

Janice K. Brewer, Governor Henry R. Darwin, Director

# Ambient Groundwater Quality of the McMullen Valley Basin A 2008-2009 Baseline Study

By Douglas C. Towne Maps by Jean Ann Rodine

**ADEQ Water Quality Division** Surface Water Section, Monitoring Unit 1110 W. Washington St. Phoenix, Arizona 85007-2935 Open File Report 2011 - OFR 11-02

Π

# **Ambient Groundwater Quality of the McMullen Valley Basin: A 2008-2009 Baseline Study**

## **By Douglas C. Towne**

Maps by Jean Ann Rodine

# Arizona Department of Environmental Quality Open File Report 2011-02

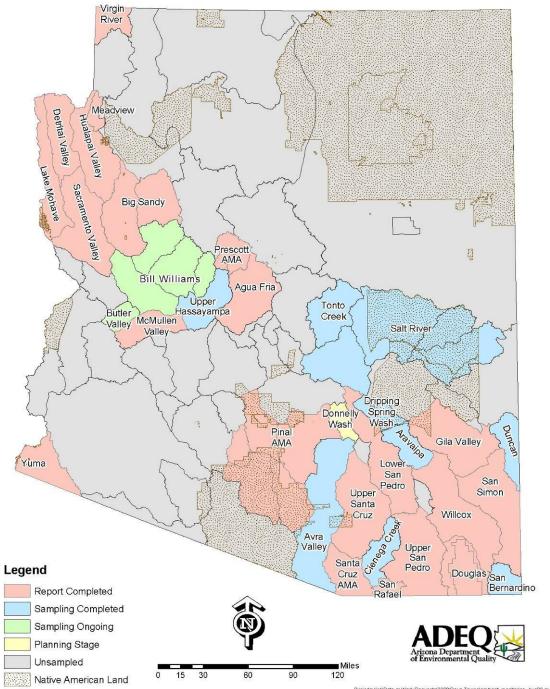
ADEQ Water Quality Division Surface Water Section Monitoring Unit 1110 West Washington St. Phoenix, Arizona 85007-2935

#### Thanks:

| Field Assistance: | Jason Jones, Brent Mitchell, David Pinol and Dennis Turner.<br>Special recognition is extended to the many well owners who were kind enough<br>to give permission to collect groundwater data on their property.                                         |
|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Photo Credits:    | Douglas Towne                                                                                                                                                                                                                                            |
| Report Cover:     | Well #23 pumps a prodigious amount of groundwater for use on the nearby irrigated fields of cantaloupe near the town of Aguila. Like many wells in the Eastern Regional aquifer, samples from the well exceeded aesthetics-based standards for fluoride. |

## Other Publications of the ADEQ Ambient Groundwater Monitoring Program

## ADEQ Ambient Groundwater Quality Open-File Reports (OFR):


| Gila Valley Sub-basin           | OFR 09-12, November 2009, 99 p.                                |
|---------------------------------|----------------------------------------------------------------|
| Agua Fria Basin                 | OFR 08-02, July 2008, 60 p.                                    |
| Pinal Active Management Area    | OFR 08-01, June 2007, 97 p.                                    |
| Hualapai Valley Basin           | OFR 07-05, March 2007, 53 p.                                   |
| Big Sandy Basin                 | OFR 06-09, October 2006, 66 p.                                 |
| Lake Mohave Basin               | OFR 05-08, October 2005, 66 p.                                 |
| Meadview Basin                  | OFR 05-01, January 2005, 29 p.                                 |
| San Simon Sub-Basin             | OFR 04-02, October 2004, 78 p.                                 |
| Detrital Valley Basin           | OFR 03-03, November 2003, 65 p.                                |
| San Rafael Basin                | OFR 03-01, February 2003, 42 p.                                |
| Lower San Pedro Basin           | OFR 02-01, July 2002, 74 p.                                    |
| Willcox Basin                   | OFR 01-09, November 2001, 55 p.                                |
| Sacramento Valley Basin         | OFR 01-04, June 2001, 77 p.                                    |
| Upper Santa Cruz Basin          | OFR 00-06, Sept. 2000, 55 p. (With the U.S. Geological Survey) |
| Prescott Active Management Area | OFR 00-01, May 2000, 77 p.                                     |
| Upper San Pedro Basin           | OFR 99-12, July 1999, 50 p. (With the U.S. Geological Survey)  |
| Douglas Basin                   | OFR 99-11, June 1999, 155 p.                                   |
| Virgin River Basin              | OFR 99-04, March 1999, 98 p.                                   |
| Yuma Basin                      | OFR 98-07, September, 1997, 121 p.                             |

## ADEQ Ambient Groundwater Quality Fact sheets (FS):

| McMullen Valley Basin<br>Gila Valley Sub-basin<br>Agua Fria Basin<br>Pinal Active Management Area<br>Hualapai Valley Basin<br>Big Sandy Basin<br>Lake Mohave Basin<br>Lake Mohave Basin<br>Meadview Basin<br>San Simon Sub-basin<br>Detrital Valley Basin<br>San Rafael Basin<br>Lower San Pedro Basin<br>Willcox Basin<br>Sacramento Valley Basin<br>Yuma Basin<br>Virgin River Basin<br>Prescott Active Management Area<br>Douglas Basin | FS 11-03, 2010, 6 p.<br>FS 09-28, November 2009, 7 p.<br>FS 08-15, July 2008, 4 p.<br>FS 07-27, June 2007, 7 p.<br>FS 07-10, March 2007, 4 p.<br>FS 06-24, October, 2006, 4 p.<br>FS 05-21, October 2005, 4 p.<br>FS 05-01, January 2005, 4 p.<br>FS 04-06, October 2004, 4 p.<br>FS 03-07, November 2003, 4 p.<br>FS 03-03, February 2003, 4 p.<br>FS 03-03, February 2003, 4 p.<br>FS 01-13, October 2001, 4 p.<br>FS 01-10, June 2001, 4 p.<br>FS 01-03, April 2001, 4 p.<br>FS 01-02, March 2001 4 p.<br>FS 00-13, December 2000, 4 p. |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| e                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Douglas Basin<br>Upper San Pedro Basin                                                                                                                                                                                                                                                                                                                                                                                                     | FS 00-08, September 2000, 4 p.<br>FS 97-08, August 1997, 2 p. (With the U.S. Geological Survey)                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

These publications are available on-line. Visit the ADEQ Ambient Groundwater Monitoring Program at:

### www.azdeq.gov/environ/water/assessment/ambient.html



# ADEQ Ambient Groundwater Monitoring Program Studies February 2010

S:\gisdeVijr4\Data or Work Requests\2009\Doug Towne\ambient\_monitoring\_Aug09.mxd

| <b>Table of</b> | Contents |
|-----------------|----------|
|-----------------|----------|

| Abstract                                                                | 1  |
|-------------------------------------------------------------------------|----|
| Introduction                                                            | 2  |
| Purpose and Scope                                                       | 2  |
| Physical and Cultural Characteristics                                   | 2  |
| Hydrology                                                               | 4  |
| Lithology                                                               | 4  |
| Groundwater                                                             | 5  |
| Wells                                                                   | 9  |
| Investigation Methods                                                   | 9  |
| Sampling Strategy                                                       | 9  |
| Sampling Collection                                                     |    |
| Laboratory Methods                                                      |    |
| Data Evaluation                                                         | 14 |
| Quality Assurance                                                       | 14 |
| Data Validation                                                         |    |
| Statistical Considerations                                              |    |
| Groundwater Sampling Results                                            |    |
| Water Quality Standards / Guidelines                                    |    |
| Suitability for Irrigation                                              |    |
| Analytical Results                                                      |    |
| Groundwater Composition                                                 |    |
| General Summary                                                         |    |
| Constituent Co-Variation                                                | 41 |
| Isotope Comparison                                                      |    |
| Groundwater Quality Variation                                           |    |
| Summary and Conclusions                                                 |    |
| Recommendations                                                         |    |
| References                                                              | 57 |
| Appendices                                                              |    |
| Appendix A – Data on Sample Sites, McMullen Valley basin, 2008-2009     | 59 |
| Appendix B – Groundwater Quality Data, McMullen Valley basin, 2008-2009 | 65 |

# Maps

| ADEQ Ambient Monitoring Program Studies | IV |
|-----------------------------------------|----|
| Map 1. McMullen Valley Basin            | 3  |
| Map 2. Sample Sites                     |    |
| Map 3. Water Quality Status             | 24 |
| Map 4. Arsenic                          |    |
| Map 5. Fluoride                         |    |
| Map 6. Nitrate                          |    |
| Map 7. TDS                              |    |
| Map 8. Gross alpha                      |    |
| Map 9. Radon                            |    |
| Map 10. Water chemistry                 |    |
| Map 11. Hardness                        | 40 |
| -                                       |    |

# Diagrams

| Diagram 1. Hydrologic cross-section parallel to McMullen Valley      | 7 |
|----------------------------------------------------------------------|---|
| Diagram 2. Hydrologic cross-section parallel to Harrisburg Valley    | 7 |
| Diagram 3. Hydrologic cross-section perpendicular to McMullen Valley |   |
| Diagram 4. Specific paths of hydrologic cross-sections               |   |
| Diagram 5. Salinity hazard of McMullen Valley wells                  |   |
| Diagram 6. Sodium hazard of McMullen Valley wells                    |   |
| Diagram 7. Water chemistry pie chart                                 |   |
| Diagram 8. Piper tri-linear water chemistry diagram                  |   |
| Diagram 9. Hardness classification pie chart                         |   |
| Diagram 10. TDS – sodium relationship                                |   |
| Diagram 11. Oxygen – deuterium relationship                          |   |
| Diagram 12. Oxygen – deuterium relationship                          |   |
| Diagram 13. Seven aquifer TDS box plot                               |   |
| Diagram 14. Seven aquifer nitrate box plot                           |   |
| Diagram 15. Seven aquifer hardness box plot                          |   |
| Diagram 16. Seven aquifer potassium box plot                         |   |
| Diagram 17. Five aquifer pH-field box plot                           |   |
| Diagram 18. Five aquifer TDS box plot                                |   |
| Diagram 19. Five aquifer bicarbonate box plot                        |   |
| Diagram 20. Five aquifer deuterium box plot                          |   |
| Diagram 21. Groundwater divide locations                             |   |

# Figures

| Figure 1.  | The Salome Frog                                                      | 10 |
|------------|----------------------------------------------------------------------|----|
| Figure 2.  | Centennial Wash flooding Wenden, January 2010                        | 10 |
| Figure 3.  | Domestic well in the Forepaugh aquifer                               | 11 |
| Figure 4.  | Irrigation well near Aguila in the Eastern Regional aquifer          | 11 |
| Figure 5.  | Meter on irrigation well near Aguila in the Eastern Regional aquifer | 11 |
| Figure 6.  | Domestic well north of Salome in the Perched aquifer                 | 11 |
| Figure 7.  | Domestic well north of Salome in the Western Regional aquifer        | 21 |
| Figure 8.  | Irrigation well south of Salome in the Southern Regional aquifer     | 21 |
| Figure 9.  | Domestic well south of Salome in the Southern Regional aquifer       | 21 |
| Figure 10. | Irrigation well north of Salome in the Western Regional aquifer      | 21 |
| Figure 11. | Irrigation well northeast of Salome in the Mixed aquifer             | 22 |
| Figure 12. | Cascading well northeast of Salome in the Western Regional aquifer   | 22 |
| Figure 13. | Stock well northeast of Wenden in the Western Regional aquifer       | 22 |
| Figure 14. | Domestic well near Harcuvar in the Harcuvar aquifer                  | 22 |

# Tables

| Table 1. | ADHS/Test America laboratory water methods and minimum reporting levels used in the study 15          |
|----------|-------------------------------------------------------------------------------------------------------|
| Table 2. | Summary results of McMullen Valley basin duplicate samples from the ADHS laboratory 17                |
| Table 3. | Summary results of McMullen Valley basin split samples from the ADHS / Test America labs              |
| Table 4. | McMullen Valley basin sites exceeding health-based (Primary MCL) water quality standards25            |
| Table 5. | McMullen Valley basin sites exceeding aesthetics-based (Secondary MCL) water quality guidelines 29    |
| Table 6. | Summary statistics for McMullen Valley basin groundwater quality data                                 |
| Table 7. | Correlation among McMullen Valley basin groundwater quality constituent concentrations using Pearson  |
|          | correlation probabilities                                                                             |
| Table 8. | Variation in groundwater quality constituent concentrations among five aquifers using Kruskal-Wallis  |
|          | test with the Tukey Test                                                                              |
| Table 9. | Summary statistics (95% Confidence Intervals) for groundwater quality constituent concentrations with |
|          | Significant concentration differences among five aquifers                                             |
| Table 10 | Variation in groundwater quality constituent concentrations among three aquifers using Kruskal-Wallis |
|          | test with the Tukey Test                                                                              |

# Abbreviations

| amsl               | above mean sea level                                                        |
|--------------------|-----------------------------------------------------------------------------|
| ac-ft              | acre-feet                                                                   |
| AGF/yr             | acre-feet per year                                                          |
| ADEQ               | Arizona Department of Environmental Quality                                 |
| ADHS               | Arizona Department of Health Services                                       |
| ADWR               | Arizona Department of Water Resources                                       |
| ARRA               | Arizona Radiation Regulatory Agency                                         |
| AZGS               | Arizona Geological Survey                                                   |
| As                 | arsenic                                                                     |
| bls                | below land surface                                                          |
| BLM                | U.S. Department of the Interior Bureau of Land Management                   |
| °C                 | degrees Celsius                                                             |
| CI <sub>0.95</sub> | 95 percent Confidence Interval                                              |
| Cl                 | chloride                                                                    |
| EPA                | U.S. Environmental Protection Agency                                        |
| F                  | fluoride                                                                    |
| Fe                 | iron                                                                        |
| gpm                | gallons per minute                                                          |
| hard-cal           | hardness concentration calculated from calcium and magnesium concentrations |
| HUC                | Hydrologic Unit Code                                                        |
| LLD                | Lower Limit of Detection                                                    |
| MMU                | McMullen Valley Groundwater Basin                                           |
| Mn                 | manganese                                                                   |
| MCL                | Maximum Contaminant Level                                                   |
| ml                 | milliliter                                                                  |
| msl                | mean sea level                                                              |
| ug/L               | micrograms per liter                                                        |
| um                 | micron                                                                      |
| uS/cm              | microsiemens per centimeter at 25° Celsius                                  |
| mg/L               | milligrams per liter                                                        |
| MRL                | Minimum Reporting Level                                                     |
| MTBE               | Methyl tertiary-Butyl Ether                                                 |
| ns                 | not significant                                                             |
| ntu                | nephelometric turbidity unit                                                |
| pCi/L              | picocuries per liter                                                        |
| QA                 | Quality Assurance                                                           |
| QAPP               | Quality Assurance Project Plan                                              |
| QC                 | Quality Control                                                             |
| SAR                | Sodium Adsorption Ratio                                                     |
| SDW                | Safe Drinking Water                                                         |
| SC                 | Specific Conductivity                                                       |
|                    | standard pH units                                                           |
| su                 | •                                                                           |
| $SO_4$             | sulfate<br>Total Dissolved Solids                                           |
| TDS                | Total Dissolved Solids                                                      |
| TKN                | Total Kjeldahl Nitrogen                                                     |
| USGS               | U.S. Geological Survey                                                      |
| VOC<br>*           | Volatile Organic Compound                                                   |
| *                  | significant at $p \le 0.05$ or 95% confidence level                         |
| -14 TF             | significant at $p \le 0.01$ or 99% confidence level                         |
|                    |                                                                             |

Х

#### Ambient Groundwater Quality of the McMullen Valley Basin: A 2008-2009 Baseline Study

**Abstract** - In 2008-2009, the Arizona Department of Environmental Quality (ADEQ) conducted a baseline groundwater quality study of the McMullen Valley basin located in west-central Arizona. The basin consists of the drainage of the ephemeral Centennial Wash within McMullen Valley and the surrounding mountains.<sup>6</sup> Groundwater is predominantly used for irrigation near the communities of Aguila, Wenden and Salome.<sup>7</sup> The City of Phoenix has purchased farms near Salome to obtain the water rights for potential transfer to Maricopa County for municipal use.<sup>7</sup> The main source of groundwater in the basin is the Regional aquifer.<sup>24</sup> Heavy pumping near Aguila and Salome has produced a groundwater divide near the La Paz-Maricopa County line creating Eastern and Western Regional aquifers.<sup>25</sup> In terms of spatial extent and groundwater storage these are the largest aquifers in the basin.<sup>25</sup> Low hills east of Aguila that minimize groundwater movement divide the Eastern Regional aquifer from the Forepaugh aquifer.<sup>43</sup> A subsurface extension of the Harquahala Mountains that limits groundwater movement separates the Western Regional aquifer from the Southern Regional aquifer located in Harrisburg Valley.<sup>25</sup> Another subsurface geologic feature separates the Harcuvar aquifer from the Southern and Western Regional aquifer is restricted by the Lake-bed Unit, a layer of fine-grained sediments.<sup>24</sup> These deposits, however, are absent in an area one mile northeast of Salome where groundwater flowing from the Perched aquifer into the Western Regional aquifer is termed the Mixed aquifer.<sup>24</sup>

To characterize regional groundwater quality, samples were collected from 124 wells. The wells supply water for irrigation, domestic, municipal and stock uses throughout the basin. Inorganic constituents and oxygen and deuterium isotopes were collected from all wells. At selected wells, radon (79 sites), radiochemistry (50 sites) and pesticide (2 sites) samples were also collected. In addition to the 124 wells, 12 additional wells were sampled for field parameters and nitrate.

Primary maximum contaminant levels (MCLs) for inorganic constituents were exceeded at 54 of the 124 sites (44 percent). These enforceable standards define the maximum concentrations of constituents allowed in water supplied for drinking water purposes by a public water system and are based on a lifetime daily consumption of two liters.<sup>38</sup> Constituents exceeding Primary MCLs include arsenic (24 sites), fluoride (27 sites), nitrate (25 sites), and selenium (2 sites). Primary MCLs for radionuclides were exceeded at 9 of the 50 sites (18 percent) including gross alpha (9 sites) and uranium (4 sites). Elevated concentrations of arsenic and fluoride likely occur naturally. Elevated nitrate concentrations appear to be caused by nitrogen-laden recharge resulting from irrigation applications and wastewater from septic systems. Gross alpha and uranium exceedances are likely naturally occurring though may be impacted by anthropomorphic activities.<sup>42</sup> Secondary MCLs were exceeded at 87 of 124 sites (70 percent). These are unenforceable aesthetics guidelines that define the maximum constituent concentration that can be present in drinking water without an unpleasant taste, color, or odor.<sup>38</sup> Constituents above Secondary MCLs include chloride (13 sites), fluoride (69 sites), manganese (2 sites), pH (19 sites), sulfate (8 sites), and TDS (31 sites).

The basin's most important groundwater quality issue is the absence of the Lake-bed Unit northeast of Salome.<sup>24</sup> Nearby wells commonly exceed water quality standards and guidelines; nitrate concentrations were elevated up to seven times the 10 mg/L health-based water quality standard. This is the result of percolating irrigation water containing salts and nitrate recharging the Perched aquifer. With a higher static water level than the Regional aquifer, groundwater drains downward from the Perched aquifer into the Western Regional aquifer. This impacted area is referred to in this report as the Mixed aquifer.<sup>24</sup> TDS, sodium, chloride, sulfate, and nitrate were significantly higher in the Perched and Mixed aquifers than in all the other aquifers (Kruskal-Wallis with Tukey test,  $p \le 0.05$ ).

Both the Eastern and Western Regional aquifers had water quality issues. In the Eastern Regional aquifer, southeast of Aguila, some sample sites exceeded standards for fluoride and, to a lesser degree, arsenic. Similarly, in the Western Regional aquifer near Wenden, sample sites also exceeded standards for fluoride and, to a lesser degree, arsenic. The Eastern Regional aquifer exhibited significantly lower concentrations of TDS, sodium, and boron than in the Western Regional aquifer; the opposite pattern occurs with well depth and groundwater depth. (Kruskal-Wallis with Tukey test,  $p \le 0.05$ ) These differences may result from poor quality irrigation recharge minimally impacting the Eastern Regional aquifer because of the great depths needed to percolate to groundwater. Almost all the sites sampled in the Forepaugh aquifer exceeded water quality standards for fluoride and arsenic. Fluoride concentrations commonly were up to three times the health-based standard. Few water quality standards were exceeded in the Southern Regional and Harcuvar aquifers; both appear to consist of more recent recharge.

#### INTRODUCTION

#### **Purpose and Scope**

The McMullen Valley groundwater basin encompasses approximately 591 square miles in west-central Arizona.<sup>5</sup> The western portion of the basin is located in La Paz County, the southeastern portion is in Maricopa County and a small portion in the northeast is in Yavapai County (Map 1). The economy of McMullen Valley is predominantly based on agriculture as well as serving the needs of the area's retired population. Groundwater is the primary source for agricultural, municipal, stock and domestic water supply within the basin.<sup>6</sup>

The McMullen Valley basin is one of the few groundwater basins in Arizona designated for out-ofbasin transport of groundwater. The City of Phoenix has purchased 14,000 acres of agricultural land to obtain the water rights for potential future transport of groundwater to the Phoenix Active Management Area for municipal uses.<sup>7</sup>

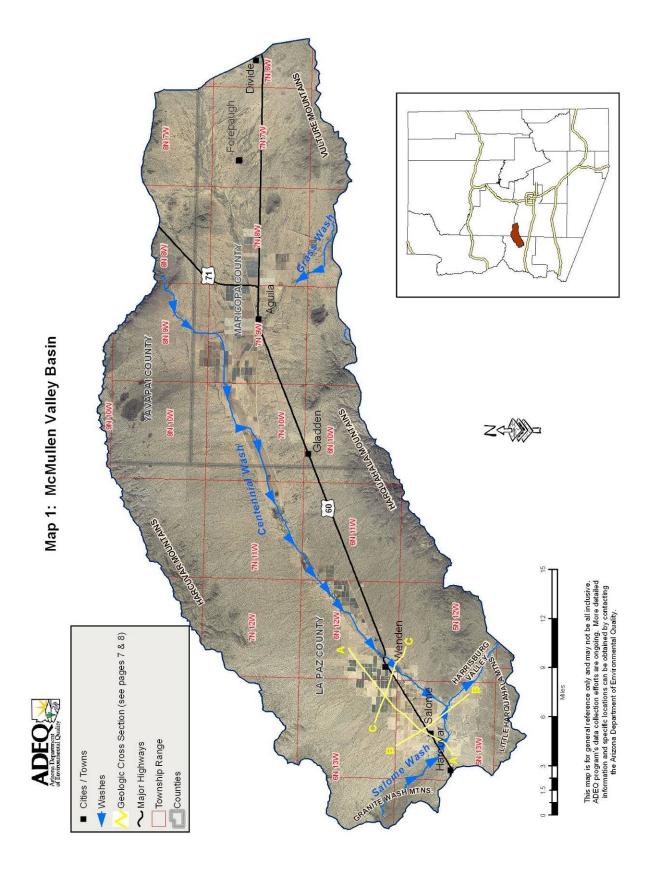
The Arizona Department of Environmental Quality (ADEQ) Ambient Groundwater Monitoring program was originally charged with characterizing nitrate concentrations in the town of Salome to explore the possibility of creating a Nitrogen Management Area.<sup>3</sup> The study was subsequently expanded to characterize the groundwater quality of the entire McMullen Valley basin.

Sampling by the ADEQ Ambient Groundwater Monitoring program is authorized by legislative mandate in the Arizona Revised Statutes §49-225, specifically: "...ongoing monitoring of waters of the state, including...aquifers to detect the presence of new and existing pollutants, determine compliance with applicable water quality standards, determine the effectiveness of best management practices, evaluate the effects of pollutants on public health or the environment, and determine water quality trends."<sup>3</sup>

**Benefits of ADEQ Study** – This study, which utilizes accepted sampling techniques and quantitative analyses, is designed to provide the following benefits:

• A general characterization of regional groundwater quality conditions in the McMullen Valley basin identifying areas with water quality concerns.

- A characterization of nitrate concentrations in groundwater in areas of housing developments using septic systems for wastewater disposal in areas south of the town of Salome
- A process for evaluating potential groundwater quality impacts arising from a variety of sources including mineralization, mining, agriculture, livestock, septic tanks, and poor well construction.
- A guide for identifying future locations of public supply wells.
- A guide for determining areas where further groundwater quality research is needed.


#### **Physical Characteristics**

**Geography** – The McMullen Valley basin is located within the Basin and Range physiographic province which is characterized by broad alluvial valleys separated by mountain ranges. The kidney-shaped basin is oriented northeast-to-southwest and is about 15 miles wide and 48 miles long.

The basin is bounded on all sides, except the northeast, by mountains. The Harcuvar Mountains are to the north, the Harquahala and Vulture Mountains are to the south, and the Little Harquahala and Granite Wash Mountains are to the west. A ridge near the railroad siding of Divide marks the eastern boundary that separates it from the Upper Hassayampa basin. At the southwest end of the basin is Harrisburg Valley, oriented perpendicular to the axis of McMullen Valley.

The basin is drained by Centennial Wash, an ephemeral tributary of the Gila River that heads about 20 miles east of Aguila and discharges from the basin through "the Narrows" into the Harquahala basin.<sup>25</sup> Elevations in the McMullen Valley basin range from 5,720 feet above sea level atop Harquahala Peak to approximately 1,700 feet above mean sea level at "the Narrows". Elevation of the McMullen Valley floor typically ranges from 1,900 to 2,200 feet.<sup>7</sup>

Within McMullen Valley are the communities of Aguila, Wenden, and Salome. The latter two communities had a combined population of 2,246 permanent residents in 2000.<sup>1</sup> Agriculture is the main industry although the area is increasingly a destination for retirees either as permanent residents or, more often, seasonal visitors.



Approximately 14,600 acres were farmed in 2007 of which 79 percent were flood irrigated and 21 percent drip irrigated.<sup>7</sup> Crops grown in 2007 included melons (60 percent), cotton (19 percent), sorghum (8 percent) and minor amounts of chilies, oats, alfalfa, corn, guayule, and pistachio. Irrigated agriculture has spatially decreased in the basin with 34,200 acres farmed as recently as 1980.<sup>25</sup>

There are two irrigation districts: the Aguila Irrigation District and the McMullen Valley Water Conservation District. All wells and ditches are privately owned in both districts as neither has a consolidated distribution system. Both districts were formed in order to potentially contract water and power from the Colorado River; groundwater is currently the only water supply.<sup>7</sup>

The City of Phoenix purchased and/or leased approximately 16,000 acres of farmland in the Salome/Wenden area in 1986 with plans to eventually pump and transport groundwater from this area to Phoenix to use as for municipal purposes.<sup>24</sup> Until this groundwater transfer occurs, Phoenix is managing these farm properties by leasing them to farm operators.<sup>24</sup> About 93 percent of private lands in the McMullen Valley Water Conservation District are owned by the City of Phoenix.<sup>24</sup>

**Climate** – The arid climate of the McMullen Valley basin is characterized by hot summers and mild winters. Precipitation occurs predominantly as rain in either late summer, localized monsoon thunderstorms or in winter as widespread, low intensity rain that sometimes includes snow especially at higher elevations. Annual precipitation averages about 7 inches.<sup>25</sup>

**Geology** - The McMullen Valley basin is characterized by two principal physiographic features:

- mountainous regions, and
- an intermontane, sediment-filled basin.

The mountains consist of relatively impermeable, granites, gneisses and variably metamorphosed-tounmetamorphosed sedimentary and volcanic rocks.<sup>24</sup> The basin-fill is comprised largely of unconsolidated to consolidated sedimentary rocks that have been eroded from the surrounding mountains and deposited within the basin.<sup>24</sup>

Early basin sedimentation was characterized by deposition of alluvial fans by streams emanating from the bordering mountains into a subsiding basin. Over time, these alluvial fans coalesced to form a broad bajada projecting from the mountains toward the center of the basin, with sediments becoming finer towards the center of the basin.<sup>24</sup>

Although through-flowing drainage occurred at this time, basin stratigraphy suggests it was eventually replaced by internal drainage characteristic of a closed basin. With no external drainage, bajada deposition was joined by a lake-depositional environment, accumulating evaporite, and fine-grained sand, silt, and clay deposits as thick as 1,100 feet. Subsequently, external drainage was re-established and alluvial deposition once again became the dominant form of basin sedimentation.<sup>24</sup>

#### HYDROLOGY

#### Lithology

McMullen Valley's long sedimentation history has resulted in depositional sediments over 5,000 feet thick in its western portion increasing to over 6,000 feet in the eastern portion. <sup>6</sup> The basin-fill has been classified into three main stratigraphic units based on lithologic characteristics and depositional environments. These units are, in order of deposition:

- the Alluvial Fan/Fanglomerate Unit,
- the Lake-bed Unit, and
- the Upper Alluvial Fill Unit.<sup>24</sup>

Alluvial Fan/Fanglomerate Unit –These deposits are the main water bearing unit in the basin, directly overlie bedrock, and are found throughout the basin. Comprised of sediments that created the bajada during the early formation of the basin, the lithology of the unit ranges from relatively coarse, heterogeneous detritus on the flanks of the mountains to somewhat finer, better sorted material toward the center of the basin.<sup>24</sup>

This unit is composed primarily of poorly sorted gravel and coarse sand but may locally contain clay, silt and fine sand. Cementation, which significantly affects its hydraulic characteristics, varies greatly within this unit but appears to be more prevalent in the eastern portion of the basin. The maximum thickness of this unit is unknown but gravity data suggest it's greater than 5,000 feet thick. <sup>24</sup> Two cones of depression near Aguila and in the Salome/Wenden area that have been in existence since at least 1958, limit the flow of groundwater. <sup>9,25</sup>

The cones of depression create a groundwater divide between Aguila and Wenden that trends northwest to southeast in the vicinity of the county line. The boundary between the coalescing cones of depression is not exactly known because of the scarcity of water level data in the middle of the basin; its location will also vary slightly with time due to pumping rates in the two subareas.<sup>24</sup>

Lake-Bed Unit - These deposits were created when events perhaps related to the Basin and Range structural formation closed the basin causing it to internally. This created a playa-lake drain environment which resulted in a deposition of finegrained sediments including clay, silt, and very fine sand; with local evaporate deposits, near the center of the subsiding basin. <sup>24</sup> Lake-bed deposits have a relatively low permeability and form a confining layer above the Regional aquifer. This unit, however, may contain local saturated sand lenses which are sufficiently permeable to act as perched aquifers. A few wells have produced limited amounts of poorquality water from these sand lenses.<sup>24</sup>

The lake-bed unit covers about 140 square miles of the western portion of the basin. It is not found to the east of the La Paz-Maricopa County line. The unit has a maximum recorded thickness of 1,100 feet approximately four miles northwest of the town of Wenden. A hydrologic cross-section extending from three miles northeast of Wenden through Salome to Harcuvar is shown in Diagram 1.<sup>24</sup>

Notably, this unit is absent at one location within the main body of the deposit approximately a mile northwest of the town of Salome. The lack of any lake-bed deposits at this location may be due to either the presence of a topographic high at this location at the time of sedimentation or due to post-depositional erosion and removal of the unit.<sup>24</sup>

**Upper Alluvial Fill Unit** – This unit consists largely of unconsolidated gravel, sand, silt and clay deposited by Centennial Wash and its tributaries after the re-establishment of external drainage. Where the Upper Alluvial Fill unit overlies the Lake-Bed unit, the contact is generally evident. However, in the absence of lake-bed sediments, the contact between it and the underlying Alluvial Fan/Fanglomerate Unit is less pronounced.<sup>24</sup>

Found throughout the basin, this unit's thickness varies from near zero near the mountain fronts to at least 560 feet near the town of Aguila and is typically 100-200 feet thick in western McMullen Valley, decreasing to less than 50 feet thick in southeastern Harrisburg Valley.<sup>24</sup> In the Aguila area, the Upper

Alluvial Fill unit has, for the most part, been dewatered from heavy pumping for irrigation use.<sup>25</sup>

#### Groundwater

In the McMullen Valley basin, the land surface gradient is greater than the slope of the water table; thus the depth to water increases northeastward along the valley floor and laterally from the axis of the valley.<sup>6</sup> Recharge occurs only by rainfall and agricultural return flows; consequently groundwater withdrawals by agriculture greatly exceed recharge and cause depletion of the aquifer.<sup>6</sup>

**Aquifers** – Seven unique aquifers were identified in the McMullen Valley basin based on water quality data collected for this report in conjunction with previously published hydrologic studies.

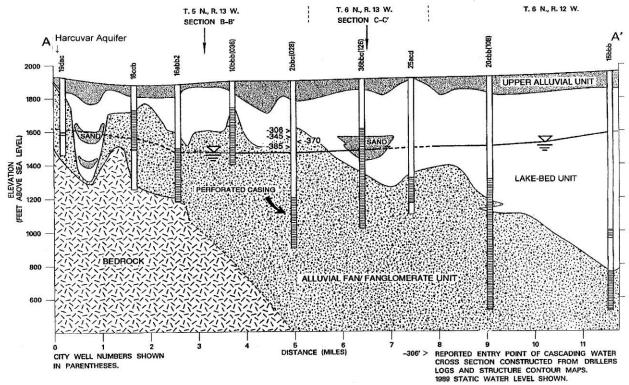
- The main aquifer system is the Regional aquifer which can be subdivided into Eastern, Western and Southern aquifers based on water quality data, groundwater flow patterns and geologic structures.
- Two aquifers of more limited productivity were also identified: the Forepaugh aquifer located in the extreme eastern portion of the basin and the Harcuvar aquifer located in the extreme western portion of the basin.
- A Perched aquifer is located above the Western Regional aquifer separated by an aquitard composed of fine-grained lake deposits. There is a half-mile gap in the aquitard about a mile northeast of the town of Salome where the Perched and Western Regional aquifers merge to form the Mixed aquifer of limited spatial extent.

**Regional Aquifer** – Found throughout McMullen Valley, the aquifer consists of the Alluvial Fan/Fangolmerate Unit found underlying the Lakebed Unit in the western portion of the basin and underlying the Upper Alluvial Fill Unit in the eastern portion of the basin.

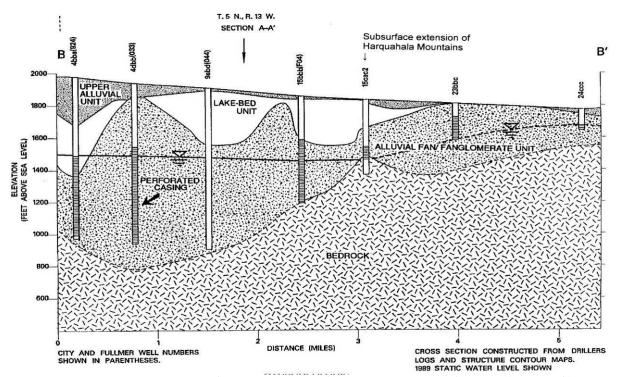
Stratigraphic data suggest that the Regional aquifer is mainly composed of coalescing heterogeneous deposits of poorly sorted, coarse gravel and sand. Although thought to be hydrologically connected, the sediments heterogeneous nature results in highly variable hydraulic properties throughout the aquifer. Intergranular cementation also impacts the aquifer's hydraulic properties. In general, cementation increases in the basin from west to east, around the basin's margins, and in proximity to bedrock. <sup>24</sup> Available water quality data indicate, for the most part, that it contains good quality water suitable for drinking and irrigation uses. <sup>24</sup> For the purposes of this study, the Regional Aquifer is divided into three areas:

- Eastern Regional Aquifer: consisting of basin areas roughly lying east of the La Paz-Maricopa County line, a cone of depression caused by irrigation pumping near Aguila has essentially divided the basin near where the Lake-bed Unit peters out. <sup>24, 25</sup>
- Western Regional Aquifer: consisting of basin areas roughly lying west of the La Paz-Maricopa County line, a cone of depression caused by irrigation pumping near Aguila has essentially divided the basin near where the Lake-bed Unit begins.<sup>24, 25</sup>
- Southern Regional Aquifer: is present in basin areas lying south of the western subsurface extension of the Harquahala Mountains that partially retards the movement of groundwater from the Harrisburg Valley area to the zone of heavy pumping around Salome and Wenden (Diagram 2).<sup>24</sup> This subsurface structural extension becomes indistinct further west near the community of Harcuvar.

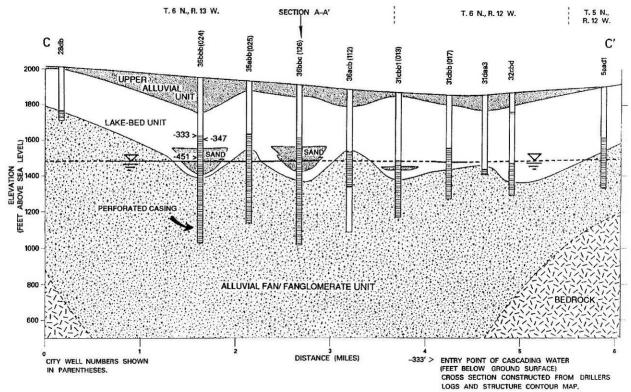
**Forepaugh Aquifer** – For the purposes of this report, this aquifer is considered separate from the Eastern Regional aquifer. The steep hydraulic gradient between the Forepaugh and Eastern Regional aquifers is evidence of their poor connection. <sup>43</sup> The aquifer is found near the community of Forepaugh in the easternmost area of the McMullen Valley basin. The aquifer is separated from the Eastern Regional aquifer by some low hills (in Townships 7 and 8 North, Range 8 West) and an unnamed ridge that extends southeastward from the northeast end of the Harcuvar Mountains. <sup>43</sup>


**Harcuvar Aquifer** – For the purposes of this report, this aquifer is considered separate from the Southern and Western Regional aquifers. The aquifer is found near the community of Harcuvar located three miles west of Salome along U.S. Highway 60. Groundwater flow is limited in the Alluvial Fan/Fanglomerate Unit from Harcuvar to areas to the east (see Diagram 1) by the thickness of the Lake-bed Unit which extends almost down to bedrock. **Perched Aquifer** – Present only in the western portion of the basin, this shallow aquifer includes isolated, water-bearing sand lenses within the Lakebed Unit and water-bearing zones within the overlying Upper Alluvial Fill Unit. The Perched aquifer system is not a significant water source and little information is known about the occurrence and movement of water within it. <sup>24</sup> However, since it is composed of discontinuous sand and gravel lenses, the Perched aquifer may actually be a system composed of several aquifers that may not all be hydrologically connected. <sup>24</sup>

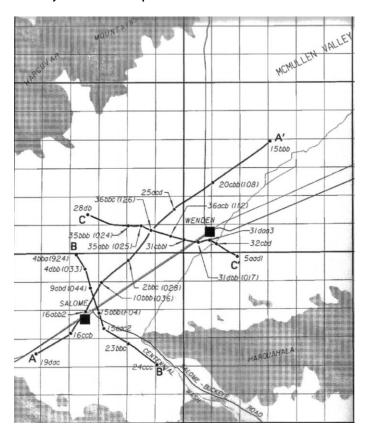
Natural recharge to the perched aquifer is the result of percolation from the ephemeral Centennial Wash and its tributaries. However, most recharge comes from deep percolation of excess irrigation water as well as minor amounts of wastewater discharged from septic systems. As such, the water quality in the Perched aquifer is generally poor.<sup>24</sup>


**Mixed Aquifer** – In general, the Regional and Perched aquifers appear to act independently of one another relative to applied hydraulic stresses. This suggests that the intervening Lake-bed Unit is an effective barrier to the downward percolation of ground water, effectively isolating the two aquifers.

However, short circuiting between the two aquifers takes place within some wells that penetrate both aquifers. This occurs through perforations or breaks in the well casing within the Perched aquifer system which allows water to enter the casing and cascade down the well to the Regional aquifer. The total annual volume of this leakage between aquifers is not known but has been estimated to be as much as 40 acre-feet per leaking well.<sup>24</sup>


Stratigraphic data suggest that the Regional aquifer also receives natural recharge from the Perched aquifer in certain locations. These areas include along the perimeter of the Lake-bed Unit as water from the Perched aquifer spills over the edge into the Regional aquifer. <sup>24</sup> For the purposes of this study, the effects of water from the Perched aquifer entering the Regional aquifer through cascading wells and along the perimeter of the Lake-bed Unit was not considered separately. However another area where water from the two aquifers merges was analyzed in the study.




**Diagram 1.** Hydrologic cross section of western McMullen Valley stretching from Harcuvar (on the left) through Salome to four miles northeast of Wenden.<sup>24</sup>



**Diagram 2.** Hydrologic cross section of Harrisburg Valley from two miles north of Salome (on the left) to three miles southeast of the town.<sup>24</sup>



**Diagram 3.** Hydrologic cross section of western McMullen Valley stretching from four miles north of Salome (on the left) southeast to a point one mile southeast of Wenden.<sup>24</sup>



**Diagram 4.** Map showing the paths of three hydrologic cross sections in western McMullen Valley.<sup>24</sup>

The Perched and Regional aquifers appear to be in direct contact in a one-half mile gap where lake-bed sediments are absent about one mile northeast of Salome.<sup>24</sup> Since the Perched aquifer has a higher static water level, groundwater tends to drain downward from the Perched aquifer to the Western Regional aquifer in this area. Although the phrase, "Persistent Degraded Water Quality Zone" has been used to describe the area by previous studies, the area will be called the Mixed aquifer in this report.<sup>24</sup>

#### Wells

Groundwater development in the McMullen Valley basin began with mining, stock and domestic wells in the early 1900s. Substantial increases in groundwater pumping did not occur until the mid-1950s with the development of irrigated agriculture. Wells for irrigation increased in numbers through the 1970s until tapering off in the 1980s.<sup>24</sup> The majority of wells are located near the axis of McMullen Valley where agricultural activities and the communities of Aguila, Salome and Wenden are located. There are also many domestic wells throughout Harrisburg Valley. On the flanks of the basin, only a few wells for stock or domestic use, are found.

The oldest wells in the western part of the basin were shallow wells that obtained water predominantly from the Perched aquifer system. As deeper wells began to be drilled, many were perforated in both the Perched and Regional aquifers. More recently drilled wells are perforated only in the Regional aquifer.

Cross-contamination between aquifers occurs via cascading water in wells perforated in both aquifers. Other cross-contamination causes include breaks in the well casing, voids behind the casing, and by leakage through filter packs surrounding the casing in rotary-drilled wells.<sup>24</sup> The City of Phoenix estimates that at least 15 of its 42 wells blend water from both the Perched and Regional aquifers based on well construction data and video surveys.<sup>24</sup>

Irrigation wells tapping the Regional aquifer produce 150 to 3,500 gallons per minute (gpm); the wide range in production is attributed to encountering more permeable beds of sand and gravel within the aquifer and to individual well characteristics.<sup>25</sup>

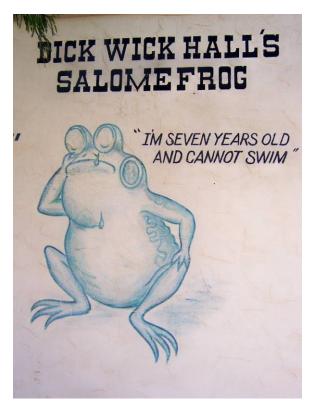
Although groundwater withdrawals have occurred since the early 1900s, withdrawals increased greatly beginning in the 1950s. The most significant withdrawals occurred between 1971 and 1981 with an annual average of 123,000 acre-feet. Production peaked at 144,000 acre-feet in 1981.<sup>24</sup> Groundwater

pumping in the basin averaged 89,100 acre-feet annually from 2001 to 2005.<sup>7</sup>

#### **INVESTIGATION METHODS**

ADEQ collected samples from 124 groundwater sites to characterize regional groundwater quality in the McMullen Valley basin (Map 2). Specifically, the following types of samples were collected:

- oxygen and deuterium isotopes at 124 sites
- inorganic suites at 124 sites
- radon at 79 sites
- radionuclide at 50 sites
- perchlorate at 24 sites
- pesticides at 2 sites


Twelve (12) additional sites were also sampled only for physical parameters and nitrate.

