:

Brown & Caldwell

Work Order:

0303291

Lab ID:

0303291-03

Project Name:

Dolphin

Project Number: 22413.400

roject Number: 22413.400						Test	Date	Date	A 1- ent	Batch ID
Analyte	Result	PQL	Qual	Units	DF	Code	Prepared	Analyzed	Anaiysi	Datell 1D
Maryto						SW8260B	N/A	3/22/03 22:47	jН	D30322A
cetone	<20	20		µg/L	1.0	SW8260B	N/A	3/22/03 22:47	JH	D30322A
enzene	< 0.50	0.50		µg/L	1.0		N/A	3/22/03 22:47	JH	D30322A
romobenzene	<1.5	1.5		µg/L	1.0	SW8260B		3/22/03 22:47	JH	D30322A
	<0.50	0.50		μg/L	1.0	SW8260B	N/A	3/22/03 22:47	JH	D30322A
romochloromethane	<0.50	0.50		µg/L	1.0	SW8260B	N/A	3/22/03 22:47	JH	D30322A
iromodichloromethane	<1.0	1.0		µg/L	1.0	SW8260B	N/A		JH	D30322A
Bromoform	<5.0	5.0		μg/L	1.0	SW8260B	N/A	3/22/03 22:47	JH	D30322A
Bromomethane	<5.0	5.0		μg/L	1.0	SW8260B	N/A	3/22/03 22:47		D30322A
?-Butanone	<2.5	2.5		µg/L	1.0	SW8260B	N/A	3/22/03 22:47	JH	D30322A
₁ -Butylbenzene		1.5		µg/L	1.0	SW8260B	N/A	3/22/03 22:47	JH	D30322A
sec-Butylbenzene	<1.5	2.5		μg/L	1.0	SW8260B	N/A	3/22/03 22:47	JH	D30322A
lert-Butylbenzene	<2.5	0.50		μg/L	1.0	SW8260B	N/A	3/22/03 22:47	JH	
Carbon disulfide	<0.50	0.50		μg/L	1.0	SW8260B	N/A	3/22/03 22:47	JH	D30322A
Carbon tetrachloride	< 0.50			µg/L	1.0	SW8260B	N/A	3/22/03 22:47	JH	D30322A
Chlarabenzene	<0.50	0.50		μg/L	1.0	SW8260B	N/A	3/22/03 22:47	JH	D30322A
Dibromochloromethane	< 0.50	0.50		ha\r	1.0	SW8260B	N/A	3/22/03 22:47	JH	D30322A
Chloroethane	<1.0	1.0		ha\r ha\r	1.0	SW8260B	N/A	3/22/03 22:47	JH	D30322A
Chloroform	<0.50	0.50		µg/L	1.0	SW8260B	N/A	3/22/03 22:47	JH	D30322A
Chloromethane	<5.0	5.0			1.0	SW8260B	N/A	3/22/03 22:47	JH	D30322A
2-Chlorotoluene	<1.5	1.5		µg/L	1.0	SW8260B	N/A	3/22/03 22:47	JH	D30322A
4-Chiorotoluene	<2.0	2.0		µg/L	1.0	SW8260B	N/A	3/22/03 22:47	JH	D30322A
1,2-Dibromo-3-chloropropane	<2.0	2.0		μg/L	1.0	SW8260B	N/A	3/22/03 22:47	JH	D30322A
1,2-Dibromoethane	< 0.50	0.50		µg/L 		SW8260B	N/A	3/22/03 22:47	JH	D30322A
Dibromomethane	<0.50	0.50		μg/L	1.0	SW8260B	N/A	3/22/03 22:47	JH	D30322A
1,2-Dichlorobenzene	<1.5	1.5		μg/L	1.0	SW8260B	N/A	3/22/03 22:47	' JH	D30322A
1.3-Dichlorobenzene	<1.5	1.5		µg/L	1.0	SW8260B	N/A	3/22/03 22:47		D30322A
1.4-Dichlorobenzene	<1.5	1.5		µg/L	1.0	SW8260B	N/A	3/22/03 22:47		D30322A
Dichlorodifluoromethane	<2.0	2.0		µg/L	1.0		N/A	3/22/03 22:4		D30322A
	<1.0	1.0		µg/L	1.0	SW8260B		3/22/03 22:4		D30322A
1,1-Dichloroethane	<1.0	1.0		µg/L	1.0	SW8260B	N/A	3/22/03 22:4		D30322A
1,2-Dichloroethane	1.2	0.50		µg/L	1.0	SW8260B	N/A	3/22/03 22:4		D30322A
1,1-Dichloroethene	<0.50	0.50		μg/L	1.0	SW8260B	N/A			D30322A
cis-1,2-Dichloroethene	<0.50	0.50		μg/L	1.0	SW8260B	N/A	3/22/03 22:4		D30322A
trans-1,2-Dichloroethene	<0.50	0.50		μg/L	1.0	SW8260B	N/A	3/22/03 22:4		D30322A
1,2-Dichloropropane		1.0		μg/L	1.0	SW8260B	N/A	3/22/03 22:4		D30322A
1,3-Dichloropropane	<1.0	0,50		μg/L	1.0	SW8260B	N/A	3/22/03 22:4		D30322A
2,2-Dichloropropane	<0.50	1.0		μg/L	1.0	SW8260B	N/A	3/22/03 22:4		
1,1-Dichloropropene	<1.0	1.0		µg/L	1.0	SW8260B	N/A	3/22/03 22:		D30322A
cis-1,3-Dichloropropene	<1.0			μg/L	1.0	SW8260B	N/A	3/22/03 22:		D30322A
trans-1,3-Dichloropropene	< 0.50	0.50		μg/L	1.0	SW8260E	N/A	3/22/03 22:		D30322A
Ethylbenzene	<2.0	2.0		μg/L	1.0	SW8260E	N/A	3/22/03 22:	47 JH	D30322A
Hexachlorobutadiene	<2.5	2.5		μg/L	1.0	SW8260E	N/A	3/22/03 22:	47 JH	D30322A
2-Hexanone	<5.0	5.0		μg/L	1.0	SW8260E	N/A	3/22/03 22:	47 JH	D30322A
lodomethane	<1.0	1.0		ի կ/ւ					5 of	

Amended Report

Date Printed 08-Apr-03

License No. AZM133/AZ0133

CLIENT:

Brown & Caldwell

Work Order:

0303291

Lab ID:

0303291-03

Project Name:

Dolphin

Client Sample ID: DIMW3-240

Collection Date: 3/20/2003 9:16:00 AM

Project Number: 22413.400		PQL	Qual	Units	DF	Test Code	Date Prepared	Date Analyzed	Analyst	Batch ID
Analyte	Result		Quai	µg/L	1.0	SW8260B	N/A	3/22/03 22:47	JH	D30322A
sopropylbenzene	<2.5	2.5		μg/L	1.0	SW8260B	N/A	3/22/03 22:47	JH	D30322A
4-Isopropyitoluene	<1.5	1,5		µg/L	1.0	SW8260B	N/A	3/22/03 22:47	JH	D30322A
Methylene chloride	<3.0	3.0			1.0	SW82608	N/A	3/22/03 22:47	JH	D30322A
4-Methyl-2-pentanone	<5.0	5.0		µg/L	1.0	SW8260B	N/A	3/22/03 22:47	JH	D30322A
Methyl tert-butyl ether	<2.0	2.0		μg/L	1.0	SW8260B	N/A	3/22/03 22:47	JН	D30322A
Naphthalene	<5.0	5.0		µg/L	1.0	SW8260B	N/A	3/22/03 22:47	JH	D30322A
n-Propylbenzene	<2.0	2.0		µg/L	1.0	SW8260B	N/A	3/22/03 22:47	JH	D30322A
Styrene	<1.0	1.0		µg/L	1.0	SW8260B	N/A	3/22/03 22:47	JH	D30322A
1,1,1,2-Tetrachloroethane	<0.50	0.50		µg/L	1,0	SW8260B	N/A	3/22/03 22:47	JH	D30322A
1,1,2,2-Tetrachloroethane	< 0.50	0.50		µg/L	1.0	SW8260B	N/A	3/22/03 22:47	JH	D30322A
Tetrachloroethene	3.7	0.50		µg/L	1.0	SW8260B	N/A	3/22/03 22:47	JH	D30322A
Toluene	<3.0	3.0		μg/L	1.0	SW8260B	N/A	3/22/03 22:47	JH	D30322A
1,2,3-Trichlorobenzene	<5.0	5.0		hã/r	1.0	SW82608	N/A	3/22/03 22:47	JH	D30322A
1,2,4-Trichlorobenzene	<5.0	5.0		hð/r	1.0	SW8260B	N/A	3/22/03 22:47	JH	D30322A
1,1,1-Trichloroethane	<0.50	0.50		µg/L	1.0	SW8260B	N/A	3/22/03 22:47	JH	D30322A
1,1,2-Trichloroethane	< 0.50	0.50		hâ\r	1.0	SW8260B	N/A	3/22/03 22:47	JН	D30322A
Trichloroethene	3.1	0.50		hâ∖ŗ	1.0	SW8260B	N/A	3/22/03 22:47	JH	D30322A
Trichlorofluoromethane	<2.0	2.0		μg/L "	1.0	SW8260B	N/A	3/22/03 22:47	jΗ	D30322A
Trichlorotrifluoroethane	<5.0	5.0		μg/L		SW8260B	N/A	3/22/03 22:47	JH	D30322A
1,2,3-Trichloropropane	<1.0	1.0		μg/L	1,0 1,0	SW8260B	N/A	3/22/03 22:47	JН	D30322A
1,2,4-Trimethylbenzene	<2.0	2.0		μg/L "	1.0	SW8260B	N/A	3/22/03 22:47	' JH	D30322A
1,3,5-Trimethylbenzene	<1.5	1.5		µg/L		SW8260B	N/A	3/22/03 22:47	7 JH	D30322A
Vinyl acetate	<5.0	5.0		μg/L	1.0	SW8260B		3/22/03 22:47	7 JH	D30322A
Vinyl chloride	<0.50	0.50		µg/L	1.0	SW8260B		3/22/03 22:47	7 JH	D30322A
Xylenes, Total	<3.0	3.0		µg/L	1.0	SW8260B		3/22/03 22:4	7 JH	D30322A
4-Bromofluorobenzene(Surrogate)	85	80-107		%REC	1.0	SW8260B		3/22/03 22:4	7 JH	D30322A
Dibromofluoromethane(Surrogate)	97	77-104		%REC	1.0	SW8260E		3/22/03 22:4	7 JH	D30322A
1,2-Dichloroethane-d4(Surrogate) Toluene-d8(Surrogate)	109 87	72-111 84-105		%REC %REC	1.0 1.0	SW8260E		3/22/03 22:4	7 JH	D30322A

Amended Report

Date Printed 08-Apr-03

License No. AZM133/AZ0133

CLIENT: Brown & Caldwell

Work Order: Lab ID:

0303291 0303291-04

Project Name:

Dolphin

Client Sample ID: DIMW3-165

Collection Date: 3/20/2003 9:33:00 AM

roject Number: 22413.40				Units	DF	Test Code	Date Prepared	Date Analyzed	Analyst	Batch ID
nalyte	Result	PQL	Qual	Units						
					4.0	SW8260B	N/A	3/22/03 23:24	JH	D30322A
antono	<20	20		µg/L	1.0	SW8260B	N/A	3/22/03 23:24	JH	D30322A
cetone	<0.50	0.50		ha\r_	1.0	SW8260B	N/A	3/22/03 23:24	JH	D30322A
denzene	<1.5	1.5		µg/L	1.0	SW8260B	N/A	3/22/03 23:24	JH	D30322A
Bromobenzene Bromochloromethane	< 0.50	0.50		μg/L	1.0	SW8260B	N/A	3/22/03 23:24	JH	D30322A
	<0.50	0.50		hg/L	1.0		N/A	3/22/03 23:24	JH	D30322A
Bromodichloromethane	<1.0	1.0		µg/∟	1.0	SW8260B	N/A	3/22/03 23:24	JH	D30322A
Bromoform	<5.0	5.0		halr	1.0	SW8260B	N/A	3/22/03 23:24	JH	D30322A
Bromomethane	<5.0	5.0		µg/L	1.0	SW8260B	N/A	3/22/03 23:24	jН	D30322A
2-Butanone	<2.5	2.5		µg/L	1.0	SW8260B		3/22/03 23:24	JH	D30322A
n-Butylbenzene	<1.5	1.5		μg/L	1.0	SW8260B	N/A	3/22/03 23:24	JH	D30322A
sec-Butylbenzene	<2.5	2.5		µg/L	1.0	SW8260B	N/A	3/22/03 23:24	JH	D30322A
tert-Butylbenzene	<0.50	0.50		μg/L	1.0	SW8260B	N/A	3/22/03 23:24	JH	D30322A
Carbon disulfide	<0.50 <0.50	0.50		μg/L	1.0	SW8260B	N/A	3/22/03 23:24	JH	D30322A
Carbon tetrachloride		0.50		μg/L	1.0	SW8260B	N/A		JH	D30322A
Chlorobenzene	<0.50	0.50		μg/L	1.0	SW8260B	N/A	3/22/03 23:24	JH	D30322A
Dibromochloromethane	<0.50	1.0		μg/L	1.0	SW8260B	N/A	3/22/03 23:24		D30322A
Chloroethane	<1.0	0,50		µg/L	1.0	SW8260B	N/A	3/22/03 23:24	JH	D30322A
Chloroform	1.7			μg/L	1.0	SW8260B	N/A	3/22/03 23:24	JH	D30322A
Chloromethane	<5.0	5.0		μg/L	1.0	SW8260B	N/A	3/22/03 23:24	JH	D30322A
2-Chlorotaluene	<1.5	1.5		μg/L	1.0	SW8260B	N/A	3/22/03 23:24	JH	D30322A
4-Chlorotoluene	<2.0	2.0		μg/L	1.0	SW8260B	N/A	3/22/03 23:24	JH	D30322A
1,2-Dibromo-3-chloropropane	<2.0	2.0		μg/L	1.0	SW8260B	N/A	3/22/03 23:24	JH	
1,2-Dibromoethane	<0.50	0.50		μg/L	1.0	SW8260B	N/A	3/22/03 23:24	JH	D30322A
Dibromomethane	<0.50	0.50		μg/L	1.0	SW8260B	N/A	3/22/03 23:24		D30322A
1,2-Dichlorobenzene	<1.5	1.5		μg/L	1.0	SW8260B	N/A	3/22/03 23:24		D30322A
1,3-Dichlorobenzene	<1.5	1.5		µg/∟	1.0	SW8260B	N/A	3/22/03 23:24		D30322A
1,4-Dichlorobenzene	<1.5	1.5		μg/L μg/L	1.0	SW82608	N/A	3/22/03 23:24	JH	D30322A
Dichlorodifluoromethane	<2.0	2.0			1.0	SW8260B	N/A	3/22/03 23:24	JH	D30322A
1,1-Dichloroethane	<1.0	1.0		µg/L	1.0	SW8260B	N/A	3/22/03 23:24	JH	D30322A
1,2-Dichloroethane	<1.0	1.0		µg/L "	1.0	SW8260B	N/A	3/22/03 23:24	HL 1	D30322A
1,1-Dichloroethene	1.7	0.50		µg/∟	1.0	SW8260B		3/22/03 23:24	4 JH	D30322A
cis-1,2-Dichloroethene	< 0.50	0.50		μg/L	1.0	SW8260B		3/22/03 23:2	4 JH	D30322/
trans-1,2-Dichloroethene	<0.50	0.50		µg/L	1.0	SW8260E		3/22/03 23:2	4 JH	D30322/
1,2-Dichloropropane	<0.50	0.50		ha\r	1.0	SW8260E		3/22/03 23:2	4 JH	D30322
1,2-Dichloropropane	<1.0	1.0		µg/L		SW82608	•	3/22/03 23:2	4 JH	D30322
	<0.50	0.50		μg/L	1.0	SW82601				D30322
2,2-Dichloropropane	<1.0	1.0		µg/L	1.0	SW8260				D30322
1,1-Dichloropropene	<1.0	1.0		µg/L	1.0					D30322
cis-1,3-Dichloropropene	<0.50	0.50		µg/L	1.0	SW8260				D30322
trans-1,3-Dichloropropene	<2.0	2.0		µg/L	1.0	SW8260	_			D30322
Ethylbenzene	<2.5	2.5		μg/L	1.0	SW8260	-			D30322
Hexachlorobutadiene	<5.0	5.0		μg/L	1.0	SW8260	-			D30322
2-Hexanone	<1.0	_		μg/L	1.0	SW8260)B N//	م عاددانه ده.	. 011	
Iodomethane	<1.0	1.0		=================================					7 0)	° 36

Amended Report

Date Printed 08-Apr-03

License No. AZM133/AZ0133

Brown & Caldwell

CLIENT: Work Order:

0303291

Lab ID: Project Name: 0303291-04 Dolphin

Client Sample 1D: DIMW3-165

Collection Date: 3/20/2003 9:33:00 AM

Project Number: 22413.400	Dogult	PQL	Qual	Units	DF	Test Code	Date Prepared	Date Analyzed		Batch ID
Analyte	Result		<u> </u>	µg/L	1.0	SW8260B	N/A	3/22/03 23:24	JH	D30322A
sopropylbenzene	<2.5	2.5		µg/L	1.0	SW8260B	N/A	3/22/03 23:24	JH	D30322A
1-Isopropyltoluene	<1.5	1.5		µg/L	1.0	SW8260B	N/A	3/22/03 23:24	JH	D30322A
Methylene chloride	<3.0	3.0		μg/L	1.0	SW8260B	N/A	3/22/03 23:24	JH	D30322A
1-Methyl-2-pentanone	<5.0	5.0		μg/L	1.0	SW8260B	N/A	3/22/03 23:24	JH	D30322A
Methyl tert-butyl ether	<2.0	2.0		μg/L	1.0	SW8260B	N/A	3/22/03 23:24	JH	D30322A
Naphthalene	<5.0	5.0		μg/L	1.0	SW8260B	N/A	3/22/03 23:24	JH	D30322A
n-Propylbenzene	<2.0	2.0		µg/L	1.0	SW8260B	NIA	3/22/03 23:24	JH	D30322A
Styrene	<1.0	1.0		μg/L μg/L	1.0	SW8260B	N/A	3/22/03 23:24	JH	D30322A
1,1,1,2-Tetrachloroethane	< 0.50	0.50			1.0	SW8260B	N/A	3/22/03 23:24	JH	D30322A
1,1,2,2-Tetrachloroethane	<0.50	0.50		μg/L	1.0	SW8260B	N/A	3/22/03 23:24	JH	D30322A
Tetrachloroethene	9.3	0.50		µg/L	1.0	SW8260B	N/A	3/22/03 23:24	JH	D30322A
Toluene	<3.0	3.0		μg/L	1.0	SW8260B	N/A	3/22/03 23:24	JH	D30322A
1,2,3-Trichlorobenzene	<5.0	5.0		μg/L	1.0	SW8260B	N/A	3/22/03 23:24	JH	D30322A
1,2,4-Trichlorobenzene	<5.0	5.0		μg/L	1.0	SW8260B	N/A	3/22/03 23:24	JH	D30322A
1,1,1-Trichloroethane	<0.50	0.50		µg/L	1.0	SW8260B	N/A	3/22/03 23:24	JH	D30322A
1,1,2-Trichloroethane	<0.50	0.50		µg/L	1.0	SW8260B	N/A	3/22/03 23:24	JH	D30322A
Trichioroethene	6.0	0.50		μg/L	1.0	SW8260B	N/A	3/22/03 23:24	JH	D30322A
Trichiorofluoromethane	<2.0	2.0		µg/L	1.0	SW8260B	N/A	3/22/03 23:24	JH	D30322A
Trichlorotrifluoroethane	<5.0	5.0		µg/L	1.0	SW8260B	N/A	3/22/03 23:24	JH	D30322A
1,2,3-Trichloropropane	<1.0	1.0		µg/L		SW8260B	N/A	3/22/03 23:24	JH	D30322A
1,2,4-Trimethylbenzene	<2.0	2.0		µg/L	1.0 1.0	SW82608	N/A	3/22/03 23:24	JH	D30322A
1,3,5-Trimethylbenzene	<1.5	1.5		μg/L "		SW8260B	N/A	3/22/03 23:24	JH	D30322A
Vinyl acetate	<5.0	5.0		µg/L	1.0	SW8260B	N/A	3/22/03 23:24	i jH	D30322A
Vinyl chloride	< 0.50	0.50		μg/L	1.0	SW8260B	N/A	3/22/03 23:24	4 JH	D30322A
Xylenes, Total	<3.0	3.0		µg/L	1.0	SW8260B		3/22/03 23:24		D30322A
4-Bromofluorobenzene(Surrogate)	84	80-107		%REC	1.0	SW8260B		3/22/03 23:2	4 JH	D30322A
Dibromofluoromethane(Surrogate)	96	77-104		%REC	1.0	SW8260B		3/22/03 23:2		D30322A
1,2-Dichloroethane-d4(Surrogate)	108	72-111		%REC	1.0	SW8260E		3/22/03 23:2	4 JH	D30322A
Toluene-d8(Surrogate)	88	84-105		%REC	1.0	Q440200C	,			

Amended Report

Date Printed 08-Apr-03

License No. AZM133/AZ0133

CLIENT:

Brown & Caldwell

Work Order:

0303291

Lab ID:

0303291-05 Dolphin

Project Name:

Project Number: 22413.400

Client Sample ID: DIMW1-410

Collection Date: 3/20/2003 9:57:00 AM

Project Number: 22413.400		-		_ 44		Test	Date	Date	_	
Analyte	Result	PQL_	Qual	Units	DF	Code	Prepared	Analyzed	Analyst	Batch ID
				uall	1.0	SW8260B	N/A	3/23/03 00:02	JH	D30322A
Acetone	<20	20		µg/L	1.0	SW8260B	N/A	3/23/03 00:02	JH	D30322A
lenzene	<0.50	0.50		µg/L	1.0	SW8260B	N/A	3/23/03 00:02	JH	D30322A
romobenzene	<1.5	1.5		µg/L	1.0	SW8260B	N/A	3/23/03 00:02	JH	D30322A
romochloromethane	<0.50	0.50		μg/L	1.0	SW8260B	N/A	3/23/03 00:02	JH	D30322A
iromodichloromethane	<0.50	0.50		µg/L	1.0	SW8260B	N/A	3/23/03 00:02	JH	D30322A
Bromoform	<1.0	1.0		µg/L	1.0	SW8260B	N/A	3/23/03 00:02	JH	D30322A
Bromomethane	<5.0	5.0		µg/L	1.0	SW8260B	N/A	3/23/03 00:02	JH	D30322A
2-Butanone	<5.0	5,0		µg/L	1.0	SW8260B	N/A	3/23/03 00:02	JH	D30322A
n-Butylbenzene	<2.5	2.5		h8/r	1.0	SW8260B	N/A	3/23/03 00:02	JH	D30322A
sec-Butylbenzene	<1.5	1.5		µg/L	1.0	SW8260B	N/A	3/23/03 00:02	JН	D30322A
tert-Butylbenzene	<2.5	2.5		µg/L		SW8260B	N/A	3/23/03 00:02	JH	D30322A
Carbon disulfide	< 0.50	0.50		µg/L	1.0	SW8260B	N/A	3/23/03 00:02	JH	D30322A
Carbon tetrachloride	< 0.50	0.50		μg/L	1.0	SW8260B	N/A	3/23/03 00:02	JН	D30322A
Chlorobenzene	< 0.50	0.50		μg/L	1.0	SW8260B	N/A	3/23/03 00:02	JH	D30322A
Dibromochloromethane	< 0.50	0.50		µg/Ł	1.0	SW8260B	N/A	3/23/03 00:02	JH	D30322A
Chloroethane	<1.0	1.0		µg/∟	1.0	SW8260B	N/A	3/23/03 00:02	JH	D30322A
Chloroform	< 0.50	0.50		µg/L	1.0		N/A	3/23/03 00:02	JH	D30322A
Chloromethane	<5.0	5,0		μg/L	1.0	SW8260B	N/A	3/23/03 00:02	JH	D30322A
2-Chlorotoluene	<1.5	1.5		µg/L	1.0	SW8260B	N/A	3/23/03 00:02	JH	D30322A
	<2.0	2.0		µg/L	1.0	SW8260B		3/23/03 00:02	JH	D30322A
4-Chiorotoluene 1,2-Dibromo-3-chloropropane	<2.0	2.0		µg/L	1.0	SW8260B	N/A	3/23/03 00:02	JH	D30322A
	< 0.50	0.50		μg/L	1.0	SW8260B	N/A	3/23/03 00:02	JН	D30322A
1,2-Dibromoethane	<0.50	0.50		µg/L	1.0	SW8260B	N/A		JH	D30322A
Dibromomethane	<1.5	1.5		µg/L	1.0	SW8260B	N/A	3/23/03 00:02		D30322A
1,2-Dichlorobenzene	<1.5	1.5		hg/L	1.0	SW8260B	N/A	3/23/03 00:02	JH	D30322A
1,3-Dichlorobenzene	<1.5	1.5		µg/L	1.0	SW8260B	N/A	3/23/03 00:02	JH	D30322A
1,4-Dichlorobenzene	<2.0	2.0		µg/L	1.0	SW8260B	N/A	3/23/03 00:02	JH	D30322A
Dichlorodifluoromethane	<1.0	1.0		μg/L	1.0	SW8260B	N/A	3/23/03 00:02	JH	D30322A
1,1-Dichloroethane	<1.0	1.0		μg/L	1.0	SW8260B	N/A	3/23/03 00:02	JH	D30322A
1,2-Dichloroethane		0.50		µg/L	1.0	SW8260B	N/A	3/23/03 00:02	JH	D30322A
1,1-Dichloroethene	<0.50	0.50		μg/L	1.0	SW8260B	NIA	3/23/03 00:02		
cis-1,2-Dichloroethene	6.3	0.50		μg/L	1.0	SW8260B	N/A	3/23/03 00:02		D30322A
trans-1,2-Dichloroethene	<0.50	0.50		μg/L	1.0	SW82608	N/A	3/23/03 00:02		D30322A
1,2-Dichloropropane	<0.50	1.0		μg/L	1.0	SW8260B	N/A	3/23/03 00:02		D30322A
1,3-Dichloropropane	<1.0			hâ/r	1.0	SW8260B	N/A	3/23/03 00:02		D30322A
2,2-Dichloropropane	<0.50	0.50		μg/L	1.0	SW8260B	N/A	3/23/03 00:02		D30322A
1,1-Dichloropropene	<1.0	1.0		μg/L	1.0	SW8260E	N/A	3/23/03 00:02		D30322A
cis-1,3-Dichloropropene	<1.0	1.0		hã\r hã\r	1.0	SW82606	N/A	3/23/03 00:02		D30322A
trans-1,3-Dichloropropene	<0.50	0.50		μg/L	1.0	SW82608	N/A	3/23/03 00:07	2 JH	D30322A
Ethylbenzene	<2.0	2.0		μg/L	1.0	SW8260E	N/A	3/23/03 00:03	2 JH	D30322A
Hexachlorobutadiene	<2.5	2.5			1.0	SW82608	N/A	3/23/03 00:0	2 JH	D30322A
2-Hexanone	<5.0	5.0		µg/L	1.0	SW8260		3/23/03 00:0	2 JH	D30322A
lodomethane	<1.0	1.0	J	µg/L	1.0				9 of 2	

Amended Report

Date Printed 08-Apr-03

License No. AZM133/AZ0133

CLIENT:

Brown & Caldwell

Work Order:

0303291

Lab ID:

0303291-05

Project Name:

Dolphin

Client Sample ID: DIMW1-410 Collection Date: 3/20/2003 9:57:00 AM

A la .t-o	Result	PQL	Qual	Units	DF	Test Code	Date Prepared	Analyzed	Analyst	Batch ID
Analyte			\	µg/L	1.0	SW8260B	N/A	3/23/03 00:02	JH	D30322A
sopropylbenzene	<2.5	2.5		μg/L	1.0	SW8260B	N/A	3/23/03 00:02	JH	D30322A
4-Isopropyltoluene	<1.5	1.5		μg/L	1.0	SW8260B	N/A	3/23/03 00:02	JH	D30322A
Methylene chloride	<3.0	3.0		µg/L	1.0	SW8260B	N/A	3/23/03 00:02	JН	D30322A
4-Methyl-2-pentanone	<5.0	5.0		μg/L	1,0	SW8260B	N/A	3/23/03 00:02	JH	D30322A
Methyl tert-butyl ether	<2.0	2.0		µg/L	1.0	SW8260B	N/A	3/23/03 00:02	JH	D30322A
Naphthalene	<5.0	5.0		µg/L	1.0	SW8260B	N/A	3/23/03 00:02	JH	D30322A
n-Propylbenzene	<2.0	2.0		μg/L	1.0	SW8260B	N/A	3/23/03 00:02	JH	D30322A
Styrene	<1.0	1.0		µg/L	1.0	SW8260B	N/A	3/23/03 00:02	JH	D30322A
1,1,1,2-Tetrachloroethane	< 0.50	0.50		µg/L	1.0	SW8260B	N/A	3/23/03 00:02	JH	D30322A
1,1,2,2-Tetrachloroethane	<0.50	0.50			1.0	SW8260B	N/A	3/23/03 00:02	JΗ	D30322A
Tetrachloroethene	4.7	0.50		μg/L υσ/!	1.0	SW8260B	N/A	3/23/03 00:02	JH	D30322A
Toluene	<3.0	3.0		µg/L µg/L	1.0	SW8260B	N/A	3/23/03 00:02	JH	D30322A
1,2,3-Trichlorobenzene	<5.0	5.0		ha\r ha\r	1.0	SW8260B	N/A	3/23/03 00:02	JH	D30322A
1,2,4-Trichlorobenzene	<5.0	5.0		hâ\r bâvr	1.0	SW8260B	N/A	3/23/03 00:02	JH	D30322A
1,1,1-Trichloroethane	<0.50	0.50			1.0	SW8260B	N/A	3/23/03 00:02	JH	D30322A
1,1,2-Trichloroethane	<0.50	0.50		µg/L	1.0	SW8260B	N/A	3/23/03 00:02	JH	D30322A
Trichloroethene	<0.50	0.50		μg/L	1.0	SW8260B	N/A	3/23/03 00:02	JH	D30322A
Trichlorofluoromethane	<2.0	2.0		µg/L	1.0	SW8260B	N/A	3/23/03 00:02	JH	D30322A
Trichlorotrifluoroethane	<5.0	5.0		µg/L	1.0	SW8260B	N/A	3/23/03 00:02	JH	D30322A
1,2,3-Trichloropropane	<1.0	1.0		µg/L	1.0	SW8260B	N/A	3/23/03 00:02	JH	D30322A
1,2,4-Trimethylbenzene	<2.0	2.0		µg/L	1.0	SW8260B	N/A	3/23/03 00:02	JH	D30322A
1,3,5-Trimethylbenzene	<1.5	1.5		µg/L	1.0	SW8260B	N/A	3/23/03 00:02	JH	D30322A
Vinyl acetate	<5.0	5.0		μg/L	1.0	SW8260B	N/A	3/23/03 00:02	JH	D30322A
Vinyl chloride	<0.50	0.50		μg/L	1.0	SW8260B	N/A	3/23/03 00:02	JH	D30322A
Xylenes, Total	<3.0	3.0		μg/L %REC	1.0	SW8260B	N/A	3/23/03 00:02	: JH	D30322A
4-Bromofluorobenzene(Surrogate)	85	80-107			1.0	SW8260B	N/A	3/23/03 00:02	! JH	D30322A
Dibromofluoromethane(Surrogate)	98	77-104		%REC	1.0	SW8260B		3/23/03 00:02	: JH	D30322A
1,2-Dichloroethane-d4(Surrogate) Toluene-d8(Surrogate)	110 87	72-111 84-105		%REC %REC	1.0	SW8260B	N/A	3/23/03 00:02	! JH	D30322A

TRANSWEST

Amended Report

Date Printed 08-Apr-03

License No. AZM133/AZ0133

CLIENT: Work Order: Brown & Caldwell

0303291

Lab ID:

0303291-06

Project Name:

Dolphin

Client Sample ID: DIMW1-345

Collection Date: 3/20/2003 10:17:00 AM

roject Number: 22413.4		PQL	Qual	Units	DF	Test Code	Date Prepared	Date Analyzed	Analyst	Batch II
nalyte	Result	1 45	~							
	-00	20		μg/L	1.0	SW8260B	N/A	3/23/03 00:39	JН	D30322A
cetone	<20			μg/L	1.0	SW8260B	N/A	3/23/03 00:39	JH	D30322A
enzene	<0.50	0.50		μg/L	1.0	SW8260B	N/A	3/23/03 00:39	JH	D30322A
Iromobenzene	<1.5	1.5		µg/L	1.0	SW8260B	N/A	3/23/03 00:39	JH	D30322A
romochloromethane	<0.50	0.50		µg/∟	1.0	SW8260B	N/A	3/23/03 00:39	JH	D30322A
Promodichloromethane	<0.50	0.50		μg/L	1.0	SW8260B	N/A	3/23/03 00:39	HL	D30322A
Bromoform	<1.0	1.0		hâ\ŗ	1.0	SW8260B	N/A	3/23/03 00:39	JH	D30322A
Bromomethane	<5.0	5.0			1.0	SW8260B	N/A	3/23/03 00:39	JH	D30322A
2-Butanone	<5.0	5.0		µg/L	1.0	SW8260B	N/A	3/23/03 00:39	JH	D30322A
n-Butylbenzene	<2.5	2.5		μg/L	1.0	SW8260B	N/A	3/23/03 00:39	JH	D30322A
sec-Butylbenzene	<1.5	1.5		μg/L "		SW8260B	N/A	3/23/03 00:39	JH	D30322A
ert-Butylbenzene	<2.5	2.5		μg/L	1.0	SW8260B	N/A	3/23/03 00:39	JH	D30322A
Carbon disulfide	< 0.50	0.50		µg/L	1.0	SW8260B	N/A	3/23/03 00:39	JH	O30322A
Carbon tetrachloride	<0.50	0.50		μg/L	1.0		N/A	3/23/03 00:39	JH	D30322A
Chlorobenzene	<0.50	0.50		µg/L	1.0	SW82608	N/A	3/23/03 00:39	JH	D30322A
Dibromochloromethane	<0.50	0.50		µg/L	1.0	SW8260B	N/A	3/23/03 00:39	JH	D30322A
Chloroethane	<1.0	1.0		μg/L	1.0	SW8260B		3/23/03 00:39	JH	D30322A
Chloroform	< 0.50	0.50		µg/L	1.0	SW8260B	N/A	3/23/03 00:39	JH	D30322A
Chloromethane	<5.0	5.0		µg/L	1.0	SW8260B	N/A		JH	D30322A
2-Chlorotoluene	<1.5	1.5		µg/∟	1.0	SW8260B	N/A	3/23/03 00:39		D30322A
4-Chiorotoluene	<2.0	2.0		µg/L	1.0	SW8260B	N/A	3/23/03 00:39	JH	D30322A
1,2-Dibromo-3-chloropropane	<2.0	2.0		μg/L	1.0	SW8260B	N/A	3/23/03 00:39	JH	D30322A
•	<0.50	0.50		µg/L	1.0	SW8260B	N/A	3/23/03 00:39	JH	D30322A
1,2-Dibromoethane	<0.50	0.50		μg/L	1.0	SW8260B	N/A	3/23/03 00:39	JH	
Dibromomethane	<1.5	1.5		µg/L	1.0	SW8260B	N/A	3/23/03 00:39		D30322A
1,2-Dichlorobenzene	<1.5	1.5		μg/L	1.0	SW8260B	N/A	3/23/03 00:39		D30322A
1,3-Dichlorobenzene	<1.5	1.5		μg/L	1.0	SW8260B	N/A	3/23/03 00:39		D30322A
1,4-Dichlorobenzene	<2.0	2.0		µg/L	1.0	SW8260B	N/A	3/23/03 00:39		D30322A
Dichlorodifluoromethane		1.0		μg/L	1.0	SW8260B	N/A	3/23/03 00:39		D30322A
1,1-Dichloroethane	<1.0	1.0		µg/L	1.0	SW8260B	N/A	3/23/03 00:39	JH	D30322A
1,2-Dichloroethane	<1.0			μg/L	1.0	SW8260B	N/A	3/23/03 00:39	JH.	D30322A
1,1-Dichloroethene	<0.50	0.50		µg/L	1.0	SW8260B	N/A	3/23/03 00:39) JH	D30322A
cis-1,2-Dichloroethene	3.7	0.50		µg/L	1.0	SW8260B	N/A	3/23/03 00:39) JH	D30322A
trans-1,2-Dichloroethene	<0.50	0.50		µg/L	1.0	SW8260B	N/A	3/23/03 00:39) JH	D30322A
1,2-Dichloropropane	<0.50	0.50			1.0	SW8260B	N/A	3/23/03 00:39) JH	D30322A
1,3-Dichloropropane	<1.0	1.0		µg/L	1.0	SW8260B	N/A	3/23/03 00:39)H	D30322A
2,2-Dichloropropane	<0.50	0.50		µg/L	1.0	SW8260B	N/A	3/23/03 00:3	9 JH	D30322A
1,1-Dichloropropene	<1.0	1.0		μg/L		SW8260B	N/A	3/23/03 00:3		D30322A
cis-1,3-Dichloropropene	<1.0	1.0		μg/L	1.0	SW8260B	N/A	3/23/03 00:3		D30322A
trans-1,3-Dichloropropene	<0.50	0.50		ha\r	1.0	SW8260B	N/A	3/23/03 00:3		D30322A
Ethylbenzene	<2.0	2.0		µg/L	1.0	SW8260B	N/A	3/23/03 00:3		D30322A
Hexachlorobutadiene	<2.5	2.5		μg/L	1.0			3/23/03 00:3		D30322A
2-Hexanone	<5.0	5.0		μg/L	1.0	SW8260B		3/23/03 00:3		D30322A
lodomethane	<1.0	1.0		µg/L	1.0	SW8260B	N/A	J. E. J. U.J. U.J. J	. JII	

Amended Report

Date Printed 08-Apr-03

License No. AZM133/AZ0133

CLIENT:

Brown & Caldwell

Work Order:

0303291

Lab ID:

0303291-06

Project Name:

Dolphin Project Number: 22413.400 Client Sample ID: DIMW1-345

Collection Date: 3/20/2003 10:17:00 AM

Project Number: 22413.400				AP14		Test	Date	Date	A =1a+	Batch ID
Amalista	Result	PQL	Qual	Units	DF	Code	Prepared	Analyzed		
Analyte	<2.5	2.5	.,	µg/L	1.0	SW8260B	N/A	3/23/03 00:39	JH	D30322A
Isopropylbenzene	<2.5 <1.5	1.5		µg/L	1.0	SW8260B	N/A	3/23/03 00:39	JH	D30322A
4-Isopropyitoluene	<3.0	3.0		μg/L	1.0	SW8260B	N/A	3/23/03 00:39	JH	D30322A
Methylene chloride		5.0		μg/L	1.0	SW8260B	N/A	3/23/03 00:39	JH	D30322A
4-Methyl-2-pentanone	<5.0	2.0		µg/L	1.0	SW8260B	N/A	3/23/03 00:39	JH	D30322A
Methyl tert-butyl ether	<2.0	5.0		μg/L	1.0	SW8260B	N/A	3/23/03 00:39	JH	D30322A
Naphthalene	<5.0	2.0		μg/L	1,0	SW8260B	N/A	3/23/03 00:39	JH	D30322A
n-Propylbenzene	<2.0	1.0		μg/L	1.0	SW8260B	N/A	3/23/03 00:39	ЛH	D30322A
Styrene	<1.0	0.50		μg/L	1.0	SW8260B	N/A	3/23/03 00:39	JH	D30322A
1,1,1,2-Tetrachloroethane	< 0.50	0.50		μg/L	1.0	SW8260B	N/A	3/23/03 00:39	JH	D30322A
1,1,2,2-Tetrachloroethane	<0.50			µg/L	1.0	SW8260B	N/A	3/23/03 00:39	JH	D30322A
Tetrachloroethene	39	0.50		µg/L	1.0	SW8260B	N/A	3/23/03 00:39	JH	D30322A
Toluene	<3.0	3.0		μg/L	1.0	SW8260B	N/A	3/23/03 00:39	JH	D30322A
1,2,3-Trichlorobenzene	<5.0	5.0		µg/L	1.0	SW8260B	N/A	3/23/03 00:39	JH	D30322A
1,2,4-Trichlorobenzene	<5.0	5.0		µg/L	1.0	SW8260B	N/A	3/23/03 00:39	JH	D30322A
1,1,1-Trichloroethane	<0.50	0.50		μg/L	1.0	SW8260B	N/A	3/23/03 00:39	JH	D30322A
1,1,2-Trichloroethane	<0.50	0.50		μg/L	1.0	SW8260B	N/A	3/23/03 00:39	JH	D30322A
Trichloroethene	3.2	0.50		µg/L	1.0	SW8260B	N/A	3/23/03 00:39	JH	D30322A
Trichlorofluoromethane	<2.0	2.0		μg/L	1.0	SW8260B	N/A	3/23/03 00:39	JH	D30322A
Trichlorotrifluoroethane	<5.0	5.0		µg/L	1.0	SW8260B	N/A	3/23/03 00:39	JH	D30322A
1,2,3-Trichloropropane	<1.0	1.0			1.0	SW8260B	N/A	3/23/03 00:39	JH	D30322A
1,2,4-Trimethylbenzene	<2.0	2.0		µg/L	1.0	SW8260B	N/A	3/23/03 00:39	JH	D30322A
1,3,5-Trimethylbenzene	<1.5	1.5		µg/L ″	1.0	SW8260B	N/A	3/23/03 00:39	JH	D30322A
Vinyl acetate	<5.0	5.0		μg/L	1.0	SW8260B	N/A	3/23/03 00:39	JH	D30322A
Vinyl chloride	<0.50	0.50		μg/L	1.0	SW8260B	N/A	3/23/03 00:39	JH	D30322A
Xylenes, Total	<3.0	3.0		µg/L ∾n=C	1.0	SW8260B	N/A	3/23/03 00:39) JH	D30322A
4-Bromofluorobenzene(Surrogate)	86	80-107		%REC	1.0	SW8260B	N/A	3/23/03 00:39) JH	D30322A
Dibromofluoromethane(Surrogate)	96	77-104		%REC	1.0	SW8260B	N/A	3/23/03 00:39) JH	D30322A
1,2-Dichloroethane-d4(Surrogate)	109	72-111		%REC		SW8260B	N/A	3/23/03 00:39) JH	D30322A
Toluene-d8(Surrogate)	86	84-105		%REC	1.0	01102001	. 4			

Amended Report

Date Printed 08-Apr-03

License No. AZM133/AZ0133

CLIENT:

Brown & Caldwell

Work Order:

0303291

Lab ID:

0303291-07 Dolphin

Project Name:

Project Number: 22413.400

Client Sample ID: DIMW1-240

Collection Date: 3/20/2003 10:30:00 AM

Project Number: 22413.40						Test	Date	Date		- 1 1
Analyte	Result	PQL	Qual	Units	DF	Code	Prepared	Analyzed	Analyst	Batch II
	-00	20		μg/L	1.0	SW8260B	N/A	3/23/03 01:17	JH	D30322A
cetone	<20	20		μg/L	1.0	SW8260B	N/A	3/23/03 01:17	JH	D30322A
enzene	<0.50	0.50		µg/L	1.0	SW8260B	N/A	3/23/03 01:17	JH	D30322A
Bromobenzene	<1.5	1.5		μg/L	1.0	SW8260B	N/A	3/23/03 01:17	JH	D30322A
Bromochloromethane	<0.50	0.50		µg/L	1.0	SW8260B	N/A	3/23/03 01:17	JH	D30322A
Bromodichloromethane	<0.50	0.50		µg/L	1.0	SW8260B	N/A	3/23/03 01:17	JH	D30322A
Bramoform	<1.0	1.0		րց/L	1.0	SW8260B	N/A	3/23/03 01:17	JH	D30322A
romomethane	<5.0	5.0			1.0	SW8260B	N/A	3/23/03 01:17	JH	D30322A
2-Butanone	<5.0	5.0		µg/L	1.0	SW8260B	N/A	3/23/03 01:17	JH	D30322A
n-Butylbenzene	<2.5	2.5		μg/L	1.0	SW8260B	N/A	3/23/03 01:17	JH	D30322A
sec-Butylbenzene	<1.5	1.5		µg/L		SW8260B	N/A	3/23/03 01:17	JH	D30322A
tert-Butylbenzene	<2.5	2.5		μg/L "	1.0	SW8260B	N/A	3/23/03 01:17	jΗ	D30322A
Carbon disulfide	< 0.50	0.50		µg/L	1.0	SW8260B	N/A	3/23/03 01:17	JH	D30322A
Carbon tetrachloride	< 0.50	0.50		µg/L	1.0	SW8260B	N/A	3/23/03 01:17	JH	D30322A
Chlorobenzene	< 0.50	0.50		µg/L	1.0	SW8260B	N/A	3/23/03 01:17	JH	D30322A
Dibromochloromethane	< 0.50	0.50		μg/L	1.0	SW8260B	N/A	3/23/03 01:17	JH	D30322A
- Chloroethane	<1.0	1.0		μg/L	1.0		N/A	3/23/03 01:17	JH	D30322A
Chloroform	0.99	0.50		µg/L	1.0	SW8260B	N/A	3/23/03 01:17	JH	D30322A
Chloromethane	<5.0	5.0		µg/L	1.0	SW8260B		3/23/03 01:17	JH	D30322A
2-Chlorotoluene	<1.5	1.5		µg/L	1.0	SW8260B	N/A	3/23/03 01:17	JH	D30322A
4-Chlorotoluene	<2.0	2.0		µg/L	1.0	SW8260B	N/A		JH	D30322A
1,2-Dibromo-3-chloropropane	<2.0	2.0		µg/L	1.0	SW8260B	N/A	3/23/03 01:17		D30322A
1,2-Dibromoethane	< 0.50	0.50		µg/∟	1.0	SW8260B	N/A	3/23/03 01:17	JH	D30322A
Dibromomethane	<0.50	0.50		µg/L	1.0	SW8260B	NIA	3/23/03 01:17	JΗ	D30322A
	<1.5	1.5		µg/L	1.0	SW8260B	N/A	3/23/03 01:17	JH 	D30322A
1,2-Dichlorobenzene	<1.5	1.5		µg/L	1.0	SW8260B	NIA	3/23/03 01:17	JH	
1,3-Dichlorobenzene	<1.5	1.5		µg/L	1.0	SW8260B	N/A	3/23/03 01:17	JH	D30322A
1,4-Dichlorobenzene	<2.0	2.0		μg/L	1.0	SW8260B	N/A	3/23/03 01:17		D30322A
Dichlorodifluoromethane	<1.0	1.0		μg/L	1.0	SW8260B	N/A	3/23/03 01:17		D30322A
1,1-Dichloroethane	<1.0	1.0		µg/L	1.0	SW8260B	N/A	3/23/03 01:17		D30322A
1,2-Dichloroethane		0.50		μg/L	1.0	SW8260B	N/A	3/23/03 01:17	JH	D30322A
1,1-Dichloroethene	2.4	0.50		μg/L	1.0	SW8260B	N/A	3/23/03 01:17	JH	D30322A
cis-1,2-Dichloroethene	<0.50			µg/L	1.0	SW82608	N/A	3/23/03 01:17	JH	D30322A
trans-1,2-Dichloroethene	< 0.50	0.50		μg/L	1.0	SW8260B	N/A	3/23/03 01:17	JH	D30322A
1,2-Dichloropropane	<0.50	0.50		µg/⊏ µg/L	1.0	SW8260B	N/A	3/23/03 01:17	' JH	D30322A
1,3-Dichloropropane	<1.0	1.0			1.0	SW8260B	N/A	3/23/03 01:17	/ JH	D30322A
2,2-Dichloropropane	<0.50	0.50		µg/L	1.0	SW8260B	N/A	3/23/03 01:17	7 JH	D30322A
1,1-Dichloropropene	<1.0	1.0		µg/L	1.0	SW8260B	N/A	3/23/03 01:17	7 JH	D30322A
cis-1,3-Dichloropropene	<1.0	1.0		μg/L	1.0	SW8260B	N/A	3/23/03 01:17		D30322A
trans-1,3-Dichloropropene	<0.50	0.50		µg/L	1.0	SW8260B	N/A	3/23/03 01:1		D30322A
Ethylbenzene	<2.0	2.0		μg/L		SW8260B	N/A	3/23/03 01:1		D30322A
Hexachlorobutadiene	<2.5	2.5		µg/L	1.0	SW8260B	N/A	3/23/03 01:1		D30322A
2-Hexanone	<5.0	5.0		μg/L	1.0	SW8260B	N/A	3/23/03 01:1		D30322A
Iodomethane	<1.0	1.0		µg/L	1.0	OYYOZOUB	19271	5,20,00 0 111		

Amended Report

Date Printed 08-Apr-03

License No. AZM133/AZ0133

CLIENT:

Brown & Caldwell

Work Order:

0303291

Lab ID:

0303291-07

Project Name: Project Number: 22413.400

Dolphin

Client Sample ID: DIMW1-240

Collection Date: 3/20/2003 10:30:00 AM

Analyte Result PQL Qual Office SV VSX VSX 3/23/03 01:17 Isopropylbenzene <2.5 2.5 µg/L 1.0 SW8260B N/A 3/23/03 01:17 Methyloreblored <1.5 1.5 µg/L 1.0 SW8260B N/A 3/23/03 01:17 Methyler-blored <3.0 3.0 µg/L 1.0 SW8260B N/A 3/23/03 01:17 4-Methyl-2-pentanone <5.0 5.0 µg/L 1.0 SW8260B N/A 3/23/03 01:17 Methyl tert-butyl ether <2.0 2.0 µg/L 1.0 SW8260B N/A 3/23/03 01:17 Naphthalene <5.0 5.0 µg/L 1.0 SW8260B N/A 3/23/03 01:17 Naphthalene <5.0 5.0 µg/L 1.0 SW8260B N/A 3/23/03 01:17 Styrene <1.0 1.0 µg/L 1.0 SW8260B N/A 3/23/03 01:17 1,1,2-Tetrachloroethane <0.50 0.50	Analyst	Batch ID
Sopropylbenzene		D30322A
SchoolyNethizers	JH	D30322A
Methylene chloride	JH	D30322A
Methylter-butylether September Septe	JH	D30322A
Methyl tert-butyl ether	JH	D30322A
Naphthalene	JH	D30322A
Naphidelster Naph	JH	D30322A
Styrene	JH	D30322A
Sylveter Q0.50 Q.50 Ug/L 1.0 SW8260B N/A 3/23/03 01:17 1,1,2,2-Tetrachloroethane <0.50	JH	D30322A
1,1,2-Tertachloroethane <0.50 0.50 µg/L 1.0 SW8260B N/A 3/23/03 01:17 Tetrachloroethane 12 0.50 µg/L 1.0 SW8260B N/A 3/23/03 01:17 Toluene <3.0	JH	D30322A D30322A
Tetrachloroethene 12 0.50 µg/L 1.0 SW8260B N/A 3/23/03 01:17 Toluene <3.0 3.0 µg/L 1.0 SW8260B N/A 3/23/03 01:17 Toluene <3.0 3.0 µg/L 1.0 SW8260B N/A 3/23/03 01:17 1,2,3-Trichlorobenzene <5.0 5.0 µg/L 1.0 SW8260B N/A 3/23/03 01:17 1,2,4-Trichloroethane <5.0 0.50 µg/L 1.0 SW8260B N/A 3/23/03 01:17 1,1,1-Trichloroethane <0.50 0.50 µg/L 1.0 SW8260B N/A 3/23/03 01:17 1,1,2-Trichloroethane <0.50 0.50 µg/L 1.0 SW8260B N/A 3/23/03 01:17 Trichloroethene 6.3 0.50 µg/L 1.0 SW8260B N/A 3/23/03 01:17 Trichlorofluoromethane <2.0 2.0 µg/L 1.0 SW8260B N/A 3/23/03 01:17 Trichlorofluoromethane <5.0 5.0 µg/L 1.0 SW8260B N/A 3/23/03 01:17 Trichlorotifluoroethane <5.0 5.0 µg/L 1.0 SW8260B N/A 3/23/03 01:17 1,2,3-Trichloropropane <1.0 1.0 µg/L 1.0 SW8260B N/A 3/23/03 01:17 1,2,4-Trimethylbenzene <2.0 2.0 µg/L 1.0 SW8260B N/A 3/23/03 01:17 1,3,5-Trimethylbenzene <1.5 1.5 µg/L 1.0 SW8260B N/A 3/23/03 01:17 Vinyl acetate <5.0 5.0 µg/L 1.0 SW8260B N/A 3/23/03 01:17 Vinyl acetate <5.0 5.0 µg/L 1.0 SW8260B N/A 3/23/03 01:17 Vinyl chloride <0.50 0.50 µg/L 1.0 SW8260B N/A 3/23/03 01:17 Vinyl chloride <0.50 0.50 N/A 3/23/03 01:17	JH	D30322A D30322A
Toluene	JH	
1,2,3-Trichlorobenzene	JH	D30322A
1,2,3-1 richlorobenzene	JH	D30322A
1,2,4-Inchlorobenzerie		D30322A
1,1,2-Trichloroethane <0.50 0.50 µg/L 1.0 SW8260B N/A 3/23/03 01:17 Trichloroethane 6.3 0.50 µg/L 1.0 SW8260B N/A 3/23/03 01:17 Trichloroethane <0.0		D30322A
1,1,2-1 Inchloroethane 50.50 µg/L 1.0 \$W82608 N/A 3/23/03 01:17 1,1,2-1 Inchloroethane 6.3 0.50 µg/L 1.0 \$W8260B N/A 3/23/03 01:17 1,2,1-1 Inchloroethane <2.0		D30322A
Trichloroethene Co.0 Co.0 Co.0 Lo.0 SW8260B N/A 3/23/03 01:17 Trichlorofiluoromethane Co.0 Co.0 Lo.0 Lo.0 Lo.0 SW8260B N/A 3/23/03 01:17 Trichlorotrifluoroethane Co.0 Co.0 Lo.0 Lo.0 SW8260B N/A 3/23/03 01:17 1,2,3-Trichloropropane Co.0 2.0 Lo.0 Lo.0 SW8260B N/A 3/23/03 01:17 1,2,4-Trimethylbenzene Co.0 2.0 Lo.0 Lo.0 SW8260B N/A 3/23/03 01:17 1,3,5-Trimethylbenzene Co.0 5.0 Lo.0 Lo.0 SW8260B N/A 3/23/03 01:17 Vinyl acetate Co.0 5.0 Lo.0 SW8260B N/A 3/23/03 01:17 Vinyl chloride Co.0 0.50 Lo.0 SW8260B N/A 3/23/03 01:17		D30322A
Inchlorofituoromentatie \$\frac{2}{2}\text{0}\$ \$\frac{1}{2}\text{0}\$		D30322A
Trichlorotrifluoroetnane S.0 J.0 J.0 <td></td> <td>D30322A</td>		D30322A
1,2,3-1 inchloropropane 41.0 LIO SW8260B N/A 3/23/03 01:13 1,2,4-Trimethylbenzene <2.0		D30322A
1,2,4-Trimethylbenzene <2.0	JH	D30322A
1,3,5-Trimethylbenzene 1.5 1.5 1.0 SW8260B N/A 3/23/03 01:11 Vinyl acetate <5.0		D30322A
Vinyl acetate	' JH	D30322A
Vinyl chloride C0.50 0.50 1.00 SW8260B N/A 3/23/03 01:17	' JH	D30322A
	' JH	D30322A
Xylenes, Total <3.0 3.0 9/PEC 1.0 SW8260B N/A 3/23/03 01:1	7 JH	D30322A
4-Bromofluorobenzene(Surrogate) 86 80-107 9/85C 1.0 SW8260B N/A 3/23/03 01:1	7 JH	D30322A
Dibromofluoromethane(Surrogate) 97 77-104 9/RFC 1.0 SW8260B N/A 3/23/03 01:1	7 JH	D30322A
1,2-Dichioroethane-d4(Surrogate) 110 /2-111 %BEC 1.0 SW8260B N/A 3/23/03 01:1	7 JH	D30322A
Toluene-d8(Surrogate) 86 84-105		

GEOCHEM

Amended Report

Date Printed 08-Apr-03

License No. AZM133/AZ0133

CLIENT:

Brown & Caldwell

Work Order:

0303291

Lab ID:

0303291-08 Dolphin

Project Name:

Project Number: 22413.400

Client Sample ID: DIMW1-165

Collection Date: 3/20/2003 10:49:00 AM

Project Number: 22413.400		41				Test	Date	Date	4	Batch ID
Analyte	Result	PQL	Qual	Units	DF	Code	Prepared	Analyzed	Anaiyst	Baich IL
	<u></u>			P	1.0	SW8260B	N/A	3/23/03 05:05	JH	D30322C
Acetone	<20	20		µg/L "	1.0	SW8260B	N/A	3/23/03 05:05	JH	D30322C
Benzene	<0.50	0.50		μg/L		SW8260B	N/A	3/23/03 05:05	JH	D30322C
Bromobenzene	<1.5	1.5		µg/L	1.0	SW8260B	N/A	3/23/03 05:05	JH	D30322C
Bromochloromethane	< 0.50	0.50		μg/L 	1.0	SW8260B	N/A	3/23/03 05:05	JH	D30322C
Bromodichloromethane	<0.50	0.50		μg/L	1.0	SW8260B	N/A	3/23/03 05:05	JH	D30322C
Bromoform	<1.0	1.0		µg/L	1.0	SW8260B	N/A	3/23/03 05:05	JH	D30322C
Bromomethane	<5.0	5.0		µg/L	1.0	SW8260B	N/A	3/23/03 05:05	JH	D30322C
2-Butanone	<5.0	5.0		μg/L	1.0	SW8260B	N/A	3/23/03 05:05	JH	D30322C
n-Butylbenzene	<2.5	2.5		μg/L	1.0	SW8260B	N/A	3/23/03 05:05	JH	D30322C
sec-Butylbenzene	<1.5	1.5		μg/L	1.0	SW8260B	N/A	3/23/03 05:05	JH	D30322C
tert-Butylbenzene	<2.5	2.5		μg/L	1.0		N/A	3/23/03 05:05	JH	D30322C
Carbon disulfide	<0.50	0.50		µg/L	1.0	SW8260B	N/A	3/23/03 05:05	JH	D30322C
Carbon tetrachloride	<0.50	0.50		µg/∟	1.0	SW8260B	N/A	3/23/03 05:05	JH	D30322C
Chlorobenzene	< 0.50	0.50		µg/L	1.0	SW8260B	N/A	3/23/03 05:05	JH	D30322C
Dibromochloromethane	< 0.50	0.50		µg/L	1.0	SW8260B	N/A	3/23/03 05:05	JH	D30322C
Chloroethane	<1.0	1.0		µg/L	1.0	SW8260B	N/A N/A	3/23/03 05:05	JH	D30322C
Chloroform	3.2	0.50		μg/L	1.0	SW8260B		3/23/03 05:05	JH	D30322C
Chloromethane	<5.0	5.0		µg/L	1.0	SW82608	N/A	3/23/03 05:05	JH	D30322C
	<1.5	1.5		µg/L	1.0	SW8260B	N/A	3/23/03 05:05	JH	D30322C
2-Chlorotoluene	<2.0	2.0		µg/L	1.0	SW8260B	N/A	3/23/03 05:05	JH	D30322C
4-Chlorotoluene	<2.0	2.0		μg/L	1.0	SW8260B	N/A		JH	D30322C
1,2-Dibromo-3-chloropropane	<0.50	0.50		μg/L	1.0	SW8260B	N/A	3/23/03 05:05	JH	D30322C
1,2-Dibromoethane	<0.50	0.50		µg/L	1.0	SW8260B	N/A	3/23/03 05:05		D30322C
Dibromomethane	<1.5	1.5		µg/L	1.0	SW8260B	N/A	3/23/03 05:05	JH	D30322C
1,2-Dichlorobenzene	<1.5	1.5		µg/L	1.0	SW82608	N/A	3/23/03 05:05		D30322C
1,3-Dichlorobenzene	<1.5	1.5		μg/L	1.0	SW8260B	N/A	3/23/03 05:05		D30322C
1,4-Dichlorobenzene	<2.0	2.0		µg/L	1.0	SW8260B	N/A	3/23/03 05:05		D30322C
Dichlorodifluoromethane		1.0		μg/L	1.0	SW8260B	N/A	3/23/03 05:05		
1,1-Dichloroethane	<1.0	1.0	V7	μg/L	1.0	SW8260B	N/A	3/23/03 05:05		D30322C
1,2-Dichloroethane	<1.0	0.50		μg/L	1.0	SW8260B	N/A	3/23/03 05:05		D30322C
1,1-Dichloroethene	2.5	0.50		µg/L	1.0	SW82608	N/A	3/23/03 05:05		D30322C
cis-1,2-Dichloroethene	0.74	0.50		µg/L	1.0	SW8260B	N/A	3/23/03 05:05		D30322C
trans-1,2-Dichloroethene	<0.50			μg/L	1.0	SW8260B	N/A	3/23/03 05:05		D30322C
1,2-Dichloropropane	<0.50	0.50		μg/L	1.0	SW8260B	N/A	3/23/03 05:05		D30322C
1,3-Dichloropropane	<1.0	1.0		µg/L	1.0	SW8260B	N/A	3/23/03 05:0		D30322C
2,2-Dichloropropane	<0.50	0.50		μg/L	1.0	SW8260B	N/A	3/23/03 05:0		D30322C
1,1-Dichloropropene	<1.0	1,0		μg/L	1.0	SW8260B	N/A	3/23/03 05:0		D30322C
cis-1,3-Dichloropropene	<1.0	1.0		μg/L	1.0	SW82609	N/A	3/23/03 05:0		D30322C
trans-1,3-Dichloropropene	<0.50	0.50		μg/L	1.0	SW82608	N/A	3/23/03 05:0		D30322C
Ethylbenzene	<2.0	2.0		μg/L	1.0	SW8260E	N/A	3/23/03 05:0	5 JH	D30322C
Hexachlorobutadiene	<2.5	2.5		μg/L μg/L	1.0	SW8260E		3/23/03 05:0	15 JH	D30322C
2-Hexanone	<5.0	5.0			1.0	SW8260E		3/23/03 05:0	95 JH	D30322C
lodomethane	<1.0	1.0	l	µg/L	1.0				15 of 2	

TRANSWEST

Amended Report

Date Printed 08-Apr-03

License No. AZM133/AZ0133

CLIENT:

Brown & Caldwell

Work Order:

0303291

Lab ID:

0303291-08 Dolphin

Project Name:

Project Number: 22413.400

Client Sample ID: DIMW1-165

Collection Date: 3/20/2003 10:49:00 AM

Project Number: 22413.400						Test	Date	Date	4	Datah ID
	Result	PQL	Qual	Units	DF	Code	Prepared	Analyzed		Batch ID
Analyte				μg/L	1.0	SW8260B	N/A	3/23/03 05:05	JH	D30322C
Isopropylbenzene	<2.5	2.5 1.5		µg/L	1.0	SW8260B	N/A	3/23/03 05:05	JH	D30322C
4-Isopropyltoluene	<1.5	3.0		µg/L	1.0	SW8260B	N/A	3/23/03 05:05	JH	D30322C
Methylene chloride	<3.0			μg/L	1.0	SW8260B	N/A	3/23/03 05:05	JH	D30322C
4-Methyl-2-pentanone	<5.0	5.0		μg/L	1.0	SW8260B	N/A	3/23/03 05:05	JH	D30322C
Methyl tert-butyl ether	<2.0	2.0		μg/L	1.0	SW8260B	N/A	3/23/03 05:05	JH	D30322C
Naphthalene	<5.0	5.0		µg/L	1.0	SW8260B	N/A	3/23/03 05:05	HL,	D30322C
n-Propylbenzene	<2.0	2.0		μg/L	1.0	SW82608	N/A	3/23/03 05:05	JH	D30322C
Styrene	<1.0	1.0		μg/L	1.0	SW8260B	N/A	3/23/03 05:05	JH	D30322C
1,1,1,2-Tetrachloroethane	< 0.50	0.50		µg/L	1.0	SW8260B	N/A	3/23/03 05:05	JH	D30322C
1,1,2,2-Tetrachloroethane	<0.50	0.50		μg/L	1.0	SW8260B	N/A	3/23/03 05:05	JH	D30322C
Tetrachloroethene	18	0.50		μg/L	1.0	SW8260B	N/A	3/23/03 05:05	JH	D30322C
Toluene	<3.0	3.0		µg/L	1.0	SW8260B	N/A	3/23/03 05:05	JH	D30322C
1,2,3-Trichlorobenzene	<5.0	5.0		µg/L	1.0	SW8260B	N/A	3/23/03 05:05	JH	D30322C
1,2,4-Trichlorobenzene	<5.0	5.0			1.0	SW8260B	N/A	3/23/03 05:05	JΗ	D30322C
1,1,1-Trichloroethane	<0.50	0.50		μg/L	1.0	SW8260B	N/A	3/23/03 05:05	JH	D30322C
1,1,2-Trichloroethane	<0.50	0.50		μg/L	1.0	SW8260B	N/A	3/23/03 05:05	JH	D30322C
Trichloroethene	7.4	0.50		µg/L	1.0	SW8260B	N/A	3/23/03 05:05	JH	D30322C
Trichlorofluoromethane	<2.0	2.0		μg/L	1.0	SW8260B	N/A	3/23/03 05:05	JH	D30322C
Trichlorotrifluoroethane	<5.0	5.0		µg/L	1.0	SW8260B	N/A	3/23/03 05:05	j JH	D30322C
1,2,3-Trichloropropane	<1.0	1.0		µg/L	1.0	SW8260B	N/A	3/23/03 05:05	j JH	D30322C
1,2,4-Trimethylbenzene	<2.0	2.0		µg/L	1.0	SW8260B	N/A	3/23/03 05:05	5 JH	D30322C
1,3,5-Trimethylbenzene	<1 <i>.</i> 5	1.5		μg/L	1.0	SW8260B	N/A	3/23/03 05:05	i JH	D30322C
Vinyl acetate	<5.0	5.0		µg/L	1.0	SW8260B	N/A	3/23/03 05:05	5 JH	D30322C
Vinyl chloride	<0.50	0.50		μg/L "	1.0	SW8260B	N/A	3/23/03 05:0	5 JH	D30322C
Xylenes, Total	<3.0	3.0		µg/L	1.0	SW8260B		3/23/03 05:0	5 JH	D30322C
4-Bromofluorobenzene(Surrogate)	85	80-107		%REC		SW8260B		3/23/03 05:0	5 JH	D30322C
Dibromofluoromethane(Surrogate)	96	77-104		%REC	1.0	SW8260B		3/23/03 05:0	5 JH	D30322C
1,2-Dichloroethane-d4(Surrogate)	107	72-111		%REC	1.0	SW8260B		3/23/03 05:0		D30322C
Toluene-d8(Surrogate)	87	84-105		%REC	1.0	34402000				

Amended Report

Date Printed 08-Apr-03

License No. AZM133/AZ0133

CLIENT:

Brown & Caldwell

Work Order:

0303291

Lab ID: Project Name: 0303291-09 Dolphin

Client Sample ID: DIMW1-120

Collection Date: 3/20/2003 11:00:00 AM

roject Number: 22413.40		DOI.	Qual	Units	DF	Test Code	Date Prepared	Date Analyzed	Analyst	Batch ID
nalyte	Result	PQL	Quai	0.11						
				μg/L	1.0	SW8260B	N/A	3/23/03 05:42	JH	D30322C
cetone	<20	20		µg/L	1.0	SW8260B	N/A	3/23/03 05:42	JH	D30322C
enzene	<0.50	0.50		μg/L	1.0	SW8260B	N/A	3/23/03 05:42	JH	D30322C
romobenzene	<1.5	1.5		hã/r hã/r	1.0	SW8260B	NIA	3/23/03 05:42	JH	D30322C
Bromochloromethane	<0.50	0.50		pg/L	1.0	SW8260B	N/A	3/23/03 05:42	JH	D30322C
Bromodichloromethane	< 0.50	0.50		µg/L	1.0	SW8260B	N/A	3/23/03 05:42	JH	D30322C
Bromoform	<1.0	1.0		μg/L	1.0	SW8260B	N/A	3/23/03 05:42	JH	D30322C
3romomethane	<5.0	5.0			1.0	SW8260B	N/A	3/23/03 05:42	JH	D30322C
2-Butanone	<5.0	5.0		μg/L	1.0	SW8260B	N/A	3/23/03 05:42	JH	D30322C
n-Butylbenzene	<2.5	2.5		µg/L	1.0	SW82608	N/A	3/23/03 05:42	JH	D30322C
sec-Butylbenzene	<1.5	1.5		μg/L	1.0	SW8260B	N/A	3/23/03 05:42	JH	D30322C
tert-Butylbenzene	<2.5	2.5		µg/L	1.0	SW8260B	N/A	3/23/03 05:42	JH	D30322C
Carbon disulfide	<0.50	0.50		µg/∟ "	1.0	SW8260B	N/A	3/23/03 05:42	JH	D30322C
Carbon tetrachloride	<0.50	0.50		µg/L	1.0	SW82608	N/A	3/23/03 05:42	JH	D30322C
Chlorobenzene	<0.50	0.50		μg/L		SW8260B	N/A	3/23/03 05:42	JH	D30322C
Dibromochloromethane	<0.50	0.50		μg/L	1.0	SW8260B	N/A	3/23/03 05:42	JН	D30322C
Chloroethane	<1.0	1.0		μg/L	1.0	SW8260B	N/A	3/23/03 05:42	JH	D30322C
•	3.0	0.50		hâ√r	1.0	SW8260B	N/A	3/23/03 05:42	JH	D30322C
Chloroform Chloromethane	<5.0	5.0		µg/L	1.0	SW82608	N/A	3/23/03 05:42	JН	D30322C
2-Chlorotoluene	<1.5	1.5		μg/L	1.0	SW8260B	N/A	3/23/03 05:42	JH	D30322C
4-Chlorotoluene	<2.0	2.0		µg/L	1.0	SW8260B	N/A	3/23/03 05:42	JH	D30322C
1,2-Dibromo-3-chloropropane	<2.0	2.0		μg/L	1.0	SW8260B	N/A	3/23/03 05:42		D30322C
1,2-Dibromoethane	<0.50	0.50		µg/L	1.0	SW8260B	N/A	3/23/03 05:42		D30322C
Dibromomethane	<0.50	0.50		µg/L	1.0	SW8260B	NIA	3/23/03 05:42		D30322C
1,2-Dichlorobenzene	<1.5	1.5		µg/L	1.0	SW82608	N/A	3/23/03 05:42		D30322C
1,3-Dichlorobenzene	<1.5	1.5		μg/L	1.0	SW8260B	N/A	3/23/03 05:42		D30322C
-	<1.5	1.5		µg/L	1.0	SW8260B	N/A	3/23/03 05:4		D30322C
1,4-Dichlorobenzene Dichlorodifluoromethane	<2.0	2.0		µg/∟	1.0	SW8260B		3/23/03 05:4		D30322C
	<1,0	1.0		µg/L	1.0			3/23/03 05:4		D30322C
1,1-Dichloroethane	<1.0	1.0	V7	µg/L	1.0	SW8260B		3/23/03 05:4		D30322C
1,2-Dichloroethane	2.0	0.50		μg/L	1.0	SW8260B		3/23/03 05:4		D30322C
1,1-Dichloroethene	0.73	0.50		µg/L	1.0	SW8260B		3/23/03 05:4		D30322C
cis-1,2-Dichloroethene	<0.50	0.50		µg/L	1.0	SW82608		3/23/03 05:4		D30322C
trans-1,2-Dichloroethene	<0.50	0.50		µg/L	1.0	SW8260E		3/23/03 05:4		D30322C
1,2-Dichloropropane	<1.0	1.0		µg/L	1.0	SW8260E		3/23/03 05:4		D303220
1,3-Dichloropropane	<0.50	0.50		µg/L	1.0	SW82606		3/23/03 05:		D303220
2,2-Dichloropropane	<1.0	1.0		μg/L	1.0	SW8260	-			D303220
1,1-Dichloropropene	<1.0	1.0		µg/L	1.0	SW8260	-			D303220
cis-1,3-Dichloropropene	<0.50	0.50		µg/L	1.0	SW8260				D30322
trans-1,3-Dichloropropene	<2.0	2.0		μg/L	1.0	SW8260				D30322
Ethylbenzene	<2.5	2.5		µg/L	1.0	SW8260				D303226
Hexachlorobutadiene	<5.0	5.0		μg/L	1.0	SW8260				D30322
2-Hexanone	<1.0			µg/L	1.0	SW8260	B N/A	, 3/23/03 Va	.TL 311	
lodomethane	~1.0	1.0							17 of	36

Amended Report

Date Printed 08-Apr-03

License No. AZM133/AZ0133

CLIENT:

Brown & Caldwell

Work Order:

0303291

Lab ID:

0303291-09

Project Name:

Dolphin Project Number: 22413.400

Client Sample ID: DIMW1-120

Collection Date: 3/20/2003 11:00:00 AM

Project Number: 22413.400				4 / / / / / / / / / / / / / / / / / / /		Test	Date	Date Analyzed	Analyst	Batch ID
Analyte	Result	PQL	Qual	Units	DF	Code	Prepared	3/23/03 05:42	JH	D30322C
	<2.5	2.5	,	µg/L	1.0	SW8260B	N/A	3/23/03 05:42	JH JH	D30322C
sopropylbenzene 4-Isopropyltoluene	<1.5	1.5		µg/L	1.0	SW8260B	N/A	3/23/03 05:42	JH	D30322C
Methylene chloride	<3.0	3.0		μg/L	1.0	SW8260B	N/A	3/23/03 05:42	JH	D30322C
Vethylene chloride I-Methyl-2-pentanone	<5.0	5.0		µg/L	1.0	SW8260B	N/A	3/23/03 05:42	JH	D30322C
Methyl tert-butyl ether	<2.0	2.0		µg/L	1.0	SW8260B	N/A	3/23/03 05:42	JH	D30322C
Vaphthalene	<5.0	5.0		µg/L	1.0	SW8260B	N/A	3/23/03 05:42	jН	D30322C
n-Propylbenzene	<2.0	2.0		μg/L	1.0	SW8260B	N/A	3/23/03 05:42	JH	D30322C
	<1.0	1.0		μg/L	1.0	SW8260B	N/A	3/23/03 05:42	JH	D30322C
Styrene 1,1,1,2-Tetrachloroethane	<0.50	0.50		μg/L	1.0	SW8260B	N/A	3/23/03 05:42	JН	D30322C
1,1,2,2-Tetrachloroethane	<0.50	0.50		µg/L	1.0	SW8260B	N/A	3/23/03 05:42	JН	D30322C
	20	0.50		μg/L	1.0	SW8260B	N/A	3/23/03 05:42	JH	D30322C
Tetrachloroethene	<3.0	3.0		µg/L	1.0	SW82608	N/A	3/23/03 05:42	JH JH	D30322C
Toluene	<5.0	5.0		μg/L	1.0	SW8260B	N/A	3/23/03 05:42	JH	D30322C
1,2,3-Trichlorobenzene 1,2,4-Trichlorobenzene	<5.0	5.0		μg/L	1.0	SW8260B	N/A	3/23/03 05:42	JH	D30322C
	<0.50	0.50		µg/L	1.0	SW8260B	N/A	3/23/03 05:42	JH	D30322C
1,1,1-Trichioroethane	<0.50	0.50		μg/L	1.0	SW8260B	N/A		JH	D30322C
1,1,2-Trichloroethane	6.7	0.50		µg/L	1.0	SW8260B	N/A	3/23/03 05:42	JH	D30322C
Trichloroethene	<2.0	2.0		µg/L	1.0	SW8260B	N/A	3/23/03 05:42	JH	D30322C
Trichlorofluoromethane	<5.0	5,0		ha\r	1.0	SW8260B	N/A	3/23/03 05:42		D30322C
Trichlorotrifluoroethane	<1.0	1.0		µg/L	1.0	SW8260B	N/A	3/23/03 05:42		D30322C
1,2,3-Trichloropropane	<2.0	2.0		μg/L	1.0	SW8260B	N/A	3/23/03 05:42		D30322C
1,2,4-Trimethylbenzene	<1.5	1.5		μg/L	1.0	SW8260B	N/A	3/23/03 05:42		D30322C
1,3,5-Trimethylbenzene	<5.0	5.0		μg/L	1.0	SW8260B	N/A	3/23/03 05:42		D30322C
Vinyl acetate	<0.50	0.50		μg/L	1.0	SW8260B	N/A	3/23/03 05:42		D30322C
Vinyl chloride	<3.0	3.0		µg/L	1.0	SW8260B	N/A	3/23/03 05:42		D30322C
Xylenes, Total	82	80-107		%REC	1.0	SW8260B	N/A	3/23/03 05:42		D30322C
4-Bromofluorobenzene(Surrogate)	93	77-104		%REC	1.0	SW8260B	N/A	3/23/03 05:42		D30322C
Dibromofluoromethane(Surrogate)	104	72-111		%REC	1.0	SW8260B	N/A	3/23/03 05:42		D30322C
1,2-Dichloroethane-d4(Surrogate) Toluene-d8(Surrogate)	86	84-105		%REC	1.0	SW8260B	N/A	3/23/03 05:47	ł JH	0303220

Amended Report

Date Printed 08-Apr-03

License No. AZM133/AZ0133

CLIENT:

Brown & Caldwell

Work Order:

0303291

Lab ID:

0303291-10

Project Name: Project Number: 22413.400

Dolphin

Client Sample ID: DIMW1-FB

Collection Date: 3/20/2003 11:20:00 AM

Project Number: 22413.40						Test	Date	Date Analyzed	Analvet	Batch II
Analyte	Result	PQL	Qual	Units		Code	Prepared	Anaryzeu	i mini ya i	
111417 14					1.0	SW8260B	N/A	3/23/03 06:20	JH	D30322C
cetone	<20	20		μg/L "	1.0	SW8260B	N/A	3/23/03 06:20	JH	D30322C
Jenzene	< 0.50	0.50		hâ\r	1.0	SW8260B	N/A	3/23/03 06:20	JΗ	D30322C
Bromobenzene	<1.5	1.5		μg/L	1.0	SW8260B	N/A	3/23/03 06:20	JH	D30322C
Bromochloromethane	< 0.50	0.50		μg/L "		SW8260B	N/A	3/23/03 06:20	JH	D30322C
romodichloromethane	<0.50	0.50		µg/L	1.0	SW8260B	N/A	3/23/03 06:20	JH	D30322C
Bromoform	<1.0	1.0		μg/L	1.0	SW8260B	N/A	3/23/03 06:20	JH	D30322C
Bromomethane	<5.0	5.0		µg/L	1.0	SW8260B	N/A	3/23/03 06:20	JH	D30322C
	<5,0	5.0		μg/L	1.0	SW8260B	N/A	3/23/03 06:20	JH	D30322C
2-Butanone	<2.5	2.5		µg/L	1.0	SW8260B	N/A	3/23/03 06:20	JH	D30322C
n-Butylbenzene	<1.5	1.5		μg/L	1.0	SW8260B	N/A	3/23/03 06:20	JH	D30322C
sec-Butylbenzene	<2.5	2.5		μg/L	1.0		N/A	3/23/03 06:20	JH	D30322C
tert-Butylbenzene	<0.50	0.50		µg/L	1.0	SW8260B	N/A	3/23/03 06:20	JH	D30322C
Carbon disulfide	<0.50	0.50		µg/L	1.0	SW8260B	N/A	3/23/03 06:20	JH	D30322C
Carbon tetrachloride	<0.50	0.50		µg/L	1.0	SW8260B	N/A	3/23/03 06:20	JH	D30322C
Chlorobenzene	< 0.50	0.50		µg/L	1.0	SW8260B	N/A	3/23/03 06:20	JH	D30322C
Dibromochloromethane	<1.0	1.0		μg/L	1.0	SW8260B		3/23/03 06:20	JH	D30322C
Chloroethane	< 0.50	0.50		µg/L	1,0	SW8260B	N/A	3/23/03 06:20	JH	D30322C
Chioroform	<5.0	5.0		µg/L	1.0	SW8260B	N/A	3/23/03 06:20	JH	D30322C
Chloromethane	<1.5	1.5		μg/L	1.0	SW8260B	N/A	3/23/03 06:20	JН	D30322C
2-Chlorotoluene	<2.0	2.0		µg/L	1.0	SW82608	N/A		JH	D30322C
4-Chlorotoluene	<2.0	2.0		μg/L	1.0	SW8260B	N/A	3/23/03 06:20	JH	D30322C
1,2-Dibromo-3-chioropropane	<0.50	0.50		μg/L	1.0	SW8260B	N/A	3/23/03 06:20	JH	D30322C
1,2-Dibromoethane	<0.50 <0.50	0.50		µg/L	1.0	SW8260B	N/A	3/23/03 06:20	JH	D30322C
Dibromomethane	<0.50 <1.5	1.5		µg/L	1.0	SW8260B	N/A	3/23/03 06:20		D30322C
1,2-Dichlorobenzene		1.5		μg/L	1.0	SW8260B	N/A	3/23/03 06:20		D30322C
1,3-Dichlorobenzene	<1.5	1.5		μg/L	1.0	SW8260B	N/A	3/23/03 06:20		D30322C
1,4-Dichlorobenzene	<1.5	2.0		μg/L	1.0	SW8260B	N/A	3/23/03 06:20		D303220
Dichlorodifluoromethane	<2.0	1.0		μg/L	1.0	SW8260B	N/A	3/23/03 06:20		D30322C
1,1-Dichloroethane	<1.0	1.0	V7	µg/L	1.0	SW8260B	N/A	3/23/03 06:20		D303220
1,2-Dichloroethane	<1.0		•	μg/L	1.0	SW8260B	N/A	3/23/03 06:20		D303220
1,1-Dichloroethene	<0.50	0.50		μg/L	1.0	SW8260B	N/A	3/23/03 06:20		D303220
cis-1,2-Dichloroethene	<0.50	0.50		µg/L	1.0	SW8260B	N/A	3/23/03 06:20		
trans-1,2-Dichloroethene	<0.50	0.50		µg/L	1.0	SW8260B	N/A	3/23/03 06:2		D303220
1,2-Dichloropropane	<0.50	0.50		µg/L	1.0	SW8260B	N/A	3/23/03 06:2		D30322
1,3-Dichloropropane	<1.0	1.0		ha\r ha\r	1.0	SW8260E	N/A	3/23/03 06:2		D30322
2,2-Dichloropropane	<0.50	0.50		µg/L	1.0	SW8260E		3/23/03 06:2		D30322
1,1-Dichloropropene	<1.0	1.0		hâ/r hâ/r	1.0	SW8260E	N/A	3/23/03 06:2	o JH	D30322
cis-1,3-Dichloropropene	<1.0	1.0		pg/L µg/L	1.0	SW8260E	3 N/A	3/23/03 06:2	0 JH	D30322
trans-1,3-Dichloropropene	<0.50	0.50			1.0	SW82601	3 N/A	3/23/03 06:2	io JH	D30322
Ethylbenzene	<2.0	2.0		μg/L μα/l	1.0	SW8260		3/23/03 06:2	20 JH	D30322
Hexachlorobutadiene	<2.5	2.5		μg/L	1.0	SW8260		3/23/03 06:	20 JH	D30322
2-Hexanone	<5.0	5.0		μg/L	1.0	SW8260		3/23/03 06:	20 JH	D3032
Iodomethane	<1.0	1.0		halr	1.0	******			19 of	

Amended Report

Date Printed 08-Apr-03

License No. AZM133/AZ0133

CLIENT:

Brown & Caldwell

Work Order:

0303291

Lab ID:

0303291-10 Dolphin

Project Name: Dolp

Client Sample ID: DIMW1-FB

Collection Date: 3/20/2003 11:20:00 AM

Project Number: 22413.400		PQL	Qual	Units	DF	Test Code	Date Prepared	Date Analyzed	Analyst	Batch ID
Analyte	Result			µg/L	1.0	SW8260B	N/A	3/23/03 06:20	JH	D30322C
Isopropylbenzene	<2.5	2.5		µg/L	1.0	SW8260B	N/A	3/23/03 06:20	JH	D30322C
4-isopropyitoluene	<1.5	1.5		μg/L	1.0	SW8260B	N/A	3/23/03 06:20	JH	D30322C
Methylene chloride	<3.0	3.0		μg/L	1.0	SW8260B	N/A	3/23/03 06:20	JH	D30322C
4-Methyl-2-pentanone	<5.0	5.0		µg/L	1.0	SW8260B	N/A	3/23/03 06:20	JH	D30322C
Methyl tert-butyl ether	<2.0	2.0		ha/r	1,0	SW8260B	N/A	3/23/03 06:20	JH	D30322C
Naphthalene	<5.0	5.0		μg/L	1,0	SW8260B	N/A	3/23/03 06:20	JH	D30322C
n-Propylbenzene	<2.0	2.0			1.0	SW8260B	N/A	3/23/03 06:20	JH	D30322C
Styrene	<1.0	1.0		ha\r ha\r	1.0	SW8260B	N/A	3/23/03 06:20	JH	D30322C
1,1,1,2-Tetrachioroethane	<0.50	0.50		µg/L	1.0	SW8260B	N/A	3/23/03 06:20	JH	D30322C
1,1,2,2-Tetrachloroethane	<0.50	0.50		μg/L	1.0	SW8260B	N/A	3/23/03 06:20	JH	D30322C
Tetrachloroethene	<0.50	0.50			1,0	SW8260B	N/A	3/23/03 06:20	JH	D30322C
Toluene	<3.0	3.0		ha\r ha\r	1.0	SW8260B	N/A	3/23/03 06:20	JH	D30322C
1,2,3-Trichlorobenzene	<5.0	5.0		µg/∟	1.0	SW8260B	N/A	3/23/03 06:20	JH	D30322C
1,2,4-Trichlorobenzene	<5.0	5.0		µg/L	1.0	SW8260B	N/A	3/23/03 06:20	JH	D30322C
1,1,1-Trichloroethane	<0.50	0.50			1.0	SW8260B	N/A	3/23/03 06:20	JH	D30322C
1,1,2-Trichloroethane	<0.50	0.50		μg/L μg/L	1.0	SW6260B	N/A	3/23/03 06:20	JH	D30322C
Trichloroethene	<0.50	0.50			1.0	SW8260B	N/A	3/23/03 06:20	JH	D30322C
Trichlorofluoromethane	<2.0	2.0		µg/L	1.0	SW8260B	N/A	3/23/03 06:20	JH	D30322C
Trichlorotrifluoroethane	<5.0	5.0		µg/L	1.0	SW8260B	N/A	3/23/03 06:20	JH	D30322C
1,2,3-Trichloropropane	<1.0	1.0		µg/L	1.0	SW8260B	N/A	3/23/03 06:20	JH	D30322C
1,2,4-Trimethylbenzene	<2.0	2.0		μg/L	1.0	SW8260B	N/A	3/23/03 06:20	JH	D30322C
1,3,5-Trimethylbenzene	<1.5	1.5		µg/L	1.0	SW8260B	N/A	3/23/03 06:20	JH	D30322C
Vinyl acetate	<5.0	5.0		µg/L ∪g/l	1.0	SW8260B	N/A	3/23/03 06:20	JH	D30322C
Vinyl chloride	<0.50	0.50		µg/L	1.0	SW8260B	N/A	3/23/03 06:20	JH	D30322C
Xylenes, Total	<3.0	3.0		µg/L %REC	1.0	SW8260B	N/A	3/23/03 06:20	JH	D30322C
4-Bromofluorobenzene(Surrogate)	87	80-107		%REC %REC	1.0	SW8260B	N/A	3/23/03 06:20	JH	D30322C
Dibromofluoromethane(Surrogate)	97	77-104			1.0	SW8260B		3/23/03 06:20	JH	D30322C
1,2-Dichloroethane-d4(Surrogate) Toluene-d8(Surrogate)	108 87	72-111 84-105		%REC %REC	1.0	SW8260B		3/23/03 06:20	JH	D30322C

Amended Report

Date Printed 08-Apr-03

License No. AZM133/AZ0133

Brown & Caldwell CLIENT:

Work Order: 0303291 Lab ID:

