A. Performance. An applicant shall ensure that a pressure distribution system:
1. Design dosing tanks to withstand anticipated internal and external loads under full and empty conditions, and design concrete tanks to meet the “Standard Specification for Precast Concrete Water and Wastewater Structures, C913-02 (2002),” published by the American Society for Testing and Materials. This material is incorporated by reference and does not include any later amendments or editions of the incorporated material. Copies of the incorporated material are available for inspection at the Arizona Department of Environmental Quality, 1110 W. Washington, Phoenix, AZ 85007 or may be obtained from the American Society for Testing and Materials International, 100 Barr Harbor Drive, West Conshohocken, PA 19428-2959; and
ii. All controls are in NEMA 3r, 4, or 4x enclosures for outdoor use.
3. Dosing tanks and wastewater distribution components.
 a. An applicant shall:
 i. Design dosing tanks to withstand anticipated internal and external loads under full and empty conditions, and design concrete tanks to meet the “Standard Specification for Precast Concrete Water and Wastewater Structures, C913-02 (2002),” published by the American Society for Testing and Materials. This material is incorporated by reference and does not include any later amendments or editions of the incorporated material. Copies of the incorporated material are available for inspection at the Arizona Department of Environmental Quality, 1110 W. Washington, Phoenix, AZ 85007 or may be obtained from the American Society for Testing and Materials International, 100 Barr Harbor Drive, West Conshohocken, PA 19428-2959;
 ii. Design dosing tanks to be easily accessible and have secured covers;
iii. Install risers to provide access to the inlet and outlet of the tank and to service internal components;
iv. Ensure that the volume of the dosing tank accommodates bottom depth below maximum drawdown, maximum design dose, including any drainback, volume to high water alarm, and a reserve volume above the high water alarm level that is not less than the daily design flow volume. If the tank is time dosed, the applicant shall ensure that the combined surge capacity and reserve volume above the high water alarm is not less than the daily design flow volume;
v. Ensure that dosing tanks are watertight and anti-buoyant;
vi. Design the wastewater distribution components to withstand system pumping pressures;
vii. Design the wastewater distribution system to allow air to purge from the system;
viii. Design pressure piping to minimize freezing during cold weather;
ix. Ensure that orifices emit the design discharge rate uniformly throughout the wastewater distribution system; and
x. Design orifices using orifice shields to provide proper distribution of wastewater to the receiving medium.

b. An applicant may use a septic tank second compartment or a second septic tank in series as a dosing tank if all dosing tank requirements of this Section are met and a screened vault is used instead of the septic tank effluent filter.

4. Design SAR. If the site conditions of the property for the on-site wastewater treatment facility do not require pressure distribution, but an applicant chooses to use pressure distribution, the applicant shall use a design SAR for the absorption surfaces in the disposal works that is not more than 1.10 times the adjusted SAR determined in R18-9-A312(D).

E. Additional Discharge Authorization requirements. An applicant shall obtain copies of instructions for the critical controls of the system from the person who installed the pressure distribution system. The applicant shall submit one copy of the instructions with the information required in subsection (C).

F. Operation and maintenance requirements. In addition to the applicable requirements specified in R18-9-A313(B), a permittee shall ensure that:

1. The operation and maintenance manual for the on-site wastewater treatment facility that supplies the wastewater to the pressure distribution system specifies inspection and maintenance needed for the following items:
 a. Sludge level in the bottom of the treatment and dosing tanks,
 b. Watertightness,
 c. Condition of electrical and mechanical components, and
 d. Piping and other components functioning within design limits;

2. All critical control functions are specified in the operation and maintenance manual for testing to demonstrate compliance with design specifications, including:
 a. Alarms, test features, and controls;
 b. Float switch level settings;
 c. Dose rate, volume, and frequency, if applicable;
 d. Distal pressure or squirt height, if applicable; and
 e. Voltage test on pumps, motors, and controls, as applicable;

3. The finished grade is observed and maintained for proper surface drainage. The applicant shall observe the levelness of the tank for differential settling. If there is settling, the applicant shall grade the facility to maintain surface drainage.