No bacteria sampling was conducted because microbiological contamination problems in groundwater are often transient and subject to a variety of changing environmental conditions including soil moisture content and temperature.<sup>18</sup>

#### **Sampling Strategy**

The study focused on regional groundwater quality conditions that are large in scale and persistent in time. It was originally designed as a targeted investigation to determine nitrate concentrations in groundwater in Salome where residences use septic systems for domestic wastewater disposal. The data collected would assist in determining if existing conditions or trends in nitrogen loading to the aquifer will cause or contribute to an exceedance of the Aquifer Water Quality Standard for nitrate. This would potentially warrant the establishment of a Nitrogen Management Area to control nitrogen loading to groundwater as described in the Arizona Administrative Code R18-9-A317(c). <sup>3</sup> After the nitrate data in Salome was collected, the study was expanded into an ambient baseline study of the entire McMullen Valley basin.

Wells pumping groundwater for irrigation, stock, municipal and domestic purposes were sampled for this study, provided each well met ADEQ requirements. A well was considered suitable for sampling if the owner gave permission to sample, if a sampling point existed near the wellhead, and if the well casing and surface seal appeared to be intact and undamaged.<sup>2, 8</sup> Other factors such as construction information were preferred but not essential. Some



**Figure 1.** The largest community in McMullen Valley, Salome was founded by Dick Wick Hall in 1904. Publisher of the *Salome Sun*, his humorous columns about life in the desert were so popular they were syndicated in 28 newspapers around the country from 1925-26. The Salome Frog is one of his most famous characters, an amphibian seven years old who cannot swim because of a lack of water.

Despite McMullen Valley appearing to be a dry, desolate place, the basin has tremendous water resources. ADWR estimates that 15,100,000 acre-feet is stored in aquifers.<sup>6</sup> This factor led to the City of Phoenix purchasing and/or leasing almost 16,000 acres of farmland in the Salome-Wenden area in 1986.<sup>24</sup> Eventually, Phoenix plans to pump groundwater from the area and convey it in the Central Arizona Project to use for municipal purposes.<sup>7</sup>



**Figure 2** – McMullen Valley occasionally has prolific surface water flows such as when Centennial Wash in the foreground flooded the nearby community of Wenden during heavy precipitation in mid-January, 2010. Flows in Centennial Wash peaked at 9,938 cubic feet per second. Farm fields and the Harcuvar Mountains lie to the north of the inundated community.



**Figure 3** – ADEQ's Jason Jones samples a domestic well in the Forepaugh aquifer located east of Aguila. Many sites in the Forepaugh aquifer had health-based exceedances of fluoride and arsenic.



**Figure 4** – The Harcuvar Mountains are the backdrop to an irrigation well located east of the town of Wenden in the Western Regional aquifer. Groundwater from the well is used to grow alfalfa. Samples from the 850-foot deep well revealed very soft water that exceeded health-based water quality standards for arsenic and fluoride.



**Figure 5** – Like many deep wells pumping from the Eastern Regional aquifer, Well #23 located along U.S. Highway 60 east of the community of Aguila is a productive irrigation well pumping at over 1,500 gallons per minute.



**Figure 6** – A 180-feet-deep well provides water for domestic uses near irrigated farmland north of Salome. The shallow well draws water from the Perched aquifer which is separated from the underlying Western Regional aquifer by a layer of fine sediments that restrict groundwater flow.<sup>24</sup> Samples from the well exceeded health-based water quality standards for arsenic nitrate and selenium; concentrations of chloride, fluoride, sulfate and TDS exceeded aesthetics-based water quality guidelines. The Harcuvar Mountains are in the background.

requests to sample wells were denied because of fears of how the data would be used; other wells were not sampled because they lacked proper sampling ports.

For this study, ADEQ personnel sampled 124 wells with the following types of pumps: submersible pumps (82 wells), turbine pumps (40 wells) and hand bailers (2 monitoring wells). In addition, of the 12 wells sampled only for physical parameters and nitrate, 9 wells had submersible pumps and 3 wells had turbine pumps.

Submersible pumps produce water for municipal, domestic and/or stock use, turbine pumps produce water for irrigation use and bailers were used with monitoring wells that were installed to delineate contamination plumes from underground storage tanks. Additional information on groundwater sample sites is compiled from the Arizona Department of Water Resources (ADWR) well registry in Appendix A.<sup>7</sup>

#### **Sample Collection**

The sample collection methods for this study conformed to the *Quality Assurance Project Plan* (QAPP)<sup>2</sup> and the *Field Manual For Water Quality Sampling*. <sup>8</sup> While these sources should be consulted as references to specific sampling questions, a brief synopsis of the procedures involved in collecting a groundwater sample is provided.

After obtaining permission from the owner to sample the well, the volume of water needed to purge the well of three bore-hole volumes was calculated from well log and on-site information. Physical parameters—temperature, pH, and specific conductivity—were monitored at least every five minutes using an YSI multi-parameter instrument.

To assure obtaining fresh water from the aquifer, after three bore volumes had been pumped and physical parameter measurements had stabilized within 10 percent, a sample representative of the aquifer was collected from a point as close to the wellhead as possible. In certain instances, it was not possible to purge three bore volumes. In these cases, at least one bore volume was evacuated and the physical parameters had stabilized within 10 percent.

Sample bottles were filled in the following order:

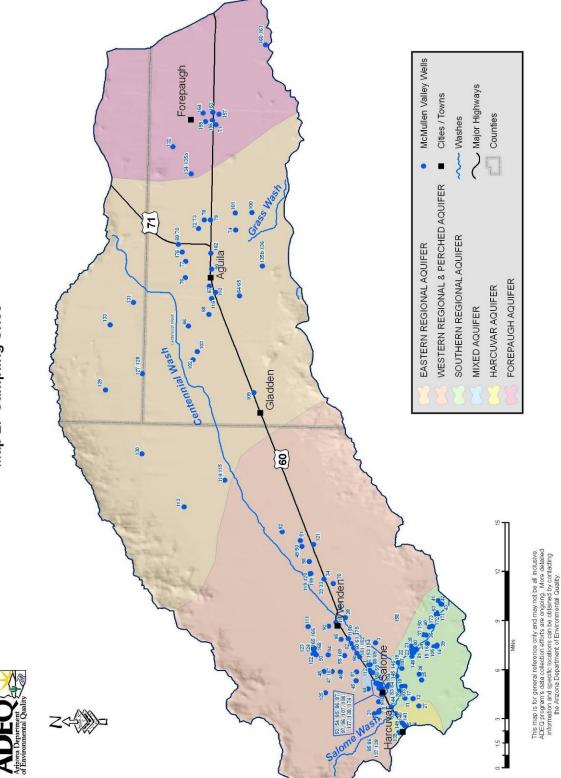
- 1. Pesticides
- 2. Perchlorate
- 3. Radon
- 4. Inorganic
- 5. Radionuclide
- 6. Isotope

Pesticide samples were collected in unpreserved, 1 gallon amber glass containers.

Perchlorate and isotope samples were collected in unpreserved, 500 ml polyethylene bottles.

Radon samples were collected in two unpreserved, 40-ml clear glass vials. Radon samples were carefully filled to minimize volatilization and subsequently sealed so that no headspace remained.<sup>16</sup>

The inorganic constituents were collected in three, 1liter polyethylene bottles: samples to be analyzed for dissolved metals were delivered to the laboratory unfiltered and unpreserved where they were subsequently filtered into bottles using a positive pressure filtering apparatus with a 0.45 micron ( $\mu$ m) pore size groundwater capsule filter and preserved with 5 ml nitric acid (70 percent). Samples to be analyzed for nutrients were preserved with 2 ml sulfuric acid (95.5 percent). Samples to be analyzed for other parameters were unpreserved.<sup>27</sup>


Radionuclide samples were collected in two collapsible 4-liter plastic containers and preserved with 5 ml nitric acid to reduce the pH below 2.5 su. <sup>4</sup> All samples were kept at 4°C with ice in an insulated cooler, with the exception of the isotope and radiochemistry samples. Chain of custody procedures were followed in sample handling. Samples for this study were collected during 16 field trips between April 2008 and June 2009.

#### Laboratory Methods

The pesticide and inorganic analyses for this study were conducted by the Arizona Department of Health Services (ADHS) Laboratory in Phoenix, Arizona. Inorganic sample splits analyses were conducted by Test America Laboratory in Phoenix, Arizona. A complete listing of inorganic parameters, including laboratory method, EPA water method and Minimum Reporting Level (MRL) for each laboratory is provided in Table 1.

Perchlorate samples were analyzed by the Texas Tech University Environmental Services Laboratory in Lubbock, Texas.

Radon samples were analyzed by Radiation Safety Engineering, Inc. Laboratory in Chandler, Arizona.



Map 2: Sampling Sites

Radionuclide samples were analyzed by the Arizona Radiation Agency Laboratory in Phoenix and radiochemistry splits by the Radiation Safety Engineering, Inc. Laboratory. The following EPA SDW protocols were used: Gross alpha was analyzed, and if levels exceeded 5 picocuries per liter (pCi/L), then radium-226 was measured. If radium-226 exceeded 3 pCi/L, radium-228 was measured. If gross alpha levels exceeded 15 pCi/L initially, then radium-226/228 and total uranium were measured.<sup>4</sup>

Isotope samples were analyzed by the Department of Geosciences, Laboratory of Isotope Geochemistry located at the University of Arizona in Tucson, Arizona.

#### DATA EVALUATION

#### **Quality Assurance**

Quality-assurance (QA) procedures were followed and quality-control (QC) samples were collected to quantify data bias and variability for the McMullen Valley basin study. The design of the QA/QC plan was based on recommendations included in the *Quality Assurance Project Plan (QAPP)* and *the Field Manual For Water Quality Sampling*.<sup>2, 8</sup> Types and numbers of QC samples collected for this study are as follows:

- Inorganic: (15 duplicates, 9 splits, and 10 blanks).
- Nitrate only: (2 duplicates and 1 split)
- Radionuclide: (no QA/QC samples)
- Radon: (1 duplicate)
- Isotope: (1 duplicate)
- Perchlorate (2 duplicates)

Based on the QA/QC results, sampling procedures and laboratory equipment did not significantly affect the groundwater quality samples.

**Blanks** - Equipment blanks for inorganic analyses were collected to ensure adequate decontamination of sampling equipment, and that the de-ionized water was not impacting the groundwater quality sampling.<sup>8</sup> Equipment blank samples for major ion and trace element analyses were collected by filling unpreserved bottles with de-ionized water. Equipment blank samples for nutrient analyses were collected with de-ionized water and preserved with sulfuric acid.

Systematic contamination was judged to occur if more than 50 percent of the equipment blank samples

contained measurable quantities of a particular groundwater quality constituent. The equipment blanks contained specific conductivity (SC)-lab and turbidity contamination at levels expected due to impurities in the source water used for the samples. The blank results indicated systematic contamination with SC (detected in 8 equipment blanks) and turbidity (detected in 8 equipment blanks). Single detections of nitrate (0.055 mg/L) and phosphorus (0.021 mg/L) also occurred.

For SC, the eight equipment blanks had a mean (3.4 uS/cm) which was less than 1 percent of the SC mean concentration for the study. The SC detections may be explained in two ways: water passed through a deionizing exchange unit will normally have an SC value of at least 1 uS/cm, and carbon dioxide from the air can dissolve in de-ionized water with the resulting bicarbonate and hydrogen ions imparting the observed conductivity.<sup>27</sup>

For turbidity, equipment blanks had a mean level (0.0476 ntu) less than 1 percent of the turbidity median level for the study. Testing indicates turbidity is present at 0.01 ntu in the de-ionized water supplied by the ADHS laboratory, and levels increase with time due to storage in ADEQ carboys.<sup>27</sup>

**Duplicate Samples** - Duplicate samples are identical sets of samples collected from the same source at the same time and submitted to the same laboratory. Data from duplicate samples provide a measure of variability from the combined effects of field and laboratory procedures.<sup>8</sup> Duplicate samples were collected from sampling sites that were believed to have elevated constituent concentrations as judged by field SC values. Fifteen duplicate inorganic samples and two nitrate duplicate samples were collected in this study.

Analytical results indicate that of the 36 constituents examined, 25 had concentrations above the MRL. The maximum variation between duplicates was less than 10 percent (Table 2). The only exceptions were turbidity (60 percent), TKN (52 percent), and barium (17 percent). The median variation between duplicates was less than 2 percent except with carbonate (23 percent), chromium (11 percent), turbidity and TKN (9 percent), and total phosphorus (5 percent).

The lone isotope and radon duplicate samples showed less than a 1 percent maximum variation between duplicates as did one of the two perchlorate duplicate samples. However, the other perchlorate sample had results of 0.336 ug/L and < 0.05 ug/L.

| Constituent      | Instrumentation          | ADHS / Test America<br>Water Method | ADHS / Test America<br>Minimum Reporting Level |
|------------------|--------------------------|-------------------------------------|------------------------------------------------|
|                  | Physical Parameters a    | nd General Mineral Charac           | teristics                                      |
| Alkalinity       | Electrometric Titration  | SM2320B / M2320 B                   | 2 / 6                                          |
| SC (uS/cm)       | Electrometric            | EPA 120.1/ M2510 B                  | / 2                                            |
| Hardness         | Titrimetric, EDTA        | SM 2340 C / SM2340B                 | 10 / 1                                         |
| Hardness         | Calculation              | SM 2340 B                           |                                                |
| pH (su)          | Electrometric            | SM 4500 H-B                         | 0.1                                            |
| TDS              | Gravimetric              | SM2540C                             | 10 / 10                                        |
| Turbidity (NTU)  | Nephelometric            | EPA 180.1                           | 0.01 / 0.2                                     |
|                  | -                        | Major Ions                          |                                                |
| Calcium          | ICP-AES                  | EPA 200.7                           | 1 / 2                                          |
| Magnesium        | ICP-AES                  | EPA 200.7                           | 1 / 0.25                                       |
| Sodium           | ICP-AES                  | EPA 200.7                           | 1 / 2                                          |
| Potassium        | Flame AA                 | EPA 200.7                           | 0.5 / 2                                        |
| Bicarbonate      | Calculation              | Calculation / / M2320 B             | 2                                              |
| Carbonate        | Calculation              | Calculation / / M2320 B             | 2                                              |
| Chloride         | Potentiometric Titration | SM 4500 CL D / E300                 | 5 / 2                                          |
| Sulfate          | Colorimetric             | EPA 375.4 / E300                    | 1 / 2                                          |
|                  |                          | Nutrients                           |                                                |
| Nitrate as N     | Colorimetric             | EPA 353.2                           | 0.02 / 0.1                                     |
| Nitrite as N     | Colorimetric             | EPA 353.2                           | 0.02 / 0.1                                     |
| Ammonia          | Colorimetric             | EPA 350.1/ EPA 350.3                | 0.02 / 0.5                                     |
| TKN              | Colorimetric             | EPA 351.2 / M4500-<br>NH3           | 0.05 / 1.3                                     |
| Total Phosphorus | Colorimetric             | EPA 365.4 / M4500-PB                | 0.02 / 0.1                                     |

Table 1. Laboratory Water Methods and Minimum Reporting Levels Used in the Study

All units are mg/L except as noted Source  $^{16, 27}$ 

| Constituent      | Instrumentation               | ADHS / Test America<br>Water Method | ADHS / Test America<br>Minimum Reporting Level |
|------------------|-------------------------------|-------------------------------------|------------------------------------------------|
|                  | Т                             | race Elements                       |                                                |
| Aluminum         | ICP-AES                       | EPA 200.7                           | 0.5                                            |
| Antimony         | Graphite Furnace AA           | EPA 200.8                           | 0.005 / 0.003                                  |
| Arsenic          | Graphite Furnace AA           | EPA 200.9 / EPA 200.8               | 0.005 / 0.001                                  |
| Barium           | ICP-AES                       | EPA 200.8 / EPA 200.7               | 0.005 to 0.1 / 0.01                            |
| Beryllium        | Graphite Furnace AA           | EPA 200.9 / EPA 200.8               | 0.0005 / 0.001                                 |
| Boron            | ICP-AES                       | EPA 200.7                           | 0.1 / 0.2                                      |
| Cadmium          | Graphite Furnace AA           | EPA 200.8                           | 0.0005 / 0.001                                 |
| Chromium         | Graphite Furnace AA           | EPA 200.8 / EPA 200.7               | 0.01 / 0.01                                    |
| Copper           | Graphite Furnace AA           | EPA 200.8 / EPA 200.7               | 0.01 / 0.01                                    |
| Fluoride         | Ion Selective Electrode       | SM 4500 F-C                         | 0.1 / 0.4                                      |
| Iron             | ICP-AES                       | EPA 200.7                           | 0.1 / 0.05                                     |
| Lead             | Graphite Furnace AA           | EPA 200.8                           | 0.005 / 0.001                                  |
| Manganese        | ICP-AES                       | EPA 200.7                           | 0.05 / 0.01                                    |
| Mercury          | Cold Vapor AA                 | SM 3112 B / EPA 245.1               | 0.0002 / 0.0002                                |
| Nickel           | ICP-AES                       | EPA 200.7                           | 0.1 / 0.01                                     |
| Selenium         | Graphite Furnace AA           | EPA 200.9 / EPA 200.8               | 0.005 / 0.002                                  |
| Silver           | Graphite Furnace AA           | EPA 200.9 / EPA 200.7               | 0.001 / 0.01                                   |
| Thallium         | Graphite Furnace AA           | EPA 200.9 / EPA 200.8               | 0.002 / 0.001                                  |
| Zinc             | ICP-AES                       | EPA 200.7                           | 0.05                                           |
|                  | l                             | Radionuclides                       |                                                |
| Gross alpha beta | Gas flow proportional counter | EPA 900.0                           | varies                                         |
| Co-Precipitation | Gas flow proportional counter | EPA 00.02                           | varies                                         |
| Radium 226       | Gas flow proportional counter | EPA 903.0                           | varies                                         |
| Radium 228       | Gas flow proportional counter | EPA 904.0                           | varies                                         |
| Uranium          | Kinnetic phosporimeter        | EPA Laser<br>Phosphorimetry         | varies                                         |

| Table 1. Laboratory Water Methods and Minimum Reporting Levels Used in the StudyContinued | Table 1. Labo | ratory Water Methods a | and Minimum Reporting 1 | Levels Used in the StudyC | Continued |
|-------------------------------------------------------------------------------------------|---------------|------------------------|-------------------------|---------------------------|-----------|
|-------------------------------------------------------------------------------------------|---------------|------------------------|-------------------------|---------------------------|-----------|

All units are mg/L Source<sup>14, 16, 27</sup>

| Donomotor      | N. I   | Difference in Percent |                |               | Difference in Concentrations |         |        |
|----------------|--------|-----------------------|----------------|---------------|------------------------------|---------|--------|
| Parameter      | Number | Minimum               | Maximum        | Median        | Minimum                      | Maximum | Median |
|                | ]      | Physical Param        | eters and Gene | ral Mineral ( | Characteristics              |         |        |
| Alk., Total    | 15     | 0 %                   | 3 %            | 0 %           | 0                            | 10      | 0      |
| SC (uS/cm)     | 15     | 0 %                   | 1 %            | 0 %           | 0                            | 100     | 0      |
| Hardness       | 15     | 0 %                   | 8 %            | 1 %           | 0                            | 20      | 1      |
| pH (su)        | 15     | 0 %                   | 1 %            | 0 %           | 0                            | 0.1     | 0      |
| TDS            | 15     | 0 %                   | 7 %            | 0 %           | 0                            | 100     | 0      |
| Turb. (ntu) *  | 13     | 0 %                   | 60 %           | 9 %           | 0                            | 8       | 0.5    |
|                |        | -                     | Major 1        | lons          |                              |         |        |
| Bicarbonate    | 15     | 0 %                   | 3 %            | 0 %           | 0                            | 20      | 0      |
| Carbonate      | 3      | 0 %                   | 23 %           | 7 %           | 0                            | 13      | 0.1    |
| Calcium        | 15     | 0 %                   | 8 %            | 0 %           | 0                            | 2       | 0      |
| Magnesium      | 11     | 0 %                   | 7 %            | 1 %           | 0                            | 3       | 0.1    |
| Sodium         | 15     | 0 %                   | 5 %            | 0 %           | 0                            | 20      | 0      |
| Potassium *    | 14     | 0 %                   | 3 %            | 1 %           | 0                            | 0.1     | 0.01   |
| Chloride       | 15     | 0 %                   | 5 %            | 0 %           | 0                            | 40      | 0      |
| Sulfate        | 15     | 0 %                   | 4 %            | 0 %           | 0                            | 100     | 0      |
|                | ,      |                       | Nutrie         | nts           | ·                            |         |        |
| Nitrate (as N) | 15     | 0 %                   | 9 %            | 0 %           | 0                            | 4       | 0.1    |
| Phosphorus *   | 3      | 5 %                   | 9 %            | 5 %           | 0.003                        | 0.01    | 0.0008 |
| TKN *          | 4      | 3 %                   | 52 %           | 9 %           | 0.02                         | 0.34    | 0.03   |
|                |        |                       | Trace Ele      | ments         |                              |         |        |
| Arsenic        | 9      | 0 %                   | 4 %            | 1 %           | 0                            | 0.001   | 0.0002 |
| Barium *       | 12     | 0 %                   | 17 %           | 2 %           | 0                            | 0.011   | 0.001  |
| Boron          | 14     | 0 %                   | 3 %            | 0 %           | 0                            | 0.01    | 0      |
| Chromium       | 11     | 0 %                   | 11 %           | 1 %           | 0                            | 0.009   | 0.001  |
| Fluoride       | 15     | 0 %                   | 6 %            | 0 %           | 0                            | 2.0     | 0      |
| Selenium       | 5      | 0 %                   | 5 %            | 1 %           | 0                            | 0.002   | 0.001  |

## Table 2. Summary Results of McMullen Valley Basin Duplicate Samples from the ADHS Laboratory

All concentration units are mg/L except as noted with certain physical parameters. \* Potassium, turbidity, copper, total phosphorus, TKN, and barium each were detected near the MRL in one duplicate sample and not detected in the other duplicate sample.

Split Samples - Split samples are identical sets of samples collected from the same source at the same time that are submitted to two different laboratories to check for laboratory differences.<sup>8</sup> Nine inorganic split samples were collected and analytical results were evaluated by examining the variability in constituent concentrations in terms of absolute levels and as the percent difference. One additional split sample was collected and analyzed for only nitrate. Analytical results indicate that of the 36 constituents examined only 25 had concentrations above MRLs for both ADHS and Test America laboratories. The split results of the 25 constituents having concentrations above MRLs are provided in Table 3. The maximum variation between splits was less than 15 percent. The only exceptions were turbidity (69 percent), selenium (52 percent), potassium (42 percent), chloride (26 percent), nitrate (25 percent), carbonate (21 percent) and chromium (20 percent).

Split samples were also evaluated using the nonparametric Sign test to determine if there were any significant ( $p \le 0.05$ ) differences between ADHS laboratory and Test America laboratory analytical results.<sup>20</sup> Both chloride and potassium concentrations reported by the Test America laboratory were significant higher than those reported by the ADHS laboratory; sodium followed a similar trend but just missed being significantly higher (Sign test,  $p \le$ 0.05).

**Resample Sites** – During the course of the study, five sites originally sampled for nitrate were resampled at a later date for the full suite of inorganic constituents. Nitrate concentrations were evaluated using the Wilcoxon test to determine if there were any significant ( $p \le 0.05$ ) differences between sample periods. No significant differences were found in nitrate concentrations between the sample periods (Wilcoxon test,  $p \le 0.05$ ).

Based on the results of blanks, duplicates and the split sample collected for this study, no significant QA/QC problems were apparent with the groundwater quality collected for this study.

#### **Data Validation**

The analytical work for this study was subjected to the following five QA/QC correlations. <sup>21</sup> The analytical work conducted for this study was considered valid based on the quality control samples and the QA/QC correlations.

Cation/Anion Balances - In theory, water samples exhibit electrical neutrality. Therefore, the sum of

milliquivalents per liter (meq/L) of cations should equal the sum of meq/L of anions. However, this neutrality rarely occurs due to unavoidable variation inherent in all water quality analyses. Still, if the cation/anion balance is found to be within acceptable limits, it can be assumed there are no gross errors in concentrations reported for major ions.<sup>21</sup>

Overall, cation/anion meq/L balances of McMullen Valley basin samples were significantly correlated (regression analysis,  $p \le 0.01$ ). Of the 124 samples collected, 64 (or 52 percent) were within +/-2 percent.

Because of low cation/high anion sums, 45 samples (or 36 percent) had > 2 percent differences with 17 samples having 5 to 10 percent differences and 2 samples having a greater than 10 percent difference with 12 percent being the highest difference. The samples with low cation sums were generally collected on field trips conducted between April -May 2009. The ADHS laboratory was alerted but found no reason for the differences.<sup>27</sup>

Because of high cation/low anion sums, 15 samples (or 12 percent) had > 2 percent differences with 3 samples having 5 to 10 percent differences and 3 samples having a greater than 10 percent difference with 30 percent being the highest difference. The samples with high cation sums were generally collected on field trips conducted between July 2008 and January 2009. The ADHS laboratory indicated some chloride concentrations may have been reported as non-detect by the PC-Titration system when the concentration was likely greater than 10 mg/L.<sup>27</sup>

**SC/TDS** - The SC and TDS concentrations measured by contract laboratories were significantly correlated as were field-SC and TDS concentrations (regression analysis, r = 0.99, p  $\leq$  0.01). The TDS concentration in mg/L should be from 0.55 to 0.75 times the SC in µS/cm for groundwater up to several thousand TDS mg/L.<sup>21</sup> Groundwater high in bicarbonate and chloride will have a multiplication factor near the lower end of this range; groundwater high in sulfate may reach or even exceed the higher factor. The relationship of TDS to SC becomes undefined for groundwater with very high or low concentrations of dissolved solids.<sup>21</sup>

**Hardness** - Concentrations of laboratory-measured and calculated values of hardness were significantly correlated (regression analysis, r = 0.99,  $p \le 0.01$ ). Hardness concentrations were calculated using the following formula: [(Calcium x 2.497) + (Magnesium x 4.118)].<sup>21</sup>

| Constitution      | Name   | Difference in Percent |                  | Difference       | Difference in Levels |              |
|-------------------|--------|-----------------------|------------------|------------------|----------------------|--------------|
| Constituents      | Number | Minimum               | Maximum          | Minimum          | Maximum              | Significance |
|                   | Ph     | ysical Parameter      | s and General Mi | neral Characteri | stics                |              |
| Alkalinity, total | 9      | 0 %                   | 5 %              | 0                | 20                   | ns           |
| SC (uS/cm)        | 9      | 0 %                   | 4 %              | 0                | 150                  | ns           |
| Hardness          | 7      | 0 %                   | 13 %             | 0                | 10                   | ns           |
| pH (su)           | 9      | 0 %                   | 13 %             | 0.05             | 1.77                 | ns           |
| TDS               | 9      | 0 %                   | 7 %              | 0                | 400                  | ns           |
| Turbidity (ntu)   | 5      | 7 %                   | 69 %             | 0.06             | 44                   | ns           |
|                   |        |                       | Major Ions       |                  |                      |              |
| Calcium           | . 9    | 0 %                   | 9 %              | 0                | 10                   | ns           |
| Magnesium         | 8      | 0 %                   | 4 %              | 0                | 2                    | ns           |
| Sodium            | 9      | 0 %                   | 5 %              | 0                | 10                   | ns           |
| Potassium         | 8      | 2 %                   | 42 %             | 0.1              | 2.2                  | **           |
| Carbonate         | 2      | 11 %                  | 21 %             | 10               | 26                   | ns           |
| Chloride          | 9      | 0 %                   | 26 %             | 0                | 80                   | **           |
| Sulfate           | 9      | 0 %                   | 7 %              | 0                | 90                   | ns           |
|                   |        |                       | Nutrients        |                  |                      |              |
| Nitrate as N      | 10     | 0 %                   | 25 %             | 0.01             | 36                   | ns           |
|                   |        |                       | Trace Elements   |                  |                      |              |
| Arsenic           | 5      | 1 %                   | 5 %              | 0.0001           | 0.001                | ns           |
| Barium            | 7      | 2 %                   | 11 %             | 0.001            | 0.03                 | ns           |
| Boron             | 5      | 3 %                   | 13 %             | 0.05             | 0.4                  | ns           |
| Chromium          | 7      | 0 %                   | 20 %             | 0                | 0.008                | ns           |
| Fluoride          | 9      | 0 %                   | 8 %              | 0                | 0.8                  | ns           |
| Selenium          | 3      | 16 %                  | 52%              | 0.0062           | .0011                | ns           |
| Zinc              | 1      | 5 %                   | 5 %              | 0.007            | 0.007                | ns           |

## Table 3. Summary Results of McMullen Valley Basin Split Samples From ADHS/Test America Labs

 $\begin{array}{l} ns = No \ significant \ difference \\ ** = Significant \ difference \ at \ p \leq 0.01 \ or \ 99 \ \% \ confidence \ level \\ * = Significant \ difference \ at \ p \leq 0.05 \ or \ 95 \ \% \ confidence \ level \\ All \ units \ are \ mg/L \ except \ as \ noted \end{array}$ 

**SC** - The SC measured in the field at the time of sampling was significantly correlated with the SC measured by contract laboratories (regression analysis, r = 0.99,  $p \le 0.01$ ).

**pH** - The pH value is closely related to the environment of the water and is likely to be altered by sampling and storage.<sup>21</sup> Still, the pH values measured in the field using a YSI meter at the time of sampling were significantly correlated with laboratory pH values (regression analysis, r = 0.91,  $p \le 0.01$ ).

**Temperature** / **GW Depth** /**Well Depth** – Groundwater temperature measured in the field was compared to well depth and groundwater depth. Groundwater temperature should increase with depth, approximately 3 degrees Celsius with every 100 meters or 328 feet. <sup>9</sup> Well depth was significantly correlated with temperature (regression analysis, r = 0.69,  $p \le 0.01$ ); so was groundwater depth (regression analysis, r = 0.54,  $p \le 0.01$ ).

#### **Statistical Considerations**

Various methods were used to complete the statistical analyses for the groundwater quality data of the study. All statistical tests were conducted on a personal computer using SYSTAT software.<sup>40</sup>

**Data Normality:** Data associated with 29 constituents were tested for non-transformed normality using the Kolmogorov-Smirnov one-sample test with the Lilliefors option.<sup>11</sup> Results of this test revealed that none of the 29 constituents examined were normally distributed.

**Spatial Relationships:** The non-parametric Kruskal-Wallis test using untransformed data was applied to investigate the hypothesis that constituent concentrations from groundwater sites having different aquifers were the same. The Kruskal-Wallis test uses the differences, but also incorporates information about the magnitude of each difference.<sup>40</sup> The null hypothesis of identical mean values for all data sets within each test was rejected if the probability of obtaining identical means by chance was less than or equal to 0.05.

If the null hypothesis was rejected for any of the tests conducted, the Tukey method of multiple comparisons on the ranks of data was applied. The Tukey test identified significant differences between constituent concentrations when compared to each possibility with each of the tests.<sup>21</sup> Both the Kruskal-Wallis and Tukey tests are not valid for data sets with

greater than 50 percent of the constituent concentrations below the MRL.<sup>20</sup>

**Correlation Between Constituents:** In order to assess the strength of association between constituents, their concentrations were compared to each other using the Pearson Correlation Coefficient test.

The Pearson correlation coefficient varies between -1 and +1; with a value of +1 indicating that a variable can be predicted perfectly by a positive linear function of the other, and vice versa. A value of -1 indicates a perfect inverse or negative relationship. The results of the Pearson Correlation Coefficient test were then subjected to a probability test to determine which of the individual pair wise correlations were significant.<sup>40</sup>

Like Kruskal-Wallis and Tukey tests, the Pearson test is not valid for data sets with greater than 50 percent of the constituent concentrations below the MRL.<sup>20</sup>



**Figure 7** – This 970-foot, domestic well tapping the Western Regional aquifer met all water quality standards; only water quality guidelines for pH-field and fluoride were exceeded.



**Figure 8** – ADEQ's Dennis Turner samples a 512foot deep irrigation well located in Harrisburg Valley south of Salome. Samples from the well exceeded water quality guidelines for TDS and fluoride. The radon concentration (6,894 pCi/L) exceeded the proposed health-based standards for radon (300 and 4,000 pCi/L). This was one of highest radon concentrations ever sampled in Arizona; two nearby wells had still higher levels. The nearby granite geology may influence the high radon concentrations.



**Figure 9** – ADEQ's Dennis Turner samples a 470foot deep well in Harrisburg Valley. Although most samples collected from wells in the Southern Regional aquifer met health-based water quality standards, samples from this well exceeded the 10 mg/L standard for nitrate. Water quality guidelines for chloride, fluoride, sulfate and TDS were also exceeded. A radon sample had concentrations of 10,241 piC/L the highest level ever recorded by the ADEQ ambient monitoring program.



**Figure 10** – ADEQ's Dennis Turner samples irrigation Well #23 located north of Salome. Like many deep wells pumping from the northwest portion of the Western Regional aquifer, samples from this well met all water quality standards and guidelines.



**Figure 11** – This 500-foot well provides water to irrigate the grounds of a trailer park just northeast of Salome. Unfortunately, due to the absence at this location of the Lake-bed Unit, the Regional aquifer merges with the poor quality water in the Perched aquifer to form the Mixed aquifer. As a result, health-based water quality standards were exceeded for arsenic and nitrate in samples from this well. In addition, water quality guidelines for chloride, sulfate and TDS were exceeded.



**Figure 12** – ADEQ's Aleks Argals, Travis Barnum, and Brent Mitchell assist in sampling this 700-foot well between Salome and Wenden. Although the well's location appears to be outside the Mixed aquifer, arsenic, nitrate and fluoride exceeded water quality standards; pH-field, chloride, sulfate and TDS exceeded water quality guidelines. Water cascading from the Perched aquifer down the well may be impacting the sample's water quality.



**Figure 13** – This stock well located several miles east of Wenden just south of U.S Highway 60 had the highest fluoride concentrations found in the basin at 22 mg/L. Other wells in the Wenden area, especially those east of town exceeded the healthbased water quality standard for fluoride (4.0 mg/L) with those closest to Harquahala Mountains having the most elevated concentrations. Samples from these wells were depleted in calcium allowing large concentrations of fluoride to occur if a source for fluoride ions is available for dissolution.<sup>28</sup>



**Figure 14** – The Harcuvar aquifer is created by the Lake-bed Unit which extends almost down to bedrock and effectively limits groundwater flow in the Alluvial Fan/Fanglomerate Unit to areas to the east the vicinity of the community.<sup>24</sup> Groundwater in the aquifer has significantly different isotope values than other sample sites in the basin. Six samples collected from wells in this area each had this unique isotope value range. Aside from oxygen and deuterium isotope values, constituent concentrations in the Harcuvar aquifer were not significantly different from those in the three Regional and Forepaugh aquifers (Kruskal-Wallis with Tukey test,  $p \le 0.05$ ).

#### **GROUNDWATER SAMPLING RESULTS**

#### Water Quality Standards/Guidelines

The ADEQ ambient groundwater program characterizes regional groundwater quality. An important determination ADEQ makes concerning the collected samples is how the analytical results compare to various drinking water quality standards.

ADEQ used three sets of drinking water standards that reflect the best current scientific and technical judgment available to evaluate the suitability of groundwater in the basin for drinking water use:

- Federal Safe Drinking Water (SDW) Primary Maximum Contaminant Levels (MCLs). These enforceable health-based standards establish the maximum concentration of a constituent allowed in water supplied by public systems.<sup>38</sup>
- State of Arizona Aquifer Water Quality Standards. These apply to aquifers that are classified for drinking water protected use. All aquifers within Arizona are currently classified and protected for drinking water use. These enforceable State standards are identical to the federal Primary MCLs.<sup>3</sup>
- Federal SDW Secondary MCLs. These nonenforceable aesthetics-based guidelines define the maximum concentration of a constituent that can be present without imparting unpleasant taste, color, odor, or other aesthetic effects on the water.<sup>38</sup>

Health-based drinking water quality standards (such as Primary MCLs) are based on the lifetime consumption (70 years) of two liters of water per day and, as such, are chronic not acute standards.<sup>38</sup> Exceedances of specific constituents for each groundwater site is found in Appendix B.

**Inorganic Constituent Results** - Of the 124 sites sampled for the full suite of inorganic constituents in the McMullen Valley study, 33 (27 percent) met all SDW Primary and Secondary MCLs.

Health-based Primary MCL water quality standards and State aquifer water quality standards for inorganic constituents were exceeded at 54 of the 124 sites (44 percent; Map 3; Table 4).

Constituents exceeding Primary MCLs include arsenic (24 sites) (Map 4), fluoride (27 sites) (Map

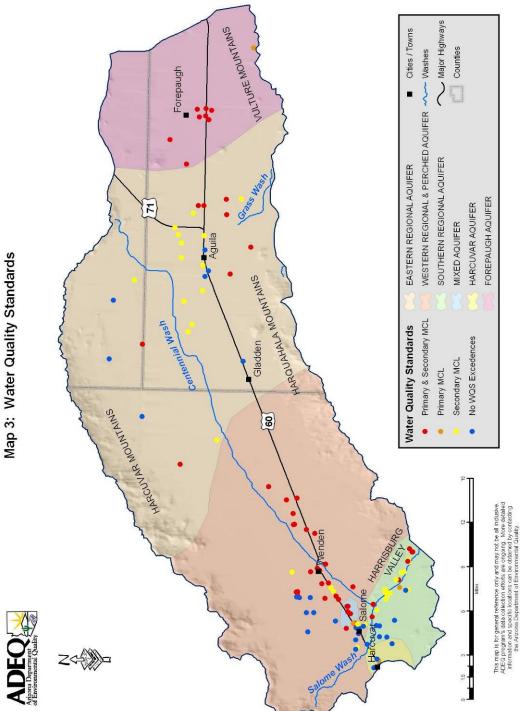
5), nitrate (25 sites) (Map 6), and selenium (2). Potential health effects of these chronic Primary MCL exceedances are provided in Table 4.  $^{3, 38}$ 

Aesthetics-based Secondary MCL water quality guidelines were exceeded at 87 of 124 sites (70 percent; Map 3; Table 5).

Constituents above Secondary MCLs include chloride (13 sites), fluoride (69 sites), manganese (2 sites), field-pH (19 sites), sulfate (8 sites), and TDS (31 sites) (Map 7). Potential impacts of these Secondary MCL exceedances are provided in Table  $5.^{38}$ 

In addition, of the 12 sites sampled for only nitrate, 11 (92 percent) met nitrate Primary MCL standards and 10 (83 percent) met pH Secondary MCL standards.

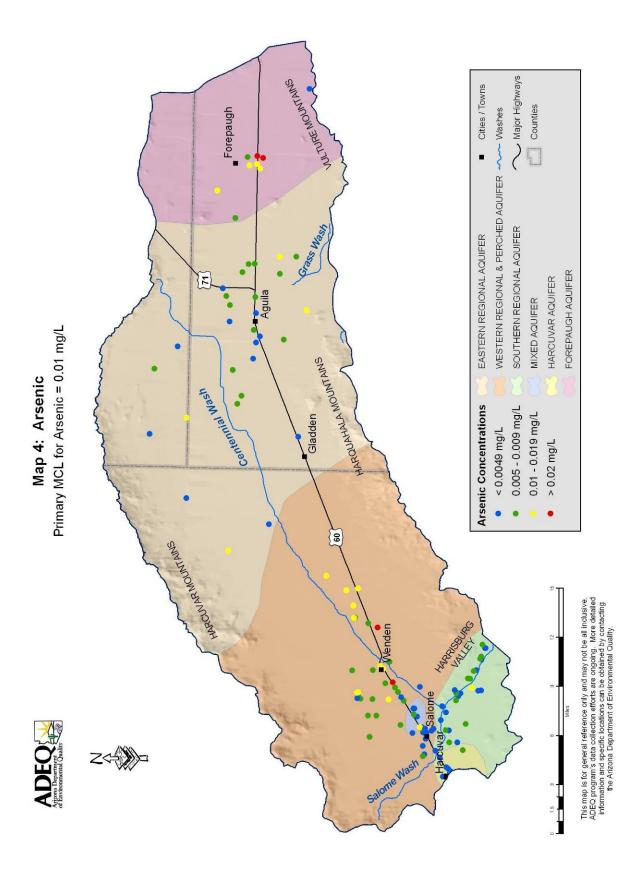
**Radiochemical Constituent Results** - Health based Primary MCL water quality standards and State aquifer water quality standards were exceeded at 9 of the 50 sites (18 percent; Map 8; Table 4) at which a radionuclide sample was collected.

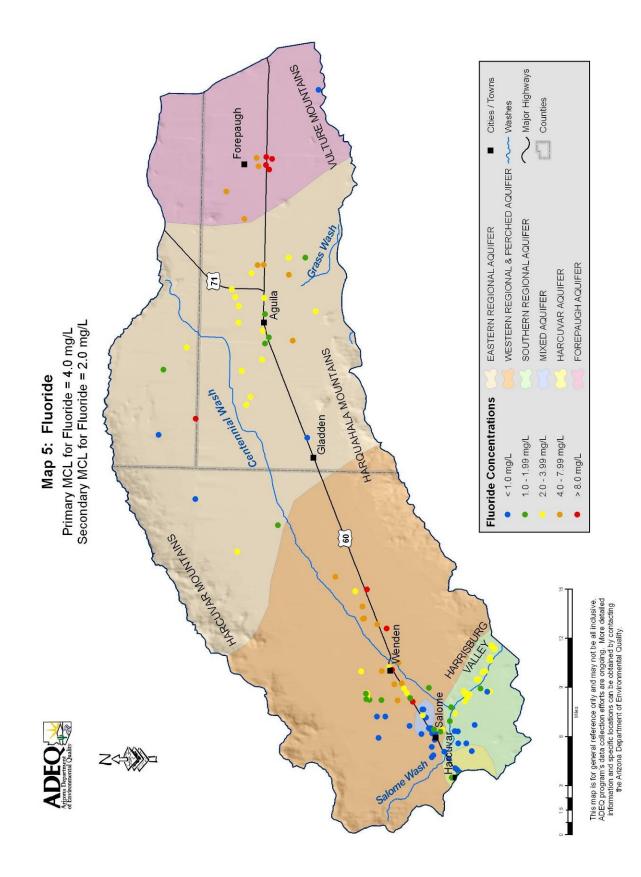

Of the 50 sites sampled for radionuclides, 9 sites (18 percent) exceeded gross alpha Primary MCL standards and 4 (8 percent) exceeded uranium Primary MCL standards.