0303291-11

Dolphin Project Name: Project Number: 22413,400 Client Sample ID: DIMW5A

Collection Date: 3/20/2003 12:30:00 PM

Project Number: 22413.400						Test	Date	Date	Angluet	Batch ID
Analyte	Result	PQL	Qual	Units	DF	Code	Prepared	Analyzed	Anaiysi	Daten 1D
Analyte					4.0	SW8260B	N/A	3/23/03 06:58	JH	D30322C
tono	<20	20		µg/L	1.0	SW8260B	N/A	3/23/03 05:58	JH	D30322C
Acetone	< 0.50	0.50		μg/L	1.0		N/A	3/23/03 06:58	JH	D30322C
Benzene	<1.5	1.5		µg/L	1.0	SW8260B	N/A	3/23/03 06:58	JH	D30322C
Bromobenzene	<0.50	0.50		μg/L	1.0	SW8260B	N/A	3/23/03 06:58	JH	D30322C
Bromochloromethane	<0.50	0.50		µg/L	1.0	SW8260B	N/A	3/23/03 06:58	JH	D30322C
Bromodichloromethane	<1.0	1.0		μg/L	1.0	SW8260B		3/23/03 06:58	JH	D30322C
Bromoform	<5.0	5.0		μg/L	1.0	SW8260B	N/A	3/23/03 06:58	JH	D30322C
Bromomethane	<5.0	5.0		µg/L	1.0	SW8260B	NIA	3/23/03 06:58	JH	D30322C
2-Butanone	<2.5	2.5		µg/∟	1.0	SW8260B	N/A	3/23/03 06:58	JH	D30322C
n-Butylbenzene	<1.5	1.5		μg/L	1.0	SW8260B	N/A	3/23/03 06:58	JH	D30322C
sec-Butylbenzene	<2.5	2.5		μg/L	1.0	SW8260B	N/A		JH	D30322C
tert-Butylbenzene	<0.50	0.50		μg/L	1.0	SW8260B	N/A	3/23/03 06:58	JH JH	D30322C
Carbon disulfide	<0.50 <0.50	0.50		μg/L	1.0	SW8260B	N/A	3/23/03 06:58	JH	D30322C
Carbon tetrachloride		0.50		μg/L	1.0	SW8260B	NIA	3/23/03 06:58		D30322C
Chlorobenzene	< 0.50	0.50		μg/L	1.0	SW8260B	N/A	3/23/03 06:58	JH	D30322C
Dibromochloromethane	< 0.50	1.0		μg/L	1.0	SW8260B	N/A	3/23/03 06:58	JΗ	D30322C
Chloroethane	<1.0	0.50		μg/L	1.0	SW8260B	N/A	3/23/03 06:58	JH	D30322C
Chloraform	1.2			µg/L	1.0	SW8260B	N/A	3/23/03 06:58	JH	D30322C
Chloromethane	<5.0	5.0		μg/L	1.0	SW8260B	N/A	3/23/03 06:58	JН	D30322C
2-Chlorotoluene	<1.5	1.5		µg/L	1.0	SW8260B	N/A	3/23/03 06:58	JH	D30322C
4-Chlorotoluene	<2.0	2.0		µg/L	1.0	SW8260B	N/A	3/23/03 06:58		
1,2-Dibromo-3-chloropropane	<2.0	2.0		µg/L	1.0	SW8260B	N/A	3/23/03 06:58		D30322C
1,2-Dibromoethane	<0,50	0.50		μg/L	1.0	SW8260B	N/A	3/23/03 06:58		D30322C
Dibromomethane	<0.50	0.50		µg/L	1.0	SW8260B	N/A	3/23/03 06:58		D30322C
1,2-Dichlorobenzene	<1.5	1.5		µg/L	1.0	SW8260B	N/A	3/23/03 06:58		D30322C
1,3-Dichlorobenzene	<1.5	1.5		μg/L	1.0	SW82608	N/A	3/23/03 06:58		D30322C
1.4-Dichlorobenzene	<1.5	1.5		μg/L	1.0	SW8260B	N/A	3/23/03 06:58		D30322C
Dichlorodifluoromethane	<2.0	2.0			1,0	SW8260B	N/A	3/23/03 06:58	3 JH	D30322C
1,1-Dichloroethane	<1.0	1.0		µg/L	1.0	SW8260B	N/A	3/23/03 06:58	3 JH	D30322C
1,2-Dichloroethane	<1.0	1.0	V7	μg/L	1.0	SW8260B	N/A	3/23/03 06:5	в ЈН	D30322C
1,1-Dichloroethene	1,1	0.50		μg/L	1.0	SW8260B	N/A	3/23/03 06:5	8 JH	D30322C
cis-1,2-Dichloroethene	<0.50	0.50		μg/L	1.0	SW8260B	N/A	3/23/03 06:5	8 JH	D30322C
trans-1,2-Dichloroethene	<0.50	0.50		µg/L	1.0	SW8260B	N/A	3/23/03 06:5	8 JH	D30322C
1,2-Dichloropropane	<0.50	0.50		μg/L	1.0	SW8260B		3/23/03 06:5	8 JH	D30322C
1,3-Dichloropropane	<1.0	1.0		µg/L	1.0	SW8260B		3/23/03 06:5	1H 8	D30322C
2,2-Dichloropropane	< 0.50	0.50		μg/L	1.0	SW8260B		3/23/03 06:5	58 JH	D303220
1,1-Dichloropropene	<1.0	1.0		µg/L		SW8260E			58 JH	D303220
cis-1,3-Dichloropropene	<1.0	1.0	ı	μg/L	1.0	SW8260E			58 JH	D303220
trans-1,3-Dichloropropene	< 0.50	0.50)	µg/L	1.0	SW8260E			58 JH	D303220
	<2.0	2.0)	µg/L	1.0	SW8260F				D303220
Ethylbenzene Hexachlorobutadiene	<2.5	2.5	5	µg/L	1.0	SW8260	_	·		D30322
	<5.0	5.0)	ha/r	1,0	SW8260	=			D30322
2-Hexanone lodomethane	<1.0			µg/L	1.0	2440500;	L 530		21 of	

Amended Report

Date Printed 08-Apr-03

License No. AZM133/AZ0133

CLIENT:

Brown & Caldwell

Work Order:

0303291

Lab ID:

0303291-11

Project Name: Project Number: 22413.400

Dolphin

Client Sample ID: DIMW5A

Collection Date: 3/20/2003 12:30:00 PM

Project Number: 22413.400						Test	Date	Date Analyzed	Analyst	Batch ID
Analyte	Result	PQL	Qual	Units	DF	Code	Prepared	3/23/03 06:58	JH	D30322C
	<2.5	2.5		μg/L	1.0	SW8260B	N/A	3/23/03 06:58	JH	D30322C
sopropylbenzene	<1.5	1.5		μg/L	1.0	SW8260B	N/A		JH	D30322C
1-Isopropyltoluene	<3.0	3.0		µg/L	1.0	SW8260B	N/A	3/23/03 06:58	JH	D30322C
Methylene chloride	<5.0 <5.0	5.0		µg/L	1.0	SW8260B	N/A	3/23/03 06:58	JH	D30322C
4-Methyl-2-pentanone	<2.0	2.0		µg/L	1.0	SW8260B	N/A	3/23/03 06:58	JH	D30322C
Methyl tert-butyl ether	<5.0	5.0		µg/L	1.0	SW8260B	N/A	3/23/03 06:58		D30322C
Naphthalene	<2.0	2.0		μg/L	1.0	SW8260B	N/A	3/23/03 06:58	JH	D30322C
n-Propylbenzene	<1.0	1.0		μg/L	1.0	SW8260B	N/A	3/23/03 06:58	JH	D30322C
Styrene		0.50		μg/L	1.0	SW8260B	N/A	3/23/03 06:58	JH	D30322C
1,1,1,2-Tetrachloroethane	< 0.50	0.50		µg/L	1.0	SW8260B	N/A	3/23/03 06:58	JH	D30322C
1,1,2,2-Tetrachloroethane	<0.50	0.50		μg/L	1.0	SW8260B	N/A	3/23/03 06:58	JH	D30322C
Tetrachioroethene	7.2	3.0		μg/L	1.0	SW8260B	N/A	3/23/03 06:58	JH	D30322C
Toluene	<3.0	5.0		µg/L	1.0	SW8260B	N/A	3/23/03 06:58	1H	D30322C
1,2,3-Trichiorobenzene	<5.0	5.0 5.0		μg/L	1.0	SW8260B	N/A	3/23/03 06:58	JH	
1,2,4-Trichlorobenzene	<5.0			µg/L	1.0	SW8260B	N/A	3/23/03 06:58	JH	D30322C
1,1,1-Trichloroethane	<0.50	0.50		µg/L	1.0	SW8260B	N/A	3/23/03 06:58	JH	D30322C
1,1,2-Trichloroethane	<0.50	0.50		μg/L	1.0	SW8260B	N/A	3/23/03 06:58		D30322C
Trichloroethene	3.7	0.50		µg/L	1.0	SW8260B	N/A	3/23/03 06:58		D30322C
Trichlorofluoromethane	<2.0	2.0		µg/L	1.0	SW8260B	N/A	3/23/03 06:58	JΗ	D30322C
Trichlorotrifluoroethane	<5.0	5.0		pg/L	1.0	SW8260B	N/A	3/23/03 06:58	JH	D30322C
1,2,3-Trichloropropane	<1.0	1.0		µg/L	1.0	SW8260B	N/A	3/23/03 06:58	JH	D30322C
1,2,4-Trimethylbenzene	<2.0	2.0			1.0	SW8260B	N/A	3/23/03 06:58	JH	D30322C
1,3,5-Trimethylbenzene	<1,5	1.5		μg/L ···«"	1.0	SW8260B	N/A	3/23/03 06:58	j JH	D30322C
Vinyl acetate	<5.0	5.0		μg/L	1.0	SW8260B	N/A	3/23/03 06:58	3 JH	D30322C
Vinyl chloride	<0.50	0.50		µg/L	1.0	SW8260B	N/A	3/23/03 06:58	3 JH	D30322C
Xylenes, Total	<3.0	3.0		μg/L	1.0	SW8260B	N/A	3/23/03 06:58	3 JH	D30322C
4-Bromofluorobenzene(Surrogate)	84	80-107		%REC	1.0	SW8260B	N/A	3/23/03 06:50	3 JH	D30322C
Dibromofluoromethane(Surrogate)	97	77-104		%REC	1.0	SW8260B	N/A	3/23/03 06:5	в ЈН	D30322C
1,2-Dichloroethane-d4(Surrogate)	110	72-111		%REC		SW8260B	N/A	3/23/03 06:5		D30322C
Toluene-d8(Surrogate)	87	84-105		%REC	1.0	04102000	, .,,			

TRANSWEST

Amended Report

Date Printed 08-Apr-03

License No. AZM133/AZ0133

CLIENT:

Brown & Caldwell

Work Order:

0303291 0303291-12

Lab ID: Project Name:

Dolphin

Client Sample ID: DIMW9D Collection Date: 3/20/2003 1:04:00 PM

roject Number: 22413.40		PQL	Qual	Units	DF	Test Code	Date Prepared	Date Analyzed	Analyst	Batch ID
nalyte	Result	<u> FQL</u>	<u> </u>							
	-00	20		μg/L	1.0	SW8260B	N/A	3/23/03 07:35	JH	D30322C
cetone	<20	0.50		μg/L	1.0	SW8260B	N/A	3/23/03 07:35	JH	D30322C
enzene	<0.50			μg/L	1.0	SW8260B	N/A	3/23/03 07:35	JH	D30322C
romobenzene	<1.5	1.5		µg/L	1.0	SW8260B	N/A	3/23/03 07:35	JH	D30322C
romochloromethane	<0.50	0.50		µg/L	1.0	SW8260B	N/A	3/23/03 07:35	JH	D30322C
romodichloromethane	<0.50	0.50		μg/L	1.0	SW8260B	N/A	3/23/03 07:35	JH	D30322C
romoform	<1.0	1.0		μg/L	1.0	SW8260B	N/A	3/23/03 07:35	JH	D30322C
iromomethane	<5.0	5.0			1.0	SW8260B	N/A	3/23/03 07:35	JH	D30322C
-Butanone	<5.0	5.0		μg/L	1.0	SW8260B	N/A	3/23/03 07:35	JH	D30322C
-Butylbenzene	<2.5	2.5		μg/L "		SW8260B	N/A	3/23/03 07:35	JH	D30322C
sec-Butylbenzene	<1.5	1.5		μg/L	1.0	SW8260B	N/A	3/23/03 07:35	JH	D30322C
ert-Butylbenzene	<2.5	2.5		μg/L	1.0	SW8260B	N/A	3/23/03 07:35	JH	D30322C
Carbon disulfide	<0.50	0.50		μg/L	1.0	SW8260B	N/A	3/23/03 07:35	JH	D30322C
Carbon tetrachloride	< 0.50	0.50		µg/L	1.0		N/A	3/23/03 07:35	JH	D30322C
Chlorobenzene	<0.50	0.50		µg/L	1.0	SW8260B	N/A	3/23/03 07:35	JH	D30322C
Dibromochloromethane	< 0.50	0.50		μg/l.	1.0	SW8260B	N/A	3/23/03 07:35	JH	D30322C
	<1.0	1.0		µg/L	1.0	SW8260B		3/23/03 07:35	JH	D30322C
Chloroethane	<0.50	0.50		μg/L	1.0	SW8260B	N/A	3/23/03 07:35	JH	D30322C
Chloroform	<5.0	5.0		₽gÆ	1.0	SW8260B	N/A	3/23/03 07:35	JH	D30322C
Chloromethane	<1.5	1.5		µg/L	1.0	SW8260B	N/A			D30322C
2-Chlorotoluene	<2.0	2.0		μg/L	1.0	SW8260B	N/A	3/23/03 07:35	JH	D30322C
4-Chlorotoluene	<2.0	2.0		μg/L	1.0	SW8260B	N/A	3/23/03 07:35	JH	D30322C
1,2-Dibromo-3-chloropropane		0.50		μg/L	1.0	SW8260B	N/A	3/23/03 07:35	JH	
1,2-Dibromoethane	<0.50	0.50		μg/L	1.0	SW8260B	N/A	3/23/03 07:35	JH	D30322C
Dibromomethane	<0.50			μg/L	1.0	SW8260B	N/A	3/23/03 07:35	JH	D30322C
1,2-Dichlorobenzene	<1.5	1.5		μg/L	1.0	SW8260B	N/A	3/23/03 07:35		D30322C
1,3-Dichlorobenzene	<1.5	1.5		µg/L	1.0	SW8260B	N/A	3/23/03 07:35	JH	D30322C
1,4-Dichlorobenzene	<1.5	1.5		μg/L	1.0	SW8260B	N/A	3/23/03 07:35	JH	D30322C
Dichlorodifluoromethane	<2.0	2.0		μg/L	1.0	SW82608	N/A	3/23/03 07:35	JH	D30322C
1,1-Dichloroethane	<1.0	1.0			1.0	SW8260B	N/A	3/23/03 07:35	JH	D30322C
1,2-Dichloroethane	<1.0	1.0	V7	μg/L	1.0	SW8260B	N/A	3/23/03 07:35	i JH	D30322C
1,1-Dichloroethene	<0.50	0.50		µg/L	1.0	SW8260B	N/A	3/23/03 07:35	i JH	D30322C
cis-1,2-Dichloroethene	<0.50	0.50		µg/L		SW8260B	N/A	3/23/03 07:35	i JH	D30322C
trans-1,2-Dichloroethene	<0.50	0.50		μg/L	1.0	SW8260B	N/A	3/23/03 07:3	5 JH	D30322C
1,2-Dichloropropane	< 0.50	0.50		µg/L	1.0	SW8260B		3/23/03 07:3		D30322C
1,3-Dichloropropane	<1.0	1.0		µg/L	1.0	SW8260B		3/23/03 07:3		D30322C
2.2-Dichloropropane	<0.50	0.50		μg/L	1.0	SW8260B		3/23/03 07:3		D30322C
1,1-Dichloropropene	<1.0	1.0		µg/L	1.0			3/23/03 07:3		D30322C
cis-1,3-Dichloropropene	<1.0	1.0		µg/L	1.0	SW8260B		3/23/03 07:3		D30322C
	<0.50	0.50		μg/L	1.0	SW8260E		3/23/03 07:3		D30322C
trans-1,3-Dichloropropene	<2.0	2.0		μg/L	1.0	SW8260E				D30322C
Ethylbenzene	<2.5	2.5		μg/L	1.0	SW8260E		3/23/03 07:3		D303220
Hexachlorobutadiene	<5.0	5.0		μg/L	1.0	SW8260E		3/23/03 07:3		D303220
2-Hexanone		1.0		μg/L	1.0	SW8260	3 N/A	3/23/03 07:3	15 JH	U3U3ZZ\
lodomethane	<1.0	1.0							23 of .	3.6

TRANSWEST

Amended Report

Date Printed 08-Apr-03

License No. AZM133/AZ0133

CLIENT:

Brown & Caldwell

Work Order:

0303291

Lab ID:

0303291-12

Project Name: Project Number: 22413.400

Dolphin

Client Sample ID: DIMW9D

Collection Date: 3/20/2003 1:04:00 PM

						Test	Date	Date		
	Dogult	PQL	Qual	Units	DF	Code	Prepared	Analyzed	Analyst	Batch ID
Analyte	Result		Quar	µg/L	1.0	SW8260B	N/A	3/23/03 07:35	JH	D30322C
Isopropylbenzene	<2.5	2.5		µg/L	1.0	SW82608	N/A	3/23/03 07:35	JH	D30322C
4-Isopropyltoluene	<1.5	1.5		µg/L	1.0	SW8260B	N/A	3/23/03 07:35	JH	D30322C
Methylene chloride	<3.0	3.0		µg/L	1.0	SW82608	N/A	3/23/03 07:35	JH	D30322C
4-Methyl-2-pentanone	<5.0	5.0			1.0	SW8260B	N/A	3/23/03 07:35	JH	D30322C
Methyl tert-butyl ether	<2.0	2.0		μg/L μg/L	1.0	SW82608	N/A	3/23/03 07:35	JH	D30322C
Naphthalene	<5.0	5.0			1.0	SW82608	N/A	3/23/03 07:35	JH	D30322C
n-Propylbenzene	<2.0	2.0		μg/L	1.0	SW82608	N/A	3/23/03 07:35	JH	D30322C
Styrene	<1.0	1.0		µg/L	1.0	SW8260B	N/A	3/23/03 07:35	JH	D30322C
1,1,1,2-Tetrachloroethane	<0.50	0.50		μg/L	1.0	SW8260B	N/A	3/23/03 07:35	JH	D30322C
1,1,2,2-Tetrachloroethane	<0.50	0.50		µg/L	1.0	SW8260B	N/A	3/23/03 07:35	JH	D30322C
Tetrachloroethene	<0.50	0.50		µg/L		SW8260B	N/A	3/23/03 07:35	JH	D30322C
Toluene	<3.0	3.0		µg/L	1.0 1.0	SW8260B	N/A	3/23/03 07:35	JH	D30322C
1,2,3-Trichlorobenzene	<5.0	5.0		μg/L	1.0	SW8260B	N/A	3/23/03 07:35	JH	D30322C
1,2,4-Trichlorobenzene	<5.0	5.0		µg/L		SW8260B	N/A	3/23/03 07:35	JH	D30322C
1,1,1-Trichloroethane	<0.50	0.50		μg/L	1.0	SW8260B	N/A	3/23/03 07:35	JH	D30322C
1,1,2-Trichloroethane	<0.50	0.50		μg/L	1.0 1.0	SW8260B	N/A	3/23/03 07:35	JH	D30322C
Trichloroethene	< 0.50	0.50		µg/L		SW8260B	N/A	3/23/03 07:35	JH	D30322C
Trichlorofluoromethane	<2.0	2.0		µg/L 	1.0	SW8260B	N/A	3/23/03 07:35	JH	D30322C
Trichlorotrifluoroethane	<5.0	5.0		µg/L 	1.0	SW8260B	N/A	3/23/03 07:35	JH	D30322C
1,2,3-Trichloropropane	<1.0	1.0		µg/L	1.0	SW8260B	N/A	3/23/03 07:35	JH	D30322C
1,2,4-Trimethylbenzene	<2.0	2.0		μg/L	1.0	SW8260B	N/A	3/23/03 07:35		D30322C
1,3,5-Trimethylbenzene	<1.5	1.5		μg/L	1.0		N/A	3/23/03 07:35		D30322C
Vinyl acetate	<5.0	5.0		μg/L	1.0	SW8260B SW8260B	N/A	3/23/03 07:35		D30322C
Vinyl chloride	<0.50	0.50		µg/L	1.0		N/A	3/23/03 07:35		D30322C
Xylenes, Total	<3.0	3.0		µg/L	1.0	SW8260B	N/A	3/23/03 07:35		D30322C
4-Bromofluorobenzene(Surrogate)	85	80-107		%REC	1.0	SW8260B	N/A N/A	3/23/03 07:35		D30322C
Dibromofluoromethane(Surrogate)	97	77-104		%REC	1.0	SW8260B		3/23/03 07:35		D30322C
1,2-Dichloroethane-d4(Surrogate)	109	72-111		%REC	1.0	SW8260B	N/A	3/23/03 07:35		D30322C
Toluene-d8(Surrogate)	88	84-105		%REC	1.0	SW8260B	N/A	3143103 01.33	JII	DOUGLEO
, -										

Amended Report

Date Printed 08-Apr-03

License No. AZM133/AZ0133

CLIENT:

Brown & Caldwell

Work Order:

0303291

Lab ID:

0303291-13

Project Name:

Dolphin

Client Sample ID: DIMW8D

Collection Date: 3/20/2003 1:30:00 PM

Project Number: 22413.40	Result	PQL	Qual	Units	DF	Test Code	Date Prepared	Date Analyzed	Analyst	Batch II
nalyte	Kesuit									D30324A
	~nn	20		μg/L	1.0	SW8260B	N/A	3/24/03 12:58	JH	
cetone	<20	0.50		μg/L	1.0	SW82608	N/A	3/24/03 12:58	JH	D30324A
enzene	<0.50	1.5		μg/L	1.0	SW8260B	N/A	3/24/03 12:58	JH	D30324A
romobenzene	<1.5			μg/L	1.0	SW8260B	N/A	3/24/03 12:58	JH	D30324A
fromochloromethane	<0.50	0.50		hâ\r ha	1.0	SW8260B	N/A	3/24/03 12:58	JH	D30324A
3romodichloromethane	<0.50	0.50		µg/L	1.0	SW8260B	N/A	3/24/03 12:58	JH	D30324A
Bromoform	<1.0	1.0		ha\r ha\r	1.0	SW8260B	N/A	3/24/03 12:58	JH	D30324A
Bromomethane	<5.0	5.0		μg/L	1.0	SW8260B	N/A	3/24/03 12:58	JH	D30324A
2-Butanone	<5.0	5.0			1.0	SW8260B	N/A	3/24/03 12:58	JH	D30324A
n-Butylbenzene	<2.5	2.5		µg/L	1.0	SW8260B	N/A	3/24/03 12:58	JH	D30324A
sec-Butylbenzene	<1.5	1.5		μg/L "		SW8260B	N/A	3/24/03 12:58	JH	D30324A
tert-Butylbenzene	<2.5	2.5		μg/L	1.0	SW8260B	N/A	3/24/03 12:58	JH	D30324A
Carbon disulfide	< 0.50	0.50		µg/L	1.0	SW8260B	N/A	3/24/03 12:58	JH	D30324A
Carbon tetrachtoride	< 0.50	0.50		hg/L	1.0	SW8260B	N/A	3/24/03 12:58	JH	D30324A
Chlorobenzene	< 0.50	0.50		µg/L	1.0		N/A	3/24/03 12:58	JH	D30324A
Dibromochloromethane	<0.50	0.50		μg/L	1.0	SW8260B	N/A	3/24/03 12:58	JH	D30324A
	<1.0	1.0		µg/L	1.0	SW8260B		3/24/03 12:58	JH	D30324A
Chloroethane	<0.50	0.50		µg/L	1.0	SW8260B	N/A	3/24/03 12:58	JH	D30324A
Chloroform	<5.0	5.0		μg/L	1.0	SW8260B	N/A		JН	D30324A
Chloromethane	<1.5	1.5		µg/L	1.0	SW8260B	N/A	3/24/03 12:58		D30324A
2-Chiorotoluene	<2.0	2.0		µg/L	1.0	SW8260B	N/A	3/24/03 12:58	JH	D30324A
4-Chiorotoluene		2.0		µg/L	1.0	SW82608	N/A	3/24/03 12:58	JH	
1,2-Dibromo-3-chloropropane	<2.0	0.50		μg/L	1.0	SW8260B	N/A	3/24/03 12:58	JH	D30324A
1,2-Dibromoethane	<0.50			µg/L	1.0	SW8260B	N/A	3/24/03 12:58	JH	D30324A
Dibromomethane	<0.50	0.50		µg/L	1.0	SW8260B	N/A	3/24/03 12:58	JH	D30324A
1,2-Dichlorobenzene	<1.5	1.5		µg/L	1.0	SW8260B	N/A	3/24/03 12:58	JH	D30324A
1,3-Dichlorobenzene	<1.5	1.5		µg/L	1.0	SW8260B	N/A	3/24/03 12:58	JH	D30324A
1,4-Dichlorobenzene	<1.5	1.5		µg/∟	1.0	SW8260B	N/A	3/24/03 12:58	JH	D30324A
Dichlorodifluoromethane	<2.0	2.0			1.0	SW8260B	N/A	3/24/03 12:58	JH	D30324A
1,1-Dichloroethane	<1.0	1.0		µg/L	1.0	SW8260B	N/A	3/24/03 12:58	JH	D30324A
1,2-Dichloroethane	<1.0	1.0		hg/r	1.0	SW8260B	N/A	3/24/03 12:58	JH	D30324A
1,1-Dichloroethene	< 0.50	0.50		µg/L		SW8260B	N/A	3/24/03 12:58	JH	D30324A
cis-1,2-Dichloroethene	< 0.50	0.50		μg/L	1.0	SW8260B	N/A	3/24/03 12:58	JH	D30324A
trans-1,2-Dichioroethene	< 0.50	0.50		µg/L	1.0	SW8260B	N/A	3/24/03 12:58		D30324A
	< 0.50	0.50		μg/L	1.0		N/A	3/24/03 12:58		D30324A
1,2-Dichloropropane	<1.0	1.0		µg/L	1.0	SW8260B		3/24/03 12:58		D30324A
1,3-Dichloropropane	<0.50	0.50		µg/L	1.0	SW8260B		3/24/03 12:58		D30324A
2,2-Dichloropropane	<1.0	1.0		µg/L	1.0	SW8260B				D30324/
1,1-Dichloropropene	<1.0	1.0		μg/L	1.0	SW8260B		3/24/03 12:56		D30324/
cis-1,3-Dichloropropene	<0.50	0.50		μg/L	1.0	SW8260E		3/24/03 12:50		D30324/
trans-1,3-Dichloropropene	<2.0	2.0		μg/L	1.0	SW8260E		3/24/03 12:5		D30324/
Ethylbenzene		2.5		µg/L	1.0	SW82608	N/A	3/24/03 12:5		
Hexachlorobutadiene	<2.5			µg/L	1.0	SW82608	N/A	3/24/03 12:5		D30324/
2-Hexanone	<5.0	5.0		µg/L	1.0	SW8260F	N/A	3/24/03 12:5	8 JH	D30324/
lodomethane	<1.0	1.0		20,5					25 of 2	

Amended Report

Date Printed 08-Apr-03

License No. AZM133/AZ0133

CLIENT:

Brown & Caldwell

Work Order:

0303291

Lab ID:

0303291-13

Project Name:

Dolphin Project Number: 22413.400 Client Sample ID: DIMW8D

Collection Date: 3/20/2003 1:30:00 PM

Project Number: 22413.400			A.A		man bi Pi yama ana di yama and i	Test	Date	Date	A nalvet	Batch ID
Analyte	Result	PQL	Qual	Units	DF	Code	Prepared	Analyzed		D30324A
	<2.5	2.5		µg/L	1.0	SW8260B	N/A	3/24/03 12:58	JH	D30324A
sopropylbenzene	<1.5	1.5		µg/L	1.0	SW8260B	N/A	3/24/03 12:58	JH	D30324A
4-isopropyltoluene	<3.0	3.0		μg/L	1.0	SW8260B	N/A	3/24/03 12:58	JH	D30324A
Methylene chloride	<5.0	5.0		µg/L	1.0	SW8260B	N/A	3/24/03 12:58	JH	D30324A
4-Methyl-2-pentanone	<2,0	2.0		μg/L	1.0	SW8260B	N/A	3/24/03 12:58	JH	D30324A D30324A
Methyl tert-butyl ether	<5.0	5.0		μg/L	1.0	SW8260B	N/A	3/24/03 12:58	JH	D30324A D30324A
Naphthalene	<2.0	2.0		µg/L	1.0	SW8260B	N/A	3/24/03 12:58	JH	D30324A
n-Propyibenzene	<1.0	1.0		μg/L	1,0	SW8260B	N/A	3/24/03 12:58	JH	
Styrene	<0.50	0.50		μg/L	1.0	SW8260B	N/A	3/24/03 12:58	JH	D30324A
1,1,1,2-Tetrachloroethane	<0.50	0.50		μg/L	1.0	SW8260B	N/A	3/24/03 12:58	JH	D30324A
1,1,2,2-Tetrachioroethane	<0.50 <0.50	0.50		μg/L	1.0	SW8260B	N/A	3/24/03 12:58	JH	D30324A
Tetrachloroethene	<3.0	3.0		μg/L	1.0	SW8260B	N/A	3/24/03 12:58	JH	D30324A
Toluene	<5.0 <5.0	5.0		µg/L	1.0	SW8260B	N/A	3/24/03 12:58	JH	D30324A
1,2,3-Trichlorobenzene	<5.0 <5.0	5.0		μg/L	1.0	SW8260B	N/A	3/24/03 12:58	JH	D30324A
1,2,4-Trichlorobenzene		0.50		μg/L	1.0	SW8260B	N/A	3/24/03 12:58	JH	D30324A
1,1,1-Trichloroethane	< 0.50	0.50		μg/L	1.0	SW8260B	N/A	3/24/03 12:58	JH	D30324A
1,1,2-Trichloroethane	<0.50	0.50		µg/L	1.0	SW8260B	N/A	3/24/03 12:58	JH	D30324A
Trichloroethene	<0.50	2.0		μg/L	1.0	SW8260B	N/A	3/24/03 12:58	JΗ	D30324A
Trichlorofluoromethane	<2.0	5.0		μg/L	1.0	SW8260B	N/A	3/24/03 12:58	JH	D30324A
Trichlorotrifluoroethane	<5.0	1.0		μg/L	1.0	SW8260B	N/A	3/24/03 12:58	JH	D30324A
1,2,3-Trichloropropane	<1.0			μg/L	1.0	SW8260B	N/A	3/24/03 12:58	JH	D30324A
1,2,4-Trimethylbenzene	<2.0	2.0		μg/L	1.0	SW8260B	N/A	3/24/03 12:58	JH	D30324A
1,3,5-Trimethylbenzene	<1.5	1.5		µg/L	1.0	SW8260B	N/A	3/24/03 12:58	JH	D30324A
Vinyl acetate	<5.0	5.0		µg/L	1.0	SW8260B	N/A	3/24/03 12:58	JH	D30324A
Vinyl chloride	<0.50	0.50		µg/L	1.0	SW8260B	N/A	3/24/03 12:58	JH	D30324A
Xylenes, Total	<3.0	3.0		%REC	1.0	SW8260B	N/A	3/24/03 12:58	JH	D30324A
4-Bromofluorobenzene(Surrogate)	94	80-107		%REC	1.0	SW8260B	N/A	3/24/03 12:58	JH	D30324A
Dibromofluoromethane(Surrogate)	84	77-104		%REC	1.0	SW8260B	N/A	3/24/03 12:58	3 JH	D30324A
1,2-Dichloroethane-d4(Surrogate) Toluene-d8(Surrogate)	80 95	72-111 84-105		%REC	1.0	SW8260B	N/A	3/24/03 12:58	3 JH	D30324A

Amended Report

Date Printed 08-Apr-03

License No. AZM133/AZ0133

CLIENT:

Brown & Caldwell

0303291

Work Order: Lab ID:

0303291-14

Project Name:

Dolphin Project Number: 22413.400

Client Sample ID: DIMW7A

Collection Date: 3/20/2003 2:10:00 PM

Project Number: 22413.40	White programme and design and make the programme and the design and the second					Test	Date	Date		73 . 4 1 ***
Analyte	Result	PQL	Qual	Units	DF	Code	Prepared	Analyzed	Analyst	Batch II
					1.0	SW8260B	N/A	3/23/03 10:06	JH	D30322C
cetone	<20	20		µg/L	1.0	SW8260B	N/A	3/23/03 10:06	JH	D30322C
Benzene	<0.50	0.50		μg/L	1.0	SW8260B	N/A	3/23/03 10:06	JН	D30322C
Bromobenzene	<1.5	1.5		µg/L	1.0	SW8260B	N/A	3/23/03 10:06	JH	D30322C
Bromochloromethane	<0.50	0.50		µg/L	1.0	SW8260B	N/A	3/23/03 10:06	JH	D30322C
3romodichloromethane	<0.50	0.50		µg/L	1.0	SW8260B	N/A	3/23/03 10:06	JH	D30322C
3romoform Strands	<1.0	1.0		µg/L	1.0	SW8260B	N/A	3/23/03 10:06	JH	D30322C
3romomethane	<5.0	5.0		µg/L		SW8260B	N/A	3/23/03 10:06	JH	D30322C
2-Butanone	<5.0	5.0		μg/L	1.0	SW8260B	N/A	3/23/03 10:06	JH	D30322C
n-Butylbenzene	<2.5	2.5		µg/L	1.0	SW8260B	N/A	3/23/03 10:06	JH	D30322C
sec-Butylbenzene	<1.5	1.5		µg/L	1.0	SW8260B	N/A	3/23/03 10:06	JH	D30322C
tert-Butylbenzene	<2.5	2.5		µg/L	1.0		N/A	3/23/03 10:06	JH	D30322C
Carbon disulfide	<0.50	0.50		hã/ŗ	1.0	SW8260B SW8260B	N/A	3/23/03 10:06	JH	D30322C
Carbon tetrachloride	< 0.50	0.50		μg/L	1.0		N/A	3/23/03 10:06	JН	D30322C
Chlorobenzene	<0.50	0.50		μg/L	1.0	SW8260B	N/A	3/23/03 10:06	JH	D30322C
Dibromochloromethane	< 0.50	0.50		µg/L	1.0	SW8260B	N/A	3/23/03 10:06	JH	D30322C
Chloroethane	<1.0	1.0		μg/L	1.0	SW8260B	N/A	3/23/03 10:06	JH	D30322C
Chloroform	9.8	0.50		µg/L	1.0	SW8260B	N/A	3/23/03 10:06	JH	D30322C
Chloromethane	<5.0	5.0		µg/L	1.0	SW8260B		3/23/03 10:06	JH	D30322C
2-Chlorotoluene	<1.5	1.5		μg/L	1.0	SW8260B	N/A	3/23/03 10:06	JH	D30322C
4-Chlorotoiuene	<2.0	2.0		µg/L	1.0	SW8260B	N/A	3/23/03 10:00	JH	D30322C
1,2-Dibromo-3-chloropropane	<2.0	2.0		μg/L	1.0	SW8260B	N/A			D30322C
1,2-Dibromoethane	<0.50	0.50		μg/L	1.0	SW8260B	N/A	3/23/03 10:06	JH	D30322C
Dibromomethane	< 0.50	0.50		µg/L	1,0	SW8260B	N/A	3/23/03 10:06	JH	D30322C
1.2-Dichlorobenzene	<1.5	1.5		µg/L	1.0	SW8260B	N/A	3/23/03 10:06	JH	D30322C
1,3-Dichlorobenzene	<1.5	1.5		µg/L	1.0	SW8260B	N/A	3/23/03 10:06	JH	D30322C
1,4-Dichlorobenzene	<1.5	1.5		µg/L	1.0	SW8260B	N/A	3/23/03 10:06	JΗ	D30322C
Dichiorodifluoromethane	<2.0	2.0		µg/L	1.0	SW8260B	N/A	3/23/03 10:06	JH	D30322C
1,1-Dichloroethane	<1.0	1.0		µg/L	1.0	SW8260B	N/A	3/23/03 10:06	JH	D30322C
1,2-Dichloroethane	<1.0	1.0	V7	μg/L	1.0	SW82608	N/A	3/23/03 10:06	JH	D30322C
1,1-Dichloroethene	6.8	0.50		μg/L	1.0	SW8260B	N/A	3/23/03 10:06	JH	D30322C
cis-1,2-Dichloroethene	2.5	0.50		µg/L	1.0	SW8260B	N/A	3/23/03 10:06	JH	D30322C
trans-1,2-Dichloroethene	< 0.50	0.50		µg/L	1.0	SW8260B	NIA	3/23/03 10:06	JH	D30322C
•	<0.50	0.50		μg/L	1.0	SW8260B	N/A	3/23/03 10:06	JH	
1,2-Dichloropropane	<1.0	1.0		µg/L	1.0	SW8260B	N/A	3/23/03 10:06	JH	D30322C
1,3-Dichloropropane	<0.50	0.50		μg/L	1.0	SW8260B	N/A	3/23/03 10:06		D30322C
2,2-Dichloropropane	<1.0	1.0		μg/L	1.0	SW8260B	N/A	3/23/03 10:06		D30322C
1,1-Dichloropropene	<1.0	1.0		μg/L	1.0	SW8260B	N/A	3/23/03 10:06		D30322C
cis-1,3-Dichloropropene	<0.50	0.50		μg/L	1.0	SW8260B	N/A	3/23/03 10:06		D30322C
trans-1,3-Dichloropropene	<2.0	2.0		μg/L	1.0	SW8260B	N/A	3/23/03 10:06		D30322C
Ethylbenzene	<2.5	2.5		μg/L	1.0	SW8260B	N/A	3/23/03 10:06		D30322C
Hexachlorobutadiene	<5.0	5.0		µg/L	1.0	SW8260B	NIA	3/23/03 10:06	JH	D30322C
2-Hexanone	<0.0 <1.0	1.0		μg/L	1.0	SW8260B	N/A	3/23/03 10:06	HL i	D30322C

TRANSWEST

Amended Report

Date Printed 08-Apr-03

License No. AZM133/AZ0133

CLIENT:

Brown & Caldwell

Work Order:

0303291

Lab ID:

0303291-14

Project Name: Project Number: 22413.400

Dolphin

Client Sample ID: DIMW7A

Collection Date: 3/20/2003 2:10:00 PM

Project Number: 22413.400		and the second s				Test	Date	Date	Analyet	Batch ID
Analyte	Result	PQL	Qual	Units	DF	Code	Prepared	Analyzed		D30322C
	<2.5	2.5		µg/L	1.0	SW8260B	N/A	3/23/03 10:06	JH 	D30322C
Isopropylbenzene	<1.5	1.5		µg/L	1.0	SW8260B	N/A	3/23/03 10:06	JH	D30322C
4-Isopropyitoluene	<3.0	3.0		μg/L	1.0	SW8260B	N/A	3/23/03 10:06	JH	D30322C
Methylene chloride	<5.0	5.0		µg/L	1.0	SW8260B	N/A	3/23/03 10:06	JH	D30322C
4-Methyl-2-pentanone	<2.0	2.0		μg/L	1.0	SW8260B	N/A	3/23/03 10:06	JH	D30322C
Methyl tert-butyl ether	<5.0	5.0		μg/L	1.0	SW8260B	N/A	3/23/03 10:06	JH	D30322C
Naphthalene	<2.0	2.0		μg/L	1.0	SW8260B	N/A	3/23/03 10:06	JΗ	D30322C
n-Propylbenzene	<1.0	1.0		μg/L	1.0	SW8260B	N/A	3/23/03 10:06	JH	D30322C
Styrene	<0.50	0.50		μg/L	1.0	SW8260B	N/A	3/23/03 10:06	JH	D30322C
1,1,1,2-Tetrachioroethane	<0.50	0.50		μg/L	1.0	SW8260B	N/A	3/23/03 10:06	JH	
1,1,2,2-Tetrachloroethane	39	0.50		μg/L	1.0	SW8260B	N/A	3/23/03 10:06	JH	D30322C
Tetrachloroethene	<3.0	3.0		μg/L	1.0	SW8260B	N/A	3/23/03 10:06	JH	D30322C
Toluene	<5.0	5.0		μg/L	1.0	SW8260B	N/A	3/23/03 10:06	JH	D30322C
1,2,3-Trichlorobenzene	<5.0	5.0 5.0		μg/L	1.0	SW8260B	N/A	3/23/03 10:06	JH	D30322C
1,2,4-Trichlorobenzene	<0.50	0.50		µg/L	1.0	SW8260B	N/A	3/23/03 10:06	JH	D30322C
1,1,1-Trichloroethane	<0.50	0.50		μg/L	1.0	SW8260B	N/A	3/23/03 10:06	JH	D30322C
1,1,2-Trichloroethane		0.50		μg/L	1.0	SW82608	N/A	3/23/03 10:06	JH	D30322C
Trichloroethene	15	2.0		μg/L	1.0	SW8260B	N/A	3/23/03 10:06	JH	D30322C
Trichlorofluoromethane	<2.0	5.0		µg/L	1.0	SW8260B	N/A	3/23/03 10:06	JH	D30322C
Trichlorotrifluoroethane	<5.0	1.0		µg/L	1.0	SW8260B	N/A	3/23/03 10:06	JH	D30322C
1,2,3-Trichloropropane	<1.0			μg/L	1.0	SW8260B	N/A	3/23/03 10:06	JН	D30322C
1,2,4-Trimethylbenzene	<2.0	2.0		µg/L	1.0	SW8260B	N/A	3/23/03 10:06	JH	D30322C
1,3,5-Trimethylbenzene	<1.5	1.5		µg/L	1.0	SW8260B	N/A	3/23/03 10:06	JH	D30322C
Vinyl acetate	<5.0	5.0		µg/L	1.0	SW8260B	N/A	3/23/03 10:06	JH	D30322C
Vinyl chloride	<0.50	0.50		µg/L	1.0	SW8260B	N/A	3/23/03 10:06	JH	D30322C
Xylenes, Total	<3.0	3.0		%REC	1.0	SW8260B	N/A	3/23/03 10:06	JH	D30322C
4-Bromofluorobenzene(Surrogate)	84	80-107		%REC	1.0	SW8260B	N/A	3/23/03 10:06	JH	D30322C
Dibromofluoromethane(Surrogate)	96	77-104		%REC	1.0	SW8260B	N/A	3/23/03 10:06	JH	D30322C
1,2-Dichloroethane-d4(Surrogate)	104	72-111		%REC	1.0	SW8260B	N/A	3/23/03 10:06	HL i	D30322C
Toluene-d8(Surrogate)	86	84-105		MREC	1,0					

Amended Report

Date Printed 08-Apr-03

License No. AZM133/AZ0133

CLIENT:

Brown & Caldwell

Work Order:

0303291

Lab ID:

0303291-15

Project Name:

Dolphin

Project Number: 22413.400

Client Sample ID: DIMW8A

Collection Date: 3/20/2003 2:20:00 PM

THE RESIDENCE OF THE PROPERTY						Test	Date	Date		m-4-1- #F
Analyte	Result	PQL	Qual	Units	DF	Code	Prepared	Analyzed	Analyst	Batch II
				µg/L	1.0	SW8260B	N/A	3/23/03 10:44	JH	D30322C
cetone	<20	20		µg/L	1.0	SW8260B	N/A	3/23/03 10:44	JH	D30322C
Senzene	<0.50	0.50			1.0	SW8260B	N/A	3/23/03 10:44	JН	D30322C
Promobenzene	<1.5	1.5		µg/L	1.0	SW82608	N/A	3/23/03 10:44	JH	D30322C
Promochloromethane	<0.50	0.50		μg/L	1.0	SW8260B	N/A	3/23/03 10:44	HL	D30322C
Bromodichloromethane	<0.50	0.50		µg/L	1.0	SW8260B	N/A	3/23/03 10:44	JH	D30322C
Bromoform	<1.0	1.0		µg/L	1.0	SW8260B	N/A	3/23/03 10:44	JH	D30322C
Bromomethane	<5.0	5.0		µg/L	1.0	SW8260B	N/A	3/23/03 10:44	JH	D30322C
2-Butanone	<5.0	5.0		μg/L	1.0	SW8260B	N/A	3/23/03 10:44	JH	D30322C
n-Butylbenzene	<2.5	2,5		µg/L	1.0	SW8260B	N/A	3/23/03 10:44	JH	D30322C
sec-Butylbenzene	<1.5	1.5		μg/L "		SW8260B	N/A	3/23/03 10:44	JH	D30322C
ert-Butylbenzene	<2.5	2.5		µg/L	1.0	SW8260B	N/A	3/23/03 10:44	JH	D30322C
Carbon disulfide	<0.50	0.50		µg/L	1.0	SW8260B	N/A	3/23/03 10:44	JH	D30322C
Carbon tetrachloride	< 0.50	0.50		ha\r	1.0	SW8260B	N/A	3/23/03 10:44	JH	D30322C
Chlorobenzene	<0.50	0.50		µg/L	1.0	SW8260B	N/A	3/23/03 10:44	JH	D30322C
Dibromochloromethane	<0.50	0.50		µg/L	1.0		N/A	3/23/03 10:44	JH	D30322C
Chloroethane	<1.0	1.0		µg/L	1.0	SW8260B		3/23/03 10:44	JH	D30322C
Chloroform	9.9	0.50		µg/L	1.0	SW82608	N/A	3/23/03 10:44	JH	D30322C
Chloromethane	<5.0	5.0		μg/L	1.0	SW8260B	N/A	3/23/03 10:44	JH	D30322C
2-Chlorotoluene	<1.5	1.5		µg/∟	1.0	SW8260B	N/A	3/23/03 10:44		D30322C
4-Chlorotoluene	<2.0	2.0		µg/L	1.0	SW8260B	N/A		JH	D30322C
1.2-Dibromo-3-chloropropane	<2.0	2.0		µg/L	1.0	SW8260B	N/A	3/23/03 10:44	JH	D30322C
1,2-Dibromoethane	< 0.50	0.50		µg/L	1.0	SW8260B	N/A	3/23/03 10:44	JH	D30322C
Dibromomethane	<0.50	0.50		μg/L	1.0	SW8260B	N/A	3/23/03 10:44	JH	D30322C
1,2-Dichlorobenzene	<1.5	1.5		µg/L	1.0	SW8260B	N/A	3/23/03 10:44	JH	D30322C
1,3-Dichlorobenzene	<1.5	1.5		μg/L	1.0	SW8260B	N/A	3/23/03 10:44	JH	
1,4-Dichlorobenzene	<1.5	1.5		µg/L	1.0	SW8260B	N/A	3/23/03 10:44	JH	D30322C
Dichlorodifluoromethane	<2.0	2.0		µg/L	1.0	SW8260B	N/A	3/23/03 10:44	JH	D30322C
1,1-Dichloroethane	<1.0	1.0		μg/L	1.0	SW8260B	N/A	3/23/03 10:44	JH	D30322C
1,2-Dichloroethane	<1.0	1.0	٧7	µg/L	1.0	SW8260B	N/A	3/23/03 10:44	JH	D30322C
1.1-Dichloroethene	6.5	0.50		μg/L	1.0	SW8260B	N/A	3/23/03 10:44	JH	D30322C
cis-1,2-Dichloroethene	2.4	0.50		µg/L	1.0	SW8260B	N/A	3/23/03 10:44	JH	D30322C
	<0.50	0.50		μg/L	1.0	SW8260B	N/A	3/23/03 10:44	JΗ	D30322C
trans-1,2-Dichloroethene	<0.50	0.50		μg/L	1.0	SW8260B	N/A	3/23/03 10:44	JH	D30322C
1,2-Dichloropropane	<1.0	1.0		μg/L	1.0	SW82608	N/A	3/23/03 10:44		D30322C
1,3-Dichloropropane	<0.50	0.50		µg/L	1.0	SW8260B	N/A	3/23/03 10:44		D30322C
2,2-Dichloropropane	<1.0	1.0		μg/L	1.0	SW8260B	N/A	3/23/03 10:44		D30322C
1,1-Dichloropropene	<1.0	1.0		µg/L	1.0	SW8260B	N/A	3/23/03 10:44		D30322C
cis-1,3-Dichloropropene	<0.50	0.50		μg/L	1.0	SW8260B	N/A	3/23/03 10:44	JH	D30322C
trans-1,3-Dichloropropene		2.0		µg/L	1.0	SW8260B	N/A	3/23/03 10:44	JH	D30322C
Ethylbenzene	<2.0	2.5		μg/L	1.0	SW8260B	N/A	3/23/03 10:44	JH	D30322C
Hexachlorobutadiene	<2.5 <5.0			μg/L	1.0	SW8260B	N/A	3/23/03 10:44	JH	D30322C
2-Hexanone	<5 t)	5.0		Ma		SW8260B	N/A	3/23/03 10:44	JH	D30322C

Amended Report

Date Printed 08-Apr-03

License No. AZM133/AZ0133

CLIENT:

Brown & Caldwell

Work Order:

0303291

Lab ID:

0303291-15 Dolphin

Project Name:

Project Number: 22413.400

Client Sample ID: DIMW8A

Collection Date: 3/20/2003 2:20:00 PM

Project Number: 22413.400				1 Indita	DF	Test Code	Date Prepared	Date Analyzed	Analyst	Batch ID
Analyte	Result	PQL	Qual	Units		SW82608	N/A	3/23/03 10:44	JH	D30322C
sopropylbenzene	<2.5	2.5		µg/L	1.0	SW8260B	N/A	3/23/03 10:44	JH	D30322C
4-isopropyltoluene	<1.5	1.5		µg/L	1.0	SW8260B	N/A	3/23/03 10:44	JH	D30322C
Methylene chloride	<3.0	3.0		µg/L	1.0	SW8260B	N/A	3/23/03 10:44	JH	D30322C
4-Methyl-2-pentanone	<5.0	5.0		μg/L	1.0	SW82608	N/A	3/23/03 10:44	JH	D30322C
Methyl tert-butyl ether	<2.0	2.0		µg/L	1.0	SW8260B	N/A	3/23/03 10:44	JH	D30322C
Naphthalene	<5.0	5.0		µg/L	1.0	SW8260B	N/A	3/23/03 10:44	JH	D30322C
n-Propylbenzene	<2.0	2.0		µg/L	1.0	SW8260B	N/A	3/23/03 10:44	JН	D30322C
Styrene	<1.0	1.0		μg/L	1.0	SW8260B	N/A	3/23/03 10:44	JH	D30322C
1,1,1,2-Tetrachloroethane	< 0.50	0.50		µg/L	1.0	SW8260B	N/A	3/23/03 10:44	JH	D30322C
1,1,2,2-Tetrachioroethane	<0.50	0.50		μg/L	1.0	SW8260B	N/A	3/23/03 10:44	JH	D30322C
Tetrachioroethene	40	0.50		μg/L	1.0	SW8260B	N/A	3/23/03 10:44	JH	D30322C
Toluene	<3.0	3.0		hâlŗ	1.0	SW8260B	N/A	3/23/03 10:44	JH	D30322C
1,2,3-Trichlorobenzene	<5.0	5.0		µg/L	1.0	SW8260B	N/A	3/23/03 10:44	J∺	D30322C
1,2,4-Trichlorobenzene	<5.0	5.0		µg/L	1.0	SW8260B	N/A	3/23/03 10:44	JH	D30322C
1,1,1-Trichloroethane	<0.50	0.50		µg/∟	1.0	SW8260B	N/A	3/23/03 10:44	JH	D30322C
1,1,2-Trichloroethane	< 0.50	0.50		μg/L	1.0	SW8260B	N/A	3/23/03 10:44	JH	D30322C
Trichloroethene	15	0.50		μg/L	1.0	SW8260B	N/A	3/23/03 10:44	JH	D30322C
Trichlorofluoromethane	<2.0	2.0		µg/L	1.0	SW8260B	N/A	3/23/03 10:44	JH	D30322C
Trichlorotrifluoroethane	<5.0	5.0		μg/L	1.0	SW8260B	N/A	3/23/03 10:44	JH	D30322C
1.2.3-Trichloropropane	<1.0	1.0		µg/L	1,0	SW8260B	N/A	3/23/03 10:44	JΗ	D30322C
1,2,4-Trimethylbenzene	<2.0	2.0		µg/∟	1.0	SW8260B	N/A	3/23/03 10:44	JH	D30322C
1,3,5-Trimethylbenzene	<1.5	1.5		μg/L	1.0	SW8260B	N/A	3/23/03 10:44	JH	D30322C
Vinyl acetate	<5.0	5.0		hg/r	1.0	SW8260B	N/A	3/23/03 10:44	JH	D30322C
Vinyl chloride	< 0.50	0.50		µg/L	1.0	SW8260B	N/A	3/23/03 10:44		D30322C
Xylenes, Total	<3.0	3.0		μg/L	1.0		N/A	3/23/03 10:44		D30322C
4-Bromofluorobenzene(Surrogate)	84	80-107		%REC	1.0	SW8260B SW8260B	N/A	3/23/03 10:44		D30322C
Dibromofluoromethane(Surrogate)	97	77-104		%REC	1.0		N/A	3/23/03 10:44		D30322C
1,2-Dichloroethane-d4(Surrogate)	107	72-111		%REC	1.0	SW8260B	N/A	3/23/03 10:44		D30322C
Toluene-d8(Surrogate)	85	84-105		%REC	1.0	SW8260B	N/A	DIEGIOS IGIAA	VII	

Amended Report

Date Printed 08-Apr-03

License No. AZM133/AZ0133

CLIENT:

Brown & Caldwell

Work Order:

0303291

Lab ID:

0303291-16

Project Name:

Dolphin

Project Number: 22413.400

Client Sample ID: DIMW6A

Collection Date: 3/20/2003 2:40:00 PM

Project Number: 22413.4		agence and the second s				Test	Date	Date	Amaliat	Batch II
Analyte	Result	PQL	Qual	Units	DF	Code	Prepared	Analyzed	Analyst	Batch II
				. #	1.0	SW8260B	N/A	3/23/03 11:22	JH	D30322C
Acetone	<20	20		μg/L	1.0	SW8260B	N/A	3/23/03 11:22	JН	D30322C
3enzene	<0.50	0.50		μg/L "	1.0	SW8260B	N/A	3/23/03 11:22	JH	D30322C
Bromobenzene	<1.5	1.5		hâ\ŗ	1.0	SW8260B	N/A	3/23/03 11:22	JH	D30322C
Bromochloromethane	<0.50	0.50		µg/L	1.0	SW8260B	N/A	3/23/03 11:22	JH	D30322C
Bromodichloromethane	<0.50	0.50		µg/L	1.0	SW8260B	N/A	3/23/03 11:22	JH	D30322C
Bromoform	<1.0	1.0		µg/L	1.0	SW8260B	N/A	3/23/03 11:22	JH	D30322C
Bromomethane	<5.0	5.0		μg/L	1.0	SW8260B	N/A	3/23/03 11:22	JH	D30322C
2-Butanone	<5.0	5.0		μg/L	1.0	SW8260B	N/A	3/23/03 11:22	JH	D30322C
n-Butylbenzene	<2.5	2.5		μg/L	1.0		N/A	3/23/03 11:22	JH	D30322C
sec-Butylbenzene	<1.5	1.5		µg/L	1.0	SW82608	N/A	3/23/03 11:22	JH	D30322C
tert-Butylbenzene	<2.5	2.5		μg/L	1.0	SW8260B	N/A	3/23/03 11:22	JH	D30322C
Carbon disulfide	< 0.50	0.50		µg/L	1.0	SW8260B	N/A	3/23/03 11:22	JH	D30322C
Carbon tetrachloride	<0.50	0.50		µg/L	1.0	SW8260B		3/23/03 11:22	JH	D30322C
Chlorobenzene	<0.50	0.50		µg/L	1.0	SW8260B	N/A	3/23/03 11:22	JH	D30322C
Dibromochloromethane	<0.50	0.50		µg/L	1.0	SW8260B	N/A	3/23/03 11:22	JН	D30322C
Chloroethane	<1.0	1.0		µg/L	1.0	SW8260B	N/A	3/23/03 11:22	JH	D30322C
Chloroform	7.5	0.50		µg/L	1.0	SW82608	N/A	3/23/03 11:22	JH	D30322C
Chloromethane	<5.0	5.0		µg/L	1.0	SW8260B	N/A		JH	D30322C
2-Chlorotoluene	<1.5	1.5		µg/L	1.0	SW8260B	N/A	3/23/03 11:22		D30322C
4-Chlorotoluene	<2.0	2.0		µg/∟	1,0	SW8260B	N/A	3/23/03 11:22	JH	D30322C
1.2-Dibromo-3-chloropropane	<2.0	2.0		µg/L	1.0	SW8260B	N/A	3/23/03 11:22	JΗ	D30322C
1,2-Dibromoethane	<0.50	0.50		µg/Ł	1.0	SW82608	N/A	3/23/03 11:22	JH	D30322C
Dibromomethane	<0.50	0.50		μg/L	1.0	SW8260B	N/A	3/23/03 11:22	JH	D30322C
1,2-Dichlorobenzene	<1.5	1.5		µg/L	1.0	SW8260B	N/A	3/23/03 11:22	JH	
1,3-Dichlorobenzene	<1.5	1.5		μg/L	1.0	SW8260B	N/A	3/23/03 11:22	JH	D30322C D30322C
1.4-Dichlorobenzene	<1.5	1.5		µg/L	1.0	SW8260B	N/A	3/23/03 11:22	JH	
Dichlorodifluoromethane	<2.0	2.0		µg/L	1.0	SW8260B	N/A	3/23/03 11:22	JH	D30322C
1,1-Dichloroethane	<1.0	1.0		µg/L	1.0	SW8260B	N/A	3/23/03 11:22		D30322C
•	<1.0	1.0	٧7	µg/L	1.0	SW8260B	N/A	3/23/03 11:22		D30322C
1,2-Dichloroethane	5.2	0.50		μg/L	1.0	SW8260B	N/A	3/23/03 11:22		D30322C
1,1-Dichloroethene cis-1.2-Dichloroethene	1.6	0.50		µg/L	1.0	SW8260B	N/A	3/23/03 11:22		D30322C
-77-	<0.50	0.50		μg/L	1.0	SW8260B	N/A	3/23/03 11:22		D30322C
trans-1,2-Dichloroethene	<0.50	0.50		µg/L	1.0	SW8260B	N/A	3/23/03 11:22		D30322C
1,2-Dichloropropane	<1.0	1.0		µg/L	1.0	SW8260B	N/A	3/23/03 11:22		D30322C
1,3-Dichloropropane	<0.50	0.50		µg/L	1.0	SW8260B	N/A	3/23/03 11:22		D30322C
2,2-Dichloropropane	<1.0	1.0		µg/L	1.0	SW8260B	N/A	3/23/03 11:22		D30322C
1,1-Dichloropropene	<1.0	1.0		μg/L	1.0	SW8260B	N/A	3/23/03 11:22		D30322C
cis-1,3-Dichloropropene	<0.50	0.50		µg/L	1.0	SW8260B	N/A	3/23/03 11:22		D30322C
trans-1,3-Dichloropropene	<2.0	2.0		μg/L	1.0	SW8260B	N/A	3/23/03 11:23		D30322C
Ethylbenzene	<2.0 <2.5	2.5		μg/L	1.0	SW8260B	N/A	3/23/03 11:2:		D30322C
Hexachlorobutadiene	<2.5 <5.0	5.0		μg/L	1.0	SW8260B	N/A	3/23/03 11:2	2 JH	D30322C
2-Hexanone	<5.0 <1.0	1.0		μg/L	1.0	SW8260B	N/A	3/23/03 11:2	2 JH	D30322C

Amended Report

Date Printed 08-Apr-03

License No. AZM133/AZ0133

CLIENT:

Brown & Caldwell

Work Order:

0303291

Lab ID:

0303291-16

Project Name:

Dolphin

Project Number: 22413.400

Client Sample ID: DIMW6A

Collection Date: 3/20/2003 2:40:00 PM

-,						Test	Date	Date		
Amalasta	Result	PQL	Qual	Units	DF	Code	Prepared	Analyzed	Analyst	Batch ID
Analyte	<2.5	2.5		μg/L	1.0	SW8260B	N/A	3/23/03 11:22	JH	D30322C
isopropylbenzene		2.5 1.5		μg/L	1.0	SW8260B	N/A	3/23/03 11:22	JH	D30322C
4-Isopropyltoluene	<1.5	3.0		μg/L	1.0	SW8260B	N/A	3/23/03 11:22	JH	D30322C
Methylene chloride	<3.0	5.0		μg/L	1.0	SW8260B	N/A	3/23/03 11:22	JH	D30322C
4-Methyl-2-pentanone	<5.0	2.0		μg/L	1.0	SW8260B	N/A	3/23/03 11:22	JH	D30322C
Methyl tert-butyl ether	<2.0	5.0		μg/L	1.0	SW8260B	N/A	3/23/03 11:22	JH	D30322C
Naphthalene	<5.0			µg/L	1.0	SW8260B	N/A	3/23/03 11:22	JH	D30322C
n-Propylbenzene	<2.0	2.0		µg/L	1.0	SW8260B	N/A	3/23/03 11:22	JH	D30322C
Styrene	<1.0	1.0		μg/L	1.0	SW8260B	N/A	3/23/03 11:22	JH	D30322C
1,1,1,2-Tetrachloroethane	<0.50	0.50		µg/L	1.0	SW8260B	N/A	3/23/03 11:22	JH	D30322C
1,1,2,2-Tetrachloroethane	<0.50	0.50		µg/L	1.0	SW8260B	N/A	3/23/03 11:22	JH	D30322C
Tetrachioroethene	30	0.50		µg/L	1.0	SW8260B	N/A	3/23/03 11:22	JH	D30322C
Toluene	<3.0	3.0		ha/r	1.0	SW8260B	N/A	3/23/03 11:22	JH	D30322C
1,2,3-Trichlorobenzene	<5.0	5.0		µg/L	1.0	SW8260B	N/A	3/23/03 11:22	JH	D30322C
1,2,4-Trichlorobenzene	<5.0	5.0		µg/L	1.0	SW8260B	N/A	3/23/03 11:22	JH	D30322C
1,1,1-Trichloroethane	<0.50	0.50		µg/L	1.0	SW8260B	N/A	3/23/03 11:22	JH	D30322C
1,1,2-Trichloroethane	<0.50	0.50		μg/L	1.0	SW8260B	N/A	3/23/03 11:22	JH	D30322C
Trichloroethene	13	0.50		μg/L	1.0	SW8260B	N/A	3/23/03 11:22	JH	D30322C
Trichlorofluoromethane	<2.0	2.0			1.0	SW8260B	N/A	3/23/03 11:22	JH	D30322C
Trichlorotrifluoroethane	<5.0	5.0		μg/L μg/L	1.0	SW8260B	N/A	3/23/03 11:22	JH	D30322C
1,2,3-Trichloropropane	<1.0	1.0			1.0	SW8260B	N/A	3/23/03 11:22	JH	D30322C
1,2,4-Trimethylbenzene	<2.0	2.0		µg/L	1.0	SW8260B	N/A	3/23/03 11:22	JH	D30322C
1,3,5-Trimethylbenzene	<1.5	1.5		µg/L	1.0	SW8260B	N/A	3/23/03 11:22	JH	D30322C
Vinyl acetate	<5.0	5.0		μg/L	1.0	SW8260B	N/A	3/23/03 11:22	JH	D30322C
Vinyl chloride	<0.50	0.50		µg/L	1.0	SW8260B	N/A	3/23/03 11:22	JH	D30322C
Xylenes, Total	<3.0	3.0		µg/L		SW8260B	N/A	3/23/03 11:22	JH	D30322C
4-Bromofluorobenzene(Surrogate)	83	80-107		%REC	1.0	SW8260B	N/A	3/23/03 11:22		D30322C
Dibromofluoromethane(Surrogate)	96	77-104		%REC	1.0	SW8260B	N/A	3/23/03 11:22		D30322C
1,2-Dichloroethane-d4(Surrogate)	108	72-111		%REC	1.0	SW8260B	N/A	3/23/03 11:22		D30322C
Toluene-d8(Surrogate)	86	84-105		%REC	1.0	24497000	NA	0/10/00 (1.22	5,1	·

GEOCHEM

Amended Report

Date Printed 08-Apr-03

License No. AZM133/AZ0133

Date

CLIENT:

Brown & Caldwell

Work Order:

0303291

Lab ID:

0303291-17

Project Name:

Dolphin Project Number: 22413.400 Client Sample ID: DIMW4A

Test

Collection Date: 3/20/2003 3:12:00 PM

Date

						rest	Date	Date		1 TT
Analyte	Result	PQL	Qual	Units	DF	Code	Prepared	Analyzed	Analyst	Batch ID
Thatyte	<u> </u>			***		01100000	NUA	3/23/03 12:01	JH	D30322C
Acetone	<20	20		µg/L	1.0	SW8260B	N/A N/A	3/23/03 12:01	JН	D30322C
Benzene	<0.50	0.50		μg/L	1.0	SW8260B		3/23/03 12:01	JH	D30322C
Promobenzene	<1.5	1.5		µg/L	1.0	SW8260B	N/A	3/23/03 12:01	JH	D30322C
Promochloromethane	<0.50	0.50		μg/L	1.0	SW82608	N/A	3/23/03 12:01	JH	D30322C
Bromodichloromethane	<0.50	0.50		μg/L	1.0	SW8260B	N/A		JH	D30322C
Bromoform	<1.0	1.0		μg/L	1.0	SW8260B	N/A	3/23/03 12:01 3/23/03 12:01	JH	D30322C
Bromomethane	<5.0	5.0		µg/L	1.0	SW8260B	N/A		JH	D30322C
2-Butanone	<5.0	5.0		μg/L	1.0	SW8260B	N/A	3/23/03 12:01 3/23/03 12:01	JH	D30322C
r-Butylbenzene	<2.5	2.5		µg/L	1.0	SW8260B	N/A			D30322C
sec-Butylbenzene	<1.5	1.5		μg/L	1.0	SW8260B	N/A	3/23/03 12:01	JH	D30322C
•	<2.5	2.5		μg/L	1.0	SW8260B	N/A	3/23/03 12:01	JH	D30322C
tert-Butylbenzene	<0.50	0.50		μg/L	1.0	SW8260B	N/A	3/23/03 12:01	JH	D30322C
Carbon disulfide	< 0.50	0.50		μg/L	1.0	SW8260B	N/A	3/23/03 12:01	JH	D30322C
Carbon tetrachloride	<0.50	0.50		μg/L	1.0	SW8260B	N/A	3/23/03 12:01	JH	
Chlorobenzene	<0.50	0.50		μg/L	1.0	SW8260B	N/A	3/23/03 12:01	JH	D30322C
Dibromochloromethane	<1.0	1.0		μg/L	1.0	SW8260B	N/A	3/23/03 12:01	JH 	D30322C
Chloroethane	3.9	0.50		µg/L	1.0	SW8260B	N/A	3/23/03 12:01	JH	D30322C
Chloroform	5.9 <5.0	5.0		μg/L	1.0	SW8260B	N/A	3/23/03 12:01	JH	D30322C
Chloromethane		1.5		μg/L	1.0	SW8260B	N/A	3/23/03 12:01	JH	D30322C
2-Chlorotoluene	<1.5	2.0		µg/L	1.0	SW8260B	N/A	3/23/03 12:01	JH	D30322C
4-Chiorotoluene	<2.0			µg/L	1.0	SW8260B	N/A	3/23/03 12:01	JH	D30322C
1,2-Dibromo-3-chloropropane	<2.0	2.0		µg/L	1.0	SW8260B	N/A	3/23/03 12:01	JH	D30322C
1,2-Dibromoethane	<0.50	0.50		µg/L	1.0	SW8260B	N/A	3/23/03 12:01	JH	D30322C
Dibromomethane	<0.50	0.50		µg/L	1.0	SW8260B	N/A	3/23/03 12:01	JH	D30322C
1,2-Dichlorobenzene	<1.5	1.5		µg/L	1.0	SW8260B	N/A	3/23/03 12:01	JH	D30322C
1,3-Dichlorobenzene	<1.5	1.5			1.0	SW8260B	N/A	3/23/03 12:01	JH	D30322C
1,4-Dichlorobenzene	<1.5	1.5		µg/L	1.0	SW8260B	N/A	3/23/03 12:01	JН	D30322C
Dichlorodifluoromethane	<2.0	2.0		μg/L	1.0	SW8260B	N/A	3/23/03 12:01	JH	D30322C
1,1-Dichloroethane	<1.0	1.0		μg/L		SW8260B	N/A	3/23/03 12:01	JH	D30322C
1,2-Dichloroethane	<1.0	1.0	V7	hg/r	1.0	SW8260B	N/A	3/23/03 12:01	JH	D30322C
1,1-Dichloroethene	2.8	0.50		μg/L "	1.0 1.0	SW8260B	N/A	3/23/03 12:01	JH	D30322C
cis-1,2-Dichloroethene	0.72	0.50		μg/L "		SW8260B	N/A	3/23/03 12:01	JH	D30322C
trans-1,2-Dichloroethene	< 0.50	0.50		μg/L	1.0	SW8260B	N/A	3/23/03 12:01	JH	D30322C
1,2-Dichloropropane	< 0.50	0.50		μg/L	1.0	SW8260B	N/A	3/23/03 12:01	JH	D30322C
1,3-Dichloropropane	<1.0	1.0		μg/L	1.0	SW8260B	N/A	3/23/03 12:01	JH	D30322C
2,2-Dichloropropane	< 0.50	0.50		µg/L	1.0		N/A	3/23/03 12:01	JH	D30322C
1,1-Dichloropropene	<1.0	1.0		μg/L	1.0	SW8260B	N/A	3/23/03 12:01	JH	D30322C
cis-1,3-Dichloropropene	<1.0	1.0		µg/L	1.0	SW82608		3/23/03 12:01	JH	D30322C
trans-1,3-Dichloropropene	<0.50	0.50		μg/L	1.0	SW8260B		3/23/03 12:01		D30322C
Ethylbenzene	<2.0	2.0		μg/L	1.0	SW8260B		3/23/03 12:01		D30322C
Hexachlorobutadiene	<2.5	2.5		μg/L	1.0	SW82608				D30322C
	<5.0	5.0		μg/L	1.0	SW8260B		3/23/03 12:01		D30322C
2-Hexanone Iodomethane	<1.0	1.0		µg/L	1.0	SW8260B	N/A	3/23/03 12:01	JH	DOODEEC

Project Number: 22413.400

TRANSWEST

Amended Report

Date Printed 08-Apr-03

License No. AZM133/AZ0133

CLIENT:

Brown & Caldwell

Work Order:

0303291

Lab ID: Project Name: 0303291-17 Dolphin

Client Sample ID: DIMW4A

Collection Date: 3/20/2003 3:12:00 PM

Project Number: 22413.400				1 Imita	DF	Test Code	Date Prepared	Date Analyzed	Analyst	Batch ID
Analyte	Result	PQL	Qual	Units	1.0	SW8260B	N/A	3/23/03 12:01	JH	D30322C
Isopropylbenzene	<2.5	2.5		μg/L	1.0	SW8260B	N/A	3/23/03 12:01	JH	D30322C
4-Isopropyltoluene	<1.5	1.5		µg/L ″	1.0	SW8260B	N/A	3/23/03 12:01	JH	D30322C
Methylene chloride	<3.0	3.0		hã/r	1.0	SW8260B	N/A	3/23/03 12:01	JH	D30322C
4-Methyl-2-pentanone	<5.0	5.0		µg/L	1.0	SW8260B	N/A	3/23/03 12:01	JH	D30322C
Methyl tert-butyl ether	<2.0	2.0		µg/L	1.0	SW8260B	N/A	3/23/03 12:01	JH	D30322C
Naphthalene	<5.0	5.0		μg/L	1.0	SWB260B	N/A	3/23/03 12:01	JH	D30322C
n-Propylbenzene	<2.0	2.0		hã/r	1.0	SW8260B	N/A	3/23/03 12:01	JH	D30322C
Styrene	<1.0	1.0		µg/L	1.0	SW8260B	N/A	3/23/03 12:01	JH	D30322C
1,1,1,2-Tetrachloroethane	<0.50	0.50		μg/L	1.0	SW8260B	N/A	3/23/03 12:01	JH	D30322C
1,1,2,2-Tetrachloroethane	< 0.50	0.50		μg/L	1.0	SW8260B	N/A	3/23/03 12:01	JΗ	D30322C
Tetrachioroethene	17	0.50		μg/L	1.0	SW8260B	N/A	3/23/03 12:01	JH	D30322C
Toluene	<3.0	3.0		µg/L	1.0	SW8260B	N/A	3/23/03 12:01	JH	D30322C
1,2,3-Trichlorobenzene	<5.0	5.0		μg/L	1.0	SW8260B	N/A	3/23/03 12:01	JH	D30322C
1,2,4-Trichlorobenzene	<5.0	5.0		μg/L	1.0	SW8260B	N/A	3/23/03 12:01	JΗ	D30322C
1,1,1-Trichloroethane	<0.50	0.50		μg/L	1.0	SW8260B	N/A	3/23/03 12:01	JĤ	D30322C
1,1,2-Trichloroethane	<0.50	0.50		μg/L	1.0	SW8260B	N/A	3/23/03 12:01	JH	D30322C
Trichloroethene	8.3	0.50		µg/L	1.0	SW8260B	N/A	3/23/03 12:01	JH	D30322C
Trichlorofluoromethane	<2.0	2.0		µg/L	1.0	SW8260B	N/A	3/23/03 12:01	JH	D30322C
Trichlorotrifluoroethane	<5.0	5.0		µg/L	1.0	SW8260B	N/A	3/23/03 12:01	JH	D30322C
1,2,3-Trichloropropane	<1.0	1.0		μg/L	1.0	SW8260B	N/A	3/23/03 12:01	JH	D30322C
1,2,4-Trimethylbenzene	<2.0	2.0		µg/L	1.0	SW8260B	N/A	3/23/03 12:01	JH	D30322C
1,3,5-Trimethylbenzene	<1.5	1.5		µg/L	1.0	SW8260B	N/A	3/23/03 12:01	JH	D30322C
Vinyl acetate	<5.0	5.0		µg/L	1.0	SW8260B	N/A	3/23/03 12:01	ı JH	D30322C
Vinyl chloride	<0.50	0.50		μg/L	1.0	SW8260B	N/A	3/23/03 12:01	ı JH	D30322C
Xylenes, Total	<3.0	3.0		µg/L	1.0	SW8260B	N/A	3/23/03 12:0	ı JH	D30322C
4-Bromofluorobenzene(Surrogate)	84	80-107		%REC	1.0	SW8260B	N/A	3/23/03 12:0	ı JH	D30322C
Dibromofluoromethane(Surrogate)	96	77-104		%REC	1.0	SW8250B		3/23/03 12:0	1 JH	D30322C
1,2-Dichloroethane-d4(Surrogate) Toluene-d8(Surrogate)	110 86	72-111 84-105		%REC %REC	1.0	SW8260B		3/23/03 12:0	1 JH	D30322C

TRANSWEST

Amended Report

Date Printed 08-Apr-03

License No. AZM133/AZ0133

CLIENT:

Brown & Caldwell

Work Order:

0303291

Lab ID:

0303291-18 Dolphin

Project Name:

Client Sample ID: TB

Collection Date: 3/20/2003 8:43:00 AM

Matrix: TRIP BLANK

Project Number: 22413.4	UU					Test	Date	Date		
Analyte	Result	PQL	Qual	Units	DF	Code	Prepared	Analyzed	Analyst	Batch ID
Maryto					4.0	SW8260B	N/A	3/24/03 13:35	JH	D30324A
cetone	<20	20		µg/L	1.0	SW82608	N/A	3/24/03 13:35	JH	D30324A
Benzene	< 0.50	0.50		μg/L	1.0	SW8260B	N/A	3/24/03 13:35	JH	D30324A
Bromobenzene	<1.5	1.5		μg/L	1.0	SW8260B	N/A	3/24/03 13:35	JH	D30324A
Bromochloromethane	< 0.50	0.50		µg/L	1.0	SW8260B	N/A	3/24/03 13:35	JH	D30324A
Bromodichloromethane	< 0.50	0.50		μg/L	1.0	_	N/A	3/24/03 13:35	JH	D30324A
3romoform	<1,0	1.0		µg/L	1.0	SW8260B	N/A	3/24/03 13:35	JH	D30324A
Bromomethane	<5.0	5.0		µg/L	1.0	SW8260B	N/A	3/24/03 13:35	JH	D30324A
2-Butanone	<5.0	5.0		μg/L	1.0	SW8260B	N/A	3/24/03 13:35	JH	D30324A
n-Butylbenzene	<2.5	2.5		μg/L	1.0	SW8260B	N/A	3/24/03 13:35	JН	D30324A
sec-Butylbenzene	<1.5	1.5		µg/L	1.0	SW8260B	N/A	3/24/03 13:35	JH	D30324A
tert-Butylbenzene	<2.5	2.5		μg/L	1.0	SW8260B		3/24/03 13:35	JH	D30324A
Carbon disulfide	< 0.50	0.50		µg/∟	1.0	SW8260B	N/A N/A	3/24/03 13:35	JH	D30324A
Carbon tetrachloride	<0.50	0.50		μg/L	1.0	SW8260B		3/24/03 13:35	JH	D30324A
	<0.50	0.50		µg/L	1.0	SW8260B	N/A		JH	D30324A
Chlorobenzene	<0.50	0.50		µg/∟	1.0	SW8260B	N/A	3/24/03 13:35	JН	D30324A
Dibromochloromethane	<1.0	1.0		µg/L	1.0	SW82608	N/A	3/24/03 13:35		D30324A
Chloroethane	<0.50	0.50		μg/L	1.0	SW8260B	N/A	3/24/03 13:35	JH	D30324A
Chloroform	<5.0	5.0		µg/L	1.0	SW8260B	N/A	3/24/03 13:35	JH	D30324A
Chloromethane	<1.5	1.5		μg/L	1.0	SW8260B	N/A	3/24/03 13:35	JH	D30324A
2-Chlorotoluene	<2.0	2.0		μg/L	1.0	SW8260B	N/A	3/24/03 13:35	JH	D30324A
4-Chlorotoluene	<2.0	2.0		μg/L	1.0	SW8260B	N/A	3/24/03 13:35	JH	D30324A
1,2-Dibromo-3-chloropropane	<0.50	0.50		μg/L	1.0	SW8260B	N/A	3/24/03 13:35	JH	D30324A
1,2-Dibromoethane		0.50		µg/L	1.0	SW8260B	N/A	3/24/03 13:35	JН	
Dibromomethane	<0.50	1.5		µg/L	1.0	SW8260B	N/A	3/24/03 13:35	JH	D30324A
1,2-Dichlorobenzene	<1.5	1.5		μg/L	1.0	SW8260B	N/A	3/24/03 13:35		D30324A
1,3-Dichlorobenzene	<1.5	1.5		μg/L	1.0	SW8260B	NIA	3/24/03 13:35		D30324A
1,4-Dichlorobenzene	<1.5	2.0		µg/L	1.0	SW8260B	N/A	3/24/03 13:35		D30324A
Dichlorodifluoromethane	<2.0			µg/L	1.0	SW8260B	N/A	3/24/03 13:35		D30324A
1,1-Dichloroethane	<1.0	1.0		μg/L	1.0	SW8260B	N/A	3/24/03 13:35		D30324A
1,2-Dichloroethane	<1.0	1.0		µg/L	1.0	SW8260B	N/A	3/24/03 13:35		D30324A
1.1-Dichloroethene	< 0.50	0.50		μg/L	1.0	SW8260B	N/A	3/24/03 13:35		D30324A
cis-1,2-Dichloroethene	<0.50	0.50		µg/L	1.0	SW8260B	N/A	3/24/03 13:35		D30324A
trans-1,2-Dichloroethene	<0.50	0.50		µg/L	1.0	SW8260B	N/A	3/24/03 13:3		D30324A
1,2-Dichloropropane	<0.50	0.50		μg/L	1.0	SW8260B	N/A	3/24/03 13:3		D30324A
1,3-Dichloropropane	<1.0	1.0		μg/L	1.0	SW8260B	N/A	3/24/03 13:3		D30324A
2,2-Dichloropropane	<0.50	0.50		μg/L	1.0	SW8260B	N/A	3/24/03 13:3		D30324A
1,1-Dichloropropene	<1.0	1.0		µg/L	1.0	SW8260B	N/A	3/24/03 13:3		D30324A
cis-1,3-Dichloropropene	<1.0	1.0		μg/L	1.0	SW8260E	N/A	3/24/03 13:3	5 JH	D30324A
trans-1,3-Dichloropropene	<0.50	0.50		µg/L	1.0	SW8260E	N/A	3/24/03 13:3	5 JH	D30324A
Ethylbenzene	<2.0	2.0		ha\r ha\r	1.0	SW8260E	N/A	3/24/03 13:3	15 JH	D30324A
Hexachlorobutadiene	<2.5	2.5		pg/L pg/L	1.0	SW82608		3/24/03 13:3	s JH	D30324A
2-Hexanone	<5.0	5.0			1.0	SW8260E		3/24/03 13:3	35 JH	D30324A
lodomethane	<1.0	1.0		µg/∟			·		35 of .	