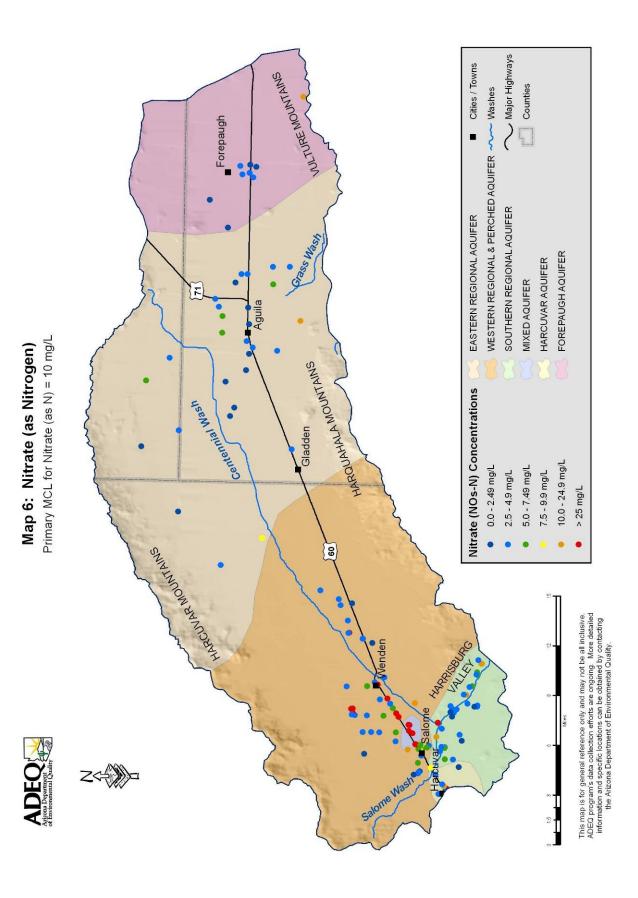
Radon is a naturally occurring, intermediate breakdown product from the radioactive decay of uranium-238 to lead-206.<sup>38</sup>

Of the 79 sites sampled for radon, 3 exceeded the proposed 4,000 picocuries per liter (pCi/L) standard that would apply if Arizona establishes an enhanced multimedia program to address the health risks from radon in indoor air.

Sixty-eight (68) sites exceeded the proposed 300 pCi/L standard for states that would apply if Arizona doesn't develop a multimedia program (Map 9).<sup>38</sup>


**Organic Constituent Results** There were no positive detections of any of the 20 organochlorine compounds analyzed in the 2 pesticides samples collected from shallow wells near irrigated fields.

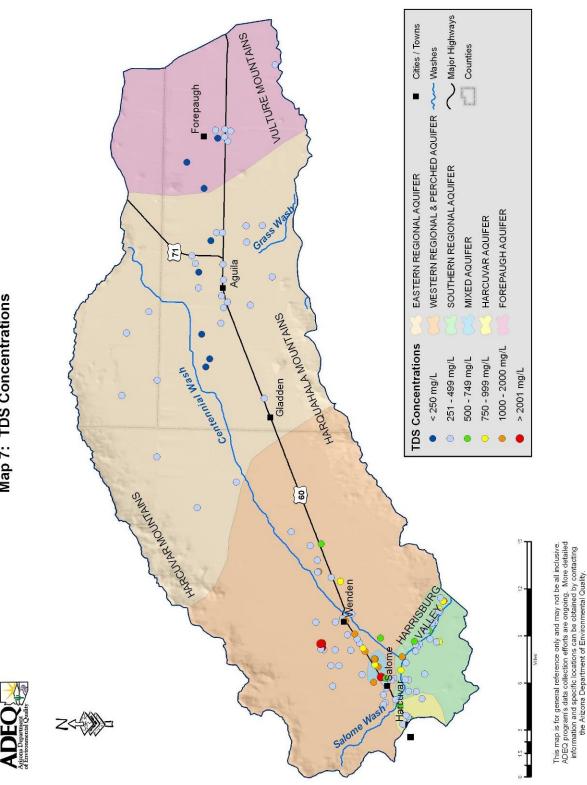




| Constituent                  | Primary<br>MCL | Number of Sites<br>Exceeding<br>Primary MCL | Highest<br>Concentration | Potential Health Effects of<br>MCL Exceedances * |  |  |  |  |
|------------------------------|----------------|---------------------------------------------|--------------------------|--------------------------------------------------|--|--|--|--|
| Nutrients                    |                |                                             |                          |                                                  |  |  |  |  |
| Nitrite (NO <sub>2</sub> -N) | 1.0            | 0                                           | -                        | -                                                |  |  |  |  |
| Nitrate (NO <sub>3</sub> -N) | 10.0           | 25                                          | 122                      | Methemoglobinemia                                |  |  |  |  |
| Trace Elements               |                |                                             |                          |                                                  |  |  |  |  |
| Antimony (Sb)                | 0.006          | 0                                           | -                        | -                                                |  |  |  |  |
| Arsenic (As)                 | 0.01           | 24                                          | 0.110                    | Dermal and nervous system toxicity               |  |  |  |  |
| Barium (Ba)                  | 2.0            | 0                                           | -                        | -                                                |  |  |  |  |
| Beryllium (Be)               | 0.004          | 0                                           | -                        | -                                                |  |  |  |  |
| Cadmium (Cd)                 | 0.005          | 0                                           | -                        | -                                                |  |  |  |  |
| Chromium (Cr)                | 0.1            | 0                                           | -                        | -                                                |  |  |  |  |
| Copper (Cu)                  | 1.3            | 0                                           | -                        | -                                                |  |  |  |  |
| Fluoride (F)                 | 4.0            | 27                                          | 22                       | Skeletal damage                                  |  |  |  |  |
| Lead (Pb)                    | 0.015          | 0                                           | -                        | -                                                |  |  |  |  |
| Mercury (Hg)                 | 0.002          | 0                                           | -                        | -                                                |  |  |  |  |
| Nickel (Ni)                  | 0.1            | 0                                           | -                        | -                                                |  |  |  |  |
| Selenium (Se)                | 0.05           | 2                                           | 0.0755                   | Circulatory problems                             |  |  |  |  |
| Thallium (Tl)                | 0.002          | 0                                           | -                        | -                                                |  |  |  |  |
| Radiochemistry Constituents  |                |                                             |                          |                                                  |  |  |  |  |
| Gross Alpha                  | 15             | 9                                           | 130                      | Cancer                                           |  |  |  |  |
| Ra-226+Ra-228                | 5              | 0                                           | -                        | -                                                |  |  |  |  |
| Radon **                     | 300            | 68                                          | 10,241                   | Cancer                                           |  |  |  |  |
| Radon **                     | 4,000          | 3                                           | 10,241                   | Cancer                                           |  |  |  |  |
| Uranium                      | 30             | 4                                           | 120                      | Cancer and kidney toxicity                       |  |  |  |  |

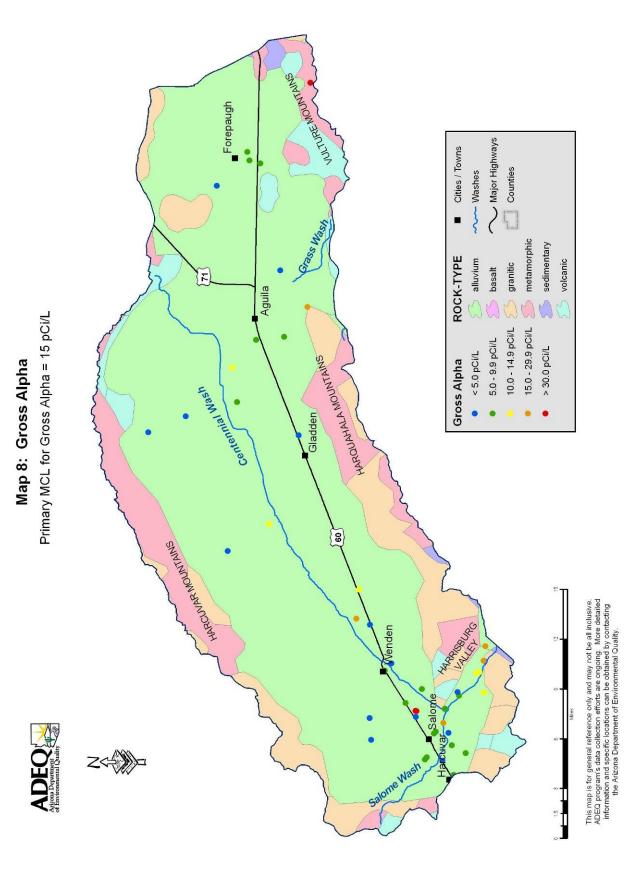
| Table 4. McMullen Valley Basin Sites Exceeding Health-Based (Primary MCL) | Water Quality |
|---------------------------------------------------------------------------|---------------|
| Standards                                                                 |               |

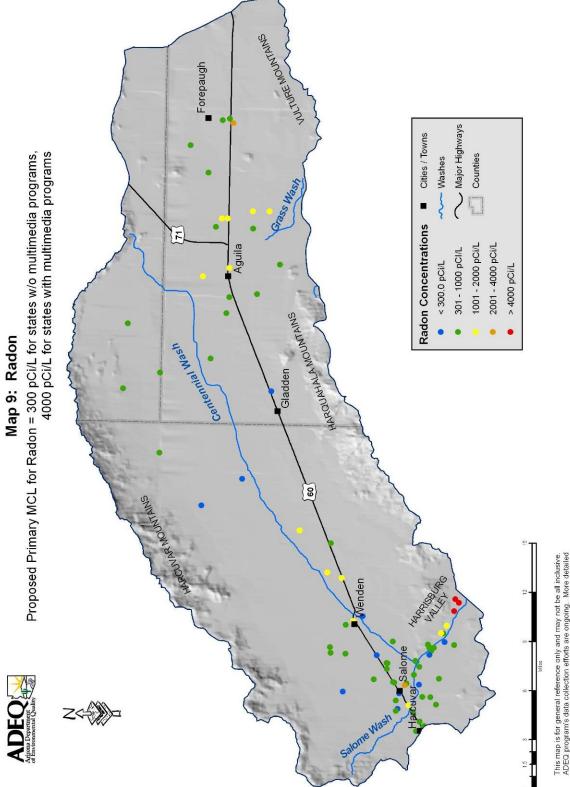
All units are mg/L except gross alpha, radium-226+228 and radon (pCi/L), and uranium (ug/L). \* Health-based drinking water quality standards are based on a lifetime consumption of two liters of water per day over a 70-year life span.<sup>39</sup> \*\* Proposed EPA Safe Drinking Water Act standards for radon in drinking water.









| Constituents               | Secondary<br>MCL | Number of Sites<br>Exceeding<br>Secondary MCLs | Concentration<br>Range<br>of Exceedances | Aesthetic Effects of MCL<br>Exceedances                           |
|----------------------------|------------------|------------------------------------------------|------------------------------------------|-------------------------------------------------------------------|
|                            |                  | Physical Par                                   | rameters                                 |                                                                   |
| pH - field                 | <6.5 ;<br>>8.5   | 19                                             | 9.68                                     | slippery feel; soda taste;<br>deposits                            |
|                            |                  | General Mineral                                | Characteristics                          |                                                                   |
| TDS                        | 500              | 31                                             | 4,400                                    | hardness; deposits; colored<br>water; staining; salty taste       |
|                            |                  | Major                                          | Ions                                     |                                                                   |
| Chloride (Cl)              | 250              | 13                                             | 930                                      | Salty taste                                                       |
| Sulfate (SO <sub>4</sub> ) | 250              | 8                                              | 1,350                                    | Rotten-egg odor,<br>unpleasant taste and<br>laxative effect       |
|                            |                  | Trace Ele                                      | ements                                   |                                                                   |
| Fluoride (F)               | 2.0              | 69                                             | 22                                       | Mottling of teeth enamel                                          |
| Iron (Fe)                  | 0.3              | 0                                              | -                                        | -                                                                 |
| Manganese (Mn)             | 0.05             | 2                                              | 0.089                                    | black to brown color;<br>black staining;<br>bitter metallic taste |
| Silver (Ag)                | 0.1              | 0                                              | -                                        | -                                                                 |
| Zinc (Zn)                  | 5.0              | 0                                              | -                                        | -                                                                 |

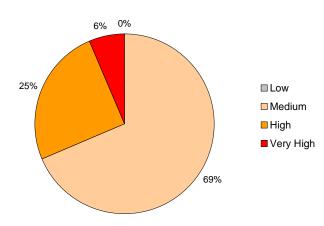

## Table 5. McMullen Valley Basin Sites Exceeding Aesthetics-Based (Secondary MCL) Water Quality Standards

All units mg/L except pH is in standard units (su). Source: <sup>38</sup>



Map 7: TDS Concentrations






This map is for general reference only and may not be all inclusive. ADE2 programs data collection efforts are ongoing. More detailed information and specific locations can be obtained by contacting the Arizona Department of Environmental Quality.

#### **Suitability for Irrigation**

The groundwater at each sample site was assessed as to its suitability for irrigation use based on salinity and sodium hazards. Excessive levels of sodium are known to cause physical deterioration of the soil and vegetation. <sup>39</sup> Irrigation water may be classified using specific conductivity (Diagram 5) and the Sodium Adsorption Ratio (Diagram 6) in conjunction with one another. <sup>39</sup>

Groundwater sites in the McMullen Valley basin display a wide range of irrigation water classifications. The 124 sample sites are divided into the following salinity hazards: low or C1 (0), medium or C2 (85), high or C3 (31), and very high or C4 (8). The 124 sample sites are divided into the following sodium or alkali hazards: low or S1 (79), medium or S2 (23), high or S3 (11), and very high or S4 (11).





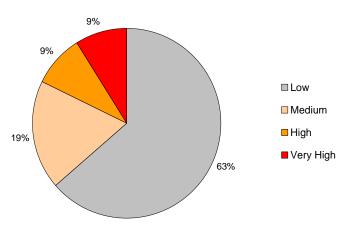



Diagram 6. Sodium Hazard of McMullen Valley Wells

#### **Analytical Results**

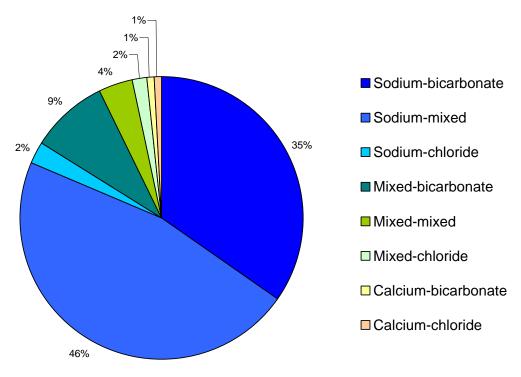
Analytical inorganic and radiochemistry results of the McMullen Valley basin sample sites are summarized (Table 6) using the following indices: minimum reporting levels (MRLs), number of sample sites over the MRL, upper and lower 95 percent confidence intervals (CI<sub>95%</sub>), median, and mean. Confidence intervals are a statistical tool which indicates that 95 percent of a constituent's population lies within the stated confidence interval.<sup>40</sup> Specific constituent information for each groundwater site is found in Appendix B.

| Constituent      | Minimum<br>Reporting<br>Limit (MRL) | # of Samples /<br>Samples<br>Over MRL | Median       | Lower 95%<br>Confidence<br>Interval | Mean          | Upper 95%<br>Confidence<br>Interval |
|------------------|-------------------------------------|---------------------------------------|--------------|-------------------------------------|---------------|-------------------------------------|
|                  |                                     | Phys                                  | ical Paramet | ers                                 |               |                                     |
| Temperature (C)  | 0.1                                 | 134 / 134                             | 28.6         | 28.3                                | 28.9          | 29.5                                |
| pH-field (su)    | 0.01                                | 136 / 136                             | 7.94         | 7.93                                | 8.05          | 8.10                                |
| pH-lab (su)      | 0.01                                | 124 / 124                             | 8.20         | 8.22                                | 8.20          | 8.33                                |
| Turbidity (ntu)  | 0.01                                | 124 / 121                             | 0.11         | 0.44                                | 1.24          | 2.04                                |
|                  |                                     | General M                             | ineral Chara | cteristics                          |               |                                     |
| T. Alkalinity    | 2.0                                 | 124 / 124                             | 145          | 153                                 | 164           | 176                                 |
| Phenol. Alk.     | 2.0                                 | 124 / 27                              |              | > 50% of a                          | lata below MR | L                                   |
| SC-field (uS/cm) | N/A                                 | 124 / 124                             | 662          | 800                                 | 945           | 1090                                |
| SC-lab (uS/cm)   | N/A                                 | 124 / 124                             | 638          | 776                                 | 931           | 1086                                |
| Hardness-lab     | 10.0                                | 124 / 114                             | 82           | 98                                  | 131           | 164                                 |
| TDS              | 10.0                                | 124 / 124                             | 390          | 481                                 | 588           | 695                                 |
|                  |                                     |                                       | Major Ions   |                                     |               |                                     |
| Calcium          | 5.0                                 | 124 / 124                             | 19           | 26                                  | 35            | 45                                  |
| Magnesium        | 1.0                                 | 124 / 106                             | 7.5          | 8.6                                 | 11.4          | 14.2                                |
| Sodium           | 5.0                                 | 124 / 124                             | 102          | 116                                 | 145           | 175                                 |
| Potassium        | 0.5                                 | 124 / 121                             | 2.5          | 2.5                                 | 2.9           | 3.2                                 |
| Bicarbonate      | 2.0                                 | 124 / 124                             | 170          | 178                                 | 190           | 201                                 |
| Carbonate        | 2.0                                 | 124 / 27                              |              | > 50% of a                          | lata below MR | L                                   |
| Chloride         | 1.0                                 | 124 / 123                             | 48           | 77                                  | 103           | 130                                 |
| Sulfate          | 10.0                                | 124 / 124                             | 48           | 68                                  | 98            | 128                                 |
|                  |                                     |                                       | Nutrients    |                                     |               |                                     |
| Nitrate (as N)   | 0.02                                | 136 / 136                             | 3.7          | 7.1                                 | 10.1          | 13.0                                |
| Nitrite (as N)   | 0.02                                | 124 / 5                               |              | > 50% of a                          | lata below MR | L                                   |
| TKN              | 0.05                                | 124 / 33                              |              | > 50% of a                          | lata below MR | L                                   |
| T. Phosphorus    | 0.02                                | 124 / 23                              |              | > 50% of a                          | lata below MR | L                                   |

## Table 6. Summary Statistics for McMullen Valley Basin Groundwater Quality Data

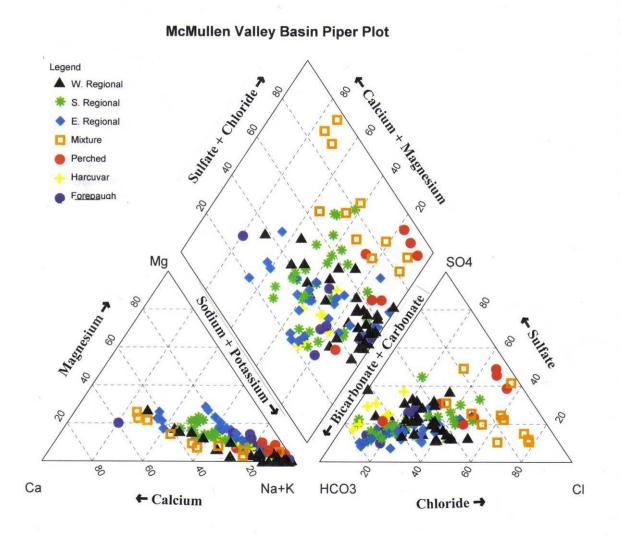
| Constituent  | Minimum<br>Reporting<br>Limit (MRL) | Number of<br>Samples<br>Over MRL | Median           | Lower 95%<br>Confidence<br>Interval | Mean      | Upper 95%<br>Confidence<br>Interval |
|--------------|-------------------------------------|----------------------------------|------------------|-------------------------------------|-----------|-------------------------------------|
|              |                                     |                                  | Trace Element    | S                                   |           |                                     |
| Antimony     | 0.005                               | 124 / 0                          |                  | > 50% of data                       | below MRL |                                     |
| Arsenic      | 0.01                                | 124 / 72                         | 0.006            | 0.006                               | 0.007     | 0.009                               |
| Barium       | 0.1                                 | 124 / 89                         | 0.037            | 0.049                               | 0.059     | 0.070                               |
| Beryllium    | 0.0005                              | 124 / 0                          |                  | > 50% of data                       | below MRL |                                     |
| Boron        | 0.1                                 | 124 / 116                        | 0.22             | 0.28                                | 0.37      | 0.45                                |
| Cadmium      | 0.001                               | 124 / 0                          |                  | > 50% of data                       | below MRL |                                     |
| Chromium     | 0.01                                | 124 / 82                         | 0.018            | 0.019                               | 0.023     | 0.026                               |
| Copper       | 0.01                                | 124 / 16                         |                  | > 50% of data                       | below MRL |                                     |
| Fluoride     | 0.20                                | 124 / 124                        | 2.4              | 2.5                                 | 3.2       | 3.9                                 |
| Iron         | 0.1                                 | 124 / 0                          |                  | > 50% of data                       | below MRL |                                     |
| Lead         | 0.005                               | 124 / 0                          |                  | > 50% of data                       | below MRL |                                     |
| Manganese    | 0.05                                | 124 / 2                          |                  | > 50% of data                       | below MRL |                                     |
| Mercury      | 0.0005                              | 124 / 0                          |                  | > 50% of data                       | below MRL |                                     |
| Nickel       | 0.1                                 | 124 / 0                          |                  | > 50% of data                       | below MRL |                                     |
| Selenium     | 0.005                               | 124 / 20                         |                  | >50% of data                        | below MRL |                                     |
| Silver       | 0.001                               | 124 / 0                          |                  | > 50% of data                       | below MRL |                                     |
| Thallium     | 0.002                               | 124 / 0                          |                  | > 50% of data                       | below MRL |                                     |
| Zinc         | 0.05                                | 124 / 15                         |                  | > 50% of data                       | below MRL |                                     |
|              |                                     | Ra                               | diochemical Cons | tituents                            |           |                                     |
| Radon*       | Varies                              | 79 / 79                          | 602              | 651                                 | 1,031     | 1,411                               |
| Gross Alpha* | Varies                              | 50 / 50                          | 6.9              | 7.0                                 | 12.9      | 18.8                                |
| Gross Beta*  | Varies                              | 50 / 50                          | 5.7              | 5.1                                 | 9.9       | 14.6                                |
| Ra-226+228*  | Varies                              | 50 / 3                           |                  | > 50% of data                       | below MRL |                                     |
| Uranium**    | Varies                              | 50 / 9                           |                  | > 50% of data                       | below MRL |                                     |
|              |                                     |                                  | Isotopes         |                                     |           |                                     |
| Oxygen-18    | Varies                              | 124 / 124                        | - 10.1           | - 10.0                              | - 9.8     | - 9.7                               |
| Deuterium    | Varies                              | 124 / 124                        | - 74.0           | - 71.9                              | - 70.5    | - 69.2                              |

### Table 6. Summary Statistics for McMullen Valley Basin Groundwater Quality Data—Continued

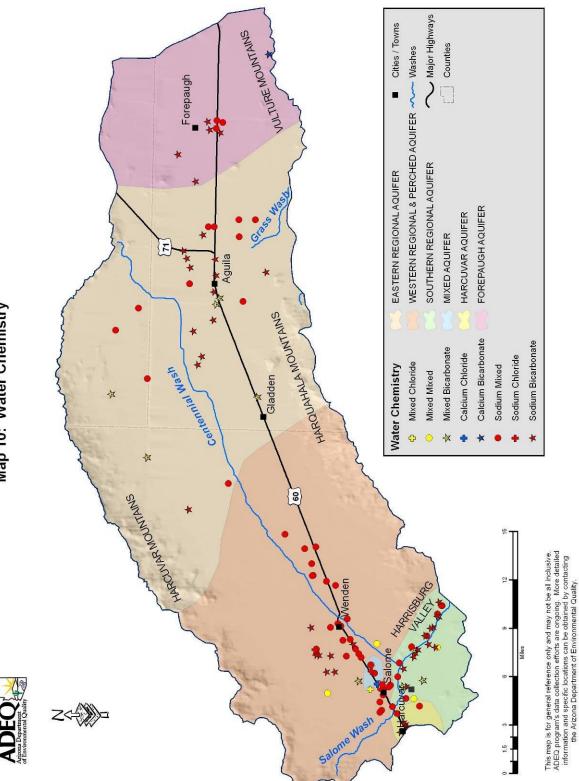

All units mg/L except where noted or \* = pCi/L, \*\* = ug/L, and \*\*\* = 0/00

### **GROUNDWATER COMPOSITION**

### **General Summary**


Groundwater in the McMullen Valley basin was predominantly of sodium-chloride or sodium-mixed chemistry (Map 10) (Diagram 7 and 8). The water chemistry at the 124 sample sites, in decreasing frequency, includes sodium-mixed (58 sites), sodiumbicarbonate (43 sites), mixed-bicarbonate (11 sites), mixed-mixed (5 sites), sodium-chloride (3 sites), mixed-chloride (2 sites) and calcium-chloride and calcium-bicarbonate (1 site apiece) (Diagram 8 – middle diagram). Of the 124 sample sites in the McMullen Valley basin, the dominant cation was sodium at 104 sites and calcium at 2 sites; at 18 sites, the composition was mixed as there was no dominant cation (Diagram 8 - left diagram).

The dominant anion was bicarbonate at 55 sites and chloride at 6 sites; at 63 sites the composition was mixed as there was no dominant anion (Diagram 8 - right diagram).




**Diagram 7. Water Chemistry of McMullen Valley Wells** 

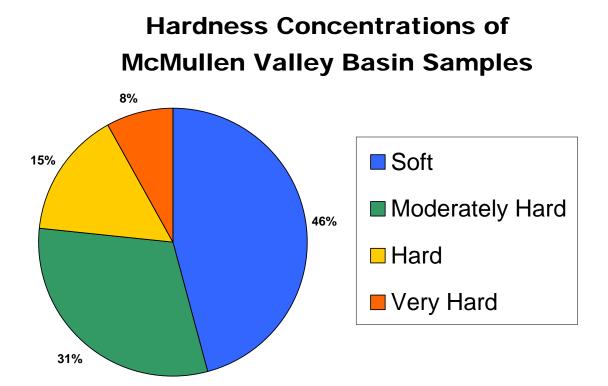
**Diagram 7** – Of the 124 inorganic sample sites in the McMullen Valley basin, the majority consist of either sodium-mixed or sodium-bicarbonate water chemistry types. Cations, or those major ions that are positively charged, are predominantly (83 percent) sodium. The others are of a mixed composition except for 2 percent of samples that are predominantly calcium. Anions, of those major ions that are negatively charged, are almost equally divided among mixed (50 percent) and bicarbonate (45 percent); the remainder consist of chloride (5 percent).



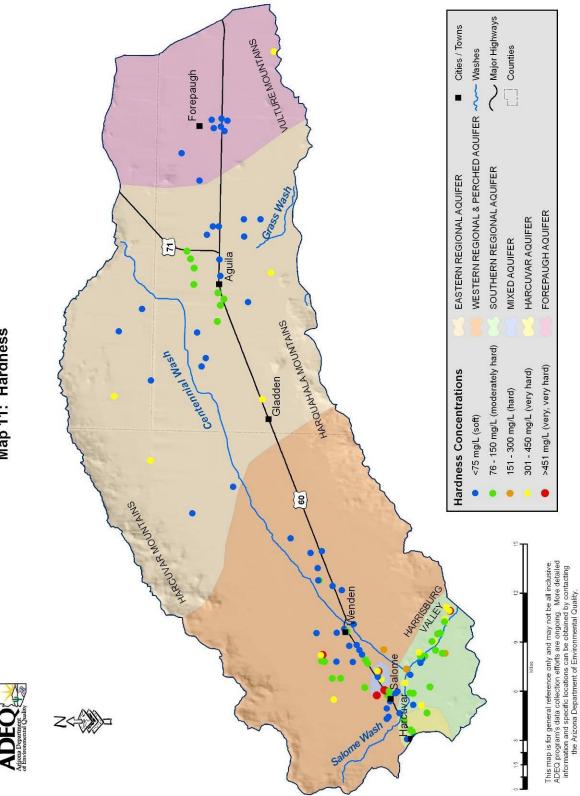
**Diagram 8** – The Piper trilinear diagram shows that all the sodium-bicarbonate samples consist of sites situated in the Harcuvar, Forepaugh, the Eastern, Southern or Western Regional aquifers. The other samples from these aquifers are also chemically similar to the sodium-bicarbonate water chemistry. In contrast, the samples collected from sites in the Mixed or Perched aquifers tend to be distinct because chloride and sulfate ions make up a high percentage of their anion sums.



Map 10: Water Chemistry


At 136 wells (124 sampled wells plus 12 wells at which only field parameters and nitrate samples were collected) levels of pH-field were *slightly alkaline* (above 7 su) at 135 sites and *slightly acidic* (below 7 su) at 1 site.<sup>19</sup> Of the 135 sites above 7 su, 63 sites had pH-field levels over 8 su and 6 sites had pH-field levels over 9 su.

TDS concentrations were considered *fresh* (below 1,000 mg/L) at 108 sites, *slightly saline* (1,000 to 3,000 mg/L) at 14 sites and *moderately saline* (3,000 to 10,000 mg/L) at 2 sites (Map 7).<sup>19</sup>


Hardness concentrations were *soft* (below 75 mg/L) at 57 sites, *moderately hard* (75 – 150 mg/L) at 38 sites, *hard* (150 – 300 mg/L) at 19 sites, and *very hard* (above 300 mg/L) at 10 sites (Diagram 9 and Map 11).<sup>15</sup>

Nitrate (as nitrogen) concentrations at most sites may have been influenced by human activities (Map 6). Nitrate concentrations were divided into natural background (0 sites at <0.2 mg/L), may or may not indicate human influence (53 sites at 0.2 - 3.0 mg/L), may result from human activities (56 sites at 3.0 - 10 mg/L), and probably result from human activities (17 sites >10mg/L).<sup>23</sup>

Most trace elements such as antimony, beryllium, cadmium, copper, iron, lead, manganese, mercury, nickel, selenium, silver, thallium and zinc were rarely–if ever—detected. Only arsenic, barium, boron, chromium and fluoride were detected at more than 20 percent of the sites.

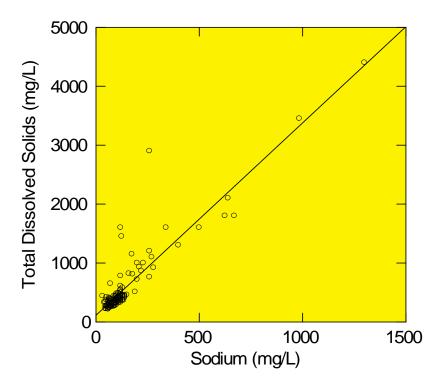


**Diagram 9** – This pie chart illustrates that almost half of the sample sites in the McMullen Valley basin were characterized by having soft water. Soft water was especially prevalent in samples collected from the Eastern and Western Regional aquifers; 10 such samples had no detection of hardness at the 10 mg/L minimum reporting level. The highest hardness concentrations tended to be at sites located in the Perched or Mixed aquifers or in the Southern Regional aquifer at the southern most sites in the Harrisburg Valley.



Map 11: Hardness

### **Constituent Co-Variation**


The co-variation of constituent concentrations was determined to examine the strength of the association. The results of each combination of constituents were examined for statisticallysignificant positive or negative correlations. A positive correlation occurs when, as the level of a constituent increases or decreases, the concentration of another constituent also correspondingly increases or decreases. A negative correlation occurs when, as the concentration of a constituent increases, the concentration of another constituent decreases, and vice-versa. A positive correlation indicates a direct relationship between constituent concentrations; a negative correlation indicates an inverse relationship.40

Several significant correlations occurred among the 124 sample sites (Table 7, Pearson Correlation

Coefficient test,  $p \le 0.05$ ). Several important correlations were identified:

- Positive correlations occurred among arsenic, boron and fluoride.
- Positive correlations occurred among nitrate, TDS and all major ions except for bicarbonate.

TDS concentrations are best predicted among major ions by sodium concentrations (standard coefficient = 0.66), among cations by sodium concentrations (standard coefficient = 0.81) (Diagram 10) and among anions, chloride (standard coefficient = 0.58) (multiple regression analysis,  $p \le 0.01$ ).



**Diagram 10** – The graph illustrates a strong positive correlation between two constituents; as TDS concentrations increase so do sodium concentrations. The regression equation for this relationship is y = 3.3x + 114, n = 124, r = 0.91 (regression,  $p \le 0.01$ ). TDS concentrations are best predicted among cations by sodium concentrations with a standard coefficient of 0.81 (multiple regression analysis,  $p \le 0.01$ ).

| Constituent | Temp | pH-f | TDS | Hard | Ca | Mg | Na      | K        | Bic     | Cl       | SO <sub>4</sub> | NO <sub>3</sub> | As | В  | Cr | F  | 0  | D  |
|-------------|------|------|-----|------|----|----|---------|----------|---------|----------|-----------------|-----------------|----|----|----|----|----|----|
|             |      |      |     |      |    |    | Phys    | ical Pa  | rameter | c        |                 |                 |    |    |    |    |    |    |
| Temperature |      | ++   |     |      |    |    | 1 Hys   |          |         | 3        |                 | _               |    |    |    |    | -  |    |
| pH-field    | -    |      |     |      |    |    |         |          |         | -        |                 |                 | +  |    | ++ | ++ | -  | -  |
|             |      |      |     |      |    | Ge | neral M | ineral ( | Charact | eristics |                 |                 |    |    |    |    |    |    |
| TDS         |      |      |     | ++   | ++ | ++ | ++      | ++       |         | ++       | ++              | ++              |    | +  | -  |    |    |    |
| Hardness    | _    |      |     |      | ++ | ++ |         | ++       | ++      | ++       | ++              | ++              |    | +  | -  | -  |    |    |
|             |      |      |     |      |    |    |         | Major I  | lons    |          |                 |                 |    |    |    |    |    |    |
| Calcium     |      |      |     |      |    | ++ | +       | ++       | ++      | ++       | ++              | ++              |    |    |    |    |    |    |
| Magnesium   |      |      |     |      |    |    |         | ++       | ++      |          | ++              | ++              |    |    | -  |    | +  | +  |
| Sodium      |      |      |     |      |    |    |         | ++       |         | ++       | ++              | ++              |    | ++ |    |    |    |    |
| Potassium   |      |      |     |      |    |    |         |          | +       | ++       | ++              | ++              |    |    |    |    | ++ | +  |
| Bicarbonate |      |      |     |      |    |    |         |          |         |          |                 |                 |    |    | -  |    | +  | ++ |
| Chloride    |      |      |     |      |    |    |         |          |         |          | ++              | ++              |    |    |    |    |    |    |
| Sulfate     |      |      |     |      |    |    |         |          |         |          |                 | ++              |    | ++ |    |    |    |    |
|             |      |      |     |      |    |    |         | Nutrie   | nts     |          |                 |                 |    |    |    |    |    |    |
| Nitrate     |      |      |     |      |    |    |         |          |         |          |                 |                 |    |    |    |    |    |    |
|             |      |      |     |      |    |    | Tr      | ace Ele  | ments   |          |                 |                 |    |    |    |    |    |    |
| Arsenic     |      |      |     |      |    |    |         |          |         |          |                 |                 |    | ++ | _  | ++ |    |    |
| Boron       |      |      |     |      |    |    |         |          |         |          |                 |                 |    |    |    | ++ |    |    |
| Chromium    |      |      |     |      |    |    |         |          |         |          |                 |                 |    |    |    |    |    |    |
| Fluoride    |      |      |     |      |    |    |         |          |         |          |                 |                 |    |    |    |    | -  | -  |
|             |      |      |     |      |    |    |         | Isotop   | oes     |          |                 |                 |    |    |    |    |    |    |
| Oxygen      |      |      |     |      |    |    |         |          |         |          |                 |                 |    |    |    |    |    | ++ |
| Deuterium   |      |      |     |      |    |    |         |          |         |          |                 |                 |    |    |    |    |    |    |

Table 7. Correlation among McMullen Valley Basin Groundwater Quality Constituent Concentrations Using Pearson Correlation Probabilities

Blank cell = not a significant relationship between constituent concentrations

+ = Significant positive relationship at  $p \le 0.05$ ++ = Significant positive relationship at  $p \le 0.01$ 

- = Significant negative relationship at  $p \le 0.05$ 

- - = Significant negative relationship at  $p \le 0.01$ 

### **Isotope Comparison**

Groundwater characterizations using oxygen and hydrogen isotope data may be made with respect to the climate and/or elevation where the water originated, residence within the aquifer, and whether or not the water was exposed to extensive evaporation prior to collection.<sup>14</sup> This is accomplished by comparing oxygen-18 isotopes ( $\delta^{18}$ O) and deuterium ( $\delta$ D), an isotope of hydrogen, data to the Global Meteoric Water Line (GMWL).

The GMWL is described by the linear equation:

$$\delta D = 8\delta^{18}O + 10$$

where  $\delta D$  is deuterium in parts per thousand (per mil,  ${}^{0}/_{00}$ ), 8 is the slope of the line,  ${\delta}^{18}O$  is oxygen-18  ${}^{0}/_{00}$ , and 10 is the y-intercept.<sup>12</sup>

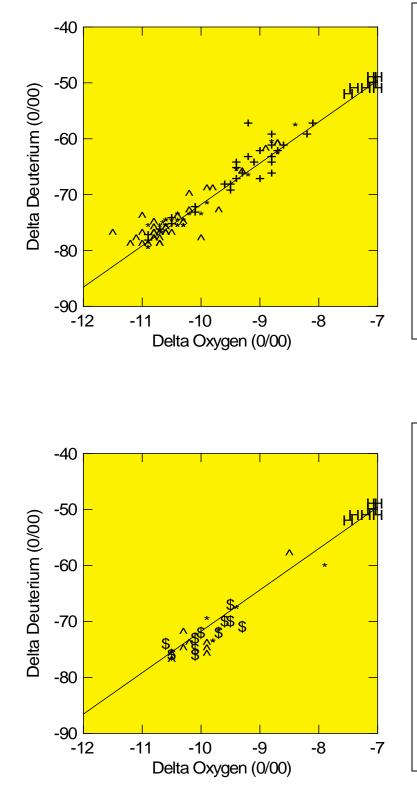
The GMWL is the standard by which water samples are compared and represents the best fit isotopic analysis of numerous worldwide water samples.

Isotopic data from a region may be plotted to create a Local Meteoric Water Line (LMWL) which is affected by varying climatic and geographic factors. When the LMWL is compared to the GMWL, inferences may be made about the origin or history of the local water.<sup>14</sup>

The LMWL created by  $\delta^{18}$ O and  $\delta$ D values for samples collected at sites in the McMullen Valley basin were compared to the GMWL. The  $\delta$ D and  $\delta^{18}$ O data lie to the right of the GMWL. Meteoric waters exposed to evaporation characteristically plot increasingly below and to the right of the GMWL. Evaporation tends to preferentially contain a higher percentage of lighter isotopes in the vapor phase and causes the water that remains behind to be isotopically heavier.<sup>14</sup>

Groundwater from arid environments is typically subject to evaporation, which enriches  $\delta D$  and  $\delta^{18}O$ , resulting in a lower slope value (usually between 3 and 6) as compared to the slope of 8 associated with the GMWL.<sup>14</sup>

The data for the McMullen Valley sub-basin doesn't quite conform, having a slope of 7.4, with the LMWL described by the linear equation:


$$\delta D = 7.4^{18}O + 2.2$$

The LMWL for the McMullen Valley sub-basin (7.4) is lower than the Lake Mohave basin (7.8) but higher than most other basins in Arizona such as Detrital Valley (5.15), Agua Fria (5.3), Sacramento Valley (5.5), Big Sandy (6.1), Pinal Active Management Area (6.4), Gila Valley (6.4) and San Simon (6.5).<sup>30, 31, 32, 33, 34, 35, 36, 37</sup>

The isotopic data were plotted on two graphs. Samples from the Eastern, Southern and Western Regional aquifers and the Harcuvar aquifer are plotted in Diagram 11 while samples collected from sites in the Forepaugh, Mixed, Perched and the Harcuvar aquifers are plotted in Diagram 12.

Along the Local Meteoric Water Line (LMWL) the plots highest on the precipitation trajectory were the distinct cluster of six samples collected from wells in Harcuvar aquifer. The six samples are the most enriched or isotopically the heaviest sites and appear to have undergone considerable evaporation before being recharged and are likely produced from summer monsoon precipitation.

Below the Harcuvar aquifer samples, many Southern Regional aquifer samples plot high on the precipitation trajectory while Western and Eastern Regional aquifer samples are usually the most depleted and tend to plot lowest on the precipitation trajectory. The light signatures of these depleted samples suggest that the water was not provided by recharge from Centennial Wash or its tributaries but consists of water that was likely recharged during cooler climatic conditions roughly 8,000-12,000 years ago. The majority of samples from the Forepaugh, Mixed and the Perched also are depleted and don't appear to be the result of recent recharge.



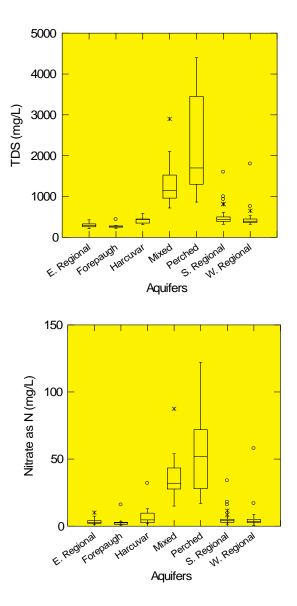
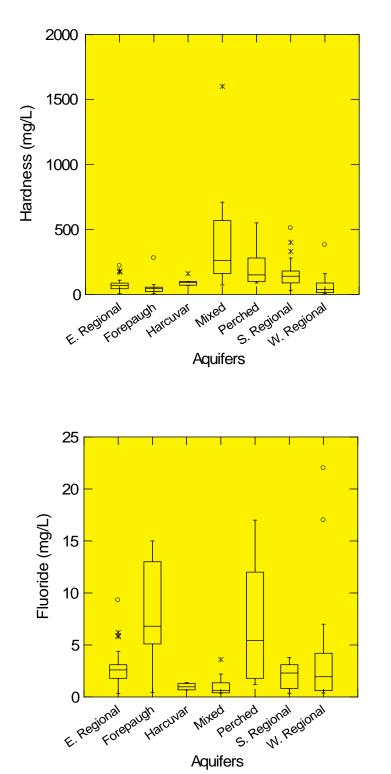

**Diagram 11.** The groundwater sites collected for the McMullen Valley basin study that were drawing water from the Eastern, Southern, and Western Regional aquifers and the Harcuvar aquifer were plotted according to their oxygen-18 and deuterium isotope values. Along the Local Meteoric Water Line (LMWL) starting from highest on the precipitation trajectory (upper right of graph), the following types of samples predominantly plot: Harcuvar aquifer (H), Southern Regional aquifer (+), Eastern Regional aquifer (\*), and Western Regional aquifer Generally the Harcuvar aquifer (^). samples are the most enriched followed by a cluster of samples predominantly from the Southern Regional aquifer. Samples from the Eastern and Western Regional aquifer samples form a cluster at the bottom of the graph and are the most depleted in the basin.

Diagram 12. The groundwater sites collected for the McMullen Valley basin study that were drawing water from the Harcuvar aquifer (H), Mixed aquifer (\$), Perched aquifer (\*), and Forepaugh aquifer (^) were plotted according to their oxygen-18 and deuterium isotope values. Along the Local Meteoric Water Line (LMWL) starting from highest on the precipitation trajectory (upper right of graph), the following types of samples predominantly plot: Harcuvar aguifer (H) and then a cluster of samples from the other aquifers. There are two outliers from the lower cluster of samples. The lone enriched sample from the Forepaugh aquifer was collected on the southern edge of the basin and consists of recent precipitation. The lone enriched sample from the Perched aquifer is a shallow monitoring well located in an area of irrigated farming and also appears to be recharged by recent precipitation.

### **Groundwater Quality Variation**

**Among Seven Aquifers** - Twenty-eight (28) groundwater quality constituent concentrations were compared between seven aquifers: Eastern Regional (29 sites), Western Regional (34 sites), Southern Regional (29 sites), Perched (6 sites), Mixed (11 sites), Forepaugh (9 sites) and Harcuvar (6 sites). Because not all sites had the same constituents collected, site totals vary for well characteristics, field parameters, nitrate, radon and radionuclide constituents.


Significant concentration differences were found with 26 constituents (Kruskal-Wallis with Tukey test,  $p \le 0.05$ ).



SC-field, SC-lab, TDS (Diagram 13), magnesium, sodium, chloride, sulfate, and nitrate (Diagram 14) were significantly higher in Perched and Mixed aquifers than in the three Regional, Forepaugh and Harcuvar aquifers. Hardness (Diagram 15), calcium, potassium, barium and gross beta were significantly higher in the Mixed aquifer than in the three Regional, Forepaugh and Harcuvar aquifers. Complete results are found in Table 8. Summary statistics in the form of 95% confidence intervals are provided for those constituents with significant concentration differences between aquifers in Table 9.

**Diagram 13.** Sample sites collected from the Perched and Mixed aquifers have significantly higher TDS concentrations than sample sites collected from all the other aquifers in the McMullen Valley basin; TDS concentrations in the Perched aguifer are also significantly higher than in the Mixed aguifer (Kruskal-Wallis with Tukey test, p < 0.01). The Perched and Mixed aquifers are likely impacted by highly saline recharge from irrigated fields and, to a lesser degree, poor quality recharge from septic systems.<sup>1</sup> Numerous sumps that catch irrigation tail water for reuse also allow large volumes of poor quality irrigation return flow water to percolate to the aquifer.<sup>24</sup>

Diagram 14. Sample sites collected from the Perched and Mixed aquifers have significantly higher nitrate concentrations than sample sites collected from the Regional, Forepaugh and Harcuvar aquifers; nitrate concentrations in the Perched aquifer are also significantly higher than in the Mixed aguifer (Kruskal-Wallis with Tukey test, p Solution 5 0.01). The Perched and Mixed aguifers are likely impacted by nitrogen-laden recharge from irrigated fields and, to a minor degree, septic systems.<sup>24</sup> Nitrate concentrations from wells in the Perched and Mixed aquifers often exceed the 10 mg/L Primary MCL with concentrations sometimes exceeding 50 mg/L.



Aquifers

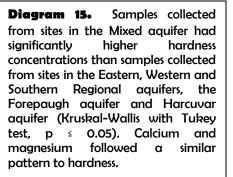


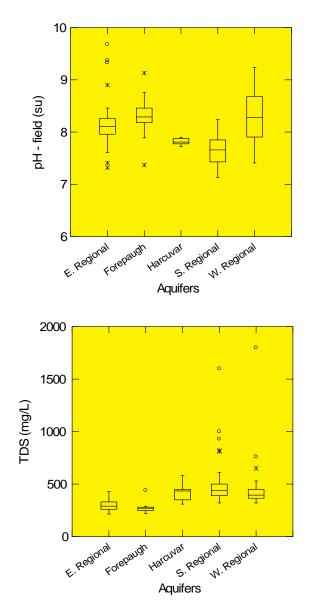

Diagram 16. Samples collected from wells in the Forepaugh aquifer have significantly higher fluoride concentrations than samples collected from all other aquifers except the Perched aquifer. The Perched aquifer has significantly higher fluoride concentrations than the Southern Regional, Mixed, and Harcuvar aquifers (Kruskal-Wallis with Tukey test, p 🖻 median 0.05). The fluoride concentration for both the Forepaugh and Perched aquifers exceeded the 4.0 mg/L health based water quality standard. Previous studies have noted that for unknown reasons the lowest fluoride concentrations tend to be north and west of the town of Salome, a conclusion that was verified by this ADEQ study. 25

# Table 8. Variation in Groundwater Quality Constituent Concentrations Among Seven Aquifers Using Kruskal-Wallis Test with the Tukey Test

| Constituent         | Significance | Significant Differences Among Aquifers                                                                                                |
|---------------------|--------------|---------------------------------------------------------------------------------------------------------------------------------------|
| Well Depth          | **           | E. Regional > All other aquifers Forepaugh > Perched & S. Reg.<br>W. Regional > Harcuvar, Perched and S. Regional Mixed > Perched     |
| Groundwater Depth   | **           | E. Regional > All aquifers except Forepaugh Forepaugh > Mixed, Perched & S. Reg.<br>Harcuvar, Mixed & W. Regional > Perched & S. Reg. |
| Temperature - field | **           | Forepaugh, Mixed & W. Regional> Perched & S. Regional<br>E. Regional > Harcuvar, Perched & S. Regional Harcuvar > Perched             |
| pH – field          | **           | E. Regional, Forepaugh & W. Regional> Mixed & S. Regional                                                                             |
| pH – lab            | **           | E. Regional & W. Regional. > Mixed & S. Regional.<br>Forepaugh > Mixed                                                                |
| SC - field          | **           | Perched > All other aquifers<br>Mixed > Forepaugh, Harcuvar, E. Regional, S. Regional & W. Regional                                   |
| SC - lab            | **           | Perched > All other aquifers<br>Mixed > Forepaugh, Harcuvar, E. Regional, S. Regional & W. Regional                                   |
| TDS                 | **           | Perched > All other aquifers<br>Mixed > Forepaugh, Harcuvar, E. Regional, S. Regional & W. Regional                                   |
| Turbidity           | *            | Perched > All other aquifers                                                                                                          |
| Hardness            | **           | Mixed > E. Regional, Forepaugh, Harcuvar, S. Regional & W. Regional                                                                   |
| Calcium             | **           | Mixed > All other aquifers                                                                                                            |
| Magnesium           | **           | Mixed> E. Regional, Forepaugh, Harcuvar, S. Regional & W. Regional<br>Perched > E. Regional, Forepaugh & W. Regional                  |
| Sodium              | **           | Perched > All other aquifers<br>Mixed > E. Regional, S. Regional, W. Regional & Forepaugh                                             |
| Potassium           | **           | Mixed > All other aquifers<br>S. Regional > E. Regional & Forepaugh                                                                   |
| Bicarbonate         | **           | S. Regional > E. Regional, Forepaugh & W. Regional<br>Harcuvar > E. Regional & Forepaugh                                              |
| Chloride            | **           | Perched & Mixed > All other aquifers                                                                                                  |
| Sulfate             | **           | Perched > All others aquifers<br>Mixed > Forepaugh, E. Regional, S. Regional & W. Regional                                            |
| Nitrate (as N)      | **           | Perched > All other aquifers<br>Mixed > Forepaugh, Harcuvar, E. Regional, S. Regional & W. Regional                                   |
| Arsenic             | **           | -                                                                                                                                     |
| Barium              | *            | Mixed > E. Regional, Forepaugh, W. Regional & Harcuvar                                                                                |
| Boron               | **           | Perched > All other aquifers                                                                                                          |
| Chromium            | **           | E. Regional > Mixed, S. Regional & Harcuvar<br>W. Regional > S. Regional & Harcuvar                                                   |
| Fluoride            | **           | Forepaugh > All other aquifers except Perched<br>Perched > Mixed, S. Regional & Harcuvar                                              |
| Oxygen              | **           | Harcuvar > All other aquifers<br>S. Regional > E. Regional & W. Regional Perched > W. Regional                                        |
| Deuterium           | **           | Harcuvar > All other aquifers<br>S. Regional > E. Regional, Forepaugh, Mixed & W. Regional                                            |
| Gross Alpha         | ns           | -                                                                                                                                     |
| Gross Beta          | **           | Mixed > All other aquifers                                                                                                            |
| Radon               | ns           | -                                                                                                                                     |

ns = not significant \* = significant at p  $\leq$  0.05 or 95% confidence level \*\* = significant at p  $\leq$  0.01 or 99% confidence level

| Constituent            | Forepaugh     | Harcuvar       | Perched        | Mixed          | West<br>Regional | East<br>Regional | South<br>Regional |
|------------------------|---------------|----------------|----------------|----------------|------------------|------------------|-------------------|
| Well Depth             | 630 to 767    | 496 to 534     | 50 to 209      | 512 to 724     | 781 to 944       | 993 to 1343      | 301 to 432        |
| Groundwater<br>Depth   | 461 to 527    | 334 to 371     | -46 to 220     | 289 to 418     | 375 to 435       | 467 to 577       | 150 to 219        |
| Temperature<br>- field | 25.3 to 33.4  | 25.0 to 26.9   | 22.6 to 26.8   | 27.0 to 32.1   | 30.1 to 32.1     | 29.4 to 31.3     | 25.5 to 26.4      |
| pH – field             | 7.91 to 8.67  | -              | -              | 7.32 to 7.81   | 8.14 to 8.44     | 8.00 to 8.40     | 7.55 to 7.75      |
| pH – lab               | 8.15 to 8.62  | -              | -              | 7.64 to 8.20   | 8.33 to 8.54     | 8.21 to 8.48     | 8.08 to 8.17      |
| SC - field             | 423 to 577    | 540 to 1016    | 1336 to 5529   | 1507 to 2653   | 637 to 865       | 500 to 575       | 714 to 1017       |
| SC - lab               | 393 to 549    | 538 to 838     | 1359 to 5357   | 1479 to 2589   | 605 to 868       | 460 to 540       | 696 to 1027       |
| TDS                    | 235 to 331    | 329 to 525     | 789 to 3683    | 921 to 1791    | 369 to 546       | 277 to 321       | 424 to 631        |
| Turbidity              | -0.14 to 1.9  | 0.02 to 0.09   | -2.6 to 28.6   | -0.6 to 2.5    | -0.1 to 1.6      | 0.2 to 0.6       | -0.4 to 1.9       |
| Hardness               | -1 to 129     | 62 to 132      | -              | 148 to 737     | 35 to 86         | 56 to 97         | 119 to 201        |
| Calcium                | -3 to 38      | 16 to 35       | 4 to 83        | 47 to 213      | 11 to 26         | 13 to 24         | 31 to 54          |
| Magnesium              | 2 to 10       | 5 to 12        | 1 to 58        | 7 to 55        | 2 to 7           | 6 to 10          | 10 to 18          |
| Sodium                 | 58 to 89      | 94 to 131      | 251 to 1092    | 146 to 341     | 95 to 167        | 62 to 78         | 100 to 143        |
| Potassium              | 1.0 to 1.9    | 2.8 to 4.0     | 0.6 to 3.5     | 3.4 to 7.9     | 2.1 to 3.0       | 1.7 to 2.3       | 3.1 to 3.9        |
| Bicarbonate            | 114 to 186    | 218 to 262     | -              | 118 to 233     | 159 to 196       | 144 to 178       | 213 to 252        |
| Chloride               | 19 to 31      | 6 to 32        | 92 to 810      | 238 to 455     | 51 to 83         | 33 to 50         | 53 to 117         |
| Sulfate                | 27 to 44      | 47 to 92       | 0 to 1012      | 73 to 393      | 45 to 91         | 28 to 37         | 60 to 115         |
| Nitrate<br>(as N)      | 0-7.2         | -1 to 19       | 18 to 97       | 24 to 51       | 2.7 to 8.4       | 2.7 to 4.2       | 3.7 to 8.0        |
| Arsenic                | -             | -              | -              | -              | -                | -                | -                 |
| Barium                 | 0.02 to 0.05  | 0.02 to 0.04   | -              | 0.06 to 0.17   | 0.04 to 0.07     | 0.04 - 0.07      | -                 |
| Boron                  | 0.14 to 0.28  | 0.3 to 0.5     | 0.6 to 2.4     | 0.16 to 0.82   | 0.22 to 0.67     | 0.14 to 0.18     | 0.20 to 0.30      |
| Chromium               | -             | 0.005 to 0.005 | -              | 0.004 to 0.024 | 0.020 to 0.036   | 0.030 to 0.043   | 0.009 to 0.015    |
| Fluoride               | 4.4 to 12.2   | 0.7 to 1.4     | 0.5 to 13.8    | 0.4 to 1.8     | 1.8 to 5.0       | 2.2 to 3.6       | 1.7 to 2.6        |
| Oxygen                 | -10.5 to -9.5 | -7.4 to -7.0   | -10.2 to -8.6  | -10.2 to -9.6  | -10.7 to -10.2   | -10.5 to -10.0   | -9.6 to -9.0      |
| Deuterium              | -77.5 to 68.5 | -51.8 to -49.6 | -75.1 to -64.4 | -74.2 to -70.5 | -76.3 to -72.7   | -75.6 to -71.5   | -68.3 to -63.2    |
| Gross Alpha            | -             | -              | -              | -              | -                | -                | -                 |
| Gross Beta             | 2.3 to 7.2    | -6.7 to 19.9   | 3.6 to 17.6    | -18 to 120     | 3.0 to 10.5      | 2.4 to 4.8       | 5.1 to 9.6        |
| Radon                  | -             | -              | -              | -              | -                | -                | -                 |


# Table 9. Summary Statistics (95% Confidence Intervals) for Groundwater Quality Constituents With Significant Concentration Differences Among Seven Aquifers

All units in milligrams per liter (mg/L) unless otherwise noted

**Among Five Aquifers** - Twenty-eight (28) groundwater quality constituent concentrations were compared between Eastern Regional (29 sites), Western Regional (34 sites), Southern Regional (29 sites), Forepaugh (9 sites) and Harcuvar (6 sites) aquifers; sites in the Perched and Mixed aquifers were not included because their extreme values often masked more subtle differences between the other aquifers. Because not all sites had the same constituents collected, site totals vary for well characteristics, field parameters, nitrate, radon and radionuclide constituents.

Significant concentration differences were found with 24 constituents (Kruskal-Wallis with Tukey test,  $p \le 0.05$ ).

There were three general patterns. Well depth, groundwater depth, temperature, pH-field (Diagram 17), pH-lab and chromium were significantly higher in the Eastern and Western Regional aquifers than the Southern Regional aquifer. SC-field, SC-lab, and TDS (Diagram 18) were significantly higher in Southern and Western Regional aquifers than the Eastern Regional aquifer. Hardness, calcium, magnesium, bicarbonate (Diagram 19), oxygen and deuterium (Diagram 20) were significantly higher in the Southern Regional aquifer than in the Eastern and Western Regional aquifer than in the Eastern and Western Regional aquifers. Complete results are found in Table 10.



**Diagram 17.** Samples collected from sites in the Eastern Regional, Western Regional and Forepaugh aquifers had significantly higher pH values than samples collected from sites in the Southern Regional aquifer (Kruskal-Wallis with Tukey test,  $p \le 0.05$ ). Based on isotope values, the Southern Regional and Harcuvar aquifers appear to receive more recent recharge and groundwater in such areas is usually near neutral (6.9 – 7.4 su) whereas in downgradient areas, pH values in groundwater can through hydrolysis reactions increase up to 9.5 su.<sup>28</sup>

**Diagram 18.** Samples collected from sites in the Southern Regional aquifer had significantly higher TDS concentrations than samples collected from sites in the Eastern Regional and Forepaugh aquifers; sites in Regional the Western aquifer had significantly higher TDS concentrations than sites in the Eastern Regional aquifer (Kruskal-Wallis and Tukey test,  $p \le 0.05$ ). significantly greater The depth to groundwater in the Eastern Regional aquifer delays the mixing of water laden with salts from excess irrigation applications percolating to the aquifer.<sup>13</sup>

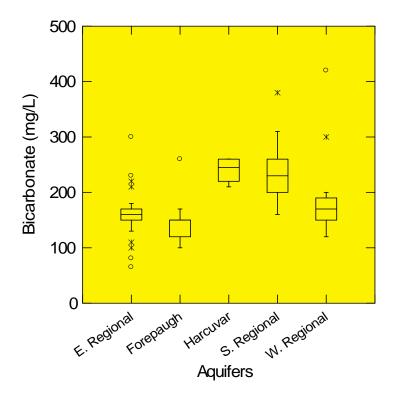
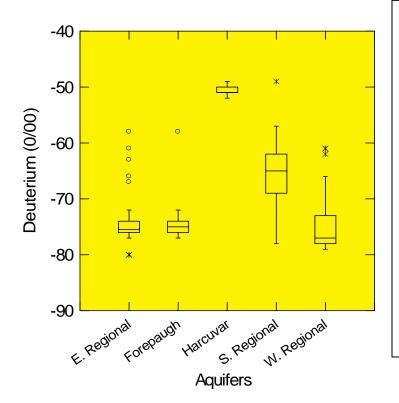




Diagram 19. Samples collected from sites in the Southern Regional and Harcuvar aquifers had significantly higher concentrations of bicarbonate than samples collected from sites in the Eastern Regional, Forepaugh and Western Regional aquifers (Kruskal-Wallis and Tukey test, p ≤ 0.05). Elevated bicarbonate concentrations are often associated with recharge areas.<sup>28</sup> Since calcium, magnesium and bicarbonate are significantly greater in the Southern Regional aquifer, this is another indication that groundwater in that aquifer is of more recent origin than the Eastern and Western Regional aquifers.



**Diagram 20.** Samples collected from sites in the Harcuvar aquifer had significantly higher deuterium values than samples collected from sites in the Eastern Regional, Forepaugh, Western Regional, and Southern Regional aquifers (Kruskal-Wallis with Tukey test,  $p \le 0.01$ ). Similarly, samples collected from sites in the Southern Regional aquifer were significant higher than those collected from the Eastern Regional, Forepaugh, Western Regional aquifers.

Samples from the Harcuvar and Southern Regional aquifers generally plotted higher on the precipitation trajectory and were isotopically heavier or more enriched than samples collected from the Eastern Regional, Forepaugh or Western Regional aquifers. This pattern is yet another indication that groundwater in that aquifer is of more recent origin than the Eastern and Western Regional aquifers.

### Table 10. Variation in Groundwater Quality Constituent Concentrations Between Five Regional Aquifers Using Kruskal-Wallis with the Tukey Test

| Constituent         | Significance | Significant Differences Among Recharge Sources                                                        |
|---------------------|--------------|-------------------------------------------------------------------------------------------------------|
| Well Depth          | **           | E. Regional > All aquifers<br>W. Regional > Harcuvar & S. Regional Forepaugh > S. Regional            |
| Groundwater Depth   | **           | All aquifers > S. Regional<br>E. Regional > W. Regional, Harcuvar & S. Regional                       |
| Temperature - field | **           | E. Regional & W. Regional > Harcuvar & S. Regional<br>Forepaugh> S. Regional                          |
| pH – field          | **           | E. Regional, Forepaugh & W. Regional > S. Regional                                                    |
| pH – lab            | **           | E. Regional & W. Regional > S. Regional                                                               |
| SC - field          | **           | S. Regional > E. Regional & Forepaugh<br>W. Regional > E. Regional                                    |
| SC - lab            | **           | S. Regional > E. Regional & Forepaugh<br>W. Regional > E. Regional                                    |
| TDS                 | **           | S. Regional > E. Regional & Forepaugh<br>W. Regional > E. Regional                                    |
| Turbidity           | ns           | -                                                                                                     |
| Hardness            | **           | S. Regional > W. Regional, E. Regional & Forepaugh                                                    |
| Calcium             | **           | S. Regional > W. Regional, E. Regional & Forepaugh                                                    |
| Magnesium           | **           | S. Regional > W. Regional, E. Regional & Forepaugh                                                    |
| Sodium              | **           | W. Regional > E. Regional & Forepaugh                                                                 |
| Potassium           | **           | S. Regional & Harcuvar > Forepaugh & E. Regional<br>W. Regional > Forepaugh S. Regional > W. Regional |
| Bicarbonate         | **           | S. Regional & Harcuvar > Forepaugh, W. Regional & E. Regional                                         |
| Chloride            | **           | S. Regional > E. Regional, Forepaugh & Harcuvar                                                       |
| Sulfate             | **           | S. Regional> E. Regional                                                                              |
| Nitrate (as N)      | **           | -                                                                                                     |
| Arsenic             | **           | -                                                                                                     |
| Barium              | ns           | -                                                                                                     |
| Boron               | **           | W. Regional > E. Regional                                                                             |
| Chromium            | **           | E. Regional & W. Regional > Harcuvar & S. Regional                                                    |
| Fluoride            | **           | Forepaugh > all aquifers                                                                              |
| Oxygen              | **           | Harcuvar > all aquifers<br>S. Regional > E. Regional & W. Regional                                    |
| Deuterium           | **           | Harcuvar > all aquifers<br>S. Regional > E. Regional, Forepaugh & W. Regional                         |
| Gross Alpha         | ns           | -                                                                                                     |
| Gross Beta          | *            | -                                                                                                     |
| Radon               | ns           | -                                                                                                     |

### SUMMARY AND CONCLUSIONS

The groundwater quality of the McMullen Valley basin will be described in the following order: the Forepaugh aquifer, Eastern Regional aquifer, Western Regional aquifer, the Mixed aquifer, the Perched aquifer, Southern Regional aquifer, and the Harcuvar aquifer.

**Forepaugh Aquifer** – Located in the easternmost section of the McMullen Valley basin, groundwater in this aquifer is partially separated from the Eastern Regional aquifer by low hills and an unnamed ridge east of Aguila.<sup>43</sup> The steep hydraulic gradient between the two aquifers indicates they are poorly connected.<sup>43</sup>

All nine of the groundwater samples collected in the Forepaugh aquifer exceeded health-based water quality standards. At eight sites, water quality standards for fluoride were exceeded with concentrations as high as 15 mg/L, almost four times the health based water quality standard. Fluoride concentrations above 5 mg/L are controlled by calcium through precipitation or dissolution of the mineral fluorite. <sup>28</sup> In a chemically closed hydrologic system such as the McMullen Valley basin, calcium is removed from solution by precipitation of calcium carbonate and the formation of smectite clays. High concentrations of dissolved fluoride may occur in groundwater depleted in calcium if a source of fluoride ions is available for dissolution.<sup>28</sup>

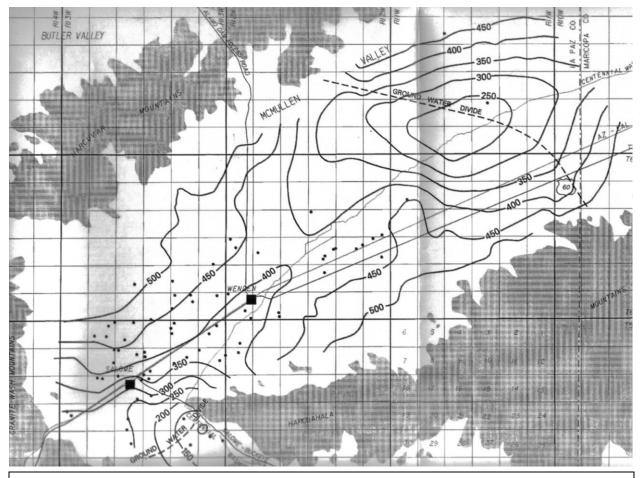
Six groundwater samples collected from the Forepaugh aquifer also exceeded health-based water quality standards for arsenic; concentrations were as high as 0.022 mg/L, over twice the 0.01 mg/L standard. Arsenic concentrations may be influenced by similar reactions as fluoride, including exchange on clays or with hydroxyl ions. Other factors such as aquifer residence time, an oxidizing environment, and lithology likely effect arsenic concentrations.<sup>28, 29</sup>

A well located on an isolated ranch on the southern periphery of the basin, near bedrock, exceeded nitrate and gross alpha water quality standards. The nitrate exceedances may have been the result of nearby corrals that sometimes hold livestock, a source which has been thought to the cause of elevated nitrate concentrations in other isolated stock wells around Arizona. <sup>31, 32</sup> Fractured rock aquifers do not filter wastewater as efficiently as porous aquifers which can result in groundwater contamination.<sup>41</sup> The elevated gross alpha concentrations may result from the nearby granite geology, which often is correlated with high concentrations of radionuclide constituents.<sup>23</sup>

**Eastern Regional Aquifer** – In the McMullen Valley basin, groundwater formerly moved from east to west in the Regional aquifer. However, two large cones of depression caused by heavy pumping for irrigation uses near Aguila and also in the Salome/Wenden area have limited this flow creating the Eastern Regional aquifer (Diagram 21). <sup>25</sup> The aquifer consists of basin areas generally from the La Paz-Maricopa County line east to the Forepaugh aquifer and lacks the confining Lake-bed Unit above it. The Eastern Regional aquifer is directly connected to the Upper Alluvial Fill unit, which has largely been dewatered in the area. <sup>25</sup>

Although 28 percent of the 29 groundwater samples collected in the Eastern Regional aquifer exceeded health-based water quality standards, most of these sites were located south and southeast of Aguila. Fluoride and arsenic were the most common constituents exceeding health-based water quality standards. One well located on isolated ranch on the southern periphery of the basin, near bedrock, also exceeded nitrate and gross alpha water quality standards.

Most sample sites in the Eastern Regional aquifer west of Aguila met water quality standards and/or guidelines. The only exception was that many sample sites exceeded the Secondary MCL for fluoride. Overall, 69 percent of sites in the Eastern Regional aquifer exceeded the aesthetics-based, 2 mg/L guideline for fluoride. Exchange of sorptiondesorption reactions are an important control for lower (< 5 mg/L) fluoride concentrations.<sup>28</sup> The weathering of rocks releases fluoride ions into solution. As pH levels increase down gradient, more hydroxyl ions may exchange for fluoride ions, thereby increasing the fluoride in solution.<sup>28</sup>


Well depth and groundwater depth in the Eastern Regional aquifer were significantly greater than for those in the Western or Southern Regional aquifers (Kruskal-Wallis with Tukey test,  $p \le 0.05$ ). This is likely an important factor in why the Eastern Regional aquifer exhibits significantly lower TDS, sodium and boron than the Western Regional aquifer. Excess water laden with salts from irrigation applications has further to percolate to recharge the water table that is also concurrently, moving deeper because of heavy pumping for irrigation. <sup>13</sup> Soil testing has indicated it would take approximately 7 to 10 years for recharge water to percolate 70 feet. <sup>13</sup> This allows the Eastern Regional aquifer to be, at this

time, minimally impacted by poor quality irrigation recharge.

**Western Regional Aquifer** – The Western Regional aquifer no longer receives significant groundwater flow from areas east of the La Paz-Maricopa County line (Diagram 21) because of cones of depression caused by heavy pumping for irrigation uses near Aguila and also in the Salome/Wenden.<sup>25</sup>

The Western Regional aquifer also roughly correlates to the spatial expanse of the Lake-bed Unit, a layer of fine grained sediments that acts as a confining layer between the upper Perched aquifer and the lower Western Regional aquifer. <sup>24</sup> However, some irrigation wells in the Western Regional aquifer produce water that is a product of both the Regional and Perched aquifers. The cascading wells are caused by leaking water from the Perched aquifer that occur due to breaks that have developed in the casing, voids behind the casing, and through filter packs surrounding the casing in rotary-drilled wells.<sup>24</sup>

Through well logs and video examination of well casings, some irrigation wells have been identified as contributing to the cross-contamination between the Western Regional aquifer and the Perched aquifer.<sup>24</sup> However, not all of these connecting wells exhibited elevated constituent concentrations which could be a result of seasonal fluctuations in water quality reported by earlier studies.<sup>24</sup> Sampling in September during the latter stages of the growing season indicates that the improved water quality is because the plumes of poor-quality groundwater near the well had largely been removed by heavy pumping for irrigation purposes.<sup>22</sup>



**Diagram 21**. Map showing depth to groundwater shows the groundwater divide in the northeast portion of the diagram that divides the Eastern and Western Regional aquifers. The divide was created by cones of depression caused by heavy pumping for irrigation use in the Eastern Regional aquifer near the town of Aguila and in the Western Regional aquifer near the towns of Wenden and Salome. The groundwater divide between the Western Regional aquifer and the Southern Regional aquifer is also shown in the southwestern portion of the diagram.<sup>24</sup>

Because of the difficulty in ascertaining which wells were actually producing water that was a mixture of the two sources, no additional characterization was done for the purposes of the ADEQ report. All the wells in question were designated as producing water from the Western Regional aquifer. Of the total recharge to the Western Regional aquifer, an estimated 15 percent is a result of cross-connection flow through wells.<sup>24</sup> Overall, cross contamination through cascading wells is thought to have a fairly small impact on the water quality of the Western Regional aquifer.<sup>24</sup>

The groundwater quality of the Western Regional aquifer follows a similar pattern to that found in the Eastern Regional aquifer. Although 41 percent of the 34 groundwater samples collected in the Western Regional aquifer exceeded health-based water quality standards, most of these sites were located around or east of Wenden, In contrast, most sample sites in the Western Regional aquifer west and north of Salome met water quality standards and/or guidelines.

Sample sites in the Wenden area, where elevated pH levels frequently occurred, most commonly exceeded health based water quality standards for fluoride (32 percent). Fluoride concentrations were as high as 22 mg/L, more than five times the health based water quality standard. Arsenic was exceeded at 27 percent of sample sites while nitrate was exceeded at 5 percent of sites. Fluoride and arsenic exceedances appear to be naturally occurring influenced by the same chemical processes detailed in the Eastern Regional aquifer summary.<sup>28, 29</sup>

The most important water quality aspect of the Western Regional aquifer—and the McMullen Valley basin—is the gap in the Lake-bed Unit northeast of Salome. The absence of the aquitard here allows poor quality groundwater in the Perched aquifer to drain downward.<sup>24</sup> So important is this process that, for the purposes of this report, this area is denoted as a separate aquifer and referred to as the Mixed aquifer.

**Mixed Aquifer -** In general, the intervening Lakebed Unit is an effective barrier to the downward percolation of ground water, isolating the Perched and Western Regional aquifer from one another.<sup>24</sup> However, in a one-half mile gap where lakebed sediments are absent one mile northeast of Salome there is no separation between the Perched and Western Regional aquifer.<sup>24</sup> Because the static water level of the Perched aquifer is higher than the

regional water table, poor quality groundwater tends to drain downward from the Perched aquifer to the Western Regional aquifer in this area at the perimeter of the Lake-bed Unit.<sup>24</sup>

Wells pumping water in the vicinity of the Lake-bed Unit gap also exhibit such different water quality than that of other wells situated in the Western Regional aquifer that this area is considered a separate aquifer, the Mixed aquifer, for the purposes of this study.

Of the 11 samples collected from wells in this area, all sites exceeded water quality standards and/or guidelines for nitrate and TDS; exceedances also occurred frequently with fluoride, chloride, sulfate, arsenic, gross alpha, uranium, selenium, and manganese. In particular, nitrate concentrations were elevated up to seven times the 10 mg/L health-based water quality standard. The elevated radionuclide concentrations such as uranium may be linked to the downward movement of high alkalinity water combined with alluvial material eroded from nearby granite bedrock.<sup>26</sup> Other studies have shown that high alkalinity recharge liberates naturally occurring uranium that is absorbed to aquifer sediments.<sup>42</sup>

Although the lake bed sediment gap is not shown as extending further northeast along U.S. Highway 60, here there is another area of elevated constituent concentrations.<sup>24</sup> Several wells in between these two areas that don't show any impacts of recharge from the Perched aquifer. Although an earlier report shows this as a zone of permanently degraded water quality, it may be just a product of cascading wells at the northeast end.

TDS, hardness, calcium, magnesium, sodium, potassium, chloride, sulfate, nitrate, barium, boron and gross beta concentrations in the Mixed aquifer were generally significantly higher than for those found in the Western, Southern or Eastern Regional aquifers or the Forepaugh or Harcuvar aquifers (Kruskal-Wallis with Tukey test,  $p \le 0.05$ ).

Based on this data, the water quality of the Mixed aquifer does not appear to be able to support domestic or municipal uses without treatment.

**Perched Aquifer** – Present only in the western portion of the basin, this shallow aquifer composed of discontinuous sand and gravel lenses is probably a system composed of several aquifers that may not all be hydrologically connected.<sup>24</sup> Little information is

known about the occurrence and movement of water within it. The aquifer is not a significant water source, estimated to contain around 500,000 acre-feet which is estimated to be 8 percent of the total groundwater in storage in the Western Regional aquifer above a depth of 1,200 feet. <sup>24</sup> However, the Perched aquifer system is important because of its impact on the water quality of other associated aquifers.<sup>24</sup>

Although natural recharge occurs from ephemeral flows in Centennial Wash and its tributaries, most recharge comes from deep percolation of irrigation water as well as minor amounts of wastewater discharged from septic systems.<sup>24</sup> As such, previous studies postulated that the water quality in the Perched aquifer system was generally poor.<sup>24</sup>

This finding is supported by a limited amount of samples collected from six shallow wells tapping the aquifer. All six sites exceeded water quality standards and/or guidelines for nitrate and TDS; exceedances also occurred with fluoride, chloride, sulfate, arsenic, gross alpha, selenium, and manganese. The elevated nitrate concentrations are not unexpected since previous research has indicated both irrigated farming and shallow groundwater are both strong predictors of nitrate contamination.<sup>41</sup> Nitrate is mobile and often is found in groundwater as the result of agricultural activities.<sup>42</sup>

Based on this data, the water quality of the Perched aquifer does not appear to be able to support domestic or municipal uses without treatment.

**Southern Regional Aquifer** – The Southern Regional aquifer is separated from the Western Regional aquifer by a subsurface bedrock extension of the Haraquahala Mountains that retards the movement of groundwater from the Harrisburg Valley area to the zone of heavy pumping in the Salome/Wenden area (Diagram 21).<sup>25</sup> The subsurface structural extension becomes indistinct further west near the community of Harcuvar.

The groundwater quality of the Southern Regional aquifer is generally suitable for drinking water purposes with only 18 percent of the samples sites exceeding health-based water quality standards. Of the six sites with health-based water quality standard exceedances, four sites were for nitrate and two sites were for radionuclides. Two of the sites exceeding nitrate were located in close proximity to Centennial Wash. The other four sites (two exceedances for nitrate and two exceedances for radionuclides) were located in the southern portion of Harrisburg Valley almost where Centennial Wash flows into Haraquahala basin.

In many cases, the same wells frequently also exceeded chloride and TDS water quality guidelines. The elevated nitrate concentrations probably were the result of nearby wastewater disposal through septic systems. The elevated gross alpha concentrations may result from the nearby granite geology, which often is correlated with high concentrations of radionuclide constituents.<sup>23</sup> Wells in the southern portion of Harrisburg Valley area also had some of the highest radon concentrations (> 10,000 piC/L) ever found in Arizona. High radon concentrations are usually associated with extensive uranium deposits.

Generally, concentrations of many water quality constituents in the Southern Regional aquifer are significantly lower than those in the Perched and Mixed aquifers (Kruskal-Wallis with Tukey test,  $p \le 0.05$ ). Hardness, calcium, magnesium, potassium, bicarbonate, oxygen and deuterium concentrations in the Southern Regional aquifer were generally significantly higher than for those found in the Eastern or Western Regional aquifers (Kruskal-Wallis with Tukey test,  $p \le 0.05$ ).

Residential areas south of Salome were investigated to determine if using septic systems for wastewater disposal was impacting nitrate concentrations in groundwater. This research was conducted to further explore the possibility of designating it a Nitrogen Management Area in an effort to control nitrogen pollutant loading to the groundwater. <sup>3</sup> Generally domestic and public water supply wells tested in the area had nitrate (as nitrogen) concentrations less than 5 mg/L; none exceeded the 10 mg/L water quality health-based standard.

Harcuvar Aquifer – The aquifer appears to be structurally controlled by the thickness of the Lakebed Unit which extends almost down to bedrock, effectively limiting groundwater flow in the Alluvial Fan/Fanglomerate Unit from Harcuvar to areas to the east. The groundwater quality of the Harcuvar aquifer appears to be some of the best in the basin judging by the lack of arsenic and fluoride water quality standard exceedances and is generally suitable for drinking water purposes. Generally, aside from isotope values significantly different from all the other aquifers in Valley McMullen basin, constituent the concentrations in the Harcuvar aquifer are not significantly different from those in the adjoining Western and Southern Regional aquifers. The lone exception is that groundwater depths in the Harcuvar aquifer are significantly greater than in the Southern Regional aquifer.

### RECOMENDATIONS

The most important aspect of water quality in the McMullen Valley basin is the gap found in the Lakebed Unit northeast of Salome. Wells in the area, no matter how deep, exhibit elevated constituent concentrations with many water quality standard and/or guideline exceedances. In particular, all sites sampled in the Mixed aquifer had nitrate concentrations exceeding the Primary MCL, often several times over.

The problem will grow over time since the static water level of the Perched aquifer is higher than that of the Regional aquifer and groundwater tends to drain downward from the Perched aquifer to the Regional aquifer in this area.<sup>24</sup> Although the plume of degraded water in the area appears too large to be significantly reduced by pumping, wells in the area should be continued to be used for irrigation purposes to minimize the spread of the plume. Groundwater in the area would require extensive treatment to be used as a municipal or domestic source. The proposed City of Phoenix well field locations would avoid this area.<sup>24</sup>

Water and fertilizer applications associated with irrigated farming in McMullen Valley should be conducted to minimize the potential for groundwater contamination. In particular, this requires the proper amounts, timing and application methods for fertilizer.<sup>24</sup>

The application of nitrogen fertilizers is covered through a nitrogen management general permit. There is no notification requirement for this permit. This permit may be revoked in accordance with Arizona Administrative Code R18-9-404 if fertilizer is applied in such a way that it impacts groundwater.

Wells that are leaking water from the Perched aquifer to the Regional aquifer should be rehabilitated when possible especially in areas away from the Mixed aquifer. Leaking wells in the Mixed aquifer would not necessarily benefit from the rehabilitation since the natural flow from the Perched aquifer to the Regional aquifer would overwhelm any improvement in water quality.

Future groundwater quality studies should focus on exploring seasonal fluctuations in water quality. Previous studies have indicated that sampling irrigation wells in June during the early irrigation season reveals poorer quality water; late season irrigation sampling such as in September shows improved water quality.<sup>24</sup> Previous reports also indicated a seasonally degraded water quality zone two miles northwest of Wenden. The water quality of the zone improved during the course of the irrigation season, which may indicate a cluster of cross-connecting wells each of which develops a plume of varying size around the well as water short circuits down it from the Perched aquifer to the Regional aquifer.<sup>24</sup>

The season variability is shown in sampling results from a domestic well located adjacent to an irrigated field sampled for this study. Samples revealed that nitrate (as nitrogen) concentrations in April 2008 were 71 mg/L decreasing by January 2009 to 20 mg/L.

Wells located east of Aguila in the Forepaugh aquifer should also be used with caution for domestic or municipal sources. Groundwater samples collected in this area all showed concentrations of either fluoride, arsenic or both constituents exceeding health-based water quality standards. ADEQ recommends having well owners test their domestic water for these constituents.

Overall, the water quality of the Regional aquifers largely meets current irrigation needs. For potential future municipal uses, wells should be perforated only in the Regional aquifer. Well locations should also avoid areas near the Mixed aquifer. Blending of the water from many wells will help the resource meet water quality standards.

### REFERENCES

- <sup>1</sup> Arizona Department of Commerce website, 2010, www.azcommerce.com/doblib/COMMUNE/salomewenden.pdf, accessed 03/05/10.
- <sup>2</sup> Arizona Department of Environmental Quality, 1991, Quality Assurance Project Plan: Arizona Department of Environmental Quality Standards Unit, 209 p.
- <sup>3</sup> Arizona Department of Environmental Quality, 2009-2010, Arizona Laws Relating to Environmental Quality: St. Paul, Minnesota, West Group Publishing, §49-221-224, p 134-137.
- <sup>4</sup> Freeland, Gary, 2008, Personal communication from ARRA staff.
- <sup>5</sup> Arizona State Land Department, 1997, "Land Ownership - Arizona" GIS coverage: Arizona Land Resource Information Systems, downloaded, 4/7/07.
- <sup>6</sup> Arizona Department of Water Resources, 1994, Arizona Water Resources Assessment – Volume II, Hydrologic Summary, Hydrology Division, pp. 62-63.
- <sup>7</sup> Arizona Department of Water Resources website, 2010, <u>www.azwater.gov/azdwr/default.aspx</u>, accessed 03/05/10.
- <sup>8</sup> Arizona Water Resources Research Center, 1995, Field Manual for Water-Quality Sampling: Tucson, University of Arizona College of Agriculture, 51 p.
- <sup>9</sup> Bitton, G. and Gerba, C.P., 1994, *Groundwater Pollution Microbiology:* Malabar, FL: Krieger Publishing Company 377 p.
- <sup>10</sup> Briggs, P.C., 1969, Ground-water conditions in McMullen Valley, Maricopa, Yuma and Yavapai Counties, Arizona: Arizona State Land Department Water Resources Report Number 40, 31 p.
- <sup>11</sup> Brown, S.L., Yu, W.K., and Munson, B.E., 1996, The impact of agricultural runoff on the pesticide contamination of a river system - A case study on the middle Gila River: Arizona Department of Environmental Quality Open File Report 96-1: Phoenix, Arizona, 50 p.
- <sup>12</sup> Clescerl, L.S., Greenberg, A.E., and Eaton, A.D., 1998. Standard Methods for Examination of Water and Wastewater, United Book Press Inc.: Baltimore, Maryland
- <sup>13</sup> Cordy, G.E. and Bouwer, H., 1999, Where do the salts go?: the potential effects and management of salt accumulation in south-central Arizona: U.S. Geological Survey Fact Sheet 170-98, 4 p.
- <sup>14</sup> Craig, H., 1961, Isotopic variations in meteoric waters. Science, 133, pp. 1702-1703.