Amended Report

Date Printed 08-Apr-03

License No. AZM133/AZ0133

CLIENT:

Brown & Caldwell

Work Order:

0303291

Lab ID:

0303291-18

Project Name: Project Number: 22413.400

Dolphin

Client Sample 1D: TB

Collection Date: 3/20/2003 8:43:00 AM

Matrix: TRIP BLANK

Project Number: 22413.400				and the second section is a second section of the section of the second section of the section of the second section of the section o	1917	Test	Date	Date	. 1 .	Datab ID
Analyte	Result	PQL	Qual	Units	DF	Code	Prepared	Analyzed		Batch ID
	<2.5	2.5	.,	μg/L	1.0	SW8260B	N/A	3/24/03 13:35	JH	D30324A D30324A
sopropylbenzene	<1.5	1.5		μg/L	1.0	SW8260B	N/A	3/24/03 13:35	JH	
4-Isopropyltoiuene	<3.0	3.0		μg/L	1.0	SW8260B	N/A	3/24/03 13:35	JH 	D30324A D30324A
Methylene chloride	<5.0	5.0		μg/L	1.0	SW8260B	ΝA	3/24/03 13:35	JH	D30324A D30324A
4-Methyl-2-pentanone	<2.0	2.0		μg/L	1.0	SW8260B	N/A	3/24/03 13:35	JH	D30324A D30324A
Methyl tert-butyl ether	<5.0	5.0		μg/L	1.0	SW8260B	N/A	3/24/03 13:35	JH	
Naphthalene	<2.0	2.0		μg/L	1.0	SW8260B	N/A	3/24/03 13:35	JH	D30324A
n-Propylbenzene	<1.0	1.0		μg/L	1.0	SW8260B	N/A	3/24/03 13:35	JH	D30324A
Styrene	<0.50	0.50		μg/L	1.0	SW8260B	N/A	3/24/03 13:35	JH	D30324A
1,1,1,2-Tetrachloroethane	<0.50	0.50		μg/L	1.0	SW8260B	N/A	3/24/03 13:35	JH	D30324A
1,1,2,2-Tetrachloroethane	<0.50	0.50		µg/L	1.0	SW8260B	N/A	3/24/03 13:35	JH	D30324A
Tetrachloroethene	<3.0	3.0		μg/L	1.0	SW8260B	N/A	3/24/03 13:35	JH	D30324A
Toluene	<5.0 <5.0	5.0		μg/L	1.0	SW8260B	N/A	3/24/03 13:35	JH	D30324A
1,2,3-Trichlorobenzene	<5.0 <5.0	5.0		μg/L	1.0	SW8260B	N/A	3/24/03 13:35	JH	D30324A
1,2,4-Trichlorobenzene	<0.50	0.50		μg/L	1.0	SW8260B	N/A	3/24/03 13:35	JH	D30324A
1,1,1-Trichloroethane		0.50		μg/L	1.0	SW8260B	N/A	3/24/03 13:35	JH	D30324A
1,1,2-Trichloroethane	< 0.50	0.50		μg/L	1.0	SW8260B	N/A	3/24/03 13:35		D30324A
Trichloroethene	<0.50	2.0		μg/L	1.0	SW8260B	N/A	3/24/03 13:35		D30324A
Trichlorofluoromethane	<2.0	5.0		μg/L	1.0	SW8260B	N/A	3/24/03 13:35		D30324A
Trichlorotrifluoroethane	<5.0			μg/L	1.0	SW8260B	N/A	3/24/03 13:35	JH	D30324A
1,2,3-Trichloropropane	<1.0	1.0		μg/L	1.0	SW8260B	N/A	3/24/03 13:35		D30324A
1,2,4-Trimethylbenzene	<2.0	2.0		μg/L	1.0	SW8260B	N/A	3/24/03 13:35	JH	D30324A
1,3,5-Trimethylbenzene	<1.5	1.5		µg/L	1.0	SW8260B	N/A	3/24/03 13:35	JH	D30324A
Vinyl acetate	<5.0	5.0		µg/L	1.0	SW8260B	N/A	3/24/03 13:35		D30324A
Vinyl chloride	<0.50	0.50		µg/L	1,0	SW8260B	N/A	3/24/03 13:35		D30324A
Xylenes, Total	<3.0	3.0		%REC	1.0	SW8260B	N/A	3/24/03 13:35	i JH	D30324A
4-Bromofluorobenzene(Surrogate)	95	80-107		%REC	1.0	SW8260B	N/A	3/24/03 13:35	5 JH	D30324A
Dibromofluoromethane(Surrogate)	83	77-104		%REC	1.0	SW8260B	N/A	3/24/03 13:35	5 JH	D30324A
1,2-Dichloroethane-d4(Surrogate) Toluene-d8(Surrogate)	78 91	72-111 84-105		%REC	1.0	SW8260B	N/A	3/24/03 13:35	5 JH	D30324A

Amended Report

Date:

08-Apr-03

License No. AZM133/AZ0133

CLIENT:

Brown & Caldwell

Work Order:

0303291

Project:

Dolphin/22413.400

QC SUMMARY REPORT

Method Blank

						Test	Date	Date	alvet	Batch ID
Analyte	Result	PQL	Qual	Units	DF	Code	Prepared	Analyzed An		
	<20	20		μg/L	1	SW8260B	N/A		JH au	D30322A D30322A
cetone	<0.50	0.50		μg/L	1	SW8260B	N/A		JH na	D30322A
lenzene	<1.5	1.5		µg/L	1	SW8260B	N/A	•14	JH 	D30322A
Promobenzene	<0.50	0.50		µg/L	1	SW8260B	N/A		JH	D30322A
Bromochloromethane	<0.50	0.50		μg/L	1	SW8260B	N/A		JH	D30322A
Bromodichloromethane	<1.0	1.0		μg/L	1	SW8260B	N/A		JH	D30322A
Bromoform	<5.0	5.0		μg/L	1	SW8260B	N/A	· ·	JH	D30322A
Bromomethane	<5.0 <5.0	5.0		μg/L	1	SW8260B	N/A		JH	D30322A
2-Butanone		2.5		μg/L	1	SW8260B	N/A		JH	D30322A
n-Butylbenzene	<2.5	1.5		μg/L	1	SW8260B	N/A		JH	
sec-Butylbenzene	<1.5	2.5		μg/L	1	SW8260B	N/A	3/22/03 3:56:00 PM	JH	D30322A
ert-Butylbenzene	<2.5			µg/L	1	SW8260B	N/A	V	JH	D30322A
Carbon disulfide	<0.50	0.50		µg/L	1	SW8260B	N/A	3/22/03 3:56:00 PM	JH	D30322A
Carbon tetrachloride	<0.50	0.50		μg/L	1	SW8260B	N/A	3/22/03 3:56:00 PM	JH	D30322A
Chlorobenzene	<0.50	0.50		μg/L	1	SW8260B	AVA	3/22/03 3:56:00 PM	JH	D30322A
Dibromochloromethane	<0.50	0.50		μg/L	1	SW8260B	N/A	3/22/03 3:56:00 PM	JH	D30322A
Chloroethane	<1.0	1.0		μg/L	1	SW8260B	N/A	3/22/03 3:56:00 PM	JH	D30322A
Chloroform	<0.50	0.50		μg/L	1	SW8260B	N/A	3/22/03 3:56:00 PM	JH	D30322A
Chloromethane	<5.0	5.0		μg/L	1	SW8260B	N/A	3/22/03 3:56:00 PM	JH	D30322A
2-Chlorotoluene	<1.5	1.5			1	SW8260B	N/A	3/22/03 3:56:00 PM	JH	D30322A
4-Chiorotoluene	<2.0	2.0		µg/L	1	SW8260B	N/A	3/22/03 3:56:00 PM	JH	D30322A
1,2-Dibromo-3-chloropropane	<2.0	2.0		µg/L	1	SW8260B	N/A	3/22/03 3:56:00 PM	JH	D30322A
1,2-Dibromoethane	< 0.50	0.50		μg/L	1	SW8260B	N/A	3/22/03 3:56:00 PM	JH	D30322A
Dibromomethane	<0.50	0.50		μg/L	1	SW8260B	N/A	3/22/03 3:56:00 PM	JH	D30322A
1,2-Dichlorobenzene	<1.5	1.5		μg/L	1	SW8260B	N/A	3/22/03 3:56:00 PM	JH	D30322A
1,3-Dichlorobenzene	<1.5	1.5		μg/L	1	SW8260B	N/A	3/22/03 3:56:00 PM	JH	D30322A
1,4-Dichlorobenzene	<1.5	1.5		µg/L	1	SW8260B	N/A	3/22/03 3:56:00 PM	JH	D30322A
Dichlorodifluoromethane	<2.0	2.0		μg/L "	i 1	SW8260B	N/A	3/22/03 3:56:00 PM	JΗ	D30322A
1,1-Dichloroethane	<1.0	1.0		µg/L 	,	SW8260B	N/A	3/22/03 3:56:00 PM	JH	D30322A
1,2-Dichloroethane	<1.0	1.0		µg/L	1	SW8260B	N/A	3/22/03 3:56:00 PM	JH	D30322A
1,1-Dichloroethene	< 0.50	0.50		µg/L	1	SW8260B	N/A	3/22/03 3:56:00 PM	JH	D30322A
cis-1,2-Dichloroethene	< 0.50	0.50		μg/L	1	SW8260B	N/A	3/22/03 3:56:00 PM	JH	D30322A
trans-1,2-Dichloroethene	<0.50	0.50		μg/L	1	SW8260B	N/A	3/22/03 3:56:00 PM	JH	D30322A
1,2-Dichloropropane	<0.50	0.50		μg/L	1	SW8260B	N/A	3/22/03 3:56:00 PM	JH	D30322A
1,3-Dichloropropane	<1.0	1.0		μg/L	1	SW8260B	N/A	3/22/03 3:56:00 PM	JH	D30322A
2,2-Dichloropropane	<0.50	0.50		μg/L	1		N/A	3/22/03 3:56:00 PM	JH	D30322A
1,1-Dichloropropene	<1.0	1.0		µg/L	1	SW8260B	N/A	3/22/03 3:56:00 PM	JH	D30322A
cis-1,3-Dichloropropene	<1.0	1.0		µg/L	1	SW8260B	N/A	3/22/03 3:56:00 PM	JH	D30322A
trans-1,3-Dichloropropene	<0.50	0.50		µg/L	1	SW8260B	N/A	3/22/03 3:56:00 PM	JН	D30322A
Ethylbenzene	<2.0	2.0		µg/L	1	SW8260B	N/A	3/22/03 3:56:00 PM	JΗ	D30322A
Hexachlorobutadiene	<2.5	2.5		μg/L	1	SW8260B	N/A	3/22/03 3:56:00 PM	JH	D30322/
2-Hexanone	<5.0	5.0		µg/L	1	SW8260B		3/22/03 3:56:00 PM	JH	D30322/
Z-nexanone lodomethane	<1.0	1.0		µg/L	1	SW8260B	N/A	3/22/03 3:56:00 PM		D30322
	<2.5	2.5		µg/L	1	SW8260B	N/A	3/22/03 3:56:00 PM		D30322
Isopropylbenzene	<1.5	1.5		μg/L	1	SW8260B	N/A	3/22/03 3:56:00 PM		D30322
4-Isopropyltoluene Methylene chloride	<3.0	3.0		µg/L	1	\$W8260B	N/A	3/22/U3 3.30.00 PIV	VΠ	

Amended Report

Date:

08-Apr-03

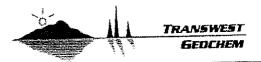
License No. AZM133/AZ0133

CLIENT:

Brown & Caldwell

Work Order:

0303291


Project:

Dolphin/22413.400

QC SUMMARY REPORT

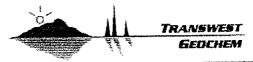
Method Blank

						Test	Date	Date	D : 1.75
Analyte	Result	PQL	Qual	Units	DF	Code	Prepared	Analyzed Analyst	Batch ID
4-Methyl-2-pentanone	<5.0	5.0		μg/L	1	SW8260B	N/A	3/22/03 3:56:00 PM JH	D30322A
Methyl tert-butyl ether	<2.0	2.0		µg/L	1	SW8260B	N/A	3/22/03 3:56:00 PM JH	D30322A
	<5.0	5.0		µg/L	1	SW8260B	N/A	3/22/03 3:56:00 PM JH	D30322A
Naphthalene	<2.0	2.0		µg/L	1	SW8260B	N/A	3/22/03 3:56:00 PM JH	D30322A
n-Propylbenzene	<1.0	1.0		μg/L	1	SW8260B	N/A	3/22/03 3:56:00 PM JH	D30322A
Styrene 1,1,1,2-Tetrachloroethane	<0.50	0.50		μg/L	1	SW8260B	N/A	3/22/03 3:56:00 PM JH	D30322A
	<0.50	0.50		µg/L	1	SW8260B	N/A	3/22/03 3:56:00 PM JH	D30322A
1,1,2,2-Tetrachloroethane	<0.50	0.50		μg/L	1	SW8260B	N/A	3/22/03 3:56:00 PM JH	D30322A
Tetrachloroethene	<3.0	3.0		μg/L	1	SW8260B	N/A	3/22/03 3:56:00 PM JH	D30322A
Toluene	<5.0	5.0		µg/L	1	SW8260B	N/A	3/22/03 3:56:00 PM JH	D30322A
1,2,3-Trichlorobenzene	<5.0 <5.0	5.0		μg/L	1	SW8260B	N/A	3/22/03 3:56:00 PM JH	D30322A
1,2,4-Trichlorobenzene	<0.50	0.50		μg/L	1	SW8260B	N/A	3/22/03 3:56:00 PM JH	D30322A
1,1,1-Trichtoroethane	<0.50 <0.50	0.50		μg/L	1	SW8260B	N/A	3/22/03 3:56:00 PM JH	D30322A
1,1,2-Trichloroethane	_	0.50		μg/L	1	SW8260B	N/A	3/22/03 3:56:00 PM JH	D30322A
Trichloroethene	<0.50 <2.0	2.0		μg/L	1	SW8260B	N/A	3/22/03 3:56:00 PM JH	D30322A
Trichlorofluoromethane	<2.0 <5.0	5.0		μg/L	1	SW8260B	N/A	3/22/03 3:56:00 PM JH	D30322A
Trichlorotrifluoroethane	=	1.0		μg/L	1	SW8260B	N/A	3/22/03 3:56:00 PM JH	D30322A
1,2,3-Trichloropropane	<1.0	2.0		µg/L	1	SW8260B	N/A	3/22/03 3:56:00 PM JH	D303Z2A
1,2,4-Trimethylbenzene	<2.0 <1.5	1.5		µg/L	1	SW8260B	N/A	3/22/03 3:56:00 PM JH	D30322A
1,3,5-Trimethylbenzene		5.0		μg/L	1	SW8260B	N/A	3/22/03 3:56:00 PM JH	D30322A
Vinyl acetate	<5.0 -0.50	0.50		μg/L	1	SW8260B	N/A	3/22/03 3:56:00 PM JH	D30322A
Vinyl chloride	<0.50	3.0		µg/L	1	SW8260B	N/A	3/22/03 3:56:00 PM JH	D30322A
Xylenes, Total	<3.0	3.0 80-107		%REC	1	SW8260B	N/A	3/22/03 3:56:00 PM JH	D30322A
4-Bromofluorobenzene	83	77-104		%REC	1	SW8260B	N/A	3/22/03 3:56:00 PM JH	D30322A
Dibromofluoromethane	94			%REC	1	SW8260B	N/A	3/22/03 3:56:00 PM JH	D30322A
1,2-Dichloroethane-d4 Toluene-d8	102 86	72-111 84-105		%REC	1	SW8260B	N/A	3/22/03 3:56:00 PM JH	D30322A

CLIENT:

Brown & Caldwell

Amended Report


Date:

08-Apr-03

License No. AZM133/AZ0133

QC SUMMARY REPORT

Work Order:	0303291						~ .	 h #.	thod Blan
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Dolphin/22413.400							IVI€	anou bian
Project:	Dolphin/22413.400							D-4-	
Analyte	Result	PQL	Qual	Units	DF	Test Code	Date Prepared	Date Analyzed Analyst	Batch ID
	<20	20		µg/L	1	SW8260B	N/A	3/23/03 4:27:00 AM JH	D30322C
Acetone		0.50		μg/L	1	SW8260B	N/A	3/23/03 4:27:00 AM JH	D30322C
Benzene -	< 0.50	1.5		μg/L	1	SW8260B	N/A	3/23/03 4:27:00 AM JH	D30322C
Bromobenzene	<1.5	0.50		μg/L	1	SW8260B	N/A	3/23/03 4:27:00 AM JH	D30322C
Bromochloromethane	<0.50			μg/L	1	SW8260B	N/A	3/23/03 4:27:00 AM JH	D30322C
3romodichloromethane	<0.50	0.50		μg/L	1	SW8260B	N/A	3/23/03 4:27:00 AM JH	D30322C
Bromoform	<1.0	1.0		μg/L	1	SW8260B	N/A	3/23/03 4:27:00 AM JH	D30322C
Bromomethane	<5.0	5.0		µg/L	1	SW82608	N/A	3/23/03 4:27:00 AM JH	D30322C
2-Butanone	<5.0	5.0			1	SW8260B	N/A	3/23/03 4:27:00 AM JH	D30322C
n-Butylbenzene	<2.5	2.5		μg/L	1	SW8260B	N/A	3/23/03 4:27:00 AM JH	D30322C
sec-Butylbenzene	<1.5	1.5		µg/L	1	SW8260B	N/A	3/23/03 4:27:00 AM JH	D30322C
tert-Butylbenzene	<2.5	2.5		μg/L		SW8260B	N/A	3/23/03 4:27:00 AM JH	D30322C
Carbon disulfide	<0.50	0.50		μg/L	1	SW8260B	N/A	3/23/03 4:27:00 AM JH	D30322C
Carbon tetrachloride	<0.50	0.50		µg/L	1	SW8260B	N/A	3/23/03 4:27:00 AM JH	D30322C
Chlorobenzene	<0.50	0.50		μg/L	1	SW8260B	N/A	3/23/03 4:27:00 AM JH	D30322C
Dibromochloromethane	< 0.50	0.50		µg/L	1		N/A	3/23/03 4:27:00 AM JH	D30322C
Chloroethane	<1.0	1.0		µg/L	1	SW8260B	N/A	3/23/03 4:27:00 AM JH	D30322C
Chloroform	<0.50	0.50		µg/L	1	SW8260B		3/23/03 4:27:00 AM JH	D30322C
Chloromethane	<5.0	5.0		μg/L	1	SW8260B	N/A		D30322C
2-Chlorotoluene	<1.5	1.5		μg/L	1	SW8260B	N/A		D30322C
4-Chlorotoluene	<2.0	2.0		µg/L	1	SW8260B	N/A	3/23/03 4:27:00 AM JH	D30322C
1,2-Dibromo-3-chioropro	pane <2.0	2.0		µg/L	1	SW8260B	N/A	3/23/03 4:27:00 AM JH	D30322C
1,2-Dibromoethane	<0.50	0.50		μg/L	1	SW8260B	N/A	3/23/03 4:27:00 AM JH	
Dibromomethane	<0.50	0.50		µg/L	1	SW8260B	N/A	3/23/03 4:27:00 AM JH	D30322C
1.2-Dichlorobenzene	<1.5	1.5		μg/L	1	SW8260B	N/A	3/23/03 4:27:00 AM JH	D30322C
1,3-Dichlorobenzene	<1.5	1.5		µg/L	1	SW8260B	N/A	3/23/03 4:27:00 AM JH	D30322C
1,4-Dichlorobenzene	<1.5	1.5		μg/L	1	SW8260B	N/A	3/23/03 4:27:00 AM JH	D30322C
•		2.0		μg/L	1	SW8260B	N/A	3/23/03 4:27:00 AM JH	D30322C
Dichlorodifluoromethane	<1.0	1.0		μg/L	1	SW8260B	N/A	3/23/03 4:27:00 AM JH	D30322C
1,1-Dichloroethane	<1.0 <1.0	1.0	V7	µg/L	1	SW8260B	N/A	3/23/03 4:27:00 AM JH	D30322C
1,2-Dichloroethane		0.50	• • •	μg/L	1	SW8260B	N/A	3/23/03 4:27:00 AM JH	D30322C
1,1-Dichloroethene	<0.50	0.50		μg/L	1	SW8260B	N/A	3/23/03 4:27:00 AM JH	D30322C
cis-1,2-Dichloroethene	<0.50			μg/L	1	SW8260B	N/A	3/23/03 4:27:00 AM JH	D30322C
trans-1,2-Dichloroetheni		0.50		μg/L	1	SW8260B	N/A	3/23/03 4:27:00 AM JH	D30322C
1,2-Dichloropropane	<0.50	0.50			1	SW8260B	N/A	3/23/03 4:27:00 AM JH	D30322C
1,3-Dichloropropane	<1.0	1.0		μg/L	1	SW8260B	N/A	3/23/03 4:27:00 AM JH	D30322C
2,2-Dichloropropane	<0.50	0.50		µg/L va/l	1	SW8260B	N/A	3/23/03 4:27:00 AM JH	D30322C
1,1-Dichloropropene	<1.0	1.0		µg/L	1	SW8260B	N/A	3/23/03 4:27:00 AM JH	D30322C
cis-1,3-Dichloropropene		1.0		µg/L	1	SW8260B	N/A	3/23/03 4:27:00 AM JH	D30322C
trans-1,3-Dichloroprope		0.50		µg/L		SW8260B	N/A	3/23/03 4:27:00 AM JH	D30322C
Ethylbenzene	<2.0	2.0		µg/L	1	SW8260B	N/A	3/23/03 4:27:00 AM JH	D30322C
Hexachlorobutadiene	<2.5	2.5		µg/L	1	SW82608	N/A	3/23/03 4:27:00 AM JH	D30322C
2-Hexanone	<5.0	5.0		µg/L	1		N/A	3/23/03 4:27:00 AM JH	D30322C
Iodomethane	<1.0	1.0		μg/L "	1	SW8260B	N/A	3/23/03 4:27:00 AM JH	D30322C
Isopropylbenzene	<2.5	2.5		µg/L	1	SW8260B		3/23/03 4:27:00 AM JH	D30322C
4-Isopropyltoluene	<1.5	1.5		µg/L	1	SW8260B	N/A		D303220
Methylene chloride	<3.0	3.0		µg/L	1	SW8260B	N/A	3/23/03 4:27:00 AM JH	DOVUEEC

Amended Report

Date:

08-Apr-03

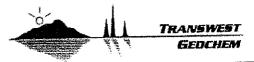
License No. AZM133/AZ0133

CLIENT:

Brown & Caldwell

Work Order:

0303291


Project:

Dolphin/22413.400

QC SUMMARY REPORT

Method Blank

Analyte	Result	PQL	Qual	Units	DF	Test Code	Date Prepared	Date Analyzed Analy	st Batch ID
					1	SW8260B	N/A	3/23/03 4:27:00 AM JH	D30322C
4-Methyl-2-pentanone	<5.0	5.0		µg/L	1	SW8260B	N/A	3/23/03 4:27:00 AM JH	D30322C
Methyl tert-butyl ether	<2.0	2.0		µg/L	1	SW8260B	N/A	3/23/03 4:27:00 AM JH	D30322C
Naphthalene	<5.0	5.0		μg/L	1	SW8260B	N/A	3/23/03 4:27:00 AM JH	D30322C
n-Propylbenzene	<2.0	2.0		μg/L "	1	SW8260B	N/A	3/23/03 4:27:00 AM JH	D30322C
Styrene	<1.0	1.0		μg/L "	1	SW8260B	N/A	3/23/03 4:27:00 AM JH	D30322C
1,1,1,2-Tetrachioroethane	<0.50	0.50		μg/L	ا	SW8260B	N/A	3/23/03 4:27:00 AM JH	D30322C
1,1,2,2-Tetrachloroethane	<0.50	0.50		μg/L	1		N/A	3/23/03 4:27:00 AM JH	D30322C
Tetrachloroethene	< 0.50	0.50		μg/L 	1	SW8260B		3/23/03 4:27:00 AM JH	D30322C
Toluene	<3.0	3.0		μg/L	1	SW8260B	N/A	=	D30322C
1,2,3-Trichlorobenzene	<5.0	5.0		µg/L	1	SW8260B	N/A	3/23/03 4:27:00 AM JH	D30322C
1,2,4-Trichlorobenzene	<5.0	5.0		µg/L	1	SW8260B	N/A	3/23/03 4:27:00 AM JH	
1,1,1-Trichloroethane	< 0.50	0.50		µg/L	1	SW8260B	N/A	3/23/03 4:27:00 AM JH	D30322C
1,1,2-Trichloroethane	<0.50	0.50		µg/L	1	SW82608	N/A	3/23/03 4:27:00 AM JH	D30322C
Trichloroethene	< 0.50	0.50		µg/L	1	SW8260B	N/A	3/23/03 4:27:00 AM JH	D30322C
Trichlorofluoromethane	<2.0	2.0		µg/L	1	SW8260B	N/A	3/23/03 4:27:00 AM JH	D30322C
Trichlorotrifluoroethane	<5.0	5.0		μg/L	1	SW8260B	N/A	3/23/03 4:27:00 AM JH	D30322C
1,2,3-Trichloropropane	<1.0	1.0		hâ/r	1	SW8260B	N/A	3/23/03 4:27:00 AM JH	D30322C
1,2,4-Trimethylbenzene	<2.0	2.0		µg/L	1	SW8260B	N/A	3/23/03 4:27:00 AM JH	D30322C
1,3,5-Trimethylbenzene	<1.5	1,5		μg/L	1	SW8260B	N/A	3/23/03 4:27:00 AM JH	D30322C
Vinyl acetate	<5.0	5.0		μg/L	1	SW8260B	N/A	3/23/03 4:27:00 AM JH	D30322C
Vinyl chloride	< 0.50	0.50		μg/L	1	SW8260B	N/A	3/23/03 4:27:00 AM JH	D30322C
Xylenes, Total	<3.0	3.0		μg/L	1	SW8260B	N/A	3/23/03 4:27:00 AM JH	D30322C
4-Bromofluorobenzene	85	80-107		%REC	1	SW8260B	N/A	3/23/03 4:27:00 AM JH	D30322C
Dibromofluoromethane	95	77-104		%REC	1	SW8260B	N/A	3/23/03 4:27:00 AM JH	D30322C
1,2-Dichloroethane-d4	102	72-111		%REC	1	SW82608	N/A	3/23/03 4:27:00 AM JH	D30322C
Toluene-d8	88	84-105		%REC	1	SW8260B	N/A	3/23/03 4:27:00 AM JH	D30322C

Date:

08-Apr-03

License No. AZM133/AZ0133

CLIENT:

Brown & Caldwell

Work Order:

0303291

Project:

Dolphin/22413.400

QC SUMMARY REPORT

Method Blank

						Test	Date	Date	
Analyte	Result	PQL	Qual	Units	DF	Code	Prepared	Analyzed Analys	t Batch II
cetone	<20	20		μg/L	1	SW8260B	N/A	3/24/03 11:45:00 AM JH	D30324A
Senzene	< 0.50	0.50		μg/L	1	SW8260B	N/A	3/24/03 11:45:00 AM JH	D30324A
Iromobenzene	<1.5	1.5		µg/L	1	SW8260B	N/A	3/24/03 11:45:00 AM JH	D30324A
Promochloromethane	<0.50	0.50		μg/L	1	SW8260B	N/A	3/24/03 11:45:00 AM JH	D30324A
Bromodichloromethane	< 0.50	0.50		μg/L	1	SW8260B	N/A	3/24/03 11:45:00 AM JH	D30324A
Bromoform	<1.0	1.0		μg/L	1	SW8260B	N/A	3/24/03 11:45:00 AM JH	D30324A
Bromomethane	<5.0	5.0		μg/L	1	SW8260B	N/A	3/24/03 11:45:00 AM JH	D30324A
-Butanone	<5.0	5.0		µg/L	1	SW8260B	N/A	3/24/03 11:45:00 AM JH	D30324A
n-Butylbenzene	<2.5	2.5		μg/L	1	SW8260B	N/A	3/24/03 11:45:00 AM JH	D30324A
sec-Butylbenzene	<1.5	1.5		µg/L	1	SW8260B	N/A	3/24/03 11:45:00 AM JH	D30324A
ert-Butylbenzene	<2.5	2.5		μg/L	1	SW82608	N/A	3/24/03 11:45:00 AM JH	D30324A
Carbon disulfide	<0.50	0.50		μg/L	1	SW8260B	N/A	3/24/03 11:45:00 AM JH	D30324A
Carbon tetrachioride	<0.50	0.50		μg/L	1	SW8260B	N/A	3/24/03 11:45:00 AM JH	D30324A
Chlorobenzene	< 0.50	0.50		μg/L	1	SW8260B	N/A	3/24/03 11:45:00 AM JH	D30324A
Dibromochioromethane	< 0.50	0.50		μg/L	1	SW8260B	N/A	3/24/03 11:45:00 AM JH	D30324A
Chloroethane	<1.0	1.0		µg/L	1	SW8260B	N/A	3/24/03 11:45:00 AM JH	D30324A
Chloroform	<0.50	0.50		µg/L	1	SW8260B	N/A	3/24/03 11:45:00 AM JH	D30324A
Chloromethane	<5.0	5.0		μg/L	1	SW8260B	N/A	3/24/03 11:45:00 AM JH	D30324A
2-Chlorotoluene	<1.5	1.5		μg/L	1	SW8260B	N/A	3/24/03 11:45:00 AM JH	D30324A
2-Chiorotoluene	<2.0	2.0		µg/L	1	SW8260B	N/A	3/24/03 11:45:00 AM JH	D30324A
1,2-Dibromo-3-chloropropane	<2.0	2.0		µg/L	1	SW8260B	N/A	3/24/03 11:45:00 AM JH	D30324A
1,2-Dibromoethane	<0.50	0.50		μg/L	1	SW8260B	N/A	3/24/03 11:45:00 AM JH	D30324A
•	<0.50	0.50		μg/L	1	SW8260B	N/A	3/24/03 11:45:00 AM JH	D30324A
Dibromomethane	<1.5	1.5		µg/L	1	SW8260B	N/A	3/24/03 11:45:00 AM JH	D30324A
1,2-Dichlorobenzene	<1.5	1.5		µg/L	1	SW8260B	N/A	3/24/03 11:45:00 AM JH	D30324A
1,3-Dichlorobenzene	<1.5 <1.5	1.5		μg/L	1	SW8260B	N/A	3/24/03 11:45:00 AM JH	D30324A
1,4-Dichlorobenzene		2.0		μg/L	1	SW8260B	N/A	3/24/03 11:45:00 AM JH	D30324A
Dichlorodifluoromethane	<2.0	1.0		μg/L	1	SW8260B	N/A	3/24/03 11:45:00 AM JH	D30324A
1,1-Dichloroethane	<1.0	1.0		µg/L	1	SW8260B	N/A	3/24/03 11:45:00 AM JH	D30324A
1,2-Dichloroethane	<1.0			µg/L	1	SW8260B	N/A	3/24/03 11:45:00 AM JH	D30324A
1,1-Dichloroethene	<0.50	0.50		µg/L	1	SW8260B	N/A	3/24/03 11:45:00 AM JH	D30324A
cis-1,2-Dichloroethene	<0.50	0.50		µg/L	1	SW8260B	N/A	3/24/03 11:45:00 AM JH	D30324A
trans-1,2-Dichloroethene	<0.50	0.50		pg/L pg/L	1	SW82608	N/A	3/24/03 11:45:00 AM JH	D30324A
1,2-Dichloropropane	<0.50	0.50		μg/L	1	SW8260B	N/A	3/24/03 11:45:00 AM JH	D30324A
1,3-Dichloropropane	<1.0	1.0			1	SW8260B	N/A	3/24/03 11:45:00 AM JH	D30324A
2,2-Dichloropropane	<0.50	0.50		µg/L	1	SW8260B	N/A	3/24/03 11:45:00 AM JH	D30324A
1,1-Dichloropropene	<1.0	1.0		µg/L µg/L	1	SW8260B	N/A	3/24/03 11:45:00 AM JH	D30324A
cis-1,3-Dichloropropene	<1.0	1.0			1	SW8260B	N/A	3/24/03 11:45:00 AM JH	D30324A
trans-1,3-Dichloropropene	<0.50	0.50		µg/L ug/l	1	SW8260B	N/A	3/24/03 11:45:00 AM JH	D30324A
Ethylbenzene	<2.0	2.0		µg/L	1	SW8260B	N/A	3/24/03 11:45:00 AM JH	D30324A
Hexachlorobutadiene	<2.5	2.5		µg/L	1	SW8260B	N/A	3/24/03 11:45:00 AM JH	D30324A
2-Hexanone	<5.0	5.0		µg/L	1	SW8260B	N/A	3/24/03 11:45:00 AM JH	D30324A
lodomethane	<1.0	1.0		µg/L		SW8260B	N/A	3/24/03 11:45:00 AM JH	D30324A
Isopropylbenzene	<2.5	2.5		µg/L	1	SW8260B	N/A	3/24/03 11:45:00 AM JH	D30324A
4-Isopropyltoluene	<1.5	1.5		μg/L	1	SW8260B	N/A	3/24/03 11:45:00 AM JH	D30324A
Methylene chloride	<3.0	3.0		hg/L	1	311020UD	140.7	SETTO TRADUOTING ALL	

Date:

08-Apr-03

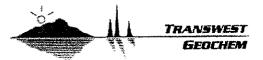
License No. AZM133/AZ0133

CLIENT:

Brown & Caldwell

Work Order:

0303291


Project:

Dolphin/22413.400

QC SUMMARY REPORT

Method Blank

Anglito	Result	PQL	Oual	Units	DF	Test Code	Date Prepared	Date Analyzed A	nalyst	Batch ID
Analyte		5.0		μg/L	1	SW8260B	N/A	3/24/03 11:45:00 AM	JH	D30324A
4-Methyl-2-pentanone	<5.0	5.0 2.0		μg/L	1	SW8260B	N/A	3/24/03 11:45:00 AM	JH	D30324A
Methyl tert-butyl ether	<2.0	5.0		μg/L	, 1	SW82608	N/A	3/24/03 11:45:00 AM	JН	D30324A
Naphthalene	<5.0			μg/L	1	SW82608	N/A	3/24/03 11:45:00 AM	JH	D30324A
n-Propylbenzene	<2.0	2.0		. •	1	SW8260B	N/A	3/24/03 11:45:00 AM	JH	D30324A
Styrene	<1,0	1.0		µg/L	1	SW8260B	N/A	3/24/03 11:45:00 AM	JH	D30324A
1,1,1,2-Tetrachloroethane	<0.50	0.50		μg/L	1	SW8260B	N/A	3/24/03 11:45:00 AM	JH	D30324A
1,1,2,2-Tetrachloroethane	<0.50	0.50		μg/L "	1	SW8260B	N/A	3/24/03 11:45:00 AM	JH	D30324A
Tetrachioroethene	< 0.50	0.50		µg/L	•	SW8260B	N/A	3/24/03 11:45:00 AM	JH	D30324A
Toluene	<3.0	3.0		μg/L 	1	-	N/A	3/24/03 11:45:00 AM	JH JI	D30324A
1,2,3-Trichlorobenzene	<5.0	5.0		µg/L	1	SW8260B	N/A	3/24/03 11:45:00 AM	JH	D30324A
1,2,4-Trichlorobenzene	<5.0	5.0		μg/L	1	SW8260B		3/24/03 11:45:00 AM	JH JH	D30324A
1,1,1-Trichloroethane	< 0.50	0.50		µg/L	1	SW8260B	N/A		***	D30324A
1,1,2-Trichloroethane	< 0.50	0.50		µg/L	1	SW8260B	N/A	3/24/03 11:45:00 AM	JH	D30324A D30324A
Trichloroethene	<0.50	0.50		μg/L	1	SW8260B	N/A	3/24/03 11:45:00 AM	JH	D30324A D30324A
Trichlorofluoromethane	<2.0	2.0		µg/L	1	SW8260B	N/A	3/24/03 11:45:00 AM	JH 	
Trichlorotrifluoroethane	<5.0	5.0		μg/L	1	SW8260B	N/A	3/24/03 11:45:00 AM	JH	D30324A
1,2,3-Trichloropropane	<1.0	1.0		µg/∟	1	SW8260B	N/A	3/24/03 11:45:00 AM	JH	D30324A
1,2,4-Trimethylbenzene	<2.0	2.0		µg/L	1	SW8260B	N/A	3/24/03 11:45:00 AM	JH	D30324A
1.3.5-Trimethylbenzene	<1.5	1.5		µg/L	1	SW8260B	N/A	3/24/03 11:45:00 AM	JH	D30324A
Vinyl acetate	<5.0	5.0		μg/L	1	SW8260B	N/A	3/24/03 11:45:00 AM	JH	D30324A
Vinyl chłoride	< 0.50	0.50		μg/L	1	SW8260B	N/A	3/24/03 11:45:00 AM	JH	D30324A
Xylenes, Total	<3.0	3.0		µg/L	1	SW8260B	N/A	3/24/03 11:45:00 AM	JH	D30324A
4-Bromofluorobenzene	93	80-107		%REC	1	SW8260B	N/A	3/24/03 11:45:00 AM	JH	D30324A
Dibromofluoromethane	82	77-104		%REC	1	SW8260B	N/A	3/24/03 11:45:00 AM	JH	D30324A
1.2-Dichloroethane-d4	78	72-111		%REC	1	SW8260B	N/A	3/24/03 11:45:00 AM	JH	D30324A
Toluene-d8	93	84-105		%REC	1	SW8260B	N/A	3/24/03 11:45:00 AM	JH	D30324A

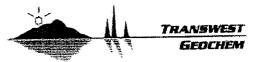
Date:

08-Apr-03

License No. AZM133/AZ0133

Sample Matrix Spike

CLIENT: Work Order: Brown & Caldwell


0303291

Project:

Dolphin/22413.400

QC SUMMARY REPORT

Analyte	Result	PQL	SPK value	SPK Ref Val	% Rec	Low Limit	High Limit	RPD Ref Val	% RPD	RPD Limit	Qual
Sample ID: 0303207-17AS	Batch ID: D3	0 322A		Test	Code: S	W8260B		Date Analy	zed: 03/	/22/03 20:1	16
Client ID:				Units	s: μg/L			Date Prepai	red: N/A		
Benzene	19.95	0.50	20.00	<0.50	100%	82	119				
Chlorobenzene	16.58	0.50	20.00	< 0.50	83%	82	110				
1,1-Dichloroethene	19,46	0.50	20.00	< 0.50	97%	84	140				
Toluene	17.29	3.0	20.00	<3.0	86%	81	114				
Trichloroethene	17.84	0.50	20.00	< 0.50	89%	78	119				
4-Bromofluorobenzene	40.95	N/A	50.00	N/A	82%	80	107				
Dibromofluoromethane	48.87	N/A	50.00	N/A	98%	77	104				
1,2-Dichloroethane-d4	53.95	N/A	50.00	N/A	108%	72	111				
Toluene-d8	43.86	N/A	50.00	N/A	88%	84	105				N
Sample ID: 0303207-17ASD	Batch ID: D3	0322A		Test	Code: S	W8260B		Date Analy	zed: 03/	/22/03 20:5	54
Client ID:				Units	;: μg/L		v	Date Prepai	ed: N/A	.	
Benzene	20.97	0.50	20.00	<0.50	105%	82	119	19.95	5%	13	
Chlorobenzene	17.51	0.50	20.00	< 0.50	88%	82	110	16.58	5%	13	
1,1-Dichloroethene	20.72	0.50	20.00	< 0.50	104%	84	140	19.46	6%	15	
Toluene	18.27	3.0	20.00	<3.0	91%	81	114	17.29	6%	14	
Trichloroethene	19.14	0.50	20.00	< 0.50	96%	78	119	17.84	7%	16	
4-Bromofluorobenzene	40.21	N/A	50.00	N/A	80%	80	107				
Dibromofluoromethane	47.99	N/A	50.00	N/A	96%	77	104				
1,2-Dichloroethane-d4	52.29	N/A	50.00	N/A	105%	72	111				
Toluene-d8	42.99	N/A	50.00	N/A	86%	84	105				
Sample ID: 0303207-16AS	Batch ID: D3	0322C		Test	Code: S	W8260B		Date Analy	zed: 03/	23/03 08:5	1
Client ID:				Units	g μg/L	.,		Date Prepar	ed: N/A		
Benzene	21.51	0.50	20.00	<0.50	108%	82	119				
Chlorobenzene	17.39	0.50	20.00	< 0.50	87%	82	110				
1,1-Dichloroethene	20.71	0.50	20.00	< 0.50	104%	84	140				
Toluene	18.10	3.0	20.00	<3.0	91%	81	114				
Trichloroethene	19.48	0.50	20.00	< 0.50	97%	78	119				
4-Bromofluorobenzene	39.48	N/A	50.00	N/A	79%	80	107				S 7
Dibromofluoromethane	48.26	N/A	50.00	N/A	97%	77	104				
1,2-Dichloroethane-d4	54.44	N/A	50.00	N/A	109%	72	111				
Toluene-d8	42.14	N/A	50.00	N/A	84%	84	105				

Date:

08-Apr-03

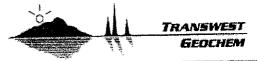
License No. AZM133/AZ0133

CLIENT:

Brown & Caldwell

Work Order:

0303291


Project:

Dolphin/22413.400

QC SUMMARY REPORT

Sample Matrix Spike

Analyte	Result	PQL	SPK value	SPK Ref Val	% Rec	Low Limit	High Limit	RPD Ref Val	% RPD	RPD Limit	Qual
Sample ID: 0303207-16ASD	Batch ID: D36)322C		Test	Code: S	W8260B		Date Analy:	zed: 03/	23/03 09:	28
Client ID:				Units	;; μg/L			Date Prepar	ed: N/A		
Benzene	21.23	0.50	20.00	<0.50	106%	82	119	21.51	1%	13	
Chlorobenzene	17.78	0.50	20.00	< 0.50	89%	82	110	17.39	2%	13	
1,1-Dichloroethene	21.16	0.50	20.00	< 0.50	106%	84	140	20.71	2%	15	
Toluene	18.45	3.0	20.00	<3.0	92%	81	114	18.10	2%	14	
Frichloroethene	19.66	0.50	20.00	< 0.50	98%	78	119	19.48	1%	16	
4-Bromofluorobenzene	40.19	N/A	50.00	N/A	80%	80	107				
Dibromofluoromethane	47.52	N/A	50.00	N/A	95%	77	104				
1,2-Dichloroethane-d4	52.86	N/A	50.00	N/A	106%	72	111				
Toluene-d8	42.92	N/A	50.00	N/A	86%	84	105				
Sample ID: 0303291-12AS	Batch ID: D3	0324A		Test	Code: S	W8260B		Date Analy	zed: 03.	/24/03 16:	41
Client ID: DIMW9D				Unit	s: μg/L			Date Prepar	ed: N/A	A	
Benzene	20.98	0.50	20.00	<0.50	105%	82	119				
Chlorobenzene	21.74	0.50	20.00	< 0.50	109%	82	110				
1.1-Dichloroethene	21.80	0.50	20.00	< 0.50	109%	84	140				
Toluene	22.10	3.0	20.00	<3.0	111%	81	114				
Trichloroethene	19.19	0.50	20.00	< 0.50	96%	78	119				
4-Bromofluorobenzene	47.41	N/A	50.00	N/A	95%	80	107				
Dibromofluoromethane	36.59	N/A	50.00	N/A	73%	77	104				S7
1,2-Dichloroethane-d4	30.48	N/A	50.00	N/A	61%	72	111				S7
Toluene-d8	49.22	N/A	50.00	N/A	98%	84	105			·	· · · · · · · · · · · · · · · · · · ·
Sample ID: 0303291-12ASD	Batch ID: D3	0324A		Test	Code: S	W8260B		Date Analy	zed: 03	/24/03 17:	19
Client ID: DIMW9D				Unit	s: μg/L		u., 14	Date Prepar	red: N/A	A	
Benzene	20.41	0.50	20.00	<0.50	102%	82	119	20.98	3%	13	
Chlorobenzene	21.79	0.50	20.00	< 0.50	109%	82	110	21.74	0%	13	
1,1-Dichloroethene	21.44	0.50	20.00	< 0.50	107%	84	140	21.80	2%	15	
Toluene	22.20	3.0	20.00	<3.0	111%	81	114	22.10	0%	14	
Trichloroethene	18.60	0.50	20.00	< 0.50	93%	78	119	19.19	3%	16	
4-Bromofluorobenzene	46.92	N/A	50.00	N/A	94%	80	107				
Dibromofluoromethane	37,25	N/A	50.00	N/A	75%		104				\$7
1,2-Dichloroethane-d4	29.71	N/A	50.00	N/A	59%	72	111				S7
Toluene-d8	50.91	N/A	50.00	N/A	102%	84	105				

Date:

08-Apr-03

License No. AZM133/AZ0133

CLIENT:

Brown & Caldwell

Work Order:

0303291

Project:

Dolphin/22413.400

QC SUMMARY REPORT

Secondary Source Blank Spike Duplicate

Analyte	Result	PQL	SPK value	SPK Ref Val	% Rec	Low Limit	High Limit	RPD Ref Val	% RPD	RPD Limit	Qual	
Sample ID: LCSVD-D30322B	Batch ID; D3	0322C		Test	Code: S	W8260B		Date Analyzed: 03/23/03 03:49				
Jampio IO. — -				Units	:: μg/L			Date Prepar	ed: N/A			
Benzene	21.08	0.50	20.00	<0.50	105%	81	120	21.68	3%	16		
Chlorobenzene	17.78	0.50	20.00	< 0.50	89%	85	111	18.43	4%	14		
,1-Dichloroethene	19.35	0.50	20.00	< 0.50	97%	66	151	20.17	4%	16		
· Toluene	18.46	3.0	20.00	<3.0	92%	82	115	19.21	4%	16		
richloroethene	19.02	0.50	20.00	< 0.50	95%	79	112	19.59	3%	18		
1-Bromofluorobenzene	40.68	N/A	50.00	N/A	81%	80	107					
Dibromofluoromethane	47.97	N/A	50.00	N/A	96%	77	104					
1,2-Dichloroethane-d4	52.55	N/A	50.00	N/A	105%	72	111					
Toluene-d8	43.24	N/A	50.00	N/A	86%	84	105	·,				
Sample ID: LCSV-D30324A	Batch ID: D3	0324A		Test	Code: S	W8260B		Date Analy	zed: 03.	/24/03 09:	55	
				Unit	s: μg/L			Date Prepar	ed: N/A	A		
Benzene	20.11	0.50	20.00	<0.50	101%	81	120					
Chlorobenzene	19.77	0.50	20.00	< 0.50	99%	85	111					
1,1-Dichloroethene	19.90	0.50	20.00	< 0.50	100%	66	151					
Toluene	19.76	3.0	20.00	<3.0	99%	82	115					
Trichloroethene	18,10	0.50	20.00	<0.50	91%	79	112					
4-Bromofluorobenzene	46.20	N/A	50.00	N/A	92%	80	107					
Dibromofluoromethane	40.09	N/A	50.00	N/A	80%	77	104					
1,2-Dichloroethane-d4	37.28	N/A	50.00	N/A	75%	72	111					
Toluene-d8	46.38	N/A	50.00	N/A	93%	84	105				., , <u> </u>	
Sample ID: LCSVD-D30324A	Batch ID: D	30324A		Test	Code: §	SW8260B		Date Analy			:31	
1				Unit	s: μg/L			Date Prepa	red: N/	4		
Benzene	21,14	0.50	20.00	<0.50	106%	81	120	20.11	5%	16		
Chlorobenzene	20.84	0.50	20.00	< 0.50	104%		111	19.77	5%	14		
1.1-Dichloroethene	21.53	0.50	20.00	< 0.50	108%	66	151	19.90	8%	16		
Toluene	20.97	3.0	20.00	<3.0	105%		115	19.76	6%	16		
Trichloroethene	19.68	0.50	20.00	<0.50	98%		112	18.10	8%	18		
4-Bromofiuorobenzene	44.76	N/A	50.00	N/A	90%		107					
Dibromofluoromethane	41,28	N/A	50.00	N/A	83%		104					
1,2-Dichloroethane-d4	38.12	N/A	50.00	N/A	76%		111					
Toluene-d8	47.07	N/A	50.00	N/A	94%		105					

TGI Work Order No: 030 3991 Date 3,20.03 Page 1 of 2

Chain of Custody

3725 East Atlanta Avenue, Suite 2 Phoenix, Arizona 85040 Phone: (602) 437-0330 Fax: (602) 437-0660

	BIII 10:	COLPHIA
	pany	
***************************************	Address:	
	City, State ZIP:	
1004-400	Phone:	Xea

		The second secon											Comments													e) Date/Time	2 ostacles	05.77
HIN				Fax	REQUEST																					(Print Name	1000	
DOLPHIA					ANALYSIS RE	<u> </u>		1 P.				tani	(43) t Metals	-	×	X	×	×	: ×	X	X	メ	×	×	X	ature)	101	KN
					ANA						 -		Metals	 												Received by: (Signature		1
	anyí		City, State ZIP	às		Or	gan	ochlo	rine	Pest	<u></u>		, (8082) 08/8081	\vdash												seived t	1	7
BIII	Company	Address:	ੂੰ ਵਿੱ	Phone:				Sem				(62	GCMS 25/8270	-												Re		3
				5	GIV.	Vo	latil	e Org					3260AZ	┢												me	7 11. 2	
				004-567-400									(8021B)													Date/Time	8-71-57 1/2	7.60
		YO.		2.5		Water of the	Mase-	eswar	lesiovo:	interior and	INTERPRETA	narago e	18.1AZ								6.	15	b			33/A		
		市公司	. ~L	-4687.E	8.3	78.5		Trans	est v	200	1620,698	Cer	ntainers	~ 		le le			5	[]	S S	9 3	0	~ 5Ž	12 B	([/ ⁷	
	11.	200	4005/5, 24 XI	1					.e.)	Absent(Present	Wet	7	ethin ethinasia	73	12	. 0			7	S	, 6401	100	C	2	34	(Print Name)	Kork	-
CHANIA	CANCIA	12/6.T	\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\						~	Abse	5		Time d	3-20 084/3	3-20-03 090	3-20-030716	3 095	3-20-03 0957	101	of 10.	•		3112	3 1230		(Pil	Ž	<u></u>
		ASA	4	38	\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	5		EIPT	/ Cold			20	Date Sampled	3-52	3.20	3-20	3.2.63 0933	3-20-6	3.200	3-20-01 1030	5.20.03	3-20-03	8-20-03 1120	5.20.05	3-20.03			Aropert
18 ANIE	. J.			10.50 - 3813	22413 AM	Doubth	M	SAMPLE RECEIPT	Ambient / Cold	·^	ΧĮ	Ŋ	Matrix	Hz.	3	120		H20	Hze		Hall				150	(e)	T	
27	FOR WA	2016.	4	3.	224	Š	22413	SAMPI	in and an			ers:			15	Q	ملا			~	7	120	形		\vdash	Signature)		1
1500 1500 1500 1500 1500 1500 1500 1500										actor	ls:	Contain	ntificatio	3-41	3-34	3-240	3-165	014-		1-240	11-16	1		5.14	被	4 ₹	7	3
Project Manager	Client Name:	:55	City, State ZIP	ě	, cg	Project Name	Project Number		Temperature	Received Intact:	Custody Seals	Total No. of Containers:	Sample Identification	DIML) 3-410	JAL S	DIMW3-1	DIMWS-	IMM!	NW.	DIMM	DIMMI-165) İmw	DIMM	DIMM54	DIMUSES 9D	Relinguished b	T. T	
Proje	Clien	Address:	≧ O	Phone:	NO No	Proje	Proje		Tem	Rece	Cust	Tota	တ	Δ	L	(7	4					لننسؤ	أببسك			Ä	1	

TRANSWEST GEOCHEM

3725 East Atlanta Avenue, Suite 2 Phoenix, Arizona 85040 Phone: (602) 437-0330 Fax: (602) 437-0660

Chain of Custody

TGI Work Order No: 03033991 Date 3.20-03 Page 2 of 2

M			TOTAL	Eax	JEST									COLUMNIS								Print Name) Date(Time)	06:30
DOLPHIN					ANALYSIS REQUEST	Σ	// _{re}				у Ро	lluta	nt Metal	s	\(\frac{1}{2}\)	\	×	×	X			gature)	
Bill to:	Company:	Address:	City, State ZIP;	Phone	Y	(Orgar				ticid	PCB es (f	EPA 831 's, (8082 608/8081 s GCM!)								Received by (Signature)	5
				1004-542- 4001		\	/olati	le Org	ganic	s GC	TPI	(624 3TEX 1, 80 8.1 /	s, (524.2 /8260AZ ((8021B 15AZR. 418.1AZ)	₩.	<i>i</i>	2	En.	7			Startoffline 3.22-03 1636	
-Jeansil CHANG	* TO WELL	KANATON #500	Az 8500F	3813 Eax (- In the state of			Ldl	/2019 1ce;	Absent	Ī	10.0	۵	1830 6	14.10 14	1420 14	1440 (6	. [7]	3.903			(Print Name) Lucomy PKEEFE	, ,
-Jean JE CHANG	Bland & C	201 6. 12/	D'HOKNEY.	WZ -567- 3813	22413	Darpay	22417	SAMPLE RECEIPT	Ambient / Cold		Y	ers:	Matrix	120 3	•	HZO	Hzo	Hzo	#20 3			1	
Project Manager:	ClientName	Address:	City, State ZIP:	Dhone:	P.O. No.	Project Name:	Project Number:		Temperature:	Received Intact:	Custody Seals:	Total No. of Containers	Sample Identification	DIMENTO	DIMM 7A	DIMH 8A	DIMMEA	DIMM 4A	Z)	***************************************		Relinquished.by: (Signature)	

Quality by Design

Laboratory Quality Assurance Consulting

1438 West Broadway Road Suite B-230 Tempe, Arizona 85283 Phone: (480) 967-2380 Fax: (480) 967-2381 email: qbdphx@gte.net

EPA Level 3 DATA VERIFICATION REPORT

Project Name: Dolphin, Inc Project No. 22413.400 Type of Samples: Water

Dates of Sampling: March 19 and 20, 2003

Prepared for

Brown and Caldwell 201 East Washington, Suite 500 Phoenix, Arizona 85004

SDG Nos. 0303291 and 0303269 QBD Job No. 1066

Reviewed and approved,

Thomas S. Davis, Principal

Date

Quality by Design

Brown and Caldwell / Dolphin Dates of Sampling: March 19 and 20, 2003 SDG No. 0303291 and 0303269

Contents

Α	Abbreviations and Acronyms	3
	Introduction	6
B.	INTO duction.	
C.	Laboratory Report and Supporting Documentation	
D.	Chain-of-Custody	5
E.	Review of Volatile Organic Analyses by GC/MS	1(
	Tables	
Table	1. Sample Identification and Analysis	. 7
Table	2. Data Package, Reviewer, and Senior Reviewer	. /
Table		12

A. Abbreviations and Acronyms

Acronym/	
Abbreviation	Definition
%D	percent difference
%R	percent recovery
μg/l	micrograms per liter
μg/kg	micrograms per kilogram
AA	atomic absorption
BFB	bromofluorobenzene
BNA	base/neutral/acid compounds
BS	blank spike
BSD	blank spike duplicate
CCB	continuing calibration blank
CCC	calibration check compound
CCS	continuing calibration standard
CCV	continuing calibration verification
CF	calibration factor
CLP	Contract Laboratory Program
COC	chain of custody record
CRA	contract required standard at the CRDL for graphite furnace AA method
CRDL	contract required detection limit
CRI	contract required standard at the CRDL for ICP method
CRQL	contract required quantitation limit
CV	coefficient of variation
CVAA	cold vapor atomic absorption
4,4'-DDD	4,4'-dechlorodiphenyldichloroethane
4,4'-DDE	4,4'-dichlorodiphenyldichloroethylene
4,4'-DDT	4,4'-dichlorodiphenyltrichloroethane
DFTPP	decafluorotriphenylphosphine
DHG	dissolved hydrogen gas
DRO	diesel range organics
DQO	data quality objective
EB	equipment blank
EICP	extracted ion current profile
EPA	U.S. Environmental Protection Agency
ER	equipment rinsate
FB	field blank

Acronym/	Definition
Abbreviation	Denarion
GC/ECD	gas chromatography/electron capture detector
GC/ELCD	gas chromatography/electrolytic conductivity detector (Hall detector)
GC/FID	gas chromatography/flame ionization detector
GC/PID	gas chromatography/photoionization detector
GC/MS	gas chromatography/mass spectrometry
GFAA	graphite furnace atomic absorption
GLP	good laboratory practices
GRO	gasoline range organics
GPC	gel permeation chromatography
HPLC	high-performance liquid chromatography
HRGC	high resolution gas chromatography
HRMS	high resolution mass spectrometry
ICB	initial calibration blank
ICP	inductively coupled plasma
ICS	interference check sample
ICV	initial calibration verification
IDL	instrument detection limit
IR	infrared spectroscopy
IS	internal standards
LCS	laboratory control standard
LCSD	laboratory control standard duplicate
MDL	method detection limit
mg/kg	milligrams per kilogram
mg/l	milligrams per liter
MS	matrix spike
MSA	method of standard addition
MSD	matrix spike duplicate
m/z	mass to charge ratio
NIST	National Institute for Standards and Technology
PAH	polynuclear aromatic hydrocarbon
PCB	polychlorinated biphenyl
PE	performance evaluation
PEM	performance evaluation mixture
PPB	parts per billion
PPM	parts per million
PPT	parts per trillion
PNA	polynuclear aromatic hydrocarbon

PQL practical quantitation limit QA quality assurance QAPP quality assurance project plan QC quality control RL reporting limit RF response factor RIC reconstructed ion chromatograph RPD relative percent difference RRF relative response factor RRT relative retention time RSD relative standard deviation RT retention time SDG sample delivery group SOP standard operating procedure SOW statement of work SVOC semivolatile organic compound SPCC system performance check compound SRM standard reference material TB trip blank TIC tentatively identified compound TPH total petroleum hydrocarbons TPH-G total petroleum hydrocarbons - gasoline TPH-D total petroleum hydrocarbons - diesel UV/VIS ultraviolet/visible VOA volatile organic analysis	Acronym/	
PQL practical quantitation limit QA quality assurance QAPP quality assurance project plan QC quality control RL reporting limit RF response factor RIC reconstructed ion chromatograph RPD relative percent difference RRF relative response factor RRT relative retention time RSD relative standard deviation RT retention time SDG sample delivery group SOP standard operating procedure SOW statement of work SVOC semivolatile organic compound SPCC system performance check compound SRM standard reference material TB trip blank TIC tentatively identified compound TPH total petroleum hydrocarbons TPH-G total petroleum hydrocarbons - gasoline TPH-D total petroleum hydrocarbons - diesel UV/VIS ultraviolet/visible VOA volatile organic analysis		Definition
QAPP quality assurance QAPP quality assurance project plan QC quality control RL reporting limit RF response factor RIC reconstructed ion chromatograph RPD relative percent difference RRF relative response factor RRT relative response factor RRT relative retention time RSD relative standard deviation RT retention time SDG sample delivery group SOP standard operating procedure SOW statement of work SVOC semivolatile organic compound SPCC system performance check compound SRM standard reference material TB trip blank TIC tentatively identified compound TPH total petroleum hydrocarbons TPH-G total petroleum hydrocarbons - gasoline TPH-D total petroleum hydrocarbons - diesel UV/VIS ultraviolet/visible VOA volatile organic analysis		
QAPP quality assurance project plan QC quality control RL reporting limit RF response factor RIC reconstructed ion chromatograph RPD relative percent difference RRF relative response factor RRT relative retention time RSD relative standard deviation RT retention time SDG sample delivery group SOP standard operating procedure SOW statement of work SVOC semivolatile organic compound SPCC system performance check compound SRM standard reference material TB trip blank TIC tentatively identified compound TPH total petroleum hydrocarbons - gasoline TPH-G total petroleum hydrocarbons - diesel UV/VIS ultraviolet/visible VOA volatile organic analysis	PQL	practical quantitation limit
QC quality control RL reporting limit RF response factor RIC reconstructed ion chromatograph RPD relative percent difference RRF relative response factor RRT relative retention time RSD relative standard deviation RT retention time SDG sample delivery group SOP standard operating procedure SOW statement of work SVOC semivolatile organic compound SPCC system performance check compound SRM standard reference material TB trip blank TIC tentatively identified compound TPH total petroleum hydrocarbons TPH-G total petroleum hydrocarbons - gasoline TPH-D total petroleum hydrocarbons - diesel UV/VIS ultraviolet/visible VOA volatile organic analysis	QA	quality assurance
RL reporting limit RF response factor RIC reconstructed ion chromatograph RPD relative percent difference RRF relative response factor RRT relative retention time RSD relative standard deviation RT retention time SDG sample delivery group SOP standard operating procedure SOW statement of work SVOC semivolatile organic compound SPCC system performance check compound SRM standard reference material TB trip blank TIC tentatively identified compound TPH total petroleum hydrocarbons TPH-G total petroleum hydrocarbons - gasoline TPH-D total petroleum hydrocarbons - diesel UV/VIS ultraviolet/visible VOA volatile organic analysis	QAPP	quality assurance project plan
RF response factor RIC reconstructed ion chromatograph RPD relative percent difference RRF relative response factor RRT relative retention time RSD relative standard deviation RT retention time SDG sample delivery group SOP standard operating procedure SOW statement of work SVOC semivolatile organic compound SPCC system performance check compound SRM standard reference material TB trip blank TIC tentatively identified compound TPH total petroleum hydrocarbons TPH-G total petroleum hydrocarbons - gasoline TPH-D total petroleum hydrocarbons - diesel UV/VIS ultraviolet/visible VOA volatile organic analysis	QC	quality control
RIC reconstructed ion chromatograph RPD relative percent difference RRF relative response factor RRT relative retention time RSD relative standard deviation RT retention time SDG sample delivery group SOP standard operating procedure SOW statement of work SVOC semivolatile organic compound SPCC system performance check compound SRM standard reference material TB trip blank TIC tentatively identified compound TPH total petroleum hydrocarbons TPH-G total petroleum hydrocarbons - gasoline TPH-D total petroleum hydrocarbons - diesel UV/VIS ultraviolet/visible VOA volatile organic analysis	RL	reporting limit
RPD relative percent difference RRF relative response factor RRT relative retention time RSD relative standard deviation RT retention time SDG sample delivery group SOP standard operating procedure SOW statement of work SVOC semivolatile organic compound SPCC system performance check compound SRM standard reference material TB trip blank TIC tentatively identified compound TPH total petroleum hydrocarbons TPH-G total petroleum hydrocarbons - gasoline TPH-D total petroleum hydrocarbons - diesel UV/VIS ultraviolet/visible VOA volatile organic analysis	RF	response factor
RRF relative response factor RRT relative retention time RSD relative standard deviation RT retention time SDG sample delivery group SOP standard operating procedure SOW statement of work SVOC semivolatile organic compound SPCC system performance check compound SRM standard reference material TB trip blank TIC tentatively identified compound TPH total petroleum hydrocarbons TPH-G total petroleum hydrocarbons - gasoline TPH-D total petroleum hydrocarbons - diesel UV/VIS ultraviolet/visible VOA volatile organic analysis	RIC	reconstructed ion chromatograph
RRT relative retention time RSD relative standard deviation RT retention time SDG sample delivery group SOP standard operating procedure SOW statement of work SVOC semivolatile organic compound SPCC system performance check compound SRM standard reference material TB trip blank TIC tentatively identified compound TPH total petroleum hydrocarbons TPH-G total petroleum hydrocarbons - gasoline TPH-D total petroleum hydrocarbons - diesel UV/VIS ultraviolet/visible VOA volatile organic analysis	RPD	relative percent difference
RSD relative standard deviation RT retention time SDG sample delivery group SOP standard operating procedure SOW statement of work SVOC semivolatile organic compound SPCC system performance check compound SRM standard reference material TB trip blank TIC tentatively identified compound TPH total petroleum hydrocarbons TPH-G total petroleum hydrocarbons - gasoline TPH-D total petroleum hydrocarbons - diesel UV/VIS ultraviolet/visible VOA volatile organic analysis	RRF	relative response factor
RT retention time SDG sample delivery group SOP standard operating procedure SOW statement of work SVOC semivolatile organic compound SPCC system performance check compound SRM standard reference material TB trip blank TIC tentatively identified compound TPH total petroleum hydrocarbons TPH-G total petroleum hydrocarbons - gasoline TPH-D total petroleum hydrocarbons - diesel UV/VIS ultraviolet/visible VOA volatile organic analysis	RRT	relative retention time
SDG sample delivery group SOP standard operating procedure SOW statement of work SVOC semivolatile organic compound SPCC system performance check compound SRM standard reference material TB trip blank TIC tentatively identified compound TPH total petroleum hydrocarbons TPH-G total petroleum hydrocarbons - gasoline TPH-D total petroleum hydrocarbons - diesel UV/VIS ultraviolet/visible VOA volatile organic analysis	RSD	relative standard deviation
SOP standard operating procedure SOW statement of work SVOC semivolatile organic compound SPCC system performance check compound SRM standard reference material TB trip blank TIC tentatively identified compound TPH total petroleum hydrocarbons TPH-G total petroleum hydrocarbons - gasoline TPH-D total petroleum hydrocarbons - diesel UV/VIS ultraviolet/visible VOA volatile organic analysis	RT	retention time
SOW statement of work SVOC semivolatile organic compound SPCC system performance check compound SRM standard reference material TB trip blank TIC tentatively identified compound TPH total petroleum hydrocarbons TPH-G total petroleum hydrocarbons - gasoline TPH-D total petroleum hydrocarbons - diesel UV/VIS ultraviolet/visible VOA volatile organic analysis	SDG	sample delivery group
SVOC semivolatile organic compound SPCC system performance check compound SRM standard reference material TB trip blank TIC tentatively identified compound TPH total petroleum hydrocarbons TPH-G total petroleum hydrocarbons - gasoline TPH-D total petroleum hydrocarbons - diesel UV/VIS ultraviolet/visible VOA volatile organic analysis	SOP	standard operating procedure
SPCC system performance check compound SRM standard reference material TB trip blank TIC tentatively identified compound TPH total petroleum hydrocarbons TPH-G total petroleum hydrocarbons - gasoline TPH-D total petroleum hydrocarbons - diesel UV/VIS ultraviolet/visible VOA volatile organic analysis	SOW	statement of work
SRM standard reference material TB trip blank TIC tentatively identified compound TPH total petroleum hydrocarbons TPH-G total petroleum hydrocarbons - gasoline TPH-D total petroleum hydrocarbons - diesel UV/VIS ultraviolet/visible VOA volatile organic analysis	SVOC	
TB trip blank TIC tentatively identified compound TPH total petroleum hydrocarbons TPH-G total petroleum hydrocarbons - gasoline TPH-D total petroleum hydrocarbons - diesel UV/VIS ultraviolet/visible VOA volatile organic analysis	SPCC	system performance check compound
TIC tentatively identified compound TPH total petroleum hydrocarbons TPH-G total petroleum hydrocarbons - gasoline TPH-D total petroleum hydrocarbons - diesel UV/VIS ultraviolet/visible VOA volatile organic analysis	SRM	standard reference material
TPH total petroleum hydrocarbons TPH-G total petroleum hydrocarbons - gasoline TPH-D total petroleum hydrocarbons - diesel UV/VIS ultraviolet/visible VOA volatile organic analysis	TB	
TPH-G total petroleum hydrocarbons - gasoline TPH-D total petroleum hydrocarbons - diesel UV/VIS ultraviolet/visible VOA volatile organic analysis	TIC	
TPH-D total petroleum hydrocarbons - diesel UV/VIS ultraviolet/visible VOA volatile organic analysis	TPH	total petroleum hydrocarbons
UV/VIS ultraviolet/visible VOA volatile organic analysis	TPH-G	*
VOA volatile organic analysis	TPH-D	total petroleum hydrocarbons - diesel
	UV/VIS	ultraviolet/visible
	VOA	volatile organic analysis
VOC volatile organic compounds	VOC	volatile organic compounds

B. Introduction

Laboratory Sciences, Inc., d.b.a. *Quality by Design* (QBD), has completed EPA Level 3 Data Verification on the submitted data packages in accordance with Brown and Caldwell e-mail Transmittal Memorandum dated April 9, 2003.

The reporting format and criteria for recommending data qualifier flags for this data set are described in the EPA "Functional Guidelines for Evaluating Organics Analyses", as revised, 1999, or using criteria listed in the method referenced. Data may be qualified for any of the following reasons:

- 1. By the laboratory prior to receipt by the reviewer
- 2. Because of laboratory deviation from the designated method
- 3. Because the data may not meet the criteria listed in the reference above
- 4. By the professional judgment of the reviewer

This data verification report consists of several sections, each of which are formatted to follow *Functional Guidelines*, but which also include subsections discussing QBD contacts with the laboratory, other comments, and a summary table of data qualifiers.

The data set consists of two data packages of 52 and 29 pages from Transwest Geochem, Inc. (TGI) in Phoenix, Arizona, and contains data for the samples shown in Table 1. The data reviewer and senior reviewer are shown in Table 2.

Each data set includes an analytical data package for each sample, copies of the completed COC forms, and a QC data package. The analytical data package includes analytical results, blank sample results, both laboratory and client sample identifications, appropriate dates but not times, method reporting limits, method references, surrogate recoveries as appropriate, the laboratory's name and address, and the signature of the person releasing the data. The custody forms include the receipt of the sample. The QC data package includes a tabular list of the laboratory's sample identification, spiking concentrations, recoveries, percentage calculations, and acceptance windows.

Table 1. Sample Identification and Analysis

Sample Identification	Laboratory Identification	Method 8260B
DIMW3-410	0303291-01	Х
DIMW3-345	0303291-02	X
DIMW3-240	0303291-03	X
DIMW3-165	0303291-04	Х
DIMW1-410	0303291-05	X
DIMW1-345	0303291-06	X
DIMW1-240	0303291-07	Х
DIMW1-165	0303291-08	X
DIMW1-120	0303291-09	Х
DIMW1-FB	0303291-10	X
DIMW5A	0303291-11	X
DIMW9D	0303291-12	X
DIMW8D	0303291-13	X
DIMW7A	0303291-14	X
DIMW8A	0303291-15	Х
DIMW6A	0303291-16	X
DIMW4A	0303291-17	X
TB (0303291)	0303291-18	Х
DIMW2-410	0303269-01	X
DIMW2-345	0303269-02	Х
DIMW2-240	0303269-03	X
DIMW2-165	0303269-04	X
DIMW2-170	0303269-05	Х
DIMW2-EB	0303269-06	Х
TB (0303269)	0303269-07	X

Key:

Method 8260B

VOCs by GC/MS

Table 2. Data Package, Reviewer, and Senior Reviewer

Analysis	Number of Pages	SDG Number	Reviewer	Senior Reviewer
8260B	52	0303291	Peggy Cota	Thomas Davis
8260B	29	0303269	Peggy Cota	Thomas Davis

C. Laboratory Report and Supporting Documentation

The laboratory report and supporting documentation were reviewed to determine that the data package supported the level of validation requested. The data package was checked for pagination, appropriate signatures and approvals, an adequate case narrative, and possible subcontracting. The supporting data was checked for completeness and to determine that the information necessary for validation was present. The laboratory documentation was acceptable, except as noted below.

Discussion:

The copies of the laboratory reports that were received by QBD did not include the laboratory's cover letter, which includes the laboratory license number and the signature of the laboratory officer who is authorized to release the data. Because the letter was on file at Brown and Caldwell with the original laboratory reports, no further action was taken.

D. Chain-of-Custody

The COC documentation associated with this SDG was reviewed to determine that all samples listed on the COC form were reported in the laboratory deliverables, that a date and time of sampling was provided, and that the sample custody trail was complete. Sample condition upon receipt was reviewed to determine that the samples were not compromised during shipping. All custody and shipping documentation was reviewed to determine if GLP were employed when errors occurred. All data reviewed were acceptable.

B&C 1066.doc Page 9 May 1, 2003

E. Review of Volatile Organic Analyses by GC/MS

EPA Method 8260B

1. Timeliness and a Check for Errors

The laboratory data packages were reviewed and compared against the COC and supporting documentation to determine that samples were properly preserved and analyzed within the technical holding times, and that no deviations from proper handling and identification occurred. All data reviewed were acceptable, except as noted below.

Discussion:

The samples for SDG 0303269 were received at a temperature of 1.9°C, which exceeds the method requirement of 4±2°C. Since it is the reviewer's professional opinion that the results for Samples DIMW2-410, DIMW2-345, DIMW2-240, DIMW2-165, DIMW2-170, DIMW2-EB, and TB (0303269) were not adversely compromised by this anomaly, no data qualifier flags are recommended.

2. Initial and Continuing Calibration

All initial and continuing calibration quality control criteria were reviewed to determine that no TCL analytes had initial calibration percent RSDs or continuing calibration percent differences greater than allowed by the method. All RF, SPCC, and CCC criteria were reviewed for method acceptance. All data reviewed were acceptable, except as noted below.

Discussion:

The laboratory's data flags indicated that the continuing calibration associated with Samples DIMW1-165, DIMW1-120, DIMW1-FB, DIMW5A, DIMW9D, DIMW7A, DIMW8A, DIMW6A, and DIMW4A for 1,2-dichloroethane had a percent difference or drift that was out of the criteria of less than 20 percent. Because this was a Level III data package, the supporting documentation was not provided. Since the laboratory stated that the response indicated a high bias and the associated result was non-detect, no data qualifier flags are recommended.

The laboratory indicated that the continuing calibration associated with Samples TB (0303269) and the method blank for 1,3-dichloropropane had a percent difference or drift that was out of the criteria of less than 20 percent. Since the response indicated a high bias and the associated results were non-detect, no data qualifier flags are recommended.

3. Blanks and Checks for Contamination

The frequency of analysis and the results for instrument and method blank analyses were reviewed. Equipment, field, and trip blanks were also evaluated if identified in the group of

samples. Either no analytes were detected or, if detected, levels were below the reporting limit, except as noted below.

Discussion:

Dibromochloromethane was detected in the equipment blank associated with Samples DIMW2-410, DIMW2-345, DIMW2-240, DIMW2-165, DIMW2-170, DIMW2-EB, and TB (0303269), but was not detected in the samples. No data qualifier flags are recommended.

4. Surrogate Recovery

Surrogate spikes were added to all samples, QC checks, and blanks as required by the referenced method. All data reviewed were acceptable, except as noted below.

Discussion:

The surrogate percent recovery for 4-bromofluorobenzene was out of the acceptance criteria of 80 to 107 percent at 79 percent in the MS associated with Samples DIMW1-165, DIMW1-120, DIMW1-FB, DIMW5A, DIMW9D, DIMW7A, DIMW8A, DIMW6A, and DIMW4A. Also, the surrogate percent recoveries for dibromofluoromethane and 1,2-dichloroethane-d₄ were out of the criteria of 77 to 104 and 72 to 111 percent at 77, 77 and 72, 72 percent, respectively, in the MS and MSD associated with Samples DIMW8D and TB (0303291). No data qualifier flags are recommended because the surrogates were evaluated separately in the samples.

5. Precision and Accuracy

Results for precision (RPD) and accuracy (percent recovery) were reviewed for spikes and duplicate spikes (MS/MSDs, BS/BSDs and/or LCS/LCSDs) to determine that the checks were analyzed at the frequency required by the referenced method and the results met the requirements of the project. All data reviewed were acceptable.

6. Second Source Calibration Checks

The laboratory's second source calibration verification was prepared as the LCS/LCSD. This was evaluated in Section 6, "Precision and Accuracy".

7. Compound Quantitation and Reported Detection Limits

Using judgment based upon the information provided and typical calibration procedures, it appears as if no quantitation exceeded the typical highest calibration standard for the test, that dilutions were reported for samples with high values, and that reporting limits have been correctly adjusted for dilutions and extraction amounts. The reporting limits met method or contractual requirements. All data reviewed were acceptable.

8. Field Duplicates

Field duplicates were collected and analyzed. Sample DIMW2-170 is a duplicate of Sample DIMW2-165. Sample DIMW8A is a duplicate of DIMW7A. Test results were reviewed, and where positive results were found, the RPD was calculated. All analytes, except those listed in the table below, were reported as non-detect.

Table 3. VOC Field Duplicates and RPD

Compound	Sample Result	Duplicate Result	DDD
Compound	DIMW2-165	DIMW2-170	RPD
Chloroform	9.5	9.8	3.1
1,1-Dichloroethene	11	12	8.7
cis-1,2-Dichloroethene	2.8	2.9	3.5
Tetrachloroethene	52	48	8.0
Trichloroethene	22	23	4.4
Trichlorotrifluoroethane	6.2	6.4	3.2

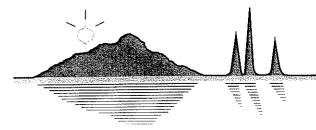
Compound	Sample Result	Duplicate Result	RPD
Compound	DIMW7A	DIMW8A	KFD
Chloroform	9.8	9.9	1.0
1,1-Dichloroethene	6.8	6.5	4.5
cis-1,2-Dichloroethene	2.5	2.4	4.1
Tetrachloroethene	39	40	2.5
Trichloroethene	15	15	0.0

Key:

ND = Non-detect

NC = Not calculable

9. Laboratory Contact


There was no verbal or written communication with the laboratory.

10. Other Comments

None.

11. Data Use and Overall Assessment

The data are acceptable for use. The analyses were generally within the requirements of the referenced method.

GEOCHEM

Amended Report

April 08, 2003

Jeannie Chang Brown & Caldwell 201 E. Washington Suite 500 Phoenix, AZ 85004

RE: Dolphin/22413.400

Work Order No.:

0303269

Dear Jeannie,

Transwest Geochem, Inc. received 7 samples on 3/19/2003 4:40:00 PM for the analyses presented in the following report.

The Case Narrative of this report addresses any Quality Control and/or Quality Assurance issues associated with this Work Order.

If you have any questions regarding these test results, please feel free to call us at (602) 437-0330.

Sincerely,

Beth Proffitt

Project Manager

ADHS License No. AZM133/AZ0133

Elizabeth & no MA

CECLHEIVI

Date Printed: 08-Apr-03

Client:

Brown & Caldwell

Work Order:

0303269

Project Name:

Project Number: 22413.400

Dolphin

Dolphin

CASE NARRATIVE

Transwest Geochem, Inc. uses the methods outlined in the following references:

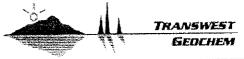
Code of Federal Regulations, 40CFR, Part 136, Revised July 1995.

Standard Methods for the Examination of Water and Wastewater, 18th Edition, 1992 and 19th Edition, 1995.

Methods for Chemical Analysis of Water and Wastes, EPA-600/4-79-020, Revised March 1983.

Methods for the Determination of Inorganic Substances in Environmental Samples, EPA/600/R-93/100, Revised August 1993.

Methods for the Determination of Metals in Environmental Samples, EPA/600/R-94/111, Revised May 1994.


Hach, Water Analysis Handbook, 2nd Edition, 1992.

Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW846, 3rd Edition.

Secondary Source QC Sample (LCSV) results may not be reported for all methods and/or analysis dates.

All method blanks, laboratory spikes, and/or matrix spikes met quality control objectives for the parameters associated with this Work Order except as detailed below or on the Data Qualifier page of this report. Data Qualifiers used in this report are in accordance with ADEQ Arizona Data Qualifiers, Revision 1.0 05/13/2002.

Data qualifiers ("flags") contained within this analytical report have been issued to explain a quality control deficiency, and do not affect the quality (validity) of the data unless noted otherwise in the case narrative.

19-Mar-03

Amended Report

Date Printed 08-Apr-03

License No. AZM133/AZ0133

CLIENT: Brown & Caldwell

Project Name: Dolphin
Project Number: 22413.400
Work Order: 0303269

Date Received:

Case Narrative
Data Qualifiers

One or more of the following data qualifiers may be associated with your analytical and/or quality control data.

D1 Sample required dilution due to matrix interference. See case narrative.

D2 Sample required dilution due to high concentration of target analyte.

V7 Calibration verification recovery was above the method control limit for this analyte, however the average %

difference or % drift for all the analytes met method criteria.

TRANSWEST

Amended Report

Date Printed 08-Apr-03

License No. AZM133/AZ0133

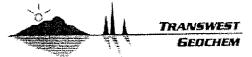
CLIENT:

Brown & Caldwell

Project Name:

Dolphin

Work Order:


Project Number: 22413.400 0303269

Date Received:

19-Mar-03

Work Order Sample Summary

Client Sample ID	Lab Sample ID	Test Code	Collection Date
DIMW2-410	0303269-01A	SW8260B	3/19/2003 1:18:00 PM
DIMW2-345	0303269-02A	SW8260B	3/19/2003 1:34:00 PM
DIMW2-240	0303269-03A	SW8260B	3/19/2003 1:51:00 PM
DIMW2-165	0303269-04A	SW8260B	3/19/2003 2:05:00 PM
DIMW2-170	0303269-05A	SW8260B	3/19/2003 2:15:00 PM
DIMW2-EB	0303269-06A	SW8260B	3/19/2003 2:35:00 PM
ТВ	0303269-07A	SW8260B	3/19/2003 1:18:00 PM
			

Date Printed 08-Apr-03

License No. AZM133/AZ0133

CLIENT:

Brown & Caldwell

Project Name:

Dolphin

Project Number: 22413.400

Date Received:

19-Mar-03

0303269 Work Order:

Definitions

Analytical Spike (AS)

The AS is a known amount of a target analyte added to a sample after it has been distilled, digested, or extracted and is ready for analysis. The AS is generally performed if the MS has failed. It is used to indicate interference that arises from sample

distillation, digestion, or extraction as opposed to interference that is innate to the matrix.

Continuing Curve Verification (CCV) The CCV is also referred to as a curve check. This is a standard analyzed at specified intervals during an analysis. The CCV verifies the stability and accuracy of the calibration curve. There are specific CCV recovery acceptance criteria for each method.

Dilution Factor (DF)

The DF is an indication of how much a sample had to be diluted in order to quantitate it on a standard curve. The DF is indicated in the reported sample result. The sample PQL

increases as the dilution increases.

Internal Standard (IS)

The IS is a compound that is similar to the organic compound of interest in terms of chemical composition but is unique in that it is rare in the environment. The same concentration of IS is added to every sample for some organic methods.

Laboratory Control Sample (LCS)

The LCS is also referred to as a blank spike. The LCS is an addition of a known amount of a target analyte (from the same source as calibration standards or spikes) to an aliquot of deionized water or other appropriate clean matrix. The LCS is processed through the entire method procedure in the same manner as samples.

Matrix Spike (MS)

The MS is a known amount of a target analyte added to a sample. The MS is processed through the entire method procedure in the same manner as samples.

Method Blank (MB)

The MB is an aliquot of deionized water or other appropriate clean matrix that is thought to be free of the analyte in question. The MB is processed through the entire extraction or analysis procedure and is used to indicate contamination in the lab.

Method Detection Limit (MDL)

The MDL is the lowest level of detection of which a method is capable.

Practical Quantitation Limit (POL)

The PQL is the lowest value at which Transwest Geochem can detect an analyte in matrix with a high degree of confidence. The PQL will increase as the DF increases. The PQL is greater than or equal to the MDL.

Relative Percent Difference (RPD) The RPD is a measure of precision (the ability to obtain the same result on re-analysis of the same sample). It is calculated using the result of a sample, MS, LCS, or LCSV and its associated duplicate result.

Secondary Source QC Sample (LCSV)

The LCSV is also referred to as a second source laboratory control sample. It is the same type of standard as a calibration or spiking standard but is obtained from a different source. The LCSV is an indication of the primary standard quality, method performance, and instrument performance.

Surrogate

A surrogate compound is similar to the organic compound of interest in terms of chemical composition but is unique in that it is rare in the environment. When surrogates are used, they are added to every sample, blank and standard. Surrogate recovery is used as an indication of extraction and/or analytical success.

Trip Blank (TB)

The TB is a portion of deionized water preserved in the same manner as the samples. The TB travels from the lab, to the field, and then back to the lab with the samples from the field. The TB serves as an indication of contamination introduced during sample transportation.