- <sup>15</sup> Crockett, J.K., 1995. Idaho statewide groundwater quality monitoring program–Summary of results, 1991 through 1993: Idaho Department of Water Resources, Water Information Bulletin No. 50, Part 2, p. 60.
- <sup>16</sup> Test America Laboratory, 2009, Personal communication from Del Mar staff.
- <sup>17</sup> Friedman, I., G. I. Smith, J. D. Gleason, A. Warden, and J. M. Harris (1992), Stable Isotope Composition of Waters in Southeastern California 1. Modern Precipitation, *J. Geophys. Res.*, 97(D5), 5795–5812.
- <sup>18</sup> Graf, Charles, 1990, An overview of groundwater contamination in Arizona: Problems and principals: Arizona Department of Environmental Quality seminar, 21 p.
- <sup>19</sup> Heath, R.C., 1989, Basic ground-water hydrology: U.S. Geological Survey Water-Supply Paper 2220, 84 p.
- <sup>20</sup> Helsel, D.R. and Hirsch, R.M., 1992, *Statistical methods in water resources*: New York, Elsevier, 529 p.
- <sup>21</sup> Hem, J.D., 1985, Study and interpretation of the chemical characteristics of natural water [Third edition]: U.S. Geological Survey Water-Supply Paper 2254, 264 p.
- <sup>22</sup> Lowry, J.D. and Lowry, S.B., 1988, Radionuclides in drinking water. Journal of the American Water Works Association, 80 (July), pp. 50-64.
- <sup>23</sup> Madison, R.J., and Brunett, J.O., 1984, Overview of the occurrence of nitrate in ground water of the United States, *in* National Water Summary 1984-Water Quality Issues: U.S. Geological Survey Water Supply Paper 2275, pp. 93-105.
- <sup>24</sup> Montgomery, James M. Consulting Engineers, Inc., 1992, City of Phoenix Project Report: McMullen Valley Water Transfer Project Study: Phoenix: Project Number W-886457.
- <sup>25</sup> Remick, W.H., 1981, Maps showing ground-water conditions in the McMullen Valley area, Maricopa, Yavapai, and Yuma Counties, Arizona—1981, Arizona Department of Water Resources, Hydrologic Map Series Report Number 6, 3 sheets, scale 1:125,000.
- <sup>26</sup> Richard, S.M., Reynolds, S.J., Spencer, J.E. and Pearthree, Pa, P.A., 2000, Geologic map of Arizona: Arizona Geological Survey Map 35, scale 1:1,000,000.
- <sup>27</sup> Roberts, Isaac, 2008, Personal communication from ADHS staff.

- <sup>28</sup> Robertson, F.N., 1991, Geochemistry of ground water in alluvial basins of Arizona and adjacent parts of Nevada, New Mexico, and California: U.S. Geological Survey Professional Paper 1406-C, 90 p.
- <sup>29</sup> Spencer, J. 2002, Natural occurrence of arsenic in Southwest ground water. Southwest Hydrology, May/June, pp. 14-15.
- <sup>30</sup> Towne, D.C. and Freark, M.C., 2001, Ambient groundwater quality of the Sacramento Valley basin: A 1999 baseline study: Arizona Department of Environmental Quality Open File Report 01-04, 78 p.
- <sup>31</sup> Towne, D.C., 2000, Ambient groundwater quality of the Detrital Valley basin: A 2002 baseline study: Arizona Department of Environmental Quality Open File Report 03-03, 65 p.
- <sup>32</sup> Towne, D.C., 2004, Ambient groundwater quality of the San Simon sub-basin of the Safford basin: A 2002 baseline study: Arizona Department of Environmental Quality Open File Report 04-02, 77 p.
- <sup>33</sup> Towne, D.C., 2005, Ambient groundwater quality of the Lake Mohave basin: A 2003 baseline study: Arizona Department of Environmental Quality Open File Report 05-08, 66 p.
- <sup>34</sup> Towne, D.C., 2006, Ambient groundwater quality of the Big Sandy basin: A 2003-2004 baseline study: Arizona Department of Environmental Quality Open File Report 06-09, 66 p.
- <sup>35</sup> Towne, D.C., 2008, Ambient groundwater quality of the Pinal Active Management Area: A 2005-2006 baseline study: Arizona Department of Environmental Quality Open File Report 08-01, 97 p.

- <sup>36</sup> Towne, D.C., 2008, Ambient groundwater quality of the Agua Fria basin: A 2004-2006 baseline study: Arizona Department of Environmental Quality Open File Report 08-02, 59 p.
- <sup>37</sup> Towne, D.C., 2009, Ambient groundwater quality of the Gila Valley sub-basin of the Safford basin: A 2000 baseline study: Arizona Department of Environmental Quality Open File Report 10-??, 99 p.
- <sup>38</sup> U.S. Environmental Protection Agency website, <u>www.epa.gov/waterscience/criteria/humanhealth/</u>, accessed 3/05/10.
- <sup>39</sup> U.S. Salinity Laboratory, 1954, Diagnosis and improvement of saline and alkali soils: U.S. Department of Agriculture, Agricultural Research Service, Agriculture Handbook No. 60, 160 p. [reprinted, 1969].
- <sup>40</sup> Wilkinson, L., and Hill, M.A., 1996. Using Systat 6.0 for Windows, Systat: Evanston, Illinois, p. 71-275.
- <sup>41</sup> Uhlman, Kristine, Rahman, Tauhid, and Artiola, Janick, 2010, Nitrate in Arizona drinking water wells. News of the Gila Watershed Partnership, 9:1, January, p. 3.
- <sup>42</sup> Jagucki, M.L., Jurgens, B.C., Burow, K.R. and Eberts, S.M., 2009, Assessing the vulnerability of publicsupply wells to contamination: Central Valley aquifer system near Modesto, California: U.S. Geological Survey Water Fact Sheet 2009-3036, 6 p.
- <sup>43</sup> Pool, D.R., 1987 Hydrogeology of McMullen Valley, West-Central, Arizona: U.S. Geological Survey Water-Resources Investigations Report 87-4140, 51 p.

| Site #                                 | Cadastral /<br>Pump Type    | Latitude -<br>Longitude         | ADWR #          | ADEQ #        | Site<br>Name                 | Samples<br>Collected                                      | Well<br>Depth | Water<br>Depth | Perforation<br>Interval |
|----------------------------------------|-----------------------------|---------------------------------|-----------------|---------------|------------------------------|-----------------------------------------------------------|---------------|----------------|-------------------------|
|                                        |                             | 1 <sup>st</sup> Field Trip, Ap  | ril 21-22, 2008 | B – Towne & ' | <b>Furner</b> (Equipm        | ent Blanks - MMU-13)                                      |               |                |                         |
| MMU-1                                  | B(5-13)11ddb<br>Submersible | 33°47'37.398"<br>113°35'02.652" | 585905          | 71160         | Ireland<br>Well              | Inorganic, Radiochem,<br>Perc, Radon, Isotopes            | 530'          | 395'           | 450 - 530'              |
| MMU-<br>2/153/154<br>split<br>resample | B(5-13)11ddb<br>submersible | 33°47'34.644"<br>113°35'02.912" | 594634          | 71161         | Carista<br>Well              | Inorganic, Radiochem,<br>Radon, Nitrate, Perc<br>Isotopes | 518'          | 416'           | 458 - 518'              |
| MMU 3                                  | B(5-13)12add submersible    | 33°47'19.109"<br>113°33'35.990" | 513772          | 48051         | Cent. Park<br>Well           | Inorganic, Radiochem,<br>Perc, Radon, Isotopes            | 700'          | 600'           | 417 - 700'              |
| MMU-4                                  | B(5-13)19bbb<br>submersible | 33°45'32.725"<br>113°38'59.323" | 581224          | 71162         | C. Wolfe<br>Well             | Inorganic, Radiochem,<br>Perc, Radon, Isotopes            | 500'          | 340'           | 420 - 500'              |
| MMU-5                                  | B(5-13)19bdb<br>submersible | 33°45'33.973"<br>113°38'59.004" | 601504          | 71163         | R.D. Wolfe<br>Well           | Nitrate, Perchlorate                                      | 510'          | 330'           | N/A                     |
| MMU-6                                  | B(5-13)19bdb<br>submersible | 33°45'34.883"<br>113°39'11.384" | 591355          | 71164         | Dsrt Gem<br>RV Park          | Inorganic, Radiochem,<br>Perc, Radon, Isotopes            | 515'          | 350'           | 456 - 496'              |
| MMU-7/8<br>split                       | B(5-13)17aba submersible    | 33°46'58.509"<br>113°37'53.842" | 603999          | 18516         | Roach<br>Well #1             | Inorganic, Radiochem,<br>Perc, Radon, Isotopes            | 700'          | 430'           | 600 - 700'              |
| MMU-9                                  | B(5-13)08dcd submersible    | 33°47'03.112"<br>113°38'00.058" | 585977          | 71165         | Tallerday<br>Well #1         | Nitrate, Perchlorate                                      | 550'          | 445'           | 470 - 550'              |
| MMU-10                                 | B(5-13)08dcc<br>submersible | 33°47'04.281"<br>113°38'01.462" | 514804          | 71166         | Tallerday<br>Well #2         | Inorganic, Radiochem,<br>Perc, Radon, Isotopes            | 700'          | 435'           | 600 - 700'              |
| MMU-11                                 | B(5-13)21acc submersible    | 33°45'40.972"<br>113°37'05.298" | 600082          | 18534         | Washburn<br>Way Well         | Inorganic, Radiochem,<br>Perc, Radon, Isotopes            | 800'          | -              | N/A                     |
| MMU-12                                 | B(5-13)21dcc<br>submersible | 33°45'15.200"<br>113°37'05.505" | 607057          | 18536         | 65 <sup>th</sup> St.<br>Well | Inorganic<br>Perc, Radon, Isotopes                        | 550'          | 280'           | N/A                     |
| MMU-14                                 | B(5-13)36dca submersible    | 33°44'03.108"<br>113°33'44.260" | 599711          | 71180         | Sima Well                    | Inorganic, Radiochem,<br>Perc, Radon, Isotopes            | 309'          | 141'           | 234 - 309'              |
| MMU-15/16<br>split                     | B(5-13)25dda submersible    | 33°44'34.090"<br>113°33'37.142" | 504077          | 71200         | Davis<br>Well                | Inorganic<br>Perc, Radon, Isotopes                        | 200'          | 85'            | 155 - 175'              |
| MMU-17                                 | B(5-13)22bcd submersible    | 33°45'43.157"<br>113°36'23.468" | 585189          | 71226         | Thornburg<br>Well            | Nitrate, Perchlorate                                      | 300'          | 215'           | 260 - 300'              |
| MMU-18                                 | B(5-13)22bca submersible    | 33°45'52.901"<br>113°36'21.621" | 593852          | 71227         | Chapin<br>Well               | Inorganic, Radiochem,<br>Perc, Radon, Isotopes            | 375'          | 200'           | 310 - 370'              |
| MMU-19                                 | B(5-13)23bab<br>submersible | 33°46'05.845"<br>113°34'48.659" | 592297          | 71201         | Marks<br>Well                | Inorganic, Radiochem,<br>Perc, Radon, Isotopes            | 298'          | 143'           | 150 - 298'              |
| MMU-21                                 | B(5-13)24acd submersible    | 33°45'22.144"<br>113°33'58.110" | 545797          | 71202         | Vollmer<br>Well              | Inorganic, Radiochem,<br>Perc, Radon, Isotopes            | 187'          | 135'           | 127 - 187'              |
| MMU-22/23<br>nitrate duplicate         | B(5-13)24<br>submersible    | 33°45'26.772"<br>113°34'07.324" | 650945          | 71225         | Bohlen<br>Well               | Nitrate, Perchlorate                                      | 250'          | 50'            | -                       |
| MMU-24                                 | B(5-13)25abb<br>submersible | 33°45'08.132"<br>113°33'57.409" | 552090          | 71220         | Garbani<br>Well              | Inorganic<br>Perc, Radon, Isotopes                        | 205'          | 120'           | 120 - 205'              |
| MMU-25                                 | B(5-13)27bcc submersible    | 33°44'48.954"<br>113°35'54.605" | 592299          | 71221         | Dobson<br>Well               | Inorganic, Perc,<br>Radon, Isotopes                       | 384'          | 248'           | 344 - 384'              |
| MMU-26                                 | B(5-13)21aad submersible    | 33°45'57.147"<br>113°36'37.096" | 600078          | 71222         | Golf Well                    | Nitrate, Perchlorate                                      | 702'          | 205'           | N/A                     |
| MMU-27                                 | B(5-13)28bcb<br>submersible | 33°44'56.148"<br>113°37'33.719" | 591221          | 71223         | Rauber<br>Well               | Inorganic, Radiochem,<br>Perc, Radon, Isotopes            | 460'          | 338'           | N/A                     |
| MMU-28                                 | B(5-13)32c submersible      | 33°48'57.105"<br>113°32'03.281" | -               | 71224         | Wenden<br>Well               | Inorganic, Radiochem,<br>Perc, Radon, Isotopes            | -             | -              | -                       |
|                                        |                             | 2 <sup>nd</sup> Field Trip, M   | lay 13-14, 2008 | 8 – Towne &   | Turner (Equipn               | nent Blank - MMU-56)                                      |               |                |                         |
| MMU-31                                 | B(5-13)08dbc<br>submersible | 33°47'17.527"<br>113°38'07.149" | 549123          | 71280         | Roach<br>Well #2             | Nitrate                                                   | 550'          | 462'           | 450 - 550'              |
| MMU-32/33<br>split                     | B(6-12)27aba submersible    | 33°50'08.463"<br>113°29'41.658" | 564394          | 74960         | Palms RV<br>Nw Well#2        | Inorganic, Radiochem,<br>Perc, Radon, Isotopes            | 600'          | 447'           | 500 - 600'              |
| MMU-34                                 | B(6-12)27acb<br>submersible | 33°50'09.126"<br>113°29'41.753" | 803584          | 18773         | Palms RV<br>Old Well#1       | Nitrate                                                   | 600'          | 230'           | -                       |
| MMU-35                                 | B(5-13)24dc<br>submersible  | 33°45'26.737"<br>113°33'45.136" | 502709          | 71281         | Pinol<br>Windmill            | Inorganic, Radiochem,<br>Radon, Isotopes                  | 213'          | 125'           | 105 - 210'              |

## Appendix A. Data for Sample Sites, McMullen Valley Basin, 2008-2009

| Site #                                 | Cadastral /<br>Pump Type    | Latitude -<br>Longitude         | ADWR #         | ADEQ #       | Site<br>Name        | Samples<br>Collected                     | Well<br>Depth | Water<br>Depth | Perforation<br>Interval |
|----------------------------------------|-----------------------------|---------------------------------|----------------|--------------|---------------------|------------------------------------------|---------------|----------------|-------------------------|
| MMU-36                                 | B(5-12)30aac<br>submersible | 33°44'46.262"<br>113°33'00.396" | 589698         | 71282        | Patterson<br>Well   | Inorganic<br>Radon, Isotopes             | 250'          | 129'           | 210 - 250'              |
| MMU-37/150<br>resample                 | B(5-12)30cac submersible    | 33°44'38.253"<br>113°33'01.503" | 591426         | 71283        | Edwards<br>Well     | Inorganic, Radon,<br>Isotopes, Nitrate   | 187'          | 110'           | 167 - 187'              |
| MMU 38                                 | B(5-13)27add submersible    | 33°44'56.582"<br>113°35'32.587" | 556499         | 71284        | Chester<br>Well     | Nitrate                                  | 305'          | 178'           | 255 - 305'              |
| MMU-39                                 | B(5-13)36bcc<br>submersible | 33°44'02.465"<br>113°33'39.529" | 546952         | 71285        | Sima<br>Windmill    | Nitrate                                  | 276'          | 155'           | 196 -276'               |
| MMU-40                                 | B(5-12)30ddd<br>submersible | 33°44'28.308"<br>113°32'31.270" | 602984         | 18416        | D. Wolfe<br>Well    | Inorganic, Radiochem,<br>Radon, Isotopes | ,             | 91'            |                         |
| MMU-41                                 | B(5-12)33bbb<br>submersible | 33°44'02.633"<br>113°30'49.331" | 206491         | 71300        | Hyatt Well          | Inorganic, Radiochem,<br>Radon, Isotopes | 360'          | 208'           | 277 - 317'              |
| MMU-42                                 | B(5-12)33cab submersible    | 33°43'51.369"<br>113°31'02.108" | 580958         | 18433        | Cole Well           | Inorganic<br>Radon, Isotopes             | 470'          | 100'           | 430 - 470'              |
| MMU-43                                 | B(5-12)33cab submersible    | 33°43'53.578"<br>113°31'03.029" | 644115         | 18432        | Turk Well           | Inorganic, Isotopes                      | 154'          | 69'            | -                       |
| MMU-44                                 | B(5-13)10bcb<br>submersible | 33°47'38.740"<br>113°36'33.341" | 609732         | 18470        | Well #38            | Inorganic, Isotopes                      | 650'          | 428'           | -                       |
| MMU-45                                 | B(5-13)03caa<br>turbine     | 33°48'17.574"<br>113°36'03.445" | 609735         | 71320        | Well #35            | Inorganic,<br>Radon, Isotopes            | 853'          | 380'           | -                       |
| MMU-46                                 | B(6-13)35cbb<br>turbine     | 33°49'09.702"<br>113°35'30.668" | 606382         | 18805        | Well #26            | Nitrate                                  | 835'          | 350'           | -                       |
| MMU-47/167<br>resample                 | B(6-13)35bbb<br>turbine     | 33°49'35.450"<br>113°35'30.678" | 606381         | 18804        | Well #24            | Inorganic, Isotopes<br>Nitrate           | 1000'         | 350'           | -                       |
| MMU-48                                 | B(6-13)26cbb<br>turbine     | 33°50'01.820"<br>113°35'30.795" | 606383         | 18800        | Well #53            | Inorganic, Radiochem<br>Isotopes         | 1110'         | 390'           | -                       |
| MMU-49/50<br>duplicate                 | B(6-12)13dcc<br>turbine     | 33°51'21.131"<br>113°27'34.200" | 526722         | 46273        | Well #3             | Inorganic, Isotopes                      | 1505'         | 448'           | 800 - 1505'             |
| MMU-51                                 | B(6-12)13ddd<br>turbine     | 33°44'28.308"<br>113°32'31.270" | 608098         | 18745        | Well #2             | Nitrate                                  | 1195'         | 420'           | -                       |
| MMU-52                                 | B(6-11)07dbb<br>turbine     | 33°52'25.828"<br>113°26'40.723" | 604102         | 18733        | Well<br>#054-100    | Inorganic<br>Radon, Isotopes             | 1350'         | 480'           | -                       |
| MMU-53/174<br>resample                 | B(5-13)15bab<br>submersible | 33°46'54.443"<br>113°36'33.802" | 602981         | 18494        | K Lazy B<br>IR Well | Inorganic, Isotopes<br>Nitrate           | 654'          | 320'           | -                       |
| MMU-54                                 | B(5-13)15bbb<br>submersible | 33°46'59.777"<br>113°36'35.582" | 602980         | 18493        | K Lazy B<br>DM Well | Inorganic, Isotopes                      | 664'          | 320'           | -                       |
| MMU-55/169<br>resample                 | B(6-13)36cbc<br>turbine     | 33°48'57.350"<br>113°34'27.794" | 626170         | 18809        | Well #11            | Inorganic, Isotopes<br>Nitrate           | 1000'         | -              | -                       |
| MMU-57                                 | B(5-13)02bbc<br>turbine     | 33°48'16.808"<br>113°35'29.301" | 614472         | 18442        | Well #29            | Nitrate                                  | 1000'         | 325'           | -                       |
| MMU-58/59<br>duplicate                 | B(5-13)11cbb<br>turbine     | 33°47'25.139"<br>113°35'30.794" | 606378         | 18483        | Well<br>#49-119     | Inorganic, Isotopes                      | 709'          | 290'           | -                       |
| MMU-<br>60/61/175<br>split<br>resample | B(5-13)01bdd<br>turbine     | 33°48'28.015"<br>113°33'58.198" | 625292         | 18436        | Well #20            | Inorganic, Isotopes<br>Nitrate           | 800'          | 350'           | -                       |
| MMU-62                                 | B(5-13)01aab<br>turbine     | 33°48'37.351"<br>113°33'41.496" | 611407         | 18435        | Well #18            | Inorganic, Isotopes                      | 600'          | 346'           | -                       |
| MMU-63                                 | B(5-12)32adb submersible    | 33°44'05.766"<br>113°31'34.756" | 213110         | 71321        | K-B Road<br>Well    | Inorganic,<br>Radon, Isotopes            | 512'          | 128'           | 452 - 512'              |
|                                        |                             | 3 <sup>rd</sup> Field 7         | Trip, June 10, | 2008 – Towne | e (Equipment Bl     | ank - MMU-71)                            |               |                |                         |
| MMU-64/65<br>split                     | B(7-9)28ddd<br>submersible  | 33°54'59.033"<br>113°11'40.301" | 544619         | 71360        | Toros Well          | Inorganic, Radiochem,<br>Radon, Isotopes | 860'          | 760'           | 760 – 860'              |
| MMU-66                                 | B(7-9)08ccb<br>turbine      | 33°58'17.254"<br>113°08'28.448" | 604156         | 19045        | Well #34            | Inorganic,<br>Radiochem, Isotopes        | 1430'         | 562'           | 719 – 1410'             |
| MMU-67                                 | B(7-9)15cdd<br>turbine      | 33°56'35.227"<br>113°11'05.739" | 604129         | 19063        | Well P-6            | Inorganic, Isotopes                      | 1610'         | 460'           | -                       |
|                                        |                             |                                 |                |              |                     |                                          |               |                |                         |

B(7-9)17ddc turbine

MMU-68

33°56'35.199" 113°12'55.333"

604134

19069

### Appendix A. Data for Sample Sites, McMullen Valley Basin, 2008-2009---Continued

620 - 1400'

453'

1420'

Inorganic Radon, Isotopes

Well P-12

| Site #                 | Cadastral /<br>Pump Type    | Latitude -<br>Longitude         | ADWR #                  | ADEQ #         | Site<br>Name     | Samples<br>Collected                     | Well<br>Depth | Water<br>Depth | Perforatio<br>Interval |
|------------------------|-----------------------------|---------------------------------|-------------------------|----------------|------------------|------------------------------------------|---------------|----------------|------------------------|
| MMU-69/70<br>duplicate | B(7-9)12aaa<br>turbine      | 33°58'17.039"<br>113°08'28.090" | 605007                  | 19056          | Well P-1         | Inorganic, Isotopes                      | 1123'         | 590'           | -                      |
|                        |                             | 4 <sup>th</sup> Field Tr        | ip, July 23-24,         | , 2008 – Towr  | e (Equipment B   | lank - MMU-75)                           |               |                |                        |
| MMU-71                 | B(7-7)20bac submersible     | 33°56'25.28"<br>113°00'46.77"   | 516230                  | 71480          | Jarvis Well      | Inorganic, Radiochem,<br>Radon, Isotopes | 580'          | 486'           | 480 - 580              |
| MMU-72/73<br>duplicate | B(7-8)17bcb<br>turbine      | 33°57'14.93"<br>113°07'25.73"   | 604147                  | 19021          | Well #25         | Inorganic, Radon<br>Isotopes             | 2000'         | 571'           | -                      |
| MMU-74                 | B(7-8)30add submersible     | 33°55'15.44"<br>113°07'29.10"   | -                       | 19033          | Shaubert<br>Well | Inorganic, Radiochem,<br>Radon, Isotopes | -             | -              | -                      |
| MMU-76                 | B(7-9)10daa<br>turbine      | 33°57'52.81"<br>113°10'35.84"   | 609737                  | 19051          | Well #36         | Inorganic, Radon<br>Isotopes             | 1250'         | 535'           | -                      |
| MMU-77                 | B(7-9)11add<br>turbine      | 33°57'53.28"<br>113°09'32.93"   | 605004                  | 19054          | Well #5          | Inorganic, Isotopes                      | 1267'         | 535'           | -                      |
| MMU-78                 | B(7-8)17dbb<br>turbine      | 33°56'56.48"<br>113°06'53.50"   | 604144                  | 19022          | Well #22         | Inorganic, Radon<br>Isotopes             | 1743'         |                | -                      |
| MMU-79                 | B(7-8)17dcc<br>turbine      | 33°56'36.67"<br>113°06'52.75"   | 604145                  | 19023          | Well #23         | Inorganic, Radon<br>Isotopes             | 1823'         | 595'           | -                      |
|                        |                             |                                 | 5 <sup>th</sup> Field T | rip, July 29-3 | 0, 2008 – Town   | e                                        |               |                |                        |
| MMU-80                 | B(5-13)24dcb<br>submersible | 33°45'21.721"<br>113°33'54.505" | 570672                  | 71484          | Pinol Well       | Inorganic, Radiochem,<br>Radon, Isotopes | 305'          | 121'           | 245 - 305              |
| MMU-81                 | B(5-13)24ccc<br>submersible | 33°45'15.755"<br>113°34'09.247" | 501523                  | 18544          | Porter Well      | Inorganic<br>Radon, Isotopes             | 200'          | 95'            | 100 - 200              |
| MMU 82                 | B(5-13)17dcc<br>submersible | 33°46'08.913"<br>113°38'05.195" | 500727                  | 71501          | Jonson<br>Well   | Inorganic, Radiochem,<br>Radon, Isotopes | 500'          | 350'           | 400 - 500              |
| MMU-83/84<br>duplicate | B(5-13)15bcd<br>submersible | 33°46'38.120"<br>113°36'22.639" | 545845                  | 71500          | Jones Well       | Inorganic, Radiochem,<br>Radon, Isotopes | 810'          | 380'           | 400 - 810              |
| MMU-85/86<br>split     | B(5-13)10cda<br>submersible | 33°47'10.947"<br>113°36'13.887" |                         | 71502          | Store Well       | Inorganic, Radiochem,<br>Radon, Isotopes |               |                | 480 - 600              |
| MMU-87                 | B(5-13)10ccc<br>turbine     | 33°47'04.341"<br>113°36`29.932" | 602979                  | 18472          | Well #1          | Inorganic, Isotopes                      | 906'          | 506'           | -                      |
| MMU-88/89<br>duplicate | B(5-13)11acb<br>turbine     | 33°47'37.896"<br>113°34`59.753" | 628632                  | 18480          | Well #55         | Inorganic, Radiochem<br>Isotopes         | 700'          | 320'           | -                      |
| MMU-90                 | B(5-13)01cba<br>turbine     | 33°48'17.379"<br>113°34'17.583" |                         | 18437          | Well #48         | Inorganic, Isotopes                      |               |                | -                      |
| MMU-91                 | B(5-13)09cdd<br>turbine     | 33°47'05.077"<br>113°37'21.826" | 611556                  | 18466          | Well #45         | Inorganic, Radon<br>Isotopes             | 954'          | 400'           | -                      |
| MMU-92                 | B(6-12)30dac<br>turbine     | 33°49'50.655"<br>113°32'36.900" | 611555                  | 18778          | Well #47         | Inorganic, Radon<br>Isotopes             | 1167'         | 450'           | -                      |
| MMU-93                 | B(6-13)25bbb<br>turbine     | 33°50'27.202"<br>113°34'28.208" | 617127                  | 18796          | Well #8          | Inorganic, Isotopes                      | 960'          | -              | -                      |
| MMU-94                 | B(6-13)25cbb<br>turbine     | 33°49'49.445"<br>113°34'27.483" | 626172                  | 18798          | Well #10         | Inorganic, Radon<br>Isotopes             | 1350'         | -              | -                      |
| MMU-95                 | B(6-12)31cbb<br>turbine     | 33°49'09.603"<br>113°33'25.892" | 627990                  | 18783          | Well #13         | Inorganic, Isotopes                      | 685'          | 360'           | -                      |
| MMU-96                 | B(5-13)10ccc<br>turbine     | 33°46'58.746"<br>113°36'17.617" | -                       | 75581          | Well #3          | Inorganic, Isotopes                      | 906'          | -              | -                      |
| MMU-97                 | B(5-13)10cda<br>turbine     | 33°47'09.546"<br>113°36'10.907" | 602978                  | 18476          | Well #2          | Inorganic, Isotopes                      | 907'          | 360'           | -                      |
| MMU-98                 | B(6-12)23acd<br>turbine     | 33°50'56.801"<br>113°28'31.677" | 614496                  | 71520          | Well #?          | Inorganic, Isotopes                      | 850'          | 360'           | -                      |
| MMU-99                 | B(7-9)23baa submersible     | 33°56'29.286"<br>113°10'01.484" | 592364                  | 71521          | Well #2          | Inorganic, Radon<br>Isotopes             | 900'          | 495'           | 700 - 900              |
| MMU-100                | B(7-8)33bcc<br>turbine      | 33°54'24.258"<br>113°06'21.722" | 614522                  | 19040          | North Well       | Inorganic, Radon<br>Isotopes             | 1288'         | 615'           | -                      |
| MMU-101                | B(7-8)29add<br>turbine      | 33°55'17.965"<br>113°06'23.687" | 609496                  | 19031          | East Well        | Inorganic, Radon<br>Isotopes             | 1835'         | -              | -                      |

## Appendix A. Data for Sample Sites, McMullen Valley Basin, 2008-2009---Continued

| Site #                    | Cadastral /<br>Pump Type    | Latitude -<br>Longitude         | ADWR #                 | ADEQ #        | Site<br>Name          | Samples<br>Collected                         | Well<br>Depth | Water<br>Depth | Perforation<br>Interval |
|---------------------------|-----------------------------|---------------------------------|------------------------|---------------|-----------------------|----------------------------------------------|---------------|----------------|-------------------------|
| MMU-102                   | B(7-10)14aaa<br>turbine     | 33°57'22.9"<br>113°15'50.4"     | 604151                 | 19089         | Well #29              | Inorganic, Radiochem<br>Radon, Isotopes      | 1208'         | 404'           | -                       |
| MMU-103                   | B(7-10)13bda<br>turbine     | 33°55'10.1"<br>113°15'18.4"     | 614532                 | 19087         | Well #30              | Inorganic, Isotopes                          | 1200'         | 426'           | -                       |
|                           | (                           | <sup>th</sup> Field Trip, Augus | t <b>19-20, 2008</b> – | Towne (Equi   | pment Blank - N       | 1MU-115b) last in NAD 27                     |               |                |                         |
| MMU-104                   | B(5-13)15bd submersible     | 33°46'32.36"<br>113°36'18.23"   | 803706                 | 18499         | Stein Well            | Inorganic, Radiochem<br>Radon, Isotopes      | 705'          | -              | -                       |
| MMU-105                   | B(5-13)36ssv<br>submersible | 33°44'12.67"<br>113°33'48.18"   | 569896                 | 71580         | Coon Well             | Inorganic, Isotopes                          | 209'          | 123'           | 159 - 209'              |
| MMU-106                   | B(5-13)22bca submersible    | 33°45'42.88"<br>113°36'23.26"   | 586335                 | 71600         | Carlson<br>Well       | Inorganic, Isotopes                          | 400'          | 335'           | 300 - 400'              |
| MMU-107/108<br>split      | B(5-13)16abb<br>turbine     | 33°46'55.77"<br>113°36'57.44"   | 605038                 | 18511         | Salome<br>Water Well  | Inorganic, Radon<br>Isotopes                 | 701'          | 405'           | -                       |
| MMU-109                   | B(7-10)33ddd<br>submersible | 33°54'05.62"<br>113°17'54.44"   | 546173                 | 51664         | Gladden<br>Water Well | Inorganic, Radiochem,<br>Radon, Isotopes     | 648'          | 518'           | 543 - 648'              |
| MMU-110                   | B(7-9)22b<br>submersible    | 33°56'16.42"<br>113°11'32.31"   | 628258                 | 51205         | Fairhaven<br>Well     | Inorganic, Isotopes                          | -             | -              | -                       |
| MMU-111                   | B(6-12)19d submersible      | 33°50'56.00"<br>113°32'43.18"   | 617640                 | 71601         | Stephan<br>Well       | Inorganic, Isotopes                          | 970'          | 170'           | -                       |
| MMU-112                   | B(5-13)11bca submersible    | 33°47'36.50"<br>113°35'25.17"   | 553753                 | 18482         | Graham<br>Well        | Inorganic, Radiochem<br>Radon, Isotopes      | 560'          | 397'           | 400 - 560'              |
| MMU-113                   | B(7-11)8dad submersible     | 33°57'41.19"<br>113°25'16.91"   | 634112                 | 19100         | Happy<br>Camp Well    | Inorganic, Radiochem<br>Radon, Isotopes      | 450'          | 280'           | -                       |
| MMU 114/115a<br>duplicate | B(7-11)27abc submersible    | 33°55'32.98"<br>113°23'30.75"   | 801549                 | 19102         | New Well              | Inorganic, Radiochem<br>Radon, Isotopes      | 340'          | 223'           | -                       |
| MMU-116                   | B(7-9)21abd submersible     | 33°56'26.57"<br>113°11'55.59"   | 571079                 | 71620         | Hopkins<br>Well       | Inorganic, Radiochem<br>Radon, Isotopes      | 920'          | 700'           | 820 - 920'              |
|                           | 7 <sup>th</sup> Field       | d Trip, September 18            | 8, 2008 – Towr         | ne & Mitchel  | l (Equipment Bl       | ank - MMU-121) First in N                    | AD 83         |                |                         |
| MMU-117/118a<br>duplicate | B(6-12)31ada<br>bailer      | 33°49'17.617"<br>113°32'33.799" | 533515                 | 71760         | MW-1                  | Inorganic, Radiochem<br>Isotopes, Pesticides | 29'           | 16'            | 15 - 30'                |
| MMU-118b                  | B(6-12)31c submersible      | 33°48'46.187"<br>113°33'25.167" | 627992                 | 57303         | Office<br>Well        | Inorganic, Isotopes                          | 700'          | 360'           | -                       |
| MMU-119/120<br>split      | B(6-12)22daa<br>bailer      | 33°50'51.054"<br>113°29'20.090" | 538770                 | 71761         | MW-1                  | Inorganic, Radiochem<br>Isotopes, Pesticides | 85'           | 41'            | 60 - 85'                |
|                           |                             | 8 <sup>th</sup> Field Trip,     | October 29-30          | ), 2008 – Tow | ne (Equipment         | Blank - MMU-126)                             |               |                |                         |
| MMU-121                   | B(6-12)24dac<br>submersible | 33°50'44.517"<br>113°27'28.938" | 805509                 | 18772         | Marble<br>Well        | Inorganic, Radiochem<br>Radon, Isotopes      | 840'          | 435'           | 602 - 840'              |
| MMU-122                   | B(6-13)24ccb<br>submersible | 33°50'37.455"<br>113°34'28.484" | 572945                 | 72320         | Truman<br>Well        | Inorganic, Radon<br>O & H Isotopes           | 608'          | 550'           | 577 - 597'              |
| MMU-123/124<br>duplicate  | B(6-13)24cda submersible    | 33°50'39.406"<br>113°34'07.272" | 205279                 | 72321         | Thorp Well            | Inorganic, Radon<br>O & H Isotopes           | 150'          | -              | 140 - 160'              |
| MMU-125                   | B(6-13)28ab<br>submersible  | 33°49'55.010"<br>113°36'55.576" | 634103                 | 18802         | Buck Well             | Inorganic, Radiochem<br>Radon, Isotopes      | 600'          | 577'           | -                       |
| MMU-127/128<br>duplicate  | B(8-10)27dd<br>submersible  | 34°00'03.495"<br>113°16'50.312" | 801559                 | 72360         | Massey<br>Well        | Inorganic, Radiochem<br>Radon, Isotopes      |               |                | -                       |
| MMU-129                   | B(8-10)15cbb<br>submersible | 34°02'00.502"<br>113°17'54.969" | 592683                 | 72340         | Dead<br>Horse Well    | Inorganic, Radiochem<br>Radon, Isotopes      | 800'          | 420'           | 487 - 607'              |
| MMU-130                   | B(8-11)36bbb<br>submersible | 33°59'59.358"<br>113°21'57.726" | 586546                 | 72341         | Pumpjack<br>Well      | Inorganic, Radon<br>O & H Isotopes           | 900'          | 810'           | -                       |
| MMU-131                   | B(8-9)28bdc<br>submersible  | 34°00'37.210"<br>113°12'18.025" | 906341                 | 72342         | Langley<br>Well       | Inorganic<br>O & H Isotopes                  | 708'          | 544'           | 633 - 693'              |
| MMU-132                   | B(7-8)1daa<br>submersible   | 33°58'40.775"<br>113°02'17.795" | 624774                 | 19015         | Forepaugh<br>Well     | Inorganic, Radiochem<br>Radon, Isotopes      | 740'          | 418'           | -                       |

## Appendix A. Data for Sample Sites, McMullen Valley Basin, 2008-2009---Continued

| Site #                    | Cadastral /<br>Pump Type    | Latitude -<br>Longitude         | ADWR #                      | ADEQ #         | Site<br>Name             | Samples<br>Collected                     | Well<br>Depth | Water<br>Depth | Perforation<br>Interval |
|---------------------------|-----------------------------|---------------------------------|-----------------------------|----------------|--------------------------|------------------------------------------|---------------|----------------|-------------------------|
|                           |                             | 9'                              | <sup>th</sup> Field Trip, N | lovember 6, 2  | 008 – Towne &            | Jones                                    |               |                |                         |
| MMU-133                   | B(8-9)18ddd<br>submersible  | 34°01'49.772"<br>113°13'45.108" | 208779                      | 72343          | Carco Well               | Inorganic, Radon<br>Isotopes             | 800'          | 460'           | 660-800'                |
| MMU-134/135a<br>duplicate | B(7-8)11caa<br>submersible  | 33°57'41.763"<br>113°04'00.525" | 539493                      | 72346          | Schweikart<br>Well       | Inorganic, Radon<br>Isotopes             | 725'          | 545'           | 565 - 720'              |
|                           |                             | 10 <sup>th</sup> Field Trij     | p, December 1               | 8, 2008 – Tow  | me (Equipment            | Blank - MMU-142)                         |               |                |                         |
| MMU-135b/136<br>duplicate | B(6-9)2aaa<br>turbine       | 33°53'48.033"<br>113°09'48.396" | 619231                      | 18726          | Eagle Eye<br>Rnch Well   | Inorganic, Radiochem,<br>Radon, Isotopes | 1000'         | 494'           | -                       |
| MMU-137/38<br>split       | B(5-13)10cac submersible    | 33°47'14.991"<br>113°36'13.912" | 552632                      | 72720          | AZ Sunset<br>RV Well     | Isotopes Inorganic,<br>Radon             | 500'          | 410'           | 400 - 500'              |
| MMU-139                   | B(5-13)19bdb<br>submersible | 33°45'58.278"<br>113°39'20.101" | 591355                      | 72721          | Christensn<br>Well       | Inorganic, Radon<br>Isotopes             | 515'          | 350'           | 456 - 496'              |
| MMU-140                   | B(5-13)20baa submersible    | 33°45'47.950"<br>113°38'43.445" | 509107                      | 72723          | W. Salome<br>Well        | Inorganic, Radon<br>Isotopes             | 500'          | 375'           | 400 - 500'              |
| MMU-141                   | B(5-13)19dba submersible    | 33°45'36.041"<br>113°39'04.427" | 202653                      | 72722          | Westergren<br>Well       | Inorganic, Radon<br>Isotopes             | 550'          | 370'           | 485 - 550'              |
|                           |                             | 11 <sup>th</sup> Field Trip     | , January 27-2              | 28, 2009 – Tov | vne (Equipment           | t Blank - MMU-143)                       |               |                |                         |
| MMU-144                   | B(5-13)17dad<br>submersible | 33°46'23.723"<br>113°37'42.074" | 526673                      | 18518          | Monty<br>Townsite        | Inorganic, Radon<br>O & H Isotopes       | 502'          | 365'           | 360 - 480'              |
| MMU-145/146<br>duplicate  | B(5-13)15ddc<br>submersible | 33°46'09.019"<br>113°35'44.886" | 214228                      | 72960          | Magini<br>Well           | Inorganic, Radiochem<br>Radon, Isotopes  | 240'          | 204'           | 200 - 240'              |
| MMU-147                   | B(5-13)23bda<br>bailer      | 33°45'52.932"<br>113°35'14.262" | 205428                      | 72961          | Slawson<br>Well          | Inorganic, Radon<br>O & H Isotopes       | 283'          | 151'           | 223 - 283'              |
| MMU-148                   | B(5-13)24ccc<br>submersible | 33°45'21.972"<br>113°34'27.129" | 213793                      | 72962          | Click Well               | Inorganic, Radon<br>O & H Isotopes       | 262'          | 130'           | 200 - 262'              |
| MMU-149                   | B(5-13)19dad submersible    | 33°45'41.281"<br>113°38'49.887" |                             | 72980          | Kutner<br>Well           | Inorganic<br>O & H Isotopes              | -             | -              | -                       |
| MMU-151/152<br>duplicate  | B(5-13)2dad submersible     | 33°48'09.407"<br>113°34'33.629" | 584380                      | 72981          | SoutherInd<br>Well       | Inorganic, Radiochem<br>Radon, Isotopes  | 92'           | -              | 57 - 92'                |
| MMU-155                   | B(7-7)17caa submersible     | 33°56'59.378"<br>113°00'38.862" | 087295                      | 72982          | Wood Well                | Inorganic, Radiochem<br>Radon, Isotopes  | 600'          | 500'           | 500 - 600'              |
| MMU-156                   | B(7-7)17dcc<br>submersible  | 33°56'36.541"<br>113°00'33.244" | 647309                      | 19012          | Forepaugh<br>Well        | Inorganic, Radon<br>O & H Isotopes       | 650'          | 540'           | -                       |
| MMU-157                   | B(7-7)20aab<br>submersible  | 33°56'16.423"<br>113°00'09.431" | 582053                      | 72984          | Sigler Well              | Inorganic<br>Isotopes                    | 760'          | 490'           | 660 - 760'              |
| MMU-158                   | B(6-12)31bad<br>submersible | 33°49'27.147"<br>113°32'24.779" | 631257                      | 72985          | Wenden<br>Well #2        | Inorganic<br>O & H Isotopes              | 1400'         | 430'           | 1380 - 1480             |
| MMU-159                   | B(6-12)22add submersible    | 34°50'54.577"<br>113°29'21.541" | 614495                      | 18763          | Alfalfa<br>Well          | Inorganic, Radon<br>O & H Isotopes       | 943'          | 402'           | -                       |
|                           |                             |                                 | 12 <sup>th</sup> Field Trij | o, February 2  | 6-27 , 2009 – To         | owne                                     |               |                |                         |
| MMU-160/161<br>duplicate  | B(6-6)6bab<br>submersible   | 33°53'52.307"<br>112°55'41.355" | 614490                      | 18717          | Effus Rnch<br>Well       | Inorganic,<br>Radiochem, Isotopes        | -             | -              | -                       |
| MMU-162                   | B(7-9)24baa<br>submersible  | 33°56'33.078"<br>113°09'02.166" | 604149                      | 19079          | Eagle Eye<br>Village Wl  | Inorganic, Isotopes                      | 1562'         | 545'           | -                       |
|                           |                             |                                 | 13 <sup>th</sup> Field      | Frip, March 2  | 25, 2009 – Town          | ie                                       |               |                |                         |
| MMU-163                   | B(7-7)17ddd<br>submersible  | 33°56'35.791"<br>113°00'02.359" | 900228                      | 73240          | Way Well                 | Inorganic<br>Isotopes                    | 714'          | 488'           | 614 - 714'              |
| MMU-164                   | B(7-7)17add<br>submersible  | 33°57'06.663"<br>113°00'06.879" | 805136                      | 19011          | Echeverria<br>Field Well | Inorganic,<br>Radoiochem, Isotopes       | 817'          | 483'           | 600 - 817'              |