Amended Report

Date Printed 08-Apr-03

License No. AZM133/AZ0133

CLIENT:

Brown & Caldwell

Work Order:

0303269

Lab ID: Project Name: 0303269-01 Dolphin

Project Number: 22413.400

Client Sample ID: DIMW2-410

Matrix: WATER

Collection Date: 3/19/2003 1:18:00 PM

		201	01	I luites	DF	Test Code	Date Prepared	Date Analyzed	Analyst	Batch ID
Analyte	Result	PQL	Qual	Units	Dr	Code	Frepareu	Anaryzeu	Milalyst	Daten 1D
Acetone	<20	20		µg/L	1.0	SW8260B	N/A	3/22/03 16:32	JH	D30322A
Benzene	<0.50	0.50		μg/L	1.0	SW8260B	N/A	3/22/03 16:32	JH	D30322A
Bromobenzene	<1.5	1.5		µg/L	1.0	SW8260B	N/A	3/22/03 16:32	JH	D30322A
Bromochloromethane	<0.50	0.50		μg/L	1.0	SW8260B	N/A	3/22/03 16:32	Ηt	D30322A
Bromodichloromethane	<0.50	0.50		μg/L	1.0	SW8260B	N/A	3/22/03 16:32	JH	D30322A
Bromoform	<1.0	1.0		µg/L	1.0	SW8260B	N/A	3/22/03 16:32	JH	D30322A
Bromomethane	<5.0	5.0		µg/L	1.0	SW8260B	N/A	3/22/03 16:32	JH	D30322A
2-Butanone	<5.0	5.0		μg/L	1.0	\$W8260B	N/A	3/22/03 16:32	JH	D30322A
n-Butylbenzene	<2.5	2.5		μg/L	1.0	SW8260B	N/A	3/22/03 16:32	JH	D30322A
sec-Butylbenzene	<1.5	1.5		μg/L	1.0	SW8260B	N/A	3/22/03 16:32	JH	D30322A
tert-Butylbenzene	<2.5	2.5		µg/L	1.0	SW8260B	N/A	3/22/03 16:32	JH	D30322A
Carbon disulfide	<0.50	0.50		µg/L	1.0	SW8260B	N/A	3/22/03 16:32	JH	D30322A
Carbon tetrachloride	<0.50	0.50		μg/L	1.0	SW8260B	N/A	3/22/03 16:32	JH	D30322A
Chlorobenzene	<0.50	0.50		µg/L	1.0	SW8260B	N/A	3/22/03 16:32	JH	D30322A
Dibromochloromethane	<0.50	0.50		µg/L	1.0	SW8260B	N/A	3/22/03 16:32	JH	D30322A
Chloroethane	<1.0	1.0		µg/L	1.0	SW8260B	N/A	3/22/03 16:32	JH	D30322A
Chloroform	<0.50	0.50		μg/L	1.0	SW8260B	N/A	3/22/03 16:32	JH	D30322A
Chloromethane	<5.0	5.0		µg/L	1.0	SW82608	N/A	3/22/03 16:32	JH	D30322A
2-Chlorotoluene	<1.5	1.5		μg/L	1.0	SW8260B	N/A	3/22/03 16:32	JH	D30322A
4-Chlorotoluene	<2.0	2.0		μg/L	1.0	SW8260B	N/A	3/22/03 16:32	JH	D30322A
1,2-Dibromo-3-chloropropane	<2.0	2.0		μg/L	1.0	SW8260B	N/A	3/22/03 16:32	JH	D30322A
1,2-Dibromoethane	<0.50	0.50		μg/L	1.0	SW8260B	N/A	3/22/03 16:32	JH	D30322A
Dibromomethane	<0.50	0.50		μg/L	1.0	SW8260B	N/A	3/22/03 16:32	JH	D30322A
1,2-Dichlorobenzene	<1.5	1.5		μg/L	1.0	SW8260B	N/A	3/22/03 16:32	JH	D30322A
1,3-Dichlorobenzene	<1.5	1.5		μg/L	1.0	SW8260B	N/A	3/22/03 16:32	JН	D30322A
1,4-Dichlorobenzene	<1.5	1.5		μg/L	1.0	SW8260B	N/A	3/22/03 16:32	JH	D30322A
Dichlorodifluoromethane	<2.0	2.0		µg/L	1.0	SW8260B	N/A	3/22/03 16:32	JH	D30322A
	<1.0	1.0		μg/L	1.0	SW8260B	N/A	3/22/03 16:32	JH	D30322A
1,1-Dichloroethane	<1.0	1.0		μg/L	1.0	SW8260B	N/A	3/22/03 16:32	JH	D30322A
1,2-Dichloroethane	<0.50	0.50		µg/L	1.0	SW8260B	N/A	3/22/03 16:32	JH	D30322A
1,1-Dichloroethene	<0.50 <0.50	0.50		µg/L	1.0	SW8260B	N/A	3/22/03 16:32	JH	D30322A
cis-1,2-Dichloroethene	<0.50	0.50		µg/L	1.0	SW8260B	N/A	3/22/03 16:32	JH	D30322A
trans-1,2-Dichloroethene		0.50		µg/L	1.0	SW8260B	N/A	3/22/03 16:32	JH	D30322A
1,2-Dichloropropane	<0.50	1.0		µg/L	1.0	SW8260B	N/A	3/22/03 16:32	JH	D30322A
1,3-Dichloropropane	<1.0 <0.50	0.50		μg/L	1.0	SW8260B	N/A	3/22/03 16:32	JH	D30322A
2,2-Dichloropropane		1.0		µg/L	1.0	SW8260B	N/A	3/22/03 16:32	JH	D30322A
1,1-Dichloropropene	<1.0 <1.0	1.0		µg/L	1.0	SW8260B	N/A	3/22/03 16:32	JH	D30322A
cis-1,3-Dichloropropene		0.50		μg/L	1.0	SW8260B	N/A	3/22/03 16:32	JH	D30322A
trans-1,3-Dichloropropene	<0.50	2.0		μg/L	1.0	SW8260B	N/A	3/22/03 16:32	JH	D30322A
Ethylbenzene	<2.0	2.0 2.5		μg/L	1.0	SW8260B	N/A	3/22/03 16:32	JH	D30322A
Hexachlorobutadiene	<2.5			рд/L µд/L	1.0	SW8260B	N/A	3/22/03 16:32	JH	D30322A
2-Hexanone lodomethane	<5.0 <1.0	5.0 1.0		µg/L	1.0	SW8260B	N/A	3/22/03 16:32	JH	D30322A
The second of th									1 of 14	

Amended Report

Date Printed 08-Apr-03

License No. AZM133/AZ0133

CLIENT:

Brown & Caldwell

Work Order:

0303269

Lab ID:

0303269-01

Project Name:

Dolphin Project Number: 22413.400 Client Sample ID: DIMW2-410

Collection Date: 3/19/2003 1:18:00 PM

The second secon			. .	, , ,		Test	Date	Date	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
Analyte	Result	PQL	Qual	Units	DF	Code	Prepared	Analyzed	Analyst	Batch ID
Isopropylbenzene	<2.5	2.5		µg/L	1.0	SW8260B	N/A	3/22/03 16:32	JH	D30322A
4-isopropyltoluene	<1.5	1.5		μg/L	1.0	SW82608	N/A	3/22/03 16:32	JH	D30322A
Methylene chloride	<3.0	3.0		μg/L	1.0	SW8260B	N/A	3/22/03 16:32	1H	D30322A
4-Methyl-2-pentanone	<5.0	5.0		µg/L	1.0	SW8260B	N/A	3/22/03 16:32	JH	D30322A
Methyl tert-butyl ether	<2.0	2.0		μg/L	1.0	SW8260B	N/A	3/22/03 16:32	JH	D30322A
Naphthalene	<5.0	5.0		μg/L	1.0	SW8260B	N/A	3/22/03 16:32	JН	D30322A
n-Propylbenzene	<2.0	2.0		μg/L	1.0	SW8260B	N/A	3/22/03 16:32	JH	D30322A
Styrene	<1.0	1.0		μg/L	1.0	SW8260B	N/A	3/22/03 16:32	JH	D30322A
1,1,1,2-Tetrachloroethane	< 0.50	0.50		μg/L	1.0	SW8260B	N/A	3/22/03 16:32	ĴΗ	D30322A
1,1,2,2-Tetrachloroethane	< 0.50	0.50		µg/L	1.0	SW8260B	N/A	3/22/03 16:32	JΗ	D30322A
Tetrachioroethene	0.96	0.50		μg/L	1.0	SW8260B	N/A	3/22/03 16:32	JH	D30322A
Toluene	<3.0	3.0		μg/L	1.0	SW8260B	N/A	3/22/03 16:32	JH	D30322A
1,2,3-Trichlorobenzene	<5.0	5.0		µg/L	1.0	SW8260B	N/A	3/22/03 16:32	JH	D30322A
1,2,4-Trichlorobenzene	<5.0	5.0		μg/L	1.0	SW8260B	N/A	3/22/03 16:32	JH	D30322A
1,1,1-Trichloroethane	<0.50	0.50		µg/L	1.0	SW8260B	N/A	3/22/03 16:32	JH	D30322A
1,1,2-Trichloroethane	<0.50	0.50		μg/L	1.0	SW8260B	N/A	3/22/03 16:32	JH	D30322A
Trichloroethene	< 0.50	0.50		μg/L	1.0	SW8260B	N/A	3/22/03 16:32	JH	D30322A
Trichlorofluoromethane	<2.0	2.0		µg/L	1.0	SW8260B	N/A	3/22/03 16:32	JH	D30322A
Trichlorotrifluoroethane	<5.0	5.0		µg/L	1.0	SW8260B	N/A	3/22/03 16:32	JH	D30322A
1,2,3-Trichloropropane	<1.0	1.0		μg/L	1.0	SW8260B	N/A	3/22/03 16:32	JH	O30322A
1,2,4-Trimethylbenzene	<2.0	2.0		μg/L	1.0	SW8260B	N/A	3/22/03 16:32	JH	D30322A
1,3,5-Trimethylbenzene	<1.5	1.5		μg/L	1.0	SW8260B	N/A	3/22/03 16:32	JH	D30322A
Vinyl acetate	<5.0	5.0		μg/L	1.0	SW8260B	N/A	3/22/03 16:32	JH	D30322A
Vinyl chloride	< 0.50	0.50		µg/L	1.0	SW8260B	N/A	3/22/03 16:32	JH	D30322A
Xylenes, Total	<3.0	3.0		μg/L	1.0	SW8260B	N/A	3/22/03 16:32	JH	D30322A
4-Bromofluorobenzene(Surrogate)	86	80-107		%REC	1.0	SW8260B	N/A	3/22/03 16:32	JH	D30322A
Dibromofluoromethane(Surrogate)	86	77-104		%REC	1.0	SW8260B	N/A	3/22/03 16:32	ΊΗ	D30322A
1,2-Dichloroethane-d4(Surrogate)	93	72-111		%REC	1.0	SW8260B	N/A	3/22/03 16:32	JH	D30322A
Toluene-d8(Surrogate)	92	84-105		%REC	1.0	SW82608	N/A	3/22/03 16:32	JH	D30322A

Amended Report

Date Printed 08-Apr-03

License No. AZM133/AZ0133

CLIENT:

Brown & Caldwell

Work Order:

0303269

Lab ID:

2-Hexanone

lodomethane

0303269-02

Project Name: Project Number: 22413.400

Dolphin

Client Sample ID: DIMW2-345

Collection Date: 3/19/2003 1:34:00 PM

Matrix: WATER

						Test	Date	Date		
Analyte	Result	PQL	Qual	Units	DF	Code	Prepared	Analyzed	Analyst	Batch ID
	<20	20		μg/L	1.0	SW8260B	N/A	3/22/03 17:08	JH	D30322A
Acetone	<0.50	0.50		μg/L	1.0	SW8260B	N/A	3/22/03 17:08	JH	D30322A
Benzene	<0.50 <1.5	1.5		µg/L	1.0	SW8260B	N/A	3/22/03 17:08	JH	D30322A
Bromobenzene	<0.50	0.50		µg/L	1.0	SW8260B	N/A	3/22/03 17:08	JH	D30322A
Bromochloromethane		0.50		µg/L	1.0	SW8260B	N/A	3/22/03 17:08	JH	D30322A
Bromodichloromethane	< 0.50	1.0		µg/L	1.0	SW8260B	N/A	3/22/03 17:08	JH	D30322A
Bromoform	<1.0			µg/L	1.0	SW8260B	N/A	3/22/03 17:08	JH	D30322A
Bromomethane	<5.0	5.0		μg/L	1.0	SW8260B	N/A	3/22/03 17:08	JH	D30322A
2-Butanone	<5.0 -0.5	5.0		μg/L	1.0	SW8260B	N/A	3/22/03 17:08	JH	D30322A
n-Butylbenzene	<2.5	2.5		μg/L	1.0	SW8260B	N/A	3/22/03 17:08	JH	D30322A
sec-Butylbenzene	<1.5	1.5		µg/L	1.0	SW8260B	N/A	3/22/03 17:08	JH	D30322A
tert-Butylbenzene	<2.5	2.5			1.0	SW8260B	N/A	3/22/03 17:08	JH	D30322A
Carbon disulfide	<0.50	0.50		μg/L	1.0	SW8260B	N/A	3/22/03 17:08	JH	D30322A
Carbon tetrachloride	<0.50	0.50		µg/L	1.0	SW8260B	N/A	3/22/03 17:08	JH	D30322A
Chlorobenzene	<0.50	0.50		μg/L	1.0	SW8260B	N/A	3/22/03 17:08	JH	D30322A
Dibromochloromethane	<0.50	0.50		µg/L		SW8260B	N/A	3/22/03 17:08	JH	D30322A
Chloroethane	<1.0	1.0		µg/L	1.0	SW8260B	N/A	3/22/03 17:08	JH	D30322A
Chloroform	<0.50	0.50		µg/L	1.0 1.0	SW8260B	N/A	3/22/03 17:08	JH	D30322A
Chloromethane	<5.0	5.0		µg/L		SW8260B	N/A	3/22/03 17:08	JH	D30322A
2-Chlorotoluene	<1.5	1.5		µg/L	1.0	SW8260B	N/A	3/22/03 17:08	JH	D30322A
4-Chlorotoluene	<2.0	2.0		µg/L	1.0	SW8260B	N/A	3/22/03 17:08	JH	D30322A
1,2-Dibromo-3-chloropropane	<2.0	2.0		µg/L	1.0	SW8260B	N/A	3/22/03 17:08	JH	D30322A
1,2-Dibromoethane	<0.50	0.50		µg/L	1.0		N/A	3/22/03 17:08	JH	D30322A
Dibromomethane	<0.50	0.50		μg/L	1.0	SW8260B		3/22/03 17:08	JH JH	D30322A
1,2-Dichlorobenzene	<1.5	1,5		µg/L	1.0	SW8260B	N/A			D30322A
1,3-Dichlorobenzene	<1.5	1.5		µg/L	1.0	SW8260B	N/A	3/22/03 17:08	JΗ	D30322A
1,4-Dichlorobenzene	<1.5	1.5		µg/L	1.0	SW8260B	N/A	3/22/03 17:08	JH	D30322A
Dichlorodifluoromethane	<2.0	2.0		µg/L	1.0	SW8260B	N/A	3/22/03 17:08	JH	D30322A
1,1-Dichloroethane	<1.0	1.0		µg/L	1.0	SW8260B	N/A	3/22/03 17:08	JH	D30322A
1,2-Dichloroethane	<1.0	1.0		µg/L	1.0	SW8260B	N/A	3/22/03 17:08	JH	D30322A
1,1-Dichloroethene	< 0.50	0.50		µg/L	1.0	SW8260B	N/A	3/22/03 17:08	JH	D30322A D30322A
cis-1,2-Dichloroethene	< 0.50	0.50		µg/L	1.0	SW8260B	N/A	3/22/03 17:08	JH	
trans-1,2-Dichloroethene	<0.50	0.50		h8/r	1.0	SW8260B	N/A	3/22/03 17:08	JH	D30322A
1,2-Dichloropropane	< 0.50	0.50		µg/L	1.0	SW8260B	N/A	3/22/03 17:08	JH	D30322A
1,3-Dichloropropane	<1.0	1.0		μg/L	1.0	SW8260B	N/A	3/22/03 17:08	JH	D30322A
2,2-Dichloropropane	<0.50	0.50		µg/L	1.0	SW8260B	N/A	3/22/03 17:08	JH	D30322A
1,1-Dichloropropene	<1.0	1.0		μg/L	1.0	SW8260B	N/A	3/22/03 17:08	JH	D30322A
cis-1,3-Dichloropropene	<1.0	1.0		µg/L	1.0	SW8260B	N/A	3/22/03 17:08	JH	D30322A
trans-1,3-Dichloropropene	<0.50	0.50		μg/L	1.0	\$W8260B	N/A	3/22/03 17:08	JH	D30322A
Ethylbenzene	<2.0	2.0		µg/L	1.0	SW8260B	NiA	3/22/03 17:08	JH	D30322A
Hexachlorobutadiene	<2.5	2.5		µg/L	1.0	SW8260B	N/A	3/22/03 17:08	JH	D30322A
		E 0		untl	1.0	SW8260B	N/A	3/22/03 17:08	JH	D30322A

JH

JH

N/A

NΑ

SW8260B

SW82608

1.0

1.0

3/22/03 17:08

3/22/03 17:08

D30322A

μg/L

μg/L

5.0

1.0

<5.0

<1.0

Amended Report

Date Printed 08-Apr-03

License No. AZM133/AZ0133

CLIENT:

Brown & Caldwell

Work Order:

0303269

Lab ID:

0303269-02

Project Name: Project Number: 22413.400

Dolphin

Client Sample ID: DIMW2-345

Collection Date: 3/19/2003 1:34:00 PM

						Test	Date	Date		
Analyte	Result	PQL	Qual	Units	DF	Code	Prepared	Analyzed	Analyst	Batch ID
Isopropylbenzene	<2.5	2.5		µg/L	1.0	SW8260B	N/A	3/22/03 17:08	JH	D30322A
4-Isopropyltoluene	<1.5	1.5		µg/∟	1.0	SW8260B	N/A	3/22/03 17:08	JH	D30322A
Methylene chloride	<3.0	3.0		µg/L	1.0	SW8260B	N/A	3/22/03 17:08	ĴΗ	D30322A
4-Methyl-2-pentanone	<5.0	5.0		µg/L	1.0	SW8260B	N/A	3/22/03 17:08	JH	D30322A
Methyl tert-butyl ether	<2.0	2.0		µg/L	1.0	SW8260B	N/A	3/22/03 17:08	JΗ	D30322A
Naphthalene	<5.0	5.0		μg/L	1.0	SW82608	N/A	3/22/03 17:08	JH	D30322A
n-Propylbenzene	<2.0	2.0		μg/L	1.0	SW8260B	N/A	3/22/03 17:08	JH	D30322A
Styrene	<1.0	1.0		µg/L	1.0	SW82608	N/A	3/22/03 17:08	JH	D30322A
1,1,1,2-Tetrachloroethane	<0.50	0.50		μg/L	1.0	SW8260B	N/A	3/22/03 17:08	JH	D30322A
1.1.2.2-Tetrachloroethane	<0.50	0.50		µg/L	1.0	SW8260B	N/A	3/22/03 17:08	JH	D30322A
Tetrachloroethene	0.68	0.50		μg/L	1.0	SW8260B	N/A	3/22/03 17:08	HL	D30322A
Toluene	<3.0	3.0		μg/L	1.0	SW82608	N/A	3/22/03 17:08	Нt	D30322A
1,2,3-Trichlorobenzene	<5.0	5.0		μg/L	1.0	SW8260B	N/A	3/22/03 17:08	JH	D30322A
1,2,4-Trichlorobenzene	<5.0	5.0		µg/L	1.0	SW82608	N/A	3/22/03 17:08	JH	D30322A
1,1,1-Trichloroethane	<0.50	0.50		μg/L	1.0	SW8260B	N/A	3/22/03 17:08	JH	D30322A
1.1.2-Trichloroethane	<0.50	0.50		μg/L	1.0	SW8260B	N/A	3/22/03 17:08	JH	D30322A
Trichloroethene	<0.50	0.50		µg/L	1.0	SW8260B	N/A	3/22/03 17:08	JH	D30322A
Trichlorofluoromethane	<2.0	2.0		µg/L	1.0	SW8260B	N/A	3/22/03 17:08	JH	D30322A
Trichlorotrifluoroethane	<5.0	5.0		μg/L	1.0	SW8260B	N/A	3/22/03 17:08	JH	D30322A
	<1.0	1.0		µg/L	1.0	SW8260B	N/A	3/22/03 17:08	JH	D30322A
1,2,3-Trichloropropane 1,2,4-Trimethylbenzene	<2.0	2.0		μg/L	1.0	SW8260B	N/A	3/22/03 17:08	HL	D30322A
1,3,5-Trimethylbenzene	<1.5	1.5		μg/L	1.0	SW8260B	N/A	3/22/03 17:08	JH	D30322A
•	<5.0	5.0		μg/L	1.0	SW8260B	N/A	3/22/03 17:08	JH	D30322A
Vinyl acetate	<0.50	0.50		μg/L	1.0	SW8260B	N/A	3/22/03 17:08	JH	D30322A
Vinyl chloride	<3.0	3.0		μg/L	1.0	SW8260B	N/A	3/22/03 17:08	JH	D30322A
Xylenes, Total	85	80-107		%REC	1.0	SW8260B	N/A	3/22/03 17:08	JH	D30322A
4-Bromofluorobenzene(Surrogate)	93	77-104		%REC	1.0	SW8260B	N/A	3/22/03 17:08	JH	D30322A
Dibromofluoromethane(Surrogate)	93 104	72-111		%REC	1.0	SW8260B	N/A	3/22/03 17:08	JH	D30322A
1,2-Dichloroethane-d4(Surrogate) Toluene-d8(Surrogate)	87	84-105		%REC	1.0	SW8260B	N/A	3/22/03 17:08	JH	D30322A

Amended Report

Date Printed 08-Apr-03

License No. AZM133/AZ0133

CLIENT: Brown & Caldwell

Work Order: 0303269

Lab ID: 0303269-03

Project Name: Dolphin
Project Number: 22413.400

Client Sample ID: DIMW2-240

Collection Date: 3/19/2003 1:51:00 PM

						Test	Date	Date		
Analyte	Result	PQL	Qual	Units	DF	Code	Prepared	Analyzed	Analyst	Batch II
Acetone	<20	20		µg/L	1.0	SW8260B	N/A	3/22/03 17:45	JH	D30322A
Benzene	<0.50	0.50		μg/L	1.0	SW8260B	N/A	3/22/03 17:45	JH	D30322A
Bromobenzene	<1.5	1.5		µg/L	1.0	SW82608	N/A	3/22/03 17:45	JH	D30322A
Bromochloromethane	<0.50	0.50		μg/L	1.0	SW8260B	N/A	3/22/03 17:45	JH	D30322A
Bromodichloromethane	<0.50	0.50		μg/L	1.0	SW8260B	N/A	3/22/03 17:45	JH	D30322A
Bromoform	<1.0	1.0		μg/L	1.0	SW8260B	N/A	3/22/03 17:45	JH	D30322A
Bromomethane	<5.0	5.0		μg/L	1.0	SW8260B	N/A	3/22/03 17:45	JH	D30322A
2-Butanone	<5.0	5.0		μg/L	1.0	SW82608	N/A	3/22/03 17:45	JH	D30322A
n-Butylbenzene	<2.5	2.5		μg/L	1.0	SW8260B	N/A	3/22/03 17:45	JH	D30322A
sec-Butylbenzene	<1,5	1.5		μg/L	1.0	SW8260B	N/A	3/22/03 17:45	JH	D30322A
ert-Butylbenzene	<2.5	2.5		μg/L	1.0	SW8260B	N/A	3/22/03 17:45	JH	D30322A
Carbon disulfide	< 0.50	0.50		µg/L	1.0	SW8260B	N/A	3/22/03 17:45	JH	D30322A
Carbon tetrachloride	<0.50	0.50		μg/L	1.0	SW8260B	N/A	3/22/03 17:45	JH	D30322A
Chlorobenzene	<0.50	0.50		μg/L	1.0	SW8260B	N/A	3/22/03 17:45	JH	D30322A
Dibromochloromethane	<0.50	0.50		μg/L	1.0	SW8260B	N/A	3/22/03 17:45	JH	D30322A
Chloroethane	<1.0	1.0		μg/L	1.0	SW8260B	N/A	3/22/03 17:45	JH	D30322A
Chloroform	1.7	0.50		μg/L	1.0	SW8260B	N/A	3/22/03 17:45	JH	D30322A
Chloromethane	<5.0	5.0		μg/L	1.0	SW8260B	N/A	3/22/03 17:45	JH	D30322A
2-Chlorotoluene	<1.5	1.5		µg/L	1.0	SW8260B	N/A	3/22/03 17:45	JH	D30322A
4-Chlorotoluene	<2.0	2.0		μg/L	1.0	SW8260B	N/A	3/22/03 17:45	JH	D30322A
1,2-Díbromo-3-chloropropane	<2.0	2.0		μg/L	1.0	SW8260B	N/A	3/22/03 17:45	JH	D30322A
1,2-Dibromoethane	< 0.50	0.50		μg/L	1.0	SW8260B	N/A	3/22/03 17:45	JH	D30322A
Dibromomethane	<0.50	0.50		µg/L	1.0	SW8260B	N/A	3/22/03 17:45	JH	D30322A
1,2-Dichlorobenzene	<1.5	1.5		μg/L	1.0	SW8260B	N/A	3/22/03 17:45	JH	D30322A
1,3-Dichlorobenzene	<1.5	1.5		µg/L	1.0	SW8260B	N/A	3/22/03 17:45	JH	D30322A
1,4-Dichlorobenzene	<1.5	1.5		μg/L	1.0	SW8260B	N/A	3/22/03 17:45	JH	D30322A
Dichlorodifluoromethane	<2.0	2.0		μg/L	1.0	SW8260B	N/A	3/22/03 17:45	JH	D30322A
1,1-Dichloroethane	<1.0	1.0		μg/L	1.0	SW8260B	N/A	3/22/03 17:45	JH	D30322A
1,2-Dichloroethane	<1.0 <1.0	1.0		μg/L	1.0	SW8260B	N/A	3/22/03 17:45	JH	D30322A
1,1-Dichloroethene	2.8	0.50		µg/L	1.0	SW8260B	N/A	3/22/03 17:45	JH	D30322A
cis-1,2-Dichloroethene	<0.50	0.50		µg/L	1.0	SWB260B	N/A	3/22/03 17:45	JH	D30322A
trans-1,2-Dichloroethene	<0.50	0.50		μg/L	1.0	SW8260B	N/A	3/22/03 17:45	JH	D30322A
1,2-Dichloropropane	<0.50	0.50		µg/L	1.0	SW8260B	N/A	3/22/03 17:45	JH	D30322A
1,3-Dichloropropane	<1.0	1.0		μg/L	1.0	SW8260B	N/A	3/22/03 17:45	JH	D30322A
2,2-Dichloropropane	<0.50	0.50		µg/L	1.0	SW8260B	N/A	3/22/03 17:45	JH	D30322A
1,1-Dichloropropene	<1.0	1.0		hã/r	1.0	SW8260B	N/A	3/22/03 17:45	JH	D30322A
cis-1,3-Dichloropropene	<1.0	1.0		µg/L	1.0	SW8260B	N/A	3/22/03 17:45	JH	D30322A
trans-1,3-Dichloropropene	<0.50	0.50		h8/r	1.0	\$W8260B	N/A	3/22/03 17:45	JH	D30322A
Ethylbenzene	<2.0	2.0		µg/L	1.0	SW8260B	N/A	3/22/03 17:45	jН	D30322A
Hexachlorobutadiene	<2.5	2.5		µg/L	1.0	SW8260B	N/A	3/22/03 17:45	JH	D30322A
2-Hexanone	<5.0	5.0		µg/L	1.0	SW8260B	N/A	3/22/03 17:45	JH	D30322A
lodomethane	<1.0	1.0		µg/L	1.0	SW8260B	N/A	3/22/03 17:45	JH	D30322A

Amended Report

Date Printed 08-Apr-03

License No. AZM133/AZ0133

CLIENT: Work Order: Brown & Caldwell

0303269

Lab ID:

Dolphin

Project Name:

Project Number: 22413,400

0303269-03

Client Sample ID: DIMW2-240

Collection Date: 3/19/2003 1:51:00 PM

						Test	Date	Date		
Analyte	Result	PQL	Qual	Units	DF	Code	Prepared	Analyzed	Analyst	Batch ID
Isopropylbenzene	<2.5	2.5		µg/L	1.0	SW8260B	N/A	3/22/03 17:45	JH	D30322A
4-Isopropyltoluene	<1.5	1.5		μg/L	1.0	SW8260B	N/A	3/22/03 17:45	JH	D30322A
Methylene chloride	<3.0	3.0		μg/L	1.0	SW8260B	N/A	3/22/03 17:45	JH	D30322A
4-Methyl-2-pentanone	<5.0	5.0		μg/L	1.0	SW8260B	N/A	3/22/03 17:45	JH	D30322A
Methyl tert-butyl ether	<2.0	2.0		µg/L	1.0	SW8260B	N/A	3/22/03 17:45	JH	D30322A
Naphthalene	<5.0	5.0		µg/L	1.0	SW8260B	N/A	3/22/03 17:45	JH	D30322A
n-Propylbenzene	<2.0	2.0		µg/L	1.0	SW8260B	N/A	3/22/03 17:45	JH	D30322A
Styrene	<1.0	1.0		µg/L	1.0	SW8260B	N/A	3/22/03 17:45	JH	D30322A
1,1,1,2-Tetrachloroethane	<0.50	0.50		µg/L	1.0	SW8260B	N/A	3/22/03 17:45	JH	D30322A
1,1,2,2-Tetrachloroethane	<0.50	0.50		µg/L	1.0	SW8260B	N/A	3/22/03 17:45	JH	D30322A
Tetrachloroethene	13	0.50		µg/L	1.0	SW8260B	N/A	3/22/03 17:45	JH	D30322A
Toluene	<3.0	3.0		µg/L	1.0	\$W8260B	N/A	3/22/03 17:45	HL	D30322A
1,2,3-Trichlorobenzene	<5.0	5.0		µg/L	1.0	SW8260B	N/A	3/22/03 17:45	JH	D30322A
1,2,4-Trichlorobenzene	<5.0	5.0		μg/L	1.0	SW8260B	N/A	3/22/03 17:45	JH	D30322A
1,1,1-Trichloroethane	< 0.50	0.50		μg/L	1.0	SW8260B	N/A	3/22/03 17:45	JH	D30322A
1,1,2-Trichloroethane	< 0.50	0.50		µg/L	1.0	SW8260B	N/A	3/22/03 17:45	JH	D30322A
Trichloroethene	8.2	0.50		µg/L	1.0	SW8260B	N/A	3/22/03 17:45	JH	D30322A
Trichlorofluoromethane	<2.0	2.0		µg/L	1.0	SW8260B	N/A	3/22/03 17:45	JH	D30322A
Trichlorotrifluoroethane	<5.0	5.0		µg/L	1.0	SW8260B	N/A	3/22/03 17:45	JH	D30322A
1,2,3-Trichioropropane	<1.0	1.0		µg/L	1.0	SW82608	N/A	3/22/03 17:45	JH	D30322A
1,2,4-Trimethylbenzene	<2.0	2.0		µg/L	1.0	SW8260B	N/A	3/22/03 17:45	JH	D30322A
1,3,5-Trimethylbenzene	<1.5	1.5		µg/L	1.0	SW8260B	N/A	3/22/03 17:45	JH	D30322A
Vinyl acetate	<5.0	5.0		μg/L	1.0	SW8260B	N/A	3/22/03 17:45	JH	D30322A
Vinyl chloride	< 0.50	0.50		µg/L	1.0	SW8260B	N/A	3/22/03 17:45	JH	D30322A
Xylenes, Total	<3.0	3.0		µg/L	1.0	SW8260B	N/A	3/22/03 17:45	JH	D30322A
4-Bromofluorobenzene(Surrogate)	86	80-107		%REC	1.0	SW8260B	N/A	3/22/03 17:45	JH	D30322A
Dibromofluoromethane(Surrogate)	96	77-104		%REC	1.0	SW8260B	N/A	3/22/03 17:45	JH	D30322A
1,2-Dichloroethane-d4(Surrogate)	107	72-111		%REC	1.0	SW8260B	N/A	3/22/03 17:45	JH	D30322A
Toluene-d8(Surrogate)	87	84-105		%REC	1.0	SW8260B	N/A	3/22/03 17:45	JH	D30322A

Amended Report

Date Printed 08-Apr-03

License No. AZM133/AZ0133

CLIENT:

Brown & Caldwell

Work Order:

0303269

Lab ID:

0303269-04

Project Name:

Dolphin

Project Number: 22413.400

Client Sample ID: DIMW2-165

Collection Date: 3/19/2003 2:05:00 PM

	14 Chamba 4 A A A & Lafe 18 2 F 17 2 VVV					Test	Date	Date		
Analyte	Result	PQL	Qual	Units	DF	Code	Prepared	Analyzed	Analyst	Batch ID
				_		GIN IRPACE		0.000,000,40,000		0222224
Acetone	<20	20		µg/L	1.0	SW8260B	N/A	3/22/03 18:23	JH 	D30322A
Benzene	<0.50	0.50		µg/L	1.0	SW8260B	N/A	3/22/03 18:23	JH	D30322A
Bromobenzene	<1.5	1.5		μg/L	1.0	SW8260B	N/A	3/22/03 18:23	JH	D30322A
Bromochloromethane	<0.50	0.50		μg/L	1.0	SW8260B	N/A	3/22/03 18:23	JH	D30322A
Bromodichioromethane	< 0.50	0.50		μg/L	1.0	SW8260B	N/A	3/22/03 18:23	JH	D30322A
Bromoform	<1.0	1.0		μg/L	1.0	SW8260B	N/A	3/22/03 18:23	JH	D30322A
Bromomethane	<5.0	5.0		µg/L	1.0	SW8260B	N/A	3/22/03 18:23	JH	D30322A
2-Butanone	<5.0	5.0		μg/L	1.0	SW8260B	N/A	3/22/03 18:23	JH	D30322A
n-Butylbenzene	<2.5	2.5		μg/L	1.0	SW8260B	N/A	3/22/03 18:23	JH	D30322A
sec-Butylbenzene	<1.5	1.5		μg/L	1.0	SW8260B	N/A	3/22/03 18:23	JH	D30322A
tert-Butylbenzene	<2.5	2.5		μg/L	1.0	SW8260B	N/A	3/22/03 18:23	JH	D30322A
Carbon disulfide	< 0.50	0.50		μg/L	1.0	SW8260B	N/A	3/22/03 18:23	JH	D30322A
Carbon tetrachloride	< 0.50	0.50		µg/L	1.0	SW8260B	N/A	3/22/03 18:23	JH	D30322A
Chlorobenzene	< 0.50	0.50		μg/L	1.0	SW8260B	N/A	3/22/03 18:23	JH	D30322A
Dibromochloromethane	< 0.50	0.50		μg/L	1.0	SW8260B	N/A	3/22/03 18:23	JH	D30322A
Chloroethane	<1.0	1.0		μg/L	1.0	SW8260B	N/A	3/22/03 18:23	JH	D30322A
Chloroform	9.5	0.50		μg/L	1.0	SW8260B	N/A	3/22/03 18:23	JH	D30322A
Chloromethane	<5.0	5.0		μg/L	1.0	SW8260B	N/A	3/22/03 18:23	JH	D30322A
2-Chlorotoluene	<1.5	1.5		μg/L	1.0	SW8260B	N/A	3/22/03 18:23	JH	D30322A
4-Chlorotoluene	<2.0	2.0		μg/L	1.0	SW8260B	N/A	3/22/03 18:23	JH	D30322A
1,2-Dibromo-3-chloropropane	<2.0	2.0		μg/L	1.0	SW8260B	N/A	3/22/03 18:23	JH	D30322A
1,2-Dibromoethane	<0.50	0.50		μg/L	1.0	SW8260B	N/A	3/22/03 18:23	JH	D30322A
Dibromomethane	<0.50	0.50		μg/L	1.0	SW8260B	N/A	3/22/03 18:23	JH	D30322A
1,2-Dichlorobenzene	<1.5	1.5		μg/L	1.0	SW8260B	N/A	3/22/03 18:23	JH	D30322A
1,3-Dichlorobenzene	<1.5	1.5		μg/L	1.0	SW8260B	N/A	3/22/03 18:23	JH	D30322A
1,4-Dichlorobenzene	<1.5	1.5		hg/r	1.0	SW8260B	N/A	3/22/03 18:23	JH	D30322A
Dichlorodifluoromethane	<2.0	2.0		μg/L	1.0	SW8260B	N/A	3/22/03 18:23	JH	D30322A
1,1-Dichloroethane	<1.0	1.0		μg/L	1.0	SW8260B	N/A	3/22/03 18:23	JH	D30322A
1,2-Dichloroethane	<1.0	1.0		μg/L	1.0	SW8260B	N/A	3/22/03 18:23	JH	D30322A
1,1-Dichloroethene	11	0.50		μg/L	1.0	SW8260B	N/A	3/22/03 18:23	JH	D30322A
cis-1,2-Dichloroethene	2.8	0.50		µg/L	1.0	SW8260B	N/A	3/22/03 18:23	JH	D30322A
trans-1,2-Dichloroethene	< 0.50	0.50		µg/L	1.0	SW8260B	N/A	3/22/03 18:23	JH	D30322A
1,2-Dichloropropane	<0.50	0.50		µg/L	1.0	SW8260B	N/A	3/22/03 18:23	JH	D30322A
				µg/L	1.0	SW8260B	N/A	3/22/03 18:23	JH	D30322A
1,3-Dichloropropane	<1.0	1.0 0.50		μg/L	1.0	SW8260B	N/A	3/22/03 18:23	JH	D30322A
2,2-Dichloropropane	<0.50			μg/L	1.0	SW8260B	N/A	3/22/03 18:23	JH	D30322A
1,1-Dichloropropene cis-1,3-Dichloropropene	<1.0	1.0		hg/r	1.0	SW8260B	N/A	3/22/03 18:23	JH	D30322A
	<1.0	1.0		µg/L	1.0	SW8260B	N/A	3/22/03 18:23	JH	D30322A
trans-1,3-Dichloropropene	< 0.50	0.50		µg/ե	1.0	SW8260B	N/A	3/22/03 18:23	JH	D30322A
Ethylbenzene	<2.0	2.0			1.0	SW8260B	N/A	3/22/03 18:23	JH	D30322A
Hexachlorobutadiene	<2.5	2.5		µg/L	1.0	SW8260B	N/A	3/22/03 18:23	JH	D30322A
2-Hexanone	<5.0	5.0		µg/L		SW8260B	N/A	3/22/03 18:23	JH	D30322A
lodomethane	<1.0	1.0		µg/L	1.0	SYYOZOUD	IWA	4144149 10149	JH	POOREL

Amended Report

Date Printed 08-Apr-03

License No. AZM133/AZ0133

CLIENT:

Brown & Caldwell

Work Order:

0303269

Lab ID:

0303269-04

Project Name: Project Number: 22413.400

Dolphin

Client Sample ID: DIMW2-165

Collection Date: 3/19/2003 2:05:00 PM

				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		Test	Date	Date		
Analyte	Result	PQL	Qual	Units	DF	Code	Prepared	Analyzed	Analyst	Batch ID
Isopropylbenzene	<2.5	2.5		µg/L	1.0	SW8260B	N/A	3/22/03 18:23	JH	D30322A
4-isopropyltoluene	<1.5	1.5		µg/L	1.0	SW8260B	N/A	3/22/03 18:23	JH	D30322A
Methylene chloride	<3.0	3.0		μg/L	1.0	SW8260B	N/A	3/22/03 18:23	jΗ	D30322A
4-Methyl-2-pentanone	<5.0	5.0		µg/L	1.0	SW8260B	N/A	3/22/03 18:23	JH	D30322A
Methyl tert-butyl ether	<2.0	2.0		µg/L	1.0	SW8260B	N/A	3/22/03 18:23	JH	D30322A
Naphthalene	<5.0	5.0		µg/L	1.0	SW8260B	N/A	3/22/03 18:23	JH	D30322A
n-Propylbenzene	<2.0	2.0		μg/L	1.0	SW8260B	N/A	3/22/03 18:23	JH	D30322A
Styrene	<1.0	1.0		µg/L	1.0	SW8260B	N/A	3/22/03 18:23	JH	D30322A
1.1.1.2-Tetrachloroethane	< 0.50	0.50		μg/L	1.0	SW8260B	N/A	3/22/03 18:23	JH	D30322A
1,1,2,2-Tetrachloroethane	<0.50	0.50		μg/L	1.0	SW8260B	N/A	3/22/03 18:23	JH	D30322A
Tetrachloroethene	52	2.5	D2	μg/L	5.0	SW8260B	N/A	3/25/03 23:56	JH	D30325B
Toluene	<3.0	3.0		µg/L	1.0	SW8260B	N/A	3/22/03 18:23	JH	D30322A
1.2.3-Trichlorobenzene	<5.0	5.0		μg/L	1.0	SW8260B	N/A	3/22/03 18:23	JH	D30322A
1.2.4-Trichlorobenzene	<5.0	5.0		µg/L	1.0	SW8260B	N/A	3/22/03 18:23	JH	D30322A
1,1,1-Trichloroethane	<0.50	0.50		μg/L	1.0	SW8260B	N/A	3/22/03 18:23	JH	D30322A
1.1.2-Trichloroethane	< 0.50	0.50		μg/L	1.0	SW8260B	N/A	3/22/03 18:23	JH	D30322A
Trichloroethene	22	0.50		µg/L	1.0	SW8260B	N/A	3/22/03 18:23	JH	D30322A
Trichlorofluoromethane	<2.0	2.0		μg/L	1.0	SW8260B	N/A	3/22/03 18:23	JΗ	D30322A
Trichlorotrifluoroethane	6.2	5.0		µg/L	1.0	SW8260B	N/A	3/22/03 18:23	JH	D30322A
1,2,3-Trichloropropane	<1.0	1.0		μg/L	1.0	SW8260B	N/A	3/22/03 18:23	JH	D30322A
1,2,4-Trimethylbenzene	<2.0	2.0		μg/L	1.0	SW8260B	N/A	3/22/03 18:23	JH	D30322A
1.3.5-Trimethylbenzene	<1.5	1.5		µg/L	1,0	SW8260B	N/A	3/22/03 18:23	JH	D30322A
Vinyl acetate	<5.0	5.0		µg/L	1.0	SW8260B	N/A	3/22/03 18:23	JH	D30322A
Vinyl chloride	<0.50	0.50		µg/L	1.0	SW8260B	N/A	3/22/03 18:23	JH	D30322A
Xylenes, Total	<3.0	3.0		µg/L	1.0	SW8250B	N/A	3/22/03 18:23	JH	D30322A
4-Bromofluorobenzene(Surrogate)	83	80-107		%REC	1.0	SW8260B	N/A	3/22/03 18:23	HL	D30322A
Dibromofluoromethane(Surrogate)	96	77-104		%REC	1.0	SW8260B	N/A	3/22/03 18:23	JH	D30322A
1,2-Dichloroethane-d4(Surrogate)	106	72-111		%REC	1.0	SW8260B	N/A	3/22/03 18:23	JH	D30322A
Toluene-d8(Surrogate)	87	84-105		%REC	1.0	SW8260B	N/A	3/22/03 18:23	JH	D30322A

Amended Report

Date Printed 08-Apr-03

License No. AZM133/AZ0133

CLIENT: Brown & Caldwell

Work Order: 0303269

Lab ID: 0303269-05

Project Name: Dolphin
Project Number: 22413.400

Client Sample ID: DIMW2-170

Collection Date: 3/19/2003 2:15:00 PM

						Test	Date	Date		
Analyte	Result	PQL	Qual	Units	DF	Code	Prepared	Analyzed	Analyst	Batch ID
Acetone	<20	20		µg/L	1.0	SW8260B	N/A	3/22/03 19:01	JH	D30322A
Benzene	< 0.50	0.50		μg/L	1.0	SW8260B	N/A	3/22/03 19:01	JH	D30322A
Bromobenzene	<1.5	1.5		μg/L	1.0	SW8260B	N/A	3/22/03 19:01	JH	D30322A
Bromochloromethane	<0.50	0.50		μg/L	1.0	SW8260B	AVA	3/22/03 19:01	JH	D30322A
Bromodichloromethane	< 0.50	0.50		µg/L	1.0	SW8260B	N/A	3/22/03 19:01	JH	D30322A
Bromoform	<1.0	1.0		μg/L	1.0	SW8260B	N/A	3/22/03 19:01	JH	D30322A
Bromomethane	<5.0	5.0		μg/L	1.0	SW8260B	N/A	3/22/03 19:01	JH	D30322A
:-Butanone	<5.0	5.0		μg/L	1.0	SW8260B	N/A	3/22/03 19:01	JH	D30322A
n-Butylbenzene	<2.5	2.5		µg/L	1.0	SW8260B	N/A	3/22/03 19:01	JH	D30322A
ec-Butylbenzene	<1.5	1.5		μg/L	1.0	SW8260B	N/A	3/22/03 19:01	JH	D30322A
ert-Butylbenzene	<2.5	2.5		μg/L	1.0	SW8260B	N/A	3/22/03 19:01	JH	D30322A
Carbon disulfide	< 0.50	0.50		µg/L	1.0	SW8260B	N/A	3/22/03 19:01	JH	D30322A
Carbon tetrachloride	<0.50	0.50		μg/L	1.0	SW8260B	N/A	3/22/03 19:01	JH	D30322A
Chlorobenzene	<0.50	0.50		μg/L	1.0	SW8260B	N/A	3/22/03 19:01	JH	D30322A
Dibromochloromethane	<0.50	0.50		μg/L	1.0	SW8260B	N/A	3/22/03 19:01	JH	D30322A
Chloroethane	<1.0	1.0		µg/L	1.0	SW8260B	N/A	3/22/03 19:01	JH	D30322A
Chloroform	9.8	0.50		μg/L	1.0	SW8260B	N/A	3/22/03 19:01	JH	D30322A
Chloromethane	<5.0	5.0		μg/L	1.0	SW8260B	N/A	3/22/03 19:01	JH	D30322A
2-Chlorotoluene	<1.5	1.5		μg/L	1.0	SW8260B	N/A	3/22/03 19:01	JH	D30322A
4-Chlorotoluene	<2.0	2.0		μg/L	1.0	SW8260B	N/A	3/22/03 19:01	JH	D30322A
1,2-Dibromo-3-chloropropane	<2.0	2.0		μg/L	1.0	SW8260B	N/A	3/22/03 19:01	JH	D30322A
1,2-Dibromoethane	<0.50	0.50		μg/L	1.0	SW8260B	N/A	3/22/03 19:01	JH	D30322A
Dibromomethane	<0.50	0.50		µg/L	1.0	SW8260B	N/A	3/22/03 19:01	JH	D30322A
1,2-Dichlorobenzene	<1.5	1.5		µg/L	1.0	SW8260B	N/A	3/22/03 19:01	JH	D30322A
1,3-Dichlorobenzene	<1.5	1.5		μg/L	1.0	SW8260B	N/A	3/22/03 19:01	JH	D30322A
1,4-Dichlorobenzene	<1.5	1.5		µg/L	1.0	SW8260B	N/A	3/22/03 19:01	JH	D30322A
Dichlorodifluoromethane	<2.0	2.0		μg/L	1.0	SW8260B	N/A	3/22/03 19:01	JH	D30322A
1,1-Dichloroethane	<1.0	1.0		μg/L	1.0	SW8260B	N/A	3/22/03 19:01	JH	D30322A
1,2-Dichloroethane	<1.0	1.0		μg/L	1.0	SW82608	N/A	3/22/03 19:01	JH	D30322A
1,1-Dichloroethene	12	0.50		μg/L	1.0	SW8260B	N/A	3/22/03 19:01	JH	D30322A
cis-1.2-Dichloroethene	2.9	0.50		μg/L	1.0	SW82608	N/A	3/22/03 19:01	JH	D30322A
trans-1,2-Dichloroethene	< 0.50	0.50		µg/L	1.0	SW8260B	N/A	3/22/03 19:01	JH	D30322A
1,2-Dichloropropane	<0.50	0.50		µg/L	1.0	SW8260B	N/A	3/22/03 19:01	JH	D30322A
1,3-Dichloropropane	<1.0	1.0		μg/L	1.0	SW8260B	N/A	3/22/03 19:01	JH	D30322A
2,2-Dichloropropane	<0.50	0.50		µg/L	1.0	SW8260B	N/A	3/22/03 19:01	JH	D30322A
1,1-Dichloropropene	<1.0	1.0		µg/L	1.0	SW8260B	N/A	3/22/03 19:01	JH	D30322A
cis-1,3-Dichloropropene	<1.0	1.0		µg/L	1.0	SW8260B	N/A	3/22/03 19:01	JΗ	D30322A
trans-1,3-Dichloropropene	< 0.50	0.50		µg/L	1.0	SW82608	N/A	3/22/03 19:01	JH	D30322A
Ethylbenzene	<2.0	2.0		µg/L	1.0	SW82608	N/A	3/22/03 19:01	JH	D30322A
Hexachlorobutadiene	<2.5	2.5		µg/L	1.0	SW8260B	N/A	3/22/03 19:01	JH	D30322A
2-Hexanone	<5.0	5.0		μg/L	1.0	SW8260B	N/A	3/22/03 19:01	JH	D30322A
lodomethane	<1.0	1.0		µg/L	1.0	SW82608	N/A	3/22/03 19:01	JH	D30322A

Amended Report

Date Printed 08-Apr-03

License No. AZM133/AZ0133

CLIENT: Work Order: Brown & Caldwell

0303269

Lab ID:

0303269-05

Project Name:

Dolphin

Project Number: 22413.400

1,2-Dichloroethane-d4(Surrogate)

Toluene-d8(Surrogate)

106

86

72-111

84-105

Client Sample ID: DIMW2-170

Collection Date: 3/19/2003 2:15:00 PM

Matrix: WATER

Project Number: 22413.400	······						T>	TN - 4 -		
Analyte	Result	PQL	Qual	Units	DF	Test Code	Date Prepared	Date Analyzed	Analyst	Batch ID
Isopropylbenzene	<2.5	2.5		μg/L	1.0	SW8260B	N/A	3/22/03 19:01	JH	D30322A
4-Isopropyltoluene	<1.5	1.5		μg/L	1.0	SW8260B	N/A	3/22/03 19:01	JH	D30322A
Methylene chloride	<3.0	3.0		μg/L	1.0	SW8260B	N/A	3/22/03 19:01	JН	D30322A
4-Methyl-2-pentanone	<5.0	5.0		µg/L	1.0	SW8260B	N/A	3/22/03 19:01	JH	D30322A
Methyl tert-butyl ether	<2.0	2.0		μg/L	1.0	SW8260B	N/A	3/22/03 19:01	JH	D30322A
Naphthalene	<5.0	5.0		μg/L	1.0	SW8260B	N/A	3/22/03 19:01	JН	D30322A
n-Propylbenzene	<2.0	2.0		μg/L	1.0	SW8260B	N/A	3/22/03 19:01	JH	D30322A
Styrene	<1,0	1.0		μg/L	1.0	SW8260B	N/A	3/22/03 19:01	JH	D30322A
1,1,1,2-Tetrachloroethane	< 0.50	0.50		μg/L	1.0	SW8260B	N/A	3/22/03 19:01	JΗ	D30322A
1,1,2,2-Tetrachloroethane	< 0.50	0.50		μg/L	1.0	SW8260B	N/A	3/22/03 19:01	JH	D30322A
Tetrachioroethene	48	2.5	D1	µg/L	5.0	SW8260B	N/A	3/26/03 00:34	JH	D30325B
Toluene	<3.0	3.0		μg/L	1.0	SW8260B	N/A	3/22/03 19:01	JH	D30322A
1,2,3-Trichlorobenzene	<5.0	5.0		μg/L	1.0	SW8260B	N/A	3/22/03 19:01	JH	D30322A
1,2,4-Trichlorobenzene	<5.0	5.0		μg/L	1.0	SW8260B	N/A	3/22/03 19:01	JH	D30322A
1,1,1-Trichloroethane	<0.50	0.50		μg/L	1.0	SW8260B	N/A	3/22/03 19:01	JH	D30322A
1,1,2-Trichloroethane	<0.50	0.50		μg/L	1.0	SW8260B	N/A	3/22/03 19:01	JH	D30322A
Trichloroethene	23	0.50		μg/L	1.0	SW8260B	N/A	3/22/03 19:01	JH	D30322A
Trichlorofluoromethane	<2.0	2.0		µg/L	1.0	SW8260B	N/A	3/22/03 19:01	JH	D30322A
Trichlorotrifluoroethane	6.4	5.0		µg/L	1.0	SW8260B	N/A	3/22/03 19:01	JH	D30322A
1,2,3-Trichloropropane	<1.0	1.0		μg/L	1.0	SW8260B	N/A	3/22/03 19:01	JH	D30322A
1,2,4-Trimethylbenzene	<2.0	2.0		µg/L	1.0	SW8260B	N/A	3/22/03 19:01	JH	D30322A
1,3,5-Trimethylbenzene	<1.5	1.5		µg/L	1.0	SW8260B	N/A	3/22/03 19:01	JH	D30322A
Vinyl acetate	<5.0	5.0		µg/L	1.0	SW8260B	N/A	3/22/03 19:01	J∺	D30322A
Vinyl chloride	< 0.50	0.50		µg/L	1.0	SW8260B	N/A	3/22/03 19:01	JH	D30322A
Xylenes, Total	<3.0	3.0		µg/L	1.0	SW8260B	N/A	3/22/03 19:01	JH	D30322A
4-Bromofluorobenzene(Surrogate)	84	80-107		%REC	1.0	SW8260B	N/A	3/22/03 19:01	JH	D30322A
Dibromofluoromethane(Surrogate)	97	77-104		%REC	1.0	SW8260B	N/A	3/22/03 19:01	JH	D30322A
					4.0	CMBSCOD	MA	2/22/02 10:01	11.3	Danaga

%REC

%REC

1.0

1.0

SW8260B

SW8260B

N/A

N/A

3/22/03 19:01

3/22/03 19:01

JΗ

JH

D30322A

D30322A

CLIENT:

Lab ID:

TRANSWEST GEOCHEM

Amended Report

Date Printed 08-Apr-03

License No. AZM133/AZ0133

Brown & Caldwell Client Sample ID: DIMW2-EB

Work Order: 0303269 Collection Date: 3/19/2003 2:35:00 PM

Matrix: WATER

Project Name: Dolphin **Project Number:** 22413.400

0303269-06

	4-4-4					Test	Date	Date		
Analyte	Result	PQL	Qual	Units	DF	Code	Prepared	Analyzed	Analyst	Batch ID
								· · · · · · · · · · · · · · · · · · ·		
Acetone	<20	20		µg/L	1.0	SW8260B	N/A	3/22/03 19:39	JH	D30322A
Benzene	< 0.50	0.50		hg/L	1.0	SW8260B	N/A	3/22/03 19:39	JH	D30322A
Bromobenzene	<1.5	1.5		µg/L	1.0	SW8260B	N/A	3/22/03 19:39	JH	D30322A
Bromochloromethane	<0.50	0.50		μg/L	1.0	SW8260B	N/A	3/22/03 19:39	JH	D30322A
Bromodichloromethane	0.55	0.50		μg/L	1.0	SW8260B	N/A	3/22/03 19:39	JH	D30322A
Bromoform	<1.0	1.0		µg/L	1.0	SW8260B	N/A	3/22/03 19:39	JH	D30322A
Bromomethane	<5.0	5.0		μg/L	1.0	SW8260B	N/A	3/22/03 19:39	JH	D30322A
2-Butanone	<5.0	5.0		μg/L	1.0	SW8260B	N/A	3/22/03 19:39	JH	D30322A
n-Butylbenzene	<2.5	2.5		μg/L	1.0	SW8260B	N/A	3/22/03 19:39	JH	D30322A
sec-Butylbenzene	<1.5	1.5		μg/L	1.0	SW8260B	N/A	3/22/03 19:39	JH	D30322A
tert-Butylbenzene	<2.5	2.5		μg/L	1.0	SW8260B	N/A	3/22/03 19:39	JH	D30322A
Carbon disulfide	<0.50	0.50		μg/L	1,0	SW8260B	N/A	3/22/03 19:39	JH	D30322A
Carbon tetrachloride	<0.50	0.50		μg/L	1.0	SW8260B	N/A	3/22/03 19:39	JH	D30322A
Chlorobenzene	< 0.50	0.50		µg/L	1.0	SW8260B	N/A	3/22/03 19:39	JH	D30322A
Dibromochloromethane	0.63	0.50		μg/L	1.0	SW8260B	N/A	3/22/03 19:39	JH	D30322A
Chloroethane	<1.0	1.0		μg/L	1.0	SW8260B	N/A	3/22/03 19:39	JH	D30322A
Chloroform	<0.50	0.50		μg/L	1.0	SW8260B	N/A	3/22/03 19:39	JH	D30322A
Chloromethane	<5.0	5.0		μg/L	1.0	SW8260B	N/A	3/22/03 19:39	JH	D30322A
2-Chlorotoluene	<1.5	1.5		µg/L	1.0	SW8260B	N/A	3/22/03 19:39	JH	D30322A
4-Chlorotoluene	<2.0	2.0		μg/L	1.0	SW8260B	N/A	3/22/03 19:39	JH	D30322A
1,2-Dibromo-3-chloropropane	<2.0	2.0		µg/L	1.0	SW8260B	N/A	3/22/03 19:39	JH	D30322A
1,2-Dibromoethane	<0.50	0.50		μg/L	1.0	SW8260B	N/A	3/22/03 19:39	JH	D30322A
Dibromomethane	<0.50	0.50		μg/L	1.0	SW8260B	N/A	3/22/03 19:39	JH	D30322A
1,2-Dichlorobenzene	<1.5	1.5		μg/L	1.0	SW8260B	N/A	3/22/03 19:39	JH	D30322A
1,3-Dichlorobenzene	<1.5	1.5		µg/L	1.0	SW8260B	N/A	3/22/03 19:39	JH	D30322A
1,4-Dichlorobenzene	<1.5	1.5		µg/L	1.0	SW8260B	N/A	3/22/03 19:39	JH	D30322A
Dichlorodifluoromethane	<2.0	2.0		µg/L	1.0	SW8260B	N/A	3/22/03 19:39	JH	D30322A
1,1-Dichloroethane	<1.0	1.0		µg/L	1.0	SW8260B	N/A	3/22/03 19:39	JH	D30322A
1,2-Dichloroethane	<1.0	1.0		μg/L	1.0	SW8260B	N/A	3/22/03 19:39	JH	D30322A
1,1-Dichloroethene	<0.50	0.50		μg/L	1.0	SW8260B	N/A	3/22/03 19:39	JH	D30322A
cis-1,2-Dichloroethene	<0.50	0.50		µg/L	1.0	SW8260B	N/A	3/22/03 19:39	JH	D30322A
trans-1,2-Dichloroethene	<0.50	0.50		µg/L	1.0	SW8260B	N/A	3/22/03 19:39	JH	D30322A
1,2-Dichloropropane	<0.50	0.50		µg/L	1.0	SW8260B	N/A	3/22/03 19:39	JH	D30322A
1,3-Dichloropropane	<1.0	1.0		µg/L	1.0	SW8260B	N/A	3/22/03 19:39	JH	D30322A
, , ,	<0.50	0.50		µg/L	1.0	SW8260B	N/A	3/22/03 19:39	JH	D30322A
2,2-Dichloropropane	<1.0	1.0		µg/L	1.0	SW8260B	N/A	3/22/03 19:39	JH	D30322A
1,1-Dichloropropene cis-1,3-Dichloropropene	<1.0	1.0		µg/L	1.0	SW8260B	N/A	3/22/03 19:39	JH	D30322A
trans-1,3-Dichloropropene	<0.50	0.50		µg/L	1.0	SW8260B	N/A	3/22/03 19:39	JH	D30322A
	<2.0	2.0		µg/L	1.0	SW8260B	N/A	3/22/03 19:39	JH	D30322A
Ethylbenzene Hevachlorobutadiene	<2.5	2.5		µg/L	1.0	SW82608	N/A	3/22/03 19:39	JH	D30322A
Hexachlorobutadiene	<2.5 <5.0	5.0		ha\r	1.0	SW8260B	N/A	3/22/03 19:39	JH	D30322A
2-Hexanone		1.0		ha\r	1.0	SW8260B	N/A	3/22/03 19:39	JH	D30322A
lodomethane	<1.0	1.0		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				w		

Amended Report

Date Printed 08-Apr-03

License No. AZM133/AZ0133

CLIENT:

Brown & Caldwell

Work Order:

0303269

Lab ID:

0303269-06

Project Name: Project Number: 22413.400

Dolphin

Client Sample ID: DIMW2-EB

Collection Date: 3/19/2003 2:35:00 PM

0.00						Test	Date	Date		
Analyte	Result	PQL	Qual	Units	DF	Code	Prepared	Analyzed	Analyst	Batch ID
Isopropylbenzene	<2.5	2.5		μg/L	1.0	SW8260B	N/A	3/22/03 19:39	JH	D30322A
4-Isopropyltoluene	<1.5	1.5		μg/L	1.0	SW8260B	N/A	3/22/03 19:39	JH	D30322A
Methylene chloride	<3.0	3.0		μg/L	1.0	SW8260B	N/A	3/22/03 19:39	JH	D30322A
4-Methyl-2-pentanone	<5.0	5.0		μg/L	1.0	SW8260B	N/A	3/22/03 19:39	JH	D30322A
Methyl tert-butyl ether	<2.0	2.0		µg/L	1.0	SW8260B	N/A	3/22/03 19:39	JH	D30322A
Naphthalene	<5.0	5.0		μg/L	1.0	SW8260B	N/A	3/22/03 19:39	HL	D30322A
n-Propylbenzene	<2.0	2.0		µg/L	1.0	SW8260B	N/A	3/22/03 19:39	JH	D30322A
Styrene	<1.0	1.0		μg/L	1.0	SW8260B	N/A	3/22/03 19:39	JH	D30322A
1,1,1,2-Tetrachloroethane	<0.50	0.50		μg/L	1.0	SW8260B	N/A	3/22/03 19:39	JH	D30322A
1,1,2,2-Tetrachloroethane	<0.50	0.50		μg/L	1.0	SW8260B	N/A	3/22/03 19:39	JH	D30322A
Tetrachloroethene	<0.50	0.50		µg/L	1.0	SW8260B	N/A	3/22/03 19:39	JH	D30322A
Toluene	<3.0	3.0		μg/L	1.0	SW8260B	N/A	3/22/03 19:39	JH	D30322A
1,2,3-Trichlorobenzene	<5.0	5.0		μg/L	1.0	SW8260B	N/A	3/22/03 19:39	JН	D30322A
1,2,4-Trichlorobenzene	<5.0	5.0		µg/L	1.0	SW8260B	N/A	3/22/03 19:39	JH	D30322A
1,1,1-Trichloroethane	< 0.50	0.50		µg/L	1.0	SW8260B	N/A	3/22/03 19:39	JH	D30322A
1,1,2-Trichloroethane	<0.50	0.50		μg/L	1.0	SW8260B	N/A	3/22/03 19:39	JH	D30322A
Trichloroethene	< 0.50	0.50		μg/L	1.0	SW8260B	N/A	3/22/03 19:39	JH	D30322A
Trichlorofluoromethane	<2.0	2.0		μg/L	1.0	SW8260B	N/A	3/22/03 19:39	JH	D30322A
Trichlorotrifluoroethane	<5.0	5.0		μg/L	1.0	SW8260B	N/A	3/22/03 19:39	JH	D30322A
1,2,3-Trichloropropane	<1.0	1.0		µg/L	1.0	SW8260B	N/A	3/22/03 19:39	JH	D30322A
1,2,4-Trimethylbenzene	<2.0	2.0		μg/L	1.0	SW8260B	N/A	3/22/03 19:39	JH	D30322A
1,3,5-Trimethylbenzene	<1.5	1.5		μg/L	1.0	SW8260B	N/A	3/22/03 19:39	JH	D30322A
Vinyl acetate	<5.0	5.0		μg/L	1.0	SW8260B	N/A	3/22/03 19:39	JH	D30322A
Vinyl chloride	< 0.50	0.50		μg/L	1.0	SW8260B	N/A	3/22/03 19:39	JH	D30322A
Xylenes, Total	<3.0	3.0		μg/L	1.0	SW8260B	N/A	3/22/03 19:39	JH	D30322A
4-Bromofluorobenzene(Surrogate)	83	80-107	•	%REC	1.0	SW8260B	N/A	3/22/03 19:39	JH	D30322A
Dibromofluoromethane(Surrogate)	95	77-104		%REC	1.0	SW8260B	N/A	3/22/03 19:39	JH	D30322A
1,2-Dichloroethane-d4(Surrogate)	108	72-111		%REC	1.0	SW8260B	N/A	3/22/03 19:39	JΗ	D30322A
Toluene-d8(Surrogate)	85	84-105		%REC	1.0	SW82608	N/A	3/22/03 19:39	JH	D30322A

TRANSWEST Geochem

Amended Report

Date Printed 08-Apr-03

License No. AZM133/AZ0133

Batch ID

CLIENT: Work Order: Brown & Caldwell

0303269

Lab ID:

0303269-07

Project Name:

Dolphin

Client Sample ID: TB

Collection Date: 3/19/2003 1:18:00 PM

Matrix: TRIP BLANK

Project Number: 2	22413.400								
Analyte	Result	PQL	Qual	Units	DF	Test Code	Date Prepared	Date Analyzed	Analyst
Acetone	<20	20		μg/L	1.0	SW8260B	N/A	3/21/03 20:39	JH
Decemen	<0.50	0.50		ua/l	1.0	SW8260B	N/A	3/21/03 20:39	JH

TRANSWEST GEOCHEM

Amended Report

Date Printed 08-Apr-03

License No. AZM133/AZ0133

CLIENT:

Brown & Caldwell

Work Order:

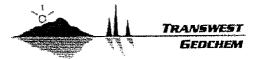
0303269

Lab ID:

0303269-07

Project Name:

Dolphin


Project Number: 22413.400

Client Sample ID: TB

Collection Date: 3/19/2003 1:18:00 PM

Matrix: TRIP BLANK

						Test	Date	Date		
Analyte	Result	PQL	Qual	Units	DF	Code	Prepared	Analyzed	Analyst	Batch ID
isopropylbenzene	<2.5	2.5		µg/L	1.0	SW8260B	N/A	3/21/03 20:39	JH	D30321C
4-Isopropyltoluene	<1.5	1.5		µg/L	1.0	SW8260B	N/A	3/21/03 20:39	JH	D30321C
Methylene chloride	<3.0	3.0		µg/L	1.0	SW8260B	N/A	3/21/03 20:39	JH	D30321C
4-Methyl-2-pentanone	<5.0	5.0		μg/L .	1.0	SW8260B	N/A	3/21/03 20:39	JH	D30321C
Methyl tert-butyl ether	<2.0	2.0		μg/L	1.0	SW8260B	N/A	3/21/03 20:39	JH	D30321C
Naphthalene	<5.0	5.0		μg/L	1.0	SW8260B	N/A	3/21/03 20:39	JH	D30321C
n-Propylbenzene	<2.0	2.0		µg/L	1.0	SW8260B	N/A	3/21/03 20:39	JΗ	D30321C
Styrene	<1.0	1.0		μg/L	1.0	SW82608	N/A	3/21/03 20:39	JH	D30321C
1,1,1,2-Tetrachioroethane	< 0.50	0.50		μg/L	1.0	SW8260B	N/A	3/21/03 20:39	JH	D30321C
1,1,2,2-Tetrachloroethane	< 0.50	0.50		μg/L	1.0	SW8260B	N/A	3/21/03 20:39	JH	D30321C
Tetrachloroethene	< 0.50	0.50		µg/L	1.0	SW8260B	N/A	3/21/03 20:39	JH	D30321C
Toluene	<3.0	3.0		μg/L	1.0	SW8260B	N/A	3/21/03 20:39	JH	D30321C
1,2,3-Trichlorobenzene	<5.0	5.0		µg/L	1.0	SW8260B	N/A	3/21/03 20:39	JH	D30321C
1,2,4-Trichlorobenzene	<5.0	5.0		µg/L	1.0	SW8260B	N/A	3/21/03 20:39	JH	D30321C
1,1,1-Trichloroethane	< 0.50	0.50		µg/L	1.0	SW8260B	N/A	3/21/03 20:39	JH	D30321C
1,1,2-Trichloroethane	< 0.50	0.50		μg/L	1.0	SW8260B	N/A	3/21/03 20:39	JH	D30321C
Trichloroethene	< 0.50	0.50		μg/L	1.0	SW8260B	N/A	3/21/03 20:39	JH	D30321C
Trichlorofluoromethane	<2.0	2.0		µg/L	1.0	SW8260B	N/A	3/21/03 20:39	JH	D30321C
Trichlorotrifluoroethane	<5.0	5.0		hg/L	1.0	\$W8260B	N/A	3/21/03 20:39	JH	D30321C
1,2,3-Trichloropropane	<1.0	1.0		μg/L	1.0	SW8260B	N/A	3/21/03 20:39	JH	D30321C
1,2,4-Trimethylbenzene	<2.0	2.0		μg/L	1.0	SW8260B	N/A	3/21/03 20:39	JH	D30321C
1,3,5-Trimethylbenzene	<1.5	1.5		µg/L	1.0	SW8260B	N/A	3/21/03 20:39	JН	D30321C
Vinyl acetate	<5.0	5.0		µg/L	1.0	SW8260B	N/A	3/21/03 20:39	JH	D30321C
Vinyl chloride	< 0.50	0.50		µg/L	1.0	SW8260B	N/A	3/21/03 20:39	JH	D30321C
Xylenes, Total	<3.0	3.0		µg/L	1.0	SW8260B	N/A	3/21/03 20:39	JH	D30321C
4-Bromofluorobenzene(Surrogate)	84	80-107		%REC	1.0	\$W8260B	N/A	3/21/03 20:39	JH	D30321C
Dibromofluoromethane(Surrogate)	93	77-104		%REC	1.0	SW8260B	N/A	3/21/03 20:39	JH	D30321C
1,2-Dichloroethane-d4(Surrogate)	101	72-111		%REC	1.0	SW8260B	N/A	3/21/03 20:39	JH	D30321C
Toluene-d8(Surrogate)	87	84-105		%REC	1.0	SW8260B	N/A	3/21/03 20:39	JH	D30321C

Date:

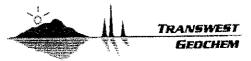
08-Apr-03

License No. AZM133/AZ0133

CLIENT:

Brown & Caldwell

Work Order:


0303269

Project:

Dolphin/22413.400

QC SUMMARY REPORT

Result	PQL	Owel						
	ιQυ	Qual	Units	DF	Code	Prepared	Analyzed Analyst	Batch ID
<20	20		µg/L	1	SW8260B	N/A	3/21/03 11:57:00 AM JH	D30321C
<0.50	0.50		μg/L	1	SW8260B	N/A	3/21/03 11:57:00 AM JH	D30321C
<1.5			µg/L	1	SW8260B	N/A	3/21/03 11:57:00 AM JH	D30321C
<0.50	0.50		μg/L	1	SW8260B	N/A	3/21/03 11:57:00 AM JH	D30321C
<0.50			µg/L	1	SW8260B	N/A	3/21/03 11:57:00 AM JH	D30321C
<1.0	1.0		μg/L	1	SW8260B	N/A	3/21/03 11:57:00 AM JH	D30321C
<5.0	5.0		μg/L	1	SW8260B	N/A	3/21/03 11:57:00 AM JH	D30321C
<5.0	5.0		μg/L	1	SW8260B	N/A	3/21/03 11:57:00 AM JH	D30321C
<2.5	2.5		μg/L	1	SW8260B	N/A	3/21/03 11:57:00 AM JH	D30321C
<1.5	1,5		μg/L	1	SW8260B	N/A	3/21/03 11:57:00 AM JH	D30321C
<2.5	2.5		μg/L	1	SW8260B	N/A	3/21/03 11:57:00 AM JH	D30321C
< 0.50	0.50		μg/L	1	SW8260B	N/A	3/21/03 11:57:00 AM JH	D30321C
<0.50	0.50		µg/L	1	SW8260B	N/A	3/21/03 11:57:00 AM JH	D30321C
<0.50	0.50		µg/L	1	SW8260B	N/A	3/21/03 11:57:00 AM JH	D30321C
< 0.50	0.50		μg/L	1	SW82608	N/A	3/21/03 11:57:00 AM JH	D30321C
<1.0	1.0		μg/L	1	SW8260B	N/A	3/21/03 11:57:00 AM JH	D30321C
< 0.50	0.50		μg/L	1	SW82608	N/A	3/21/03 11:57:00 AM JH	D30321C
<5.0			μg/L	1	SW8260B	N/A	3/21/03 11:57:00 AM JH	D30321C
<1.5	1.5		µg/L	1	SW8260B	N/A	3/21/03 11:57:00 AM JH	D30321C
<2.0	2.0		µg/L	1	SW8260B	N/A	3/21/03 11:57:00 AM JH	D30321C
			μg/L	1	SW82608	N/A	3/21/03 11:57:00 AM JH	D30321C
	0.50		µg/L	1	SW8260B	N/A	3/21/03 11:57:00 AM JH	D30321C
	0.50			1	SW8260B	N/A	3/21/03 11:57:00 AM JH	D30321C
	1.5			1	SW8260B	N/A	3/21/03 11:57:00 AM JH	D30321C
				1	SW82608	N/A	3/21/03 11:57:00 AM JH	D30321C
			μg/L	1	SW8260B	N/A	3/21/03 11:57:00 AM JH	D30321C
	2.0		µg/L	1	SW8260B	N/A	3/21/03 11:57:00 AM JH	D30321C
<1.0	1.0		μg/L	1	SW82608	N/A	3/21/03 11:57:00 AM JH	D30321C
			μg/L	1	SW8260B	N/A	3/21/03 11:57:00 AM JH	D30321C
			μg/L	1	\$W8260B	N/A	3/21/03 11:57:00 AM JH	D30321C
			µg/L	1	SW8260B	N/A	3/21/03 11:57:00 AM JH	D30321C
			μg/L	1	SW8260B	N/A	3/21/03 11:57:00 AM JH	D30321C
				1	SW8260B	N/A	3/21/03 11:57:00 AM JH	D30321C
		V7		1	SW8260B	N/A	3/21/03 11:57:00 AM JH	D30321C
			μg/L	1	SW8260B	N/A	3/21/03 11:57:00 AM JH	D30321C
	1.0		µg/L	1	SW8260B	N/A	3/21/03 11:57:00 AM JH	D30321C
				1	SW8260B	N/A	3/21/03 11:57:00 AM JH	D30321C
			μg/L	1	SW8260B	N/A	3/21/03 11:57:00 AM JH	D30321C
				1	SW8260B	N/A	3/21/03 11:57:00 AM JH	D30321C
				1	SW8260B	N/A	3/21/03 11:57:00 AM JH	D30321C
				1	SW8260B	N/A	3/21/03 11:57:00 AM JH	D30321C
				1	SW8260B	N/A	3/21/03 11:57:00 AM JH	D30321C
				1	SW8260B	N/A	3/21/03 11:57:00 AM JH	D30321C
				1	SW8260B	N/A	3/21/03 11:57:00 AM JH	D30321C
				1		N/A		D30321C
	<1.5 <0.50 <0.50 <1.0 <5.0 <5.0 <2.5 <1.5 <2.5 <0.50 <0.50 <0.50 <1.0 <0.50 <1.5 <2.0 <1.5 <2.0 <1.5 <2.0 <1.5 <2.0 <1.5 <2.0 <1.5 <2.0 <1.5 <2.0 <0.50 <1.5 <2.0 <0.50 <1.5 <2.0 <0.50 <1.5 <2.0 <0.50 <1.5 <1.5 <2.0	<1.5	<1.5	<1.5	<1.5	1.5	SW8260B	Col.

Date:

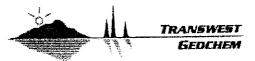
08-Арг-03

License No. AZM133/AZ0133

CLIENT:

Brown & Caldwell

Work Order:


0303269

Project:

Dolphin/22413.400

QC SUMMARY REPORT

Analyte	Result	PQL	Qual	Units	DF	Test Code	Date Prepared	Date Analyzed A	Analyst	Batch ID
4-Methyl-2-pentanone	<5.0	5.0		µg/L	1	SW8260B	N/A	3/21/03 11:57:00 AM	JH	D30321C
Methyl tert-butyl ether	<2.0	2.0		µg/L	1	SW8260B	N/A	3/21/03 11:57:00 AM	JH	D30321C
Naphthalene	<5.0	5.0		μg/L	1	SW8260B	N/A	3/21/03 11:57:00 AM	JH	D30321C
n-Propylbenzene	<2.0	2.0		μg/L	1	SW8260B	N/A	3/21/03 11:57:00 AM	JH	D30321C
Styrene	<1.0	1.0		μg/L	1	SW8260B	N/A	3/21/03 11:57:00 AM	JH	D30321C
1,1,1,2-Tetrachloroethane	<0.50	0.50		μg/L	1	SW8260B	N/A	3/21/03 11:57:00 AM	JH	D30321C
1,1,2,2-Tetrachioroethane	<0.50	0.50		μg/L	1	SW8260B	N/A	3/21/03 11:57:00 AM	JH	D30321C
Tetrachloroethene	<0.50	0.50		μg/L	1	SW8260B	N/A	3/21/03 11:57:00 AM	JΗ	D30321C
Toluene	<3.0	3.0		μg/L	1	SW8260B	N/A	3/21/03 11:57:00 AM	JH	D30321C
1,2,3-Trichlorobenzene	<5.0	5.0		μg/L	1	SW8260B	N/A	3/21/03 11:57:00 AM	JH	D30321C
1,2,4-Trichlorobenzene	<5.0	5.0		μg/L	1	SW8260B	N/A	3/21/03 11:57:00 AM	JH	D30321C
1.1.1-Trichloroethane	<0.50	0.50		µg/L	1	SW8260B	N/A	3/21/03 11:57:00 AM	JH	D30321C
1.1.2-Trichloroethane	<0.50	0.50		μg/L	1	SW8260B	N/A	3/21/03 11:57:00 AM	JH	D30321C
Trichloroethene	< 0.50	0.50		μg/L	1	SW8260B	N/A	3/21/03 11:57:00 AM	JH	D30321C
Trichlorofluoromethane	<2.0	2.0		μg/L	1	SW8260B	N/A	3/21/03 11:57:00 AM	JH	D30321C
Trichtorotrifluoroethane	<5.0	5.0		μg/L	1	SW8260B	N/A	3/21/03 11:57:00 AM	JH	D30321C
1,2,3-Trichloropropane	<1.0	1.0		μg/L	1	SW82608	N/A	3/21/03 11:57:00 AM	JH	D30321C
1,2,4-Trimethylbenzene	<2.0	2.0		µg/L	1	SW82608	N/A	3/21/03 11:57:00 AM	JH	D30321C
1,3,5-Trimethylbenzene	<1.5	1.5		μg/L	1	SW8260B	N/A	3/21/03 11:57:00 AM	JН	D30321C
Vinyl acetate	<5.0	5.0		μg/L	1	SW8260B	N/A	3/21/03 11:57:00 AM	JH	D30321C
Vinyl chloride	< 0.50	0.50		μg/L	1	SW8260B	N/A	3/21/03 11:57:00 AM	JH	D30321C
Xylenes, Total	<3.0	3.0		μg/L	1	SW8260B	N/A	3/21/03 11:57:00 AM	JH	D30321C
4-Bromofluorobenzene	83	80-107		%REC	1	SW8260B	N/A	3/21/03 11:57:00 AM	JH	D30321C
Dibromofluoromethane	92	77-104		%REC	1	SW8260B	N/A	3/21/03 11:57:00 AM	JH	D30321C
1.2-Dichloroethane-d4	99	72-111		%REC	1	SW8260B	N/A	3/21/03 11:57:00 AM	JH	D30321C
Toluene-d8	94	84-105		%REC	1	SW8260B	N/A	3/21/03 11:57:00 AM	JH	D30321C

Date:

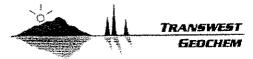
08-Apr-03

License No. AZM133/AZ0133

CLIENT:

Brown & Caldwell

Work Order:


0303269

Project:

Dolphin/22413.400

QC SUMMARY REPORT

						Test	Date	Date	
Analyte	Result	PQL	Qual	Units	DF	Code	Prepared	Analyzed Analyst	Batch ID
Acetone	<20	20		μg/L	1	SW8260B	N/A	3/22/03 3:56:00 PM JH	D30322A
Benzene	< 0.50	0.50		μg/L	1	SW8260B	N/A	3/22/03 3:56:00 PM JH	D30322A
Bromobenzene	<1,5	1.5		μg/L	1	SW8260B	N/A	3/22/03 3:56:00 PM JH	D30322A
Bromochioromethane	<0.50	0.50		μg/L	1	SW8260B	N/A	3/22/03 3:56:00 PM JH	D30322A
Bromodichloromethane	<0.50	0.50		μg/L	1	SW8260B	N/A	3/22/03 3:56:00 PM JH	D30322A
Bromoform	<1.0	1.0		μg/L	1	SW8260B	N/A	3/22/03 3:56:00 PM JH	D30322A
Bromomethane	<5.0	5.0		μg/L	1	SW8260B	N/A	3/22/03 3:56:00 PM JH	D30322A
2-Butanone	<5.0	5.0		µg/L	1	SW8260B	N/A	3/22/03 3:56:00 PM JH	D30322A
n-Butylbenzene	<2.5	2.5		μg/L	1	SW8260B	N/A	3/22/03 3:56:00 PM JH	D30322A
sec-Butylbenzene	<1.5	1.5		μg/L	1	SW8260B	N/A	3/22/03 3:56:00 PM JH	D30322A
tert-Butylbenzene	<2.5	2.5		μg/L	1	SW8260B	N/A	3/22/03 3:56:00 PM JH	D30322A
Carbon disulfide	< 0.50	0.50		µg/L	1	SW8260B	N/A	3/22/03 3:56:00 PM JH	D30322A
Carbon tetrachloride	<0.50	0.50		µg/L	1	SW8260B	N/A	3/22/03 3:56:00 PM JH	D30322A
Chlorobenzene	< 0.50	0.50		µg/L	1	SW8260B	N/A	3/22/03 3:56:00 PM JH	D30322A
Onlorobenzene Dibromochloromethane	< 0.50	0.50		µg/L	1	SW8260B	N/A	3/22/03 3:56:00 PM JH	D30322A
Obloromochioromethane Chloroethane	<0.50 <1.0	1.0		µg/L	1	SW8260B	N/A	3/22/03 3:56:00 PM JH	D30322A
	<0.50	0.50		µg/L	1	SW8260B	N/A	3/22/03 3:56:00 PM JH	D30322A
Chloroform		5.0		µg/L	1	SW8260B	N/A	3/22/03 3:56:00 PM JH	D30322A
Chloromethane	<5.0	1.5		µg/L	1	SW8260B	N/A	3/22/03 3:56:00 PM JH	D30322A
2-Chlorotoluene	<1.5	2,0		µg/L	1	SW8260B	N/A	3/22/03 3:56:00 PM JH	D30322A
4-Chlorotoluene	<2.0			µg/L	1	SW8260B	N/A	3/22/03 3:56:00 PM JH	D30322A
1,2-Dibromo-3-chloropropane	<2.0	2.0		µg/L	1	SW8260B	N/A	3/22/03 3:56:00 PM JH	D30322A
1,2-Dibromoethane	<0.50	0.50		μg/L μg/L	1	SW8260B	N/A	3/22/03 3:56:00 PM JH	D30322A
Dibromomethane	<0.50	0.50		μg/L	1	SW8260B	N/A	3/22/03 3:56:00 PM JH	D30322A
1,2-Dichlorobenzene	<1.5	1.5		µg/L	1	SW8260B	N/A	3/22/03 3:56:00 PM JH	D30322A
1,3-Dichlorobenzene	<1.5	1.5			1	SW8260B	N/A	3/22/03 3:56:00 PM JH	D30322A
1,4-Dichlorobenzene	<1.5	1.5		µg/L	1	SW8260B	N/A	3/22/03 3:56:00 PM JH	D30322A
Dichlorodifluoromethane	<2.0	2.0		µg/L	1	SW8260B	N/A	3/22/03 3:56:00 PM JH	D30322A
1,1-Dichloroethane	<1.0	1.0		μg/L	1	SW8260B	N/A	3/22/03 3:56:00 PM JH	D30322A
1,2-Dichloroethane	<1.0	1.0		μg/L	1	SW8260B	N/A	3/22/03 3:56:00 PM JH	D30322A
1,1-Dichioroethene	<0.50	0.50		µg/L	1	SW8260B	N/A	3/22/03 3:56:00 PM JH	D30322A
cis-1,2-Dichloroethene	<0.50	0.50		µg/L	•	SW8260B	N/A	3/22/03 3:56:00 PM JH	D30322A
trans-1,2-Dichloroethene	<0.50	0.50		µg/L	1	SW8260B	N/A	3/22/03 3:56:00 PM JH	D30322A
1,2-Dichloropropane	<0.50	0.50		μg/L "	1		N/A	3/22/03 3:56:00 PM JH	D30322A
1,3-Dichloropropane	<1.0	1.0		μg/L "	1	SW8260B	N/A	3/22/03 3:56:00 PM JH	D30322A
2,2-Dichloropropane	<0.50	0.50		hg/r	1	SW8260B SW8260B	N/A	3/22/03 3:56:00 PM JH	D30322A
1,1-Dichloropropene	<1.0	1.0		µg/L	1	• •		3/22/03 3:56:00 PM JH	D30322A
cis-1,3-Dichloropropene	<1.0	1.0		μg/L	1	SW8260B	N/A	3/22/03 3:56:00 PM JH	D30322A
trans-1,3-Dichloropropene	<0.50	0.50		hâ\ŗ	1	SW8260B	N/A		D30322A
Ethylbenzene	<2.0	2.0		hâ/r	1	SW8260B	N/A	3/22/03 3:56:00 PM JH	D30322A
Hexachlorobutadiene	<2.5	2.5		μg/L	1	SW8260B	N/A	3/22/03 3:56:00 PM JH	D30322A
2-Hexanone	<5.0	5.0		µg/L	1	SW8260B	N/A	3/22/03 3:56:00 PM JH	D30322A
lodomethane	<1.0	1.0		ha\r	1	SW8260B	N/A	3/22/03 3:56:00 PM JH	
Isopropylbenzene	<2.5	2.5		µg/L	1	SW8260B	N/A	3/22/03 3:56:00 PM JH	D30322A
4-Isopropyltoluene	<1.5	1.5		µg/L	1	SW8260B	N/A	3/22/03 3:56:00 PM JH	D30322A
Methylene chloride	<3.0	3.0		µg/L	1	SW8260B	N/A	3/22/03 3:56:00 PM JH	D30322A

Date:

08-Apr-03

License No. AZM133/AZ0133

CLIENT:

Brown & Caldwell

Work Order:

0303269

Project:

Dolphin/22413.400

QC SUMMARY REPORT

						Test	Date	Date		
Analyte	Result	PQL	Qual	Units	DF	Code	Prepared	Analyzed A	Analyst	Batch ID
4-Methyl-2-pentanone	<5.0	5.0		μg/L	1	SW8260B	N/A	3/22/03 3:56:00 PM	JH	D30322A
Methyl tert-butyl ether	<2.0	2.0		μg/L	1	SW8260B	N/A	3/22/03 3:56:00 PM	JH	D30322A
Naphthalene	<5.0	5.0		μg/L	1	SW8260B	N/A	3/22/03 3:56:00 PM	JH	D30322A
n-Propylbenzene	<2.0	2.0		µg/L	1	SW8260B	N/A	3/22/03 3:56:00 PM	JH	D30322A
Styrene	<1.0	1.0		μg/L	1	SW8260B	N/A	3/22/03 3:56:00 PM	JH	D30322A
1,1,1,2-Tetrachloroethane	< 0.50	0.50		µg/L	1	SW8260B	N/A	3/22/03 3:56:00 PM	JH	D30322A
1,1,2,2-Tetrachloroethane	< 0.50	0.50		μg/L	1	SW8260B	N/A	3/22/03 3:56:00 PM	JH	D30322A
Tetrachloroethene	< 0.50	0.50		μg/L	1	SW8260B	N/A	3/22/03 3:56:00 PM	JH	D30322A
Toluene	<3.0	3.0		μg/L	1	SW8260B	N/A	3/22/03 3:56:00 PM	JH	D30322A
1,2,3-Trichlorobenzene	<5.0	5.0		μg/L	1	SW8260B	N/A	3/22/03 3:56:00 PM	JH	D30322A
1,2,4-Trichlorobenzene	<5.0	5.0		μg/L	1	SW8260B	N/A	3/22/03 3:56:00 PM	JH	D30322A
1,1,1-Trichloroethane	<0.50	0.50		μg/L	1	SW8260B	N/A	3/22/03 3:56:00 PM	JH	D30322A
1,1,2-Trichloroethane	< 0.50	0.50		μg/L	1	SW8260B	N/A	3/22/03 3:56:00 PM	JH	D30322A
Trichloroethene	<0.50	0.50		µg/L	1	SW8260B	N/A	3/22/03 3:56:00 PM	JH	D30322A
Trichlorofluoromethane	<2.0	2.0		μg/L	1	SW8260B	N/A	3/22/03 3:56:00 PM	JH	D30322A
Trichlorotrifluoroethane	<5.0	5.0		μg/L	1	SW8260B	N/A	3/22/03 3:56:00 PM	jΗ	D30322A
1,2,3-Trichloropropane	<1.0	1.0		μg/L	1	SW8260B	N/A	3/22/03 3:56:00 PM	JH	D30322A
1,2,4-Trimethylbenzene	<2.0	2.0		µg/L	1	SW8260B	N/A	3/22/03 3:56:00 PM	JH	D30322A
1,3,5-Trimethylbenzene	<1.5	1.5		μg/L	1	SW8260B	N/A	3/22/03 3:56:00 PM	JH	D30322A
Vinyl acetate	<5.0	5.0		μg/L	1	SW8260B	N/A	3/22/03 3:56:00 PM	JH	D30322A
Vinyl chloride	<0.50	0.50		µg/L	1	SW6260B	N/A	3/22/03 3:56:00 PM	JH	D30322A
Xylenes, Total	<3.0	3.0		µg/L	1	SW8260B	N/A	3/22/03 3:56:00 PM	JH	D30322A
4-Bromofluorobenzene	83	80-107		%REC	1	SW8260B	N/A	3/22/03 3:56:00 PM	JH	D30322A
Dibromofluoromethane	94	77-104		%REC	1	SW8260B	N/A	3/22/03 3:56:00 PM	JH	D30322A
1.2-Dichloroethane-d4	102	72-111		%REC	1	SW82608	N/A	3/22/03 3:56:00 PM	JH	D30322A
Toluene-d8	86	84-105		%REC	1	SW8260B	N/A	3/22/03 3:56:00 PM	JH	D30322A

Date:

09-Apr-03

License No. AZM133/AZ0133

CLIENT:

Brown & Caldwell

Work Order:

0303269

Project:

Dolphin/22413.400

QC SUMMARY REPORT

						Test	Date	Date	
Analyte	Result	PQL	Qual	Units	DF	Code	Prepared	Analyzed Analyst	Batch II
Acetone	<20	20		μg/L	1	SW8260B	N/A	3/25/03 11:19:00 PM JH	D30325B
Benzene	< 0.50	0.50		µg/L	1	SW8260B	N/A	3/25/03 11:19:00 PM JH	D30325B
Bromobenzene	<1.5	1.5		μg/L	1	SW8260B	N/A	3/25/03 11:19:00 PM JH	D303258
3romochloromethane	<0.50	0.50		hg/r	1	SW8260B	N/A	3/25/03 11:19:00 PM JH	D30325B
Bromodichloromethane	<0.50	0.50		րց/Լ	1	SW8260B	N/A	3/25/03 11:19:00 PM JH	D30325B
Bromoform	<1.0	1.0		µg/L	1	SW8260B	N/A	3/25/03 11:19:00 PM JH	D30325B
3romomethane	<5.0	5.0		µg/L	1	SW8260B	N/A	3/25/03 11:19:00 PM JH	D30325B
2-Butanone	<5.0	5.0		µg/L	1	SW8260B	N/A	3/25/03 11:19:00 PM JH	D303258
-Butylbenzene	<2.5	2.5		μg/L	1	SW8260B	N/A	3/25/03 11:19:00 PM JH	D30325B
ec-Butylbenzene	<1.5	1.5		µg/L	.1	SW8260B	N/A	3/25/03 11:19:00 PM JH	D30325B
ert-Butylbenzene	<2.5	2.5		μg/L	1	SW8260B	N/A	3/25/03 11:19:00 PM JH	D30325B
Carbon disulfide	< 0.50	0.50		µg/L	1	SW8260B	N/A	3/25/03 11:19:00 PM JH	D30325B
Carbon tetrachloride	<0.50	0.50		µg/L	1	SW8260B	N/A	3/25/03 11:19:00 PM JH	D30325B
Chlorobenzene	<0.50	0.50		µg/L	1	SW8260B	N/A	3/25/03 11:19:00 PM JH	D30325B
Dibromochioromethane	<0.50	0.50		µg/L	1	SW8260B	N/A	3/25/03 11:19:00 PM JH	D30325B
Chloroethane	<1.0	1.0		μg/L	1	SW8260B	N/A	3/25/03 11:19:00 PM JH	D30325B
Chloroform	< 0.50	0.50		μg/L	1	SW82608	NA	3/25/03 11:19:00 PM JH	D30325B
hloromethane	<5.0	5.0		μg/L	1	SW82608	N/A	3/25/03 11:19:00 PM JH	D30325B
-Chiorotoluene	<1.5	1.5		µg/L	1	SW8260B	N/A	3/25/03 11:19:00 PM JH	D30325B
-Chiorotoluene	<2.0	2.0		µg/L	1	SW8260B	N/A	3/25/03 11:19:00 PM JH	D303258
,2-Dibromo-3-chloropropane	<2.0	2.0		µg/L	1	SW8260B	N/A	3/25/03 11:19:00 PM JH	D30325B
,2-Dibromoethane	< 0.50	0.50		µg/L	1	SW8260B	N/A	3/25/03 11:19:00 PM JH	D30325B
ibromomethane	< 0.50	0.50		μg/L	1	SW8260B	N/A	3/25/03 11:19:00 PM JH	D30325B
,2-Dichiorobenzene	<1.5	1.5		µg/L	1	SW8260B	N/A	3/25/03 11:19:00 PM JH	D30325B
,3-Dichiorobenzene	<1.5	1,5		µg/L	1 .	SW82608	N/A	3/25/03 11:19:00 PM JH	D30325B
,4-Dichlorobenzene	<1.5	1.5		µg/∟	1	SW8260B	N/A	3/25/03 11:19:00 PM JH	D30325B
ichlorodifluoromethane	<2.0	2.0		µg/L	1	SW8260B	N/A	3/25/03 11:19:00 PM JH	D30325B
,1-Dichloroethane	<1.0	1.0		μg/L	1	SW8260B	N/A	3/25/03 11:19:00 PM JH	D303258
,2-Dichloroethane	<1.0	1.0		µg/L	1	SW82608	N/A	3/25/03 11:19:00 PM JH	D30325B
,1-Dichloroethene	< 0.50	0.50		µg/L	1	SW82608	N/A	3/25/03 11:19:00 PM JH	D30325B
is-1,2-Dichloroethene	<0,50	0.50		µg/L	1	SW8260B	N/A	3/25/03 11:19:00 PM JH	D303259
rans-1,2-Dichloroethene	< 0.50	0.50		μg/L	1	SW8260B	N/A	3/25/03 11:19:00 PM JH	D30325B
,2-Dichloropropane	< 0.50	0.50		µg/L	1	SW8260B	N/A	3/25/03 11:19:00 PM JH	D303258
,3-Dichloropropane	<1.0	1.0		µg/L	1	SW8260B	N/A	3/25/03 11:19:00 PM JH	D30325B
,2-Dichloropropane	< 0.50	0.50		µg/L	1	SW8260B	N/A	3/25/03 11:19:00 PM JH	D30325B
,1-Dichloropropene	<1.0	1.0		μg/L	1	SW8260B	N/A	3/25/03 11:19:00 PM JH	D30325B
is-1,3-Dichloropropene	<1.0	1.0		μg/L	1	SW8260B	N/A	3/25/03 11:19:00 PM JH	D30325B
ans-1,3-Dichloropropene	< 0.50	0.50		µg/L	1	SW8260B	N/A	3/25/03 11:19:00 PM JH	D30325B
thylbenzene	<2.0	2.0		μg/L	1	SW8260B	N/A	3/25/03 11:19:00 PM JH	D30325B
lexachlorobutadiene	<2.5	2.5		μg/L	1	SW8260B	N/A	3/25/03 11:19:00 PM JH	D30325B
-Hexanone	<5.0	5.0		μg/L	1	SW8260B	N/A	3/25/03 11:19:00 PM JH	D30325B
odomethane	<1.0	1.0		µg/L	1	SW8260B	N/A	3/25/03 11:19:00 PM JH	D303258
sopropylbenzene	<2.5	2.5		µg/L	1	SW8260B	N/A	3/25/03 11:19:00 PM JH	D30325B
1-Isopropyltoluene	<1.5	1.5		μg/L	1	SW8260B	N/A	3/25/03 11:19:00 PM JH	D303258
Vlethylene chloride	<3.0	3.0		µg/L	1	SW8260B	N/A	3/25/03 11:19:00 PM JH	D30325B

Date:

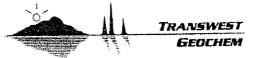
09-Apr-03

License No. AZM133/AZ0133

CLIENT:

Brown & Caldwell

Work Order:


0303269

Project:

Dolphin/22413.400

QC SUMMARY REPORT

			-			Test	Date	Date		
Analyte	Result	PQL	Qual	Units	DF	Code	Prepared	Analyzed An	nalyst	Batch ID
4-Methyi-2-pentanone	<5.0	5.0		µg/L	1	SW8260B	N/A	3/25/03 11:19:00 PM	ĴΗ	D30325B
Methyl tert-butyl ether	<2.0	2.0		µg/L	1	SW8260B	N/A	3/25/03 11:19:00 PM	JH	D30325B
Naphthalene	<5.0	5.0		µg/L	1	SW8260B	N/A	3/25/03 11:19:00 PM	JH	D30325B
n-Propylbenzene	<2.0	2.0		µg/L	1	SW8260B	N/A	3/25/03 11:19:00 PM	JH	D30325B
Styrene	<1.0	1.0		μg/L	1	SW8260B	N/A	3/25/03 11:19:00 PM	JH	D30325B
1,1,1,2-Tetrachloroethane	<0.50	0.50		μg/L	1	SW8260B	N/A	3/25/03 11:19:00 PM	ĴΗ	D30325B
1,1,2,2-Tetrachloroethane	<0.50	0.50		µg/L	1	SW8260B	N/A	3/25/03 11:19:00 PM	JH	D30325B
Tetrachloroethene	<0.50	0.50		μg/L	1	SW8260B	N/A	3/25/03 11:19:00 PM	JH	D30325B
Toluene	<3.0	3.0		µg/L	1	SW8260B	N/A	3/25/03 11:19:00 PM	JH	D30325B
1,2,3-Trichlorobenzene	<5.0	5.0		µg/L	1	SW8260B	N/A	3/25/03 11:19:00 PM	JH	D30325B
1,2,4-Trichlorobenzene	<5.0	5.0		µg/L	1	SW8260B	N/A	3/25/03 11:19:00 PM	JН	D30325B
1,1,1-Trichloroethane	<0.50	0.50		µg/L	1	SW8260B	N/A	3/25/03 11:19:00 PM	JΗ	D30325B
1,1,2-Trichioroethane	<0.50	0.50		μg/L	1	SW8260B	N/A	3/25/03 11:19:00 PM	JH	D30325B
Trichloroethene	<0.50	0.50		μg/L	1	SW8260B	N/A	3/25/03 11:19:00 PM	JH	D30325B
Trichlorofluoromethane	<2.0	2.0		µg/L	1	SW8260B	N/A	3/25/03 11:19:00 PM	JH	D30325B
Trichlorotrifluoroethane	<5.0	5.0		μg/L	1	SW8260B	N/A	3/25/03 11:19:00 PM	JH	D30325B
1,2,3-Trichloropropane	<1.0	1.0		hg/L	1	SW8260B	N/A	3/25/03 11:19:00 PM	JH	D30325B
1.2.4-Trimethylbenzene	<2.0	2.0		μg/L	1	SW8260B	N/A	3/25/03 11:19:00 PM	JH	D30325B
1,3,5-Trimethylbenzene	<1.5	1.5		μg/L	1	SW8260B	N/A	3/25/03 11:19:00 PM	JH	D30325B
Vinyl acetate	<5.0	5.0		µg/L	1	SW8260B	N/A	3/25/03 11:19:00 PM	JH	D30325B
Vinyl chloride	<0.50	0.50		µg/L	1	SW8260B	N/A	3/25/03 11:19:00 PM	JH	D30325B
Xylenes, Total	<3.0	3.0		µg/L	1	SW8260B	N/A	3/25/03 11:19:00 PM	JH	D30325B
4-Bromofluorobenzene	94	80-107		%REC	1	SW8260B	N/A	3/25/03 11;19:00 PM	JH	D30325B
Dibromofluoromethane	85	77-104		%REC	1	SW8260B	N/A	3/25/03 11:19:00 PM .	JH	D303258
1,2-Dichloroethane-d4	82	72-111		%REC	1	SW8260B	N/A	3/25/03 11:19:00 PM	JH	D30325B
Toluene-d8	93	84-105		%REC	1	SW82608	N/A	3/25/03 11:19:00 PM .	JH	D30325B

Date:

08-Apr-03

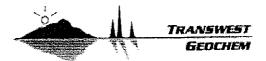
License No. AZM133/AZ0133

CLIENT:

Brown & Caldwell

Work Order:

0303269


Project:

Dolphin/22413.400

QC SUMMARY REPORT

Sample Matrix Spike

Analyte	Result	PQL	SPK value	SPK Ref Val	% Rec	Low Limit	High Limit	RPD Ref Val	% RPD	RPD Limit	Qual
Sample ID: 0303207-13AS	Batch ID: D36	0321C		Test	Code: S	W8260B		Date Analy	zed: 03	/21/03 18:	08
Client ID:				Units	s: μg/L			Date Prepa	red: N/A	\ 	
Benzene	22.00	0.50	20.00	<0.50	110%	82	119				
Chlorobenzene	18.54	0.50	20.00	< 0.50	93%	82	110				
1,1-Dichloroethene	21.80	0.50	20.00	< 0.50	109%	84	140				
Toluene	19.28	3.0	20.00	<3.0	96%	81	114				
Crichloroethene	19.69	0.50	20.00	< 0.50	98%	78	119				
1-Bromofluorobenzene	40.33	N/A	50.00	N/A	81%	80	107				
Dibromofluoromethane	46.74	N/A	50.00	N/A	93%	77	104				
1,2-Dichloroethane-d4	49.06	N/A	50.00	N/A	98%	72	111				
Toluene-d8	43.63	N/A	50.00	N/A	87%	. 84	105				
Sample ID: 0303207-13ASD	Batch ID: D3	0321C		Test	Code: S	W8260B		Date Analy	zed: 03	/21/03 18:	46
Client ID:				Unit	s: μg/L			Date Prepa	red: N/A	<u></u>	
Benzene	20,42	0.50	20.00	<0.50	102%	82	119	22.00	7%	13	
Chlorobenzene	17.84	0.50	20.00	< 0.50	89%	82	110	18.54	4%	13	
1,1-Dichloroethene	20.68	0.50	20.00	<0.50	103%	84	140	21.80	5%	15	
Toluene	18.65	3.0	20.00	<3.0	93%	81	114	19.28	3%	14	
Trichloroethene	18.73	0.50	20.00	< 0.50	94%	78	119	19.69	5%	16	
4-Bromofluorobenzene	40.03	N/A	50.00	N/A	80%	80	107				
Dibromofluoromethane	46.57	N/A	50.00	N/A	93%	77	104				
1,2-Dichloroethane-d4	48.59	N/A	50.00	N/A	97%	72	111				
Toluene-d8	43.99	N/A	50.00	N/A	88%	84	105				
Sample ID: 0303207-17AS	Batch ID: D3	0322A		Test	Code: S	W8260B		Date Analy	zed: 03	/22/03 20:	16
Client ID:				Unit	s: μg/L			Date Prepa	red: N/A	A	
Benzene	19.95	0.50	20.00	<0.50	100%	82	119				
Chlorobenzene	16.58	0.50	20.00	< 0.50	83%	82	110				
1,1-Dichloroethene	19.46	0.50	20.00	<0.50	97%	84	140				
Toluene	17.29	3.0	20.00	<3.0	86%	81	114				
Trichloroethene	17.84	0.50	20.00	< 0.50	89%	78	119				
4-Bromofluorobenzene	40.95	N/A	50.00	N/A	82%	80	107				
Dibromofluoromethane	48.87	N/A	50.00	N/A	98%	77	104				
1,2-Dichloroethane-d4	53.95	N/A	50.00	N/A	108%	72	111				
Toluene-d8	43.86	N/A	50.00	N/A	88%	84	105				

Date:

08-Apr-03

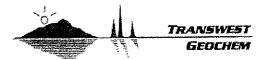
License No. AZM133/AZ0133

CLIENT:

Brown & Caldwell

Work Order:

0303269


Project:

Dolphin/22413.400

QC SUMMARY REPORT

Sample Matrix Spike

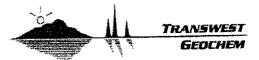
Amaluta	P ocult	PQL	SPK value	SPK Ref Val	% Rec	Low Limit	High Limit	RPD Ref Val	% RPD	RPD Limit	Qual
Analyte	Result		value		Code: S		CHILL	Date Analyz			
Sample ID: 0303207-17ASD	Batch ID: D30)322A				W 820013					34
Client ID:				Units	;; μg/L			Date Prepar	ed: N/A		
Benzene	20.97	0.50	20.00	< 0.50	105%	82	119	19.95	5%	13	
Chlorobenzene	17.51	0.50	20.00	< 0.50	88%	82	110	16.58	5%	13	
1,1-Dichloroethene	20.72	0.50	20.00	< 0.50	104%	. 84	140	19.46	6%	15	
l'oluene	18.27	3.0	20.00	<3.0	91%	81	114	17.29	6%	14	
Frichloroethene	19.14	0.50	20.00	< 0.50	96%	78	119	17.84	7%	16	
4-Bromofluorobenzene	40.21	N/A	50.00	N/A	80%	80	107				
Dibromofluoromethane	47.99	N/A	50.00	N/A	96%	77	104				
1,2-Dichloroethane-d4	52.29	N/A	50.00	N/A	105%	72	111				
Toluene-d8	42.99	N/A	50.00	N/A	86%	84	105			.,	
Sample ID: 0303207-28AS	Batch ID: D3	0325B		Test	Code: S	W8260B		Date Analya	zed: 03/	/26/03 03:0	05
Client ID:				Units	s: μg/l,			Date Prepar	ed: N/A		
Benzene	19.89	0.50	20.00	<0.50	99%	82	119				
Chlorobenzene	18.47	0.50	20.00	< 0.50	92%	82	110				
1,1-Dichloroethene	20.98	0.50	20.00	< 0.50	105%	84	140				
Toluene	18.84	3.0	20.00	<3.0	94%	81	114				
Trichloroethene	17.95	0.50	20.00	< 0.50	90%	78	119				
4-Bromofluorobenzene	44.30	N/A	50.00	N/A	89%	08	107				
Dibromofluoromethane	42.70	N/A	50.00	N/A	85%	77	104				
1,2-Dichloroethane-d4	40.84	N/A	50.00	N/A	82%	72	111				
Toluene-d8	45.95	N/A	50.00	N/A	92%	84	105				
Sample ID: 0303207-28ASD	Batch ID: D3	0325B		Test	Code: S	W8260B		Date Analya	zed: 03/	26/03 03:4	43
Client ID:				Unit	s: μg/L			Date Prepar	ed: N/A	·	
Benzene	20.80	0.50	20.00	<0.50	104%	82	119	19.89	4%	13	
Chlorobenzene	19.59	0.50	20.00	< 0.50	98%	82	110	18.47	6%	13	
1,1-Dichloroethene	21.74	0.50	20.00	< 0.50	109%	84	140	20.98	4%	15	
Toluene	20.12	3.0	20.00	<3.0	101%	81	114	18.84	7%	14	
Trichloroethene	19.23	0.50	20.00	< 0.50	96%	78	119	17.95	7%	16	
4-Bromofluorobenzene	45.44	N/A	50.00	N/A	91%	80	107				
Dibromofluoromethane	41.51	N/A	50.00	N/A	83%	77	104				
1,2-Dichloroethane-d4	38.87	N/A	50.00	N/A	78%	72	111				
Toluene-d8	46.18	N/A	50.00	N/A	92%	84	105				

Date:

08-Apr-03

License No. AZM133/AZ0133

CLIENT:


Brown & Caldwell

Work Order:

0303269

QC SUMMARY REPORT

Work Order:	0303269								0	0	D1	
Project:	Dolphin/2	2413.400							Second	ary 50	urce Bi	ank Spike
Analyte		Result	PQL	SPK value	SPK Ref Val	% Rec	Low Limit	High Limit	RPD Ref Val	% RPD	RPD Limit	Qual
Sample ID: LCSV-	D30321A	Batch ID: D30	321C		Test	Code: S	W8260B		Date Analyz	ed: 03/	21/03 10:4	1
-					Units	s; μg/L			Date Prepare	ed: N/A		
Benzene		22.05	0.50	20.00	<0.50	110%	81	120				
Chlorobenzene		18.60	0.50	20.00	< 0.50	93%	85	111				
1,1-Dichloroethene		20.24	0.50	20.00	< 0.50	101%	66	151				
Toluene		19.82	3.0	20.00	<3.0	99%	82	115				
Trichloroethene		20.06	0.50	20.00	< 0.50	100%	79	112				
4-Bromofluorobenzene		41.58	N/A	50.00	N/A	83%	80	107				
Dibromofluoromethane		45.42	N/A	50.00	N/A	91%	77	104				
1,2-Dichloroethane-d4		48.44	N/A	50.00	N/A	97%	72	111				
Toluene-d8		43.66	N/A	50.00	N/A	87%	84	105				
Sample ID: LCSVI	D-D30321A	Batch ID: D30	321C		Test	Code: S	W8260B		Date Analyz	ed: 03/	21/03 11:1	9
					Units	; μg/L			Date Prepare	ed: N/A		
Benzene		20.68	0.50	20.00	<0,50	103%	81	120	22.05	6%	16	
Chlorobenzene		17.74	0.50	20.00	< 0.50	89%	85	111	18.60	5%	14	
1,1-Dichloroethene		19.60	0.50	20.00	< 0.50	98%	66	151	20.24	3%	16	
Toluene		18.19	3.0	20.00	<3.0	91%	82	115	19.82	9%	16	
Trichloroethene		18.48	0.50	20.00	< 0.50	92%	79	112	20.06	8%	18	
4-Bromofluorobenzene		40.10	N/A	50.00	N/A	80%	80	107				
Dibromofluoromethane		45.96	N/A	50.00	N/A	92%	77	104				
1,2-Dichloroethane-d4		49.39	N/A	50.00	N/A	99%	72	111				
Toluene-d8		42.90	N/A	50.00	N/A	86%	84	105			******	
Sample ID: LCSV	-D30322A	Batch ID: D3()322A		Test	Code: S	W8260B		Date Analyz	ed: 03/2	22/03 14:40	0
					Units	;: μg/L			Date Prepare	d: N/A		
Benzene		20.71	0.50	20.00	<0.50	104%	81	120	,			
Chlorobenzene		18.58	0.50	20.00	< 0.50	93%	85	111				
1,1-Dichloroethene		19.45	0.50	20.00	< 0.50	97%	66	151				
Toluene		20.76	3.0	20.00	<3.0	104%	82	115				
Trichloroethene		18.69	0.50	20.00	< 0.50	93%	79	112				
4-Bromofluorobenzene		41.29	N/A	50.00	N/A	83%	80	107				
Dibromofluoromethane		43.76	N/A	50.00	N/A	88%	77	104				
1,2-Dichloroethane-d4		47.25	N/A	50.00	N/A	95%	72	111				
Toluene-d8		45.67	N/A	50.00	N/A	91%	84	105				Marrier (Walt Was on America committee and a count of buildy to

Date:

08-Apr-03

License No. AZM133/AZ0133

CLIENT:

Brown & Caldwell

Work Order:

0303269

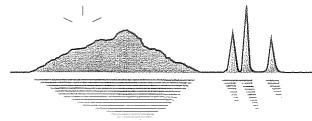
Project:

Dolphin/22413.400

QC SUMMARY REPORT

Secondary Source Blank Spike Duplicate

Analyte	Result	PQL	SPK value	SPK Ref Val	% Rec	Low Limit	High Limit	RPD Ref Val	% RPD	RPD Limit	Qual
Sample ID: LCSVD-D30322A	Batch ID: D3	0322A		Test	Code: S	W8260B		Date Analy:	zed: 03/	/22/03 15:	18
·				Units	s; μg/L			Date Prepar	ed: N/A	.,	
Benzene	20.47	0.50	20.00	<0.50	102%	81	120	20.71	1%	16	
Chlorobenzene	17.43	0.50	20.00	< 0.50	87%	85	111	18.58	6%	14	
1,1-Dichloroethene	19.36	0.50	20.00	< 0.50	97%	66	151	19.45	0%	16	
l'oluene	17.86	3.0	20.00	<3.0	89%	82	115	20.76	15%	16	
Trichloroethene	18.86	0.50	20.00	< 0.50	94%	79	112	18.69	1%	18	
4-Bromofluorobenzene	40.27	N/A	50.00	N/A	81%	80	107				
Dibromofluoromethane	47.07	N/A	50.00	N/A	94%	77	104				
1,2-Dichloroethane-d4	49.78	N/A	50.00	N/A	100%	72	111				
Toluene-d8	42.23	N/A	50.00	N/A	84%	84	105				
Sample ID: LCSV-D3025B	Batch ID: D3	0325B		Test	Code: S	W8260B		Date Analy	zed: 03	/25/03 22:	03
,				Unit	s: μg/L			Date Prepai	red: N//	4	
Benzene	20.09	0.50	20.00	<0.50	100%	81	120				
Chlorobenzene	19.51	0.50	20.00	<0.50	98%	85	111				
1,1-Dichloroethene	19.41	0.50	20.00	< 0.50	97%	66	151				
Toluene	19.50	3.0	20.00	<3.0	98%	82	115				
Trichloroethene	18.23	0.50	20.00	< 0.50	91%	79	112				
4-Bromofluorobenzene	45.05	N/A	50.00	N/A	90%		107				
Dibromofluoromethane	42.61	N/A	50.00	N/A	85%		104				
1,2-Dichloroethane-d4	41.47	N/A	50,00	N/A	83%		111				
Toluene-d8	47.44	N/A	50.00	N/A	95%	84	105				
Sample ID: LCSVD-D3025B	Batch ID: D	30325B		Test	Code: 5	SW8260B		Date Analy			:41
			w-,	Unit	s: µg/L			Date Prepa	red: N/	A 	
Benzene	21.33	0.50	20.00	< 0.50	107%		120	20.09	6%	16	
Chlorobenzene	19.92	0.50	20.00	<0.50	100%		111	19.51	2%	14	
1,1-Dichlaraethene	20.79	0.50	20.00	<0.50	104%		151	19.41	7%	16	
Toluene	20.22	3.0	20.00	<3.0	101%		115	19.50	4%	16	
Trichloroethene	19.36	0.50	20.00	< 0.50	97%		112	18.23	6%	18	
4-Bromofluorobenzene	46.16	N/A	50.00	N/A	92%		107				
Dibromofluoromethane	42.77	N/A	50.00	N/A	86%		104				
1,2-Dichloroethane-d4	40.38	N/A	50.00	N/A	81%		111				
Toluene-d8	46.62	N/A	50.00	N/A	93%	84	105				


TRANSWEST GEOCHEM

Chain of Custody
TGI Work Order No: 333267

3725 East Atlanta Avenue, Suite 2 Phoenix, Arizona 85040 Phone: (602) 437-0330 Fax: (602) 437-0660

Date 3.19-03 Page 1 of J

		The state of the s											Comments			And and and and a state of the					-		Date/Time	7)(10)16
DOLPIEN			Example of the control of the contro	Fax	ANALYSIS REQUEST	III	ME	7) X-1	3 Price	197	Poll	utan	WЭ it Metals	×	X	X	[×	×	×	X		The state of the s	N.	A Market
Bill to:	Company	Address	City, State ZIP;	Phone	ANAL	0			i-Vola	itile	PA F icide	H, E CB's es (6) anics (6)	PA 8310 PA 8310 s, (8082) 08/8081) s GCMS 25/8270)										Received by, (Signature)	PIO
		#500		162-507-4001		V	olatile	e Org		rph,	8 ТРН (418	TEX , 80	8260AZ) (8021B) 15AZR.1 118.1AZ)		i.v	3	2	N	3				- Zhales Ith	
JEANNE CHANG	SAWA & CALOWAL	ZOIE WASHINGTON #	PADENIX, AZ. STOOF	(202-567-3818 Fax (foó	DOLPHA	22413.400	SAMPLE RECEIPT	Ambient / Qold	Absent / Present		(6)	n Matrix Date Time Lab ID	Hrs 3/19/03 1318 1	1 Hzp 3/19/03/1334 2	. He Blace 1351 3	7 50H169 1405	1 Has 3/19/03 14/5 5	1120 319 K3 1435 6	1+20 1 7			Signature) (Print Name)	The state of the s
Project Manager:	Client Name:	Address:	City, State ZIP:		P O No	Project Name:	Project Number 🟅	S	Temperature: 9	Received Intact:	Custody Seals:	Total No. of Containers:	Sample Identification	NA12-410	51M12-345	DIMW 2-240	3	DIMW2-170	DIMIN 2-EB	B			Relinquished by (S	2 2

GEOCHEM

April 07, 2003

Steve Smelser Geotechnical & Env. Cons., Inc. 1900 W. Broadway Rd. Tempe, AZ 85282

RE: 94-0069N

Work Order No.:

0303327

Dear Steve,

Transwest Geochem, Inc. received 6 samples on 3/24/2003 2:19:00 PM for the analyses presented in the following report.

The Case Narrative of this report addresses any Quality Control and/or Quality Assurance issues associated with this Work Order.

If you have any questions regarding these test results, please feel free to call us at (602) 437-0330.

Sincerely,

Beth Proffitt

Project Manager

ADHS License No. AZM133/AZ0133

TEOCHEN

Client:

Geotechnical & Env. Cons., Inc.

Work Order:

0303327

CASE NARRATIVE

Date Printed: 07-Apr-03

Project Name:

Project Number: 94-0069N

Transwest Geochem, Inc. uses the methods outlined in the following references:

Code of Federal Regulations, 40CFR, Part 136, Revised July 1995.

Standard Methods for the Examination of Water and Wastewater, 18th Edition, 1992 and 19th Edition, 1995.

Methods for Chemical Analysis of Water and Wastes, EPA-600/4-79-020, Revised March 1983.

Methods for the Determination of Inorganic Substances in Environmental Samples, EPA/600/R-93/100, Revised August 1993.

Methods for the Determination of Metals in Environmental Samples, EPA/600/R-94/111, Revised May 1994.

Hach, Water Analysis Handbook, 2nd Edition, 1992.

Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW846, 3rd Edition.

Metals were analyzed using multi-element ICP instrumentation. Some metals reported in the QC report may not be associated with this Work Order.

Secondary Source QC Sample (LCSV) results may not be reported for all methods and/or analysis dates.

The sample introduction technique for Method 8015AZ used by this laboratory is direct injection.

All method blanks, laboratory spikes, and/or matrix spikes met quality control objectives for the parameters associated with this Work Order except as detailed below or on the Data Qualifier page of this report. Data Qualifiers used in this report are in accordance with ADEQ Arizona Data Qualifiers, Revision 1.0 05/13/2002.

Data qualifiers ("flags") contained within this analytical report have been issued to explain a quality control deficiency, and do not affect the quality (validity) of the data unless noted otherwise in the case narrative.

Analytical Comments for Method SW8260B, Matrix Spike Duplicate 0303207-34, Batch D30327D: The RPD for the matrix spikes exceeded laboratory limits. The recoveries and RPDs for the blank

FRITHEN

Client:

Geotechnical & Env. Cons., Inc.

Work Order:

0303327

Project Name:

Project Number: 94-0069N

CASE NARRATIVE

Date Printed: 07-Apr-03

spikes were acceptable.

Analytical Comments for Method SW8260B, Matrix Spike Duplicate 0303207-39, Batch D30328A: The RPD for the matrix spikes exceeded laboratory limits. The recoveries and RPDs for the blank spikes were acceptable.

Analytical Comments for Method SW8260B, Matrix Spike Duplicate 0303207-40, Batch D30328B: The RPD for the matrix spikes exceeded laboratory limits. The recoveries and RPDs for the blank spikes were acceptable.

License No. AZM133/AZ0133

CLIENT:

Geotechnical & Env. Cons., Inc.

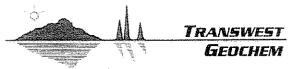
Case Narrative

Project Name:

Date Received:

Project Number: 94-0069N **Work Order:** 0303327

Data Qualifiers


One or more of the following data qualifiers may be associated with your analytical and/or quality control data.

24-Mar-03

D2 Sample required dilution due to high concentration of target analyte.

M2 Matrix spike recovery was low, the method control sample recovery was acceptable.

R2 RPD exceeded the laboratory control limit. See case narrative.

License No. AZM133/AZ0133

CLIENT:

Geotechnical & Env. Cons., Inc.

Project Name:

Project Number: 94-0069N Work Order: 0303327 Date Received: 24-Mar-03 Work Order Sample Summary

Client Sample ID	Lab Sample ID	Test Code	Collection Date
PS-2	0303327-01A	SW8260B	3/24/2003 12:07:00 PM
PS-4	0303327-02A	SW8260B	3/24/2003 10:30:00 AM
PS-9	0303327-03A	SW8260B	3/24/2003 9:46:00 AM
PS-15	0303327-04A	SW8260B	3/24/2003 11:15:00 AM
Equipment Blank	0303327-05A	SW8260B	3/24/2003 12:30:00 AM
Trip Blank	0303327-06A	SW8260B	3/24/2003 9:46:00 AM

License No. AZM133/AZ0133

CLIENT:

Geotechnical & Env. Cons., Inc.

Project Name:

Project Number: 94-0069N Work Order: 0303327 Date Received: 24-Mar-03 **Definitions**

Analytical Spike (AS)

The AS is a known amount of a target analyte added to a sample after it has been distilled, digested, or extracted and is ready for analysis. The AS is generally performed if the MS has failed. It is used to indicate interference that arises from sample distillation, digestion, or extraction as opposed to interference that is innate to the matrix.

Continuing Curve Verification (CCV) The CCV is also referred to as a curve check. This is a standard analyzed at specified intervals during an analysis. The CCV verifies the stability and accuracy of the calibration curve. There are specific CCV recovery acceptance criteria for each method.

Dilution Factor (DF)

The DF is an indication of how much a sample had to be diluted in order to quantitate it on a standard curve. The DF is indicated in the reported sample result. The sample PQL increases as the dilution increases.

Internal Standard (IS)

The IS is a compound that is similar to the organic compound of interest in terms of chemical composition but is unique in that it is rare in the environment. The same concentration of IS is added to every sample for some organic methods.

Laboratory Control Sample (LCS)

The LCS is also referred to as a blank spike. The LCS is an addition of a known amount of a target analyte (from the same source as calibration standards or spikes) to an aliquot of deionized water or other appropriate clean matrix. The LCS is processed through the entire method procedure in the same manner as samples.

Matrix Spike (MS)

The MS is a known amount of a target analyte added to a sample. The MS is processed through the entire method procedure in the same manner as samples.

Method Blank (MB)

The MB is an aliquot of deionized water or other appropriate clean matrix that is thought to be free of the analyte in question. The MB is processed through the entire extraction or analysis procedure and is used to indicate contamination in the lab.

Method Detection Limit (MDL) The MDL is the lowest level of detection of which a method is capable.

Practical Quantitation Limit (PQL) The PQL is the lowest value at which Transwest Geochem can detect an analyte in matrix with a high degree of confidence. The PQL will increase as the DF increases. The PQL is greater than or equal to the MDL.

Relative Percent Difference (RPD) The RPD is a measure of precision (the ability to obtain the same result on re-analysis of the same sample). It is calculated using the result of a sample, MS, LCS, or LCSV and its associated duplicate result.

Secondary Source QC Sample (LCSV) The LCSV is also referred to as a second source laboratory control sample. It is the same type of standard as a calibration or spiking standard but is obtained from a different source. The LCSV is an indication of the primary standard quality, method performance, and instrument performance.

Surrogate

A surrogate compound is similar to the organic compound of interest in terms of chemical composition but is unique in that it is rare in the environment. When surrogates are used, they are added to every sample, blank and standard. Surrogate recovery is used as an indication of extraction and/or analytical success.

Trip Blank (TB)

The TB is a portion of deionized water preserved in the same manner as the samples. The TB travels from the lab, to the field, and then back to the lab with the samples from the field. The TB serves as an indication of contamination introduced during sample transportation.

TRANSWEST GEOCHEM

Date Printed 03-Apr-03

License No. AZM133/AZ0133

CLIENT:

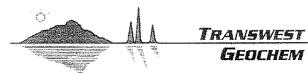
Geotechnical & Env. Cons., Inc.

Work Order:

0303327

Lab ID:

0303327-01


Project Name:

Project Number: 94-0069N

Client Sample ID: PS-2

Collection Date: 3/24/2003 12:07:00 PM

Analyte Acetone Benzene Bromobenzene Bromochloromethane Bromodichloromethane	<20 <0.50 <1.5 <0.50 <0.50 <1.0 <5.0	PQL 20 0.50 1.5 0.50 0.50	Qual	Units µg/L µg/L µg/L	DF 1.0 1.0	Code \$W8260B \$W8260B	Prepared N/A	Analyzed 3/28/03 13:43	Analyst JH	Batch ID
Benzene Bromobenzene Bromochloromethane Bromodichloromethane	<0.50 <1.5 <0.50 <0.50 <1.0	0.50 1.5 0.50 0.50		μg/L μg/L				3/28/03 13:43	JH	D30327D
Benzene Bromobenzene Bromochloromethane Bromodichloromethane	<0.50 <1.5 <0.50 <0.50 <1.0	0.50 1.5 0.50 0.50		μg/L μg/L				3/20/03 13:43	JH	D30321D
Bromobenzene Bromochloromethane Bromodichloromethane	<1.5 <0.50 <0.50 <1.0	1.5 0.50 0.50		µg/L	1.0		NI/A	3/28/03 13:43		D30327D
Bromochloromethane Bromodichloromethane	<0.50 <0.50 <1.0	0.50 0.50			4.0		N/A	3/28/03 13:43	JH	D30327D
Bromodichloromethane	<0.50 <1.0	0.50			1.0	SW8260B	N/A		JH	D30327D D30327D
	<1.0			µg/L	1.0	SW8260B	N/A	3/28/03 13:43	JH	D30327D
				μg/L 	1.0	SW8260B	N/A	3/28/03 13:43	JH	D30327D D30327D
Bromoform	<5.0	1.0		µg/L	1.0	SW8260B	N/A	3/28/03 13:43	JH	D30327D D30327D
Bromomethane		5.0		µg/L	1.0	SW8260B	N/A	3/28/03 13:43	JH	
2-Butanone	<5.0	5.0		μg/L	1.0	SW8260B	N/A	3/28/03 13:43	JH 	D30327D
n-Butylbenzene	<2.5	2.5		µg/L	1.0	SW8260B	N/A	3/28/03 13:43	JH 	D30327D
sec-Butylbenzene	<1.5	1.5		μg/L	1.0	SW8260B	N/A	3/28/03 13:43	JH	D30327D
tert-Butylbenzene	<2.5	2.5		µg/L	1.0	SW8260B	N/A	3/28/03 13:43	JH	D30327D
Carbon tetrachloride	< 0.50	0.50		µg/L	1.0	\$W8260B	N/A	3/28/03 13:43	JH	D30327D
Chlorobenzene	< 0.50	0.50		μg/L	1,0	SW8260B	N/A	3/28/03 13:43	JH	D30327D
Chloroethane	<1.0	1.0		µg/L	1.0	SW8260B	N/A	3/28/03 13:43	JH	D30327D
Chloroform	4.6	0.50		µg/L	1.0	SW8260B	N/A	3/28/03 13:43	JH	D30327D
Chloromethane	<5.0	5.0		μg/L	1.0	SW8260B	N/A	3/28/03 13:43	JH	D30327D
2-Chlorotoluene	<1.5	1.5		µg/L	1.0	SW8260B	N/A	3/28/03 13:43	JH	D30327D
4-Chlorotoluene	<2.0	2.0		μg/L	1.0	SW8260B	N/A	3/28/03 13:43	JH	D30327D
Dibromochloromethane	< 0.50	0.50		μg/L	1.0	SW8260B	N/A	3/28/03 13:43	JH	D30327D
1,2-Dibromoethane	<0.50	0.50		μg/L	1.0	SW8260B	N/A	3/28/03 13:43	JH	D30327D
1,2-Dichlorobenzene	<1.5	1.5		µg/L	1.0	SW8260B	N/A	3/28/03 13:43	JH	D30327D
1,3-Dichlorobenzene	<1.5	1.5		μg/L	1.0	SW8260B	N/A	3/28/03 13:43	JH	D30327D
1,4-Dichlorobenzene	<1.5	1.5		µg/L	1.0	SW8260B	N/A	3/28/03 13:43	JH	D30327D
Dichlorodifluoromethane	<2.0	2.0		μg/L	1.0	SW8260B	N/A	3/28/03 13:43	JH	D30327D
1,1-Dichloroethane	5.9	1.0		μg/L	1.0	SW8260B	N/A	3/28/03 13:43	JH	D30327D
1,2-Dichloroethane	<1.0	1.0		µg/L	1.0	SW8260B	N/A	3/28/03 13:43	JH	D30327D
1,1-Dichloroethene	35	0.50		μg/L	1.0	SW8260B	N/A	3/28/03 13:43	JH	D30327D
cis-1,2-Dichloroethene	< 0.50	0.50		µg/L	1.0	SW8260B	N/A	3/28/03 13:43	JH	D30327D
trans-1,2-Dichloroethene	< 0.50	0.50		μg/L	1.0	SW8260B	N/A	3/28/03 13:43	JH	D30327D
1,2-Dichloropropane	<0.50	0.50		μg/L	1.0	SW8260B	N/A	3/28/03 13:43	JH	D30327D
1,3-Dichloropropane	<1.0	1.0		μg/L	1.0	SW8260B	N/A	3/28/03 13:43	JH	D30327D
2,2-Dichloropropane	<0.50	0.50		μg/L	1.0	SW8260B	N/A	3/28/03 13:43	JH	D30327D
1,1-Dichloropropene	<1.0	1.0		μg/L	1.0	SW8260B	N/A	3/28/03 13:43	JH	D30327D
cis-1,3-Dichloropropene	<1.0	1.0		μg/L	1.0	SW8260B	N/A	3/28/03 13:43	JH	D30327D
trans-1,3-Dichloropropene	<0.50	0.50		μg/L	1.0	SW8260B	N/A	3/28/03 13:43	JН	D30327D
Ethylbenzene	<2.0	2.0		µg/Ł	1.0	SW8260B	N/A	3/28/03 13:43	JH	D30327D
2-Hexanone	<5.0	5.0		µg/L	1.0	SW82608	N/A	3/28/03 13:43	JH	D30327D
4-isopropyitoluene	<1.5	1.5		μg/L	1.0	SW8260B	N/A	3/28/03 13:43	JH	D30327D
Methyl tert-butyl ether	<1.5 <2.0	2.0		µg/L	1.0	SW8260B	N/A	3/28/03 13:43	JH	D30327D
•	<2.0 <5.0	5.0		μg/L	1.0	SW8260B	N/A	3/28/03 13:43	JH	D30327D
4-Methyl-2-pentanone				μg/L	1.0	SW8260B	N/A	3/28/03 13:43		D30327D
Methylene chloride n-Propylbenzene	<3.0 <2.0	3.0 2.0		μg/L	1.0	SW8260B	N/A	3/28/03 13:43		D30327D

License No. AZM133/AZ0133

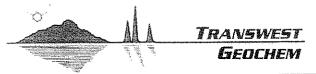
CLIENT: Work Order:

Geotechnical & Env. Cons., Inc.

- -----

Lab ID:

0303327 0303327-01


Project Name:

Project Number: 94-0069N

Client Sample ID: PS-2

Collection Date: 3/24/2003 12:07:00 PM

						Test	Date	Date		
Analyte	Result	PQL	Qual	Units	DF	Code	Prepared	Analyzed	Analyst	Batch ID
Styrene	<1.0	1.0		µg/L	1.0	SW8260B	N/A	3/28/03 13:43	JH	D30327D
1,1,2,2-Tetrachloroethane	<0.50	0.50		μg/L	1.0	SW8260B	N/A	3/28/03 13:43	JH	D30327D
Tetrachloroethene	2.9	0.50		μg/L	1.0	SW8260B	N/A	3/28/03 13:43	JH	D30327D
Toluene	<3.0	3.0		µg/L	1.0	SW8260B	N/A	3/28/03 13:43	JH	D30327D
1,2,3-Trichlorobenzene	<5.0	5.0		µg/L	1.0	SW8260B	N/A	3/28/03 13:43	JH	D30327D
1,1,1-Trichloroethane	69	2.5	D2	μg/L	5.0	SW8260B	N/A	3/29/03 06:37	JH	D30328B
1,1,2-Trichloroethane	<0.50	0.50		µg/L	1.0	SW8260B	N/A	3/28/03 13:43	JĦ	D30327D
Trichloroethene	1.5	0.50		μg/L	1.0	SW8260B	N/A	3/28/03 13:43	JH	D30327D
Trichlorofluoromethane	<2.0	2.0		µg/L	1.0	SW8260B	N/A	3/28/03 13:43	JH	D30327D
1,2,3-Trichloropropane	<1.0	1.0		µg/L	1.0	SW8260B	N/A	3/28/03 13:43	JН	D30327D
1,2,4-Trimethylbenzene	<2.0	2.0		μg/L	1.0	SW8260B	N/A	3/28/03 13:43	JH	D30327D
1,3,5-Trimethylbenzene	<1.5	1.5		μg/L	1.0	SW8260B	N/A	3/28/03 13:43	JH	D30327D
Vinyl acetate	<5.0	5.0		μg/L	1.0	SW8260B	N/A	3/28/03 13:43	JH	D30327D
Vinyl chloride	< 0.50	0.50		μg/L	1.0	SW8260B	N/A	3/28/03 13:43	JH	D30327D
Xylenes, Total	<3.0	3.0		µg/L	1.0	SW8260B	N/A	3/28/03 13:43	JH	D30327D
4-Bromofluorobenzene(Surrogate)	96	80-107		%REC	1.0	SW8260B	N/A	3/28/03 13:43	JH	D30327D
Dibromofluoromethane(Surrogate)	91	77-104		%REC	1.0	SW8260B	N/A	3/28/03 13:43	JH	D30327D
1,2-Dichloroethane-d4(Surrogate)	94	72-111		%REC	1.0	SW8260B	N/A	3/28/03 13:43	JH	D30327D
Toluene-d8(Surrogate)	93	84-105		%REC	1.0	SW8260B	N/A	3/28/03 13:43	JΗ	D30327D

License No. AZM133/AZ0133

CLIENT:

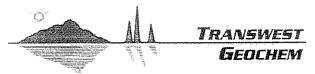
Geotechnical & Env. Cons., Inc.

Work Order:

0303327

Lab ID:

0303327-02


Project Name:

Project Number: 94-0069N

Client Sample ID: PS-4

Collection Date: 3/24/2003 10:30:00 AM

						Test	Date	Date		
Analyte	Result	PQL	Qual	Units	DF	Code	Prepared	Analyzed	Analyst	Batch ID
AAALAS MARTINIA III.										
Acetone	<20	20		µg/L	1.0	SW8260B	· N/A	3/28/03 11:51	JH	D30327D
Benzene	< 0.50	0.50		µg/L	1.0	SW8260B	N/A	3/28/03 11:51	JH	D30327D
Bromobenzene	<1.5	1.5		µg/L	1.0	SW8260B	N/A	3/28/03 11:51	JH	D30327D
Bromochloromethane	< 0.50	0.50		μg/L	1.0	SW8260B	N/A	3/28/03 11:51	JH	D30327D
Bromodichloromethane	< 0.50	0.50		µg/L	1.0	SW8260B	N/A	3/28/03 11:51	JH	D30327D
Bromoform	<1.0	1.0		µg/L	1.0	SW8260B	N/A	3/28/03 11:51	JH	D30327D
Bromomethane	<5.0	5.0		μg/L	1.0	SW8260B	N/A	3/28/03 11:51	JН	D30327D
2-Butanone	<5.0	5.0		µg/L	1.0	SW8260B	N/A	3/28/03 11:51	JH	D30327D
n-Butylbenzene	<2.5	2.5		μg/L	1.0	SW8260B	N/A	3/28/03 11:51	JH	D30327D
sec-Butylbenzene	<1.5	1.5		µg/L	1.0	SW8260B	N/A	3/28/03 11:51	JH	D30327D
tert-Butylbenzene	<2.5	2.5		μg/L	1.0	SW8260B	N/A	3/28/03 11:51	JН	D30327D
Carbon tetrachloride	< 0.50	0.50		μg/L	1.0	SW8260B	N/A	3/28/03 11:51	JH	D30327D
Chlorobenzene	< 0.50	0.50		μg/L	1.0	SW8260B	N/A	3/28/03 11:51	JH	D30327D
Chloroethane	<1.0	1.0		µg/L	1.0	SW8260B	N/A	3/28/03 11:51	JH	D30327D
Chloroform	3.5	0.50		μg/L	1.0	SW8260B	N/A	3/28/03 11:51	JH	D30327D
Chloromethane	<5.0	5.0		μg/L	1.0	SW8260B	N/A	3/28/03 11:51	JH	D30327D
2-Chlorotoluene	<1.5	1.5		µg/L	1.0	SW8260B	N/A	3/28/03 11:51	JH	D30327D
4-Chlorotoluene	<2.0	2.0		μg/L	1.0	SW8260B	N/A	3/28/03 11:51	JH	D30327D
Dibromochloromethane	<0.50	0.50		μg/L	1.0	SW8260B	N/A	3/28/03 11:51	ЛĻ	D30327D
1,2-Dibromoethane	<0.50	0.50		μg/L	1.0	SW8260B	N/A	3/28/03 11:51	JH	D30327D
1,2-Dichlorobenzene	<1.5	1.5		µg/L	1.0	SW8260B	N/A	3/28/03 11:51	JH	D30327D
1,3-Dichlorobenzene	<1.5	1.5		µg/L	1.0	SW8260B	N/A	3/28/03 11:51	JH	D30327D
1,4-Dichlorobenzene	<1.5	1.5		μg/L	1.0	SW8260B	N/A	3/28/03 11:51	JН	D30327D
Dichlorodifluoromethane	<2.0	2.0		µg/L	1.0	SW8260B	N/A	3/28/03 11:51	JH	D30327D
1,1-Dichloroethane	<1.0	1.0		μg/L	1.0	SW8260B	N/A	3/28/03 11:51	JH	D30327D
1,2-Dichloroethane	1.3	1.0		μg/L	1.0	SW8260B	N/A	3/28/03 11:51	JH	D30327D
1,1-Dichloroethene	<0.50	0.50		µg/L	1.0	SW8260B	N/A	3/28/03 11:51	JH	D30327D
cis-1,2-Dichloroethene	<0.50	0.50		µg/L	1.0	SW8260B	N/A	3/28/03 11:51	JH	D30327D
trans-1,2-Dichloroethene	<0.50	0.50		μg/L	1.0	SW82608	N/A	3/28/03 11:51	JH	D30327D
1,2-Dichloropropane	<0.50	0.50		μg/L	1.0	SW8260B	N/A	3/28/03 11:51	JH	D30327D
1,3-Dichloropropane	<1.0	1.0		µg/L	1.0	SW8260B	N/A	3/28/03 11:51	JH	D30327D
2,2-Dichloropropane	<0.50	0.50		μg/L	1.0	SW8260B	N/A	3/28/03 11:51	JH	D30327D
1,1-Dichloropropene	<1.0	1.0		μg/L	1.0	SW8260B	N/A	3/28/03 11:51	JH	D30327D
cis-1,3-Dichloropropene	<1.0	1.0		µg/L	1.0	SW8260B	N/A	3/28/03 11:51	JH	D30327D
trans-1,3-Dichloropropene	<0.50	0.50		μg/L	1.0	SW8260B	N/A	3/28/03 11:51	JH	D30327D
Ethylbenzene	<2.0	2.0		μg/L	1.0	SW8260B	N/A	3/28/03 11:51	JH	D30327D
2-Hexanone	<5.0	5.0		μg/L	1.0	SW8260B	N/A	3/28/03 11:51	JH	D30327D
4-Isopropyitoluene	<1.5	1.5		μg/L	1.0	SW8260B	N/A	3/28/03 11:51	JH	D30327D
Methyl tert-butyl ether	<2.0	2.0		μg/L	1.0	SW8260B	N/A	3/28/03 11:51	JH	D30327D
4-Methyl-2-pentanone	<5.0	5.0		µg/L	1.0	SW8260B	N/A	3/28/03 11:51	JH	D30327D
Methylene chloride	<3.0	3.0		μg/L	1.0	SW8260B	N/A	3/28/03 11:51	JH	D30327D
monijono omonuo	<2.0	2.0		μg/L	1.0	SW8260B	N/A	3/28/03 11:51	JH	D30327D

License No. AZM133/AZ0133

CLIENT:

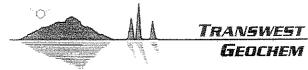
Geotechnical & Env. Cons., Inc.

Work Order:

0303327

Lab ID:

0303327-02


Project Name:

Project Number: 94-0069N

Client Sample ID: PS-4

Collection Date: 3/24/2003 10:30:00 AM

						Test	Date	Date		
Analyte	Result	PQL	Qual	Units	DF	Code	Prepared	Analyzed	Analyst	Batch ID
Styrene	<1.0	1.0		µg/L	1.0	SW8260B	N/A	3/28/03 11:51	JH	D30327D
1,1,2,2-Tetrachloroethane	<0.50	0.50		μg/L	1.0	SW8260B	N/A	3/28/03 11:51	JH	D30327D
Tetrachloroethene	10	0.50		μg/L	1.0	SW8260B	N/A	3/28/03 11:51	JH	D30327D
Toluene	<3.0	3.0		μg/L	1.0	SW8260B	N/A	3/28/03 11:51	JH	D30327D
1,2,3-Trichlorobenzene	<5.0	5.0		μg/L	1.0	SW8260B	N/A	3/28/03 11:51	JH	D30327D
1,1,1-Trichloroethane	<0.50	0.50		μg/L	1.0	SW8260B	N/A	3/28/03 11:51	JH	D30327D
1,1,2-Trichloroethane	<0.50	0.50		μg/L	1.0	SW8260B	N/A	3/28/03 11:51	JH	D30327D
Trichloroethene	24	0.50		μg/L	1.0	SW8260B	N/A	3/28/03 11:51	JH	D30327D
Trichlorofluoromethane	<2.0	2.0		µg/L	1.0	SW8260B	N/A	3/28/03 11:51	JH	D30327D
1,2,3-Trichloropropane	<1.0	1.0		μg/L	1.0	SW8260B	N/A	3/28/03 11:51	JH	D30327D
1,2,4-Trimethylbenzene	<2.0	2.0		μg/L	1.0	SW8260B	N/A	3/28/03 11:51	JH	D30327D
1,3,5-Trimethylbenzene	<1.5	1.5		μg/L	1.0	SW8260B	N/A	3/28/03 11:51	JH	D30327D
Vinyl acetate	<5.0	5.0		μg/L	1.0	SW8260B	N/A	3/28/03 11:51	JH	D30327D
Vinyl chloride	<0.50	0.50		μg/L	1.0	SW8260B	N/A	3/28/03 11:51	JH	D30327D
Xylenes, Total	<3.0	3.0		μg/L	1.0	SW8260B	N/A	3/28/03 11:51	JH	D30327D
4-Bromofluorobenzene(Surrogate)	101	80-107		%REC	1.0	SW8260B	N/A	3/28/03 11:51	JH	D30327D
Dibromofluoromethane(Surrogate)	85	77-104		%REC	1.0	SW8260B	N/A	3/28/03 11:51	JH	D30327D
1,2-Dichloroethane-d4(Surrogate)	87	72-111		%REC	1.0	SW8260B	N/A	3/28/03 11:51	JH	D30327D
Toluene-d8(Surrogate)	93	84-105		%REC	1.0	SW8260B	N/A	3/28/03 11:51	JH	D30327D

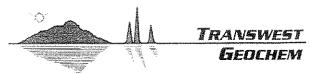
License No. AZM133/AZ0133

CLIENT: Work Order:

Geotechnical & Env. Cons., Inc.

Lab ID:

0303327 0303327-03


Project Name:

Project Number: 94-0069N

Client Sample ID: PS-9

Collection Date: 3/24/2003 9:46:00 AM

						Test	Date	Date		
Analyte	Result	PQL	Qual	Units	DF	Code	Prepared	Analyzed	Analyst	Batch ID
Acetone	<20	20		μg/L	1.0	SW8260B	N/A	3/28/03 12:27	JH	D30327D
Benzene	<0.50	0.50		µg/L	1.0	SW8260B	N/A	3/28/03 12:27	JH	D30327D
Bromobenzene	<0.50 <1.5	1.5		µg/L	1.0	SW8260B	N/A	3/28/03 12:27	JH	D30327D
Bromochloromethane		0.50		μg/L	1.0	SW8260B	N/A	3/28/03 12:27	JH	D30327D
Bromodichloromethane	<0.50 <0.50	0.50		µg/L	1.0	SW8260B	N/A	3/28/03 12:27	JH	D30327D
Bromoform				µg/L	1.0	SW8260B	N/A	3/28/03 12:27	JH	D30327D
Bromomethane	<1.0 <5.0	1.0 5.0		µg/L	1.0	SW8260B	N/A	3/28/03 12:27	JH	D30327D
2-Butanone	<5.0 <5.0	5.0 5.0		μg/L	1.0	SW8260B	N/A	3/28/03 12:27	JH	D30327D
z-butanone n-Butylbenzene		2.5		µg/L µg/L	1.0	SW8260B	N/A	3/28/03 12:27	JH	D30327D
sec-Butylbenzene	<2.5 <1.5	2.5 1.5		µg/L	1.0	SW8260B	N/A	3/28/03 12:27	JΗ	D30327D
tert-Butylbenzene		2.5		µg/L	1.0	SW8260B	N/A	3/28/03 12:27	JH	D30327D
Carbon tetrachloride	<2.5	2.5 0.50		μg/L	1.0	SW8260B	N/A	3/28/03 12:27	JH	D30327D
Chlorobenzene	<0.50	0.50		µg/L	1.0	SW8260B	N/A	3/28/03 12:27	JH	D30327D
Chloroethane	<0.50 <1.0	1.0		µg/L	1.0	SW8260B	N/A	3/28/03 12:27	JH	D30327D
Chloroform				µg/∟	1.0	SW8260B	N/A	3/28/03 12:27	JH	D30327D
Chloromethane	6.2	0.50 5.0		μg/L	1.0	SW8260B	N/A	3/28/03 12:27	JΗ	D30327D
Chlorotoluene	<5.0	1.5		µg/L µg/L	1.0	SW8260B	N/A	3/28/03 12:27	JH	D30327D
	<1.5			μg/L	1.0	SW8260B	N/A	3/28/03 12:27	JH	D30327D
4-Chlorotoluene	<2.0	2.0		μg/L	1.0	SW8260B	N/A	3/28/03 12:27	JH	D30327D
Dibromochloromethane	<0.50	0.50		μg/L μg/L	1.0	SW8260B	N/A	3/28/03 12:27	JH	D30327D
1,2-Dibromoethane	<0.50	0.50		hâ∖r hâ∖r	1.0	SW8260B	N/A	3/28/03 12:27	JH	D30327D
1,2-Dichlorobenzene	<1.5	1.5		µg/L	1.0	SW8260B	N/A	3/28/03 12:27	JH	D30327D
1,3-Dichlorobenzene	<1.5	1.5		µg/L	1.0	SW8260B	N/A	3/28/03 12:27	JH	D30327D
1,4-Dichlorobenzene	<1.5	1.5		μg/L	1.0	SW8260B	N/A	3/28/03 12:27	JH	D30327D
Dichlorodifluoromethane	<2.0	2.0		hã/r	1.0	SW8260B	N/A	3/28/03 12:27	JH	D30327D
1,1-Dichloroethane	<1.0	1.0			1.0	SW8260B	N/A	3/28/03 12:27	JH	D30327D
1,2-Dichloroethane	<1.0	1.0		µg/L µg/L	1.0	SW8260B	N/A	3/28/03 12:27	JH	D30327D
1,1-Dichloroethene	<0.50	0.50			1.0	SW8260B	N/A	3/28/03 12:27	JH	D30327D
cis-1,2-Dichloroethene	<0.50	0.50		µg/L	1.0	SW8260B	N/A	3/28/03 12:27	JH	D30327D
trans-1,2-Dichloroethene	<0.50	0.50		µg/L	1.0	SW8260B	N/A	3/28/03 12:27	JH	D30327D
1,2-Dichloropropane	<0.50	0.50		µg/L	1.0	SW8260B	N/A	3/28/03 12:27	JH	D30327D
1,3-Dichloropropane	<1.0	1.0		µg/L	1.0	SW8260B	N/A	3/28/03 12:27	JH	D30327D
2,2-Dichloropropane	<0.50	0.50		µg/L	1.0	SW8260B	N/A	3/28/03 12:27	JH	D30327D
1,1-Dichloropropene	<1.0	1.0		μg/L	1.0	SW8260B	N/A	3/28/03 12:27		D30327D
cis-1,3-Dichloropropene	<1.0	1.0		µg/L	1.0	SW8260B	N/A	3/28/03 12:27	JH	D30327D
trans-1,3-Dichloropropene	<0.50	0.50		μg/L		SW8260B	N/A	3/28/03 12:27	JH	D30327D
Ethylbenzene	<2.0	2.0		μg/L	1.0	SW8260B	N/A	3/28/03 12:27	JH	D30327D
2-Hexanone	<5.0	5.0		μg/L	1.0	SW8260B	N/A	3/28/03 12:27	JH	D30327D
4-isopropyitoluene	<1.5	1.5		μg/L	1.0	SW8260B	N/A	3/28/03 12:27	JH	D30327D
Methyl tert-butyl ether	<2.0	2.0		μg/L	1.0		N/A	3/28/03 12:27	JH	D30327D
4-Methyl-2-pentanone	<5.0	5.0		μg/L "	1.0	SW8260B		3/28/03 12:27		D30327D
Methylene chloride	<3.0	3.0		µg/L	1.0	SW8260B	N/A	3/28/03 12:27		D30327D
n-Propylbenzene	<2.0	2.0		µg/L	1.0	SW8260B	N/A	3/20/03 12:21	JH	DOUGETU

License No. AZM133/AZ0133

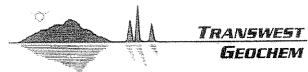
CLIENT: Work Order:

Geotechnical & Env. Cons., Inc.

0303327

Lab ID:

0303327-03


Project Name:

Project Number: 94-0069N

Client Sample ID: PS-9

Collection Date: 3/24/2003 9:46:00 AM

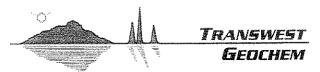
		***				Test	Date	Date		
Analyte	Result	PQL	Qual	Units	DF	Code	Prepared	Analyzed	Analyst	Batch ID
Styrene	<1.0	1.0		µg/L	1.0	SW8260B	N/A	3/28/03 12:27	JH	D30327D
1,1,2,2-Tetrachloroethane	< 0.50	0.50		µg/L	1.0	SW8260B	N/A	3/28/03 12:27	JH	D30327D
Tetrachloroethene	5.8	0.50		µg/L	1.0	SW8260B	N/A	3/28/03 12:27	JH	D30327D
Toluene	<3.0	3.0		μg/L	1.0	SW8260B	N/A	3/28/03 12:27	JH	D30327D
1,2,3-Trichlorobenzene	<5.0	5.0		μg/L	1.0	SW8260B	N/A	3/28/03 12:27	JĦ	D30327D
1,1,1-Trichloroethane	<0.50	0.50		μg/L	1.0	SW8260B	N/A	3/28/03 12:27	JH	D30327D
1,1,2-Trichloroethane	<0.50	0.50		µg/L	1.0	SW8260B	N/A	3/28/03 12:27	JH	D30327D
Trichloroethene	7.2	0.50		µg/L	1.0	SW8260B	N/A	3/28/03 12:27	JH	D30327D
Trichlorofluoromethane	<2.0	2.0		µg/L	1.0	SW8260B	N/A	3/28/03 12:27	JH	D30327D
1,2,3-Trichloropropane	<1.0	1.0		μg/L	1.0	SW8260B	N/A	3/28/03 12:27	JH	D30327D
1,2,4-Trimethylbenzene	<2.0	2.0		µg/L	1.0	SW8260B	N/A	3/28/03 12:27	JH	D30327D
1,3,5-Trimethylbenzene	<1.5	1.5		µg/L	1.0	SW8260B	N/A	3/28/03 12:27	JH	D30327D
Vinyl acetate	<5.0	5.0		μg/L	1.0	SW8260B	N/A	3/28/03 12:27	JH	D30327D
Vinyl chloride	<0.50	0.50		μg/L	1.0	SW8260B	N/A	3/28/03 12:27	JH	D30327D
Xylenes, Total	<3.0	3.0		μg/L	1.0	SW8260B	N/A	3/28/03 12:27	JH	D30327D
4-Bromofluorobenzene(Surrogate)	96	80-107		%REC	1.0	SW8260B	N/A	3/28/03 12:27	JH	D30327D
Dibromofluoromethane(Surrogate)	89	77-104		%REC	1.0	SW8260B	N/A	3/28/03 12:27	JH	D30327D
1,2-Dichloroethane-d4(Surrogate)	92	72-111		%REC	1.0	SW8260B	N/A	3/28/03 12:27	JH	D30327D
Toluene-d8(Surrogate)	91	84-105		%REC	1.0	SW8260B	N/A	3/28/03 12:27	JH	D30327D

License No. AZM133/AZ0133

CLIENT:

Geotechnical & Env. Cons., Inc.

Work Order: Lab ID: 0303327 0303327-04


Project Name:

Project Number: 94-0069N

Client Sample ID: PS-15

Collection Date: 3/24/2003 11:15:00 AM

						Test	Date	Date		
Analyte	Result	PQL	Qual	Units	DF	Code	Prepared	Analyzed	Analyst	Batch ID
Acetone	<20	20		μg/L	1.0	SW8260B	N/A	3/28/03 13:05	JH	D30327D
Benzene	<0.50	0.50		μg/L	1.0	SW8260B	N/A	3/28/03 13:05	JH	D30327D
Bromobenzene	<1.5	1.5		µg/L	1.0	SW8260B	N/A	3/28/03 13:05	JH	D30327D
Bromochioromethane	<0.50	0.50		μg/L	1.0	SW8260B	N/A	3/28/03 13:05	JH	D30327D
Bromodichloromethane	<0.50	0.50		μg/L	1.0	SW8260B	N/A	3/28/03 13:05	JH	D30327D
Bromoform	<1.0	1.0		μg/L	1.0	SW8260B	N/A	3/28/03 13:05	JH	D30327D
Bromomethane	<5.0	5.0		μg/L	1.0	SW8260B	N/A	3/28/03 13:05	JH	D30327D
2-Butanone	<5.0	5.0		μg/L	1.0	SW8260B	N/A	3/28/03 13:05	JH	D30327D
n-Butylbenzene	<2.5	2.5		μg/L	1.0	SW8260B	N/A	3/28/03 13:05	JH	D30327D
sec-Butylbenzene	<1.5	1.5		µg/L	1.0	SW8260B	N/A	3/28/03 13:05	JH	D30327D
tert-Butylbenzene	<2.5	2.5		µg/L	1.0	SW8260B	N/A	3/28/03 13:05	JH	D30327D
Carbon tetrachloride	<0.50	0.50		μg/L	1.0	SW8260B	N/A	3/28/03 13:05	JH	D30327D
Chlorobenzene	<0.50	0.50		µg/L	1.0	SW8260B	N/A	3/28/03 13:05	JH	D30327D
Chloroethane	<1.0	1.0		μg/L	1.0	SW8260B	N/A	3/28/03 13:05	JH	D30327D
Chloroform	4.5	0.50		μg/L	1.0	SW8260B	N/A	3/28/03 13:05	JH	D30327D
Chloromethane	<5.0	5.0		µg/L	1.0	SW8260B	N/A	3/28/03 13:05	jΗ	D30327D
2-Chlorotoluene	<1.5	1.5		µg/L	1.0	SW8260B	N/A	3/28/03 13:05	JH	D30327D
4-Chlorotoluene	<2.0	2.0		μg/L	1.0	SW8260B	N/A	3/28/03 13:05	JH	D30327D
Dibromochloromethane	<0.50	0.50		µg/L	1.0	SW8260B	N/A	3/28/03 13:05	JH	D30327D
1,2-Dibromoethane	<0.50	0.50		µg/L	1.0	SW8260B	N/A	3/28/03 13:05	JH	D30327D
1,2-Dichlorobenzene	<1.5	1.5		μg/L	1.0	SW8260B	N/A	3/28/03 13:05	JH	D30327D
1,3-Dichlorobenzene	<1.5	1.5		µg/L	1.0	SW8260B	N/A	3/28/03 13:05	JH	D30327D
1,4-Dichlorobenzene	<1.5	1.5		µg/L	1.0	SW8260B	N/A	3/28/03 13:05	JH	D30327D
Dichlorodifluoromethane	<2.0	2.0		µg/L	1.0	SW8260B	N/A	3/28/03 13:05	JH	D30327D
1,1-Dichloroethane	5.9	1.0		µg/L	1.0	SW8260B	N/A	3/28/03 13:05	JH	D30327D
1,2-Dichloroethane	<1,0	1.0		μg/L	1.0	SW8260B	N/A	3/28/03 13:05	JH	D30327D
1,1-Dichioroethene	22	0.50		μg/L	1.0	SW8260B	N/A	3/28/03 13:05	JH	D30327D
cis-1,2-Dichloroethene	<0.50	0.50		ha\r	1.0	SW8260B	N/A	3/28/03 13:05	JH	D30327D
trans-1,2-Dichloroethene	<0.50	0.50		μg/L	1.0	SW8260B	N/A	3/28/03 13:05	JH	D30327D
,	<0.50	0.50		µg/L	1.0	SW8260B	N/A	3/28/03 13:05	JH	D30327D
1,2-Dichloropropane	<1.0	1.0		µg/L	1.0	SW8260B	N/A	3/28/03 13:05	JH	D30327D
1,3-Dichloropropane	<0.50	0.50		µg/L	1.0	SW8260B	N/A	3/28/03 13:05	JH	D30327D
2,2-Dichloropropane	<1.0	1.0		µg/L	1.0	SW8260B	N/A	3/28/03 13:05	JH	D30327D
1,1-Dichloropropene	<1.0	1.0		μg/L	1.0	SW8260B	N/A	3/28/03 13:05	JH	D30327D
cis-1,3-Dichloropropene	<0.50	0.50		μg/L	1.0	SW8260B	N/A	3/28/03 13:05	JH	D30327D
trans-1,3-Dichloropropene		2.0		µg/L	1,0	SW8260B	N/A	3/28/03 13:05	JH	D30327D
Ethylbenzene 2-Hexanone	<2.0 <5.0	5.0		μg/L	1.0	SW8260B	N/A	3/28/03 13:05	JH	D30327D
	<1.5	1.5		μg/L	1.0	SW8260B	N/A	3/28/03 13:05	JH	D30327D
4-Isopropyitoluene	<1.5 <2.0	2.0		μg/L	1.0	SW8260B	N/A	3/28/03 13:05		D30327D
Methyl tert-butyl ether		5.0		μg/L	1.0	SW8260B	N/A	3/28/03 13:05		D30327D
4-Methyl-2-pentanone	<5.0			µg/L	1.0	SW8260B	N/A	3/28/03 13:05		D30327D
Methylene chloride	<3.0	3.0			1.0	SW8260B	N/A	3/28/03 13:05		D30327D
n-Propylbenzene	<2.0	2.0		μg/L	1.0	Q.10200D			2	

License No. AZM133/AZ0133

CLIENT:

Geotechnical & Env. Cons., Inc.

Work Order:

0303327 0303327-04

Lab ID: Project Name:

Project Number: 94-0069N

Client Sample ID: PS-15

Collection Date: 3/24/2003 11:15:00 AM

						Test	Date	Date		
Analyte	Result	PQL	Qual	Units	DF	Code	Prepared	Analyzed	Analyst	Batch ID
Styrene	<1.0	1.0		µg/L	1.0	SW8260B	N/A	3/28/03 13:05	HL	D30327D
1,1,2,2-Tetrachloroethane	<0.50	0.50		µg/L	1.0	SW8260B	N/A	3/28/03 13:05	JH	D30327D
Tetrachloroethene	2.9	0.50		μg/L	1.0	SW8260B	N/A	3/28/03 13:05	JH	D30327D
Toluene	<3.0	3.0		μg/L	1.0	SW8260B	N/A	3/28/03 13:05	JH	D30327D
1,2,3-Trichlorobenzene	<5.0	5.0		µg/L	1.0	SW8260B	N/A	3/28/03 13:05	JH	D30327D
1,1,1-Trichloroethane	73	2.5	D2	µg/L	5.0	SW8260B	N/A	3/29/03 07:14	JH	D30328B
1,1,2-Trichloroethane	<0.50	0.50		μg/L	1.0	SW8260B	N/A	3/28/03 13:05	JH	D30327D
Trichloroethene	1.4	0.50		μg/L	1.0	SW8260B	N/A	3/28/03 13:05	JH	D30327D
Trichlorofluoromethane	<2.0	2.0		μg/L	1.0	SW8260B	N/A	3/28/03 13:05	JH	D30327D
1,2,3-Trichloropropane	<1.0	1.0		µg/L	1.0	SW8260B	N/A	3/28/03 13:05	JH	D30327D
1,2,4-Trimethylbenzene	<2.0	2.0		μg/L	1.0	SW8260B	N/A	3/28/03 13:05	JH	D30327D
1,3,5-Trimethylbenzene	<1.5	1.5		μg/L	1.0	SW8260B	N/A	3/28/03 13:05	JH	D30327D
Vinyl acetate	<5.0	5.0		μg/L	1.0	SW8260B	N/A	3/28/03 13:05	JH	D30327D
Vinyl chloride	<0.50	0.50		μg/L	1.0	SW8260B	N/A	3/28/03 13:05	JH	D30327D
Xylenes, Total	<3.0	3.0		μg/L	1.0	SW8260B	N/A	3/28/03 13:05	JH	D30327D
4-Bromofiuorobenzene(Surrogate)	95	80-107		%REC	1.0	SW8260B	N/A	3/28/03 13:05	JH	D30327D
Dibromofluoromethane(Surrogate)	89	77-104		%REC	1.0	SW8260B	N/A	3/28/03 13:05	JH	D30327D
1,2-Dichloroethane-d4(Surrogate)	93	72-111		%REC	1.0	SW8260B	N/A	3/28/03 13:05	JH	D30327D
Toluene-d8(Surrogate)	92	84-105		%REC	1.0	SW8260B	N/A	3/28/03 13:05	JΗ	D30327D

TRANSWEST GEOCHEM

Date Printed 03-Apr-03

License No. AZM133/AZ0133

CLIENT:

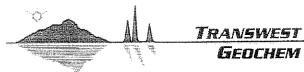
Geotechnical & Env. Cons., Inc.

Work Order:

0303327

Lab ID:

0303327-05


Project Name:

Project Number: 94-0069N

Client Sample ID: Equipment Blank

Collection Date: 3/24/2003 12:30:00 AM

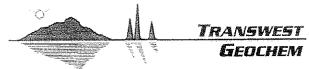
						Test	Date	Date		
Analyte	Result	PQL	Qual	Units	DF	Code	Prepared	Analyzed	Analyst	Batch ID
Acetone	<20	20		μg/L	1.0	SW8260B	N/A	3/29/03 01:34	JH	D30328A
Benzene	<0.50	0.50		μg/L	1.0	SW8260B	N/A	3/29/03 01:34	JH	D30328A
Bromobenzene	<1.5	1.5		µg/L	1.0	SW8260B	N/A	3/29/03 01:34	JH	D30328A
Bromochloromethane	<0.50	0.50		µg/L	1.0	SW8260B	N/A	3/29/03 01:34	JH	D30328A
Bromodichloromethane	<0.50	0.50		μg/L	1.0	SW8260B	N/A	3/29/03 01:34	JH	D30328A
Bromoform	<1.0	1.0		μg/L	1.0	SW8260B	N/A	3/29/03 01:34	JH	D30328A
Bromomethane	<5.0	5.0		µg/L	1.0	SW8260B	N/A	3/29/03 01:34	JH	D30328A
2-Butanone	<5.0	5.0		µg/L	1.0	SW8260B	N/A	3/29/03 01:34	JH	D30328A
n-Butylbenzene	<2.5	2.5		µg/L	1.0	SW8260B	N/A	3/29/03 01:34	JH	D30328A
sec-Butylbenzene	<1.5	1.5		μg/L	1.0	SW8260B	N/A	3/29/03 01:34	JH	D30328A
tert-Butylbenzene	<2.5	2.5		μg/L	1.0	SW8260B	N/A	3/29/03 01:34	JH	D30328A
Carbon tetrachloride	<0.50	0.50		µg/L	1.0	SW8260B	N/A	3/29/03 01:34	JH	D30328A
Chlorobenzene	<0.50	0.50		µg/L	1.0	SW8260B	N/A	3/29/03 01:34	JH	D30328A
Chloroethane	<1.0	1.0		μg/L	1.0	SW8260B	N/A	3/29/03 01:34	JH	D30328A
Chloroform	<0.50	0.50		µg/L	1.0	SW8260B	N/A	3/29/03 01:34	JH	D30328A
Chloromethane	<5.0	5.0		µg/L	1.0	SW8260B	N/A	3/29/03 01:34	JH	D30328A
2-Chlorotoluene	<1.5	1.5		hã/r	1.0	SW8260B	N/A	3/29/03 01:34	JH	D30328A
2-Chlorotoluene 4-Chlorotoluene	<2.0	2.0		µg/L	1.0	SW8260B	N/A	3/29/03 01:34	JH	D30328A
Dibromochloromethane		0.50		µg/L	1.0	SW8260B	N/A	3/29/03 01:34	JH	D30328A
	<0.50			µg/L	1.0	SW8260B	N/A	3/29/03 01:34	JH	D30328A
1,2-Dibromoethane	<0.50	0.50		µg/L	1.0	SW8260B	N/A	3/29/03 01:34	JH	D30328A
1,2-Dichlorobenzene	<1.5	1.5		ha\r ha\r	1.0	SW8260B	N/A	3/29/03 01:34	JH	D30328A
1,3-Dichlorobenzene	<1.5	1.5		µg/L	1.0	SW8260B	N/A	3/29/03 01:34	JH	D30328A
1,4-Dichlorobenzene	<1.5	1.5			1.0	SW8260B	N/A	3/29/03 01:34	jН	D30328A
Dichlorodifluoromethane	<2.0	2.0		µg/L	1.0	SW8260B	N/A	3/29/03 01:34	JH	D30328A
1,1-Dichloroethane	<1.0	1.0		µg/L		SW8260B	N/A	3/29/03 01:34	JH	D30328A
1,2-Dichloroethane	<1.0	1.0		μg/L	1.0	SW8260B	N/A	3/29/03 01:34	JH	D30328A
1,1-Dichloroethene	<0.50	0.50		μg/L	1.0	SW8260B	N/A	3/29/03 01:34	JH	D30328A
cis-1,2-Dichloroethene	<0.50	0.50		µg/L	1.0	SW8260B	N/A	3/29/03 01:34	JH	D30328A
trans-1,2-Dichloroethene	<0.50	0.50		μg/L	1.0	SW8260B	N/A	3/29/03 01:34	JH	D30328A
1,2-Dichloropropane	<0.50	0.50		ug/L	1.0	SW8260B	N/A	3/29/03 01:34	JH	D30328A
1,3-Dichloropropane	<1.0	1.0		µg/L	1.0	SW8260B	N/A	3/29/03 01:34	JH	D30328A
2,2-Dichloropropane	<0.50	0.50		μg/L "	1.0	SW8260B	N/A	3/29/03 01:34	JH	D30328A
1,1-Dichloropropene	<1.0	1.0		μg/L	1.0	SW8260B	N/A	3/29/03 01:34	JH	D30328A
cis-1,3-Dichloropropene	<1.0	1.0		μg/L "	1.0		N/A	3/29/03 01:34		D30328A
trans-1,3-Dichloropropene	<0.50	0.50		μg/L	1.0	SW8260B		3/29/03 01:34		D30328A
Ethylbenzene	<2.0	2.0		µg/L	1.0	SW8260B	N/A	3/29/03 01:34		D30328A
2-Hexanone	<5.0	5.0		μg/L "	1.0	SW8260B	N/A	3/29/03 01:34		D30328A
4-Isopropyltoluene	<1.5	1.5		µg/L	1.0	SW8260B	N/A	3/29/03 01:34		D30328A
Methyl tert-butyl ether	<2.0	2.0		µg/L	1.0	SW8260B	N/A			D30328A
4-Methyl-2-pentanone	<5.0	5.0		μg/L	1.0	SW8260B	N/A	3/29/03 01:34		
Methylene chloride	<3.0	3.0		µg/L	1.0	SW8260B	N/A	3/29/03 01:34		D30328A
n-Propylbenzene	<2.0	2.0		μg/L	1.0	SW8260B	N/A	3/29/03 01:34	. JH	D30328A

License No. AZM133/AZ0133

CLIENT:

Geotechnical & Env. Cons., Inc.

Work Order: Lab ID: 0303327 0303327-05


Project Name:

Project Number: 94-0069N

Client Sample ID: Equipment Blank

Collection Date: 3/24/2003 12:30:00 AM

,						Test	Date	Date		
Analyte	Result	PQL	Qual	Units	DF	Code	Prepared	Analyzed	Analyst	Batch ID
Styrene	<1.0	1,0		µg/L	1.0	SW8260B	N/A	3/29/03 01:34	JH	D30328A
1,1,2,2-Tetrachioroethane	< 0.50	0.50		μg/L	1.0	SW8260B	N/A	3/29/03 01:34	JH	D30328A
Tetrachloroethene	< 0.50	0.50		μg/L	1.0	SW8260B	N/A	3/29/03 01:34	JH	D30328A
Toluene	<3.0	3.0		μg/L	1.0	SW8260B	N/A	3/29/03 01:34	JH	D30328A
1,2,3-Trichlorobenzene	<5.0	5.0		μg/L	1.0	SW8260B	N/A	3/29/03 01:34	JH	D30328A
1,1,1-Trichloroethane	<0.50	0.50		μg/L	1.0	SW8260B	N/A	3/29/03 01:34	JH	D30328A
1,1,2-Trichloroethane	<0.50	0.50		μg/L	1.0	SW82608	N/A	3/29/03 01:34	JH	D30328A
Trichloroethene	<0.50	0.50		μg/L	1.0	SW8260B	N/A	3/29/03 01:34	JH	D30328A
Trichlorofluoromethane	<2.0	2.0		μg/L	1.0	SW8260B	N/A	3/29/03 01:34	JH	D30328A
1,2,3-Trichloropropane	<1.0	1.0		μg/L	1.0	SW8260B	N/A	3/29/03 01:34	JH	D30328A
1,2,4-Trimethylbenzene	<2.0	2.0		μg/L	1.0	SW8260B	N/A	3/29/03 01:34	JH	D30328A
1,3,5-Trimethylbenzene	<1.5	1.5		μg/L	1.0	SW8260B	N/A	3/29/03 01:34	JH	D30328A
Vinyl acetate	<5.0	5.0		μg/L	1.0	SW8260B	N/A	3/29/03 01:34	JH	D30328A
Vinyl chloride	<0.50	0.50		μg/L	1.0	SW8260B	N/A	3/29/03 01:34	JH	D30328A
Xylenes, Total	<3.0	3.0		μg/L	1.0	SW8260B	N/A	3/29/03 01:34	JH	D30328A
4-Bromofluorobenzene(Surrogate)	92	80-107		%REC	1.0	SW8260B	N/A	3/29/03 01:34	JH	D30328A
Dibromofluoromethane(Surrogate)	93	77-104		%REC	1.0	SW8260B	N/A	3/29/03 01:34	JH	D30328A
1,2-Dichloroethane-d4(Surrogate)	98	72-111		%REC	1,0	SW8260B	N/A	3/29/03 01:34	JH	D30328A
Toluene-d8(Surrogate)	91	84-105		%REC	1.0	SW8260B	N/A	3/29/03 01:34	JH	D30328A

License No. AZM133/AZ0133

CLIENT: Work Order:

Geotechnical & Env. Cons., Inc.

Lab ID:

0303327 0303327-06

Project Name:

Project Number: 94-0069N

Client Sample ID: Trip Blank

Collection Date: 3/24/2003 9:46:00 AM

Matrix: TRIP BLANK

					_	Test	Date	Date		n . • ==
Analyte	Result	PQL	Qual	Units	DF	Code	Prepared	Analyzed	Analyst	Batch II
Annina	400 	00		μg/L	1.0	SW8260B	N/A	3/29/03 00:57	JH	D30328A
Acetone	<20	20		µg/L	1.0	SW8260B	N/A	3/29/03 00:57	JH	D30328A
Benzene Benzene	<0.50	0.50		μg/L μg/L	1.0	SW8260B	N/A	3/29/03 00:57	JH	D30328A
Bromobenzene	<1.5	1.5		μg/L	1.0	SW8260B	N/A	3/29/03 00:57	JH	D30328A
Bromochloromethane	<0.50	0.50		µg/L	1.0	SW8260B	N/A	3/29/03 00:57	JH	D30328A
Bromodichloromethane	<0.50	0.50		µg/L	1.0	SW8260B	N/A	3/29/03 00:57	JH	D30328A
Bromoform	<1.0	1.0		μg/L	1.0	SW8260B	N/A	3/29/03 00:57	JH	D30328A
Bromomethane	<5.0	5.0		µg/L	1.0	SW8260B	N/A	3/29/03 00:57	· JH	D30328A
2-Butanone	<5.0	5.0		µg/L	1.0	SW8260B	N/A	3/29/03 00:57	JH	D30328A
n-Butylbenzene	<2.5	2.5		μg/L	1.0	SW8260B	N/A	3/29/03 00:57	jН	D30328A
sec-Butylbenzene	<1.5	1.5		μg/L μg/L	1.0	SW8260B	N/A	3/29/03 00:57	JH	D30328A
lert-Butylbenzene	<2.5	2.5		µg/L µg/L	1.0	SW8260B	N/A	3/29/03 00:57	JH	D30328A
Carbon tetrachloride	<0.50	0.50		µg/L µg/L	1.0	SW8260B	N/A	3/29/03 00:57	JH	D30328A
Chlorobenzene Chlorosthana	<0.50	0.50 1.0		µg/∟ µg/L	1.0	SW8260B	N/A	3/29/03 00:57	JH	D30328A
Chloroethane	<1.0			μg/L μg/L	1.0	SW8260B	N/A	3/29/03 00:57	JH	D30328A
Chloroform	<0.50	0.50		μg/L	1.0	SW8260B	N/A	3/29/03 00:57	JH	D30328A
Chloromethane	<5.0	5.0		µg/L	1.0	SW82608	N/A	3/29/03 00:57	JH	D30328A
2-Chlorotoluene	<1.5	1.5		µg/∟ µg/L	1.0	SW8260B	N/A	3/29/03 00:57	JH	D30328A
I-Chlorotoluene	<2.0	2.0		µg/∟ µg/L	1.0	SW8260B	N/A	3/29/03 00:57	JH	D30328A
Dibromochloromethane	<0.50	0.50		µg/L	1.0	SW8260B	N/A	3/29/03 00:57	JH	D30328A
1,2-Dibromoethane	<0.50	0.50		μg/L	1.0	SW8260B	N/A	3/29/03 00:57	JH	D30328A
1,2-Dichlorobenzene	<1.5	1.5		µg/L	1.0	SW8260B	N/A	3/29/03 00:57	JH	D30328A
1,3-Dichlorobenzene	<1.5	1.5		µg/L	1.0	SW8260B	N/A	3/29/03 00:57	JH	D30328A
1,4-Dichlorobenzene	<1.5	1.5		μg/L	1,0	SW8260B	N/A	3/29/03 00:57	JH	D30328A
Dichlorodifluoromethane	<2.0	2.0 1.0		μg/L	1.0	SW8260B	N/A	3/29/03 00:57	JH	D30328A
1,1-Dichloroethane 1,2-Dichloroethane	<1.0	1.0		μg/L	1.0	SW8260B	N/A	3/29/03 00:57	JH	D30328A
1,2-Dichloroethene	<1.0 <0.50	0.50		μg/L	1.0	SW8260B	N/A	3/29/03 00:57	JH	D30328A
cis-1,2-Dichloroethene		0.50		µg/L	1.0	SW8260B	N/A	3/29/03 00:57	JH	D30328A
trans-1,2-Dichloroethene	<0.50			рд/L µg/L	1.0	SW8260B	N/A	3/29/03 00:57	JH	D30328A
r	<0.50	0.50 0.50		μg/L	1.0	SW8260B	N/A	3/29/03 00:57	JН	D30328A
1,2-Dichloropropane	<0.50	1.0		µg/L	1.0	SW8260B	N/A	3/29/03 00:57	JH	D30328A
1,3-Dichloropropane	<1,0			рд/L µg/L	1.0	SW8260B	N/A	3/29/03 00:57	JH	D30328A
2,2-Dichloropropane	<0.50 <1.0	0.50 1.0		µg/∟	1.0	SW8260B	N/A	3/29/03 00:57	JH	D30328A
1,1-Dichloropropene		1.0		µg/∟ µg/L	1.0	SW8260B	N/A	3/29/03 00:57	JH	D30328A
cis-1,3-Dichloropropene	<1.0	0.50		μg/L	1.0	SW8260B	N/A	3/29/03 00:57	JH	D30328A
trans-1,3-Dichloropropene	<0.50	2.0		µg/L	1.0	SW8260B	N/A	3/29/03 00:57	JH	D30328A
Ethylbenzene	<2.0 <5.0	2.0 5.0		µg/L	1.0	SW8260B	N/A	3/29/03 00:57	JH	D30328A
2-Hexanone		5.0 1.5		μg/L	1.0	SW8260B	N/A	3/29/03 00:57	JН	D30328A
4-Isopropyltoluene	<1.5			µg/L	1.0	SW8260B	N/A	3/29/03 00:57	JH	D30328A
Methyl 2 postspans	<2.0	2.0 5.0		μg/L μg/L	1.0	SW8260B	N/A	3/29/03 00:57		D30328A
4-Methyl-2-pentanone	<5.0			µg/∟	1.0	SW8260B	N/A	3/29/03 00:57		D30328A
Methylene chloride	<3.0	3.0			1.0	SW8260B	N/A	3/29/03 00:57		D30328A
n-Propylbenzene	<2.0	2.0		µg/L	1.0	01102000	, ,,, ,		¥11	

TRANSWEST GEOCHEM

Date Printed 03-Apr-03

License No. AZM133/AZ0133

CLIENT:

Geotechnical & Env. Cons., Inc.

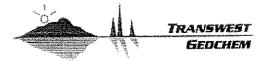
Work Order:

0303327

Lab ID:

0303327-06

Project Name:


Project Number: 94-0069N

Client Sample ID: Trip Blank

Collection Date: 3/24/2003 9:46:00 AM

Matrix: TRIP BLANK

						Test	Date	Date		
Analyte	Result	PQL	Qual	Units	DF	Code	Prepared	Analyzed	Analyst	Batch ID
Styrene	<1.0	1.0		µg/L	1.0	SW8260B	N/A	3/29/03 00:57	JH	D30328A
1,1,2,2-Tetrachloroethane	<0.50	0.50		μg/L	1.0	SW8260B	N/A	3/29/03 00:57	JH	D30328A
Tetrachloroethene	<0.50	0.50		μg/L	1.0	SW8260B	N/A	3/29/03 00:57	JH	D30328A
Toluene	<3.0	3.0		μg/L	1.0	SW8260B	N/A	3/29/03 00:57	JH	D30328A
1,2,3-Trichlorobenzene	<5.0	5.0		μg/L	1.0	SW8260B	N/A	3/29/03 00:57	JH	D30328A
1,1,1-Trichloroethane	<0.50	0.50		μg/L	1.0	SW8260B	N/A	3/29/03 00:57	JH	D30328A
1,1,2-Trichloroethane	<0.50	0.50		μg/L	1.0	SW8260B	N/A	3/29/03 00:57	JH	D30328A
Trichloroethene	<0.50	0.50		µg/L	1.0	SW8260B	N/A	3/29/03 00:57	JH	D30328A
Trichlorofluoromethane	<2.0	2.0		μg/L	1.0	SW8260B	N/A	3/29/03 00:57	JH	D30328A
1.2.3-Trichloropropane	<1.0	1.0		μg/L	1.0	SW8260B	N/A	3/29/03 00:57	JH	D30328A
1,2,4-Trimethylbenzene	<2.0	2.0		μg/L	1.0	SW8260B	N/A	3/29/03 00:57	JH	D30328A
1,3,5-Trimethylbenzene	<1.5	1.5		µg/L	1.0	SW8260B	N/A	3/29/03 00:57	JH	D30328A
Vinyl acetate	<5.0	5.0		µg/L	1.0	SW8260B	N/A	3/29/03 00:57	JH	D30328A
Vinyl chloride	<0.50	0.50		μg/L	1.0	SW8260B	N/A	3/29/03 00:57	JΗ	D30328A
Xylenes, Total	<3.0	3.0		μg/L	1.0	SW8260B	N/A	3/29/03 00:57	JΗ	D30328A
4-Bromofluorobenzene(Surrogate)	91	80-107		%REC	1.0	SW8260B	N/A	3/29/03 00:57	JH	D30328A
Dibromofluoromethane(Surrogate)	90	77-104		%REC	1.0	SW8260B	N/A	3/29/03 00:57	JH	D30328A
1.2-Dichloroethane-d4(Surrogate)	96	72-111		%REC	1.0	SW8260B	N/A	3/29/03 00:57	JH	D30328A
Toluene-d8(Surrogate)	94	84-105		%REC	1.0	SW8260B	N/A	3/29/03 00:57	JH	D30328A

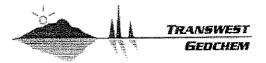
03-Apr-03

License No. AZM133/AZ0133

CLIENT:

Geotechnical & Env. Cons., Inc.

Work Order:


0303327

Project:

94-0069N

QC SUMMARY REPORT

						Test	Date	Date	
Analyte	Result	PQL	Qual	Units	DF	Code	Prepared	Analyzed Analyst	Batch ID
Acetone	<20	20		µg/L	1	SW8260B	N/A	3/28/03 4:26:00 AM JH	D30327D
Benzene	< 0.50	0.50		μg/L	1	SW8260B	N/A	3/28/03 4:26:00 AM JH	D30327D
Bromobenzene	<1.5	1.5		μg/L	1	SW8260B	N/A	3/28/03 4:26:00 AM JH	D30327D
Bromochloromethane	< 0.50	0.50		μg/L	1	SW8260B	N/A	3/28/03 4:26:00 AM JH	D30327D
Promodichloromethane	< 0.50	0.50		μg/L	1	SW8260B	N/A	3/28/03 4:26:00 AM JH	D30327D
3romoform	<1.0	1.0		µg/L	1	SW8260B	N/A	3/28/03 4:26:00 AM JH	D30327D
Bromomethane	<5.0	5.0		µg/L	1	SW8260B	N/A	3/28/03 4:26:00 AM JH	D30327D
?-Butanone	<5.0	5.0		µg/L	1	SW8260B	N/A	3/28/03 4:26:00 AM JH	D30327D
n-Butylbenzene	<2.5	2.5		μg/L	1	SW8260B	N/A	3/28/03 4:26:00 AM JH	D30327D
ec-Butylbenzene	<1.5	1.5		μg/L	1	SW8260B	N/A	3/28/03 4:26:00 AM JH	D30327D
ert-Butylbenzene	<2.5	2,5		μg/L	1	SW8260B	N/A	3/28/03 4:26:00 AM JH	D30327D
Carbon tetrachloride	<0.50	0.50		µg/L	1	SW8260B	N/A	3/28/03 4:26:00 AM JH	D30327D
Chlorobenzene	<0.50	0.50		µg/L	1	SW8260B	N/A	3/28/03 4:26:00 AM JH	D30327D
Chloroethane	<1.0	1.0		µg/L	1	SW8260B	N/A	3/28/03 4:26:00 AM JH	D30327D
Chloroform	<0.50	0.50		µg/L	1	SW8260B	N/A	3/28/03 4:26:00 AM JH	D30327D
Chloromethane	<5.0	5.0		μg/L	1	SW8260B	N/A	3/28/03 4:26:00 AM JH	D30327D
2-Chlorotoluene	<1.5	1.5		μg/L	1	SW8260B	N/A	3/28/03 4:26:00 AM JH	D30327D
I-Chlorotoluene	<2.0	2.0		μg/L	1	SW8260B	N/A	3/28/03 4:26:00 AM JH	D30327D
Dibromochloromethane	< 0.50	0.50		µg/L	1	SW8260B	N/A	3/28/03 4:26:00 AM JH	D30327D
I,2-Dibromoethane	<0.50	0.50		µg/L	1	SW8260B	N/A	3/28/03 4:26:00 AM JH	D30327D
1.2-Dichlorobenzene	<1.5	1.5		µg/L	1	SW8260B	N/A	3/28/03 4:26:00 AM JH	D30327D
1,3-Dichlorobenzene	<1.5	1.5		µg/L	1	SW8260B	N/A	3/28/03 4:26:00 AM JH	D30327D
1,4-Dichlorobenzene	<1.5	1.5		µg/L	1	SW8260B	N/A	3/28/03 4:26:00 AM JH	D30327D
Dichlorodifluoromethane	<2.0	2.0		µg/L	1	SW8260B	N/A	3/28/03 4:26:00 AM JH	D30327D
1,1-Dichloroethane	<1.0	1.0		µg/L	1	SW8260B	N/A	3/28/03 4:26:00 AM JH	D30327D
1,2-Dichloroethane	<1.0	1.0		µg/L	1	SW8260B	N/A	3/28/03 4:26:00 AM JH	D30327D
1,1-Dichloroethene	<0.50	0.50		µg/L	1	SW8260B	N/A	3/28/03 4:26:00 AM JH	D30327D
cis-1,2-Dichloroethene	<0.50	0.50		µg/L	1	SW8260B	N/A	3/28/03 4:26:00 AM JH	D30327D
trans-1,2-Dichloroethene		0.50		μg/L	1	SW8260B	N/A	3/28/03 4:26:00 AM JH	D30327D
·	<0.50	0.50		µg/L	1	SW8260B	N/A	3/28/03 4:26:00 AM JH	D30327D
1,2-Dichloropropane 1,3-Dichloropropane	<0.50	1.0		μg/L	1	SW8260B	N/A	3/28/03 4:26:00 AM JH	D30327D
	<1.0	0.50		µg/⊾	. 1	SW8260B	N/A	3/28/03 4:26:00 AM JH	D30327D
2,2-Dichloropropane	<0.50	1.0		µg/L	1	SW8260B	N/A	3/28/03 4:26:00 AM JH	D30327D
1,1-Dichloropropene	<1.0	1.0		µg/L	1	SW8260B	N/A	3/28/03 4:26:00 AM JH	D30327D
cis-1,3-Dichloropropene	<1.0 <0.50			ha\r ha\r	1	SW8260B	N/A	3/28/03 4:26:00 AM JH	D30327D
trans-1,3-Dichloropropene	<0.50	0.50		μg/L	, 1	SW8260B	N/A	3/28/03 4:26:00 AM JH	Ð30327D
Ethylbenzene	<2.0	2.0		μg/L	1	SW8260B	N/A	3/28/03 4:26:00 AM JH	D30327D
2-Hexanone	<5.0	5.0		ha/r	1	SW8260B	N/A	3/28/03 4:26:00 AM JH	D30327D
4-isopropyltoluene	<1.5	1.5		hâ\r hâ\r	1	SW8260B	N/A	3/28/03 4:26:00 AM JH	D30327D
Methyl tert-butyl ether	<2.0	2.0			1	SW8260B	N/A	3/28/03 4:26:00 AM JH	D30327D
4-Methyl-2-pentanone	<5.0	5.0		µg/L ug/l	1	SW8260B	N/A	3/28/03 4:26:00 AM JH	D30327D
Methylene chloride	<3.0	3.0		µg/L		SW8260B	N/A	3/28/03 4:26:00 AM JH	D30327D
n-Propylbenzene	<2.0	2.0		μg/L	1	SW8260B	N/A	3/28/03 4:26:00 AM JH	D30327D
Styrene	<1.0	1.0		µg/L	1	SW8260B	N/A	3/28/03 4:26:00 AM JH	D30327D
1,1,2,2-Tetrachloroethane	< 0.50	0.50		µg/L	1		N/A N/A	3/28/03 4:26:00 AM JH	D30327E
Tetrachloroethene	<0.50	0.50		µg/L	1	SW8260B	NIA	OLEGICO 4'ERION LIM Q1	DOGOT! D

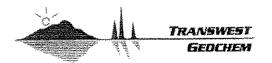
03-Apr-03

License No. AZM133/AZ0133

CLIENT:

Geotechnical & Env. Cons., Inc.