## Appendix A. Data for Sample Sites, McMullen Valley Basin, 2008-2009---Continued

| Site #                   | Cadastral /<br>Pump Type    | Latitude -<br>Longitude         | ADWR #                 | ADEQ #         | Site<br>Name            | Samples<br>Collected             | Well<br>Depth | Water<br>Depth | Perforation<br>Interval  |
|--------------------------|-----------------------------|---------------------------------|------------------------|----------------|-------------------------|----------------------------------|---------------|----------------|--------------------------|
|                          |                             | 14 <sup>th</sup> Field Tri      | p, April 20-22         | 2, 2009 – Tow  | <b>ne</b> (Equipment E  | Blank - BWM-110)                 |               |                |                          |
| MMU-165/166<br>duplicate | B(6-13)24cdd submersible    | 33°50'34.736"<br>113°34'05.667" | 578541                 | 73621          | Patheal<br>Well         | Inorganic<br>Isotopes            | 180'          | 87'            | 100 - 180'               |
| MMU-168                  | B(6-13)24ccd submersible    | 33°50'34.269"<br>113°34'21.516" | 575133                 | 73622          | P & C Well              | Inorganic<br>Isotopes            | 485'          | 165'           | 185 - 205'<br>445 - 485' |
| MMU-170                  | B(6-12)27cdc submersible    | 33°49'38.065"<br>113°29'56.703" | 552632                 | 73623          | Wood Well               | Inorganic<br>Isotopes            | 606'          | 450'           | 520 - 600'               |
|                          |                             |                                 | 15 <sup>th</sup> Field | Trip, May 13   | 3, 2009 – Towne         | ,                                |               |                |                          |
| MMU-171                  | B(5-12)32acb<br>submersible | 33°44'04.024"<br>113°31'49.128" | 602985                 | 18427          | Nord Rnch<br>Dm Well    | Inorganic, Radiochem<br>Isotopes | 502'          | 365'           | -                        |
| MMU-172                  | B(5-12)32aca<br>turbine     | 33°44'08.032"<br>113°31'46.229" | 602986                 | 18425          | Nord Rnch<br>Ir Well    | Inorganic, Radiochem<br>Isotopes | 240'          | 204'           | -                        |
| MMU-173                  | B(6-12)31aaa<br>turbine     | 34°44'19.780"<br>113°32'30.447" | 602983                 | 18417          | Nord Rnch<br>Up Ir Well | Inorganic, Radiochem<br>Isotopes | 943'          | 402'           | -                        |
|                          |                             |                                 | 16 <sup>th</sup> Field | Trip, June 3-4 | 4 , 2009 – Town         | e                                |               |                |                          |
| MMU-176                  | B(7-9)12acb submersible     | 33°58'05.262"<br>113°09'00.931" | 605009                 | 19057          | Well #3                 | Inorganic<br>Isotopes            | 1280'         | 535'           | -                        |

## Appendix A. Data for Sample Sites, McMullen Valley Basin, 2008-2009---Continued

| Site #        | MCL<br>Exceedances                               | Temp<br>(°C)  | <b>pH-field</b><br>(su) | <b>pH-lab</b><br>(su) | SC-field<br>(µS/cm) | SC-lab<br>(µS/cm) | TDS<br>(mg/L) | Hard<br>(mg/L) | Hard - cal<br>(mg/L) | <b>Turb</b> (ntu) |
|---------------|--------------------------------------------------|---------------|-------------------------|-----------------------|---------------------|-------------------|---------------|----------------|----------------------|-------------------|
| MMU-1         | TDS, Cl, NO <sub>3</sub><br>Gross α, U,<br>Radon | 27.7          | 7.34                    | 7.9                   | 1963                | 2000              | 1200          | 390            | 420                  | 0.14              |
| MMU-2/153/154 | TDS, NO3,<br>Gross α, U,<br>Radon                | 23.2/2<br>2.9 | 6.98/6.8<br>9           | 7.75                  | 1859/178<br>2       | 1700              | 1150          | 505            | 500                  | 0.08              |
| MMU 3         | TDS, NO <sub>3</sub> ,<br>Radon                  | 28.2          | 7.41                    | 8.0                   | 1101                | 1100              | 650           | 380            | 400                  | 0.10              |
| MMU-4         | TDS, Radon                                       | 27.2          | 7.89                    | 8.2                   | 861                 | 890               | 580           | 160            | 170                  | 0.10              |
| MMU-5         | NO <sub>3</sub>                                  | 26.1          | 7.72                    | -                     | 1300                | -                 | -             | -              | -                    | -                 |
| MMU-6         | Radon                                            | 26.8          | 7.90                    | 8.2                   | 500                 | 480               | 310           | 69             | 77                   | 0.01              |
| MMU-7/8       | pH                                               | 29.6          | 9.24                    | 9.16                  | 638                 | 630               | 365           | ND             | ND                   | 1.65              |
| MMU-9         | -                                                | 28.2          | 8.39                    | -                     | 678                 | -                 | -             | -              | -                    | -                 |
| MMU-10        | Radon                                            | 29.5          | 8.39                    | 8.4                   | 669                 | 670               | 410           | 18             | 16                   | 0.97              |
| MMU-11        | Radon                                            | 26.3          | 8.13                    | 8.3                   | 797                 | 790               | 460           | 55             | 63                   | 0.12              |
| MMU-12        | Radon                                            | 26.1          | 7.66                    | 8.2                   | 756                 | 740               | 440           | 180            | 190                  | 0.11              |
| MMU-14        | TDS, F, Radon                                    | 26.0          | 7.33                    | 8.0                   | 1367                | 1400              | 820           | 330            | 350                  | 0.53              |
| MMU-15/16     | As                                               | 23.4          | 7.93                    | 8.175                 | 553                 | 555               | 330           | 78             | 85                   | 0.53              |
| MMU-17        | -                                                | 25.0          | 7.64                    | -                     | 641                 | -                 | -             | -              | -                    | -                 |
| MMU-18        | -                                                | 27.1          | 7.80                    | 8.2                   | 538                 | 530               | 320           | 130            | 140                  | 0.10              |
| MMU-19        | TDS, Cl, NO <sub>3</sub> ,<br>Radon              | 24.1          | 7.18                    | 8.0                   | 1677                | 1700              | 1000          | 400            | 420                  | 0.12              |
| MMU-21        | F, Radon                                         | 25.6          | 7.70                    | 8.1                   | 577                 | 570               | 340           | 150            | 160                  | 0.04              |
| MMU-22/23     | -                                                | 24.4          | 7.62                    | -                     | 475                 | -                 | -             | -              | -                    | -                 |
| MMU-24        | F, Radon                                         | 24.6          | 7.66                    | 8.2                   | 752                 | 750               | 460           | 130            | 130                  | 0.09              |
| MMU-25        | Radon                                            | 25.6          | 7.76                    | 8.2                   | 606                 | 600               | 350           | 150            | 160                  | 0.02              |
| MMU-26        | -                                                | 27.6          | 7.88                    | -                     | 604                 | -                 | -             | -              | -                    | -                 |
| MMU-27        | Radon                                            | 26.8          | 7.89                    | 8.2                   | 712                 | 700               | 440           | 100            | 100                  | 0.04              |
| MMU-28        | рН, <b>F</b>                                     | 23.4          | 8.65                    | 8.5                   | 564                 | 560               | 330           | 28             | 30                   | 2.3               |
| MMU-31        | -                                                | 28.5          | 7.90                    | -                     | 664                 | -                 | -             | -              | -                    | -                 |
| MMU-32/33     | pH, <b>F</b> , Radon                             | 30.8          | 8.70                    | 8.66                  | 620                 | 625               | 365           | 12             | 12                   | 0.07              |
| MMU-34        | pH                                               | 32.3          | 8.79                    | -                     | 858                 | -                 | -             | -              | -                    | -                 |
| MMU-35        | TDS, F, Radon                                    | 26.0          | 7.58                    | 8.1                   | 961                 | 970               | 610           | 220            | 210                  | 0.33              |
| MMU-36        | F, Radon                                         | 25.4          | 7.85                    | 8.3                   | 619                 | 630               | 390           | 80             | 75                   | ND                |

| Site #        | MCL<br>Exceedances                                     | Temp<br>(°C)   | <b>pH-field</b><br>(su) | <b>pH-lab</b><br>(su) | SC-field<br>(µS/cm) | SC-lab<br>(µS/cm) | TDS<br>(mg/L) | Hard<br>(mg/L) | Hard - cal<br>(mg/L) | <b>Turb</b> (ntu) |
|---------------|--------------------------------------------------------|----------------|-------------------------|-----------------------|---------------------|-------------------|---------------|----------------|----------------------|-------------------|
| MMU-37/150    | TDS, F, NO <sub>3</sub> ,<br>Radon                     | 25.4/2<br>5.0  | 7.61/7.7                | 8.1                   | 1054/962            | 950               | 550           | 160            | 160                  | 0.02              |
| MMU 38        | -                                                      | 25.4           | 7.68                    | -                     | 588                 | -                 | -             | -              | -                    | -                 |
| MMU-39        | -                                                      | 25.4           | 7.29                    | -                     | 1820                | -                 | -             | -              | -                    | -                 |
| MMU-40        | F, Radon                                               | 26.1           | 7.78                    | 8.3                   | 583                 | 580               | 360           | 89             | 84                   | 0.03              |
| MMU-41        | F, Gross α,<br>Radon                                   | 26.5           | 7.43                    | 8.1                   | 774                 | 780               | 490           | 180            | 150                  | 0.57              |
| MMU-42        | TDS, Cl, SO <sub>4</sub><br>NO <sub>3</sub> , F, Radon | 26.0           | 7.13                    | 8.0                   | 2485                | 2500              | 1600          | 510            | 560                  | 0.15              |
| MMU-43        | TDS, NO <sub>3</sub> , F                               | 25.2           | 7.16                    | 8.0                   | 1441                | 1500              | 930           | 280            | 300                  | 0.88              |
| MMU-44        | TDS, Cl, NO <sub>3</sub>                               | 28.1           | 7.46                    | 8.0                   | 2172                | 2200              | 1600          | 710            | 830                  | 0.11              |
| MMU-45        | Radon                                                  | 29.5           | 7.61                    | 8.2                   | 587                 | 600               | 360           | 140            | 150                  | ND                |
| MMU-46        | -                                                      | 29.2           | 7.62                    | -                     | 626                 | -                 | -             | -              | -                    | -                 |
| MMU-47/167    | -                                                      | 29.55          | 7.55                    | 8.1                   | 659                 | 650               | 380           | 150            | 150                  | 0.01              |
| MMU-48        | -                                                      | 30.3           | 7.72                    | 8.2                   | 620                 | 620               | 380           | 130            | 130                  | 0.01              |
| MMU-49/50     | pH, As, F                                              | 35.2           | 8.91                    | 8.8                   | 573                 | 565               | 345           | ND             | ND                   | 0.025             |
| MMU-51        | pH                                                     | 35.4           | 8.70                    | -                     | 575                 | -                 | -             | -              | -                    | -                 |
| MMU-52        | pH, As, F,<br>Radon                                    | 36.6           | 8.95                    | 8.9                   | 628                 | 610               | 380           | 20             | 17                   | 0.03              |
| MMU-53/174    | -                                                      | 30.6 /<br>30.1 | 7.98 /<br>8.07          | 8.2                   | 643 / 791           | 740               | 450           | 62             | 67                   | 0.22              |
| MMU-54        | -                                                      | 28.3           | 7.68                    | 8.1                   | 782                 | 780               | 480           | 120            | 120                  | 0.07              |
| MMU-55/169    | As, <b>F</b>                                           | 32.95          | 8.48                    | 8.5                   | 717                 | 710               | 440           | 24             | 26                   | 0.01              |
| MMU-57        | -                                                      | 31.2           | 7.98                    | -                     | 717                 | -                 | -             | -              | -                    | -                 |
| MMU-58/59     | TDS, Cl, NO <sub>3</sub>                               | 30.4           | 7.65                    | 8.1                   | 1870                | 1900              | 1100          | 180            | 170                  | 0.04              |
| MMU-60/61/175 | F                                                      | 30.9/<br>31.31 | 8.18 /<br>8.23          | 8.2                   | 663 / 726           | 680               | 410           | 45             | 48                   | 0.73              |
| MMU-62        | F                                                      | 28.1           | 8.09                    | 8.3                   | 571                 | 580               | 340           | 45             | 46                   | 0.04              |
| MMU-63        | TDS, F, Radon                                          | 26.5           | 7.20                    | 8.0                   | 1291                | 1300              | 810           | 260            | 260                  | 0.11              |
| MMU-64/65     | F, Radon                                               | 32.0           | 8.42                    | 8.46                  | 494                 | 475               | 275           | 35             | 42                   | 0.42              |
| MMU-66        | F                                                      | 32.6           | 8.17                    | 8.3                   | 391                 | 370               | 220           | 54             | 58                   | 0.04              |
| MMU-67        | F                                                      | 31.1           | 7.96                    | 8.3                   | 466                 | 440               | 290           | 82             | 88                   | 0.06              |
| MMU-68        | F, Radon                                               | 29.8           | 7.90                    | 8.2                   | 438                 | 420               | 260           | 88             | 92                   | 0.02              |
| MMU-69/70     | F                                                      | 31.8           | 7.84                    | 8.2                   | 470                 | 450               | 280           | 79             | 87.5                 | 0.03              |

| Site #    | MCL<br>Exceedances                 | Temp<br>(°C)  | <b>pH-field</b><br>(su) | <b>pH-lab</b><br>(su) | SC-field<br>(µS/cm) | SC-lab<br>(µS/cm) | TDS<br>(mg/L) | Hard<br>(mg/L) | Hard - cal<br>(mg/L) | <b>Turb</b> (ntu) |
|-----------|------------------------------------|---------------|-------------------------|-----------------------|---------------------|-------------------|---------------|----------------|----------------------|-------------------|
| MMU-71    | As, F, Radon                       | 31.8          | 8.46                    | 8.4                   | 512                 | 470               | 280           | 23             | 31                   | 0.15              |
| MMU-72/73 | F, Radon                           | 31.6          | 8.21                    | 8.3                   | 419                 | 370               | 215           | 52.5           | 54.5                 | 0.065             |
| MMU-74    | F, Radon                           | 29.9          | 8.39                    | 8.4                   | 544                 | 490               | 300           | 29             | 32                   | 0.65              |
| MMU-76    | F, Radon                           | 30.3          | 8.04                    | 8.2                   | 579                 | 510               | 310           | 87             | 95                   | 0.06              |
| MMU-77    | F                                  | 31.4          | 7.97                    | 8.2                   | 534                 | 470               | 240           | 82             | 86                   | 0.95              |
| MMU-78    | F, Radon                           | 36.8          | 8.02                    | 8.2                   | 612                 | 540               | 320           | 65             | 68                   | 0.04              |
| MMU-79    | F, Radon                           | 35.9          | 8.01                    | 8.2                   | 653                 | 580               | 350           | 69             | 74                   | 0.16              |
| MMU-80    | F, Radon                           | 27.0          | 7.51                    | 8.1                   | 715                 | 680               | 430           | 130            | 140                  | 0.02              |
| MMU-81    | F, Radon                           | 25.9          | 7.85                    | 8.2                   | 650                 | 610               | 390           | 71             | 71                   | 0.06              |
| MMU 82    | TDS, Radon                         | 29.4          | 7.85                    | 8.2                   | 820                 | 780               | 500           | 120            | 120                  | 0.10              |
| MMU-83/84 | Radon                              | 32.1          | 8.17                    | 8. <i>3</i>           | 785                 | 740               | 455           | 32             | 35                   | 0.165             |
| MMU-85/86 | TDS, Cl, NO <sub>3</sub><br>Radon  | 31.3          | 7.30                    | 7.735                 | 2001                | 2025              | 1450          | 630            | 630                  | 0.06              |
| MMU-87    | -                                  | 32.5          | 7.78                    | 8.2                   | 737                 | 700               | 430           | 110            | 110                  | 0.15              |
| MMU-88/89 | TDS, NO <sub>3</sub><br>Gross α, U | 29.3/<br>26.6 | 7.53 /<br>7.90          | 8.1                   | 1627 /<br>1682      | 1600              | 1000          | 260            | 260                  | 0.125             |
| MMU-90    | TDS, NO <sub>3</sub> , Mn          | 37.5          | 7.73                    | 8.1                   | 1266                | 1200              | 720           | 130            | 130                  | 7.8               |
| MMU-91    | Radon                              | 30.6          | 8.34                    | 8.4                   | 736                 | 690               | 440           | 49             | 52                   | 0.06              |
| MMU-92    | F, pH, Radon                       | 36.7          | 8.63                    | 8.6                   | 613                 | 560               | 350           | 12             | 12                   | 0.06              |
| MMU-93    | -                                  | 33.9          | 7.91                    | 8.2                   | 676                 | 620               | 370           | 88             | 90                   | 0.02              |
| MMU-94    | Radon                              | 35.5          | 8.04                    | 8.3                   | 623                 | 540               | 400           | 41             | 42                   | 0.33              |
| MMU-95    | F                                  | 34.4          | 8.44                    | 8.5                   | 621                 | 560               | 480           | 18             | 17                   | 0.26              |
| MMU-96    | TDS                                | 33.2          | 7.94                    | 8.2                   | 932                 | 880               | 530           | 94             | 98                   | 0.06              |
| MMU-97    | TDS, NO <sub>3</sub>               | 32.6          | 7.64                    | 8.1                   | 1264                | 1200              | 780           | 250            | 220                  | 0.21              |
| MMU-98    | <b>F</b> , As, pH                  | 36.2          | 8.94                    | 8.9                   | 572                 | 510               | 320           | ND             | ND                   | 0.11              |
| MMU-99    | Radon                              | 28.6          | 8.15                    | 8.3                   | 464                 | 420               | 260           | 69             | 79                   | 0.02              |
| MMU-100   | pH, Radon                          | 31.2          | 9.33                    | 9.2                   | 600                 | 550               | 330           | ND             | ND                   | 0.49              |
| MMU-101   | pH, As, F,<br>Radon                | 32.3          | 9.37                    | 9.2                   | 483                 | 430               | 270           | 18             | 13                   | 0.05              |
| MMU-102   | F, Radon                           | 30.7          | 8.12                    | 8.3                   | 409                 | 360               | 220           | 54             | 62                   | 0.06              |
| MMU-103   | F                                  | 30.4          | 8.11                    | 8.3                   | 408                 | 360               | 230           | 63             | 67                   | 0.01              |

Appendix B. Groundwater Quality Data, McMullen Valley Basin, 2008-2009---Continued

| Site #       | MCL<br>Exceedances                                                 | Temp<br>(°C) | <b>pH-field</b><br>(su) | <b>pH-lab</b><br>(su) | SC-field<br>(µS/cm) | SC-lab<br>(µS/cm) | TDS<br>(mg/L) | Hard<br>(mg/L) | Hard - cal<br>(mg/L) | <b>Turb</b> (ntu) |
|--------------|--------------------------------------------------------------------|--------------|-------------------------|-----------------------|---------------------|-------------------|---------------|----------------|----------------------|-------------------|
| MMU-104      | F, Radon                                                           | 32.8         | 8.06                    | 8.2                   | 718                 | 690               | 430           | 42             | 35                   | 0.17              |
| MMU-105      | -                                                                  | 27.7         | 7.68                    | 8.1                   | 628                 | 610               | 370           | 140            | 130                  | 0.26              |
| MMU-106      | -                                                                  | 27.9         | 7.62                    | 8.1                   | 664                 | 640               | 390           | 140            | 130                  | 0.06              |
| MMU-107/108  | -                                                                  | 32.6         | 8.22                    | 8.265                 | 656                 | 635               | 365           | 43             | 41.5                 | 0.06              |
| MMU-109      | -                                                                  | 30.9         | 7.61                    | 8.1                   | 578                 | 550               | 330           | 170            | 160                  | 0.34              |
| MMU-110      | -                                                                  | 31.9         | 8.11                    | 8.2                   | 513                 | 470               | 270           | 110            | 100                  | 0.11              |
| MMU-111      | pH, F                                                              | 31.8         | 8.66                    | 8.6                   | 635                 | 590               | 390           | 14             | 11                   | 0.22              |
| MMU-112      | TDS, Cl, NO <sub>3</sub> ,<br>F, Radon                             | 31.7         | 8.13                    | 8.1                   | 1555                | 1500              | 920           | 73             | 63                   | 0.08              |
| MMU-113      | As, F                                                              | 29.2         | 8.19                    | 8.3                   | 539                 | 500               | 310           | 53             | 47                   | 0.03              |
| MMU-114/115  | pH                                                                 | 26.2         | 8.90                    | 8.7                   | 657                 | 610               | 370           | 11.5           | 10                   | 2.3               |
| MMU-116      | Radon                                                              | 30.0         | 8.04                    | 8.2                   | 514                 | 460               | 270           | 110            | 110                  | 0.05              |
| MMU-117/118a | TDS, Cl, SO <sub>4</sub> ,<br>NO <sub>3</sub> , As, <b>F</b> , Mn  | 25.2         | 8.08                    | 8.4                   | 2743                | 2700              | 1800          | 88             | 79.5                 | 31                |
| MMU-118b     | pH, TDS, Cl,<br>SO <sub>4,</sub> NO <sub>3</sub> , As,<br><b>F</b> | 23.5         | 8.66                    | 8.7                   | 2755                | 2700              | 1800          | 22             | 22                   | 0.07              |
| MMU-119/120  | TDS, NO <sub>3</sub> , <b>F</b><br>Gross α                         | 26.4         | 8.03                    | 8.22                  | 2481                | 2400              | 1600          | 100            | 94                   | 32                |
| MMU-121      | pH, TDS, As,<br>F, Radon                                           | 30.6         | 8.98                    | 8.9                   | 906                 | 870               | 510           | ND             | ND                   | 14                |
| MMU-122      | Radon                                                              | 31.4         | 7.84                    | 8.2                   | 583                 | 560               | 320           | 84             | 100                  | 0.42              |
| MMU-123/124  | TDS, Cl, SO <sub>4,</sub><br>NO <sub>3</sub> , As, Se<br>Radon     | 25.3         | 7.87                    | 8.1                   | 5383                | 5200              | 3450          | 280            | 285                  | 1.05              |
| MMU-125      | -                                                                  | 28.6         | 7.66                    | 8.0                   | 736                 | 710               | 410           | 160            | 180                  | 0.66              |
| MMU-127/128  | pH, As, <b>F</b> ,<br>Radon                                        | 30.7         | 9.68                    | 9.45                  | 450                 | 420               | 260           | ND             | ND                   | 1.05              |
| MMU-129      | Radon                                                              | 26.3         | 7.32                    | 8.0                   | 598                 | 590               | 340           | 180            | 200                  | 0.21              |
| MMU-130      | Radon                                                              | 29.6         | 7.41                    | 8.0                   | 729                 | 710               | 420           | 220            | 230                  | 1.1               |
| MMU-131      | F                                                                  | 24.8         | 8.26                    | 8.3                   | 764                 | 760               | 430           | 43             | 46                   | 2.2               |
| MMU-132      | F, As, Radon                                                       | 32.3         | 8.32                    | 8.4                   | 367                 | 340               | 220           | 32             | 34                   | 0.31              |
| MMU-133      | Radon                                                              | 28.5         | 7.96                    | 8.2                   | 692                 | 700               | 390           | 69             | 71                   | 0.77              |
| MMU-134/135a | F, Radon                                                           | 35.5         | 7.89                    | 8.2                   | 428                 | 410               | 245           | 55.5           | 56.5                 | ND                |
| MMU-135b/136 | NO <sub>3</sub> , As, F<br>Gross $\alpha$ , Radon                  | 27.7         | 7.78                    | 7.9                   | 615                 | 595               | 370           | 180            | 170                  | 0.045             |
| MMU-137/138  | TDS, Cl, SO <sub>4,</sub><br>NO <sub>3</sub> , As,<br>Radon        | 27.5         | 7.23                    | 6.81                  | 4086                | 3950              | 2900          | 1600           | 1600                 | 0.36              |
| MMU-139      | Radon                                                              | 25.5         | 7.81                    | 8.2                   | 741                 | 760               | 450           | 71             | 74                   | 0.04              |

| Site #      | MCL<br>Exceedances                                        | Temp<br>(°C) | <b>pH-field</b><br>(su) | <b>pH-lab</b><br>(su) | SC-field<br>(µS/cm) | SC-lab<br>(µS/cm) | TDS<br>(mg/L) | Hard<br>(mg/L) | Hard - cal<br>(mg/L) | <b>Turb</b> (ntu) |
|-------------|-----------------------------------------------------------|--------------|-------------------------|-----------------------|---------------------|-------------------|---------------|----------------|----------------------|-------------------|
| MMU-140     | Radon                                                     | 24.8         | 7.76                    | 8.2                   | 730                 | 720               | 430           | 98             | 100                  | 0.02              |
| MMU-141     | Radon                                                     | 25.4         | 7.79                    | 8.2                   | 594                 | 580               | 350           | 84             | 82                   | 0.06              |
| MMU-144     | Radon                                                     | 26.5         | 8.24                    | 8.3                   | 775                 | 750               | 430           | 30             | 30                   | 0.39              |
| MMU-145/146 | TDS, NO <sub>3</sub> ,<br>Gross α, Radon                  | 23.2         | 7.78                    | 8.1                   | 1492                | 1500              | 865           | 180            | 180                  | 2.45              |
| MMU-147     | F, Radon                                                  | 24.3         | 8.06                    | 8.3                   | 613                 | 590               | 350           | 42             | 42                   | 0.30              |
| MMU-148     | F                                                         | 24.4         | 8.11                    | 8.2                   | 680                 | 650               | 400           | 41             | 43                   | 16                |
| MMU-149     | NO <sub>3</sub>                                           | -            | 7.87                    | 8.2                   | 719                 | 700               | 440           | 99             | 97                   | 0.09              |
| MMU-151/152 | TDS, SO <sub>4,</sub><br>NO <sub>3</sub> , <b>F</b> ,     | 21.4         | 8.20                    | 8.65                  | 2050                | 2100              | 1300          | 120            | 120                  | 11.5              |
| MMU-155     | F, As, Radon                                              | 25.0         | 8.29                    | 8.4                   | 449                 | 430               | 250           | 50             | 52                   | 0.06              |
| MMU-156     | F, As, Radon                                              | 23.4         | 8.18                    | 8.3                   | 509                 | 490               | 280           | 75             | 75                   | 0.24              |
| MMU-157     | pH, <b>F</b> , As                                         | -            | 9.13                    | 9.0                   | 519                 | 500               | 290           | ND             | ND                   | 0.06              |
| MMU-158     | pH, F, As,<br>Radon                                       | 25.3         | 9.00                    | 8.8                   | 664                 | 640               | 380           | ND             | ND                   | 1.0               |
| MMU-159     | pH, <b>F</b> , As,<br>Radon                               | 32.5         | 8.77                    | 8.7                   | 567                 | 530               | 320           | ND             | ND                   | 0.07              |
| MMU-160/161 | $NO_{3}$ , Gross $\alpha$                                 | 22.7         | 7.37                    | 7.85                  | 733                 | 710               | 440           | 280            | 295                  | 1.01              |
| MMU-162     | F                                                         | 28.7         | 8.46                    | 8.3                   | 464                 | 430               | 260           | 44             | 54                   | 0.03              |
| MMU-163     | As, <b>F</b>                                              | 31.5         | 8.76                    | 8.6                   | 497                 | 450               | 270           | ND             | ND                   | 3.9               |
| MMU-164     | F                                                         | 32.3         | 8.19                    | 8.3                   | 483                 | 440               | 270           | 47             | 51                   | 2.2               |
| MMU-165-66  | TDS, Cl, SO <sub>4</sub> ,<br>NO <sub>3</sub> , As, F, Se | 26.6         | 7.76                    | 8.15                  | 6448                | 6250              | 4400          | 550            | 610                  | 0.015             |
| MMU-168     | TDS, Cl, SO <sub>4,</sub><br>NO <sub>3</sub> , F          | 27.2         | 8.09                    | 8.4                   | 3229                | 3100              | 2100          | 140            | 130                  | 0.93              |
| MMU-170     | TDS, As, F                                                | 31.3         | 8.37                    | 8.5                   | 1272                | 1200              | 760           | 37             | 24                   | 0.93              |
| MMU-171     | F                                                         | 25.8         | 7.35                    | 7.9                   | 674                 | 640               | 400           | 170            | 180                  | 0.16              |
| MMU-172     | F, Gross α, U                                             | 26.1         | 7.51                    | 7.9                   | 758                 | 710               | 450           | 130            | 150                  | 0.01              |
| MMU-173     | F                                                         | 26.9         | 7.35                    | 7.9                   | 821                 | 780               | 490           | 140            | 150                  | 0.02              |
| MMU-176     | F                                                         | 30.4         | 8.05                    | 8.2                   | 513                 | 470               | 290           | 83             | 86                   | 0.04              |

| Site #        | Calcium<br>(mg/L) | Magnesium<br>(mg/L) | Sodium<br>(mg/L) | Potassium<br>(mg/L) | <b>T. Alk</b> (mg/L) | Bicarbonate<br>(mg/L) | Carbonate<br>(mg/L) | Chloride<br>(mg/L) | Sulfate<br>(mg/L) |
|---------------|-------------------|---------------------|------------------|---------------------|----------------------|-----------------------|---------------------|--------------------|-------------------|
| MMU-1         | 140               | 17                  | 260              | 7.0                 | 140                  | 170                   | ND                  | 360                | 200               |
| MMU-2/153/154 | 150               | 30.5                | 175              | 5.6                 | 280                  | 330                   | ND                  | 190                | 230               |
| MMU 3         | 100               | 37                  | 71               | 4.1                 | 150                  | 180                   | ND                  | ND                 | 88                |
| MMU-4         | 43                | 15                  | 130              | 4.4                 | 170                  | 210                   | ND                  | 7.9                | 72                |
| MMU-5         | -                 | -                   | -                | -                   | -                    | -                     | -                   | -                  | -                 |
| MMU-6         | 19                | 7.3                 | 91               | 3.3                 | 180                  | 220                   | ND                  | 10                 | 46                |
| MMU-7/8       | 2.65              | ND                  | 135              | 2.8                 | 150                  | 140                   | 21                  | 65.5               | 55                |
| MMU-9         | -                 | -                   | -                | -                   | -                    | -                     | -                   | -                  | -                 |
| MMU-10        | 6.4               | ND                  | 140              | 2.8                 | 140                  | 170                   | 3.0                 | 70                 | 73                |
| MMU-11        | 16                | 5.8                 | 150              | 3.9                 | 130                  | 160                   | ND                  | 110                | 68                |
| MMU-12        | 44                | 19                  | 88               | 4.8                 | 160                  | 200                   | ND                  | 92                 | 70                |
| MMU-14        | 80                | 37                  | 160              | 5.1                 | 210                  | 250                   | ND                  | 200                | 200               |
| MMU-15/16     | 21.5              | 6.55                | 91               | 2.65                | 140                  | 170                   | ND                  | 42                 | 62.5              |
| MMU-17        | -                 | -                   | -                | -                   | -                    | -                     | -                   | -                  | -                 |
| MMU-18        | 37                | 11                  | 63               | 4.1                 | 160                  | 200                   | ND                  | 36                 | 44                |
| MMU-19        | 110               | 34                  | 200              | 4.8                 | 220                  | 270                   | ND                  | 270                | 160               |
| MMU-21        | 38                | 16                  | 68               | 2.0                 | 220                  | 270                   | ND                  | 28                 | 30                |
| MMU-22/23     | -                 | -                   | -                | -                   | -                    | -                     | -                   | -                  | -                 |
| MMU-24        | 35                | 11                  | 120              | 2.8                 | 210                  | 260                   | ND                  | 8.2                | 62                |
| MMU-25        | 34                | 18                  | 71               | 4.9                 | 180                  | 220                   | ND                  | 49                 | 47                |
| MMU-26        | -                 | -                   | -                | -                   | -                    | -                     | -                   | -                  | -                 |
| MMU-27        | 26                | 9.7                 | 120              | 5.1                 | 160                  | 200                   | ND                  | 36                 | 120               |
| MMU-28        | 6.9               | 3.1                 | 120              | 1.5                 | 130                  | 150                   | 4.9                 | 48                 | 56                |
| MMU-31        | -                 | -                   | -                | -                   | -                    | -                     | -                   | -                  | -                 |
| MMU-32/33     | 4.35              | 0.70                | 130              | 1.7                 | 120                  | 130                   | 6.5                 | 59                 | 78.5              |
| MMU-34        | -                 | -                   | -                | -                   | -                    | -                     | -                   | -                  | -                 |
| MMU-35        | 62                | 14                  | 120              | 2.9                 | 150                  | 190                   | ND                  | 120                | 110               |
| MMU-36        | 20                | 6.2                 | 100              | 2.3                 | 190                  | 230                   | ND                  | 8.6                | 49                |

Appendix B. Groundwater Quality Data, McMullen Valley Basin, 2008-2009---Continued

| Site #        | Calcium<br>(mg/L) | Magnesium<br>(mg/L) | Sodium<br>(mg/L) | Potassium<br>(mg/L) | <b>T. Alk</b> (mg/L) | Bicarbonate<br>(mg/L) | Carbonate<br>(mg/L) | Chloride<br>(mg/L) | Sulfate (mg/L) |
|---------------|-------------------|---------------------|------------------|---------------------|----------------------|-----------------------|---------------------|--------------------|----------------|
| MMU-37/150    | 42                | 13                  | 120              | 3.6                 | 150                  | 180                   | ND                  | 120                | 89             |
| MMU 38        | -                 | -                   | -                | -                   | -                    | -                     | -                   | -                  | -              |
| MMU-39        | -                 | -                   | -                | -                   | -                    | -                     | -                   | -                  | -              |
| MMU-40        | 22                | 7.0                 | 95               | 2.3                 | 200                  | 240                   | ND                  | 31                 | 38             |
| MMU-41        | 39                | 13                  | 110              | 3.4                 | 240                  | 290                   | ND                  | 54                 | 72             |
| MMU-42        | 150               | 45                  | 340              | 4.8                 | 250                  | 300                   | ND                  | 400                | 380            |
| MMU-43        | 73                | 29                  | 210              | 2.9                 | 310                  | 380                   | ND                  | 150                | 160            |
| MMU-44        | 220               | 69                  | 120              | 7.9                 | 120                  | 140                   | ND                  | 530                | 110            |
| MMU-45        | 43                | 11                  | 59               | 4.1                 | 160                  | 200                   | ND                  | 47                 | 45             |
| MMU-46        | -                 | -                   | -                | -                   | -                    | -                     | -                   | -                  | -              |
| MMU-47/167    | 42                | 12                  | 74               | 3.4                 | 160                  | 190                   | ND                  | 64                 | 41             |
| MMU-48        | 36                | 9.2                 | 78               | 3.6                 | 160                  | 200                   | ND                  | 50                 | 48             |
| MMU-49/50     | 3.45              | ND                  | 105              | 1.3                 | 130                  | 140                   | 11.5                | 44                 | 48             |
| MMU-51        | -                 | -                   | -                | -                   | -                    | -                     | -                   | -                  | -              |
| MMU-52        | 6.7               | ND                  | 120              | 1.3                 | 120                  | 120                   | 14                  | 53                 | 79             |
| MMU-53/174    | 22                | 2.8                 | 130              | 4.8                 | 130                  | 160                   | ND                  | 100                | 38             |
| MMU-54        | 40                | 5.8                 | 109              | 5.2                 | 140                  | 170                   | ND                  | 110                | 40             |
| MMU-55/169    | 7.1               | 2.1                 | 140              | 1.6                 | 140                  | 160                   | 6                   | 46                 | 90             |
| MMU-57        | -                 | -                   | -                | -                   | -                    | -                     | -                   | -                  | -              |
| MMU-58/59     | 59                | 5.2                 | 271              | 5.2                 | 120                  | 150                   | ND                  | 330                | 160            |
| MMU-60/61/175 | 13                | 3.8                 | 120              | 1.8                 | 130                  | 160                   | ND                  | 77                 | 51             |
| MMU-62        | 12                | 3.9                 | 105              | 1.6                 | 140                  | 170                   | ND                  | 15                 | 50             |
| MMU-63        | 69                | 21                  | 178              | 3.4                 | 250                  | 310                   | ND                  | 150                | 140            |
| MMU-64/65     | 10.5              | 3.65                | 93               | 2.45                | 130                  | 150                   | ND                  | 36.5               | 33             |
| MMU-66        | 12                | 6.7                 | 59               | 2.1                 | 140                  | 170                   | ND                  | 16                 | 18             |
| MMU-67        | 17                | 11                  | 60               | 2.3                 | 130                  | 150                   | ND                  | 37                 | 31             |
| MMU-68        | 17                | 12                  | 54               | 2.5                 | 130                  | 160                   | ND                  | 28                 | 29             |
| MMU-69/70     | 19                | 9.7                 | 63               | 2.65                | 150                  | 180                   | ND                  | 27.5               | 27             |

Appendix B. Groundwater Quality Data, McMullen Valley Basin, 2008-2009---Continued

| Site #    | Calcium<br>(mg/L) | Magnesium<br>(mg/L) | Sodium<br>(mg/L) | Potassium<br>(mg/L) | <b>T. Alk</b> (mg/L) | Bicarbonate<br>(mg/L) | Carbonate<br>(mg/L) | Chloride<br>(mg/L) | Sulfate<br>(mg/L) |
|-----------|-------------------|---------------------|------------------|---------------------|----------------------|-----------------------|---------------------|--------------------|-------------------|
| MMU-71    | 7.1               | 3.2                 | 91               | 1.4                 | 130                  | 150                   | 2.2                 | 19                 | 39                |
| MMU-72/73 | 13                | 5.6                 | 60               | 1.95                | 130                  | 160                   | ND                  | 18                 | 21                |
| MMU-74    | 9                 | 2.4                 | 89               | 1.5                 | 110                  | 130                   | ND                  | 47                 | 29                |
| MMU-76    | 20                | 11                  | 67               | 2.6                 | 120                  | 150                   | ND                  | 55                 | 24                |
| MMU-77    | 19                | 9.4                 | 66               | 2.5                 | 130                  | 160                   | ND                  | 39                 | 22                |
| MMU-78    | 16                | 6.9                 | 88               | 2.1                 | 130                  | 160                   | ND                  | 48                 | 46                |
| MMU-79    | 17                | 7.6                 | 92               | 2.3                 | 130                  | 160                   | ND                  | 59                 | 43                |
| MMU-80    | 36                | 12                  | 94               | 2.2                 | 210                  | 250                   | ND                  | 51                 | 47                |
| MMU-81    | 19                | 5.7                 | 110              | 2.4                 | 210                  | 250                   | ND                  | 38                 | 35                |
| MMU 82    | 33                | 9.5                 | 120              | 5.1                 | 140                  | 170                   | ND                  | 47                 | 160               |
| MMU-83/84 | 14                | ND                  | 140              | 2.95                | 140                  | 165                   | ND                  | 97.5               | 45                |
| MMU-85/86 | 175               | 47.5                | 125              | 8.4                 | 99.5                 | 120                   | ND                  | 445                | 80.5              |
| MMU-87    | 37                | 5.2                 | 98               | 4.4                 | 150                  | 180                   | ND                  | 89                 | 35                |
| MMU-88/89 | 81                | 15                  | 230              | 4.1                 | 180                  | 220                   | ND                  | 220                | 160               |
| MMU-90    | 40                | 8.0                 | 200              | 2.8                 | 130                  | 150                   | ND                  | 180                | 88                |
| MMU-91    | 16                | 2.9                 | 130              | 3.4                 | 140                  | 170                   | ND                  | 74                 | 58                |
| MMU-92    | 4.9               | ND                  | 120              | 1.5                 | 140                  | 150                   | 7.0                 | 37                 | 49                |
| MMU-93    | 24                | 7.4                 | 94               | 2.7                 | 150                  | 190                   | ND                  | 60                 | 41                |
| MMU-94    | 12                | 2.9                 | 100              | 2.1                 | 150                  | 190                   | ND                  | 47                 | 34                |
| MMU-95    | 6.9               | ND                  | 100              | 1.7                 | 130                  | 150                   | 4.0                 | 46                 | 50                |
| MMU-96    | 35                | 2.6                 | 120              | 4.4                 | 130                  | 160                   | ND                  | 140                | 46                |
| MMU-97    | 71                | 11                  | 120              | 5.4                 | 120                  | 150                   | ND                  | 230                | 49                |
| MMU-98    | 2.3               | ND                  | 100              | 0.72                | 130                  | 130                   | 10                  | 37                 | 42                |
| MMU-99    | 14                | 7.9                 | 54               | 2.0                 | 120                  | 150                   | ND                  | 32                 | 31                |
| MMU-100   | 1.9               | ND                  | 98               | ND                  | 94                   | 81                    | 16                  | 62                 | 43                |
| MMU-101   | 2.6               | 1.6                 | 78               | 0.77                | 120                  | 100                   | 20                  | 33                 | 34                |
| MMU-102   | 11                | 6.5                 | 48               | 1.9                 | 140                  | 170                   | ND                  | 13                 | 17                |
| MMU-103   | 12                | 6.9                 | 47               | 2.0                 | 140                  | 170                   | ND                  | 15                 | 17                |

Appendix B. Groundwater Quality Data, McMullen Valley Basin, 2008-2009---Continued

| Site #       | Calcium<br>(mg/L) | Magnesium<br>(mg/L) | Sodium<br>(mg/L) | Potassium<br>(mg/L) | <b>T. Alk</b> (mg/L) | Bicarbonate<br>(mg/L) | Carbonate<br>(mg/L) | Chloride<br>(mg/L) | Sulfate<br>(mg/L) |
|--------------|-------------------|---------------------|------------------|---------------------|----------------------|-----------------------|---------------------|--------------------|-------------------|
| MMU-104      | 14                | ND                  | 110              | 2.9                 | 130                  | 160                   | ND                  | 88                 | 50                |
| MMU-105      | 29                | 15                  | 67               | 3.6                 | 180                  | 220                   | ND                  | 47                 | 44                |
| MMU-106      | 37                | 9.2                 | 66               | 4.7                 | 160                  | 200                   | ND                  | 65                 | 38                |
| MMU-107/108  | 14                | 1.6                 | 103              | 4.25                | 150                  | 180                   | ND                  | 67.5               | 40.5              |
| MMU-109      | 42                | 13                  | 41               | 1.3                 | 180                  | 220                   | ND                  | 45                 | 18                |
| MMU-110      | 18                | 14                  | 50               | 2.5                 | 140                  | 170                   | ND                  | 40                 | 31                |
| MMU-111      | 4.3               | ND                  | 100              | 1.9                 | 170                  | 190                   | 7.6                 | 28                 | 61                |
| MMU-112      | 23                | 1.3                 | 280              | 1.9                 | 67                   | 81                    | ND                  | 290                | 80                |
| MMU-113      | 10                | 5.4                 | 73               | 1.1                 | 150                  | 180                   | ND                  | 34                 | 37                |
| MMU-114/115  | 3.8               | ND                  | 105              | 0.755               | 120                  | 130                   | 6.9                 | 64                 | 47.5              |
| MMU-116      | 18                | 15                  | 48               | 2.7                 | 140                  | 170                   | ND                  | 37                 | 31                |
| MMU-117/118a | 12                | 12.5                | 625              | 0.71                | 585                  | 70                    | 6.65                | 265                | 345               |
| MMU-118b     | 4.3               | 2.8                 | 670              | ND                  | 390                  | 420                   | 28                  | 270                | 410               |
| MMU-119/120  | 18                | 12.5                | 500              | 2.4                 | 245                  | 300                   | ND                  | 245                | 140               |
| MMU-121      | 2.2               | ND                  | 190              | 1.0                 | 200                  | 200                   | 57                  | 57                 | 84                |
| MMU-122      | 26                | 9.3                 | 75               | 2.6                 | 160                  | 190                   | ND                  | 45                 | 40                |
| MMU-123/124  | 54                | 36.5                | 985              | 1.65                | 150                  | 180                   | ND                  | 850                | 810               |
| MMU-125      | 51                | 14                  | 64               | 3.9                 | 160                  | 200                   | ND                  | 96                 | 37                |
| MMU-127/128  | 1.3               | ND                  | 84.5             | 0.50                | 100                  | 65                    | 29                  | 26                 | 35                |
| MMU-129      | 49                | 19                  | 45               | 1.9                 | 240                  | 300                   | ND                  | 26                 | 24                |
| MMU-130      | 60                | 19                  | 52               | 4.4                 | 190                  | 230                   | ND                  | 85                 | 34                |
| MMU-131      | 11                | 4.4                 | 120              | 3.0                 | 88                   | 110                   | ND                  | 110                | 74                |
| MMU-132      | 8.2               | 3.2                 | 60               | 1.7                 | 120                  | 140                   | ND                  | 15                 | 18                |
| MMU-133      | 20                | 5.1                 | 100              | 2.0                 | 140                  | 170                   | ND                  | 79                 | 45                |
| MMU-134/135a | 13.5              | 5.6                 | 63               | 2.3                 | 140                  | 170                   | ND                  | 15                 | 25                |
| MMU-135b/136 | 50                | 12                  | 50.5             | 2.15                | 170                  | 210                   | ND                  | 24                 | 41.5              |
| MMU-137/138  | 445               | 120                 | 260              | 13                  | 73.5                 | 85                    | ND                  | 710                | 725               |
| MMU-139      | 20                | 5.8                 | 130              | 2.8                 | 210                  | 260                   | ND                  | 17                 | 100               |