Work Order:


0303327

Project:

94-0069N

QC SUMMARY REPORT

				TT .		Test	Date	Date	st Batch ID
Analyte	Result	PQL	Qual	Units	DF	Code	Prepared	Analyzed Analy	St Daten ID
Toluene	<3.0	3.0		μg/L	1	SW82608	N/A	3/28/03 4:26:00 AM JH	D30327D
1,2,3-Trichlorobenzene	<5.0	5.0		μg/L	1	SW8260B	N/A	3/28/03 4:26:00 AM JH	D30327D
1,1,1-Trichloroethane	< 0.50	0.50		μg/L	1	SW8260B	N/A	3/28/03 4:26:00 AM JH	D30327D
1,1,2-Trichloroethane	< 0.50	0.50		μg/L	1	SW8260B	N/A	3/28/03 4:26:00 AM JH	D30327D
Trichloroethene	<0.50	0.50		μg/L	1	SW8260B	N/A	3/28/03 4:26:00 AM JH	D30327D
Trichlorofluoromethane	<2.0	2.0		µg/L	1	SW8260B	N/A	3/28/03 4:26:00 AM JH	D30327D
1,2,3-Trichloropropane	<1.0	1.0		µg/L	1	SW8260B	N/A	3/28/03 4:26:00 AM JH	D30327D
1,2,4-Trimethylbenzene	<2.0	2.0		μg/L	· 1	SW8260B	N/A	3/28/03 4:26:00 AM JH	D30327D
1.3.5-Trimethylbenzene	<1.5	1.5		μg/L	1	SW8260B	N/A	3/28/03 4:26:00 AM JH	D30327D
Vinyl acetate	<5.0	5.0		μg/L	1	SW8260B	N/A	3/28/03 4:26:00 AM JH	D30327D
Vinyl chloride	<0.50	0.50		µg/L	1	SW8260B	N/A	3/28/03 4:26:00 AM JH	D30327D
Xylenes, Total	<3.0	3.0		µg/L	1	SW8260B	N/A	3/28/03 4:26:00 AM JH	D30327D
4-Bromofluorobenzene	94	80-107		%REC	1	SW8260B	N/A	3/28/03 4:26:00 AM JH	D30327D
Dibromofluoromethane	89	77-104		%REC	1	SW8260B	N/A	3/28/03 4:26:00 AM JH	D30327D
1,2-Dichloroethane-d4	89	72-111		%REC	1	SW8260B	N/A	3/28/03 4:26:00 AM JH	D30327D
Toluene-d8	92	84-105		%REC	1	SW8260B	N/A	3/28/03 4:26:00 AM JH	D30327D

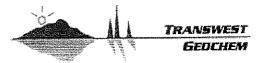
03-Apr-03

License No. AZM133/AZ0133

CLIENT:

Geotechnical & Env. Cons., Inc.

Work Order:


0303327

Project:

94-0069N

QC SUMMARY REPORT

						Test	Date	Date	
Analyte	Result	PQL	Qual	Units	DF	Code	Prepared	Analyzed Analyst	Batch ID
Acetone	<20	20		µg/L	1	SW8260B	N/A	3/28/03 4:47:00 PM JH	D30328A
Benzene	<0.50	0.50		µg/L	1	SW8260B	N/A	3/28/03 4:47:00 PM JH	D30328A
Bromobenzene	<1.5	1.5		µg/L	1	SW8260B	N/A	3/28/03 4:47:00 PM JH	D30328A
Bromochloromethane	<0.50	0.50		μg/L	1	SW8260B	N/A	3/28/03 4:47:00 PM JH	D30328A
Bromodichloromethane	<0.50	0.50		μg/L	1	SW8260B	N/A	3/28/03 4:47:00 PM JH	D30328A
Bromoform	<1.0	1.0		μg/L	1	SW8260B	N/A	3/28/03 4:47:00 PM JH	D30328A
Bromomethane	<5.0	5.0		µg/L	1	SW8260B	N/A	3/28/03 4:47:00 PM JH	D30328A
2-Butanone	<5.0	5.0		μg/L	1	SW8260B	N/A	3/28/03 4:47:00 PM JH	D30328A
n-Butylbenzene	<2.5	2.5		μg/L	1	SW8260B	N/A	3/28/03 4:47:00 PM JH	D30328A
sec-Butylbenzene	<1.5	1.5		μg/L	1	SW8260B	N/A	3/28/03 4:47:00 PM JH	D30328A
tert-Butylbenzene	<2.5	2.5		μg/L	1	SW8260B	N/A	3/28/03 4:47:00 PM JH	D30328A
Carbon tetrachloride	<0.50	0.50		μg/L	1	SW8260B	N/A	3/28/03 4:47:00 PM JH	D30328A
Chlorobenzene	<0.50	0.50		μg/L	1	SW8260B	N/A	3/28/03 4:47:00 PM JH	D30328A
Chloroethane	<1.0	1.0		µg/L	1	SW8260B	N/A	3/28/03 4:47:00 PM JH	D30328A
Chloroform	<0.50	0.50		μg/L	1	SW8260B	N/A	3/28/03 4:47:00 PM JH	D30328A
Chloromethane	<5.0	5.0		μg/L	1	SW8260B	N/A	3/28/03 4:47:00 PM JH	D30328A
2-Chlorotoluene	<1.5	1.5		µg/L	1	SW8260B	N/A	3/28/03 4:47:00 PM JH	D30328A
4-Chlorotoluene	<2.0	2.0		µg/L	1	SW8260B	N/A	3/28/03 4:47:00 PM JH	D30328A
Dibromochloromethane	<0.50	0.50		µg/L	1	SW8260B	N/A	3/28/03 4:47:00 PM JH	D30328A
1,2-Dibromoethane	<0.50	0.50		µg/L	1	SW8260B	N/A	3/28/03 4:47:00 PM JH	D30328A
1,2-Dichlorobenzene	<1.5	1.5		µg/L	1	SW8260B	N/A	3/28/03 4:47:00 PM JH	D30328A
1,3-Dichlorobenzene	<1.5 <1.5	1.5		μg/L	1	SW8260B	N/A	3/28/03 4:47:00 PM JH	D30328A
•		1.5 1.5		µg/L	1	SW8260B	N/A	3/28/03 4:47:00 PM JH	D30328A
1,4-Dichlorobenzene Dichlorodifluoromethane	<1.5	2.0		µg/L	1	SW82608	N/A	3/28/03 4:47:00 PM JH	D30328A
	<2.0	2.0 1.0		µg/L	1	SW8260B	N/A	3/28/03 4:47:00 PM JH	D30328A
1,1-Dichloroethane	<1.0	1.0		µg/L	1	SW8260B	N/A	3/28/03 4:47:00 PM JH	D30328A
1,2-Dichloroethane	<1.0	0.50		µg/L	1	SW8260B	N/A	3/28/03 4:47:00 PM JH	D30328A
1,1-Dichloroethene	<0.50	0.50		µg/L	1	SW8260B	N/A	3/2B/03 4:47:00 PM JH	D30328A
cis-1,2-Dichloroethene	<0.50			µg/L	1	SW8260B	N/A	3/28/03 4:47:00 PM JH	D30328A
trans-1,2-Dichloroethene	<0.50	0.50		µg/L	1	SW8260B	N/A	3/28/03 4:47:00 PM JH	D30328A
1,2-Dichloropropane	<0.50	0.50			1	SW8260B	N/A	3/28/03 4:47:00 PM JH	D30328A
1,3-Dichloropropane	<1.0	1.0		µg/L	1	SW8260B	N/A	3/28/03 4:47:00 PM JH	D30328A
2,2-Dichloropropane	<0.50	0.50		µg/L	1	SW8260B	N/A	3/28/03 4:47:00 PM JH	D30328A
1,1-Dichloropropene	<1.0	1.0		µg/L	1	SW8260B	N/A	3/28/03 4:47:00 PM JH	D30328A
cis-1,3-Dichloropropene	<1.0	1.0		µg/L	1	SW8260B	N/A	3/28/03 4:47:00 PM JH	D30328A
trans-1,3-Dichloropropene	<0.50	0.50		μg/L	1	SW8260B	N/A	3/28/03 4:47:00 PM JH	D30328A
Ethylbenzene	<2.0	2.0		μg/L	1	SW8260B	N/A	3/28/03 4:47:00 PM JH	D30328A
2-Hexanone	<5.0	5.0		µg/L	1	SW8260B	N/A	3/28/03 4:47:00 PM JH	D30328A
4-Isopropyltoluene	<1.5	1.5		μg/L μg/L	1	SW8260B	N/A	3/28/03 4:47:00 PM JH	D30328A
Methyl tert-butyl ether	<2.0	2.0		μg/L	1	SW8260B	N/A	3/28/03 4:47:00 PM JH	D30328A
4-Methyl-2-pentanone	<5.0	5.0		μg/L		SW8260B	N/A	3/28/03 4:47:00 PM JH	D30328A
Methylene chloride	<3.0	3.0		μg/L	1	SW8260B	N/A	3/28/03 4:47:00 PM JH	D30328A
n-Propylbenzene	<2.0	2.0		µg/L	1	SW8260B	N/A	3/28/03 4:47:00 PM JH	D30328A
Styrene	<1.0	1.0		µg/L	1	SW8260B	N/A	3/28/03 4:47:00 PM JH	D30328A
1,1,2,2-Tetrachloroethane	<0.50	0.50		µg/L "	1			3/28/03 4:47:00 PM JH	D30328A
Tetrachloroethene	< 0.50	0.50		µg/L	1	SW8260B	N/A	UIZOIOD 4.41.UU FINI JA	DOVOZUA

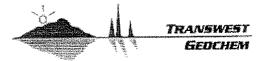
03-Apr-03

License No. AZM133/AZ0133

CLIENT:

Geotechnical & Env. Cons., Inc.

Work Order:


0303327

Project:

94-0069N

QC SUMMARY REPORT

Analyte	Result	PQL	Qual	Units	DF	Test Code	Date Prepared	Date Analyzed Analyst	Batch ID
Toluene	<3.0	3.0		μg/L	1	SW8260B	N/A	3/28/03 4:47:00 PM JH	D30328A
1,2,3-Trichlorobenzene	<5.0	5.0		μg/L	1	SW8260B	N/A	3/28/03 4:47:00 PM JH	D30328A
1,1,1-Trichloroethane	<0.50	0.50		μg/L	1	SW8260B	N/A	3/28/03 4:47:00 PM JH	D30328A
1.1.2-Trichloroethane	<0.50	0.50		μg/L	1	SW8260B	N/A	3/28/03 4:47:00 PM JH	D30328A
Trichloroethene	<0.50	0.50		μg/L	1	SW8260B	N/A	3/28/03 4:47:00 PM JH	D30328A
Trichlorofluoromethane	<2.0	2.0		μg/L	1	SW8260B	N/A	3/28/03 4:47:00 PM JH	D30328A
1,2,3-Trichloropropane	<1.0	1.0		μg/L	1	SW8260B	N/A	3/28/03 4:47:00 PM JH	D30328A
1,2,4-Trimethylbenzene	<2.0	2.0		μg/L	1	SW8260B	N/A	3/28/03 4:47:00 PM JH	D30328A
1,3,5-Trimethylbenzene	<1.5	1.5		μg/L	1	SW8260B	N/A	3/28/03 4:47:00 PM JH	D30328A
Vinyl acetate	<5.0	5.0		μg/L	1	SW8260B	N/A	3/28/03 4:47:00 PM JH	D30328A
Vinyt chloride	<0.50	0.50		μg/L	1	SW8260B	N/A	3/28/03 4:47:00 PM JH	D30328A
Xylenes, Total	<3.0	3.0		μg/L	1	SW8260B	N/A	3/28/03 4:47:00 PM JH	D30328A
4-Bromofluorobenzene	94	80-107		%REC	1	SW8260B	N/A	3/28/03 4:47:00 PM JH	D30328A
Dibromofluoromethane	89	77-104		%REC	1	SW8260B	N/A	3/28/03 4:47:00 PM JH	D30328A
1,2-Dichloroethane-d4	91	72-111		%REC	1	SW8260B	N/A	3/28/03 4:47:00 PM JH	D30328A
Toluene-d8	95	84-105		%REC	1 .	SW8260B	N/A	3/28/03 4:47:00 PM JH	D30328A

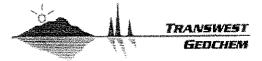
03-Apr-03

License No. AZM133/AZ0133

CLIENT:

Geotechnical & Env. Cons., Inc.

Work Order:


0303327

Project:

94-0069N

QC SUMMARY REPORT

						Test	Date	Date	D
Analyte	Result	PQL	Qual	Units	DF	Code	Prepared	Analyzed Analyst	Batch ID
Acetone	<20	20		µg/L	1	SW8260B	N/A	3/29/03 5:21:00 AM JH	D30328B
Benzene	< 0.50	0.50		μg/L	1	SW8260B	N/A	3/29/03 5:21:00 AM JH	D30328B
Bromobenzene	<1.5	1.5		µg/L	1	SW8260B	N/A	3/29/03 5:21:00 AM JH	D30328B
Bromochloromethane	< 0.50	0.50		μg/L	1	SW8260B	N/A	3/29/03 5:21:00 AM JH	D30328B
3romodichioromethane	< 0.50	0.50		µg/L	1	SW8260B	N/A	3/29/03 5:21:00 AM JH	D30328B
Bromoform	<1.0	1.0		μg/L	1	SW8260B	N/A	3/29/03 5:21:00 AM JH	D30328B
Bromomethane	<5.0	5.0		μg/L	1	SW8260B	N/A	3/29/03 5:21:00 AM JH	D30328B
2-Butanone	<5.0	5.0		µg/L	1	SW8260B	N/A	3/29/03 5:21:00 AM JH	D30328B
n-Butylbenzene	<2.5	2.5		μg/L	1	SW8260B	N/A	3/29/03 5:21:00 AM JH	D30328B
sec-Butylbenzene	<1.5	1.5		μg/L	1	SW8260B	N/A	3/29/03 5:21:00 AM JH	D30328B
ert-Butylbenzene	<2.5	2.5		μg/L	1	SW8260B	N/A	3/29/03 5:21:00 AM JH	D30328B
Carbon tetrachloride	< 0.50	0.50		μg/L	1	SW8260B	N/A	3/29/03 5:21:00 AM JH	D30328B
Chlorobenzene	<0.50	0.50		μg/L	1	SW8260B	N/A	3/29/03 5:21:00 AM JH	D30328B
Chloroethane	<1.0	1.0		µg/L	1	SW8260B	N/A	3/29/03 5:21:00 AM JH	D30328B
Chloroform	<0.50	0.50		μg/L	1	SW8260B	N/A	3/29/03 5:21:00 AM JH	D30328B
Chloromethane	<5.0	5.0		μg/L	1	SW8260B	N/A	3/29/03 5:21:00 AM JH	D30328B
2-Chlorotoluene	<1.5	1.5		μg/L	1	SW8260B	N/A	3/29/03 5:21:00 AM JH	. D30328B
4-Chlorotoluene	<2.0	2.0		µg/L	1	SW8260B	N/A	3/29/03 5:21:00 AM JH	D30328B
Dibromochloromethane	<0.50	0.50		μg/L	1	SW8260B	N/A	3/29/03 5:21:00 AM JH	D30328B
1,2-Dibromoethane	< 0.50	0.50		μg/L	1	SW8260B	N/A	3/29/03 5:21:00 AM JH	D30328B
1,2-Dichlorobenzene	<1.5	1.5		μg/L	1	SW8260B	N/A	3/29/03 5:21:00 AM JH	D30328B
1,3-Dichlorobenzene	<1.5	1.5		µg/L	1	SW8260B	N/A	3/29/03 5:21:00 AM JH	D30328B
1.4-Dichlorobenzene	<1.5	1.5		µg/L	1	SW8260B	N/A	3/29/03 5:21:00 AM JH	D30328B
Dichlorodifluoromethane	<2.0	2.0		µg/L	1	SW8260B	N/A	3/29/03 5:21:00 AM JH	D30328B
1,1-Dichloroethane	<1.0	1.0		µg/L	1	SW8260B	N/A	3/29/03 5:21:00 AM JH	D30328B
1,2-Dichloroethane	<1.0	1.0		µg/L	1	SW8260B	N/A	3/29/03 5:21:00 AM JH	D30328B
1,1-Dichloroethene	< 0.50	0.50		μg/L	1	SW8260B	N/A	3/29/03 5:21:00 AM JH	D30328B
cis-1,2-Dichloroethene	< 0.50	0.50		µg/L	1	SW8260B	N/A	3/29/03 5:21:00 AM JH	D30328B
trans-1,2-Dichloroethene	< 0.50	0.50		μg/L	1	SW8260B	N/A	3/29/03 5:21:00 AM JH	D30328B
1,2-Dichloropropane	<0.50	0.50		µg/L	1	SW8260B	N/A	3/29/03 5:21:00 AM JH	D30328B
1,3-Dichloropropane	<1.0	1.0		μg/L	1	SW8260B	N/A	3/29/03 5:21:00 AM JH	D30328B
2,2-Dichloropropane	<0.50	0.50		µg/L	1	SW8260B	N/A	3/29/03 5:21:00 AM JH	D30328B
1,1-Dichloropropene	<1.0	1.0		μg/L	1	SW8260B	N/A	3/29/03 5:21:00 AM JH	D30328B
cis-1,3-Dichloropropene	<1.0	1.0		μg/L	1	SW8260B	N/A	3/29/03 5:21:00 AM JH	D30328B
trans-1,3-Dichloropropene	<0.50	0.50		μg/L	1	SW8260B	N/A	3/29/03 5:21:00 AM JH	D30328B
Ethylbenzene	<2.0	2.0		μg/L	1	SW8260B	N/A	3/29/03 5:21:00 AM JH	D30328B
2-Hexanone	<5.0	5.0		μg/L	1	SW8260B	N/A	3/29/03 5:21:00 AM JH	D30328B
4-Isopropyltoluene	<1.5	1.5		µg/L	1	SW8260B	N/A	3/29/03 5:21:00 AM JH	D30328B
Methyl tert-butyl ether	<2.0	2.0		µg/L	1	SW8260B	N/A	3/29/03 5:21:00 AM JH	D30328B
4-Methyl-2-pentanone	<5.0	5.0		μg/L	1	SW8260B	N/A	3/29/03 5:21:00 AM JH	D30328B
Methylene chloride	<3.0	3.0		µg/L	1	SW8260B	N/A	3/29/03 5:21:00 AM JH	D30328B
n-Propylbenzene	<2.0	2.0		μg/L	1	SW8260B	N/A	3/29/03 5:21:00 AM JH	D30328B
Styrene	<1.0	1.0		μg/L	1	SW8260B	N/A	3/29/03 5:21:00 AM JH	D30328B
1,1,2,2-Tetrachioroethane	<0.50	0.50		μg/L	1	SW8260B	N/A	3/29/03 5:21:00 AM JH	D30328B
Tetrachloroethene	<0.50	0.50		μg/L	1	SW8260B	N/A	3/29/03 5:21:00 AM JH	D303288

03-Apr-03

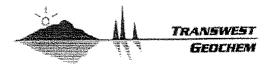
License No. AZM133/AZ0133

CLIENT:

Geotechnical & Env. Cons., Inc.

Work Order:

0303327


Project:

94-0069N

QC SUMMARY REPORT

Method Blank

Analyte	Result	PQL	Qual	Units	DF	Test Code	Date Prepared	Date Analyzed Ar	nalyst	Batch ID
Toluene	<3.0	3.0		µg/L	1	SW8260B	N/A	3/29/03 5:21:00 AM	JH	D30328B
1,2,3-Trichlorobenzene	<5.0	5.0		μg/L	1	SW8260B	N/A	3/29/03 5:21:00 AM	JH	D30328B
1,1,1-Trichloroethane	<0.50	0.50		μg/L	1	SW8260B	N/A	3/29/03 5:21:00 AM	JH	D30328B
1,1,2-Trichloroethane	<0.50	0.50		μg/L	1	SW8260B	N/A	3/29/03 5:21:00 AM	JH	D30328B
Trichloroethene	<0.50	0.50		µg/L	1	SW8260B	N/A	3/29/03 5:21:00 AM	JH	D30328B
Trichlorofluoromethane	<2.0	2.0		μg/L	1	SW8260B	N/A	3/29/03 5:21:00 AM	JH	D30328B
1,2,3-Trichloropropane	<1.0	1.0		μg/L	1	SW8260B	N/A	3/29/03 5:21:00 AM	JH	D30328B
1,2,4-Trimethylbenzene	<2.0	2.0		μg/L	1	SW8260B	N/A	3/29/03 5:21:00 AM	JH	D30328B
1,3,5-Trimethylbenzene	<1.5	1.5		μg/L	1	SW8260B	N/A	3/29/03 5:21:00 AM	JH	D30328B
Vinyl acetate	<5.0	5.0		μg/L	1	SW8260B	N/A	3/29/03 5:21:00 AM	JH	D30328B
Vinyl chloride	<0.50	0.50		μg/L	1	SW8260B	N/A	3/29/03 5:21:00 AM	JH	D30328B
Xylenes, Total	<3.0	3.0		µg/L	1	SW8260B	N/A	3/29/03 5:21:00 AM	JH	D30328B
4-Bromofluorobenzene	93	80-107		%REC	1	SW8260B	N/A	3/29/03 5:21:00 AM	JH	D30328B
Dibromofluoromethane	91	77-104		%REC	1	SW8260B	N/A	3/29/03 5:21:00 AM	JH	D30328B
1.2-Dichloroethane-d4	93	72-111		%REC	1	SW8260B	N/A	3/29/03 5:21:00 AM	JH	D30328B
Toluene-d8	93 92	84-105		%REC	1	SW8260B	N/A	3/29/03 5:21:00 AM	JH	D30328B

03-Apr-03

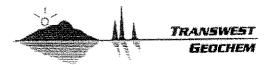
License No. AZM133/AZ0133

CLIENT:

Geotechnical & Env. Cons., Inc.

Work Order:

0303327


Project:

94-0069N

QC SUMMARY REPORT

Sample Matrix Spike

Analyte	Result	PQL	SPK value	SPK Ref Val	% Rec	Low Limit	High Limit	RPD Ref Val	% RPD	RPD Limit	Qual
Sample ID: 0303207-34AS	Batch ID: D30)327D		Test	Code: S	W8260B		Date Analy	zed: 03	/28/03 07:	36
Client ID:				Units	s: μg/L			Date Prepa	red: N/A	\ 	
Benzene	16.28	0.50	20.00	<0.50	81%	82	119				M2
Chlorobenzene	14.32	0.50	20.00	< 0.50	72%	82	110				M2
1,1-Dichloroethene	15.64	0.50	20.00	<0.50	78%	84	140				M2
Toluene	14,40	3.0	20.00	<3.0	72%	81	114				M2
Trichloroethene	13.59	0.50	20.00	<0.50	68%	78	119				M2
4-Bromofluorobenzene	46.21	N/A	50.00	N/A	92%	80	107				
Dibromofluoromethane	45.18	N/A	50.00	N/A	90%	77	104				
1,2-Dichloroethane-d4	45.08	N/A	50.00	N/A	90%	72	111				
Toluene-d8	45.63	N/A	50.00	N/A	91%	84	105				
Sample ID: 0303207-34ASD	Batch ID: D3	0327D		Test	Code: S	SW8260B		Date Analy	/zed: 03	/28/03 08:	11
Client ID:				Unit	s: μg/L			Date Prepa	red: N/	4	
Benzene	19.57	0.50	20.00	<0.50	98%	82	119	16.28	18%	. 13	R2
Chlorobenzene	17.61	0.50	20.00	<0.50	88%	82	110	14.32	21%	13	R2
1,1-Dichloroethene	20.67	0.50	20.00	<0.50	103%	84	140	15.64	28%	15	R2
Toluene	18.35	3.0	20.00	<3.0	92%	81	114	14.40	24%	14	R2
Trichloroethene	17.84	0.50	20.00	<0.50	89%	78	119	13.59	27%	16	R2
4-Bromofluorobenzene	46.13	N/A	50.00	N/A	92%		107				
Dibromofluoromethane	44.07	N/A	50.00	N/A	88%		104				
1,2-Dichloroethane-d4	43.42	N/A	50,00	N/A	87%		111				
Toluene-d8	45.80	N/A	50.00	N/A	92%	84	105				
Sample ID: 0303207-39AS	Batch ID: D3	0328A		Test	Code: 5	SW8260B		Date Anal	yzed: 03	3/28/03 21	:10
Client ID:				Unit	ts: μg/L			Date Prepa	ared: N/	Α	
Benzene	16.19	0.50	20.00	<0.50	81%		119				M2
Chlorobenzene	14.39	0.50	20.00	<0.50	72%		110				M2
1,1-Dichloroethene	16.62	0.50	20.00	< 0.50	83%		140				M2
Toluene	14.48	3.0	20.00	<3.0	72%		114				M2
Trichloroethene	14.42	0.50	20.00	<0.50	72%		119				M2
4-Bromofluorobenzene	44.02	N/A	50.00	N/A	88%		107				
Dibromofluoromethane	46.35	N/A	50.00	N/A	93%		104				
1,2-Dichloroethane-d4	48.51	N/A	50.00	N/A	97%	72	111				
Toluene-d8	44.88	N/A	50.00	N/A	90%	84	105				

03-Apr-03

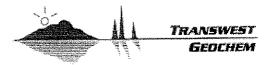
License No. AZM133/AZ0133

CLIENT:

Geotechnical & Env. Cons., Inc.

Work Order:

0303327


Project:

94-0069N

QC SUMMARY REPORT

Sample Matrix Spike

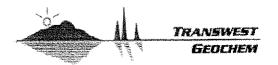
Analyte	Result	PQL	SPK value	SPK Ref Val	% Rec	Low Limit	High Limit	RPD Ref Val	% RPD	RPD Limit	Qual
Sample ID: 0303207-39ASD	Batch ID: D30		,		Code: S	W8260B		Date Analy	zed: 03/	28/03 21:	48
Client ID:	Batton				;: μg/L			Date Prepar	ed: N/A		
	16.74	0.50	20.00	<0.50	84%	82	119	16.19	3%	13	
Benzene Chlorobenzene	14.65	0.50	20.00	<0.50	73%	82	110	14,39	2%	13	M2
1,1-Dichloroethene	17.04	0.50	20.00	<0.50	85%	84	140	16.62	2%	15	
Toluene	17.04	3.0	20.00	<3.0	75%	81	114	14.48	4%	14	M2
Trichloroethene	14.92	0.50	20.00	< 0.50	75%	78	119	14.42	3%	16	M2
4-Bromofluorobenzene	44.35	N/A	50.00	N/A	89%	80	107	,			
Dibromofluoromethane	46.17	N/A	50.00	N/A	92%	77	104				
1,2-Dichloroethane-d4	46.17	N/A	50.00	N/A	92%	72	111				
Toluene-d8	40.07 47.19	N/A	50.00	N/A	94%	84	105				
	Batch ID: D3					W8260B		Date Analy	zed: 03/	/29/03 11:	38
Sample ID: 0303207-40AS	Baten ID: D3	032813						Date Prepa			
Client ID:				Unit	s: μg/L			Date Frepa			
Benzene	13.12	0.50	20.00	<0.50	66%	82	119				M2
Chlorobenzene	11.41	0.50	20.00	< 0.50	57%	82	110				M2
1,1-Dichloroethene	11.56	0.50	20.00	< 0.50	58%	84	140				M2
Toluene	10.86	3.0	20.00	<3.0	54%	81	114				M2
Trichloroethene	10.92	0.50	20.00	<0.50	55%	78	119				M2
4-Bromofluorobenzene	44.36	N/A	50.00	N/A	89%	80	107				
Dibromofluoromethane	46.94	N/A	50.00	N/A	94%	77	104				
1,2-Dichtoroethane-d4	48.24	N/A	50.00	N/A	96%	72	111				
Toluene-d8	45,20	N/A	50.00	N/A	90%	84	105				
Sample ID: 0303207-40ASD	Batch ID: D3	30328B		Test	Code:	SW8260B		Date Analy	zed: 03/	/29/03 12	:16
Client ID:				Unit	s: μg/L			Date Prepa	red: N/	Α	
Benzene	18.40	0.50	20.00	<0.50	92%	82	119	13.12	34%	13	R2
Chiorobenzene	16.19	0.50	20.00	< 0.50	81%	82	110	11.41	35%	13	M2,R2
1,1-Dichloroethene	18.89	0.50	20.00	<0.50	94%	84	140	11.56	48%	15	R2
Toluene	16.35	3.0	20.00	<3.0	82%	81	114	10.86	40%	14	R2
Trichloroethene	16.32	0.50	20.00	<0.50	82%	78	119	10.92	40%	16	R2
4-Bromofluorobenzene	44.51	N/A	50.00	N/A	89%	. 80	107				
Dibromofluoromethane	46.25	N/A	50.00	N/A	93%	77	104				
1,2-Dichloroethane-d4	47.60	N/A	50.00	N/A	95%	, 72	111				
Toluene-d8	45.63	N/A	50.00	N/A	91%	84	105				

03-Apr-03

License No. AZM133/AZ0133

CLIENT:

Geotechnical & Env. Cons., Inc.


Work Order: Project:

0303327 94-0069N

QC SUMMARY REPORT

Secondary Source Blank Spike

Analyte	Result	PQL	SPK value	SPK Ref Val	% Rec	Low Limit	High Limit	RPD % Ref Val RPD	RPD Limit Qual
Sample ID: LCSV-D30327B	Batch ID: D30)327D		Test	Code: S	W8260B		Date Analyzed: 0	3/28/03 03:10
5 4 p 2 - 1				Units	s; μg/L			Date Prepared: N	/A
Benzene	20.01	0.50	20.00	<0.50	100%	81	120		
Chlorobenzene	18.63	0.50	20.00	< 0.50	93%	85	111		
1,1-Dichloroethene	19.75	0.50	20.00	<0.50	99%	66	151		
Toluene	19.03	3.0	20.00	<3.0	95%	82	115		
Trichloroethene	17.94	0.50	20.00	< 0.50	90%	79	112		
4-Bromofluorobenzene	44.87	N/A	50.00	N/A	90%	80	107		
Dibromofluoromethane	44.83	N/A	50.00	N/A	90%	77	104		
1,2-Dichloroethane-d4	45.19	N/A	50.00	N/A	90%	72	111		
Toluene-d8	46.64	N/A	50.00	N/A	93%	84	105		
Sample ID: LCSVD-D30327B	Batch ID: D3	0327D		Test	Code: S	W8260B		Date Analyzed: (03/28/03 03:48
•				Unit	s: μg/L			Date Prepared: N	I/A
Benzene	21.63	0.50	20.00	<0.50	108%	81	120	20.01 8%	16
Chlorobenzene	19.87	0.50	20.00	< 0.50	99%	85	111	18.63 6%	14
1,1-Dichloroethene	21.70	0.50	20.00	<0.50	109%	66	151	19.75 9%	16
Toluene	20.12	3.0	20.00	<3.0	101%	82	115	19.03 6%	16
Trichloroethene	19.40	0.50	20.00	<0.50	97%	79	112	17.94 8%	18
4-Bromofluorobenzene	44.12	N/A	50.00	N/A	88%	80	107		
Dibromofluoromethane	44.56	N/A	50.00	N/A	89%		104		
1,2-Dichloroethane-d4	44.64	N/A	50.00	N/A	89%	72	111		
Toluene-d8	46.74	N/A	50.00	N/A	93%	84	105		
Sample ID: LCSV-D30328A	Batch ID: D3	0328A		Test	Code: 5	SW8260B		Date Analyzed:	03/28/03 15:36
				Unit	ts: µg/L			Date Prepared:	N/A
Benzene	19.93	0.50	20.00	< 0.50	100%		120		
Chlorobenzene	18.82	0.50	20.00	< 0.50	94%	85	111		
1,1-Dichloroethene	19,75	0.50	20.00	< 0.50	99%	66	151		
Toluene	19.01	3.0	20.00	<3.0	95%	82	115		
Trichloroethene	18.01	0.50	20.00	<0.50	90%	79	112		
4-Bromofluorobenzene	48.32	N/A	50.00	N/A	97%	80	107		
Dibromofluoromethane	43.39	N/A	50.00	N/A	87%	77	104		
1,2-Dichloroethane-d4	44.19	N/A	50.00	N/A	88%	72	111		
Toluene-d8	46.53	N/A	50.00	N/A	93%	84	105		

03-Apr-03

License No. AZM133/AZ0133

CLIENT:

Geotechnical & Env. Cons., Inc.

Work Order:

Project:

94-0069N

0303327

QC SUMMARY REPORT

Secondary Source Blank Spike Duplicate

Analyte	Result	PQL	SPK value	SPK Ref Val	% Rec	Low Limit	High Limit	RPD Ref Val	% RPD	RPD Limit	Qual
Sample ID: LCSVD-D30328A	Batch ID: D36					W8260B		Date Analy:			
Gampie ID. Beeve beveren	Daton 1D				i: μg/L			Date Prepar			
Benzene	21.01	0.50	20.00	<0.50	105%	81	120	19.93	5%	16	
Chlorobenzene	19.27	0.50	20.00	< 0.50	96%	85	111	18.82	2%	14	
1,1-Dichloroethene	21.16	0.50	20.00	< 0.50	106%	66	151	19.75	7%	16	
Toluene	19.50	3.0	20.00	<3.0	98%	82	115	19.01	3%	16	
Trichloroethene	19.11	0.50	20.00	< 0.50	96%	79	112	18.01	6%	18	
4-Bromofluorobenzene	45.14	N/A	50.00	N/A	90%	80	107				
Dibromofluoromethane	44.30	N/A	50.00	N/A	89%	77	104				
1,2-Dichloroethane-d4	43.45	N/A	50.00	N/A	87%	72	111				
Toluene-d8	46.40	N/A	50.00	N/A	93%	84	105				
Sample ID: LCSV-D30328B	Batch ID: D3	0328B	41 000	Test	Code: S	W8260B		Date Analy	zed: 03.	/29/03 04:	05
				Unit	s; μg/L			Date Prepar	red: N/A	A	
Benzene	21.93	0.50	20.00	<0.50	110%	81	120				
Chlorobenzene	19.44	0.50	20.00	<0.50	97%	85	111				
1,1-Dichloroethene	22.69	0.50	20.00	< 0.50	113%	66	151				
Toluene	19.94	3.0	20.00	<3.0	100%	82	115				
Trichloroethene	19.72	0.50	20.00	< 0.50	99%	79	112				
4-Bromofluorobenzene	44,04	N/A	50.00	N/A	88%	80	107				
Dibromofluoromethane	47.35	N/A	50.00	N/A	95%	77	104				
1,2-Dichloroethane-d4	48.19	N/A	50.00	N/A	96%	72	111				
Toluene-d8	46.61	N/A	50.00	N/A	93%	84	105				_
Sample ID: LCSVD-D30328B	Batch ID: D3	0328B		Test	Code: S	SW8260B		Date Analy	zed: 03	/29/03 04:	42
				Unit	s: μg/L			Date Prepar	red: N/A	Α	
Benzene	21.19	0.50	20.00	<0.50	106%	81	120	21.93	3%	16	
Chlorobenzene	18.92	0.50	20.00	<0.50	95%	85	111	19.44	3%	14	
1,1-Dichloroethene	21.10	0.50	20.00	<0.50	106%	66	151	22.69	7%	16	
Toluene	19.28	3.0	20.00	<3.0	96%	82	115	19.94	3%	16	
Trichloroethene	18.61	0.50	20.00	< 0.50	93%	79	112	19.72	6%	18	
4-Bromofluorobenzene	44.15	N/A	50.00	N/A	88%	80	107				
Dibromofluoromethane	46,13	N/A	50.00	N/A	92%	77	104				
1,2-Dichloroethane-d4	46.49	N/A	50.00	N/A	93%	72	111				
Toluene-d8	46.77	N/A	50.00	N/A	94%	84	105				

DEDCHEN

3725 East Atlanta Avenue, Suite 2 Phoenix, Arizona 85040 Phone: (602) 437-0330 Fax: (602) 437-0660

Chain of Custody
TGI Work Order No: OSOSS Date 3/2,4/03 Page of

							800		64		(,					
Project Manager:	j	ショル ころのて	مية					BIII to:			Ď	ししい					
Client Name:	しばい				•		පි	Company:									
	900 W.	Broadwa	ンログ	Ϋ́	Soad		₽¥	Address:									
71P.	のろかの、人	N	852K					City State ZIP	ZP-								
4	98-996-05	1808-	1944 14 17 17	000	480-966-	288	匠	Phone:						L.	Fax:		
P.O. No.	20000	1								ANALYSIS		REQUEST	LS		50 Sec.		
ame:								_									
Project Number: 44	N 5000 - 1	Ž				olatil		-									
WS	SAMPLERECEIPT					e Org					1						
Temperature: 4.1%	Ambient / Cold	1√ - lce:	7	٦		anics					3 Pric						
Received Intact:	,	Absent (Present	$\overline{\Lambda}$	seiskon		GC					ority						
Custody Seals:	2	(Wet.≁Blue		unioninia.							Poli						
Total No. of Containers:	٥			20101485			(6:				utan						
Sample (dentification	Matrix Date Sampled	ed Sampled	LabiD	i18.1AZ	15AZR.	8260AZ (8021B	25/8270 , (524.2	08/8081 s GCMS	PA 8310 s, (8082	A Metals	t Metals		,	·			Comments
7 - 2	Wate +3/24/63	63 (207	-		_	\ \ \{\bar{\chi}}	<u> </u>	1	╂	-	•	ļ		<u> </u>		***************************************	
4-87	11 11	(030	, د	ഹ		Barre L.											
1	£1 - ¿‡	0440	5	W)			4.										
75-15	11	1115	 ب	W		No.	-										
Eguip MRMT	и 11	(230	V\	W		No. of London											
1 Blank	,																
Trip Blank	11 3/19/03	53 1000	2														
-	•									_				_			
																	w weers summer he hand should be sho
				ļ													
Relinquished by: (Signature)	ature)	(Print Name)	me)		Date	Date/Time	Ш	Received by: (Signature)	d by: (Signati	ire)			(Print	(Print Name)		Date/Time
1 Darred Hosquary	\triangle	avid Far	FareMay	5	7	× 7-1	4,0	30.					/ ソ ノ	Kip Herder	3		1/24/33/819

MANUFACTURE CO.	The state of the s											_					

Revised: 6/29/00

April 4, 2003

Dino Gotsis Allen, Stephenson & Associates 1130 E. Missouri Ave., Suite 110 Phoenix, AZ 85014

Re: Alsco/112.5

Work Order No.:

0303292

Dear Dino,

Attached is the original Report of Analysis from Precision Analytical Laboratories, Inc. for the samples received on 03/20/2003 4:30:00 PM. The following analysis was performed:

Method SW8260B - Volatiles By GC/MS

If you have any questions regarding the results, please call me. We appreciate your business and thank you for choosing Transwest Geochem.

Sincerely,

Vic Nielsen

Project Manager

ADHS License No. AZM133/AZ0133

a division of Aerotech Laboratories, Inc.

April 01, 2003

Vic Nielsen Transwest Geochem, Inc. 3725 E. Atlanta Avenue, Suite 2 Phoenix, AZ 85040

RE: Alsco 112.05/0303292

Dear Vic Nielsen:

Order No.: 03031066

Precision Analytical Laboratories received 4 samples on 3/27/2003 for the analyses presented in the following report.

This report includes the following information:

enchiclanden -

- Case Narrative.
- Analytical Report: includes test results, report limit (Limit), any applicable data qualifier (Qual), units, dilution factor (DF), and date analyzed.
- QC Summary Report.

This communication is intended only for the individual or entity to whom it is directed. It may contain information that is privileged, confidential, or otherwise exempt from disclosure under applicable law. Dissemination, distribution, or copying of this communication by anyone other than the intended recipient, or a duly designated employee or agent of such recipient, is prohibited. If you have received this communication in error, please notify us immediately and destroy this message and all attachments thereto. If you have any questions regarding these test results, please do not hesitate to call.

Sincerely,

Carlene McCutcheon

Project Manager

Precision Analytical Laboratories a division of Aerotech Laboratories, Inc.

Precision Analytical Laboratories

Date: 01-Apr-03

CLIENT:

Transwest Geochem, Inc.

Project:

Alsco 112.05/0303292

Lab Order:

03031066

Work Order Sample Summary

Lab Sample ID	Client Sample ID	Tag Number	Collection Date	Date Received
03031066-01A	MW-2	01A	3/20/2003 1:45:00 PM	3/27/2003
03031066-02A	MW-3	02A	3/20/2003 10:25:00 AM	3/27/2003
03031066-03A	MW-4	03A	3/20/2003 11:45:00 AM	3/27/2003
03031066-04A	TRIP BLANK	04A	3/20/2003 10:25:00 AM	3/27/2003

Date: 01-Apr-03

a division of Aerotech Laboratories, Inc.

Precision Analytical Laboratories

CLIENT:

Transwest Geochem, Inc.

Project:

Alsco 112.05/0303292

Lab Order:

03031066

CASE NARRATIVE

Samples were analyzed using methods outlined in references such as:

Standard Methods for the Examination of Water and Wastewater, 18th Edition, 1992, and 19th Edition, 1995.

Methods for Chemical Analysis of Water and Wastes, EPA-600/4-79-020, Revised March 1983.

Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW846, 3rd Edition.

40 CFR, Part 136, Revised 1995. Appendix A to Part 136 - Methods for Organic Chemical Analysis of Municipal and Industrial Wastewater.

NIOSH Manual of Analytical Methods, Fourth Edition, 1994.

Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air, Second Edition, 1999.

Precision Analytical Laboratories, Inc. (PAL) holds Arizona certification no. AZ0610 and PAL-Tucson holds Arizona certification no. AZ0609.

Aerotech Laboratories, Inc. (PAL division - Laboratory ID 154268) is accredited by the American Industrial Hygiene Association (AIHA) in the industrial hygiene program for the analytical techniques noted on the scope of accreditation. PAL participates in the AIHA Environmental Lead Proficiency Analytical Testing (ELPAT) program for lead in soil, paint chips and dust wipes.

Analytical Comments:

All method blanks and laboratory control spikes met EPA method and/or laboratory quality control objectives for the analyses included in this report.

Data Qualifiers:

Listed below are the data qualifiers used in your analytical report to explain any analytical or quality control issues. You will find them noted in your report under the column header "QUAL". Any quality control deficiencies that cannot be adequately described by these qualifiers will be addressed in the analytical comments section of this case narrative.

- B1 Target analyte detected in method blank at or above the method reporting limit.
- E4 Concentration estimated. Analyte was detected below laboratory minimum reporting level (MRL).
- Surrogate recovery was above laboratory and method acceptance limits.

Precision Analytical Laboratories a division of Aerotech Laboratories, Inc.

Precision Analytical Laboratories

CLIENT:

Transwest Geochem, Inc.

Lab Order:

03031066

Project:

Alsco 112.05/0303292

Lab ID:

03031066-01A

Date: 01-Apr-03

Client Sample ID: MW-2

Tag Number: 01A

Collection Date: 3/20/2003 1:45:00 PM

Matrix: AQUEOUS

Analyses	Result	Limit	Qual Units	DF	Date Analyzed
VOLATILES BY GC/MS	S	W8260B			Analyst: P N
1,1,1-Trichloroethane	< 1.0	1.0	μg/L	1	3/28/2003
1,1,2,2-Tetrachloroethane	< 1.0	1.0	μg/L	1	3/28/2003
1,1,2-Trichtoroethane	< 1.0	1.0	µg/L	1	3/28/2003
1,1-Dichloroethane	< 1.0	1.0	µg/L	1	3/28/2003
1,1-Dichloroethene	< 1.0	1.0	μg/Ł	1	3/28/2003
1,1-Dichloropropene	< 1.0	1.0	µg/Ł	1	3/28/2003
1,2,3-Trichlorobenzene	< 5.0	5.0	µg/L	1	3/28/2003
1,2,3-Trichloropropane	< 1.0	1.0	μg/L	1	3/28/2003
1,2,4-Trimethylbenzene	12	1.0	μg/L	1	3/28/2003
1,2-Dibromoethane	< 1.0	1.0	μg/L	1	3/28/2003
1,2-Dichlorobenzene	< 1.0	1.0	μg/L	1	3/28/2003
1,2-Dichloroethane	< 1.0	1.0	μg/L	1	3/28/2003
1,2-Dichloropropane	< 1.0	1.0	μg/L	1	3/28/2003
1,3,5-Trimethylbenzene	12	1.0	μg/L	1	3/28/2003
1,3-Dichlorobenzene	< 1.0	1.0	μg/L	1	3/28/2003
1,3-Dichloropropane	< 1.0	1.0	µg/L	1	3/28/2003
1,4-Dichlorobenzene	< 1.0	1.0	μg/L	1	3/28/2003
2,2-Dichloropropane	< 1.0	1.0	μg/L	. 1	3/28/2003
2-Butanone (MEK)	< 5.0	5.0	μg/L	1	3/28/2003
2-Chlorotoluene	< 1.0	1.0	μg/L	1	3/28/2003
2-Hexanone	< 5.0	5.0	μg/L	1	3/28/2003
4-Chlorotoluene	< 1.0	1.0	μg/L	1	3/28/2003
4-Isopropyltoluene	< 1.0	1.0	μg/L	1	3/28/2003
4-Methyl-2-pentanone	< 5.0	5.0	μg/L	1	3/28/2003
Acetone	< 20	20	μg/L	1	3/28/2003
Benzene	< 1.0	1.0	μg/L	1	3/28/2003
Bromobenzene	< 1.0	1.0	μg/L	1	3/28/2003
Bromochloromethane	< 1.0	1.0	μg/L	1	3/28/2003
Bromodichloromethane	< 1.0	1.0	μg/L	1	3/28/2003
Bromoform	< 1.0	1.0	μg/L	1	3/28/2003
Bromomethane	< 5.0	5.0	µg/L	1	3/28/2003
Carbon tetrachloride	< 1.0	1.0	µg/L	1	3/28/2003
Chlorobenzene	< 1.0	1.0	μg/L	1	3/28/2003
Chloroethane	< 1.0	1.0	μg/L	1	3/28/2003
Chloroform	< 1.0	1.0	μg/L	1	3/28/2003
Chloromethane	< 1.0	1.0	μg/L	1	3/28/2003
cis-1,2-Dichloroethene	< 1.0	1.0	μg/L	1	3/28/2003
cis-1,3-Díchloropropene	< 1.0	1.0	μg/L	1	3/28/2003
Dibromochloromethane	< 1.0	1.0	μg/L	1	3/28/2003
Dichlorodifluoromethane	< 1.0	1.0	µg/L	1	3/28/2003

Qualifiers:

ND - Not Detected at the Reporting Limit

S - Spike Recovery outside accepted recovery limits

J - Analyte detected below quantitation limits

R - RPD outside accepted recovery limits

B - Analyte detected in the associated Method Blank

E - Value above quantitation range

* - Value exceeds Maximum Contaminant Level

Page 1 of 8

Precision Analytical Laboratories

Date: 01-Apr-03

CLIENT:

Transwest Geochem. Inc.

Lab Order:

03031066

Project:

Alsco 112.05/0303292

Lab ID:

03031066-01A

Client Sample ID: MW-2

Tag Number: 01A

Collection Date: 3/20/2003 1:45:00 PM

Matrix: AQUEOUS

Analyses	Result	Limit	Qual	Units	DF	Date Analyzed
VOLATILES BY GC/MS		SW8260B				Analyst: P M
Ethylbenzene	1.4	1.0		μg/L	1	3/28/2003
m,p-Xylene	30	2.0		μg/L	1	3/28/2003
Methyl tert-butyl ether	< 1.0	1.0	81	μg/L	1	3/28/2003
Methylene chloride	< 2.0	2.0		µg/L	1	3/28/2003
n-Butylbenzene	< 1.0	1.0		μg/L	1	3/28/2003
n-Propylbenzene	< 1.0	1.0		μg/L	1	3/28/2003
o-Xylene	16 🎝	1.0		µg/L	1	3/28/2003
sec-Butylbenzene	< 1.0	1.0		µg/L	1	3/28/2003
Styrene	< 1.0	1.0		µg/L	1	3/28/2003
tert-Butylbenzene	< 1.0	1.0		µg/L	1	3/28/2003
Tetrachloroethene	< 1.0	1.0		μg/L	1	3/28/2003
Toluene	< 1.0	1.0		μg/L	1	3/28/2003
trans-1,2-Dichloroethene	< 1.0	1.0		μg/L	1	3/28/2003
trans-1,3-Dichloropropene	< 1.0	1.0		μg/L	1	3/28/2003
Trichloroethene	< 1.0	1.0		µg/L	1	3/28/2003
Trichlorofluoromethane	< 1.0	1.0		µg/L	1	3/28/2003
Vinyl acetate	< 1.0	1.0		μg/L	1	3/28/2003
Vinyt chloride	< 1.0	1.0		μg/L	1	3/28/2003
Surr: 4-Bromofluorobenzene	84.9	80.5-103		%REC	1	3/28/2003
Surr: Dibromofluoromethane	96.3	75.9-110		%REC	1	3/28/2003
Surr: Toluene-d8	98.7	79-106		%REC	1	3/28/2003

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Page 2 of 8

Precision Analytical Laboratories

CLIENT: Transwest Geochem, Inc.

Lab Order:

03031066

Project:

Alsco 112.05/0303292

Lab ID:

03031066-02A

Date: 01-Apr-03

Client Sample ID: MW-3

Tag Number: 02A

Collection Date: 3/20/2003 10:25:00 AM

Matrix: AQUEOUS

Analyses	Result	Limit	Qual	Units	DF	Date Analyzed
VOLATILES BY GC/MS	S	W8260B				Analyst: P M
1,1,1-Trichloroethane	< 1.0	1.0		μg/L	1	3/28/2003
1,1,2,2-Tetrachloroethane	< 1.0	1.0		µg/L	1	3/28/2003
1,1,2-Trichloroethane	< 1.0	1.0		μg/L	1	3/28/2003
1,1-Dichloroethane	< 1.0	1.0		μg/L	1	3/28/2003
1,1-Dichloroethene	< 1.0	1.0		μg/L	1	3/28/2003
1,1-Dichloropropene	< 1.0	1.0		µg/L	1	3/28/2003
1,2,3-Trichlorobenzene	< 5.0	5.0		μg/L	1	3/28/2003
1,2,3-Trichloropropane	< 1.0	1.0		μg/L	1	3/28/2003
1,2,4-Trimethylbenzene	< 1.0	1.0		μg/L	1	3/28/2003
1,2-Dibromoethane	< 1.0	1.0		μg/L	1	3/28/2003
1,2-Dichlorobenzene	< 1.0	1.0		μg/L	1	3/28/2003
1,2-Dichloroethane	< 1.0	1.0		μg/L	1	3/28/2003
1,2-Dichloropropane	< 1.0	1.0		μg/L	1	3/28/2003
1,3,5-Trimethylbenzene	< 1.0	1.0		μg/L	1	3/28/2003
1,3-Dichlorobenzene	< 1.0	1.0		μg/L	1	3/28/2003
1,3-Dichloropropane	< 1.0	1.0		μg/L	1	3/28/2003
1.4-Dichlorobenzene	< 1.0	1.0		μg/L	1	3/28/2003
2,2-Dichloropropane	< 1.0	1.0		μg/L	1	3/28/2003
2-Butanone (MEK)	< 5.0	5.0		μg/L	1	3/28/2003
2-Chlorotoluene	< 1.0	1.0		μg/L	1	3/28/2003
2-Hexanone	< 5.0	5.0		µg/L	1	3/28/2003
4-Chlorotoluene	< 1.0	1.0		μg/L	1	3/28/2003
4-Isopropyltoluene	< 1.0	1.0		µg/L	1	3/28/2003
4-Methyl-2-pentanone	< 5.0	5.0		μg/L	1	3/28/2003
Acetone	< 20	20		μg/L	1	3/28/2003
Benzene	< 1.0	1.0		μg/L	1	3/28/2003
Bromobenzene	< 1.0	1.0		µg/L	1	3/28/2003
Bromochloromethane	< 1.0	1.0		µg/L	1	3/28/2003
Bromodichloromethane	< 1.0	1.0		µg/L	1	3/28/2003
Bromoform	< 1.0	1.0		µg/L	1	3/28/2003
Bromomethane	< 5.0	5.0		µg/L	1	3/28/2003
Carbon tetrachloride	< 1.0	1.0		μg/L	1	3/28/2003
Chlorobenzene	< 1.0	1.0		μg/L	1	3/28/2003
Chloroethane	< 1.0	1.0		μg/L	1	3/28/2003
Chloroform	< 1.0	1.0		µg/L	1	3/28/2003
Chloromethane	< 1.0	1.0		μg/L	1	3/28/2003
cis-1,2-Dichloroethene	< 1.0	1.0		μg/L	1	3/28/2003
cis-1,3-Dichloropropene	< 1.0	1.0		μg/L	1	3/28/2003
Dibromochloromethane	< 1.0	1.0		μg/L	1	3/28/2003
Dichlorodifluoromethane	< 1.0	1.0		μg/L	1	3/28/2003

Qualifiers:

ND - Not Detected at the Reporting Limit

S - Spike Recovery outside accepted recovery limits

J - Analyte detected below quantitation limits

R - RPD outside accepted recovery limits

B - Analyte detected in the associated Method Blank

E - Value above quantitation range

Page 3 of 8

Precision Analytical Laboratories

Date: 01-Apr-03

CLIENT:

Transwest Geochem, Inc.

Lab Order:

03031066

Project:

Alsco 112.05/0303292

Lab ID:

03031066-02A

Client Sample ID: MW-3

Tag Number: 02A

Collection Date: 3/20/2003 10:25:00 AM

Matrix: AQUEOUS

Analyses	Result	Limit	Qual	Units	DF	Date Analyzed
VOLATILES BY GC/MS	ACCOUNT MANUAL TO THE CONTRACT OF THE CONTRACT	SW8260B				Analyst: P M
Ethylbenzene	< 1.0	1.0		µg/L	1	3/28/2003
m,p-Xylene	< 2.0	2.0		µg/L	1	3/28/2003
Methyl tert-butyl ether	< 1.0	1.0	B1	µg/Ł	1	3/28/2003
Methylene chloride	< 2.0	2.0		µg/L	1	3/28/2003
n-Butylbenzene	< 1.0	1.0		μg/L	1	3/28/2003
n-Propylbenzene	< 1.0	1.0		µg/L	1	3/28/2003
o-Xylene	< 1.0	1.0		µg/L	1	3/28/2003
sec-Butylbenzene	< 1.0	1.0		βg/L	1	3/28/2003
Styrene	< 1.0	1.0		µg/L	1	3/28/2003
tert-Butylbenzene	< 1.0	1.0		μg/L	1	3/28/2003
Tetrachloroethens	< 1.0	1.0		μg/L	1	3/28/2003
Toluene	< 1.0	1.0		µg/L	1	3/28/2003
trans-1,2-Dichloroethene	< 1.0	1.0		µg/L	1	3/28/2003
trans-1,3-Dichloropropene	< 1.0	1.0		µg/L	1	3/28/2003
Trichioroethene	< 1.0	1.0		μg/L	1	3/28/2003
Trichlorofluoromethane	< 1.0	1.0		µg/L	1	3/28/2003
Vinyl acetate	< 1.0	1.0		μg/L	1	3/28/2003
Vinyl chloride	< 1.0	1.0		µg/L	i	3/28/2003
Surr: 4-Bromofluorobenzene	85.5	80.5-103		%REC	1	3/28/2003
Surr: Dibromofluoromethane	103	75.9-110		%REC	1	3/28/2003
Surr: Toluene-d8	99.9	79-106		%REC	4	3/28/2003

Qualifiers:

ND - Not Detected at the Reporting Limit

) - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Page 4 of 8

Precision Analytical Lation and Precision of Aerotech Laboratories; Inc.

Precision Analytical Laboratories

Date: 01-Apr-03

CLIENT:

Transwest Geochem, Inc.

Lab Order:

03031066

Project: Alsco 112.05/0303292

Lab ID:

03031066-03A

Client Sample ID: MW-4

Tag Number: 03A

Collection Date: 3/20/2003 11:45:00 AM

Matrix: AQUEOUS

Analyses	Result	Limit	Qual I	Units	DF	Date Analyzed
VOLATILES BY GC/MS		W8260B				Analyst: P M
1.1,1-Trichloroethane	< 1.0	1.0	ļ.	ag/L	1	3/28/2003
1,1,2,2-Tetrachloroethane	< 1.0	1.0	ļ.	ug/L	1	3/28/2003
1.1.2-Trichloroethane	< 1.6	1.0	Ļ	ug/L	1	3/28/2003
1,1-Dichloroethane	< 1.0	1.0	ļ.	ıg/L	1	3/28/2003
1,1-Dichloroethene	< 1.0	1.0	į.	ug/L	1	3/28/2003
1.1-Dichloropropene	< 1.0	1.0	k	ıg/L	1	3/28/2003
1.2,3-Trichtorobenzene	< 5.0	5.0	ļ.	ng/L	1	3/28/2003
1.2,3-Trichicropropane	< 1.0	1.0	Ļ	ug/L	4	3/28/2003
1.2.4-Trimethylbenzene	< 1.0	1.0	4	ug/L	1	3/28/2003
1.2-Dibromoethane	⊀ 1.0	1.0	<u> </u>	ug/L	1	3/28/2003
1.2-Dichlorobenzene	< 1.0	1.0	ŀ	ig/L	1	3/28/2003
1,2-Dichloroethane	< 1.0	1.0	}-	ug/L	1	3/28/2003
1,2-Dichloropropane	< 1.0	1.0	1	ug/L	1	3/28/2003
1,3.5-Trimethylbenzene	< 1.0	1.0	1	ug/L	1	3/28/2003
1,3-Dichlorobenzene	< 1.0	1.0	j.	ug/L	1	3/28/2003
1.3-Dichloropropane	< 1.0	1.0	ļ	ug/L	1	3/28/2003
1,4-Dichlorobenzene	< 1.0	1.0	į.	ug/L	1	3/28/2003
2.2-Dichloropropane	< 1.0	1.0	1	ig/L	1	3/28/2003
2-Butanone (MEK)	< 5.0	5.0	ļ	ug/L	1	3/28/2003
2-Chlorotoluene	< 1.0	1.0	į.	ug/L	1	3/28/2003
2-Hexanone	< 5.0	5.0	j.	Jg/L	1	3/28/2003
4-Chlorotaluene	< 1.0	1.0	1	ug/L	1	3/28/2003
4-Isopropyltoluene	< 10	1.0	ŀ	ug/L	1	3/28/2003
4-Methyl-2-pentanone	< 5.0	5.0	į.	ug/L	1	3/28/2003
Acetone	< 20	20	}-	ug/L	1	3/28/2003
Benzene	< 1.0	1.0	ļ	ug/L	1	3/28/2003
Bromobenzene	< 1.0	1.0	1	ug/L	1	3/28/2003
Bromochloromethane	< 1.0	1.0	1	ug/L	1	3/28/2003
Bromodichloromethane	< 1.0	1.0	}	ug/L	1	3/28/2003
Bromoform	< 1.0	1.0	ļ	ug/L	1	3/28/2003
Bromomethane	< 5.0	5.0	1	ug/L	1	3/28/2003
Carbon tetrachloride	< 1.0	1.0	ŀ	ug/L	1	3/28/2003
Chlorobenzene	< 1.0	1.0	1	ug/L	1	3/28/2003
Chloroethane	< 1.0	1.0	Ļ	ug/L	1	3/28/2003
Chloroform	< 1.0	1.0	1	ug/L	1	3/28/2003
Chloromethane	< 1.0	1.0	ţ	ug/L	1	3/28/2003
cis-1.2-Dichloroethene	< 1.0	1.0	ļ.	ug/L	1	3/28/2003
cis-1.3-Dichloropropene	< 1.0	1.0	1	ug/L	1	3/28/2003
Dibromochloromethane	< 1.0	1.0	1.	ug/L	1	3/28/2003
Dichlorodifluoromethane	< 1.0	1.0		ug/L	1	3/28/2003

Qualifiers:

ND - Not Detected at the Reporting Limit

S - Spike Recovery outside accepted recovery itemits

1 - Analyte derected below quantitation limits

- R RPD outside accepted recovery limits
- B Applica detected in the associated Method Blank
- E Value above quantitation range

^{* -} Value exceeds Maximum Contaminant Lovel

Page 5 of 5

Precision Analytical Laboratories

Date: 01-Apr-03

CLIENT:

Transwest Geochem, Inc.

Alsco 112.05/0303292

Client Sample ID: MW-4

Lab Order:

03031066

Tag Number: 03A

Project:

Collection Date: 3/20/2003 11:45:00 AM

Lab ID:

03031066-03A

Matrix: AQUEOUS

Analyses	Result	Limit	Qual U	nits	DF	Date Analyzed
VOLATILES BY GC/MS		SW8260B				Analyst: P M
Ethylbenzene	< 1.0	1.0	μ	g/L	1	3/28/2003
m,p-Xylene	< 2.0	2.0	μ	g/L	1	3/28/2003
Methyl tert-butyl ether	< 1.0	1.0	81 µ	g/L	1	3/28/2003
Methylene chloride	< 2.0	2.0	μ	g/L	1	3/28/2003
n-Butylbenzene	< 1.0	1.0	إنا	g/L	1	3/28/2003
n-Propylbenzene	< 1.0	1.0	μ	g/L	1	3/28/2003
o-Xylene	< 1.0	1.0	h	g/L	1	3/28/2003
sec-Butylbenzene	< 1.0	1.0	Į.i.	g/L	1	3/28/2003
Styrene	< 1.0	1.0	þ	g/L	1	3/28/2003
tert-Butylbenzene	< 1.0	1.0	ونا	g/L	1	3/28/2003
Tetrachloroethene	< 1.0	1.0	Į.i.	g/L	1	3/28/2003
Toluene	< 1.0	1.0	إنز	g/L	1	3/28/2003
trans-1,2-Dichloroethene	< 1.0	1.0	μ	g/L	1	3/28/2003
irans-1,3-Dichloropropene	< 1.0	1.0	إنإ	g/L	1	3/28/2003
Trichloroethene	< 1.0	1.0	إنإ	g/L	1	3/28/2003
Trichlorofluoromethane	< 1.0	1.0	Нá	g/L	1	3/28/2003
Vinyl acetata	< 1.0	1.0	μ	g/L	1	3/28/2003
Vinyt chloride	< 1.0	1.0	μ	g/L	1	3/28/2003
Surr: 4-Bromofluorobenzene	36.6	80.5-103	%	REC	1	3/28/2003
Surr: Dibromofluoromethane	103	75.9-110	c/ ^c	REC	1	3/28/2003
Surr: Toluene-d8	99.8	79-106	%	REC	1	3/28/2003

Qualifiers:

ND - Not Detected at the Reporting Limit

S - Spike Recovery outside accepted recovery firms

) - Analyte detected below quantitation limits

R - RPD outside accepted recovery timits

B - Analyte detected in the associated Method Blank

E - Value above quantitation range

* - Value exceeds Maximum Contaminant Level

Page 6 of S

Precision Analytical Laboratories a division of Aerotech Laboratories, Inc.

Precision Analytical Laboratories

Date: 01-Apr-03

CLIENT:

Transwest Geochem, Inc.

Lab Order:

03031066

Project:

Alsco 112.05/0303292

Lab ID:

03031066-04.4

Client Sample ID: TRIP BLANK

Tag Number: 04A

Collection Date: 3/20/2003 10:25:00 AM

Matrix: TRIP BLANK

Analyses	Result	Limit	Qual 1	Units	DF	Date Analyzed
VOLATILES BY GC/MS	S	W8260B				Analyst: P M
1.1,1-Trichloroethane	< 1.0	1.0	ł	ıg/L	1	3/28/2003
1.1,2,2-Tetrachloroethane	< 1.0	1.0	1	ıg/L	1	3/28/2003
1,1,2-Trichloroethane	< 1.0	1.0	ļ	ıg/L	1	3/28/2003
1.1-Dichloroethane	< 1.0	1.0	ļ	ug/L	1	3/28/2003
1,1-Dichloroethene	< 1.0	1.0	ļ	ıg/L	1	3/28/2003
1,1-Dichloropropene	< 1.0	1.0	1	ıg/L	1	3/28/2003
1,2,3-Trichlorobenzene	< 5.0	5.0	1.	⊿g/L	1	3/28/2003
1.2,3-Trichloropropane	< 1.0	1.0	1	ıg/L	4	3/28/2003
1,2,4-Trimethylbenzene	< 1.0	1.0		ıg/L	1	3/28/2003
1,2-Dibromoethane	< 1.0	1.0	j.	ıg/L	1	3/28/2003
1,2-Dichlorobenzene	< 1.0	1.0		ıg/L	4	3/28/2003
1,2-Dichloroethane	< 1.0	1.0		ig/L	1	3/28/2003
1,2-Dicnloropropane	< 1.0	1.0		ıg/L	1	3/28/2003
1.3,5-Trimethylbenzene	< 1.0	1.0		- Jg/L	1	3/28/2003
1.3-Dichlorobenzene	< 1.0	1.0		ıg/L	7	3/28/2003
1.3-Dichloropropane	< 1.0	1.0		ıg/L	1	3/28/2003
1,4-Dichlorobenzene	< 1.0	1.0		ig/L	1	3/28/2003
2.2-Dichloropropane	< 1.0	1.0		ig/L	1	3/28/2003
2-Butanone (MEK)	< 5.0	5.0		ıg/L	1	3/28/2003
2-Chlorotoluene	< 1.0	1.0		ıg/L	1	3/28/2003
2-Hexanone	< 5.0	5.0		ig/L	1	3/28/2003
4-Chlorotoluene	< 1.0	1.0		ig/L	1	3/28/2003
4-Isopropyltoluene	< 1.0	1.0	ļ	ug/L	1	3/28/2003
4-Methyl-2-pentanone	< 5.0	5.0		ıg/L	1	3/28/2003
Acetone	< 20	20	į.	ig/L	1	3/28/2003
Benzene	< 1.0	1.0	ŀ	ıg/L	1	3/28/2003
Bromobenzene	< 1.0	1.0		ıg/L	1	3/28/2003
Bromochloromethane	< 1.0	1.0		ıg/L	1	3/28/2003
Bromodichloromethane	< 1.0	1.0	1	ıg/L	1	3/28/2003
Bromoform	< 1.0	1.0		ıg/L	1	3/28/2003
Bromomethane	< 5.0	5.0	ļ.	ıg/L	1	3/28/2003
Carbon tetrachloride	< 1.0	1.0		ıg/L	1	3/28/2003
Chlorobenzene	< 1.0	1.0		ıg/L	1	3/28/2003
Chloroethane	< 1.0	1.0		ig/L	1	3/28/2003
Chloroform	< 1.0	1.0		ıg/L	1	3/28/2003
Chloromethane	< 1.0	1.0		ıg/L	1	3/28/2003
cis-1,2-Dichloroethene	< 1.0	1.0		ıg/L	1	3/28/2003
cis-1,3-Dichloropropene	< 1.0	1.0		ig/L	1	3/28/2003
Dibromochloromethane	< 1.0	1.0		ıg/L	1	3/28/2003
Dichlorodifluoromethane	< 1.0	1.0		ıg/L	1	3/28/2003

Qualifiers:

ND - Not Detected at the Reporting Limit

S - Spike Recovery outside accepted recovery limits

I - Analyte detected below quantitation limits

R - RPD outside accepted recovery limits

B - Analyte detected in the associated Method Blank

E - Value above quantitation range

^{* -} Value exceeds Maximum Contaminant Level

Precision Analytical Laboratories

Transwest Geochem, Inc.

CLIENT: Lab Order:

03031066

Project:

Alsco 112.05/0303292

Lab ID:

03031066-04A

Date: 01-Apr-03

Client Sample ID: TRIP BLANK

Tag Number: 04A

Collection Date: 3/20/2003 10:25:00 AM

Matrix: TRIP BLANK

Analyses	Result	Limit	Qual	Units	DF	Date Analyzed
VOLATILES BY GC/MS		SW8260B				Analyst: P M
Ethylbenzene	< 1.0	1.0		µg/L	1	3/28/2003
m,p-Xylene	< 2.0	2.0		hô/F	1	3/28/2003
Methyl tert-butyl ether	< 1.0	1.0	81	µg/L	1	3/28/2003
Methylene chloride	< 2.0	2.0		µg/L	1	3/28/2003
n-Butylbenzene	< 1.0	1.0		µg/L	1	3/28/2003
n-Propylbenzene	< 1.0	1.0		μg/L	1	3/28/2003
o-Xylene	< 1.0	1.0		µg/L	1	3/28/2003
sec-Butylbenzene	< 1.0	1.0		µg/L	7	3/28/2003
Styrene	< 1.0	1.0		µg/L	*}	3/28/2003
tert-Butylbenzene	< 1.0	1.0		μg/L	1	3/28/2003
Tetrachloroethene	< 1.0	1.0		μg/L	1	3/28/2003
Toluene	< 1.0	1.0		μg/L	1	3/28/2003
trans-1.2-Dichloroethene	< 1.0	1.0		ug/L	1	3/28/2003
trans-1.3-Dichloropropene	< 1.0	1.0		μg/L	1	3/28/2003
Trichloroethene	< 1.0	1.0		µg/L	1	3/28/2003
Trichlorofluoromethane	< 1.0	1.0		µg/L	1	3/28/2003
Vinyl acetate	< 1.0	1.0		µg/L	1	3/28/2003
Vinyl chloride	< 1.0	1.0		μg/L	1	3/28/2003
Surr: 4-Bromofluorobenzene	38.7	80.5-103		%REC	.5	3/28/2003
Surr: Dibromofluoromethane	98.7	75.9-110		%REC	1	3/28/2003
Surr: Toluene-d8	101	79-10 6		%REC	4	3/28/2003

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Fage 8 of 8

Malylical Laboratories, Inc. a division of Aerotech Laboratories, Inc.

01-Apr-03

	Committee & section of the committee of	the second of th	:	The second secon		
And the second of the second o	03031066					
g A Special Special And A Special Spec	Transwest Geochem, Inc.	Inc.				TOTAL STATE OF THE
and the second s	Alsco 112.05/0303292	Ç				
Sample 1D	Client Sample 1D	Collection Date	Matrix	Test Name	TCLP Date Prep Date	Analysis Bate
0.80.810/66.01A	MW-2	3/20/2003 1:45:00 PM	Aqueous	VOLATILES by GC/MS	eranden Africa, April April 1995 de la Companya de	STREET, STREET
u 80,31066-02A	MW-3	3/20/2003 10;25:00 AM		VOLATILIS by GC/MS		3.28.2003
030310b6-03A	H.W.M	3/20/2003 11:45:00 AM		VOLATILES by GC/MS		3/28/2003
03031066-04A	TRIPLELANK	3/20/2003 10:25:00 AM	Trip Blank	VOLATILES by GC/MS		1007/828

1,501,5384

Procision Analytical Laboratories, Inc. a division of Aerotech Laboratories, Inc.

Date: 01-4711-03

Transwest Geochem, Inc. Season Season Season Season Season

03031066 Work Order: Alsco 112.05/0303292

ANALYTICAL QC SUMMARY KEPORT

TestCode: 8260_W

Sample ID MB-R33742	Samplype: MBLK	lestCode: 8250_W	8250_W	Units: pg/L		Prep Uate:	e s		Kun ID: MS	Kun ID: MS01_030328A	
Cirent ID: ZZZZZ	Batch ID: R33742	TestNo	TestNo: SW8260B		An	Analysis Date:	e: 3/28/2003	003	SeqNo: 383185	3185	
Analyte	Result	POL	SPK value S	SPK Ref Val	"REC L	owLimit	HighLimit	LowLimit HighLimit RPD Ref Val	%RPD	RPDLimit	Ousi
1, 1, 1. Trichloroethane	< 1.0	1.0									
1,1,2,2-Tetrachloroethane	< 1.0	1.0									
1,1,2-Trichloroethane	< 1.0	1.0									
1.1-Dichloroethane	< 1.0	1.0									
1.1-Dichloroethene	< 1.0	1.0									
1,1-Dichloropropene	A 1.0	1.0									
1.2,3-Trichlorobenzene	< 5.0	5.0									
1.2,3-Trichloropropane	< 1.0	1.0									
1,2,4-Trimethylbenzene	< 1.0	1.0									
1,2-Dibromoethane	< 1.0	1.0									
1,2-Dichlorobenzene	< 1.0	1.0									
1,2-Dichloroethane	< 1.0	1.0									
1.2-Dichloropropane	< 1.0	1.0									
1,3,5-Trimethylbenzene	> 1.0	1.0									
1,3-Dichlorobenzene	< 1.0	1.0									
1.3-Dichloropropane	< 1.0	1.0									
1.4-Dichlorobenzene	0.1.>	1.0									
2.2-Dichloropropane	< 1.0	1.0									
2-Butanone (MEK)	< 5.0	5.0									
2 Chlorotoluene	< 1.0	1.0									
2-Hexanone	< 5.0	5.0									
4-Chlorotoluene	< 1.0	1.0									
4-tsopropyllaluene	< 1.0	1.0									
4-Methyl-2-pentanone	< 5.0	5.0									
Acetone	< 20	20									
Benzene	< 1.0	1.0									
Bromobenzene	< 1.0	1.0									
Onalifiers: Not Do	ND - Not Detected at the Reporting Limit		S - Spike	S Spike Recovery outside accepted recovery limits	ed recove	cy hunds		B - Analyte detected in the associated Method Blank	d in the associ	ated Method B	100
			· Santa o		. Linning			-			

3 - Analyte detected below quantitation limits.

R - RPD outside necepted recovery limits

bir Corporate Address 1501 W. Knudsen Phoenix, AZ 85027 Phone: 623 7e0-4800 Toll Free: 800-851-4802 Fax: 623-780-7805 www.aerotechlabs.com
■ Main Laboratory 1725 W. 17th Street Tempe, AZ 85281 Phone: 480-967-4310 Toll Free: 866-772-5227 Fax: 480-967-1019 www.palabs.com
■ Tucson Facility 4455 S. Park Ave. Ste 110 Tucson, AZ 85714 Phone: 520-807-5801 Fax: 520-807-3803

" CISION ANALYTICAL LABORATORIES, INC. a division of Aerotech Laboratories, Inc.

Franswest Geochem, Inc. pone reads ones

03031066 LANDE WEST

Alsco 112.05/0303292 3.1) B. C. C.

TestCode: 8260 W

ANALYTICAL QC SUMMARY REPORT

Sample ID MB-R33742	SampType: MBLK	TestCode	e: 8260_W	Units: µg/L		Prep Date:	[ex.]		Run ID: MS	Run ID: MS01_030328A	ur!
Citent ID: ZZZZ	Batch ID; R33742	TestN	TesiNo: SW8260B			Analysis Date:	te: 3/28/2003	303	SeqNo: 383185	3185	
Analyte	Result	POL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Bromochioromethane	< 1.0	1.0									
Bromodichloromethane	< 1.0	1.0									
Bramotorm	0.1	1.0									
Bronomelhane	< 5.0	5.0									
Carbon tetrachloride	< 1.0	1.0									
Chlorabenzene	< 1.0	1.0									
Chloroethane	< 1.0	1.0									
Chieroforns	< 1.0	1.0									
Chloromethane	o.1.5	1.0									
cis-1,2-Dichloroethene	< 1.0	1.0									
cis-1,3-Dichloropropene	< 1.0	1.0									
Dibromochloromethane	< 1.0	1.0									
Dichlorodifluoromethane	< 1.0	1.0									
Elhylbenzene	< 1.0	1.0									
m.p-Xylene	< 2.0	2.0									
Wethyl tert-butyl ether	1.04	1.0									:0 -
Methylene chloride	< 2.0	2.0									
n-Butylbenzene	< 1.0	1.0									
n Propylbenzene	× 1.0	1.0									
o-Xylene	< 1.0	1.0									
sec-Butylbenzene	< 1.0	1.0									
Styrene	o 1.0	1.0									
tert-Bulylbenzene	< 1.0	1.0									
Tetrachloroethene	< 1.0	1.0									
Toluene	< 1.0	1.0									
trans-1,2-Dichloroethene	< 1.0	1.0									
trans-1,3-Dichloropropene	< 1.0	1.0									
Tichloroethene	< 1.0	1.0									

ME. Not Detected at the Reporting Limit Charliffers:

Analyte detected below quantitation limits

S. Spike Recovery outside accrepted recovery limits.

R - RPD outside aenqueal rocovery limits

B - Analyte directed in the associated Method Blank

Corporate Address 1501 W. Knudson Phoenix, AZ 85027 Phone; 629-4800 Toll Free; 609-651-4802 Fax; 628-780-7695 www.aerotechlabs.com
 Main Laboratory 1725 W. 17th Street Tempe, AZ 85753 Phone; 489-577-1310 Toll Free; 856-772-5227 Fax; 480-967-1019 www.palabs.com
 Tucson Facility 4455 S. Park Ave. Ste. 110 Tucson, AZ 85744 Phone; 790-807-3894 Fax; 650-667-3803

Precision Analytical Laboratories, Inc. a division of Aerotech Laboratories, Inc.

Transwest Geochem, Inc. CLENT:

03031066 Work Order: Alsco 112.05/0303292 Project:

ANALYTICAL QC SUMMARY REPORT

TestCode: 8260_W

Sample ID MB-R33742	SampType: MBLK	TestCoc	TestCode: 8260_W	Units: µg/L		Prep Date:	31		Run ID: MSc	MS01_030328A	
Cifent ID: ZZZZZ	Batch ID: R33742	Testl	TestNo: SW8260B		-	Analysis Date:	3/28/2003	33	SeqNo: 383185	185	•
Analyte	Result	Pal	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Trichlorofluoromethane	< 1.0	1.0									
Vinyl acetate	< 1.0	1.0									
Vinyi chloride	< 1.0	1.0									
Surr: 4-Bromofluarobenzene	47.11	0	50	0	94.2	80.5	103	0	0		
Surr: Dibromofluoromethane	53.31	0	50	0	107	75.9	110	0	0		
Surr. Toluene-d8	53.58	0	50	0	107	79	106	0	0		\$2
Sample ID LCS-R33742	SampType: LCS	TestCoo	TestCode: 8260_W	Units: µg/L		Prep Date	16	Y-100	Run ID: MSC	MS01_030328A	
Olient ID: 22222	Batch ID: R33742	Test	TestNo: SW8260B			Analysis Date:	s: 3/28/2003	03	SeqNo: 383188	188	
Analyte	Result	Pal	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPOLimit	Qual
1,1,1,1-Trichloroethane	47.04	1.0	90	0	94.1	85	115	0	0		
1.1,2,2-Tetrachloroethane	45.39	1.0	50	0	90.8	71.3	115	0	0		
1,1,2-Trichloroethane	47.97	1.0	50	0	95.9	85	115	0	0		
1,1-Dichloroethane	47,43	1.0	90	0	94.9	85	13	0	0		
1,1-Dichloroethene	47.27	1.0	90	0	94.5	85	115	0	0		
1.1-Dichloropropene	48.18	1.0	50	0	96.4	85	115	0	0		
1,2,3-Trichlorobenzene	47.13	2.0	90	0	94.3	72.5	127	0	0		
1,2,3-Trichloropropane	46,12	1.0	90	0	92.2	73.2	114	0	0		
1,2,4-Trimethylbenzene	45.3	1.0	50	0	90'06	85	115	0	0		
1,2-Dibromoethane	48.87	1.0	50	0	97.7	85	115	0	0		
1,2-Dichlorobenzene	47,55	1.0	50	0	95.1	85	115	0	0		
1,2-Dichloroethane	44,46	1.0	90	0	88.9	85	115	0	0		
1,2-Dichloropropane	48.4	1.0	50	0	96.8	82	115	0	O		
1,3,5~Trimethylbenzene	46.02	1.0	50	0	92	35	115	0	0		
1,3-Dichlorobenzene	46.29	1.0	50	0	92.6	85	<u></u>	0	0		
1,3-Dichloropropane	47.48	1.0	50	0	92	85	115	0	0		
1,4-Dichlorobenzene	47.56	1.0	20	0	95.1	85	115	0	0		
Qualifiers: NOt Dete	ND - Not Detected at the Reporting Limit		S - Spil	S - Spike Recovery outside accepted recovery limits	paer betdeop	very lumbs	æ	F - Analyte detec	B - Analyte detected in the associated Method Blanl,	ted Method Blan	n),
J - Analyte det	J - Analyte detected below quantitation limits		R - RPI	R - RPD outside accepted recovery fimits	overy limit					Page 3 of 12	7.13

Corporate Address 1501 W. Knudsen Phoenix, AZ 85027 Phone: 623-780-4800 Toll Free: 800-651-4802 Fax: 623-780-7695 www.aerotechlabs.com
 Main Laboratory 1725 W. 17th Street Tempe, AZ 85281 Phone: 480-967-1310 Toll Free: 866-772-5227 Fax: 480-967-1019 www.palabs.com
 Tucson Facility 4455 S. Park Ave. Ste. 110 Tucson, AZ 85714 Phone: 520-807-3801 Fax: 520-807-3803

Precision Analytical Laboratories, Inc. a division of Aerotech Laboratories, Inc.

Transwest Geochem, Inc.

03031066 Work Order: Alsco 112.05/0303292

Project:

ANALYTICAL QC SUMMARY REPORT

TestCode: 8260_W

SPK Ref Val	SPK Ref V	Analysi LowLi 5 5 6 6 6 6	3/28/200 ghLimit 139 128 115 115 115 115	23 RPD Ref Val 0 0 0 0 0 0	SeqNo: 383188 %RPD RPDLimit 0 0 0 0	Qual
Result PQL SPK value SPK Ref Val 45.95 1.0 50 0 29.24 5.0 50 0 45.67 1.0 50 0 45.49 1.0 50 0 47.26 1.0 50 0 47.26 1.0 50 0 48.59 1.0 50 0 48.59 1.0 50 0 48.59 1.0 50 0 48.59 1.0 50 0 48.59 1.0 50 0 48.59 1.0 50 0 48.59 1.0 50 0 48.59 1.0 50 0 48.63 1.0 50 0 48.63 1.0 50 0 48.63 1.0 50 0 48.63 1.0 50 0 50.69 1.0 50 0 </th <th>SPK Ref V</th> <th></th> <th>HighLimit 139 128 124 115 115 120</th> <th>O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</th> <th></th> <th></th>	SPK Ref V		HighLimit 139 128 124 115 115 120	O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		
45.95 1.0 50 0 29.24 5.0 50 0 45.67 1.0 50 0 32.81 5.0 50 0 45.49 1.0 50 0 47.26 1.0 50 0 48.59 1.0 50 0 48.59 1.0 50 0 48.59 1.0 50 0 ane 49.02 1.0 50 0 ane 42.78 1.0 50 0				0000000	000	
K) 29.24 5.0 50 0 45.67 1.0 50 0 12.81 5.0 50 0 45.49 1.0 50 0 anone 47.26 1.0 50 0 anone 44.69 5.0 50 0 thane 48.59 1.0 50 0 ethane 48.59 1.0 50 0 48.59 1.0 50 0 48.59 1.0 50 0 48.59 1.0 50 0 48.59 1.0 50 0 48.59 1.0 50 0 48.59 1.0 50 0 48.59 1.0 50 0 48.59 1.0 50 0 48.59 1.0 50 0 48.66 1.0 50 0 48.66 1.0 50 0 50.69 1.0 50 0 60.69 1.0 50 0 60.69 1.0 50 0 60.69 1.0 50 0 60.69 1.0 50 <t< td=""><td></td><td></td><td></td><td></td><td>000</td><td></td></t<>					000	
45.67 10 50 0 32.81 5.0 50 0 45.49 1.0 50 0 anone 47.26 1.0 50 0 anone 44.69 5.0 50 0 thane 48.59 1.0 50 0 thane 48.22 1.0 50 0 ethane 47.58 1.0 50 0 43.25 5.0 50 0 44.59 1.0 50 0 45.59 1.0 50 0 43.25 5.0 50 0 45.59 1.0 50 0 45.59 1.0 50 0 45.59 1.0 50 0 46.63 1.0 50 0 46.63 1.0 50 0 46.63 1.0 50 0 46.63 1.0 50 0 46.63 1.0 50 0 46.63 1.0 50 0 47.78 1.0 50 0 66 50 0 0 67 0 0					0 0	
32.81 5.0 50 0 45.49 1.0 50 0 anone 47.26 1.0 50 0 17.94 20 50 0 48.59 1.0 50 0 48.59 1.0 50 0 48.59 1.0 50 0 43.25 5.0 50 0 43.25 5.0 50 0 43.25 5.0 50 0 43.25 5.0 50 0 43.25 1.0 50 0 44.23 1.0 50 0 42.33 1.0 50 0 42.33 1.0 50 0 ethane 48.62 1.0 50 0 ethane 50.69 1.0 50 0 ethane 50.69 1.0 50 0 ethane 50.69 1.0 50 0				0000	0	
10 50 0 10 50 0 10 50 0 110 <td< td=""><td></td><td></td><td></td><td>0000</td><td></td><td></td></td<>				0000		
47.26 1.0 50 0 44.69 5.0 50 0 17.94 20 50 0 48.59 1.0 50 0 47.58 1.0 50 0 43.25 5.0 50 0 43.25 5.0 50 0 42.33 1.0 50 0 48.65 1.0 50 0 48.65 1.0 50 0 48.69 1.0 50 0 48.69 1.0 50 0 50 0 60 0 6				000	0	
44.69 5.0 50 0 17.94 20 50 0 48.59 1.0 50 0 48.64 1.0 50 0 48.59 1.0 50 0 43.25 5.0 50 0 43.25 5.0 50 0 43.25 5.0 50 0 43.25 1.0 50 0 43.25 1.0 50 0 42.39 1.0 50 0 42.33 1.0 50 0 42.33 1.0 50 0 50.69 1.0 50 0 42.78 1.0 50 0 86.6 2.0 10 0 66.6 2.0 10 0 60 0 0 0 10 50 0 0 10 50 0 0 10 50 0 0 10 50 0 0 <				0	0	
17.94 20 50 0 48.59 1.0 50 0 48.64 1.0 50 0 48.22 1.0 50 0 47.58 1.0 50 0 43.25 5.0 50 0 43.25 5.0 50 0 43.29 1.0 50 0 46.63 1.0 50 0 48.62 1.0 50 0 48.62 1.0 50 0 50.69 1.0 50 0 42.78 1.0 50 0 42.78 1.0 50 0 42.78 1.0 50 0 42.78 1.0 50 0 66.6 2.0 100 0 66.6 2.0 100 0		რ დ	•	C	0	
48.59 1.0 50 0 48.64 1.0 50 0 48.22 1.0 50 0 47.58 1.0 50 0 43.25 5.0 50 0 43.39 1.0 50 0 42.33 1.0 50 0 43.62 1.0 50 0 48.62 1.0 50 0		æ		>	0	Щ 4
48.64 1.0 50 0 48.22 1.0 50 0 45.59 1.0 50 0 48.58 1.0 50 0 48.58 1.0 50 0 47.29 1.0 50 0 46.63 1.0 50 0 42.33 1.0 50 0 48.62 1.0 50 0 50.69 1.0 50 0 6 39.05 1.0 50 0 86.6 2.0 100 50 0		æ	5 115	0	0	
48.22 1.0 50 0 47.58 1.0 50 0 43.25 5.0 50 0 48.58 1.0 50 0 43.39 1.0 50 0 46.63 1.0 50 0 42.33 1.0 50 0 48.62 1.0 50 0 50.69 1.0 50 0 50.69 1.0 50 0 60.69 1.0 50 0 74.78 1.0 50 0 86.6 2.0 100 50 0		8	5 115	0	0	
47.58 1.0 50 0 45.59 1.0 50 0 48.58 1.0 50 0 48.58 1.0 50 0 47.29 1.0 50 0 46.63 1.0 50 0 42.33 1.0 50 0 48.62 1.0 50 0 50.69 1.0 50 0 42.78 1.0 50 0 42.78 1.0 50 0 86.6 2.0 100 0 47.89 1.0 50 0			120	0	0	
45.69 1.0 50 0 43.25 5.0 50 0 48.58 1.0 50 0 47.29 1.0 50 0 46.63 1.0 50 0 42.33 1.0 50 0 He 50.69 1.0 50 0 He 50.69 1.0 50 0 He 50.69 1.0 50 0 Re 50.69 1.0 50 0		95.2 85	5 115	0	0	
43.25 5.0 50 0 48.58 1.0 50 0 43.99 1.0 50 0 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6		91.2 77.3	3 123	0	0	
48.58 1.0 50 0 43.99 1.0 50 0 47.29 1.0 50 0 46.63 1.0 50 0 42.33 1.0 50 0 1e 49.02 1.0 50 0 ne 50.69 1.0 50 0 ne 75.69 1.0 50 0 86.6 2.0 100 50 0		86.5 44.1	1 262	0	0	
43.99 1.0 50 0 47.29 1.0 50 0 46.63 1.0 50 0 42.33 1.0 50 0 10 48.62 1.0 50 0 10 50.69 1.0 50 0 10 50 0		97.2 82.6	6 125	0	0	
47.29 1.0 50 0 46.63 1.0 50 0 42.33 1.0 50 0 10 48.62 1.0 50 0 10 50.69 1.0 50 0 10 50 0		88 85	5 115	0	0	
46.63 1.0 50 0 42.33 1.0 50 0 10 48.62 1.0 50 0 10 50 0		94.6 80.3	3 117	0	0	
42.33 1.0 50 0 1e 48.62 1.0 50 0 ie 49.02 1.0 50 0 ie 50.69 1.0 50 0 ie 39.05 1.0 50 0 42.78 1.0 50 0 86.6 2.0 100 0		93.3 85	5 115	0	0	
39.05 1.0 50 0 1e 49.02 1.0 50 0 1e 50.69 1.0 50 0 ne 39.05 1.0 50 0 42.78 1.0 50 0 86.6 2.0 100 0		84.7 64.3	3 128	0	0	
ne 49.02 1.0 50 0 ne 50.69 1.0 50 0 ne 39.05 1.0 50 0 42.78 1.0 50 0 86.6 2.0 100 0		97.2 85	5 115	0	0	
ne 50.69 1.0 50 0 39.05 1.0 50 0 42.78 1.0 50 0 86.6 2.0 100 0		98 85	5 115	0	0	
86.6 2.0 50 0 87.89 1.0 50 0 86.6 2.0 100 0		101 85	5 115	0	0	
42.78 1.0 50 0 86.6 2.0 100 0 47.89 1.0 50 1.04		78.1	75 125	0	0	
86.6 2.0 100 0 47.89 1.0 50 1.04		85.6 85	5 115	0	0	
47.89 1.0 50 1.04		86.6 8	85 115	0	0	
	50 1.04	93,7 8	85 115	0	0	10
Methylene chloride 44.64 2.0 50 0 89.		89.3 85	5 115	0	0	
n-Butylbenzene 46.03 1.0 50 0 92.		92.1	85 115	0	0	

ND - Not Detected at the Reporting Limit

Qualifiers:

3 - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

R - RPD outside accepted recovery limits

S - Spike Recovery outside accepted recovery limits

Corporate Address 1501 W. Knudsen Phoenix, AZ 85027 Phone: 623-780-4800 Toll Free: 800-651-4802 Fax: 623-780-7695 www.aerotechlabs.com
 Main Laboratory 1725 W. 17th Street Tempe, AZ 85281 Phone: 480-967-1310 Toll Free: 866-772-5227 Fax: 480-967-1019 www.palabs.com
 Tucson Facility 4455 S. Park Ave. Ste. 110 Tucson, AZ 85714 Phone: 520-807-3801 Fax: 520-807-3803

Transwest Geochem, Inc.