Appendix B. Groundwater Quality Data, McMullen Valley Basin, 2008-2009---Continued

| Site #      | Calcium<br>(mg/L) | Magnesium<br>(mg/L) | Sodium<br>(mg/L) | Potassium<br>(mg/L) | <b>T. Alk</b> (mg/L) | Bicarbonate<br>(mg/L) | Carbonate<br>(mg/L) | Chloride<br>(mg/L) | Sulfate<br>(mg/L) |
|-------------|-------------------|---------------------|------------------|---------------------|----------------------|-----------------------|---------------------|--------------------|-------------------|
| MMU-140     | 27                | 7.9                 | 120              | 3.2                 | 200                  | 240                   | ND                  | 35                 | 77                |
| MMU-141     | 18                | 9.1                 | 92               | 3.8                 | 210                  | 260                   | ND                  | 9.4                | 44                |
| MMU-144     | 9.4               | 1.7                 | 140              | 3.4                 | 140                  | 170                   | ND                  | 98                 | 37                |
| MMU-145/146 | 52                | 11                  | 220              | 4.5                 | 170                  | 210                   | ND                  | 220                | 140               |
| MMU-147     | 13                | 2.3                 | 110              | 2.4                 | 150                  | 180                   | ND                  | 46                 | 46                |
| MMU-148     | 12                | 3.1                 | 120              | 2.2                 | 170                  | 210                   | ND                  | 49                 | 53                |
| MMU-149     | 26                | 7.7                 | 110              | 3.1                 | 200                  | 250                   | ND                  | 34                 | 78                |
| MMU-151/152 | 14                | 20.5                | 400              | 0.985               | 365                  | 385                   | 28.5                | 195                | 250               |
| MMU-155     | 8.9               | 7.3                 | 72               | 1.4                 | 130                  | 150                   | 2.4                 | 23                 | 32                |
| MMU-156     | 16                | 8.4                 | 72               | 1.6                 | 100                  | 120                   | ND                  | 31                 | 49                |
| MMU-157     | 1.5               | ND                  | 100              | ND                  | 110                  | 100                   | 12                  | 29                 | 48                |
| MMU-158     | 2.6               | ND                  | 130              | 1.1                 | 140                  | 140                   | 11                  | 48                 | 70                |
| MMU-159     | 3.4               | ND                  | 110              | 1.1                 | 120                  | 130                   | 7.0                 | 27                 | 63                |
| MMU-160/161 | 88.5              | 18                  | 33               | 1.9                 | 215                  | 260                   | ND                  | 40                 | 28                |
| MMU-162     | 11                | 6.4                 | 75               | 2.2                 | 120                  | 140                   | ND                  | 31                 | 34                |
| MMU-163     | 4.7               | ND                  | 91               | 0.82                | 94                   | 110                   | 4.1                 | 27                 | 43                |
| MMU-164     | 9.7               | 6.4                 | 76               | 1.4                 | 120                  | 150                   | ND                  | 27                 | 36                |
| MMU-165-66  | 110               | 81.5                | 1300             | 1.9                 | 165                  | 205                   | ND                  | 930                | 1350              |
| MMU-168     | 24                | 18                  | 640              | 1.1                 | 280                  | 330                   | 7                   | 330                | 680               |
| MMU-170     | 5.8               | 2.4                 | 260              | 1.9                 | 260                  | 300                   | 10                  | 76                 | 170               |
| MMU-171     | 49                | 14                  | 69               | 2.6                 | 220                  | 260                   | ND                  | 25                 | 46                |
| MMU-172     | 39                | 12                  | 100              | 2.8                 | 220                  | 270                   | ND                  | 41                 | 61                |
| MMU-173     | 41                | 12                  | 110              | 3.3                 | 200                  | 240                   | ND                  | 59                 | 75                |
| MMU-176     | 19                | 9.3                 | 65               | 2.3                 | 130                  | 160                   | ND                  | 37                 | 26                |

Appendix B. Groundwater Quality Data, McMullen Valley Basin, 2008-2009---Continued

| Site #        | <b>T. Nitrate-N</b> (mg/L) | Nitrite-N<br>(mg/L) | TKN<br>(mg/L) | Ammonia<br>(mg/L) | <b>T. Phosphorus</b><br>(mg/L) | SAR<br>(value) | Irrigation<br>Quality | Perchlorate<br>(ug/L) |
|---------------|----------------------------|---------------------|---------------|-------------------|--------------------------------|----------------|-----------------------|-----------------------|
| MMU-1         | 54                         | ND                  | ND            | ND                | ND                             | 5.5            | C3-S2                 | 4.81                  |
| MMU-2/153/154 | 50.3                       | ND                  | ND            | ND                | ND                             | 3.3            | C3-S1                 | 4.11                  |
| MMU 3         | 17                         | ND                  | ND            | ND                | ND                             | 1.5            | C3-S1                 | 2.82                  |
| MMU-4         | 6.5                        | ND                  | 0.084         | ND                | ND                             | 4.3            | C3-S1                 | 1.52                  |
| MMU-5         | 32                         | -                   | -             | -                 | -                              | -              | -                     | 3.17                  |
| MMU-6         | 2.5                        | ND                  | ND            | ND                | ND                             | 4.5            | C2-S1                 | 0.669                 |
| MMU-7/8       | 0.605                      | ND                  | 0.069         | ND                | ND                             | 21.0           | C2-S4                 | 1.05                  |
| MMU-9         | 4.0                        | -                   | -             | -                 | -                              | -              | -                     | 1.41                  |
| MMU-10        | 2.5                        | ND                  | 0.083         | ND                | ND                             | 15.2           | C2-S3                 | 1.58                  |
| MMU-11        | 5.0                        | ND                  | ND            | ND                | ND                             | 8.2            | C3-S2                 | 2.77                  |
| MMU-12        | 4.6                        | ND                  | ND            | ND                | ND                             | 2.8            | C2-S1                 | 2.36                  |
| MMU-14        | 3.5                        | ND                  | ND            | ND                | ND                             | 3.7            | C3-S1                 | 1.82                  |
| MMU-15/16     | 2.8                        | ND                  | ND            | ND                | ND                             | 4.3            | C2-S1                 | 1.06                  |
| MMU-17        | 5.2                        | -                   | -             | -                 | -                              | -              | -                     | 1.16                  |
| MMU-18        | 3.2                        | ND                  | ND            | ND                | ND                             | 2.3            | C2-S1                 | 1.75                  |
| MMU-19        | 34                         | ND                  | ND            | ND                | ND                             | 4.3            | C3-S1                 | 3.09                  |
| MMU-21        | 2.6                        | ND                  | ND            | ND                | ND                             | 2.3            | C2-S1                 | 0.872                 |
| MMU-22/23     | 1.6                        | -                   | -             | -                 | -                              | -              | -                     | 0.336                 |
| MMU-24        | 4.3                        | ND                  | ND            | ND                | ND                             | 4.5            | C3-S1                 | 1.15                  |
| MMU-25        | 2.2                        | ND                  | ND            | ND                | ND                             | 2.5            | C2-S1                 | 1.66                  |
| MMU-26        | 4.1                        | -                   | -             | -                 | -                              | -              | -                     | 1.36                  |
| MMU-27        | 2.3                        | ND                  | ND            | ND                | ND                             | 5.1            | C2-S1                 | 0.905                 |
| MMU-28/29     | 2.8                        | ND                  | ND            | ND                | ND                             | 9.5            | C2-S2                 | 1.055                 |
| MMU-31        | 2.2                        | -                   | -             | -                 | -                              | -              | -                     | -                     |
| MMU-32/33     | 2.86                       | ND                  | ND            | ND                | ND                             | 16.7           | C2-S3                 | 1.08                  |
| MMU-34        | 2.5                        | -                   | -             | -                 | -                              | -              | -                     | -                     |
| MMU-35        | 3.2                        | ND                  | ND            | ND                | ND                             | 3.6            | C3-S1                 | -                     |
| MMU-36        | 4.6                        | ND                  | ND            | ND                | ND                             | 5.0            | C2-S1                 | -                     |

Appendix B. Groundwater Quality Data, McMullen Valley Basin, 2008-2009---Continued

| Site #        | Nitrate-N<br>(mg/L) | Nitrite-N<br>(mg/L) | TKN<br>(mg/L) | Ammonia<br>(mg/L) | Phosphorus<br>(mg/L) | SAR<br>(value) | Irrigation<br>Quality | Aluminum<br>(mg/L) | Strontium<br>(mg/L) |
|---------------|---------------------|---------------------|---------------|-------------------|----------------------|----------------|-----------------------|--------------------|---------------------|
| MMU-37/150    | 11.55               | ND                  | ND            | ND                | ND                   | 4.1            | C3-S1                 | -                  | -                   |
| MMU 38        | 2.9                 | -                   | -             | -                 | -                    | -              | -                     | -                  | -                   |
| MMU-39        | 4.6                 | -                   | -             | -                 | -                    | -              | -                     | -                  | -                   |
| MMU-40        | 3.6                 | ND                  | ND            | ND                | ND                   | 4.5            | C2-S1                 | -                  | -                   |
| MMU-41        | 2.8                 | ND                  | ND            | ND                | ND                   | 3.9            | C3-S1                 | -                  | -                   |
| MMU-42        | 16                  | ND                  | ND            | ND                | ND                   | 6.3            | C4-S2                 | -                  | -                   |
| MMU-43        | 18                  | ND                  | ND            | ND                | 0.021                | 5.3            | C3-S2                 | -                  | -                   |
| MMU-44        | 20                  | ND                  | ND            | ND                | 0.022                | 1.8            | C3-S1                 | -                  | -                   |
| MMU-45        | 3.4                 | ND                  | ND            | ND                | ND                   | 2.1            | C2-S1                 | -                  | -                   |
| MMU-46        | 3.2                 | -                   | -             | -                 | -                    | -              | -                     | -                  | -                   |
| MMU-47/167    | 4.05                | ND                  | ND            | ND                | ND                   | 2.6            | C2-S1                 | ND                 | 0.58                |
| MMU-48        | 3.1                 | ND                  | ND            | ND                | ND                   | 3.0            | C2-S1                 | -                  | -                   |
| MMU-49/50     | 3.9                 | ND                  | ND            | ND                | ND                   | 16.2           | C2-S3                 | -                  | -                   |
| MMU-51        | 4.0                 | -                   | -             | -                 | -                    | -              | -                     | -                  | -                   |
| MMU-52        | 3.4                 | ND                  | ND            | ND                | ND                   | 12.8           | C2-S2                 | -                  | -                   |
| MMU-53/174    | 5.2/6.8             | ND                  | ND            | ND                | ND                   | 6.9            | C2-S2                 | ND                 | 1.5                 |
| MMU-54        | 8.7                 | ND                  | ND            | ND                | ND                   | 4.3            | C3-S1                 | -                  | -                   |
| MMU-55/169    | 5.3                 | ND                  | ND            | ND                | ND                   | 11.9           | C2-S2                 | ND                 | 0.42                |
| MMU-57        | 6.5                 | -                   | -             | -                 | -                    | -              | -                     | -                  | -                   |
| MMU-58/59     | 28.5                | ND                  | ND            | ND                | ND                   | 9.1            | C3-S2                 | -                  | -                   |
| MMU-60/61/175 | 6.3                 | ND                  | ND            | ND                | ND                   | 7.5            | C2-S1                 | ND                 | 0.42                |
| MMU-62        | 3.0                 | 0.026               | ND            | ND                | ND                   | 6.7            | C2-S1                 | -                  | -                   |
| MMU-63        | 6.9                 | ND                  | ND            | ND                | 0.021                | 4.8            | C3-S1                 | -                  | -                   |
| MMU-64/65     | 2.69                | -                   | ND            | -                 | 0.18/ND              | 5.9            | C2-S1                 | -                  | -                   |
| MMU-66        | 2.0                 | ND                  | ND            | ND                | ND                   | 3.4            | C2-S1                 | -                  | -                   |
| MMU-67        | 2.7                 | ND                  | ND            | ND                | 0.021                | 2.8            | C2-S1                 | -                  | -                   |
| MMU-68        | 1.9                 | ND                  | 0.16          | ND                | 0.035                | 2.5            | C2-S1                 | -                  | -                   |
| MMU-69/70     | 2.6                 | ND                  | ND            | ND                | 0.023                | 2.9            | C2-S1                 | -                  | -                   |

Appendix B. Groundwater Quality Data, McMullen Valley Basin, 2008-2009---Continued

| Site #    | T. Nitrate-N<br>(mg/L) | Nitrite-N<br>(mg/L) | TKN<br>(mg/L) | Ammonia<br>(mg/L) | <b>T. Phosphorus</b> (mg/L) | SAR<br>(value) | Irrigation<br>Quality | Perchlorate<br>(ug/L) |
|-----------|------------------------|---------------------|---------------|-------------------|-----------------------------|----------------|-----------------------|-----------------------|
| MMU-71    | 2.6                    | ND                  | ND            | ND                | ND                          | 7.1            | C2-S1                 | -                     |
| MMU-72/73 | 1.85                   | ND                  | 0.11          | ND                | 0.215                       | 3.5            | C2-S1                 | -                     |
| MMU-74    | 6.0                    | ND                  | 0.15          | ND                | ND                          | 6.8            | C2-S1                 | -                     |
| MMU-76    | 5.4                    | ND                  | 0.10          | ND                | ND                          | 3.0            | C2-S1                 | -                     |
| MMU-77    | 5.3                    | ND                  | ND            | ND                | ND                          | 3.1            | C2-S1                 | -                     |
| MMU-78    | 2.8                    | ND                  | ND            | ND                | ND                          | 4.6            | C2-S1                 | -                     |
| MMU-79    | 3.3                    | ND                  | ND            | ND                | ND                          | 4.7            | C2-S1                 | -                     |
| MMU-80    | 4.0                    | ND                  | ND            | ND                | ND                          | 3.5            | C2-S1                 | -                     |
| MMU-81    | 3.4                    | ND                  | 0.24          | ND                | ND                          | 5.7            | C2-S1                 | -                     |
| MMU 82    | 3.4                    | ND                  | 0.21          | ND                | ND                          | 4.7            | C3-S1                 | -                     |
| MMU-83/84 | 6.05                   | ND                  | 0.485         | ND                | ND                          | 10.3           | C3-S2                 | -                     |
| MMU-85/86 | 32.15                  | ND                  | 0.87          | ND                | ND                          | 2.1            | C3-S1                 | -                     |
| MMU-87    | 6.4                    | ND                  | ND            | ND                | ND                          | 4.0            | C2-S1                 | -                     |
| MMU-88/89 | 36.5                   | ND                  | ND            | ND                | ND                          | 6.2            | C3-S2                 | -                     |
| MMU-90    | 29                     | 0.78                | 0.30          | 0.18              | ND                          | 7.6            | C3-S2                 | -                     |
| MMU-91    | 5.0                    | ND                  | 0.55          | ND                | ND                          | 7.9            | C2-S2                 | -                     |
| MMU-92    | 5.0                    | ND                  | 0.31          | ND                | ND                          | 14.9           | C2-S3                 | -                     |
| MMU-93    | 4.8                    | ND                  | 0.41          | ND                | ND                          | 4.3            | C2-S1                 | -                     |
| MMU-94    | 3.9                    | ND                  | 0.94          | ND                | ND                          | 6.7            | C2-S1                 | -                     |
| MMU-95    | 2.9                    | ND                  | 0.29          | ND                | ND                          | 10.5           | C2-S2                 | -                     |
| MMU-96    | 7.0                    | ND                  | 0.31          | ND                | ND                          | 5.3            | C3-S1                 | -                     |
| MMU-97    | 15                     | ND                  | 0.29          | ND                | ND                          | 3.5            | C3-S1                 | -                     |
| MMU-98    | 2.5                    | ND                  | 0.26          | ND                | ND                          | 18.2           | C2-S3                 | -                     |
| MMU-99    | 1.9                    | ND                  | 0.17          | ND                | ND                          | 2.9            | C2-S1                 | -                     |
| MMU-100   | 3.5                    | ND                  | 0.12          | ND                | ND                          | 19.6           | C2-S3                 | -                     |
| MMU-101   | 2.8                    | ND                  | ND            | 0.63              | ND                          | 9.4            | C2-S2                 | -                     |
| MMU-102   | 1.7                    | ND                  | 0.20          | ND                | ND                          | 2.8            | C2-S1                 | -                     |
| MMU-103   | 1.7                    | ND                  | 0.15          | ND                | ND                          | 2.7            | C2-S1                 | -                     |

Appendix B. Groundwater Quality Data, McMullen Valley Basin, 2008-2009---Continued

| Site #       | <b>T. Nitrate-N</b> (mg/L) | Nitrite-N<br>(mg/L) | TKN<br>(mg/L) | Ammonia<br>(mg/L) | <b>T. Phosphorus</b> (mg/L) | SAR<br>(value) | Irrigation<br>Quality | Perchlorate<br>(ug/L) |
|--------------|----------------------------|---------------------|---------------|-------------------|-----------------------------|----------------|-----------------------|-----------------------|
| MMU-104      | 3.8                        | ND                  | 0.34          | ND                | 0.063                       | 8.1            | C2-S2                 | -                     |
| MMU-105      | 2.0                        | ND                  | ND            | ND                | 0.047                       | 2.5            | C2-S1                 | -                     |
| MMU-106      | 4.1                        | ND                  | 0.32          | ND                | 0.064                       | 2.5            | C2-S1                 | -                     |
| MMU-107/108  | 4.8                        | ND                  | 0.23          | ND                | 0.075                       | 6.7            | C2-S1                 | -                     |
| MMU-109      | 3.0                        | ND                  | 0.37          | ND                | 0.070                       | 1.4            | C2-S1                 | -                     |
| MMU-110      | 2.6                        | ND                  | ND            | ND                | 0.032                       | 2.1            | C2-S1                 | -                     |
| MMU-111      | 2.6                        | ND                  | 0.69          | ND                | 0.060                       | 13.3           | C2-S2                 | -                     |
| MMU-112      | 27                         | ND                  | ND            | ND                | ND                          | 15.4           | C3-S3                 | -                     |
| MMU-113      | 2.8                        | ND                  | 0.15          | ND                | 0.037                       | 4.6            | C2-S1                 | -                     |
| MMU-114/115  | 7.5                        | ND                  | 0.21          | ND                | 0.073                       | 14.1           | C2-S3                 | -                     |
| MMU-116      | 2.4                        | ND                  | 0.21          | ND                | 0.044                       | 2.0            | C2-S1                 | -                     |
| MMU-117/118a | 28                         | 0.795               | 0.46          | 0.084             | 0.105                       | 30.8           | C4-S4                 | -                     |
| MMU-118b     | 58                         | ND                  | ND            | ND                | 0.062                       | 61.8           | C4-S4                 | -                     |
| MMU-119/120  | 122                        | ND                  | ND            | 0.020             | 0.023                       | 22.4           | C4-S4                 | -                     |
| MMU-121      | 1.0                        | ND                  | ND            | ND                | 0.088                       | 35.3           | C3-S4                 | -                     |
| MMU-122      | 3.1                        | ND                  | ND            | ND                | ND                          | 3.2            | C2-S1                 | -                     |
| MMU-123/124  | 62                         | ND                  | ND            | ND                | ND                          | 25.3           | C4-S4                 | -                     |
| MMU-125      | 2.2                        | ND                  | ND            | ND                | ND                          | 2.0            | C2-S1                 | -                     |
| MMU-127/128  | 2.5                        | ND                  | ND            | ND                | ND                          | 20.5           | C2-S3                 | -                     |
| MMU-129      | 2.1                        | ND                  | ND            | ND                | ND                          | 1.4            | C2-S1                 | -                     |
| MMU-130      | 1.5                        | ND                  | ND            | ND                | ND                          | 1.5            | C2-S1                 | -                     |
| MMU-131      | 4.7                        | ND                  | ND            | ND                | ND                          | 7.7            | C3-S2                 | -                     |
| MMU-132      | 0.98                       | ND                  | ND            | ND                | ND                          | 4.5            | C2-S1                 | -                     |
| MMU-133      | 5.4                        | ND                  | ND            | ND                | ND                          | 5.2            | C2-S1                 | -                     |
| MMU-134/135a | 1.45                       | ND                  | ND            | ND                | ND                          | 3.6            | C2-S1                 | -                     |
| MMU-135b/136 | 10.1                       | ND                  | ND            | ND                | ND                          | 1.7            | C2-S1                 | -                     |
| MMU-137/138  | 87.5                       | ND                  | ND            | ND                | ND                          | 2.8            | C4-S1                 | -                     |
| MMU-139      | 2.7                        | ND                  | ND            | ND                | ND                          | 6.6            | C2-S1                 | -                     |

Appendix B. Groundwater Quality Data, McMullen Valley Basin, 2008-2009---Continued

| Site #      | Nitrate-N<br>(mg/L) | Nitrite-N<br>(mg/L) | <b>TKN</b><br>(mg/L) | Ammonia<br>(mg/L) | Phosphorus<br>(mg/L) | SAR<br>(value) | Irrigation<br>Quality | Aluminum<br>(mg/L) | Strontium<br>(mg/L) |
|-------------|---------------------|---------------------|----------------------|-------------------|----------------------|----------------|-----------------------|--------------------|---------------------|
| MMU-140     | 4.7                 | ND                  | ND                   | ND                | ND                   | 5.2            | C2-S1                 | -                  | -                   |
| MMU-141     | 1.8                 | ND                  | ND                   | ND                | ND                   | 4.4            | C2-S1                 | -                  | -                   |
| MMU-144     | 8.7                 | ND                  | ND                   | ND                | ND                   | 11.0           | C3-S2                 | -                  | -                   |
| MMU-145/146 | 17                  | ND                  | ND                   | ND                | ND                   | 7.2            | C3-S2                 | -                  | -                   |
| MMU-147     | 3.3                 | ND                  | ND                   | ND                | 0.92                 | 7.4            | C2-S2                 | -                  | -                   |
| MMU-148     | 2.4                 | ND                  | ND                   | ND                | ND                   | 8.0            | C2-S2                 | -                  | -                   |
| MMU-149     | 13                  | ND                  | ND                   | ND                | ND                   | 4.9            | C2-S1                 | -                  | -                   |
| MMU-151/152 | 42                  | ND                  | ND                   | 2.4               | ND                   | 15.1           | C3-S3                 | -                  | -                   |
| MMU-155     | 2.5                 | ND                  | ND                   | ND                | ND                   | 4.3            | C2-S1                 | -                  | -                   |
| MMU-156     | 3.3                 | ND                  | ND                   | ND                | ND                   | 3.6            | C2-S1                 | -                  | -                   |
| MMU-157     | 0.90                | ND                  | ND                   | ND                | ND                   | 22.5           | C2-S4                 | -                  | -                   |
| MMU-158     | 2.8                 | ND                  | ND                   | ND                | ND                   | 22.2           | C2-S4                 | -                  | -                   |
| MMU-159     | 2.7                 | ND                  | ND                   | ND                | ND                   | 16.4           | C2-S3                 | -                  | -                   |
| MMU-160/161 | 16                  | ND                  | ND                   | ND                | ND                   | 0.8            | C2-S1                 | -                  | -                   |
| MMU-162     | 2.3                 | ND                  | ND                   | ND                | ND                   | 4.4            | C2-S1                 | -                  | -                   |
| MMU-163     | 1.5                 | ND                  | ND                   | ND                | ND                   | 11.6           | C2-S2                 | ND                 | -                   |
| MMU-164     | 2.9                 | ND                  | ND                   | ND                | ND                   | 4.7            | C2-S1                 | ND                 | -                   |
| MMU-165-66  | 72                  | ND                  | ND                   | ND                | ND                   | 22.9           | C4-S4                 | ND                 | 4.1                 |
| MMU-168     | 32                  | 0.069               | ND                   | ND                | ND                   | 24.1           | C4-S4                 | ND                 | 0.97                |
| MMU-170     | 1.8                 | ND                  | ND                   | ND                | ND                   | 22.9           | C3-S4                 | ND                 | 0.30                |
| MMU-171     | 6.4                 | ND                  | ND                   | ND                | ND                   | 2.2            | C2-S1                 | ND                 | 0.92                |
| MMU-172     | 4.8                 | ND                  | ND                   | ND                | ND                   | 3.6            | C2-S1                 | ND                 | 0.80                |
| MMU-173     | 6.7                 | 0.11                | ND                   | ND                | ND                   | 3.9            | C3-S1                 | ND                 | 0.83                |
| MMU-176     | 4.3                 | ND                  | ND                   | ND                | ND                   | 3.1            | C2-S1                 | ND                 | 0.37                |

Appendix B. Groundwater Quality Data, McMullen Valley Basin, 2008-2009---Continued

| Site #        | Antimony<br>(mg/L) | Arsenic<br>(mg/L) | Barium<br>(mg/L) | Beryllium<br>(mg/L) | Boron<br>(mg/L) | Cadmium<br>(mg/L) | Chromium<br>(mg/L) | Copper<br>(mg/L) | Fluoride<br>(mg/L) |
|---------------|--------------------|-------------------|------------------|---------------------|-----------------|-------------------|--------------------|------------------|--------------------|
| MMU-1         | ND                 | ND                | ND               | ND                  | 0.66            | ND                | ND                 | ND               | 0.39               |
| MMU-2/153/154 | ND                 | ND                | 0.0575           | ND                  | 1.55            | ND                | 0.011              | 0.015/N<br>D     | 0.40               |
| MMU 3         | ND                 | ND                | 0.13             | ND                  | 0.11            | ND                | ND                 | ND               | 1.2                |
| MMU-4         | ND                 | ND                | ND               | ND                  | 0.26            | ND                | ND                 | 0.020            | 0.69               |
| MMU-5         | -                  | -                 | -                | -                   | -               | -                 | -                  | -                | -                  |
| MMU-6         | ND                 | 0.0062            | ND               | ND                  | 0.22            | ND                | ND                 | ND               | 1.2                |
| MMU-7/8       | ND                 | ND                | ND               | ND                  | 0.20            | ND                | ND                 | ND               | 0.475              |
| MMU-9         | -                  | -                 | -                | -                   | -               | -                 | -                  | -                | -                  |
| MMU-10        | ND                 | 0.0054            | ND               | ND                  | 0.19            | ND                | ND                 | ND               | 0.44               |
| MMU-11        | ND                 | 0.0058            | ND               | ND                  | 0.18            | ND                | ND                 | ND               | 0.54               |
| MMU-12        | ND                 | ND                | ND               | ND                  | 0.16            | ND                | ND                 | ND               | 0.59               |
| MMU-14        | ND                 | ND                | ND               | ND                  | 0.43            | ND                | ND                 | ND               | 2.3                |
| MMU-15/16     | ND                 | 0.0105            | 0.044            | ND                  | 0.17            | ND                | 0.0245             | ND               | 1.25               |
| MMU-17        | -                  | -                 | -                | -                   | -               | -                 | -                  | -                | -                  |
| MMU-18        | ND                 | 0.0071            | ND               | ND                  | ND              | ND                | ND                 | 0.016            | 0.60               |
| MMU-19        | ND                 | ND                | ND               | ND                  | 0.30            | ND                | ND                 | ND               | 1.7                |
| MMU-21        | ND                 | 0.0073            | ND               | ND                  | 0.12            | ND                | ND                 | ND               | 2.8                |
| MMU-22/23     | -                  | -                 | -                | -                   | -               | -                 | -                  | -                | -                  |
| MMU-24        | ND                 | ND                | ND               | ND                  | 0.17            | ND                | 0.016              | 0.050            | 2.2                |
| MMU-25        | ND                 | 0.0050            | ND               | ND                  | 0.15            | ND                | ND                 | ND               | 0.69               |
| MMU-26        | -                  | -                 | -                | -                   | -               | -                 | -                  | -                | -                  |
| MMU-27        | ND                 | 0.0095            | ND               | ND                  | 0.28            | ND                | 0.019              | 0.011            | 0.83               |
| MMU-28        | ND                 | 0.0094            | ND               | ND                  | 0.20            | ND                | 0.036              | ND               | 4.2                |
| MMU-31        | -                  | -                 | -                | -                   | -               | -                 | -                  | -                | -                  |
| MMU-32/33     | ND                 | 0.00735           | 0.0275           | ND                  | 0.525           | ND                | 0.0495             | ND               | 4.1                |
| MMU-34        | -                  | -                 | -                | -                   | -               | -                 | -                  | -                | -                  |
| MMU-35        | ND                 | ND                | 0.011            | ND                  | 0.32            | ND                | ND                 | ND               | 3.6                |
| MMU-36        | ND                 | 0.0068            | 0.062            | ND                  | 0.23            | ND                | 0.018              | ND               | 2.9                |

Appendix B. Groundwater Quality Data, McMullen Valley Basin, 2008-2009---Continued

| Site #        | Antimony<br>(mg/L) | Arsenic<br>(mg/L) | Barium<br>(mg/L) | Beryllium<br>(mg/L) | Boron<br>(mg/L) | Cadmium<br>(mg/L) | Chromium<br>(mg/L) | Copper<br>(mg/L) | Fluoride<br>(mg/L) |
|---------------|--------------------|-------------------|------------------|---------------------|-----------------|-------------------|--------------------|------------------|--------------------|
| MMU-37/150    | ND                 | 0.0056            | 0.071            | ND                  | 0.25            | ND                | 0.024              | ND               | 2.4                |
| MMU 38        | -                  | -                 | -                | -                   | -               | -                 | -                  | -                | -                  |
| MMU-39        | -                  | -                 | -                | -                   | -               | -                 | -                  | -                | -                  |
| MMU-40        | ND                 | 0.0054            | 0.059            | ND                  | 0.22            | ND                | 0.017              | ND               | 3.4                |
| MMU-41        | ND                 | 0.0060            | 0.062            | ND                  | 0.28            | ND                | 0.012              | ND               | 3.5                |
| MMU-42        | ND                 | ND                | 0.089            | ND                  | 0.61            | ND                | 0.035              | 0.019            | 3.0                |
| MMU-43        | ND                 | ND                | 0.037            | ND                  | 0.38            | ND                | 0.012              | 0.011            | 3.4                |
| MMU-44        | ND                 | ND                | 0.24             | ND                  | ND              | ND                | ND                 | ND               | 0.40               |
| MMU-45        | ND                 | 0.0074            | 0.11             | ND                  | ND              | ND                | ND                 | ND               | 0.50               |
| MMU-46        | -                  | -                 | -                | -                   | -               | -                 | -                  | -                | -                  |
| MMU-47/167    | ND                 | 0.0060            | 0.052            | ND                  | 0.16            | ND                | ND                 | ND               | 0.75               |
| MMU-48        | ND                 | 0.0060            | 0.099            | ND                  | 0.15            | ND                | ND                 | ND               | 0.72               |
| MMU-49/50     | ND                 | 0.013             | 0.0285           | ND                  | 0.25            | ND                | 0.045              | ND               | 3.6                |
| MMU-51        | -                  | -                 | -                | -                   | -               | -                 | -                  | -                | -                  |
| MMU-52        | ND                 | 0.013             | 0.026            | ND                  | 0.30            | ND                | 0.078              | ND               | 4.4                |
| MMU-53/174    | ND                 | ND                | 0.092            | ND                  | 0.14            | ND                | 0.012              | ND               | 0.48               |
| MMU-54        | ND                 | ND                | 0.15             | ND                  | 0.17            | ND                | 0.010              | ND               | 0.41               |
| MMU-55/169    | ND                 | 0.017             | ND               | ND                  | 0.47            | ND                | 0.049              | ND               | 4.4                |
| MMU-57        | -                  | -                 | -                | -                   | -               | -                 | -                  | -                | -                  |
| MMU-58/59     | ND                 | ND                | 0.16             | ND                  | 0.54            | ND                | 0.010              | 0.033            | 0.93               |
| MMU-60/61/175 | ND                 | 0.0058            | 0.050            | ND                  | 0.21            | ND                | 0.022              | ND               | 2.9                |
| MMU-62        | ND                 | 0.0080            | 0.049            | ND                  | 0.21            | ND                | 0.028              | ND               | 3.4                |
| MMU-63        | ND                 | 0.0059            | 0.086            | ND                  | 0.53            | ND                | 0.015              | 0.012            | 3.5                |
| MMU-64/65     | ND                 | 0.0082            | 0.0395           | ND                  | 0.265           | ND                | 0.020              | ND               | 6.2                |
| MMU-66        | ND                 | 0.0055            | 0.036            | ND                  | 0.13            | ND                | 0.078              | ND               | 2.7                |
| MMU-67        | ND                 | 0.0058            | 0.11             | ND                  | 0.13            | ND                | 0.046              | ND               | 2.5                |
| MMU-68        | ND                 | ND                | ND               | ND                  | 0.13            | ND                | 0.048              | ND               | 2.1                |
| MMU-69/70     | ND                 | ND                | 0.0315           | ND                  | 0.14            | ND                | 0.0415             | ND               | 2.8                |

Appendix B. Groundwater Quality Data, McMullen Valley Basin, 2008-2009---Continued

| Site #    | Antimony<br>(mg/L) | Arsenic<br>(mg/L) | Barium<br>(mg/L) | Beryllium<br>(mg/L) | Boron<br>(mg/L) | Cadmium<br>(mg/L) | Chromium<br>(mg/L) | Copper<br>(mg/L) | Fluoride<br>(mg/L) |
|-----------|--------------------|-------------------|------------------|---------------------|-----------------|-------------------|--------------------|------------------|--------------------|
| MMU-71    | ND                 | 0.018             | 0.060            | ND                  | 0.21            | ND                | ND                 | ND               | 13                 |
| MMU-72/73 | ND                 | 0.0076            | 0.0205           | ND                  | 0.15            | ND                | 0.045              | ND               | 3.6                |
| MMU-74    | ND                 | 0.0079            | 0.072            | ND                  | 0.17            | ND                | 0.021              | ND               | 4.4                |
| MMU-76    | ND                 | ND                | 0.046            | ND                  | 0.12            | ND                | 0.0425             | ND               | 2.4                |
| MMU-77    | ND                 | 0.0050            | 0.036            | ND                  | 0.13            | ND                | 0.046              | ND               | 2.7                |
| MMU-78    | ND                 | 0.0073            | 0.10             | ND                  | 0.26            | ND                | 0.035              | ND               | 5.9                |
| MMU-79    | ND                 | 0.0074            | 0.088            | ND                  | 0.25            | ND                | 0.034              | ND               | 5.8                |
| MMU-80    | ND                 | ND                | 0.032            | ND                  | 0.20            | ND                | ND                 | ND               | 2.6                |
| MMU-81    | ND                 | ND                | 0.0057           | ND                  | 0.19            | ND                | 0.018              | 0.010            | 3.1                |
| MMU 82    | ND                 | ND                | 0.051            | ND                  | 0.33            | ND                | ND                 | ND               | 0.66               |
| MMU-83/84 | ND                 | ND                | ND               | ND                  | 0.30            | ND                | 0.018              | ND               | 1.6                |
| MMU-85/86 | ND                 | 0.0052            | 0.225            | ND                  | ND              | ND                | 0.022              | ND               | 0.43               |
| MMU-87    | ND                 | ND                | 0.11             | ND                  | 0.16            | ND                | 0.011              | ND               | 0.62               |
| MMU-88/89 | ND                 | ND                | 0.091            | ND                  | 0.715           | ND                | ND                 | ND               | 0.685              |
| MMU-90    | ND                 | ND                | 0.11             | ND                  | 0.24            | ND                | ND                 | ND               | 1.8                |
| MMU-91    | ND                 | ND                | 0.081            | ND                  | 0.20            | ND                | 0.013              | ND               | 0.40               |
| MMU-92    | ND                 | 0.0093            | 0.029            | ND                  | 0.29            | ND                | 0.054              | ND               | 4.3                |
| MMU-93    | ND                 | 0.0056            | 0.092            | ND                  | 0.20            | ND                | 0.023              | ND               | 1.4                |
| MMU-94    | ND                 | 0.0060            | 0.085            | ND                  | 0.20            | ND                | 0.017              | ND               | 1.8                |
| MMU-95    | ND                 | 0.007             | ND               | ND                  | 0.26            | ND                | 0.033              | ND               | 4.0                |
| MMU-96    | ND                 | ND                | 0.10             | ND                  | 0.17            | ND                | ND                 | ND               | 1.0                |
| MMU-97    | ND                 | ND                | 0.22             | ND                  | 0.14            | ND                | ND                 | ND               | 0.61               |
| MMU-98    | ND                 | 0.013             | 0.010            | ND                  | 0.31            | ND                | 0.053              | ND               | 4.7                |
| MMU-99    | ND                 | ND                | 0.072            | ND                  | 0.12            | ND                | 0.024              | ND               | 1.5                |
| MMU-100   | ND                 | 0.008             | ND               | ND                  | 0.17            | ND                | 0.040              | ND               | 1.8                |
| MMU-101   | ND                 | 0.017             | ND               | ND                  | 0.22            | ND                | 0.068              | ND               | 3.1                |
| MMU-102   | ND                 | 0.0056            | 0.057            | ND                  | 0.13            | ND                | 0.044              | ND               | 2.4                |
| MMU-103   | ND                 | 0.0055            | 0.021            | ND                  | 0.12            | ND                | 0.045              | ND               | 2.5                |

Appendix B. Groundwater Quality Data, McMullen Valley Basin, 2008-2009---Continued

| Site #       | Antimony<br>(mg/L) | Arsenic<br>(mg/L) | Barium<br>(mg/L) | Beryllium<br>(mg/L) | Boron<br>(mg/L) | Cadmium<br>(mg/L) | Chromium<br>(mg/L) | Copper<br>(mg/L) | Fluoride<br>(mg/L) |
|--------------|--------------------|-------------------|------------------|---------------------|-----------------|-------------------|--------------------|------------------|--------------------|
| MMU-104      | ND                 | ND                | ND               | ND                  | 0.22            | ND                | 0.024              | ND               | 2.1                |
| MMU-105      | ND                 | ND                | 0.47             | ND                  | 0.20            | ND                | ND                 | ND               | 0.93               |
| MMU-106      | ND                 | ND                | 0.089            | ND                  | 0.13            | ND                | ND                 | ND               | 0.32               |
| MMU-107/108  | ND                 | ND                | 0.0945           | ND                  | 0.16            | ND                | 0.015              | ND               | 0.38               |
| MMU-109      | ND                 | ND                | 0.14             | ND                  | ND              | ND                | ND                 | ND               | 0.41               |
| MMU-110      | ND                 | ND                | 0.067            | ND                  | 0.15            | ND                | 0.034              | ND               | 1.3                |
| MMU-111      | ND                 | 0.0066            | 0.031            | ND                  | 1.1             | ND                | 0.096              | ND               | 3.7                |
| MMU-112      | ND                 | 0.0085            | 0.064            | ND                  | 0.26            | ND                | ND                 | ND               | 2.2                |
| MMU-113      | ND                 | 0.015             | 0.063            | ND                  | 0.15            | ND                | 0.037              | ND               | 2.8                |
| MMU-114/115  | ND                 | ND                | 0.0079           | ND                  | 0.16            | ND                | 0.0705             | ND               | 1.95               |
| MMU-116      | ND                 | ND                | 0.034            | ND                  | 0.14            | ND                | 0.037              | ND               | 1.4                |
| MMU-117/118a | ND                 | 0.012             | 0.054            | ND                  | 2.5             | ND                | ND                 | ND               | 17                 |
| MMU-118b     | ND                 | 0.035             | 0.050            | ND                  | 2.1             | ND                | 0.016              | ND               | 5.5                |
| MMU-119/120  | ND                 | 0.0076            | 0.065            | ND                  | 2.2             | ND                | 0.0225             | ND/.02           | 7.85               |
| MMU-121      | ND                 | 0.110             | 0.017            | ND                  | 2.4             | ND                | 0.022              | 0.029            | 22                 |
| MMU-122      | ND                 | ND                | 0.098            | ND                  | 0.24            | ND                | 0.040              | 0.022            | 1.6                |
| MMU-123/124  | ND                 | 0.013             | 0.0405           | ND                  | 0.75            | ND                | 0.054              | 0.020            | 1.8                |
| MMU-125      | ND                 | 0.005             | 0.091            | ND                  | 0.12            | ND                | ND                 | ND               | 0.53               |
| MMU-127/128  | ND                 | 0.0155            | 0.0455           | ND                  | 0.235           | ND                | 0.032              | ND               | 8.3                |
| MMU-129      | ND                 | ND                | 0.064            | ND                  | 0.11            | ND                | ND                 | ND               | 0.62               |
| MMU-130      | ND                 | ND                | 0.14             | ND                  | ND              | ND                | ND                 | ND               | 0.32               |
| MMU-131      | ND                 | ND                | 0.021            | ND                  | 0.23            | ND                | 0.037              | ND               | 2.7                |
| MMU-132      | ND                 | 0.010             | 0.026            | ND                  | 0.13            | ND                | 0.034              | ND               | 4.2                |
| MMU-133      | ND                 | 0.0050            | 0.049            | ND                  | 0.28            | ND                | 0.015              | 0.014            | 1.5                |
| MMU-134/135a | ND                 | 0.0065            | 0.086            | ND                  | 0.14            | ND                | 0.031              | ND               | 6.8                |
| MMU-135b/136 | ND                 | 0.013             | 0.0935           | ND                  | 0.175           | ND                | 0.0215             | ND               | 3.6                |
| MMU-137/138  | ND                 | 0.0115            | 0.0665           | ND                  | ND              | ND                | 0.049              | 0.010            | 0.37               |
| MMU-139      | ND                 | ND                | ND               | ND                  | 0.47            | ND                | ND                 | ND               | 1.4                |