03031066

Work Order:

Precision Analytical Laboratories, Inc. a division of Aerotech Laboratories, Inc.

ANALYTICAL QC SUMMARY REPORT

TestCode: 8260 W

Alsco 112.05/0303292 Project:

Sample ID LCS-R33742	SampType: LCS	TestCod	TestCode: 8260_W	Units: µg/L		Prep Date:			Run ID: MS	Run ID: MS01_030328A	
Client ID: ZZZZZ	Batch ID: R33742	TestN	TestNo: SW8260B			Analysis Date:	3/28/2003	03	SeqNo: 383	383188	
Analyte	Result	Pal	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
n-Propylbenzene	46.67	1.0	50	0	93.3	85	115	0	0		
o-Xylene	42.33	1.0	90	0	84.7	85	115	0	0		
sec-Butylbenzene	47.31	1.0	20	0	94.6	85	115	0	0		
Styrene	43.55	1.0	50	0	87.1	85	115	0	0		
tert-Butylbenzene	47.6	1.0	50	0	95.2	85	115	0	0		
Tetrachloroethene	50.11	1.0	20	0	100	85	115	0	0		
Toluene	48.23	1.0	50	0	96.5	85	115	0	0		
trans-1,2-Dichloroethene	49.17	1.0	20	0	98.3	85	115	0	0		
trans-1,3-Dichloropropene	46.73	1.0	50	0	93.5	85	115	0	0		
Trichloroethene	48.78	1.0	50	0	97.6	85	115	0	0		
Trichlorofluoromethane	50.09	1.0	50	0	100	82.9	<u>+-</u>	0	0		
Vinyl acetate	47.08	1.0	90	0	94.2	72.7	127	0	0		
Vinyl chloride	46.02	1.0	50	0	92	85	115	0	0		
Surr: 4-Bromofluorobenzene	42.36	0	50	0	84.7	80.5	103	0	0		
Surr: Dibromofluoromethane	49.04	0	90	0	98.1	75.9	110	0	0		
Surr: Toluene-d8	49.66	0	50	0	99.3	79	106	0	0		
Sample ID LCSD-R33742	SampType: LCSD	TestCod	TestCode: 8260_W	Units: µg/L		Prep Date:			Run ID: MS	MS01_030328A	
Client ID: ZZZZ	Batch ID: R33742	TestN	TestNo: SW8260B			Analysis Date:	3/28/2003	03	SeqNo: 383189	3189	
Analyte	Result	POL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1.1,1-Trichloroethane	50.1	1.0	50	0	100	85	115	47.04	6.30	25	
1,1,2,2-Tetrachloroethane	47.48	1.0	50	0	95	71.3	115	45,39	4.50	25	
1,1,2-Trichloroethane	51.83	1.0	20	0	104	85	115	47.97	7.74	25	
1,1-Dichloroethane	50.58	1.0	50	0	101	38	115	47.43	6.43	25	
1,1-Dichloroethene	50.88	1.0	50	0	102	85	115	47.27	7.36	25	
1.1-Dichloropropene	49.6	1.0	50	0	99.2	85	115	48.18	2.90	25	
1,2,3-Trichlorobenzene	49.64	5.0	50	0	99.3	72.5	127	47.13	5.19	25	
Quadifices: ND - Not Dete	ND - Not Detected at the Reporting Limit		lidS - S	S - Spike Recovery outside accepted recovery limits	ccapted recu	overy limits		B - Analyte detected in the associated Method Blank	ted in the associ	ated Method B	41114
3 - Analyte del	3 - Analyte detected below quantitation limits		R - RP	R - RPD outside accepted recovery limits	sovery limit	Œ				Page 5 of 12	of 12

 [\]underset \text{\text{Corporate Address 1501 W. Knudsen Phoenix, AZ 85027 Phone: 623-780-4800 Toll Free: 806-571-4802 Fax: 623-780-7695 www.aerotechlabs.com

 \underset \text{\text{Address 170 Fig. No. 171 Phone: 480-967-1310 Toll Free: 866-772-5227 Fax: 480-967-1019 www.palabs.com

 \underset \underse

Precision Analytical Laboratories, Inc. a division of Aerotech Laboratories, Inc.

Transwest Geochem, Inc. CLIENT

03031066 Work Order:

Alsco 112.05/0303292

Project:

ANALYTICAL QC SUMMARY REPORT TestCode: 8260_W

Sample ID LCSD-R33742	SampType: LCSD	estCod	lestCode: 8260_W	Units: µg/L		Prep Date:	.e.		Kun iD: MX	Kun ID: MS01_030328A	
Client ID: ZZZZZ	Batch ID: R33742	TestN	TestNo: SW8260B			Analysis Date:	te: 3/28/2003	03	SeqNo: 38	383189	
Analyte	Result	POL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,2,3-Trichloropropane	47.92	1.0	50	0	95.8	73.2	114	46.12	3.83	25	
1,2,4-Trimethylbenzene	46.46	1.0	50	0	92.9	85	115	45.3	2.53	25	
1,2-Dibromoethane	52.64	1.0	90	0	105	85	115	48.87	7.43	25	
1,2-Dichlorobenzene	48,92	1.0	90	0	97.8	85	115	47.55	2.84	25	
1,2-Dichloroethane	47.7	1.0	50	0	95.4	85	17.0	44.46	7.03	25	
1,2-Dichloropropane	51.77	1.0	90	0	104	85	115	48.4	6.73	25	
1,3,5-Trimethylbenzene	47.99	1.0	50	0	96	85	115	46.02	4.19	25	
1,3-Dichlorobenzene	49.21	1.0	50	0	98.4	85	115	46.29	6.12	25	
1,3-Dichloropropane	51,33	1.0	90	0	103	85	115	47.48	7,79	25	
1,4-Dichlorobenzene	49.27	1.0	90	0	98.5	85	115	47.56	3.53	25	
2,2-Dichloropropane	49.3	1.0	50	0	98.6	57.5	139	45.95	7.03	25	
2-Butanone (MEK)	32.78	5.0	90	0	65.6	56.2	128	29.24	11.4	25	
2-Chlorotoluene	47.17	1.0	50	0	94.3	85	115	45.67	3.23	25	
2-Hexanone	35,44	5.0	50	0	70.9	62.4	124	32.81	7.71	25	
4-Chlorotoluene	47,53	1.0	90	0	95.1	85	115	45.49	4,39	25	
4-Isopropyltoluene	48,88	1.0	50	0	97.8	85	115	47.26	3.37	25	
4-Methyl-2-pentanone	46.76	5.0	50	0	93.5	62.9	120	44.69	4.53	25	
Acetone	21.3	20	20	0	42.6	34.1	157	17.94	17.1	25	
Benzene	51.48	1,0	20	С	103	85	115	48.59	5.78	25	
Bromobenzene	50.15	1.0	90	0	100	85	15	48.64	3.06	25	
Bromochloromethane	52	1.0	20	0	104	81.1	120	48.22	7.54	25	
Bromodichloromethane	50,39	1.0	90	0	101	85	115	47.58	5.74	25	
Bromoform	49.07	1.0	50	0	98.1	77.3	123	45.59	7.35	25	
Bromomethane	50.55	5.0	50	0	101	44.1	262	43.25	15.6	25	
Carbon tetrachloride	50.52	1.0	50	0	101	82.6	125	48.58	3.92	25	
Chlorobenzene	46.22	1.0	50	0	92.4	85	115	43.99	4.94	25	
Chloroethane	50.58	1.0	90	0	101	80.3	117	47.29	6.72	25	
Chloroform	49.49	1.0	20	0	66	85	115	46.63	5.95	25	
()ualitiers: ND - Not Det	ND - Not Detected at the Reporting Limit		idS - S	S - Spike Recovery outside accepted recovery limits	naa patdaaa	overy limits		B Analyte detected in the associated Method Blank	ted in the associ	ned Method Bh	nk

J. Analyte detected below quantitation limits

R - RPD outside accepted recovery limits

M Corporate Address 1501 W. Knudsen Phoenix, AZ 85027 Phone: 623-780-4800 Toll Free: 800-651-4802 Fax: 623-780-7695 www.aerotechlabs.com

 Main Laboratory 1725 W. 17th Street Tempe, AZ 85281 Phone: 480-967-1310 Toll Free: 866-772-5227 Fax: 480-967-1019 www.pałabs.com

 Tucson Facility 4455 S. Park Ave. Ste. 110 Tucson, AZ 85714 Phone: 520-807-3801 Fax: 520-807-3803

Precision Analytical Laboratories, Inc. a division of Aerotech Laboratories, Inc.

Transwest Geochem, Inc. CLENT

03031066 Work Order; Alsco 112.05/0303292 Project:

ANALYTICAL QC SUMMARY REPORT

TestCode: 8260_W

Sample ID LCSD-R33742	SampType: LCSD	TestCo	TestCode: 8260_W	Units: µg/L		Prep Date:			Run ID: MS	Run ID: MS01_030328A	
Client ID: ZZZZZ	Batch ID; R33742	Test	TestNo: SW8260B			Analysis Date:	e: 3/28/2003	03	SeqNo: 383189	3189	
Analyte	Result	POL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Chloromethane	45.52	1.0	50	0	91	64.3	128	42.33	7.26	25	
cis-1,2-Dichloroethene	51.77	1.0	50	0	104	85	115	48.62	6.28	25	
cis-1,3-Dichloropropene	51.58	1.0	90	0	103	85	115	49.02	5.09	25	
Dibromochloromethane	53.16	1.0	50	0	106	85	115	50.69	4.76	25	
Dichlorodifluoromethane	40.66	1,0	50	0	81.3	75	125	39.05	4.04	25	
Ethylbenzene	45.09	1.0	90	0	90.2	85	115	42.78	5.26	25	
m,p-Xylene	92.13	2.0	100	0	92.1	85	115	9'98	6.19	25	
Methyl tert-butyl ether	51.78	1.0	50	1.04	101	85	115	47.89	7.81	25	B 1
Methylene chloride	48.25	2.0	50	0	96.5	85	115	44.64	7.77	2.5	
n-Butylbenzene	47.32	1.0	90	0	94.6	85	115	46.03	2.76	25	
n-Propylbenzene	47.76	1.0	90	0	95.5	85	115	46.67	2.31	25	
o-Xylene	44.83	1.0	50	0	89.7	85	115	42.33	5,74	25	
sec-Butylbenzene	49	1.0	90	0	98	85	115	47.31	3.51	25	
Styrene	45.93	1.0	50	0	91.9	85	115	43.55	5.32	25	
tert-Butylbenzene	49.36	1.0	50	0	98.7	85	115	47.6	3.63	25	
Tetrachloroethene	52.18	1.0	90	0	104	85	115	50.11	4.05	25	
Toluene	51.67	1.0	50	0	103	85	115	48.23	6.89	25	
trans-1,2-Dichloroethene	51.88	1.0	50	0	104	85	115	49.17	5.36	25	
trans-1,3-Dichloropropene	50.19	1.0	50	0	100	85	115	46.73	7.14	25	
Trichloroethene	50.43	1.0	50	0	101	85	115	48.78	3.33	25	
Trichlorofluoromethane	52.92	1.0	50	0	106	82.9	118	50.09	5.49	25	
Vinyl acetate	49.79	1.0	50	0	9.66	72.7	127	47.08	5.60	25	
Vinyl chloride	48.17	1.0	50	0	96.3	85	115	46.02	4.57	25	
Surr: 4-Bromofluorobenzene	45.53	0	50	0	91.1	80.5	103	0	0	25	
Surr: Dibromofluoromethane	53,15	0	50	0	106	75.9	110	0	0	25	
Surr. Toluene-d8	52.03	0	50	0	104	79	106	0	0	25	

Qualifiers:

ND - Not Detected at the Reporting Limit

3 - Analyte detected below quantitation limits

S. Spike Recovery outside accepted recovery limits.

R - RPD outside accepted recovery limits

B - Analyte detected in the associated Method Blank

Corporate Address 1501 W. Knudsen Phoenix, AZ 85027 Phone: 623-780-4800 Toll Free: 800-651-4802 Fax: 623-780-7695 www.aerotechlabs.com
 Main Laboratory 1725 W. 17th Street Temps, AZ 85281 Phone: 480-967-1310 Toll Free: 866-772-5227 Fax: 480-967-1019 www.palabs.com
 Tucson Facility 4455 S. Park Ave. Ste. 110 Tucson, AZ 85714 Phone: 520-807-3801 Fax: 520-807-3803

a division of Aerotech Laboratories, Inc.

Transwest Geochem, Inc. CLENT

03031066 Work Order: Alsco 112.05/0303292 Project:

ANALYTICAL OC SUMMARY REPORT

TestCode: 8260 W

Quai П Run ID: MS01_030328A **RPDLimit** SeqNo: 383270 %RPD 0 \circ 0 0 0 0 0 0 0 0 \Diamond 0 0 \circ \circ 00 \odot 0 HighLimit RPD Ref Val Analysis Date: 3/28/2003 128 124 115 115 120 5 120 115 114 115 115 115 115 15 5 15 115 5 139 115 157 127 Prep Date: 73.2 LowLimit 57.5 56.2 62.4 65.9 34.1 85 72.5 82 85 85 85 85 85 85 85 85 85 821 85 85 83.3 85 85 66.6 89.1 95.9 98.8 94.3 89.4 64.8 96.3 70.7 38.9 98.2 94.8 91.8 90.3 95.4 99.8 94.1 98.2 94 104 39.4 Units: µg/L 12.25 0 11.81 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 SPK Ref Val TestNo: SW8260B SPK value 50 50 50 50 20 50 50 50 50 50 20 20 50 20 50 20 50 estCode: 8260 W 5.0 0. 1.0 0. 5.0 1.0 0. 5.0 0.7 0. 0.1 0. 0 0. 0 0 0 0.1 5.0 0. 0. 0. 20 Batch ID: R33742 32.39 47.45 49.11 Result 45.9 49.9 60.22 49.38 47.16 48.16 35.36 19.46 18.62 50.98 17.96 17.94 47.41 49.96 56.96 52.22 47.72 44.56 47.04 44.7 46.98 48.02 49.09 49.7 SampType: MS Sample ID 03031066-01A MS 1, 1, 2, 2-Tetrachloroethane 1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene 1,2,3-Trichlorobenzene 1,2,3-Trichtoropropane 4-Methyl-2-pentanone Bromochloromethane 1,1,1-Trichloroethane 1,1,2-Trichloroethane 1,2-Dichlorobenzene 1,2-Dichloropropane 1,3-Dichlorobenzene 1,3-Dichloropropane 2,2-Dichloropropane i, 1-Dichloropropene 1,4-Dichlorobenzene 1,2-Dibromoethane 1,2-Dichloroethane ,1-Dichloroethane 1.1-Dichloroethene 2-Butanone (MEK) 4-Isopropyltoluene MW-2 2-Chlorotoluene 4-Chlorotoluene Bromobenzene Client ID: Analyte

1 - Analyte detected below quantitation limits ND - Not Detected at the Reporting Limit

Qualifiers:

S. Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

B - Analyte detected in the associated Method Blank

Page 8 of 12

Corporate Address 1501 W. Knudsen Phoenix, AZ 85027 Phone: 623-780-4800 Toll Free: 800-651-4802 Fax: 623-780-7695 www.aerotechlabs.com
 Main Laboratory 1725 W. 17th Street Tempe, AZ 85281 Phone: 480-967-1310 Toll Free: 886-772-5227 Fax: 480-967-1019 www.palabs.com
 Tucson Facility 4455 S. Park Ave. Ste. 110 Tucson, AZ 85714 Phone: 520-807-3801 Fax: 520-807-3803

Precision Amalytical Laboratories, Inc. a division of Aerotech Laboratories, Inc.

Transwest Geochem, Inc. CLENT:

03031066 Work Order: Alsco 112.05/0303292 Project:

ANALYTICAL QC SUMMARY REPORT

TestCode: 8260_W

Sample ID 03031066-01A MS	SampType: MS	TestCod	TestCode: 8260_W	Units: µg/L		Prep Date:			Run ID: MS01_030328A	01_030328A	
Client ID: WW-2	Batch IO: R33742	TestN	No: SW8260B			Analysis Date:	3/28/2003	103	SeqNo: 383270	270	
Anaiyte	Result	POL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Bromodichloromethane	48.63	1.0	50	0	97.3	85	115	0	0		
Bromoform	48.69	1.0	90	0	97.4	77.3	123	0	0		
Sromomethane	42.86	5.0	50	0	85.7	44.1	262	0	0		
Carbon tetrachloride	47.37	1.0	50	0	94.7	82.6	125	0	0		
Chlorobenzene	44.36	1.0	50	0	88.7	85	115	0	0		
Chloroethane	47.87	1.0	50	0	95.7	80.3	117	0	0		
Chloroform	46.75	1.0	50	0	93.5	85	115	0	0		
Chloromethane	43.48	1.0	50	0	87	64.3	128	0	0		
cis-1,2-Dichloroethene	49.27	1.0	90	0	98.5	85	113	0	0		
cis-1,3-Dichloropropene	49.37	1.0	90	0	98.7	85	15	0	0		
Dibromochloromethane	51.69	1.0	50	0	103	85	115	0	0		
Dichlorodifluoromethane	40.56	1.0	50	0	81.1	75	125	0	0		
Ethylbenzene	45.77	1.0	50	1.37	88.8	85	115	0	0		
rn,p-Xylene	121.4	2.0	100	29.5	91,9	85	115	0	0		
Methyl tert-butyl ether	49.08	1.0	90	0	98.2	85	115	0	0		83
Methylene chloride	44.97	2.0	90	0	89.9	85	115	0	0		
n-Butylbenzene	47.07	1.0	90	0	94.1	85	115	0	0		
n-Propylbenzene	47.28	1.0	50	0	94.6	85	115	0	0		
o-Xyfene	90.36	1.0	50	15.82	89.1	85	115	0	0		
sec-Butylbenzene	48.02	1.0	50	0	96	85	115	0	0		
Styrene	44	1.0	90	0	88	85	115	0	0		
tert-Butylbenzene	48.22	1.0	50	0	96.4	85	115	0	0		
Tetrachloroethene	51.57	1.0	50	0	103	85	115	0	0		
Toluene	49.84	1.0	50	0	5.66	85	115	0	0		
trans-1,2-Dichloroethene	49.12	1.0	50	0	98.2	85	115	0	0		
trans-1,3-Dichloropropene	48.45	1.0	50	0	96.9	85	115	0	0		
Trichloroethene	50.02	1.0	50	0	100	85	115	0	0		
Trichlorofluoromethane	51,29	1.0	90	O	103	82.9	118	0	0		

J - Analyte detected below quantitation limits ND - Not Detected at the Reporting Limit

Onalifiers:

S - Spike Recovery outside accepted recovery fimits

R - RPD outside accepted recovery limits

B - Analyte detected in the associated Method Blank

Page 9 of 12

Corporate Address 1501 W. Knudsen Phoenix, AZ 85027 Phone: 623-780-4800 Toll Free: 800-651-4802 Fax: 623-780-7695 www.aerotechlabs.com
 Main Laboratory 1725 W. 17th Street Tempe, AZ 85281 Phone: 480-967-1310 Toll Free: 866-772-5227 Fax: 480-967-1019 www.palabs.com
 Tucson Facility 4455 S. Park Ave. Ste. 110 Tucson, AZ 85714 Phone: 520-807-5801 Fax: 520-807-3803

Transwest Geochem, Inc.

03031066 Work Order: Alsco 112.05/0303292

Project:

TestCode: 8260_W

ANALYTICAL QC SUMMARY REPORT

Sample ID 03031066-01A MS	SampType: MS	TestCod	TestCode: 8260_W	Units: µg/L		Prep Date:	.e:		Run ID: MS	Run ID: MS01_030328A	
Client ID: NW-2	Batch ID: R33742	TestN	TestNo: SW8260B			Analysis Date:	te: 3/28/2003	03	SeqNo: 383270	3270	
Analyte	Result	POL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Vinyl acetate	46.47	1.0	50	0	92.9	72.7	127	0	0		
Vinyl chloride	46.89	1.0	50	0	93.8	35	115	0	0		
Surr: 4-Bromofluorobenzene	41.85	0	50	0	83.7	80.5	103	D	0		
Surr: Dibromofluoromethane	48.46	0	50	0	96.9	75.9	110	0	0		
Surr: Toluene-d8	49.6	0	50	0	99.2	79	106	0	0		
Sample ID 03031066-01A MSD	SampType: MSD	TestCod	e: 8260_W	Units: µg/L		Prep Date:	.e:		Run ID: MS	Run ID: MS01_030328A	
Client ID: MW-2	Batch ID: R33742	TestN	o: SW8260B			Analysis Date:	te: 3/28/2003	03	SeqNo: 383271	3271	
Analyte	Result	POL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,1,1-Trichloroethane	46.76	1.0	50	0	93.5	85	115	46.66	0.214	25	
1,1,2,2-Tetrachloroethane	48.08	1.0	50	0	86.2	71.3	115	48.62	1.12	25	
1,1,2-Trichloroethane	48.19	1.0	50	0	96.4	85	115	50.98	5,63	25	
1,1-Dichloroethane	48.2	1.0	50	0	96.4	85	115	47.96	0.499	25	
1,1-Dichloroethene	48.69	1,0	50	0	97.4	85	115	47.94	1.55	25	
1,1-Dichloropropene	48.22	1.0	50	0	96.4	85	115	47.41	1.69	25	
1,2,3-Trichlorobenzene	45.24	5.0	50	0	90.5	72.5	127	45.9	1.45	25	
1.2,3-Trichloropropane	48.49	1.0	50	0	26	73.2	114	49.96	2.99	25	
1,2,4-Trimethylbenzene	56.4	1.0	50	11.81	89.2	85	115	56.96	0.988	25	
1,2-Dibromoethane	49.26	1.0	50	0	98.5	85	115	52.22	5.83	25	
1,2-Dichlorobenzene	48.09	1.0	50	0	96.2	85	115	47.72	0.772	25	
1,2-Dichloroethane	45.1	1.0	50	0	90.2	85	115	44.56	1.20	25	
1,2-Dichloropropane	48.14	1.0	50	0	96.3	85	115	49.9	3.59	25	
1,3,5-Trimethylbenzene	59.17	1,0	20	12.25	93.8	85	115	60.22	1.76	25	
1,3-Dichlorobenzene	46.72	1.0	50	0	93.4	85	115	47.04	0.683	25	
1,3-Dichloropropane	47.42	1.0	20	0	94.8	85	115	49.38	4.05	25	
1,4-Dichlorobenzene	46.62	1.0	50	0	93.2	85	115	47.16	1.15	25	
2,2-Dichloropropane	44.54	1.0	90	0	89.1	57.5	139	44.7	0.359	25	
Qualifiers: ND - Not Detoc	ND - Not Detected at the Reporting Umit		ids - S	S - Spike Recovery outside accepted recovery limits	naar patdaaar	overy limits		3 - Analyte detec	B - Analyte detected in the associated Method Blank	ated Method B	aok
J - Analyte dete	 Analyte detected below quantitation limits 		R - RP	R - RPD outside accepted recovery limits	covery fimit	æ				Page 10 of 12	of 12

Corporate Address 1501 W. Knudsen Phoenix, AZ 85027 Phone: 623-780-4800 Toll Free: 800-651-4802 Fax: 623-780-7695 www.aerotechlabs.com
 Main Laboratory 1725 W. 17th Street Tempe, AZ 85281 Phone: 480-967-1310 Toll Free: 866-772-5227 Fax: 480-967-1019 www.palabs.com
 Tucson Facility 4455 S. Park Ave. Ste. 110 Tucson, AZ 85714 Phone. 520-807-3801 Fax: 520-807-3803

Precision Analytical Laboratories, Inc. a division of Aerotech Laboratories, Inc.

Transwest Geochem, Inc. CELENI

03031066 Work Order: Alsco 112.05/0303292 Project:

TestCode: 8260 W

ANALYTICAL QC SUMMARY REPORT

Sample ID 03031066-01A MSD	SampType: MSD	TestCod	TestCode: 8260_W	Units: µg/L		Prep Date:			Run ID: MS	Run ID: MS01_030328A	
Client ID: MW-2	Batch ID: R33742	Test	TestNo: SW8260B			Analysis Date:	3/28/2003	03	SeqNo: 383271	3271	
Analyte	Result	Pal	SPK value	SPK Ref Val	%REC	LowLimit Hi	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
2-Butanone (MEK)	32.61	5.0	50	0	65.2	56.2	128	32.39	0.677	25	
2-Chloratoluene	46.72	1.0	50	0	93.4	85	115	48,16	3.04	25	
2-Hexanone	34.79	5.0	50	0	69.6	62.4	124	35.36	1.63	25	
4-Chlorotoluene	46.65	1.0	90	0	93.3	85	115	46,98	0.705	25	
4-Isopropyltoluene	47.02	1.0	50	0	94	85	115	47.45	0.910	25	
4-Methyl-2-pentanone	46.83	5.0	50	0	93.7	62.9	120	48.02	2.51	25	
Acetone	20.91	20	50	0	41.8	34.1	157	19.46	7.18	25	
Benzene	48.41	1.0	50	0	96.8	85	115	49.09	1.39	25	
Bromobenzene	48.31	1.0	50	0	96.6	85	115	49.11	1.64	25	
Bromochloromethane	49.51	1.0	50	0	66	81.1	120	49.7	0.383	25	
Bromodichloromethane	47.21	1.0	50	0	94.4	85	115	48.63	2.96	25	
Bromoform	47.5	1.0	50	0	98	77.3	123	48.69	2.47	25	
Bromomethane	44.18	5.0	50	0	88.4	44.1	262	42.86	3.03	25	
Carbon tetrachloride	48.46	1.0	50	0	6.96	82.6	125	47.37	2.27	25	
Chlorobenzene	43.92	1.0	50	0	87.8	85	115	44.36	0.997	25	
Chloroethane	48.44	1.0	90	0	6.96	80.3	117	47.87	1.18	25	
Chloraform	46.84	1.0	50	0	93.7	85	115	46.75	0.192	25	
Chloromethane	42.35	1.0	90	0	84.7	64.3	128	43.48	2,63	25	
cis-1,2-Dichloroethene	48.86	1.0	50	0	7.76	85	115	49.27	0.836	25	
cis-1,3-Dichloropropene	48.14	1.0	50	0	96.3	85	115	49.37	2.52	25	
Dibromochloromethane	49,62	1.0	50	0	99.2	85	115	51,69	4.09	25	
Dichlorodifluoromethane	39.04	1.0	50	0	78.1	75	125	40.56	3.82	25	
Ethylbenzene	44.51	1.0	90	1.37	86.3	85	115	45.77	2.79	25	
m.p-Xylene	118.4	2.0	100	29.5	89	85	115	121.4	2.49	25	
Methyl tert-butyl ether	48.33	1.0	90	0	96.7	85	115	49.08	1.54	25	₩ 1-
Methylene chloride	45.67	2.0	90	0	91,3	85	115	44.97	1.54	25	
n-Butylbenzene	46.61	1.0	50	0	93.2	85	115	47.07	0.982	25	
n-Propylbenzene	46.43	1.0	90	0	92.9	85	115	47.28	1.81	25	

1 - Analyte detected below quantitation limits ND - Not Detected at the Reporting Limit

Qualifiers:

R - RPD outside accepted recovery limits

S - Spike Recovery outside accepted recovery limits

B - Analyte detected in the associated Method Blank

 ■ Corporate Address 1501 W/. Knudsen Phoenix, AZ 85027 Phone: 623-780-4800 Toll Free: 800-651-4802 Fax: 623-780-7695 www.aerotechlabs.com

 ■ Main Laboratory 1725 W. 17th Street Tempe, AZ 85281 Phone: 480-967-1310 Toll Free: 866-772-5227 Fax: 480-967-1019 www.palabs.com

 ■ Tucson Facility 4455 S. Park Ave. Ste. 110 Tucson, AZ 85714 Phone: 520-807-3801 Fax: 520-807-3803

Precision Analytical Laboratories, Inc. a division of Aerotech Laboratories, Inc.

Transwest Geochem, Inc. CLIENT

03031066 Work Order: Alsco 112.05/0303292

Project:

ANALYTICAL QC SUMMARY REPORT

TestCode: 8260 W

Sample ID 03031066-01A MSD SampType: MSD	SampType: MSD	TestCo	TestCode: 8260_W	Units: µg/L		Prep Date:	.:e		Run ID: MS	Run ID: MS01_030328A	
Client ID: MW-2	Batch ID: R33742	Test	TestNo: SW8260B			Analysis Date:	e: 3/28/2003	03	SeqNo: 383271	3271	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	LowLimit HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
o-Xylene	60.07	1.0	50	15.82	88.5	85	115	60.36	0.482	25	
sec-Butylbenzene	47.26	1.0	50	0	94.5	85	115	48.02	1.60	25	
Styrene	43.45	1.0	50	0	86.9	85	115	44	1.26	25	
tert-Butylbenzene	47.35	1.0	50	0	94.7	85	115	48.22	1.82	25	
Tetrachloroethene	48.96	1.0	50	0	97.9	85	115	51.57	5,19	25	
Toluene	47.57	1.0	50	0	95.1	85	115	49.84	4.66	25	
trans-1,2-Dichloroethene	47.57	1.0	50	0	95.1	85	115	49.12	3.21	25	
trans-1,3-Dichloropropene	46.9	1.0	50	0	93.8	85	115	48.45	3.25	25	
Trichloroethene	47.81	1,0	50	0	92.6	85	115	50.02	4.52	25	
Trichlorofluoromethane	50.98	1.0	50	0	102	82.9	118	51.29	0.606	25	
Vinyl acetate	46.51	1.0	50	0	. 66	72.7	127	46.47	0.0860	25	
Vinyl chloride	46.07	1.0	50	0	92.1	85	115	46.89	1.76	25	
Surr: 4-Bromofluorobenzene	43.03	0	50	0	86.1	80.5	103	0	0	25	
Surr: Dibromofluoromethane	49.44	0	50	0	98.9	75.9	110	0	0	25	
Surr; Toluene-d8	49	0	50	0	98	79	106	0	0	25	

Qualifiers:

ND - Not Detected at the Reporting Limit

1 - Analyte detected below quantitation limits

R - RPD outside accepted recovery limits

S - Spike Recovery outside accepted recovery limits

B - Analyte detected in the associated Method Blank.

Corporate Address 1501 W. Knudsen Phoenix, AZ 85027 Phone: 623-780-4800 Toll Free: 800-851-4802 Fax: 623-780-7695 www.aerotechlabs.com
 Main Laboratory 1725 W. 17th Street Tempe, AZ 85281 Phone: 460-967-1310 Toll Free: 866-772-5227 Fax: 480-967-1019 www.palabs.com
 Tucson Facility 4455 S. Park Ave. Ste. 110 Tucson, AZ 85714 Phone: 520-807-3801 Fax: 520-807-3803

Sample Receipt Checklist

Client Name Transwest	Date an	d Time Received	3-27-03	09:00
Lab Number () -303 - 1066	Receive	ed by CMG		
Checklist completed by Signature /	7.03 Date	Containers:	Brass Sleeves Glass Jars	
Matrix: $A \subseteq$	Carrier name:	Mil	Methanol Kits_	
Shipping container/cooler in good condition?		Yes 👱	No	Not Present
Custody seals intact on shipping container/coole	r?	Yes	No	Not Present X
Custody seals intact on sample bottles?		Yes	No	Not Present 🔀
Chain of custody present?		Yes 🔀	No	
Chain of custody signed when relinquished and i	received?	Yes 📐	No	
Chain of custody agrees with sample labels?		Yes 🔀	No	
Samples in proper container/bottle?		Yes 🔀	No	
Sample containers intact?		Yes 🔀	No	
All samples received within holding time?		Yes 🔀	No	
Water - VOA vials have zero headspace?	No VOA subn	nitted	Yes 🔀	No
Number of sample bottles: 9 + 1775	Preserved:	+ 173	Unpreserved:	Ø_
Temperature of samples?	2.6 °c	Blue Ice	Wet Ice 🔀	Not Present
Water - pH acceptable upon receipt?		Yes	No	Not applicable 🔀
pH: Metals 413.1 Cyanide 418.1 Nutrients Sulfide		Other		
Adjusted? Results?				
Any No response must be detailed in the comments section b	pelow:			
Person/Client contacted:				The state of the s
Comments:				
Corrective Action:				
1				

CHAIN-OF-CUSTODY

TRANSWEST

GEOCHEM

Vic Nielsen

3725 E. Atlanta Avenue Suite 2

Phoenix, AZ 85040-2960

Subcontractor

Precision Analytical Laboratories, Inc.

(480) 967-1310 (480) 967-1019

TEL: FAX

> 1725 West 17th St. Tempe, AZ 85281

(602) 437-0330 1EL: FAX

(602) 437-0660

0-307-505-0 Work Order: 0303292

Project: Alsco 112.05

26-Mar-03

						Kednested lests		
Client Sample ID	TGI ID	Matrix	Collection Date C	Containers	Containers 8260_SUB			
MW-2	01A	01A Aqueous		M 3	i	Principle in the control of the cont		
MW-3	02A	Aqueous	3/20/2003 10:25:00 AM	8				
MW-4	03A	Aqueous	03A Aqueous 3/20/2003 11:45:00 AM	AM 3				
TRIP BLANK	04A	Trip Blank	3/20/2003 10:25:00 AM	-	-		The state of the s	

standard laboratory practices. Please provide a QC report, including Method Blank data. Comments: After analysis, the samples do not need to be returned and can be disposed per your

Absent / Present (Vet/Blue Ç V Date/Time Ambient (Cold Sample Receipt ~ Fotal No. of Containers: Custody Seals: N Received Intact: Temperature:

Relinquished by: Nell 1/01/01

Relinquished by:

Date/Time

Received by:

Received by:

Project Manager:

Client Name:

Address:

City, State ZIP:

Phone:

FRANSWEST

GEDCHEN

3725 East Atlanta Avenue, Suite 2 Phoenix, Arizona 85040

Phone: (602) 437-0330 Fax: (602) 437-0660

Chain of Custody TGI Work Order No:

Date

	Fax.	(602) 437-0660	Date Page of
		Bill to:	
		Company	
		Address	
		City, State ZIP:	
-ax:		Phone:	Fax

P.O. No.										٨	NAI	YSIS	ANALYSIS REQUEST	JEST							
Project Name:						٧			0												
Project Number:						olatil			rgan												
SAMPLE RECEIPT	L					e Org			achin			1									
Temperature: Ambient / Cold	171 :	lce:		T		anics	SD		rine (3 Pric		···			., <u></u> ,				
Received Intact:		Absent / Present	N	грн,		GC.	WA		Pesti			ority									
Custody Seals:		Wet / Blue	0. 0	(416			Vola				8 F	Pali									
Total No. of Containers:			f Co	3.1 /4				anics			RCR/	utan									
Sample Identification Matrix Sar	Date Sampled S	Time Lab ID	ntainers	18.1AZ)	(80276) 15AZR.1	8260AZ) (8021B)	, (524.2)	GCMS 25/8270)	s, (8082) 08/8081)	PA 8310	A Metals	t Metals							 ೦	Comments	STU
	-						 								-						
																_				-	
																<u> </u>	_				
						-							-	-		-	-				
													-			_	-				
														<u> </u>	_	-					
									+	_			1		-						S. A.
					-			-		_						_					
					-									+	-						
Relinquished by: (Signature)	1)	(Print Name)			Date,	Date/Time		Rece	Received by (Signature)	y: (Si	gnatu	rre)				(Print Name)	Nan	Je)	2 Se 22 Se 2 Se 2 Se 2 Se 2 Se 2 Se 2 Se	Date/	Date/Time
								-													
(2)																			-		
																			-		
Service Commence of the Commen				1			-		***************************************			The state of the s	-								

Precision Analytical Laborator

a division of Aerotech Laboratories: In.

March 27, 2003

Vic Nielsen Transwest Geochem, Inc. 3725 E. Atlanta Avenue, Suite 2 Phoenix, AZ 85040

RE: WSP Van Buren 2167/0303092

Dear Vic Nielsen:

Order No.: 03030436

Precision Analytical Laboratories received 6 samples on 3/10/2003 for the analyses presented in the following report.

This report includes the following information:

- Case Narrative.
- Analytical Report: includes test results, report limit (Limit), any applicable data qualifier (Qual), units, dilution factor (DF), and date analyzed.
- QC Summary Report.

This communication is intended only for the individual or entity to whom it is directed. It may contain information that is privileged, confidential, or otherwise exempt from disclosure under applicable law. Dissemination, distribution, or copying of this communication by anyone other than the intended recipient, or a duly designated employee or agent of such recipient, is prohibited. If you have received this communication in error, please notify us immediately and destroy this message and all attachments thereto. If you have any questions regarding these test results, please do not hesitate to call.

Sincerely,

Carlene McCutcheon

Project Manager

lere Mc Citchen

Precision Analytical Laboratories a division of Aerotech Laboratories, Inc.

Precision Analytical Laboratories

Date: 27-Mar-03

CLIENT:

Transwest Geochem, Inc.

Project:

WSP Van Buren 2167/0303092

Lab Order:

03030436

Work Order Sample Summary

Lab Sample ID	Client Sample ID	Tag Number	Collection Date	Date Received
03030436-01A	MW-1	01A	3/6/2003 10:45:00 AM	3/10/2003
03030436-02A	MW-2	02A	3/6/2003 11:55:00 AM	3/10/2003
03030436-03A	MW-3	03A	3/6/2003 1:20:00 PM	3/10/2003
03030436-04A	MW-4	04A	3/6/2003 2:50:00 PM	3/10/2003
03030436-05A	MW-5	05A	3/6/2003 3:50:00 PM	3/10/2003
03030436-06A	TB	06A	3/6/2003 10:45:00 AM	3/10/2003

[#] Corporate Address 1501 W. Knudsen Phoenix, AZ 85027 Phone: 623-780-4800 Toll Free: 800-651-4802 Fax: 623-780-7695 www.aerotechlabs.cor Main Laboratory 1725 W. 17th Street Tempe, AZ 85281 Phone: 480-967-1310 Toll Free: 866-772-5227 Fax: 480-967-1019 www.palabs.com Tucson Facility 4455 S. Park Ave. Ste. 110 Tucson, AZ 85714 Phone: 520-807-3801 Fax: 520-807-3803

Date: 27-Mar-03

a division of Aerotech Laboratories, Inc

Precision Analytical Laboratories

CLIENT:

Transwest Geochem, Inc.

Project:

WSP Van Buren 2167/0303092

Lab Order:

03030436

CASE NARRATIVE

Samples were analyzed using methods outlined in references such as:

Standard Methods for the Examination of Water and Wastewater, 18th Edition, 1992, and 19th Edition, 1995.

Methods for Chemical Analysis of Water and Wastes, EPA-600/4-79-020, Revised March 1983.

Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW846, 3rd Edition.

40 CFR, Part 136, Revised 1995. Appendix A to Part 136 - Methods for Organic Chemical Analysis of Municipal and Industrial Wastewater.

NIOSH Manual of Analytical Methods, Fourth Edition, 1994.

Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air, Second Edition, 1999.

Precision Analytical Laboratories, Inc. (PAL) holds Arizona certification no. AZ0610 and PAL-Tucson holds Arizona certification no. AZ0609.

PAL participates in the AIHA Proficiency Analytical Testing (PAT) program for metals, solvents and formaldehyde.

Analytical Comments:

All method blanks and laboratory control spikes met EPA method and/or laboratory quality control objectives for the analyses included in this report.

Data Qualifiers:

Listed below are the data qualifiers used in your analytical report to explain any analytical or quality control issues. You will find them noted in your report under the column header "QUAL". Any quality control deficiencies that cannot be adequately described by these qualifiers will be addressed in the analytical comments section of this case narrative.

- D2 Sample required dilution due to high concentration of target analyte.
- M7 Matrix spike recovery was low. Data reported per ADEQ policy 0154.000.
- R5 MS/MSD RPD exceeded the laboratory control limit. Recovery met acceptance criteria.

Page 1 of 2

- Corporate Address 1501 W. Knudsen Phoenix, AZ 85027 Phone: 623-780-4800 Toll Free: 800-651-4802 Fax: 623-780-7695 www.aerotechlabs.co: Main Laboratory 1725 W. 17th Street Tempe, AZ 85281 Phone: 480-967-1310 Toll Free: 866-772-5227 Fax: 480-967-1019 www.palabs.com
- 欄 Tucson Facility 4455 S, Park Ave. Ste. 110 Tucson, AZ 85714 Phone: 520-807-3801 Fax: 520-807-3803

CLIENT:

Transwest Geochem, Inc.

Project:

WSP Van Buren 2167/0303092

Lab Order:

03030436

CASE NARRATIVE

LCS/LCSD RPD exceeded the laboratory control limit. Recovery met acceptance criteria.

[©] Corporate Address 1501 W. Knudsen Phoenix. AZ 85027 Phone: 623-780-4800 Toll Free: 800-651-4802 Fax: 623-780-7695 www.aerotechlabs.co

Main Laboratory 1725 W. 17th Street Tempe, AZ 85281 Phone: 480-967-1310 Toll Free: 866-772-5227 Fax: 480-967-1019 www.palabs.com

Tucson Facility 4455 S. Park Ave. Ste. 110 Tucson, AZ 85714 Phone: 520-807-3801 Fax: 520-807-3803

Precision Analytical Laboratories

CLIENT: Lab Order: Transwest Geochem, Inc.

03030436

Project: Lab ID:

WSP Van Buren 2167/0303092

03030436-01A

Date: 27-Mar-03

Client Sample ID: MW-1

Tag Number: 01A

Collection Date: 3/6/2003 10:45:00 AM

Matrix: WATER

Analyses	Result	Limit (ual Units	DF	Date Analyzed
VOLATILES BY GC/MS	s	W8260B			Analyst: P M
1,1,1-Trichloroethane	< 1.0	1.0	µg/L	1	3/11/2003
1,1.2,2-Tetrachloroethane	< 1.0	1.0	µg/L	1	3/11/2003
1.1.2-Trichloroethane	< 1.0	1.0	μg/L	1	3/11/2003
1,1-Dichloroethane	< 1.0	1.0	μg/L	· 1	3/11/2003
1,1-Dichloroethene	< 1.0	1.0	μg/L	1	3/11/2003
1,1-Dichloropropene	< 1.0	1.0	μg/L	1	3/11/2003
1,2,3-Trichlorobenzene	< 5.0	5.0	µg/L	1	3/11/2003
1,2.3-Trichloropropane	< 1.0	1.0	μg/L	1	3/11/2003
1,2,4-Trimethylbenzene	< 1.0	1.0	μg/L	1	3/11/2003
1,2-Dibromoethane	< 1.0	1.0	μg/L	1	3/11/2003
1,2-Dichlorobenzene	< 1.0	1.0	μg/L	1	3/11/2003
1,2-Dichloroethane	< 1.0	1.0	h@/F	1	3/11/2003
1,2-Dichloropropane	< 1.0	1.0	μg/L	1	3/11/2003
1,3,5-Trimethylbenzene	< 1.0	1.0	μg/L	1	3/11/2003
1,3-Dichlorobenzene	< 1.0	1.0	μg/L	1	3/11/2003
1,3-Dichloropropane	< 1.0	1.0	μg/L	1	3/11/2003
1,4-Dichlorobenzene	< 1.0	1.0	hg/L	1	3/11/2003
2,2-Dichloropropane	< 1.0	1,0	μg/L	1	3/11/2003
2-Butanone (MEK)	< 5.0	5.0	µg/L	1	3/11/2003
2-Chlorotoluene	< 1.0	1.0	µg/L	1	3/11/2003
2-Hexanone	< 5.0	5.0	μg/L	1	3/11/2003
4-Chlorotoluene	< 1.0	1.0	μg/L	1	3/11/2003
4-Isopropyttoluene	< 1.0	1.0	μg/L	1	3/11/2003
4-Methyl-2-pentanone	< 5.0	5.0	µg/L	1	3/11/2003
Acetone	< 20	20	hg/L	1	3/11/2003
Benzene	< 1.0	1.0	µg/L	1	3/11/2003
Bromobenzene	< 1.0	1.0	μg/L	1	3/11/2003
Bromochloromethane	< 1.0	1.0	μg/L	1	3/11/2003
Bromodichloromethane	< 1.0	1.0	µg/L	1	3/11/2003
Bromoform	< 1.0	1.0	μg/L	1	3/11/2003
Bromomethane	< 5.0	5.0	µg/L	1	3/11/2003
Carbon tetrachloride	< 1.0	1.0	μg/L	1	3/11/2003
Chlorobenzene	< 1.0	1.0	μ g/ L	1	3/11/2003
Chloroethane	< 1.0	1.0	µg/L	1	3/11/2003
Chloroform	< 1.0	1.0	μg/L	1	3/11/2003
Chloromethane	< 1.0	1.0	μg/L	1	3/11/2003
cis-1,2-Dichloroethene	3.0	1.0	µg/L	1	3/11/2003
cis-1,3-Dichloropropene	< 1.0	1.0	hB/F	1	3/11/2003
Dibromochloromethane	< 1.0	1.0	μg/L	1	3/11/2003
Dichlorodifluoromethane	< 1.0	1.0	μg/L	1	3/11/2003

Qualifiers:

ND - Not Detected at the Reporting Limit

S - Spike Recovery outside accepted recovery limits

J - Analyse desected below quantitation limits

R - RPD outside accepted recovery limits

B - Analyte detected in the associated Method Blank

E - Value above quantitation range

^{* -} Value exceeds Maximum Contaminant Level

Page 1 of 12

Corporate Address 1501 W. Knudsen Phoenix, AZ 85027 Phone: 623-780-4800 Tol: Free: 800-651-4802 Fax: 623-780-7695 www.aerotechlabs.com ■ Main Laboratory 1725 W. 17th Street Tempe, AZ 85281 Phone: 480-967-1310 Toll Free: 866-772-5227 Fax: 480-967-1019 www.palabs.com

[■] Tucson Facility 4455 S. Park Ave. Ste. 110 Tucson. AZ 85714 Phone: 520-807-3801 Fax: 520-807-3803

Precision Analytical Laboratories

CLIENT:

Transwest Geochem, Inc.

Lab Order:

03030436

WSP Van Buren 2167/0303092

Project: Lab ID:

03030436-01A

Date: 27-Mar-03

Client Sample ID: MW-1

Tag Number: 01A

Collection Date: 3/6/2003 10:45:00 AM

Matrix: WATER

Analyses	Result	Limit (Qual Units	DF	Date Analyzed
VOLATILES BY GC/MS		SW8260B			Analyst: P M
Ethylbenzene	< 1.0	1.0	μg/L	1	3/11/2003
m,p-Xylene	< 2.0	2.0	μg/L	1	3/11/2003
Methyl tert-butyl ether	< 1.0	1.0	μg/L	1	3/11/2003
Methylene chloride	< 2.0	2.0	μg/L	1	3/11/2003
n-Butylbenzene	< 1.0	1.0	μg/L	1	3/11/2003
n-Propylbenzene	< 1.0	1,0	μg/L	1	3/11/2003
o-Xylene	< 1.0	1.0	μg/L	1	3/11/2003
sec-Butylbenzene	< 1.0	1.0	μg/L	1	3/11/2003
Styrene	< 1.0	1.0	µg/L	1	3/11/2003
tert-Butylbenzene	< 1.0	1.0	μg/L	1	3/11/2003
Tetrachloroethene	2.4	1.0	μg/L	1	3/11/2003
Toluene	1.4	1.0	μg/L	1	3/11/2003
trans-1,2-Dichloroethene	< 1.0	1.0	μg/L	1	3/11/2003
trans-1,3-Dichloropropene	< 1.0	1.0	μg/L	1	3/11/2003
Trichloroethene	10	1.0	μg/L	1	3/11/2003
Trichlorofluoromethane	< 1.0	1.0	μg/L	1	3/11/2003
Vinyl acetate	< 1.0	1.0	μg/L	1	3/11/2003
Vinyl chloride	< 1.0	1.0	μg/L	1	3/11/2003
Surr: 4-Bromofluorobenzene	89.5	80.5-103	%REC	1	3/11/2003
Surr: Dibromofluoromethane	92.1	75.9-110	%REC	1	3/11/2003
Surr: Toluene-d8	91.1	79-106	%REC	1	3/11/2003

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

* - Value exceeds Maximum Contaminant Level

B - Analyte detected in the associated Method Blank

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Page 2 of 12

■ Corporate Address 1501 W. Knudsen Phoenix. AZ 85027 Phone: 623-780-4800 Toll Free: 800-651-4802 Fax: 623-780-7695 www.aerotech:abs.co Main Laboratory 1725 W. 17th Street Tempe, AZ 85281 Phone: 480-967-1310 Toll Free: 866-772-5227 Fax: 480-967-1019 www.palabs.com
 ■ Tucson Facility 4455 S. Park Ave. Ste. 110 Tucson, AZ 85714 Phone: 520-807-3801 Fax: 520-807-3803

Precision Analytical Laboratories

CLIENT: Transwest Geochem, Inc.

03030436 Lab Order:

Project: WSP Van Buren 2167/0303092

03030436-02A Lab ID:

Date: 27-Mar-03

Client Sample ID: MW-2

Tag Number: 02A

Collection Date: 3/6/2003 11:55:00 AM

Matrix: WATER

Analyses	Result	Limit	Qual Units	DF	Date Analyzed
VOLATILES BY GC/MS	S	W8260B			Analyst: P M
1,1,1-Trichloroethane	< 1.0	1.0	µg/L	1	3/11/2003
1.1.2,2-Tetrachloroethane	< 1.0	1.0	μg/L	1	3/11/2003
1,1.2-Trichloroethane	< 1.0	1.0	μg/L	1	3/11/2003
1,1-Dichloroethane	< 1.0	1.0	μg/L	1	3/11/2003
1,1-Dichloroethene	< 1.0	1.0	μg/L	1	3/11/2003
1,1-Dichloropropene	< 1.0	1.0	μg/L	1	3/11/2003
1,2,3-Trichlorobenzene	< 5.0	5.0	μg/L	1	3/11/2003
1,2,3-Trichloropropane	< 1.0	1.0	μg/L	1	3/11/2003
1,2,4-Trimethylbenzene	< 1.0	1.0	μg/L	1	3/11/2003
1,2-Dibromoethane	< 1.0	1.0	µg/L	1	3/11/2003
1.2-Dichlorobenzene	< 1.0	1.0	μg/L	1	3/11/2003
1,2-Dichloroethane	< 1.0	1.0	µg/L	1	3/11/2003
1,2-Dichloropropane	< 1.0	1.0	μg/L	1	3/11/2003
1,3,5-Trimethylbenzene	< 1.0	1.0	µg/L	1	3/11/2003
1,3-Dichlarobenzene	< 1.0	1.0	µg/L	1	3/11/2003
1,3-Dichloropropane	< 1.0	1.0	μg/L	1	3/11/2003
1,4-Dichlorobenzene	< 1.0	1.0	μg/L	1	3/11/2003
2,2-Dichloropropane	< 1.0	1.0	μg/L	1	3/11/2003
2-Butanone (MEK)	< 5.0	5.0	µg/L	1	3/11/2003
2-Chlorotoluene	< 1.0	1.0	μg/L	1	3/11/2003
2-Hexanone	< 5.0	5.0	μg/L	1	3/11/2003
4-Chlorotoluene	< 1.0	1.0	μ g/ L	1	3/11/2003
4-Isopropyltoluene	< 1.0	1.0	hg/r	1	3/11/2003
4-Methyl-2-pentanone	< 5.0	5.0	µg/L	1	3/11/2003
Acetone	< 20	20	µg/L	1	3/11/2003
Benzene	< 1.0	1.0	μg/L	1	3/11/2003
Bromobenzene	< 1.0	1.0	µg/L	1	3/11/2003
Bromochloromethane	< 1.0	1.0	μg/L	1	3/11/2003
Bromodichloromethane	< 1.0	1.0	μ g/ L	1	3/11/2003
Bromoform	< 1.0	1.0	µg/L	1	3/11/2003
Bromomethane	< 5.0	5.0	µg/L	1	3/11/2003
Carbon tetrachloride	< 1.0	1.0	μg/L	1	3/11/2003
Chlorobenzene	< 1.0	1.0	h8/r	1	3/11/2003
Chloroethane	< 1.0	1.0	μg/L	1	3/11/2003
Chloroform	5.2	1.0	μg/L	1	3/11/2003
Chloromethane	< 1.0	1.0	μg/L	1	3/11/2003
cis-1.2-Dichloroethene	< 1.0	1.0	µg/L	1	3/11/2003
cis-1,3-Dichloropropene	< 1.0	1.0	hg/L	1	3/11/2003
Dibromochloromethane	< 1.0	1.0	μg/L	1	3/11/2003
Dichlorodifluoromethane	< 1.0	1.0	μg/L	1	3/11/2003

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

R - RPD outside accepted recovery limits

E - Value above quantitation range

Page 3 of 12

S - Spike Recovery outside accepted recovery limits

^{* -} Value exceeds Maximum Contaminant Level Corporate Address 1501 W. Knudsen Phoenix, AZ 85027 Phone: 623-780-4800 Tol Free: 800-651-4802 Fax: 623-780-7695 www.aerotechlabs.com Main Laboratory 1725 W. 17th Street Tempe. AZ 85281 Phone: 480-967-1310 Toll Free: 866-772-5227 Fax: 480-967-1019 www.palabs.com

Tucson Facility 4455 S. Park Ave. Ste. 110 Tucson, AZ 85714 Phone: 520-807-3801 Fax: 520-807-3803

Precision Analytical Laboratories

CLIENT:

______ Transwest Geochem, Inc.

Lab Order:

03030436

Project:

WSP Van Buren 2167/0303092

Lab ID:

03030436-02A

Date: 27-Mar-03

Client Sample ID: MW-2

Tag Number: 02A

Collection Date: 3/6/2003 11:55:00 AM

Matrix: WATER

Analyses	Result	Limit	Qual Unit	s DF	Date Analyzed
VOLATILES BY GC/MS		SW8260B			Analyst: P M
Ethylbenzene	< 1.0	1.0	μg/L	1	3/11/2003
m,p-Xylene	< 2.0	2.0	μg/L	7	3/11/2003
Methyl tert-butyl ether	< 1.0	1.0	μg/L	1	3/11/2003
Methylene chloride	< 2.0	2.0	μg/L	1	3/11/2003
n-Butylbenzene	< 1.0	1.0	μg/L	1	3/11/2003
n-Propylbenzene	< 1.0	1.0	µg/L	1	3/11/2003
o-Xylene	< 1.0	1.0	μg/L	1	3/11/2003
sec-Butylbenzene	< 1.0	1.0	μg/L	1	3/11/2003
Styrene	< 1.0	1.0	μg/L	1	3/11/2003
tert-Butylbenzene	< 1.0	1.0	μg/L	1	3/11/2003
Tetrachloroethene	5.1	1.0	μg/L	1	3/11/2003
Toluene	1.4	1.0	μg/L	1	3/11/2003
trans-1,2-Dichloroethene	< 1.0	1.0	μg/L	1	3/11/2003
trans-1,3-Dichloropropene	< 1.0	1.0	μg/L	1	3/11/2003
Trichloroethene	4.1	1.0	μg/L	1	3/11/2003
Trichlorofluoromethane	< 1.0	1.0	µg/L	1	3/11/2003
Vinyl acetate	< 1.0	1.0	μg/L	1	3/11/2003
Vinyl chloride	< 1.0	1.0	μg/L	1	3/11/2003
Surr: 4-Bromofluorobenzene	90.4	80.5-103	%REC	1	3/11/2003
Surr: Dibromofluoromethane	92.4	75.9-110	%REC	1	3/11/2003
Surr: Toluene-d8	91.6	79-106	%REC	1	3/11/2003

Qualifiers:

ND - Not Detected at the Reporting Limit

1 - Analyte detected below quantitation limits

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

* - Value exceeds Maximum Contaminant Level

B - Analyte detected in the associated Method Blank

Page 4 of 12

[■] Corporate Address 1501 W. Knudsen Phoenix, AZ 85027 Phone: 623-780-4800 Toli Free: 800-651-4802 Fax: 623-780-7695 www.aerotechlabs.cor m Main Laboratory 1725 W. 17th Street Tempe, AZ 85261 Phone: 480-967-1310 Toll Free: 866-772-5227 Fax: 480-967-1019 www.palabs.com

[■] Tucson Facility 4455 S. Park Ave. Ste. 110 Tucson, AZ 85714 Phone: 520-807-3801 Fax: 520-807-3803

Precision Analytical Laboratories

CLIENT:

Transwest Geochem, Inc.

Lab Order:

03030436

WSP Van Buren 2167/0303092

Project: Lab ID:

03030436-03A

Date: 27-Mar-03

Client Sample ID: MW-3

Tag Number: 03A

Collection Date: 3/6/2003 1:20:00 PM

Matrix: WATER

Analyses	Result	Limit	Qual	Units	DF	Date Analyzed
VOLATILES BY GC/MS	S	W8260B				Analyst: P M
1,1,1-Trichloroethane	< 1.0	1.0		μg/L	1	3/11/2003
1,1,2,2-Tetrachloroethane	< 1.0	1.0		μg/L	1	3/11/2003
1,1,2-Trichloroethane	< 1.0	1.0		μg/L	1	3/11/2003
1,1-Dichloroethane	< 1.0	1.0		μg/L	1	3/11/2003
1,1-Dichloroethene	< 1.0	1.0		µg/L	1	3/11/2003
1,1-Dichloropropene	< 1.0	1.0		μg/L	1	3/11/2003
1,2,3-Trichlorobenzene	< 5.0	5.0		μg/L	1	3/11/2003
1.2,3-Trichloropropane	< 1.0	1.0		μg/L	1	3/11/2003
1,2,4-Trimethylbenzene	< 1.0	1.0		μg/L	1	3/11/2003
1,2-Dibromoethane	< 1.0	1.0		μg/L	1	3/11/2003
1.2-Dichlorobenzene	< 1.0	1.0		μg/L	1	3/11/2003
1,2-Dichloroethane	< 1.0	1.0		μg/L	1	3/11/2003
1,2-Dichloropropane	< 1.0	1.0		μg/L	1	3/11/2003
1,3,5-Trimethylbenzene	< 1.0	1.0	1	μg/L	1	3/11/2003
1,3-Dichlorobenzene	< 1.0	1.0	1	μg/L	1	3/11/2003
1,3-Dichloropropane	< 1.0	1.0	1	μg/L	1	3/11/2003
1,4-Dichlorobenzene	< 1.0	1.0	1	μg/L	1	3/11/2003
2,2-Dichloropropane	< 1.0	1.0	1	μg/L	1	3/11/2003
2-Butanone (MEK)	< 5.0	5.0	1	μg/L	1	3/11/2003
2-Chlorotoluene	< 1.0	1.0	1	µg/L	1	3/11/2003
2-Hexanone	< 5.0	5.0	1	μg/L	1	3/11/2003
4-Chlorotoluene	< 1.0	1.0	3	μg/L	1	3/11/2003
4-Isopropyltoluene	< 1.0	1.0	1	μg/L	1	3/11/2003
4-Methyl-2-pentanone	< 5.0	5.0	5	µg/L	1	3/11/2003
Acetone	< 20	20		μg/L	1	3/11/2003
Benzene	< 1.0	1.0	i	μg/L	1	3/11/2003
Bromobenzene	< 1.0	1.0	ļ	µg/L	1	3/11/2003
Bromochloromethane	< 1.0	1.0		µg/L	1	3/11/2003
Bromodichloromethane	< 1.0	1.0	į	μg/L	1	3/11/2003
Bromoform	< 1.0	1.0	,	μg/L	1	3/11/2003
Bromomethane	< 5.0	5.0	1	μg/L	1	3/11/2003
Carbon tetrachloride	< 1.0	1.0		μg/L	1	3/11/2003
Chlorobenzene	< 1.0	1.0		ug/L	1	3/11/2003
Chloroethane	< 1.0	1.0		ug/L	1	3/11/2003
Chloroform	4.2	1.0		ug/L	1	3/11/2003
Chloromethane	< 1.0	1.0		ug/L	1	3/11/2003
cis-1,2-Dichloroethene	< 1.0	1.0		ıg/L	1	3/11/2003
cis-1,3-Dichloropropene	< 1.0	1.0		ug/L	1	3/11/2003
Dibromochloromethane	< 1.0	1.0		ug/L	1	3/11/2003
Dichlorodifluoromethane	< 1.0	1.0		ug/L	1	3/11/2003

Qualifiers:

ND - Not Detected at the Reporting Limit

5 - Spike Recovery outside accepted recovery limits

J - Analyte detected below quantitation limits

R - RPD outside accepted recovery limits E - Value above quantitation range

B - Analyte detected in the associated Method Blank * - Value exceeds Maximum Contaminant Level

Page 5 of 12

[■] Corporate Address 1501 W. Knudsen Phoenix, AZ 85027 Phone: 623-780-4800 Toll Free: 800-651-4802 Fax: 623-780-7695 www.aerotechlabs.co Main Laboratory 1725 W. 17th Street Tempe. AZ 85281 Phone: 480-967-1310 Toll Free: 866-772-5227 Fax: 480-967-1019 www.palabs.com

Tucson Facility 4455 S. Park Ave. Ste. 110 Tucson, AZ 85714 Phone: 520-807-3801 Fax: 520-807-3803

Precision Analytical Laboratories

Transwest Geochem, Inc.

Lab Order:

03030436

Project:

WSP Van Buren 2167/0303092

Lab ID:

CLIENT:

03030436-03A

Date: 27-Mar-03

Client Sample ID: MW-3

Tag Number: 03A

Collection Date: 3/6/2003 1:20:00 PM

Matrix: WATER

Analyses	Result	Limit Q	ual Units	DF	Date Analyzed
VOLATILES BY GC/MS		SW8260B			Analyst: P M
Ethylbenzene	2.7	1.0	μg/L	1	3/11/2003
m,p-Xylene	< 2.0	2.0	μg/L	1	3/11/2003
Methyl tert-butyl ether	< 1.0	1.0	μg/L	1	3/11/2003
Methylene chloride	< 2.0	2.0	μg/L	1	3/11/2003
n-Butylbenzene	< 1.0	1.0	µg/∟	1	3/11/2003
n-Propylbenzene	< 1.0	1.0	μg/L	1	3/11/2003
o-Xylene	< 1.0	1.0	μg/L	1	3/11/2003
sec-Butylbenzene	< 1.0	1.0	μg/L	1	3/11/2003
Styrene	< 1.0	1.0	μg/L	1	3/11/2003
tert-Butylbenzene	< 1.0	1.0	μg/L	1	3/11/2003
Tetrachioroethene	4.4	1.0	μg/L	1	3/11/2003
Toluene	1.5	1.0	μg/L	1	3/11/2003
trans-1,2-Dichloroethene	< 1.0	1.0	μg/L	1	3/11/2003
trans-1,3-Dichloropropene	< 1.0	1.0	µg/L	1	3/11/2003
Trichloroethene	5.3	1.0	μg/L	1	3/11/2003
Trichlorofluoromethane	< 1.0	1.0	µg/L	1	3/11/2003
Vinyl acetate	< 1.0	1.0	ha\r	1	3/11/2003
Vinyl chloride	< 1.0	1.0	μg/L	1	3/11/2003
Surr: 4-Bromofluorobenzene	90.6	80.5-103	%REC	1	3/11/2003
Surr: Dibromofluoromethane	92.1	75.9-110	%REC	1	3/11/2003
Surr: Toluene-d8	93.6	79-106	%REC	1	3/11/2003

Qualifiers:

ND - Not Detected at the Reporting Limit

I - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

- S Spike Recovery outside accepted recovery limits
- R RPD outside accepted recovery limits
- E Value above quantitation range

Page 6 of 12

- * Value exceeds Maximum Contaminant Level Corporate Address 1501 W. Knudsen Phoenix, AZ 85027 Phone: 623-780-4800 Toll Free: 800-651-4802 Fax: 623-780-7695 www.aerotechlabs.cor Main Laboratory 1725 W. 17th Street Tempe, AZ 85281 Phone: 480-967-1310 Toll Free: 866-772-5227 Fax: 480-967-1019 www.palabs.com
- Tucson Facility 4455 S. Park Ave. Ste. 110 Tucson, AZ 85714 Phone: 620-807-3801 Fax: 520-807-3803

Precision Analytical Laboratories

Transwest Geochem, Inc.

CLIENT: Lab Order:

Lab ID:

03030436

Project:

WSP Van Buren 2167/0303092

03030436-04A

Client Sample ID: MW-4 Tag Number: 04A

Collection Date: 3/6/2003 2:50:00 PM

Date: 27-Mar-03

Matrix: WATER

Analyses	Result	Limit	Qual Units	DF	Date Analyzed
VOLATILES BY GC/MS	S	W8260B			Analyst: JR
1,1,1-Trichloroethane	< 1.0	1.0	μg/L	1	3/13/2003
1,1,2,2-Tetrachloroethane	< 1.0	1.0	μg/L	1	3/13/2003
1,1,2-Trichloroethane	< 1.0	1.0	µg/L	1	3/13/2003
1,1-Dichloroethane	< 1.0	1.0	μg/L	1	3/13/2003
1,1-Dichloroethene	< 1.0	1.0	μg/L	1	3/13/2003
1,1-Dichloropropene	< 1.0	1.0	hg/F	1	3/13/2003
1,2,3-Trichlorobenzene	< 5.0	5.0	μg/L	1	3/13/2003
1,2,3-Trichloropropane	< 1.0	1.0	µg/L	1	3/13/2003
1,2,4-Trimethylbenzene	160	1.0	µg/L	1	3/13/2003
1,2-Dibromoethane	< 1.0	1.0	μg/L	1	3/13/2003
1,2-Dichlorobenzene	< 1.0	1.0	µg/L	1	3/13/2003
1,2-Dichloroethane	< 1.0	1.0	μg/L	1	3/13/2003
1,2-Dichloropropane	< 1.0	1.0	μg/L	1	3/13/2003
1,3,5-Trimethylbenzene	58	1.0	µg/L	1	3/13/2003
1,3-Dichlorobenzene	< 1.0	1.0	μg/L	1	3/13/2003
1,3-Dichloropropane	< 1.0	1.0	µg/L	1	3/13/2003
1,4-Dichlorobenzene	< 1.0	1.0	μg/L	1	3/13/2003
2,2-Dichloropropane	< 1.0	1.0	µg/L	1	3/13/2003
2-Butanone (MEK)	32	5.0	μg/L	1	3/13/2003
2-Chlorotoluene	< 1.0	1.0	µg/L	1	3/13/2003
2-Hexanone	< 5.0	5.0	hg/L	1	3/13/2003
4-Chlorotoluene	< 1.0	1.0	μg/L	1	3/13/2003
4-Isopropyltoluene	2.7	1.0	µg/L	1	3/13/2003
4-Methyl-2-pentanone	< 5.0	5.0	μg/L	1	3/13/2003
Acetone	64	20	μg/L	1	3/13/2003
Benzene	660	10	D2 μg/L	10	3/13/2003
Bromobenzene	< 1.0	1.0	μg/L	1	3/13/2003
Bromochloromethane	< 1.0	1.0	µg/L	1	3/13/2003
Bromodichloromethane	< 1.0	1.0	μg/L	1	3/13/2003
Bromoform	< 1.0	1.0	μ g/ L	1	3/13/2003
Bromomethane	< 5.0	5.0	µg/L	1	3/13/2003
Carbon tetrachloride	< 1.0	1.0	µg/L	1	3/13/2003
Chlorobenzene	< 1.0	1.0	µg/L	1	3/13/2003
Chloroethane	< 1.0	1.0	μg/L	1	3/13/2003
Chloroform	3.6	1.0	µg/L	1	3/13/2003
Chloromethane	< 1.0	1.0	μg/L	1	3/13/2003
cis-1,2-Dichloroethene	1.6	1.0	μg/L	1	3/13/2003
cis-1,3-Dichloropropene	< 1.0	1.0	μg/L	1	3/13/2003
Dibromochloromethane	< 1.0	1.0	µg/L	1	3/13/2003
Dichlorodifluoromethane	< 1.0	1.0	μg/L	1	3/13/2003

Qualifiers:

ND - Not Detected at the Reporting Limit

S - Spike Recovery outside accepted recovery limits

1 - Analyte detected below quantitation limits

R - RPD outside accepted recovery limits

B - Analyte detected in the associated Method Blank

E - Value above quantitation range

^{* -} Value exceeds Maximum Contaminant Level

Page 7 of 12

[■] Corporate Address 1501 W. Knudsen Phoenix, AZ 85027 Phone: 623-780-4800 Toll Free: 800-651-4802 Fax: 623-780-7695 vww.aerotechiabs.com Main Laboratory 1725 W. 17th Street Tempe, AZ 85281 Phone: 480-967-1310 Toll Free: 866-772-5227 Fax: 480-967-1019 www.palabs.com

Tucson Facility 4455 S. Park Ave. Ste. 110 Tucson, AZ 85714 Phone: 520-807-3801 Fax: 520-807-3803

Precision Analytical Laboratories

CLIENT:

Transwest Geochem, Inc.

Lab Order:

03030436

WSP Van Buren 2167/0303092

Project: Lab ID:

03030436-04A

Date: 27-Mar-03

Client Sample ID: MW-4

Tag Number: 04A

Collection Date: 3/6/2003 2:50:00 PM

Matrix: WATER

Analyses	Result	Limit	Qual	Units	DF	Date Analyzed
VOLATILES BY GC/MS		SW8260B				Analyst: J R
Ethylbenzene	170	1.0		μg/L	1	3/13/2003
m,p-Xylene	430	20	D2	μg/L	10	3/13/2003
Methyl tert-butyl ether	< 1.0	1.0		µg/L	1	3/13/2003
Methylene chloride	< 2.0	2.0		µg/L	1	3/13/2003
n-Butylbenzene	< 1.0	1.0		µg/L	1	3/13/2003
n-Propylbenzene	19	1.0		μg/L	1	3/13/2003
o-Xylene	370	10	D2	µg/Ł	10	3/13/2003
sec-Butylbenzene	1.6	1.0		μg/Ľ	1	3/13/2003
Styrene	< 1.0	1.0		μg/L	1	3/13/2003
tert-Butylbenzene	< 1.0	1.0		μg/L	1	3/13/2003
Tetrachloroethene	4.1	1.0		μg/L	1	3/13/2003
Toluene	< 1.0	1.0		µg/L	1 .	3/13/2003
Toluene	630	10	D2	µg/L	10	3/13/2003
trans-1,2-Dichloroethene	< 1.0	1.0		μg/L	1	3/13/2003
trans-1,3-Dichloropropene	< 1.0	1.0		µg/L	1	3/13/2003
Trichloroethene	5.0	1.0		µg/L	1	3/13/2003
Trichlorofluoromethane	< 1.0	1.0		µg/L	1	3/13/2003
Vinyl acetate	< 1.0	1.0		μg/L	1	3/13/2003
Vinyl chloride	< 1.0	1.0		μg/L	1	3/13/2003
Surr: 4-Bromofluorobenzene	101	80.5-103		%REC	1	3/13/2003
Surr: Dibromofluoromethane	102	75.9-110		%REC	1	3/13/2003
Surr: Toluene-d8	102	79-106		%REC	1	3/13/2003

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

5 - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Page 8 of 12

^{* -} Value exceeds Maximum Contaminant Level ■ Corporate Address 1501 W. Knudsen Phoenix, AZ 85027 Phone: 623-780-4800 Toll Free: 800-651-4802 Fax: 623-780-7695 www.aerotechlabs.com Main Laboratory 1725 W. 17th Street Tempe, AZ 85281 Phone: 480-967-1310 Toll Free: 866-772-5227 Fax: 480-967-1019 www.palabs.com

[■] Tucson Facility 4455 S. Park Ave. Ste. 110 Tucson. AZ 85714 Phone: 520-807-3801 Fax: 520-807-3803

Precision Analytical Laboratories

CLIENT:

Transwest Geochem, Inc.

Lab Order:

03030436

WSP Van Buren 2167/0303092

Project: Lab ID:

03030436-05A

Date: 27-Mar-03

Client Sample ID: MW-5

Tag Number: 05A

Collection Date: 3/6/2003 3:50:00 PM

Matrix: WATER

Analyses	Result	Limit	Qual	Units	DF	Date Analyzed
VOLATILES BY GC/MS		SW8260B				Analyst: P M
1,1,1-Trichloroethane	< 1.0	1.0		μg/L	1	3/11/2003
1,1,2,2-Tetrachloroethane	< 1.0	1.0		μg/L	1	3/11/2003
1,1,2-Trichloroethane	< 1.0	1.0		µg/L	1	3/11/2003
1,1-Dichloroethane	< 1.0	1.0		μg/L	1	3/11/2003
1,1-Dichloroethene	< 1.0	1.0		µg/L	1	3/11/2003
1,1-Dichloropropene	< 1.0	1.0		µg/L	1	3/11/2003
1,2,3-Trichlorobenzene	< 5.0	5.0		μg/L	1	3/11/2003
1,2,3-Trichloropropane	< 1.0	1.0		µg/L	1	3/11/2003
1,2,4-Trimethylbenzene	230	10	D2	µg/∟	10	3/13/2003
1,2-Dibromoethane	< 1.0	1.0		μg/L	1	3/11/2003
1,2-Dichlorobenzene	< 1.0	1.0		µg/L	1	3/11/2003
1,2-Dichloroethane	< 1.0	1.0		μg/L	1	3/11/2003
1,2-Dichloropropane	< 1.0	1.0		μg/L	1	3/11/2003
1,3,5-Trimethylbenzene	88	1.0		μg/L	1	3/11/2003
1,3-Dichlorobenzene	< 1.0	1.0		µg/L	1	3/11/2003
1,3-Dichloropropane	< 1.0	1.0		µg/L	1	3/11/2003
1,4-Dichlorobenzene	< 1.0	1.0		µg/L	1	3/11/2003
2,2-Dichloropropane	< 1.0	1.0		μg/L	1	3/11/2003
2-Butanone (MEK)	12	5.0		µg/L	1	3/11/2003
2-Chlorotoluene	< 1.0	1.0		μg/L	1	3/11/2003
2-Hexanone	< 5.0	5.0		µg/L	1	3/11/2003
4-Chlorotoluene	< 1.0	1.0		μg/L	1	3/11/2003
4-Isopropyltoluene	< 1.0	1.0		μg/L	1	3/11/2003
4-Methyl-2-pentanone	< 5.0	5.0		µg/L	1	3/11/2003
Acetone	< 20	20		µg/L	1	3/11/2003
Benzene	320	10	D2	µg/L	10	3/13/2003
Bromobenzene	< 1.0	1.0		µg/L	1	3/11/2003
Bromochloromethane	< 1.0	1.0		μg/L	1	3/11/2003
Bromodichloromethane	< 1.0	1.0		μg/L	1	3/11/2003
Bromoform	< 1.0	1.0		μg/L	1	3/11/2003
Bromomethane	< 5.0	5.0		μg/L	1	3/11/2003
Carbon tetrachloride	< 1.0	1.0		μg/L	1	3/11/2003
Chlorobenzene	< 1.0	1.0		μg/L	1	3/11/2003
Chloroethane	< 1.0	1.0		μg/L	1	3/11/2003
Chloroform	5.1	1.0		μg/L	1	3/11/2003
Chloromethane	< 1.0	1.0		μg/L	1	3/11/2003
cis-1,2-Dichloroethene	< 1.0	1.0		μg/L	1	3/11/2003
cis-1,3-Dichloropropene	< 1.0	1.0		μg/L	1	3/11/2003
Dibromochloromethane	< 1.0	1.0		μg/L	1	3/11/2003
Dichlorodifluoromethane	< 1.0	1.0		μg/L	1	3/11/2003

Qualifiers:

ND - Not Detected at the Reporting Limit

S - Spike Recovery outside accepted recovery limits

J - Analyte detected below quantitation limits

R - RPD outside accepted recovery limits

B - Analyte detected in the associated Method Blank * - Value exceeds Maximum Contaminant Level

E - Value above quantitation range Page 9 of 12

Corporate Address 1501 W. Knudsen Phoenix, AZ 85027 Phone: 623-780-4800 Toll Free: 800-651-4802 Fax: 623-780-7695 www.aerotechlabs.cor Main Laboratory 1725 W. 17th Street Tempe, AZ 85281 Phone: 480-967-1310 Toll Free: 866-772-5227 Fax: 480-967-1019 www.palabs.com

magnetic Tucson Facility 4455 S. Park Ave. Ste. 110 Tucson, AZ 85714 Phone: 520-807-3801 Fax: 520-807-3803

Precision Analytical Laboratories

CLIENT:

Transwest Geochem, Inc.

Lab Order:

03030436

WSP Van Buren 2167/0303092

Project: Lab ID:

03030436-05A

Date: 27-Mar-03

Client Sample ID: MW-5

Tag Number: 05A

Collection Date: 3/6/2003 3:50:00 PM

Matrix: WATER

Analyses	Result	Limit	Qual	Units	DF	Date Analyzed
VOLATILES BY GC/MS		SW8260B				Analyst: P M
Ethylbenzene	180	1.0		µg/L	1	3/11/2003
m.p-Xylene	930	20	D2	μg/L	10	3/13/2003
Methyl tert-butyl ether	< 1.0	1.0		μg/L	1	3/11/2003
Methylene chloride	< 2.0	2.0		μg/L	1	3/11/2003
n-Butylbenzene	< 1.0	1.0		μg/L	1	3/11/2003
n-Propylbenzene	22	1.0		μg/L	1	3/11/2003
o-Xylene	450	10	D2	μg/L	10	3/13/2003
sec-Butylbenzene	2.1	1.0		μg/L	1	3/11/2003
Styrene	< 1.0	1.0		μg/L	1	3/11/2003
tert-Butylbenzene	< 1.0	1.0		μg/L	1	3/11/2003
Tetrachloroethene	4.4	1.0		µg/L	1	3/11/2003
Toluene	910	10	D2	µg/L	10	3/13/2003
trans-1,2-Dichloroethene	< 1.0	1.0		μg/L	1	3/11/2003
trans-1,3-Dichloropropene	< 1.0	1.0		μg/L	1	3/11/2003
Trichloroethene	3.4	1.0		μg/L	1	3/11/2003
Trichlorofluoromethane	< 1.0	1.0		μg/L	1	3/11/2003
Vinyl acetate	< 1.0	1.0		µg/L	1	3/11/2003
Vinyl chloride	< 1.0	1.0		μg/L	1	3/11/2003
Surr: 4-Bromofluorobenzene	90.5	80.5-103		%REC	1	3/11/2003
Surr: Dibromofluoromethane	91.8	75.9-110		%REC	1	3/11/2003
Surr: Toluene-d8	92.8	79-106		%REC	1	3/11/2003

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

B - Analyte detected in the associated Method Blank * - Value exceeds Maximum Contaminant Level

E - Value above quantitation range

Page 10 of 12

[■] Corporate Address 1501 W. Knudsen Phoenix, AZ 85027 Phone: 623-780-4800 Toll Free: 800-651-4802 Fax: 623-780-7695 www.aerotechlabs.com Main Laboratory 1725 W. 17th Street Tempe, AZ 85281 Phone; 480-967-1310 Toll Free; 866-772-5227 Fax: 480-967-1019 www.palabs.com

m Tucson Facility 4455 S. Park Ave. Ste. 110 Tucson, AZ 85714 Phone; 520-807-3801 Fax; 520-807-3803

Precision Analytical Laboratories

CLIENT:

Transwest Geochem, Inc.

Lab Order:

03030436

Project:

WSP Van Buren 2167/0303092

Lab ID:

03030436-06A

Date: 27-Mar-03

Client Sample ID: TB

Tag Number: 06A

Collection Date: 3/6/2003 10:45:00 AM

Matrix: TRIP BLANK

Analyses	Result	Limit	Qual	Units	DF	Date Analyzed
VOLATILES BY GC/MS	S	W8260B				Analyst: P M
1,1,1-Trichloroethane	< 1.0	1.0		µg/L	1	3/11/2003
1,1,2,2-Tetrachloroethane	< 1.0	1.0		µg/L	1	3/11/2003
1.1.2-Trichloroethane	< 1.0	1.0		µg/L	1	3/11/2003
1,1-Dichloroethane	< 1.0	1.0		µg/L	1	3/11/2003
1,1-Dichloroethene	< 1.0	1.0		µg/L	1	3/11/2003
1,1-Dichloropropene	< 1.0	1.0		μg/L	1	3/11/2003
1,2.3-Trichlorobenzene	< 5.0	5.0		μg/L	1	3/11/2003
1,2,3-Trichloropropane	< 1.0	1.0		µg/L	1	3/11/2003
1,2,4-Trimethylbenzene	< 1.0	1.0		μg/L	1	3/11/2003
1,2-Dibromoethane	< 1.0	1.0		µg/L	1	3/11/2003
1,2-Dichlorobenzene	< 1.0	1.0		μg/L	1	3/11/2003
1,2-Dichloroethane	< 1.0	1.0		µg/L	1	3/11/2003
1,2-Dichloropropane	< 1.0	1.0		μg/L	1	3/11/2003
1,3,5-Trimethylbenzene	< 1.0	1.0		μg/L	1	3/11/2003
1,3-Dichlorobenzene	< 1.0	1.0		μg/L	1	3/11/2003
1,3-Dichloropropane	< 1.0	1.0		μg/L	1	3/11/2003
1,4-Dichlorobenzene	< 1.0	1.0		μg/L	1	3/11/2003
2,2-Dichloropropane	< 1.0	1.0		μg/L	1	3/11/2003
2-Butanone (MEK)	< 5.0	5.0		µg/L	1	3/11/2003
2-Chlorotoluene	< 1.0	1.0		μg/L	1	3/11/2003
2-Hexanone	< 5.0	5.0		μg/L	1	3/11/2003
4-Chlorotoluene	< 1.0	1.0		µg/L	1	3/11/2003
4-Isopropyltoluene	< 1.0	1.0		µg/L	1	3/11/2003
4-Methyl-2-pentanone	< 5.0	5.0		μg/L	1	3/11/2003
Acetone	< 20	20		μg/L	1	3/11/2003
Benzene	< 1.0	1.0		µg/L	1	3/11/2003
Bromobenzene	< 1.0	1.0		μg/L	1	3/11/2003
Bromochloromethane	< 1.0	1.0		μg/L	1	3/11/2003
Bromodichloromethane	< 1.0	1.0		μg/L	1	3/11/2003
Bromoform	< 1.0	1.0		μg/L	1	3/11/2003
Bromomethane	< 5.0	5.0		μg/L	1	3/11/2003
Carbon tetrachloride	< 1.0	1.0		μg/L	1	3/11/2003
Chlorobenzene	< 1.0	1.0		µg/L	1	3/11/2003
Chloroethane	< 1.0	1.0		µg/L	1	3/11/2003
Chloroform	< 1.0	1,0		µg/L	1	3/11/2003
Chloromethane	< 1.0	1.0		hg/F	1	3/11/2003
cis-1,2-Dichloroethene	< 1.0	1.0		µg/L	1	3/11/2003
cis-1,3-Dichloropropene	< 1.0	1.0		μg/L	1	3/11/2003
Dibromochloromethane	< 1.0	1.0		µg/L	1	3/11/2003
Dichlorodifluoromethane	< 1.0	1.0		μg/L	1	3/11/2003

Qualifiers:

ND - Not Detected at the Reporting Limit

S - Spike Recovery outside accepted recovery limits

J - Analyte detected below quantitation limits

R - RPD outside accepted recovery limits

B - Analyte detected in the associated Method Blank

E - Value above quantitation range

^{* -} Value exceeds Maximum Contaminant Level

Page 11 of 12

Corporate Address 1501 W. Knudsen Phoenix, AZ 85027 Phone: 623-780-4800 Toll Free: 800-651-4802 Fax: 623-780-7695 www.aerotechiabs.cor Main Laboratory 1725 W. 17th Street Tempe, AZ 85281 Phone: 480-967-1310 Toll Free: 866-772-5227 Fax: 480-967-1019 www.palabs.com

[■] Tucson Facility 4455 S. Park Ave. Ste. 110 Tucson, AZ 85714 Phone: 520-807-3801 Fax: 520-807-3803

Precision Analytical Laboratories

CLIENT:

Project:

Transwest Geochem, Inc.

Lab Order:

03030436

WSP Van Buren 2167/0303092

03030436-06A Lab ID:

Date: 27-Mar-03

Client Sample ID: TB

Tag Number: 06A

Collection Date: 3/6/2003 10:45:00 AM

Matrix: TRIP BLANK

Analyses	Result	Limit Q	ual Units	DF	Date Analyzed
VOLATILES BY GC/MS		SW8260B			Analyst: P M
Ethylbenzene	< 1.0	1.0	µg/L	1	3/11/2003
m,p-Xylene	< 2.0	2.0	µg/L	1	3/11/2003
Methyl tert-butyl ether	< 1.0	1.0	μg/L	1	3/11/2003
Methylene chloride	< 2.0	2.0	μg/L	1	3/11/2003
n-Butylbenzene	< 1.0	1.0	µg/L	1	3/11/2003
n-Propylbenzene	< 1.0	1.0	μ g/L	7	3/11/2003
o-Xylene	< 1.0	1.0	µg/L	1	3/11/2003
sec-Butylbenzene	< 1.0	1.0	µg/L	1	3/11/2003
Styrene	< 1.0	1.0	μg/L	1	3/11/2003
tert-Butylbenzene	< 1.0	1.0	μg/L	1	3/11/2003
Tetrachloroethene	< 1.0	1.0	μg/L	1	3/11/2003
Toluene	< 1.0	1.0	μg/L	1	3/11/2003
trans-1,2-Dichloroethene	< 1.0	1.0	μg/L	1	3/11/2003
trans-1,3-Dichloropropene	< 1.0	1.0	µg/L	1	3/11/2003
Trichloroethene	< 1.0	1.0	μg/L	1	3/11/2003
Trichlorofluoromethane	< 1.0	1.0	μg/L	1	3/11/2003
Vinyl acetate	< 1.0	1.0	µg/L	1	3/11/2003
Vinyl chloride	< 1.0	1.0	μ g/L	1	3/11/2003
Surr: 4-Bromofluorobenzene	92.7	80.5-103	%REC	1	3/11/2003
Surr: Dibromofluoromethane	92.9	75.9-110	%REC	1	3/11/2003
Surr: Toluene-d8	93.5	79-106	%REC	1	3/11/2003

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

* - Value exceeds Maximum Contaminant Level

B - Analyte detected in the associated Method Blank

- S Spike Recovery outside accepted recovery limits
- R RPD outside accepted recovery limits
- E Value above quantitation range

Page 12 of 12

[■] Corporate Address 1501 W. Knudsen Phoenix, AZ 85027 Phone: 623-780-4800 Toll Free: 800-651-4802 Fax: 623-780-7695 www.aerotechlabs.co: Main Laboratory 1725 W, 17th Street Tempe, AZ 85281 Phone: 480-967-1310 Toll Free: 866-772-5227 Fax: 480-967-1019 www.palabs.com

[■] Tucson Facility 4455 S. Park Ave. Ste. 110 Tucson, AZ 85714 Phone: 520-807-3801 Fax: 520-807-3803

27-Mar-03

Lab Order:	03030436					
Clent:	Transwest Geochem, Inc.	10.			DATES REPORT	[-
Project:	WSP Van Buren 2167/0303092	/0303092				
Sample 1D	Sample (I) Client Sample ID	Collection Date	Matrix	Test Name	TCLP Date Prep Date	Analysis Date
V10.30436-010	MW-!	3/6/2003 10:45:00 AM	Water	VOLATILES by GC/MS		3/11/2003
03030436-02A	MW-2	3/6/2003 11:55:00 AM		VOLATILES by GC/MS		3/11/2003
03030436-03A	MW-3	3/6/2003 1:20:00 PM		VOLATILES by GC/MS		3/11/2003
03030436-04A	MW-4	3/6/2003 2:50:00 PM		VOLATILES by GC/MS		3/13/2003
				VOLATILES by GC/MS		3/13/2003
03030436-05A	MW-5	3/6/2003 3:50:00 PM		VOLATILES by GC/MS		3/13/2003
				VOLATILES by GC/MS		3/11/2003
03030436-06A	=	3/6/2003 10:45:00 AM	Trip Blank	VOLATILES by GC/MS		3/11/2003

Date: 27-Mar-03

Transwest Geochem, Inc. CLIENT

03030436 Work Order: WSP Van Buren 2167/0303092 Project:

ANALYTICAL OC SUMMARY REPORT

TestCode: 8260 W

Sample ID MB-R33115	SampType: MBLK	TestCode: 8260_W	W Units: µg/L	Prep Date:	Run ID: MS07 030311A
Client ID: ZZZZZ	Batch ID: R33115	TestNo: SW8260B	260B	Analysis Date: 3/11/2003	SeqNo: 374681
Analyte	Result	POL SPK value	alue SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
1,1,1-Trichloroethane	< 1.0	1.0			
1,1,2,2-Tetrachloroethane	< 1.0	1.0			
1,1,2-Trichloroethane	< 1.0	1.0			
1.1-Dichloroethane	< 1.0	1.0			
1,1-Dichloroethene	< 1.0	1.0			
1,1-Dichloropropene	< 1.0	1.0			
1.2,3-Trichlorobenzene	< 5.0	5.0			
1.2,3-Trichloropropane	< 1.0	1.0			
1,2,4-Trimethylbenzene	< 1.0	1.0			
1,2-Dibromoethane	> 1.0	1.0			
1,2-Dichlorobenzene	< 1.0	1.0			
1,2-Dichloroethane	< 1.0	1.0			
1,2-Dichloropropane	< 1.0	1.0			
1,3,5-Trimethylbenzene	< 1.0	1.0			
1.3-Dichlorobenzene	< 1.0	1.0			
1.3-Dichloropropane	< 1.0	1.0			
1,4-Dichlorobenzene	< 1.0	1.0			
2,2-Dichloropropane	< 1.0	1.0			
2-Butanone (MEK)	< 5.0	5.0			
2-Chlorotoluene	< 1.0	1.0			
2-Hexanone	< 5.0	5.0			
4-Chlorololuene	< 1.0	1.0			
4-Isopropylloluene	< 1.0	1.0			
4-Methyl-2-pentanone	< 5.0	5.0			
Acetone	< 20	20			
Benzene	< 1.0	1,0			
Bromobenzene	< 1.0	1.0			
		•	:	4	

S - Spike Recovery outside accepted recovery limits R - RPD outside accepted recovery limits J - Analyte detected below quantitation limits ND - Not Detected at the Reporting Limit Qualifiers:

B - Analyte detected in the associated Method Blank

■ Corporate Address 1501 W, Knudsen Phoenix, AZ 85027 Phone: 623-780-4800 Toll Free: 800-651-4802 Fax: 623-780-7695 www.aerotechlabs.com
 ■ Main Laboratory 1725 W. 17th Street Tempe, AZ 85281 Phone: 480-967-1310 Toll Free: 866-772-5227 Fax: 480-967-1019 www.patahs.com

Transwest Geochem, Inc. CLIENT:

03030436 Work Order: WSP Van Buren 2167/0303092

Project:

ANALYTICAL QC SUMMARY REPORT

TestCode: 8260_W

Pout Discriming Pout SPK Netf Valid SPR Ref Valid SPR Netf Val	Sample ID MB-R33115	SampType: MBLK	TestCo	TestCode: 8260_W	Units: µg/L	Prep Date:		Run ID: MS07_030311A	7_030311A	
Result PQL SPK Net Value SPK Ref Value SPK Ref Value LowLimit		Batch ID: R33115	Test	40: SW8260B		Analysis Date: 3/11/2003	103	SeqNo: 374681	581	
0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 1	Analyte	Result	POL	SPK value	SPK Ref Val		RPD Ref Val	%RPD	RPDLimit	Qual
4 1.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Bromochloromethane	< 1.0	1.0							
	Bromodichloromethane	< 1.0	1.0							
\$ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Bromoform	< 1.0	1.0							
0	Bromomethane	< 5.0	5.0							
40 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Carbon tetrachloride	< 1.0	1.0							
4.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Chlorobenzene	< 1.0	1.0							
40 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Chloroethane	< 1.0	1.0							
40 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Chloroform	< 1.0	1.0							
6	Chloromethane	< 1.0	1.0							
0	cis-1,2-Dichloroethene	< 1.0	1.0							
1.0	cis-1,3-Dichloropropene	< 1.0	1.0							
c c c c c c c c c c	Dibromochloromethane	< 1.0	1.0							
1.0 2.0	Dichlorodifluoromethane	< 1.0	1.0							
< 2.0	Ethylbenzene	< 1,0	1.0							
1-butyl ether < 1.0	m,p-Xylene	< 2.0	2.0							
e chloride	Methyl tert-butyl ether	> 1.0	1.0							
contact	Methylene chloride	< 2.0	2.0							
enzene < 1.0 berizene < 1.0 cenzene < 1.0 cenzene < 1.0 coethene < 1.0 Clichloroethene < 1.0 clichloropropene < 1.0	n-Butylbenzene	< 1.0	1,0							
 5 to the contract of the contract	n-Propylbenzene	< 1.0	1.0							
therizene	o-Xylene	< 1.0	1.0							
c 1.0 c 1.	sec-Bulylbenzene	< 1.0	1.0							
0 V V V V V V V V V V V V V V V V V V V	Styrene	< 1.0	1.0							
6 × × × 1.0 × × 1.0 × × × × × × × × × × × × × × × × × × ×	tert-Butylbenzene	< 1.0	1.0							
A 1.0	Tetrachloroethene	< 1.0	1.0							
A 1.0	Toluene	< 1.0	1.0							
o.1.0	trans-1,2-Dichloroethene	< 1.0	1.0							
	trans-1,3-Dichloropropene	< 1.0	1.0							
× 1.0	Trichloroethene	< 1.0	1.0							

J. Analyte detected below quantitation limits ND - Not Detected at the Reporting Limit Qualifiers:

S - Spike Recovery outside accepted recovery limits R - RPD outside accepted recovery limits

B - Analyte detected in the associated Method Blank

Corporate Address 1501 W. Knudsen Phoenix, AZ 85027 Phone: 623-780-4800 Toll Free: 800-651-4802 Fax: 623-780-7695 www.aerotechlabs.com
 Main Laboratory 1725 W. 17th Street Tempe, AZ 85281 Phone: 480-967-1310 Toll Free: 866-772-5227 Fax: 480-967-1019 www.palabs.com

Transwest Geochem, Inc. CLIENT:

03030436 Work Order: WSP Van Buren 2167/0303092

Project:

TestCode: 8260 W

ANALYTICAL QC SUMMARY REPORT

Clent ID: ZZZZZ Analyte										-
21	Batch ID; R33115	TestN	TestNo: SW8260B			Analysis Date:	e: 3/11/2003	103	SeqNo: 374681	
	Result	POL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Vaf	%RPD RPDLimit Qual	
Trichlorofluoromethane	< 1.0	1.0							- Artificial	
Trihalomethanes, Total	< 1.0	1.0								
Vinyl acetate	< 1.0	1.0								
Vinyi chloride	< 1.0	1.0								
Surr: 4-Bromofluorobenzene	46.35	0	50	0	92.7	80.5	103	0	0	
Surr: Dibromofluoromethane	45.97	0	50	0	91.9	75.9	110	0	۵	
Surr: Toluene-d8	46.78	0	50	0	93.6	62	106	0	Q	
Sample ID MB-R33195	SampType: MBLK	TestCod	TestCode: 8260_W	Units: µg/L		Prep Date:	e.		Run ID: MS01_030313A	
Olient ID: ZZZZZ	Batch ID: R33195	TestN	TestNo: SW8260B			Analysis Date:	ie: 3/13/2003	103	SeqNo: 375733	
Analyte	Result	Pal	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	LowLimit HighLimit RPD Ref Val	%RPD RPDUmit Qual	
1,1,1-Trichloroethane	< 1.0	1.0					and defined and an article and definition of the			
1,1,2,2-Tetrachloroethane	< 1.0	1.0								
.1,2-Trichloroethane	< 1.0	1.0								
.1-Dichlorcethane	< 1.0	1.0								
,1-Dichloroethene	< 1.0	1.0								
1, i-Dichloropropene	< 1.0	1.0								
.2,3-Trichlorobenzene	< 5.0	5.0								
,2,3-Trichloropropane	< 1.0	1.0								
.2,4-Trimelhylbenzene	< 1.0	1.0								
1,2-Dibromoethane	< 1.0	1,0								
1,2-Dichlorobenzene	< 1.0	1.0								
1,2-Dichloroethane	< 1.0	1.0								
1,2-Dichloropropane	< 1.0	1,0								
1.3,5-Trimethylbenzene	< 1.0	1.0								
,3-Dichlorobenzene	< 1.0	1.0								
1,3-Dichloropropane	< 1.0	1.0								

1 - Analyte detected below quantitation limits ND - Not Detected at the Reporting Limit Qualifiers:

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery fimits

B - Analyte detected in the associated Method Blank

■ Corporate Address 1501 W. Knudsen Phoenix, AZ 85027 Phone: 623-780-4800 Toll Free: 800-651-4802 Fax: 623-780-7695 www.aerotechlabs.com
 ■ Main Laboratory 1725 W. 17th Street Tempe, AZ 85281 Phone: 480-967-1310 Toll Free: 866-772-5227 Fax: 480-967-1019 www.palabs.com

ANALYTICAL QC SUMMARY REPORT

TestCode: 8260 W

WSP Van Buren 2167/0303092 Project:

Transwest Geochem, Inc.

03030436

Work Order: CLIENT:

Sample ID MB-R33195	SampType: MBLK	TestCoc	TestCode: 8260_W	Units: µg/L		Prep Date:	 •	Translation of the same of the	Run ID: MS01_030313A	030313A
Olient ID: ZZZZZ	Batch ID: R33195	Testh	TestNo: SW8260B			Analysis Date:	.e: 3/13/2003		SeqNo: 375733	
Analyte	Result	POL	SPK value	SPK Ref Vai	%REC	LowLimit	LowLimit HighLimit R	RPD Ref Val	%RPD RP	RPDLimit Qual
1,4-Dichlorobenzene	< 1.0	1.0								
2.2.Dichloropropane	< 1.0	1.0								
2-Butanone (MEK)	< 5.0	5.0								
2-Chlorololuene	< 1.0	1,0								
2-Hexanone	< 5.0	5.0								
4-Chlorotoluene	< 1.0	1.0								
4-Isapropyltoluene	< 1.0	1.0								
4-Methyl-2-pentanone	< 5.0	5.0								
Acetone	< 20	20								
Benzene	< 1.0	1.0								
Bromobenzene	< 1.0	1.0								
Bromachloromethane	< 1.0	1.0								
Bromodichloromethane	< 1.0	1.0								
Bromoform	< 1.0	1.0								
Bromomethane:	< 5.0	5.0								
Carbon tetrachtoride	< 1.0	1.0								
Chlorobenzene	< 1.0	1.0								
Chloroethane	< 1.0	1.0								
Chloroform	< 1.0	1.0								
Chloromethane	< 1.0	1.0								
cis-1,2-Dichloroethene	< 1.0	1.0								
cis-1,3-Dichloropropene	< 1.0	1.0								
Dibromochloromethane	< 1.0	1.0								
Dichlorodifluoromethane	< 1.0	1.0								
Ethylbenzene	< 1.0	1.0								
m.p-Xylene	< 2.0	2.0								
Methyl tert-butyl ether	< 1.0	1.0								
Methytene chloride	< 2.0	2.0								

S - Spike Recovery outside accepted recovery limits R - RPD outside accepted recovery limits ND - Not Detected at the Reporting Limit Qualifiers:

B - Analyte detected in the associated Method Blank

Transwest Geochem, Inc. CLIENT

03030436 Work Order:

Project:

WSP Van Buren 2167/0303092

ANALYTICAL QC SUMMARY REPORT

TestCode: 8260_W

Sample ID MB-R33195	SampType: MBLK	TestCo	estCode: 8260_W	Units: µg/L		Prep Date:	ín		Run ID: MS	Run ID: MS01_030313A	
Client ID: ZZZZZ	Batch ID: R33195	Test	TestNo: SW8260B			Analysis Date:	e: 3/13/2003	£	SeqNo: 375733	57.33	•
Analyte	Result	Pal	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit R	RPD Ref Val	%RPD	RPDLimit	Qual
n-Butylbenzene	< 1.0	1.0									
n-Propylbenzene	< 1.0	1.0									
o-Xylene	< 1.0	1.0									
sec-Butylbenzene	< 1.0	1.0									
Styrene	< 1.0	1.0									
tert-Butylbenzene	< 1.0	1.0									
Tetrachloroethene	< 1.0	1.0									
Toluene	< 1.0	1.0									
irans-1,2-Dichloroethene	< 1.0	1.0									
trans-1,3-Dichloropropene	< 1.0	1.0									
Trichloroethene	< 1.0	1.0									
Trichlorofluoromethane	< 1.0	1.0									
Tribalomethanes, Total	< 1.0	1.0									
Vinyl acetate	< 1.0	1.0									
Viny! chloride	< 1.0	1.0									
Surr: 4-Bromofluorobenzene	51,04	0	50	0	102	80.5	103	0	0		
Surr: Dibromofluoromethane	52.55	0	50	0	105	75.9	110	C	0		
Surr: Toluene-d8	51.47	0	20	0	103	79	106	0	0		
Sample ID LCS-R33115	SampType: LCS	TestCo	TestCode: 8260_W	Units: µg/L		Prep Date:			Run ID: MS	Run ID: MS07_030311A	
Clent ID: ZZZZZ	Batch ID: R33115	Test	TestNo: SW8260B			Analysis Date:	e: 3/11/2003		SeqNo: 374694	1694	
Analyte	Result	POL	SPK value	SPK Ref Val	%REC	LowLimit	LowLimit HighLimit RPD Ref Val	RPD Ref Val	%RPD	RPDLimit	Qual
1,1,1-Trichloroethane	48.92	1.0	50	0	97.8	85	115	0	0		

1 - Analyte detected below quantitation limits ND - Not Detected at the Reporting Limit

Qualifiers:

S - Spike Recovery outside accepted recovery limits R - RPD outside accepted recovery limits

B - Analyte detected in the associated Method Blank

0000

0 0

00

115 115 115

85 85 85

104 98.7

0000

50 50 50

48.78 51.93 49.36 51.45

1.1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethene

103

97.6

■ Corporate Address 1501 W. Knudsen Phoenix, AZ 85027 Phone: 623-780-4800 Toll Free: 800-651-4802 Fax: 623-780-7695 www.aerotechlabs.com
 ■ Main Laboratory 1725 W. 17th Street Tempe, AZ 85281 Phone: 480-967-1310 Toll Free: 866-772-5227 Fax: 480-967-1019 www.palabs.com

Transwest Geochem, Inc. CLEENT

03030436 Work Order:

Project:

WSP Van Buren 2167/0303092

ANALYTICAL QC SUMMARY REPORT

TestCode: 8260 W

Sample ID LCS-R33115	SampType: LCS	TestCoc	TestCode: 8260_W	Units: µg/L		Prep Date:			Run ID: MS07_030311A
Client ID: ZZZZZ	Batch ID: R33115	Test	estNo: SW8260B			Analysis Date:	3/11/2003		SeqNo: 374694
Analyte	Result	Pal	SPK value	SPK Ref Val	%REC	LowLimit	HighLímit RPD Rei	Ref Val	%RPD RPDLimit Qual
1,1-Dichloropropene	47.43	1.0	20	0	94.9	85	115	0	0
1,2,3-Trichlorobenzene	49.53	5.0	50	0	99.1	72.5	127	0	0
1,2,3-Trichloropropane	48.56	1.0	20	0	97.1	73.2	114	0	0
1,2,4-Trimethylbenzene	48.87	1.0	50	0	1.76	85	115	0	0
1,2-Dlbromoethane	48.7	1.0	20	0	97.4	85	115	0	0
1,2-Dichlorobenzene	49.75	1.0	20	0	99.5	85	115	0	0
1,2-Dichloroethane	48.53	1.0	20	0	97.1	85	115	0	0
1,2-Dichloropropane	50,11	1.0	50	0	100	85	115	0	0
1,3,5-Trimethylbenzene	47.57	1.0	50	0	95.1	85	115	0	0
1,3-Dichlorobenzene	49.21	1.0	90	0	98.4	85	115	0	0
1,3-Dichloropropane	49.07	1.0	90	0	98.1	85	115	0	0
1,4-Dichlorobenzene	49.63	1.0	50	0	99.3	85	115	0	0
2,2-Dichloropropane	52.11	1.0	50	0	104	57.5	139	0	0
2-Butanone (MEK)	44,41	5.0	50	0	88.8	56.2	128	0	0
2-Chlorotoluene	47.64	1.0	50	0	95.3	85	115	0	0
2-Hexanone	45.84	5,0	20	0	91.7	62.4	124	O	0
4-Chlorotolyene	47.37	1.0	20	0	94.7	85	115	0	0
4-IsopropyItoluene	47.29	1.0	90	0	94.6	85	115	0	0
4-Methyl-2-pentanone	47.03	5.0	90	0	94.1	62.9	120	0	0
Acetone	45.61	20	50	0	91.2	34.1	157	0	0
Benzene	48.5	1.0	50	0	26	85	115	0	0
Bromobenzene	49.86	1.0	50	0	99.7	85	115	0	0
Bromochloromethane	53.21	4.0	50	0	106	81.1	120	0	0
Bromodichloromethane	49.63	1.0	50	0	99.3	85	115	0	0
Bromoform	49.3	1.0	50	0	98.6	77.3	123	0	0
Bromomethane	52.43	5.0	50	0	105	44.1	262	0	0
Carbon tetrachloride	53.73	1.0	50	0	107	82.6	125	0	0
Chlorobenzene	48.82	1.0	20	0	97.6	85	115	0	0

J.- Analyte detected below quantitation limits ND - Not Detected at the Reporting Limit Qualifiers:

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

B - Analyte detected in the associated Method Blank

Corporate Address 1501 W. Knudsen Phoenix, AZ 85027 Phone: 623-780-4800 Toll Free: 800-651-4802 Fax: 623-780-7695 www.aerotechlabs.com
 Main Laboratory 1725 W. 17th Street Tempe, AZ 85281 Phone: 480-967-1310 Toll Free: 866-772-5227 Fax: 480-957-1019 www.palabs.com

Transwest Geochem, Inc. CLIENT:

03030436 Work Order:

Project:

WSP Van Buren 2167/0303092

ANALYTICAL QC SUMMARY REPORT

TestCode: 8260 W


Sample ID LCS-R33115	SampType: LCS	TestCor	estCode: 8260_W	Units: µg/L		Prep Date:			Run ID: MS	Run ID: MS07_030311A	
Client ID: ZZZZZ	Batch ID; R33115	Test	TestNo: SW8260B			Analysis Date:	3/11/2003		SeqNo: 374694	1694	
Analyte	Result	PQL	SPK value	SPK Ref Vai	%REC	LowLimit	HighLimit R	RPD Ref Val	%RPD	RPDLimit	Qual
Chloroethane	49,64	1.0	20	0	99.3	80.3	117	0	0		
Chloroform	48.89	1.0	50	0	97.8	85	115	0	0		
Chloromethane	36.88	1.0	50	0	73.8	64.3	128	0	0		
cis-1,2-Dichloroethene	50.6	1.0	90	0	101	85	115	0	0		
cis-1,3-Dichloropropene	48.84	1.0	50	0	97.7	85	115	0	0		
Dibromochloromethane	49.99	1.0	50	0	100	85	115	0	0		
Dichlorodifluoromethane	43.69	1.0	50	0	87.4	75	125	С	0		
Ethylbenzene	48.21	1.0	50	0	96.4	85	113	0	0		
m,p-Xylene	90.06	2.0	100	0	99.1	85	115	0	0		
Methyl tert-butyl ether	48.7	1.0	90	0	97.4	85	13	0	0		
Methylene chloride	49.49	2.0	50	0	66	85	115	0	0		
n-Butylbenzene	47.77	1.0	50	0	95.5	85	115	0	0		
n-Propylbenzene	47.47	1.0	90	0	94.9	85	115	0	0		
o-Xylene	47.96	1.0	90	0	95.9	85	į.	0	0		
sec-Butylbenzene	48.58	1.0	50	0	97.2	85	115	0	0		
Styrene	48.09	1.0	90	0	96.2	85	115	0	0		
tert-Butylbenzene	47.58	1.0	50	0	95.2	85	115	Û	0		
Tetrachloroethene	48.5	1.0	50	0	16	85	115	0	0		
Toluene	48.3	1.0	50	0	9.96	85	115	0	0		
trans-1,2-Dichloroethene	49.22	1.0	50	0	98.4	85	113	0	0		
trans-1,3-Dichloropropene	48.3	1.0	50	0	9.96	85	115	0	0		
Trichloroethene	48.2	1.0	50	0	96.4	85	115	0	0		
Trichlorofluoromethane	49.21	1.0	20	0	98.4	82.9	118	0	0		
Vinyl acetate	53.59	1.0	50	0	107	72.7	127	0	0		
Vinyl chloride	49,15	1.0	50	0	98.3	85	115	0	0		
Surr: 4-Bromofluorobenzene	45.88	0	90	0	91.8	80.5	103	0	0		
Surr: Dibromofluoromethane	46.37	0	50	0	92.7	75.9	110	0	0		
Surr: Toluene-d8	46.77	0	20	0	93.5	62	106	0	0		

 Analyte detected below quantitation limits MD - Not Detected at the Reporting Limit Qualifiers:

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

B - Analyte detected in the associated Method Blank

ANALYTICAL QC SUMMARY REPORT

TestCode: 8260 W

WSP Van Buren 2167/0303092 Transwest Geochem, Inc. 03030436 Work Order: CLIENT Project

Sample ID LCS-R33195	SampType: LCS	TestCoc	TestCode: 8260_W	Units: µg/L		Prep Date			Run ID: MS01_030313A	-
Client ID: ZZZZZ	Batch ID: R33195	Test	estNo: SW8260B		,	Analysis Date:	: 3/13/2003	03	SeqNo: 375757	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD RPDLimit	Qual
1,1,1-Trichloroethane	52.99	1.0	50	0	106	85	115	0	0	
1,1,2,2-Tetrachloroethane	46.89	1.0	50	0	93.8	71.3	115	0	0	
1,1,2-Trichloroethane	48.88	1.0	50	0	97.8	85	115	0	0	
1,1-Dichloroethane	51,44	1.0	50	0	103	85	115	0	0	
1,1-Dichloroethene	52.53	1.0	50	0	105	85	115	0	O	
1,1-Dichloropropene	51.91	1.0	50	0	104	85	115	0	0	
1,2,3-Trichlorobenzene	49.88	5.0	50	0	93.8	72.5	127	0	Đ	
1,2,3~Trichloropropane	47.59	1.0	50	0	95.2	73.2	114	0	0	
1,2,4-Trimethylbenzene	48,36	1.0	50	0	6.7	85	115	0	0	
1,2-Dibromoethane	50.12	1.0	50	0	100	85	115	0	0	
1,2-Dichlorobenzene	50.73	1.0	50	0	101	85	115	0	Ö	
1,2-Dichloroethane	49,99	1.0	50	0	100	85	115	0	0	
1,2-Dichloropropane	50.16	1.0	50	0	100	85	115	0	Ð	
1,3,5-Trimethylbenzene	50.34	1.0	50	0	101	85	115	0	0	
1,3-Dichlorobenzene	50.21	1.0	50	0	100	85	115	0	0	
1,3-Dichloropropane	49,13	1.0	50	0	98.3	85	115	0	0	
1,4-Dichlorobenzene	50.46	1.0	50	0	101	85	115	0	0	
2,2-Dichloropropane	52.5	1,0	20	0	105	57.5	139	0	0	
2-Butanone (MEK)	54.3	5.0	90	0	109	56.2	128	0	0	
2-Chlorotoluene	48.32	1.0	50	0	96.6	85	115	0	Q	
2-Hexanone	54,34	5.0	50	0	109	62.4	124	0	0	
4-Chlorotoluene	50.09	1.0	20	0	100	85	115	0	0	
4-Isopropyltoluene	51.34	1.0	50	0	103	85	115	0	0	
4-Methyl-2-pentanone	48.2	5.0	50	0	96.4	62.9	120	0	0	
Acetone	51.39	20	50	0	103	34.1	157	0	0	
Benzene	50.77	1.0	50	0	102	85	115	0	0	
Bromobenzene	49.97	1.0	50	0	99.9	85	115	0	0	
Bromochloromethane	49,78	1.0	50	0	98.6	81.1	120	0	0	

J - Analyte detected below quantitation limits ND - Not Detected at the Reporting Limit

Qualifiers:

R - RPD outside accepted recovery limits

S - Spike Recovery outside accepted recovery limits

B - Analyte detected in the associated Method Blank

Page 8 of 24

Transwest Geochem, Inc. CLIENT

03030436 Work Order: WSP Van Buren 2167/0303092

Project:

TestCode: 8260_W

ANALYTICAL QC SUMMARY REPORT

Client ID: ZZZZZ Analyte									
Analyte	Batch ID: R33195	TestN	TestNo: SW8260B			Analysis Date:	te: 3/13/2003		SeqNo: 375757
	Result	Pal	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RPD Ref Val	ef Val	%RPD RPDLinit Qual
Bromodichloromelhane	51,19	1.0	50	0	102	85	115	0	0
Bromoform	53.29	1.0	50	0	107	77.3	123	0	0
Bromomethane	48.41	5.0	90	0	96.8	44.1	262	0	0
Carbon tetrachloride	53.88	1.0	50	0	108	82.6	125	0	0
Chlorobenzene	50.63	1.0	90	0	101	85	115	0	0
Chloroethane	51.12	1.0	90	0	102	80.3	117	0	0
Chloroform	51.19	1.0	20	0	102	85	115	0	0
Chloromethane	49.55	1.0	50	0	99.1	64.3	128	0	0
cis-1,2-Dichloroethene	51,51	1.0	50	0	103	85	115	0	0
cis-1,3-Dichloropropene	50.85	1.0	50	0	102	85	115	0	0
Dibromochloromethane	51.61	1.0	50	0	103	85	115	0	0
Dichlorodifluoromethane	52.86	1.0	20	0	106	75	125	0	0
Ethylbenzene	50.95	1.0	50	0	102	85	115	0	0
m.p-Xylene	100.8	2.0	100	0	101	82	115	0	0
Methy! ten-butyl ether	51.02	1.0	20	0	102	85	115	0	0
Methylene chloride	49.36	2.0	50	0	98.7	85	115	0	0
n-Butyfbenzene	51.41	1.0	90	0	103	85	115	0	0
n-Propylbenzene	49.82	1.0	90	0	936	85	115	0	0
o-Xylene	50.17	1.0	50	0	100	85	115	0	0
sec-Butylbenzene	51.51	1.0	90	0	103	85	115	0	0
Slyrene	51.12	1.0	20	0	102	85	5.	0	0
tert-Butylbenzene	51,54	1.0	20	0	103	82	115	0	0
Tetrachloroethene	50.61	1.0	50	0	101	85	115	0	0
Toluene	50.07	1.0	50	0	100	85	15	0	0
trans-1,2-Dichloroethene	51.83	1.0	20	0	104	85	15	0	0
trans-1,3-Dichloropropene	50.1	1.0	20	0	100	85	115	0	0
Trichloroethene	49.91	1.0	20	0	8.66	82	115	0	0
Trichlorofluoromethane	54.41	1.0	20	0	109	82.9	118	0	0

J - Analyte detected below quantitation limits ND - Not Detected at the Reporting Limit Qualificers:

S - Spike Recovery outside accepted recovery limits R - RPD outside accepted recovery limits

B - Analyte detected in the associated Method Blank

Transwest Geochem, Inc.

Work Order:

CLIENT

WSP Van Buren 2167/0303092

Project:

ANALYTICAL QC SUMMARY REPORT

TestCode: 8260_W

Client ID: ZZZZZ Analyte						-					
Analyte	Batch IU: R33195	Testh	TestNo: SW8260B		•	Analysis Date:	te: 3/13/2003	103	SeqNo: 375757	5757	
	Result	Pol	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Vinyl acetate	49.48	1.0	50	0	66	72.7	127	0	0	A STATE OF THE STA	
Vinyl chloride	52.41	1.0	50	0	105	85	115	0	0		
Surr: 4-Bromofluorobenzene	48.72	0	50	0	97.4	80.5	103	0	0		
Surr: Dibromofluoromethane	49.5	0	50	0	66	75.9	110	0	0		
Surr, Toluene-d8	48.55	0	50	0	97.1	79	106	0	0		
Sample ID LCSD-R33115 S	SampType: LCSD	TestCoo	estCode: 8260_W	Units: µg/L		Prep Date	(9)		Run ID: MS	Run ID: MS07_030311A	Arterited Westermanner
Client ID: ZZZZZ	Batch ID: R33115	Testh	TestNo: SW8260B		-	Analysis Date:	te: 3/11/2003	103	SeqNo: 374	374695	
Analyte	Result	Pal	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,1,1-Trichloroethane	49.81	1.0	50	0	9.66	85	115	48.92	1.80	25	
1,1,2,2-Tetrachloroethane	47.86	1.0	50	0	95.7	71.3	115	48.78	1.90	25	
1,1,2-Trichloroethane	48.79	1.0	50	0	97.6	85	115	51.93	6.24	25	
1,1-Dichloroetharie	49.8	1.0	50	0	9.66	85	115	49.36	0.887	25	
1,1-Dichloroethene	52.2	1.0	50	0	104	85	115	51,45	1.45	25	
1,1-Dichloropropene	49.37	1.0	50	0	98.7	85	115	47.43	4.01	25	
1,2,3-Trichlorobenzene	48.82	5.0	50	0	97.6	72.5	127	49.53	1,44	25	
1,2,3-Trichloropropane	48.08	1.0	50	0	86.2	73.2	114	48.56	0.993	25	
1,2,4-Trimethylbenzene	49.17	1.0	90	0	98.3	85	115	48.87	0.612	25	
1,2-Dibromoethane	48.57	1.0	50	0	97.1	85	115	48.7	0.267	25	
1,2-Dichlorobenzene	49.82	1.0	50	0	9.66	85	115	49.75	0.141	25	
1,2-Dichloroethane	49	1.0	50	0	98	85	115	48.53	0,964	25	
1,2-Dichloropropane	50.31	1.0	50	0	101	85	115	50.11	0.398	25	
1,3,5-Trimethylbenzene	49.64	1.0	50	0	99.3	85	115	47.57	4.26	25	
1,3-Dichlorobenzene	50.08	1.0	50	0	100	85	115	49.21	1.71	25	
1,3-Díchloropropane	49.27	1.0	90	0	98.5	85	115	49.07	0.407	25	
1,4-Dichlorobenzene	49.5	1.0	50	0	86	85	115	49.63	0.262	25	
2,2-Dichloropropane	55.11	1.0	50	0	110	57.5	139	52.11	5.60	25	

J - Analyte detected below quantitation limits

R - RPD outside accepted recovery limits

Page 10 of 24

Corporate Address 1501 W. Knudsen Phoenix, AZ 85027 Phone: 623-780-4800 Toll Free: 800-651-4802 Fax: 623-780-7695 www.aerotechlabs.com
 Main Laboratory 1725 W. 17th Street Tempe, AZ 85281 Phone: 480-967-1310 Toll Free: 866-772-5227 Fax: 480-967-1019 www.palabs.com

Transwest Geochem, Inc. CLIENT

Work Order:

Project:

WSP Van Buren 2167/0303092

ANALYTICAL QC SUMMARY REPORT

TestCode: 8260_W

Sample ID LCSD-R33115	SampType: LCSD	TestCo	stCode: 8260_W	Units: µg/L		Prep Date:			Run ID: MS	Run ID: MS07_030311A	
Client ID: ZZZZZ	Batch ID: R33115	Test	TestNo: SW8260B			Analysis Date:	3/11/2003	03	SeqNo: 374695	4695	
Analyte	Result	Pal	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLímit	Qual
2-Butanone (MEK)	51.99	5.0	50	0	104	56.2	128	44.41	15.7	25	
2-Chlorotoluene	49.37	1.0	50	0	98.7	85	115	47.64	3.57	25	
2-Hexanone	51.07	5.0	50	0	102	62.4	124	45.84	10.8	25	
4-Chlorotoluene	49.09	1.0	50	0	98.2	85	115	47.37	3.57	25	
4-Isopropyltoluene	48.35	1.0	50	0	96.7	85	115	47.29	2.22	25	
4-Methyl-2-pentanone	46.55	5.0	50	0	93.1	62.9	120	47.03	1.03	25	
Acetone	59.04	20	50	0	118	34.1	157	45.61	25.7	25	R7
Benzene	49,49	1.0	50	0	66	85	115	48.5	2.02	25	
Bromobenzene	51.18	1.0	50	0	102	85	115	49.86	2.61	25	
Bromochloromethane	53,54	1.0	50	0	107	81.1	120	53,21	0.618	25	
Bromodichloromethane	50.78	1.0	50	0	102	85	15	49.63	2.29	25	
Bromoform	50.13	1.0	50	0	100	77.3	123	49.3	1.67	25	
Bromomethane	54.3	5.0	50	0	109	44.1	262	52.43	3.50	25	
Carbon tetrachloride	55,83	1.0	50	0	112	82.6	125	53.73	3.83	25	
Chlorobenzene	49.54	1.0	50	O	99.1	85	115	48.82	1,46	25	
Chloroethane	50.31	1.0	50	0	101	80.3	117	49.64	1.34	25	
Chloroform	49.26	1.0	50	0	98.5	85	115	48.89	0.754	25	
Chloromethane	37,56	1.0	50	0	75.1	64.3	128	36.88	1.83	25	
cis-1,2-Dichloroethene	50.7	0.1	90	0	101	85	115	50.6	0.197	25	
cis-1,3-Dichloropropene	49.92	1.0	50	0	9.9.8	85	115	48.84	2.19	25	
Dibromochloromethane	50,48	1.0	50	0	101	85	115	49.99	0.975	25	
Dichlorodifluoromethane	45.26	1.0	50	0	90.5	75	125	43.69	3.53	25	
Ethylbenzene	49.72	1.0	50	0	99.4	85	115	48.21	3.08	25	
m.p-Xylene	100.9	2.0	100	0	101	82	115	90.06	1.84	25	
Methyl tert-butyl ether	48,63	1.0	20	0	97.3	85	115	48.7	0.144	25	
Methylene chloride	49.02	2.0	50	0	98	85	115	49.49	0.954	25	
n-Butylbenzene	49.6	1.0	50	O	99.2	85	115	47.77	3.76	25	
n-Propytbenzene	48.89	1.0	50	0	97.8	85	115	47,47	2.95	25	

J - Analyte detected below quantitation limits ND - Not Detected at the Reporting Limit

Qualifiers:

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

B - Analyte detected in the associated Method Blank

Corporate Address 1501 W. Knudsen Phoenix, AZ 85027 Phone: 623-780-4800 Toll Free: 800-651-4802 Fax: 623-780-7695 www.aerotechlabs.com
 Main Laboratory 1725 W. 17th Street Tempe, AZ 85281 Phone: 480-967-1310 Toll Free: 868-772-5227 Fax: 480-967-1019 www.palabs.com

Franswest Geochem, Inc. CLIENT

03030436 Work Order: WSP Van Buren 2167/0303092

Project:

ANALYTICAL QC SUMMARY REPORT

TestCode: 8260_W

Cample D - Cep. Dag116	700co.Tomo	100 C	100 CD	19		c		Management of the second secon			
	Samp Spe. Fost	COISE	. ozanar	Office, pg/L		Frep Date:				KUN 10: MISU/ 030311A	
Client ID: ZZZZZ	Batch (D: R33115	Test	TestNo: SW8260B			Analysis Date:	3/11/2003	03	SeqNo: 374695	4695	- 1 - 1 - 1
Analyte	Result	POL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
o-Xylene	50.32	1.0	50	0	101	85	115	47.96	4.80	25	
sec-Butyibenzene	49.27	1.0	50	0	98.5	85	115	48.58	1.41	25	
Styrene	50.07	1.0	50	0	100	85	115	48.09	4.03	25	
tert-Butylbenzene	47.81	1.0	20	0	92.6	85	115	47.58	0.482	25	
Tetrachloroethene	49.94	1.0	50	0	99.9	85	115	48.5	2.93	25	
Toluene	49.12	1.0	50	0	98.2	85	115	48.3	1.68	25	
trans-1,2-Dichloroethene	51.68	1.0	50	0	103	85	<u>_</u>	49.22	4,88	25	
trans-1,3-Dichloropropene	47.83	1.0	50	0	95.7	85	13	48.3	0,978	25	
Trichlorgethene	50.21	1.0	50	0	100	85	1,55	48.2	4,08	25	
Trichlorofluoromethane	51.11	1.0	50	0	102	82.9	118	49.21	3,79	25	
Viny! acetale	55.47	1.0	20	0	111	72.7	127	53,59	3.45	25	
Vinyi chloride	51.04	1.0	20	0	102	85	115	49.15	3.77	25	
Surr: 4-Bromofluorobenzene	45,44	0	50	0	6'06	80.5	103	0	0	25	
Surr: Dibromofluoromethane	46.16	0	50	0	92.3	75.9	110	0	0	25	
Surr: Toluene-d8	46.29	0	50	0	92.6	79	106	0	0	25	
Sample ID LCSD-R33195	SampType: LCSD	TestCoo	estCode: 8260_W	Units: µg/L		Prep Date			Run ID: MS	MS01_030313A	
Client ID: ZZZZZ	Batch ID: R33195	Test	TestNo: SW8260B			Analysis Date:	3/13/2003	03	SeqNo: 375767	5767	
Analyle	Result	Pal	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,1,1-Trichloroethane	53.29	1.0	20	0	107	85	115	52,99	0.565	25	
1,1,2,2-Tetrachloroethane	51.5	1.0	50	0	103	71.3	115	46.89	9.37	25	
1,1,2-Trichtoroethane	54.77	1.0	50	0	110	85	115	48.88	11.4	25	
1,1-Dichloroethane	51.91	1.0	50	0	104	85	115	51.44	0.910	25	
1,1-Dichloroethene	53.87	1.0	50	0	108	85	115	52.53	2.52	25	
1,1-Dichloropropene	52.48	1.0	50	0	105	85	115	51.91	1.09	25	
1,2,3-Trichlorobenzene	51.21	5.0	20	0	102	72.5	127	49,88	2.63	25	
1,2,3-Trichtoropropane	53.13	1.0	20	0	106	73.2	114	47.59	11.0	25	
Qualifiers: ND - Not Dete	ND - Not Detected at the Reporting Limit		S - Spi	S - Spike Recovery outside accepted recovery limits	ccepted reco	very limits	<u> </u>	B - Analyte detected in the associated Method Blank	ed in the associa	ited Method Bla	*

Corporate Address 1501 W. Knudsen Phoenix, AZ 85027 Phone: 623-780-4800 Toll Free: 800-651-4802 Fax: 623-780-7695 www.aerotechlabs.com
 Main Laboratory 1725 W. 17th Street Tempe, AZ 85281 Phone: 480-967-1310 Toll Free: 866-772-5227 Fax: 480-967-1019 www.palabs.com

R - RPD outside accepted recovery limits

J - Analyte detected below quantitation limits

Transwest Geochem, Inc. CLIENT:

03030436 Work Order: WSP Van Buren 2167/0303092

Project;

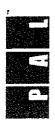
TestCode: 8260_W

ANALYTICAL QC SUMMARY REPORT

Sample ID LCSD-R33195	SampType: LCSD	TestCoc	TestCode: 8260_W	Units: µg/L		Prep Date	(8)		Run ID: MS	MS01_030313A	
Client ID: ZZZZZ	Batch ID: R33195	Test	TestNo: SW8260B			Analysis Date:	te: 3/13/2003	03	SeqNo: 375767	5767	
Analyte	Result	Pal	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,2,4-Trimethylbenzene	49.64	1.0	50	0	99.3	85	115	48.36	2.61	25	
1,2-Dibromoethane	56.03	1.0	20	0	112	85	115	50.12	11.1	25	
1,2-Dichlorobenzene	53.14	1.0	50	0	106	85	115	50.73	4.64	25	
1,2-Dichloroethane	52.61	1.0	50	0	105	85	115	49.99	5.11	25	
1,2-Dichloropropane	53.13	1.0	50	0	106	85	115	50.16	5.75	25	
1,3,5-Trimethylbenzene	50.47	1.0	50	0	101	85	115	50.34	0.258	25	
1,3-Dichlorobenzene	51.3	1.0	50	0	103	85	115	50.21	2.15	25	
1,3-0ichloropropane	54.19	1.0	20	0	108	85	115	49,13	9.79	25	
1,4-Dichlorobenzene	51.65	1.0	50	0	103	85	115	50.46	2.33	25	
2,2-Dichloropropane	52.24	1.0	50	0	104	57.5	139	52.5	0.496	25	
2-Butanone (MEK)	44.33	5.0	50	0	88.7	56.2	128	54.3	20.2	25	
2-Chlorotoluene	50.22	1.0	50	0	100	85	£.	48.32	3.86	25	
2-Hexanone	44,69	5.0	20	0	89,4	62.4	124	54.34	19.5	25	
4-Chiorotoluene	50.89	1.0	20	0	102	85	115	60.09	1.58	25	
4-Isopropyitoluene	51.27	1.0	90	0	103	85	115	51.34	0.136	25	
4-Methyl-2-pentanone	54.61	5.0	50	0	109	65.9	120	48.2	12.5	25	
Acelone	36,19	20	50	0	72.4	34.1	157	51.39	34.7	25	R7
Benzene	51.73	1.0	50	0	103	85	115	50.77	1.87	25	
Bromobenzene	52.36	1.0	50	0	105	85	115	49.97	4.67	25	
Bromochloromethane	52.51	1.0	50	0	105	81.1	120	49.78	5.34	25	
Bromodichloromethane	54.72	1.0	20	0	109	85	115	51.19	6.67	25	
Bromoform	58.62	1.0	90	0	117	77.3	123	53.29	9.53	25	
Bromomethane	48.76	5.0	50	0	97.5	44.1	262	48,41	0.720	25	
Carbon tetrachloride	54.53	1.0	90	0	109	82.6	125	53.88	1.20	25	
Chlorobenzene	52.18	1.0	50	0	104	85	115	50.63	3.02	25	
Chloroethane	50.79	1.0	20	0	102	80.3	117	51.12	0.648	25	
Chloroform	52.22	1.0	50	0	104	85	115	51.19	1.99	25	
Chloromethane	49.82	1.0	90	0	936	64.3	128	49.55	0.543	25	

J - Analyte detected below quantitation limits ND - Not Detected at the Reporting Limit

Qualifiers:


S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

B - Analyte detected in the associated Method Blank

Page 13 of 24

Corporate Address 1501 W. Knudsen Phoenix, AZ 85027 Phone: 623-780-4800 Toll Free: 800-651-4802 Fax: 623-780-7695 www.aerotechlabs.com
 Main Laboratory 1725 W. 17th Street Tempe, AZ 85281 Phone: 480-967-1310 Toll Free: 866-772-5227 Fax: 480-967-1019 www.palabs.com

Transwest Geochem, Inc. CLENT:

03030436 Work Order: WSP Van Buren 2167/0303092

Project:

TestCode: 8260_W

ANALYTICAL QC SUMMARY REPORT

Sample ID LCSD-R33195	SampType: LCSD	TestCoc	TestCode: 8260_W	Units: µg/L		Prep Date:			Run ID: MS	MS01_030313A	
Cilent ID: ZZZZZ	Batch ID: R33195	Test	TestNo: SW8260B			Analysis Date:	3/13/2003	03	SeqNo: 375767	5767	
Analyte	Result	POL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
cis-1.2-Dichloroethene	52.23	1.0	50	0	104	85	115	51.51	1.39	25	
cis-1,3-Dichloropropene	54.37	1.0	50	0	109	85	115	50.85	6.69	25	
Dibromochloromethane	57.04	0.1	90	0	114	85	115	51,61	10.0	25	
Dichlorodifluoromethane	53.46	1.0	20	0	107	75	125	52.86	1.13	25	
Ethylbenzene	52.54	1.0	20	0	105	85	115	50.95	3.07	25	
m.p-Xylene	104.4	2.0	100	0	104	85	ب 	100.8	3.54	25	
Methyl tert-butyl ether	55.64	1.0	50	0	111	85	135	51.02	8.66	25	
Methylene chloride	50.65	2.0	50	0	101	85	<u>+</u>	49.36	2.58	25	
n-Butyibenzene	51.28	1.0	50	0	103	85	1,5	51.41	0.253	25	
n-Propylbenzene	50.98	1.0	50	0	102	85	135	49.82	2.30	25	
o-Xylene	51.27	1.0	50	0	103	85	135	50.17	2.17	25	
sec-Bulylbenzene	51.43	1.0	90	0	103	85	<u></u>	51,51	0.155	25	
Styrene	53.13	1.0	50	0	106	85	115	51.12	3,86	25	
tert-Butylbenzene	51.51	1.0	50	0	103	85	115	51.54	0.0582	25	
Tetrachloroethene	53.57	1.0	50	0	107	85	115	50.61	5.68	25	
Toluene	53.24	1.0	50	0	106	85	115	50.07	6.14	25	
trans-1,2-Dichloroethene	52.83	1.0	50	0	106	85	115	51.83	1.91	25	
trans-1,3-Dichloropropene	54.18	1.0	20	0	108	85	115	50.1	7.83	25	
Trichloroethene	52.23	1.0	50	0	104	85	115	49.91	4.54	25	
Trichlorofluoromethane	55.2	1.0	50	0	110	82.9	118	54.41	1.44	25	
Vinyl acetate	53.8	1.0	20	0	108	72.7	127	49,48	8.37	25	
Vinyl chloride	52.83	1.0	50	0	106	85	115	52.41	0.798	25	
Surc 4-Bromofluorobenzene	51.4	0	50	0	103	80.5	103	0	0	25	
Surr: Dibromofluoromethane	52.01	0	50	0	104	75.9	110	0	0	25	
Surr: Toluene-d8	52,55	0	20	0	105	79	106	0	0	25	

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

S - Spike Recovery outside accepted recovery limits

R - RPD autside accepted recovery limits

B - Analyte detected in the associated Method Blank

Transwest Geochem, Inc. CLENT:

03030436 Work Order:

Project:

WSP Van Buren 2167/0303092

ANALYTICAL QC SUMMARY REPORT

TestCode: 8260_W

Sample ID 03030436-01A MS	SampType: MS	TestCo	TestCode: 8260_W	Units: µg/L		Prep Date:			Run ID: MS	Run ID: MS07 030311A	
Client ID: MW-1	Batch ID: R33115	Test	TestNo: SW8260B			Analysis Date:	3/11/2003	03	SeqNo: 374	374699	· · ·
Analyte	Result	РО	SPK value	SPK Ref Val	%REC	LowLimit H	H i ghLímit	RPD Ref Val	%RPD	RPDLimit	Oual
1,1,1-Trichloroethane	43.74	1.0	50	0	87.5	85	115	0	0		
1.1,2,2-Tetrachloroethane	40.48	1.0	50	0	81	71.3	115	0	0		
1,1,2-Trichloroethane	40.74	1.0	50	0	81.5	85	115	0	0		M7
1,1-Dichtoroethane	41.37	1.0	90	0	82.7	85	115	0	0		M7
1,1-Dichloroethene	45.76	1,0	50	0	91,5	85	1,5	0	0		
1,1-Dichloropropane	43.39	1.0	20	0	86.8	85	115	0	0		
1,2,3-Trichlorobenzene	39.84	5.0	50	0	79.7	72.5	127	0	0		
1,2,3-Trichtoropropane	39.27	1.0	50	0	78.5	73.2	114	0	0		
1,2,4-Trimethylbenzene	40,41	1.0	50	0	80.8	85	115	0	0		M7
1,2-Dibromoethane	39.57	1.0	50	0	79.1	85	1.5	0	0		M7
1,2.Dichlorobenzene	40,43	1,0	50	0	80.9	85	115	0	0		M7
1,2-Dichloroethane	41.51	1,0	20	0	83	85	115	0	0		M7
1,2-Dichloropropane	41.53	1.0	50	0	83.1	85	115	0	0		M7
1,3,5-Trimethylbenzene	40.32	1.0	50	0	80.6	85	115	0	0		71
1,3-Dichlorobenzene	39.77	1.0	20	0	79.5	85	115	0	0		M7
1,3-Dichloropropane	40.88	1.0	50	0	8.1.8	85	115	0	0		M7
1,4-Dichlorobenzene	40.6	1.0	50	0	81.2	85	115	0	0		M7
2,2-Dichloropropane	43.09	1.0	90	0	86.2	57.5	139	0	0		
2-Butanone (MEK)	38.93	5.0	50	0	77.9	56.2	128	0	0		
2-Chlorotoluene	40,45	1.0	50	0	80.9	85	115	0	С		M7
2-Hexanone	39.16	5.0	50	0	78.3	62.4	124	0	0		
4-Chlorotoluene	40.22	1.0	50	0	80,4	85	115	0	0		M7
4-Isopropyltoluene	39.81	1.0	50	0	79.6	85	115	0	0		M7
4-Methyl-2-pentanone	38.75	5.0	50	0	77.5	62.9	120	Û	0		
Acelone	39.18	20	50	0	78.4	34.1	157	0	0		
Benzene	41.99	1.0	50	0	84	85	115	0	0		M7
Bromobenzene	41.8	1.0	20	0	83.6	85	115	0	0		M7
Bromochloromethane	44.41	1.0	50	0	88.8	81.1	120	0	0		

ND - Not Detected at the Reporting Limit

Qualifiers:

J - Analyre detected below quantitation limits

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

B - Analyte detected in the associated Method Blank

a division of Aerotech Laboratories, Inc.

ANALYTICAL QC SUMMARY REPORT

TestCode: 8260 W

Franswest Geochem, Inc.

03030436 Work Order: CLIENT:

WSP Van Buren 2167/0303092

Project:

Onal Ž M7 ₹ ₹ 2 M7 ₹ ₹ ₩ M 7 \mathbb{N}^{1} Ž ₩ ₩ ≥ \overline{M} Run ID: MS07_030311A RPDLimit SeqNo: 374699 %RPD LowLimit HighLimit RPD Ref Val Analysis Date: 3/11/2003 117 ភូ 115 Prep Date: 82.6 44.1 80.3 64.3 85 85 85 85 85 85 85 85 85 81.8 80.5 80.3 65.6 81.9 80.5 82.1 83.6 80.5 81.7 82.6 83.6 82.9 87.8 97.8 81.8 85.3 86.3 80.3 85.1 80.2 %REC 86.9 87.7 79.1 Units: µg/L 2.44 1.37 2.97 SPK Ref Val SPK value TestNo: SW8260B 50 50 50 50 50 8 50 50 50 50 50 50 50 50 50 50 FestCode: 8260_W 1,0 2.0 0.1 2.0 0. 5.0 9 0. 0. 0.1 0. 0, 0. 0. 0. 1.0 0.1 0: 0.1 0. 0. 0. 0. 1.0 PQL Batch ID: R33115 48.9 32.78 40.26 41,05 83.57 40.9 42.54 40.83 41.28 40.14 40.08 44.25 42.83 43.89 39.55 Result 40.88 43.84 42.65 46.14 40.14 40.96 40.23 40.24 45.04 SampType: MS Sample ID 03030436-01A MS trans-1,3-Dichloropropene trans-1,2-Dichloroethene Dichlorodifluoromethane cis-1,3-Dichloropropene Trichloroffuoromethane Bromodichioromethane Dibromochloromethane cis-1,2-Dichloroethene Methyl tert-butyl ether Carbon tetrachloride Methylene chloride Tetrachloroethene sec-Butylbenzene MW-1 ert-Butylbenzene n-Propylbenzene Bromomethane Chloromethane n-Butylbenzene Ггісһюгоетрепе Chlorobenzene Ethylbenzene Chloroethane m.p-Xylene Chiloroform Bramoform o-Xylene Client ID: Analyte

3 - Analyte detected below quantitation limits ND - Not Detected at the Reporting Limit

Qualifiers:

R - RPD outside accepted recovery limits

S. Spike Recovery outside accepted recovery limits

B - Analyte detected in the associated Method Blank

Page 16 of 24

Transwest Geochem, Inc. CLIENT:

03030436 Work Order: WSP Van Buren 2167/0303092 Project:

ANALYTICAL QC SUMMARY REPORT TestCode: 8260 W

Sample ID 03030436-01A MS	SampType: MS	TestCod	TestCode: 8260_W	Units: µg/L		Prep Date			Run ID: MS07_030311A	37_030311A	
Client ID: MW-1	Batch ID: R33115	Test	TestNo: SW8260B			Analysis Date:	3/11/2003	33	SeqNo: 374699	699	
Analyte	Result	POL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Vinyl acetate	43.55	1.0	50	0	87.1	72.7	127	0	0		
Vinyl chloride	46.11	1.0	50	0	92.2	85	115	0	0		
Surr: 4-Bromofluorobenzene	45.51	0	50	0	91	80.5	103	0	0		
Surr: Dibromofluoromethane	47.03	0	50	0	94.1	75.9	110	0	0		
Surr: Toluene-d8	46,35	0	50	0	92.7	79	106	0	0		
Sample ID 03030521-01A MS	SampType: MS	TestCo	estCode: 8260_W	Units: µg/L		Prep Date:			Run ID: MSC	MS01_030313A	
Client ID: ZZZZZ	Batch ID: R33195	Test	TestNo: SW8260B			Analysis Date:	3/13/2003	23	SeqNo: 375850	850	
Analyte	Result	Pal	SPK value	SPK Ref Val	%REC	LowLimit	HighLimít	RPD Ref Val	%RPD	RPDLimit	Qual
1,1,1-Trichloroethane	51.55	1.0	50	0	103	85	115	0	0		
1,1,2,2-Tetrachloroethane	51.48	1.0	20	0	103	71.3	115	0	0		
1,1,2-Trichloroethane	51.26	0.	50	0	103	85	115	0	0		
1,1-Dichloroethane	50.18	1.0	50	0	100	85	115	0	0		
1.1-Dichloroethene	51.5	1.0	50	0	103	85	115	0	0		
1,1-Dichloropropene	49.3	1.0	50	0	98.6	85	115	0	0		
1,2,3-Trichlorobenzene	49.7	5.0	20	0	99.4	72.5	127	0	0		
1,2,3-Trichloropropane	53.46	1.0	50	0	107	73.2	114	0	0		
1,2,4-Trimethylbenzene	48.88	1.0	90	0	97.8	85	115	0	0		
1,2-Dibromoethane	52.62	1.0	50	0	105	85	115	0	0		
1,2-Dichlorobenzene	50.86	1.0	90	0	102	85	115	0	0		
1,2-Dichloroethane	49,63	1.0	90	0	99.3	85	115	0	0		
1,2-Dichloropropane	50.74	1.0	50	0	101	85	115	0	0		
1,3,5-Trimethylbenzene	50.15	1.0	50	0	100	85	115	0	0		
1,3-Dichlorobenzene	50.23	1.0	90	0	100	85	115	0	0		
1,3-Dichloropropane	51.15	1.0	90	0	102	85	115	0	0		
1,4-Dichlarobenzene	50.71	1.0	90	0	101	85	115	0	0		
2,2-Dichloropropane	49.22	1.0	50	0	98.4	57.5	139	0	0		
Qualifiers: NO - Not Detec	NO - Not Detected at the Reporting Limit		S - Spil	S - Spike Recavery outside accepted recovery limits	ccepted reco	wery limits	_	- Analyte detect	B - Analyte detected in the associated Method Blank	ed Method Bla	hi.k

J - Analyte detected below quantitation limits

R - RPD outside accepted recovery limits

Corporate Address 1501 W. Knudsen Phoenix, AZ 85027 Phone: 623-780-4800 Toll Free: 800-651-4802 Fax: 623-780-7695 www.aerotechlabs.com
 Main Laboratory 1725 W. 17th Street Tempe, AZ 85281 Phone: 480-967-1310 Toll Free: 866-772-5227 Fax: 480-967-1019 www.palabs.com

ANALYTICAL QC SUMMARY REPORT

Transwest Geochem, Inc. 03030436 Work Order: CLIENT:

WSP Van Buren 2167/0303092

TestCode: 8260_W Project:

Sample ID 03030521-01A MS	SampType: MS	TestCo	estCode: 8260_W	Units: µg/L		Prep Date:			Run ID: MS01_030313A	
Client ID: ZZZZZ	Batch ID: R33195	Test	TestNo: SW8260B			Analysis Date:	3/13/2003	3	SeqNo: 375850	
Analyte	Result	POL	SPK value	SPK Ref Val	%REC	LowLimit Hi	HighLimit	RPD Ref Val	%RPD RPDLimit Qual	
2-Butanone (MEK)	33.58	5.0	50	D	67.2	56.2	128	0	0	7
2-Chlorotoluene	50.39	1.0	90	0	101	85	115	0	0	
2-Hexanone	36.75	5.0	50	0	73.5	62.4	124	0	0	
4-Chlorotoluene	50.74	1.0	50	0	101	85	115	0	0	
4-IsopropyItoluene	50.52	1.0	90	0	101	85	115	0	0	
4-Methyf-2-pentanone	48,19	5.0	20	0	96.4	62.9	120	С	0	
Асетопе	22.54	20	50	0	45.1	34.1	157	С	0	
Венгеле	50.33	1.0	50	0	101	85	115	0	0	
Bromobenzene	51.79	0.1	50	0	104	85	115	0	0	
Bromochloromethane	50.21	1.0	20	0	100	81.1	120	0	0	
Bromodichloromethane	51.46	1.0	50	0	103	85	115	0	0	
Bromoform	54.91	1.0	50	0	110	77.3	123	0	0	
Bromomethane	38.8	5.0	50	0	77.6	44.1	262	0	0	
Carbon (etrachloride	51.83	1.0	50	0	104	82.6	125	0	0	
Chlorobenzene	50.33	1.0	90	0	101	85	115	0	0	
Chloroeihane	48.31	1.0	20	0	96.6	80.3	117	0	0	
Chloroform	50.81	1.0	50	0	102	85	115	0	0	
Chloromethane	48.35	1.0	50	0	7.96	64.3	128	0	0	
cis-1,2-Dichloroethene	50.9	1.0	50	0	102	85	115	0	0	
cis-1,3-Dichloropropene	50,7	1.0	20	0	101	85	115	0	0	
Dibromochloromethane	52.78	1.0	50	0	106	85	115	0	0	
Dichlorodifluoromethane	51.07	1.0	50	0	102	75	125	0	0	
Ethylbenzene	50.48	1.0	50	0	101	85	115	0	0	
m.p.Xylene	101.9	2.0	100	0	102	85	115	0	0	
Methyl tert-butyl ether	53.87	1.0	50	0	108	85	115	0	0	
Methylene chloride	49.16	2.0	50	0	98.3	85	115	0	0	
n-Butylbenzene	50.03	1.0	90	0	100	85	115	0	0	
n-Propylbenzene	49.66	1.0	50	0	99.3	85	115	0	0	

3 - Analyte detected below quantitation limits ND - Not Detected at the Reporting Limit Qualifiers:

5 - Spike Recovery outside accepted recovery limits R - RPD outside accepted recovery limits

B - Analyte detected in the associated Method Blank

© Corporate Address 1501 W. Knudsen Phoenix, AZ 85027 Phone: 623-780-4800 Toll Free: 800-651-4802 Fax: 623-780-7695 www.aerotechlabs.com Main Laboratory 1725 W. 17th Street Tempe, AZ 85281 Phone: 480-967-1310 Toll Free: 866-772-5227 Fax: 480-967-1019 www.palabs.com

Transwest Geochem, Inc. CLIENT:

03030436 Work Order:

Project:

WSP Van Buren 2167/0303092

ANALYTICAL QC SUMMARY REPORT

TestCode: 8260 W

Sample ID 03030521-01A MS	SampType: MS	TestCod	estCode: 8260_W	Units: µg/L		Prep Date:			Run ID: MS	Run ID: MS01_030313A	
Batch ID: R33195		TestN	TestNo: SW8260B			Analysis Date:	3/13/2003	03	SeqNo: 37	375850	-
Result		Pal	SPK value	SPK Ref Vaf	%REC	LowLimit H	HighLimit	RPD Ref Val	%RPD	RPDLimit	Quai
50.04		1.0	50	0	100	85	115	0	0		
50.93		1.0	50	0	102	85	115	0	0		
48.33		1.0	50	0	6.7	85	115	0	0		
51,69		1.0	20	0	103	85	115	0	0		
51.28		1.0	20	0	103	85	115	0	0		
50.41		1.0	50	0	101	85	115	0	0		
50.93		1.0	20	0	102	85	115	0	0		
50.5		1.0	50	0	101	85	115	0	0		
50.18		1.0	50	0	100	85	115	0	0		
51.63		1.0	50	0	103	82.9	118	0	0		
50.57		1.0	50	0	101	72.7	127	0	0		
50.94		1.0	50	0	102	85	115	0	0		
49.03		0	50	0	98.1	80.5	103	0	0		
50.23		0	50	0	100	75.9	110	0	0		
49.97		0	20	0	99,9	79	106	0	0		
SampType: MSD	1	TestCod	estCode: 8260_W	Units: µg/L		Prep Date:			Run ID: M	MS07_030311A	
Batch ID: R33115		TestN	TestNo: SW8260B			Analysis Date:	3/11/2003	03	SeqNo: 374700	4700	
Result		PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
51.27		1.0	50	0	103	85	115	43.74	15.9	25	
48.01		1.0	50	0	96	71.3	115	40.48	17.0	25	
48.32		1.0	20	0	9.96	85	115	40.74	17.0	25	
50.75		1.0	50	0	102	85	115	41.37	20.4		
54.71		1.0	20	0	109	85	115	45.76	17.8		
52.31		1.0	90	0	105	85	¥0	43.39	18.6		
56.22		5.0	20	0	112	72.5	127	39.84	34.1	25	R 5
48.24		1.0	20	0	96.5	73.2	114	39.27	20.5	25	
ND - Not Detected at the Reporting Limit			S - Spí	S - Spike Recovery outside accepted recovery limits	ccepted reco	very limits		B - Analyte detected in the assneiated Method Blank	ted in the assner	iated Method B	Hank
1. Analyte detected helow opantitation limits			90	of D D O Contract Contract Contract	Services						10 20 01

J - Analyte detected below quantitation limits

R - RPD outside accepted recovery limits

Page 19 of 24

m Corporate Address 1501 W. Knudsen Phoenix, AZ 85027 Phone: 623-780-4800 Toll Free: 800-651-4802 Fax: 623-780-7695 www.aerotechlabs.com m Main Laboratory 1725 W. 17th Street Tempe, AZ 85281 Phone: 480-967-1310 Toll Free: 866-772-5227 Fax: 480-967-1019 www.palabs.com

Transwest Geochem, Inc. CLIENT:

03030436 Work Order: WSP Van Buren 2167/0303092

Project:

ANALYTICAL QC SUMMARY REPORT

TestCode: 8260_W

Sample ID 03030436-01A MSD	SampType: MSD	TestCor	estCode: 8260_W	Units: µg/L		Prep Date:			Run ID: MS07_030311A	37_030311A	
Client ID: MW-1	Batch ID: R33115	Test	TestNo: SW8260B			Analysis Date:	3/11/2003	93	SeqNo: 374700	700	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit Hi	HighLimit	RPD Ref Val	%RPO	RPDLimit	Qual
1,2,4-Trimethylbenzene	50.23	1.0	50	0	100	85	115	40,41	21.7	25	
1,2-Dibromoethane	47.53	1.0	50	0	95.1	85	115	39,57	18.3	25	
1,2-Dichlorobenzene	48.99	1.0	50	0	98	85	115	40.43	19.1	25	
1,2-Dichlorpethane	49.39	1.0	50	0	98.8	85	115	41.51	17.3	25	
1,2-Dichloropropane	49.16	1.0	50	0	98.3	85	115	41.53	16.8	25	
1,3,5-Trimethylbenzene	49.55	1.0	50	0	99.1	85	115	40.32	20.5	25	
1,3-Dichlorobenzene	49,13	1.0	50	0	98.3	85	115	39,77	21.1	25	
1,3-Dichforopropane	48.8	1.0	50	0	97.6	85	115	40.88	17.7	25	
1,4-Dichlorobenzene	48.89	1.0	50	0	97.8	85	115	40.6	18.5	25	
2,2-Dichloropropane	52.4	1.0	50	0	105	57.5	139	43.09	19.5	25	
2-Butanone (MEK)	43.01	5.0	50	0	86	56.2	128	38.93	96.96	25	
2-Chlorotoluene	48.78	1.0	50	0	97.6	85	115	40.45	18.7	25	
2-Hexanone	45.85	5.0	50	0	91.7	62.4	124	39.16	15.7	25	
4-Chlorotoluene	48.5	1.0	50	0	6	85	115	40.22	18.7	25	
4-isapropyltaluene	48.5	1.0	50	0	97	85	115	39,81	19.7	25	
4-Methyl-2-penlanone	46.59	5.0	50	0	93.2	62.9	120	38.75	18.4	25	
Acetone	47.66	20	50	0	95.3	34.1	157	39,18	19.5	25	
Benzene	50.78	1.0	50	0	102	85	115	41.99	19.0	25	
Bromobenzene	50.22	1.0	50	0	100	85	115	41.8	18.3	25	
Bromochloromethane	51,66	1.0	50	0	103	81.1	120	44.41	15.1	25	
Bromodichloremethane	50.59	1.0	50	0	101	85	115	41.36	20.1	25	
Bromoform	48.52	1,0	90	0	16	77.3	123	40.52	18.0	25	
Bromomethane	53.59	5.0	50	0	107	44.1	262	43.45	20.9	25	
Carbon tetrachloride	58.84	1.0	50	0	118	82.6	125	48.9	18.5	25	
Chlorobenzene	49.74	1.0	50	0	99.5	85	115	40.88	19.6	25	
Chloroethane	52.21	1.0	50	0	104	80.3	117	43.84	17.4	25	
Chloroform	50.9	1.0	90	0	102	85	115	42.65	17.6	25	
Chloromethane	40.56	1.0	50	0	81.1	64.3	128	32.78	21.2	25	

J - Analyte detected below quantitation limits ND - Not Detected at the Reporting Until

Qualifiers:

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

B - Analyte detected in the associated Method Blank

■ Corporate Address 1501 W. Knudsen Phoenix, AZ 85027 Phone: 623-780-4800 Toll Free: 800-651-4802 Fax: 623-780-7695 www.aerotechlabs.com
■ Main Laboratory 1725 W. 17th Street Tempe, AZ 85281 Phone: 480-967-1310 Toll Free: 866-772-5227 Fax: 480-967-1019 www.palabs.com

Transwest Geochem, Inc. CLIENT:

03030436 Work Order: WSP Van Buren 2167/0303092

Project:

ANALYTICAL QC SUMMARY REPORT

TestCode: 8260_W

Sample ID 03030436-01A MSD	SampType; MSD	TestCoc	TestCode: 8260_W	Units: µg/L		Prep Date:			Run ID: MS	Run ID: MS07_030311A	
Client ID: MW-1	Batch ID: R33115	Testh	TestNo: SW8260B			Analysis Date:	3/11/2003	03	SeqNo: 374700	700	
Analyte	Result	POL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
cis-1,2-Dichloroethene	54,46	1.0	50	2.97	103	85	115	46,14	16.5	25	
cis-1,3-Dichloropropene	48.46	1.0	50	0	96.9	85	115	40,14	18.8	25	
Dibromochloromethane	49.27	1.0	50	0	98.5	85	15	40.96	18.4	25	
Dichlorodifluoromethane	47.21	1.0	50	0	94,4	75	125	40.26	15.9	25	
Ethylbenzene	50.05	1.0	50	0	100	85	115	41,05	19.8	25	
m.p-Xylene	102.1	2.0	100	0	102	85	115	83.57	20.0	25	
Methyl tert-butyl ether	48.8	0.1	90	0	97.6	85	115	40.9	17.6	25	
Methylene chloride	50.59	2.0	50	0	101	85	115	42.54	17.3	25	
n-Butylbenzene	50.73	1.0	50	0	101	85	115	40.23	23.1	25	
n-Propylbenzene	49.38	1.0	50	0	98.8	85	115	40.24	20.4	25	
o-Xylene	50.2	1.0	50	0	100	85	115	40.83	20.6	25	
sec-Butylbenzene	49.09	1.0	20	0	98.2	85	115	41.28	17.3	25	
Styrene	49.53	1.0	50	0	99.1	85	135	40,14	20.9	25	
tert-Butylbenzenė	48.92	1.0	90	0	8.76	85	13	40.08	19.9	25	
Tetrachloroethene	53.06	1.0	50	2.44	101	85	115	44.25	18.1	25	
Toluene	51.31	1.0	50	1.37	6.99	85	115	42.83	18.0	25	
trans-1,2-Dichloroethene	53.03	1.0	50	0	106	85	<u>.</u>	43.89	18.9	25	
trans-1,3-Dichloropropene	47.76	1.0	50	0	95.5	85	115	39.55	18.8	25	
Trichloroethene	61,99	1.0	50	10	104	85	115	52.06	17.4	25	
Trichloroffuoromethane	54.04	1.0	50	0	108	82.9	118	45.04	18.2	25	
Vinyl acetate	52.14	1.0	50	0	104	72.7	127	43.55	18.0	25	
Vinyl chloride	55.78	1.0	50	0	112	85	115	46.11	19.0	25	
Surr: 4-Bromofluorobenzene	46.08	0	90	0	92.2	80.5	103	0	0	25	
Surr: Dibromofluoromethane	46.2	0	50	0	92.4	75.9	110	0	0	25	
Surr: Toluene-d8	45.75	0	20	0	91.5	62	106	0	0	25	

ND - Not Detected at the Reporting Limit Qualifiers:

3 - Analyte detected below quantitation limits

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

B - Analyte detected in the associated Method Blank

Page 21 of 24

Transwest Geochem, Inc. CLENT:

03030436 Work Order: WSP Van Buren 2167/0303092

Project:

ANALYTICAL QC SUMMARY REPORT

TestCode: 8260_W

Client ID: ZZZZZ			lestCode: 8260_W	Units: pg/L		Prep Date	·*·		Run ID: MS	Run ID: MS01_030313A	
	Batch ID; R33195	Test	TestNo: SW8260B			Analysis Date:	3/13/2003	03	SeqNo: 375851	5851	
Amaryle	Result	POL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,1,1-Trichforoethane	49.74	1.0	50	0	99.5	85	115	51.55	3.57	25	
1,1,2,2-Tetrachloroethane	50.19	1.0	50	0	100	71.3	115	51,48	2.54	25	
1,1,2-Trichloroethane	49.7	1.0	50	0	99.4	85	115	51.26	3.09	25	
1,1-Dichloroethane	48.09	1.0	50	0	96.2	85	115	50.18	4.25	25	
1,1-Dichloroethene	49.34	1.0	50	0	98.7	85	115	51.5	4.28	25	
1,1-Dichloropropene	47,83	1.0	50	0	95.7	85	115	49.3	3.03	25	
1,2,3-Trichlorobenzene	46.27	5.0	50	0	92.5	72.5	127	49.7	7.15	25	
1,2,3-Trichloropropane	52.42	1.0	50	0	105	73.2	114	53.46	1.96	25	
1,2,4-Trimethylbenzene	46.58	1.0	20	0	93.2	85	115	48.88	4.82	25	
1,2-Dibromoethane	50.16	1.0	50	0	100	85	115	52.62	4.79	25	
1,2-Dichlorobenzene	49.2	1.0	50	0	98.4	85	1.15	50.85	3.32	25	
1,2-Dichioroethane	47.7	1.0	90	0	95.4	85	115	49.63	3.97	25	
1,2-Dichloropropane	48.06	1.0	50	0	96.1	85	113	50.74	5.43	25	
1,3,5-Trimethylbenzene	47.93	1.0	50	0	95.9	85	115	50.15	4.53	25	
1,3-Dichlorobenzene	48,44	1,0	50	0	6.96	85	115	50.23	3,63	25	
1,3-Dichloropropane	48.82	1.0	50	0	97.6	85	115	51.15	4.66	25	
1,4-Dichlorobenzene	49,11	1.0	50	0	98.2	85	115	50,71	3.21	25	
2,2-Dichloropropane	46.87	1.0	50	0	93.7	57.5	139	49.22	4.89	25	
2-Butanone (MEK)	33.54	5.0	20	0	67.1	56.2	128	33,58	0.119	25	
2-Chlorotoluene	48.14	1.0	50	0	6.3	85	115	50.39	4.57	25	
2-Hexanone	36.29	5.0	50	0	72.6	62.4	124	36.75	1.26	25	
4-Chloratoluene	48.12	1.0	90	0	96.2	85	115	50.74	5,30	25	
4-Isopropyitoluene	48.33	1.0	50	0	1.96	85	115	50 52	4.43	25	
4-Methyl-2-pentanone	40.99	5.0	20	0	82	62.9	120	48.19	16.1	25	
Acetone	24.86	20	50	0	49.7	34.1	157	22.54	62'6	25	
Benzene	48.37	1.0	50	0	96.7	85	115	50.33	3.97	25	
Bromobenzene	49.64	1.0	50	0	99.3	85	115	51.79	4.24	25	
Bromochloromethane	47.27	1.0	20	D	94.5	81.1	120	50.21	6.03	25	

J - Analyte detected below quantitation limits ND - Not Detected at the Reporting Limit

Qualifiers:

R - RPD outside accepted recovery limits

S - Spike Recovery outside accepted recovery limits

B - Analyte detected in the associated Method Blank

Page 22 of 24

■ Corporate Address 1501 W. Knudsen Phoenix, AZ 85027 Phone: 623-780-4800 Toll Free: 800-651-4802 Fax: 623-780-7695 www.aerotechlabs.com
■ Main Laboratory 1725 W. 17th Street Tempe, AZ 85281 Phone: 480-967-1310 Toll Free: 866-772-5227 Fax: 480-967-1019 www.palabs.com

Transwest Geochem, Inc. CLIENT:

03030436 Work Order: WSP Van Buren 2167/0303092

Project

ANALYTICAL QC SUMMARY REPORT

TestCode: 8260_W

Sample ID 03030521-01A MSD	SampType: MSD	TestCo	estCode: 8260_W	Units: µg/L		Prep Date:	TOTAL THE STATE OF		Run ID: MS01_030313A	01_030313A	
Cilent ID: ZZZZZ	Batch ID: R33195	Test	TestNo: SW8260B			Analysis Date:	3/13/2003		SeqNo: 375851	851	
Analyte	Result	POL	SPK value	SPK Ref Val	%REC	LowLimit Hi	HighLimit RPD I	Ref Val	%RPD	RPDLimit (Qual
Bromodichloromethane	49.07	1.0	20	0	98.1	85	115	51.46	4.75	25	
Bromoform	54.05	1.0	90	0	108	77.3	123	54.91	1.58	25	
Bromomethane	35.41	5.0	20	0	70.8	44.1	262	38.8	9.14	25	
Carbon fetrachloride	49.99	1.0	50	0	100	82.6	125	51.83	3.61	25	
Chlorobenzene	48.79	1.0	50	0	97.6	85	115	50.33	3.11	25	
Chloroethane	46.17	1.0	50	0	92.3	80.3	117	48.31	4.53	25	
Chloroform	48.8	1.0	50	0	97.6	85	115	50.81	4.04	25	
Chloromethane	47.01	1.0	90	0	94	64.3	128	48.35	2.81	25	
cfs-1,2-Dichloroethene	48.76	1.0	90	0	97.5	85	115	50.9	4.29	25	
cís-1,3-Dichloropropene	48.42	1.0	50	0	96.8	85	115	50.7	4.60	25	
Oibromochloromethane	50.72	1.0	90	0	101	85	115	52.78	3.98	25	
Dichlorodifluoromethane	47.53	1.0	90	0	95.1	75	125	51.07	7.18	25	
Ethylbenzene	48.91	1.0	50	0	97.8	85	115	50.48	3.16	25	
m,p-Xylene	97.3	2.0	100	0	97.3	85	115	101.9	4.58	25	
Methyl tert-butyl ether	51.67	1.0	90	0	103	85	115	53,87	4.17	25	
Methylene chloride	46.64	2.0	90	0	93,3	85	115	49.16	5.26	25	
n-Butylbenzene	48.34	1.0	50	0	2.96	85	115	50.03	3.44	25	
n-Propylbenzene	49.17	1,0	50	0	98.3	85	115	49.66	0.992	25	
o-Xylene	48.74	1.0	90	0	97.5	85	115	50.04	2.63	25	
sec-Bulylbenzene	49,08	1.0	90	0	98.2	85	115	50.93	3.70	25	
Styrene	45.51	1.0	90	0	91	85	115	48.33	6.01	25	
lert-Butylbenzene	49.74	1.0	50	0	99.5	85	115	51.69	3.85	25	
Tetrachloroethene	49.63	1.0	50	0	99.3	85	115	51.28	3.27	25	
Toluene	48.69	1.0	50	0	97.4	85	115	50.41	3.47	25	
trans-1,2-Dichloroethene	48.47	1.0	50	0	6.96	85	115	50.93	4,95	25	
frans-1,3-Dichloropropene	48.3	1.0	90	0	96.6	85	115	50.5	4,45	25	
Trichloroethene	47.82	1.0	50	0	95.6	85	115	50.18	4.82	25	
Trichlorofluoromethane	49.66	1.0	20	0	99.3	82.9	118	51.63	3.89	22	

3 - Analyte detected below quantitation limits ND - Not Detected at the Reporting Limit

Qualifiers:

S - Spike Recovery outside accepted recovery limits R - RPD outside accepted recovery limits

B - Analyte detected in the associated Method Blank

Page 23 of 24

Corporate Address 1501 W. Knudsen Phoenix, AZ 85027 Phone: 623-780-4800 Toll Free: 800-651-4802 Fax: 623-780-7695 www.aerotechlabs.com
 Main Laboratory 1725 W. 17th Street Tempe, AZ 85281 Phone: 480-967-1310 Toll Free: 866-772-5227 Fax: 480-967-1019 www.palabs.com

ANALYTICAL QC SUMMARY REPORT

TestCode: 8260_W

WSP Van Buren 2167/0303092 Transwest Geochem, Inc. 03030436 Work Order: CLIENT: Project:

Sample ID 03030521-01A MSD SampType: MSD	SampType: MSD	TestCoc	estCode: 8260_W	Units: µg/L		Prep Date:	 •		Run ID: MS	Run ID: MS01_030313A	
Client ID: ZZZZZ	Batch ID: R33195	Testh	TestNo: SW8260B			Analysis Date: 3/13/2003	e: 3/13/2(903	SeqNo: 375851	1851	
Analyte	Result	Pal		SPK value SPK Ref Val	%REC	LowLimit	HighLimit	%REC LowLimit HighLimit RPD Ref Val	%RPD	%RPD RPDLimit (Qual
Vinyl acetate	48.05	1.0	50	0	96.1	72.7	127	50.57	5.11	25	
Vinyi chloride	48.27	1.0	50	0	96.5	85	115	50.94	5.38	25	
Surr: 4-Bromofluorobenzene	49.8	0	50	0	9.66	80.5	103	0	0	25	
Surr: Dibromofluoromethane	49.87	0	50	0	99.7	75.9	110	0	0	25	
Surr: Toluene-d8	49.5	0	50	0	66	79	106	0	0	25	

Qualifiers:

J - Analyte detected below quantitation limits

S - Spike Recovery outside accepted recovery limits ND - Not Detected at the Reporting Limit

R - RPD outside accepted recovery limits

B - Analyte detected in the associated Method Blank

Sample Receipt Checklist

Client Name Transwest Geocher Date	and Time Received	13-10-07	1575
	ived by Tan	,	
Checklist completed by Signature Date	O Containers:	Brass Sleeves Glass Jars	
Matrix: With Carrier name:	Billy	Methanol Kits	
Shipping container/cooler in good condition?	Yes 🔀	No	Not Present
Custody seals intact on shipping container/cooler?	Yes	No	Not Present 📐
Custody seals intact on sample bottles?	Yes	No	Not Present 🛬
Chain of custody present?	Yes 놎	No	
Chain of custody signed when relinquished and received?	Yes 🔀	No	•
Chain of custody agrees with sample labels?	Yes 🔀	No	
Samples in proper container/bottle?	Yes 🔽	No	
Sample containers intact?	Yes 🔽	No	
All samples received within holding time?	Yes <u>×</u>	No	
Do different containers of the same sample vary in appearance?	Yes (If yes,	contact PM) No	\sim
Water – VOA vials have zero headspace? No VOA sub	mitted	Yes 🔀	No
Number of sample bottles: Preserved: 1	54173	Unpreserved:	
Temperature of samples? 5. 6 °C Blue Ice	Wet Ice	Not Present	
Water - pH acceptable upon receipt?	Yes	No	Not applicable 🔽
pH: Metals 413.1 Cyanide 418.1 Nutrients Sulfide	Total Phenols _		
Adjusted? Results?	/UAN-18		
Any No response must be detailed in the comments section below:			
Person/Client contacted: Comments: Date contacted:		Contacted by:	

TRANSWEST

Page 1 of 1

CHAIN-OF-CUSTODY

0.303-0436

Work Order: 0303092

Project: Cardon Van Buren 2167

GEOCHEM

Vic Nielson

3725 E. Allanta Avenue Suile 2

Phoenix, AZ 85040-2960

Subcontractor:

Precision Analytical Laboratories, Inc.

1725 West 17th St. Tempe, AZ 85281

(602) 437-0330 (602) 437-0660 FAX: TEL:

(480) 967-1310 (480) 967-1019 TEL: FAX:

10-Mar-03

Requested Tests

Containers 8260AZ W 3/6/2003 10:45:00 AM 3/6/2003 11:55:00 AM 3/6/2003 10:45:00 AM 3/6/2003 1:20:00 PM 3/6/2003 2:50:00 PM 3/6/2003 3:50:00 PM Collection Date Trip Blank Water Water Matrix Water Water Water TGI ID 06A 014 03A 04A 05A 02A Client Sample ID MW-1 MW-4 MW-2 MW-3 MW-5 18 0 C 6 6

	The state of the s	The state of the s			
			The latest terminal parameter than the latest terminal te		
		WAY & BERNELL WITH THE PARTY OF			- The state of the
				Ī	
•	1			-	
		!		 	

White Sail Espering Has 100,500 Low Levels No Historical Data FOR WHERS.

Results dage 3/20123

standard laboratory practices. Please provide a QC report, including Method Blank data. Comments: After analysis, the samples do not need to be returned and can be disposed per your

Ž.	Sample Keceipt	
Femperature:	Ambient / Cold Ice:	
Received Intact: 20	Absent / Present	Tesent
Custody Seals: んし	Well I	3lue
l'otal No. of Containers:	11, 50	j.
2	// Date/Fime	

3-10-03 1535

Date/Time Relinquished by: 1310 Charles of 3/10/03 Relinquished by:

Received by:

_	
	ald"
	1111
	in in a second
्	

TRANSWEST GEOCHEM

3725 East Atlanta Avenue, Phoenix, Arizona 85040 Phone: (602) 437-0330 Fax: (602) 437-0660

Chain of Custody	TGI Work Order No: (303092	Date 61-6-03 Page / of /
Je, Suite 2		0

								
stog 4	Po			E & S/ - E	7 TV	Comments	Date/Time.	Γ
se lu			7.	600 - 26				
7	7		SOA!	Fax: 60	100		ame)	4
To the	111:0	J 114	Do	Fa			(Print Name)	
MUCEL	11	7	A A	15.B	EST		SK	
4 2 2 4	MANO	1	3	622-267-196	ANALYSIS REQUEST	13 Priority Pollutant Metals		
	2/	4,0	7	5	AALYE	8 FICHA Metais	Received by: (Signature)	
			n l		A	PAH, EPA 8310	(Sig)	
	any:	100	Cily, State ZIP			PCB's, (8082) Organochlorine Pesticides (608/8081)	2 July State of the state of th	
Bill to:	Company	T T T	City, 8	Phone:		Semi-Volatile Organics GCMS (625/8270)	Hece	7
ГТ	- الح	T		Mo		SDWA Volatiles, (524.2)	•	
	7	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		1202-267-7978		Volatile Organics GCMS (624/8260AZ) BTEX (8021B)	\vdash \mid \vee \mid	Da
	20	7	+	767-		TPH, 8015AZR.1	Date/ 3/06,	`
]	100	₩-	70 20	co		TPH, (418.1 /418.1AZ)	0	
EVE	157	\ - !	200	Fax: 💋	71.50	No. of Containers M M M M M M	_	,
	を			F.			(PrintName)	
1/4	LEN!	1	24	0			Fig.	
31		1	×	95	,	PEIPT Date Sampled 03:0033	17	\$
HINE	30/	1	17 J	767		Ambient (Cold Matrix Sample	4	
	NA.	1	John	603-36			Heyncluished by: (Signature)	
		b -	7	الو		S. Catlor	S :: (S)	
Manage	arne;		ate ZIP:		0.:	Project Name: Project Number: Temperature: \$.2 Total No. of Container Sample Identification Mul \$ Mul \$ Mul \$ Mul \$ Testing the sample Identification of Container Tes	rdmishing 1	
Project Manager:	Address:	6	City, State ZIP	Phone;	P.O. No.:	Project Numb Project Numb Project Numb Temperature: Received Inta Custody Seats Total No. of C Sample Iden MULI MULI TS	1 1	2 2