Appendix B. Groundwater Quality Data, McMullen Valley Basin, 2008-2009---Continued

| Site #      | Antimony<br>(mg/L) | Arsenic<br>(mg/L) | Barium<br>(mg/L) | Beryllium<br>(mg/L) | Boron<br>(mg/L) | Cadmium<br>(mg/L) | Chromium<br>(mg/L) | Copper<br>(mg/L) | Fluoride<br>(mg/L) |
|-------------|--------------------|-------------------|------------------|---------------------|-----------------|-------------------|--------------------|------------------|--------------------|
| MMU-140     | ND                 | ND                | ND               | ND                  | 0.44            | ND                | ND                 | ND               | 0.68               |
| MMU-141     | ND                 | ND                | 0.053            | ND                  | 0.36            | ND                | ND                 | ND               | 1.3                |
| MMU-144     | ND                 | ND                | 0.12             | ND                  | 0.19            | ND                | ND                 | ND               | 0.32               |
| MMU-145/146 | ND                 | ND                | 0.16             | ND                  | 0.415           | ND                | ND                 | ND               | 1.2                |
| MMU-147     | ND                 | ND                | 0.038            | ND                  | 0.23            | ND                | 0.020              | ND               | 3.8                |
| MMU-148     | ND                 | 0.008             | 0.012            | ND                  | 0.24            | ND                | 0.021              | ND               | 3.3                |
| MMU-149     | ND                 | ND                | 0.035            | ND                  | 0.43            | ND                | ND                 | ND               | 0.76               |
| MMU-151/152 | ND                 | 0.0093            | 0.043            | ND                  | 1.95            | ND                | 0.0115             | ND               | 12                 |
| MMU-155     | ND                 | 0.011             | ND               | ND                  | 0.23            | ND                | 0.046              | ND               | 5.1                |
| MMU-156     | ND                 | 0.013             | ND               | ND                  | 0.29            | ND                | 0.012              | ND               | 11                 |
| MMU-157     | ND                 | 0.022             | ND               | ND                  | 0.30            | ND                | ND                 | ND               | 15                 |
| MMU-158     | ND                 | 0.015             | ND               | ND                  | 0.39            | ND                | 0.037              | ND               | 3.2                |
| MMU-159     | ND                 | 0.015             | 0.015            | ND                  | 0.35            | ND                | 0.061              | ND               | 7.0                |
| MMU-160/161 | ND                 | ND                | 0.016            | ND                  | ND              | ND                | ND                 | ND               | 0.435              |
| MMU-162     | ND                 | 0.0068            | 0.031            | ND                  | 0.16            | ND                | 0.034              | ND               | 2.6                |
| MMU-163     | ND                 | 0.022             | ND               | ND                  | 0.31            | ND                | ND                 | ND               | 14                 |
| MMU-164     | ND                 | 0.0084            | ND               | ND                  | 0.23            | ND                | 0.030              | ND               | 5.4                |
| MMU-165-66  | ND                 | 0.015             | ND               | ND                  | 1.2             | ND                | 0.0265             | ND               | 3.0                |
| MMU-168     | ND                 | 0.0082            | ND               | ND                  | 1.1             | ND                | 0.033              | ND               | 3.6                |
| MMU-170     | ND                 | 0.022             | ND               | ND                  | 2.5             | ND                | 0.044              | ND               | 17                 |
| MMU-171     | ND                 | ND                | 0.053            | ND                  | 0.20            | ND                | 0.010              | ND               | 2.3                |
| MMU-172     | ND                 | 0.0068            | ND               | ND                  | 0.26            | ND                | 0.014              | ND               | 3.0                |
| MMU-173     | ND                 | ND                | 0.058            | ND                  | 0.24            | ND                | 0.017              | ND               | 2.1                |
| MMU-176     | ND                 | 0.0050            | ND               | ND                  | 0.14            | ND                | 0.044              | ND               | 2.7                |

Appendix B. Groundwater Quality Data, McMullen Valley Basin, 2008-2009---Continued

| Site #        | Iron<br>(mg/L) | Lead<br>(mg/L) | Manganese<br>(mg/L) | Mercury<br>(mg/L) | Nickel<br>(mg/L) | Selenium<br>(mg/L) | Silver<br>(mg/L) | Thallium<br>(mg/L) | Zinc<br>(mg/L) |
|---------------|----------------|----------------|---------------------|-------------------|------------------|--------------------|------------------|--------------------|----------------|
| MMU-1         | ND             | ND             | ND                  | ND                | ND               | 0.0072             | ND               | ND                 | ND             |
| MMU-2/153/154 | ND             | ND             | ND                  | ND                | ND               | 0.0067/N<br>D      | ND               | ND                 | ND             |
| MMU 3         | ND             | ND             | ND                  | ND                | ND               | ND                 | ND               | ND                 | ND             |
| MMU-4         | ND             | ND             | ND                  | ND                | ND               | ND                 | ND               | ND                 | ND             |
| MMU-5         | -              | -              | -                   | -                 | -                | -                  | -                | -                  | -              |
| MMU-6         | ND             | ND             | ND                  | ND                | ND               | ND                 | ND               | ND                 | ND             |
| MMU-7/8       | ND             | ND             | ND                  | ND                | ND               | ND                 | ND               | ND                 | ND             |
| MMU-9         | -              | -              | -                   | -                 | -                | -                  | -                | -                  | -              |
| MMU-10        | ND             | ND             | ND                  | ND                | ND               | ND                 | ND               | ND                 | ND             |
| MMU-11        | ND             | ND             | ND                  | ND                | ND               | ND                 | ND               | ND                 | ND             |
| MMU-12        | ND             | ND             | ND                  | ND                | ND               | ND                 | ND               | ND                 | ND             |
| MMU-14        | ND             | ND             | ND                  | ND                | ND               | ND                 | ND               | ND                 | ND             |
| MMU-15/16     | ND             | ND             | ND                  | ND                | ND               | ND                 | ND               | ND                 | ND             |
| MMU-17        | -              | -              | -                   | -                 | -                | -                  | -                | -                  | -              |
| MMU-18        | ND             | ND             | ND                  | ND                | ND               | ND                 | ND               | ND                 | ND             |
| MMU-19        | ND             | ND             | ND                  | ND                | ND               | ND                 | ND               | ND                 | ND             |
| MMU-21        | ND             | ND             | ND                  | ND                | ND               | ND                 | ND               | ND                 | ND             |
| MMU-22/23     | -              | -              | -                   | -                 | -                | -                  | -                | -                  | -              |
| MMU-24        | ND             | ND             | ND                  | ND                | ND               | ND                 | ND               | ND                 | ND             |
| MMU-25        | ND             | ND             | ND                  | ND                | ND               | ND                 | ND               | ND                 | ND             |
| MMU-26        | -              | -              | -                   | -                 | -                | -                  | -                | -                  | -              |
| MMU-27        | ND             | ND             | ND                  | ND                | ND               | ND                 | ND               | ND                 | ND             |
| MMU-28        | ND             | ND             | ND                  | ND                | ND               | ND                 | ND               | ND                 | ND             |
| MMU-31        | -              | -              | -                   | -                 | -                | -                  | -                | -                  | -              |
| MMU-32/33     | ND             | ND             | ND                  | ND                | ND               | ND                 | ND               | ND                 | ND             |
| MMU-34        | -              | -              | -                   | -                 | -                | -                  | -                | -                  | -              |
| MMU-35        | ND             | ND             | ND                  | ND                | ND               | ND                 | ND               | ND                 | ND             |
| MMU-36        | ND             | ND             | ND                  | ND                | ND               | ND                 | ND               | ND                 | ND             |

Appendix B. Groundwater Quality Data, McMullen Valley Basin, 2008-2009---Continued

| Site #        | Iron<br>(mg/L) | Lead<br>(mg/L) | Manganese<br>(mg/L) | Mercury<br>(mg/L) | Nickel<br>(mg/L) | Selenium<br>(mg/L) | Silver<br>(mg/L) | Thallium<br>(mg/L) | Zinc<br>(mg/L) |
|---------------|----------------|----------------|---------------------|-------------------|------------------|--------------------|------------------|--------------------|----------------|
| MMU-37/150    | ND             | ND             | ND                  | ND                | ND               | 0.0057             | ND               | ND                 | ND             |
| MMU 38        | -              | -              | -                   | -                 | -                | -                  | -                | -                  | -              |
| MMU-39        | -              | -              | -                   | -                 | -                | -                  | -                | -                  | -              |
| MMU-40        | ND             | ND             | ND                  | ND                | ND               | ND                 | ND               | ND                 | ND             |
| MMU-41        | ND             | ND             | ND                  | ND                | ND               | ND                 | ND               | ND                 | ND             |
| MMU-42        | ND             | ND             | ND                  | ND                | ND               | 0.0064             | ND               | ND                 | ND             |
| MMU-43        | ND             | ND             | ND                  | ND                | ND               | ND                 | ND               | ND                 | 0.059          |
| MMU-44        | ND             | ND             | ND                  | ND                | ND               | 0.0079             | ND               | ND                 | ND             |
| MMU-45        | ND             | ND             | ND                  | ND                | ND               | ND                 | ND               | ND                 | ND             |
| MMU-46        | -              | -              | -                   | -                 | -                | -                  | -                | -                  | -              |
| MMU-47/167    | ND             | ND             | ND                  | ND                | ND               | ND                 | ND               | ND                 | ND             |
| MMU-48        | ND             | ND             | ND                  | ND                | ND               | ND                 | ND               | ND                 | ND             |
| MMU-49/50     | ND             | ND             | ND                  | ND                | ND               | ND                 | ND               | ND                 | ND             |
| MMU-51        | -              | -              | -                   | -                 | -                | -                  | -                | -                  | -              |
| MMU-52        | ND             | ND             | ND                  | ND                | ND               | ND                 | ND               | ND                 | ND             |
| MMU-53/174    | ND             | ND             | ND                  | ND                | ND               | ND                 | ND               | ND                 | ND             |
| MMU-54        | ND             | ND             | ND                  | ND                | ND               | ND                 | ND               | ND                 | ND             |
| MMU-55/169    | ND             | ND             | ND                  | ND                | ND               | ND                 | ND               | ND                 | ND             |
| MMU-57        | -              | -              | -                   | -                 | -                | -                  | -                | -                  | -              |
| MMU-58/59     | ND             | ND             | ND                  | ND                | ND               | ND                 | ND               | ND                 | ND             |
| MMU-60/61/175 | ND             | ND             | ND                  | ND                | ND               | ND                 | ND               | ND                 | ND             |
| MMU-62        | ND             | ND             | ND                  | ND                | ND               | ND                 | ND               | ND                 | ND             |
| MMU-63        | ND             | ND             | ND                  | ND                | ND               | ND                 | ND               | ND                 | ND             |
| MMU-64/65     | ND             | ND             | ND                  | ND                | ND               | ND                 | ND               | ND                 | ND             |
| MMU-66        | ND             | ND             | ND                  | ND                | ND               | ND                 | ND               | ND                 | ND             |
| MMU-67        | ND             | ND             | ND                  | ND                | ND               | ND                 | ND               | ND                 | ND             |
| MMU-68        | ND             | ND             | ND                  | ND                | ND               | ND                 | ND               | ND                 | ND             |
| MMU-69/70     | ND             | ND             | ND                  | ND                | ND               | ND                 | ND               | ND                 | ND             |

Appendix B. Groundwater Quality Data, McMullen Valley Basin, 2008-2009---Continued

| Site #    | Iron<br>(mg/L) | Lead<br>(mg/L) | Manganese<br>(mg/L) | Mercury<br>(mg/L) | Nickel<br>(mg/L) | Selenium<br>(mg/L) | Silver<br>(mg/L) | Thallium<br>(mg/L) | Zinc<br>(mg/L) |
|-----------|----------------|----------------|---------------------|-------------------|------------------|--------------------|------------------|--------------------|----------------|
| MMU-71    | ND             | ND             | ND                  | ND                | ND               | ND                 | ND               | ND                 | ND             |
| MMU-72/73 | ND             | ND             | ND                  | ND                | ND               | ND                 | ND               | ND                 | ND             |
| MMU-74    | ND             | ND             | ND                  | ND                | ND               | ND                 | ND               | ND                 | 0.13           |
| MMU-76    | ND             | ND             | ND                  | ND                | ND               | ND                 | ND               | ND                 | ND             |
| MMU-77    | ND             | ND             | ND                  | ND                | ND               | ND                 | ND               | ND                 | ND             |
| MMU-78    | ND             | ND             | ND                  | ND                | ND               | ND                 | ND               | ND                 | ND             |
| MMU-79    | ND             | ND             | ND                  | ND                | ND               | ND                 | ND               | ND                 | ND             |
| MMU-80    | ND             | ND             | ND                  | ND                | ND               | ND                 | ND               | ND                 | ND             |
| MMU-81    | ND             | ND             | ND                  | ND                | ND               | ND                 | ND               | ND                 | ND             |
| MMU 82    | ND             | ND             | ND                  | ND                | ND               | ND                 | ND               | ND                 | 0.070          |
| MMU-83/84 | ND             | ND             | ND                  | ND                | ND               | ND                 | ND               | ND                 | ND             |
| MMU-85/86 | ND             | ND             | ND                  | ND                | ND               | 0.0119             | ND               | 0.0013/<br>ND      | 0.0695         |
| MMU-87    | ND             | ND             | ND                  | ND                | ND               | ND                 | ND               | ND                 | ND             |
| MMU-88/89 | ND             | ND             | ND                  | ND                | ND               | 0.0115             | ND               | ND                 | ND             |
| MMU-90    | ND             | ND             | 0.089               | ND                | ND               | ND                 | ND               | ND                 | ND             |
| MMU-91    | ND             | ND             | ND                  | ND                | ND               | ND                 | ND               | ND                 | ND             |
| MMU-92    | ND             | ND             | ND                  | ND                | ND               | ND                 | ND               | ND                 | ND             |
| MMU-93    | ND             | ND             | ND                  | ND                | ND               | ND                 | ND               | ND                 | ND             |
| MMU-94    | ND             | ND             | ND                  | ND                | ND               | ND                 | ND               | ND                 | ND             |
| MMU-95    | ND             | ND             | ND                  | ND                | ND               | ND                 | ND               | ND                 | ND             |
| MMU-96    | ND             | ND             | ND                  | ND                | ND               | ND                 | ND               | ND                 | ND             |
| MMU-97    | ND             | ND             | ND                  | ND                | ND               | ND                 | ND               | ND                 | ND             |
| MMU-98    | ND             | ND             | ND                  | ND                | ND               | ND                 | ND               | ND                 | ND             |
| MMU-99    | ND             | ND             | ND                  | ND                | ND               | ND                 | ND               | ND                 | ND             |
| MMU-100   | ND             | ND             | ND                  | ND                | ND               | ND                 | ND               | ND                 | ND             |
| MMU-101   | ND             | ND             | ND                  | ND                | ND               | ND                 | ND               | ND                 | ND             |
| MMU-102   | ND             | ND             | ND                  | ND                | ND               | ND                 | ND               | ND                 | ND             |
| MMU-103   | ND             | ND             | ND                  | ND                | ND               | ND                 | ND               | ND                 | ND             |

Appendix B. Groundwater Quality Data, McMullen Valley Basin, 2008-2009---Continued

| Site #       | Iron<br>(mg/L) | Lead<br>(mg/L) | Manganese<br>(mg/L) | Mercury<br>(mg/L) | Nickel<br>(mg/L) | Selenium<br>(mg/L) | Silver<br>(mg/L) | Thallium<br>(mg/L) | Zinc<br>(mg/L) |
|--------------|----------------|----------------|---------------------|-------------------|------------------|--------------------|------------------|--------------------|----------------|
| MMU-104      | ND             | ND             | ND                  | ND                | ND               | ND                 | ND               | ND                 | ND             |
| MMU-105      | ND             | ND             | ND                  | ND                | ND               | ND                 | ND               | ND                 | ND             |
| MMU-106      | ND             | ND             | ND                  | ND                | ND               | ND                 | ND               | ND                 | ND             |
| MMU-107/108  | ND             | ND             | ND                  | ND                | ND               | ND                 | ND               | ND                 | ND             |
| MMU-109      | ND             | ND             | ND                  | ND                | ND               | ND                 | ND               | ND                 | ND             |
| MMU-110      | ND             | ND             | ND                  | ND                | ND               | ND                 | ND               | ND                 | ND             |
| MMU-111      | ND             | ND             | ND                  | ND                | ND               | ND                 | ND               | ND                 | ND             |
| MMU-112      | ND             | ND             | ND                  | ND                | ND               | 0.015              | ND               | ND                 | ND             |
| MMU-113      | ND             | ND             | ND                  | ND                | ND               | ND                 | ND               | ND                 | ND             |
| MMU-114/115  | ND             | ND             | ND                  | ND                | ND               | ND                 | ND               | ND                 | ND             |
| MMU-116      | ND             | ND             | ND                  | ND                | ND               | ND                 | ND               | ND                 | ND             |
| MMU-117/118a | ND             | ND             | 0.0777              | ND                | ND               | 0.020              | ND               | ND                 | ND             |
| MMU-118b     | ND             | ND             | ND                  | ND                | ND               | 0.022              | ND               | ND                 | ND             |
| MMU-119/120  | ND             | ND             | ND                  | ND                | ND               | 0.0105             | ND               | ND                 | ND             |
| MMU-121      | ND             | ND             | ND                  | ND                | ND               | ND                 | ND               | ND                 | ND             |
| MMU-122      | ND             | ND             | ND                  | ND                | ND               | ND                 | ND               | ND                 | ND             |
| MMU-123/124  | ND             | ND             | ND                  | ND                | ND               | 0.069              | ND               | ND                 | ND             |
| MMU-125      | ND             | ND             | ND                  | ND                | ND               | 0.0059             | ND               | ND                 | 0.059          |
| MMU-127/128  | ND             | ND             | ND                  | ND                | ND               | ND                 | ND               | ND                 | ND             |
| MMU-129      | ND             | ND             | ND                  | ND                | ND               | ND                 | ND               | ND                 | 0.74           |
| MMU-130      | ND             | ND             | ND                  | ND                | ND               | 0.007              | ND               | ND                 | 0.21           |
| MMU-131      | ND             | ND             | ND                  | ND                | ND               | 0.0055             | ND               | ND                 | ND             |
| MMU-132      | ND             | ND             | ND                  | ND                | ND               | ND                 | ND               | ND                 | ND             |
| MMU-133      | ND             | ND             | ND                  | ND                | ND               | ND                 | ND               | ND                 | ND             |
| MMU-134/135a | ND             | ND             | ND                  | ND                | ND               | ND                 | ND               | ND                 | ND             |
| MMU-135b/136 | ND             | ND             | ND                  | ND                | ND               | ND                 | ND               | ND                 | 0.155          |
| MMU-137/138  | ND             | ND             | ND                  | ND                | ND               | 0.0225             | ND               | ND                 | ND             |
| MMU-139      | ND             | ND             | ND                  | ND                | ND               | ND                 | ND               | ND                 | ND             |

Appendix B. Groundwater Quality Data, McMullen Valley Basin, 2008-2009---Continued

| Site #      | Iron<br>(mg/L) | Lead<br>(mg/L) | Manganese<br>(mg/L) | Mercury<br>(mg/L) | Nickel<br>(mg/L) | Selenium<br>(mg/L) | Silver<br>(mg/L) | Thallium<br>(mg/L) | Zinc<br>(mg/L) |
|-------------|----------------|----------------|---------------------|-------------------|------------------|--------------------|------------------|--------------------|----------------|
| MMU-140     | ND             | ND             | ND                  | ND                | ND               | ND                 | ND               | ND                 | 0.16           |
| MMU-141     | ND             | ND             | ND                  | ND                | ND               | ND                 | ND               | ND                 | 0.055          |
| MMU-144     | ND             | ND             | ND                  | ND                | ND               | 0.0061             | ND               | ND                 | ND             |
| MMU-145/146 | ND             | ND             | ND                  | ND                | ND               | 0.011              | ND               | ND                 | ND             |
| MMU-147     | ND             | ND             | ND                  | ND                | ND               | ND                 | ND               | ND                 | ND             |
| MMU-148     | ND             | ND             | ND                  | ND                | ND               | ND                 | ND               | ND                 | 0.68           |
| MMU-149     | ND             | ND             | ND                  | ND                | ND               | ND                 | ND               | ND                 | 0.37           |
| MMU-151/152 | ND             | ND             | ND                  | ND                | ND               | ND                 | ND               | ND                 | ND             |
| MMU-155     | ND             | ND             | ND                  | ND                | ND               | ND                 | ND               | ND                 | ND             |
| MMU-156     | ND             | ND             | ND                  | ND                | ND               | ND                 | ND               | ND                 | ND             |
| MMU-157     | ND             | ND             | ND                  | ND                | ND               | ND                 | ND               | ND                 | ND             |
| MMU-158     | ND             | ND             | ND                  | ND                | ND               | ND                 | ND               | ND                 | ND             |
| MMU-159     | ND             | ND             | ND                  | ND                | ND               | ND                 | ND               | ND                 | ND             |
| MMU-160/161 | ND             | ND             | ND                  | ND                | ND               | ND                 | ND               | ND                 | 0.16           |
| MMU-162     | ND             | ND             | ND                  | ND                | ND               | ND                 | ND               | ND                 | ND             |
| MMU-163     | ND             | ND             | ND                  | ND                | ND               | ND                 | ND               | ND                 | ND             |
| MMU-164     | ND             | ND             | ND                  | ND                | ND               | ND                 | ND               | ND                 | 0.074          |
| MMU-165-66  | ND             | ND             | ND                  | ND                | ND               | 0.0755             | ND               | ND                 | ND             |
| MMU-168     | ND             | ND             | ND                  | ND                | ND               | 0.025              | ND               | ND                 | 0.16           |
| MMU-170     | ND             | ND             | ND                  | ND                | ND               | ND                 | ND               | ND                 | ND             |
| MMU-171     | ND             | ND             | ND                  | ND                | ND               | ND                 | ND               | ND                 | ND             |
| MMU-172     | ND             | ND             | ND                  | ND                | ND               | ND                 | ND               | ND                 | ND             |
| MMU-173     | ND             | ND             | ND                  | ND                | ND               | ND                 | ND               | ND                 | ND             |
| MMU-176     | ND             | ND             | ND                  | ND                | ND               | ND                 | ND               | ND                 | ND             |

Appendix B. Groundwater Quality Data, McMullen Valley Basin, 2008-2009---Continued

| Site #        | Radon-222<br>(pCi/L) | Alpha<br>(pCi/L) | Beta<br>(pCi/L) | <b>Ra-226 + Ra-228</b><br>(pCi/L) | Uranium<br>(µg/L) | <b>*<sup>18</sup> O</b><br>(⁰/₀₀) | <b>∗ D</b><br>( <sup>0</sup> / <sub>00</sub> ) | Type of Chemistry  |
|---------------|----------------------|------------------|-----------------|-----------------------------------|-------------------|-----------------------------------|------------------------------------------------|--------------------|
| MMU-1         | 739                  | 55               | 40              | < LLD                             | 80                | - 10.1                            | - 75                                           | sodium-mixed       |
| MMU-2/153/154 | 750                  | 130              | 110             | < LLD                             | 91                | - 9.6                             | - 70                                           | mixed-mixed        |
| MMU 3         | 555                  | 6.5              | 7.7             | < LLD                             | -                 | - 8.7                             | - 61                                           | mixed-mixed        |
| MMU-4         | 478                  | 7.1              | 7.6             | < LLD                             | -                 | - 7.1                             | - 50                                           | sodium-bicarbonate |
| MMU-5         | -                    | -                | -               | -                                 | -                 | -                                 | -                                              | -                  |
| MMU-6         | 544                  | 4.6              | 5.5             | -                                 | -                 | - 7.4                             | - 51                                           | sodium-bicarbonate |
| MMU-7/8       | 199                  | 7.0              | 4.2             | < LLD                             | -                 | - 9.3                             | - 66                                           | sodium-mixed       |
| MMU-9         | -                    | -                | -               | -                                 | -                 | -                                 | -                                              | -                  |
| MMU-10        | 598                  | 9.6              | 5.7             | < LLD                             | -                 | - 8.7                             | - 61                                           | sodium-mixed       |
| MMU-11        | 433                  | 5.1              | 4.0             | < LLD                             | -                 | - 9.6                             | - 68                                           | sodium-mixed       |
| MMU-12        | 410                  | -                | -               | -                                 | -                 | - 9.1                             | - 64                                           | mixed-mixed        |
| MMU-14        | 411                  | 12               | 11              | < LLD                             | -                 | - 8.1                             | - 57                                           | mixed-mixed        |
| MMU-15/16     | 299                  | -                | -               | -                                 | -                 | - 10.9                            | - 77                                           | sodium-bicarbonate |
| MMU-17        | -                    | -                | -               | -                                 | -                 | -                                 | -                                              | -                  |
| MMU-18        | 245                  | 1.3              | 4.5             | -                                 | -                 | - 10.9                            | - 78                                           | mixed-bicarbonate  |
| MMU-19        | 630                  | 8.4              | 8.3             | < LLD                             | -                 | - 8.8                             | - 66                                           | sodium-mixed       |
| MMU-21        | 468                  | 6.3              | 5.4             | < LLD                             | -                 | - 8.8                             | - 59                                           | mixed-bicarbonate  |
| MMU-22/23     | -                    | -                | -               | -                                 | -                 | -                                 | -                                              | -                  |
| MMU-24        | 446                  | -                | -               | -                                 | -                 | - 9.5                             | - 69                                           | sodium-bicarbonate |
| MMU-25        | 331                  | -                | -               | -                                 | -                 | - 8.7                             | - 62                                           | mixed-bicarbonate  |
| MMU-26        | -                    | -                | -               | -                                 | -                 | -                                 | -                                              | -                  |
| MMU-27        | 322                  | 5.9              | 4.7             | < LLD                             | -                 | - 7.0                             | - 49                                           | sodium-mixed       |
| MMU-28        | 82                   | 3.4              | 3.3             | -                                 | -                 | - 10.8                            | - 77                                           | sodium-mixed       |
| MMU-31        | -                    | -                | -               | -                                 | -                 | -                                 | -                                              | -                  |
| MMU-32/33     | 1,248                | 3.9              | 3.5             | -                                 | -                 | - 10.8                            | - 78                                           | sodium-mixed       |
| MMU-34        | -                    | -                | -               | -                                 | -                 | - 11.5                            | - 77                                           | -                  |
| MMU-35        | 686                  | 4.5              | 5.7             |                                   |                   | - 9.0                             | - 67                                           | sodium-mixed       |
| MMU-36        | 1,216                | -                | -               | -                                 | -                 | - 8.8                             | - 64                                           | sodium-bicarbonate |

Appendix B. Groundwater Quality Data, McMullen Valley Basin, 2008-2009---Continued

LLD = Lower Limit of Detection

| Site #        | Radon-222<br>(pCi/L) | Alpha<br>(pCi/L) | Beta<br>(pCi/L) | <b>Ra-226 + Ra-228</b><br>(pCi/L) | Uranium<br>(µg/L) | <b>*<sup>18</sup> O</b><br>(⁰/₀0) | <b>∗ D</b><br>( <sup>0</sup> / <sub>00</sub> ) | Type of Chemistry  |
|---------------|----------------------|------------------|-----------------|-----------------------------------|-------------------|-----------------------------------|------------------------------------------------|--------------------|
| MMU-37/150    | 977                  | -                | -               | -                                 | -                 | - 10.1                            | - 73                                           | sodium-mixed       |
| MMU 38        | -                    | -                | -               | -                                 | -                 | -                                 | -                                              | -                  |
| MMU-39        | -                    | -                | -               | -                                 | -                 | -                                 | -                                              | -                  |
| MMU-40        | 1,458                | 12               | 12              | 0.80                              | -                 | - 8.6                             | - 61                                           | sodium-bicarbonate |
| MMU-41        | 9,465                | 21               | 17              | 3.1                               | 19                | - 9.4                             | - 65                                           | sodium-bicarbonate |
| MMU-42        | 10,241               | -                | -               | -                                 | -                 | - 9.5                             | - 68                                           | sodium-mixed       |
| MMU-43        | -                    | -                | -               | -                                 | -                 | - 9.3                             | - 66                                           | sodium-mixed       |
| MMU-44        | -                    | -                | -               | -                                 | -                 | - 9.5                             | - 70                                           | mixed-chloride     |
| MMU-45        | 592                  | -                | -               | -                                 | -                 | - 10.4                            | - 74                                           | mixed-bicarbonate  |
| MMU-46        | -                    | -                | -               | -                                 | -                 | -                                 | -                                              | -                  |
| MMU-47/167    | -                    | -                | -               | -                                 | -                 | - 9.9                             | - 69                                           | sodium-bicarbonate |
| MMU-48        | -                    | 4.9              | 6.9             |                                   |                   | - 9.8                             | - 69                                           | sodium-bicarbonate |
| MMU-49/50     | -                    | -                | -               | -                                 | -                 | - 10.5                            | - 77                                           | sodium-mixed       |
| MMU-51        | -                    | -                | -               | -                                 | -                 | -                                 | -                                              | -                  |
| MMU-52        | 1,106                | -                | -               | -                                 | -                 | - 10.7                            | - 77                                           | sodium-mixed       |
| MMU-53/174    | -                    | -                | -               | -                                 | -                 | - 10.8                            | - 75                                           | sodium-mixed       |
| MMU-54        | -                    | -                | -               | -                                 | -                 | - 10.3                            | - 75                                           | sodium-mixed       |
| MMU-55/169    | -                    | -                | -               | -                                 | -                 | - 10.8                            | - 76                                           | sodium-mixed       |
| MMU-57        | -                    | -                | -               | -                                 | -                 | -                                 | -                                              | -                  |
| MMU-58/59     | -                    | -                | -               | -                                 | -                 | - 10.0                            | - 72                                           | sodium-mixed       |
| MMU-60/61/175 | -                    | -                | -               | -                                 | -                 | -                                 | -                                              | sodium-mixed       |
| MMU-62        | -                    | -                | -               | -                                 | -                 | - 10.2                            | - 73                                           | sodium-bicarbonate |
| MMU-63        | 6,894                | -                | -               | -                                 | -                 | - 9.4                             | - 67                                           | sodium-mixed       |
| MMU-64/65     | 602                  | 6.6              | 3.8             | 0.9                               | -                 | - 10.4                            | - 74                                           | sodium-mixed       |
| MMU-66        | -                    | 10               | 4.2             | -                                 | -                 | - 10.6                            | - 75                                           | sodium-bicarbonate |
| MMU-67        | -                    | -                | -               | -                                 | -                 | - 10.4                            | - 76                                           | sodium-bicarbonate |
| MMU-68        | 500                  | -                | -               | -                                 | -                 | - 10.5                            | - 75                                           | sodium-bicarbonate |
| MMU-69/70     | -                    | -                | -               | -                                 | -                 | -10.65                            | - 75.5                                         | sodium-bicarbonate |

LLD = Lower Limit of Detection

| Site #    | Radon-222<br>(pCi/L) | Alpha<br>(pCi/L) | Beta<br>(pCi/L) | <b>Ra-226 + Ra-228</b><br>(pCi/L) | Uranium<br>(µg/L) | <b>*</b> <sup>18</sup> <b>O</b><br>(⁰/₀₀) | <b>∗ D</b><br>( <sup>0</sup> / <sub>00</sub> ) | Type of Chemistry  |
|-----------|----------------------|------------------|-----------------|-----------------------------------|-------------------|-------------------------------------------|------------------------------------------------|--------------------|
| MMU-71    | 3956                 | 9.4              | 6.0             | 1.3                               | -                 | - 9.9                                     | - 76                                           | sodium-bicarbonate |
| MMU-72/73 | 681                  | -                | -               | -                                 | -                 | - 10.7                                    | - 77                                           | sodium-bicarbonate |
| MMU-74    | 868                  | 4.8              | 2.4             | -                                 | -                 | - 10.4                                    | - 75                                           | sodium-mixed       |
| MMU-76    | 1025                 | -                | -               | -                                 | -                 | - 10.6                                    | - 76                                           | sodium-mixed       |
| MMU-77    | -                    | -                | -               | -                                 | -                 | - 10.6                                    | - 76                                           | sodium-bicarbonate |
| MMU-78    | 1654                 | -                | -               | -                                 | -                 | - 10.3                                    | - 76                                           | sodium-mixed       |
| MMU-79    | 1079                 | -                | -               | -                                 | -                 | - 10.2                                    | - 74                                           | sodium-mixed       |
| MMU-80    | 830                  | 14               | 7.1             | < LLD                             | -                 | - 9.0                                     | - 62                                           | sodium-bicarbonate |
| MMU-81    | 446                  | -                | -               | -                                 | -                 | - 8.8                                     | - 63                                           | sodium-bicarbonate |
| MMU-82    | 582                  | 3.7              | 1.7             | -                                 | -                 | - 8.2                                     | - 59                                           | sodium-mixed       |
| MMU-83/84 | 3024                 | 6.9              | 4.0             | < LLD                             | -                 | - 11.0                                    | - 79                                           | sodium-mixed       |
| MMU-85/86 | 460                  | -                | -               | -                                 | -                 | - 10.6                                    | - 74                                           | mixed-chloride     |
| MMU-87    | -                    | -                | -               | -                                 | -                 | - 10.2                                    | - 70                                           | sodium-mixed       |
| MMU-88/89 | -                    | 68               | 48              | < LLD                             | 120               | - 9.5                                     | - 67                                           | sodium-mixed       |
| MMU-90    | -                    | -                | -               | -                                 | -                 | - 9.3                                     | - 71                                           | sodium-mixed       |
| MMU-91    | 664                  | -                | -               | -                                 | -                 | - 10.0                                    | - 78                                           | sodium-mixed       |
| MMU-92    | 460                  | -                | -               | -                                 | -                 | - 10.8                                    | - 77                                           | sodium-mixed       |
| MMU-93    | -                    | -                | -               | -                                 | -                 | - 10.7                                    | - 79                                           | sodium-bicarbonate |
| MMU-94    | 732                  | -                | -               | -                                 | -                 | - 11.0                                    | - 74                                           | sodium-bicarbonate |
| MMU-95    | -                    | -                | -               | -                                 | -                 | - 10.6                                    | - 77                                           | sodium-mixed       |
| MMU-96    | -                    | -                | -               | -                                 | -                 | - 10.6                                    | - 77                                           | sodium-mixed       |
| MMU-97    | -                    | -                | -               | -                                 | -                 | - 10.5                                    | - 76                                           | sodium-chloride    |
| MMU-98    | -                    | -                | -               | -                                 | -                 | - 10.7                                    | - 78                                           | sodium-mixed       |
| MMU-99    | 1227                 | -                | -               | -                                 | -                 | - 10.4                                    | - 76                                           | sodium-bicarbonate |
| MMU-100   | 1476                 | -                | -               | -                                 | -                 | - 10.0                                    | - 74                                           | sodium-mixed       |
| MMU-101   | 1551                 | -                | -               | -                                 | -                 | - 10.3                                    | - 76                                           | sodium-mixed       |
| MMU-102   | 757                  | 6.4              | 4.1             | < LLD                             | -                 | - 10.6                                    | - 76                                           | sodium-bicarbonate |
| MMU-103   | -                    | -                | -               | -                                 | -                 | - 10.6                                    | - 76                                           | sodium-bicarbonate |

Appendix B. Groundwater Quality Data, McMullen Valley Basin, 2008-2009---Continued

LLD = Lower Limit of Detection

| Site #       | Radon-222<br>(pCi/L) | Alpha<br>(pCi/L) | Beta<br>(pCi/L) | <b>Ra-226 + Ra-228</b><br>(pCi/L) | Uranium<br>(µg/L) | <b>*<sup>18</sup> O</b><br>(⁰/₀0) | <b>∗ D</b><br>( <sup>0</sup> / <sub>00</sub> ) | Type of Chemistry  |
|--------------|----------------------|------------------|-----------------|-----------------------------------|-------------------|-----------------------------------|------------------------------------------------|--------------------|
| MMU-104      | 936                  | 8.6              | 6.0             | < LLD                             | -                 | - 10.9                            | - 79                                           | sodium-mixed       |
| MMU-105      | -                    | -                | -               | -                                 | -                 | - 8.8                             | - 61                                           | sodium-bicarbonate |
| MMU-106      | -                    | -                | -               | -                                 | -                 | - 10.5                            | - 75                                           | sodium-bicarbonate |
| MMU-107/108  | 118                  | -                | -               | -                                 | -                 | - 10.8                            | - 78                                           | sodium-mixed       |
| MMU-109      | 13                   | 0.64             | 1.5             | -                                 | -                 | - 8.8                             | - 61                                           | mixed-bicarbonate  |
| MMU-110      | -                    | -                | -               | -                                 | -                 | - 10.3                            | - 76                                           | mixed-bicarbonate  |
| MMU-111      | -                    | -                | -               | -                                 | -                 | - 10.7                            | - 79                                           | sodium-bicarbonate |
| MMU-112      | 433                  | 2.9              | 5.6             | -                                 | -                 | - 10.1                            | - 76                                           | sodium-chloride    |
| MMU-113      | 106                  | 1.9              | 1.4             | -                                 | -                 | - 10.6                            | - 75                                           | sodium-bicarbonate |
| MMU-114/115a | 260                  | 12               | 7.6             | < LLD                             | -                 | - 9.9                             | - 72                                           | sodium-mixed       |
| MMU-116      | 367                  | 6.8              | 4.7             | < LLD                             | -                 | - 10.3                            | - 75                                           | mixed-bicarbonate  |
| MMU-117/118a | -                    | 8.5              | 5.8             | < LLD                             |                   | - 9.8                             | - 74                                           | sodium-mixed       |
| MMU-118b     | -                    | -                | -               | -                                 | -                 | - 9.7                             | - 73                                           | sodium-mixed       |
| MMU-119/120  | -                    | 16               | 12              | < LLD                             | 27                | - 7.9                             | - 60.5                                         | sodium-mixed       |
| MMU-121      | 307                  | 12               | 21              | < LLD                             | -                 | - 10.6                            | - 76                                           | sodium-mixed       |
| MMU-122      | 318                  | -                | -               | -                                 | -                 | - 10.8                            | - 78                                           | sodium-bicarbonate |
| MMU-123/124  | 649                  | -                | -               | -                                 | -                 | - 9.8                             | - 74                                           | sodium-chloride    |
| MMU-125      | 98                   | 2.2              | 5.0             | -                                 | -                 | - 8.9                             | - 62                                           | mixed-mixed        |
| MMU-127/128  | 766                  | 1.6              | 2.1             | -                                 | -                 | - 9.2                             | - 67                                           | sodium-mixed       |
| MMU-129      | 542                  | 4.8              | 2.9             | -                                 | -                 | - 8.7                             | - 63                                           | mixed-bicarbonate  |
| MMU-130      | 316                  | -                | -               | -                                 | -                 | - 8.4                             | - 58                                           | mixed-bicarbonate  |
| MMU-131      | -                    | -                | -               | -                                 | -                 | - 10.9                            | - 80                                           | sodium-mixed       |
| MMU-132      | 863                  | 3.8              | 2.3             | -                                 | -                 | - 10.5                            | - 76                                           | sodium-bicarbonate |
| MMU-133      | 810                  | -                | -               | -                                 | -                 | - 10.9                            | - 80                                           | sodium-mixed       |
| MMU-134/135a | 306                  | -                | -               | -                                 | -                 | - 10.5                            | - 77                                           | sodium-bicarbonate |
| MMU-135b/136 | 688                  | 20               | 5               | < LLD                             | 5.0               | - 9.4                             | - 66                                           | mixed-bicarbonate  |
| MMU-137/138  | 338                  | -                | -               | -                                 | -                 | - 9.7                             | - 72                                           | calcium-chloride   |
| MMU-139      | 699                  | -                | -               | -                                 | -                 | - 7.5                             | - 52                                           | sodium-bicarbonate |

LLD = Lower Limit of Detection

| Site #      | Radon-222<br>(pCi/L) | Alpha<br>(pCi/L) | Beta<br>(pCi/L) | <b>Ra-226 + Ra-228</b><br>(pCi/L) | Uranium<br>(µg/L) | <b>*<sup>18</sup> O</b><br>(⁰/₀0) | <b>* D</b><br>( <sup>0</sup> / <sub>00</sub> ) | Type of Chemistry   |
|-------------|----------------------|------------------|-----------------|-----------------------------------|-------------------|-----------------------------------|------------------------------------------------|---------------------|
| MMU-140     | 752                  | -                | -               | -                                 | -                 | - 7.0                             | - 51                                           | sodium-bicarbonate  |
| MMU-141     | 850                  | -                | -               | -                                 | -                 | - 7.2                             | - 51                                           | sodium-bicarbonate  |
| MMU-144     | 1,261                | -                | -               | -                                 | -                 | - 10.7                            | - 76                                           | sodium-mixed        |
| MMU-145/146 | 416                  | 18               | 8.7             | < LLD                             | 25                | - 9.4                             | - 68                                           | sodium-mixed        |
| MMU-147     | 413                  | -                | -               | -                                 | -                 | - 10.1                            | - 72                                           | sodium-bicarbonate  |
| MMU-148     | 293                  | -                | -               | -                                 | -                 | - 10.5                            | - 74                                           | sodium-bicarbonate  |
| MMU-149     | -                    | -                | -               | -                                 | -                 | - 7.1                             | - 49                                           | sodium-bicarbonate  |
| MMU-151/152 | 269                  | 8.3              | 16              | < LLD                             | -                 | - 9.9                             | - 70                                           | sodium-mixed        |
| MMU-155     | 820                  | 5.6              | 3.8             | < LLD                             | -                 | - 10.3                            | - 75                                           | sodium-bicarbonate  |
| MMU-156     | 469                  | -                | -               | -                                 | -                 | - 9.9                             | - 74                                           | sodium-mixed        |
| MMU-157     | -                    | -                | -               | -                                 | -                 | - 9.9                             | - 75                                           | sodium-mixed        |
| MMU-158     | 1,164                | -                | -               | -                                 | -                 | - 11.1                            | - 78                                           | sodium-mixed        |
| MMU-159     | 1,397                | -                | -               | -                                 | -                 | - 11.0                            | - 77                                           | sodium-mixed        |
| MMU-160/161 | -                    | 30               | 7.3             | < LLD                             | 4.1               | - 8.5                             | - 58                                           | calcium-bicarbonate |
| MMU-162     | -                    | -                | -               | -                                 | -                 | - 10.9                            | - 76                                           | sodium-bicarbonate  |
| MMU-163     | -                    | -                | -               | -                                 | -                 | - 10.3                            | - 72                                           | sodium-mixed        |
| MMU-164     | -                    | 6.5              | 4.2             | < LLD                             | -                 | - 10.2                            | - 74                                           | sodium-bicarbonate  |
| MMU-165-66  | -                    | -                | -               | -                                 | -                 | - 9.7                             | - 72                                           | sodium-mixed        |
| MMU-168     | -                    | -                | -               | -                                 | -                 | - 10.1                            | - 73                                           | sodium-mixed        |
| MMU-170     | -                    | -                | -               | -                                 | -                 | - 11.2                            | - 79                                           | sodium-mixed        |
| MMU-171     | -                    | 1.3              | 7.2             | < LLD                             | -                 | - 9.2                             | - 57                                           | mixed-bicarbonate   |
| MMU-172     | -                    | 19               | 7.9             | < LLD                             | 30                | - 9.2                             | - 63                                           | sodium-bicarbonate  |
| MMU-173     | -                    | 14               | 6.2             | < LLD                             | -                 | - 9.4                             | - 64                                           | sodium-bicarbonate  |
| MMU-176     | -                    | -                | -               | -                                 | -                 | - 10.7                            | - 76                                           | sodium-bicarbonate  |

LLD = Lower Limit of Detection